
IRWIN TAPE DRIVE SOFTWARE COOKBOOK

Application Note #1

May 24. 1984

Copyright (c) 1984 Irwin Magnetic Systems. Inc.

All rights reserved

1

1.00 Intrgduction

2.00 Tape Operation and Format
· 10 Tape Operation Modes
.20 Tape Servo Writing
.30 Tape Format and Organization
.31 Tape Format
.32 Block Format
.33 Format Parameters - Block 0

.40 Tape Positioning
.41 Access Time

· 50 Veri fi cation

3.00 Hardware Cons~derations
.10 Floppy Disk Controller
.11 S" Floppy Disk Compatibility

Considerations
.20 DMA - Direct Memory Access
.30 Interrupts
.40 Addressability
.50 Memory
.60 Power Supply

I
4.00 Software Cons~derations

· 10 General Software Requirements
.20 Software/Hardware Interaction Concerns
· 30 Software Design

.31 Software Transportability

.32 Software Interrupts
.40 Software Design Example

.41 Mid-Level Tape I/O Routines

.42 Low-Level Device Routines

5.00 Consideration! for the Western Digital
WD179x and WD279x Series

· 10 Using the Western Digital Commands
.20 Tape POSitioning with the Western

Digital

6.00 Considerations for the NEC 765 Controller
· 10 Using the NEC 765 Commands
.20 Tape POSitioning with the NEC 765
.30 Programming Problems with the NEC 765

7.09 Low-Level Dev~ce Driver Flowcharts

2

:1

4
4
5
5
6
9

11
12
13
13

14
14

15
16
16
17
17
17

18
18
19
20
21
21
22

44
45

46

47
48
50
50

51

1.00 Introduction

The purpose of this cookbook is to provide reference material for
designing, writing, and testing software for the Irwin tape drive
models 110, 210, and 310.

This application note assumes that the programmer is familiar with
the floppy disk interface and other hardware available. There will
be little effort to describe the theory of hardware operation
other than what is applicable to the Irwin tape drives. It is also
assumed that the programmer has read the Irwin Tape Drive OEM
Manual. Use the OEM Manual as a reference for t~rminology

contained in this document. Also, throughout this application
note there will be references made to the applications software
for the Irwin tape drives. Familiarity with the Irwin software is
beneficial, but not necessary.

3

2.20 Tape Operation and Format

This section discusses the physlcal tape and its operation. This
section also discusses the format of the tape, including track
format, bloc k format. sec tor format, and th e format of bloc k 0
(where the format parameters are stored).

2. 10 Tape Operation Modes

The Irwin tape drive has three modes of operation: streaming mod ••
start-stop mode, and in-place-update mode.

The tape is operating in the streaming mode when in constant
motion while reading or writing. The streaming mode provides the
most efficient operation of the tape because there is no time
dedicated to star~ing and stopping the tape. With the Irwin tape
drive streaming. ,writing 10.35 megabytes to the tape takes only 8
minutes (all owi ng 1 minute per trac k. for 8 trac k s. wi th tap e
streaming from end to end>' Programming is most difficult in the
streaming mode due to timing requirements during data trans'er.

The start-stop mode enables the user to start and stop the drive
anywhere on the tape without 1055 of storage efficiency. Most
tape drives operating in the start-stop mode lose storage capacity
as the number of starts and stops during writing to tape
increases. As these dri ves wr i te to tap e. th e time between a stop
and start is an inter-record gap. The Irwin tape is pre-Formatted
and consequently there is no loss in tape storage ef-ficiency.
Starting and stopping is useful when processor overhead does not
allow the tape to stream. Use the start-stop mode to position the
tape to a tape block for selective reading. selective writing,
error retries, and in-place-updating.

The Irwin tape drive also provides an in-place-update mode
allowing selective writing to any pseudo-sector in any block on
the tape. This type of tape operation is a particularly benefi­
cial Feature of the Irwin tape drive family. Use the in-place­
update mode to m~intain and update directories, bad block maps.
tape ID blocks. and other files on the tape.

The in-place-update mode gives the Irwin tape drive random access
capability. This capability makes the Irwin tape drive an
inexpensive, random access, large capacity memory device. The in­
place-update mode is not found on most other tape drives.

4

2.20 Tape Servo Writing

All Irwin tape drives require a servo written tape, before any
data can be written to the tape. The Irwin drive has servo write
capability. It is important to note that before a tape can be
servo written it must be bulk erased. Failure to bulk erase will
r.sult in unsuccessful tape servo writing.

2.30 Tape Format and Organization

A servo written tap~ has been physically and logically divided
into tape blocks. Each block contains 11.95 inches of tape provi­
ding the user with a capacity of 9.562 bytes unformatted and
accessible. The servo information 1. located at the beginning of
each block and is not user accessible. This unformatted capacity
i5 analogous to the unformatted floppy track.

Hence. a servo ~ritten tape appears to be a floppy diskette with
many more tracks. To be compatible with the floppy disk control­
ler, each tape block must be formatted and organized like a floppy
disk track. Thus. format fields such as an index gap. header
I~'sl header gaps, data fields, and CRe's must be written to the
tape.

The type of software that will write the format data onto the
is similar to the software for' d floppy disk. lhe format
written to both the tape and floppy disk is ldentical.
formatted, each tape block will contain sectors Just like
floppy track.

tape
data
When

the

Depending on the application. the user determines the sector
information, including the number of sectors and the sector
length. All Irwin software u~es eight, 1,024 byte sectors per
block. For a floppy disk, a greater number of sectors per track
results in more formatting overhead and less useful storage per
block. Since a floppy track is equivalent to a tape block,
formatting overhead and useful storage considerations also apply
to tapes. The eight sector format provides the lowest formatting
overhead and the most user available space per block that many
floppy controllers and controller chips will allow. (Refer to the
NEC 765 and Western Digital 179x specifications and application
notes for information on formatting floppy diskette tracks. This
informa~ion is also applicable to tape blocks).

5

When formatting the data field. it is best to use the pattern 60h
as a sector "fill character". The 60h data constant is the most
difficult pattern to read in the MFM data encoding format. When
verified, it provides a good test of tape media and data recovery
electronics "quality".

To format the tape with the 5 1/4" MFM data format standard. Irwin
recommends the u~e of write track commands. Use the tape block
number in place of ~he cylinger number in each sector header 10.

2. 31 Tape Format

Irwin has set recommended format specifications for the tape
cartridges used in the Irwin tape drives. Irwin uses this format
extensively. This format allows the mast user available space with
the least amount of 10 header overhead.

The tape is first divided into 8 tracks. numbered 0 through 7.
These tracks are ~rganized on the tape in a serpentine fashions
the even numbered tracks are recorded in the forward direction
(beginning-of-tape to end-or-tape, or BOT to EOT), while the odd
numbered tracks are recorded in the reverse direction (EOT to
BOT). Each track is then divided into 158 blocks. or cylinders.
While blocks and cylinders are the same. blocks are the logical
diviSions and cylinders are the physical divisions of the tape.
The cylinders are numbered 0 through 157 on each track. while the
blocks are numbered 0 through 1.263 across the entire tape. (See
Figure 1 - Tape Layout and Figure II - Track Layout) Each block is
fUrther divided in~o 8 sectors. numbered 0 through 7.

The format of each sector within a tape block is mini-floppy
compatible. Each sector has a data area of 1 kilobyte in length,
which makes each block a total of 8 kilobytes long. The total
capacity of a tape track is therefore 1.294 megabytes and the
total capacity of the entire tape is 10.355 megabytes. (See sec­
tion 2.32. "Block Format" for block format details.)

The format parameters are stored In block 0. which i5 cylinder 0
of track 0. These parameters Include the version number of the
formatting program. the format date, the number of tracks per
tape, the number of blocks per track, the number of sectors per
black, the number of bytes per sector, the application program
used on the tape, the volume number and limit, the time and date
of the last tape change. and the track and cylinder of the first
free block. These parameters are stored in duplicate. (See section
2.33 "Format Parameters - Block 0")

6

FIGURE I - TAPE LAYOUT

BOTHOLE8 1 --"'--.

I r- •• ••

HEAD
LOAD
AREA .

c::---un

NItIA
.. --,"

•

---....

l.oIII ,

4FT

111M)

TURN
AROUND

AREA EOTHOLES

PHYSICAL
lEND Of

TAI'I
EARLY
WARNlt4Cq ~~ 1

I ~~ - . . I
'"~ ~ u~l::~
OATA lII\IO NItIA

"33 SEC ~~ 70 IPS j
Sq SEC Ai 3q IPS

FiGURE][- IRACK LAYOVT

BOT EOT

BLOC.K C.YLINOE8 TRACK C,(,Llt-lDER 8LCC.K .. "7
\\06 \263 157 0

q48 0 .. l5"1 1105 .. 5
q47 \St 0 "1'\0

4 .. 632 0 151 "'18'\

631 15'1 .. 0 414-

2- • 316 0 \5'1 4-73

315 \5?- ~ 0 158

0 ., 0 0 \57 157

2.32 Block Format

Each block of the tape is formatted as 'ollows:

Number of Bytes He~ Value

80 4E
12 00

3
1

50

C2 (lAM - Index Address Mark>
FC
4E

(The 'ollowing section is repeated 8 times, once 'or each sector.)

12 00
3 Al (lOAM - 10 Address Mar'k)
1 FE
1 (Track)
1 00 (Side)
1 (Sector)
1 03 (B"tes per Sector Flag)
2 CRC

22 4E
12 00

3 A1 (DAM - Data Address Mark)
1 FB

1024 (Data)
2 CRC

54 4E

On the following page is Figure III - Block Layo~t. This Figure
graphically shows the block layout. The top section shows a single
block divided into the block header and 8 sectors. The next two
sections show the contents of the header and a single sector.

9

... t7G.S- MS }.110 \~S -~ P"

.... 306 W\S AI 3£1 I\)S .
~20.3"'-f;36S.n

A.T 70 t f:o.S AT :3'1 1 Ps

S BLOCK SECTOR SECTOR SEC-TOR SECTOR see'-OR SE.CTOR S~CToR SEelOR GAP
E HE'A.DE:R 0 I 2 3 4 5 6 7 R

r-V .-~-- 4-E 0

146 1140 ""'2Q6

/ ~ ~ ~
lAM I~H) eRe DAM DATA CRe

+E 00 C2. Fe 4E 00 4-E 00 ,b..\ FB 4E

BO -fa 3 I 5"-G-~--- . \a .. --S

~
3 I 1024- 2 S4 -- -----

/
IbMt ttwcK S\bE SECToR Bmsl

SECTOR
Ai FE 00 03

3

2.33 Format Parameters - Block 0

Irwin's application software uses block 0, which is cylinder 0 of
track 0, to store format parameters and a bad block map. All of
this information is stored in duplicate immediately Cli!ter thp
format process. Sector 0 contains the fo~mat parameters of the
tape. Sectors 1 and 2 contai.n the bad block map. Sector 3 contain=
nulls. Sectors 4 through 7 are duplicates of sectors 0 through 3.

Although this IbloCk 0 fOl'lIIdt is optionaL Irwin T'ecommends
adherence to the format til insure interchangeability. Th~

suggested format parameters are 11sted below. The bad block map is
act u all y L 264 by t e s I on 9 (CJ neb y t e for e a c h b I 0 C k on the tap e) .
Initially. every byte is set tD OOh. When a block is Found to be
bad. the corresponding byte lTl the bad block map is chaTlged tu
FFh. Also, since each block has 8 sectors and each byte has 8
bits. this bad block map can ontentially be used as a bad sector
map.

Description

Format program name and vert; I'H. !lumber
Date of format (from DOS)
Tracks per tape
Blocks per track
Sectors per block
By te s p e1' sec tor
Application program version I',umher (major)
Application program ver!:>icm (.umber (minor)
Tape use flag (O-unused, l-F IF', 2-IMAGE,
Volume name
Volume number
Volume limit
Date of last tape change (Mt'I;'(!U/YYYY)
Time of last tape change CHH MM)
Track of first free block
Cylinder of first free block

Reserved for application program use

11

)

i:l l ltE'2., !JfLt.a Type

o· ~Jh Af:iC I I
37--44 A[iC I I
45--46 decimal
47-.J.J8 d t~ (' i ma .I
49 .. ·50 declmal
51'-'5;:~ decimal
53·-ji.} dec.imal

t..: L:
J~I decimal
0:.: •
JO decimal

57-,69 ASCII
70 decimal
71 decimal

72-8:::! ASCII
83--88 ASCI I

89 decimal
90 decimal

959-1023

2.40 Tape Positioning

Irwin tape drives have two speeds: 39ips for read/write opera­
tions, and 70i~s for tape positioning. Data transfer is done at
the 39ips speed while tape positioning is done at the 70ips speed.
Positioning the t,pe is accomplished by counting index pulses from
the floppy c~ntro~ler. Therefore if the current and desired tape
positions are kno~n (position being tape block number), the user
can issue a fast motion command and a count of index pulses (each
index pulse representing a passing block) to position the tape a
few blocks before the desired block. To start data transfer after
the tape has be.n positioned, the user must us. the read/write
speed.

For example, with a tape block length of 13.47 inches, a tape
speed of 70ips, and a stop time of 400ms, it will take about 3
blocks to stop the tape. The user can assume the same 3 blocks
for res tart in g the tap e, (at t h Eo' rea d / wr i t e s pee d) , for a tot a 1 0 f
6 blocks overhead. When the tape is going backwards, however, the
3 blocks starting overhead cancels some of the seek length. As an
example, to seek block 100 wheTI positioned at block 4, initiate a
Move Physically Forward. count 90 index pulses (to get to block
94), issue a Stop Tape. and then initiate a Read Logical Forward.
The tape would be positioned within 3 blocks of block 100 where a
data transfer could begin.

Some floppy disk controllers and/or controller chips will not
allow the host ~o access the index pulse line of the interface.
The NEe 765 is an! example of this. The index line is accessed by
the NEe 765, but the host can not access the index line informa­
t i on. Therefore, the program c an not simp 1 y count i nde x pul se s.
(On the other hand, the Western Digital 179x shows index as a bit
"Sl" in the Status Register for Type One commands.) The NEe 765
can count index pulses and, if it does not find a disk sector
address within two disk revolutions (or index pulses), it will
time-out. The user can then issue read commands of invalid
sectors to the NEe 765 and wait for a time-out, where every time­
out indicates the passage of two tape blocks. If the invalid read
commands are ch~ined together, they become an effective index
pulse counter. : Using the previously mentioned figures, one can
calculate the tim. it takes one block tp pass the tape head at the
Move PhYSical speed to be 192.4ms per tape block. In the above
example <getting to block 100 from block 4), instead of counting
90 index pulses, a timer routine would time-out 17.316 seconds (90
x 192.4ms>. This would be the ectuivalent time to pass 90 tape
blocks vnder the head at the Move PhySical speed of 70ips.

12

When using these tape positioning techniques, institute some kind
of "T'ead tape address" routine when exiting a higher tape speed
and/or entering the read/write speed. This will indicate absolute
tape position. In most cases the initial tape position will be a
within 3 blocks of the desired block so the program will have to
perform multiple "read tape addresses" before finally getting to
the desired block. In some cases, especially when using the time­
out positioning mode, tape speed error, and motor starting and
stopping, time can accumulate and cause the tape to overshoot the
desired block. If this should happen, it will be necessary to
reposition the tape before the desired block. Since this over­
shoot error would entail only a few blocks, one or more Pause
commands can be used to back the tape up.

For random reading or writing, position the tape a few blocks
before the desired block. Con~inuously read ID's until an ID is
found in any sector in the black preceeding th~ desired black.
Next, issue a read or write command. Succeeding sectors O'f' blocks
in the same track may then be read from, or written to, in the
streami ng mod e.

2.41 Access Time

The BOT to EDT read/write tim~ 15 59 seconds. At pOSItioning
speed this is 33 seconds. Use these numbers when calculatlng
access time. The time necessci:lI'Y to read or write tht:.' entlre tape
w ill b e 8 t l' a c k s x 59 5 £~ con d s , () I d b {) U t 8 min ute s .

2.50 Verification

Like a floppy drive, the Irwin tape drive has no "on-the--fly"
read-after-write capability. Therefore, to insure data recording
integrity, it is important to reposition the tape after a write
operation and reread the data written. In order to keep the
repositioning time to a minimum, read-after-write verification
should be done after all of the data has been written.

13

3.00 Hardware Considerations

This section discusses hardware needs. options. and operations.
As these considerations will vary from system to system, use what
is applicable to your system.

3. 10 Floppy Disk Controller

There are two basic designs of floppy disk controllers. One type
of controller (the type we will discuss below) uses a commonly
available floppy disk controller chip. The second type of control­
ler is based on discrete logic. a microprocessor (maybe bit­
slice). or both.

Most of the floppy controller chips operate alike. The two most
popular chips are the Western Digital and NEC chips. The discus­
sion will be confined to these. Basically, these chips have a
processor interface on one side and a floppy disk interface on the
other.

The most important feature that the floppy disk controller
requires is a mechanical and electrical 5 1/4" floppy drive inter­
face. This type of interface is called the Shur9art SA450. Most
5 1/4" floppy disk drives (both full- c"!lnd half-height, single­
sided or double-sided) support this interface.

Areas of floppy disk controller design where incompatibilities
arise are in the number of drives supported by the controller and
the use of the motor on and side select signals. The Irwin tape
drive can be set to 1 of 4 device selects. and does not use the
motor on. side select. or direction signals.

Electrically. the Irwin drive has a 5 1/4" half-high footrlrint
and uses the same connector as the SA450 type floppy dl'lve It
fits on an existing daisy-chain and has the same addresSdbillty as
a floppy drive. If the Irwin tape drive is the last dEVi[~ on the
daisy-chain, it must have an hwin terminator resi~,toT' pdcl((SIP
style) installed. Otherwise, the terminator pack must bt:~ ,(,t-Jllioved.

14

Another area of floppy disk controller concern is write precompen­
sation. Irwin recommends 250ns of write precompensation on all
blocks. Most controllers have write precompensation as an
adJustment because this value varies from drive to drive. Having
a write precompensation of less than 250ns may cause an increase
in soft errors. Also the type of Data Recovery and/or Data
Separator circuit will affect the number of soft errors. In some
instances, a write precompens6tion as low as 125n5 worked with no
errors on read back. Error~ relating to an inadequete write
precompensation will appear in the Form of CRC errors.

The last area of floppy disk controller concern is the Data
Separator or Data Recovery circuit. A Data Separator recovers a
serial data stream and the appropriate clock. This type of elec­
tronics is commonly Found in a discrete logic or microprocessor
based controller. Most of the chip-based controllers, such as
those based on the NEC 765 and the Western Digital 179x, use a
Data Recovery circuit to generate a synchronized data-clock window
which directly drives the controller chip. In eitheT' case, it is
important that both circuits are carefully designed to operate
over a wide range of read-data-bit Jitter that can be generated by
the tape or floppy drive. This can be accomplished using a phase­
lock loop design. Reading data from the Irwin tape drive is mueh
like reading data from the inside tracks of it floppy di~k. (The
data recovery electT'onies hdve an easier time (HI the fl ll1ppy'5
outside tracks than the tracks on the inside. This is due to the
fact that the bit density rises on the inside tracks.)

3.11 8" Floppy Disk Compatibility Considerations

Eight inch floppy disk controllers are incompatible with the Irwin
tape drives for two reasons: the MFM data bit rate is 500KHz as
opposed to the required 250KHz, and the data connector and elec­
trical connections are different for the 8" technology.

Both of these incompatibilities can be resolved with hardware
modifications in most controllers. In most cases the data rate
can be slowed down by halving the clock frequency to the control­
ler chip. With the addition of some hardware logic, the 8" con­
troller can be designed to respond to both data rates, switchable
through software. Also, since the 8" controller specifies the
same lID lines used by the Irwin tape drive, a cable adapter can
be made to inter'ace the Irwin tape drive to the standard 8", 50-
pin ribbon cable standard.

15

3.20 DMA - Direct Memory Access

In most microcomputers. a single processor is used to perform data
transfers between all peripherals. In disk and tape controllers,
the processor is a slave of that controller during the time of
data transfer because of strict timing requirements. These timing
requirements are needed to insure no loss of data due to a busy
processor.

In a backup situation with a single processor, the processor
in i t i a I I y doe s 'a dis k a c c e sst 0 ret l' i eve d a t a , and sec 0 n d I y • a
tape access to store it. When the processor is reading informa­
tion from the disk, the tape is motionless because the processor
can not write to the tape at the same time it is reading from the
disk. The flow of data is from disk-to-memory-to-tape as the
microprocessor sequentially moves the data.

DMA is the hardware ability (under software control) to perform
peripheral-to-memory (or vic!' versa) operations. l"herDe-omputers
have one or more DMA channels ~hat can be used simultaneuusly In
a two channel DMA situation. une DMA channel would move data from
disk-to-memory. and the cit L ,_'I' from memory-to·-tape. In some
instances. where both DMA channels cannot use the same memory
buffer simultaneously, it is necessary to use two memory buffers
and alternate them between the tape and disk DMA channels. In a
multiple channel DMA system. the processor has the Job of control­
ling the DMA device and managing memory. The size of the memory
buffer is dependent on system timing between the tape and disk. In
a single channel DMA controller. one of the peripherals (tape or
disk) would have DMA capability while the other would depend on
the host processor to move data from memory to peripheral.

3. 30 Interrupts

Enabled interrupts are a peripheral's ability to direct processor
control to the interrupt T'outine. Interrupts that are disabled, or
turned off. are ignored by the processor. During a tape-to-disk
data transfer, when host timing is very critical (even with DMA),
it is important that no other peripherals interrupt the host
processor. An interrupt may cause a stop of data transfer and
possibly an untimely tape reposition. Therefore, make sure the
software disables all of the hardware interrupts. For more infor­
mation on softw~re interrupts, see section 4.32, "Software Inter­
rupts".

16

3. 40 Addr.ssabilit~

To operate the Irwin tape drive on an SA450 interface, low level
device software must be capable of allowing the hardware to per­
form primitive floppy disk operations. These operations include
drive selection, head stepping, track data transfers, and control­
ler operation interruption. For these reasons the software needs
addressability to the controller hardware.

This controller accessibility and the amount of access is
dependent on the design of the controller. A very smart control­
ler that executes high level commands such as read/write sector,
data block, or file, from the host may not be usable with the
Irwin tape drive b.c~use the controller is incapable of performing
low-level operation~. Most controllers of this type have their
own microprocessor and program ROM. They interface to the host
through these high-level commands and perform the necessary low­
level operations as they are needed in order to accomplish the
high-level commands. If enough in'ormation is available about the
design of such a controller. its ROM may be reprogrammed to
directly provide the low-level commands needed by the Irwin tape
drive.

3. 50 Memory

A tape drive application program typically takes 20K to 60K of
memory. not including buffers. Depending on the hardware configu­
ration, buffer re~uirements may be small or ~uite large. In a
system with DMA, buffers should be about SK to 16K. In a non-DMA
system, the buffers should be as large as possible to keep tape
repositioning and start/stopping to a minimum.

3.60 Power Supply

It is important that the power supply provides for the power
re~uirements of the Irwin tape drive. An inade~uate supply 0'
power to the tape drive may cause a variety of problems. Software
problems, failure to stop a tape at the end of the cartridge. and
other hardware problems may be due to the inade~uate supply of
power. Power supply problems are the most fre~uent reasons for
tape drive failure.

17

4.00 Software Consi~erations

This section considers application program design from a
conceptual standpoint b~ discussing low-level device drivers.
drive needs. and application considerations. Considerations will
be from a svstems standpoint. An attempt will be made to lead the
programmer through tape drive program design.

Irwin has designed a tape drive that uses a flopp~ disk controller
to interface the tape drive to a host s~stem. To minimize the
cost of the tape drive. Irwin uses an existing flopp~ disk
controller to interface the tape drive rather than require a
separate tape contr~ller. It is not Irwin's intention to provide
a tape mechanism that would use existing flopp~ disk software to
control it. but rather to provide a tape drive with its own
software identit~ that would operate through a floppy disk
controller. This method will keep cost down b~ utilizing existing
hardware. but will recognize that the device is a tape drive. not
a floppy drive. and that new software can and should take
advantage of that fact.

•

4. 10 General Softwa~e ReqUirements

While the Irwin tape drive is different from a floppy disk drive,
many aspects of the software are the same. This results from the
fact that both use the same controller. Since the controller was
designed for floppy disks, it is necessary to program it to
"think" like. tape drive controller.

The software is divided into two areas of operation: data transfer
and tape positioning. Data transfer operations will use software
identical to floppy software, while tape positioning will require
a different set of software.

In general, software for implementing the Irwin tape drive needs
to convert a floppy disk controller into a tape controller. This
involves careful programming to convert the floppy controller or
floppy controller chip to do tape controller functions. The
popular flopp~ disk controller chips, the Western Digital 179x and
NEC 765, can present conversion problems if careful programming
techniques are not applied. A good understanding of the operation
of theSe controller chips is a prerequiSite for doing the low­
level device. programming.

18

4.20 Software/Hardware Interaction Concerns

When programming a tape or disk peripheral, the peripheral
re~uires that data be transferred at a specified time, rate, and
amount. Speed performance is dependent on the interaction between
hardware and software and should be optimized.

T.pe peripheral performance is optimized when data tranfer is
performed continuously. This means that the program should keep
the tape moving. Stopping and pausing are lengthly operations due
to the relatively long starting and stopping times of the tape.

There are three items of software/hardware interaction that the
programmer needs to address: interrupts, DMA, and ,memory buffer
usage.

I

It is necessary to know which interrupts are used by the system
and when they willi happen. If an untimely interrupt occurs during
tape data transfer, the tape may not be serviced in time, causing
a reposition. To prevent an unnecessary tape reposition the
interrupt should be disabled.

The programmer will have to determine which interrupts to disable.
Since the controller will always interrupt to the floppy disk
handler. it will be necessary to "patch in" the address of a tape
interrupt handler. Other interrupt routines. depending on opera­
ting system and usage. may have to be "patched" in order to trap
interrupts that may reset or change the status of the floppy disk
controller. An example of this is IBM PC-DOS ROM BIOS interrupt
13. It is also important to restore all interrupt routine pOin­
ters to their original states.

DMA is necessary for streaming tape operation. Knowledge of your
system's particular DMA scheme and its operation is a prere~uisite

to writing data transfer routines. Considerations here include
the speed of the DMA channel(s), setup time, and buffer transfer
design. Factors in the buffer transfer deSign include the number
of buffers to use, the buffer size, the buffer address, and buffer
speed. !

Memory buffer usage is a function of the DMA hardware architecture
and the amount of memory available for buffer usage. If the
system has no DMA, then use as large a buffer as memory will
permit. A large buffer will transfer as much data as possible to­
or-from the tape and as a result will keep the number of starts
and stops to a minimum. If the system has DMA, the buffer size
will depend on the DMA architecture and speed.

19

With the aid o~ DMA and interrupts. a bu~~er management scheme
using overlapping lID is a good method to keep tape repositioning
to a minimum. In this scheme there are one or more memory buffers
used in the data transfer. One DMA channel continuously reads
data into the buffer(s) Prom the tape or disk peripheral while
another DMA channel writes data from the one or more buffers. The
two'DMA c hanne 1 slop erate i nd ep end ent I y tone fill i ng memory, one
dumping memory_ a~d at completion both interrupting the processor.

A buffer management program controls the DMA and memory. To
optimize overlapping lID, use as much memory as possible for the
buffer (5). Al so. remember that hard disk data transfer, inmost
cases. will be faster than transfer to-or-Prom the tape.

Because hard disk data transfer is faster than tape data transfer.
an attempt should be made to keep the buffer(s) full of data for
a disk-to-tape operation, and keep the buffer(s) empty in the case
of a tape-to-disk operation. In some cases. usually involving
processor overhead (directory work, file searches. interrupts. and
hard dis k errors (retr i e s)), th e average tap e data transfer rate
becomes greater than the hard disk data tran5~er rate. If this
happens, the tape will have to stop and reposition while the disk
catches up. In order to keep this occurence to a minimum, it is
good practice to perform hard disk operations until all the
buffer(s) are full or empty (depending if you are transferring
data to or from the tape>. These hard disk operations should be
performed when the tape stops or repositions due to a faster tape
data transfer. This will enable the hard disk to get a head start
on data transfer when the tape is put back into motion.

4.30 Software Design

Most application program design is done with the "top-down"
approach. In a top-down approach the user's needs are determined
first. Implementation is then performed by specifying software
modules through hierarchical levels progressing down to the primi­
tive operations known as the low-level device drivers. Tape
application programs are not significantly different, however
floppy controller hardware influences program design. It is
therefore neces$ary to do a "bottom-up" program specification
while also doing a top-down specification. In this bottom-up
approach the low-level routines are considered first. Implementa­
tion is then performed by speci~ying so~tware modules through
hierarchical levels progressing up to the user interface. Where
the two designs meet is the optimal trade o~~ between programming
goals. user's needs, hardware considerations, and operation speed.

20

An example of the merged approach can be illustrated in the design
of a backup program. A backup program is designed to allow the
user a fast and easy hard-disk-to-tape backup which will be done
on a frequent bas i 5. To des i gn a bac k up program. first you must
know how the controller hardware works and its capabilities. In
addition, you must know how the operating s~stem and file system
i n t e r fa c e s w 0 r k . Ha vi n gop t i In i 2' edt h e pro g ram for b a c k up, the
restore function may take longer. which is acceptable since It is
used less frequently. In the process of examining both the top­
down and bottom-up designs. you WIll make decisions reqarding the
user interface. information to be backed up (files. directorIes.
or the entire disk). how tape movement and repositioning is to be
done. and how the DMA and memory are to be used.

4.31 Software Transportability

Software transportability is another consideration when writing
programs of any kind. Transportability means the ability to
export of software across hardware. operating system. and file
system boundaries. Hardware boundaries are crossed by low-level
device routines. usually written in assembler, with other
programming done in a high-level language. Operating system and
file system boundaries are crossed through careful program design
which uses a modular appoach and keeps all system dependenCies in
a minimum of program modules.

4.32 Software Interrupts

One particular concern with operating systems is software inter­
rupts. Some of these interrupts interact directly with the floppy
disk controller. resetting the controller or its parameters.
causing loss of controller initialization with respect to the tape
application program. An example of this is the IBM PC-DOS ROM BIOS
Interrupt 13 that occurs after a hard disk read error. This
interrupt routine recalibrates both the hard disk and floppy disk
drives. The recalibration causes the tape program to "forget"
where the NEe 765's track register contents are. This in turn will
affect sending commands to the drive.

Another consideration dealing with software
general policy of trapping unwanted interrupts
them to a new handler. The ideas and philosophies
hardware. operating systems. and file systems.

interrupts is a
and redirecting
will differ with

4.40 Software Design Example

We begin the software design process with a top-down design
procedure to determ~ne the general flow of the program. A flow­
chart showing the program outline can be very helpful. (See Figure
IV - IMAGE Flow-Chart. The organization of the Irwin IMAGE program
which performs an image backup from disk-to-tape and an image
restore from tape-to-d i ski s shown in th i s fi g ure.)

Using a top-down approach, at the top level is the user interface,
if any, followed by the main structure of the program. Further
down the flowchart are the data handling and manipulation
routines. This middle level of the program will deal with the
operating system be~ng used, the desired organization on tape, and
considerations ab04t the specific hardware used. At this middle
level the designe~ should probably move away from the top-down
approach towards the bottom-up approach. At the bottom level of
the program are the low-level I/O and hardware interfaCing
routines.

In most tape application programs there will
program tasks. Following Figure IV is a list
programming tasks. This list is not meant to
does any progTam depend on the existence of the

22

be similar main
of some of these
be complete. nor
listed rout i nes.

FlGURE TIl - IMAGE FLOWCHART

I Program Initialization I

I Main Program Control I

I High-level I
I Disk I/O I

I High-level I
I Tape I/O I

I Get Program 1
I Parameters:

1 SUccess/ 1
: Failure:

,
J

**********1***********
I
J

---------+-----------

I Mid-level 1
I Disk I/O 1

I
I

~*********I********
J
I

----------+--------

I Mid-level I
I Tape I/O I

I Block Queue I
I Mana~t I
---------t------

I
J

*************1'********************
I

Get YIN
Answer

I

I Get Drive I
I Letter I

I FAT I
I Handler I

I Buffer I
I Management 1

Logical/
Physical

Redirection

I Get I
1 Decimal I
1 Nulrber I

Get
Hex

N\lrIt)er

I Buffer Space I
1 Allocation I

I ---------------,
J

---------------- I I I I I
I I I I

************1******************1************1***********1**************1******
I I I I I
I J I I I

I Iow-level 1
I Disk I/O I

I Iow-level I
I Tape I/O I

I ----------------- -------------
I
I
I , I Print Decimal I I Print Hex I

I Nulrber I I Number I
I ----------------- -------------I , I
I I I

------------+---------------

I Print Message I

Console I/O

User Interface
These routines "talk" to the user, get an~ information needed to
operate the program, and output an~ information back to the user.
All error messages should be handled through the user interface.
Ergonomics and human flac::tor~> f:.hould be taken into (on5ilh~l"c:ltion
when designing the user interrace routines.

Command Parser
This routine deciphers the user's input and passes the needed
parameters and program control to the proper routine.

Front End Calculations
These routines perform calculations needed and pass the infor­
mation to the calling program. The information can be the number
of tapes needed, which bytes to transfer, which flags to set,
and which data pOinters and buffers to set up.

Operating System Interface
These routines read and write data to and from the disk through
the operating s~stem and the file system. This reading and
writing can be done on a file, logical allocation unit. or disk
sector basis. BaSically, these routines will be an interface to
the s~stem and file services provided b~ the operating system.

Tape File/Format Manager
These routines interface to intermediate level tape routines and
operating system routines. Actual calls to read and write to-or­
from the tape are done here. These routines manage tape data flow
and tape format. Most of the application program code will be in
th ese rout i nes.

Buffer Manager
These routines organize and manage the buffers. These routines
will interface with the OMA (if available>. Timing will be a
maJor consideration in this routine.

24

i

I
4.41 Mid-Level Tape 110 Routines

The mid-level tape 110 routines facilitate the transportability of
the application software through operating system and hardware
boundaries. These routines will be called by the tape file
manager and buffer manager. These routines make the tape look
like one continuous stream of 1,264 tape blocks (158 blocks/track
x 8 tracks). All tape and tape head positioning is automatically
done. On the following pages is a list of the Irwin TPl routines
that are suggested for use. (TP1 denotes mid-level routine.)

25

TP10NL

Get Drive Number

Callin~ Parameter.

None

Return e.r.metetl

None

Qe5crip~iqn

Thi. routine get. the tape drive's ph~sical unit number. The
number is stored internally for future reference. This T'8utine is
called once per program to insure that the appropriate hardware
(the controller and the tape drlve) is on-line.

TPIOFL

Remove Drive Line

Call ina Parameters

None

Return Parameters

None

Description

This routine removes the drive from the line.
called once per program.

26

This routine is

TP1REDMNT

Read Mount

Calling Parameters

None

Return Parameters

None

Description

This routine "mounts" or prepares a new tape for reading and
assumes the tape drive is already on-line. The user is asked to
insert a tape cartridge, if necessary. Then. a seek load point
command and a seek track 0 command are issued. This routine is
called once per tape.

TP1WRTMNT

Write Mount

Calling Parameters

None

Return Parameters

None

Description

This routine "mounts" or prepares a new tape for writing and
assumes the tape drive is already on-line. The user is asked to
insert a tape cartrj.dge. if necessary. Then, a seek load point
command and a seek track 0 command are issued. The tape cartridge
is also checked to see if the write protect tab is set. This
routine is called once per tape.

27

TPIRED

Read Block

Calling Parameters

buffer address r Address of the buffer fDr the data to be read.
block - Block number.

Return Paramlter.

None

Descriptipn

This routine r~ads a block from the tape. All of the necessary
tape motion is handled internally. This routine fails if it is
unable to initi.te the read. A failure return means that a retry
will also fail. Any less serious problems will be returned by
TP1REDWT. When this routine returns, the tape will continue
mati on.

TPIREDWT

Read Wait

Calling Parameters

None

Rlturn Parameters

None

Dlscription

This routine
TPIRED cal!.
code •.

waits for the completion Dr error return from a
Errors are returned to the calling program as return

28

TP1WRT

Write Block

Calling Parameters

bu"er address - Address of the bu"er 'Dr the data to be written.
block Block number.

Return Parameters

None

Description

This routine writes a block .rom the tape. Alia' the necessary
tape motion is handled internally. This routine 'ails if it is
unable to init~.te the write. A .ailure return means that a retry
will also 'a~l. Any less serious problems will be returned by
TP lWRTWT. When th is rout i ne returns. th e tap e wi 11 cant 1 nue
motion.

TP1WRTWT

Write Wait

Calling Parameters

None .

Return Parameters

None

Description

I
This routine iwaits 'or the completion Dr error return 'rom a
TP1WRT call. Errors are returned to the calling program as return
codes.

29

Cj~1'nQelramet'r5

None

R.turn P.r.m.t'rl

None

DescriRtion

TP1PAUSE

Pause

This routine backspaces the tape once. This routine is used when
the Itr'lming mod. il ending to position the tlpe 10 it will be
r •• d" to Itlrt ItT"I,ming wh.r. it left off.

i

TP1STQP

Stop

Calling Plrameters

None

Return Parameters

None

DescT'iption

This routine stop~ the tape. This routine is used when the
streaming mod, is ending.

30

TPlCONT

Continue

Calling Parameters

None

Return Param'~.r'

None

Description

This routine starts the tape with a 'orward motion. This routine
is called a,teriTP1PAUSE or TP1STOP to r.start the tape motion.

TP1DMNT

Dismount

Calling Paramet,rs

None

Return Parameters

None

Description

This routine "dismounts" Dr "unloads" the tape. A seek load point
command is issued without waiting 'or completion. This routine is
called once per1tape.

31

4.42 Low-Level Device Routines

The low-level device routines provide tape operation on the
hardware. These routines are custom written for the hardware
involved. They are typically written in assembler and are called
only by the mid-level routines. On the following pages is a list
of the Irwin TPO rQutines that are suggested for use. (TPO denotes
low-level routine.)

32

IfQ Return Codes

These are the suggested return codes for the TPO low-level
110 routines. These are the return codes that have
implemented at Irwin. The codes that each routine will receive
dependent on the implementation of the TPO routines which is
turn, dependent o~ the s~stem.

DescT'iD!;ion

Still bus~, waiting for not bus~ failed

Command accepted I
I
I

Command not accep~ed

Receive time-out, read controller error

Send time-out, wT'ite contT'oller error

ContT'oller error, invalid controller response

Record not found, no valid 10 read

i Sector CRe error,; checksum erT'or on record

OMA error, DMA processor missed DRG, data lost

Tape is write protected

10 not found, no valid ID read

InteT'rupt time-out, 110 never properl~ completed

OMA boundar~, internal boundary alignment pT'oblem

Code Number

-01

00

01

02

03

04

05

06

07

08

09

10

11

tape
been
are

in

Error code out of range, internal problem with program ?? (other)

33

TPOINI

Controller Initialization

Calling Parameter,

load time
unload time
step rate
io gap

Return Parameters

None

Description

Head load time in ms (suggest 4).
Head unload time in ms (suggest 480).
Step speed in ms (suggest 6).
Gap length to use for read/write (suggest 017h>'

This routine initializes the floppy disk controller for tape
usage. The flopp~ hardware interrupt vectors are saved and
replaced with new interrupt vectors for the tape routines.
Depending on the controller. the calling parameters are passed on
to the controller. saved for reference use. or Just ignored. Any
type of software or hardware initialization that needs to be done
once per program sh~uld be done in this routine.

TPOTRM

Controller Termination

Calling Parameter,

None

Return Parameters

None

Description

This routine terminates the tape's usage of the floppy disk
controller. All of initialization processes are reversed in this
routine. Most notably. the floppy hardware interrupt vectors are
replaced.

34

Drive Select

Calling Parameters
I

drive - Drive number.

Return Parameters

None

Description

This routine selects or initializes the chosen drive. This is
performed with a controller res9t and a recalibrate command. It
must be called once prior to the first call to any other function
with the same specified "drive" parameter. This routine may be
called again after TPOOFL.

TPOOFL

Drive Unselect

Calling Parameters

drive - Drive number.

Return Parameters

None

Description

This routine unselects the S~~Llfled drive. It must 0e [~ll~d once
after the last call to any olher functitin with the same specified
"drive" parameter. This routine must be called before TPOTRM. (In
many systems this routine may do nothing or not even exist.)

35

TPORECAL

Recalibrate

Calling Parameters

drive - Drive number.

Return Parameters

None

D@st;ription

This routine attempts to "awaken" the drive with a controller
reset and a recalibrate command. This routine is performed
automatically i. the drive needs it as a result o' an error.

Controller Reset

Calling Paramlters

None

Return Parameters I

None

Description

This routine attempts to »awaken» the controller with a controller
reset command. This routine is per'ormed automatically i, the
controller needs it as a result o' an error.

36

TPOBUSY

Ch ec k for Busy

Calling Parameters

drive - Dr i ve numb er.

Return Parameters

busy - Drive busy flag.

Description

This routine checks whether the specified drive is busy DT' not.

TPOCOMM

Issue Command

Calling Parameters

drive
steps

wait/status

Return Parameters

None

Description

Dr i ve n u m beT' .
Number of step pulses in the command.
(See Step Pulse Command List on the following
pag e.)
Flag meaning "wait till end and report status".

This routine issues the command which corresponds to the number of
step pulses specified. (See step Pulse Command List on the
follo'wing page.) If tht' waitj~.t"-ltus flag is set, the T'lJutiIH~ will
wait until the command is executed and return with the status in
the return code.

37

Step Pulse Command List

Command

Return busy stat~s

Stop tape

Pause

Seek load point

Move physically rorward

Move physically reverse

Report normal completion

Report drive presence

Report end-or-tape status

Report beginning-of-tape status

Report cartridge presence

Report track round

Report new cartridge

Move logically reverse

Move logically forward

Turn on second pulse

Turn off second pulse

Seek track n (0

Write servo

,'"­' ... - n <= 7),

38

Number of Pulses

0

2

:3

4

!j

h

/

~j

9

10

11

l' I '"".

1 :J

14

1~

16

17

20 + fI

31

I 11 i t 1 ;:d t> Rea d

Calling Parameters

drive
burfer address
cylinder
sector
sector count

None

Description

Dr i ve numb er.
Address Or the buffer for the data to be read.
Cylinder number.
Sector number.
Number Or sectors to be read.

This routine initiates a read to the controller. If the system has
DMA, the routine returns immediately and reports any errors. If
the system does not have DMA, the routine returns after the read
and saves the error code to be reported later by TPOIOWT.

TPORED

Read

Calling Parameters

drive
burfer address
cylinder
sector
sector count

Drive number.
Address of the buffer for the data to be read.
Cylinder number.

- Sector number.
Number of sectors to be read.

Return Parameters

None

Description

This routine performs an entire I i.:'ad. This is accomplished through
a call to TPOREDI and a call to TPOIOWT. Any errors are returned
immediately.

39

TPOWRTI

Initiate Write

Calling Parameters

drive Drive number.
buffer address
cldlinder
sector

- Address of the buffer for the data to be written.

sector count
I

Return paramete~s

None

Description

Cylinder number.
Sector number.
Number of sectors to write.

This routine initiates a write to the controller. If the system
has DMA, the routine returns immediately and reports any errors.
If the system does not have DMA, the routine returns after the
write saves the error code to be reported later by TPOIOWT.

TPOWRT

Write

Calling Parameters

drive
buffer address
cylinder
sector
sector count

Return Parameters

None

Description

Drive number.
Address of the buffer for the data to be written.
Cylinder number.
Sector number.
Number of sectors to write.

This routine performs an entire write. The write is accomplished
through a call to TPOWRTI and a call to TPOIOWT. Any errors are
reported immediately.

40

TPOIOWT

lID Status (for Wait)

Calling Parameters

drive - Drive number.

Return Parameters

None

Description

This routine waits for the completion of the TPOREDI/TPOWRTI lID.
This could signal the end of lID activity or report any errors to
the calling program.

Write Protect Status

Calling Parameters

drive - Drive number.

Return Parameters

protected - Write protect status.

Description

This routine indicates the write protect status of the tape
cartridge.

41

IfONDX

Count Index Pulses

Calling Parameters

drive - Drive number.
pulse count Number of pulses to count.

Return Parameters

None

Diner i pt i on

This routine counts the specified number of index pulses and
returns. In an implementation where only even numbers are counted.
odd numbers are rounded down.

buffer address
sector length
sector count
format gap

Fill Format Buffer

- Address of the buffer to be used in formatting.
- LeQgth of the sectors.
- Number of sectors.
- Qap length actually written (suggest 034h).

Retyrn Parameters

None

Description

This routine fills the buffer that is used to format the tape. The
buffer length must ~e more than the track length. (Twice the track
length is sufficient, as it depends on the gap length.)

!

Format

Call~na Parameters

drive
buffer address
cylinder
sector length
sector count
format gap

Return Parameters

None

Description

Dr i ve numb eT'.
Address of the buffer to be used in formatting.
Cylinder number.
Length of the sectors.
Number of sectors.
Gap length actually written (suggest 034h).

This routine formats the specified number of sectors in the
specified block of the tape. The routine TPOFRMFL must be called
before this routine can be executed. The calling parameters
"count" and "format gap" must be the same in this T'OIJtinl1! call as
they were in the call to TPOFRMFL. As in TPOFRMFL, the buffer
length must be longer than the track length. (Twice the track
length is sufficient, as it depends on the gap length.)

TPOID

Read ID

Calling Parameters

drive - Drive number.

Return Parameters

cylinder
sector

Description

Cylinder numbf.'r.
Sector number.

This routine reads the current ID.

43

This section discusses the special considerations needed when
using floppy disk controllers ba~ed on the Western Digital series
of floppy disk controller chips. The following is a list of the
Western Digital commands used in the TPO routines and the command
parameters:

(Parameter options will vary between Western Digital models 1791,
1792. 1793, 17941 and models 1795 and 1797~ The variations deal
with the difference in the handling of side select options.)

Restore 8< Seek

Read & Write Sector

Write Track

FI'-~: e Interup t
Rlad ID

load head at beginning operation,
no verify. 3ms stepping rate

- number of sectors to transfer, select
side zero or set sector lenQth, set
head delay to 0, set side select update
to Zl?l'O or disable side compare, set
data address mark when writing

- set head delay to zero, set slde
select update to zero

- set as needed
- set head delay to O. set side select

·update to zero

44

5.10 Using the Western Digital Commands

The Western Digital commands are used in the following ways:

Restore
The tape drive executes a simulated recalibrate which is a
test to see if the drive is " allla ke". The Western Diqital
internal track register is set to zero. This command is used
the TPODNL and TPORECAL low-lev~l device drivers.

Se e..!!.

good.
(WD)

In

The Seek command is used to issul~ the command pulse traIn to cause
the Irwin tape drive to execut& its set of commands. This command
is issued by the TPOCOMM low-level device driver. Since the WD
internal track register is accebslble to the software. the Irwin
seeking philosophy is to zero out the track register. load the
data register with the desired tape command pulse number. and then
execute the seek command.

Read Sector/Write Sector
These two commands perform the actual reading and writing of
sectors in a tape block. They are used in low level device
drivers TPOREDI and TPOWRTI. respectively. Software used in this
21'''' a will be s i mil art 0 flo P P y d a tat r an s fer so f t war e .

Western Digital allows single or multiple sector data transfer
operations. When executing a multiple sector operation it should
be noted that the device driver must keep the multiple sector
count (count of sectors that have read or written>. The T'eason for
this is that the Western Digital. in multiple operation mode.
continues to read sectors until the program issues a force inter­
rupt instruction or the Western Digital chip times out when It
cannot find the next sector because it does not exist. This time­
out will occur after not finding the next sector after 5 index
pulses or 5 tape blocks going by. If this time-out happens tape
repositioning would be necessary.

In some systems. timing considerations dictate that sector coun­
ting cannot be done in software. This being the case. Irwin
recommends that Single sector operations be used. The programming
strategy would be to set up a large buffer to transfer data
to/from the tape and then issue single sector data transfer
commands to the Western Digital chip in succession between
sectors. The Western Digital chip will accept a read or write next
sector command between the end of a previous sector and the begin­
ning of the next sector with the tape block formatted with no
sector interweave.

4 ,­
.7

Write Track
Used in low-level
block. Software
d i5k.

Force Interrupt

device driver.
implementation

TPOFRMFL. to format
similar to that for

a
a

single
floppy

This command is used to force hardware interrupts to the
processor. It is used in TPOREDI and TPOWRTI to terminate multiple
sector data transfer operations. It is also used to "awaken" the
WD chip in error and hangup situations.

Bead ID
Used in low-level device driver TPOID to find next ID on tape for
tape positioning.

5.20 Tape Positioning with the Western Digital

Bit 1 of the ~ype 1 status register continuously reflects the
condition of the index line. To position the tape, the tape
positioning routine needs only to count the passing tape blocks.
This can be done by monitoring the index status bit and counting
the index pulses coming from the tape drive.

46

This section discusses the 5pecial considerations needed when
using the NEC 765 floppy disk runtroller. The follDwing is a list
of the NEe 765 commands used 1n the TPO routines and the command
parameters:

Recalibrate
Specify

Sense Drive Status
Seek

Read Data, Write Data

Read 10

Format a Track

drivp unit select
step rate, head load time,
head unload time, DMA mode
drive unit select, head select zero.
drive unit select. head select zero,
cylinder number
drive unit select, head select zero,
cylinder number. head number zero,
sectD"r number, sector length, last
sector operation. vca sync time,
DTL - user defined data length
driv~ unit select, head select zero,
select MFM mode
drive unit select. head select zero,
sector length. sector/track. gap
length, format data constant

47

6. 10 Using the NEC 765 Commands

These commands are used in the rollowing ways:

Recalibrate
The tape drive executes a simulated recalibration which is a good
test to see if drive is "awake". The NEC track register is set to
zero which alleviates programming problems when the software gets
confused as to which track it thinks it is on. This command is
used in TPOONL and TPORECAL low-level device drivers.

Sense Interrupt Status
The NEC chip sends back an interrupt after the completion of a
command, a change in status of the ready line. or during the
execution phase in non-DMA mode. When an interrupt is
acknowledged, program control should pass to the sOrtware inter­
rupt handling r04tine. Interrupts not reset by inherent command
operation must be reset by the sense interrupt command. Sense
interrupt status is generally used after a seek or a recalibrate
command which returns completion information and present cylinder
(track) number. This information is useful to verify that the
propel' command was sent to the tape drive.

It should be noted that Irwin has observed multiple processor
hardware interrupts after Recalibrate commands with non-contigious
drive addresses, such as having two drives addressed 0 and 2 with
no drives existing for drive selects 1 and 3 (either floppy or
tape drive>. When this happens interrupts get nested. and the
software is unabl~ to handle the interrupts. Therefore. it is a
good idea to to iexecute multiple Sense Interrupt commands until
you get an invalid interrupt response. This technique will always
clear out the interrupt queue.

Specify
The Specify command is used by TPOINI and TPOTRM to initialize the
step rate. head load and unload time. and DMA mode.

Sense Drive Status
The Sense Drive Status command is used to monitor the status of
the Track 0 and Write Protect lines Or the Irwin tape drive.
This command is used throughout the low-level device drivers.

48

Seek
The Seek command is used to issue a command pulse train to cause
the Irwin tape drive to execute its set of commands. This command
is issued by TPOCOMM low-level device driver. Because the NEC 765
has an internal track register, not accessible to the host proces­
sor, the application program must monitor the track number the NEC
is currently "on". (When the NEC is "on" a track, the intel'nal
track register contains that track number, but the track number
does not correspond to the tape track number.) The reason ror this
is that the program can determine the correct track number for the
NEC chip to seek to when a command is to be issued. For example,
if the NEC 765 is "on" track 24 and you wish to issue a pause
command to the Irwin drive, 3 pulses, then you would seek to track
27.

To keep the track register in the NEC 765 valid (no track number
greater than 77 or less than 0), l~win recommends a seeking
philosophy of keeping the track number as close to 38 as possible
(38 is 1/2 the distance to track 77), Therefore, if the present
track is less than 38, then seek to the present track number + n
pulses for the desired command. If the track is greater than 38
seek to the present track number-n pulses.

Read Data/Write Data
These two commands perform th~ dctual reading and writing of
sectors in a tape block. Thpy are used in low level d@vlce
drivers TPOI~EDI and TPOWRTL 1'!.·!.rq;l.tively. Softwcn'p u~:,t·d HI this
area will be similar to flDppy Jut~ transfer softwaT~.

Read.-ill
Similar to Read and Write Data. This command is used In !'PUID to
find next id on tape and in TPONDX to count 2 index pulses.

FOT'mat a Track
Used in the low-level device driver.
block. Software implementation is
dis k.

49

TPOFRMFL. to format a slngle
similar to that for a floppy

6.20 Tape Positioning with the NEC 765

There are two ways to perform tape positioning with the NEC 765.

The first method of tape positioning involves using the Read 10
command while the tape is at read/write speed (39ips) and picking
up the next block/$ector header that goes under the tape.

I
The second method! of tape positioning involves moving the tape at
high spe~d (70ips), when data cannot be read, and then issuing a
Read 10 command. After two revolutions of the disk. or in this
case, two blocks passing under the tape head. the NEC 765 will
time-out with an error condition resulting from the fact that the
controller could not read an 10 at the high tape speed. Not being
concerned with the error condition, the tape positioning routine
can count the two tape blocks that went by, then reissue the Read
10 command if it wishes to let another two tape blocks go by, and
so on until the proper block count comes up.

6.30 Programming Problems with the NEC 765

There are two problem areas with the NEe controllel' chip as far as
software programming is concerned. The first is the number of
hardware interrupts sent during a Recalibrate command. This is
discussed in the description of the NEC 705 Recalibrate command.
The other problem has to do with keeping track of the current
track number the NEC 765 thinks it is on. This stems out of the
problem that the internal track register in the NEe 765 is not
accessible by the host hardware or software. Problems arise when
the NEC 765 receives Reealibrate or Reset commands from unknown
sources (like IBM'pC-OOS ROM BIOS interrupt 13) and the internal
track register gets out of synchronization with the software track
register.

50

7.00 Low-Level Device Driver Flow~harts

The flowcharts on the following pages outline the low-level device
drivers described above. An attempt was made to make these flow­
charts controller independent. Specific implementations of this
outline will differ slightly.

51

TPOINI (load time, unload time, step rate, io gap)

R
/ cali;~;VEC \

(replace system interrupt vectors/
with ointers to local ISR's)

r------==r~--_____. Call TPiRESET
(output the hardware reset

,..-_____ S_l_0..9..!_na l-:t~r~~~ l

Convert the H~AD LOAD TIME,
HEAD UNLOAD TIME, and STEP RATE

parameters into a string of
byte commands for output

to the FDC (if applicable)
or store 135 a variable for

future reference

Call ISSUE_COMMAND
(output the command bytes

to the FOC (if applicable»

Call TPiDVEC
(restore the system
interrupt vectors)

TPOTRI'1

Create a string Or byte commands
for output to the FOC that sets

up default values for HEAD LOAD TIME.
HEAD UNLOAD TIME. AND STEP RATE

Call ISSUE_COMMAND

53

TPOONL

Construct the c(ntro~ byte that
selects a speciFic drive line

Output tLe select dr .. ve lin ... ·
control byte to the FDC

TPOOFL(drive)

TPOOFL

Call TPiRECAL

TP1DSEL

Construct the control byte that
deselects all drive select lines

/output the
I control

deselect drive line
tJ LJ i I.~ to th e FDC . ____ 1

55

C:nm~A0
r--------~--.-.-----...

Call Tf'iDEL
<select an I-DC drive line

for the tare drive>

Call TPiRECAL
(send a hardware

RECALIBRATE to the FDe)

\ Call TPiDSEL
(deselect the tape drive>/

56

TPiRECAL

Call TPiRESET

y

Construct a string of byte commands
for the FDC that perform a

recalibrate function

Call lSSUE_~OMMAND

Errors? y

57

~
Err or 5? "~>>-----.----.-----_______ _

./ Y

Set up a 13m~-c~~~
L-_t_O_W_.:l_i_t_f_CJ,lT_' _~r.~ __ ~

58

'"".
(lie turn \

~)

TPORESET

Call TPiRESET

Call TPiDVEC

59

60

TPOBUSY(drive)

TPOBUSY

~\[~ Call TPiSEL

f'-
~T~~iBUSY)
~JL::
~

tape dT'ive busy (=track 0)7-' -'-~>,
--------y

~ _ ... -_.-
'--~ ~

~-----....-----

No 91"1"01"

61

Set busy

:>---------------------- ------------
y

Call RESULTS>

I-----

Err O?-----------------

drive

N

--------------bUSY(=tr~

.. _______ . N 1
,------- ---------~­

I

Set not bLJ~~y !
\j;

TPOCOMM(drive, steps, wait/status)

G;-T~~~SEL)
I-

------" . ~e 0 step pulses
~. be sent by FDC? Y

'~....... ..

Convert the number of step pulses
for the FDe to send to a &eek location

Construct a string of byte commands
that will cause the FDe to pulse the stepper

Ca 11 I SSUE_COt-IMAND

"r--------------.
y

Call WAIT INT

~) .. 1

\~N
--.--.. ~

--~-----. -,.
~Doe5 the r,ue !:>tatus T'eport the--'
~ e e k 1 0 C cl t i un ex pee ted? -----.-

--. .. ----------_.

\Y

---------.------------~'l'Port on status

to be done?

Call TPiRPRT

jE:---_._----_._._ ... -..... _--_ .. _ ..

64

~ < Call ~~-iREDI

Call TPi ~OWT)

(" ,. , "rn)
"'-..... '.

66

TPOREOI(drive, buffer aQ.dref>sL_._f-:..~.inder, sector, sector count)

TPiREDI

Set up to send a DMA read command
to the FOe (if applicable)

TPOWRT(drive, buffer address, cylinder, sector, sector count)

TPOWRT

E·~~'~RTI)
~!'Iow0

Call TPiDSEL

TPOWRTI(drive. buffer addr.ess. cylinder, sector, sector cOllnt)

. / - .. --'~ (,"OWR:J

G'~-' ~P~RTI)

C~-~l~~

Set up to send a DMA write command
to the FDe (if applicable)

TPOIDWT(drive)

TPOIOWT

70

TPOSNS(drive, protected)

>y-------------~>'

Read the FDC !;)tatus, checking
the write prwt2ct bit state

E~~!_~ECAL)
----~.--.-

G~-::-~~~~

71

TPQFRMT (dr i VII b uf fer §!lt~T~~.5_!.. c Y 11 nd @!..!.-!.!.f.!J!L._J..f~!1.llt; .. tl_L.
sec tor c oV.!!.!-.. ' format gap)

0~~~M~
---'f---

< Ca ~ 1 ---r!.: i SEL)

.--_____ JL =::I
~_s __ e_t __ u_p ___ h_e_a_d_e_r_, ___ s_e_c_t_o_r ___ a_d_d_r __ e._s-_s_e_s_, ___ e_t_c_-__ l_·n ___ f_o_r_n_la_~~~

Convert number of blocks to format
into number of bytes to DMA (if applicable)

Call DMA_.SETUP (if applicable)

y

Construct a string of byte commands
for ~he FDC to initiate the DMA data move

Call ISSUE_COMMAND

72

Errors?

N

Ca 11 WAIT _.INT

73

TPOIO (dr i ve, c y Ii nd er. sec tor)

Call TPiSEL

Get the FDe return data
for the tape IO parameters

Call CHECK RECAL

74

Construct a string of byte commands
to make the FDe return ID info

C .':)11 I SHUE: COMMAND

Call WAIT INT

Call CKFDCRES

(CHECK ... RECAL)

~
~heCk FDC status
~ecalibTation needed?)

--------------~-

(Call

76

(~:"~'(~r~
.-----_. __ .. ___ . __ J;. __ .. ___ ... _____ . ___ .

Check the apP·I'op,·.i..it;" bit positions
in the status bl! I,,,., Fr'om the FDC

for fOrT'OT'S

DE.LAY!

Set up a cDunter that will
cause a 1 msec delay

Do nothing for .:l -{!raction of the delaY~l
...---. __ .~._l-_-----.

Decrement the timer

N

."---

78

-----_.
...... -.....

<'~: ttl!;! f DC busy?
... -..... ~ ...-"

y
-......-.........~...... - .-""""

-~r_----_-_____ --,
Construct a string of byte commands

for the FDC to have it do a
sense interrupt status

t---_;l ____ --'
Call ISSUE_COMMAND

y

Call RESULTS

C h e c k the s tat U '.,1 (. t u r' ned f'r 0 m the
and luok fu; ,lId interrupt

I
--,,\)j

Use
signal for the FDC

0nte~:'~Pt return

80

--------_.- ._-_._---...........

Initialize the DMA channel by
outputting control bytes to it

mn!1p· the DMA address,
tr,H15 fer count

I Set the DMA·-~-~D/WRT
and the bllte ,--------=-_______ -~-~-~_~-. t

Check for DI'1A roul!da'r~l errors,
ch ip er'f'ors, and cHlIJ other errors

31

---------- ---,

I SSLJE C lJl'1MAND

..-______________ [__ ~J_e_. t_' _~.-_u-._-~-)_;~lo-.r'-t -t i mer J

Input a byte from the FDC

__ -c ------ ------------------- --.--.. -- .. ~-....-~.-
Is FDe status OK to send commands? -=.:::~->-

----- '1' -------~.---.--. '''- -----------_.

Decrement the timer

Is the .timer zero?~

Set timeout error

Output next command
to thl.~ FDe

~~-,
'< - - --- A'", e there <:HlIj IltlJ l c- ---:>._~
~nd bytE"., 10 I.~_d::'_' . y

---~--. .----

No e (.,/. Q f' ! .• [_. ___ -- .. -I~--- . 'J
\L-________ ,,-:--______ -->'\Y-----.

RESULTS

Set up a timer to let fDe send bytes

Enter the FDe status byte

the ti.me-f'

83

N (', P rr- c< r I ~'" J ~.

('-:\.". \11
~

~
~~~~Xi~ from Foe] 

I Store the FDC data 

r---- ---~-~-----, 
Count the data byte 

Ell.!-



--\11---
E--:n)-i SEL > 

..----__ I ___ -----, 
Convert the number of blocks of data 

to RED/WRT DMA to the number of 

r-_________ h __ y_t_e_' ~m_o_v_e __________ ~ 
< Call DMA._o.SETUP (if applicable) ) 

---- ----------------------, 
Construct a string of byte commands 

for the FDC to select a 
RED/WRT DMA function ______ ~ ~-----.J 

< Call ISSUE __ COMMAND > 

~~:C~-ECAL > 

t't"cn) 



(TIM~R~ 
----~l--

P e or fl 0 r III n e-Z:" ~;s-~; -;'n : ii' I .,," l o"d i cop era t i () ~-l" . j 
to assure the operaLlny system does not 
interfere with th~ ~ape drive functions "_._._---_._._._. [ ...... _ .. _------ .... 

(r--S- i -m-u-I-a-t-e-a-n--r-S-R- ;':i~~--~-i a 

---=--===~ .. ----.. -.- .. -
~:~~=,~" t:. ~ur_n) 

saved vectors \ 
._--j 



-----------------, 

the timer zero? 
y 

No busy error 
-------- ---- ---------' 

87 



Save copies of the system interrupt 
vectors that will be modified 

~terrup ts ()f'f 

r-RePlace system i~t~~uPt vectors with 
l~ the address vectors to local ISR 

__ ' ___ . 1.~ _._ .. __ ._.__ __._._ 
Lxecute functions necessary to restrain the l 
resident operating system from interfering 

with the tape drive operation. for example. 
prevent FDe drive select timeout L-________________ __ 

[~~n ;~ ~ ,~, l-'>~"~l---------'--"-'--'-'-' 

~.:.r) 
.. -., 

Bel 

y , 



C:<DV~J 
I Inte~~~~~~ 

Restore ~~~st:-~---interrUP;J 
vectors corrupted by TPiVEC 

-.. ---.. -;JL.-==-------~-=:_l 
system functions altered by TP~J 

L-________ [ __ --~~~~n -_ .. _. -

Fix any 

89 



r---__ (W_-:I~:~~ __ ___, 
I Initialize a 10 second counter 

. '-------::-

Decrement the timer 

timer 
N 

Set time-out error 

90 

y 

Return error code 
ilro,j di!~k ISR 


