
        
USA003088

32.0/17.0

Space Flight Operations Contract
HAL/S LANGUAGE SPECIFICATION   
PASS 32.0/BFS 17.0 
November 2005
Contract NAS9-20000

DRD - 1.4.3.8-a



USA003088
32.0/17.0

HAL/S LANGUAGE SPECIFICATION 

Contract NAS9-20000
DRD - 1.4.3.8-a

Approved by

                          Original Approval Obtained
Barbara Whitfield, Manager                                                                   
HAL/S Compiler and Application Tools    

                          Original Approval Obtained
Monica Leone, Director                                                                    
Application Tools Build and Data Reconfiguration

       



 

HAL/S Language Specification USA003088
32.0/17.0                                                                                                          

 Revision Log
The HAL/S Language Specification has been revised and issued on the following 
dates(s):1

Issue Revision Date Change 
Authority

Sections Changed

29.0/14.0 03/05/99 CR13043 - pp. Ix, x, xi, xii, iii
- p. 1-2
- pp. 2-1, 2-3, 2-4, 2-6, 2-7, 2-8
- pp. 3-1, 3-2, 3-3, 3-6, 3-8, 3-9, 3-10, 

3-11, 3-12,       3-13
 - pp. 4-1, 4-3, 4-4, 4-5, 4-7, 4-8, 4-9, 

4-10, 4-11, 4-13, 4-14, 4-15, 4-
16, 4-17, 4-18, 4-19, 4-20

 - pp. 5-1, 5-2, 5-3, 5-4, 5-6, 5-7, 5-8, 
5-9, 5-10, 5-11, 5-12, 5-14

- pp. 6-1, 6-2, 6-4, 6-6, 6-8, 6-12, 6-
13, 6-14, 6-15, 6-16, 6-18, 6-19, 
6-20, 6-21, 6-22, 6-24, 6-25, 6-
26, 6-27, 6-28

- pp. 7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 7-7, 
7-8, 7-9, 7-11, 7-12, 7-13, 7-14, 
7-15

- pp. 8-3, 8-5, 8-8, 8-9, 8-10
- pp. 9-1, 9-2, 9-4
- pp. 10-3, 10-4, 10-7, 10-8, 10-9, 10-

11, 10-13, 10-14, 10-15, 10-16, 
10-18

- pp. 11-2, 11-4, 11-6, 11-10, 11-12, 
11-13, 11-14, 11-16, 11-17, 11-
18, 11-19, 11-20, 11-21, 11-23, 
11-24, 11-25, 11-26, 11-27, 11-
28, 11-29, 11-30

- pp. A-3, A-4, A-5, A-6, A-7, A-8, A-9
- pp. C-1, C-2, C-4, C-5
- p. D-1
- p. E-1
- p. F-1
- p. H-2, H-3

1. A table containing the Revision History of this document prior to the USA contract can be found in 
Appendix J.
November 2005



USA003088 HAL/S Language Specification
32.0/17.0

Revision Log Cont’d
Issue Revision Date Change 
Authority

Sections Changed

CR12935A 4.5 - p. 4-13
CR13813 7.4 -p. 7-6
CR13956 4.8 -p. 4-19
CR14062 3.7.2

3.7.3
Appx D
Index

-p. 3-9
-p. 3-9
-p. D-1
-pp. INDEX-1 to INDEX-10

CR14215B 6.5.2
Appx D

-p. 6-23
-p. D-1

CR14216A Preface
DR109063 App. C - p. C-4
DR109083 6.1.1 - p. 6-3

30.0/15.0 03/27/00 CR12711 11.4.1 - p. 11-12
CR13212 4.5

11.4.3
- p. 4-12
- p. 11-15

CR13217 11.4.2
App. A
App. G
Index

- p. 11-15
- pp. A-1 to A-6
- pp. G-1 to G-9
- pp. INDEX-1 to INDEX-4

CR13236 4.5
7.4

- p. 4-13
- p. 7-6

31.0/16.0 09/07/01 CR13454
7.4
Appx H

cover pages, preface
-p. 7-6
-p. H-2, H-3

CR13350 3.7.4 -p. 3-11
CR13220 6.3 -p. 6-17
CR13336 Appx F -p. F-2
DR111379 Appx C -p. C-5
November 2005



USA003088 HAL/S Language Specification
32.0/17.0

Revision Log Cont’d
Issue Revision Date Change 
Authority

Sections Changed

32.0/17.0 11/05 CR13538 7.4
11.4.1
11.4.10

-p. 7-6
-p. 11-11
-p. 11-23

CR13652 7.4
11.4.8
11.4.9

-p. 7-6
-p. 11-19
-p. 11-21

CR13704A 6.4
7.4

-p. 6-18
-p. 7-6

CR13754A 6.4
7.4

-p. 6-19
-p. 7-6

CR13813 7.4 -p. 7-6
CR13956 4.8 -p. 4-19
CR14062 3.7.2

3.7.3
Appx D
Index

-p. 3-9
-p. 3-9
-p. D-1
-pp. INDEX-1 to INDEX-10

CR14215B 6.5.2
Appx D

-p. 6-23
-p. D-1

CR14216A Preface
November 2005



 

HAL/S Language Specification USA003088
32.0/17.0                                                                                                          

  List of Effective Pages
The current status of all pages in this document is as shown below:

Page No. Change No.
 All 32.0/17.0
November 2005



USA003088 HAL/S Language Specification
32.0/17.0                   
Preface

The HAL/S Language Specification was developed by Intermetrics, Inc., and is currently 
maintained by the HAL/S project of United Space Alliance.
The HAL/S programming language accomplishes three significant objectives:

• increased readability, through the use of a natural two-dimensional mathematical
format; 

• increased reliability, by providing for selective recognition of common data and
subroutines, and by incorporating specific data-protect features; 

• real-time control facility, by including a comprehensive set of real-time control
commands and signal conditions. 

Although HAL/S is designed primarily for programming on-board computers, it is general 
enough to meet nearly all the needs in the production, verification, and support of aero-
space and other real-time applications.
The design of HAL/S exhibits a number of influences, the greatest being the syntax of 
PL/1 and ALGOL, and the two-dimensional format of MAC/360, a language developed at 
the Charles Stark Draper Laboratory.  With respect to the latter, fundamental contribu-
tions to the concept and implementation of MAC were made by Dr. J. Halcombe Laning 
of the Draper Laboratory. 
The primary responsibility is with USA, Department, 01635A7.

Questions concerning the tecnical content of this document should be directed to Danny 
Strauss (281-282-2647), MC USH-635L.
November 2005



USA003088 HAL/S Language Specification
32.0/17.0                   
‘This page intentionally left blank.’
November 2005



HAL/S Language Specification USA003088
32.0/17.0
Table of Contents

1.0  INTRODUCTION .................................................................................................. 1-1
1.1  Purpose of the Document. ............................................................................... 1-1
1.2  Review of the Language. ................................................................................. 1-1
1.3  Outline of the Document. ................................................................................. 1-2

2.0  SYNTAX DIAGRAMS AND HAL/S PRIMITIVES .................................................. 2-1
2.1  The HAL/S Syntax Diagram. ........................................................................... 2-1
2.2  The HAL/S Character Set. ............................................................................... 2-2
2.3  HAL/S Primitives. ............................................................................................. 2-3

2.3.1   Reserved Words. ................................................................................... 2-4
2.3.2   Identifiers. ............................................................................................... 2-4
2.3.3   Numbers. ................................................................................................ 2-4
2.3.4   Literals. ................................................................................................... 2-4

2.4  One- and Two-Dimensional Source Formats. ................................................. 2-6
2.5  Comments and Blanks in the Source Text. ..................................................... 2-8

3.0  HAL/S BLOCK STRUCTURE AND ORGANIZATION .......................................... 3-1
3.1  The Unit of Compilation. .................................................................................. 3-1
3.2  The PROGRAM Block. .................................................................................... 3-2
3.3  PROCEDURE, FUNCTION, and TASK Blocks. .............................................. 3-3
3.4  The UPDATE Block. ........................................................................................ 3-4
3.5  The COMPOOL Block. .................................................................................... 3-5
3.6  Block Templates. ............................................................................................. 3-6
3.7  Block Delimiting Statements. ........................................................................... 3-7

3.7.1   Simple Header Statements .................................................................... 3-7
3.7.2   The Procedure Header Statement. ........................................................ 3-8
3.7.3   The Function Header Statement. ........................................................... 3-9
3.7.4   The CLOSE Statement. ....................................................................... 3-11

3.8  Name Scope Rules. ....................................................................................... 3-11
4.0  DATA AND OTHER DECLARATIONS ................................................................. 4-1

4.1  The Declare Group. ......................................................................................... 4-1
4.2  The REPLACE Statement. .............................................................................. 4-2

4.2.1   Form of REPLACE Statement. ............................................................... 4-2
4.2.2   Referencing REPLACE Statements. ...................................................... 4-3
4.2.3   Identifier Generation ............................................................................... 4-5
4.2.4   Identifier Generation With Macro Parameters. ....................................... 4-5

4.3  The Structure Template. .................................................................................. 4-5
4.4  The DECLARE Statement. ............................................................................ 4-10
4.5  Data Declarative Attributes. ........................................................................... 4-10
4.6  Label Declarative Attributes. .......................................................................... 4-14
4.7  Type Specification. ........................................................................................ 4-15
4.8  Initialization. ................................................................................................... 4-17

5.0  DATA REFERENCING CONSIDERATIONS ........................................................ 5-1
5.1  Referencing Simple Variables. ........................................................................ 5-1
5.2  Referencing Structures .................................................................................... 5-1
i November 2005
  



USA003088 HAL/S Language Specification
32.0/17.0
5.3  Subscripting ..................................................................................................... 5-2
5.3.1   Classes of Subscripting .......................................................................... 5-3
5.3.2   The General Form of Subscripting. ........................................................ 5-6
5.3.3   Structure Subscripting. ........................................................................... 5-7
5.3.4   Array Subscripting. ................................................................................. 5-8
5.3.5   Component Subscripting. ....................................................................... 5-9

5.4  The Property of Arrayness. ............................................................................ 5-10
5.4.1   Arrayness of Subscript Expressions .................................................... 5-11

5.5  The Natural Sequence of Data Elements ...................................................... 5-13
6.0  DATA MANIPULATION AND EXPRESSIONS ..................................................... 6-1

6.1  Regular Expressions. ...................................................................................... 6-1
6.1.1   Arithmetic Expressions. .......................................................................... 6-1
6.1.2   Bit Expressions. ..................................................................................... 6-6
6.1.3   Character Expressions. .......................................................................... 6-8
6.1.4   Structure Expressions. ........................................................................... 6-9
6.1.5   Array Properties of Expressions. ............................................................ 6-9

6.2  Conditional Expressions. ............................................................................... 6-10
6.2.1   Arithmetic Comparisons. ...................................................................... 6-12
6.2.2   Bit Comparisons. .................................................................................. 6-13
6.2.3   Character Comparisons. ...................................................................... 6-14
6.2.4   Structure Comparisons. ....................................................................... 6-15
6.2.5   Comparisons Between Arrayed Operands. .......................................... 6-15

6.3  Event Expressions. ........................................................................................ 6-16
6.4  Normal Functions. ......................................................................................... 6-17
6.5  Explicit Type Conversions. ............................................................................ 6-20

6.5.1   Arithmetic Conversion Functions. ........................................................ 6-20
6.5.2   The Bit Conversion Function. ............................................................... 6-23
6.5.3   The Character Conversion Function. ................................................... 6-25
6.5.4   The SUBBIT pseudo-variable. ............................................................. 6-26
6.5.5   Summary of Argument Types. ............................................................. 6-27

6.6  Explicit Precision Conversion. ....................................................................... 6-28
7.0   EXECUTABLE STATEMENTS ............................................................................ 7-1

7.1  Basic Statements. ............................................................................................ 7-1
7.2  The IF Statement. ............................................................................................ 7-1
7.3  The Assignment Statement. ............................................................................ 7-2
7.4  The CALL Statement. ...................................................................................... 7-4
7.5  The RETURN Statement. ................................................................................ 7-7
7.6  The DO…END Statement Group. ................................................................... 7-8

7.6.1   The Simple DO Statement. .................................................................... 7-9
7.6.2   The DO CASEStatement. ...................................................................... 7-9
7.6.3   The DO WHILE and UNTIL Statements. .............................................. 7-10
7.6.4   The Discrete DO FOR Statement. ....................................................... 7-11
7.6.5   The Iterative DO FOR Statement. ........................................................ 7-12
7.6.6   The END Statement. ............................................................................ 7-13

7.7  Other Basic Statements. ................................................................................ 7-14
8.0  REAL TIME CONTROL ........................................................................................ 8-1
November 2005 ii



HAL/S Language Specification USA003088
32.0/17.0
8.1  Real Time Processes and the RTE. ................................................................ 8-1
8.2  Timing Considerations. .................................................................................... 8-2
8.3  The SCHEDULE Statement. ........................................................................... 8-2
8.4  The CANCEL Statement. ................................................................................ 8-5
8.5  The TERMINATE Statement. .......................................................................... 8-6
8.6  The WAIT statement. ....................................................................................... 8-7
8.7  The UPDATE PRIORITY Statement. .............................................................. 8-8
8.8  Event Control. .................................................................................................. 8-8
8.9  Process-events. ............................................................................................. 8-10
8.10  Data Sharing and the UPDATE Block. ........................................................ 8-11

9.0  ERROR RECOVERY AND CONTROL ................................................................. 9-1
9.1  The ON ERROR Statement. ............................................................................ 9-1
9.2  The SEND ERROR Statement. ....................................................................... 9-4

10.0  INPUT/OUTPUT STATEMENTS ...................................................................... 10-1
10.1  Sequential I/O Statement. ........................................................................... 10-1

10.1.1    The READ and READALL Statements. ............................................ 10-1
10.1.2   The WRITE Statement. ...................................................................... 10-4
10.1.3   I/O Control Functions. ........................................................................ 10-5
10.1.4   FORMAT Lists. ................................................................................... 10-7

 10.1.4.1  FORMAT Character Expressions. ............................................. 10-8
 10.1.4.2  FORMAT Items. ....................................................................... 10-10
 10.1.4.3  I FORMAT Item ........................................................................ 10-11
 10.1.4.4  F and E FORMAT Items. ......................................................... 10-12
 10.1.4.5  A FORMAT Items. ................................................................... 10-14
 10.1.4.6  U FORMAT Items. ................................................................... 10-15
 10.1.4.7  X FORMAT Items. ................................................................... 10-15
 10.1.4.8  FORMAT Quote Strings. .......................................................... 10-16
 10.1.4.9  P FORMAT Items. ................................................................... 10-17

10.2  Random Access I/O and the FILE Statement. ........................................... 10-19
11.0  SYSTEMS LANGUAGE FEATURES ................................................................ 11-1

11.1  INTRODUCTION. ........................................................................................ 11-1
11.2  PROGRAM ORGANIZATION FEATURES ................................................. 11-1

11.2.1   Inline Function Blocks. ....................................................................... 11-1
11.2.2   %macro References. .......................................................................... 11-3
11.2.3   Operand Reference Invocations. ....................................................... 11-4
11.2.4   The %Macro Call Statement. ............................................................. 11-7

11.3  Temporary Variables. .................................................................................. 11-7
11.3.1   Regular TEMPORARY Variables. ...................................................... 11-8
11.3.2   Loop TEMPORARY Variables. .......................................................... 11-9

11.4  The NAME Facility ..................................................................................... 11-10
11.4.1   Identifiers with the NAME Attribute .................................................. 11-10
11.4.2   The NAME Attribute in Structure Templates. ................................... 11-13
11.4.3   Declarations of Temporaries. ........................................................... 11-15
11.4.4   The ‘Dereferenced’ Use of Simple NAME Identifiers. ...................... 11-15
11.4.5   Referencing NAME Values. ............................................................. 11-16
iii November 2005 



USA003088 HAL/S Language Specification
32.0/17.0
11.4.6   Changing NAME Values.  ................................................................ 11-18
11.4.7   NAME Assignment Statements. ....................................................... 11-19
11.4.8   NAME Value Comparisons. ............................................................. 11-19
11.4.9   Argument Passage Considerations. ................................................. 11-20
11.4.10   Initialization. ................................................................................... 11-22
11.4.11   Notes on NAME Data and Structures. ........................................... 11-23

11.5  The EQUATE Facility. ............................................................................... 11-27
11.5.1   The EQUATE Statement. ................................................................. 11-28
11.5.2   EQUATE Statement Placement. ...................................................... 11-29

 Appendix A- A  SYNTAX DIAGRAM SUMMARIES....................................................  A-1
         A.1  SYNTAX PRIMITIVE REFERENCES ....................................................A-1
         A.2  SYNTAX DIAGRAM CROSS REFERENCES ........................................A-4
         A.3  SYNTAX DIAGRAM LISTING ................................................................A-8

 Appendix B- HAL/S KEYWORDS...............................................................................  B-1
 Appendix C- BUILT-IN FUNCTIONS .......................................................................... C-1
 Appendix D- STANDARD CONVERSION FORMATS................................................ D-1
 Appendix E- STANDARD EXTERNAL FORMATS.....................................................  E-1
 Appendix F- COMPILE-TIME COMPUTATIONS........................................................  F-1
 Appendix G- BNF WORKING GRAMMAR of HAL/S.................................................  G-1
 Appendix H - SUMMARY OF OPERATORS .............................................................. H-1

         H.1  ARITHMETIC OPERATORS .................................................................H-1
         H.2  CHARACTER OPERATOR ...................................................................H-2
         H.3  BIT OPERATORS ..................................................................................H-2
         H.4  CONDITIONAL AND EVENT OPERATORS .........................................H-2
         H.5  COMPARISON OPERATORS ...............................................................H-3

 Appendix I- %MACROS...............................................................................................  I-1
 Appendix J- CHANGE HISTORY................................................................................  J-1
November 2005 iv



HAL/S Language Specification USA003088
32.0/17.0

LIST OF FIGURES
Figure 2-1  WAIT statement (typical syntax diagram)................................................... 2-1
Figure 2-2   HAL/S character set .................................................................................. 2-3
Figure 2-3  Subscript Diagram...................................................................................... 2-7
Figure 3-1  unit of compilation - #1 ............................................................................... 3-1
Figure 3-2  PROGRAM block - #2 ................................................................................ 3-2
Figure 3-3  PROCEDURE, FUNCTION, TASK block - #3 ............................................ 3-3
Figure 3-4  UPDATE block - #4 .................................................................................... 3-4
Figure 3-5  COMPOOL block - #5................................................................................. 3-5
Figure 3-6  PROGRAM, PROCEDURE, FUNCTION, COMPOOL template - #6 ......... 3-6
Figure 3-7  COMPOOL, PROGRAM, TASK, UPDATE header statement - #7 ............ 3-7
Figure 3-8   PROCEDURE header statement - #8 ....................................................... 3-8
Figure 3-9   FUNCTION header statement - #9............................................................ 3-9
Figure 3-10   closing of block - #10............................................................................. 3-11
Figure 3-11  Name Scope Examples.......................................................................... 3-12
Figure 4-1  HAL/S DATA TYPES AND ORGANIZATIONS .......................................... 4-1
Figure 4-2  declare group - #11 .................................................................................... 4-2
Figure 4-3  replace statement - #12.............................................................................. 4-2
Figure 4-4  parametric replace reference - #12.1 ......................................................... 4-3
Figure 4-5  Creating Identifiers With Replace Macros .................................................. 4-5
Figure 4-6  Tree diagram for a typical structure template ............................................. 4-6
Figure 4-7  structure template statement - #13............................................................. 4-7
Figure 4-8  structure template examples ...................................................................... 4-9
Figure 4-9  declaration statement - #14 ...................................................................... 4-10
Figure 4-10  data declarative attributes - #15 ............................................................. 4-11
Figure 4-11  Rigid Structure Example......................................................................... 4-14
Figure 4-12  Label declarative attributes - #16 ........................................................... 4-14
Figure 4-13  type specification - #17........................................................................... 4-15
Figure 4-14  initialization specification - #18............................................................... 4-18
Figure 5-1  Referencing Structures............................................................................... 5-2
Figure 5-2  Subscripting - #19....................................................................................... 5-2
Figure 5-3  variable - #20.............................................................................................. 5-3
Figure 5-4  subscript construct - #21 ............................................................................ 5-4
Figure 5-5  Subscript examples .................................................................................... 5-5
Figure 5-6  componoent, array, and structure subscripts - #22 .................................... 5-6
Figure 5-7  Structure Subscripting Examples ............................................................... 5-8
Figure 5-8  Structure and Array Subscripting Examples............................................... 5-9
Figure 5-9  Matrix and Array Subscripting Examples.................................................. 5-10
Figure 5-10  Property of Arayness Exapmle............................................................... 5-11
Figure 5-11  Structure Unraveling Example................................................................ 5-13
Figure 6-1  expression - #23 ......................................................................................... 6-1
Figure 6-2  arithmetic expression - #24 ........................................................................ 6-2
Figure 6-3  arithmetic operand - #25............................................................................. 6-5
Figure 6-4   bit expression - #26 ................................................................................... 6-6
Figure 6-5  bit operand - #27 ........................................................................................ 6-7
v November 2005
  



HAL/S Language Specification USA003088
32.0/17.0
Figure 6-6  character expression - #28 ......................................................................... 6-8
Figure 6-7  character operand - #29 ............................................................................. 6-8
Figure 6-8  structure expression - #29.1 ....................................................................... 6-9
Figure 6-9  conditional expression - #30..................................................................... 6-10
Figure 6-10  conditional operand - #31....................................................................... 6-11
Figure 6-11  arithmetic comparison - #32 ................................................................... 6-12
Figure 6-12  bit comparison - #33............................................................................... 6-13
Figure 6-13  character comparison - #34.................................................................... 6-14
Figure 6-14  structure comparison - #35..................................................................... 6-15
Figure 6-15  event expression - #36 ........................................................................... 6-16
Figure 6-16  event operand - #37 ............................................................................... 6-17
Figure 6-17  normal function - #38.............................................................................. 6-18
Figure 6-18  Normal Functions Examples................................................................... 6-19
Figure 6-19  arithmetic conversion function - #39....................................................... 6-20
Figure 6-20  Explicit Conversion Examples ................................................................ 6-22
Figure 6-21  bit conversion function - #40................................................................... 6-23
Figure 6-22  bit conversion function - #41................................................................... 6-25
Figure 6-23  Character Conversion Examples............................................................ 6-26
Figure 6-24  SUBBIT pseudo-variable - #42............................................................... 6-26
Figure 6-25  SUBBIT Example.................................................................................... 6-27
Figure 6-26  precision specifier - #43.......................................................................... 6-28
Figure 7-1   basic statement - #44 ................................................................................ 7-1
Figure 7-2  IF statement - #45 ...................................................................................... 7-1
Figure 7-3  assignment statement - #46 ....................................................................... 7-2
Figure 7-4  CALL statement - #47................................................................................. 7-5
Figure 7-5  CALL ASSIGN Example ............................................................................. 7-7
Figure 7-6  RETURN statement - #48........................................................................... 7-7
Figure 7-7  DO…END statement group - #49............................................................... 7-8
Figure 7-8  simple DO statement - #50......................................................................... 7-9
Figure 7-9  DO CASE statement  - #51 ........................................................................ 7-9
Figure 7-10  DO WHILE and UNTIL statements - #52................................................ 7-10
Figure 7-11  discrete DO FOR statement - #53.......................................................... 7-11
Figure 7-12  iterative DO FOR statement - #54.......................................................... 7-12
Figure 7-13  END statement - #55.............................................................................. 7-13
Figure 7-14  GO TO, “null”, EXIT, and REPEAT statements - #56............................. 7-14
Figure 8-1  SCHEDULE statement - #57...................................................................... 8-3
Figure 8-2  CANCEL statement - #58 ........................................................................... 8-5
Figure 8-3  TERMINATE statement - #59..................................................................... 8-6
Figure 8-4  WAIT statement - #60................................................................................. 8-7
Figure 8-5  UPDATE PRIORITY statement - #61 ......................................................... 8-8
Figure 8-6  SET, SIGNAL, and RESET statements - #62............................................. 8-9
Figure 9-1  ON ERROR statement - #63 ...................................................................... 9-2
Figure 9-2  SEND ERROR statement - #64.................................................................. 9-4
Figure 10-1  READ and READALL statements - #65 ................................................. 10-2
Figure 10-2  WRITE statement - #66.......................................................................... 10-4
Figure 10-3  i/o control function - #67 ......................................................................... 10-6
vi November 2005
  



HAL/S Language Specification USA003088
32.0/17.0
Figure 10-4  FORMAT lists - #82................................................................................ 10-7
Figure 10-5  format character expression - #83.......................................................... 10-8
Figure 10-6  FORMAT item - #84 ............................................................................. 10-10
Figure 10-7  I FORMAT Item - #85 ........................................................................... 10-11
Figure 10-8   F and E FORMAT items - #86............................................................. 10-12
Figure 10-9  A format item - #87............................................................................... 10-14
Figure 10-10  U format item - #88............................................................................. 10-15
Figure 10-11  X format item - #89 ............................................................................. 10-15
Figure 10-12  FORMAT quote string - #90 ............................................................... 10-16
Figure 10-13  P format item - #91 ............................................................................. 10-17
Figure 10-14  FILE statements - #68 ........................................................................ 10-19
Figure 11-1   Inline Function Block - #69 .................................................................... 11-2
Figure 11-2   %Macro Statement - #70....................................................................... 11-3
Figure 11-3  arithmetic operand - #25s....................................................................... 11-4
Figure 11-4  bit operand - #27s................................................................................... 11-5
Figure 11-5  character operand - #29s ....................................................................... 11-6
Figure 11-6  structure expression - #29.1s ................................................................. 11-6
Figure 11-7  %MACRO - #71...................................................................................... 11-7
Figure 11-8   DO…END Statement Group - #49s....................................................... 11-8
Figure 11-9  temporary statement - #72 ..................................................................... 11-8
Figure 11-10   discrete DO FOR with loop TEMPORARY variable index - #53.......... 11-9
Figure 11-11   iterative DO FOR with loop TEMPORARY variable index - #54s...... 11-10
Figure 11-12   declaration statement - #14s ............................................................. 11-11
Figure 11-13  NAME Examples ................................................................................ 11-12
Figure 11-14  NAME Array Examples....................................................................... 11-12
Figure 11-15   label declarative attribute - #16s........................................................ 11-13
Figure 11-16  structure template statement - #13s ................................................... 11-14
Figure 11-17  Structure NAME Examples................................................................. 11-15
Figure 11-18  NAME Variable Dereferencing Examples........................................... 11-16
Figure 11-19  NAME reference - #73........................................................................ 11-16
Figure 11-20   NAME Variable Subscripting Example .............................................. 11-17
Figure 11-21  NAME Variable Referencing Examples.............................................. 11-18
Figure 11-22   NAME assign #74.............................................................................. 11-18
Figure 11-23  NAME Assignment Example .............................................................. 11-18
Figure 11-24  NAME assignment statement #75 ...................................................... 11-19
Figure 11-25  NAME conditional expression-  #76 ................................................... 11-19
Figure 11-26  NAME Conditional Example ............................................................... 11-20
Figure 11-27  normal FUNCTION reference - #77.................................................... 11-20
Figure 11-28  CALL STATEMENT with NAME - #47s .............................................. 11-21
Figure 11-29   NAME Variables as Parameters Example......................................... 11-22
Figure 11-30   NAME initialization attribute #79........................................................ 11-22
Figure 11-31  Structure NAME Dereference............................................................. 11-23
Figure 11-32  Structure NAME Dereference Chain .................................................. 11-24
Figure 11-33  Structure NAME Dereference Loop.................................................... 11-24
Figure 11-34  Structure NAME Dereference with Subscripting................................. 11-25
Figure 11-35  Structure NAME Manipulation ............................................................ 11-26
vii November 2005
  



HAL/S Language Specification USA003088
32.0/17.0
Figure 11-36  Structure NAMEs with READ Statements .......................................... 11-27
Figure 11-37   EQUATE Statement - #80 ................................................................. 11-28
Figure 11-38  declare group - #11s........................................................................... 11-29
viii November 2005
  



HAL/S Language Specification USA003088
32.0/17.0

List of Tables 
Table 6-1 Infix Operators .............................................................................................. 6-3
Table 6-2 Precedence Rules for Arithmetic Operators ................................................. 6-4
Table 6-3 Precedence Rules for Bit Expressions ......................................................... 6-6
Table 6-4 Precedence Rules for Event Expressions .................................................. 6-16
Table 6-5 Legal Argument Types for Conversion Functions....................................... 6-27
Table 8-1 Latched and Unlatched Events in Set, Reset, and Signal Statements ....... 8-10
Table 9-1  Precedence Rules for ON ERROR.............................................................. 9-4
ix November 2005
  



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
November 2005 x



HAL/S Language Specification USA003088
32.0/17.0
1.0   INTRODUCTION
HAL/S is a programming language developed by Intermetrics, Inc., for the flight software 
of NASA programs.  HAL/S is intended to satisfy virtually all of the flight software 
requirements of NASA programs.  To achieve this, HAL/S incorporates a wide range of 
features, including applications-oriented data types and organizations, real-time control 
mechanisms, and constructs for systems programming tasks.
As the name indicates, HAL/S is a dialect of the original HAL language previously 
developed by Intermetrics.  Changes have been incorporated to simplify syntax, curb 
excessive generality, or facilitate flight code emission.

1.1  Purpose of the Document.
This document constitutes the formal HAL/S Language Specification, its scope being 
limited to the essentials of HAL/S syntax and semantics.  Its purpose is to define 
completely and unambiguously all aspects of the language.  The Specification is 
intended to serve as the final arbiter in all questions concerning the HAL/S language.  It 
will be the purpose of other documents to give a more informal, tutorial presentation of 
the language, and to describe the operational aspects of the HAL/S programming 
system.

1.2  Review of the Language.
HAL/S is a higher order language designed to allow programmers, analysts, and 
engineers to communicate with the computer in a form approximating natural 
mathematical expression.  Parts of the English language are combined with standard 
notation to provide a tool that readily encourages programming without demanding 
computer hardware expertise.
HAL/S compilers accept two formats of the source text: the usual single line format, and 
also a multiline format corresponding to the natural notation of ordinary algebra.

DATA TYPES AND COMPUTATIONS
HAL/S provides facilities for manipulating a number of different data types.  Its integer, 
scalar, vector, and matrix types, together with the appropriate operators and built-in 
functions, provide an extremely powerful tool for the implementation of guidance and 
control algorithms.  Bit and character types are also incorporated.
HAL/S permits the formation of multi-dimensional arrays of homogeneous data types, 
and of tree-like structures which are organizations of non-homogeneous data types.

REAL TIME CONTROL
HAL/S is a real time control language.  Defined blocks of code called programs and tasks 
can be scheduled for execution in a variety of different ways.  A wide range of commands 
for controlling their execution is also provided, including mechanisms for interfacing with 
external interrupts and other environmental conditions.

ERROR RECOVERY
HAL/S contains an elaborate run time error recovery facility which allows the 
programmer freedom (within the constraints of safety) to define his own error processing 
procedures, or to leave control with the operating system.
1-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYSTEM LANGUAGE
HAL/S contains a number of features especially designed to facilitate its applications to 
systems programming.  Thus it substantially eliminates the necessity of using an 
assembler language.

PROGRAM RELIABILITY
Program reliability is enhanced when software can, by its design, create effective 
isolation between various sections of code, while maintaining ease of access to 
commonly used data.  HAL/S is a block oriented language in that blocks of code may be 
established with locally defined variables that are not visible from outside the block.  
Separately compiled program blocks can be executed together and communicate 
through one or more centrally managed and highly visible data pools.  In a real time 
environment, HAL/S couples these precautions with locking mechanisms preventing the 
uncontrolled usage of sensitive  data or areas of code. 

1.3  Outline of the Document.
The formal Specification of HAL/S is contained in Sections 3 through 10 of this 
document.  Section 2 introduces the notation to be used in the remainder.
The global structure of HAL/S is presented in Section 3.  Data declaration and 
referencing are presented in Sections 4 and 5, respectively.  Section 6 is dedicated to the 
formation of different kinds of expressions.  Sections 7 through 10 show how these 
expressions are variously used in executable statements.
Section 7 gives the specification of ordinary executable statements such as IF 
statements, assignments, etc.  Section 8 deals with real time programming.  Section 9 
explains the HAL/S error recovery system and Section 10 the HAL/S I/O capability.
Finally, Section 11 is devoted to system language features of HAL/S.
November 2005 1-2



HAL/S Language Specification USA003088
32.0/17.0
2.0   SYNTAX DIAGRAMS AND HAL/S PRIMITIVES
In this Specification, the syntax of the HAL/S language is represented in the form of 
syntax diagrams.  These are to be read in conjunction with the associated sets of 
semantic rules.  Sometimes the semantic rules modify or restrict the meaning inherent in 
the syntax diagrams.  Together the two provide a complete, unambiguous description of 
the language.  The syntax diagrams are mutually dependent in that syntactical terms 
referenced in some diagrams are defined in others.  There are, however, a basic set of 
syntactical terms for which no definition is given.  These are the HAL/S “primitives”.
This section has two main purposes: to explain how to read syntax diagrams, and to 
provide definitions of the HAL/S primitives.  Various aspects of HAL/S source text which 
impact upon the meaning of the diagrams are also discussed briefly.
A syntax diagram Cross Reference Table may be found in Appendix A.

2.1  The HAL/S Syntax Diagram.
Syntax diagrams are, essentially, flow diagrams representing the formal grammar of a 
language.  By tracing the paths on a diagram, various examples of the language 
construct it represents may be created.  In this Specification, the Syntax Diagrams, 
together with the associated semantic rules, provide a complete and unambiguous 
definition of the HAL/S language.  The syntax diagrams are, however, not meant to be 
viewed as constituting a “working” grammar (that is, an analytical tool for compiler 
construction).
A typical example of a syntax diagram is illustrated below.  Following the diagram, a set  
of rules for reading it correctly is given.  The rules apply generally to all syntax diagrams 
presented in the ensuing sections.

Figure 2-1  WAIT statement (typical syntax diagram)

WAIT
statement1

5

: label

basic
statement

WAIT
4

FOR DEPENDENT

UNTIL

event exp

arith exp

arith exp

;

7

61
0

9
example:

NOW: WAIT UNTIL T + 7.5

3

4

2

8

12
11
2-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
RULES:
 1. Every diagram defines a syntactical term.  The name of the term being defined 

appears in the hexagonal box .  The title of the syntax diagram is usually a 
discursive description of the syntactical term.  In the case illustrated, the language 
construct depicted is a particularization of the syntactical term defined (a “WAIT 
statement” is an example of ).

 2. To generate examples of the construct, the flow path is to be followed from left to 
right, from box to box, starting at the point of juncture of the definition box  , and 
ending when the end of the path  is reached.

 3. The path is moved along until it arrives at a black dot .  No “backing up” along points 
of convergence such as  is allowed.  A black dot denotes that a choice of paths is to 
be made.  The possible number of divergent paths is arbitrary.

 4. Potentially infinite loops such as  may sometimes be encountered.  Sometimes 
there are semantic restrictions upon how many times such loops may be traversed.

 5. Every time a box is encountered, the syntactical term it represents is added to the 
right of the sequence of terms generated by moving along the flow path.  For 
example, moving along the path paralleling dotted line  generates the sequence 
“WAIT <arith exp>;” (see Rule 7).

 6. Boxes with squared corners, such as  , represent syntactical terms defined in other 
diagrams.  Boxes with circular ends, such as , represent HAL/S primitives.  Circular 
boxes, such as , contain special characters (see Section 2.2).

 7. The text accompanying the syntax diagrams, boxes containing lower case names are 
represented by enclosing the names in the delimiters <>.  Thus box  becomes 
<arith exp>.  Upper case names are reserved words of the language.  

 8. The example given at  is an example of HAL/S code which may be generated by 
applying the syntax diagram (since some boxes, such as  for example, are defined 
in other syntax diagrams, reference to them may be necessary to complete the 
generative process). 

2.2  The HAL/S Character Set.
The HAL/S character set consists of the 52 upper and lower case alphabetical 
characters, the numerals zero through nine, and other symbols.  The restricted character 
set is the set necessary for the generation of constructs depicted by the syntax diagrams.  
The extended character set includes, in addition, certain other symbols legal in such 
places as comments and character literals, and is used chiefly for the purpose of 
compiler listing annotation.
The following table gives a complete list of the characters in the extended set, with a brief 
indication of their principal usage.

1

1

3

6

4

5

7

8

9

11

10

9

12

9

November 2005 2-2



HAL/S Language Specification USA003088
32.0/17.0
Figure 2-2   HAL/S character set

2.3  HAL/S Primitives.
HAL/S syntax diagrams ultimately express all syntactical elements in terms of a small 
number of special characters and pre-defined primitives.  Primitives are constructed from 
the characters comprising the HAL/S restricted character set.  There are three broad 
classes of primitives:  “reserved words”, “identifiers”, and “literals”.

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

a
b
c
d
e
f
g
h
i

j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

+
-
*
.
/
|
&
¬
=
<
>
#
@
$
,
;
:
(blank)
(
)
'
"

alphabetic alphabetic special characters

pseudo-alphabetic

numeric additional extended-set symbols

delimiters

separators

operators

literals,
identifiers

literals,
identifiers,
reserved words

literals,
identifiers

_     identifiers
%   macros
¢    text generation
      escape

0
1
2
3
4
5
6
7
8
9

[
]
{
}
!
?

2-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
2.3.1 Reserved Words.
As their names suggest, reserved words are names recognized to have standard 
meanings within the language and which are unavailable for any other use.  With the 
exception of %macro names, they are constructed from alphabetic characters alone.  
Reserved words fall into three categories: keywords, %macro, and built-in function 
names.  In the syntax diagrams, and in the accompanying text, reserved words are 
indicated by upper case characters.  A list of keywords is given in Appendix B, and of 
built-in function names in Appendix C.

2.3.2 Identifiers.
An identifier is a name assigned by the programmer to be a variable, label, or other 
entity.  Before its attributes are defined, it is syntactically known as an <identifier>.  Each 
valid <identifier> must satisfy the following rules:

•   the total number of characters must not exceed 32;
•   the first character must be alphabetic;
•   any character except the first may be alphabetic or numeric; 
•   any character except the first or the last may be a “break character” (_).

The definition of an <identifier> generally establishes its attributes, and, in particular, its 
type.  Thereafter, because its type is known, it is given one of the following names, as 
appropriate:

The manner in which its attributes are established is discussed in Section 4.  The manner 
in which it is thereafter referenced is discussed in Section 5.

2.3.3 Numbers.
HAL/S supports two numeric types: INTEGER and SCALAR.
INTEGER type provides all the signed integers in some finite range.  INTEGER DOUBLE 
supports a larger range than INTEGER single.
SCALAR type is represented as floating point numbers.  As such they are an 
approximation to the signed reals (engineering numbers) within some finite range and 
with some finite precision.  SCALAR DOUBLE supports a larger range and/or greater 
precision than SCALAR single.  

2.3.4 Literals.
Literals are groups of characters expressing their own values.  During the execution of a 
body of HAL/S code their values remain constant.  Differing rules apply for the formation 
of literals of differing type.

<label> ⎧arith (arithmetic) 
<process-event name> ⎪char (character) 
< § var name> where § ≡ ⎨bit 
<template name> ⎪event 

⎩structure 
November 2005 2-4



HAL/S Language Specification USA003088
32.0/17.0
RULES FOR ARITHMETIC LITERALS:
 1. No distinction is made between integer and scalar valued literals.  They take on either  

integer or scalar type according to their context.  Similarly, no distinction is made  
between single and double precision.  Consequently, arithmetic literals can be 
represented by the single syntactical form <number>.

 2. The generic form of a <number> is:                                                                       
±dddddd.dddddddd<exponents>                                                                                                                                                            

where d = decimal digit.Any number of decimal digits to an implementation 
dependent maximum, including none, may appear before or after the decimal point.  
The sign and the decimal point are both optional.  Any number of <exponents> to an 
implementation dependent maximum may optionally follow.

 3. The form of the <exponents> may be:
B<power> = 2<power> 
E<power>  = 10 <power> 
H<power> = 16 <power> 

where <power> is a signed integer number.  The valid range of values of <power> is 
implementation dependent.

RULES FOR BIT LITERALS:
 1. Literals of bit type are denoted syntactically by <bit literal>.  
 2. They have one of the forms shown below: 

The <repetition> is optional and consists of a parenthesized positive integer number.  
It indicates how many times the following string is to be used in creating the value.  
The number of digits lies between 1 and an implementation dependent maximum.

 3. The following abbreviated forms are allowed:
            TRUE ≡ ON ≡ BIN ‘1’
            FALSE ≡ OFF ≡ BIN ‘0’

examples:
0.123E16B-3
45.9
-4

BIN <repetition> ‘bbbbbbb’ where b = binary digit 
OCT <repetition> ‘ooooooo’ o = octal digit 
HEX <repetition> ‘hhhhhhh’ h = hexadecimal digit 
DEC ‘ddddddd’ d = decimal digit 

examples:
BIN‘11011000110’

HEX(3)‘F’
2-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
RULES FOR CHARACTER LITERALS:
 1. Literals of character type are denoted syntactically by <char literal>.  
 2. They have one of the two following forms: 

‘ccccccc’
CHAR <repetition> ‘ccccccc’
Where c is any character in the HAL/S extended character set.  The <repetition> 
consists of a parenthesized positive integer literal.  It indicates how many times the 
following string is to be used in creating the value.  The number of characters lies 
between zero and an implementation dependent maximum.

 3. A null character literal (zero characters long) is denoted by two adjacent apostrophes.  
 4. Since an apostrophe delimits the string of characters inside the literal, an apostrophe 

must be represented by two adjacent apostrophes; i.e., the representation of “dog’s” 
would be ‘DOG’ ‘S’.

 5. Within a character literal, a special “escape” mechanism may be employed to indicate 
a character other than one in the HAL/S extended character set.  “¢” is defined to be 
the “escape” character within this context.  In accordance with an implementation 
dependent mapping scheme, HAL/S characters will be assigned alternate character 
values.  Inclusion of these alternate values in a string literal is achieved by preceding 
the appropriate HAL/S character by the proper number of “escape” characters.  The 
specified character with the “escape” character(s) preceding it will be interpreted as a 
single character whose value is defined by the implementation.
Since “¢” is used as the “escape” character, specification of the character “¢” as a 
literal itself must be done via the alternate character mechanism, i.e., an 
implementation will designate an alternate value for some HAL/S character to be the 
character “¢”.

2.4  One- and Two-Dimensional Source Formats.
In preparing HAL/S source text, either single or multiple line format may be used.  In the 
single line or “1-dimensional” format, exponents and subscripts are written on the same 
line as the operands to which they refer.  In the multiple line or “2-dimensional” format, 
exponents are written above the line containing the operands to which they refer, and 
subscripts are written below it.  Of the two formats, the 2-dimensional is considered 
standard since it closely parallels usual mathematical practice.

examples:
' '
'ONE TWO THREE'
'DOG''S'
'AB¢AD' 
'AB¢¢AD'

⎤
⎦

 
The implication that ¢A and ¢¢A have been defined as alternate characters.
November 2005 2-6



HAL/S Language Specification USA003088
32.0/17.0
RULES FOR EXPONENTS:
 1. In the syntax diagrams, the 1-dimensional format is assumed for clarity.  The 

operation of taking an exponent is denoted by the operator **.

 2. Operations are evaluated right to left (see Section 6.1.1).
 3. If an exponent is subscripted, the subscript must be written in the 1-dimensional 

format.
RULES FOR SUBSCRIPTS:
 1. In the syntax diagrams, 2-dimensional format is assumed for clarity.  Two special 

symbols are used to denote the descent to a subscript line, and the return from it: 

Figure 2-3  Subscript Diagram

Effectively they delimit the beginning and end of a subscript expression, respectively.
 2. The 1-dimensional format of a subscript expression consists of delimiting it at the 

beginning by $( and at the end by a right parenthesis.

 3. For certain simple forms of subscript, the parentheses may be omitted.  These forms 
are:
•   a single <number>
•   a single <arith var name> (see Section 5).

 4. If a subscript expression contains an exponentiation operation, the latter must be 
written in the 1-dimensional format. 

examples:
AJ →A**J
AJK →A**J**K

examples:
AK+2 →A$(K+2)

examples:
A →A$J

S descent to subscript line

return from subscript lineM
2-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
2.5  Comments and Blanks in the Source Text.
Any HAL/S source text consists of sequences of HAL/S primitives interspersed with 
special characters.  It is obviously of great importance for a compiler to be able to tell the 
end of one text element from the beginning of the next.  In many cases the rules for the 
formation of the primitives are sufficient to define the boundary.  In others, a blank 
character is required as a separator.  Blanks are legal in the following situations: 

between two primitives;
between two special characters;
between a primitive and a special character.

Blanks are necessary (not just legal) between two primitives.  With respect to string (bit 
and character) literals, the single quote mark serves as a legal separator.  
Comments may be imbedded within HAL/S source text wherever blanks are legal.  A 
comment is delimited at the start by the character pair /*, and at the end by the character 
pair */.  Any characters in the extended character set may appear in the comment 
(except, of course, for * followed by /).  There are implementation dependent restrictions 
on the overflow on imbedded comments from line to line of the source text.
November 2005 2-8



HAL/S Language Specification USA003088
32.0/17.0
3.0   HAL/S BLOCK STRUCTURE AND ORGANIZATION
The largest syntactical unit in the HAL/S language is the “unit of compilation”.  In any 
implementation, the HAL/S compiler accepts “source modules” for translation, and emits 
“object modules” as a result.  Each source module consists of one unit of compilation, 
plus compiler directives for its translation.
At run time, an arbitrary number of object modules are combined to form an executable 
“program complex” 2.  Generally, a program complex contains three different types of 
object modules: 

•  program modules - characterized by being independently executable.
•  external procedure and function modules - characterized by being callable from 

other modules.
•  compool modules - forming common data pools for the program complex.

Each module originates from a unit of compilation of corresponding type.

3.1  The Unit of Compilation.
Each unit of compilation consists of a single PROGRAM, PROCEDURE, FUNCTION, or 
COMPOOL block of code, possibly preceded by one or more block templates.  
Templates, in effect, provide the code block with information about other code blocks 
with which it will be combined in object module form at run time.

SYNTAX:

Figure 3-1  unit of compilation - #1

SEMANTIC RULES:
1.  A program <compilation> is one containing a <program block>.  Its object module in 

the program complex may be activated by the Real Time Executive (see Section 8), 
or by other means dependent on the operating system.  The <program block> is 
described in Section 3.2.

2.  A program complex is executable within the framework of an executive operating system, and a run time utility 
library.

compilation

function
procedure
compool
program

1

procedure blockprogram template

program block

compool block

function block
§

§

function template

procedure template

compool template
3-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 2.  A procedure or function <compilation> is one containing a <procedure block> or 
<function block>, respectively.  Its object module in the program complex is executed 
by being invoked by other program, procedure, or function modules.  Both 
<procedure block>s and <function block>s are described in Section 3.3.

 3.  A compool <compilation> is one containing a <compool block> specifying a common 
data pool potentially available to any program, procedure, or function module in the 
program complex.  The <compool block> is described in Section 3.5.

 4. The code block in any <compilation> except a compool <compilation> may contain 
references to data in a compool <compilation>, references to other <program 
block>s, and invocations of external <procedure block>s or <function block>s in other 
<compilation>s.  A <compilation> making such references must precede its code 
block with a block template for each <program block>, <procedure block>, <function 
block>, or <compool block> referenced.  Block templates are described in Section 
3.6.

3.2  The PROGRAM Block.
The PROGRAM block delimits a main, independently executable body of HAL/S code.
SYNTAX:

Figure 3-2  PROGRAM block - #2

Program
block

example:

2

:label

statement

program header declare group

task block

procedure block

function block

closing

DECLARE Q;
.
.
.
CALL BETA ASSIGN(Q);
.
.
.BETA:  PROCEDURE ASSIGN(W);
DECLARE W;
W = W + 1;
CLOSE BETA;
.
.
.
CLOSE ALPHA;

update blockALPHA: PROGRAM;
November 2005 3-2



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
 1. The name of the <program block> is given by the <label> prefacing the block.
 2. The <program block> is delimited by the <program header> statement at beginning, 

and a <closing> at the end.  These two delimiting statements are described in 
Sections 3.7.1  and 3.7.4, respectively.

 3. The contents of a <program block> consists of a <declare group> used to define data 
local to the <program block>, followed by any number of executable <statement>s.

 4. The normal flow of execution of the <statement>s in the block is sequential; various 
types of <statement> may modify this normal sequencing in a well-defined way.

 5. PROCEDURE, FUNCTION, TASK, and UPDATE blocks may appear nested within a 
<program block>.  The blocks may be interspersed between the <statement>s of the 
<program block>, and with the exception of the UPDATE block are not executed in-
line.

 6. Execution of a <program block> is accomplished by scheduling it as a process under 
control of the Real Time Executive (see Section 8).

3.3  PROCEDURE, FUNCTION, and TASK Blocks.
PROCEDURE, FUNCTION, and TASK blocks share a common purpose in serving to 
structure HAL/S code into an interlocking modular form.  The major semantic distinction 
between the three types of block is the manner of their invocation.
SYNTAX:

Figure 3-3  PROCEDURE, FUNCTION, TASK block - #3 

SEMANTIC RULES
 1. The name of the block is given by the <label> prefacing the block.  The definition of a 

block label is considered to be in the scope of the outer block containing the block in 
question.  Block names must be unique within any compilation unit.

 2. The block is delimited at its beginning by a header statement characteristic of the 
type of block, and at the end by a <closing>.  The delimiting statements are described 
in Sections 3.7.1 through 3.7.4.

 3. The contents of a block consists of a <declare group> used to declare data local to 

3

block
PROCEDURE
FUNCTION
TASK

block

:label

statement

header declare group

function block

update block

closing

procedure block
example:

NEW: TASK;
I = 1;
CLOSE NEW;

§

§
§

3-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
the block, followed by any number of executable <statement>s.
 4. The normal flow of execution of the <statement>s in the block is sequential; various  

types of <statement> may modify this normal sequence in a well-defined way.
 5. The block may contain further nested PROCEDURE, FUNCTION, and UPDATE 

blocks.  An UPDATE block may not appear within an UPDATE block at any level of 
nesting.  The nested blocks may appear interspersed between the <statement>s of 
the outer block, and except for the UPDATE block are not executed in-line.  A 
consequence of this rule is that PROCEDURE and FUNCTION blocks may be nested 
within each other to an arbitrary depth.

 6. The execution of a <task block> is invoked by scheduling it as a process under the 
control of the Real Time Executive (see Section 8).  Execution of a <procedure block> 
is invoked by the CALL statement (see Section 7.4).  Execution of a <function block> 
is invoked by the appearance of its name in an expression (see Section 6.4).

 7. A <procedure block> or <function block> may result in either a single out-of-line 
expansion or an in-line expansion at each invocation.  The semantics of a block 
invocation is independent of the way it is expanded.

 8. A <task block> may not appear within a DO...END group.
 9. In the <declare group> of a PROCEDURE or FUNCTION block which forms the 

outermost code block of a <compilation unit>, some implementations may require all 
formal parameters to be declared before any local data.

3.4  The UPDATE Block.
The UPDATE block is used to control the sharing of data by two or more real time 
processes.  Its functional characteristics in this respect are described in Section 8.

SYNTAX:

Figure 3-4  UPDATE block - #4

SEMANTIC RULES:
 1. If present, the <label> prefacing the <update block> gives the name of the block.  If 

<label> is absent, the <update block> is unnamed.

4
update
block

statement

update header declare group closing

function block
label :

procedure block
November 2005 3-4



HAL/S Language Specification USA003088
32.0/17.0
 2. The block is delimited at its beginning by an <update header> statement, and at the 
end by a <closing>.  The delimiting statements are described in Sections 3.7.1 and 
3.7.4.

 3. The contents of the block consist of a <declare group> used to declare data local to 
the <update block>, followed by any number of executable <statement>s.

 4. The normal flow of execution of the <statement>s in the block is sequential; various 
types of <statement>s may modify this normal sequencing in a well defined way.

 5. Only PROCEDURE and FUNCTION blocks may be nested within an <update block>.  
The nested blocks may appear interspersed between the <statement>s of the block, 
and are not executed in-line.

 6. An <update block> is treated like a <statement> in that it is executed in-line.  In this 
respect it is different from other code blocks.

 7. The following <statement>s are expressly forbidden inside an <update block> in view 
of its special protective function: 
•  I/O statements (see Section 10);
•  invocations of <procedure block>s or <function block>s not themselves nested 

within the <update block>; 
•  real-time programming statements, except for the SIGNAL, SET, and RESET 

statements (see Section 8.8). 

3.5  The COMPOOL Block.
The COMPOOL block specifies data in a common data pool to be shared at run time by 
a number of program, procedure, and function modules.
SYNTAX:

Figure 3-5  COMPOOL block - #5
SEMANTIC RULES:
 1. The name of the block is given by the <label> prefacing the block.
 2. The block is delimited at its beginning by a <compool header> statement, and at its 

end by a <closing>.  The delimiting statements are described in Sections 3.7.1 and 
3.7.4.

 3. The contents of the block consist merely of a <declare group> used to define the data 
constituting the compool.  In no sense is a <compool block> to be regarded as an 
executable body of code.

5

compool
block

compool header declare group closinglabel :
3-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 4. The maximum number of <compool block>s existing in a program complex is 
implementation dependent.

3.6  Block Templates.
In a <compilation>, block templates are used to provide the outermost code block of the 
<compilation> with information concerning external code or data blocks.  Depending 
upon the implementation, the translation of program, procedure, function, and compool 
<compilation>s may automatically generate the corresponding block templates, to be 
included in other <compilation>s by compiler directive.
There are four kinds of block templates, PROGRAM, PROCEDURE, FUNCTION, and 
COMPOOL templates, all being syntactically similar (see Section 3.1).

SYNTAX:

Figure 3-6  PROGRAM, PROCEDURE, FUNCTION, COMPOOL template - #6

SEMANTIC RULES
 1.  The <label> of the template constitutes the template name.  It is the same name as 

that of the code block to which the template corresponds.
 2. The block template is delimited at its beginning by a header statement identical with 

the header statement of the corresponding code block, and at the end by a <closing>.  
The delimiting statements are described in Sections 3.7.1 and 3.7.4.

 3. The contents of the block template consist only of a <declare group>, which has the 
following significance: 
•  in a program <template>, the <declare group> contains no statements.  All 

information about external programs is contained in the <program header>; 
•  in a <compool template>, the <declare group> is used to declare a common data 

pool identical with that of the corresponding <compool block>; 
•  in a <procedure template> or <function template>, the <declare group> is used to 

declare the formal parameters of the corresponding <procedure block> or <function 
block> (see Sections 3.7.2 and 3.7.3).

 4. The keyword EXTERNAL preceding the header statement of the block template 
distinguishes it from an otherwise identical code block.  To a HAL/S compiler the 
keyword is in effect a signal to prevent the compiler from generating object code for 
the block and setting aside space for the data declared.

6

template

PROGRAM
PROCEDURE
FUNCTION
COMPOOL

template

:label  header declare group closing

example:
ETA: EXTERNAL COMPOOL;

DECLARE S SCALAR;
CLOSE ETA;

EXTERNAL

§
§

§

November 2005 3-6



HAL/S Language Specification USA003088
32.0/17.0
3.7  Block Delimiting Statements.
Both code blocks and block templates are delimited at the beginning by a header  
statement characteristic of their type, and at the end by a <closing> statement.  In all 
code blocks except for the COMPOOL block, the header statement is the first statement 
of the block to be executed upon entry.  A COMPOOL block, containing only declarations 
of data, is, of course, not executable at all.

3.7.1 Simple Header Statements
Simple header statements are those which specify no parameters to be passed into or 
out of the block.  They are the compool, program, task, and update header statements.

SYNTAX:

Figure 3-7  COMPOOL, PROGRAM, TASK, UPDATE header statement - #7

SEMANTIC RULES:
 1.  The type of the code block or template is determined by the type of the header           

statement, which is in turn indicated by one of the keywords COMPOOL,    
PROGRAM, TASK, and UPDATE.

 2. The keyword ACCESS causes managerial restrictions to be placed upon the usage 
of the block in question.  The manner of enforcement of the restriction is 
implementation dependent.

 3. The keyword RIGID causes COMPOOL data (except for data with the REMOTE 
attribute) to be organized in the order declared and not rearranged by the compiler.

7

;UPDATE

task
header

;TASK

;PROGRAM

ACCESS

;COMPOOL

ACCESS

RIGID

program
header

update
header

compool
header
3-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
3.7.2 The Procedure Header Statement.
The procedure header statement delimits the start of a <procedure block> or <procedure 
template>.
SYNTAX:

Figure 3-8   PROCEDURE header statement - #8
SEMANTIC RULES:
 1.  The keyword PROCEDURE identifies the start of a <procedure block> or <procedure 

template>.  It is optionally followed by lists of “formal parameters” which correspond 
to “arguments” in the invocation of the procedure by a CALL statement (see Section 
7.4).

 2. The <identifier>s in the list following the PROCEDURE keyword are called “input 
parameters” because they may not appear in any context inside the code block which 
may cause their values to be changed.

 3. The <identifier>s in the list following the ASSIGN keyword are called “assign 
parameters” because they may appear in contexts inside the code block in which new 
values may be assigned to them.  They may, of course, also appear in the same 
contexts as input parameters.

 4. Data declarations for all formal parameters must appear in the <declare group> of the 
<procedure block> or <procedure template>.

 5. If the <procedure header> statement specifies neither of the keywords REENTRANT 
or EXCLUSIVE, then only one real time process (see Section 8) may be executing 
the <procedure block> at any one time; however, there is no enforcing protective 
mechanism.  If the keyword EXCLUSIVE is specified, then such a protective 
mechanism does exist.  If an EXCLUSIVE <procedure block> is already being 
executed by a real time process when a second process tries to invoke it, the second 
process is forced into the stall state (see Section 8) until the first has finished 
executing it.  If the keyword REENTRANT is specified, then two or more processes 
may execute the <procedure block> “simultaneously”.

identifier

PROCEDURE

)(

,

)( identifier

,

ASSIGN ACCESSEXCLUSIVE

;
REENTRANT

8

example:
PROCEDURE  ASSIGN (B);

procedure
header
November 2005 3-8



HAL/S Language Specification USA003088
32.0/17.0
 6. The keyword REENTRANT indicates to the compiler that reentrancy is desired.  
However, other attributes and conditions may conflict with this overall objective.  The 
following effects should be noted: 
•  STATIC data is allocated statically and initialized statically.  There is only one copy 

of static data which must be shared by all processes simultaneously executing the 
block.  Hence, in coding REENTRANT blocks care must be taken not to assume 
that STATIC variables participate in the reentrancy.

• AUTOMATIC data is allocated dynamically and initialized dynamically.  Every 
process simultaneously executing the block gets its own initialized copy of the data 
on entry into the block.  In general, all local data in a REENTRANT block should be 
declared with the AUTOMATIC attribute.

• Procedures and functions defined within a REENTRANT block must also possess 
the REENTRANT attribute if they, too, declare local data which is required to 
participate in the reentrancy.

In addition, for reentrancy to be preserved, the following rules must be observed:  
•  Update blocks3 and inline functions within a REENTRANT block may not declare 

any local data, STATIC or AUTOMATIC, because the update block does not inherit 
the reentrant attribute from the enclosing procedure declaration; 

•  A procedure or function called by a REENTRANT block must itself also be  
REENTRANT.

 7. The keyword ACCESS may be attached to the <procedure header> of a <procedure 
template> and its corresponding external <procedure block>.  It denotes that 
managerial restrictions are to be placed on which <compilation>s may reference the 
<procedure block>.  The manner of enforcement is implementation dependent.

3.7.3 The Function Header Statement.
The function header statement delimits the start of a <function block> or <function 
template>.
SYNTAX:

Figure 3-9   FUNCTION header statement - #9

3.   Any use of update blocks and LOCK data, or of EXCLUSIVE procedure or function blocks should be carefully 
analyzed with respect to unfavorable timing problems if a procedure is reentered by a higher priority process.

identifier

FUNCTION

)(

,

ACCESS

;

9

example:
FUNCTION(A) SCALAR REENTRANT;

function
header

REENTRANT

EXCLUSIVE

type
spec

17
3-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES:
 1. The keyword FUNCTION identifies the start of a <function block> or <function 

template>.  It is optionally followed by a list of “formal parameters” which are 
substituted by corresponding “arguments” in the invocation of the <function block> 
(see Section 6.1.1).

 2. The <identifier>s in the list following the FUNCTION keyword are “input parameters” 
since they may not appear in any context inside the <function block> which may 
cause their values to be changed.

 3. Data declarations for all the formal parameters must appear in the <declare group> of 
the <function block> or the <function template>. 

 4. <type spec> identifies the type of the <function block> or <function template>.  A 
<function block> may be of any type except EVENT.  The formal description of the 
type specification given by <type spec> is given in Section 4.7.

 5. If the <function header> statement specifies neither of the keywords REENTRANT or 
EXCLUSIVE, then only one real time process (see Section 8) may be executing the 
<function block> at any one time; however, there is no enforcing protective 
mechanism.  If the keyword EXCLUSIVE is specified, then such a protective 
mechanism does exist.  If an EXCLUSIVE <function block> is already being executed 
by a real time process when a second process tries to invoke it, the second process is 
forced into the stall state (see Section 8) until the first has finished executing it.  If the 
keyword REENTRANT is specified, then two or more processes may execute the 
<function block> “simultaneously”.

 6. The keyword REENTRANT indicates to the compiler that reentrancy is desired.  
However, other attributes and conditions may conflict with this overall objective.  The 
following effects should be noted: 
• STATIC data is allocated statically and initialized statically.  There is only one copy 

of STATIC data which must be shared by all processes simultaneously executing 
the block.  Hence, in coding REENTRANTblocks, care must be taken not to 
assume that STATIC variables participate in the reentrancy.

• AUTOMATICdata is allocated dynamically and initialized dynamically.  Every 
process simultaneously executing the block gets its own initialized copy of the data 
on entry into the block.  In general, all local data in a REENTRANTblock should be 
declared with the AUTOMATIC attribute.

• Procedures and functions defined within a REENTRANT block must also possess 
the REENTRANT attribute if they, too, declare local data which is required to 
participate in the reentrancy.

In addition, for reentrancy to be preserved, the following rules must be observed: 
• Update blocks4 and inline functions within a REENTRANTblock may not declare 

any  local data, STATIC or AUTOMATIC, because the update block does not inherit 
the reentrant attribute from the enclosing function declaration; 

• A procedure or function called by a REENTRANT block must itself also be 
REENTRANT.

4.  Any use of update blocks and LOCK data, or of EXCLUSIVE procedure or function blocks should be carefully 
analyzed  with respect to unfavorable timing problems if a function is reentered by a higher priority process. 
November 2005 3-10



HAL/S Language Specification USA003088
32.0/17.0
 7. The keyword ACCESS may be attached to the <function header> of a <function 
template> and its corresponding external <function block>.  It denotes that 
managerial restrictions are to be placed on which <compilation>s may reference the 
<function block>.  The manner of enforcement is implementation dependent.

3.7.4 The CLOSE Statement.
For all code blocks, COMPOOL blocks, and block templates, the CLOSE statement is 
the <closing> delimiter of the block.

SYNTAX:

Figure 3-10   closing of block - #10

SEMANTIC RULES:
 1. The <closing> of a code block or block template is denoted by the CLOSE keyword 

followed by an optional <label>.  If present, <label> must be the name of the block.
 2. Execution of the CLOSE statement causes a normal exit from a PROGRAM, 

PROCEDURE, TASK, or UPDATE block, and a run time error from a FUNCTION 
block.  Exit from a function block must be achieved via the RETURN statement (see 
Section 7.5).

 3. The <closing> of a COMPOOL or PROGRAM block template or a PROGRAM, 
COMPOOL, PROCEDURE, FUNCTION, TASK, or UPDATE block may be labeled as 
if it were a <statement>.  The <closing>s of PROCEDURE and FUNCTION block 
templates cannot be labeled.

3.8  Name Scope Rules.
By using the code blocks described, and by taking advantage of their nesting property, 
the modularization of HAL/S <compilation>s may be achieved.  An important 
consequence of the nesting property is the need to determine the “name scope” over 
which names defined in a code block are potentially known.  Names (i.e., <identifier>s) to 
which name scope rules apply are generally either labels or variable names.

10

:

CLOSE

label

;

 example:
ALL_DONE:   CLOSE;

label

closing
3-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
GENERAL RULES:

QUALIFICATIONS:

Figure 3-11  Name Scope Examples

1. The name scope of a code block encompasses the entire contents of a block,
including all blocks nested within it.

2. The name defined in a name-scope is known, and therefore able to be
referenced, throughout that name-scope, including all nested blocks not
redefining it.  A name defined in a name-scope is not known outside that name-
scope.

3. Names defined in all common data pools used by a <compilation> are
considered to be defined in one name-scope which encloses the outermost code
block of the <compilation>.

1. The name of a code block is taken to be defined in the name-scope immediately
enclosing the block.  A PROCEDURE or FUNCTION defined at the outermost
level of compilation can be invoked from anywhere within the compilation.

2. The <label> of a statement is effectively unknown in blocks contained in the
name scope where the <label> is defined.  This is because a code block cannot
be branched out of by using a GO TO statement (see Section 7.7).

3. Block labels must be unique throughout a unit of compilation.
4. Under particular, limited circumstances described in Section 4.3, the names of

structure template nodes and terminals need not be unique.

example:

outer name
scope:

inner name
scope:

ALPHA: PROGRAM;
      DECLARE X;
      DECLARE Y;

.
      .
      .
      .
      .

BETA:  PROCEDURE;
      DECLARE Y;
      DECLARE Z;
      .
      .
      .
      .
      CLOSE BETA;
      .
      .
      .
DELTA:  Y = 0;

.

      .
      .
      .

      CLOSE ALPHA;

X known everywhere
this Y known everywhere
except in BETA.

BETA is known everywhere;
new Y known in BETA only
Z known in BETA only

DELTA not known in BETA
November 2005 3-12



HAL/S Language Specification USA003088
32.0/17.0
4.0   DATA AND OTHER DECLARATIONS
The HAL/S language provides a comprehensive set of data types.  To encourage clarity 
and decrease the frequency of errors of omission, all data is required to be declared in 
specific areas of a HAL/S compilation called “declare groups”.  Occasionally the 
demands of a particular algorithm also require other kinds of declarations to be made.  
Figure 4-1  summarizes the relationship among the types and organizations. 

Figure 4-1  HAL/S DATA TYPES AND ORGANIZATIONS
* Component Subscripting (see Section 5.3.5) Allowed.
* * Array Subscripting Allowed.
* * * Structure Subscripting Allowed.

4.1  The Declare Group.
A <declare group> is a collection of data and other declarations.  The position of 
<declare group>s within code blocks and block templates has been described in Section 
3.

TYPES ORGANIZATIONS

arithmetic string structure * * *array * *

character *

special

scalar

vector *

matrix *

integer bit *

array * *

process
event

event

individual
types

Combination
of types
4-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 4-2  declare group - #11
SEMANTIC RULES:
1.  A <declare group> may simply be empty, or it may contain <replace statement>s,

<structure template>s, and <declare statement>s.  The form of each of these
constructs is defined in this Section.

2. The “name scope” (see Section 3.8) of <identifier>s defined in a <declare group> is 
the code block containing the <declare group> and potentially all code blocks nested 
within it.

4.2  The REPLACE Statement.
The REPLACE statement is used to define an identifier text substitution which is to take 
place wherever the identifier is referenced within the same name scope after its 
definition.  The REPLACE statement constitutes a “source macro” definition.

4.2.1 Form of REPLACE Statement.
SYNTAX:

Figure 4-3  replace statement - #12

11

declare statement

declare
group

replace statement

structure template

  example:
REPLACE ALPHA BY "J+1" ;
REPLACE BETA (X, ANGLE) BY "SIN (X ANGLE) - EXP (X) / X" ;

)(

"
;

12

,

identifierREPLACE

BY

identifier

text

Replace
statement

"

November 2005 4-2



HAL/S Language Specification USA003088
32.0/17.0
GENERAL SEMANTIC RULES:
1. The <identifier> following the keyword REPLACE is called the REPLACE name.
2. A REPLACE name may not appear as a formal parameter in a <procedure header> or 

<function header>.
3. A REPLACE name in an inner code block is never “replaced” as a result of another 

REPLACE statement located in an outer code block.
4. Nested replacement operations to some implementation dependent depth are allowed 

(i.e., the <text> of a <replacement statement> may contain a further <identifier> to be 
replaced).

SEMANTIC RULES: Simple Replacements
1. A simple replacement is a REPLACE statement with no parameter list following the 

<identifier>.
2. Whenever it is referenced, an <identifier> defined in a simple REPLACE statement is 

to be replaced by <text> of the definition as if <text> had been written directly instead 
of the source macro reference.  Enclosing the reference within ¢ signs (e.g., 
¢ALPHA¢) makes the <text> visible in the compiler listing.

3. <text> may consist of any HAL/S characters except instances of an unpaired double 
quote (“) character.  A double quote character (”) is indicated within the <text> by two 
such characters in succession (“”).

SEMANTIC RULES: Parametric Replacements
1. A parametric replacement is defined by a REPLACE statement with a list of one or 

more parameters following the <identifier>.  The maximum number of parameters 
allowed is an implementation dependent limit.  Each parameter is itself a HAL/S 
<identifier>.  It is known only locally to the REPLACE statement: its name may 
therefore be duplicated by names used for other <identifier>s in the name scope 
containing the REPLACE statement.

2. The <text> of a parametric REPLACE statement is composed of any HAL/S   
characters except instances of an unpaired double quote (“) character.  A double 
quote character may be indicated within <text> by coding two such characters in 
succession.  The <text> may contain, but is not required to contain, instances of the 
parameters of the REPLACE statement.

4.2.2 Referencing REPLACE Statements.
SYNTAX:

Figure 4-4  parametric replace reference - #12.1

identifier

,

argument )(

12.1parametric
replace

reference
4-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES:
1. A reference to a parametric REPLACE statement consists of the REPLACE name 

followed by a series of <argument>s enclosed in parentheses.  The REPLACE name 
must have been defined previously within the name scope of the reference.  The 
number of <argument>s must correspond to the number of parameters of the 
REPLACE statement being referenced.  Enclosing the reference within ¢ signs (e.g., 
¢CBETA(A,B)¢) makes  the <text> visible in the compiler listing.

2. The <argument>s supplied in a parametric REPLACE reference are substituted for 
each occurrence of the corresponding parameter within the source macro definitions 
<text>.  Note that if the parameter in question does not occur within the source macro 
definition’s <text>, the <argument> is ineffective.  <text> substitution is always 
completed before parsing.

Example:
  REPLACE BETA(X,ANGLE) BY “SIN(X ANGLE) - EXP(X)/X”;
        .
        .
        .
  Z = BETA(Y,ALPHA);  WILL GENERATE SIN(Y ALPHA) - EXP(Y)/Y
3. In general, the <argument>s supplied in a parametric REPLACE reference comprise 

<text> separated by commas (subject to the specific exceptions listed below).  As 
such, they conform to the preceding semantic rules for <text> with the following 
emendations:  
•  Blanks are significant in <argument>s.  Only the commas used to separate 

<argument>s are excluded from the <text> values substituted into the macro 
definition.

•  The <text> string comprising an <argument> may be empty.  The value substituted 
in such a case is a null string.

•  Within each <argument> there must be an even number of apostrophe characters 
(’).  The effect of this rule is to require that each character literal used must be 
completely contained within a single <argument>.

•  Within each <argument> there must be an even number of quotation mark 
characters (“).  The effect of this rule is to require that the substitution of a nested 
REPLACE statement include the entire text of the replacement within a single 
<argument>.

•  Within each <argument> there must be a balanced number of left and right 
parentheses: for each opening left parenthesis there must be a corresponding right 
parenthesis.

•  Commas are not separators between <argument>s under the following 
circumstances: 
-  within a character literal.
-  within REPLACE <text>. 
-  nested within parentheses. 
November 2005 4-4



HAL/S Language Specification USA003088
32.0/17.0
4.2.3 Identifier Generation
New identifiers may be generated by enclosing a reference to a simple REPLACE 
statement within ¢ signs.  The effect is to make visible in the compiler listing, the 
catenation of the REPLACE <text> with the characters surrounding the construct.  For 
example, REPLACE ABLE BY “BAKER”; then:
1. X = ¢ABLE¢YZ becomes X = BAKERYZ
2. CALL P_¢ABLE¢(Q,R,S); becomes CALL P_BAKER(Q,R,S);

¢ signs are taken in pairs, thus ¢X¢Y¢Z¢ is interpreted as ¢X¢Y¢Z¢.

4.2.4 Identifier Generation With Macro Parameters.
New identifiers may be generated for text substitution within a source macro text by 
enclosing references to macro parameters within ¢ signs.  The effect is the compile-time 
catenation of the corresponding macro arguments with the characters surrounding the ¢-
enclosed parameter (a blank is considered as a character).  For example: 

Figure 4-5  Creating Identifiers With Replace Macros
Enclosing the entire reference with ¢ signs, i.e., ¢ABLE(V, A)¢ makes the text with the 
new identifiers visible in the compiler listing (see Section 4.2.2).

4.3  The Structure Template.
In HAL/S, a “structure” is a hierarchical organization of generally nonhomogeneous data 
items.  Conceptually, the form of the organization is a “tree”, with a “root”, “branches”, 
and with the data as “leaves”.  The definition of the “tree organization” (the manner in 
which the root is connected to the branches, and branches to leaves) is separate from 
the declaration of a structure having that organization.  The tree organization is defined 
by a <structure template> described below.  The description of the declaration of 
structures is deferred to later subsections.
The following figure represents a typical tree organization.

REPLACE ABLE(X,Y) BY

“P = ¢X¢QRS+Y; 

CALL SUB_¢X¢; ”;

Then the reference ABLE (V, A) causes the following substitutions.
P = VQRS+A;

CALL SUB_V;
4-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 4-6  Tree diagram for a typical structure template
INTERPRETATIONS:
1. The “template name” is at the root of the tree organization.
2. The named “leaves” and “forks” in the branches are at numbered levels below the 

root.  Leaves and forks are called “structure terminals” and “minor structures”, 
respectively.

3. The “tree walk” shown can provide an unambiguous linear description of the tree 
organization.  The syntactical form of the <structure template> corresponding to a 
tree organization calls for the names of minor structures and structure terminals to be 
defined in the same order that the tree walk passes them on the left, as indicated by 
the arrow at * in the diagram.

4. The tree organization of two templates are considered to be equivalent for the 
purposes of various HAL/S statement contexts only if the tree forms are identical, and 
the type and attributes of all nodes in the tree agree.  An implication of this rule 
becomes apparent: if two corresponding terminal nodes of otherwise equivalent 
structures reference different structure template names, then the structure templates 
containing these terminal nodes are not identical.

∗→

structure terminal
minor structure
template name

start of
tree walk

end of
tree walk

"root"

"fork"

"branch"

"leaf"

NAME

1

2

3

4

November 2005 4-6



HAL/S Language Specification USA003088
32.0/17.0
The syntactical form of a <structure template> is now given:
SYNTAX:

Figure 4-7  structure template statement - #13
GENERAL RULES:
1. The <template name> of the <structure template> is given by the <identifier> following 

the keyword STRUCTURE.
2.  The operational keywords DENSE and ALIGNED denote data packing attributes to be 

applied to all <identifiers> declared with the <structure template>.  At each level of a 
<structure template>, either the DENSE or ALIGNED packing attribute is in effect, 
subject to modification by use of DENSE and ALIGNED as minor <attributes>.  The 
choice used in the <structure template> gives the default value for the whole 
template.  This packing attribute is then inherited from higher to lower levels in the 
structure unless the <attributes> of a minor structure or terminal element modify the 
choice.  Details of the allocation algorithm used for DENSE and ALIGNED data are 
implementation dependent.

3. The keyword RIGID causes data to be in the sequential order declared within the 
<structure template>.  This attribute is then inherited from higher to lower levels in the 
structure.  Details of the allocation algorithm used for RIGID are implementation 
dependent. Note that the absence of the keyword RIGID permits compiler 
reorganization of data.

4. In each definition, <number> is a positive integer specifying the level of the tree at 
which the definition is effective.  Numbering is sequential starting with 1.

5. The level of definition in conjunction with the order of definition is sufficient to 
distinguish between a minor structure and a structure terminal. 

6. In the form <identifier> <attributes>, <identifier> is the name of the minor structure or 
structure terminal defined.  The applicable <attributes> are described in Section 4.5. 

7. If the <attributes> specify a structure template <type spec> (see Section 4.7), then the 
template of the structure is being included as part of the template being defined.

8. The minor structures and structure terminals of the template (the forks and leaves) are 

structure
template

STRUCTURE :

13

identifier

RIGIDDENSE

ALIGNED

identifiernumber attributes ;

15

,

4-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
sequentially defined following the colon.  The order of definition has already been 
described.

9. Each definition of a minor structure of structure terminal is separated from the next by 
a comma.

NAME UNIQUENESS RULES:
1. <template names> may duplicate <identifiers> of any other kind within a given name 

scope, but may not duplicate other <template names>. 
2.  In a given name scope, if a <template name> is used exclusively in qualified structure 

declarations, duplications of the <identifiers> used for nodes may occur under the 
following circumstances:
•  Any <identifier> used for a node in one template may duplicate an <identifier> used 

for a node in another template.
•  Any <identifier> used for a node in a given template may duplicate another 

<identifier> used for a different node in the same template, provided that a qualified 
reference can distinguish the two nodes.

3.  In a given name scope, if a template is ever used for a non-qualified structure variable 
declaration, the duplications allowed under rule #2 within that template become 
illegal.
November 2005 4-8



HAL/S Language Specification USA003088
32.0/17.0
Figure 4-8  structure template examples

C

H

HF

i) definition of a template z

STRUCTURE Z:
1 A SCALAR,
1 B VECTOR(4),
1 C,
2  D MATRIX(4,4),

2  E BIT(3);

ii)  definition of a template Y
     with Z nested within it

STRUCTURE Y:
1 F,

2 X Z-STRUCTURE,
2 G INTEGER,

1 H CHARACTER(10);

iii) equivalent form of template Y without nesting

STRUCTURE Y:
1 F,
2 X,

3 A SCALAR,
3 B VECTOR(4),
3 C,
4 D MATRIX(4,4),
4 E BIT(3),

2 G INTEGER,
1 H CHARACTER(10);

examples:

Z

A B

D E

C

Y

G

A
B C

Z
X

1

2

1

2

3

4

1

2

3

4

Y

F

G

A B

E

X

D

E
D

4-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
4.4  The DECLARE Statement.
The DECLARE statement is used to declare data names and labels, and to define their 
characteristics or <attributes>.

SYNTAX:

Figure 4-9  declaration statement - #14

SEMANTIC RULES:
1. Each <identifier> and its following <attributes> constitute the declaration of a data 

name or label.  Each definition is separated from the next by a comma.
2. The generic characteristics, if any, of all <identifier>s to be declared are given by the 

“factored” <attributes> immediately following the keyword DECLARE.  The 
<attributes> of a particular <identifier> must not conflict with the factored <attributes>.

3. The name scope of any of the <identifier>s defined in a <declare statement> is the 
code block containing the <declare group> of which the <declare statement> is a part 
(see Section 3.8).  In any name scope all such <identifiers> must be unique.

4. There are two forms of <attributes>::: data declarative, and label declarative.  The 
form  determines whether an <identifier> is defined as a data name or a label. 

4.5  Data Declarative Attributes.
Data declarative attributes are used to define an <identifier> to be a data name or part of 
a structure template, and to describe its characteristics.  If <attributes> appear in a 
<declare statement>, the <identifier> defined is a “simple variable”, or a “major structure” 
with a predefined template.  If <attributes> appear in a <structure template>, the 
<identifier> defined is either a minor structure, or a structure terminal.  Structure 
terminals have very similar properties to simple variables.

14declare
statement

attributes

,

,

example:
DECLARE INTEGER, A, B ARRAY (5);

DECLARE identifier  attributes ;
November 2005 4-10



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX: 

Figure 4-10  data declarative attributes - #15

GENERAL SEMANTIC RULES:
1. The <type spec> determines the type and possibly the precision of the <identifier> to 

which the <attributes> are attached.  Type specifications are discussed in Section 
4.7.

2. An optional array specification can precede the <type spec>.  It starts with the keyword 
ARRAY; the following parenthesized list specifies the number of dimensions in the 
array, and the size of each dimension.  The number N of <arith exp>s gives the 
number of dimensions of the array.  <arith exp> is an unarrayed integer or scalar 
expression computable at compile time5.  The value is rounded to the nearest integer, 
and indicates the number of elements in a dimension.  Its value must lie between 2 

5.   See Appendix F.

 example:
    ARRAY(5) SCALAR STATIC

initialization

ALIGNED

REMOTE

ACCESS

DENSE

STATIC

LOCK

RIGID

LATCHED

number

attributes

arith expARRAY

type spec

)

*

( )

,

17

15

18

*

AUTOMATIC

(

4-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
and an implementation-dependent maximum.  The maximum value for N is 
implementation dependent.  A single asterisk denotes a linear array, the number of 
elements of which is greater than 1 but unknown at compile time.

3.  Following the <type spec> a number of minor attributes applicable to the <identifier> 
can appear.  These are:
•  STATIC/AUTOMATIC - the appearance of one of these keywords is mutually 

exclusive of the other.  STATIC and AUTOMATIC refer to modes of initialization of 
an <identifier>, not to the allocation of its storage.  The AUTOMATIC attribute 
causes an <identifier> with the <initialization> attribute to be initialized on every 
entry into the code block containing its declaration.  The STATIC attribute causes 
such an <identifier> to be initialized only on the first entry into the code block.  
Thereafter its value on any exit from the code block is guaranteed to be preserved 
for the next entry into the block.  STATIC data is not reinitialized whenever a 
program is reentered (executed again).  Values are preserved in this way even 
though a STATIC <identifier> has no <initialization>.  Preservation of values is not 
guaranteed for AUTOMATIC <identifier>s.  If neither keyword appears, then 
STATIC is assumed.

•  DENSE/ALIGNED - The appearance of one of these keywords is mutually 
exclusive of the other.  Although legal in other contexts, the keywords are only 
effective when appearing as <attributes> in a <structure template>.  DENSE and 
ALIGNED refer to the storage packing density to be employed when a <structure 
var name> is declared using the template.  If neither keyword appears, then 
ALIGNED is assumed.

•  ACCESS - This attribute causes implementation dependent managerial restrictions 
to be placed upon the usage of the <identifier> as a variable in assignment 
contexts.  The manner of enforcement of the restrictions is implementation 
dependent.

•  LOCK - This attribute causes use of the <identifier> to be restricted to the interior of 
UPDATE blocks, and to assign argument lists.  <number> indicates the “lock group” 
of the <identifier> and lies between 1 and an implementation-dependent maximum.  
“*” indicates the set of all lock groups.  Specifying LOCK(*) for a formal parameter 
overrides the LOCK attribute (if any) of the corresponding argument in the 
invocation.  The purpose of the attribute is described in Section 8.10.

•  LATCHED - See Section 4.7.
•  <initialization> - This attribute describes the manner in which the values of an 

<identifier> are to be initialized.  It is described in Section 4.8.
•  REMOTE - This attribute identifies data which is to be located in areas separate 

from normal data.  Its implementation is machine dependent.  Its purpose is to 
provide information to the compiler so that proper addressing to the data can be 
generated.  Generally, this addressing requires longer and slower access methods.  
REMOTE data (not NAME variables) cannot be AUTOMATIC within a 
REENTRANT procedure.
November 2005 4-12



HAL/S Language Specification USA003088
32.0/17.0
•  RIGID - Although legal in other contexts, the keyword is only effective when 
appearing as an <attribute> in a <structure template> or in a COMPOOL.  It 
causes data to be organized in the order it is defined within the <structure 
template>.

RESTRICTIONS FOR SIMPLE VARIABLES AND MAJOR STRUCTURES:
1. The asterisk form of array specification can only be applied to an <identifier> if it is a 

formal parameter of a procedure or function.  The actual length of the array is 
supplied by the corresponding argument of an invocation of the procedure or function.

2.  An array specification is illegal if the <identifier> is defined by the <type spec> to be a 
major structure.

3. The ACCESS attribute may only be applied to <identifier> names declared in a 
<compool block> or <compool template>.  The LOCK attribute may only be applied to 
<identifier> names declared in a <compool block>, <compool template>, <program  
block>, or to the assign parameters of procedure blocks.

4. The LATCHED attribute only applies to EVENT variables (see Section 4.7).
5. The REMOTE and AUTOMATIC attributes are illegal for any <identifier> of EVENT 

type.  AUTOMATIC is also illegal if <identifier> is a parameter of a PROCEDURE or 
FUNCTION block.

6. The attributes ALIGNED and RIGID are illegal for major structures.
7. The <initialization> attribute may not be applied to formal parameters of procedures 

and functions.
RESTRICTIONS FOR STRUCTURE TERMINALS:
1.  The asterisk form of array specification is not allowed.
2.  The <identifier> may not be defined to be an unqualified structure by the <type spec>.  

Otherwise, the type specification is the same as for simple variables.
3. The appearance of any minor attributes except DENSE, ALIGNED, and RIGID is 

illegal.  Appearances of DENSE and ALIGNED override such appearances on the 
minor structure levels or on the <structure template> name itself.

4.  An array specification is illegal if the <identifier> is defined by the <type spec> to be a 
major structure.

RESTRICTIONS FOR MINOR STRUCTURES:
1.  The <type spec> for a minor structure name must be empty (see Section 4.7).
2.  No array specification is allowed.
3. No attributes except DENSE, ALIGNED, and RIGID are allowed.  Appearances of 

DENSE and ALIGNED at any level of the structure override such appearances at 
higher levels or on the <structure template> name itself.  The appearance of RIGID 
causes  structure terminals within the minor structure to be organized in the order in 
which they are declared.  However, RIGID at the minor structure level will not affect 
the order of data within an included template specified by a structure template 
<typespec>.
4-13 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 4-11  Rigid Structure Example

4.6  Label Declarative Attributes.
A label declarative attribute defines an <identifier> to be a <label> of some specific type.

SYNTAX:

Figure 4-12  Label declarative attributes - #16
SEMANTIC RULES:
1. The form FUNCTION <type spec> is used to define the name and type of a <function 

block>.  Such a definition is only required if the function is referenced in the source 
before the occurrence of its block definition.
Functions requiring definition this way are subject to the following restrictions: 
•  they must have at least one formal parameter;
•  none of their formal parameters may be arrayed.
The type specification of the function declared is given by <type spec> (see Section 
4.7).  A function may be of any type except EVENT.

EXAMPLE:

STRUCTURE Y: 

1 A SCALAR,

1 B VECTOR(4),

1 D MATRIX(4,4);

STRUCTURE Z RIGID:  

1 F BIT(13),

1 G Y-STRUCTURE,

1 H CHARACTER(10); 

The order within Z will be: F, G, H, but the order within G will not necessarily be as  
declared by Y.

16

FUNCTION

(

attributes

type spec

)

example:
FUNCTION VECTOR (4) NONHAL (1);

PROCEDURE

TASK

NONHAL number

17
November 2005 4-14



HAL/S Language Specification USA003088
32.0/17.0
2. The NONHAL (<number>) indicates that an external routine written in some other 
language is being declared.  The NONHAL (<number>) may be a factored attribute 
applied to a list of label declarations.  The <number> is an implementation dependent 
indication of the type of NONHAL linkage.

3. The form TASK is used to define the name of a <task block>.  It may be required if a 
<task block> is referenced before the occurrence of its definition.

4.7  Type Specification.
The type specification or <type spec> provides a means of defining the type (and 
precision where applicable) of data names and parts of structure templates.

SYNTAX:

Figure 4-13  type specification - #17

SCALAR

BIT

CHARACTER

-STRUCTURE

arith exp
( )

( )

*

INTEGER

EVENT

BOOLEAN

template
name

)(

*

arith exp
24

24

24
arith exp

type
spec

17

SINGLE

DOUBLE

arith exp arith exp( )
,

24 24

MATRIX

arith exp(

24

VECTOR )
4-15 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
GENERAL SEMANTIC RULES:
1.  If <type spec> is empty (i.e., there is no specification present) then the interpretation 

is as follows: 
•  if the <type spec> is that of a simple variable, function, or structure terminal, then 

the implied type is SCALAR with SINGLE precision.
•  otherwise the <type spec> is that of a minor structure of a structure template.

2.  If the <type spec> is empty except for the keyword SINGLE or DOUBLE, the implied 
type is SCALAR with the indicated precision.

3. The precision keywords only apply to VECTOR, MATRIX, SCALAR, and INTEGER 
<type spec>s.  In the last case SINGLE implies a halfword integer, and DOUBLE a  
fullword integer.  In the absence of a precision keyword, SINGLE is presumed.

4. Any <arith exp> in a <type spec> is an unarrayed integer or scalar expression 
computable at compile time (see Appendix F).  Its value is rounded to the nearest 
integer (specifying a scalar expression is exactly the same as specifying its integer 
equivalent.).

RULES FOR INTEGER AND SCALAR TYPES:
1. Integer and scalar types are indicated by the keywords INTEGER and SCALAR, 

respectively.  Note that scalar type can be indicated implicitly as described in General 
Semantic Rules 1 and 2.

RULES FOR VECTOR AND MATRIX TYPES:
1. The keyword MATRIX is used to indicate matrices containing scalar components.  If 

present, the two <arith exp>s in parentheses give the row and column dimensions of 
the matrix, respectively.  In the absence of such a size specification, MATRIX (3,3) is 
implied.

2. The keyword VECTOR is used to indicate vectors containing scalar components.  If 
present, the parenthesized <arith exp> indicates the length of the vector.  In the 
absence of a length specification, VECTOR(3) is implied.

3. The row and column dimensions of a matrix, and the length of a vector may range 
between 2 and an implementation dependent maximum.

RULES FOR CHARACTER TYPES:
1. Character type is indicated by the keyword CHARACTER.  A character variable is of 

varying length; the parenthesized <arith exp> following the keyword CHARACTER 
denotes the maximum length that the character variable may take on.  A length must 
be specified.

2. The working length of a character data type may range from zero (the “null” string) to 
the defined maximum length.

3. The defined maximum length has an upper limit which is implementation dependent.
4. The asterisk form of character maximum length specification must be applied to an 

<identifier> if it is a formal parameter of a procedure or function.  The actual length 
information of the character string is supplied by the corresponding argument in the 
invocation of the procedure or function.
November 2005 4-16



HAL/S Language Specification USA003088
32.0/17.0
RULES FOR BIT, BOOLEAN, AND EVENT TYPES:
1. The keyword BIT indicates type.  The following parenthesized <arith exp> gives the 

length in bits.  Its value may range between 1 and an implementation dependent 
upper limit.

2. The keyword BOOLEAN indicates a bit type of 1-bit length.
3. The keyword EVENT indicates an event type, similar to BOOLEAN, but which differs 

in that it has real time programming implications (see Section 8).  An <identifier> of 
event type is the only type to which the attribute LATCHED is applicable.  The 
implications of the LATCHED attribute are discussed in Section 8.8.  An <identifier> 
of event type may not be used as an input formal parameter, nor may it be a structure 
terminal.

RULES FOR STRUCTURE TYPE:
1. The condition for the <type spec> indicating a minor structure is described in General 

Semantic Rule 1.
2. The phrase <template name>-STRUCTURE defines an <identifier> to be a major 

structure whose tree organization is described by a previously defined template 
called <template name>.

3. The parenthesized expression or asterisk optionally following the keyword 
STRUCTURE specifies the structure to have multiple copies.  The value specifies the 
number of copies, which may range from 2 to an implementation dependent 
maximum.

4. The copy specification may only be an asterisk if the structure is a formal parameter of 
a procedure or function.  The actual number of copies is supplied by the 
corresponding argument of an invocation of the procedure or function and must be 
greater than 1.

5. If the <identifier> named is the same as the <template name> of the template of the 
structure, then the structure is said to be unqualified; otherwise, the structure is said 
to be qualified. Templates used for non-qualified declarations may not contain nested 
structure references.  Section 5.2 contains material on some further implications of 
structure qualification.6

6. If the <type spec> of a function is STRUCTURE, then no specification of multiple 
copies is allowed.

7. If the <type spec> of a structure terminal is STRUCTURE, then no specification of 
multiple copies is allowed.

4.8  Initialization.
The <initialization> attribute specifies the initial values to be applied to an <identifier>.  
The circumstances under which the attribute is legal have been described in Section 4.5.

6.  Declarations of non-qualified STRUCTUREs must occur in the same name scope as the template definition.
4-17 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 4-14  initialization specification - #18

GENERAL SEMANTIC RULES
1. The <initialization> starts with the keyword INITIAL or CONSTANT.  If it starts with 

CONSTANT, the value of the <identifier> initialized may never be changed.  It is 
illegal for <identifier>s with CONSTANT <initialization> to appear in an assignment 
context.

2. The simplest form of an <initial list> is a sequence of one or more <expression>s 
computable at compile time (see Appendix F).

3.  A simple <initial list> of the form given in Rule 2 may appear enclosed in parentheses, 
and preceded by <arith exp>#, where <arith exp> is any unarrayed integer or scalar 
expression computable at compile time.  The value, rounded to the nearest integer, is 
a repetition factor for the initial values contained within the parentheses.  This 
repeated <initial list> may itself become a component of an <initial list>, and so on to 
some arbitrary nesting depth.

4.  In addition to preceding a parenthesized <initial list>, <arith exp># may also precede 
certain unparenthesized items denoted collectively in the syntax diagram by §.  These 
items are: 
•  a single literal;
•  a single unsubscripted variable name;
•  blank (i.e., the component(s) of the <identifier> should not be initialized).

5. The presence of an asterisk at the end of an <initial list> implies the partial initialization 
of an <identifier>.

6. The order of initialization is the “natural sequence” specified in Section 5.5.

CONSTANT (

18

initial list

INITIAL

)

( initial list )

expression

#arith exp

,

example:
INITIAL (2# (1, 3#5))

*
,

§

§

initialization

initial
list

:see rule 4 below
November 2005 4-18



HAL/S Language Specification USA003088
32.0/17.0
RULES FOR INTEGER AND SCALAR TYPES:
1. If the <identifier> has no array specification, the <initial list> must contain exactly one 

value.
2.  If the <identifier> has an array specification, then one of the following must hold:

•  the number of values in the <initial list> is exactly one, in which case all elements of 
the array are initialized to that value; 

•  the number of values in the <initial list> is exactly equal to the number of array  
elements to be initialized; 

•  the <initial list> ends with an asterisk, in which case the number of values must be 
less than the number of array elements to be initialized, and partial initialization is 
indicated.

3. <expression> must be an unarrayed INTEGER or SCALAR, or expression computable 
at compile time (see Appendix F).  Type conversion between INTEGER and SCALAR 
is allowed where necessary.

4. Non-aggregate (unarrayed and not in a structure) INTEGER and SCALAR single 
precision CONSTANTs initialized with a double precision value remain double 
precision.

RULES FOR VECTOR AND MATRIX TYPES:
1.  If the <identifier> has no array specification, then one of the following must hold: 

•  the number of values in the <initial list> is exactly one, in which case all 
components of the VECTOR or MATRIX are initialized to the value; 

•  the number of values in the <initial list> is exactly equal to the number of 
components to be initialized; 

•  the <initial list> ends with an asterisk, in which case the number of values must be 
less than the number of components to be initialized, and partial initialization is 
indicated.

2.  If the <identifier> has an array specification, then one of the following must hold:  
•  the number of values in the <initial list> is exactly one, in which case all the 

components of all the array elements of the VECTOR or MATRIX are initialized to 
that value; 

•  the number of values in the <initial list> is exactly equal to the number of 
components of the VECTOR or MATRIX, in which case every array element takes 
on the same set of values; 

•  the number of values in the <initial list> is equal to the total number of components 
in all array elements; 

•  the <initial list> ends with an asterisk, in which case the number of values must be 
less than the total number of components in all array elements, and partial 
initialization is indicated.

3. <expression> must be an unarrayed integer or scalar expression computable at 
compile time (see Appendix F).  The conversion between integer and scalar is 
allowed where  necessary.
4-19 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
RULES FOR BIT, BOOLEAN, EVENT, AND CHARACTER TYPES:
1. If the <identifier> has no array specification, the <initial list> must contain exactly one 

value.
2.  If the <identifier> has an array specification, then one of the following must hold:  

•  the number of values in the <initial list> is exactly one, in which case all elements of 
the array are initialized to that value; 

•  the number of values in the <initial list> is exactly equal to the number of array 
elements to be initialized; 

•  the <initial list> ends with an asterisk, in which case the number of values must be 
less than the number of array elements to be initialized, and partial initialization is 
indicated.

3.  If an <identifier> of Bit, Boolean, or Event type is being initialized, <expression> must 
be an unarrayed <bit exp> computable at compile time (see Appendix F).  If an Event 
<identifier> has the LATCHED attribute, then it may be initialized to the value TRUE 
or FALSE (or their equivalent).  If it does not have the LATCHED attribute, then it 
cannot be initialized (see Section 8.8).  In the absence of <initialization> all Events 
are implicitly initialized to FALSE and all Bit variables are set to zero.  If the memory 
location containing the Bit type is larger than the declared size of the Bit <identifier>, 
then the bits that do not correspond to an <identifier> will also be initialized to zero. 

4. If an <identifier> of CHARACTER type is being initialized, <expression> must be an 
unarrayed <char exp> computable at compile time (see Appendix F).

RULES FOR STRUCTURE TYPES:
1. Only a major structure <identifier> may be initialized.
2.  If the <identifier> has only one copy, then one of the following must hold: 

•  the number of values in the <initial list> is equal to the total number of data 
elements in the whole structure;

•  the <initial list> ends with an asterisk, in which case the number of values must be 
less than the number of data elements in the whole structure, and partial 
initialization is indicated.

3.  If the <identifier> has multiple copies, then one of the following must hold:
•  the total number of values in the <initial list> is exactly equal to the total number of 

data elements in one copy of the structure, in which case each copy is identically 
initialized;

•  the number of values in the <initial list> is equal to the total number of data 
elements in all copies of the structure;

•  the <initial list> ends with an asterisk, in which case the number of values must be 
less than the total number of data elements in all copies of the structure, and partial 
initialization is indicated.

The type of each <expression> must be legal for the type of corresponding structure 
terminal initialized (see the Semantic Rules for initialization of simple variables of each 
type).
November 2005 4-20



HAL/S Language Specification USA003088
32.0/17.0
5.0   DATA REFERENCING CONSIDERATIONS
Central to the HAL/S language is the ability to access and change the values of 
variables.  Section 4 dealt comprehensively with the way in which data names are 
defined.  This section addresses itself to the various ways these names can be 
compounded and modified when they are referenced.

5.1  Referencing Simple Variables.
In Section 4.5 the term “simple variable” was introduced to describe a data name which 
was not a structure, or part of one.  When a simple variable is defined in a <declare 
group>, it is syntactically denoted by the <identifier> primitive.  Thereafter, since its 
attributes are known, it is denoted syntactically by the <§ var name> primitive, where § 
stands for any of the types arithmetic, bit, character, or event.

5.2  Referencing Structures
When an <identifier> is declared to be a structure, its tree organization is that of the 
template whose <template name> appears in the structure declaration (see Section 4.7).  
References to the structure as a whole (the “major structure”), are obviously made by 
using the declared <identifier>, which syntactically becomes a <structure var name>.  
The way in which parts of the structure (its minor structures and terminals) are 
referenced depends on whether the structure is “qualified” or “unqualified” (see Section 
4.7).

•  If a structure is “unqualified”, then any part of it, either minor structure or structure 
terminal, may be referenced by using the name of the part as it appears in the 
<structure template>.  If a minor structure is referenced, the name becomes 
syntactically a <structure var name>.  If a structure terminal is referenced, then 
syntactically the name becomes a <§var name>, where § stands for any of the 
types arithmetic, bit, character, or event, as  specified in its <attributes> in the 
template.

•  If the structure is “qualified”, then any part of it, either minor structure or structure  
terminal, is referenced as follows.  First the major structure name is taken.  Then 
starting at the template name, the branches of the template are traversed down to 
the minor structure or structure terminal to be referenced.  On passing through 
every intervening minor structure, the name is compounded by right catenating a 
period followed by the name of the minor structure passed through.  The process 
ends with the catenation of the name of the minor structure or structure terminal to 
be referenced.  If a minor structure is being referenced, the resulting “qualified” 
name becomes syntactically a <structure var name>.  If a structure terminal is 
referenced, then syntactically it becomes a <§var name>, where § stands for any of 
the types arithmetic, bit, character, or event, as specified in its <attributes> in the 
template.
5-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 5-1  Referencing Structures

5.3  Subscripting
For the remainder of the section, a data name with known <attributes> is denoted 
syntactically by <§var name>, where § stands for any of the types arithmetic, bit, 
character, event, or structure.  It is convenient to introduce the syntactical term <§var> to 
denote any subscripted or unsubscripted <§var name>.

SYNTAX:

Figure 5-2  Subscripting - #19
It is also useful to introduce the syntactical term <variable> as a collective definition 
meaning any type of <§var>.

STRUCTURE A:
1 B,

2 C,
3 E VECTOR(3),
3 F SCALAR,

2 G,
3 H EVENT,
3 I INTEGER,

1 J BIT(16);

DECLARE A A-STRUCTURE,

Z A-STRUCTURE;

i)  references to parts of structure A -
G           I          J

ii)  references to corresponding parts of structure Z -
Z.B.G          Z.B.G.I         Z.J

structure template

“unqualified”

“qualified”

19arith
bit
char
structure
event

variables

example:
A 1 TO 10 subscript MS

§ var

var name
09/07/01 5-2



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX:

Figure 5-3  variable - #20

SEMANTIC RULES
1. <bit pseudo-var> is a reference to the SUBBIT pseudo-variable.  An explanation of its

inclusion as a <variable> is given in Section 6.5.4.

5.3.1 Classes of Subscripting 
In HAL/S, there are three classes of subscripting which may be potentially applied to 
<§var name>s: structure, array, and component subscripting.

•  Structure subscripting can be applied to arithmetic, bit, character, and event 
variables which are terminals of a structure which has multiple copies.  It can also 
be applied to the major and minor structure variable names of such a structure.  
Structure subscripting is denoted syntactically by <structure sub>. 

•  Array subscripting can be applied to any arithmetic, bit, character, and event 
variables which are given an array specification in their declaration.  This includes 
both simple variables and structure terminals.  Array subscripting is denoted 
syntactically by <array sub>.

•  Component subscripting can be applied to simple variables and structure terminals 
which have one or more component dimensions (i.e., which are made up of distinct 
components).  The applicable types are vector, matrix, bit, and character.  
Component subscripting is denoted syntactically by <component sub>.

The three classes of subscript are combined according to a well-defined set of rules.

bit var

event var

arith var

char var

structure var

20

variable

bit pseudo-var
5-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 5-4  subscript construct - #21

SEMANTIC RULES:
1.  The syntax diagram shows 10 different ways of combining the three classes of 

subscripting.  The following table shows when each of these combinations is legal for 
simple variables and structure terminals.  In the table, the following abbreviations are 
used: 

<component sub> → C
<array sub> → A
<structure sub> → S

Interpretation of <§ var name>
data type unarrayed 

simple 
variable

arrayed 
simple 

variable

unarrayed 
structure 

terminal 

arrayed 
structure 

terminal 
integer 
scalar 
event

none A            
A:

S                                
S;

S;                 
S; A             
S; A:

vector 
matrix    

bit 
character

C A:          
A: C

S;                        
S; C

S;                
S; A             

S; A: C

subscript

component
sub

structure sub

component
sub

component
sub

array sub

component
sub

;

;

21

:

:

array sub

:

:

example:
           I; J, K: L

1 1
09/07/01 5-4



HAL/S Language Specification USA003088
32.0/17.0
  It is assumed that the structure has multiple copies.  If not, corresponding 
columns for simple variables apply.

2.  In the case of a <structure var name> relating to a major structure with multiple 
copies, or to a minor structure of such a major structure, the following forms are legal: 

S
S;

No subscript is possible if the major structure has no multiple copies.

Figure 5-5  Subscript examples

1

equivalent form -

Px:

Px

Q x

R x;

R x

S x ; y : z

i)

ii)

iii)

iv)

equivalent forms -

<component sub>

<structure sub>

S is an arrayed structure
terminal* of vector, matrix,
bit, or character type

equivalent only if R is of
unarrayed integer, scalar,
or event type

R is any structure terminal*

Q is any unarrayed structure
terminal* of integer, scalar, or
event type

Q is any simple variable of
integer, scalar, or event type

see example i)

equivalent only if P is of integer,
scalar, or event type

P is any arrayed simple variable

* of a structure with multiple copies
<structure sub>

<array sub>

examples:

<component sub>

<structure sub>

<array sub>

<array sub>
5-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
5.3.2 The General Form of Subscripting.
The three classes of subscripting, <structure sub>, <array sub>, and <component sub>, 
have an identical syntactical form; however, the semantic rules for each differ.

SYNTAX:

Figure 5-6  componoent, array, and structure subscripts - #22 

GENERAL SEMANTIC RULES:
1.  A <structure sub>, <array sub>, or <component sub> consists of a series of 

“subscript expressions” separated by commas.  Each subscript expression 
corresponds to a structure, array, or component dimension of the <§ var name> 
subscripted. 

2.  There are four forms of subscript expression:
•  the simple index;
•  the AT-partition ;
•  the TO-partition;
•  the asterisk.

array
sub

component
sub

structure
sub

sub exp sub exp

exp
sub

arith exp

example:
3 AT # -5

22

,

#

TO

sub exp

ATarith exp sub exp

*

-#

# +
09/07/01 5-6



HAL/S Language Specification USA003088
32.0/17.0
3.  The simple index form is denoted in the diagram by a single <sub exp>.  Its value 
specifies the index of a single component, array element, or structure copy to be 
selected from a dimension.

4.  The AT-partition is denoted by the form <arith exp> AT <sub exp>.  The value of <arith 
exp> is the width of the partition, and that of <sub exp> the starting index.

5.  The TO-partition is denoted by the form <sub exp> TO <sub exp>.  The two <sub 
exp> values are the first and last indices, respectively, of the partition.

6.  The asterisk form, denoted in the diagram by *, specifies the selection of all 
components, elements, or copies from a dimension.

7.  <sub exp> may take any of the forms shown.  The value of # is taken to be the 
maximum index-value in the relevant dimension (for character variables, this is the 
current length).

8.  Any <arith exp> in a subscript expression is an unarrayed integer or scalar 
expression.  Values are rounded to the nearest integer.

5.3.3 Structure Subscripting.
Major structures with multiple copies, or the minor structures or structure terminals of 
such structures may possess a <structure sub>.  Since there is only one dimension of 
multiple copies, the <structure sub> may only possess one subscript expression.  The 
effect of such subscripting is to eliminate multiple copies, or at least to reduce their 
number.

RESTRICTIONS:
1.  Errors result if any index value implied by a subscript expression lies outside the 

range 1 through N, where N is the number of copies specified for the major structure.
2.  If the subscript expression is a TO- or AT-partition, the width of the partition must be 

computable at compile time.  This is guaranteed by enforcing the following 
restrictions: 
•  in the form <arith exp> AT <sub exp>, the value of the <arith exp> must by 

computable at compile time (see Appendix F).
•  in the form <sub exp> TO <sub exp>, the values of both <sub exp>s must be 

computable at compile time.
5-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 5-7  Structure Subscripting Examples

5.3.4 Array Subscripting.
Any simple variable or structure terminal with an array specification (see Section 4.5) 
may possess an <array sub>.  The number of subscript expressions in the <array sub> 
must equal the number of dimensions given in the array specification.  The leftmost 
subscript expression corresponds to the leftmost dimension of the array specification, 
the next expression to the next dimension, and so on.

RESTRICTIONS:
1.  Errors result if any index value implied by a subscript expression lies outside the 

range 1 through N, where N is the size of the corresponding dimension in the array 
specification.

2.  If the subscript expression is a TO- or AT-partition, the width of the partition must be 
computable at compile time.  This is guaranteed by enforcing the following 
restrictions: 
•  in the form <arith exp> AT <sub exp>, the value of <arith exp> must be computable 

at compile time; 
•  in the form <sub exp> TO <sub exp>, the value of both <sub exp>s must be 

computable at compile time.

examples: 
    STRUCTURE A;

1 B SCALAR,
1 C INTEGER,
1 D VECTOR(6);
•
•
•

    DECLARE A A-STRUCTURE(20);
A20 20th copy of A
A2 AT 10; 10th and 11th copies of A

(semicolon optional)
C1 C from 1st copy of A
D4 TO 6; D from 4th through 6th copies of A

(semicolon enforced)
 Note: D*;4 TO 6 components 4 through 6 of D from all copies of A 
09/07/01 5-8



HAL/S Language Specification USA003088
32.0/17.0
Figure 5-8  Structure and Array Subscripting Examples

5.3.5 Component Subscripting.
Simple variables and structure terminals of vector, matrix, bit, and character type may 
possess component subscripting because they are made up of multiple distinct 
components.

•  Those of bit, character, and vector types must possess a <component sub> 
consisting of one subscript expression only;

•  Those of matrix type must possess a <component sub> consisting of two subscript 
expressions.  In left to right order these represent row and column subscripting 
respectively.

RESTRICTIONS:
1.  Errors result if any index value implied by a subscript expression lies outside the 

range 1 through N, where N is the size of the corresponding dimension in the type 
specification.

2.  For bit, vector, and matrix types, if the subscript is TO- or AT-partition, the width of the 
partition must be computable at compile time.  This is guaranteed by enforcing the  
following restrictions: 
•  in the form <arith exp> AT <sub exp>, the value of <arith exp> must be computable 

at compile time; 
•  in the form <sub exp> TO <sub exp>, the value of both <sub exp>s must be 

computable at compile time. 

examples
STRUCTURE P:

1 Q ARRAY(5) SCALAR,
1 R SCALAR;

  •  
  •  
  •  
 DECLARE P P-STRUCTURE(10);

 DECLARE S ARRAY (5) SCALAR,

T ARRAY (5) VECTOR(6);

Q*;5 5th array element of Q in all copies of P
Q1;2 TO 3: 2nd and 3rd array elements of Q in 1st copy of P (colon 

optional)
S4 TO 5: 4th through 5th array elements of S (colon optional)
T2 AT 2: 2nd and 3rd array elements of T (colon enforced)

Note: T*:2 AT 2 components 2 and 3 in all array elements of T
5-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
3.  The subscript expressions of a character type need not be computable at compile 
time.

SPECIAL RULES FOR VECTOR AND MATRIX TYPES:
The <component sub> of a variable of vector or matrix type can sometimes have the 
effect of changing its type.  The following rules apply:
1.  If a VECTOR type is subscripted with a simple index <component sub>, then since 

one component is being selected, the resulting <arith var> is of SCALAR type.
2.  If only one of the two subscript expressions in a <component sub> of a MATRIX type 

is a simple index, then one row or column is being selected, and the result is 
therefore an <arith var> of VECTOR type.  If both subscript expressions are of simple 
index form, then one component of the MATRIX is being selected, and the result is an 
<arith var> of SCALAR type.

Figure 5-9  Matrix and Array Subscripting Examples

5.4  The Property of Arrayness.
A <§var name> which is a simple variable is said to be “arrayed”, or to possess 
“arrayness”, if any array specification appears in its declaration.  The number of 
dimensions of arrayness is the number of dimensions given in the array specification.
A <§var name> which is a structure terminal is said to be arrayed or to possess 
arrayness if either or both of the following hold: 

•  an array specification appears in its declaration in a structure template; 
•  the structure of which <¤var name> is a terminal has multiple copies.

The number of dimensions of arrayness is the sum of the dimensions originating from 
each source.
Appending structure or array subscripting to a <§var name> may reduce the number and 
size of array dimensions of the resulting <§var>.
The arrayness of HAL/S expressions originates ultimately from the <§var>s contained in 
them.  It is a general rule that all arrayed <§var>s in an expression must possess 
identical arrayness (i.e. the number of dimensions of arrayness, and their corresponding 
sizes must be the same).  Although the forms of subscript distinguish between array 
dimensions, and structure copy dimensions, no distinction between them is made as far 

examples:
 DECLARE M MATRIX(3,3),

C ARRAY(2) CHARACTER(8);
.
.
.
C1:2 TO 7 characters 2 through 7 of 1st array element of C 
M*,1 column 1 of matrix M (vector)
M3,3 3rd component of 3rd row of M (scalar)
09/07/01 5-10



HAL/S Language Specification USA003088
32.0/17.0
as the matching of arrayness is concerned.

Figure 5-10  Property of Arayness Exapmle

5.4.1 Arrayness of Subscript Expressions
Any <arith exp> within a subscript may be arrayed (possess "arrayness"). Appending 
such subscripts to a <§var name> may produce an arrayed operand of the same 
arrayness as the <arith exp>.  The following rules are applicable to such subscript forms.

SEMANTIC RULES:
1.  Any <arith exp> appearing in Syntax Diagram 22 depicting the syntax of <structure 

sub>,  <array sub>, and <component sub> may potentially possess arrayness. 
2.  If the <§var name> possessing the subscript containing the arrayed <arith exp> is 

imbedded in an arrayed HAL/S expression, then the arrayness of the <arith exp> 
must match the arrayness of the expression, even if the <var name> itself does not 
possess  arrayness (e.g. is a vector). 

3.  The evaluation of an arrayed expression can be viewed as a parallel evaluation of the 
expression element by element. If the expression contains an arrayed <arith exp> in 
a subscript, then during the parallel evaluation the appropriate array element of <arith 
exp> is selected for each evaluation.

Example:
Given the declarations:

        DECLARE A ARRAY(3) INTEGER; 
        DECLARE B ARRAY(3,2) INTEGER; 
        DECLARE V VECTOR(5);

the following operands become:
      
VA - a 3 - array
VB - a 3x2 - array     of corresponding vector components

                                                             

STRUCTURE Z:
1 B ARRAY(5);
DECLARE A Z-STRUCTURE(10);
DECLARE C ARRAY(10,5);
.
.
.
.
C = A.B + C;

arrayness of both operands is 10, 5

example:

⎫
⎬
⎭

5-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Example
DECLARE I ARRAY(3) INTEGER,

M MATRIX(2,2),
MA ARRAY(3)MATRIX(2,2),
MB ARRAY(2)MATRIX(2,2);

   Let M ≡ and I ≡

   then MI,* ≡ ≡ 

- a linear 3-array of 2-vectors: subscripting has reduced M from a matrix to a row-
vector, but since I is arrayed, the entire operand has an effective arrayness even
though M itself has not.

   Let MA ≡

I1= 2
                  I2= 1

                               I3= 1

     Then MA*:I,* ≡  ≡

is also a linear 3-array of 2-vectors: now however MA and I both have arrayness
(which correctly match).  Three parallel subscript evaluations are effectively
performed using corresponding array elements of MA and I each time.

Note MB*:I,* is illegal since the arrayness of MB does not match the arrayness
of I. 

However MB*:I 1 TO 2,* is legal since array subscripting has been used on I to force
arrayness matching.

⎥
⎦

⎤
⎢
⎣

⎡
1.250.75
0.251.75

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
1
2

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

1,*

1,*

2,*

M
M
M [ ]

[ ]
[ ]⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0.251.75
0.251.75
1.250.75

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

9.04.0
3.08.0

5.06.0
7.04.0

2.03.0
0.01.0 1

2

3

( )
( )
( )⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1,*:3

1,*:2

2,*:1

M
M
M [ ]

[ ]
[ ]⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3.08.0
7.04.0
2.03.0

 If MB ≡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

0.80.4
0.70.2

0.30.1
0.50.5

 then MB *:I1 TO 2, * ≡ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1,*:2

2,*:1

MB
MB

≡ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
0.70.2
0.30.1

 I1 = 2

 I2 = 1

1

2

09/07/01 5-12



HAL/S Language Specification USA003088
32.0/17.0
5.5  The Natural Sequence of Data Elements
There are several kinds of operations in the HAL/S language which require operands 
with multiple components, array elements, and structure copies to be unraveled into a 
linear string of data elements.  The reverse process of “reraveling” a linear string of data 
elements into components, array elements, and structure copies also occurs.  The two 
major occurrences of these processes are in I/O (see Section 10) and in conversion 
functions (see Section 6.5).
The standard order in which this unraveling and reraveling takes place is called the 
“natural sequence”.  By applying the following rules in the order they are stated, the 
natural sequence of unraveling is obtained.  By applying the rules in reverse order, and 
by replacing “unraveled” by “reraveled”, the natural sequence for reraveling is obtained.

RULES FOR MAJOR AND MINOR STRUCTURES:
1.  If the operand is a major structure with multiple copies, each copy is unraveled in turn, 

in order of increasing index.  If the operand is a minor structure of a multiple-copy 
structure, then the copy of the minor structure in each structure copy is unraveled in 
turn in order of increasing index.

2.  The method of unraveling a copy is as follows: each structure terminal on a “branch” 
connecting back to the given major or minor structure operand is unraveled in turn; 
the order taken is the order of appearance of the terminals in the structure template.

3.  Each structure terminal is unraveled according to the rules given below: 

Figure 5-11  Structure Unraveling Example

RULES FOR OTHER OPERANDS:
1.  An operand of any type (integer, scalar, vector, matrix, bit, character, or event) may 

possess arrayness as described in Section 5.4.  Each dimension of arrayness, 
starting from the leftmost is unraveled in turn, in order of increasing index.

2.  Integer, scalar, bit, character, and event types are considered for unraveling purposes 
as having only one data element.

3.  Vector types are unraveled component by component, in order of increasing index.
4.  Matrix types are unraveled row by row, in order of increasing index.  The components 

of each row are unraveled in turn in order of increasing index.

example:
STRUCTURE A:
1 B,

2 D VECTOR(3),
1 E INTEGER;

DECLARE A A-STRUCTURE(3);
•  order of unraveling of B is Bi, i = 1, 2, 3
•  order of unraveling of each Bi is Ci , Di 
5-13 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 example:
DECLARE V ARRAY(2,2) VECTOR(3);

•  order of unraveling of V is Vi,*:* , i = 1, 2
•  order of unraveling of each Vi,*:* , is Vi,j: , j = 1, 2
•  order of unraveling of each Vi,j:* is Vi,j:k , k = 1, 2, 3

(standard HAL/S subscript notation used)
09/07/01 5-14



HAL/S Language Specification USA003088
32.0/17.0
6.0   DATA MANIPULATION AND EXPRESSIONS
An expression is an algorithm used for computing a value.  In HAL/S, expressions are 
formed by combining together operators with operands in a well-defined manner.  
Operands generally are variables, literals, other expressions, and functions.  The type of 
an expression  is the type of its result, which is not necessarily the same as the types of 
its operands.
In HAL/S, expressions are divided into three major classes according to their usage:

•  regular expressions appear in a very large number of contexts throughout the 
language; e.g., in assignment statements, as arguments to procedures and 
functions, and in I/O statements.  Typical regular expressions are arithmetic, bit, 
and character.  They are collectively denoted by <expression>.

•  conditional expressions are used to express combinations of relationships between 
quantities, and are found in IF statements, and in WHILE and UNTIL phrases.  
They are denoted by <condition>.

•  event expressions are used exclusively in real time programming statements.

6.1  Regular Expressions.
Regular expressions comprise arithmetic expressions, bit expressions, and character 
expressions, together with a limited form of structure expression.  As a generic form, 
<expression> appears in the assignment statement as the input arguments of procedure 
and function blocks, and in the WRITE statement.
SYNTAX:

Figure 6-1  expression - #23
Descriptions of <arith exp, <bit exp>, <char exp>, and <structure exp> are given in the 
following subsections.

6.1.1 Arithmetic Expressions.
Arithmetic expressions include integer, scalar, vector, and matrix expressions.   
Collectively they are known by the syntactical term <arith exp>.

expression
23

arith exp

structure exp

char exp

bit exp
6-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 6-2  arithmetic expression - #24
SEMANTIC RULES:
1.  An <arith exp> is a sequence of <arith operand>s separated by infix arithmetic

operators, and possibly preceded by a unary plus or minus.
2.  The form < > is used to show that the two <arith operand>s are separated by one or

more spaces.  It signifies a product between the <arith operand>s.
3.  The syntax diagram for <arith exp> produces a sequence extensible on the right.  Any

sequence produced is not necessarily to be considered as evaluated from left to right.
The order of evaluation of each operation in the sequence is dictated by operator
precedence.

4.  Not all types of <arith operand>s are legal in every infix operation.  The following table
summarizes all possible forms by indicating the result of each legal operation.

arith exp

24

examples:
I + J -(K + 2) 3

M.(M*N)
* *

/

+

_

+

_

*

<
>

.

arith  operand
25
November 2005 6-2



HAL/S Language Specification USA003088
32.0/17.0
Table 6-1  Infix Operators

Notes:
In operations with vector and matrix operands, the sizes of the operands must be com-
patible with the operation involved, in the usual mathematical sense.

outer product.
cross product - valid for 3-vectors only.
dot product.
every element of the vector or matrix is multiplied by the integer or scalar.
every element of the vector or matrix is divided by the integer or scalar.
if the right operand is literally “T” the transpose is indicated.  If the right operand 
is literally “0” the result is an identity matrix.  If the right operand is a positive inte-
ger number, a repeated product is implied.  If the right operand is a negative inte-
ger number, repeated product of the inverse is implied.  These are the only legal 
forms.
the operands are converted to scalar before division.
the operation is undefined if the value of the left operand is negative, and the 
value of the right operand is nonintegral.
the result is a scalar except if the right operand is a non-negative integral com-
pile time constant in which case the result is an integer.
If both operands are variables, then the integer is not converted to a scalar and 
the  base’s precision  determines the precision of the calculation. 

5.  Except as noted in Rule 4(+), if one operand in an operation is of INTEGER type and
the other operand is of SCALAR, VECTOR, or MATRIX type, the INTEGER is
converted to a SCALAR before performing the operation.  The precision of the
INTEGER is maintained (i.e. INTEGER SINGLE is converted to SCALAR SINGLE,
INTEGER  DOUBLE is converted to SCALAR DOUBLE). 

OPERANDS INFIX OPERATOR
LEFT RIGHT + - < > * • / * *

VECTOR VECTOR VECTOR VECTOR MATRIX1 VECTOR2 SCALAR3

VECTOR MATRIX VECTOR
MATRIX VECTOR VECTOR
VECTOR INTEGER VECTOR4 VECTOR5 VECTOR10

VECTOR SCALAR VECTOR4 VECTOR5

INTEGER        
SCALAR

VECTOR VECTOR4

MATRIX MATRIX MATRIX MATRIX MATRIX
MATRIX INTEGER MATRIX4 MATRIX5 MATRIX6 & 10

MATRIX SCALAR MATRIX4 MATRIX5 MATRIX6

INTEGER 
SCALAR

MATRIX MATRIX4

SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR8

SCALAR INTEGER SCALAR SCALAR SCALAR SCALAR SCALAR10

INTEGER SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR8

INTEGER INTEGER INTEGER INTEGER INTEGER SCALAR7 INTEGER9          
SCALAR

1

2

3

4

5

6

7

8

9

10
6-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.  If the two operands of an operation are of differing precision, the result is double
precision; otherwise, the precision of the result is the precision of the operands.
However, when only one operand is a literal (which includes non-aggregate
CONSTANTS), the precision of the result is the same as the precision of the non-
literal operand.  An aggregate is defined in this case as an ARRAY, STRUCTURE,
VECTOR, or MATRIX.

PRECEDENCE RULES:
1.  The following table summarizes the precedence rules for arithmetic operators:

Table 6-2  Precedence Rules for Arithmetic Operators
2.  If two operations of the same precedence follow each other, then the following rules

apply:
•  operators * *, / are evaluated right-to-left;
•  all other operators are evaluated left-to-right; 

3.  Overriding Rules 1 and 2, the operators <>, *, and . are evaluated so as to minimize
the total number of elemental multiplications required.  However, this rule does not
modify the effective precedence order in cases where it would cause the result to be
numerically different, or the operation to be illegal.

Operator Precedence Operation
FIRST

* * 1 Exponeniation
< > 2 Multiplication
* 3 cross-product
. 4 dot-product
/ 5 Division
+ 6 addition and unary plus
- 6 subtraction and unary 

minus
LAST
November 2005 6-4



HAL/S Language Specification USA003088
32.0/17.0
An <arith operand> appearing in an <arith exp> has the following form:
SYNTAX:

Figure 6-3  arithmetic operand - #25
SEMANTIC RULES:
1.  An <arith operand> may be an arithmetic variable, an arithmetic expression enclosed

in parentheses, a <normal function> of the appropriate type (see Section 6.4), an
<arith conversion> function (see Section 6.5.1), or a literal <number>.

2.  The precision of an <arith operand> may be converted by subscripting it with a
<precision> specifier (see Section 6.6).  If the operand is an <arith var> this is true
only if it has no <subscript>7.

3.  Only integer and scalar <arith operand>s may have the form <number>.

7.   Since a subscripted <arith var> is an example of an <arith exp>, the <precision> specifier may be applied by first 
enclosing the <arith exp> in parentheses.

arith
operand

precisionS

example:

   (A + B)
          @DOUBLE

M

24

38

39

43

25
19

number

arith exp( )

arith var

normal
function

arith
conversion
6-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.1.2 Bit Expressions.
A bit expression is known by the syntactical term <bit exp>.
SYNTAX:

Figure 6-4   bit expression - #26
SEMANTIC RULES:
1.  A <bit exp> is a sequence of <bit operand>s separated by bit operators. 
2.  The syntax diagram for <bit exp> produces a sequence extensible on the right.  Any

sequence produced is not necessarily to be considered as evaluated from left to right.
The order of evaluation of each infix operation is dictated by operator precedence:

Table 6-3  Precedence Rules for Bit Expressions
If two operations of the same precedence follow each other, they are evaluated from 
left to right.

3.  The operator CAT (||) denotes catenation of <bit operand>s.  The length of the result
is the sum of the lengths of the operands.

Operator Precedence
FIRST

CAT, || 1

AND, & 2

OR, | 3

LAST

bit exp

26

examples:
B & C || ¬ D

||

AND

&

bit operand |

OR

CAT
November 2005 6-6



HAL/S Language Specification USA003088
32.0/17.0
4.  The operators AND (&) and OR (|) denote logical intersection and union, respectively.
The shorter of the two <bit operand>s is left padded with binary zeroes to match the
length of the longer.

A <bit operand> appearing in a <bit exp> has the following form.
SYNTAX:

Figure 6-5  bit operand - #27
SEMANTIC RULES:
1.  A <bit operand> may be a <bit var>, a <bit exp> enclosed in parentheses, a <bit

literal>, a <normal function> of bit type (see Section 6.4), a <bit conversion> function,
or a <bit pseudo-var> (see Sections 6.5.3 and 6.5.4).

2.  In addition, a <bit operand> may be an <event var> or a <process-event name> (see
Section 8.9).  Events and process-events are treated as BOOLEAN (1-bit) <bit
operand>s.

3.  Any form of <bit operand> may be prefaced with the NOT (¬) operator causing its
logical complement to be evaluated prior to use within an expression.  Note that
associating the NOT operation with the <bit operand> syntax achieves an effect
similar to placing the NOT operator in the bit expression syntax at the highest level of
precedence.

bit
operand

event var

27

bit literal

normal function

bit conversion

bit pseudo-var

bit exp( )

example:
BIN ‘11010110’

NOT

bit var

process event name
6-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.1.3 Character Expressions.
A character expression is known by the syntactical term <char exp>.
SYNTAX:

Figure 6-6  character expression - #28
SEMANTIC RULES:
1.  A <char exp> is a sequence of operands separated by the catenation operator CAT

(||).  Each operand may be a <char operand>, or an integer or scalar <arith exp>.
2.  The sequence of catenations is evaluated from left to right.
3.  Integer and scalar <arith exp>s are converted to character strings according to the

standard conversion rules given in Appendix D.
A <char operand> appearing in a <char exp> has the following form.
SYNTAX:

Figure 6-7  character operand - #29

char operand

arith exp

char exp

CAT

example:
Q ||I || QQQ

28

||

29char
operand

char exp

char var

( )

example:
(A || B)

char conversion

char literal

normal function
November 2005 6-8



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
1. A <char operand> may be a character variable, a <char exp> enclosed in

parentheses, a <char literal>, a <normal function> of character type (see Section
6.4), or a <char conversion> function (see Section 6.5.3). 

6.1.4 Structure Expressions.
Since there are no manipulative expressions for structures, a <structure exp> merely 
consists of one structure operand.
SYNTAX:

Figure 6-8  structure expression - #29.1
SEMANTIC RULES:
1.  A <structure exp> consists of one structure operand which may be either a <structure

var>, or a <normal function> of structure type (see Section 6.4).

6.1.5 Array Properties of Expressions.
Any regular expression may have an array property by virtue of possessing one or more 
arrayed operands.  The evaluation of an arrayed regular expression implies element-by-
element evaluation of the expression.  For any infix operation with an array property the 
following must be true.
SEMANTIC RULES:
1.  If one of the two operands of an infix operation are arrayed, then evaluation of the

operation using the unarrayed operand and each element of the arrayed operand is
implied.  The resulting array has the same dimensions as the arrayed operand.

2.  If both of the operands of an infix operation are arrayed, then both operands must
have the same dimensions.  Evaluation of the operation for each of the
corresponding elements of the operands is implied.  The resulting array has the same
dimensions as the operands.

exp
structure 29.1

structure var

normal function
6-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.2  Conditional Expressions.
Conditional expressions express combinations of relationships between quantities.  The 
HAL/S representation of a relation between quantities is a <comparison>.  
<comparison>s are combined with logical operators to form conditional expressions, or 
<condition>s.
SYNTAX:

Figure 6-9  conditional expression - #30
SEMANTIC RULES:
1.  A conditional expression or <condition> is a sequence of <conditional operand>s

separated by logical operators.
2.  The syntax diagram for <condition> produces a sequence extensible on the right.

Any sequence produced is not necessarily to be considered as evaluated from left to
right.  The order of evaluation of each infix operation is dictated by operator
precedence: 

If two operations of the same precedence follow each other, they are evaluated from 
left to right.

3.  The operations AND (&) and OR (|) denote logical intersection and union, 
respectively.

Operator Precedence
FIRST

AND, & 1

OR, | 2

LAST

condition

30

examples:
(A>B) | (A>C)

&

|

OR

31

conditional
operand AND
November 2005 6-10



HAL/S Language Specification USA003088
32.0/17.0
A <conditional operand> appearing in a <condition> has the following form.
SYNTAX:

Figure 6-10  conditional operand - #31
SEMANTIC RULES
1.  A <conditional operand> is either a <comparison> or a parenthesized <condition>.

The latter form may be preceded by the logical NOT (¬) operator.
2.  A <comparison> is a relationship between the values of two arithmetic, bit, character,

or structure operands.  The result of a <comparison> is either TRUE or FALSE, but
cannot be used as a boolean operand in a bit expression.

example:
           (A>B)

conditional
operand

NOT

31

 32-5

 30

( )condition

comparison

¬

¬

6-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.2.1 Arithmetic Comparisons.
An arithmetic <comparison> is a comparison between two arithmetic expressions.
SYNTAX:

Figure 6-11  arithmetic comparison - #32
SEMANTIC RULES:
1.  The types of <arith exp> operand must in general match, with the following exception:

in a comparison of mixed integer and scalar operands, the integer operand is
converted to a scalar.  The precision of the INTEGER is maintained (i.e. INTEGER
SINGLE is converted to SCALAR SINGLE, INTEGER DOUBLE is converted to
SCALAR DOUBLE).

2.  If the precision of the <arith exp> operands are mixed then the single precision
operand is converted to double precision.

3.  Not all types of <arith exp> are legal for every type of arithmetic comparison.  The
unshaded boxes in the following table indicate all legal forms.

comparison

32

example:
I > J

< =

NOT <

¬ <

NOT >
>

<

> =

>

¬ >

arith exp arith
exp

=

¬ =

NOT =
November 2005 6-12



HAL/S Language Specification USA003088
32.0/17.0
4.   If the operands are vectors or matrices, the <comparison> is carried out on an 
element-by-element basis.
•  if the <comparison> operator is= , the result is TRUE only if all the elemental  

comparisons are TRUE.
•  if the <comparison> operator is NOT= (√=), the result is TRUE if any elemental  

comparison is TRUE.
5.  If one or both of the <arith exp>s are arrayed then only the operators = and NOT=

(¬=) are legal, and the result is an arrayed <comparison> (see Section 6.2.5).

6.2.2 Bit Comparisons.
A bit comparison is a comparison between two bit expressions.
SYNTAX:

Figure 6-12  bit comparison - #33
SEMANTIC RULES:
1.  If the lengths of the operands are the same, their values are equal if and only if they

have identical bit patterns.
2.  If the lengths of the operands differ, the <bit exp> of shorter length is left padded with

binary zeroes to match the length of the longer before comparison takes place.
3.   If one or both of the <bit exp>s are arrayed, then the result is an arrayed 

<comparison> (see Section 6.2.5).

Operator

operands
= ¬=

> <
¬>

NOT >
< =

¬<

NOT <
> =

NOT=

VECTOR √ √
MATRIX √ √

INTEGER √ √ <- - - - - - - no arrays- - - - - - - ->
SCALAR

comparison

NOT =

=

33

bit exp = bit exp

26 26
Example:

B ¬ =BIN ‘110’

¬

6-13 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.2.3 Character Comparisons.
A character comparison is a comparison between two character expressions.
SYNTAX: 

Figure 6-13  character comparison - #34
SEMANTIC RULES:
1.  The two strings are compared left-to-right through as many characters as are 

contained in the shorter string.
2.  If a difference in any character is detected, the value of the comparison is determined

by the internal character representations of the differing characters (n.b. this is
machine dependent).

3.  If the shorter string is identical to the longer one truncated to be the same length as
the shorter, then it is less than the longer one.

4.   If one or both of the <char exp>s are arrayed then the result is an arrayed 
<comparison> (see Section 6.2.5).

comparison

34

example:
C = ‘A’

=char exp

28

char exp

28¬=

<=

¬<

NOT>

¬>

NOT<

>=

<

>

NOT=
November 2005 6-14



HAL/S Language Specification USA003088
32.0/17.0
6.2.4 Structure Comparisons.
A structure comparison is a comparison between two structure expressions.
SYNTAX:

Figure 6-14  structure comparison - #35
SEMANTIC RULES:
1.  The tree organizations of both <structure exp>s must be identical in all respects.
2.  A multi-copy structure may be compared to either another multi-copy structure or a

single copy structure.  However, when comparing two multi-copy structures, the
number of copies possessed by each <structure exp> must be the same.

3.  When comparing a single copy structure to a multi-copy structure, each of the multi-
copies is compared to the single copy.  If the number of copies is greater than one (for
at least one side of the comparison) then the following holds.
•  if the <comparison> operator is =, the result is TRUE only if it is TRUE for all 

copies.
•  if the <comparison> operator is ¬= (NOT=), the result is TRUE if it is TRUE for at 

least one pair of corresponding copies.

6.2.5 Comparisons Between Arrayed Operands.
A <comparison> of one of the forms described may have arrayed operands.  When one 
or both of the operands is arrayed, the <comparison> operators are restricted to = and 
¬= (NOT=).  In any arrayed <comparison>, the  following must be true.
SEMANTIC RULES:
1.  If one of the two operands of a <comparison> is arrayed, then evaluation of the

<comparison> using the unarrayed operand and each element of the arrayed
operand is implied.

2.  If both of the operands are arrayed, then both operands must have the same array
dimensions.  Evaluation of the operation for each of the corresponding elements of
the operands is implied.

comparison

NOT =

¬=

35

structure exp = structure exp
6-15 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
3.  The result of an arrayed <comparison> is unarrayed.  If the operator is =, then the 
result is TRUE only if it is TRUE for all elements of the <comparison>.  If the operator 
is ¬= (NOT=), then the result is TRUE if it is TRUE for at least one element of the 
<comparison>.

6.3  Event Expressions.
Event expressions appear in real time programming statements (see Section 8), and are 
denoted by the syntactical term <event exp>.
SYNTAX:

Figure 6-15  event expression - #36
SEMANTIC RULES:
1.   An <event exp> is a sequence of <event operand>s separated by a subset of bit 

operators.  An <event exp> may not be arrayed.
2.  The syntax diagram for <event exp> produces a sequence extensible on the right.

Any sequence produced is not necessarily to be considered as evaluated from left to
right.  The order of evaluation of each infix operation is dictated by operator
precedence: 

Table 6-4  Precedence Rules for Event Expressions

If two operations with the same precedence follow each other, they are evaluated
from left-to-right.

3.  The operators AND (&) and OR (|) denote logical intersection and union, respectively.

Operator Precedence
FIRST

AND, & 1

OR, | 2

LAST

event exp

36

&

|

example:
ALPHA OR BETA

event operand

37

OR

AND
November 2005 6-16



HAL/S Language Specification USA003088
32.0/17.0
4.  The following types of event expressions are the only valid expressions for real time
programming statements: 
•  single event variable with or without the NOT operator, 
•  more than one event variable connected by all OR operators, 
•  more than one event variable connected by all AND operators. 

An <event operand> appearing in an <event exp> has the following form:
SYNTAX:

Figure 6-16  event operand - #37
SEMANTIC RULES:
1.  An <event operand> may be an event variable, an <event exp> enclosed in

parentheses, or a <process-event name>, in which case it is the name of a program
or task event.

2.  The arrayness of any <event var> must have been removed by suitable subscripting
(see Sections 5.3.3 and 5.3.4).

3.   The <event operand> may be optionally prefaced by the logical complementing 
operator NOT (¬).

4.   The <process-event name> used as an event operand is that of an external 
PROGRAM, then a <PROGRAM template> must be included in the compilation unit.  
The <process-event name> for a TASK block is defined by the occurrence of the 
TASK block within a PROGRAM block. 

6.4  Normal Functions.
Sections 6.1.1 through 6.1.3 have made references to normal functions which may 
appear as operands in various types of <expression>.  The normal function comprises all 
those functions which are not conversion functions, and fall into two classes:

•  “built-in” functions defined as part of the HAL/S language; 
•  “user-defined” functions defined by the presence of <function block>s in 

<compilation>s.
The manner of invoking each class of function is essentially the same.

example:
¬  (A&B)

event
operand

37

19

event var

event exp( )

36

process event name

NOT

¬

6-17 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 6-17  normal function - #38
SEMANTIC RULES:
1.  <label> invokes execution of a function with name <label>.
2.   If <label> is a reserved word which is a built-in function name, then that built-in 

function is invoked.  A list of built-in function names is given in Appendix C.
3.  If a <function block> with name <label> appears in such a name scope that <label> is

known to the invocation, then that block is invoked.
4.   If no such <function block> exists, then the <function block> is assumed to be 

external to  the <compilation> containing the invocation.  A <function template> for 
that <function block> must therefore be present in the <compilation> (see Section 
3.6).

5.  If a <function block> is declared inside a DO...END group, it may only be invoked by a
<normal function> call contained in the same DO...END group.

6.   The type of the <normal function> must be appropriate to the type of the 
<expression> containing it (see Sections 6.1.1 through 6.1.3).

7.   Each of the <expression>s in the syntax diagram is an “input argument” of the 
function invocation.  Input arguments are “call-by-reference” or “call-by-value”8.

8.   Each input argument of a <normal function> must match the corresponding input 
parameter of the function definition9 exactly in type, dimension, and tree organization, 
as applicable, except for the following relations:
•  precisions need not match, precision conversions are allowed; 
•  the lengths of bit arguments need not match (if the input parameter is not the same 

length as the input argument, the latter is left truncated or left padded with binary 
zeroes as necessary.  Length mismatch is not allowed for arrayed bit parameters.);

•  CHARACTER arguments must be declared CHARACTER(*); 
•  implicit integer to scalar and scalar to integer conversions are allowed;

8.   See Section 7.4.
9.   The parameter specifications for built-in functions is part of the formal definition given in Appendix C.

function
normal

expression( )

,

38

23example:
SIN (2  X)

label
November 2005 6-18



HAL/S Language Specification USA003088
32.0/17.0
•  implicit integer and scalar to character conversions are allowed (This conversion is 
not allowed for arrayed character parameters).

Input arguments may be viewed as being assigned to their respective input 
parameters on invocation of the function.  The rules applicable in the above 
relaxations thus parallel the relevant assignment rules given in Section 7.3.

9.   If the appearance of an invocation of a user-defined function precedes the 
appearance of its <function block>, the name and type of the function must be 
declared at the beginning of the containing name scope (see Section 4.6).

10.  Special considerations relate to arrayed input arguments to the <normal function>.  If
the corresponding input parameter is arrayed, then the arrayness must match in all
respects.  In this case, the function is invoked once.  If the corresponding parameter
is not arrayed, then the arrayness must match that of the <expression> containing the
function.  In this case, the <normal function> is invoked once for each array element. 

11.  The precision of a <normal function> is not necessarily the same as the precision of
any of its parameters. The precision of a user-defined <normal function> is defined in
the type specification (see Section 4.7).
The precision for a "built-in" function is defined in Section 5 of the HAL/S-FC 
Compiler System Specification.

Figure 6-18  Normal Functions Examples

[X] = [X] + ADD([X]);

DECLARE X ARRAY(4) SCALAR;
.
.
.

[X] = SIN([X]);

ADD: FUNCTION(P) SCALAR;

DECLARE P ARRAY(4) SCALAR;

RETURN P1 + P2 + P3;

CLOSE ADD;

.

.

.

Note: [ ] enclosing a variable name indicates that it has been declared to be arrayed.

example:

.

.

.

.

.

.

SIN evaluated once for each
element of X

ADD evaluated once only:
formal parameter P has same
arrayness as argument X.
ADD must be defined before
its invocation.
6-19 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.5  Explicit Type Conversions.
The limited implicit type conversions offered by HAL/S are described elsewhere in this 
Specification (see Sections 6.1.1 and 7.3).  HAL/S contains a comprehensive set of 
function- like explicit conversions, some of which also have the property of being able to 
shape lists of arguments into arrays of arbitrary dimensions.  For this reason, conversion 
functions are sometimes referred to as “shaping functions”.  HAL/S contains conversion 
functions to integer, scalar, vector, matrix, bit, and character types.

6.5.1 Arithmetic Conversion Functions.
Arithmetic conversion functions include conversions to integer, scalar, vector, and matrix 
types.
SYNTAX:

Figure 6-19  arithmetic conversion function - #39
GENERAL SEMANTIC RULES:
1.   The keyword INTEGER, SCALAR, VECTOR,  and MATRIX gives the result type of 

the conversion.
2.   The conversion keyword is optionally followed by a <precision> specifier giving the 

precision of the result (see Section 6.6), and by a <subscript>  specifying its 
dimensions.

21

24

43

arith
conversion

(

arith exp

expression )

,
example:
   INTEGER 2,2 (4#I + J)

#

precision subscript,S M

VECTOR

INTEGER

SCALAR

MATRIX

39
November 2005 6-20



HAL/S Language Specification USA003088
32.0/17.0
3.  The conversion has one or more <expression>s as arguments.  The total number of
data elements implied by the argument(s) are shaped according to well-defined rules
to generate the result.  The data elements in each <expression> are unraveled in
their “natural sequence”10.  The result of doing this for each argument in turn is a
single linear  string of data elements.  This string is then reformed or “reraveled” to
generate the result. 

4.  Any <expression> may be preceded by the phrase <arith exp>#, where <arith exp> is
an  unarrayed integer or scalar expression computable at compile time (see Appendix
F).  The value of <arith exp> is rounded to the nearest integer and must be greater
than zero.  It denotes the number of times the following <expression> is to be used in
the generation of the result of the conversion.

5.  The nesting of <arith conversion>s is subject to implementation dependent 
restrictions.

 SEMANTIC RULES (INTEGER AND SCALAR):
1.  If INTEGER or SCALAR are unsubscripted, and have only one unrepeated argument

of integer, scalar, bit, or character type, then if the argument is arrayed, the result of
the conversion is identically arrayed.

2.  If INTEGER or SCALAR are unsubscripted, and Rule 1 does not apply, then the result
of the conversion is a linear (1-dimensional) array whose length is equal to the total
number of data elements implied by the argument(s).

3.  If INTEGER or SCALAR are subscripted, the form of the <subscript> must be a
sequence of <arith exp>s separated by commas.  The number of <arith exp>s is the
dimensionality of the array produced.  Each <arith exp> is an unarrayed integer or
scalar expression computable at compile time.  Values are rounded to the nearest
integer and must be greater than one.  They denote the size of each array dimension
produced.  Their products must therefore match the total number of elements implied
by the argument(s) of the conversion.

4.  INTEGER and SCALAR may have arguments of any type (subject to general rule 6
above) except structure.  Type conversion proceeds according to the standard
conversion rules set out in Appendix D.

5.  The precision of the result is SINGLE unless forced by the precision of a <precision>
specifier.

SEMANTIC RULES (VECTOR AND MATRIX):
1.  In the absence of a <subscript>, VECTOR produces a single 3-vector result; MATRIX

produces a single 3-by-3 matrix result.  The number of data elements implied by the
argument(s) must therefore be equal to 3 and 9 respectively.

2.   VECTOR and MATRIX cannot produce arrays of vectors and matrices.  
Consequently, <subscript> may only indicate terminal subscripting.

10.   See Section 5.5.
6-21 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
3. In VECTOR, the <subscript> must be an <arith exp>.  <arith exp> must be an
unarrayed integer or scalar expression computable at compile time (see Appendix F).
Its value is rounded to the nearest integer, and must be greater than one.  It denotes
the length of the vector produced by the conversion.  It must therefore match the total
number of data elements implied by the argument(s) of the conversion.  

4.  In MATRIX, the form of the <subscript> must be:   
<arith exp>,<arith exp>

Each <arith exp> is an unarrayed integer or scalar expression computable at compile 
time.  Values are rounded to the nearest integer, and must be greater than one.  They 
denote the row  and column dimensions, respectively, of the matrix produced by the 
conversion.  Their product must therefore match the total number of data elements 
implied by the argument(s) of the conversion.

5.  VECTOR and MATRIX may have arguments of integer, scalar, vector, and matrix 
types only.

6.  The precision of the result is SINGLE unless forced by the presence of a <precision>
specifier.

Figure 6-20  Explicit Conversion Examples
* For example:

Let [X] = 

1.  Argument 2# [X] is “first unraveled”, i.e.

    ------------------      ------------------
2.  Linear string is then “reraveled” into 2 X 6 array:

Examples:
DECLARE X ARRAY(2,3) SCALAR,
. V VECTOR(3);
.
.
INTEGER([X]) result is 2,3 array of integers
INTEGER([X],[X]) result is linear 12-array of integers
SCALAR(V) result is linear 3-array of scalars
INTEGER2,6(2#[X]) result is 2,6 array of integers *
MATRIX(3#V) result is 3 by 3 matrix, each row being equal to V
VECTOR6([X]) vector of length 6
  Note: A variable enclosed in [ ] denotes that it is arrayed.

1 2 3
4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6
1 2 3 4 5 6
November 2005 6-22



HAL/S Language Specification USA003088
32.0/17.0
6.5.2 The Bit Conversion Function.
Conversion to bit type is carried out by the BIT conversion function.
SYNTAX:

Figure 6-21  bit conversion function - #40
GENERAL SEMANTIC RULES:
1.  The keyword BIT denotes conversion to bit type.
2.  The conversion has one argument of integer, scalar, bit, or character type.  If the

argument is arrayed, the result of the conversion is identically arrayed.
SEMANTIC RULES (without <radix>):
1.  Conversions of the argument proceed according to the standard conversion rules

given in Appendix D.  The resulting bit string is of maximum length for the
implementation and the significant data is right justified within the word.
(For an unsubscripted BIT conversion, the resulting bit string is a halfword (for a
single precision integer argument), or a bit string of length equal to the argument’s
length (for a bit type argument)).

2.  <subscript> represents component subscripting upon the results of the conversion.
<subscript> has the same semantic meaning and restrictions in the current context as
it does in the subscripting of bit <variables>s (see Section 5.3.5).

SEMANTIC RULES (with <radix>):
1.  The single argument of the <radix> version of the BIT conversion must be a <char

exp>.  <radix> specifies a radix of conversion, and has one of the following
syntactical forms:

      @HEX      (hexadecimal)
      @DEC      (decimal)
      @OCT      (octal)
      @BIN      (binary)
2.  The <char exp> must consist of a string (or array of strings) of digits legal for the

specified <radix>; otherwise, a run-time error occurs.  The conversion generates the
binary representation of the digit string.

3.  During conversion, if the length of the result is too long to be represented in an
implementation, left truncation occurs.

bit
conversion

radix char expMS

S Msubscript example:
BIT (I + J)

23

21

28

40

expression )(

(

BIT
6-23 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
November 2005 6-24



HAL/S Language Specification USA003088
32.0/17.0
6.5.3 The Character Conversion Function.
Conversion to character type is carried out by the CHARACTER conversion function.
SYNTAX:

Figure 6-22  bit conversion function - #41

GENERAL SEMANTIC RULES:
1.  The keyword CHARACTER denotes conversion to character type.
2.  The conversion has one argument of integer, scalar, bit, or character type.  If the 

argument is arrayed, the result of the conversion is identically arrayed.

SEMANTIC RULES (without <radix>):
1.  Conversion of the argument proceeds according to the standard conversion rules

given in Appendix D.
2.  <subscript> represents component subscripting upon the results of the conversion.  It

has the same semantic meaning and restrictions in the current context as it does in
the subscripting of character <variable>s (see Section 5.3.5).

Examples:
   DECLARE X ARRAY(2,3) SCALAR;

      .

      .

      .

   BIT([X]) result is 2,3 array of bit strings
   BIT1 TO 16([X]) same as above except that only bits 1 through

16 of each array element are taken
   BIT@HEX(‘FACE’) result is bit pattern of hexadecimal digits repre-

sented by argument
Note: A variable enclosed in [ ] denotes that it is arrayed.

char
conversion

radix bit exp

expression

MS

S subscript
example:
     CHARACTER

23

21

2326

41

)

M

)

(

(

CHARACTER

@HEX(B)
6-25 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES (with <radix>):
1.  The single argument of the <radix> version of the CHARACTER conversion must be

a <bit exp>.  <radix> specifies a radix of conversion, and has one of the following
syntactical forms:

      @HEX      (hexadecimal)
      @DEC      (decimal)
      @OCT      (octal)
      @BIN      (binary)
2.  The value of <bit exp> is converted to the representation indicated by the <radix>, left

padding the value with binary zeroes as required.  The result is a character string
consisting of the digits of the representation.

Figure 6-23  Character Conversion Examples
6.5.4 The SUBBIT pseudo-variable.
The SUBBIT pseudo-variable is a way of making the bit representation of other data 
types directly accessible without conversion.  It may appear in an assignment context 
(see Section 7.3) as well as part of an <expression>.  It is denoted syntactically by <bit 
pseudo-var>.
SYNTAX:

Figure 6-24  SUBBIT pseudo-variable - #42

Examples:
DECLARE X ARRAY(2,3) SCALAR;
.
.
.
CHARACTER([X]) result is 2,3 array of character strings
CHARACTER2([X]) Same as above except that only the

second character of each array element
is taken 

CHARACTER@DEC(BIN‘101101’) result is decimal representation of the bit
pattern of the argument

  Note: A variable enclosed in [ ] denotes that it is arrayed.

bit
pseudo-var

S Msubscript

SUBBIT

 example:
     SUBBIT            (K)5 TO 8

42

expression

variable( )
November 2005 6-26



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
1.  The keyword SUBBIT denotes the pseudo-variable.
2.  SUBBIT has one argument only.  If it appears in an assignment context, the argument

must be a <variable>.  If it appears as an operand of a bit expression, the argument
must be an <expression>.

3.  The argument may be of integer, scalar, bit, or character type, and may optionally be
arrayed.

4.  The effect of SUBBIT is to make its argument look like an operand of bit type (if the
argument is arrayed, then it looks like an arrayed bit operand).

5.  <subscript> represents component subscripting upon the pseudo-variable.  It has the
same semantic meaning as if it were subscripting a bit variable (see Section 5.3.5).

6.  The length of the argument in bits may in some implementations be greater than the
maximum length of a bit operand.  Let the maximum length of a bit operand be N
bits.  If SUBBIT is unsubscripted, only the N leftmost bits of the machine
representation of the data-type of the argument are visible.  If the representation is
less than N, the number of bits visible is equal to the length of the particular data
argument.

7. Partitioning subscripts of SUBBIT may make between 2 and N bits from the
representation of the argument type visible at any time (i.e., the partition size is ≤ N.).
The partition size must be known at compile time.  If the representation is less than
the specified partition size, binary zeroes are added on the left.

8. In an assignment context, SUBBIT functions may not be nested within SUBBIT
functions.  Neither may they appear as assign arguments, or in READ or READALL
statements. 

Example:

Figure 6-25  SUBBIT Example

6.5.5 Summary of Argument Types.
The asterisks in the following table indicate the legal argument types for each conversion 
function.

DECLARE P SCALAR DOUBLE;

.

.

.
SUBBIT33 TO 64(P) bits 33 through 64 of the machine representation of P 

look like a 32-bit variable
bits 1 through 32 are invisible.
6-27 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Table 6-5  Legal Argument Types for Conversion Functions

6.6  Explicit Precision Conversion.
The precision specifier may be used to cause explicit precision conversion of integer, 
scalar, vector, and matrix data types.
SYNTAX:

Figure 6-26  precision specifier - #43
SEMANTIC RULES:
1.  If <precision> is specified as a subscript to an <arith operand> (see Section 6.1.1), a

conversion to the precision specified takes place.
2.  If <precision> is specified as a subscript to an <arith conversion> then the result of the

conversion is generated with the indicated precision.
3.  If referring to integer type, SINGLE implies a halfword, and DOUBLE a fullword.  The

interpretation is machine dependent.

Conversion
Function

ARGUMENT TYPE

INTEGER SCALAR VECTOR MATRIX BIT CHARACTER
INTEGER * * * * * *

SCALAR * * * * * *

VECTOR * * * *
MATRIX * * * *
BIT * * * *

BIT with 
<radix>

*

CHARACTER * * * *
CHARACTER 
with <radix>

*

SUBBIT * * * *

precision 43

@ SINGLE

DOUBLE
November 2005 6-28



HAL/S Language Specification USA003088
32.0/17.0
7.0    EXECUTABLE STATEMENTS
Executable statements are the building blocks of the HAL/S language.  They include 
assignment, flow control, real time programming, error recovery, and input/output 
statements.  Syntactically, a statement of the above type is designated by <statement>.  
The manner of its integration into the general organization of HAL/S compilation was 
discussed in Section 3.

7.1  Basic Statements.
All forms of <statement> except the IF statement and certain forms of the ON ERROR 
statement (see Section 9.1) fall into the category of a <basic statement>. 

SYNTAX:

Figure 7-1  basic statement - #44
Any <basic statement>, unless it is imbedded in an IF statement or ON ERROR 
statement, may optionally be labeled with any number of <label>s.  Not all forms of 
<basic statement> are described in this Section.  Real time programming statements are 
described in Section 8, error recovery statements in Section 9, and input/output 
statements in Section 10. 
7.2  The IF Statement.
The IF statement provides for the conditional execution of segments of HAL/S code. 
SYNTAX:

Figure 7-2  IF statement - #45

statement

basic statement

44

example:
IF J > 0 THEN K = 1;
ELSE K = 2;

statement

label

statement

condition THEN

basic
statement statement

:

30

26

44

44 44

45

ELSE

IF

bit exp
7-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES:
1.  The IF statement, unless it is imbedded in another IF statement or in an ON ERROR 

statement, may optionally be labeled with any number of <label>s. 
2.  The option to label the <statement> or <basic statement> of an IF statement is not 

disallowed.  However, such labels may only be referenced by REPEAT or EXIT 
statements within the (compound) <statement> or <basic statement> thus labeled. 

3.  If <bit exp> appears in the IF statement, then it must be boolean (i.e., of 1-bit length). 
4.  If the <condition> or <bit exp> is TRUE, then the <statement> or <basic statement> 

following the keyword THEN is executed.  If <bit exp> is arrayed, then it is considered 
to be TRUE only if all its array elements are TRUE.  Execution then proceeds to the 
<statement> following the IF statement. 

5.  If the <condition> or <bit exp> is FALSE then the <statement> or <basic statement> 
following the keyword THEN is not executed.  If the ELSE clause is present, then the 
<statement> following the keyword ELSE is executed instead, and execution 
proceeds to the <statement> following the IF statement.  If the ELSE clause is 
absent, execution merely proceeds to the next <statement>. 

7.3  The Assignment Statement.
The assignment statement is used to change the current value of a <variable> or list of 
<variable>s to that of an expression evaluated in the statement. 

SYNTAX:

Figure 7-3  assignment statement - #46

NOTE: If the ELSE clause is present, a <basic statement> rather than a
<statement> precedes the keyword ELSE.  A nested IF statement,
therefore, cannot appear in this position, thus preventing the well
known ‘dangling ELSE’ problem.  

basic
statement

expression

:

46

example:
     ETA, KAPPA = LAMBDA + 1;

;=

,

variable

label
November 2005 7-2



HAL/S Language Specification USA003088
32.0/17.0
GENERAL SEMANTIC RULES:
1.  <variable> may not be an event variable or an input parameter of a procedure or func-

tion block. 
2.  The effective order of execution of an assignment statement is as follows: 

•   any subscript expressions on the left-hand side are evaluated; 
•   the right-hand <expression> is evaluated;
•   the values of the left-hand side <variable>s are changed. 

3.  If the <expression> on the right-hand side is arrayed, then all the <variable>s on the 
left-hand side must be arrayed.  The number of dimensions of arrayness on each side 
must be the same, and corresponding dimensions on either side must match in size. 

4.  If the <expression> on the right-hand side is not arrayed, then it is still possible for one 
or more <variable>s on the left-hand side to be arrayed. If more than one <variable> 
is arrayed, the arrayness must match in the sense of General Semantic Rule 3, 
above.  The single unarrayed value will be assigned to every element of arrayed 
targets.  

5.  Generally, the type of <expression> must match the types of the <variable>s on the 
left-hand side. Specific exceptions to this rule are listed below. The type of an 
assignment is taken to be the same as the type of the <variable> whose value is 
being changed. 

SEMANTIC RULES (integer and scalar assignments):
1.  The following implicit type conversions are allowed during assignment: 

•   assignment of an integer <expression> to a scalar <variable> is allowed; 
•   assignment of a scalar <expression> to an integer <variable> is allowed. 

2.  If the left- and right-hand sides of a scalar assignment have differing precisions, 
precision conversion is freely allowed.  Conversion from DOUBLE to SINGLE 
precision implies truncation of an implementation dependent number of binary digits 
from exponent, mantissa, or both. 

SEMANTIC RULES (vector and matrix assignments):
1.  The <expression> must normally be a vector or matrix expression with the same type 

and dimensionality as the <variable>s on the left-hand side.  One relaxation of this 
rule is permitted.  Matrix or vector <variable>s may be set null by specifying literal 
zero for the <expression>.  In this case only, both matrices and vectors of any dimen-
sion(s) may appear mixed in the list of <variable>s. 

2.  If the left- and right-hand sides of an assignment have differing precisions, precision 
conversion is freely allowed, according to the semantic rules for scalar assignments 
given above. 
7-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES (bit assignments):
1.  If the length of the bit <expression> is unequal to that of the left-hand side bit <vari-

able>, then the result of the <expression> is left-truncated if it is too long, or left-pad-
ded with binary zeros if it is too short. 

2.  The effect of a left-hand side <variable> being a <bit pseudo-var> is described in 
Section 6.5.4. 

SEMANTIC RULES (character assignments):
1.  Assignment of an integer or scalar <expression> to a character <variable> is allowed.  

During assignment, the integer or scalar value is converted to a character string 
according to the conversion formats given in Appendix D. 

2.  If <variable> is a character variable with no component subscripting, then: 
•   If the length of the <expression> is greater than the declared maximum length of 

the <variable>, the <expression> is right-truncated to that length.  The <variable> 
takes on its maximum length. 

•   If the length of the <expression> is not greater than the declared maximum length 
of the variable, then <variable> takes on the length of the <expression>. 

3.  If <variable> is a character variable with component subscripting, then: 
•  If the length of the <expression> is greater than the length implied by the 

component subscript, then it is right-truncated to the implied length. 
•   If the length of the <expression> is less than the length implied by the component 

subscript, then it is right-padded with blanks to the implied length. 
•   After assignment the <variable> takes on the length implied by the upper index of 

the component subscript, or retains its original length, which ever is the greater.  If 
the upper index of the subscript implies a length greater than the declared 
maximum for that <variable>, right-truncation to the maximum length occurs. 

•   If the lower index is greater than the length of the <variable> before assignment, 
then the intervening gap is filled with blanks. 

SEMANTIC RULES (structure assignments):
1.  <expression> can only be a <structure exp>.  The tree organization of the structure 

operands on both sides of the assignment must match exactly in all respects.  The 
sense in which tree organizations of two structures are said to match is described in 
Section 4.3. 

7.4  The CALL Statement.
The CALL statement is used to invoke execution of a procedure.  The PROCEDURE 
block may be in the same <compilation> as the CALL statement or external to it. 
November 2005 7-4



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX:

Figure 7-4  CALL statement - #47

SEMANTIC RULES:
1.  CALL <label> invokes execution of a procedure with name <label>. 
2.  If a <procedure block> with name <label> appears in such a name scope that <label> 

is known to the CALL statement, then CALL <label> invokes that block. 
3.  If a <procedure block> is declared inside a DO…END group, it may only be invoked 

by a CALL statement contained in the same DO…END group. 
4.  If no such <procedure block> exists, then the <procedure block> is assumed to be 

external to the <compilation> containing the CALL statement.  A <procedure 
template> for that <procedure block> must therefore be present in the <compilation> 
(see Section 3.6). 

5.  Each of the <expression>s is an “input argument” of the procedure call. 
6.  Each of the <variable>s is an “assign argument” of the procedure call.  Only assign 

arguments may have their values changed by the procedure.  If <variable> is 
subscripted, it must be restricted in form to the following:
•   No component subscripting for bit and character types. 
•   If component subscripting is present, <variable> must be subscripted so as to yield 

a single (unarrayed) element of the <variable>.
•  If no component subscripting is present, but array subscripting is, then all arrayness 

must be subscripted away. 

basic
statement

: label

CALL

47

)

;

,

example:
CALL EPSILON (A * B) ASSIGN (C);

label

(

,

23
expression

ASSIGN ( variable )

20
7-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
7.  Assign arguments are “call-by-reference”.  Input arguments are either “call-by-
reference” or “call-by-value”11.  

8.  Each assign argument must match its corresponding procedure block assign 
parameter exactly in type, precision, dimension, arrayness, structure tree 
organization, and REMOTE12 attribute, as applicable.  CHARACTER lengths are an 
exception; they must be declared CHARACTER(*).  The reason is that character 
types are of varying length and the actual length is available at execution.  If an 
assignment argument has the LOCK attribute, then the following must apply: 
•   If it is of lock group N, then the corresponding assign parameter must be of lock  

group N, or *.
•    If it is of lock group *, then the corresponding parameter must also be of group *. 

9.  Bit type identifiers (non-NAME, non-arrayed) may not be used as assign arguments of 
a CALL statement when they are part of structure variables and have DENSE 
attributes.  All other types of structure terminals with the DENSE attribute may be 
used as ASSIGN arguments.  See Sections 4.3 and 4.5 for further explanation of the 
DENSE attribute.  Note, however, that an entire structure with the DENSE attribute 
may be passed provided that template matching rules are observed. 

10.  For input arguments,  the following relaxation of rules 8 and 9 are permitted:
•   precisions need not match;
•   lengths of bit arguments need not match (If the input parameter is not the same 

length as the input argument, the latter is left truncated or left padded with binary 
zeros as necessary.  Length mismatch is not allowed for arrayed bit parameters.);

•   CHARACTER arguments must be declared CHARACTER(*);
•   implicit integer to scalar and scalar to integer conversions are allowed;
•   implicit integer and scalar to character conversions are allowed (This conversion is 

not allowed for arrayed CHARACTER parameters.);
•   matching of the attributes DENSE and REMOTE is not required.

(The REMOTE keyword is ignored on non-NAME input parameters.)

Input arguments may be viewed as being assigned to their respective input 
parameters on invocation of the procedure.  The rules applicable in the above 
relaxations thus parallel the relevant assignment rules given in Section 7.3.

11.  If an assign argument is a structure terminal or a minor structure node (but not if it is 
a major structure) and if the structure possesses multiple copies, then the number of 
copies must be reduced to one by subscripting.

11.  In this context “call-by-reference” means the arguments are pointed to directly.  “Call-by-value” means the value of  
an  input argument, at the invocation of a procedure, is made available to the procedure. 

12.  Non-REMOTE arguments may be passed into non-NAME REMOTE parameters.
November 2005 7-6



HAL/S Language Specification USA003088
32.0/17.0
Figure 7-5  CALL ASSIGN Example

7.5  The RETURN Statement.
The RETURN statement is used to cause return of execution from a TASK, PROGRAM, 
PROCEDURE, or FUNCTION block.  In the case of the FUNCTION block it also 
specifies an expression whose value is to be returned.

SYNTAX:

Figure 7-6  RETURN statement - #48

GENERAL SEMANTIC RULES:
1.  The effect of the RETURN statement is to cause normal exit (return of execution) from 

a TASK, PROGRAM, PROCEDURE, or FUNCTION block (also see the CLOSE 
statement, Section 3.7.4).

2.  <expression> may only appear in a RETURN statement of a <function>.  Its value is 
the returned value of the function, and is evaluated prior to returning. 

   Example:
STRUCTURE Z:

1 A,
2 C CHARACTER(80),
2 B VECTOR,

1 D INTEGER;
DECLARE ZZ Z-STRUCTURE(20);
.
.
.
.
CALL X ASSIGN (ZZ, ZZ.A, ZZ.A.B, ZZ.A1)

↑  ↑
legal illegal legal

⎫⎢⎬⎢⎭

basic
statement

expression:

48

example:  DONE: RETURN ZETA;

;RETURN

label
7-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
3.  <expression> must match the function definition in type and dimension, with the 
following exceptions: 
•   the lengths of bit expressions need not match;
•   the lengths of character expressions need not match; 
•   implicit integer to scalar and scalar to integer  conversions are allowed; 
•   implicit integer and scalar to character conversions are allowed. 

The return of the function values may be viewed as the assignment of the <expres-
sion> to the function name.  The rules applicable in the above exceptions thus paral-
lel the relevant assignment rules given in Section 7.3.  

4.  <expression> must always appear in RETURN statements of <function block>s.  
Execution must always end on logically reaching a RETURN statement of such a 
block, and not by logically reaching the delimiting CLOSE statement. 

7.6  The DO…END Statement Group.
The DO…END statement group is a way of grouping a sequence of<statement>s 
together so that they collectively look like a single <basic statement>.  Additionally, some 
forms of DO…END group provide a means of executing a sequence of <statement>s 
either iteratively, or conditionally, or both. 

SYNTAX:

Figure 7-7  DO…END statement group - #49
The DO…END statement group is opened with a <do statement> and closed with an 
<end statement>.  In between may appear any number of <statement>s interspersed as 
required with FUNCTION, PROCEDURE, or UPDATE blocks.  The form of the <do 
statement> determines how the <statement>s within the group are executed. 

basic
statement

do statement end statement

statement

49

55

51 example:
     DO WHILE J>0;

             J = J -1;
     END;

3

3

4

44

function block

procedure block

update block
November 2005 7-8



HAL/S Language Specification USA003088
32.0/17.0
7.6.1 The Simple DO Statement.
The simple DO statement merely indicates that the following sequence of <statement>s 
comprising the group is to be viewed as a single <basic statement>.  The sequence is  
executed only once. 

SYNTAX:

Figure 7-8  simple DO statement - #50

7.6.2 The DO CASEStatement.
The DO CASE statement indicates that in the following sequence of <statement>s 
comprising the group, only one specified <statement> is to be executed. 

SYNTAX:

Figure 7-9  DO CASE statement  - #51

SEMANTIC RULES:
1.  <arith exp> is any unarrayed integer or scalar expression.  The value of a scalar 

expression is rounded to the nearest integer before use. 
2.  Let the value of <arith exp> be denoted by K. If K is greater than zero, but not greater 

than the number of <statement>s in the group, then the Kth <statement> of the group 
is executed. 

50
do

statement

: label

DO ;

do
statement

:

51

example:
    ALPHA: DO CASE J - 1;

statement

;arith expDO CASE

label ELSE
7-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
3.  If the value of K is outside the range defined in Rule 2, and no ELSE clause appears 
in the DO CASE statement, then an error condition exists.  The result of such  an 
error is implementation dependent. 

4.  If the value of K is outside the range defined in Rule 2, but an ELSE clause does 
appear, the <statement> following the ELSE keyword is executed instead of one of 
those in the group.  The option to label <statement> is not disallowed.  However, such 
labels may only be referenced by EXIT or REPEAT statements within the (compound) 
<statement> thus labeled. 

5.  The presence of any code block definition in the group of <statement>s does not 
change the K-indexing of the <statement>s except for UPDATE blocks (which are 
considered as single statements). 

7.6.3 The DO WHILE and UNTIL Statements.
The DO WHILE and UNTIL statements cause repeated execution of the sequence of 
<statement>s in a group until some condition is satisfied.

SYNTAX:

Figure 7-10  DO WHILE and UNTIL statements - #52

SEMANTIC RULES:
1.  There is no semantic restriction of <condition>.  <bit exp> must be boolean and unar-

rayed (i.e., of 1-bit length).  The <condition> or <bit exp> is reevaluated every time 
the group of <statement>s is executed. 

2.  In the DO WHILE version, the group of <statement>s is repeatedly  executed until the 
value of <condition> or <bit exp> becomes FALSE.  The value is tested at the 
beginning of each cycle of execution.  This implies that if <condition> or <bit exp> is 
initially FALSE the group of <statement>s is not executed at all. 

3.  In the DO UNTIL version, the group of <statement>s is repeatedly executed until  the 
value of the <condition> or <bit exp> becomes TRUE.  The value is not tested before 
the first cycle of execution. On the second and all subsequent cycles of execution, the 
value is tested at the beginning of each cycle.  Use of the UNTIL version therefore 
guarantees at least one cycle of execution. 

DO

do
statement

label:

52

example:
     DO WHILE I > 0;

bit exp

condition

;

UNTIL

WHILE
November 2005 7-10



HAL/S Language Specification USA003088
32.0/17.0
7.6.4 The Discrete DO FOR Statement.
The discrete DO FOR statement causes execution of the sequence of <statement>s in a 
group once for each of a list of values of a “loop variable”.  The presence of a WHILE or 
UNTIL clause can be used to cause such execution to be dependent on some condition 
being satisfied. 

SYNTAX:

Figure 7-11  discrete DO FOR statement - #53

SEMANTIC RULES:
1.  <arith var> is the loop variable of the DO FOR statement.  It may be any unarrayed 

integer or scalar variable.  The initial loop variable, determined after all required sub-
scripting and NAME dereferencing, is used throughout.

2.  The maximum number of times of execution of the group of <statement>s is the 
number of <arith exp>s in the assignment list.  

3.  <arith exp> is an unarrayed INTEGER or SCALAR expression.
4.  At the beginning of each cycle of execution of the group the next <arith exp> in the list  

(starting from the leftmost) is evaluated and assigned to the loop variable.  The 
assignment follows the relevant assignment statement rules given in Section 7.3. 

5.  Use of the WHILE or UNTIL clause causes continuation of cycling of execution to be 
dependent on the value of <condition> or <bit exp>. 

6.  There is no semantic restriction or <condition>. <bit exp> must be boolean and 
unarrayed (i.e., of 1-bit length).  The <condition> or <bit exp> is reevaluated every 
time the group of <statement>s is executed. 

do
statement

arith exparith var

53

label:

=

;

example:
     DO FOR I = 10, 20 WHILE J >0;

condition

bit exp

DO FOR

WHILE

UNTIL

,

7-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
7.  If the WHILE clause is used, cycling of execution is abandoned when the value of 
<condition> or <bit exp> becomes FALSE.  The value is tested at the beginning of 
each cycle of execution after the assignment of the loop variable.  This implies that if 
<condition> or <bit exp> is FALSE prior to the first cycle of execution of the group, 
then the group will not be executed at all. 

8.  If the UNTIL clause is used, cycling of execution is abandoned when the value of 
<condition> or <bit exp> becomes TRUE.  The value is not tested before the first 
cycle of execution.  On the second and all subsequent cycles of execution, the value 
is tested at the beginning of each cycle after the assignment of the loop variable.  Use 
of the UNTIL version therefore always guarantees at least one cycle of execution. 

7.6.5 The Iterative DO FOR Statement.
The iterative DO FOR statement is similar in intent and operation to the discrete DO FOR 
statement, except that the list of values that the loop variable may take on is replaced by 
an initial value, a final value, and an optional increment. 

SYNTAX:

Figure 7-12  iterative DO FOR statement - #54

SEMANTIC RULES:
1.  <arith var> is the loop  variable of the DO FOR statement.  It may be any unarrayed 

integer or scalar variable.  The initial loop variable, determined after all required sub-
scripting and NAME dereferencing, is used throughout. 

2.  Each <arith exp> is any unarrayed integer or scalar expression.  All are evaluated 
prior to the first cycle of execution of the group. 

do
statement

arith exparith var

54

label:

=

;

example:
      DO FOR I = 1 TO 30 BY 2 UNTIL J < 0;

condition

bit exp

arith exp

arith exp

DO FOR TO

BY WHILE

UNTIL
November 2005 7-12



HAL/S Language Specification USA003088
32.0/17.0
3.  If a BY clause appears in the DO FOR statement, the value assigned to the loop 
variable prior to the Kth cycle of execution is equal to its value on the K-1th cycle plus 
the value of <arith exp> following the BY keyword (the “increment”). 

4.  Assignment of values to the loop variable follows the relevant assignment rules given 
in Section 7.3.  In particular, if the loop variable is of integer type, and an initial value 
or increment is of scalar type, the latter will be rounded to the nearest integer in the 
assignment process.  The effect of the loop variable assignment is identical to that of 
an ordinary assignment statement: the loop variable will retain the last value 
computed and assigned when the DO statement execution is completed. 

5.  After the value of the loop variable has been changed, it is checked against the value 
of the <arith exp> following the TO keyword (the “final value”). 

6.  If the sign of the increment is positive, the next cycle is permitted to proceed only if the 
current value of the loop variable is less than or equal to the final value. 

7.  If the sign of the increment is negative, the next cycle is permitted to proceed only if 
the current value of the loop variable is greater than or equal to the final value. 

8.  If the WHILE clause is used, cycling of execution is abandoned when the value of 
<condition> or <bit exp> becomes FALSE.  The value is tested at the beginning of 
each cycle of execution after the assignment of the loop variable.  This implies that if 
<condition> or <bit exp> is FALSE prior to the first cycle of execution of the group, 
then the group will not be executed at all. 

9.  If the UNTIL clause is used, cycling of execution is abandoned when the value of 
<condition> or <bit exp> becomes TRUE.  The value is not tested before the first 
cycle of execution.  On the second and all subsequent cycles of execution, the value 
is tested at the beginning of each cycle after the assignment of the loop variable.  Use 
of the UNTIL version therefore always guarantees at least one cycle of execution.  

7.6.6 The END Statement.
The END statement closes a DO…END statement group.

SYNTAX:

Figure 7-13  END statement - #55

end
statement

:

55

example:
     END LOOP;

;END

labellabel
7-13 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES:
1.  If <label> follows the END keyword, then it must match a <label> on the <do state-

ment> opening the DO…END group. 
2.  The <end statement> is considered to be part of the group, in that if it is branched to 

from a <statement> within the group, then depending on the form of the opening <do 
statement>, another cycle of execution of the group may begin.  The END statement 
closing a DO CASE is not counted as another case.

7.7  Other Basic Statements.
Other <basic statement>s are the GO TO, “null”, EXIT, and REPEAT statements. 

SYNTAX:

Figure 7-14  GO TO, “null”, EXIT, and REPEAT statements - #56

SEMANTIC RULES:
1.  The GO TO <label> statement causes a branch in execution to an executable state-

ment bearing the same <label>.  The latter statement must be within same name 
scope as the  GO TO statement.  A GO TO statement may not be used to cause exe-
cution to branch into a DO…END group, or into or out of a code block. 

2.  The “null” statement (where no syntax except possible <label>s precede the 
terminating semicolon) has no effect at runtime. 

example:

ONE: DO FOR I = 1 TO 10 ;
TWO: DO FOR J = 37 TO 43 ;

IF B I,J  = FALSE THEN REPEAT ONE;
END;

END;

basic
statement

:

56

;

label

label

GO TO

labelREPEAT

EXIT
November 2005 7-14



HAL/S Language Specification USA003088
32.0/17.0
3.  The EXIT statement is only legal within a DO…END group, or within such groups 
nested.  The form EXIT <label> controls execution relative to the enclosing DO…END 
group whose <DO statement> bears <label>.  The form EXIT controls execution 
relative to the innermost enclosing DO…END group.  Execution is caused to branch 
out of the DO…END group specified or implied, to the first executable statement after 
the group. 

4.  The REPEAT statement is only legal within a DO…END group opened with a DO 
FOR , DO WHILE, or DO UNTIL statement, or within such groups nested.  The form 
REPEAT <label> controls execution relative to the enclosing such group whose <DO 
statement>  bears <label>.  The form REPEAT controls execution relative to the 
innermost such group.  Execution is caused to abandon the current cycle of the 
DO…END group.  If the condition of the opening <DO statement> are still satisfied, 
the next cycle of execution begins normally. 

5.  Code blocks (procedure, functions, etc.) may appear within DO…END groups.  
However, EXIT, REPEAT, and GO TO statements may not be used to cause 
execution to branch into or out of such code blocks.
7-15 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
November 2005 7-16



HAL/S Language Specification USA003088
32.0/17.0
8.0   REAL TIME CONTROL
HAL/S contains a comprehensive facility for creating a multi-processing job structure in a 
real time programming environment.  At run time, a Real Time Executive (RTE) controls 
the execution of processes held in a process queue. HAL/S contains statements which 
schedule processes (enter them in the process queue), terminate them (remove them 
from the process queue), and otherwise direct the RTE in its controlling function.  HAL/S 
also contains means whereby the use of data by more than one process at a time is 
managed in a safe, protected manner at specific, localized points within the data 
processes.

8.1  Real Time Processes and the RTE.
In HAL/S, a program or task may be scheduled as a process and placed in the process 
queue.  Although the process created is given the same name as the program or task, it 
is important to distinguish the static PROGRAM or TASK block from the dynamic 
program or task process created.  Two processes are actually involved in the creation of 
a process: the scheduling process, or “father”; and the scheduled process, or “son”12.  
A process is said to be either “dependent” or “independent”, as designated when 
created.  A program or task process is “dependent” if it is absolutely dependent for its 
existence upon the existence of its father.  If a program process is “independent”, its 
existence is independent of that of all other processes.  If a task process is 
“independent”, its existence is generally independent of that of all other processes with 
an important exception: the program process in whose static PROGRAM block the static 
TASK block of the task process is defined.
Each process in the RTE’s process queue is at any instant in one of a number of states.  
For the purposes of this Section, the following states are defined:13 

•  “active” - a process is said to be in the active state if it is actually in execution.  
Depending on the implementation it may be possible for several processes to be 
in execution simultaneously.

•  “wait” - a process is said to be in the wait state if it is ready for execution but the 
RTE has decided on a priority basis that its execution should be delayed or 
suspended.

•  “ready” - a process is said to be in the ready state if it is in either the active or the 
wait states.

•  “stall” - a process is said to be in the stall state if some as yet unsatisfied condition  
prevents it from being in the ready state.

The occurrence of a process being brought into the active state for the first time is called 
its “initiation”.

12.   except, of course, for the first or “primal” process which must be created by the RTE itself.
13.   these states are not necessarily definitive of those actually existing in any particular implementation of the RTE. 
8-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Execution of a CLOSE or RETURN statement by an active process causes the following 
sequence of events: 
1.  CANCEL commands are issued for all DEPENDENT processes still on the process 

queue (see Section 8.4).
2.  The process enters a stall state until all DEPENDENT processes have finished.
3.  The current cycle is deemed finished.  Control reverts to the RTE which may or may

not remove the process from the process queue.

8.2  Timing Considerations.
In the HAL/S system, the RTE contains a clock measuring elapsed time (“RTE-clock” 
time).  The time is measured in “machine units” (MUs) whose correspondence with 
physical time is implementation dependent.  HAL/S contains several instances of timing 
expressions which in effect make reference to the RTE-clock.
Simultaneous occurrences produce implementation dependent results.

8.3  The SCHEDULE Statement.
The processes are scheduled (placed in the process queue) by means of the 
SCHEDULE statement.  The statement has many variant forms and offers the following 
features: 

•  A process may be scheduled so that the RTE immediately places it in a ready state, 
or so that the RTE places it in a stall state pending some condition being satisfied.

•  A process may be designated dependent or independent.
•  The cyclic execution of a process may be specified.
•  Conditions of future removal of a process from the process queue may be 

specified.
09/07/01 8-2



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX:

Figure 8-1  SCHEDULE statement - #57

SEMANTIC RULES:
1.  SCHEDULE <label> schedules a program or task with the name <label>, placing a 

new process with the name <label> in the process queue.  A run time error results if a 
process of that name already exists in the process queue.  Unless otherwise 
specified, the RTE puts the new process in the ready state immediately after 
execution of the SCHEDULE statement.

2.  The phrase IN <arith exp> is used to cause the process to be put in the stall state for
a fixed RTE-clock duration. <arith exp> is any unarrayed integer or scalar expression
evaluated once at the time of execution of the SCHEDULE statement.  If the value is
not greater than zero then the process is put immediately in the ready state.

3. The phrase AT <arith exp> is used to cause the process to be put in the stall state until
a fixed RTE-clock  time.  <arith exp> is any unarrayed integer or scalar expression
evaluated once at the time of execution of the SCHEDULE statement.  If the value is
not greater than the current RTE-clock time and the REPEAT EVERY option is not
specified, then the process is put immediately in the ready state.  If the value is less
than the current RTE-clock time and the REPEAT EVERY option was specified, then
phased scheduling takes place.  The process is put in a stall state until a future time
computed by the expression CT + RE - ((CT -AT)MOD RE), where CT = current time,
RE = REPEAT EVERY cycle time, and AT = originally specified AT time.

arith exp

57

basic
statement

event exp

event exp

arith exp
24

arith exp

event exp

24

36
example:

SCHEDULE IOTA PRIORITY(5);
SCHEDULE DELTA PRIORITY(P-2) DEPENDENT, REPEAT EVERY 15.9;

arith exp

arith exp

:

( )

24
arith exp

;

24

36

24

24

,

PRIORITY

label

DEPENDENT

WHILE

AT

IN

ON

AFTER

UNTIL

REPEAT

EVERY

36

SCHEDULE label
8-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
4.  The phrase ON <event exp> is used to cause the process to be put in the stall state
until some event condition is satisfied.  Starting from the time of execution of the
SCHEDULE statement, the <event exp> is evaluated at every “event change point”14

until its value becomes TRUE.  At that time the process is placed in the ready state.  If
the value of <event exp> is TRUE upon execution of the SCHEDULE statement, then
the process is immediately put in the ready state.

5.  The initiation priority is set by means of the phrase PRIORITY (<arith exp>) where
<arith exp> is an unarrayed integer or scalar expression which is evaluated once on
execution of the SCHEDULE statement.  Scalar values are rounded to the nearest
integral value.  Its value must be consistent with the priority numbering scheme set up
for any implementation, otherwise a run time error results.  A priority value must be
present in the SCHEDULE statement.  Interpretation of priority is implementation
dependent.

6. When the keyword DEPENDENT is specified, the process created by the
SCHEDULE statement is dependent upon the continued existence of the scheduling
process.  Note, however, that a TASK process is always ultimately dependent upon
the enclosing PROGRAM process.  Thus, when scheduling a TASK from the
PROGRAM level of nesting, the keyword DEPENDENT is redundant and need not be
specified. 

7.  The REPEAT phrase of the SCHEDULE statement is used to specify a process which
is to be executed cyclically by the RTE until some cancellation criterion is met.  If the
REPEAT phrase is not qualified, then the cycles of execution follow each other with
no intervening time delay.  To cause execution of consecutive cycles to be separated
by a fixed intervening RTE-clock time delay, the qualifier AFTER <arith exp> is used.
<arith exp> is an unarrayed integer or scalar expression evaluated once at the time of
execution of the SCHEDULE statement.  If the value is not greater than zero, then no
time delay results.  To cause the beginning of successive cycles of execution to be
separated by a fixed RTE-clock time delay, the qualifier EVERY <arith exp> is used.
<arith exp> is an unarrayed integer or scalar expression evaluated once at the time of
execution of the SCHEDULE statement.  If the value is such as to cause a cycle to try
to start execution before the previous cycle has finished execution, then a run time
error results.

8.  Between the successive cycles of execution of a cyclic process, the process is put in
a stall state and retains the machine resources the RTE reserved for it.  It is not
temporarily removed from the process queue.

9. The WHILE and UNTIL phrases provide a cancellation criterion for a cyclic process.
Before the cyclic process is initiated, they also provide a means of removal of the
process from the process queue.  In this latter capacity, they also apply to noncyclic
processes.

14.   the meaning of an “event change point” is defined in Section 8.8.
09/07/01 8-4



HAL/S Language Specification USA003088
32.0/17.0
10. The UNTIL <arith exp> phrase specifies a cancellation criterion based on RTE-clock
time.  <arith exp> is an unarrayed integer or scalar expression evaluated once at the
time of execution of the SCHEDULE statement.  For any process, cyclic or
noncyclic, the following is true: if the value of <arith exp> is not greater than the
current RTE-clock time, then the process is never entered in the process queue.
Otherwise, a CANCEL command is issued if the RTE-clock equals <arith exp> while
the process is still on the process queue (see Section 8.4).

11. The WHILE <event exp> phrase specifies a cancellation criterion based on an event
condition.  For any process, cyclic or non-cyclic, the following is true: if the value of
<event exp> is FALSE at the time of execution of the SCHEDULE statement, then
the process is never placed in the process queue.  If not, then <event exp> is
evaluated at every “event change point” until its value becomes FALSE.  At this time
a CANCEL command is issued if the process is still on the process queue (see
Section 8.4).

12. The UNTIL <event exp> phrase also specifies a cancellation criterion based on an
event condition.  However, it differs fundamentally from the WHILE <event exp>
phrase in that it always allows at least one cycle of a cyclic process to be executed.
Consistent with this, the phrase has no meaning and, therefore, no effect in the case
of a non-cyclic process.  For a cyclic process, the value of the <event exp> is
evaluated at every “event change point” from the time of execution of the
SCHEDULE statement.
If <event exp> becomes TRUE prior to the end of the first cycle, a CANCEL
command is issued at the end of the first cycle.  Otherwise, if <event exp> becomes
TRUE while the process is still on the process queue, a CANCEL command is
issued at that time (see Section 8.4).

8.4  The CANCEL Statement.
Cancellation of a process may be the result of the enforcement of a cancellation criterion 
in the SCHEDULE statement which created the process, or, alternatively, may be the 
result of executing a CANCEL statement.
SYNTAX:

Figure 8-2  CANCEL statement - #58

basic
statement

label:

,

;

58

example:
FINISHING: CANCEL ETA, NU;

CANCEL

label
8-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES:
1.  CANCEL <label> causes the cancellation of the process <label>.  A run time error 

results if the process queue contains no process with that name.15  The CANCEL 
statement can be used to cancel any number of processes simultaneously.

2.  If the CANCEL statement has no <label>, cancellation of the process executing the
CANCEL statement is implied.

3.  If at the time of execution of the CANCEL statement, a process to be canceled has
not yet been initiated, then the process is merely removed from the process queue.
This applies to both cyclic and non-cyclic processes.

4.  If at the time of execution of the CANCEL statement, a process to be canceled has
already been initiated, then the following ensues: if the process is non-cyclic and it
has already been initiated, the CANCEL statement has no effect; if the process is
cyclic, then the process is removed from the process queue at the end of the current
cycle of execution.

8.5  The TERMINATE Statement.
The termination of a process results in the immediate16 cessation of execution of the 
process, TERMINATEs of dependents, and removal from the process queue.  The 
TERMINATE statement is used to direct the RTE to terminate specified processes or the 
process issuing the TERMINATE.

SYNTAX:

Figure 8-3  TERMINATE statement - #59

15.   the default action taken by the Error Recovery Executive for this and other similar errors may be to ignore  the 
error.

16.   subject, of course, to implementation dependent safety restraints.

basic
statement

label:

,

;

59

example:
     STOP: TERMINATE ALPHA, BETA;

TERMINATE

label
09/07/01 8-6



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
1.  TERMINATE <label> causes termination of the process <label>.  A run time error 

results if a process of that name is not in the process queue, or if it is not a dependent 
son of the process currently executing the TERMINATE statement.  The TERMINATE 
statement can be used to terminate any number of processes simultaneously.

2.  If the TERMINATE statement has no <label>, termination of the process currently
executing the TERMINATE statement is implied.

8.6  The WAIT statement.
The WAIT statement allows the user to cause the RTE to place a process in the stall 
state until some condition is satisfied.

SYNTAX:

Figure 8-4  WAIT statement - #60

SEMANTIC RULES:
1.  The WAIT <arith exp> version specifies that the process executing the WAIT 

statement is to be placed in the stall state for an RTE-clock duration fixed by the value 
of the expression.  <arith exp> is an unarrayed integer or scalar expression evaluated 
once at the time of execution of the WAIT statement.  If the value is not greater than 
zero, the WAIT statement has no effect.

2.  The WAIT UNTIL <arith exp> version specifies that the process executing the WAIT
statement is to be placed in the stall state until an RTE-clock time fixed by the value of
the expression.  <arith exp> is an unarrayed integer or scalar expression evaluated
once at the time of execution of the WAIT statement.  If the value is not greater than
the current RTE-clock time, the WAIT statement has no effect.

3.  The WAIT FOR DEPENDENT version specifies that the process executing the WAIT
statement is to be placed in the stall state until all its dependent sons have
terminated.  If there are no such processes, the WAIT statement has no effect.

basic
statement

event exp

;

60

:

arith exp
example:

     NOW: WAIT UNTIL T + 7.5;

arith exp

DEPENDENTFORWAIT

label

UNTIL
8-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
4.  The WAIT FOR <event exp> version specifies that the process executing the WAIT
statement is to be placed in the stall state until an event condition is satisfied.  Starting
from the time of execution of the WAIT statement, the <event exp> is evaluated at
every “event change point” until its value becomes TRUE, whereupon the process is
returned to the READY state.  If the value of <event exp> is TRUE upon execution of
the WAIT statement, then the statement has no effect.

8.7  The UPDATE PRIORITY Statement.
The SCHEDULE statement which creates a process can also specify the priority of its 
initiation.  At any time between the scheduling and the termination of the process, that 
priority may be changed by means of the UPDATE PRIORITY statement.

SYNTAX:

Figure 8-5  UPDATE PRIORITY statement - #61
SEMANTIC RULES:
1.  UPDATE PRIORITY <label> is used to change the priority of the process with the 

name <label>.  The new  priority is given by the value of <arith exp>.  <arith exp> is 
an unarrayed integer or scalar expression whose value must be consistent with the 
priority numbering  scheme set up for any implementation, otherwise, a run time error 
results.  Scalar values are rounded to the nearest integral value.  A run time error 
results if there is no process with the name <label> in the process queue.

2.  UPDATE PRIORITY with no <label> specification is used to change the priority of the
process executing the UPDATE PRIORITY statement.  <arith exp> has the same
meaning as before.

8.8  Event Control.
Although a formal specification of events and event expressions has already been 
discussed in Sections 4 and 6.3, the Specification has not yet made their purpose clear 
in the  context of real time programming.  Superficially, event variables are closely akin to 
boolean variables in that they are binary valued.  Conceptually, the two forms of HAL/S 
events (latched and unlatched) may be thought of as the software counterparts of 
hardware discrete and timing lines, respectively.

•  a latched event may be thought of as a boolean system state which may be SET or 
RESET by appropriate actions, or momentarily changed for signaling purposes.

example:
     UPDATE PRIORITY GAMMA TO PRIO + 10;

basic
statement

arith
exp

:

;

61

label label

TO
UPDATE

PRIORITY
09/07/01 8-8



HAL/S Language Specification USA003088
32.0/17.0
•  an unlatched event event may be thought of as the software counterpart of a timing 
line  which is used purely for signaling - it is normally FALSE but becomes TRUE 
momentarily when a signal action is executed.

This analogy is no accident, since event variables can actually form the interface 
between HAL/S software and such hardware control signals.  The design and operation 
of this interface is implementation dependent.
At any instant of time the RTE may be viewed as having a knowledge of all existing 
events.  Whenever the value of an event changes, the RTE senses this so-called “event 
change point”, and may in response perform the evaluation of certain <event exp>s.  
Depending on the results of the evaluations, the states of one or more processes may be 
changed.  This response of the RTE to changes in event variables is termed an “event 
action”.  The value of an event variable can change in response to the environment 
external to the HAL/S software; depending upon the type of event (see SEMANTIC 
RULES), a SET, a RESET, or a SIGNAL statement may also be used to alter the state of 
an event variable.  The only event change actions possible are to ready or cancel one or 
more processes.

Figure 8-6  SET, SIGNAL, and RESET statements - #62

GENERAL SEMANTIC RULE:
1.  <event var> denotes any unarrayed event variable, subscripted or unsubscripted.

SEMANTIC RULES (latched <event var>s):
1.  SET changes the value of the <event var> to TRUE and initiates all event actions  

depending upon the TRUE state of this event.  No action is taken if the <event var> is 
already TRUE.

2.  RESET changes the value of the <event var> to FALSE and initiates all event actions
depending upon the FALSE state of this event.  No action is taken if the <event var>
is already FALSE.

3.  SIGNAL does not change the state of a latched event.
4.  If a latched event is TRUE, SIGNAL initiates all event actions depending upon the

FALSE state of this event.

example:
    SIGNAL IOTA ;

basic
statement

event var

:

;

62

label

SET

SIGNAL

RESET
8-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
5.  If a latched event is FALSE, SIGNAL initiates all event actions, depending upon the
TRUE state of this event.

SEMANTIC RULES (unlatched <event var>s):
1.  SET and RESET are illegal for unlatched <event var>s.
2.  When used in a <bit expression>, an unlatched event variable is equivalent to a literal

“FALSE”.
3.  SIGNAL initiates all event actions depending upon the TRUE state of this event.  Note

that when an event expression depends upon a logical product of multiple <event
var>s, at most one such <event var> can be unlatched if the event action is ever to be
taken.

SUMMARY:

Table 8-1  Latched and Unlatched Events in Set, Reset, and Signal Statements

8.9  Process-events.
Every program or task block has associated with it a “process-event” of the same name.  
This process-event behaves in every way like a latched event except that it may not 
appear in SET, RESET, or SIGNAL statements.  Its purpose is to indicate the existence 
of its associated program or task process.  If a process of the same name as the 
process-event exists in the process queue, the value of the process-event is TRUE, 
otherwise, it is FALSE.

SET RESET SIGNAL
unlatched event illegal illegal Take all event actions

depending on TRUE
state of <event var>

latched
event

old value
is FALSE

1.  Set event state 
to TRUE

2.  Take all event 
actions 
depending on 
TRUE state of 
<event var>

no action Take all event actions
depending on TRUE
state of <event var>

latched
event

old value
is TRUE

no action 1.  Set event state 
to FALSE

2.  Take all event 
actions 
depending on 
FALSE state of 
<event var>

Take all event actions
depending on FALSE
state of <event var>
09/07/01 8-10



HAL/S Language Specification USA003088
32.0/17.0
8.10  Data Sharing and the UPDATE Block.
The UPDATE block provides a controlled environment for the use of data variables which 
are shared by two or more processes.  If controlled sharing of certain variables is 
desired, they must possess the LOCK (N) attribute, where N indicates the “lock group” of 
the variable (see Section 4.5).  LOCKed variables may only be used inside UPDATE 
blocks.  A  LOCKed variable appearing inside an UPDATE block is said to be “changed” 
within the block if it appears in one or more statements which may change its value (the 
left-hand side of an assignment, for example).  It is said to be “accessed” if it only 
appears in contexts other than the above.
A formal specification of the UPDATE block appears in Section 3.4.  The manner of 
operation of an UPDATE block is implementation dependent, but is such as to provide 
certain safety measures.

OPERATIONAL RULES:
1.  If two processes both require variables from the same lock group to be changed, then 

the first process entering its UPDATE block must complete execution of the block 
before the other process can enter its own UPDATE block. The second process is 
placed in a stall state for the duration.

2.  If one process entering an UPDATE block requires a variable(s) with the attribute
LOCK(*) to be changed, then the situation is equivalent to one in which the process
requires use of a variable from every lock group.

3.  If only one of the processes requires a variable of a lock group to be changed, the
other merely requiring it to be accessed, then depending on the implementation,
either Rule 1 or 2 holds, or some overlap in execution of the two processes’ UPDATE
blocks is allowed.  The nature of such overlap must be such as to provide exclusive
use of the lock group by the process requiring its change between the point where the
variable is changed and the close of the UPDATE block.

4.  If both processes only require a variable of the same lock group accessed, then
execution of the two processes’ UPDATE block may be allowed to overlap depending
upon implementation.

5.  If there are several simultaneous conflicts in using shared variables because of the
participation of more than two processes, or more than one lock group, then the most
restrictive of Rules 1 through 4 required is applied to resolve the conflicts.
8-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
09/07/01 8-12



HAL/S Language Specification USA003088
32.0/17.0
9.0   ERROR RECOVERY AND CONTROL
References to so-called ‘run time errors’ have been made elsewhere in this 
Specification.  Such errors arise at execution time through the occurrence of abnormal 
hardware or system software conditions.  Each HAL/S implementation possesses a 
unique collection of such errors.  The errors in the collection are said to be “system-
defined”.  In any implementation, every possible system-defined error is assigned a 
unique “error code”.  In addition, a number of other legal error codes not assigned to 
system-defined errors may exist.  These can be used by the HAL/S programmer to 
create “user-defined” errors.  All run time errors, both system- and user-defined, are 
classified into “error groups”.  The error code for an error consists of two positive integer 
numbers; the first representing the error group to which it belongs, and the second 
uniquely identifying it within its group.  The method of classification is implementation 
dependent. 
At run time an Error Recovery Executive (ERE) senses errors, both system-defined and 
user-defined, and determines what course of action to take.  For every error group, a 
standard system recovery action is defined which the ERE will take unless error recovery 
has been otherwise directed by the user.  Depending upon the error and the 
implementation, the standard system recovery action may be to terminate execution 
abnormally, to execute a fix-up routine and continue, or to ignore the error. 
In a real time programming context, every process in the process queue has a separate, 
independent “error environment” which is continuous from the time of initiation of the 
process to the time of its termination.  At any instant of time the “error environment” of a 
process is the totality of error recovery actions in force at that time for all possible errors.  
At the time of initiation of the process, the standard system recovery action is in force for 
all errors. 
HAL/S possesses two error recovery and control statements.  The ON ERROR 
statement is used to modify the error environment of a process at any time during its life. 
The SEND ERROR statement is used for the two-fold purpose of creating user defined 
error occurrences, and simulating system-defined error occurrences. 

9.1  The ON ERROR Statement.
The error environment upon entry into a code block (other than PROGRAM or TASK) is 
unchanged from that of the previous statement executed.  If a code block changed the 
error environment, the error environment upon entry into the code block is restored upon 
exit from the code block. 
The ON ERROR statement is used to change the error environment prevailing at the 
time of its execution.  It can change the error recovery action for one selected error code, 
for one selected error group, or for all groups simultaneously.  There are two basic forms 
of the statement:  ON ERROR and OFF ERROR.
If an ON ERROR with a given specification is executed in a particular code block, then 
the modified recovery action remains in force until one of three things happens: 

 •  the modification is superseded by execution of a second ON ERROR with the
same error specification. 

 •  the modification is removed by execution of an OFF ERROR with the same error
specification, the recovery action thereupon reverting to that in force on entry into
the code block. 

 •  the modification is automatically removed by exit from the code block. 
9-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 9-1  ON ERROR statement - #63

SEMANTIC RULES:
1.  The ON ERROR statement consists of two parts: a specification of an error action to

be taken by the ERE, preceded by an <error spec> specifying the error number and
the error  group or groups to which the action is to apply. 

2.  There are three forms of <error spec> for specifying either all error groups, a selected
error group, or a selected error code: 
 •  The form of <error spec> without subscript is used to specify all error groups. 
 •  The subscript construct <number> with optional following colon is used to specify a

selected <error group>.  The value of <number> is restricted to the set of error
group numbers defined for a particular implementation. 

 •  The subscript construct <number>: <number> is used to specify a selected error
code.  The leftmost <number> designates the error group number; the rightmost
<number> the selected error number within the group.  Values are restricted to the
set of error codes defined for a particular implementation. 

63

basic
statement

example:
     ERRONEOUS: ON ERROR5  IGNORE AND SET IOTA;

error spec

statement

label:

ON statement

number : number

:

ON

error spec

error spec

OFF

SYSTEM

IGNORE

;

AND

SIGNAL

SET

RESET

event var ;

;

S M

MS :ERROR number

label

error spec
November 2005 9-2



HAL/S Language Specification USA003088
32.0/17.0
3.  The form ON ERROR…. specifies the modification of the error recovery actions for
the given <error spec>.  OFF ERROR…. specifies the removal of a modification pre-
viously activated in the name scope for the same <error spec>.  If no such modifica-
tion exists, the OFF ERROR is, effectively, a no-operation. 

4.  The presence of the IGNORE clause specifies that in the event of occurrence of a
specified error, the ERE is to take no action other than allow execution to proceed as
if the error had not occurred.  The IGNORE action may not be permitted for certain
errors. 

5.  The presence of the SYSTEM clause specifies that in the event of the occurrence of a
specified error, the ERE is to take the standard system recovery action. 

6.  The form ON ERROR…<statement> specifies that <statement> is to be executed on
the occurrence of a specified error <statement> may optionally be labeled.  However,
such labels may only be referenced by EXIT or REPEAT statements within the (com-
pound) <statement> thus labeled.  After execution of <statement>, execution nor-
mally restarts from the executable statement following the ON ERROR statement.
Execution of <statement> itself may of course modify this. 

7.  It is important to note that the form ON ERROR…<statement> is itself a <statement>
while other forms of ON ERROR are <basic statement>s.  The form ON
ERROR…<statement> may therefore not be the true part of an IF…THEN…ELSE
statement. 

8.  If an ON ERROR possesses a SYSTEM or IGNORE clause, it may also possess an
additional SIGNAL, SET, or RESET clause.  The purpose is to cause the value of an
<event var> to be changed on the occurrence of a specified error.  Its semantic rules
are the same as those described for the corresponding SIGNAL, SET, or RESET
statements in Section 8.8.  Note that if <event var> contains a subscript expression,
then that expression will be evaluated at the time of execution of the ON ERROR
statement, not on the occurrence of the error. 

PRECEDENCE RULE:
1.  An ON ERROR executed within a code block always totally supersedes an ON

ERROR executed before entering the code block. 
2.  Within a code block the action specified by an ON ERROR is only superseded by

another if the two <error spec>s are of identical form.  Similarly, an OFF ERROR nul-
lifies the effect of a previous ON ERROR only if the two <error spec>s are of identical
form.  However, different forms of <error spec> may involve the same error group or
error code.  It is logically possible for up to three ON ERRORs, each with a different
form of <error spec> as described in Rule 2 above, to be active simultaneously and
involve the same error code.  The ON ERROR precedence order for determining the
recovery action in the event of an error occurrence is as follows: 
9-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Table 9-1   Precedence Rules for ON ERROR

9.2  The SEND ERROR Statement.
The SEND ERROR statement is used to announce a selected error condition to the 
ERE.  If the error selected is ‘system-defined’, then in effect that error is being simulated. 

SYNTAX:

Figure 9-2  SEND ERROR statement - #64

SEMANTIC RULES:
1.  <number> : <number> is a subscript construct consisting of two unsigned integer

literals.  The leftmost <number> designates the error group to which the selected
error condition belongs.  The rightmost <number> denotes the error number within
the designated group.  Values are restricted to the set of error codes defined for a
particular implementation.  If the error code corresponds to a system-defined error,
then that error is simulated by the ERE.  Simulation of certain system-defined errors
may not be permitted. 

2.  The action taken by the ERE after announcement of the selected error condition is
dictated by the error environment prevailing at the time of execution of the SEND
ERROR statement.

Error Specification <error spec> subscript construct Precedence
LAST

all groups − 1
selected group <number>:or 

<number> 
2

selected error code <number>:<number> 3
FIRST

basic
statement

SEND ERROR number number:

64

:

;

label example:
     SEND ERROR15 ;

S M
November 2005 9-4



HAL/S Language Specification USA003088
32.0/17.0
10.0   INPUT/OUTPUT STATEMENTS
The HAL/S language provides for two forms of I/O: sequential I/O with conversion to and 
from an external character string representation, and random-access record-oriented 
I/O.
All HAL/S I/O is directed to one of a number of input/output “channels”.  These channels 
are the means to interface HAL/S software with external devices in a runtime 
environment.  In any implementation, each channel is assigned a unique unsigned 
integer identification number.
The input/output statements described in this Section are intentionally general-purpose.  
They provide a basic support facility for applications programming on the Shuttle project.  
Specialized hardware-oriented I/O commands may be created via features of the HAL/S 
Systems Language.

10.1  Sequential I/O Statement.
All sequential I/O in HAL/S is to or from character-oriented files.  HAL/S pictures these 
files as consisting of lines of character data similar to a series of printed lines or punched 
cards.  An “unpaged” file simply consists of an unbroken series of such lines.  In a 
“paged” file the lines are blocked into pages, each a fixed, implementation dependent 
number of lines in length.  The choice of paged or unpaged file organization for each 
sequential I/O channel is specified in an implementation dependent manner.
HAL/S pictures the physical device as moving across the file a read or write “device 
mechanism” which actually performs the data transfer.  The device mechanism has at 
every instant a definite column and line position on the file.  The act of transmitting one 
character to or from the file is followed by the positioning of the device mechanism to the 
next column on the same line.  When the end of the line is reached the device 
mechanism moves on to the first (leftmost) column of the next line.
The HAL/S sequential I/O statements are the READ, READALL, and WRITE statements.  
Within these statements I/O control functions can be used to cause explicit positioning of 
the device mechanism on the file.

10.1.1  The READ and READALL Statements.
The sequential input of data is accomplished in HAL/S by employing either a READ or 
READALL statement.  The choice depends upon the format of the character input and 
the conversions (if any) which are to be performed.
A READALL statement is used whenever arbitrary character string images are to be 
input without conversion; otherwise, READ is used.
<format list>s may be used with READ statements when data is not in a standard 
external format; e.g., if two numbers are located in consecutive columns without 
separation.
10-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 10-1  READ and READALL statements - #65
GENERAL SEMANTIC RULES:
1.  <arith exp> is an unarrayed scalar or integer arithmetic expression.  The value is

treated as an integer: scalar values are rounded to the nearest integer prior to use.
The value must represent a legal I/O channel number. 

2.  <i/o control> is any legal I/O control function used to position the device mechanism
explicitly.

3.  Unless overridden by explicit <i/o control> or <format list>, the device mechanism is
automatically moved to the leftmost column position and advanced to the next line
prior to reading the first <variable>.  A SKIP, LINE, or PAGE before the first
<variable> overrides the automatic line advancement.  A TAB or COLUMN overrides
the automatic column position.

4.  An unexpected end of file reached during the reading of data from the input file
causes a runtime error.

5.  <variable>s are read in order.  Each <variable>'s subscript is evaluated just prior to its
input.

basic
statement

variable

i/o control

format list

arith exp

20

67

82

:

;

( )

,

24

example:READ (5) VAR, (Y, Z) IN   ‘F5.2’   , DELTA 3;

65

label

READ

READALL
November 2005 10-2



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES (READALL version):
1.  <variable> may be any character or structure variable in an assignment context.  This

specifically excludes input parameters of functions and procedures.  If it is of structure
type, all the terminals of the template it references must be of character type.  In this
case, no nested structure template references are allowed.

2.  If <variable> is an array or structure each element thereof is filled sequentially in its
“natural sequence”.

3.  Data is read from the input file character by character from left to right, each
<variable> element being filled in turn.  Filling of an element is completed either when
the end of a line on the file is reached, or when the element has reached its declared
maximum length,  whichever happens sooner.

4.  <format list> may not be used with READALL.

SEMANTIC RULES (READ version):
1.  <variable> is any variable which may be used in an assignment context.  This

specifically excludes input parameters of functions and procedures.
2.  If <variable> is a vector or matrix, or an array or structure, each element thereof is

filled sequentially in its “natural sequence”.
3.  When reading data specified in a <format list> the device mechanism is positioned by

the <format list>.  All the characters in the field determined by the format are
transmitted and converted to the internal HAL/S data type.  If the width of the
specified field is greater  than the number of characters remaining on the line, an
implementation dependent mechanism is invoked.

4.  In the absence of a <format list>, the device mechanism (subject to <i/o control>)
scans the input file left to right, from line to line, looking for fields of contiguous
characters separated by commas, semicolons, or blanks.  Each field found is in turn
transmitted and converted from its standard external format to an appropriate HAL/S
data value.  Fields may not cross line boundaries except when reading character
strings.

5.  When not under control of a <format list>, a semicolon field separator encountered
during a normal sequential scan to fill a variable element terminates the READ
statement as follows: 
•   The current <variable> element is left unchanged; 
•   All remaining <variable>s in the statement are unchanged; 
•   All remaining control functions in the statement are ignored.

<i/o control> functions can force the device mechanism over the semicolon without
causing early termination.

6.  When not under the control of a <format list>, a null field is transmitted whenever a
comma or semicolon is detected when data is expected.  This occurs when a comma
or  semicolon is: 
•   preceded by a comma or semicolon;
•   preceded by one or more blanks following the last comma or semicolon. 
10-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
When under control of a <format list>, a null field is transmitted and an error sent
whenever the field being read is entirely blank.
A null field causes the corresponding variable element to remain unchanged following
transmission.

7.  For READ statements, fields must either be read using <format list> or else they must
appear in a standard external format.  A list of standard external formats is given in
Appendix E.  A type mismatch causes a runtime error.

10.1.2 The WRITE Statement.
The sequential output of data is accomplished in HAL/S by employing the WRITE 
statement.
SYNTAX:

Figure 10-2  WRITE statement - #66
SEMANTIC RULES
1.  <arith exp> is an unarrayed integer or scalar arithmetic expression.  The value is

treated as an integer: scalar values are rounded to the nearest integer prior to use.
The value must represent a legal I/O channel number.

2.  <i/o control> is any legal I/O control function used to position the device mechanism
explicitly.

3.  There are no semantic restrictions on <expression>.

basic statement

variable

i/o control

format list

arith exp

23

67

82

label:

;

( )

,

24

example: WRITE (6) ‘ANS=’ | | A+B, SKIP (2);

66

WRITE
November 2005 10-4



HAL/S Language Specification USA003088
32.0/17.0
4.  If <expression> is of vector or matrix type, or is an array or structure, then each
element thereof is transmitted sequentially in its “natural sequence”.

5.  Unless overridden by explicit <i/o control>, or by a <format list>, the device
mechanism is automatically moved to the leftmost column position and advanced to
the next line prior to transmitting the first <expression>.  A SKIP, LINE, or PAGE <i/o
control> before the first <expression> overrides the automatic line advancement.  A
TAB or COLUMN <i/o control> overrides the automatic column positioning.

6.  Each <expression> in turn is converted to its standard external format before being
transmitted to the output file.  A list of standard external formats is given in Appendix
E.

7.  <format list> may be used to output data in a non-standard form.
8.  <format list> may specify additional <expression>s to be transmitted in non-standard

formats.
Example:
Output INTEGERS K1 and K2 + K3 in columns 1-5 and 6-10, respectively: 

     WRITE(6) (K1, K2+K3) IN ‘2I5’;
9.  When not under control of a <format list>, the device mechanism is moved to the right

by an implementation dependent number of columns between the transmissions of
two consecutive elements.  If a TAB or COLUMN <i/o control> separates two
consecutive <expression>s then this overrides the automatic movement between
transmission of the last element of the first <expression> and the first element of the
second <expression>.

10.  When a line has been filled to the point where the next converted output field will not
fit in the remaining columns, a wrap-around condition occurs.  The actions taken in
such a case are implementation dependent. 

10.1.3 I/O Control Functions.
An I/O control function is introduced into a READ, READALL, or WRITE statement to 
cause explicit movement of the device mechanism.  Note that the interpretation of each 
I/O control function differs depending upon whether the file is paged or unpaged.
10-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 10-3  i/o control function - #67
SEMANTIC RULES:
1.  <arith exp> is an unarrayed scalar or integer arithmetic expression specifying a value

to the control function.  The value is treated as an integer: scalar values are rounded
to the nearest integer prior to use.  In the following rules, let the value of <arith exp>
be denoted by K.

2.  TAB(K) specifies relative movement of the device mechanism across the current line
by K character positions (columns).  The motion is to the right (increasing column
index) if K is positive, to the left if K is negative.  Positioning to negative or zero
column index values, or to a positive index greater than an implementation dependent
maximum causes a runtime error.

3.  COLUMN(K) specifies absolute movement of the device mechanism to column K of
the current line.  Values of K may range from 1 to an implementation dependent
maximum value.  Column indices outside the legitimate range cause a runtime error.

4.  SKIP(K) specifies line movement relative to the current line of the file.  A positive
value of K will cause forward movement.  Subject to implementation and hardware
restrictions, backward movement is indicated by a negative value of K.  Error
conditions will be indicated if a skip causes movement past either end of the file, or
movement in violation of any implementation restriction on the direction of the skip.

5.  LINE(K) specifies line movement to a specified line number, K.  Two interpretations
occur depending upon whether the file is paged or unpaged.
•   Paged files - LINE(K) advances the file unconditionally.  K may not be less than 1

or greater than the implementation and hardware dependent number of lines per
page; otherwise, an error condition will be indicated.  If K is not less than the
current line number, the new print position is on the current page; if K is less than
the current line number, the device mechanism is advanced to line K of the next
page.

i/o control

arith exp(

67

)

example:
     COLUMN (I + 2)

TAB

COLUMN

SKIP

LINE

PAGE
November 2005 10-6



HAL/S Language Specification USA003088
32.0/17.0
•   Unpaged files - LINE(K) positions the device mechanism at some absolute line
number in the file.  On input K must be greater than zero, but not greater than the
total number of lines in the file.  On output, K must merely be greater than zero.  In
either case, values outside the indicated ranges cause runtime errors.  Depending
upon the implementation, values of K causing backwards movement may be
illegal.

6.  PAGE(K) is only applicable to paged files and specifies page movement relative to the
current page.  If K is positive the movement is forward, toward the end of the file.
Depending upon the implementation, negative page values may or may not be legal.
The line value relative to the beginning of the page remains unchanged.

10.1.4 FORMAT Lists.
FORMAT lists present a powerful way to perform I/O operations with complete explicit 
control of all conversion and layout functions.
SYNTAX:

Figure 10-4  FORMAT lists - #82
SEMANTIC RULES:
1.  A <format list> used with a READ may only contain <variable>s, not <expression>s. 
2.  <format character expression> is any character expression.  A runtime check is made

for legality.
3.  All variables in the <format character expression> are evaluated before any I/O takes

place involving the FORMAT list.

format list

23

83

,

( )

examples: (A, B, C) IN ‘F4.2’ || IN_FORM D IN ‘E 15.6’

IN format character
expression

23

82variable

expression

20

variable

expression

20
10-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
4.  Each <expression> or <variable> is handled according to <format character
expression>.  If the <expression> or <variable> represents an aggregate of elements,
then each element is handled sequentially in its natural sequence.

Example: 
     DECLARE V VECTOR INITIAL(2.12, 3.4, -7)
     F CHARACTER(16) INITIAL(‘F4.2, F5.1, F4.1’);

then:
WRITE(6) V IN F

                   2.12bb3.4-7.0
     produces:     ↑   ↑    ↑ 
           column  1   5    10  

 10.1.4.1  FORMAT Character Expressions.
FORMAT character expressions determine how items in FORMAT lists are read or 
written.
SYNTAX:

Figure 10-5  format character expression - #83
SEMANTIC RULES:
1.  <number> must be an unsigned, non-negative integer.
2.  Each item input or output is handled according to a particular format item.  If

<number> precedes a format item, it is interpreted as if <number> copies of the
format item had been written.  If <number> precedes a parenthesized <format
character expression>, it is interpreted as if <number> copies of the <format
character expression> had been written.

format item

format
character
expression

83

format character
expression

84

)(

example: F4, 3E10.2 // 5(X4, A6/)

number

83

,

/

,

November 2005 10-8



HAL/S Language Specification USA003088
32.0/17.0
3.  Each invocation of a READ or WRITE statement containing a <format list> interprets
the <format character expression> starting from the beginning.

4.  If the <format character expression> is exhausted and additional items remain to be
input or output, control is returned to the <format character expression>
corresponding to the last closed parenthesis encountered.  A preceding <number> is
taken into account if present.  If no embedded <format character string>s are present,
control reverts to the beginning.

5.  ‘/’ is interpreted as ‘,SKIP(1), COLUMN(1),’.
6.  Consecutive commas are ignored.

Example:
    DECLARE ARRAY(20), DIM VECTOR, ANIMAL CHARACTER(15);
    WRITE(6) (‘ANIMAL’, ‘LENGTH’, ‘WIDTH’, ‘HEIGHT’) 
        IN ‘A15, (A10)’;
    DO FOR TEMPORARY I = 1 TO 20;
        WRITE(6) (ANIMALI, DIMI,) IN ‘A15, (F10.1)’;
    END; 

produces:
ANIMAL LENGTH WIDTH HEIGHT

CENTIPEDE         3.1         .3        .2
AARDVARK       42.7    -12.6      8.2

       .      ↑
       .
       .

       .↑
       .
       .

     .↑
     .
     .

     .↑
     .
     .

column     15       25      35     45
10-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 10.1.4.2  FORMAT Items.
Each FORMAT item conceptually represents a single I/O operation.
SYNTAX:

Figure 10-6  FORMAT item - #84
SEMANTIC RULES:
1.  At the beginning of the READ or WRITE statement and after processing an item, X

format items, quote strings, and I/O control are processed until some other format
item is reached.

2.  The semantics of <i/o control> were defined in Section 10.1.3.
3.  The following table briefly describes the formats.  See individual items for fuller

applications.

format item

85

86

86

87

32

89

91

90

 67

examples: F5.2
    COLUMN (25)

84

I format item

F format item

A format item

E format item

U format item

X format item

format quote  string

P format item

i/o control
November 2005 10-10



HAL/S Language Specification USA003088
32.0/17.0
 10.1.4.3  I FORMAT Item
I FORMAT items are used for INTEGER I/O.
SYNTAX:

Figure 10-7  I FORMAT Item - #85
SEMANTIC RULES:
1. <number> is the length of the field being transmitted.  It is an unsigned positive

integer.
2.  Implicit INTEGER/SCALAR conversion is allowed.
For READ statements:
1.  A sign may precede the input quantity.
2.  In input data, blanks before a sign or between a sign and the first digit are allowed.  All

other positions must contain digits between 0 and 9; otherwise, a runtime error
occurs.

For WRITE statements:
1.  A sign is printed only if a number is negative.

ITEM USE EXAMPLE SAMPLE  
OUTPUT

SAMPLE 
INPUT

INTERPRETED 
AS

I Format INTEGER I5 bbb 97 bbb 42 42
F Format SCALAR F6.2 b 98.67 98.672 98.672

bb 9867 98.67
E Format SCALAR with 

exponents
E9.1 b-7.1E-02 bb246E+14 24.6E+14

U Format INTEGER, 
SCALAR, or 

CHARACTER

U5 bbb 97  bbb 42 42

A Format CHARACTER A4 bABC  bABC bABC
X Format blanks on output, 

skips on input
X2 bb 9Z skipped

P Format INTEGER and 
SCALAR

PANS=$$.$*SS ANS=-4.2E-8 -4.2E-8 -4.2E-8

85
I format item

number

example: I 5

I

10-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
2.  If the number of print positions required to represent the quantity is less than
<number>, the leftmost positions are filled with blanks.  If greater than <number>, a
runtime error is sent and asterisks are printed in place of the quantity.

Example:
      DECLARE A INTEGER INITIAL (3);
      WRITE(6) (A, -2, A-2) IN ‘I2’;

produces:
b3-2b1

 10.1.4.4  F and E FORMAT Items.
F FORMAT items are used for decimal quantities.  E FORMAT items are used for 
decimal items written in scientific notation (i.e., with exponents).
SYNTAX:

Figure 10-8   F and E FORMAT items - #86
SEMANTIC RULES:
1.  The first <number> is the width of the field being transmitted.  The optional second

<number> specifies the number of decimal places to the right of the decimal point; if it
is omitted, it is assumed to be zero.  Each <number>, if present, is an unsigned
positive integer.

2.  Implicit INTEGER/SCALAR conversion is allowed.

E format item

examples: F9.2

                E14.3

E

86

F format item

F number

number

number

number
November 2005 10-12



HAL/S Language Specification USA003088
32.0/17.0
For READ statements:
1.  Input is an optionally signed quantity.
2.  If an explicit decimal point appears in the input, it overrides the format; otherwise,

decimal position is implied by the <format item>.

Example:  
READ (5)    (A,B,C) IN ‘F6.3’;
interprets:    b12.34 as 12.34

                    bb1234 as 1.234

                      b.1234 as  .1234
3.  An exponent may be supplied in the form:

E ±<number>
If either E or ± is specified, the other may be omitted. 

4.  For input quantities, blanks are allowed preceding the sign, the first digit, E,  , and
the first digit of the exponent.  Other blanks cause a runtime error.

5.  There is no difference between E and F formats in the READ statements.
For WRITE statements:
1.  For F format items, the string printed is:
        -aaaa.bbb   

     m    n
where n is determined by the second number in the format, and m is determined by
the magnitude of the quantity to be printed.  The minus sign is printed only if the
quantity is negative.  If the number of print positions required to represent the quantity
is less than the field length, a zero is added to the left of the decimal if no other digits
are present there.  Any additional positions are filled with blanks from the left.

2.  For E format items, the quantity printed is:
      -a.bbbE±cc

          n

The minus sign is printed only if the quantity is negative.  One significant digit is
printed to the left of the decimal point.  This is zero if the quantity = 0.  N is taken from
the format item.

3.  If the field length is insufficient, an error is sent and asterisks are printed in the field. 

±

10-13 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 10.1.4.5  A FORMAT Items.
<A format item>s are used for character data. 
SYNTAX:

Figure 10-9  A format item - #87
SEMANTIC RULES:
1.  <number> is an unsigned positive integer representing the field length.
For  READ statements:
1.  If the field specified is greater than the declared length of the variable, the rightmost

characters in the field are selected.  Otherwise, the length of the CHARACTER
variable is set to the field length.

For  WRITE statements:
1.  If the field length written is greater than the number of characters in the variable,

blanks are added to the left.  Otherwise, the leftmost characters are written to fill the
field.
Example:

     WRITE (6) (PERSONI, HEIGHTI) IN ‘A10, X2, F5.2’;

would produce:
        BAGLEY   55.67
             ↑       ↑ 
columns      10     17 

Note: BIT and CHARACTER conversion functions can be used with <A format item>s  
for I/O involving bit variables  (see Sections 6.5.2 and 6.5.3). 

A format item

number

example: A7

87

A

November 2005 10-14



HAL/S Language Specification USA003088
32.0/17.0
 10.1.4.6  U FORMAT Items.
<U format item>s are used for integer, scalar, and character data I/O. 
SYNTAX:

Figure 10-10  U format item - #88
SEMANTIC RULES:
1.  <number> is an unsigned positive integer representing the field width.
2.  The interpretation of the <U format item> depends upon the data type of the

associated <variable> or <expression>.
- for character strings, U<number> is equivalent to A<number>; 
- for integers, U<number> is equivalent to I<number>; 
- for scalars, U<number> is equivalent to E<number>.<number>-7. 

 10.1.4.7  X FORMAT Items.
<X format item>s are used to skip columns on input and output. 
SYNTAX:

Figure 10-11  X format item - #89

U format item

number

example: U16

88

U

X format item

number

example: X4

89

X

10-15 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SEMANTIC RULES:
1.  <number> is an unsigned positive integer.
2.  The effect is the same as TAB (<number>).

Example:
     READ (5) A in ‘X5, I3’;

If the input is:
        12345678

then A becomes:
        678. 

 10.1.4.8  FORMAT Quote Strings.
FORMAT quote strings are used for character output.
SYNTAX:

Figure 10-12  FORMAT quote string - #90
SEMANTIC RULES 
For READ statements:
1.  Columns corresponding to FORMAT quote strings are skipped in READ statements.

For WRITE statements:
1.  A double quote in the text is represented by a pair of double quotes.
2.  <character>s are copied to the output line.

Example:
     WRITE(6) ANS IN ’“ANSWER = ”, I2’;

would produce:
         ANSWER = 21
         ↑

columns  1

characters

90

“

Format quote
string

example:  “NOTHING IS MORE PRECIOUS THAN INDEPENDENCE AND FREEDOM.”

“

November 2005 10-16



HAL/S Language Specification USA003088
32.0/17.0
 10.1.4.9  P FORMAT Items.
<P format item>s can be employed for most types of numeric I/O.  They can be very  
useful in mixing character and numeric output data and specifying column alignment.
SYNTAX:

Figure 10-13  P format item - #91
SEMANTIC RULES:
1.  The <P format item> runs from the first character following the P to the first ‘,’ or ‘/’

encountered (or the end of the format character string).
2.  Each set of consecutive ‘$’s, ‘.’s, and ‘*’s defines a numeric field corresponding to an

INTEGER or SCALAR item.  ‘*’ defines the beginning of an exponent.  If more than
one ‘.’ or ’*’ is present in a given numeric field, a runtime error is sent.

3.  More than one field is allowed, e.g.,
WRITE(6)(NO,ARG1,ARG2,ARG1+ARG2) IN ‘P TEST#$$:$.$$*$$$+$.$$*$$=$.$$*$$$’;

For READ statements:
1.  Each field length is the number of ‘$’, ‘.’, and ‘*’ present.  Other characters cause

corresponding columns to be skipped.
2.  A decimal in the input field takes precedence.  Otherwise, a decimal is placed by the

‘.’, if present.
3.  An exponent may be supplied of the form:

E ± <number>
If either E or ± is specified, the other may be omitted.

P format item

any
extended
character

except
$.*,

$

.

*

91

example: P the answer is $$.$

P

10-17 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
4.  Blanks are allowed preceding the sign, the first digit, E, ±, and the first digit of the
exponent.  Other blanks cause a runtime error.

Example:
       READ(5) (X,Y) IN ‘PXXX$$.$$X$$’;

then if the input is:
       01234567890

then X would be set to 345.67 and Y to 90.
For WRITE statements:
1.  If a quantity to be printed is smaller than the specified field width, blanks are

appended to the left.  If the quantity to be printed (including ‘-’ if needed) is larger than
the specified field width field, a runtime error is sent and the first is filled with
asterisks.

2.  All characters except ‘$’, ‘*’, and ‘,’ are printed.
3.  If an exponent is called for, the number takes the form: 
         -a.bbbE+cc

          I  J   K

A non-negative quantity prints a blank in place of the ‘-’ sign.  The leftmost digit
printed will be non-zero unless the value to be printed is exactly zero.  The field
widths I, J, and K are taken from the number of ‘$’ signs in the picture.  I must be
greater than zero and K large enough to hold the exponent.
Example:

    DECLARE CHARACTER(100),
    T INITIAL(‘P TITLE1   TITLE2   TITLE3/’),
    D INITIAL(‘P  $$.$$    $$.$$    $$.$$/’) 
    WRITE(6) IN T;
    WRITE(6) DATA ARRAY$(1 TO 9) IN D; 

would produce the following table:
       TITLE1    TITLE2   TITLE3
        98.72    -5.61     43.00

                                  ↑             ↑               ↑

column       8                  17                   26
November 2005 10-18



HAL/S Language Specification USA003088
32.0/17.0
10.2  Random Access I/O and the FILE Statement.
Random access I/O is handled by means of the FILE statement.  In this access method 
individual records on a file may be written, retrieved, or updated.  A unique “record 
address” is used to specify the particular record on the file referenced.
SYNTAX:

Figure 10-14  FILE statements - #68
SEMANTIC RULES:
1.  The statement is an output FILE statement if <file exp> is on the left of the

assignment.  If <file exp> is on the right, then the statement is an input FILE
statement.

2.  <file exp> specifies the random access I/O channel and record address to be
referenced.  <number> is any legal random access channel number.  <arith exp> is
any unarrayed integer or scalar expression.  If the expression is scalar, its value is
rounded to the nearest integer before use.  A runtime error occurs if its value is not a
legal record address.

3.  Any record on a random access file may be transmitted by a FILE statement.
4.  In the input FILE statement, <variable> is any variable usable in an assignment

context.  This specifically excludes input parameters of function and procedure
blocks.  Moreover, <variable> is also subject to the following rules: 
•   No component subscripting for bit and character types.
•   If component subscripting is present, <variable> must be unsubscripted so as to

yield a single (unarrayed) element of the <variable>.

basic
statement

example :
FILE (3, J + 2) = ALPHA 1  TO 1000 ;

file exp

file exp

arith exp

: label

=

( , )

68

variable

FILE number

= file exp ;

expression
10-19 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
•  If no component subscripting is present, but array subscripting is, then all arrayness
must be subscripted away.

•  BIT type structure terminals which have the DENSE attribute may not be used, due
to packing implications.  However, an entire structure with the DENSE attribute
may be used.

•  If the <variable> is a structure terminal or a minor structure node (but not a major
structure) and if the structure possesses multiple copies, then the number of
copies must be reduced to one by subscripting.

5.  In the output FILE statement, there are no semantic restrictions on <expression>.
6. Compatibility between data written by an output FILE statement, and later reference to

it by an input FILE statement is assumed.  The exact interpretation of compatibility is
implementation dependent.  In general, the FILE statement transmits binary images of
the internal data forms, so that compatibility will be guaranteed if the <expression> of
the output FILE statement and the <variable> of the input FILE statement have the
same data type and organization.
November 2005 10-20



HAL/S Language Specification USA003088
32.0/17.0
11.0   SYSTEMS LANGUAGE FEATURES17 

11.1  INTRODUCTION.
The systems language features of HAL/S are described in this section.  The features 
presented here are in three sections.  The new Program Organization features are “Inline 
Function Blocks” and “%macros”.  A data-related feature of this systems language 
extension is the concept of “TEMPORARY variables”.  The NAME facility concerns a 
new concept in HAL/S, the addition of NAME variables pointing to data or blocks of code.
The information contained in this section constitutes an extension of material presented 
earlier.  Accordingly, many of the syntax diagrams presented here are modified versions 
of earlier diagrams reflecting the extended features.  Such modified diagrams are 
indicated by appending the small letter “s” to the diagram number.

11.2  PROGRAM ORGANIZATION FEATURES
The addition of Inline Function Blocks and “%macros” to HAL/S extends the information 
presented in Section 3 concerning program organization.  Inline functions are a modified 
kind of user function in which invocation is simultaneous with block definition.  %macros 
may be viewed as a class of special purpose implementation dependent built-in 
functions.

11.2.1 Inline Function Blocks.
The HAL/S Inline Function Block is a method of simultaneously defining and invoking a 
restricted version of the ordinary user function construct.  Its primary purpose is to widen 
the utility of the parametric REPLACE statement described in Section 4.2.  Its 
appearance is generally in the form of an operand of an expression.
An Inline Function Block, like other blocks, has a new level of name scoping and error 
recovery.

17.  The title indicates that the usage of these constructs is more suited to systems programming rather than 
applications programming.   The programmer is warned that unrestrained and indiscriminate use of certain of 
these constructs can lead to software unreliability.
11-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX: 

Figure 11-1  Inline Function Block - #69

SEMANTIC RULES:
1.  The syntactical form is actually equivalent to that of a function block except that: 

2. The semantic rules for an <§inline function> block definition are the same as those for 
the <function block> definition described in Section 3.3, subject to the restrictions 
listed below.

3. A <§inline function> may not contain the following syntactical forms: 
•   All forms of I/O statements;
•   All forms of reference to user-defined PROCEDURE and FUNCTION blocks; 
•   Real Time statements;

4. A <§inline function> may only contain one form of nested block, the <update block>.  
The following block forms are thus excluded: 
•   <function block> definitions;
•   <procedure block> definitions;
•   Further nested <§inline function>s. 

5. In use, the following semantic restriction holds: <§inline function>s may not appear as 
operands of subscript or exponent expressions.

a The <§inline function> has no label;
b The <§inline function> has no parameters;
c The <§inline function> definition becomes an operand in an expression.

FUNCTION

closingdeclare group

type spec

statement

update block

inline
function

69

;

arith
bit
char
struct

example:
     IF X       =Y THEN R=FUNCTION VECTOR;

DECLARE A, B;
A =3X+Y;
B=X/Y;
RETURN VECTOR(A, B, 0);
CLOSE;;

T=R*V
.
.
.

17

10

4

11 44

§
§

November 2005 11-2



HAL/S Language Specification USA003088
32.0/17.0
6. The <§inline function> falls into one of the following four categories: 

The use of inline functions as operands of HAL/S expressions is discussed in Section 
11.2.3. 
11.2.2 %macro References.
The HAL/S %macro facility provides a means of adding functional, special-purpose 
extensions to the language without requiring syntax changes or extensive rewriting of the 
compiler programs.  The details of the implementation of any given %macro will depend 
upon its nature and purpose.  Possible options include inline generation of code or links 
to an external routine performing the processing of the %macro.
The syntax of %macro reference is presented in this section.  The invocation of %macro 
routines in various expression or statement contexts is described below in Sections 
11.2.3 and 11.2.4.

SYNTAX:

Figure 11-2   %Macro Statement - #70

SEMANTIC RULES:
1.  The §macro reference falls into one of the five following categories based upon data

type: 
•  <arith %macro> is a reference to a §macro which returns an arithmetic value of

INTEGER, SCALAR, VECTOR, or MATRIX data type.
•   <bit %macro> is a reference to a §macro which returns a bit string value.
•   <char %macro> is a reference to a §macro which returns a value of CHARACTER

data type.
•   <struct %macro> is a reference to a §macro which returns a structure data value.

<arith inline> - <type spec> specifies an inline function of an arithmetic data type:
SCALAR, INTEGER, VECTOR, or MATRIX.

<bit inline> - <type spec> specifies an inline function of a bit type: BOOLEAN
or BIT.

<char inline> - <type spec> specifies an inline function of the CHARACTER data
type.

<struct inline> - <type spec> specifies an inline function with a structure type
specification.

%macro
<%macro-arg>( )

70,

% label

§ §

arith
 bit
char
struct
typeless
11-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
•  <typeless %macro> is a reference to a §macro which performs some systems
function but returns no value and may only be referenced from a §macro call
statement (see Section 11.2.4 below).

Available %macros in any implementation will be provided in the appropriate User’s
Manual.

2. The <%label> is a reserved word beginning with the character “%” which identifies the 
%macro in question.  The character “%” distinguishes %macro names from all other 
reserved words in the HAL/S language.

3. A series of one or more arguments of the %macro reference may be supplied.  The 
type, organization, and number of the arguments supplied to the %macro must be 
consistent with the requirements of the routine.

4. Details of <%macro arg>s will be supplied with the definition of a given %macro. 

11.2.3 Operand Reference Invocations.
Inline Function Blocks are always invoked at the point of their definition as operands of  
<expression>s.  %macros are also invoked as operands of <expression>s when they are 
of a definite data type and thus return a value.  Similar modifications of several syntax 
diagrams from Section 6 add these features to arithmetic, bit, and character operands, 
and to structure expressions.

SYNTAX OF ARITHMETIC OPERANDS:

Figure 11-3  arithmetic operand - #25s
SEMANTIC RULES:
1.  This syntax diagram is a systems language extension of the arithmetic operand

diagram in Section 6.1.1.  The semantic rules of Section 6.1.1 apply to this revised
diagram.

2. <arith inline> is an inline function block which has an arithmetic <type spec> in its 
header statement.

3. <arith %macro> is a reference to a %macro which returns an arithmetic value (see 
Section 11.2.2 above).

25Sarith var

arith exp

normal function

arith conversion

arith inline

arith % macro

arith
operand

precisionS
43

M

( )

number
November 2005 11-4



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX OF BIT OPERAND:

Figure 11-4  bit operand - #27s

SEMANTIC RULES:
1.  This syntax diagram is a systems language extension of the bit operand diagram in

Section 6.1.2.  The corresponding semantic rules found in Section 6.1.2 also apply to
this revised diagram.

2. <bit inline> is an inline function block which has a bit string (BOOLEAN or BIT) <type 
spec> in its header statement.

3. <bit %macro> is a reference to a %macro which returns a value of the BIT or 
BOOLEAN data types.

27sbit
operand

process event name

bit literal

normal function

bit conversion

bit pseudo-var

bit exp

NOT

bit inline

bit %macro

( )

event var

bit var
11-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX OF CHARACTER OPERAND:

Figure 11-5  character operand - #29s
SEMANTIC RULES:
1.  The syntax diagram is a systems language extension of the character operand

diagram in Section 6.1.3.  The corresponding semantic rules found in Section 6.1.3
also apply to this revised diagram.

2. <char inline> is an inline function block which has a CHARACTER <type spec> in its 
header statement.

3. <char %macro> is a reference to a %macro which returns a value of the CHARACTER 
data type.

SYNTAX OF STRUCTURE EXPRESSIONS:

Figure 11-6  structure expression - #29.1s

char
operand

29s

char exp( )

char var

char conversion

char literal

normal function

char %macro

char inline

structure
expression

291s

structure var.

normal function

struct %macro

structure inline
November 2005 11-6



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
1.  This syntax diagram is a systems language extension of the structure expression

diagram found in Section 6.1.4.  The semantic rules found in Section 6.1.4 also apply
to this revised diagram.

2. <struct inline> is an inline function block which has a structure <type spec> in its 
header statement.

3. <struct %macro> is a reference to a %macro which returns a value of a structure data 
type.

11.2.4 The %Macro Call Statement.
The invocation of a typeless %macro is performed by a <%macro call statement>.

SYNTAX:

Figure 11-7  %MACRO - #71

SEMANTIC RULES:
1. The <%macro call statement> invokes execution of the typeless %macro being

referenced.
2. The effect of this statement is dependent upon the details of the %macro being 

referenced.

11.3  Temporary Variables.
The extension of HAL/S data concepts to include a TEMPORARY variable form for use 
within DO groups is defined within the systems language facilities.  The object of 
incorporating the TEMPORARY variable is to increase the optimization and efficiency of 
the object code produced by the compiler.  Depending upon the details of the object 
machine, a TEMPORARY variable might be stored in a CPU register or a high speed, 
scratch pad memory location rather than in the slower main storage.  Coding efficiency 
may also be achieved with TEMPORARY variables because the instructions needed to 
access register or scratch pad memory values are generally more compact.  Since the 
existence of a TEMPORARY variable is confined to a DO group (from DO header 
statement to the END statement), these forms become highly localized control variables.
If a TEMPORARY variable appears in a REENTRANT block, each process 
simultaneously executing the block gets its own TEMPORARY variable.

basic statement

71

;

example: %SWAP(A,B,C);

typeless
%macro
11-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
11.3.1 Regular TEMPORARY Variables.
Regular TEMPORARY variables are declared in TEMPORARY statements following the 
DO statement which begins a DO…END statement group and preceding the first 
executable statement of the DO…END statement group.  The following diagram is a 
systems language extension of the DO…END statement group in Section 7.6.

SYNTAX:

Figure 11-8   DO…END Statement Group - #49s

SEMANTIC RULE:
1.  The TEMPORARY declaration may be included as part of any DO group except a DO

CASE group.  Use of TEMPORARY variables within nested DO groups of a DO
CASE is allowed.

The TEMPORARY statement is a special purpose data declaration used to create 
TEMPORARY variables for general use within the DO group syntax as described above.  
Its form compares very closely to that of the DECLARE statement in Section 4.4.
SYNTAX:

Figure 11-9  temporary statement - #72

49Sbasic
statement

do statement end statement

temporary
statement

statement

update block

task block

function block

procedure block

72

,

;

temporary
statement

TEMPORARY identifier attributes

attributes
,

November 2005 11-8



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
1.  In the <temporary statement>, <attributes> may define the <identifier>s to be of any

data type except EVENT.
2. <attributes> may only specify type, precision, and arrayness.
3. No minor attribute is legal.
4. The name of <identifier> may not duplicate the name of another <identifier> in the 

same name scope (procedure, function, or other block name) or of another temporary 
in the same DO…END group.

11.3.2 Loop TEMPORARY Variables.
The Loop TEMPORARY variable form is used in the context of the DO FOR group and is 
declared by its specification in a DO FOR statement.  The following two syntax diagrams 
are modifications of the discrete DO FOR and the iterative DO FOR syntax diagrams.
SYNTAX:

Figure 11-10   discrete DO FOR with loop TEMPORARY variable index - #53

53S

label:

identifierTEMPORARY

arith varDO FOR =

,

arith exp

bit exp

condition

UNTIL

WHILE

;

do
statement
11-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 11-11   iterative DO FOR with loop TEMPORARY variable index - #54s

SEMANTIC RULES:
1.  All the semantic rules for DO FOR statements which are given in Sections 7.6.4 and

7.6.5 apply as well to the corresponding Loop TEMPORARY forms.  Additional rules
for Loop TEMPORARY variables are given below.

2. The Loop TEMPORARY variable is defined in the DO FOR statement; a Loop 
TEMPORARY variable is always a single precision INTEGER variable.

3. The scope of the Loop TEMPORARY is the DO FOR group of the DO FOR statement 
which defines the variable.

4. The <identifier> name used for the Loop TEMPORARY may not duplicate the name of 
another <identifier> in the same name scope, nor may it duplicate the name of 
another TEMPORARY variable in the same DO…END group. 

11.4  The NAME Facility
This section gives a definitive description of the HAL/S NAME facility.  This facility is 
designed to fill the system programmer’s need for a “pointer” construct.  Its basic entity is 
the NAME identifier: a NAME identifier “points to” an ordinary HAL/S identifier of like 
attributes.  The “value” of the NAME identifier is thus the location of the identifier pointed 
to (an ordinary identifier is a HAL/S identifier without the NAME attribute).
11.4.1 Identifiers with the NAME Attribute
Identifiers declared with the NAME attribute become NAME identifiers.  NAME identifiers 
may be declared with the following data types: 
     INTEGER     CHARACTER
     SCALAR      EVENT
     VECTOR      STRUCTURE
     MATRIX PROGRAM  
     BIT TASK  
     BOOLEAN

53S

label:

identifierTEMPORARY

arith varDO FOR =

,

arith exp

bit exp

condition

UNTIL

WHILE

;

do
statement
November 2005 11-10



HAL/S Language Specification USA003088
32.0/17.0
 The following diagram is an extension of the DECLARE statement syntax diagram in 
Section 4.4.  The modification shows how the keyword NAME is used in such a 
declaration to state the NAME attribute.
SYNTAX:

Figure 11-12   declaration statement - #14s

GENERAL SEMANTIC RULES:
1.  The following <attributes> apply to the NAME variable itself and bear no relationship

to the ordinary identifier which is pointed to at any given time during execution:
•   The <initialization> attribute (if supplied) refers to the initial pointer value of the

NAME variable itself.
•   STATIC/AUTOMATIC refer to the mode of initialization of the NAME variable itself

on entry into a HAL/S block.
•   DENSE/ALIGNED apply apply to the actual NAME variable when it is defined by

inclusion  in a structure template.
All other legal attributes describe the characteristics of the ordinary variables to which
the NAME variable may point.  Except as noted below, these other attributes must
always  match the corresponding attributes of the ordinary variables to which the
NAME variable points; compilation errors will ensue if this is not the case.

2. The ACCESS attribute is illegal for NAME variables; its absence does not prevent 
NAME identifiers from pointing to ordinary identifiers with the ACCESS attributes, and 
matching is not required in this case.

3. The REMOTE attribute need not match if the NAME variable is REMOTE.  NAME   
REMOTE variables have a larger addressing range than non-REMOTE NAME   
variables and can point to either REMOTE or non-REMOTE variables; however, non- 
REMOTE NAME variables can only point to non-REMOTE variables.  

4. There must still be consistency between declared type, attributes, and factored 
attributes just as is the case for ordinary identifiers as described in Chapter 4 of the 
Specification.

14S

,

,
attributes

declare
statement

attributesDECLARE identifier

NAME

;

example:
    DECLARE ALPHA NAME VECTOR (7);
11-11 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 11-13  NAME Examples

SEMANTIC RULES (Data NAME Identifiers):
1.  Arrayness Specification - in general, the arrayness specification of a NAME identifier

must match that of the ordinary identifiers pointed to, in both number and size of
dimensions.

2. Structure Copy Specification - in general, the number of copies of a NAME identifier of  
a structure type must match that of the ordinary identifiers pointed to.

3. The use of the “*” array specification or structure copies specification is excluded from 
declarations of NAME formal parameters.

4. Structure Type - if a NAME identifier is a structure type it may only point to ordinary 
identifiers of structure type with tree equivalent structure templates. 

Figure 11-14  NAME Array Examples
5. For any unarrayed character string name variable, the “*” form of maximum length 

specification may be used.  This is an extension of the use of the “*” notation which 
applies now in general to character name variables as well as to formal parameters.

The Label Declarative Attributes available for use in declaring NAME identifiers which 
point to HAL/S block forms have been modified to include PROGRAM and TASK 
keywords and to exclude PROCEDURE and FUNCTION keywords.  The following 
syntax diagram is substituted for the Label Declarative Attributes diagram in Section 4.6 
when declaring NAME identifiers which point to HAL/S blocks.

  Examples:
DECLARE VECTOR(3) DOUBLE LOCK(2), X, Y NAME; 

DECLARE P NAME TASK;
Y may point to X
P points to any task block

Examples of data NAME variables
DECLARE X ARRAY(3) SCALAR,

Y ARRAY(4),

Z NAME ARRAY(4) SCALAR;

DECLARE P EVENT;

DECLARE EVENT LATCHED, V, VV NAME;
Z may point to Y but not X
November 2005 11-12



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX:

Figure 11-15   label declarative attribute - #16s

SEMANTIC RULES (Label NAME Identifiers):
1.  <initialization>, STATIC or AUTOMATIC, DENSE or ALIGNED may only be applied to

the <label declarative attributes> of identifiers with the NAME attribute.  They are
properties of the NAME and not of the identifiers pointed to.

2. The following  rules apply to NAME <identifiers> of the PROGRAM and TASK types: 
•   The NAME <identifier> of a PROGRAM or TASK type always points to a

PROGRAM or TASK block, respectively.  A corollary of this rule is that <process
event>s are never referenced by NAME identifiers of the PROGRAM or TASK
types.

•   The only forms of PROGRAM label declarations allowed are those with the NAME
attribute.

•   The program NAME <identifier> must always point to an external PROGRAM block
name; therefore, a block template is required for each PROGRAM which may be
referenced by a NAME value.

11.4.2 The NAME Attribute in Structure Templates.
The NAME attribute may appear on any structure terminal of a structure template.  The 
following syntax diagram shows how the keyword NAME is used to state the NAME 
attribute.  This diagram is a systems language extension of the structure template 
diagram.

attributes

TASK

16s

PROGRAM

name
initialization

AUTOMATIC

DENSE

ALIGNED

STATIC
11-13 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SYNTAX:

Figure 11-16  structure template statement - #13s
In general, the rules governing the formation of the structure template remain unchanged 
(see Section 4.3).

GENERAL SEMANTIC RULES:
1.  Restrictions on attributes discussed in Section 11.4.1 generally also apply to structure

terminals with the NAME attribute.
2. No <initialization> may be applied to terminals; neither may the attributes STATIC

/AUTOMATIC appear.
3. NAME identifiers of any type (including program or task) may appear as structure 

terminals.  Note that the NAME of an EVENT may appear in a structure even though 
the EVENT itself may not.

4. The REMOTE attribute may be applied to a structure terminal with the NAME attribute 
unless it is of EVENT type.

SEMANTIC RULES (Nested Structure Template References):
1.  Nested structure template references are special instances of structure terminals.

Their manner of incorporation into structure template definitions is described in
Section 4.3 via the <type spec>.

2. Such references are permitted to use the NAME attribute.  If the NAME attribute is 
present, the following points are to be noted: 
•   Specification of multiple copies is still not permitted.
•   The reference may be to the structure template being defined (and of which the

reference is a part).  The implications of this are discussed later.

13S

,

:

structure
template

DENSE

ALIGNED

STRUCTURE identifier

attributesnumber identifier ;
15

NAME
November 2005 11-14



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX:

Figure 11-17  Structure NAME Examples

11.4.3 Declarations of Temporaries.
TEMPORARY data may possess the NAME attribute.  Such data follows the same 
semantic rules as regular TEMPORARY variables as described in Section 11.3.1, except 
that the REMOTE attribute is legal for TEMPORARY NAME variables.

11.4.4 The ‘Dereferenced’ Use of Simple NAME Identifiers.
Simple NAME identifiers are those which are not parts of structure templates.
If a simple NAME identifier appears in a HAL/S expression as if it were an ordinary 
identifier, then the value used in computing the expression is the value of the ordinary 
identifier pointed to by the NAME identifier.  Similarly, if a simple NAME identifier appears 
on the left-hand side of an assignment, as if it were an ordinary identifier, then the value 
of the right-hand side is assigned to the ordinary identifier pointed to by the NAME 
identifier.  These are examples of the ‘dereferenced’ use of NAME identifiers.
Whenever a NAME identifier appears in a HAL/S construct as if it were an ordinary 
identifier, the dereferencing process (to find the ordinary identifier pointed to) is implicitly 
being specified.  Specifically, this still takes place when a subscripted NAME identifier 
appears as if it were an ordinary identifier.  
Here the dereferencing takes place first, and then the subscripting is applied to the 
ordinary identifier pointed to: 

    examples of structure NAME identifiers:
    STRUCTURE A:

1 X NAME PROGRAM,

1 Y SCALAR,

1 Z NAME SCALAR,

1 ALPHA NAME A-STRUCTURE;

    DECLARE P A-STRUCTURE;

    DECLARE PP NAME A-STRUCTURE;

P.Z is a NAME identifier which may point to P.Y
PP is a NAME identifier which may point to P 
PP.Z is a NAME identifier which may point to P.Z which is itself a NAME

identifier pointing somewhere.  This is an instance of double
indirection.

P.ALPHA is a NAME identifier of A-structure type.  The consequences of
this are discussed later.
11-15 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 11-18  NAME Variable Dereferencing Examples
A special construct to be described in Sections 11.4.5 and 11.4.6 is required to reference 
or change the value of a NAME identifier (as opposed to referencing or changing the 
value to which it points).

11.4.5 Referencing NAME Values.
The value of a NAME identifier is referenced or changed by using the NAME pseudo-
function.  This pseudo-function must also be used in order to gain access to the locations 
of ordinary HAL/S identifiers.  The locations of values so indicated will be called NAME 
values.  The necessity also arises for specifying null NAME values.
The following syntax diagram shows both the NAME pseudo-function construct as used 
for referencing NAME values, and the construct for specifying null NAME values.
SYNTAX:

Figure 11-19  NAME reference - #73

   examples of dereferenced NAME variables
DECLARE VECTOR(3), X, Y NAME;

DECLARE P NAME TASK;

Q: TASK;

.

.

.

CLOSE;
.

.

if Y points to X, and P to Q then -
TERMINATE P; Means terminate Q.
Y = Y*Y; Puts the cross product of X with X in X.
Y1 =Y3; Puts the third element of X into the first element.

73

reference
name

sub name id

sub id
22

NULL

NULL

NAME ( )
November 2005 11-16



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
1.  <sub id> is any ordinary identifier, except an input parameter, a minor structure, an

identifier declared with CONSTANT initialization, or an ACCESS controlled identifier
to which assignment access is “denied” or not asked for.  <sub name id> is any
NAME identifier.

2. Either of the above forms may possibly be modified by  subscripting legal for its type 
and organization.  Note, however, the following specific exceptions: 
•   No component subscripting is allowed for bit and character types.
•   If component subscripting is present, <sub id> or <sub name id> must be

subscripted so as to yield a single (unarrayed) element.
•   If no component subscripting is present, but array subscripting is, then all

arrayness must be subscripted away. 

Figure 11-20   NAME Variable Subscripting Example
3. Any <sub id> must have the ALIGNED attribute.
4. NAME <identifier>s may not be declared with the ACCESS attribute (see Section 

11.4.1, rule 2).  This does not, however, imply that the NAME facility is independent of 
the ACCESS control: NAME references to <sub id>s with ACCESS control will 
compile without error only if implementation dependent ACCESS requirements for 
<sub id> are satisfied.

5. If <sub id> is unsubscripted, the construct delivers the location of the ordinary identifier 
specified.  If it is subscripted, the construct delivers the location of the part of the 
specified identifier as determined by the form of the subscript.  Subscripting can 
change the type and dimensions of <sub id> for matching purposes.

6. If <sub name id> is unsubscripted, the construct delivers the value of the NAME 
identifier specified.  If it is subscripted, the value of the NAME identifier is taken to be 
the location of an ordinary identifier of compatible attributes, and the subscripting  
accordingly modifies the location delivered by the construct.

7. The two equivalent forms NULL and NAME(NULL) specify null NAME values.

Example:
DECLARE V NAME ARRAY(3) VECTOR;

.

.

.

NAME(V*:1) is illegal since it violates the second exception of semantic
rule 2 above. 
11-17 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 11-21  NAME Variable Referencing Examples

11.4.6 Changing NAME Values. 
The value of NAME identifier is changed by using the NAME pseudo-function in an 
assignment context.  The following syntax diagram shows the NAME pseudo-function 
used for assigning NAME values.

SYNTAX:

Figure 11-22   NAME assign #74

SEMANTIC RULE:
1.  <name id> specifies any NAME identifier except an input parameter, whose NAME

value is to be changed.  <name id> may not be subscripted (except as noted in
Section 11.4.11).

Figure 11-23  NAME Assignment Example

Examples:
DECLARE X SCALAR,

V VECTOR(3),

NX NAME SCALAR,

NV NAME VECTOR(3);

.

.

.

NAME(X) yields the location of X.
NAME(NX) yields the value of NX (i.e. the location pointed to by NX).
NAME(V2) yields the location of the second element of V.
NAME(NV3) yields the location of the third element of the vector

pointed to by NV.

example:
DECLARE X NAME MATRIX;

NAME(X) in assignment context specifies that a new value is to be given to X.

74

name assign

( name id )NAME
November 2005 11-18



HAL/S Language Specification USA003088
32.0/17.0
11.4.7 NAME Assignment Statements.
The NAME assignment statement is the construct by which NAME values are assigned 
into NAME identifiers.

SYNTAX:

Figure 11-24  NAME assignment statement #75

SEMANTIC RULES:
1.  The <name reference> and <name assign>s must possess arguments whose

attributes are compatible in the sense described in Section 11.4.1.

11.4.8 NAME Value Comparisons.
The values of two <name reference>s may be compared to one another.

SYNTAX:

Figure 11-25  NAME conditional expression-  #76

SEMANTIC RULES:
1.  This <comparison> may be used in any syntax where other forms of <comparison>

may be used; for example, in a <conditional operand> or as the <condition>
controlling a DO  WHILE.

2. Both <name reference>s must possess argument whose <attributes> are compatible 
in the sense described in Section 11.4.1 (with the exception of the REMOTE keyword 
which need not match). 

75basic statement

= name reference ;name assign

,

76

condition

=

NOT =

¬ name referencename reference =
11-19 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 11-26  NAME Conditional Example

11.4.9 Argument Passage Considerations.
NAME values may be passed into procedure and functions provided that the 
corresponding formal parameters of the blocks in question have the NAME attribute.  
The following two syntax diagrams are systems language extensions of the earlier 
<normal function> and <call statement> syntax diagrams.

SYNTAX:

Figure 11-27  normal FUNCTION reference - #77

examples:
DECLARE X SCALAR,

NX NAME SCALAR,

.

.

.

.

 NAME(NX)=NAME(X); value of NX is location of X (NX points to X).
.
.
.

IF NAME(NX)=NULL THEN RETURN;

if NX contains a null value (points at no location) then return.

77

normal
function )expression(

,

label

name
reference
November 2005 11-20



HAL/S Language Specification USA003088
32.0/17.0
SYNTAX:

Figure 11-28  CALL STATEMENT with NAME - #47s

SEMANTIC RULES:
1.  The formal parameters corresponding to <name reference> or <name assign>

arguments of these block invocations must possess the NAME attribute.
2. The attributes of <name reference> and <name assign> arguments supplied in the 

<normal function> reference or <call statement> must be compatible with those of the 
formal parameters in the same sense as described in Section 11.4.1.  The REMOTE 
attribute must match for NAME ASSIGN parameters.

3. If the argument(s) of that procedure or function invocation is not a <name reference> 
then the corresponding formal parameter must not have the NAME attribute.

47S

call
statement

ASSIGN

)(

;

,

name
reference

expression

,

name assign

variable( )

CALL label
11-21 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Figure 11-29   NAME Variables as Parameters Example

11.4.10 Initialization.
NAME identifiers may be declared with initialization to point to some particular identifier.  
The form of NAME initialization is as follows: 

SYNTAX:

Figure 11-30   NAME initialization attribute #79

  Examples:
DECLARE XI SCALAR,

X2 NAME SCALAR,
.
.
.
P: PROCEDURE(A,B) ASSIGN(C,D);

DECLARE SCALAR, A NAME,
B,
C NAME,
D;

NAME(C) = NAME(A);

NAME(C) = NAME(B); illegal - B is an input parame-
ter 
.
.
.

CLOSE;
.
.
.
NAME(X2) = NAME(XI);
CALL P(NAME(XI),XI) ASSIGN(NAME(X2),XI);

79

initialization

( name
reference

)INITIAL
November 2005 11-22



HAL/S Language Specification USA003088
32.0/17.0
SEMANTIC RULES:
1.  The argument of the <name reference> must be a previously declared <sub name id>

or <sub id> with <attributes> compatible with the NAME identifier being declared in
the same sense as described in Section 11.4.

2. Uninitialized NAME identifiers will have a NULL NAME value until the first NAME 
assignment.

3. The argument of a <name reference> may not itself possess the NAME attribute. 

11.4.11 Notes on NAME Data and Structures.
The previous sections have introduced the various syntactical forms and uses of the 
NAME attribute, <name assign>s, and <name reference>s.  The use of these NAME 
facilities with structure data merits further explanation since the implications of the 
various legal combinations are not always immediately apparent.  Therefore, the 
purpose of this section is to continue further discussion of various aspects of NAME and 
structure usage by providing several examples.

STRUCTURE TERMINAL REFERENCES
Consider the structure template and structure data declarations below: 
     STRUCTURE A:
       1 C SCALAR,
       1 B NAME A-STRUCTURE;

DECLARE A-STRUCTURE, Z1, Z2, Z3;

Z1.B is a NAME identifier of A-structure type: its NAME value may be set to point to Z2 
by the assignment 
     NAME(Z1.B) = NAME(Z2);
If this is done then it is legal to specify Z1.B.C as a qualified structure terminal name.  If
the appearance of B in the qualified name causes an implicit dereferencing process to
occur such that if Z1.B.C is used in a dereferencing context, the ordinary structure
terminal actually referenced is Z2.C.  If the NAME value of Z1.B is changed by 
     NAME(Z1.B) = NAME(Z3);

then the appearance of Z1.B.C in a dereferencing context causes Z3.C to be referenced.
Pictorially:

Figure 11-31  Structure NAME Dereference

Z1.C Z1.B

Z1

Z3.C Z3.B

Z3

Z2.C Z2.B

Z2
11-23 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Now Z1.B.B is itself in turn a NAME identifier of A-structure type, so that if the NAME 
assignment 
     NAME(Z1.B.B) = NAME(Z2);
is executed, then Z2.C may be referenced by using the qualified name Z1.B.B.C in a
dereferencing context.
Pictorially:

Figure 11-32  Structure NAME Dereference Chain

Clearly this implicit dereferencing in qualified name can extend chains of reference indef-
initely.  A particular consequence is the creation of a closed circular chain.  If the follow-
ing NAME assignment statements: 
     NAME(Z1.B)   = NAME(Z2);
     NAME(Z1.B.B) = NAME(Z1);
are executed, then pictorially, the following closed loop is set up:

Figure 11-33  Structure NAME Dereference Loop

Care must clearly be taken when using this implicit multiple dereferencing, so that all
links in the chain have previously been set up.
IMPLICATIONS OF SUBSCRIPTING STRUCTURE TERMINALS
Using the same A-structure template as before, the following declarations are legal: 
     DECLARE A-STRUCTURE(3), Y1, Y2, Y3, Y4;
One or more copies of Y1.C may be referred to by subscripting, for example: 
     Y1.C2 AT 2; (optional semicolon for clarity)
Note that Y1.B is a NAME identifier of A-structure type with 3 copies.  One or more
copies of it may therefore be assigned a NAME-value at one time.  For example: 
     NAME(Y1.B2 AT 2) = NAME(Y22 AT 1);
In this assignment, the left hand side has arrayness: two copies of the Y1 structure.  As a

Z1

Z1.C Z1.B

Z3

Z3.C Z3.B

Z2

Z2.C Z2.B

Z2

Z2.C Z2.B

Z1

Z1.C Z1.B
November 2005 11-24



HAL/S Language Specification USA003088
32.0/17.0
result, two values will be defined by the statement.  However, the right hand side has no
arrayness, because the object pointed to is Y22 AT 1.  This is a two copy section of the
structure Y2, with a unique starting location.
Pictorially:

Figure 11-34  Structure NAME Dereference with Subscripting
Notice that in the above NAME assignment, a subscripted <name id> appears as an
argument of the left-hand side NAME pseudo-function.  Subscripts so appearing are
legal only if they have the interpretation exemplified.  The subscripting employed must
also be unarrayed, as was mentioned earlier.
Further indirection may then be set up; thus, for example:
     NAME(Y1.B.B2) = NAME(Y31);
Here, the subscript 2 on the left-hand argument refers to copies of Y1 (this can be its only
interpretation).  Hence, by virtue of the fact that Y1.B2 has previously been set up to point
to Y21, this assignment causes Y2.B1 to point to Y31.
Arrayness will appear on both sides of a NAME assignment statement only when the 
assigned reference terminals of both sides possess the NAME attribute within structure 
variables with copies.

Consider the template:
     STRUCTURE AA:
       1 C NAME SCALAR,
       1 D NAME VECTOR;

And the declaration:
     DECLARE AA-STRUCTURE(3), YY1, YY2;

If the terminal element YY2.D is assigned to the terminal element YY1.D, the NAME 
assignment is arrayed since both sides contain three copies.
Thus:
     NAME(YY1.D) = NAME(YY2.D);

causes the NAME values of YY2.D found in the three copies of YY2 to be transferred to 
the corresponding name variables in YY1.D.  All the usual rules governing arrayed 
assignments apply is this case.

Y1.B
Y1.C

Y1.C Y2.C

Y2.C

Y2.C

Y2

Y2

Y2

Y2.B

Y2.B

Y2.B

Y1

Y1.C

Y1

Y1

Y1.B

Y1.B
11-25 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
MANIPULATING STRUCTURES CONTAINING NAME TERMINALS
Since the NAME attribute may be applied to structure terminals, a definition of operations 
performed on such NAME terminals in ordinary structure assignments, comparisons, and 
I/O operations is required.  The following general rules are applicable:  

•   For assignment statements and comparisons involving structure data with NAME
terminals, operations are performed on NAME values without any dereferencing. 

Figure 11-35  Structure NAME Manipulation

Examples:
 STRUCTURE IOTA:

1 LAMBDA NAME VECTOR,
1 KAPPA SCALAR;

 DECLARE ALPHA IOTA-STRUCTURE(10);
 DECLARE BETA IOTA-STRUCTURE;
    .
    .
    .
 ALPHA4 = BETA; 

As a part of this assignment, the vector identifier (or NULL) pointed to by
BETA.LAMBDA becomes the vector identifier pointed to by
ALPHA.LAMBDA4 as if a <name assignment statement> had been
used. 

 IF ALPHA5 = BETA THEN CALL QUE_UPDATE; 
In this IF statement, the structure comparison between the two variables 
(ALPHA5 and BETA) is performed terminal by terminal as usual.  For the  
NAME terminal LAMBDA of each structure operand, the effect is the 
same as if a <name comparison> had been used: Equality for the 
corresponding NAME terminals exists if they both point to the same 
ordinary identifier.
November 2005 11-26



HAL/S Language Specification USA003088
32.0/17.0
•  For sequential I/O operations, all NAME terminals are totally ignored.  NAME
terminals can take part in FILE I/O.

Figure 11-36  Structure NAMEs with READ Statements

11.5  The EQUATE Facility.
This section describes the HAL/S EQUATE facility which allows a systems programmer 
to assign an external name to an element of a HAL/S data area.
Reference to HAL/S data items by HAL/S code is achieved by use of HAL/S identifiers.  
When such references occur across compilation unit boundaries, the Block Template 
provides the information necessary to generate the reference properly.  If, however, the 
unit making reference to a HAL/S data item is not a HAL/S code block, the Block 
Template facility is unavailable.  It is under these latter circumstances that the HAL/S 
EQUATE facility may be used to make the location of a HAL/S data item available to an 
external, non-HAL/S code block.

examples:
 STRUCTURE OMICRON:

1 ALPHA SCALAR,
1 BETA ARRAY(25) INTEGER SINGLE,
1 GAMMA NAME MATRIX(10,10);

 STRUCTURE TAU: 
1 ALPHA SCALAR,
1 BETA ARRAY(25) INTEGER SINGLE;

 DECLARE X OMICRON-STRUCTURE;
 DECLARE Y TAU-STRUCTURE;

.

.

.
 READ(5) X;

The structure variable X is an OMICRON-STRUCTURE, whose template
includes the NAME of a 10 x 10 matrix (GAMMA).  Only the ordinary terminals
are transferred from Channel 5 by this READ operation --- the value of X.ALPHA
and the 25 values required for X.BETA.  The NAME terminal X.GAMMA is
ignored.

 READ(5) Y;
The structure variable Y is a TAU-STRUCTURE, whose template omits the
NAME terminal GAMMA found in the OMICRON-STRUCTURE, but is otherwise
identical.  The effect of this READ statement is the same as the previous
statement as far as Channel 5 is concerned --- one value is read for Y.ALPHA
and 25 values are read for Y.BETA.
11-27 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
11.5.1 The EQUATE Statement.

SYNTAX:

Figure 11-37   EQUATE Statement - #80

SEMANTIC RULES:
1.  The EQUATE statement causes <identifier> to become an externally recognizable

label of the HAL/S <variable>.  The manner in which this is done is implementation
dependent.  The EQUATE statement has the effect of raising the name of <identifier>
to a global external level such that it is known to whatever binders, loaders, link-
editors, etc., are used by an implementation.

2. The number of characters of the <identifier> which participate in the external name 
created is implementation dependent.

3. The EQUATE statement does not constitute a HAL/S declaration.  This implies that 
<identifier> may appear in a declaration statement and used in any manner 
consistent with that declaration.  In the absence of such a declaration, <identifier> is 
not declared and may not be used anywhere else in the HAL/S code.

4. Duplication of <identifier>s among multiple EQUATE statements within a single 
compilation unit is subject to implementation dependent rules. 

5. <variable> may be any HAL/S data item previously declared in the innermost scope 
containing the EQUATE statement.

6. If <variable> is subscripted, all subscripts must be computable at compile time.
7. The external name created by the EQUATE statement will be associated with the 

memory location of the first (or only) element specified by <variable>.
8. Attempts to associate external names with HAL/S data items which are not located 

integrally at addressable memory locations or discontiguous memory locations are 
subject to implementation restrictions.

;

80

variable

EQUATE
Statement

EQUATE
EXTERNAL identifier TO

example:
    EQUATE EXTERNAL XYZ TO A;
    EQUATE EXTERNAL QRS TO S.T5;4,3:1,6;
November 2005 11-28



HAL/S Language Specification USA003088
32.0/17.0
11.5.2 EQUATE Statement Placement.
The following diagram is a system language extension of the Declare Group syntax 
diagram in Section 4.1.  The modification shows how the EQUATE statement fits into the 
declaration structure of HAL/S.

SYNTAX:

Figure 11-38  declare group - #11s

11S

declare
group

replace
statement

structure
template

declare
statement

equate
statement

13

14

80

12
11-29 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
November 2005 11-30



HAL/S Language Specification USA003088
32.0/17.0
 Appendix A - A  SYNTAX DIAGRAM SUMMARIES

 A.1   SYNTAX PRIMITIVE REFERENCES
The syntax diagrams in this Specification are numbered sequentially.  The CONTENTS 
of the Specification state which diagrams are in each section. 
The following table shows where the HAL/S syntactical primitives (excluding reserved 
words and special characters) are referred to. 
NOTES:

1.   Primitives are listed in alphabetical order.
2.   Numbers enclosed in [ ] denote indirect references to the primitive. 

Explanations are given in the accompanying Semantic Rules.

Syntactical Primitive Diagram Number Page
<arith var name> [19] [5-2]

20 5-3
<argument> 12.1 4-3
<bit literal> 19 5-2

20 5-3
<char literal> [18] [4-18]

29 6-8
<char var name> [18] [4-18]

19 5-2
20 5-3

<event var name> 19 5-2
20 5-3

<identifier> 8 3-8
9 3-9

12 4-2
13 4-7
14 4-10
14s 11-11  
13s 11-14

<label> 2 3-2
3 3-3
4 3-4
5 3-5
6 3-6

10 3-11
[18] [4-18]
38 6-18
A-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Syntactical Primitive Diagram Number Page
45 7-1
46 7-2
47 7-5
48 7-7
50 7-9
51 7-9
52 7-10
53 7-11
54 7-12
55 7-13
56 7-14
57 8-3
58 8-5
59 8-6
60 8-7
61 8-8
62 8-9
63 9-2
64 9-4
65 10-2
66 10-4
68 10-19
53s 11-9
54s 11-10
77 11-20
47s 11-21

<number> 13 4-7
15 4-11
16 4-14
[18] [4-18]
25 6-5
63 9-2
64 9-4
68 10-19
83 10-8
85 10-11
86 10-12
87 10-14
88 10-15
November 2005 A-2



HAL/S Language Specification USA003088
32.0/17.0
Syntactical Primitive Diagram Number Page
13s 11-14

<process-event name> 27 6-7
37 6-17

<template name> 17 4-15
<text> 12 4-2

[12.1] [4-3]
A-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 A.2   SYNTAX DIAGRAM CROSS REFERENCES
The following table shows where non-primitive syntactical terms are defined and 
referenced. 

NOTES:
1.  Terms are listed in alphabetical order.
2.   <radix> is included even though it has no syntactical diagram, because, for 

the purposes of the Specification, it was not regarded as a primitive.  Its 
definition is included in the Semantic Rules accompanying the syntax 
diagrams where it is referred to.

3.   Note that an “s” suffix identifies a modified Systems Language Diagram.

Syntactical Definition Defined in References
Diagram Section Page

<arith conversion> 39 6 6-20 25, 25s
<arith exp> 24 6 6-2 15, 17, 18, 22, 23, 25, 28,

32, 39, 51, 53, 54, 57, 60,
61, 67, 68, 25s, 54s

<arith inline> 25s 11 11-4 25 
<arith %macro> 25s 11 11-4 25 
<arith operand> 25 6 6-5 24, 25s
<arith var> 19 5 5-2 20, 25, 53, 54, 25s, 54s
<array sub> 22 5 5-6 21
<attributes>:

data 15 4 4-11
label 16 4 4-14 16s

  name 16s 11 11-13 44, 45
<basic statement>:
assignment 46 7 7-2
name 75 11 11-19 47s
CALL 47 7 7-5 47s
name 47s 11 11-21
CANCEL 58 8 8-5
DO…END 49 7 7-8
EXIT 56 7 7-14
FILE 68 10 10-19
GO TO 56 7 7-14
name assign 74 11 11-18
null 56 7 7-14 75, 76, 77, 47s
ON ERROR 63 9 9-2
READ 65 10 10-2
READALL 65 10 10-2
REPEAT 56 7 7-14
November 2005 A-4



HAL/S Language Specification USA003088
32.0/17.0
Syntactical Definition Defined in References
Diagram Section Page

RESET 62 8 8-9
RETURN 48 7 7-7
SCHEDULE 57 8 8-3
SEND ERROR 64 9 9-4
SET 62 8 8-9
SIGNAL 62 8 8-9
TERMINATE 59 8 8-6
UPDATE
PRIORITY

61 8 8-8

WAIT 60 8 8-7
WRITE 66 10 10-4

<bit conversion> 40 6 6-23 27, 27s
<bit exp> 26 6 6-6 23, 27, 33, 41, 45, 52, 53,

54, 27s, 54s
<bit inline> 27s 11 11-5 27
<bit %macro> 27s 11 11-5 27
<bit operand> 27 6 6-7 26, 27s
<bit pseudo-var> 42 6 6-26 20, 27, 27s
<bit var> 19 5 5-2 20, 27, 27s
<char conversion> 41 6 6-25 29, 29s
<char exp> 28 6 6-8 23, 29, 34, 30, 29s
<char inline> 29s 11 11-6 29
<char %macro> 29s 11 11-6 29
<char operand> 29 6 6-8 28, 29s
<char var> 19 5 5-2 20, 29, 29s
<closing> 10 3 3-11 2, 3, 4, 5, 6, 69
<comparison>: 31

arithmetic 32 6 6-12
bit 33 6 6-13
character 34 6 6-14
structure 35 6 6-15

<compilation> 1 3 3-1
<component sub> 22 5 5-6 6-21
<compool block> 5 3 3-5 1
<compool header> 7 3 3-7 5, 6
<compool template> 6 3 3-6 1
<condition> 30 6 6-10 31, 45, 52, 53, 54, 54s

name 76 11 11-19
<conditional operand> 31 6 6-11 30
<declare group> 11 4 4-2 2, 3, 4, 5, 6, 69
<declare statement> 14 4 4-10 11, 11s, 14s

name 14s 11 11-11
A-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Syntactical Definition Defined in References
Diagram Section Page

<do statement>:
END 49 7 7-8 49, 49s
CASE 51 7 7-9
discrete FOR 53 7 7-11

 temporary var 53s 11 11-9
  iterative FOR 54 7 7-12

temporary var 54s 11 11-10
simple 50 7 7-9
UNTIL 52 7 7-10
WHILE 52 7 7-10

<end statement> 55 7 7-13 49, 49s
<equate statement> 80 11 11-28 11s
<event exp> 36 6 6-16 37, 57, 60
<event operand> 37 6 6-17 36
<event var> 19 5 5-2 20, 27, 37, 62
<expression> 23 6 6-1 18, 38, 39, 40, 41, 42, 46,

47, 48, 66, 68, 70
<file exp> 68 10 10-19 68
<function block> 3 3 3-3 1, 2, 3, 4, 49, 49s
<function header> 9 3 3-9 3, 6
<function template> 6 3 3-6 1
<inline function> 69 11 11-2
<initial list> 18 4 4-18 18
<initialization> 18 4 4-18 15

name 79 11 11-22 16s
<i/o control> 67 10 10-6 65, 66
<%macro> 70 11 11-3 25s
 typeless %macro 71 11 11-7
<name> 14s 11 11-11
<name assign> 75 11 11-19
<normal function> 38 6 6-18 25, 27, 29, 77
  name 77 11 11-20
<precision> 43 6 6-28 1, 2, 3, 4, 49, 49s
<procedure block> 3 3 3-3 3, 6
<procedure header> 8 3 3-8 3, 6
<procedure template> 6 3 3-6 1
<program block> 2 3 3-2 1
<program header> 7 3 3-7 2
<radix> Note 2. 6 40, 41
<replace statement> 12 4 4-2 11, 11s
 parametric 12.1 4 4-3
November 2005 A-6



HAL/S Language Specification USA003088
32.0/17.0
Syntactical Definition Defined in References
Diagram Section Page

<statement>:
basic 44 7 7-1

IF 45 7 7-1
temporary 72 11 11-8

<struct inline> 29.1s 11 11-6 29.1
<struct %macro> 29.1s 11 11-6 29.1
<structure exp> 29.1 6 6-9
<structure sub> 22 5 5-6 21
<structure template> 13 4 4-7 11, 11s

name 13s 11 11-14
<structure var> 19 5 5-2 20, 23, 35, 29, 15, 29.1
<sub exp> 22 5 5-6 22
<sub nameid> 73 11 11-16
<subscript> 21 5 5-4 19, 39, 40, 41, 42
<task block> 3 3 3-3 2, 49, 49s
<task header> 7 3 3-7 3
<temporary statement> 49s 11 11-8 53s, 54s

72 11 11-8
<type spec> 17 4 4-15 9, 15, 16, 69
<update block> 4 3 3-4 2, 3, 49, 69, 49s
<update header> 7 3 3-7 4
<variable> 20 5 5-3 42, 46, 47, 65, 68
A-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 A.3   SYNTAX DIAGRAM LISTING

Diag.# Diagram Title PAGE
1 unit of compilation 3-1
2 PROGRAM block 3-2
3 PROCEDURE, FUNCTION, TASK block 3-3
4 UPDATE block 3-4
5 COMPOOL block 3-5
6 PROGRAM, PROCEDURE, FUNCTION, COMPOOL template 3-6
7 COMPOOL, PROGRAM, TASK, UPDATE header statement template 3-7
8 PROCEDURE header statement 3-8
9 FUNCTION header statement 3-9
10 closing of block 3-11
11 declare group 4-2
11s declare group 11-29
12 replace statement 4-2
12.1 parametric replace reference 4-3
13 structure template statement 4-7
13s structure template statement 11-14
14 declaration statement 4-10
14s declaration statement 11-11
15 data declarative attributes 4-11
16 Label declarative attributes 4-14
16s label declarative attribute 11-13
17 type specification 4-15
18 initialization specification 4-18
19 Subscripting 5-2
20 variable 5-3
21 subscript construct 5-4
22 component, array, and structure subscripts 5-6
23 expression 6-1
24 arithmetic expression 6-2
25 arithmetic operand 6-5
25s arithmetic operand 11-4
26 bit expression 6-6
27 bit operand 6-7
27s bit operand 11-5
28 character expression 6-8
29 character operand 6-8
29s character operand 11-6
29.1 structure expression 6-9
29.1s structure expression 11-6
30 conditional expression 6-10
31 conditional operand 6-11
32 arithmetic comparison 6-12
November 2005 A-8



HAL/S Language Specification USA003088
32.0/17.0
Diag.# Diagram Title PAGE
33 bit comparison 6-13
34 character comparison 6-14
35 structure comparison 6-15
36 event expression 6-16
37 event operand 6-17
38 normal function 6-18
39 arithmetic conversion function 6-20
40 bit conversion function 6-23
41 character conversion function 6-25
42 SUBBIT pseudo-variable 6-26
43 precision specifier 6-28
44 basic statement 7-1
45 IF statement 7-1
46 assignment statement 7-2
47 CALL statement 7-5
47s CALL STATEMENT with NAME 11-21
48 RETURN statement 7-7
49 DO…END statement group 7-8
49s DO…END statement group 11-8
50 simple DO statement 7-9
51 DO CASE statement 7-9
52 DO WHILE and UNTIL statements 7-10
53 discrete DO FOR statement 7-11
53s discrete DO FOR with loop TEMPORARY variable index 11-9
54 iterative DO FOR statement 7-12
54s iterative DO FOR with loop TEMPORARY variable index 11-10
55 END statement 7-13
56 GO TO, “null”, EXIT, and REPEAT statements 7-14
57 SCHEDULE statement 8-3
58 CANCEL statement 8-5
59 TERMINATE statement 8-6
60 WAIT statement 8-7
61 UPDATE PRIORITY statement 8-8
62 SET, SIGNAL, and RESET statements 8-9
63 ON ERROR statement 9-2
64 SEND ERROR statement 9-4
65 READ and READALL statements 10-2
66 WRITE statement 10-4
67 i/o control function 10-6
68 FILE statements 10-19
69 Inline Function Block 11-2
70 %Macro Statement 11-3
71 %MACRO 11-7
A-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
Diag.# Diagram Title PAGE
72 temporary statement 11-8
73 NAME reference 11-16
74 NAME assign 11-18
75 NAME assignment statement 11-19
76 NAME conditional expression  11-19
77 normal FUNCTION reference  11-20
79 NAME initialization attribute 11-22
80 EQUATE Statement 11-28
82 FORMAT lists 10-7
83 format character expression 10-8
84 FORMAT item 10-10
85 I FORMAT item 10-11
86 F and E FORMAT items 10-12
87 A format item 10-14
88 U format item 10-15
89 X format item 10-15
90 FORMAT quote string 10-16
91 P format item 10-17
November 2005 A-10



HAL/S Language Specification USA003088
32.0/17.0
 Appendix B - HAL/S KEYWORDS 
The following table of keywords excludes built-in functions and %macro names.

ACCESS ELSE NAME SKIP
AFTER END NONHAL STATIC
ALIGNED EQUATE NOT STRUCTURE
AND ERROR NULL SUBBIT
ARRAY EVENT SYSTEM
ASSIGN EVERY OCT
AT EXCLUSIVE OFF TAB
AUTOMATIC EXIT ON TASK

EXTERNAL OR TEMPORARY
BIN TERMINATE
BIT FALSE PAGE THEN
BOOLEAN FILE PRIORITY TO
BY FOR PROCEDURE TRUE

FUNCTION PROGRAM
CALL UNTIL
CANCEL GO READ UPDATE
CASE READALL
CAT HEX REENTRANT VECTOR
CHAR REMOTE
CHARACTER IF REPEAT WAIT
CLOSE IGNORE REPLACE WHILE
COLUMN IN RESET WRITE
COMPOOL INITIAL RETURN
CONSTANT INTEGER RIGID

DEC LATCHED SCALAR
DECLARE LINE SCHEDULE
DENSE LOCK SEND
DEPENDENT SET
DO MATRIX SIGNAL
DOUBLE SINGLE
B-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
November 2005 B-2



HAL/S Language Specification USA003088
32.0/17.0
 Appendix C - BUILT-IN FUNCTIONS
HAL/S typically supports the following set of built-in functions.  Minor variations may 
arise between implementations.

ARITHMETIC FUNCTIONS
arguments may be INTEGER or SCALAR types
in functions with one argument, result type matches argument type (except as 
specifically noted) 
in functions with two arguments, unless specifically specified, result type is scalar if 
either or both arguments are scalar; otherwise the result type is integer
arrayed arguments cause multiple invocations of the function, one for each array 
element - arrayness of arrayed arguments must match

Name, Arguments Comments
ABS(α) | α | 
CEILING(α) smallest integer ≥ α 
DIV(α,β) integer division α/β (arguments rounded to integers)
FLOOR (α) largest integer ≤ α
MIDVAL(α,β,γ) the value of the argument which is algebraically between 

the other two.  If two or more arguments are equal, the 
multiple value is returned.  Result is always scalar.

MOD(α,β) α MOD β
ODD(α) TRUE 1 if α odd         

FALSE   0  if  α     even                                                 
⎤
⎥ ⎯  result is BOOLEAN
⎦

REMAINDER(α,β) signed remainder of integer division α/β (argument 
rounded to integer)

ROUND(α) nearest integer to α
SIGN(α) +1    α ≥ 0 

 -1    α < 0
SIGNUM(α) +1    α > 0 

0    α = 0
 -1    α < 0

TRUNCATE(α) largest integer ≤ | α | times  SIGNUM (integer (α)) 
C-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
ALGEBRAIC FUNCTIONS
• arguments may be integer or scalar types -- conversion to scalar occurs with integer 

arguments
• result type is scalar 
• arrayed arguments cause multiple invocations of the function, one for each array 

element
• angular values are supplied or delivered in radians 

Name, Arguments Comments
ARCCOS(α) cos -1α, | α| < 1
ARCCOSH(α) cosh -1α, ≥1
ARCSIN(α) sin -1α, | α|  < 1
ARCSINH(α) sinh-1α
ARCTAN2(α,β) -π< tan-1 (α/β) < π

Proper Quadrant if:

α= k sin θ
β= k cos θ

⎫
⎬ k > 0
⎭

ARCTAN(α) tan-1α
ARCTANH(α) tanh-1α, | α | < 1
COS(α) cos α
COSH(α) cosh α
EXP(α) eα

LOG(α) logeα, α > 0

SIN(α) sin α
SINH(α) sinh α
SQRT(α) , α ≥ 0 
TAN(α) tan α
TANH(α) tanh α

α

November 2005 C-2



HAL/S Language Specification USA003088
32.0/17.0
VECTOR-MATRIX FUNCTIONS
• arguments are vector or matrix types as indicated
• result types are as implied by mathematical operation
• arrayed arguments cause multiple invocation of the function, one for each array element
Name, Arguments Comments

ABVAL(α) length of vector α. 
DET(α) determinant of square matrix α. 
INVERSE(α) inverse of a nonsingular square matrix α. 
TRACE(α) sum of diagonal elements of square matrix α. 
TRANSPOSE(α) transpose of matrix α. 
UNIT(α) unit vector in same direction as vector α. 

MISCELLANEOUS FUNCTIONS
• arguments are as indicated; if none are indicated the function has no arguments
• result type is as indicated

Name, Arguments Result Type Comments
CLOCKTIME scalar returns time of day
DATE integer returns date (implementation dependent format)
ERRGRP integer returns group number of last error detected, or 

zero
ERRNUM integer returns number of last error detected, or zero
PRIO integer returns priority of process calling function
RANDOM scalar returns random number from rectangular 

distribution over range 0-1 
RANDOMG scalar scalar returns random number from Gaussian 

distribution mean zero, variance one.
RUNTIME scalar scalar returns Real Time Executive clock time 

(Section 8.)
NEXTIME (<label>) scalar <label> is the name of a program or task. The 

value returned is determined as follows:
a) If the specified process was scheduled with 
the REPEAT ENTRY option and has begun at 
least one cycle of execution, then the value is 
the time the next cycle will begin.
b) If the specified process was scheduled with 
the IN or AT phrase, and has not yet begun 
execution, then the value is the time it will begin 
execution.
c) Otherwise, the value is equal to the current 
time (RUNTIME function). 
C-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
MISCELLANEOUS FUNCTIONS (Cont’d)
SHL(α,β) Same as α α may be integer or scalar type. β may be 

integer or scalar type.
If α is integer type, the result is an integer whose 
internal binary representation is that of α shifted 
left by β bit locations. The signed nature of the 
integer α is taken into account in an 
implementation dependent manner which 
depends upon the number system and word size 
of the target computer.
Scalar types will be converted to integer types 
prior to shifting.   If β is a literal or constant, then 
it is  illegal for it to  be outside the range (1,63).    
Otherwise, only the 6 right-most bits of the value 
are used, restricting the range to (0,63). 
Arrayed arguments produce multiple invocations 
of the function, one for each array element-
arrayness of arrayed arguments must match.

SHR(α,β) Same as α α may be integer or scalar type.  β must be 
integer type.
Results are as defined for the SHL function 
except that all shifting occurs to the right.  The 
SHR is an arithmetic shift (sign bit is 
propagated).
Arrayed arguments produce multiple invocations 
of the function, one for each array element - 
arrayness of arrayed arguments must match.

CHARACTER FUNCTIONS
• first argument is character type - second argument is as indicated (any argument indicated 

as character type may also be integer or scalar, whereupon conversion to character type is 
implicitly assumed)

• result type is as indicated
• arrayed arguments produce multiple invocations of the function, one for each array 

element - arraynesses of arrayed arguments must match
Name, Arguments Result Type Comments

INDEX(α,β) integer β is character type - if string β appears in string α , 
index pointing to the first character of β is 
returned; otherwise zero is returned

LENGTH(α) integer returns length of character string
LJUST(α,β) character β is integer type - string α is expanded to length β 

by padding on the right with blanks.  β > length (α)
RJUST(α,β) character β is integer type - string α is expanded to length β 

by padding on the left with blanks.  β > length (α)
TRIM(α) character leading and trailing blanks are stripped from α
November 2005 C-4



HAL/S Language Specification USA003088
32.0/17.0
BIT FUNCTIONS
• arguments are bit type
• result is bit type
• arrayed arguments produce multiple invocations of the function, one for each array 

element - arrayness of arrayed arguments must match
Name, Arguments Result Type Comments

XOR(α,β) bit Result is Exclusive OR of α and β.  Length of 
result is length of longer argument. Shorter 
argument is left padded with binary zeros to length 
of longer argument.

ARRAY FUNCTIONS
• arguments are n-dimensional arrays where n is arbitrary.
• asterisk size REMOTE ARRAYs are restricted for the MAX, MIN, PROD and SUM   

functions unless a finite size array is also part of the argument
• arguments are integer or scalar type
• result type matches argument type and is unarrayed

Name, Parameters Comments
MAX(α) maximum of all elements of α.
MIN(α) minimum of all elements of α. 
PROD(α) product of all elements of α.  
SUM(α) sum of all elements of α. 

SIZE FUNCTION
Name, Argument Comments

SIZE(α)

 

One of the following must hold:
• α is an unsubscripted arrayed variable with a one-

dimensional array specification  - function returns 
length of array.

• α is an unsubscripted major structure with a 
multiple copy specification  - function returns 
number of copies.

• α is an unsubscripted structure terminal with a 
one-dimensional array specification  - function 
returns length of array.

Result is of integer type
C-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
November 2005 C-6



HAL/S Language Specification USA003088
32.0/17.0
 Appendix D   - STANDARD CONVERSION FORMATS
In relatively limited circumstances HAL/S allows conversion between scalar, integer, bit, 
and character types.  The following rules govern such conversions.

CONVERSIONS TO INTEGER TYPE:
•    A bit type is converted to integer type by regarding it as the bit pattern of a signed 

integer of the desired precision (halfword or fullword).  Left padding with binary 
zeros, or left truncation may occur.

•    A scalar type is converted to integer type by rounding to the nearest whole num-
ber.  Overflow errors may occur if the absolute value of the scalar type is too large 
to be represented as an integer of the desired precision.

•    A character type is convertible to integer type only if its value represents a signed 
whole number (e.g., ‘-604’) otherwise an error condition occurs.  An error condi-
tion also occurs if the whole number is too large to be represented as an integer of 
the desired precision.

CONVERSIONS TO SCALAR TYPE:
•    An integer type is converted directly to scalar form.  The precision of the INTE-

GER is maintained (i.e. INTEGER SINGLE is converted to SCALAR SINGLE, 
INTEGER DOUBLE is converted to SCALAR DOUBLE).  If a conversion from an 
INTEGER DOUBLE to a SCALAR SINGLE is forced through explicit conversion or 
assignment,  some decimal places of accuracy may be lost during the conversion. 

•    A bit type is converted to scalar type by first converting it to an integer type with 
adequate precision to ensure no loss of accuracy and then applying the integer to 
scalar conversion rule above. 

•    A character type is convertible to scalar type only if its value represents a legal 
scalar or  integer     valued literal (e.g., ‘-1.5E-7’).  See Section 2.3.3 for details of 
arithmetic literals.   Other values cause error conditions to arise.

CONVERSIONS TO BIT TYPE:
•    An integer type is converted to a bit string of maximum length (for INTEGER 

DOUBLE), or a halfword bit string (for INTEGER SINGLE) in an unsubscripted BIT  
conversion function by left padding with binary zeros as required.  The value is the 
bit pattern of the integer.

•    A scalar type is first converted to double precision integer type according to the 
rule already given, and the integer to bit conversion rules are then applied.

•    A character type is convertible to bit type only if its value is a string of ‘1’s and ‘0’s, 
and blanks, (but not all blanks), otherwise an error condition arises.  The result of 
the conversion is always a maximum length bit string, irrespective of the argument 
type.  If the argument has more than N bits, where N is the maximum allowable 
length of a bit  operand, then only the N right-most are used.  If the argument has 
fewer than N bits, the string is padded on the left with binary zeros.
D-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
CONVERSION TO CHARACTER TYPE:
•    An integer type is converted to the representation:

where dddd represents an arbitrary number of decimal digits.  Leading zeros are 
suppressed yielding a variable length result.

•    A scalar type is converted to the representation:

(except scalar 0 is converted to 0.0).
The number of decimal digits d in the fractional part and exponent are implemen-
tation and precision dependent.  The digit to the left of the decimal point is non-
zero.  There are no imbedded blanks.  Leading zeros in the exponent are not sup-
pressed.  The representation includes a leading blank (b) if the scalar is positive.  
In all cases, the result is fixed in length.

•    A bit type is converted to a character string of ‘1’s and ‘0’s corresponding to the 
binary representation of the bit string argument.

 dddd (positive)
-dddd (negative)

bd.ddddE±dd (positive)

-d.ddddE±dd (negative)
November 2005 D-2



HAL/S Language Specification USA003088
32.0/17.0
 Appendix E   - STANDARD EXTERNAL FORMATS
Corresponding to each data type there exists a “standard external format” for the 
representation of its values on sequential I/O files.  In any implementation, the standard 
external format on output is fixed; on input the user has a certain flexibility in the format 
he can use.
OUTPUT FORMATS
1.  Integer Type:

•   The value of an integer is represented by a string of decimal digits, preceded if it is 
negative by a “-” sign.  Leading zeroes are suppressed. 

•   The string of digits is right justified in a field of fixed width.  The width depends 
upon the implementation, and on the precision of the integer. 

2.  Scalar Type:
•   If the value of a scalar is positive it is represented by: 

where d represents a decimal digit.  One non-zero digit appears before the decimal 
point.  The numbers of digits in the fractional part and exponent are fixed, and 
depend on the implementation and the precision of the scalar.  Leading zeroes in 
the exponent are not suppressed.  The representation includes a leading blank.

•   A negative value has the same form except that a “-” sign precedes the first deci-
mal digit.

•   If the value is exactly zero, it is represented as 0.0.
•   The representation of a scalar is contained in a field of fixed width.  The width is 

dependent on the implementation and the precision of the scalar.  Justification is 
such that the decimal point occupies a fixed, precision dependent position in the 
field.

3.  Bit Type (including BOOLEAN):
•   There are two different representations of values of bit variables.
•   The first representation consists of a string of binary digits corresponding to the bit 

variable.  Leading binary zeroes are not suppressed.  The field width is equal to 
the number of binary digits in the string plus an inserted blank following every 
fourth digit (to enhance readability).  This form is not compatible with the READ 
input (see Section 10.1.1).

•   In the alternate representation, the string of binary digits plus inserted blanks is 
enclosed in apostrophes.  The field width is equal to the total number of digits, 
blanks,  and two apostrophes. 

4.  Character Type:
•   There are two different representations of values of character variables.
•   The first representation merely consists of the string of characters comprising the 

value.  The field width is equal to the number of characters in the string.  This rep-
resentation is not compatible with READ input (see Section 10.1.1).

b d.dddddddE±dd
E-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
•   In the alternate representation, the string of characters is enclosed in apostrophes, 
and all internal apostrophes are converted to apostrophe pairs.  The field width is 
equal to the total number of characters in the string, including added apostrophes.

NOTE: The two alternate representations for bit and character type occur on paged and
unpaged output, respectively.

INPUT FORMATS
1.   Scalar and Integer Types:

•   There are three basic representations: whole-number, floating point, and fraction.
•   The whole-number representation consists of a string of decimal digits preceded 

by an optional “-” sign.  The maximum number of digits allowed is implementation 
dependent.  Conversion to mantissa-exponent form takes place for scalar types.

•   The floating-point representation is either

          ddd.dddd
or                                     

where d is a decimal digit.  Any number of digits is allowed in the mantissa to an 
implementation dependent maximum.  The decimal  point may appear in any 
position.  E, B, and H represent the exponent digits to be powers of 10, 2, and 16, 
respectively.  A choice of one is indicated.  The maximum number of digits in the 
exponent is implementation dependent.  For bit and integer types, the 
representation is rounded to the nearest integral value.  For bit types, the binary 
representation of the result is taken.

•   The floating point representation may be prefixed by + or - signs to indicate the 
sign of the value.  Without such prefix the value is positive.

2.  Character Type:
•   The representation of character type is a string of characters from the HAL/S 

extended set enclosed in apostrophes.  The number of characters may vary 
between zero (a “null string”) and an implementation dependent maximum.  Within 
the string apostrophes must be represented by an apostrophe pair.

3.  Bit Type:
•   The representation of bit type is a string of ‘1’s and ‘0’s enclosed in apostrophes.  

Imbedded blanks are ignored.  The number of digits may vary between one and an 
implementation dependent maximum. 

⎧E⎫
dddd.dddd ⎨B⎬ ±dd

⎩H⎭
November 2005 E-2



HAL/S Language Specification USA003088
32.0/17.0
 Appendix F   - COMPILE-TIME COMPUTATIONS
References are made in the text to expressions which must be computable at compile 
time.  In particular, the following constructs make use of them:

•   declaration of dimensions;
•   initialization;
•   subscripting.

Subsets of arithmetic, bit, and character expressions are guaranteed to be computable at 
compile time.
ARITHMETIC EXPRESSIONS (see Section 6.1.1)
1.  <arith exp>s of integer and scalar type only can be computable at compile time.
2.  The operators of such <arith exp>s are limited to:

3.  The <arith operand>s of such <arith exp>s may either be <number>s or unarrayed,  
unsubscripted, simple variables (see Section 4.5) of integer or scalar type.  Such 
variables must previously have been declared and initialized using the CONSTANT 
form (see  Section 3.8).

4.  The following built-in functions are also legal:
SIN     EXP    DATE
COS     LOG    CLOCKTIME
TAN     SQRT

DATE and CLOCKTIME are only computed at compile time if they appear in an <ini-
tialization> construct.

BIT EXPRESSIONS (see Section 6.1.2)
1.  The operators which may appear in <bit exp>s computable at compile time are:
               ¬
               &
               |

The <bit operand>s of such <bit exp>s must be either <bit literal>s or unarrayed, 
unsubscripted, simple variables of bit type.  Such variables must previously have 
been declared and initialized using the CONSTANT form.

+
-
* (multiply) 
/
** 
F-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
CHARACTER EXPRESSIONS (see Section 6.1.3)
1.  The catenation operator (||) may only appear in <char exp>s computable at compile 

time.
2.  The <char operand>s of such <char exp>s must be either <char literal>s, or 

unarrayed, unsubscripted, simple variables of character type.  Such variables must 
previously have been declared and initialized using the CONSTANT form.
In some implementations, additional forms may also be computed at compile time.  
They will not, however, be regarded as legal in contexts where compile time comput-
ability is enforced semantically. 
November 2005 F-2



HAL/S Language Specification USA003088
32.0/17.0
 Appendix G   - BNF WORKING GRAMMAR of HAL/S
1     <COMPILATION> :: = <COMPILE LIST> _|_

2     <COMPILE LIST> :: = <BLOCK DEFINITION>
3                       | <COMPILE LIST> <BLOCK DEFINITION>

4     <ARITH EXP> :: = <TERM>
5                    | + <TERM>
6                    | -1 <TERM>
7                    |   <ARITH EXP> + <TERM>
8                    |   <ARITH EXP> -1 <TERM>

9     <TERM>  :: = <PRODUCT>
10               | <PRODUCT> / <TERM>

11     <PRODUCT> :: = <FACTOR>
12                  | <FACTOR> * <PRODUCT>
13                  | <FACTOR> . <PRODUCT>
14                  | <FACTOR> <PRODUCT>

15     <FACTOR> :: = <PRIMARY>
16                 | <PRIMARY> <**> <FACTOR>

17     <**> :: = **

18     <PRE PRIMARY>  :: = (<ARITH EXP>)
19                       | <NUMBER>
20                       | <COMPOUND NUMBER>

21     <ARITH FUNC HEAD> :: = <ARITH FUNC>
22                          | <ARITH CONV> <SUBSCRIPT>

23     <ARITH CONV> :: = INTEGER
24                     | SCALAR
25                     | VECTOR
26                     | MATRIX

27   <PRIMARY> :: = <ARITH VAR> 

28  <PRE PRIMARY> :: = <ARITH FUNC HEAD> (<CALL LIST>) 

29  <PRIMARY> :: = <MODIFIED ARITH FUNC> 
30             | <ARITH INLINE DEF> <BLOCK BODY> <CLOSING>; 
31             | <PRE PRIMARY> 
32             | <PRE PRIMARY> <QUALIFIER> 

33     <OTHER STATEMENT> :: = <ON PHRASE> <STATEMENT> 
34                          | <IF STATEMENT> 
35                          | <LABEL DEFINITION> <OTHER STATEMENT> 

36     <STATEMENT> :: = <BASIC STATEMENT> 
37                    | <OTHER STATEMENT> 

38     <ANY STATEMENT> :: = <STATEMENT> 
39                        | <BLOCK DEFINITION> 

40     <BASIC STATEMENT> :: = <LABEL DEFINITION> <BASIC STATEMENT> 
41                          | <ASSIGNMENT>; 
42                          | EXIT; 
43                          | EXIT <LABEL>; 
44                          | REPEAT; 
45                          | REPEAT <LABEL>; 
46                          | GO TO <LABEL>; 
47                          |; 
48                          | <CALL KEY>; 
49                          | <CALL KEY> (<CALL LIST>); 
50                          | <CALL KEY> <ASSIGN> (<CALL ASSIGN LIST>); 
51                          |<CALL KEY>(<CALL LIST>)<ASSIGN> (<CALL ASSIGN LIST>); 
52                          | RETURN; 
53                          | RETURN <EXPRESSION>; 
G-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
54                          | <DO GROUP HEAD> <ENDING>; 
55                          | <READ KEY>; 
56                          | <READ PHRASE>; 
57                          | <WRITE KEY>; 
58                          | <WRITE PHRASE>; 
59                          | <FILE EXP> = <EXPRESSION>; 
60                          | <VARIABLE> = <FILE EXP>; 
61                          | <WAIT KEY> FOR DEPENDENT; 
62                          | <WAIT KEY> <ARITH EXP>; 
63                          | <WAIT KEY> UNTIL <ARITH EXP>; 
64                          | <WAIT KEY> FOR <BIT EXP>; 
65                          | <TERMINATOR>; 
66                          | <TERMINATOR> <TERMINATE LIST>; 
67                          | UPDATE PRIORITY TO <ARITH EXP>; 
68                          | UPDATE PRIORITY <LABEL VAR> TO <ARITH EXP>; 
69                          | <SCHEDULE PHRASE>; 
70                          | <SCHEDULE PHRASE> <SCHEDULE CONTROL>; 
71                          | <SIGNAL CLAUSE>; 
72                          | SEND ERROR <SUBSCRIPT>; 
73                          | <ON CLAUSE>; 
74                          | <ON CLAUSE> AND <SIGNAL CLAUSE>; 
75                          | OFF ERROR <SUBSCRIPT>; 
76                          | <% MACRO NAME>; 
77                          | <% MACRO HEAD> <% MACRO ARG>); 

78     <% MACRO HEAD> :: = <% MACRO NAME> ( 
79                       | <% MACRO HEAD> <% MACRO ARG> , 

80     <% MACRO ARG> :: = <NAME VAR> 
81                      | <CONSTANT> 

82     <BIT PRIM> :: = <BIT VAR> 
83                   | <LABEL VAR> 
84                   | <EVENT VAR> 
85                   | <BIT CONST> 
86                   | (<BIT EXP>) 
87                   | <MODIFIED BIT FUNC> 
88                   | <BIT INLINE DEF> <BLOCK BODY> <CLOSING>; 
89                   | <SUBBIT HEAD> <EXPRESSION>) 
90                   | <BIT FUNC HEAD> (<CALL LIST>) 

91     <BIT FUNC HEAD> :: = <BIT FUNC> 
92                        | BIT <SUB OR QUALIFIER> 

93     <BIT CAT> :: = <BIT PRIM> 
94                  | <BIT CAT> <CAT> <BIT PRIM> 
95                  | <NOT> <BIT PRIM> 
96                  | <BIT CAT> <CAT> <NOT> <BIT PRIM> 

97     <BIT FACTOR> :: = <BIT CAT> 
98                     | <BIT FACTOR> <AND> <BIT CAT> 

99     <BIT EXP>  :: = <BIT FACTOR> 
100                  | <BIT EXP> <OR> <BIT FACTOR> 

101     <RELATIONAL OP> :: = = 
102                        | <NOT> = 
103                        | < 
104                        | > 
105                        | < = 
106                        | > = 
107                        | <NOT> < 
108                        | <NOT> > 

109     <COMPARISON> :: = <ARITH EXP> <RELATIONAL OP> <ARITH EXP> 
110                     | <CHAR EXP> <RELATIONAL OP> <CHAR EXP> 
111                     | <BIT CAT> <RELATIONAL OP> <BIT CAT> 
November 2005 G-2



HAL/S Language Specification USA003088
32.0/17.0
112                     | <STRUCTURE EXP> <RELATIONAL OP> <STRUCTURE EXP> 
113                     | <NAME EXP> <RELATIONAL OP> <NAME EXP> 

114     <RELATIONAL FACTOR> :: = <REL PRIM> 
115                            | <RELATIONAL FACTOR> <AND> <REL PRIM> 

116     <RELATIONAL EXP> :: = <RELATIONAL FACTOR> 
117                         | <RELATIONAL EXP> <OR> <RELATIONAL FACTOR> 

118     <REL PRIM> :: = (1<RELATIONAL EXP>) 
119                   | <NOT> (1<RELATIONAL EXP>) 
120                   | <COMPARISON> 

121     <CHAR PRIM> :: = <CHAR VAR> 
122                    | <CHAR CONST> 
123                    | <MODIFIED CHAR FUNC> 
124                    | <CHAR INLINE DEF> <BLOCK BODY> <CLOSING>; 
125                    | <CHAR FUNC HEAD> (<CALL LIST>) 
126                    | (<CHAR EXP>) 

127     <CHAR FUNC HEAD> :: = <CHAR FUNC> 
128                         | CHARACTER <SUB OR QUALIFIER> 

129     <SUB OR QUALIFIER> :: = <SUBSCRIPT> 
130                           | <BIT QUALIFIER> 

131     <CHAR EXP> :: = <CHAR PRIM> 
132                   | <CHAR EXP> <CAT> <CHAR PRIM> 
133                   | <CHAR EXP> <CAT> <ARITH EXP> 
134                   | <ARITH EXP> <CAT> <ARITH EXP> 
135                   | <ARITH EXP> <CAT> <CHAR PRIM> 

136     <ASSIGNMENT> :: = <VARIABLE> <=1> <EXPRESSION> 
137                     | <VARIABLE> , <ASSIGNMENT> 

138     <IF STATEMENT> :: = <IF CLAUSE> <STATEMENT> 
139                       | <TRUE PART> <STATEMENT> 

140     <TRUE PART> :: = <IF CLAUSE> <BASIC STATEMENT> ELSE 

141     <IF CLAUSE> :: = <IF> <RELATIONAL EXP> THEN 
142                    | <IF> <BIT EXP> THEN 

143     <IF> :: =  IF 

144     <DO GROUP HEAD> :: = DO; 
145                        | DO <FOR LIST>; 
146                        | DO <FOR LIST> <WHILE CLAUSE>; 
147                        | DO <WHILE CLAUSE>; 
148                        | DO CASE <ARITH EXP>; 
149                        | <CASE ELSE> <STATEMENT> 
150                        | <DO GROUP HEAD> <ANY STATEMENT> 
151                        | <DO GROUP HEAD> <TEMPORARY STMT> 

152     <CASE ELSE> :: = DO CASE <ARITH EXP>; ELSE 

153     <WHILE KEY> :: = WHILE 
154                    | UNTIL 

155     <WHILE CLAUSE> :: = <WHILE KEY> <BIT EXP> 
156                       | <WHILE KEY> <RELATIONAL EXP> 

157     <FOR LIST> :: = <FOR KEY> <ARITH EXP> <ITERATION CONTROL> 
158                   | <FOR KEY> <ITERATION BODY> 

159     <ITERATION BODY> :: = <ARITH EXP> 
160                         | <ITERATION BODY> , <ARITH EXP> 

161     <ITERATION CONTROL> :: = TO <ARITH EXP> 
162                            | TO <ARITH EXP> BY <ARITH EXP> 
G-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
163     <FOR KEY> :: = FOR <ARITH VAR> = 
164               | FOR TEMPORARY <IDENTIFIER> = 

165     <ENDING> :: = END 
166                 | END <LABEL> 
167                 | <LABEL DEFINITION> <ENDING> 

168     <ON PHRASE> :: = ON ERROR <SUBSCRIPT> 

169     <ON CLAUSE> :: = ON ERROR <SUBSCRIPT> SYSTEM 
170                    | ON ERROR <SUBSCRIPT> IGNORE 

171     <SIGNAL CLAUSE> :: = SET <EVENT VAR> 
172                        | RESET <EVENT VAR> 
173                        | SIGNAL <EVENT VAR> 

174     <FILE EXP> :: = <FILE HEAD> , <ARITH EXP>) 

175     <FILE HEAD> :: = FILE (<NUMBER>  

176     <CALL KEY> :: = CALL <LABEL VAR> 

177     <CALL LIST> :: = <LIST EXP> 
178                    | <CALL LIST> , <LIST EXP> 

179     <CALL ASSIGN LIST> :: = <VARIABLE> 
180                           | <CALL ASSIGN LIST> , <VARIABLE> 

181     <EXPRESSION> :: = <ARITH EXP> 
182                     | <BIT EXP> 
183                     | <CHAR EXP> 
184                     | <STRUCTURE EXP> 
185                     | <NAME EXP> 

186     <STRUCTURE EXP> :: = <STRUCTURE VAR> 
187                        | <MODIFIED STRUCT FUNC> 
188                        | <STRUC INLINE DEF> <BLOCK BODY> <CLOSING>; 
189                        | <STRUCT FUNC HEAD> (<CALL LIST>) 

190     <STRUCT FUNC HEAD> :: = <STRUCT FUNC> 

191     <LIST EXP> :: = <EXPRESSION> 
192                   | <ARITH EXP> # <EXPRESSION> 

193     <VARIABLE> :: = <ARITH VAR> 
194                   | <STRUCTURE VAR> 
195                   | <BIT VAR> 
196                   | <EVENT VAR> 
197                   | <SUBBIT HEAD> <VARIABLE>) 
198                   | <CHAR VAR> 
199                   | <NAME KEY> (<NAME VAR>) 

200     <NAME VAR> :: = <VARIABLE> 
201                   | <LABEL VAR> 
202                   | <MODIFIED ARITH FUNC> 
203                   | <MODIFIED BIT FUNC> 
204                   | <MODIFIED CHAR FUNC> 
205                   | <MODIFIED STRUCT FUNC> 

206     <NAME EXP> :: = <NAME KEY> (<NAME VAR>) 
207                   | NULL 
208                   | <NAME KEY> (NULL) 

209     <NAME KEY> :: = NAME 

210     <LABEL VAR> :: = <PREFIX> <LABEL> <SUBSCRIPT> 

211     <MODIFIED ARITH FUNC> :: = <PREFIX> <NO ARG ARITH FUNC> <SUBSCRIPT> 

212     <MODIFIED BIT FUNC> :: = <PREFIX> <NO ARG BIT FUNC> <SUBSCRIPT> 

213     <MODIFIED CHAR FUNC> :: = <PREFIX> <NO ARG CHAR FUNC> <SUBSCRIPT >

214     <MODIFIED STRUCT FUNC> :: = <PREFIX> <NO ARG STRUCT FUNC> <SUBSCRIPT> 
November 2005 G-4



HAL/S Language Specification USA003088
32.0/17.0
215     <STRUCTURE VAR> :: = <QUAL STRUCT> <SUBSCRIPT> 

216     <ARITH VAR> :: = <PREFIX> <ARITH ID> <SUBSCRIPT> 

217     <CHAR VAR> :: = <PREFIX> <CHAR ID> <SUBSCRIPT> 

218     <BIT VAR> :: = <PREFIX> <BIT ID> <SUBSCRIPT> 

219     <EVENT VAR> :: = <PREFIX> <EVENT> <SUBSCRIPT> 

220     <QUAL STRUCT> :: = <STRUCTURE ID> 
221                      | <QUAL STRUCT> . <STRUCTURE ID> 

222     <PREFIX> :: = <EMPTY> 
223                 | <QUAL STRUCT> . 

224     <SUBBIT HEAD> :: = <SUBBIT KEY> <SUBSCRIPT> ( 

225     <SUBBIT KEY> :: = SUBBIT 

226     <SUBSCRIPT> :: = <SUB HEAD>) 
227                    | <QUALIFIER> 
228                    | <$> <NUMBER> 
229                    | <$> <ARITH VAR> 
230                    | <EMPTY> 

231     <SUB START> :: = <$>( 
232                    | <$> (@<PREC SPEC> , 
233                    | <SUB HEAD>; 
234                    | <SUB HEAD> : 
235                    | <SUB HEAD>,                                
236     <SUB HEAD> :: = <SUB START> 
237                   | <SUB START> <SUB> 

238     <SUB> :: = <SUB EXP> 
239              | * 
240              | <SUB RUN HEAD> <SUB EXP> 
241              | <ARITH EXP> AT <SUB EXP> 

242     <SUB RUN HEAD> :: = <SUB EXP> TO 

243     <SUB EXP> :: = <ARITH EXP> 
244                  | <# EXPRESSION> 

245     <# EXPRESSION> :: = # 
246                       | <# EXPRESSION> + <TERM> 
247                       | <# EXPRESSION> -1 <TERM> 

248     <=1> :: = = 

249     <$> :: = $

250     <AND> :: = &
251              | AND
252     <OR>  : =|
253              | OR

254     <NOT> :: =  ¬
255              | NOT

256     <CAT> :: = ||
257              | CAT

258     <QUALIFIER> :: = <$> (@<PREC SPEC>)
259                 | <$> (<SCALE HEAD><ARITH EXP>)
260                 | <$> (@<PREC SPEC>, <SCALE HEAD><ARITH EXP>)

261  <SCALE HEAD> :: = @
262                     | @ @

263     <BIT QUALIFIER> :: = <$(@<RADIX>)
G-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
264     <RADIX> :: = HEX
265                | OCT
266                | BIN
267                | DEC

268     <BIT CONST HEAD> :: = <RADIX>
269                         | <RADIX> (<NUMBER>)

270     <BIT CONST> :: = <BIT CONST HEAD> <CHAR STRING>
271                    | TRUE
272                    | FALSE
273                    | ON
274                    | OFF

275     <CHAR CONST> :: = <CHAR STRING>
276                     | CHAR (<NUMBER>) <CHAR STRING>

277     <IO CONTROL> :: = SKIP (<ARITH EXP>)
278                     | TAB (<ARITH EXP>)
279                     | COLUMN (<ARITH EXP>)
280                     | LINE (<ARITH EXP>)
281                     | PAGE (<ARITH EXP>)

282     <READ PHRASE> :: = <READ KEY> <READ ARG>
283                      | <READ PHRASE> , <READ ARG>

284     <WRITE PHRASE> :: = <WRITE KEY> <WRITE ARG>
285                       | <WRITE PHRASE> , <WRITE ARG>

286     <READ ARG> :: = <VARIABLE>
287                   | <IO CONTROL>
288     <WRITE ARG> :: = <EXPRESSION>
289                    | <IO CONTROL>
290     <READ KEY> :: = READ (<NUMBER>)
291                   | READALL (<NUMBER>)

292     <WRITE KEY> :: = WRITE (<NUMBER>)

293     <BLOCK DEFINITION> :: = <BLOCK STMT> <BLOCK BODY> <CLOSING>;

294     <BLOCK BODY> :: = <EMPTY>
295                     | <DECLARE GROUP>
296                     | <BLOCK BODY> <ANY STATEMENT>

297     <ARITH INLINE DEF> :: = FUNCTION <ARITH SPEC>;
298                           | FUNCTION;

299     <BIT INLINE DEF> :: = FUNCTION <BIT SPEC>;

300     <CHAR INLINE DEF> :: = FUNCTION <CHAR SPEC>;

301     <STRUC INLINE DEF> :: = FUNCTION <STRUCT SPEC>;

302     <BLOCK STMT> :: = <BLOCK STMT TOP>;

303     <BLOCK STMT TOP> :: = <BLOCK STMT TOP> ACCESS
304                         | <BLOCK STMT TOP> RIGID
305                         | <BLOCK STMT HEAD>
306                         | <BLOCK STMT HEAD> EXCLUSIVE
307                         | <BLOCK STMT HEAD> REENTRANT

308     <LABEL DEFINITION> :: = <LABEL>:
309     <LABEL EXTERNAL> :: = <LABEL DEFINITION>
310                         | <LABEL DEFINITION> EXTERNAL

311     <BLOCK STMT HEAD> :: = <LABEL EXTERNAL> PROGRAM
312                          | <LABEL EXTERNAL> COMPOOL
313                          | <LABEL DEFINITION> TASK
314                          | <LABEL DEFINITION> UPDATE
315                          | UPDATE
316                          | <FUNCTION NAME>
317                          | <FUNCTION NAME> <FUNC STMT BODY>
November 2005 G-6



HAL/S Language Specification USA003088
32.0/17.0
318                          | <PROCEDURE NAME>
319                          | <PROCEDURE NAME> <PROC STMT BODY>

320     <FUNCTION NAME> :: = <LABEL EXTERNAL> FUNCTION

321     <PROCEDURE NAME> :: = <LABEL EXTERNAL> PROCEDURE

322     <FUNC STMT BODY> :: = <PARAMETER LIST>
323                         | <TYPE SPEC>
324                         | <PARAMETER LIST> <TYPE SPEC>

325     <PROC STMT BODY> :: = <PARAMETER LIST>
326                         | <ASSIGN LIST>
327                         | <PARAMETER LIST> <ASSIGN LIST>

328     <PARAMETER LIST> :: = <PARAMETER HEAD> <IDENTIFIER>)

329     <PARAMETER HEAD> :: = (
330                         | <PARAMETER HEAD> <IDENTIFIER>,

331     <ASSIGN LIST> :: = <ASSIGN> <PARAMETER LIST>

332     <ASSIGN> :: = ASSIGN

333     <DECLARE ELEMENT> :: = <DECLARE STATEMENT>
334                          | <REPLACE STMT>;
335                          | <STRUCTURE STMT>
336                          | EQUATE EXTERNAL <IDENTIFIER> TO <VARIABLE>;

337     <REPLACE STMT> :: = REPLACE <REPLACE HEAD> BY <TEXT>

338     <REPLACE HEAD> :: = <IDENTIFIER>
339                       | <IDENTIFIER> (<ARG LIST>)

340     <ARG LIST> :: = <IDENTIFIER>
341                   | <ARG LIST> , <IDENTIFIER>

342     <TEMPORARY STMT> :: = TEMPORARY <DECLARE BODY>;

343     <DECLARE STATEMENT> :: = DECLARE <DECLARE BODY>;

344     <DECLARE BODY> :: = <DECLARATION LIST>
345                       | <ATTRIBUTES> , <DECLARATION LIST>

346     <DECLARATION LIST> :: = <DECLARATION>
347                           | <DCL LIST,> <DECLARATION>

348     <DCL LIST ,> :: = <DECLARATION LIST>,

349     <DECLARE GROUP> :: = <DECLARE ELEMENT>
350                        | <DECLARE GROUP> <DECLARE ELEMENT>

351     <STRUCTURE STMT> :: = STRUCTURE <STRUCT STMT HEAD> <STRUCT STMT TAIL>

352     <STRUCT STMT HEAD> :: = <IDENTIFIER> : <LEVEL>
353                           | <IDENTIFIER> <MINOR ATTR LIST>: <LEVEL>
354                           | <STRUCT STMT HEAD> <DECLARATION> , <LEVEL>

355     <STRUCT STMT TAIL> :: = <DECLARATION>;

356     <STRUCT SPEC> :: = <STRUCT TEMPLATE> <STRUCT SPEC BODY>

357     <STRUCT SPEC BODY> :: = - STRUCTURE
358                           | <STRUCT SPEC HEAD> <LITERAL EXP OR *>)

359     <STRUCT SPEC HEAD> :: = - STRUCTURE (

360     <DECLARATION> :: = <NAME ID>
361                      | <NAME ID> <ATTRIBUTES>

362     <NAME ID> :: = <IDENTIFIER>
363                  | <IDENTIFIER> NAME

364     <ATTRIBUTES> :: = <ARRAY SPEC> <TYPE & MINOR ATTR>
365                     | <ARRAY SPEC>
366                     | <TYPE & MINOR ATTR>
G-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
367     <ARRAY SPEC> :: = <ARRAY HEAD> <LITERAL EXP OR *>)
368                     | FUNCTION
369                     | PROCEDURE
370                     | PROGRAM
371                     | TASK

372     <ARRAY HEAD> :: = ARRAY (
373                     | <ARRAY HEAD> <LITERAL EXP OR *>,

374     <TYPE & MINOR ATTR> :: = <TYPE SPEC>
375                            | <TYPE SPEC> <MINOR ATTR LIST>
376                            | <MINOR ATTR LIST>

377     <TYPE SPEC> :: = <STRUCT SPEC>
378                    | <BIT SPEC>
379                    | <CHAR SPEC>
380                    | <ARITH SPEC>
381                    | EVENT

382     <BIT SPEC> :: = BOOLEAN
383                   | BIT (<LITERAL EXP OR *>)

384     <CHAR SPEC> :: = CHARACTER (<LITERAL EXP OR *>)

385     <ARITH SPEC> :: = <PREC SPEC>
386                     | <SQ DQ NAME>
387                     | <SQ DQ NAME> <PREC SPEC>

388     <SQ DQ NAME> :: = <DOUBLY QUAL NAME HEAD> <LITERAL EXP OR *>)
389                     | INTEGER
390                     | SCALAR
391                     | VECTOR
392                     | MATRIX
393     <DOUBLY QUAL NAME HEAD> :: = VECTOR (
394                                | MATRIX (<LITERAL EXP OR *> ,
395     <LITERAL EXP OR *>  :: = <ARITH EXP>
396                            | *

397     <PREC SPEC> :: = SINGLE
398                    | DOUBLE

399     <MINOR ATTR LIST>  :: = <MINOR ATTRIBUTE>
400                           | <MINOR ATTR LIST> <MINOR ATTRIBUTE>

401     <MINOR ATTRIBUTE> :: =  STATIC
402                          | AUTOMATIC
403                          | DENSE
404                          | ALIGNED
405                          | ACCESS
406                          | LOCK (<LITERAL EXP OR *>)
407                          | REMOTE
408                          | RIGID
409                          | <INIT/CONST HEAD> <REPEATED CONSTANT>)
410                          | <INIT/CONST HEAD> *)
411                          | LATCHED
412                          | NONHAL (<LEVEL>)
413     <INIT/CONST HEAD> :: = INITIAL (
414                          | CONSTANT ( 
415                          | <INIT/CONST HEAD> <REPEATED CONSTATN> , 
416     <REPEATED CONSTANT> :: = EXPRESSION 
417                            | <REPEAT HEAD> <VARIABLE>
418                            | <REPEAT HEAD> <CONSTANT>
419                            | <NESTED REPEAT HEAD> <REPEATED CONSTANT>)
420                            | <REPEAT HEAD>

421     <REPEAT HEAD> :: = <ARITH EXP> #

422     <NESTED REPEAT HEAD> :: = <REPEAT HEAD> (
423                             | <NESTED REPEAT HEAD> <REPEATED CONSTANT> ,
November 2005 G-8



HAL/S Language Specification USA003088
32.0/17.0
424     <CONSTANT> :: = <NUMBER>
425                   | <COMPOUND NUMBER>
426                   | <BIT CONST>
427                   | <CHAR CONST>

428     <NUMBER> :: = <SIMPLE NUMBER>
429                 | <LEVEL>

430     <CLOSING> :: = CLOSE
431                  | CLOSE <LABEL>
432                  | <LABEL DEFINITION> <CLOSING>

433     <TERMINATOR> :: = TERMINATE
434                     | CANCEL

435     <TERMINATE LIST> :: = <LABEL VAR>
436                         | <TERMINATE LIST> , <LABEL VAR>

437     <WAIT KEY> :: = WAIT

438     <SCHEDULE HEAD> :: = SCHEDULE <LABEL VAR>
439                        | <SCHEDULE HEAD> AT <ARITH EXP>
440                        | <SCHEDULE HEAD> IN <ARITH EXP>
441                        | <SCHEDULE HEAD> ON <BIT EXP>

442     <SCHEDULE PHRASE> :: = <SCHEDULE HEAD>
443                          | <SCHEDULE HEAD> PRIORITY(<ARITH EXP>)
444                          | <SCHEDULE PHRASE> DEPENDENT

445     <SCHEDULE CONTROL> :: = <STOPPING>
446                           | <TIMING>
447                           | <TIMING> <STOPPING>

448     <TIMING> :: = <REPEAT> EVERY <ARITH EXP>
449                 | <REPEAT> AFTER <ARITH EXP>
450                 | <REPEAT>

451     <REPEAT> :: = , REPEAT

452     <STOPPING> :: = <WHILE KEY> <ARITH EXP>
453                   | <WHILE KEY> <BIT EXP>
G-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
November 2005 G-10



HAL/S Language Specification USA003088
32.0/17.0
 Appendix H    - SUMMARY OF OPERATORS
This section contains a series of tables which explicitly summarize the possible 
arithmetic, bit, character, and conditional operators used in forming expressions in the 
HAL/S language. 
The information found in this appendix has been abstracted from Chapter 6 of this 
Specification. 

 H.1   ARITHMETIC OPERATORS18

18.  Note that this table contains information found in Section 6.1.1.

OPERATORS NAME
ARITHMETIC 
PRECEDENCE

FORM COMMENTS

** Exponentiation 1 x**x Ordinary exponentiation
m**i Repeated Multiplication
m**0 Identity matrix
m**-i Repeated mult. of inverse
m**T Transpose of matrix

(blank) < > Product 2 m m matrix-matrix product
m v matrix-vector product
v m vector-matrix product
v v outer product
x m
m x scalar or integer product
v x with matrix/vector
x v
x x scalar or integer product with scalar

or integer
* Cross Product 3 v*v cross product of two 3-vectors
. Dot Product 4 v.v dot product of two vectors
/ Division 5 m/x division of left-hand term

v/x by scalar or integer
x/x

+ Addition 6 x+x
- Subtraction m+m Algebraic addition or

v+v subtraction; binary plus
x-x and minus
m-m
v-v
+x
+m
+v
-x
-m
-v

The following abbreviations apply:

i = positive integer literal

x = scalar or integer 

M = matrix

v = vector
H-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
 H.2   CHARACTER OPERATOR19

 H.3   BIT OPERATORS20

 H.4   CONDITIONAL AND EVENT OPERATORS21

19. Note that this table contains information found in Section 6.1.3.

OPERATOR NAME FORM
|| concatenation re||sult → result

20. Note that this table contains information found in Section 6.1.2.

OPERATOR NAME BIT OPERATOR
PRECEDENCE

FORM COMMENTS

||   
CAT   concatenation 1 B||B 11101  ||   010 →11101010

&   
AND    logical product 2 B&B Parallel operation bit by bit

|   
OR     logical sum 3 B|B Parallel operation bit by bit

¬
NOT     

logical
complement

Highest implied
by syntax B Parallel operation bit by bit

The following abbreviations apply: B= bit string or BOOLEAN

21. Note that this table contains information found in Sections 6.2 and 6.3.

OPERATOR NAME CONDITIONAL
PRECEDENCE

FORM COMMENTS

& 
AND

logical
product

1 C&C 
C AND C

True if both “C”s true

| 
OR

logical sum 2 C|C 
C OR C

True if either  “C” is true

¬
NOT

logical
complement

Highest implied
by syntax

¬C
NOT C 

Operand

The following abbreviations apply: “C”= any conditional operand.
November 2005 H-2



HAL/S Language Specification USA003088
32.0/17.0
 H.5   COMPARISON OPERATORS22

22.  Note that this table contains information found in Section 6.2.

OPERATOR USE COMMENTS
> 
>= 
¬<  
NOT< 
< 
<= 
¬>  
NOT> 

A > B
A >=B
A ¬< B

A < B
A <= B
A ¬>B

⎤
⎥
⎥
⎥ 
⎥
⎥
⎥
⎥
⎥
⎦

      
- Magnitude comparison: apply only to unarrayed scalar and integer data A

and B.

= 
NOT= 
¬= 

A = B
A ¬ = B

Equality/inequality for general data A and B.
H-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
November 2005 H-4



HAL/S Language Specification USA003088
32.0/17.0
 Appendix I - %MACROS
The specific details of %macro operation as well as the %macros available are 
implementation dependent.  A generic description of %macro syntax can be found in 
Section 11.2 of this document. 
Individual implementations of the HAL/S language may contain %macro capabilities.  
The documentation for each implementation (such as a User’s Manual) will contain the 
detailed descriptions of the available %macros.
I-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This page is intentionally left blank.
November 2005 I-2



HAL/S Language Specification USA003088
32.0/17.0
 Appendix J   - CHANGE HISTORY

Change History
Revision Release Date Change 

Authority
Sections Changed

01 01/12/81 Title Page, 2-7 - 2-9, 4-2, 4-15, 4-18 - 4-19, 4-22 
- 4-23, 4-27 - 4-29, 5-9, 5-12, 5-15 - 5.17.2, 5-
19, 6-3 - 6-7, 6-17, 6-25, 6-28 - 6-30, 6-32, 6-34 
- 6-36, 6-38 - 6-40, 7-6 - 7-7, 7-11 - 7-12, 7-14, 
7-20 - 7-23, 8-6 - 8-7, 8-11, 11-4, 11-6, 11-8, 11-
14, 11-17, 11-19, B-1, C-1 - C-8, C-10, D-1 - D-
3, E-2 - E-3, F-1, G-1 - G-11, H-2

02 25.0/9.0 09/03/93 Title Page, Section 6.2.4 (p.6-20)
03 27.0/11.0 05/22/96 Total Reprint
04 27.1/11.1 07/01/96 pp. - 6-3, 6-4, 6-13, 6-21, 11-2, D-1, G-1, G-6 - 

G-7, G-10
05 28.0/12.0 08/22/97 Total reprint to bring to HAL/S documentation 

standards and HTML compatibility.
CR12709 2.3.4 - p. 2-6

4.2.1 - pp. 4-3, 4-4
4.2.3 - p. 4-5
4.2.4 - p. 4-5
4.5 - P. 4-13
6.1.1 - p. 6-4
6.1.2 - pp. 6-6, 6-7, 6-11
6.2.1 - pp. 6-12, p. 6-13
6.2.2 - p. 6-13
6.2.4 - pp. 6-15, 6-17
6.3 - P. 6-7
11.2.1 - p. 11-2
App. C - p. C-4

CR12712 2.3.3 - p. 2-4
2.3.4 - p. 2-5
4.0 - p. 4-1
4.5 - pp. 4-11, 4-13
4.7 - pp. 4-15, 4-16
4.8 - pp. 4-19, 4-20
5.3.1 - p. 5-5
5.3.5 - p. 5-11
5.4.1 - p. 5-13
5.5 - P. 5-14
6.1.1 - pp. 6-2, 6-3, 6-4, 6-5
6.2.1 - pp. 6-13
6.4 - p. 6-19
6.5.1 - pp. 6-20, 6-21, 6-22, 6-23
6.5.2 - p. 6-24
J-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
6.5.3 - p. 6-25
6.5.4 - p. 6-26
6.5.5 - p. 6-28
6.6 - p. 6-28
6.7 - Deleted
7.3 - p. 7.3
7.4 - p. 7-6
7.5 - p. 7-8
7.6.4 - p. 7-11
7.6.5 - p. 7-12
8.3 - p. 8-4
8.6 - p. 8-7
11.2.1 - p. 11-3
11.2.2 - p. 11-4
11.2.3 - p. 11-5
11.3.1 - p. 11-10
11.4.1 - pp. 11-12, 11-13
App. 
A.2

- p. A-5

App. 
A.3

- pp. A-6, A-7, A-8

App. B - p. B-1
App. C - pp. C-1, C-2, C-3, C-4, C-5
App. D - pp. D-1, D-2
App. E - pp. E-1, E-2
App. F - p. F-1
App. G - pp. G-1, G-5, G-6, G-9, G-10
App. H - p. H-1
Index - pp. Index-1- Index-10
November 2005 J-2



HAL/S Language Specification USA003088
32.0/17.0

Index
Symbols
# See subscripts ..........................................................................................................5-7
$ See subscripts ...........................................................................................................2-7
%macros .............................................................................................................. I-1, 11-3
**See exponents ...........................................................................................................2-7
*See asterisk...............................................................................................................4-12
|| See CAT.....................................................................................................................6-6
¢ See escape character ................................................................................................2-6

A
ABS..............................................................................................................................C-1
ABVAL..........................................................................................................................C-3
ACCESS ................................................................................................. 3-7, 4-12 to 4-13

FUNCTION..................................................................................................................3-11
NAME........................................................................................................... 11-11, 11-17
PROCEDURE ................................................................................................................3-9

AFTER ..........................................................................................................................8-4
ALIGNED ....................................................................................................................4-12

NAME................................................................................................ 11-11, 11-13, 11-17
STRUCTURE....................................................................................................... 4-7, 4-13

ARCCOS......................................................................................................................C-2
ARCCOSH...................................................................................................................C-2
ARCSIN .......................................................................................................................C-2
ARCSINH.....................................................................................................................C-2
ARCTAN ......................................................................................................................C-2
ARCTAN2 ....................................................................................................................C-2
ARCTANH....................................................................................................................C-2
arguments and parameters

FUNCTION............................................................................................ 3-10, 6-18 to 6-19
NAME.......................................................................................................................11-20
PROCEDURE .............................................................................................. 3-8, 7-5 to 7-7

ARRAY........................................................................................................................4-11
arrayness ....................................................................................................... 5-10 to 5-11
arrays ..........................................................................................................................4-11

arrayed assignments .......................................................................................................7-3
arrayed comparisons .....................................................................................................6-15
in expressions ................................................................................................................6-9
order of unraveling ........................................................................................................5-13
subscripts.............................................................................................................. 5-3, 5-8
within subscripts ...........................................................................................................5-11

ASSIGN arguments and parameters .......................................................... 3-8, 7-5 to 7-7
asterisk

CHARACTER(*) ............................................................................... 4-16, 6-18, 7-6, 11-12
in comments ..................................................................................................................2-8
in initialization.................................................................................................. 4-18 to 4-20
LOCK(*) ..................................................................................................... 4-12, 7-6, 8-11
Index-1 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
STRUCTURE(*)................................................................................................ 4-17, 11-12
subscripts..................................................................................... 4-12 to 4-13, 5-7, 11-12

AT
subscripts........................................................................................................... 5-7 to 5-9
with SCHEDULE statement...............................................................................................8-3

attributes .....................................................................................................................4-10
AUTOMATIC .................................................................................................. 4-12 to 4-13

FUNCTION..................................................................................................................3-10
NAME............................................................................................. 11-11, 11-13 to 11-14
PROCEDURE ................................................................................................................3-9

B
BIN............................................................................................................. 2-5, 6-23, 6-25
BIT ..............................................................................................................................4-17

assignment ....................................................................................................................7-4
comparison..................................................................................................................6-13
conversion..................................................................................... 6-23 to 6-24, 6-27, D-1
initialization..................................................................................................................4-20
literals...........................................................................................................................2-5
operators....................................................................................................... 6-6, F-1, H-2

blanks............................................................................................................................2-8
BOOLEAN See also BIT .............................................................................................4-17

C
CALL.............................................................................................................................7-4

NAME.......................................................................................................................11-20
CANCEL ............................................................................................................ 8-5 to 8-6
CASE See DO CASE....................................................................................................7-9
CAT (||).................................................................................................................. 6-6, 6-8
catenation See CAT......................................................................................................6-6
CEILING.......................................................................................................................C-1
CHAR............................................................................................................................2-6
CHARACTER..............................................................................................................4-16

assignment ....................................................................................................................7-4
CHARACTER(*) ............................................................................... 4-16, 6-18, 7-6, 11-12
comparison..................................................................................................................6-14
conversion...........................................................................................................6-27, D-2
initialization..................................................................................................................4-20
literals...........................................................................................................................2-6
operators......................................................................................................  6-8, F-2, H-2

CLOCKTIME................................................................................................................C-3
CLOSE........................................................................................................................3-11
COLUMN ..................................................................................... 10-2, 10-5 to 10-6, 10-9
comments .....................................................................................................................2-8
comparisons

arithmetic ....................................................................................................................6-12
arrayed .......................................................................................................................6-15
BIT.............................................................................................................................6-13
November 2005 Index-2



HAL/S Language Specification USA003088
32.0/17.0
CHARACTER...............................................................................................................6-14
operators......................................................................................................................H-3
STRUCTURE...............................................................................................................6-15

COMPOOL....................................................................................................................3-5
compilation ....................................................................................................................3-2
RIGID................................................................................................................. 3-7, 4-13
template........................................................................................................................3-6

CONSTANT ................................................................................................................4-18
conversions

BIT............................................................................................... 6-23 to 6-24, 6-27, D-1
CHARACTER.......................................................................................................6-27, D-2
INTEGER...................................................................... 6-3, 6-12, 6-20 to 6-22, 6-27, D-1
MATRIX ................................................................................................ 6-20 to 6-22, 6-27
precision ....................................................................................... 6-20 to 6-22, 6-27, D-1

in assignments ....................................................................................................... 7-3
in comparisons ..................................................................................................... 6-12
in expressions ..............................................................................................6-3 to 6-5

SCALAR ....................................................................................... 6-20 to 6-22, 6-27, D-1
SUBBIT ......................................................................................................................6-25
VECTOR............................................................................................... 6-20 to 6-22, 6-27

COS .............................................................................................................................C-2
COSH...........................................................................................................................C-2

D
data

attributes .....................................................................................................................4-10
initialization..................................................................................................................4-17
type............................................................................................................................4-15

DATE............................................................................................................................C-3
DEC ........................................................................................................... 2-5, 6-23, 6-25
DECLARE...................................................................................................................4-10
DENSE........................................................................................................................4-12

in PROCEDUREs ...........................................................................................................7-6
NAME........................................................................................................... 11-11, 11-13
STRUCTURE....................................................................................................... 4-7, 4-13

DEPENDENT................................................................................................................8-4
DET..............................................................................................................................C-3
DIV...............................................................................................................................C-1
DO CASE......................................................................................................... 7-9 to 7-10
DO END........................................................................................................................7-8
DO FOR......................................................................................................................7-11

TEMPORARY variables .................................................................................. 11-9 to 11-10
DO UNTIL ...................................................................................................................7-10
DO WHILE ..................................................................................................................7-10
DOUBLE .................................................................................................... 2-4, 4-16, 6-27

E
ELSE.............................................................................................................................7-2
Index-3 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
in DO CASE statement...................................................................................................7-10
END ............................................................................................................... 7-13 to 7-14
EQUATE ...................................................................................................................11-27
ERRGRP......................................................................................................................C-3
ERRNUM .....................................................................................................................C-3
escape character (¢) .....................................................................................................2-6

REPLACE .......................................................................................................... 4-3 to 4-5
EVENT.............................................................................................................. 4-13, 4-17

control ..........................................................................................................................8-8
initialization..................................................................................................................4-20
NAME.......................................................................................................................11-14
operators.............................................................................................................6-16, H-2

EVERY............................................................................................................... 8-3 to 8-4
EXCLUSIVE

FUNCTION..................................................................................................................3-10
PROCEDURE ................................................................................................................3-8

EXIT............................................................................................................... 7-14 to 7-15
EXP..............................................................................................................................C-2
exponents .............................................................................................................2-7, H-1
EXTERNAL...................................................................................................................3-6

F
FILE ........................................................................................................... 10-19 to 10-20
FLOOR.........................................................................................................................C-1
formats ................................................................................................................10-7, E-1
FOR See DO FOR......................................................................................................7-11
FUNCTION ........................................................................................................... 3-3, 3-4

arguments and parameters ....................................................................... 3-10, 6-18 to 6-19
NAME .............................................................................................................. 11-20

compilation ....................................................................................................................3-2
header ..........................................................................................................................3-9
inline ..........................................................................................................................11-1
label ...........................................................................................................................4-14
name scope.................................................................................................................3-12
normal ........................................................................................................................6-17
template........................................................................................................................3-6

G
GO TO ........................................................................................................... 7-14 to 7-15

H
HEX............................................................................................................ 2-5, 6-23, 6-25

I
identifiers.......................................................................................................................2-4
IF...................................................................................................................................7-1
IGNORE........................................................................................................................9-3
IN ..................................................................................................................................8-3
November 2005 Index-4



HAL/S Language Specification USA003088
32.0/17.0
INDEX..........................................................................................................................C-4
INITIAL........................................................................................................................4-18
initialization .................................................................................................................4-17
INTEGER............................................................................................................ 2-4, 4-16

assignment ....................................................................................................................7-3
comparison..................................................................................................................6-12
conversion..................................................................... 6-3, 6-12, 6-20 to 6-22, 6-27, D-1
initialization..................................................................................................................4-19
literals...........................................................................................................................2-5
operators...............................................................................................................6-1, H-1

INVERSE .....................................................................................................................C-3

L
LATCHED ......................................................................................................... 4-13, 4-20
LENGTH.......................................................................................................................C-4
LINE...................................................................................................... 10-2, 10-5 to 10-7
literals............................................................................................................................2-4
LJUST..........................................................................................................................C-4
LOCK ...................................................................................................... 4-12 to 4-13, 7-6

in UPDATE block ..........................................................................................................8-11
LOCK(*) ..................................................................................................... 4-12, 7-6, 8-11

LOG .............................................................................................................................C-2

M
macros

%.........................................................................................................................11-3, I-1
REPLACE See REPLACE ................................................................................................4-2

MATRIX.......................................................................................................................4-16
assignment ....................................................................................................................7-3
comparison..................................................................................................................6-12
conversion............................................................................................. 6-20 to 6-22, 6-27
initialization..................................................................................................................4-19
operators...............................................................................................................6-1, H-1
subscripts....................................................................................................................5-10

MAX .............................................................................................................................C-5
MIDVAL........................................................................................................................C-1
MIN ..............................................................................................................................C-5
MOD.............................................................................................................................C-1

N
NAME........................................................................................................................11-10

arguments and parameters ...........................................................................................11-20
assignment ................................................................................................. 11-18 to 11-19
comparison................................................................................................. 11-19 to 11-20
dereferencing .............................................................................................. 11-15 to 11-16
identifiers ..................................................................................................................11-10
initialization................................................................................................. 11-22 to 11-23
referencing ................................................................................................................11-16
Index-5 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
STRUCTURE..................................................................... 11-13 to 11-15, 11-23 to 11-27
subscripts................................................................................................... 11-17 to 11-18

name scope ................................................................................................................3-11
NEXTIME.....................................................................................................................C-3
NONHAL.....................................................................................................................4-15

O
OCT ........................................................................................................... 2-5, 6-23, 6-25
ODD.............................................................................................................................C-1
OFF ERROR.................................................................................................................9-1
ON.................................................................................................................................8-4
ON ERROR...................................................................................................................9-1
operators

arithmetic ..............................................................................................................6-1, H-1
BIT............................................................................................................... 6-6, F-1, H-2
CHARACTER................................................................................................. 6-8, F-2, H-2
comparison...................................................................................................................H-3
computable at compile time.................................................................................... F-1 to F-2
conditional ...........................................................................................................6-10, H-2
EVENT ...............................................................................................................6-16, H-2
operand data type ...........................................................................................................6-2
order of precedence ........................................................... 6-4, 6-6, 6-10, 6-16, H-1 to H-2

P
PAGE ....................................................................................................... 10-2, 10-5, 10-7
precedence

EVENT .......................................................................................................................6-16
ON ERROR ...................................................................................................................9-4
operators.......................................................................... 6-4, 6-6, 6-10, 6-16, H-1 to H-2

precision
conversion..................................................................................... 6-20 to 6-22, 6-27, D-1

in assignments ....................................................................................................... 7-3
in comparisons ..................................................................................................... 6-12
in expressions ..............................................................................................6-3 to 6-5

DOUBLE.................................................................................................... 2-4, 4-16, 6-27
in PROCEDUREs ...........................................................................................................7-6
of FUNCTIONs................................................................................................ 6-18 to 6-19
SINGLE ..................................................................................................... 2-4, 4-16, 6-27

PRIO ............................................................................................................................C-3
PRIORITY.....................................................................................................................8-4
PROCEDURE...............................................................................................................3-3

arguments and parameters ............................................................................. 3-8, 7-5 to 7-7
NAME ................................................................................................11-20 to 11-21

CALL statement................................................................................................... 7-1 to 7-4
compilation ....................................................................................................................3-2
header ..........................................................................................................................3-8
name scope.................................................................................................................3-12
template........................................................................................................................3-6
November 2005 Index-6



HAL/S Language Specification USA003088
32.0/17.0
PROD...........................................................................................................................C-5
PROGRAM ...................................................................................................................3-2

compilation ....................................................................................................................3-1
header ..........................................................................................................................3-7
NAME.......................................................................................................................11-13
template........................................................................................................................3-6

R
RANDOM.....................................................................................................................C-3
RANDOMG ..................................................................................................................C-3
READ

I/O formats ..................................................................................................................10-7
READALL....................................................................................................................10-1
READ..........................................................................................................................10-1
REENTRANT

FUNCTION..................................................................................................................3-10
PROCEDURE ..................................................................................................... 3-8 to 3-9

REMAINDER ...............................................................................................................C-1
REMOTE........................................................................................................ 4-12 to 4-13

in PROCEDUREs ...........................................................................................................7-6
NAME.......................................................................................................................11-14

REPEAT......................................................................................................... 7-14 to 7-15
AFTER .........................................................................................................................8-4
EVERY .............................................................................................................. 8-3 to 8-4

REPLACE .....................................................................................................................4-2
parametric .......................................................................................................... 4-3 to 4-4

reserved words .............................................................................................................2-4
RESET...................................................................................................... 8-8 to 8-10, 9-3
RETURN................................................................................................... 3-11, 7-7 to 7-8
RIGID..........................................................................................................................4-13

COMPOOL....................................................................................................................3-7
STRUCTURE........................................................................................... 4-7, 4-13 to 4-14

RJUST .........................................................................................................................C-4
ROUND........................................................................................................................C-1
RUNTIME.....................................................................................................................C-3

S
SCALAR.............................................................................................................. 2-4, 4-16

assignment ....................................................................................................................7-3
comparison..................................................................................................................6-12
conversion..................................................................................... 6-20 to 6-22, 6-27, D-1
initialization..................................................................................................................4-19
literals...........................................................................................................................2-5
operators...............................................................................................................6-1, H-1

SCHEDULE ..................................................................................................................8-2
SEND ERROR...................................................................................................... 9-1, 9-4
SET........................................................................................................... 8-8 to 8-10, 9-3
SHL..............................................................................................................................C-4
Index-7 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
SHR .............................................................................................................................C-4
SIGN ............................................................................................................................C-1
SIGNAL..................................................................................................... 8-9 to 8-10, 9-3
SIGNUM.......................................................................................................................C-1
SIN...............................................................................................................................C-2
SINGLE...................................................................................................... 2-4, 4-16, 6-27
SINH ............................................................................................................................C-2
SIZE.............................................................................................................................C-5
SKIP............................................................................................. 10-2, 10-5 to 10-6, 10-9
SQRT...........................................................................................................................C-2
STATIC........................................................................................................................4-12

FUNCTION..................................................................................................................3-10
NAME............................................................................................. 11-11, 11-13 to 11-14
PROCEDURE ................................................................................................................3-9

STRUCTURE..............................................................................................................4-17
ALIGNED ............................................................................................................ 4-7, 4-13
assignment ....................................................................................................................7-4
comparison..................................................................................................................6-15
DENSE............................................................................................................... 4-7, 4-13
initialization..................................................................................................................4-20
NAME............................................................................... 11-13 to 11-15, 11-23 to 11-27
qualified ...........................................................................4-17, 5-1 to 5-2, 11-23 to 11-24
referencing ....................................................................................................................5-1
RIGID..................................................................................................... 4-7, 4-13 to 4-14
STRUCTURE(*)................................................................................................ 4-17, 11-12
subscripts........................................................................................................... 5-3 to 5-7
template........................................................................................................................4-5
unqualified................................................................................................. 4-17, 5-1 to 5-2

SUBBIT.......................................................................................................................6-25
subscripts.............................................................................................................. 2-7, 5-2

array ................................................................................................................. 5-3 to 5-8
arrayed .......................................................................................................................5-11
asterisk ........................................................................................ 4-12 to 4-13, 5-7, 11-12
AT..................................................................................................................... 5-7 to 5-9
component ......................................................................................................... 5-3 to 5-9
MATRIX ......................................................................................................................5-10
NAME........................................................................................................ 11-17 to 11-18
order of unraveling ........................................................................................................5-13
STRUCTURE...................................................................................................... 5-3 to 5-7
TO .................................................................................................................... 5-7 to 5-9
VECTOR.....................................................................................................................5-10

SUM.............................................................................................................................C-5
syntax diagrams................................................................................................. 2-1 to 2-2
SYSTEM .......................................................................................................................9-3

T
TAB ....................................................................................................... 10-2, 10-5 to 10-6
TAN..............................................................................................................................C-2
November 2005 Index-8



HAL/S Language Specification USA003088
32.0/17.0
TANH ...........................................................................................................................C-2
TASK

header .................................................................................................................. 3-3, 3-7
label ...........................................................................................................................4-15
NAME.......................................................................................................................11-13

TEMPORARY ..................................................................................................11-7, 11-15
loops ........................................................................................................... 11-9 to 11-10

TERMINATE ...................................................................................................... 8-6 to 8-7
TRACE.........................................................................................................................C-3
TRANSPOSE...............................................................................................................C-3
TRIM ............................................................................................................................C-4
TRUNCATE..................................................................................................................C-1

U
UNIT.............................................................................................................................C-3
UNTIL See also DO UNTIL.........................................................................................7-10

with SCHEDULE statement.................................................................................... 8-4 to 8-5
UPDATE block ................................................................................. 3-4 to 3-5, 4-12, 8-11

header ..........................................................................................................................3-7
within REENTRANT block.................................................................................... 3-9 to 3-10

UPDATE PRIORITY......................................................................................................8-8

V
variables........................................................................................................................2-4
VECTOR.....................................................................................................................4-16

assignment ....................................................................................................................7-3
comparison..................................................................................................................6-12
conversion............................................................................................. 6-20 to 6-22, 6-27
initialization..................................................................................................................4-19
operators...............................................................................................................6-1, H-1
subscripts....................................................................................................................5-10

W
WAIT .................................................................................................................. 8-7 to 8-8
WHILE See also DO WHILE.......................................................................................7-10

with SCHEDULE statement.................................................................................... 8-4 to 8-5
WRITE ........................................................................................................... 10-4 to 10-5

I/O formats ..................................................................................................................10-7

X
XOR .............................................................................................................................C-5
Index-9 November 2005



USA003088 HAL/S Language Specification
32.0/17.0
This is the Last Page of this Document
November 2005 Index-10



DRD NUMBER: 1.4.3.8-a DOCUMENT NUMBER: USA003088

TITLE: HAL/S Language Specification 
 

 

Submit NASA distribution changes, including initiator’s name and phone number, to JSC Data Management/BV or call 281-
244-8506.  Submit USA distribution changes to USA Data Management/USH-121E or via e-mail to usadm@usa-
spaceops.com.  Most documents are available electronically via USA Intranet Web (usa1.unitedspacealliance.com), Space 
Flight Operations Contract (SFOC), SFOC Data and Deliverables. 

Indicates hardcopy 

11/23/2005 7:35 AM 

 
 
NASA-JSC 
*BV N. Moses 
MS4 D. Stamper  
EV111 EV Library (D. Wall) 
 
 
USA-Houston 
*USH-121G SFOC Technical Library 
USH-634G Abel Puente 
USH-64A6X L.W. Wingo 
USH-633L Anita Senviel 
USH-633L Benjamin L. Peterson 
USH-633L Cory L. Driskill 
USH-633L Judy M. Hardin 
USH-633L Mark E. Lading 
USH-633L Quinn L. Larson 
USH-633L James T. Tidwell 
USH-633L Vicente Aguilar 
USH-633L Betty A. Pages 
USH-633L Jeremy C. Battan 
USH-633L George H. Ashworth 
USH-634L Mark Caronna 
USH-634L Burk J. Royer 
*USH-635L Joy C. King 
USH-635L Ling J. Kuo 
USH-635L Trang K. Nguyen 
USH-635L Billy L. Pate 
USH-635L Karen H. Pham 
*USH-635L Dan A. Strauss 
USH-635L Pete Koester 
USH-632L Renne Siewers 
*USH-635L Barbara Whitfield (2) 
 
Boeing 
HS1-40   B. Frere 
blake.a.frere@boeing.com 

 
 
* Denotes hard copy 


	COVER
	SIGNATURE
	REVISION LOG
	LIST OF EFFECTIVE PAGES
	PREFACE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1.0 INTRODUCTION
	1.1 Purpose of the Document.
	1.2 Review of the Language.
	1.3 Outline of the Document.

	2.0 SYNTAX DIAGRAMS AND HAL/S PRIMITIVES
	2.1 The HAL/S Syntax Diagram.
	2.2 The HAL/S Character Set.
	2.3 HAL/S Primitives.
	2.3.1 Reserved Words.
	2.3.2 Identifiers.
	2.3.3 Numbers.
	2.3.4 Literals.

	2.4 One- and Two-Dimensional Source Formats.
	2.5 Comments and Blanks in the Source Text.

	3.0 HAL/S BLOCK STRUCTURE AND ORGANIZATION
	3.1 The Unit of Compilation.
	3.2 The PROGRAM Block.
	3.3 PROCEDURE, FUNCTION, and TASK Blocks.
	3.4 The UPDATE Block.
	3.5 The COMPOOL Block.
	3.6 Block Templates.
	3.7 Block Delimiting Statements.
	3.7.1 Simple Header Statements
	3.7.2 The Procedure Header Statement.
	3.7.3 The Function Header Statement.
	3.7.4 The CLOSE Statement.

	3.8 Name Scope Rules.

	4.0 DATA AND OTHER DECLARATIONS
	4.1 The Declare Group.
	4.2 The REPLACE Statement.
	4.2.1 Form of REPLACE Statement.
	4.2.2 Referencing REPLACE Statements.
	4.2.3 Identifier Generation
	4.2.4 Identifier Generation With Macro Parameters.

	4.3 The Structure Template.
	4.4 The DECLARE Statement.
	4.5 Data Declarative Attributes.
	4.6 Label Declarative Attributes.
	4.7 Type Specification.
	4.8 Initialization.

	5.0 DATA REFERENCING CONSIDERATIONS
	5.1 Referencing Simple Variables.
	5.2 Referencing Structures
	5.3 Subscripting
	5.3.1 Classes of Subscripting
	5.3.2 The General Form of Subscripting.
	5.3.3 Structure Subscripting.
	5.3.4 Array Subscripting.
	5.3.5 Component Subscripting.

	5.4 The Property of Arrayness.
	5.4.1 Arrayness of Subscript Expressions

	5.5 The Natural Sequence of Data Elements

	6.0 DATA MANIPULATION AND EXPRESSIONS
	6.1 Regular Expressions.
	6.1.1 Arithmetic Expressions.
	6.1.2 Bit Expressions.
	6.1.3 Character Expressions.
	6.1.4 Structure Expressions.
	6.1.5 Array Properties of Expressions.

	6.2 Conditional Expressions.
	6.2.1 Arithmetic Comparisons.
	6.2.2 Bit Comparisons.
	6.2.3 Character Comparisons.
	6.2.4 Structure Comparisons.
	6.2.5 Comparisons Between Arrayed Operands.

	6.3 Event Expressions.
	6.4 Normal Functions.
	6.5 Explicit Type Conversions.
	6.5.1 Arithmetic Conversion Functions.
	6.5.2 The Bit Conversion Function.
	6.5.3 The Character Conversion Function.
	6.5.4 The SUBBIT pseudo-variable.
	6.5.5 Summary of Argument Types.

	6.6 Explicit Precision Conversion.

	7.0 EXECUTABLE STATEMENTS
	7.1 Basic Statements.
	7.2 The IF Statement.
	7.3 The Assignment Statement.
	7.4 The CALL Statement.
	7.5 The RETURN Statement.
	7.6 The DO…END Statement Group.
	7.6.1 The Simple DO Statement.
	7.6.2 The DO CASEStatement.
	7.6.3 The DO WHILE and UNTIL Statements.
	7.6.4 The Discrete DO FOR Statement.
	7.6.5 The Iterative DO FOR Statement.
	7.6.6 The END Statement.

	7.7 Other Basic Statements.

	8.0 REAL TIME CONTROL
	8.1 Real Time Processes and the RTE.
	8.2 Timing Considerations.
	8.3 The SCHEDULE Statement.
	8.4 The CANCEL Statement.
	8.5 The TERMINATE Statement.
	8.6 The WAIT statement.
	8.7 The UPDATE PRIORITY Statement.
	8.8 Event Control.
	8.9 Process-events.
	8.10 Data Sharing and the UPDATE Block.

	9.0 ERROR RECOVERY AND CONTROL
	9.1 The ON ERROR Statement.
	9.2 The SEND ERROR Statement.

	10.0 INPUT/OUTPUT STATEMENTS
	10.1 Sequential I/O Statement.
	10.1.1 The READ and READALL Statements.
	10.1.2 The WRITE Statement.
	10.1.3 I/O Control Functions.
	10.1.4 FORMAT Lists.

	10.2 Random Access I/O and the FILE Statement.

	11.0 SYSTEMS LANGUAGE FEATURES
	11.1 INTRODUCTION.
	11.2 PROGRAM ORGANIZATION FEATURES
	11.2.1 Inline Function Blocks.
	11.2.2 %macro References.
	11.2.3 Operand Reference Invocations.
	11.2.4 The %Macro Call Statement.

	11.3 Temporary Variables.
	11.3.1 Regular TEMPORARY Variables.
	11.3.2 Loop TEMPORARY Variables.

	11.4 The NAME Facility
	11.4.1 Identifiers with the NAME Attribute
	11.4.2 The NAME Attribute in Structure Templates.
	11.4.3 Declarations of Temporaries.
	11.4.4 The ‘Dereferenced’ Use of Simple NAME Identifiers.
	11.4.5 Referencing NAME Values.
	11.4.6 Changing NAME Values.
	11.4.7 NAME Assignment Statements.
	11.4.8 NAME Value Comparisons.
	11.4.9 Argument Passage Considerations.
	11.4.10 Initialization.
	11.4.11 Notes on NAME Data and Structures.

	11.5 The EQUATE Facility.
	11.5.1 The EQUATE Statement.
	11.5.2 EQUATE Statement Placement.


	Appendix A - A SYNTAX DIAGRAM SUMMARIES
	A.1 SYNTAX PRIMITIVE REFERENCES
	A.2 SYNTAX DIAGRAM CROSS REFERENCES
	A.3 SYNTAX DIAGRAM LISTING

	Appendix B - HAL/S KEYWORDS
	Appendix C - BUILT-IN FUNCTIONS
	Appendix D - STANDARD CONVERSION FORMATS
	Appendix E - STANDARD EXTERNAL FORMATS
	Appendix F - COMPILE-TIME COMPUTATIONS
	Appendix G - BNF WORKING GRAMMAR of HAL/S
	Appendix H - SUMMARY OF OPERATORS
	H.1 ARITHMETIC OPERATORS
	H.2 CHARACTER OPERATOR
	H.3 BIT OPERATORS
	H.4 CONDITIONAL AND EVENT OPERATORS
	H.5 COMPARISON OPERATORS

	Appendix I - %MACROS
	Appendix J - CHANGE HISTORY
	Distribution

