e Sae40 S St e Vo S04 e Ao et S SeeAn ke Smam T e $ i i SSekd ok et St oS M Seheh S804 e S el Pt Sn HAS0 b

ae e (oo Gomen Shove e Sease Saen e o A Spuse danes Fmem S e i S e Josen Sos Somke el e ShaLn Seesd s S Sty Mo Gh4ed bebom i e

Application Note #1

May 24, 1984

Copyright (c) 1984 Irwin Magnetic Systems, Inc.

All rTights reserved

Table of Contents

1. 00 Introduction 3

2. 00 Tape Operation and Format)
.10 Tape Operation Modes 4
.20 Tape Servo Writing B

5
&

.30 Tape Format and Organization
.31 Tape Format

.32 Block Format 9
.33 Format Parameters - Block 0O 11
.40 Tape Positioning 12
.41 Access Time 13
.50 Verification ' . 13
3. 00 Hardware Considerations 14
.10 Floppy Disk Controller 14
.11 8" Floppy Disk Compatibility
Considerations 15
.20 DMA — Direct Memory Access 16
.30 Interrupts 146
.40 Addressability 17
. 50 Memory 17
.60 Power Supply 17
|
4. 00 Software Congﬁderations 18
.10 General Software Requirements 18
.20 Software/Hardware Interaction Concerns 19
.30 Software Design 20
.31 Software Transportability 21
.32 Software Interrupts 21
. 40 Software Design Example 22
.41 Mid~-Level Tape I1/0 Routines 29
.42 Low-Level Device Routines 32

5.00 Considerations for the Western Digital

WD179x and WD279x Series 44

.10 Using the Western Digital Commands 45
.20 Tape Positioning with the Western

Digital 44

6.00 Considerations for the NEC 745 Controller 47

.10 Using the NEC 765 Commands 48

.20 Tape Positioning with the NEC 765 50

.30 Programming Problems with the NEC 7&95 50

7.00 Low-Level Device Driver Flowcharts 51

|

1. 00 Introduction

The purpose of this cookbook is to provide reference material for
designing, writing, and testing software for the Irwin tape drive
models 110, 210, and 310.

This application note assumes that the programmer is familiar with
the floppy disk interface and other hardware available. There will
be 1little effort to describe the theory of hardware operation
other than what is applicable to the Irwin tape drives. 1t is also
assumed that the programmer has read the Irwin Tape Drive OEM
Manual. Use the OEM Manual as a reference for terminology
contained in this document. Also, throughout this application
note there will be references made to the applications software
for the Irwin tape drives. Familiarity with the Irwin software is
beneficial, but not necessary.

2. 00 Tape Operation and Format

This section discusses the physical tape and its operation. This
section also discusses the format of the tape, including track
format, block format, sector format, and the format of block O

(where the format parameters are stored).

2. 10 Tape Operation Modes

The Irwin tape drive has three modes of operation: streaming mode,
start-stop mode, and in-place—update mode.

The tape is operating in the streaming mode when in constant

motion while reading or writing. The streaming mode provides the
most efficient operation of the tape because there is no time
dedicated to starting and stopping the tape. With the Irwin tape

drive streaming, writing 10.35% megabytes to the tape takes only 8
minutes (allowing 1 minute per track, for B8 tracks, with tape
streaming from end to end). Programming is most difficult in the
streaming mode due to timing requirements during data transfer.

The start-stop mode enables the user to start and stop the drive
anywhere on the tape without loss of storage efficiency. Most
tape drives operating in the start—stop mode lose storage capacity
as the number of starts and stops during writing to tape
increases. As these drives write to tape. the time between a stop
and start is an inter—record gap. The Irwin tape is pre—formatted
and consequently there is no loss in tape storage efficiency.
Starting and stopping is useful when processor overhead does not
allow the tape to stream. Use the start—-stop mode to position the
tape to a tape block for selective reading. selective writing,
error retries, and in-place-updating.

The Irwin tape drive also provides an in—place—update mode
allowing selective writing to any pseuvdo-sector in any block on
the tape. This type of tape operation is a particularly benefi-
cial feature of the Irwin tape drive family. Use the in—-place-
update mode to maintain and update directories, bad block maps,
tape ID blocks, and other files on the tape.

The in-place-update mode gives the Irwin tape drive random access
capability. This capability makes the Irwin tape drive an
inexpensive, random access, large capacity memory device. The in—
place—update mode is not found on most other tape drives.

2. 20 Tape Servo Writing

All Irwin tape drives require a servo written tape. before any

data can be written to the tape. The Irwin drive has servo write
capability. It is important to note that before a tape can be
servo written it must be bulk erased. Failure to bulk erase will

result in unsuccessful tape servo writing.

2. 30 Tape Format and Organization

A servo written tape has been physically and 1logically divided
into tape blocks. Each block contains 11.95 inches of tape provi-
ding the wuser with a capacity of 9.562 bytes unformatted and
accessible. The servo information is located at the beginning of
each block and is not user accessible. This unformatted capacity
is analogous to the unformatted floppy track.

Hence. a servo written tape appears to be a floppy diskette with
many more tracks. To be compatible with the floppy disk control-
ler, each tape block must be formatted and orgaenized like a floppy
disk track. Thus, format fields swch as an index gap., header
ID’s, header gaps, data fields, and CRC’s must be written to the
tape.

The type of software that will write the format data onto the tape

is similar to the software for & floppy disk. The formatbt data
written to both the tape and Floppy disk 1is i1dentical. When
formatted, each tape block will contain sectors just like the

floppy track.

Depending on the application, the user determines the sector
information, including the number of sectors and the sector
length. All Irwin software vees eight, 1,024 byte sectors per
block. For a floppy disk, a greater number of sectors per track
results in more formatting overhead and less useful storage per
block. Since a floppy track is equivalent to a tape block.
formatting overhead and useful storage considerations also apply
to tapes. The eight sector format provides the lowest formatting
overhead and the most user available space per block that many
floppy controllers and controller chips will allow. (Refer to the
NEC 765 and Western Digital 179x specifications and application
notes for information on formatting floppy diskette tracks. This
information is also applicable to tape blocks).

When formatting the data field, it is best to use the pattern 6Dh
as a sector "fill character”. The 6Dh data constant is the most
difficult pattern to read in the MFM data encoding format. When
verified, it provides a good test of tape media and data recovery
electronics "quality".

To format the tape with the 5 1/4" MFM data format standaerd, Irwin
recommends the use of write track commands. Use the tape block
number in place of 'the cylinger number in each sector header ID.

2. 31 Tape Format

Irwin has set recommended format specifications for the tape
cartridges used in the Irwin tape drives. Irwin uses this format
extensively. This format allows the most user available space with
the least amount of ID header overhead.

The tape 1is first divided into 8 tracks, numbered O through 7.
These tracks are organized on the tape in a serpentine fashion:
the even numbered tracks are recorded in the forward direction
(beginning-of-tape to end-of-tape, or BOT to EOT), while the odd
numbered tracks are recorded in the reverse direction (EOT to
BOT). Each track is then divided into 158 blocks., or cylinders.
While blocks and cylinders are the same, blocks are the logical
divisions and cylinders are the physical divisions of the tape
The cylinders are numbered O through 157 on each track, while the
blocks are numbered O through 1,263 across the entire tape. (See
Figure I - Tape Layout and Figure II - Track Layout) Each block is
further divided into 8 sectors, numbered O through 7.

The format of each sector within a tape block is mini—floppy
compatible. Each sector has a data area of 1 kilobyte in length,
which makes each block a total of 8 kilobytes 1long. The total
capacity of a tape track is therefore 1. 294 megabytes and the
total capacity of the entire tape is 10. 355 megabytes. (See sec-
tion 2. 32, "Block Format” for block format details.)

The format parameters are stored in block O, which is cylinder O
of track O. These parameters include the version number of the

formatting prooram, the format date. the number of tracks per
tape., the number of blocks per track, the number of sectors per
block, the number of bytes per sector, the application program
used on the tape, the volume number and limit, the time and date

of the last tape change. and the track and cylinder of the first
free block. These parameters are stored in duplicate. (See section
2.33 "Format Parameters - Block 0")

Ficure 1 — Tape LAvouT

PHYSICAL PHYSICAL
ot ea oo
:?\:2 LOAD EARLY AROUND

- AREA EOT HOLES
l BOT HOLES A POINT w '1 A A . 1
T] o0 oo [ﬁ F . . .
] | |]

p‘ FT-L\ FT 1 Fl'qir—-i.l Y oA FT

soT % CONTINUOUS|
ARSA SERVO DATA SEAVO

177 FT ——epo— A FT —po——1 B FT ——ain- 1 "‘L‘ FT.L1 FT o

44— 33 sec At 7O ips ———P

—— 59 sec AT 39 1ps ———W

FicuRe L — TRAck LAYouT

BOT EOT
BLOCK CYLINDER TRAC CYLINDER BLOCK
1263 157 @ ki — O 1106
‘g o - = - |57 |05
147 157 G 2 —— O 790
632 _ O = 2 —— 57 789
631 157 rm— E , — O 474
316 O = E o ——————————, 57 473
DT e L S —- =Y

2. 32 Block Format

Each block of the tape is formatted as follows:

Number of Bytes Hex Value
80 4E
12 00
3 2 (IAM - Index Address Mark)
1 ! FC
30 ! 4E

(The following section is repeated 8 times, once for each sector.)

12 00
3 Al (IDAM — ID Address Mark)
FE
1 (Track)
1 00 (Side)
1 (Sector)
1 03 (Bytes per Sector Flag)
2 CRC
22 4E
12 Q0
3 Al (DAM — Data Address Mark)
1 FB
1024 (Data)
2 CRC
24 4E

On the following page is Figure III - Block Lagobt. This figure
graphically shows the block layout. The top section shows a single
block divided into the block header and 8 sectors. The next two
sections show the contents of the header and a single sector.

Figure I — Brock LayouT

< t70.5 ms ar 7C 195 »
2 306 ms AT 39 1ps »
ie— 20,3 ms —p1@—36.5 mc—»
AT 7O tbs AT 34.1Ps
S BLOCK | SECTOR | SECTOR | SECTOR | SECTOR | SECTOR | SECTOR | SECTOR | SECTOR |[GAP
§ HEADER o) t 2 3 4 5 6 7
8 - AE
146 1140 ~296
IAM INFO CRC DAM DATA CRC
4F |00 | C2 | FC | 4E 00 4E | OO | Al | FB 4E
B0 12 3 | 50— 2] 8 2 22 12 3 | lo24 2 5%
IDAM TRACK| SIDE [SECTOR|BYTES/
SECTOR
Al | FE 00 03

2. 33 Format Parameters — Block O

Irwin’s application software uvse: block O, which is cylinder O of

track O, to store format paremeters and a bad block map. All of
this information is stored in duplicate immediately after the
format process. Sector O contains the format parameters of the

tape. Sectors 1 and 2 contain the bad block map. Sector 3 contains
nulls. Sectors 4 through 7 are duplicates of sectors O through 3.

Although this ‘block O format 1is optional, Irwin rvecommends
adherence to the format to insure interchangeability. The
suggested format parameters are listed below. The bad block map ic¢
actually 1,264 bytes long <one byte for each block on the tape)
Initially, every byte 1s set to OOh. When a block is found to be
bad., the corresponding byte i1n the bad block map is changed to
FFh. Also, since each block has 8 sectors and each byte has 8
bits, this bad block map can oontentially be used as a bad sector
map.

Description Bytes Data Type
Format program name and versian number (O I P ASCT X
Date of format (from DOS) 27--44 AGCTE
Tracks per tape 45--84 decimal
Blocks per track 4748 decimal
Sectors per block 4550 decimal
Bytes per sector 5152 decimal
Application program version nuaber {(major) G53--04 decimal
Application program version number (minor) ol decimal
Tape use flag (O-unused., 1-Fli, 2-IMAGE, .. .) 9é& decimal
Volume name 57--49 ASCTX
Volume number 70 decimal
Volume limit 74 decimal
Date of last tape change (MM /00D/YYYY) 72--8 ASCII
Time of last tape change (HH MM 83-88 ASCII
Track of first free block 734y decimal
Cylinder of first free block g0 decimal
Reserved for application program use F09-1023

11

2. 40 Tape Positioning

Irwin tape drives have two speeds: 3%?ips for read/write opera-
tions, and 70ips for tape positioning. Data transfer is done at
the 39ips speed while tape positioning is done at the 70ips speed.
Positioning the tape is accomplished by counting index pulses from
the floppy cbntro}ler. Therefore if the current and desired tape
positions are known (position being tape block number), the user
can issue a fast motion command and a count of index pulses (each
index pulse Tepresenting a passing block) to position the tape a
few blocks before the desired block. To start data transfer after
the tape has been positioned, the user must use the read/write
speed. :

For example, with a tape block length of 13.47 inches, a tape
speed of 70ips, and a stop time of 400ms, it will take about 3
blocks to stop the tape. The user can assume the same 3 blocks
for restarting the tape, (at the read/write speed), for a total of
6 blocks overhead. When the tape is going backwards, however, the
3 blocks starting overhead cancels some of the seek length. As an
example, to seek block 100 when positioned at block 4, initiate a
Move Physically Forward, count 920 index pulses (to get to block
94), issue a Stop Tape, and then initiate a Read Logical Forward.
The tape would be positioned within 3 blocks of block 100 where a
data transfer could begin.

Some floppy disk controllers and/or controller chips will not
allow the host to access the index pulse line of the interface.
The NEC 765 is an example of this. The index line is accessed by
the NEC 765, but the host can not access the index line informa-—
tion. Therefore, the program can not simply count index pulses.
{On the other hand, the Western Digital 179x shows index as a bit
"S1" in the Status Register for Type One commands.) The NEC 765
can count index pulses and, if it does not find a disk sector
address within two disk revolutions (or index pulses), it will

time-out. The wuser can then issue read commands of invalid
sectors to the NEC 765 and wait for a time-out, where every time-—
out indicates the passage of two tape blocks. If the invalid read
commands are chained together, they become an effective index
pulse counter. "Using the previously mentioned figures, one can
calculate the time it takes one block to pass the tape head at the
Move Physical speed to be 192. 4ms per tape block. In the above

example (getting to block 100 from block 4), instead of counting
90 index pulses, a timer routine would time-—-out 17.316 seconds (90
x 192. 4ms). This would be the equivalent time to pass 90 tape
blocks under the head at the Move Physical speed of 70ips.

12

When using these tape positioning techniques, institute some kind
of "read tape address" routine when exiting a higher tape speed
and/or entering the read/write speed. This will indicate absolute
tape position. In most cases the initial tape position will be a
within 3 blocks of the desired block so the program will have to
perform multiple "read tape addresses"” before finally getting to
the desired block. In some cases, especially when vusing the time-—
out positioning mode, tape speed error, and motor starting and
stopping., time can accumulate and cause the tape to overshoot the
desired block. If this should happen, it will be necessary to
reposition the tape before the desired block. Since this over-—
shoot error would entail only a8 few blocks, one or more Pause
commands can be used to back the tape up.

For random reading or writing., position the tape a few blocks
before the desired block. Continuously read ID‘s until an ID is
found in any sector in the block preceeding the desired block.
Next., issue a read or write command. Succeeding sectors or blocks
in the same track may then be read from, or written to, in the
streaming mode.

2. 41 Access Time

The DBOT to EOT read/write time 1¢ B9 seconds. At pos2tironing
speed this is 33 seconds. Use these numbers when calculating
access time. The time necessary to read or write the entire tape

will be 8 tracks x 99 seconds, oy about 8 minutes

2. 50 Verification

Like a floppy drive, the Irwin tape drive has no "on—the—fly"
read—after—write capability. Therefore, to insure data recording
integrity. it is important to reposition the tape after a write
operation and reread the data written. In order to keep the
repositioning time to a minimum, read—-after—-write verification
should be done after all of the data has been written.

13

3. 00 Hardware Considerations

This section discusses hardware needs, options, and operations
As these considerations will vary from system to system. use what
is applicable to your system.

3. 10 Floppy Disk Controller

There are two basic designs of floppy disk controllers. UOne type
of controller (the type we will discuss below) uses a commonly
available floppy disk controller chip. The second type of control-
ler 1is based on discrete logic, a microprocessor {(maybe bit-
slice), or both.

Most of the floppy controller chips operate alike. The twe most
popular «chips are the Western Digital and NEC chips. The discus-—
sion will be confined to these. Basically., these chips have a
processor interface on one side and a floppy disk interface on the
other.

The most important feature that the floppy disk controller
requires is a mechanical and electrical 5 1/4" floppy drive inter—
face. This type of interface is called the Shurgart S5A450. Most
5 1/4" floppy disk drives (both full— and half—-height, single-
sided or double—-sided) support this interface.

Areas of floppy disk controller design where incompatibilities
arise are in the number of drives supported by the controller and
the use of the motor on and side select signals. The Irwin tape
drive can be set to 1 of 4 device selects, and does not use the
motor on, side select, or direction signals.

Electrically, the Irwin drive has a 5 1/4" half-high footprint
and wuses the same connector as the SA450 type floppy diive It
fits on an existing daisy—chain and has the same addressabilaity as
a floppy drive. If the Irwin tape drive is the last device on the
daisy—chain, it must have an ITrwin terminator resictor pack (SIP
style) installed. Dtherwise, the terminater pack must be Temoved

14

Another area of floppy disk controller concern is write precompen-—
sation. ITrwin Ttecommends 250ns of write precompensation on all
blocks. Most controllers have write precompensation as an
ad justment becavse this value varies from drive to drive. Having
a write precompensation of less than 250ns may cause an increase
in soft errors. Also the type of Data Recovery and/or Data
Separator circuit will affect the number of soft errors. Iin some
instances, a write precompensstion as low as 12%ns worked with no
errors on Tead back. Errors relating to an inadequete write
precompensation will appear in the form of CRC errors.

The 1last area of floppy disk controller concern is the Data
Separator or Data Recovery circuit. A Data Separator recovers a
serial data stream and the appropriate clock. This type of elec-—
tronics 1s commonly found in a discrete logic or microprocessor
based controller. Most of the chip-based controllers, such as
those based on the NEC 763 and the Western Digital 179x, use a
Data Recovery circuit to generate a synchronized data—clock window
which directly drives the controller chip. In either case, 1t 1s
important that both circuits are carefully designed to operate
over a wide range of read-data-bit jitter that can be generated by
the tape or floppy drive. This can be accomplished using a phase-
lock loop design. Reading data from the Irwin tape drive is much
like reading data from the inside tracks of a floppy disk. (The
data recovery electronics have an easier time on the {floppy’'s
outside tracks than the tracks on the inside. This is due to the
fact that the bit density rises on the inside tracks.)

3.11 8" Floppy Disk Compatibility Considerations

Eight inch floppy disk controllers are incompatible with the Irwin
tape drives for two reasons: the MFM data bit rate is DOO0OKHz as
opposed to the required 250KHz, and the data connector and elec-—
trical connections are different for the 8" technology.

Both of these incompatibilities can be resolved with hardware
modifications in most controllers. In most cases the data rate
can be slowed down by halving the clock frequency to the control-
ler chip. With the addition of some hardware logic, the 8" con-
troller can be designed to respond to both data rates, switchable
through software. Also, since the B" controller specifies the
same I/0 lines used by the Irwin tape drive, a cable adapter can
be made to interface the Irwin tape drive to the standard 8", 90—
pin ribbon cable standard.

3.20 DMA - Direct Memory Access

In most microcomputers, a single processor is used to perform data

transfers between all peripherals. In disk and tepe controllers.
the processor is a slave of that controller during the time of
data transfer because of strict timing requirements. These timing

requirements are needed to insure no loss of data due to a busy
processor.

In a backup situation with a single processor, the processor
initially does a disk access to retrieve data. and secondly, a
tape access to store it. When the processor is reading informa-
tion from the disk, the tape is motionless because the processor
can not write to the tape at the same time it is reading from the
disk. The flow of data is from disk—to—memory—to-tape as the
microprocessor sequentially moves the data.

DMA is the hardware ability (under software controel) to perform
peripheral—-to-memory {or vice versa) operations. Microcaomputers
have one or more DMA channels that cen be used simultaneously. In
a two channel DMA situation, urne DMA channel would move data from
disk—to-memory, and the «thoer from memory—to-tape. In some
instances, where both DMA channels cannot use the same memory
buffer simultaneously., it is necessary to use two memory buffers
and alternate them between the tape and disk DMA channels. In a
multiple channel DMA system, the processor has the job of control-
ling the DMA device and managing memory. The size of the memory
buffer is dependent on system timing between the tape and disk. In
a single channel DMA controller, one of the peripherals (tape or

disk) would have DMA capability while the other would depend on
the hoet processor to move data from memory to peripheral

3. 30 Interrupts

Enabled interrupts are a peripheral’s ability to direct processor
control to the interrupt routine. Interrupts that are disabled, or
turned of#f, are ignored by the processor. During a tape—to-disk
data transfer, when host timing is very critical (even with DMA),
it is important that no other peripherals interrupt the host
processor. An interrupt may cause a stop of data transfer and
possibly an untimely tape reposition. Therefore, make sure the
software disables all of the hardware interrupts. For more infor-
mation on software interrupts, see section 4. 32, "Software Inter-—
Tupts”.

14

3. 40 Addressability

To operate the Irwin tape drive on an SA450 interface, low level
device software must be capable of allowing the hardware to per-—
form primitive floppy disk operations. These operations include
drive selection, head stepping, track data transfers, and control-
ler operation interruption. For these reasons the software needs
addressability to the controller hardware.

This controller accessibility and the amount of access is
dependent on the design of the controller. A very smart control-
ler that executes high level commands such as read/write sector,
data block, or file, from the host may not be usable with the
Irwin tape drive because the controller is incapable of performing
low—-level operations. Most controllers of this type have their
own microprocessor and program ROM, They interface to the host
through these high-level commands and perform the necessary low-
level operations as they are needed in order to accomplish the
high—level commands. If enough information is available about the
design of such a controller, its ROM may be reprogrammed to
directly provide the low—level commands needed by the Irwin tape
drive.

3. 50 Memory

A tape drive application program typically takes 20K to 60K of
memory, not including buffers. Depending on the hardware configu-
ration, buffer requirements may be small or quite large. In =a
system with DMA, buffers should be about 8K to 16K. In a non—DMA
system, the buffers should be as large as possible to keep tape
repositioning and start/stopping to a minimum.

3. 60 Power Supply

It is important that the power supply provides for the power
requirements of the Irwin tape drive. An inadequate supply of
power to the tape drive may cause a variety of problems. Software
problems, failure to stop a tape at the end of the cartridge. and
other harduware problems may be due to the inadequate supply of
power. Power supply problems are the most frequent reasons for
tape drive failure.

17

4. 00 Software Considerations

This section considers application program design from a
conceptual standpoint by discussing low-level device drivers,
drive needs. and application considerations. Considerations will
be from a systems standpoint. An attempt will be made to lead the
programmer through tape drive program design.

Irwin has designed a tape drive that uses a floppy disk controller
to interface the tape drive to a host system. To minimize the
cost of the tape drive, Irwin uses an existing floppy disk
controller to interface the tape drive rather than require a
separate tape controller. It is not Irwin’s intention to provide
a tape mechanism that would use existing floppy disk software to
control it, but rather to provide a tape drive with its own
software identity that would operate through a floppy disk
controller. This method will keep cost down by vutilizing existing
hardware, but will recognize that the device is a tape drive, not
a floppy drive, and that new software can and should take
advantage of that fact.

.

4. 10 General Software Requirements

While the Irwin tape drive is different from a floppy disk drive,
many aspects of the software are the same. This results from the
fact that both use the same controller. Since the controller was
designed for floppy disks, it is necessary to program it to
"think" like a tape drive controller.

The software is divided into two areas of operation: data transfer
and tape positioning. Data transfer operations will vuse software
identical to floppy software, while tape positioning will require
a different set of software.

In general, software for implementing the Irwin tape drive needs

to convert a floppy disk controller into a tape controller. This
involves careful programming to convert the floppy controller or
floppy controller chip to do tape controller functions. The

popular floppy disk controller chips, the Western Digital 179x and
NEC 765, can present conversion problems if careful programming
techniques are not applied. A good understanding of the operation
of these controller chips is a prerequisite for doing the low-
level device programming.

18

4. 20 Software/Hardware Interaction Concerns

When programming a tape or disk peripheral, the peripheral
requires that data be transferred at a specified time, rate, and
amount. Speed performance is dependent on the interaction between
hardware and software and should be optimized

Tape peripheral performance is optimized when data tranfer is
performed continuously. This means that the program should keep
the tape moving. Stopping and pausing are lengthly operations due
to the relatively long starting and stopping times of the tape.

There are three items of software/hardware interaction that the
programmer needs to address: interrupts., DMA, and memory buffer
usage.

It is necessary to know which interrupts are used by the system

and when they will happen. If an untimely interrupt occurs during
tape data transfer, the tape may not be serviced in time, causing
a reposition. To prevent an unnecessary tape reposition the

interrupt should be disabled.

The programmer will have to determine which interrupts to disable.
Since the controller will always interrupt to the floppy disk
handler, it will be necessary to "patch in" the address of a tape
interrupt handler. Other interrupt routines, depending on opera-
ting system and usage, may have to be "patched” in order to trap
interrupts that may reset or change the status of the floppy disk
controller. An example of this is IBM PC-DOS ROM BIOS interrupt
13. It is also important to restore all interrupt routine poin-
ters to their original states.

DMA is necessary for streaming tape operation. Knowledge of your
system’s particular DMA scheme and its operation is a prerequisite
to writing data transfer routines. Considerations here include
the speed of the DMA channel(s), setup time, and buffer transfer
design. Factors in the buffer transfer design include the number
of buffers to use, the buffer size, the buffer address, and buffer
speed. '

Memory buffer usage is a function of the DMA hardware architecture
and the amount of memory available for buffer usage. I+ the
system has no DMA, then use as large a buffer as memory will
permit. A large buffer will transfer as much data as possible to-—
or—from the tape and as a result will keep the number of starts
and stops to a minimum. If the system has DMA, the buffer size
will depend on the DMA erchitecture and speed.

19

With the aid of DMA and interrupts, a buffer management scheme
using overlapping I/0 is a good method to keep tape repositioning
to @ minimum. In this scheme there are one or more memory buffers
vsed in the data transfer. One DMA channel continuously reads
data into the buffer(s) from the tape or disk peripheral while
another DMA channel writes data from the one or more buffers. The
two DMA channels Bperate independently., one filling memory. one

dumping memory., and at completion both interrupting the processor.

A buffer management program controls the DMA and memory. To
optimize overlapping I1/0, use as much memory as possible for the
buffer(s). Also, remember that hard disk data transfer, in most

cases, will be faster than transfer to—or—from the tape.

Because hard disk data transfer is faster than tape data transfer,
an attempt should be made to keep the buffer(s) full of data for
a disk-to—-tape operation, and keep the buffer(s) empty in the case
of a tape—to—disk operation. In some cases, usvally involving
processor overhead (directory work. file searches, interrupts, and
hard disk errors (retries)), the average tape data transfer rate
becomes greater than the hard disk data transfer rate. If this
happens, the tape will have to stop and reposition while the disk
catches up. In order to keep this occurence to a minimum, it is
good practice to perform hard disk operations wuntil all the
buffer(s) are full or empty (depending if you are transferring
data to or from the tape). These hard disk operations should be
performed when the tape stops or repositions due to a faster tape
data transfer. This will enable the hard disk to get a head start
on data transfer when the tape is put back into motion.

4. 30 Software Design

Most application program design is done with the "top-doun"
approach. In a top-down approach the user’s needs are determined
first. Implementation is then performed by specifying software
modules through hierarchical levels progressing down to the primi-
tive operations known as the low-level device drivers. Tape
application programs are not significantly different., however
floppy controller hardware influences program design. It is
therefore necessary to do a "bottom—up" program specification
while also doing a top-down specification. In this bottom-up
approach the low-level routines are considered first. Implementa-
tion is then performed by specifying software modules through
hierarchical 1levels progressing up to the user interface. Where
the two designs meet is the optimal trade off between programming
goals, user’s needs, hardware considerations, and operation speed.

An example of the merged approach can be illustrated in the design

of a backup program. A backup program is designed to allow the
user a fast and easy hard—-disk-to-tape backup which will be done
on a frequent basis. To design & backup program first you must
know how the controller hardware works and its capabilities. In
addition, you must know how the operating system and file system
interfaces work. Having optimized the program for backup. the
restore function may take longer, which is acceptable since 1t 1is
used less frequently. In the process of examining both the top-—
down and bottom—up designs, you will make decisions regarding the
user interface; information to be backed up (files. dirvectories,
or the entire disk), how tape movement and repositioning is to be

done, and how the DMA and memory are to be used

4. 31 Software Transportability

Software transportability is another consideration when writing
programs of any kind. Transportability means the ability to
export of software across hardware, operating system, and file
system boundaries. Hardware boundaries are crossed by low-level
device Tmoutines, usuvally written in assembler, with other
programming done in @ high—-level language. Operating system and
file system boundaries are crossed through careful program design
which uses a modular appoach and keeps all system dependencies in
a minimum of program modules.

4. 32 Software Interrupts

One particular concern with operating systems is software inter-
Tupts. Some of these interrupts interact directly with the floppy
disk controller, resetting the controller or its parameters,
causing loss of controller initialization with respect to the tape
application program. An example of this is the IBM PC-DOS ROM BIOS

Interrupt 13 that occurs after a hard disk read error. This
interrupt routine recalibrates both the hard disk and floppy disk
drives. The recalibration causes the tape program to "forget"

where the NEC 765’s track register contents are. This in turn will
affect sending commands to the drive.

Another consideration dealing with software interrupts 1is a
general policy of trapping unwanted interrupts and rtedirecting
them to @ new handler. The ideas and philosophies will differ with
hardware, operating systems, and file systems.

4. 40 Software Design Example

We begin the software design process with a top—down design
procedure to determine the general flow of the program A flow-
chart showing the program outline can be very helpful. (See Figure
IV - IMAGE Flow-Chart. The organization of the Irwin IMAGE program
which performs an image backup from disk-to—-tape and an image
restore from tape-to-disk is shown in this figure.)

Using a top-down approach, at the top level is the user interface,
it any, followed by the main structure of the program Further
down the flowchart are the data handling and manipulation
routines. This middle level of the program will deal with the
operating system being used, the desired organization on tape, and
considerations about the specific hardware used. At this middle
level the designer should probably move away from the top—douwn
approach towards the bottom-up approach. At the bottom level of
the program are the 1low-level 1I1/0 and hardware interfacing
routines.

In most tape application programs there will be similar main
program tasks. Following Figure IV is a list of some of these
programming tasks. This list is not meant to be complete, nor
does any program depend on the existence of the listed routines.

|

!

22

Program Initialization

Fiaure IV — TMAGE FLoWCHART

— X x —_—
~Nelt ¥ e X ¥
a8 3 X e
Q) —~ x x
R ¥ | Tt ¥Ry HEE T
=] * % o o] * =
wn L 3 x 19
x * B}
_— x 1] mme——— *
* * _——
x x
- x X —————
- X
=T < - O — ¥ m
x L X)
el B LE8 1
“LER Il eyl (898
Y- * > M HB x +
3 & ¥ R R x d
- —_— H -1 3 § N 1ox &
— * I x
g i S B e | § P
3 i g1 x
8 . S 397 x
tttttttt * o 3 x
_—— X O A x
m x -~ 0N *x
—tRI-1 igol i g5 :
g ol 3 : :
1Y () x ~ O x ————
1] ~ * (1IN x
Ll S Gl I RN
- N .
. o © £ R T * 2 H
= : & e | e | e X o m
2 —_——1 3 S b
x Q&) * w &
x —— 5 *
x L u a M.m X —_——
..:;n!.!.u:n!m: -1 88T & ” m x
BRI L1 I o
| i oo | @ &< i |8
? 3 mU SR IOV . X ~
gl 3 X N
o= x A M mm—————— -
~ x L@ x WD
e RN R R F —— | T —— x
S x (=] *
Drerd * @ H ———
=i H — & x
* < d x
—_———— & <N m *
x +«
- R —— x
* — x

[}
i
!
[

Print Message
Console I1/0

User Interface

These routines "talk" to the user, get any information needed to
‘operate the program, and output any information back to the user.
All error messages should be handled through the user interface.
Ergonomics and human factors should be taken into consideration
when designing the user interface routines.

Command Parser
This routine deciphers the user’s input and passes the needed
parameters and program control to the proper routine.

Front End Calculations

These rtoutines perform calculations needed and pass the infor-
mation to the calling program. The information can be the number
of tapes needed, which bytes to transfer, which flags to set,
and which data pointers and buffers to set up.

Operating System Interface

These rtoutines read and write data to and from the disk through

the operating system and the file system. This rteading and
writing can be done on a file, logical allocation unit, or disk
sector basis. Basically, these routines will be an interface to

the system and file services provided by the operating system.

JTape File/Format Manager
These routines interface to intermediate level tape routines and

operating system routines. Actual calls to read and write to-or-—
from the tape are done here. These routines manage tape data flow
and tape format. Most of the application program code will be in
these routines.

Buffer Manager

These Ttoutines organize and manage the buffers. These Toutines
will interface with the DMA (if available). Timing will be a
major consideration in this routine.

|
|
{
|
|

4.41 Mid-Level Tape I/0 Routines

The mid—level tape 1/0 routines facilitate the transportability of
the application software through operating system and harduware
boundaries. These rtoutines will be called by the tape file
manager and buffer manager. These routines make the tape look
like one continuous stream of 1,264 tape blocks (158 blocks/track
x 8 tracks). All tape and tape head pasitioning is automatically
done. On the following pages is a list of the Irwin TPl routines
that are suggested for use. (TPl denotes mid—level routine.)

25

TP10ONL

Get Drive Number

Calling Parameters

None ‘

Return Parameters

None

Description

This routine gets the tape drive’s physical unit number. The
number is stored internally for future reference. This reoutine 1is

called once per program to insure that the appropriate hardware
(the controller and the tape drive) is on—line.

TP10OFL

Remove Drive Line

Calling Parameters

None

Return Parameters

None

Description

This routine removes the drive from the line. This routine is
called once per program.

26

TP1REDMNT

f Read Mount
Calling Parameters
None
Return Parameters
None

e iptio
This routine “"mounts" or prepares a new tape for reading and
assumes the tape drive is already on-—-line. The user is asked to
insert a tape cartridge. if necessary. Then. a seek load. point
command and a seek track O command are issved. This routine is
called once per tape.
TP1WRTMNT

Write Mount

in rameter
None
Return Parameters
None
Description
This routine ‘"mounts" or prepares a new tape for writing and
assumes the tape drive is already on—line. The user is asked to
insert a tape cartridge, if necessary. Then, a seek load point
command and a seek track O command are issued. The tape cartridge

is also checked to see if the write protect tab is set. This
routine is called once per tape

27

TP1RED

Read Block

Calling Parameters

buffer address — Address of the buffer for the data to be read.
block — Block number.

Return Parameters

None

Description

This routine reads a block from the tape. All of the necessary
tape motion is5 handled internally. This routine fails if it is
unable to initihte the read. A failure return means that a retry
will also fail. Any less serious problems will be returned by

TPIREDWT. When this routine returns, the tape will continue
motion.

TP1REDWT

Read Wait

Calling Parameters

None

Return Parameters
None
Description

This routine waits for the completion or error return from a
TPIRED call. Errors are returned to the calling program as return
codes. ‘

TJP1WRT

Write Block

Calling Parameters

buffer address — Address of the buffer for the data to be written.
block — Block number.

Return Param T
None
Description

This routine writes a block from the tape. All of the necessary

tape motion is handled internally. This routine fails if it is
unable to init;ate the write. A failure return means that a retry
will also fail. Any less serious problems will be returned by

TPIWRTWT. When this routine returns. the tape will continve
motion.

TP1WRTWT

Write Wait

Calling Parameﬁers

None

Return Parameters

None

Description
l

This rouvtine waits for the completion or error return from a
TP1WRT call. - Errors are returned to the calling program as return

codes.

29

P1PAUS

Pause

None
Description

This routine backspaces the tape once. This routine is used when
the streaming mode is ending to position the tape so it will be
ready to start streaming where it left off.

JP1STOP
Stop
Ca i Par t
None

Return Parameters

None

Description

This routine stops the tape. This routine is wused when the
streaming mode is ending.

30

1P T

Continue

Calling Parameters
None

Return Parameters
None |
Description

This routine starts the tape with a forward motion. This routine
is called aFteriTPlPAUSE or TPISTOP to restart the tape motion.

TP1DMNT
Dismount

\

Calli Parameter

None

Return Parameters

None

.Qescrigtion

This routine "dismounts" or "unloads" the tape. A seek load point

command is issued without waiting for completion. This routine is
called once per‘tape.

31

4.42 Low-Level Device Routines

The low-level device routines provide tape operation on the

hardware. These rtoutines are custom written for the hardware
involved. They are typically written in assembler and are called
only by the mid-level routines. On the following pages is a list

of the Irwin TPO routines that are suggested for use. (TPO denotes
low-level routine.)

32

TPQO Return Codes

These are the suggested return codes for the TPO low-level tape
I/0 routines. These are the return codes that have been
implemented at Irwin. The codes that each routine will receive are
dependent on the implementation of the TPO routines which is in
turn, dependent on the system.

Ti ion Code Number
Still busy, waiting for not busy failed ~-01
Command accepted | 00
Command not accepked 01
Receive time-out, read controller error o2
Send time-out, write controller error 03
Controller error, invalid controller response 04
Record not found, no valid ID read 05
Sector CRC error.%checksum eTrror on record 06
DMA error, DMA prﬁcessor missed DRQ, data lost 07
Tape is write protected 08
ID not found, no valid ID read 09
Interrupt time—out, I1/0 never properly completed 10
DMA boundary, inkernal boundary alignment problem 11

Error code out of range, internal problem with program 7?7 {(other)

33

TPOINI

Controller Initialization
\

Calling Parameters

load time - Head load time in ms (suggest 4).
unload time - Head unload time in ms (suggest 480).
step rate - Step speed in ms (suggest &).

io gap - Gap length to use for read/write (suggest O17h).

Return Parameters

None

Description

This routine initializes the floppy disk controller for tape
usage. The floppy hardware interrupt vectors are saved and
replaced with new interrupt vectors for the tape routines.
Depending on the controller, the calling parameters are passed on
to the controller, saved for reference use, or just ignored. Any
type of software or hardware initialization that needs to be done
once per program should be done in this routine.

TPOTRM

Controller Termination

Calling Parameters

None i

Return Parameters

None

Description

This routine terminates the tape’s usage of the floppy disk
controller. All of initialization processes are reversed in this
Troutine. Most notably, the floppy hardware interrupt vectors are
replaced.

|
1
i
{
1

34

TPOONL.

Drive Select

Calling Parameters

drive - Drive number.

Return Parameters

None

Description

This routine selects or initializes the chosen drive. This 1is
performed with a controller reset and a recalibrate command. It
must be called once prior to the first call to any other function
with the same specified "drive" parameter. This routine may be

called again after TPOOFL.

TPOOFL,

Drive Unselect

Calling Parameters

drive - Drive number.
Return Parameters
None

Description

This rouvtine unselects the specified drive., It must be called once
after the last call to any viher function with the same specified
"drive" parameter. This rToutine must be called before TPOTRM. (In
many systems this routine may do nothing or not even exast.)

39

TPORECAL

Recalibrate

C in arameters
drive - Drive number.

|
Return Parameters |

None

Description

This routine attempts to "awaken" the drive with a controller
reset and a recalibrate command. This routine is performed

avtomatically if the drive needs it as a result of an error.

TPORESET

Controller Reset

Calling Parameters

None

Return Parameters |

None |

Description

This routine attempts to "awaken"” the controller with a controller

reset command. This routine is performed avtomatically if the
controller needs it as a result of an error.

36

Calling Parameters

TPOBUSY

Check for Busy

drive - Drive number.

Return Parameters

busy -~ Drive busy flag.

Description

This routine checks whether the specified drive is busy or not

alling Parameters

TPOCOMM

Issue Command

drive = Drive number.

steps -~ Number of step pulses in the command.
(See Step Pulse Command List on the follo
page.)

wait/status - Flag meaning "wait till end and report status

Return Parameters

None

Description

This routine issues the

step pulses specified.

following page.) If the
wait until the command
the return code.

command which corresponds to the numbe
(Gee Step Pulse Command List on

walt/status flag 1s set, the routine

1is executed and return with the status

37

wing

r of
the
will
in

Step Pulse Command List

Command Number of Pulses
Return busy statuys 0O
Stop tape e
Pause &
Seek load point 4

Move physically forward ¥

Move physically reverse &
Report normal completion /s
Report drive presence &
Report end—of—-tape status 9
Report beginning—of-tape status 10
Report cartridge presence 11
Report track found 1.2
Report new cartridge 13
Move logically reverse 14
Move logically forward 19
Turn on second pulse 164
Turn off second pulse 17
Seek track n (0 <= n <= 7)) 20 + n
Write servo 31

a8

TV 0T,

Initiote Kead

Calling Parameters

drive - Drive number.

buffer address — Address of the buffer for the data to be read.
cylinder = Cylinder number.

sector - Sector number.

sector count - Number of sectors to be read.

Return Parameters

None

Description

This routine initiates a read to the controller. If the system has
DMA, the routine returns immediately and reports any errors. If
the system does not have DMA, the routine returns after the read
and saves the error code to be reported later by TPOIDOWT.

TPORED
Read
Calling Parameters
drive = Drive number.
buffer address — Address of the buffer for the data to be read.
cylinder - Cylinder number.
sector - Sector numbenr.
sector count - Number of sectors to be read.

Return Parameters

None

Description

This routine performs an entire vead. This is accompliched through
a call to TPOREDI and a call to TPOIOWT. Any errors are Teturned
immediately.

39

TPOWRTI

Initiate Write

Calli Param T

drive - Drive number.

buffer address — Address of the buffer for the data to be written.
cylinder — Cylinder number.

sector - Sector number.

sector count - Number of sectors to write.

i
{

Return Paramgtg#g

None

Description

This routine initiates a write to the controller. If the system
- has DMA, the routine returns immediately and reports any errors.
I# the system does not have DMA, the routine returns after the
write saves the error code to be reported later by TPOIOWT.

TEQWRT

Write

Calling Parameters

drive — Drive number.

buffer address — Address of the buffer for the data to be written.
cylinder -~ Cylinder number.

sector ~ Sector number.

sector count — NMumber of sectors to write.

Return Parameters

None

Description

This Toutine performs an entire write. The write is accomplished

through a call to TPOWRTI and a call to TPOIOWT. Any errors are
reported immediately.

40

TPOIOWT

1/0 Status (for Wait)

Calling Parameters

drive - Drive number.

Return Parameters
None

Description

This routine waits for the completion of the TPOREDI/TPOWRTI 1/0.
This could signal the end of 1/0 activity or report any errors to

the calling program.

JEOQSNG

Write Frotect Status

Calling Parameters

drive - Drive number.

Return Parameters

protected ~ Write protect status

Description

This routine indicates the write protect status of
cartridge.

41

the tape

TPONDX

Count Index Pulses

Calling Parameters

drive - Drive number.
pulse count - Number of pulses to count.

Return Parameters
None
T ion
This routine counts the specified number of index pulses and

returns. In an implementation where only even numbers are counted,
odd numbers are rounded down.

TPOFRMFL

Fill Format Buffer

Calling Parameters

buffer address — Address of the buffer to be used in formatting.
sector length - Length of the sectors.

sector count - Number of sectors.

format gap -~ Gap length actually written (suggest 034h).

Return Parameters

None

Description

This routine £ills the buffer that is used to format the tape. The
buffer length must be more than the track length. (Twice the track
length is sufficient, as it depends on the gap length.)

Callin aram s

drive - Drive number.

buffer address ~ Address of the buffer to be used in formatting.
cylinder -~ Cylinder number.

sector length -~ Length of the sectors.

sector count ~ Number of sectors.

format gap ~ Gap length actually written (suggest 034h).

Return Parameters
None

Description

This routine formats the specified number of sectors in the
specified block of the tape. The routine TPOFRMFL must be called
before this routine can be executed. The <calling parameters
"count” and "format gap” must be the same in this routine call as
they were in the call to TPOFRMFL. As in TPOFRMFL, the buffer
length must be longer than the track length. (Twice the track
length is sufficient, as it depends on the gap length.)

Read 1ID

Calling Parameters

drive ~ Drive number.

Return Parameters

cylinder -~ Cylinder number.
sector - Sector number.

Description

This routine reads the current 1D.

43

This section discusses the special considerations needed when
using floppy disk controllers based on the Western Digital series
of floppy disk controller chips. The following is a list of the
Western Digital commands used in the TPO routines and the command
parameters:

(Parameter options will vary between Western Digital models 1791,
1792, 1793, 1794 and models 1795 and 1797. The variations deal
with the difference in the handling of side select options.)

Restore & Seek ~ load head at beginning operation,
no verify, 3ms stepping rate

Read & Write Sector ~ number of sectors to transfer, select
side rero or set sector lenagth, set

head delay to O, set side select update
to zero or disable side compare, set

. data address mark when writing

Write Track ~ gset head delay to zero, set side

- select update to zero
H(;;e Interupt - set as needed
Read 1D - set head delay to O, set side select

update to zero

44

5.10 Using the Western Digital Commands

The Western Digital commands are used in the FolloMing ways:

Restore

The tape drive executes a simulated recalibrate which i1s a good.
test to see if the drive is "awake". The Western Digital (WD)
internal track register is set tou zero. This command 1% used in

the TPOONL and TPORECAL low—-level device drivers

Seek

The Seek command is uvsed to iscue the command pulse train to cause
the Irwin tape drive to execute its set of commands. This command
is issued by the TPOCOMM low-level device driver. Since the WD
internal +track register is acceesible to the softuware, the ITwin
seeking philosophy is to zero out the track register, load the
data register with the desired tape command pulse number, and then
execute the seek command.

Read Sector/Write Sector

These two commands perform the actual reading and writing of
sectors in a tape block. They are used in low level device
drivers TPOREDI and TRPOWRTI, respectively. Software vsed in this
aF~a will be similar to floppy data transfer software.

Western Digital allows single or multiple sector data transfer
operations. When executing a multiple sector operation it should
be noted that the device driver must keep the multiple sector
count (count of sectors that have read or written). The reason for
this is that the Western Digital, in multiple operation mode,
continues to Tead sectors until the program issves a force inter-—
Tupt instruction or the Western Digital chip times ocut when 1t

cannot find the next sector because it does not exist. This time-
out will occur after not finding the next sector after 5 1index
pulses or 5 tape blocks going by. If this time—out happens tape
Trepositioning would be necessary.

In some systems, timing considerations dictate that sector coun-—
ting cannot be done in software. This being the case, Irwin
recommends that single sector operations be used. The programming

strategy would be to set up a large buffer to transfer data
to/from the tape and then issue single sector data transfer
commands to the Western Digital chip in succession between
sectors. The Western Digital chip will accept a read or write next
sector command between the end of a previous sector and the begin-
ning of the next sector with the tape block formatted with no
sector interweave.

45

Write Track
Used in low-level device driver, TPOFRMFL, to format a single

block. Software implementation similar to that for a floppy
disk.

Eorc nterry

This command is wused to force hardware interrupts to the
processor. It is used in TPOREDI and TPOWRTI to terminate multiple
sector data transfer operations. It is also used to "awaken” the
WD chip in error and hangup situations.

Read ID

Used in low-level device driver TPOID to find next ID on tape for
tape positioning.

5. 20 Tape Positioning with the Western Digital

Bit 1 of the type 1 status register continuously reflects the
condition of the index line. To position the tape, the tape
positioning TrToutine needs only to count the passing tape blocks

This can be done by monitoring the index status bit and counting
the index pulses coming from the tape drive.

46

6. 00 Considerations for

the

NEC 78 Controller.

This section discusses
using the NEC 745 floppy
of the NEC 769 commands
parameters:

Recalibrate
Specify

Sense Drive Status
Seek

Read Data, write‘Data

Read ID

Format a Track

considerations needed when
countroller. The following 15 & list
in the TPO routines and the command

the special
disk
used

- drive unit select

~- step rate, head load time.
head unload time, DMA mode

~ drive unit select, head select zero,

-~ drive unit select, head select zero.
cylinder number

-~ drive unit select, head select zero,
cylinder number, head number zero,
sector number, sector length, last
sector operation, VCO sync time,
DTL. - vser defined data length

— drive unit select, head select
select MFM mode

- drive unit select, head select zero,
sector length, sector/track. gap
length, format data constant

2ero,

47

6. 10 Using the NEC 765 Commands
These commands are used in the following ways:

Recalibrate

The tape drive executes a simulated recalibration which is a good
test to see if drive is "awake". The NEC track register i1s set to
zero which alleviates programming problems when the software gets
confused as to which track it thinks it is on. This command is
used in TPOONL and TPORECAL low-level device drivers.

Sense Interrupt Status

The NEC chip sends back an interrupt after the completion of a
command, a change in status of the ready line, or during the
execution phase in non-DMA mode. When an interrupt is
acknowledged, program control should pass to the software inter-
rupt handling routine. Interrupts not reset by inherent command
operation must be reset by the sense interrupt command. Sense
interrupt status is generally used after a seek or a rmecalibrate
command which returns completion information and present cylinder
(track) number. This information is useful to verify that the
proper command was sent to the tape drive.

It should be noted that Irwin has observed multiple processor
hardware interrupts after Recalibrate commands with non—contigious
drive addresses., such as having two drives addressed O and 2 with
no drives existing for drive selects 1 and 3 (either +floppy or
tape drive). qun this happens interrupts get nested, and the
software is unable to handle the interrupts. Therefore, it is a
good idea to to execute multiple Sense Interrupt commands wuntil
you get an invalid interrupt response. This technique will always

clear out the interrupt queue.

Specify
The Specify command is used by TPOINI and TPOTRM to initialize the
step rate, head load and unload time. and DMA mode

Sense Drive Status

The Sense Drive Status command is used to monitor the status of
the Track O and Write Protect lines of the Irwin tape drive.
This command is used throughout the low—-level device drivers.

48

Seek

The Seek command is used to issue a command pulse train to cause
the Irwin tape drive to execute its set of commands. This command
is issued by TPOCOMM low-level device driver. Because the NEC 7695
has an internal track register, not accessible to the host proces-—
sor, the application program must monitor the track number the NEC
is currently "on". (When the NEC is "on" a track, the internal
track register contains that track number, but the track number
does not correspond to the tape track number.) The reason for this
is that the program can determine the correct track number for the
NEC chip to seek to when a command is to be issuved. For example,
if the NEC 7695 is "on" track 24 and you wish to issue a pause
command to the Itrwin drive, 3 pulses, then you would seek to track
27.

To keep the track register in the NEC 769 valid (no track number
greater than 77 or less than 0), Irwin recommends a seeking
philosophy of keeping the track number as close to 38 as possible

(38 is 1/2 the distance to track 77). Therefore, if the present
track is less than 38, then seek to the present track number + n
pulses for the desired command. If the track is greater than 38

seek to the present track number-n pulses.

Read Data/Write Data
These two commands perform the actual reading and writing of

sectors in a tape block. They are used in low level device
drivers TPOREDI and TPOWRTT, respertively. Software vsed in this
area will be similar to floppy duta transfer software

Read 1D

Similar to Read and Write Data. This command is used 1n POLID to

find next id on tape and in TPONDX to count 2 index pulses

Format a Track

Used 1n the low-level device driver, TPOFRMFL, to format & single
block. Software implementation is similar to that for a floppy
disk.

49

6. 20 Tape Positioning with the NEC 745
There are two ways to perform tape positioning with the NEC 765.

The #first method of tape positioning involves using the Read ID
command while the tape is at read/write speed (3%9ips) and picking
up the next block/sector header that goes under the tape.
\

The second method of tape positioning involves moving the tape at
high speed (70ips), when data cannot be read, and then issuing a
Read ID command. After two revolutions of the disk. or in this
case., two blocks passing under the tape head. the NEC 765 will
time—~out with an error condition resulting from the fact that the
controller could not read an ID at the high tape speed. Not being
concerned with the error condition. the tape positioning rToutine
can count the two tape blocks that went by, then reissue the Read
ID command if it wishes to let another two tape blocks go by, and
s0 on until the proper block count comes up.

6. 30 Programming Problems with the NEC 765

There are two problem areas with the NEC controller chip as far as
software programming is concerned. The first is the number of
hardware interrupts sent during a Recalibrate command. This is
discussed in the description of the NEC 765 Recalibrate command.
The other problem has to do with keeping track of the current

track number the NEC 765 thinks it is on. This stems out of the
problem that the internal track register in the NEC 7695 1is not
accessible by the host hardware or software. Problems arise when

the NEC 765 receives Recalibrate or Reset commands from unknown
sources (like IBM PC-DOS ROM BIOS interrupt 13) and the internal
track register gets out of synchronization with the software track
register.

30

7.00 Low—-Level Device Driver Flowcharts

The flowcharts on the following pages outline the low—level device
drivers described above. An attempt was made to make these flow—
charts controller independent. Specific implementations of this
outline will differ slightly.

TPOINI(load time, uvnload time, step rTate, io gap)

—

TPOTNI
o
Call TPiVEC \
\\freplace system interrupt vectors
with pointers to local ISR’s) //

Call TPiRESET
(output the hardware reset

signal to the FDC)

Convert the HEAD LOAD TIME,
HEAD UNLOAD TIME, and STEP RATE
parameters into a string of
byte commands for ouvtput
to the FDC (if applicable)
or store as & variable for
future reference

Call ISS5VUE_COMMAND
{output the command bytes
to the FDC (if applicable))

Call TPiDVEC
{(restore the system
interrupt vectors)

Keturn

TPOTRM

<: Call TPiVEC :>

Create a string of byte commands
for output to the FDC that sets
up default values for HEAD LOAD TIME,
HEAD UNLOAD TIME, AND STEP RATE

< Call ISSUE___COMMAND>

< Call TPiDVEC >

TPOONIL_ (drive)

TROONL

Rmturt)

“~ L

[

TH1SEL
Call TPiVECI)

Construct the contro® byte that
selects a specific drive line

Output the select dr.ve lino
control byte to the FDC

Return

TPOOFL {(drive)

TPOOFL

< Call TPiRECAL >

Return

TP1DGEL

Construct the control byte that
deselects all drive select lines

|

/butput the deselect drive line/
/ control wyic to the FDC

C Call TPI1iDVEC)

Return

09

TPOREC . di 1ve)
U
QP (')HI*(I/\L>

Call TPiGEL
(select an I'DC drive line

for the tape drive)

Call THIRECAL
(send a hardware
) .

RECALIBRATE to the FDC

(deselect the tape drive

Return

Call TPiDSEL. \\
/

o
b
z

TPiRECAL

< Call TPiRESET >
<i Call TPiSEL.:>

Errors?

Construct a string of byte commands
for the FDC that perform a
recalibrate function

<i Call 1S9UE COMMAND :}

)2

<i Call WAIT_INT

Errors?

-

57

(2 (<)
<iCa11 TPiRPRT

Errors™

~

Set up a 13ms counter
to wait for the FDC

VY

<i Call DELAYD

@ 1 TPiBUSY \

s the tape dri;g“\\\
busy (=track 0) with ™ ;_)
*\\zii\iiialibrati(wul///‘ N No errors T_ -~

No erTtors ;_

Return\

_

TRPORESET ()

TPORESET

Call TPiVEC >

< Call TP

iRESET >

< Call TPiDVEC

VA

/
<l(@l

=

uern

59

TPiRESET

P

Output to the FDC a
hardware reset

Call WAIT_INT
(delay a shourt time monitoring
the FDC interrupt status)

!

Get the sta: hagte(s) returned
from the rulL after a reset

- ~.
. ~

// :
-
< Ts ihe FDC ;;;\\\>>—W
~ e

Y \“\\ . 7 N

No errors Bad FDC errvor

\2 - W

60

No error

TPOBUSY ({dTive)

TPOBUSY

o

¢ Call TPiSEL:>

Call TRPiBUSY >

N

\

. \\
Is tape drive busy (=track O0)7 T

- _// ? |

R .N\\V"//,/»M"
Busy errors ‘
| Call CHECK_RECA!

v

V

¢ €Call TPLD&HM:>

A

Returt)

_———

61

{perform a Tecalibvalyon
o the FDC if necessary)

|

status

Construct a sf¥ing G
for the FDC that

byte commands

perform a sense drive

function

i

< Call 1SSUE_COMMAND >

<i Call RESULTS :>

Is tape drive busy(=

—

Set busy

track 0)7

/N

Set not buwoy

TPOCOMM(drive, steps, wait/status)

PO i

—

Call TPiSEL >

v

/ .
Atre O step pulses
to be sent by FDC? Y
\\.‘ N)
-\\._ i -

Convert the number of step pulses
for the FDC to send to a seek location

Construct a string of byte commands
that will cavse the FDC to pulse the stepper

<i Call IS5SUE_COMMAND :>

AV

Errors™

~.
~.

;LM
< Call NAIT_INT>
)

—

// T
<:::;Siif the FLL status report the = =y

seek location expected?/////f Y

4

.

e T

/// \\\\

ANy erTors getﬁ\\\\\ >
/ Y

/w/\
I

—

/

e

W/‘/ . cel
~7 1s FDC report on status to be done?®
\ N

—

\l/Y

< Call TPiRPRT >

&H4

Were O sten pulses
senl o T0CTE

< Call CHECK _RECAL

<i Call TPiDSEL :>

A

Feturn

TPORED(drive, buffer address, cylinder, sector, sector count)

TPORED

T

< Call TPiREDI >
<: Call TPiIDNT':>
< Call 'T'PiDSE':'L>

v

/ .
< Return

TPOREDI(drive, buffer address., cylinder, sector, sector count)

TPOREDI

<Ca11 TPiREDI >
< Call TPIiDSEL >

Return

TPiREDI

_

Set up to send a DMA read command
to the FDC (if applicable)

(Rﬁturn

N

I
(g

TPOWRT(drive, buffer address, cylinder,

sector,

sector count)

TPOWRT

b
< Call TPiWRTI >
Va

Call TPii0WT
q/”
< Call TP1DSEL >

Return

TPOWRTI(drive, buffer address, cylinder, sector, sector count)

<\1POWRTI
<i Call TP1iWRTI

< Call TPiDSEL >)

§

TPIWRTI

Set vp to send a DMA write command
to the FDC (if applicable)

< Call RW_OPN >

&7

TPOIOWT (drive)

TPOIOWT

Call TPiIOWT

Call TPiDSEL

Return

(o)

< call NAIT”_INT_>
Call CKFDCRES >

\

Call CHECK_RECAL >

Return

70

TPOSNS(drive, protected)

TPOSNS

Call TPiSEL >

< Call TPiBUSY >

m
-,
he
g
Z\ @
\\‘
—<
K\/

FDC status busd\i::>_;i Not accept error l
y o L— R

(=track Q)7

N

e

Read the FDC status, checking
the write pruotect bit state

I A
{ Call CHECK_RECAL)

<i Call TPiDSEL :>

Return

71

TPOFRMT(drive, buffer address, cuylinder, sector lenqth,.
sector count. format gap)

<TF’ OFR MD
-

<i Call TPi1SEL :>

Set up header, sector addresses, etc. in format buffer

Convert number of blocks to format
into number of bytes to DMA (if applicable)

<Call DMA_SETUP (if applicable) >

Errors?

Construct a string of byte commands
for the FDC to initiate the DMA data move

< Call ISSUE__CDMMAND>

Errors?

\l/N

< Call WAIT_INT >

s

V4

e e N
(Call UHECK_RECAL
< Calt TPiDSE'L>

s

<Heturn

73

TPOID(drive. cylinder, sector)

TPOID

< Call TPiSEL >
E < Call TPilD >

Get the FDC return data
for the tape ID parameters

| < Call c:mz,cv_RECAL_>
< Call TPiDSEL>

TH11D

Construct a string of byte commands
to make the FDC return ID info

< Call ISSUE_COMMAND >

.

Errors?
O Y
$N
<i Call WAIT _INT :>

CHECK RECAL
/k
/ \
Check FDC status
{is recalibration iiiiiﬂz) N 7

<i Call TPiRECAL

v
<i'(el U‘l"ﬂ>
S~

76

CKEDCRER

J

Check the apprmprfﬁtv bit positions
in the status bhuyte. from the FDC
for errors

Keturn

DizLaY1l

Set up a counter that will
cause a 1| msec delay

Do nothing for a fraction of the delay l

Decrement the timer i

Is the timer zero™

DT INT

ey

<<::f15 the ©DC busy? >
— Y |

Jx
Construct a stviﬁh of byte commands

for the FDC to have it do a
sense interrupt status

< Call ISSUE, CONMAND>

N\

< Call RESULTS>
ﬂ\

' Evyrors”

Check the status veturned from the FOC
and look fu, -« .ulid interrupt

<"u)

7Y

(i)

Use the specific End-of-Interrupt
signal for the FDC

Interrupt return

&0

'DMA_SETUP (if applicable)

Initialize the DMA channel by
outputting control bytes to it

Set the DMA RED/WRT mode. the DMA address.
and the byte transfer count

Check for DM& coundary errors.
chip errors, and any other errors

a1

ISSUE COMMAND

e N

Set up a short timer

Input a byte from the FDC

Vg

\

e .
// T

e .\\

Decrement the timer

hr<:::;fs FDC status OKW to send commandégmf:ﬁ;ﬁfﬁ

1 T
s the timer zero™ \
Output next command
to the FDC
Set timecut error L

- ,,/ N
o ére there any nos

.

<

e

No errare l

Y

W\

Keturn

/ T

i

‘\\ggﬂfand bytes to o

RESULTS

e

Set up a timer to let FDC send bytes

N

Enter the FDC status byte

\\
/ -

"’<’Z timer zero?
d&: e Lending da'ta“* S~ S Moo o e
N 2

Enter the D ctatus bute

® ®
Input the next data from FDC
Store the FDC data
Count the data byte
< J /’/ N
Heturn
N

ey

RW_CIHN

——

<i Call TPiGEL :>

Convert the number of blocks of data
to RED/WRT DMA to the number of
bytes to move

<i Call DMA_SETUP (if applicable) :>

Vs
W

AY
-

Qof [y

Construct a strihhwgﬁmﬁgte commands
for the FDC to select a
RED/WRT DM& function

<i Call ISSUE_COMMAND >)

Vo

<i Call CHECKMRECALT>
v
Q'?:' torp n»

o0

TIMER FIX

\L

Perform necessaiy oviodic operations

to assure the operating system does not
interfere with the vape drive functions

|

<i Simulate an ISR call via saved vectorg\\

Interrupt Teturn

TPiRPRT

T

Set up a 13ms

counter

~.

~

4

< DELAY1 >

<(‘all TP iBUSBY >

A

<\\\Err0r5’ Y

)LN

- ID\- t-u:u

i
|

Decrement

-

_—

~

T

the timer

'g%f“<::::;;/;;ﬁ timer
N

a7

\.\\\\
T~

-
—

\

No error]

Set error }—-5§

No busy error F;;

s

/f

Heturn

-

A

TPiVEC

Save copies of the system interrupt
vectors that will be modified

Interrupts off

v

Replace system interrupt vectors with
the address vectors to local ISR

Execute functions necessary to restrain the
resident operating system from interfering
with the tape drive operation, for example.
prevent FDC drive select timeout '

intoervupts an ’

—

- S

Retorn

\

N

a3

TPiDVEC

Interrvupts off

Restore the system interrupt
vectors corrupted by TPIiVEC

Fix any system functions altered by TPiVEC

Interrupts on

Return

8o

WALT INT

Initialize a 10 second counter

~J

Has the FDC interrupted? ™

Has the FDC ISR run?

Is the timer zero?

\?‘"&/

Set time—-out error

Return error code
f1ro.u disk I8R

v

Return

S0

