
111111111111111 IHI 1111111111111111111~11 l~l I~~ 1~11111111~ ~II
United States Patent c191

Khenson et al.

[54] METHODS AND APPARATUS FOR BOOTING
A COMPUTER HAVING A REMOVABLE
MEDIA DISK DRIVE

[75] Inventors: Eugene Khenson, San Francisco;
Ronald J. Stephens, San Jose, both of
Calif.

[73] Assignee: Iomega Corporation, Roy, Utah

[21] Appl. No.: 599,346

[22] Filed: Feb. 9, 1996

[51] Int. Cl.6
•• G06F 9/00

[52] U.S. Cl .. 395/652; 395/681
[58] Field of Search 395/375, 652,

[56]

4,679,166
5,325,532
5,418,918
5,446,877
5,452,454
5,463,766
5,497,492
5,542,082

395/651, 653, 681

References Cited

U.S. PXI'ENT DOCUMENTS

7/1987 Berger et al 3641200
6/1994 Crosswy et al. 395noo
5/1995 Vander Kamp et al 395/375
8/1995 Liu et al ..•..•••••••.•..••••.......•....• 395/180
9/1995 Basu .. 395noo

10/1995 Scbieve et al 395/650
3/1996 Zbikowski et al 395/652
7/1996 Solhjell 395/442

10

US005694600A

[11] Patent Number:

[45] Date of Patent:

5,694,600
Dec. 2, 1997

OTHER PUBLICJITlONS

American National Standard on Information Technology­
;IT Attachment Interface with Extensions (JITA-2), Jan. 17,
1995.
Microsoft Corporation, Media Status Notification Support
Specification (Rev. 1.02 19%).

Primary Examiner-Kevin A. Kriess
Attorney, Agen~ or Firm-Woodcock Washburn Kurtz
Mackiewicz & Norris LLP

[57] ABSTRACT

Method and apparatus are disclosed for booting a computer
from a removable media disk drive. The method and appa­
ratus are suited to an environment in which the removable
media disk drive is configured as the first fixed disk drive in
the computer. The removable media drive responds to test­
ing during the power-up as if it contains media, whether or
not media is present Thus, the removable media drive is
recognized by the BIOS. Additionally, a substitute master
boot record is provided to the computer from a Read-Only
Memory device contained on the removable media drive in
response to a request for the master boot record of the media.
Control of the boot sequence is thereby gained. The substi­
tute master boot record loads a boot program that allows
booting from any media or physical disk drive independent
of the CMOS configuration.

35 Claims, 10 Drawing Sheets

ili
movable media
ve indicates

1 ady even if no
/ rtridge inserted

~---.-----' I
I

rr-~~-~;

BIOS executes
what ii believes

_ is the MBR, but
actually executes
UBR.

~
ok removable
edia drive
ivers into DOS

hile 10 SYS
ading"

/
/

/

110

Ii ~XED DISK

p. -. 250 I
DRIVE

230 I
l DISPLAY ~ I

__ J.1

I ~ z .LL

240
- VJ I REMOVABLE

I MEDIA

~ - ORIVE 210

-
_J

,------------------------------------,---------,---,
I'

fl

ROM
CMOS

(BIOS) 228 t 226t _.,
225 ~ I 227 HI -

200

::z 7ZZZ. ;:zz 7YZZ

I l --I ---1
"'

VIDEO u I DISK n: CARD CARD

ROM CPU (BIOS)
224 222"

~::z ::z::z

2231 ' ' :
L~---~

FIG. 1

~ • 00
•
~
~

"""'" ~ a

~
~

~
N

'#

"""" \C
\C
~

00
t:T'
~

~

""""
~

"""" 0

th ,,,.
~
\C
~ ,,,.
~ = =

DATA ROM ROM
1K 32K ·

324 322 -

t
l ,, f

TIMING CPU
- PROCESSOR 8052

TO/
FROM 332 330
DRIVE - -

f J
MOTOR RLL

CONTROL ENCODER

TO 336
DRIVE -

334

J -

TO MEDIA

FROM MEDIA

BUFFER
RAM
32K

326

j

CONTROLLER
8052

320 -
J

RLL
DECODER

338
-

I

210

IDE BUS
- - CONNECTION

328
-

FIG. JA

Cj
• 00 •

~ a

~

~
"'N
~

~
.........

g:
fl
N

~
~
0

Ot ._.
~

"f ._.
~ = =

U.S. Patent Dec. 2, 1997 Sheet 3of10 5,694,600

,----------------,
I 31 o I

: 311~ DATA I :
I I
I I

: 312~ ERROR/FEATURES

I

313-1~~~s-Ec_r_o_R_c_o_uN_r~~~

315 JI

SECTOR NUMBER (CHS)
LBA BITS 0-7 (LBA)

CYLINDER LOW (CHS)
LBA BITS 8-15 (LBA)

CYLINDER HIGH (CHS)
LBA BITS 16-23 (LBA)

DEVICE/HEAD (CHS)
LBA BITS 24-27 (LBA)

I
I
I
I
I
I
I
I

318~ STATUS/ COMMAND i

L----------------~

FIG. JB

'· ~ (l/",

POWER ON
or

HARD RESET

NO MEDIA
INIT

MEDIA PRESENT
INIT

-- INSERT

Button Eject
LBA0-0

\--INSERT

EJECT

• e(;.
~~ ~O~r-.'l\

~~ <Q~v '~· />.CKllO'lll£\lGE MEDI/>. C\-\f>.!IG(

SOFT RESET
WHILE LOCKED

ANYTHING· 1103
UNLOCK. ------- 1

1100
ANYTHING:

1101
ANYTHING: t INIT

--INSERT •'

Button Eject

INIT

&
1102 ('.')~

--c
Q)

0 (/J

:::::E ~
CJ c..

:; 0
'<(·­o "0

" Q) E
~ SOFT RESET ANYTHING: ~

1014 ~)'

b..!!DA" CMD
~ (no media)

.r--- INSERT .. ~

Button Eject

~------ Button Eject ------ FIG. JC

Cj
• r.n
•

~ a
~

~
,,.t-J

....
~
--.J

ga
l
.l::o.

~ =

Ol ,,.
~
\C
~ ,,.
~ = =

U.S. Patent Dec. 2, 1997 Sheet 5of10 5,694,600

TEST SYSTEM

10

Removable media
drive indicates

1 ready even if no
/ cartridge inserted
I

~-------1/

30 I
.-.---'--__:1--__ ,

CHECK FIXED
DISK

35

CHECK ROM

40

GET MBR

LOAD UBP

70

RUN UBP
(Get Boot Section)

80

SET HOOKS INTO
BIOS

I

BIOS executes
what it believes
is the MBR, but
actually executes
UBR.

FIG. 2

90

100

LOAD 10.SYS

Hook removable
media drive
drivers into DOS
while 10 SYS
loading/

/
/

/

110

LOAD MSDOS.SYS

LOAD
COMMAND.COM

C:> or D:>

120

130

U.S. Patent

140

CHECK FIXED
DISK

142

SEND COMMAND TO
FIXED DISK

NO

CHECK
COMPLATE

Dec. 2, 1997 Sheet 6of10 5,694,600

160

YES PROCESS COMMAND
AS CONVENTIONAL

FIXED DISK

162

YES
INDICATE

SUCCESSFUL
COMPLETION

164

YES PROCESS COMMAND

166

YES
RETURN UBR

168

YES

170

RETURN SECTORS
FILLED WITH

FRh

FAIL COMMAND

FIG. 2A

U.S. Patent Dec. 2, 1997 Sheet 7of10 5,694,600

RUN UBR

410

SCAN UBR FOR
ACTIVE PARTITION

414

GET CURRENT DRIVE
PARAMETERS FROM

CMOS

418

FIND BOOT SECTOR
USING OFFSET 8

INTO PARTITION
TABLE AND CMOS

SETTINGS

420

ISSUE READ LONG
OF MBR TO DRIVE

421

422

ISSUE WRITE LONG
REQUESTING UBP

READ AND CHECK
FOR UBP SIGNATURE

424

RUN UBR

430

YES PATCH BOOT
SECTOR

NO

RUN BOOT
SECTOR

CHECK TAG FIELD 432
RETURNED IN ECC

FIG. 2B

U.S. Patent Dec. 2, 1997

RUN UBR

500

MOVE UBP TO
MAKE ROOM FOR

BOOT SECTOR

502

TEST CONTROLLERS
FOR AVAILABLE

DRIVES

504

CHECK REMOVABLE
MEDIA DRIVE FOR

MEDIA

READ BOOT RECORDS
OF AVAILABLE

DRIVES AND SEARCH
FOR ACTIVE PARTITION

506

Sheet 8of10

508

WAIT FOR USER
DRIVE SELECTION

OR DEFAULT

5,694,600

509

LOAD BOOT SECTOR

NO 514

HOOK INT 13
AND PATCH DISK
PARAMETER TABLE

516

HOOK INT 15
AND SET ALL

REGISTERS

PASS CONTROL
TO BOOT SECTOR

512

FIG. 2C

U.S. Patent

CALL TO
REMOVABLE

DRIVER

Dec. 2, 1997 Sheet 9of10

612

,_Y_E_S ____ GET STATUS FROM
DRIVE

NO 614

NO PASS TO DOS
DRIVER

606 YES

READ BOOT SECTOR,
GET SECTOR, HEADS

AND SIZE FROM DRIVE

608

MAKE CALL TO
UPDATE DOS DRIVER

610

PLACE BPB WHERE
INDICATED BY CALLER

FIG. 2D

5,694,600

U.S. Patent Dec. 2, 1997 Sheet 10of10

INT
21

DPB "A" DPB "B" DPB "C"

18h

• •
• •
• •

Ir --- - - - -- -:::_-_-......___,--,
I I
I I

DOS
DRIVER STRATEGY

5,694,600

DPB "D"

•
•
•

18h

INTERRUPT

ATTRIBUTES
WORD

FIG. 3A

HEADER RECORD 1

L _~AME_ ~EMO_R_Y_:_E~~ENT __ _J

DPB "A"
INT 21-------.

•
•
•

REMOVABLE
MEDIA
DRIVER

DPB "B"

STRATEGY

INTERRUPT

ATTRIBUTES
WORD

DPB "C"

•
•
•

STRATEGY

INTERRUPT

ATTRIBUTES
WORD

HEADER RECORD

DPB "D"

•
•
•

I L SAME MEMORY SEGMENT _JI FIG. 3B

5,694,600
1

METHODS AND APPARATUS FOR BOOTING
A COMPUTER HAVING A REMOVABLE

MEDIA DISK DRIVE

FIELD OF THE INVENTION 5

2
Thus, there is a need for methods and apparatus for

booting a computer from a removable media drive config­
ured as a fixed disk drive, without imposing any constraints
on the users flexibility.

SUMMARY OF THE INVENTION

The present invention is particularly well suited for use in
booting the Microsoft Disk Operating System into a Per­
sonal Computer systems (PC) via a removable media disk

This invention relates generally to storage subsystems for
computer systems. In particular, this invention relates to
removable media storage devices configured as fixed disks
in computer systems and methods and apparatus for booting
the operating system from such devices.

BACKGROUND OF THE INVENTION

In recent years, personal computers (PCs), which includes
work stations and the like, have grown increasingly sophis­
ticated. During this period, the programs that run on PCs
have increased in complexity and, correspondingly, in size.
As a result, the capacity and usefulness of the current floppy
disk drive, a standard feature in many PCs, have been
surpassed by the programs it was designed to bear. Whereas,
software developers previously distributed their products via
floppy disk, they have increasingly been forced to use
alternative methods, such as CD-ROM.

10 drive. According to an aspect of the present invention, the
method of booting from any storage device attached to the
processor of the personal computer comprises several steps.
First, a read request to provide a master boot record from a
storage device attached to the PC is made. Second, rather

15 than retrieving a conventional master boot record, a substi­
tute master boot record is received. Second, the substitute
master boot record, confined to the constraints of the original
master boot record, retrieves a universal boot program from
the storage device. Third, the universal boot program scans

Despite the trend against the usefulness of the floppy disk
drive, the need for the removability that the floppy disk drive
provides has remained-primarily as a tool to provide
diagnostic support in the event of a system failure. For
example, if the fixed disk drive becomes corrupted, users
turn to the floppy disk drive to attempt to recover. However,
the limited capacity of a floppy disk poses severe constraints

20 all storage devices for bootable partitions. Fourth, the uni­
versal boot program loads a bootable partition as directed by
a user and replaces the drive number in the boot sector. Fifth,
the universal boot program waits for the operating system to
load into the PC and changes the operating system code to

25 the drive from which the boot sector was obtained.

on the sophistication of the diagnostic tools that can be used. 30
Vander Kamp et al., U.S. Pat. No. 5,418,918, suggests
CD-ROM drives as a way of overcoming this problem.
Unfortunately, CD-ROMs need special BIOSes and limit the
user to the tools supplied by a particular software vendor. As
a result, the user is unable to mix and match his preferred 35
tools.

According to another aspect of the present invention, a
method and apparatus are provided for booting from any
cartridge. This aspect allows a cartridge that was formatted
on any PC with any CMOS settings to boot from the PC
utilizing this aspect of the invention. For example, a SCSI
formatted cartridge will boot on an IDE removable disk
drive that embodies the present invention.

According to another aspect of the present invention, the
removable media drive simulates the presence of media
during booting of the operating system such that the oper­
ating system determines that the drive is available.

According to another aspect of the present invention, the
removable media driver is loaded before the operating

Recent years have also witnessed the development of
removable media drives that have storage capacities char­
acteristic of fixed disk drives and removability characteristic
of floppy disk drives. These removable media drives have
the capacity to store sophisticated diagnostic tools.
Moreover, unlike CD-ROM drives, the user has the capa­
bility to customize the software on the media to suit par­
ticular needs. However, to fully utilize the capacity of such

40
system and attached to the operating system after the oper­
ating system is sufficiently loaded into the PC. As a result,
a user is not required to add a driver to the DOS CONFIG­
.SYS file.

a removable media drive, in the current PC environment, it 45
must be configured as a fixed disk This requirement has
complicated the integration of removable media drives into
the PC system. For example, the typical PC attempts to test
all drives before starting the boot sequence. If the removable
media drive has no media, it will fail the test and not be 50
recognized by the operating system after the system is
booted. Thus, there is a need to allow the system to boot and
recognize removable media drives, even when no media is
present during the boot process.

If users could boot directly from a removable media drive, 55
tremendous flexibility would be gained in, for example,
diagnosing fixed disk failures. The capacity of removable
media drives is such that a user can have a complete
operating system customized to his/her desire along with
diagnostic utilities of his/her choice. Unfortunately, conven- 60
tional PCs only permit users to boot from the floppy "A"
drive or the fixed "C" drive. If the removable media drive is
configured as the "C" drive, conventional personal computer
systems constrain the user to always have bootable media
present in the drive at system start-up. Furthermore, the 65

users ability to swap media in the removable media drive
during system operation is also severely inhibited.

According to another aspect of the present invention, a
driver for the removable disk drive encapsulates the oper­
ating system disk services driver. The driver for the remov­
able disk drive captures all calls to the removable drive and
handles removability functions. Other calls, common to
fixed disks are passed to the disk services driver provided by
the operating system.

Additional features and advantages of the present inven­
tion will become evident hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of the preferred embodiments, is better under­
stood when read in conjunction with the appended drawings.
For the purpose of illustrating the invention, there is shown
in the drawings embodiments that are presently preferred, it
being understood, however, that the invention is not limited
to the specific methods and instrumentalities disclosed. In
the drawings: computer system.

FIG. 1 is a block diagram of a conventional computer
system.

FIG. lA is a block diagram of removable media drive
controller hardware in accordance with a preferred embodi­
ment of the present invention.

5,694,600
3

FIG. lB is a graphical depiction of the command block
registers specified in an IDE interface.

FIG. IC is a state diagram of the operation of the
removable media drive of the present invention.

FIG. 2 is a flow chart of an operating system booting
sequence incorporating an embodiment of the present inven­
tion.

FIG. 2A is a flow chart of the removable media drive
response to boot sequence testing, in accordance with the
present invention.

FIG. 2B is a flow chart of the process of the substitute
master boot record (UBR) gaining control of the boot
sequence in accordance with the present invention.

FIG. 2C is a flow chart of the process of the UBP finding
and loading a valid boot sector, in accordance with the
present invention.

FIG. 2D is a flow chart illustrating the operation of a
removable media driver in accordance with the present
invention.

FIG. 3A is a graphical depiction of an operating system
driver environment before the removable media driver of the
present invention is loaded.

FIG. 3B is a graphical depiction of the DOS driver
environment after the removable media driver of the present
invention is loaded.

DEI'AILED DESCRJPTION OF THE
INVENTION

4
may be employed. Such a system is composed of a variety
of subsystems. The more significant subsystems include the
processor, the storage device subsystem 250, and other
support devices, such as the video system (e.g., a display

5 240), a keyboard and the like (not shown).
Each of these subsystems is, in turn, made up of a variety

of components. For example, and as used herein, the pro­
cessor 220 represents a subsystem that comprises a CPU
222, random access memory (RAM) 224, read-only memory

10 (ROM) 228, CMOS memory 226, an internal bus 221 to
allow communication between the CPU 222 and its
components, an~ bus 223 for connecting external devices,
and controller cards 225, 227 connected to the~ bus 223
for communicating with other subsystems. For example, the

15 storage device subsystem 250 will be interfaced to the
processor 220 via a disk controller card 227. Similarly, a
storage device subsystem 250 may comprise a plurality of
storage devices, where each storage device may be one of a
fixed disk drive 230, a removable media drive 210, a floppy

20 disk drive (not shown), a magnetic tape drive (not shown),
a CD-ROM drive (not shown) or the like.

The present invention relates to the relationship of the
removable media drive 210 to the processor 220.
Importantly, removable media drives have attributes of both

25 fixed disk drives and floppy disk drives. Like fixed disk
drives, removable media drives have much higher storage
capacities and data transfer rates than currently available
floppy disk drives. On the other hand, like floppy disk
drives, the drive media of the removable media disk drives

30 can be removed and replaced during the normal operation of
A preferred embodiment of the invention will now be the PC. These and other differences between fixed disk

described with reference to the FIGURES. In the drawings, drives and floppy disk drives have resulted in PC operating
like numerals indicate like elements throughout. The system software and Basic Input/Output System (BIOS)
description given herein is for exemplary p111poses only and code treating the two types of drives differently. For
is not intended in any way to limit the scope of the invention. 35 example, in a conventional IBM-compatible PC employing
For example, the computer system and operating system the DOS operating system floppy drives are configured as
environment described herein are merely exemplary and are drive "A" or "B" and are configured as 1.2 or 1.44 mega-
not intended to limit the invention. All questions regarding bytes. Fixed disks are configured as drive "C," "D" and so
the scope of the invention may be resolved by referring to on and are configured with a cylinder, head and sector
the appended claims. 40 number that relates to the capacity of the drive. The cylinder,

The sections below describe in further detail the system head and sector configuration allows capacities on the order
for integrating a removable media drive into a PC system. of gigabytes. Significantly, at present, removability of fixed
There are a variety of ways that such a drive can be disk media is not fully supported by such a PC. Thus, a
integrated into a PC system. Section I details an exemplary removable media drive cannot be simply configured as a
PC system having an attached removable media disk drive. 45 fixed disk drive. The PC will not fully recognize its remov-
Section II follows with details of a presently preferred ability attributes, and problems will result.
embodiment of a removable media drive that connects to the In the storage device subsystem 250 of FIG. 1, several
PC system via an IDE interface. That section also provides components in the PC 200 must interact to properly connect
a description of the various states of the removable media the processor 220 to the storage device(s) 250, particularly
drive as a function of media insertion and removal. A user 50 the removable media drive 210. Among those components
of such a PC system, may configure the removable media are a disk controller card 227, a storage device (i.e., the
drive in order to facilitate booting, or merely to access the removable media drive 210), a software driver residing in
drive after the boot process has completed. Thus, section m RAM 224, and a BIOS stored in ROM 228. Additionally as
details a presently preferred embodiment of a method of the with a fixed disk drive, when the PC 200 is configured with
invention for assigning a drive letter and allowing the 55 the removable media drive 210, settings are stored in CMOS
system to boot from the removable drive. Additionally, after memory 226 (an area of memory that retains its values when
the boot process is completed, the operating system cannot the power is removed from the PC) that indicates the various
communicate directly with the removable drive. Extensions parameters of the removable media drive 210 to the BIOS
must be added to the operating system to enable the aspects 228. Of particular relevance, these CMOS settings contain
of removability. According to a further aspect of the method 60 parameters (e.g., the number of logical cylinders, heads and
of the present invention, section N provides details for sectors) that are used to communicate data between the
integrating a software driver into the operating system processor 220 and the removable media drive 210.
before the operating system has loaded. To enhance the reliability of the connection between the
L System Overview processor 220 and the storage subsystem 250 and to enhance

FIG. 1 is a block diagram of an exemplary computer 65 the interchangability of storage devices, several standard
system, such as an IBM PC or a system functionally storage device interfaces have emerged since the introduc-
compatible with the IBM PC, in which the present invention tion of the PC. For example, the Small Computer System

5,694,600
5

Interface (SCSI) and the Integrated Drive Electronics (IDE)
interface are among the more popular standard interfaces.
The presently preferred embodiment utilizes an IDE
interface, although those skilled in the art should recognize
that features of the present invention will work equally well
on other interfaces, such as SCSI.

To ensure compatibility between controller cards and
storage devices from a variety of different vendors, a storage
device must conform to industry standards. In the case of
IDE, those standards are documented in the proposed
American National Standard on Information Technology­
.IIT Attachment Interface With Extensions (ATA-2), Jan. 17,
1995, which is hereby incorporated by reference.

In a conventional PC that uses an IDE interlace, the
processor will have an IDE interface controller card (e.g.,
227) attached to the AT bus 223. When the processor 220
requires data from the removable media drive 210, the
processor 220 will access the drive 210 through the standard
IDE interface controller card 227. Moreover, in a typical PC
200, particularly one that uses the Microsoft Disk Operating
System (MS-DOS), the operating system will communicate
with the IDE storage device through a device driver. The
device driver is conventionally loaded into the system by
MS-DOS. According to an aspect of the present invention
and as will be explained more fully below, because the PC
may communicate with the removable media drive 210
before MS-DOS has loaded, it is advantageous to load the
removable media driver before MS-DOS has loaded.
II. The Removable Media Drive and the IDE Interface

FIG. lA presents a functional block diagram of the
removable media drive 210 of the present invention as
implemented for an IDE interface 227 to the processor 220.
The drive electronics are comprised of several subcompo­
nents: a 40 pin IDE bus connection 328; a CPU 330, for
example, an 8052; a lk Data RAM memory 324 for execut­
ing local programs; a 32k ROM memory 322 for storage of
programs; a controller circuit 320, such as an AIC-7166
manufactured by Adaptec, which controls buffer manage­
ment of data to and from the media, media interface, and
processor interface via the IDE bus; a Timing Processor for
providing timing signals to the servo motors and the read/
write channel; motor control circuitry 334; an RLL encoder
336 for writing data to the media; and an RIL decoder for
reading data from the media.

The removable media device is capable of communicating
with the IDE controller card 227 (FIG. 1) via cylinder, head,
and sector mode (hereinafter CHS mode) or logical block
address mode (hereinafter LBA mode). In CHS mode, the
controller card 227 presents a logical cylinder, head and
sector from which data on the media is desired. The drive
translates this information to a physical cylinder, head and
sector to retrieve the data from the media. Importantly, the
cylinder head and sector information set into CMOS 226 on
the processor 220 defines the logical number of cylinder,
heads and sectors on the drive and defines the translation
used by the drive to determine where to physically retrieve
the data on the media. In LBA mode, the controller card 227
communicates with the drive 210 through a linear mapping
of sectors, starting at sector 0 and continuing to the last
sector depending on the capacity of the drive.

FIG. lB is a graphical depiction of the command block
registers used in an IDE interface for communication
between the processor 220 and the removable disk drive
210. This setofregisters resides within the controller 320 on
the drive electronics. The command block registers 310
comprise eight registers: the data register 311 for reading
and writing data to the media; the error/features register 312,

6
which may contain the status of the last command executed
by the drive or may be used to enable or disable features of
the drive; the sector count register 313, which contains the
number of sectors of data to be transferred on a read or write

5 operation; the sector number register 3I4 which contains the
starting sector number for media access in CHS mode and
bits 0-7 of the LBA when operating in LBA mode; the
cylinder low register which contains the low order bits of the
starting cylinder address for media access and bits 8-18 of

10 the LBA when operating in LBA mode; the cylinder high
register which contains the high order bits of the starting
cylinder address for media access and bits I6-23 of the LBA
when operating in LBA mode; the device/head register
which contains both device and sector addressing

15 information, bit 6 is set to zero for CHS mode; and one for
LBA mode, whenever bit 4 selects the device, and bits 3
through 0 comprise the head address in CHS mode or bits
24-27 of the LBA in LBA mode; the status/command
register 318 which contains the status of the drive when read

20 and is used to issue commands to the drive on writes. These
registers are all defined in the ATA-2 specification and are
used in the present embodiment according to that specifi­
cation.

When the processor 220 wants to communicate with the
25 removable media drive 2IO, commands are sent to the

command register 318. For example, to read a block of data
from the drive, the starting sector address will be loaded in
to the cylinder, head and sector registers 3I~317, and a
sector count will be loaded into the sector count register 313.

30 To load the registers, register information will be transferred
to the drive 2IO via the disk controller card 227. The register
information will be sent over the IDE bus connection 328 to
the controller 320. The controller will load the registers with
the data provided. The controller 320, in conjunction with

35 the CPU 330 will issue the proper commands to control the
read process. In particular, the instructions to move the
heads to the proper location on the media will be issued by
the CPU 330 to the motor control 334 and the timing
processor 332. The data provided will be decoded via the

40 RIL decoder 338 and transferred to the buffer RAM 326,
while the controller 320 passes the information back to the
processor 220 through data register 311. A similar process
occurs on a write to the media.

FIG. IC graphically depicts the states of the removable
45 media drive of the present invention. In the present

embodiment, the state transitions are controlled by a soft­
ware program executing on the CPU 330 in the drive 210.
The drive 2IO must internally deal with a host of states to
deal with the possibility of media absence, media presence

50 and other complexities. The state diagram of FIG. IC
describes the possible states that removable media drive 210
will switch to internally. Moreover, based on these states the
removable media drive will present information in the
command registers in response to commands sent by the

55 host. The commands that affect the states are all media
access commands (READ, WRITE, etc.), and BIOS diag­
nostic commands (DIAG, RECAL, SEEK, VERIFY).
Significantly, when the removable media drive 2IO is in the
VIRfUAL CARrRIDGE state 1000, the BIOS diagnostic

60 commands are not processed by the drive, but instead
indicate a good status (status register=SOh). This forces the
BIOS to recognize the drive as available to the system and
ready for booting during the Power On System Test (POST).
In any other state, the drive will process these commands

65 normally (e.g., if the media is present, these commands will
be processed as usual; if the media is not present, these
commands will fail).

5,694,600
7

The drive distinguishes between the POST and normal PC
operations. The distinction becomes necessary when no
media is present during POST. After POST, when the
removable media drive 210 is informed that the removable
media driver is present in the processor 220, the drive 210 5

can safely fail media access and diagnostic commands. At
that point, the removable media driver will take the neces­
sary steps to inform the Operating System about fail con­
ditions. On the other hand, if the removable media drive 210
is unaware of the presence of the removable media driver (as 10

will be true at power on), it will not fail these commands
because that would cause the BIOS to fail the. drive test. As
a result, the BIOS will exclude the removable media drive
210 from the list of available drives.

Determining the removable media driver's presence in the 15

processor 220 is complex from the removable media drive
side of the interface. For example, the driver may have been
loaded, but then the user pressed Ctrl-Alt-Del to warm­
reboot the PC system 200. In such a case, the removable
media drive 210 does not receive a hard reset (as on 20

Power-On), but rather only a soft reset will be issued by the
BIOS. The same soft reset could have been issued to the
drive after any failed command. For example, a read fault,
followed by a legitimate soft reset to clear the error condi­
tion would cause a similar condition. But in the case of a 25
warm reboot the removable media driver is no longer in
processor RAM memory. The removable media drive 210
will recognize this situation and switch to the VIRfUAL
CARfRIDGE state.

Additional complexity arises when the media is changed. 30

The removable media drive 210 will fail subsequent media
access commands and set the media change bit in the error
register. If the removable media driver is present in the
processor 220, this failure will ·happen only once, because
the removable media driver recognizes and informs the 35

Operating System of the media change. However, if no
removable media driver is present, the fail condition can not
be recovered, especially after soft reset. In such a case, the
BIOS (without the removable media driver) will see the
error condition and will try to clear it by sending a soft reset 40

to the removable media drive 210.
The state machine depicted in HG. lC allows the remov­

able media drive 210 to handle the complexities outlined
above. To begin, the most reliable detection point is the soft
reset. On warm reboot, the BIOS will send a soft reset to the 45

drive. To distinguish between a soft reset generated by the
driver in response to a failed command and a soft reset
generated by the BIOS on a warm reboot, the removable
media driver follows a soft reset that it generates with a DA
command (a command specific to the removable media 50

drive also referred to as "Get Media Status"). Thus, the
removable media drive will determine that a soft reset
followed by a DA command indicates the removable media
driver 210 is still present in the processor 220. If the soft
reset is not followed by the DA command, the removable 55

media drive 210 will consider it a warm boot.
It is desirable to unlock the door if the system is warm

re-booted to allow the user to change the media. However,
it is not desirable to unlock the door if there is a soft reset

8
and confirms its presence through the DA command, the
door will not be unlocked, and the removable media drive
210 will return to the state 1012 or 1016. Any other
command sent to the removable media drive 210 will unlock
the door, because the drive 210 will assume a warm boot is
being executed by the processor 220.

The states 1000 and 1002 are the initial states that the
removable media drive 210 switches to on Power On. Before
the removable media driver is installed in the processor 220,
the removable media drive 210 will stay in these states
depending on media presence. Before any processor 220
access is made to the drive, the user can safely eject and
insert media, and no fault condition will be generated by the
removable media drive 210. However, after the processor
220 accesses LBAO while the media is present, the drive 210
cannot change the data returned to the processor 220 if the
user ejects the cartridge or inserts another one. So, if the
media is ejected after LBAO was accessed from the media,
the removable media drive 210 will switch to the state
1008-Fail No Media. In this state, any media access
command will fail with the No Media bit set in the error
register, and the drive will not allow further data retrieval. If
the media is inserted, access is still inhibited by the state
1007, Fail Media Change sticky. The Operating System will
be unable to understand the media change condition, so the
drive 210 will not make the new media available to the
Operating System. The only way for the Operating System
to switch the removable media drive 210 out of this state is
to send the Acknowledge Media Change command, as
defined in the ATA specification, or for the removable media
driver to send the DA command. The main distinction is that
any driver or utility can send the drive 210 an ACK
command, but that is not enough to switch to the drive 210
to the READY DRIVER state 1016. Such a switch requires
a DA command. So, the ACK command will only clear the
fail condition and return the removable media drive 210
back to state 1002. If another eject happens, the drive 210
will switch to state 1008 again.
ill. The Boot Sequence

HG. 2 shows a flow chart of a PC boot sequence in
accordance with the methods of the present invention.
During the start sequence (referred to as "booting"), the
goals are to ensure that the PC 200 is functioning properly
and to load the operating system from the storage device
subsystem 250 into memory for execution by the processor
220. To achieve these goals, the processor 220 runs a BIOS
program contained in the ROM 228 (step 10). The BIOS, in
turn, tests the sub-systems of the computer (step 20). Then,
the BIOS checks the disk drives that are indicated in the
CMOS 226. Of particular relevance to the present invention,
the BIOS will issue commands to the fixed disk drives 210,
230 (step 30).

According to an aspect of the present invention and as will
be described in more detail below, if no media is present in
the removable media drive 210, the drive 210 simulates the
presence of media in order to satisfy the BIOS (the VIR­
TUAL MEDIA state 1000 in HG. lC). The BIOS will then
attempt to boot from the floppy drive in a conventional
manner, details of which are known and need not be present
here.

After the testing is completed, the BIOS checks for and
executes ROM programs supplied by the interface controller
cards connected to the various subsystems (step 35). When
the PC 200 boots from a fixed disk 210, 230, the BIOS next
requests the Master Boot Record (MBR) from the "C" drive

inresponse to a command error. For these reasons, a soft 60

reset switches the drive 210 into a special wait state (1004,
1006 or 1010). In these states, the removable media drive
210 waits for the next action from the processor 220. The
removable media drive will transition out of these states on
any of the following events (indicated by 1100, 1101, 1103 65 (step 40).
on the diagram): soft reset, READ LBAO, command repost­
ing Media Change. If the removable media driver is present,

According to an aspect of the present invention, the
removable media drive 210 can be configured as the "C"

5,694,600
9

drive to control the boot process and account for remov­
ability. When configured as the "C" drive, the removable
media drive 210 provides the processor 220 with a substi­
tuted MBR in response to the BIOS request. After checking
the substituted MBR and believing it to be an authentic 5
MBR, the BIOS transfers control to it (step 50).
Subsequently, the substituted MBR (hereinafter "Universal
Boot Record or UBR") gains control of the boot sequence.

As will be described more fully below, the UBR is a
special boot record that, according to an aspect of the present 10

invention, takes control of the boot sequence. The UBR then
reads a more complete boot program, universal boot pro­
gram (UBP), from the removable media drive (step 60).
According to a feature of the present invention, both the
UBR and the UBP are provided from the ROM 322 residing 15

on the removable media drive 210. Thus, even if no media
is present in the drive, the UBR and UBP gain control of the
boot sequence when the removable media drive 210 is
configured as drive "C."

According to a further aspect of the present invention, the 20

UBP determines where to find the boot sector and,
consequently, the operating system, i.e., on drive "C" or "D"
or elsewhere (step 70). Thus, unlike a conventional PC,
which can only boot from drive "C," a PC 200 configured
with the present invention is capable of booting from any 25

device capable of providing a boot sector, no matter what its
drive address. After loading the boot sector, the UBP then
replaces the pointer to the BIOS so that it can monitor the
system loading process whenever certain BIOS calls are
made (step 80). Control is then passed to the Boot Sector, 30

and a seemingly conventional boot sequence resumes (step
90).

As will be described more fully below, if the operating
system is MS-DOS, the UBP will awaken on certain pre­
defined BIOS calls and attempt to attach the removable 35

media drivers so that the removable media drive will prop­
erly operate in the MS-DOS environment (step 100). After
the removable media driver is fully attached to MS-DOS, the
removable media drive 210 is fully configured and the rest
of the MS-DOS system loads (steps 110-130). Significantly, 40

the removable media drivers are accessible to MS-DOS,
even though the drivers were not loaded by DOS.

Now that the overall boot process has been described,
each segment of the boot process wherein aspects of the
present invention are employed will be described in further 45
detail.
A. Assigning a Drive Address (Virtual Cartridge)

As indicated in FlG. 2 at step 30, during a preliminary
stage of the boot sequence, the BIOS checks the ready state
of all drives 210, 230 configured as fixed disk drives. FlG. 50

2A provides a more detailed flow of the interaction of
removable media drive 210 with the BIOS during this BIOS
check stage. The steps outlined in FlG. 2A enable the system
to recognize the drive 210 even if no media is present.

In a typical system using an IDE disk controller card 227, 55

the BIOS will issue commands to the drive 210, 230, such
as READ, VERIFY, IDENT and the like. If an IDE drive
fails to indicate a ready status, the BIOS will not assign a
physical drive number (e.g., 80h, 81h) and no drive letter
will be assigned by MS-DOS when the system completes the 60
boot sequence. Moreover, if the drive configured as the
master IDE drive is not ready, the slave drive will not be
checked. The removable media drive may not be ready for
access during the boot sequence because no media is
present. However, after the boot sequence, a user may desire 65

to insert media and access the drive. If MS-DOS has not
assigned a drive letter, the media will not be accessible.

10
Thus, according to an aspect of the present invention the
removable media drive 210 indicates ready during the boot
sequence to satisfy the BIOS inquiries whether or not media
is present.

Before testing the fixed drives, the BIOS first checks the
settings in CMOS 226 to determine the parameters of the
IDE drive 210, 230. According to the present invention, the
user should configure the removable media drive 210 to
represent a minimum cartridge size (e.g., 25 megabytes-
128 cylinders, 12 heads, 32 sectors). Correspondingly, the
removable media drive 210 responds to tests in a VIRfUAL
CARI'RIDGE mode (see FlG. lC state 1000), i.e., as if it has
a minimum cartridge capacity.

Referring to FlG. 2A, the BIOS sends a command to the
removable media drive 210(step142). If the drive has media
inserted (step 150), then the drive will perform all tests
requested by the BIOS on the media as any normal fixed disk
drive (step 160). If, on the other hand, no media is present
in the drive 210(step150), the drive CPU 330 intercepts the
commands and provides data to simulate the requested
action. In this VIRfUAL CARI'RIDGE mode, the remov­
able media drive, then, will expect requests from the BIOS,
which are designed to test the availability and readiness of
the media. If the command is one of DIAG, RECAL, SEEK
or VERIFY (step 152), a response will be provided in the
status register 318 and error register 312 indicating to the
BIOS that the command was successful (step 162). If the
command is INITP, IDENT or SEf MULTIPLE (154), the
command will be processed and success will be indicated in
the status register 318 (step 164). Additionally, if the com­
mand was IDENT, words 57-58 and 60-61 of the identifi­
cation data are set to zero indicating that there are no sectors
available (step 164). If the command is a read of the master
boot record (step 156), an artificial master boot record is
provided from drive ROM 322 (step 166). Requests to read
from sectors other than the master boot record provide data
as F6 hexadecimal (steps 158 and 168). Any other com­
mands received will cause a failure to be reported in the
status register (step 170).

When the BIOS then checks the status register 318 (step
144), if the command was successful, the BIOS will con­
tinue testing the drive until all of the commands have been
issued (step 146). After completion (step 148), the BIOS is
satisfied that the removable media drive 210 is ready, a
physical drive number will be assigned to the drive (e.g., 80h
corresponding to drive letter "C") and the boot sequence will
continue. When the boot sequence is finished, the removable
media drive 210 will be fully recognized and accessible by
the BIOS and, subsequently, DOS. Importantly, if the
removable media drive 210 is listed as the first fixed drive
in the BIOS (Drive 0 or master), and an additional drive is
connected to the same IDE controller card (drive 1 or slave),
the second drive will also be tested and recognized. Thus, if
the removable media drive 210 did not have a VIRI'UAL
CARI'RIDGE mode, the other fixed disk drive 230 would
not be recognized.
B. Providing Boot Capability For Removable Media Drives

After the BIOS has tested the removable media drive 210
for availability, the boot sequence proceeds. Next, the BIOS
will check for a floppy drive to boot. If a floppy diskette is
inserted into the "A" drive, the BIOS will attempt to boot the
operating system from that diskette. If no floppy is present,
the boot will proceed to the first fixed drive, typically "C."
As with the floppy, a user may want to boot from the
removable media drive 210. To provide this capability, the
removable media drive 210 must be configured in CMOS
226 as the first fixed drive in the system (i.e. drive "C"). This

5,694,600
11

also requires the removable media drive 210 to be selected
as the master (i.e., drive 0) on the IDE interface.

Without the benefit of the present invention, in order to
boot of off the removable media drive 210, media would be
required to be present during all boot sequences. Moreover,
the user would be required to always boot from the remov­
able media drive 210 and any media replaced during the
operation would have to have part of the operating system
present. To alleviate these drawbacks, according to a further
aspect of the presently preferred embodiment, a capability is
provided to boot from any drive in the system. As will be
described more fully below, this capability relieves the need
to keep media in the removable media drive 210 during the
boot sequence by detecting the absence of media and
redirecting the boot sequence to another fixed disk drive
(e.g., drive 230).
1. Providing a Substitute Master Boot Record

With the removable media drive 210 configured as drive
"C," the boot sequence proceeds. As indicated in F1G. 2
(step 40), the BIOS requests a MBR from drive "C," which
conventionally contains a boot program of one sector in
length. From the perspective of the removable media drive
210, this request appears as a request for the sector at
cylinder zero, head zero, and sector one (i.e., the cylinder
registers 315, 3Hi, set to zero, the head indicator bits in the
device/head register set to zero, the sector number register
set to one, the sector count set to one, and the command
register set to read). Conventionally, the drive would then
read the first sector from the media and transfer the sector to
the processor 220.

According to the present invention, however, the MBR is
provided from ROM 322 rather than the media. This pro­
viding of the MBR from ROM 322 is done according to one

12
Those settings are then used by the UBR to convert the

"Partition Start Sector," field contained in the partition table
at offset 8, to CHS (step 418). Thus, when the UBR calls to
read the boot sector in CHS mode, the UBR will read the

5 proper sector from the drive. If the media capacity and
format information for the removable media drive 210 were
universal, the process of locating the boot sector would be
straight forward. The values stored in the CMOS would be
the values used to determine the location of the boot sector.

10 However, the removable media disk drive 210 is designed to
support a variety of media sizes (e.g., 100 megabytes, 200
megabytes). Moreover, the media itself may have been
initially formatted on a removable media drive from a
variety of controller standards and thus the CMOS settings

15 in the PC 200 for the number of cylinders, heads and sectors
will not accurately reflect the values used on the PC in which
the media was originally formatted. Because it is desirable
to support the removable media regardless of the drive in
which it was formatted, these differences must be taken into

20 account. For example, if the drive in which the media was
formatted is a SCSI drive, the CMOS settings would indicate
64 heads, 32 sectors. By contrast, the IDE standard requires
that the number of heads be less than 16.

Next, it must be determined that this is a compatible drive
25 i.e., that it is a removable media drive containing the special

boot software. A READ LONG command of LBA 0 is issued
to the drive 210 (step 420). The drive returns the data
requested along with the Error Correction Code (ECC).
However, the removable media drive 210 returns a special

30 tag field in place of the standard ECC (step 421). The tag
field returned will contain four bytes of tag information "E,"
"R," UBP size in sectors, and a checksum, thus indicating to
the processor 220 that a removable drive having the univer-of two methods: if media is present, the MBR is read from

the first sector, the partition tables are extracted and merged
with the partition table of the replacement MBR stored in the 35

removable media drive ROM 322, and the substitute MBR

sal boot capabilities is attached.
From the perspective of the drive, if a READ LONG of

LBA 0 is requested, the drive interprets this as a test of the
drive for compatibility. Thus, the UBR from removable
media drive ROM 322 is once again returned to the proces­
sor 220. This time an ECC is appended with the special tag

is returned; if no media is present, the substitute MBR is
provided with an artificial partition table. According to
either method, the normal MBR program code is replaced by
a ROM based master boot record code stored in ROM 322
(hereinafter referred to as the "Universal Boot Record"
(UBR)), which allows a program residing on the removable
media drive 210 to gain control of the boot sequence.

40 field.

In order to "trick" the BIOS into accepting the UBR as the
real MBR, the UBR contains all of the required attributes, 45

i.e., the last word of the sector contains the signature AA55
hexadecimal. Thus, the BIOS assumes that the data provided
by the removable media drive 210 is the MBR and passes
control to the UBR. Once in control of the boot sequence,
the UBR makes requests to the removable media drive 210 50

to provide additional blocks of data, which contain a more
complete boot program. The one sector long UBR is not of
sufficient size to perform all of the required steps to allow
booting from any fixed drive. Moreover, according to the
presently preferred embodiment and as will be described 55

more fully below, the UBP also contains the removable
media disk driver that gets hooked to MS-DOS and provides
the capability of handling the aspects of removability not
support by MS-DOS disk services.
2. Universal Boot Record Gains Control of the Boot Process 60

F1G. 2B presents a flow chart of the function of the UBR
as it executes on the processor 220. Initially, the UBR scans
its partition tables at offset 0 (e.g., lBEh, lCEh, etc.) to find
an active partition (step 410). In general, there will be a
single partition for the removable media. The UBR will call 65

to the BIOS to retrieve the current drive settings contained
in CMOS 226 (step 414).

After the drive has been tested for compatibility and
determined to be a proper removable media drive 210, the
drive 210 is commanded to provide the UBP from its ROM
322. According to a presently preferred embodiment, a
WRITE LONG command is issued to the drive along with
the special tag field embedded in the Error Correction Code
field (step 422). The removable media drive 210 interprets
such a command as an enable signal to provide the UBP. The
next READ command issued is then interpreted by the drive
210 as the signal to provide the UBP.

To read the UBP, a READ command for the proper CHS
of the boot sector is requested (step 424). The request is
made through the disk access routines provided by the
BIOS. When the READ command is received by the remov­
able media drive 210, it should be interpreted by the drive
210 to return the UBP. However, in the event an error occurs,
the drive should interpret this as a read of the boot sector. In
either event, the computer should boot. If the UBP is in
control, the boot will occur according to the method of the
present invention. If the boot sector is given control, a
conventional boot will occur.

Other methods can be used to accomplish the same goal
of transferring the UBP from the drive ROM 322. For
example on an IDE drive, the UBR can issue an FO hexa­
decimal (defined by the present invention to be "UBP Load
Enable") into the command register 318. The controller 320
will then transfer this command to the CPU 330, which will

5,694,600
13 14

interpret it as a request for the UBP, and place the length of displayed to determine the users preference for a boot device
the UBP in the sector count register 313. The CPU 330 will (step 508). Booting proceeds by reading the boot sector from
read the UBP from the ROM 322 and transfer the UBP to the the drive requested. If no drive is requested, booting pro-
Buffer RAM 326. The UBP will then be transferred by the ceeds from the removable media drive 210, if media is
controller 320 over the IDE bus to the processor 220, where 5 available. Otherwise, the next bootable drive is selected. The
it will be loaded into RAM 224. boot sector is loaded from the selected drive (step 509).

After the UBP is loaded into RAM memory 224 on the After loading the boot sector, the UBP checks the partition
processor 220, the UBR will check the code to ensure that type (step 510). If the boot sector is not an MS-DOS
the code is complete. In particular, the signature of the last partition, control is passed to this boot sector and the role of
sector will be checked. A signature word of AA55h indicates 10 the UBP is ended (step 512).
that this is the UBP (step 426). If the signature is incorrect, If, on the other hand, the boot sector is an MS-DOS
the first sector transferred will be checked to see if it is a partition, the boot sector contains variables that reflect the
valid DOS boot sector (step 428). If the first sector is a valid number of heads, the number of sectors, and the physical
DOS boot sector, correct values will be placed in the boot drive number. These variables were written to the boot
sector image in memory to enable a boot. Specifically, the 15 sector during the formatting process. According to an aspect
sectors per track field (offset 18h), the number of heads field of the present invention wherein booting from any drive or
(offset 1Ah) and the physical device field (offset 24h) will all any cartridge in the removable drive is supported, these
be updated to reflect the proper values. The sectors per track variables in the boot sector that are read into RAM memory
and number of heads reflect the values stored in CMOS 226 224 are updated. The hard drive address is set to the current
(step 430). A normal DOS boot should result. If no valid 20 physical address of the hard drive. Additionally, for the
boot program is provided, a message will be displayed to put removable media drive, the sector and head values are set to
a bootable cartridge into the drive 210 (step 432), and an the correct values for the removable media, the sector and
attempt is then made to re-load the Boot Sector. head values are set to reflect the current CMOS values. As
3. Control Passes to the Universal Boot Program will be described in detail below, anytime a new boot sector

FIG. 2C present a flow chart of the events that occur upon 25 is read into memory by DOS, these parameters must again
execution of the UBP by the processor 220. The UBP loads be updated by the removable media driver.
into memory and continues with the substituted boot In a typical fixed disk, these values will likely be correct.
sequence. However, the UBP was loaded into the location of However, a user may have formatted the drive as drive "C"
the conventional boot sector. Now, a real boot sector must be initially, but later moved the drive to drive "D." In such a
read from the drive 210 or 230. Therefore, the UBP copies 30 case, the physical drive letter stored in the boot sector will
itself to a new location in memory, out of the way of the boot be inaccurate and must be corrected. However, in the case of
sector (step 500). Next, a genuine boot sector can be loaded removable media drives, the user very likely will have
from a bootable drive. formatted the cartridge on a different drive. For example, the

All available controller cards 227 are tested for bootable cartridge may have been formatted on a SCSI drive located
drives (step 502). After all drives have been tested for 35 at drive address "E." Therefore, the boot sector variables
availability, a "Get Media Status" command (DA must be patched.
hexadecimal) is sent to the removable media drive to deter- To make the appropriate changes to the boot sector image,
mine the availability of media. This command signals the the UBP gets the number of sectors and heads (from CMOS
drive 210 to leave the VIRfUAL CARfRIDGEmode (FIG. in the case of other fixed disk drives). Then, at offset 18h in
lC, state 1000) or READY NO DRNER mode (FIG. lC, 40 the memory resident boot sector, the UBP writes the value
state 1002). If the drive 210 has media present, then it of sectors per track. At offset lAh in the memory resident
transitions into READY DRNER mode (FIG. lC, state boot sector, the UBP writes the value of heads. Finally, at
1016). Otherwise, the drive 210 transitions to a FAIL NO offset 24h of the memory resident boot sector, the UBP
MEDIA state (FIG. lC, state 1012). After receiving the Get writes the physical drive number (e.g., 80h for "C," 81h for
Media Status command, the drive 210 reports the presence 45 "D") (step 514).
or absence of media in the status register 318 and error After the memory resident boot sector is copied and
register 312. If there is an error, the drive 210 sets the status patched, DOS must access the patched table for subsequent
register 318 to 51 hexadecimal to indicate that bits are set in disk accesses. Vector 4lh generally, points to this portion of
the error register 312. Bit one in the error register 312 the memory resident boot sector (referred to as a "Disk
indicates no media present if set to 1 (step 504). As previ- 50 Parameter Table") The UBP replaces the address pointed to
ously indicated, the drive transitioned out of a pre-driver by vector 41h to point to the modified boot sector image,
state. The drive 210 must be returned to a pre-driver state thus, ensuring DOS will use the correct values in making
because the driver is not yet available. A soft reset will be disk accesses (step 516).
issued by the UBP to the drive 210 to return it to a pre-driver After all of the appropriate adjustments, control will pass
state (state 1000 of 1002). 55 to the newly loaded boot sector. Significantly, a portion of

After finding the available drives, the UBP reads the the UBP is a driver that remains resident after DOS has
master boot records from each drive. These master boot loaded, even when booting from another fixed disk drive. As
records are then scanned for active partitions (step 506). If is explained more fully below, to properly attach the driver
an active partition is found, the boot sector for that partition to DOS, interrupts must be set to allow the UBP to "awaken"
is loaded into memory as a preliminary check that the 60 at the proper time to connect its driver to MS-DOS.
partition is bootable. If no active partition is found, then the IV. Loading the Device Driver
boot sector of the first valid partition entry is read and The attachment of the removable media driver to DOS
checked for bootability. As partitions are found that have consists of two distinct parts. First, the UBP sets interrupts
valid data, they are added to a list of available bootable to monitor the DOS loading process, restores registers so
partitions. Moreover, the BIOS is queried for available 65 that the boot process appears normal to DOS, then passes
floppy drives and they are added to the list. After building control to the boot sector. Second, during the boot sector
the list of bootable drives and partitions, a message is execution and the subsequent DOS loading process, the UBP

5,694,600
15

monitors the loading process for the precise time when the
removable media driver can be attached, and replaces the
physical drive number in portions of DOS as it is loaded into
memory to support booting from any drive.

16
the responsibility of performing all of the housekeeping
functions that would conventionally be performed by DOS.
Because the driver is loaded into the PC before DOS is
loaded, it is too early in the boot process to attach the driver.

A. Hooking DOS Interrupts 5 However, before DOS has loaded other device drivers, the
removable media driver should already be available to the
PC system.

The desired boot sector was found and loaded, as
described above. However, the driver to support the remov­
able media drive 210 must adjust itself during the ensuing
DOS loading process to allow DOS to recognize it after the
DOS has fully loaded. F1G. 2C presents the flow diagram for 10

loading the removable media driver according to the present
invention. Essentially, the driver will move to an area of
RAM in the top of conventional memory and encapsulate
the DOS driver in IO.SYS associated by DOS with the
removable media drive 210. Additionally, calls to INT 13 15
and INT15 will be trapped and handled by the removable
media driver. In order to hook the DOS driver properly, a
significant portion of DOS must have been loaded by the
boot sector. The moment when DOS has sufficiently loaded
is determined on the fly during the DOS loading process. 20
Referring now to F1G. 2C, the UBP loads the removable
media driver portion of the UBP into a the highest available
unused RAM 224 location and decrements the amount of
available RAM memory by the size of the resident remov­
able media driver (step 550). The removable media will 25
reside at this location during the ensuing DOS operations,
and the attachment process can proceed. An "Initialize
Device Parameters" command is sent to the drive 210. When
received the controller 320 stores the new values and uses
those values for further communications with the processor 30

220 (step 551). The disk service pointed to by INT 13 is
replaced to point to the UBP driver (step 552). Thus,
whenever disk services (INT 13) are requested, the UBP
driver will intercept the call and execute.

Once the interrupts are set, all registers in the processor 35
CPU 222 are set as if a conventional MBR had loaded a
conventional boot sector. In the present embodiment,
wherein an Intel 80x86 is the CPU 222, the DS:Siregisters
are set to the partition table entry for the active partition; the
FS:BX registers are set to the address of the boot sector in 40

memory; the DH register is set to the data value of the first
byte of the partition table entry; the DL register is set to the
physical drive number (e.g., physical drive "D" equals 8lh);
and, register CX is set to the data from the second word of
the partition table entry (554). After the registers are prop- 45
erly set, control is passed to the genuine DOS boot sector
(see F1G. 2 Step 90).
B. Monitoring the DOS Loading Process

The loading of MS-DOS must be monitored so that the
UBP driver can attach itself to the DOS environment. In a 50

conventional DOS booting sequence, the drivers are loaded
by DOS. Therefore, DOS makes all the necessary adjust­
ments. A user adds the required device driver to the CON­
F1G.SYS file. Near the end of the boot sequence, DOS scans
the CONF1G.SYS file for drivers to load. The drivers are 55
loaded and properly attached to the DOS environment. If the
user fails to add the driver to CONF1G.SYS the device will
not function properly.

During the DOS loading process, each time an INT 15 is
executed, the UBP is awakened (as described above, the INT
15 pointer was replaced before control was passed to the
boot sector). At each awakening, the UBP determines if
enough of DOS has loaded to start the process of attaching
the removable device driver to DOS. When the UBP has
finished its determination, it makes adjustments to complete
the driver attachment as needed, then calls the genuine INT
15 routine to allow the requested function to occur.

According to the presently preferred embodiment, to
make the proper attachment of the driver, the UBP must
distinguish between DOS versions of 5.0 through 6.22 and
DOS version 7.0. As is described more fully below, that
version distinction determines the adjustments necessary.

The UBP follows an eight step process in making the
attachment. First, if the INT 15 function was not CO then this
is not the correct point in the loading process. Complete the
INT 15 call and return.

Second, get the return address from the stack. That offset
value must be greater than lOh to prevent a memory pro­
tection error on the ensuing steps. Thus, if the offset value
is less than lOh, complete the INT 15 and return.

Third, if the value of the data at the return address-4 is not
equal to COB4h, DOS has not sufficiently loaded. Complete
the INT 15 and return.

Fifth, compare 6 bytes starting at the return address-12 to
75h,02h,33h,COh,2Eh,A2h. If the values match this is DOS
version 7.0. The UBP must then patch the boot drive letter.

Sixth, the drive letter is pointed to by the return address-6.
Before patching, the UBP checks the high byte at that
address. It should be F8h. If it is then, the UBP puts the boot
drive letter into the lower byte (note that in this case the
drives are represented as "A" equal 0, "B" equal 1, etc.).
After the drive letter is patched, the INT 15 call is made.

Seventh, this may be a different DOS version. Compare
the values of the 10 bytes starting at return address-14 to
8Eh,D2h,BCh,00h,07h,FBh,51h,8Ah,E5h,50h. If the values
do not match, make the INT 15 call and return.

Finally, if the values match, then the drive letter must be
patched. For earlier DOS versions, get the third word from
the stack. If the high byte is F8h, then put the boot drive
letter in the lower byte.

If the boot drive patch was made, the UBP begins moni­
toring the INT 15 calls for an INT 15 function 88 call. This
is an indication that a sufficient portion of DOS has loaded.
DOS is nearing the load point wherein the removable device
driver may be attached. To make the final determination a
new DOS service is monitored-INT 21.

When DOS issues its first call to INT 21, the UBP
awakens once again. At this time, IO.SYS is now loaded into
memory and, because the pointers necessary to encapsulate
the DOS disk services driver are now in place, DOS is stable
enough to allow attachment of the removable media driver.

To start the attachment process, the UBP must replace the
driver that DOS has attached to the removable drive. DOS
keeps the driver information in a Device Parameter Block
(DPB). The DPB for all drives are kept together in a linked

According to an aspect of the present invention, the
removable media driver is loaded automatically and before 60
DOS loading is complete. Thus obviating the need for the
user to add a driver to the DOS CONF1G.SYS file. This
automatic driver loading makes the integration of the remov­
able media driver simple and transparent to the user. No
additions to CONF1G.SYS are made. However, by loading
the driver before DOS, the attachment of the driver to DOS
becomes the responsibility of the driver. Thus, the driver has

65 list with the first link pointing to the DPB for drive "A", the
second for drive "B", the third for drive "C", and so on. The
UBP must find the DPB for the driver servicing the remov-

5,694,600
17

able drive---drive "C'', change the driver header to point to
the new removable media driver and set the attributes to
indicate a removable media drive.

18
or other INT vectors can again be reliably replaced to point
to the removable media driver.
V. Operation of the Device Driver

Conventionally, a device driver that handles drive com-FIGS. 3A and 3B graphically depict the process of attach­
ing the removable media driver to DOS. FIG. 3Arepresents
the undisturbed memory configuration before the removable
media driver is attached. To find the first DPB, a DOS
general services call to INT 21 function 52 provides, at offset
0, a pointer to a pointer to the DPB of drive "A." At offset
19h of the DPB is the pointer to the next DPB in the linked
list. By following the linked list to the third DPB, the UPB
can find the DPB of all the drives recognized by DOS.
Significantly, the removable media drive 210 must be drive
"C" or the UPB would never have gained control of the boot
process. Each DPB points to a driver header record (offset
13h) where variables are stored pertaining to the driver.

5 munication would simply replace the DOS disk services
with its own substituted disk services. However, DOS disk
services developed in conjunction with DOS and contains
many undocumented features. Thus, according to an aspect
of the present invention, the removable media device driver

10 enhances the features of the DOS disk services without
replacing them. As will be described more fully below, this
enhancement is accomplished by encapsulating the DOS
disk service within the removable media driver. The remov­
able media driver provides this enhancement by checking

FIG. 3A illustrates the configuration after the removable
media drive is attached to DOS. After locating the proper
UPB, offset 13h points to the driver header record of the
device driver servicing the removable media drive. The UPB
locates the driver header record and copies it to local storage
within the removable media driver memory allocation and
sets the header offset within the DPB to point to the copied
header. The attributes word is found at offset 4 in the header.
The UPB then sets bit 11 of that attribute word so that a DOS
routine examining the driver header record will understand
that the removable media drive 210 supports removability.

15 the disk services call for removability services and making
the necessary extensions to support removability before
calling the initially called DOS disk services routine.

The main removability functions supported by the driver
are "check media status" and "rebuild BIOS parameter

20 block." For typical fixed disk drives, DOS does not expect
the media to change. Thus, "check media status" does not
return a media change indication. Additionally, the DOS
disk services will not access the drive to service a "rebuild
BIOS parameter block" command because the media never

25 changes.

In addition, the UBP changes the pointers to the strategy
and interrupt routines of the DOS driver within the header to
point to the removable media driver. Now the DOS driver is 30

embedded within the removable driver. When DOS calls its
driver, the removable media driver gains control first.

FIG. 2D depicts a flow diagram of the current removable
media driver service. Initially, a call is made to the remov­
able media driver. If the command is to "check media
status," the removable media driver intercepts the command
and process it (step 602). In response, the driver issues a
"Get Media Status" command to the removable media drive
210, as described in detail above (step 612). The drive 210
will report the status of the media in the status and error
registers. If the media has changed, the removable media

The removable media driver is now hooked and the
original INT 21 call that the UBP monitored to awaken is
serviced and the UBP is unhooked from the INT 21. 35 driver reports that change to DOS. DOS will subsequently

make a "rebuild BIOS parameter block'' call to the remov­
able media driver. If the media is not present, this will be
reported to DOS. DOS will respond by sending the user the

It is desirable to remain hooked to INT 21, as well as other
DOS services, for example, INT 2R Such hooks give the
driver added capability and flexibility. However, the INT 21
vector will not remain pointed to the removable media
driver. While DOS continues to load, it will continuously 40

refresh the INT 21 vector. Thus, destroying the ability of the
removable media driver to trap INT 21 calls reliably.

According to another aspect of the present invention, the
removable media driver remains hooked to INT 21 via the
trap capabilities of the CPU 222. When the vectors become 45

stable (i.e., DOS has completely loaded) the tracing is turned
off and INT 21 and other vectors can be replaced to hook
back to the removable media driver.

To accomplish this function using the CPU trap
capabilities, the vector INT 1 is set to point to the removable 50

driver and the trace flag is set. Thereafter, every instruction
executed on the CPU 222 can be monitored by the remov­
able media driver. Of course, this tracing can impose a
severe efficiency penalty. To minimize the impact, the trac­
ing is enabled at the last possible moment. This moment is 55

before CONF1G.SYS is loaded. After that point, DOS
repeatedly refreshes the INT 21 vector. Thus, when there is
an INT 21 function 3D call made with the DS:DX registers
containing ''\CONF1G.SYS" INT 21 can no longer be reli­
ably captured by replacing its vector to point to the remov- 60

able media driver. Instead, the CPU trapping technique is
employed.

CPU trapping can be turned off once the INT 21 vector
becomes stable. This occurs when an INT 21 function 48 call
is made with the register BX containing FFFFh. So, the CPU 65
trapping continues until these values are obtained.
Afterward, the CPU trapping is relinquished and the INT 21

conventional "ABORT, REfRY, FAIL?" message.
If a "rebuild BIOS parameter block" command is

received, the removable media driver services this call
because the DOS device driver does not rebuild BIOS
parameter blocks for fixed disk drives (step 604). The
removable media driver reads the partition table and boot
sector from the drive. Then it issues an !DENT command to
the drive to get the number of heads and sectors and
currently loaded media size (step 606).

Then the removable media driver saves the request struc­
ture pointed to by the original strategy call and makes a call
to the DOS device driver to rebuild its internal structures via
a "set device parameters" call (step 608). When that call has
completed, the removable media driver updates the BIOS
Parameter Table pointed to by the previously saved request
structure. In particular, at offset 18h in the BIOS parameter
table, the removable driver writes the value of sectors per
track. At offset lAh in the BIOS parameter table, the driver
writes the value of heads (step 610).

All other commands are processed by the removable
media disk drive as any conventional fixed disk. Therefore
these commands are passed to the DOS fixed disk driver
(step 614). When the command is processed control is
returned to the calling program.

As the foregoing illustrates, the present invention is
directed to methods and apparatus for booting a computer
system and loading drivers from a removable media disk
drive. In a PC system that boots an operating system from
a storage device, the present invention provides a means for

5,694,600
19

booting from a removable media drive. It is understood,
however, that changes may be made to the embodiments
described above without departing from the broad inventive
concepts thereof. For example, while the method of the
present invention is particularly well suited to an IDE 5
interfaced removable media drive, the same method may be
used to boot a PC system from a removable media drive
connected to a different interface, such as SCSI.
Accordingly, this invention is not limited to the particular
embodiments disclosed, but is intended to cover all modi-

10
fications that are within the scope and spirit of the invention
as defined by the appended claims.

What is claimed is:

20
able media storage device such that the storage device
appears to the BIOS to have media available even if no
media is available;

(c) providing the BIOS with a substitute master boot
record from the memory area of the removable media
storage device in response to a BIOS initiated request
for the master boot record from the media;

(d) controlling the boot sequence from the substitute
master boot record when the BIOS executes said sub­
stitute master boot record;

(e) extending the standard boot sequence capabilities by
retrieving another program from one of said memory
area and said removable media of the removable media
storage device in response to said substitute master
boot record requests; and,

(f) retrieving a boot sector from one of the removable
media storage device or another storage device.

1. In a storage device having removable media and a
memory area, wherein the storage device is connected to a
processor and wherein the processor performs a boot 15
sequence to retrieve an operating system from the storage
device, a method of commandeering the boot sequence,
comprising the steps of:

(a) receiving requests from the processor to determine the
status and availability of the removable media;

6. The method of claim 5 wherein said memory area on

20
the storage device is a Read-Only Memory device.

7. In a computer system having a processor, a BIOS and
a first storage device that accepts a removable media, said
first storage device being in communication with said
processor, a method of booting an operating system program

(b) if no removable media is available, providing a
simulated response of successful completion to said
requests such that the storage device presents an indi­
cation that removable media is available;

(c) if media is available, performing said requests upon 25

said media;
(d) subsequent to said test requests, receiving a read

request to provide a master boot record from said
removable media; and,

(e) providing a substitute master boot record from said
30

memory area on the storage device instead of the
master boot record from the media such that said
substitute master boot record will gain control of said
processor when said substitute master boot record is

35
executed on said processor.

2. The method of claim 1 wherein said memory area on
the storage device is a Read-Only Memory device.

3. The method of claim 1 wherein said substitute master
boot record provides for the boot sequence to continue from
any storage device connected to the processor.

40

4. In a storage device having removable media, wherein
the storage device is connected to a computer system having
a processor, wherein the processor tests the storage device
by checking a status of the storage device during a boot

45
sequence such that the processor will not access the storage
device if the status indicates that the storage device is not
ready during the boot sequence, a method of inducing the
boot sequence to accept the storage device whether or not
removable media is available, comprising the steps of:

50
(a) receiving requests from said processor to determine

the status and availability of the media;
(b) if no media is available, responding to said test

requests with a simulated status such that the storage
device appears to have media available; and,

(c) if media is available, performing said test requests
upon said media.

55

5. In a computer system having a processor with a
removable media storage device connected to said processor
via an IDE disk controller card, the storage device having a 60
memory area and the processor executing a BIOS to boot an
operating system, a method of interrupting a standard boot
sequence to integrate the removable media storage device
into the computer system:

(a) starting the BIOS on the computer system;
(b) providing responses from the storage device to BIOS

initiated requests to test the availability of the remov-

65

into said processor from one of the first storage device and
another storage device, comprising the steps of:

(a) requesting a master boot record from the removable
media of the first storage device;

(b) receiving a substitute master boot record from a
memory area on the first storage device;

(c) signaling the first storage device that said substitute
master boot record has gained control of said processor;
and,

(d) retrieving a boot program from said first storage
device such that the booting can be completed from one
of the first storage device and another storage device
having a valid boot sector.

8. In a computer system having a processor in commu­
nication with a first storage device of the type that accepts
a removable media, a method of installing a device driver in
an operating system program during the booting of the
operating system into said processor, comprising the steps
of:

(a) requesting a master boot record from the removable
media of the first storage device;

(b) receiving a substitute master boot record from a
memory area on the first storage device;

(c) executing said substitute master boot record such that
said substitute master boot record gains control of said
processor anq retrieves the device driver from the first
storage device; and,

(d) executing said device driver on said processor such
that said device driver monitors the operating system
loading process and attaches itself to the operating
system based on a predetermined state of the processor.

9. In a storage device having removable media, wherein
the storage device is connected to a processor and wherein .
the processor performs a boot sequence to retrieve an
operating system from the storage device, an apparatus for
commandeering the boot sequence, comprising:

(a) means for receiving requests from the processor to
determine the status and availability of the removable
media;

(b) means for responding to said requests such that the
storage device presents a status indicating that remov­
able media is available when removable media is not

5,694,600
21

available such that said processor believes removable
media is available;

(c) means for performing said test requests upon said
media when said media is available;

22
15. The method as recited in claim 14, wherein the

computer system has a CPU having at least one interrupt,
and wherein the step (iv) comprises setting said at least one
interrupt such that said boot program executes when said at

(d) means for receiving a read request from the processor
to provide a master boot record from said removable
media; and,

5 least one interrupt is called such that said boot program can
attach said driver portion to said operating system.

(e) means for providing a substitute master boot record
from a memory area on the storage device instead of the
master boot record from the media such that said
substitute master boot record will gain control of said
processor when said substitute master boot record is
executed on said processor.

16. The method as recited in claim 14, wherein the
computer system has a CPU having a trace capability, and
wherein the step (iv) comprises setting the trace capability to

10 execute said boot program when a predefined instruction is
executed on the CPU such that said boot program can attach
said driver portion to said operating system.

10. The apparatus of claim 9 wherein said memory area on
the storage device is a Read-Only Memory device.

17. In a storage device for use in a computer having a
processor, a method of booting an operating system into the

15 processor, comprising the steps of:

11. In a computer system having a BIOS, wherein the
BIOS supports booting from a limited capacity removable
media drive, a method of booting from a higher capacity
removable media drive, comprising the steps of:

(a) configuring the computer system such that the BIOS
recognizes the removable media drive as a first avail­
able fixed media drive;

20

(b) indicating to the BIOS during booting that the higher
capacity removable media drive has media available 25

whether or not media is available in the removable
media drive;

(c) delivering a substitute master boot record to the BIOS
when an initial request is made from the BIOS to the
removable media drive for a master boot record from 30

the media;

(d) when the BIOS executes said substitute master boot
record, loading additional programs by the substitute
master boot record from the removable media drive
such that additional operating system support is added 35

for the removable media drive;
(e) loading a valid boot sector; and,

(f) passing control to said valid boot sector such that
normal booting resumes.

12. The method as recited in claim 11, wherein the step
(b), comprises the steps of:

(i) receiving requests from the BIOS to determine the
status and availability of the removable media;

40

(a) storing a substitute master boot record in a first
memory area in the storage device;

(b) storing a boot program in a second memory area in the
storage device;

(c) receiving a request from the processor for a master
boot record;

(d) providing said substitute master boot record from said
first memory area such that said substitute master boot
record gains control of the processor and requests the
boot program from the storage device;

(e) receiving a request from the processor for the boot
program; and,

(f) providing said boot program from said second memory
area such that said boot program retrieves a boot sector
from the storage device or another storage device
connected to the processor.

18. The method as recited in claim 17, wherein the storage
device has removable media, comprising the further steps
of:

(i) receiving test requests from the processor to determine
the status and availability of the removable media;

(ii) if no removable media is available, responding to said
test requests such that the storage device presents a
status indicating that removable media is available;
and,

(iii) if media is available, performing said test requests
upon said media.

19. The method as recited in claim 17 wherein said
memory area on the storage device is a Read-Only Memory
device.

20. The method as recited in claim 17 wherein said boot

(ii) if no removable media is available, responding to said 45

requests such that the storage device presents a status
and data indicating that removable media is available;
and,

program provides for the boot sequence to continue from

50 any storage device connected to the processor. (iii) if media is available, performing said requests upon
said media.

13. The method as recited in claim 11 wherein the step (c)
further comprises the step of loading said substitute master
boot record from a Read-Only Memory device within the
removable media storage device.

14. The method as recited in claim 11, wherein the step (d) 55

comprises the steps of:

21. Themethodasrecitedin claiml7 wherein the step (e)
comprises the steps of:

(i) signalling the storage device that said substitute master
boot record has gained control of said processor; and,

(ii) retrieving the boot program from the storage device
such that the booting can be performed on any storage
device having a valid boot sector.

(i) loading a boot program having a device driver portion
from the removable media drive;

(ii) passing control from said substitute master boot
record to said boot program such that said boot pro­
gram can search the removable media drive and other
storage devices for at least one boot sector;

22. The method as recited in claim 21 wherein the
signalling of step (i) comprises using READ LONG and

60 WRTI'E LONG commands with signalling information
embedded in place of error correction codes.

(iv) setting said computer system such that said boot
program can attach the driver portion of said boot 65

program when a sufficient portion of an operating
system is loaded.

23. The method as recited in claim 21 wherein the step (i)
comprises using a command recognized by the drive as a
enabling the boot program.

24. In a computer having a processor and a storage device,
wherein said processor has a BIOS program for starting a
boot sequence that loads an operating system into the

5,694,600
23

processor from the storage device, a method of gaining
control of the boot sequence from the BIOS and loading a
device driver while booting an operating system, comprising
the steps of:

(a) setting said drive as the first fixed disk drive in the s
system;

(b) storing a substitute master boot record in the storage
device;

(c) storing a substitute boot program in the storage device;
(d) at system start-up, after the BIOS requests a master 10

boot record, providing said substitute master boot
record in place of the requested master boot record;

(e) executing said substitute master boot record on the
processor such that said substitute master boot record
gains control of the boot process;

(f) after the substitute master boot record gains control of
the processor, retrieving and transferring control to said
boot program;

(g) after said boot program gains control of the processor,
loading a valid boot sector;

(h) executing the boot sector such that the boot sector
loads an operating system; and,

(i) monitoring the execution of the boot sector such that

15

20

at a predetermined time during the loading of the
operating system, the boot program regains control of 25

the system and connects a portion of itself to the
operating system as a device driver.

25. The method as recited in claim 24, wherein the storage
device is of a type that accepts a removable media, com­
prising the further steps of:

(i) receiving requests from the processor to determine the
status and availability of the removable media;

30

(ii) if no removable media is available, responding to said
requests such that the storage device presents data and
a status indicating that removable media is available; 35

and,
(iii) if media is available, performing said requests upon

said media.
26. The method as recited in claim 24 wherein said step

(b) comprises storing said substitute master boot record in a 40

memory device.
27. The method as recited in claim 26 wherein said

memory device is a Read-Only memory device.
28. The method as recited in claim 24 wherein the step (g)

comprises loading the boot sector from any storage device 45

connected to the processor.
29. The method as recited in claim 24, wherein the

processor has a CPU having at least one interrupt, and
wherein the step (i) comprises setting said at least one
interrupt such that said boot program executes when said 50

boot sector makes a call to the at least one interrupt
30. The method as recited in claim 24, wherein the

processor has a CPU having a trace capability, and wherein
the step (i) comprises setting said trace capability to execute
the boot program when a predefined instruction is executed 55

on the CPU.
31. In a storage device of a type that accepts a removable

media, wherein the storage device is connected to a proces­
sor having a BIOS and wherein the BIOS performs a boot
sequence to retrieve an operating system from the storage 60

device, an apparatus for commandeering the boot sequence,
comprising:

24
(a) storing means for storing a program code on the

storage device such that said program code can replace
a portion of the boot sequence;

(b) receiving means in communication with said proces-
sor for receiving requests from the processor to deter­
mine the status and availability of the removable media
and to provide a master boot record from said remov­
able media;

(c) means in communication with said receiving means
for responding to said requests such that the storage
device presents data and a status to the BIOS indicating
that removable media is available when no removable
media is available;

(d) means in communication with said receiving means
for performing said requests upon said removable
media when said media is available;

and,

(e) means in communication with said storing means for
providing a first portion of said program code on the
storage device instead of the master boot record from
the removable media in response to requests to provide
a master boot record, such that said program code
record will gain control of said boot sequence allowing
the boot sequence to proceed from a storage device not
supported by the BIOS.

32. The apparatus as recited in claim 31 wherein said
program code comprises:

a first portion containing a substitute master boot record
conforming to a master boot record format recognized
by the BIOS; and,

a second portion containing a boot program, wherein said
boot program comprises a modified boot sequence
program portion and an operating system extension
portion.

33. The apparatus as recited in claim 31 wherein said
program code is stored on the storage device in a memory
device.

34. The apparatus as recited in claim 33 wherein said
memory device is a Read-Only memory device.

35. In a computer system having a BIOS, wherein the
BIOS supports a limited capacity removable media drive as
a boot device for loading an operating system, a method of
supporting a higher capacity removable media drive as a
boot device comprising the steps of:

(a) configuring the computer system such that the BIOS
recognizes the removable media drive as a first avail­
able fixed media drive;

(b) delivering a substitute master boot record to the BIOS
when an initial request is made from the BIOS to the
removable media drive for a master boot record from
the media;

(c) when the BIOS executes said substitute master boot
record, loading additional programs into the computer
system from the removable media drive such that a
removable media function is recognized by the oper­
ating system while the removable media drive is con­
figured as a fixed media drive;

* * * * *

