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The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating system for the larger
Digital Equipment Corporation PDP-11 and the Interdata 8/32 computers. It offers a
number of features seldom found even in larger operating systems, including

i A hierarchical file system incorporating demountable volumes,
ii =~ Compatible file, device, and inter-process /O,

iii ~ The ability to initiate asynchronous processes,

iv.  System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi  High degree of portability.
This paper discusses the nature and implementation of the file system and of the user
command interface. '

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa 1969-70) ran on
the Digital Equipment Corporation PDP-7 and -9 computers. The second version ran on the unprotected
PDP-11/20 computer. The third incorporated multiprogramming and ran on the PDP-11/34, /40, /45, /60,
and /70 computers; it is the one described in the previously published version of this paper, and is also the
most widely used today. This paper describes only the fourth, current system that runs on the PDP-11/70
and the Interdata 8/32 computers. In fact, the differences among the various systems is rather small; most
of the revisions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been put into
service. Most of them are engaged in applications such as computer science education, the preparation and
formatting of documents and other textual material, the collection and processing of trouble data from vari-
ous switching machines within the Bell System, and recording and checking telephone service orders. Our
own installation is used mainly for research in operating systems, languages, computer networks, and other
topics in computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operating system
for interactive use need not be expensive either in equipment or in human effort: it can run on hardware
costing as little as $40,000, and less than two man-years were spent on the main system software. We
hope, however, that users find that the most important characteristics of the system are its simplicity,
elegance, and ease of use.

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised version of an
article that appeared in Communications of the AcM, 17, No. 7 (July 1974), pp. 365-375. That article was a revised version
of a paper presented at the Fourth AcM Symposium on Operating Systems Principles, 3M Thomas J. Watson Research
Center, Yorktown Heights, New York, October 15-17, 1973.

1 UNIX is a trademark of Bell Laboratories.
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Besides the operating system proper, some major programs available under UNIX are

C compiler

Text editor based on QED

qed lampson

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs

cherry kernighan typesetting mathematics cacm

kernighan lesk ossanna document preparation bstj

%Q This issue

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally. The UNIX user
community, which numbers in the thousands, has contributed many more programs and languages. It is
worth noting that the system is totally self-supporting. All UNIX software is maintained on the system;
likewise, this paper and all other documents in this issue were generated and formatted by the UNIX editor
and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit byte) computer
with 768K bytes of core memory; the system kernel occupies 90K bytes about equally divided between
code and data tables. This system, however, includes a very large number of device drivers and enjoys a
generous allotment of space for I/O buffers and system tables; a minimal system capable of running the
software mentioned above can require as little as 96K bytes of core altogether. There are even larger
installations; see the description of the PWB/UNIX systems, dolotta mashey workbench software engineering
dolotta haight mashey workbench bs§j %Q This issue for example. There are also much smaller, though
somewhat restricted, versions of the system. lycklama microprocessor bstj %Q This issue

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping. There are
20 variable-speed communications interfaces attached to 300- and 1200-baud data sets, and an additional
12 communication lines hard-wired to 9600-baud terminals and satellite computers. There are also several
2400- and 4800-baud synchronous communication interfaces used for machine-to-machine file transfer.
Finally, there is a variety of miscellaneous devices including nine-track magnetic tape, a line printer, a
voice synthesizer, a phototypesetter, a digital switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language. ¢ programming
language kernighan ritchie prentice-hall Early versions of the operating system were written in assembly
language, but during the summer of 1973, it was rewritten in C. The size of the new system was about
one-third greater than that of the old. Since the new system not only became much easier to understand
and to modify but also included many functional improvements, including multiprogramming and the abil-
ity to share reentrant code among several user programs, we consider this increase in size quite acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view of the user,
there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or binary (object)
programs. No particular structuring is expected by the system. A file of text consists simply of a string of
characters, with lines demarcated by the newline character. Binary programs are sequences of words as
they will appear in core memory when the program starts executing. A few user programs manipulate files
with more structure; for example, the assembler generates, and the loader expects, an object file in a partic-
ular format. However, the structure of files is controlled by the programs that use them, not by the system.
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3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and thus induce
a structure on the file system as a whole. Each user has a directory of his own files; he may also create sub-
directories to contain groups of files conveniently treated together. A directory behaves exactly like an
ordinary file except that it cannot be written on by unprivileged programs, so that the system controls the
contents of directories. However, anyone with appropriate permission may read a directory just like any
other file.

The system maintains several directories for its own use. One of these is the root directory. All files
in the system can be found by tracing a path through a chain of directories until the desired file is reached.
The starting point for such searches is often the root. Other system directories contain all the programs
provided for general use; that is, all the commands. As will be seen, however, it is by no means necessary
that a program reside in one of these directories for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified to the
system, it may be in the form of a path name, which is a sequence of directory names separated by slashes,
*/”*, and ending in a file name. If the sequence begins with a slash, the search begins in the root directory.
The name /alpha/beta/gamma causes the system to search the root for directory alpha, then to search
alpha for beta, finally to find gamma in beta. gamma may be an ordinary file, a directory, or a special
file. As a limiting case, the name “‘/*’ refers to the root itself.

A path name not starting with *‘/>’ causes the system to begin the search in the user’s current direc-
tory. Thus, the name alpha/beta specifies the file named beta in subdirectory alpha of the current direc-
tory. The simplest kind of name, for example, alpha, refers to a file that itself is found in the current direc-
tory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly different names. This
feature is called linking; a directory entry for a file is sometimes called a link. The UNIX system differs
from other systems in which linking is permitted in that all links to a file have equal status. That is, a file
does not exist within a particular directory; the directory entry for a file consists merely of its name and a
pointer to the information actually describing the file. Thus a file exists independently of any directory
entry, although in practice a file is made to disappear along with the last link to it.

Each directory always has at least two entries. The name ‘‘.’’ in each directory refers to the direc-
tory itself. Thus a program may read the current directory under the name ‘.’ without knowing its com-
plete path name. The name *‘..’’ by convention refers to the parent of the directory in which it appears,
that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the special entries
. and ““..”, each directory must appear as an entry in exactly one other directory, which is its parent.
The reason for this is to simplify the writing of programs that visit subtrees of the directory structure, and
more important, to avoid the separation of portions of the hierarchy. If arbitrary links to directories were.
permitted, it would be quite difficult to detect when the last connection from the root to a directory was
severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported I/O device

is associated with at least one such file. Special files are read and written just like ordinary disk files, but

* requests to read or write result in activation of the associated device. An entry for each special file resides

in directory /dev, although a link may be made to one of these files just as it may to an ordinary file. Thus,

for example, to write on a magnetic tape one may write on the file /dev/mt. Special files exist for each

communication line, each disk, each tape drive, and for physical main memory. Of course, the active disks
and the memory special file are protected from indiscriminate access.

There is a threefold advantage in treating /O devices this way: file and device I/O are as similar as
possible; file and device names have the same syntax and meaning, so that a program expecting a file name
as a parameter can be passed a device name; finally, special files are subject to the same protection
mechanism as regular files.
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3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not necessary that the
entire file system hierarchy reside on this device. There is 2 mount system request with two arguments:
the name of an existing ordinary file, and the name of a special file whose associated storage volume (e.g.,
a disk pack) should have the structure of an independent file system containing its own directory hierarchy.
The effect of mount is to cause references to the heretofore ordinary file to refer instead to the root direc-
tory of the file system on the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the permanent file sys-
tem. In our installation, for example, the root directory resides on a small partition of one of our disk
drives, while the other drive, which contains the user’s files, is mounted by the system initialization
sequence. A mountable file system is generated by writing on its corresponding special file. A utility pro-
gram is available to create an empty file system, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no link
may exist between one file system hierarchy and another. This restriction is enforced so as to avoid the
elaborate bookkeeping that would otherwise be required to assure removal of the links whenever the
removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each user of the
system is assigned a unique user identification number. When a file is created, it is marked with the user ID
of its owner. Also given for new files is a set of ten protection bits. Nine of these specify independently
read, write, and execute permission for the owner of the file, for other members of his group, and for alt
remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter, user ID) of
the current user to that of the creator of the file whenever the file is executed as a program. This change in
user ID is effective only during the execution of the program that calls for it. The set-user-ID feature pro-
vides for privileged programs that may use files inaccessible to other users. For example, a program may
keep an accounting file that should neither be read nor changed except by the program itself. If the set-
user-ID bit is on for the program, it may access the file although this access might be forbidden to other pro-
grams invoked by the given program’s user. Since the actual user ID of the invoker of any program is
always available, set-user-ID programs may take any measures desired to satisfy themselves as to their
invoker’s credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the ‘‘super-
user’’ (below) that creates an empty directory. As indicated above, directories are expected to have entries
for ““,”’ and *“..””. The command which creates a directory is owned by the super-user and has the set-
user-ID bit set. After it checks its invoker’s authorization to create the specified directory, it creates it and
makes the entries for “*.”’ and ““.."’.

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is generally avail-
able without administrative intervention. For example, this protection scheme easily solves the MOO
accounting problem posed by ‘‘Aleph-null.”’ aleph null software practice

The system recognizes one particular user ID (that of the ‘‘super-user’’) as exempt from the usual
constraints on file access; thus (for example), programs may be written to dump and reload the file system
without unwanted interference from the protection system.

3.6 /O calls

The system calls to do I/O are designed to eliminate the differences between the various devices and
styles of access. There is no distinction between ‘‘random’’ and ‘‘sequential’’ 1/O, nor is any logical
record size imposed by the system. The size of an ordinary file is determined by the number of bytes writ-
ten on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of /O, some of the basic calls are summarized below in an anonymous
language that will indicate the required parameters without getting into the underlying complexities. Each
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call to the system may potentiaily result in an error return, which for simplicity is not represented in the
calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open ( name, flag )

where name indicates the name of the file. An arbitrary path name may be given. The flag argument indi-
cates whether the file is to be read, written, or ‘‘updated,’’ that is, read and written simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the file in
subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that creates the
given file if it does not exist, or truncates it to zero length if it does exist; create also opens the new file for
writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the number of
users who may have a file open for reading or writing. Although it is possible for the contents of a file to
become scrambled when two users write on it simultaneously, in practice difficulties do not arise. We take
the view that locks are neither necessary nor sufficient, in our environment, to prevent interference between
users of the same file. They are unnecessary because we are not faced with large, single-file data bases
maintained by independent processes. They are insufficient because locks in the ordinary sense, whereby
one user is prevented from writing on a file that another user is reading, cannot prevent confusion when, for
example, both users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the file sys-
tem when two users engage simultaneously in activities such as writing on the same file, creating files in
the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a particular byte in
the file was the last byte written (or read), the next I/O call implicitly refers to the immediately following
byte. For each open file there is a pointer, maintained inside the system, that indicates the next byte to be
read or written. If # bytes are read or written, the pointer advances by n bytes.

Once a file is open, the following calls may be used:

n = read ( filep, buffer, count )
n = write ( filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified by buffer.
The returned value n is the number of bytes actually transmitted. In the write case, n is the same as count
except under exceptional conditions, such as /O errors or end of physical medium on special files; in a
read, however, n may without error be less than count. If the read pointer is so near the end of the file that
reading count characters would cause reading beyond the end, only sufficient bytes are transmitted to reach
the end of the file; also, typewriter-like terminals never return more than one line of input. When a read
call returns with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-file from a
terminal by use of an escape sequence that depends on the device used.

Bytes written affect only those parts of a file implied by the position of the write pointer and the
count; no other part of the file is changed. If the last byte lies beyond the end of the file, the file is made to
grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to the
appropriate location in the file.

location = Iseek ( filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the file, from the
current position of the pointer, or from the end of the file, depending on base. offset may be negative. For
some devices (e.g., paper tape and terminals) seek calls are ignored. The actual offset from the beginning
of the file to which the pointer was moved is returned in location.
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There are several additional system entries having to do with /O and with the file system that will
not be discussed. For example: close a file, get the status of a file, change the protection mode or the
owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associated file and
a pointer to the file itself. This pointer is an integer called the i-number (for index number) of the file.
When the file is accessed, its i-number is used as an index into a system table (the i-list) stored in a known
part of the device on which the directory resides. The entry found thereby (the file’s i-node ) contains the
description of the file:
i the user and group-ID of its owner
ii  its protection bits
iii  the physical disk or tape addresses for the file contents
iv  its size
v time of creation, last use, and last modification
vi  the number of links to the file, that is, the number of times it appears in a directory
vii  acode indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an i-number
by searching the explicitly or implicitly named directories. Once a file is open, its device, i-number, and
read/write pointer are stored in a system table indexed by the file descriptor returned by the open or create.
Thus, during a subsequent call to read or write the file, the descriptor may be easily related to the informa-
tion necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that contains the
name of the file and the i-node number. Making a link to an existing file involves creating a directory entry
with the new name, copying the i-number from the original file entry, and incrementing the link-count field
of the i-node. Removing (deleting) a file is done by decrementing the link-count of the i-node specified by
its directory entry and erasing the directory entry. If the link-count drops to O, any disk blocks in the file
are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte blocks logically
addressed from O up to a limit that depends on the device. There is space in the i-node of each file for 13
device addresses. For nonspecial files, the first 10 device addresses point at the first 10 blocks of the file.
If the file is larger than 10 blocks, the 11 device address points to an indirect block containing up to 128
addresses of additional blocks in the file. Still larger files use the twelfth device address of the i-node to
point to a double-indirect block naming 128 indirect blocks, each pointing to 128 blocks of the file. If
required, the thirteenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+128+128%+128%)-512] bytes. Once opened, bytes numbered below 5120 can be read with a single
disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the range 70,656 to 8,459,264
require three accesses; bytes from there to the largest file (1,082,201,088) require four accesses. In prac-
tice, a device cache mechanism (see below) proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/O request is made to a file whose i-
node indicates that it is special, the last 12 device address words are immaterial, and the first specifies an
internal device name, which is interpreted as a pair of numbers representing, respectively, a device type
and subdevice number. The device type indicates which system routine will deal with I/O on that device;
the subdevice number selects, for example, a disk drive attached to a particular controller or one of several
similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite straightfor-
ward. mount maintains a system table whose argument is the i-number and device name of the ordinary
file specified during the mount, and whose corresponding value is the device name of the indicated special
file. This table is searched for each i-number/device pair that turns up while a path name is being scanned
during an open or create; if a match is found, the i-number is replaced by the i-number of the root direc-
tory and the device name is replaced by the table value.
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To the user, both reading and writing of files appear to be synchronous and unbuffered. That is,
immediately after return from a read call the data are available; conversely, after a write the user’s
workspace may be reused. In fact, the systern maintains a rather complicated buffering mechanism that
reduces greatly the number of I/O operations required to access a file. Suppose a write call is made speci-
fying transmission of a single byte. The system will search its buffers to see whether the affected disk
block currently resides in main memory; if not, it will be read in from the device. Then the affected byte is
replaced in the buffer and an entry is made in a list of blocks to be written. The return from the write call
may then take place, although the actual /O may not be completed until a later time. Conversely, if a sin-
gle byte is read, the system determines whether the secondary storage block in which the byte is located is
already in one of the system’s buffers; if so, the byte can be returned immediately. If not, the block is read
into a buffer and the byte picked out. '

The system recognizes when a program has made accesses to sequential blocks of a file, and asyn-
chronously pre-reads the next block. This significantly reduces the running time of most programs while
adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program that reads
or writes a single byte at a time, but the gain is not immense; it comes mainly from the avoidance of system
overhead. If a program is used rarely or does no great volume of I/O, it may quite reasonably read and
write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organizing the file
system has proved quite reliable and easy to deal with. To the system itself, one of its strengths is the fact
that each file has a short, unambiguous name related in a simple way to the protection, addressing, and
other information needed to access the file. It also permits a quite simple and rapid algorithm for checking
the consistency of a file system, for example, verification that the portions of each device containing useful
information and those free to be allocated are disjoint and together exhaust the space on the device. This
algorithm is independent of the directory hierarchy, because it need only scan the linearly organized i-list.
At the same time the notion of the i-list induces certain peculiarities not found in other file system organi-
zations. For example, there is the question of who is to be charged for the space a file occupies, because all
directory entries for a file have equal status. Charging the owner of a file is unfair in general, for one user
may create a file, another may link to it, and the first user may delete the file. The first user is still the
owner of the file, but it should be charged to the second user. The simplest reasonably fair algorithm seems
to be to spread the charges equally among users who have links to a file. Many installations avoid the issue
by not charging any fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes 2 memory image, general register
values, status of open files, current directory and the like. An image is the current state of a pseudo-
computer.

A process is the execution of an image, While the processor is executing on behalf of a process, the
image must reside in main memory; during the execution of other processes it remains in main memory
unless the appearance of an active, higher-priority process forces it to be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program text segment
begins at location O in the virtual address space. During execution, this segment is write-protected and a
single copy of it is shared among all processes executing the same program. At the first hardware protec- .
tion byte boundary above the program text segment in the virtual address space begins a non-shared, writ-
able data segment, the size of which may be extended by a system call. Starting at the highest address in
the virtual address space is a stack segment, which automatically grows downward as the stack pointer
fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come into existence
only by use of the fork system call:
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processid = fork ( )

When fork is executed, the process splits into two independently executing processes. The two processes
have independent copies of the original memory image, and share all open files. The new processes differ
only in that one is considered the parent process: in the parent, the returned processid actually identifies
the child process and is never 0, while in the child, the returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable, each process
may determine whether it is the parent or child.

5.2 Pipes
Processes may communicate with related processes using the same system read and write calls that
are used for file-system I/O. The call:
filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, like other
open files, is passed from parent to child process in the image by the fork call. A read using a pipe file
descriptor waits until another process writes using the file descriptor for the same pipe. At this point, data
are passed between the images of the two processes. Neither process need know that a pipe, rather than an
ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2), it is not a
completely general mechanism, because the pipe must be set up by a common ancestor of the processes
involved.

5.3 Execution of programs
Another major system primitive is invoked by
execute ( file, arg,, arg,, ..., arg,)

which requests the system to read in and execute the program named by file, passing it string arguments
arg;, arg,, ..., arg,. All the code and data in the process invoking execute is replaced from the file, but
open files, current directory, and inter-process relationships are unaltered. Only if the call fails, for exam-
ple because file could not be found or because its execute-permission bit was not set, does a return take
place from the execute primitive; it resembles a ‘‘jump’’ machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call:
processid = wait ( status )

causes its caller to suspend execution until one of its children has completed execution. Then wait returns
the processid of the terminated process. An error return is taken if the calling process has no descendants.
Certain status from the child process is also available.

5.5 Termination
Lastly:
exit( status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The parent is
notified through the wait primitive, and status is made available to it. Processes may also terminate as a
result of various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid of a program called the
shell. The shell is a command-line interpreter: it reads lines typed by the user and interprets them as
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requests to execute other programs. (The shell is described fully elsewhere, bourne shell bstj %Q This
issue so this section will discuss only the theory of its operation.) In simplest form, a command line con-
sists of the command name followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg,

The shell splits up the command name and the arguments into separate strings. Then a file with name
command is sought; command may be a path name including the *‘/’’ character to specify any file in the
system. If command is found, it is brought into memory and executed. The arguments collected by the
shell are accessible to the command. When the command is finished, the shell resumes its own execution,
and indicates its readiness to accept another command by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to command
and attempts again to find the file. Directory /bin contains commands intended to be generally used. (The
sequence of directories to be searched may be changed by user request.)

6.1 Standard I/O

The discussion of I/O in Section III above seems to imply that every file used by a program must be
opened or created by the program in order to get a file descriptor for the file. Programs executed by the
shell, however, start off with three open files with file descriptors 0, 1, and 2. As such a program begins
execution, file 1 is open for writing, and is best understood as the standard output file. Except under cir-
cumstances indicated below, this file is the user’s terminal. Thus programs that wish to write informative
information ordinarily use file descriptor 1. Conversely, file O starts off open for reading, and programs
that wish to read messages typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the user’s terminal
printer and keyboard. If one of the arguments to a command is prefixed by ‘“>’’, file descriptor 1 will, for
the duration of the command, refer to the file named after the *‘>’’. For example

Is
ordinarily lists, on the typewriter, the names of the files in the current directory. The command:
1s >there

creates a file called there and places the listing there, Thus the argument >there means ‘‘place output on
there.’”” On the other hand:

ed
ordinarily enters the editor, which takes requests from the user via his keyboard. The command
ed <script

interprets script as a file of editor commands; thus <script means “‘take input from script.”’

Although the file name following ‘‘<’’ or ‘‘>’’ appears to be an argument to the command, in fact it
is interpreted completely by the shell and is not passed to the command at all. Thus no special coding to
handle 1/O redirection is needed within each command the command need merely use the standard file
descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. When an

output-diversion request with ‘>’ is specified, file 2 remains attached to the terminal, so that commands
may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to the input of
another. A sequence of commands separated by vertical bars causes the shell to execute all the commands
simultaneously and to arrange that the standard output of each command be delivered to the standard input
of the next command in the sequence. Thus in the command line:
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Is|pr-2|opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates its input
with dated headings. (The argument *‘~2’’ requests double-column output.) Likewise, the output from pr
is input to opr; this command spools its input onto a file for off-line printing.
This procedure could have been carried out more clumsily by:

Is >temp1

pr —2 <temp] >temp2

opr <temp2
followed by removal of the temporary files. In the absence of the ability to redirect output and input, a still
clumsier method would have been to require the Is command to accept user requests to paginate its output,
to print in multi-column format, and to arrange that its output be delivered off-line. Actually it would be

surprising, and in fact unwise for efficiency reasons, to expect authors of commands such as Is to provide
such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with processing) is
called a filter. Some filters that we have found useful perform character transliteration, selection of lines
according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking
Another feature provided by the shell is relatively straightforward. Commands need not be on dif-
ferent lines; instead they may be separated by semicolons:
Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by “‘&,’’ the shell will not wait for
the command to finish before prompting again; instead, it is ready immediately to accept a new command.
For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the assembly
takes, the shell returns immediately, When the shell does not wait for the completion of a command, the
identification number of the process running that command is printed. This identification may be used to
wait for the completion of the command or to terminate it. The *‘&’’ may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file other than the
terminal was provided; if this had not been done, the outputs of the various commands would have been
intermingled.
The shell also allows parentheses in the above operations. For example:
(date; Is)>x &

writes the current date and time followed by a list of the current directory onto the file x. The shell also
returns immediately for another request.

6.4 The shell as a command; command files
The shell is itself a command, and may be called recursively. Suppose file tryout contains the lines:

as source
mv a.out testprog

testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of the assem-
bler, ready to be executed. Thus if the three lines above were typed on the keyboard, source would be
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assembled, the resulting program renamed testprog, and testprog executed. When the lines are in tryout,
the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to construct argu-
ment lists from a specified subset of the file names in a directory. It also provides general conditional and
looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the shell is wait-
ing for the user to type a command. When the newline character ending the line is typed, the shell’s read
call returns. The shell analyzes the command line, putting the arguments in a form appropriate for execute.
Then fork is called. The child process, whose code of course is still that of the shell, attempts to perform
an execute with the appropriate arguments. If successful, this will bring in and start execution of the pro-
gram whose name was given. Meanwhile, the other process resulting from the fork, which is the parent
process, waits for the child process to die. When this happens, the shell knows the command is finished, so
it types its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial; whenever a command
line contains ‘‘&,”’ the shell merely refrains from waiting for the process that it created to execute the
command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output files.
When a process is created by the fork primitive, it inherits not only the memory image of its parent but also
all the files currently open in its parent, including those with file descriptors 0, 1, and 2. The shell, of
course, uses these files to read command lines and to write its prompts and diagnostics, and in the ordinary
case its children—the command programs—inherit them automatically. When an argument with ‘‘<’’ or
“>” is given, however, the offspring process, just before it performs execute, makes the standard I/O file
descriptor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smallest
unused file descriptor is assigned when a new file is opened (or created); it is only necessary to close file 0
(or 1) and open the named file. Because the process in which the command program runs simply ter-
minates when it is through, the association between a file specified after “‘<’’ or “‘>’’ and file descriptor 0
or 1 is ended automatically when the process dies. Therefore the shell need not know the actual names of
the files that are its own standard input and output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop includes the
branch of the return from fork belonging to the parent process; that is, the branch that does a wait, then
reads another command line.) The one thing that causes the shell to terminate is discovering an end-of-file
condition on its input file. Thus, when the shell is executed as a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance of the shell
invoked by sh will terminate. Because this shell process is the child of another instance of the shell, the
wait executed in the latter will return, and another command may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of another process.
The last step in the initialization of the system is the creation of a single process and the invocation (via
execute) of a program called init. The role of init is to create one process for each terminal channel. The
various subinstances of init open the appropriate terminals for input and output on files 0, 1, and 2, waiting,
if necessary, for carrier to be established on dial-up lines. Then a message is typed out requesting that the
user log in. When the user types a name or other identification, the appropriate instance of init wakes up,
receives the log-in line, and reads a password file. If the user’s name is found, and if he is able to supply
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the correct password, init changes to the user’s default current directory, sets the process’s user ID to that of
the person logging in, and performs an execute of the shell. At this point, the shell is ready to receive com-
mands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that will later
become shells) does a wait. If one of the child processes terminates, either because a shell found an end of
file or because a user typed an incorrect name or password, this path of init simply recreates the defunct
process, which in turn reopens the appropriate input and output files and types another log-in message.
Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the system,
because it will invoke the execution of any program with appropriate protection mode. Sometimes, how-
ever, a different interface to the system is desirable, and this feature is easily arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init ordinarily
invokes the shell to interpret command lines. The user’s entry in the password file may contain the name
of a program to be invoked after log-in instead of the shell. This program is free to interpret the user’s
messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might specify that the
editor ed is to be used instead of the shell. Thus when users of the editing system log in, they are inside the
editor and can begin work immediately; also, they can be prevented from invoking programs not intended
for their use. In practice, it has proved desirable to allow a temporary escape from the editor to execute the
formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illustrate a much
more severely restricted environment. For each of these, an entry exists in the password file specifying that
the appropriate game-playing program is to be invoked instead of the shell. People who log in as a player
of one of these games find themselves limited to the game and unable to investigate the (presumably more
interesting) offerings of the UNIX system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-existent
memory, unimplemented instructions, and odd addresses used where an even address is required. Such
faults cause the processor to trap to a system routine. Unless other arrangements have been made, an ille-
gal action causes the system to terminate the process and to write its image on file core in the current direc-
tory. A debugger can be used to determine the state of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has second
thoughts may be halted by the use of the interrupt signal, which is generated by typing the ‘‘delete’’ char-
acter. Unless special action has been taken, this signal simply causes the program to cease execution
without producing a core file. There is also a quit signal used to force an image file to be produced. Thus
programs that loop unexpectedly may be halted and the remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either ignored or
caught by a process. For example, the shell ignores quits to prevent a quit from logging the user out. The
editor catches interrupts and returns to its command level. This is useful for stopping long printouts
without losing work in progress (the editor manipulates a copy of the file it is editing). In systems without
floating-point hardware, unimplemented instructions are caught and floating-point instructions are inter-
preted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was not
designed to meet any predefined objectives. The first version was written when one of us (Thompson),
dissatisfied with the available computer facilities, discovered a little-used PDP-7 and set out to create a more
hospitable environment. This (essentially personal) effort was sufficiently successful to gain the interest of
the other author and several colleagues, and later to justify the acquisition of the PDP-11/20, specifically to
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support a text editing and formatting system. When in turn the 11/20 was outgrown, the system had proved
useful enough to persuade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata
8/32 machines, upon which it developed to its present form. Our goals throughout the effort, when articu-
lated at all, have always been to build a comfortable relationship with the machine and to explore ideas and
inventions in operating systems and other software. We have not been faced with the need to satisfy some-
one else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to write, test,
and run programs. The most important expression of our desire for programming convenience was that the
system was arranged for interactive use, even though the original version only supported one user. We
believe that a properly designed interactive system is much more productive and satisfying to use than a
‘““batch’ system. Moreover, such a system is rather easily adaptable to noninteractive use, while the con-
verse is not true.

Second: there have always been fairly severe size constraints on the system and its software. Given
the partially antagonistic desires for reasonable efficiency and expressive power, the size constraint has
encouraged not only economy, but also a certain elegance of design. This may be a thinly disguised ver-
sion of the ‘‘salvation through suffering’’ philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is more impor-
tant than it might seem. If designers of a system are forced to use that system, they quickly become aware
of its functional and superficial deficiencies and are strongly motivated to correct them before it is too late.
Because all source programs were always available and easily modified on-line, we were willing to revise
and rewrite the system and its software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these design con-
siderations. The interface to the file system, for example, is extremely convenient from a programming
standpoint. The lowest possible interface level is designed to eliminate distinctions between the various
devices and files and between direct and sequential access. No large ‘‘access method’’ routines are
required to insulate the programmer from the system calls; in fact, all user programs either call the system
directly or use a small library program, less than a page long, that buffers a number of characters and reads
or writes them all at once.

Another important aspect of programming convenience is that there are no ‘‘control blocks’’ with a
complicated structure partially maintained by and depended on by the file system or other system calls.
Generally speaking, the contents of a program’s address space are the property of the program, and we
have tried to avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or output, it
is also desirable to push device-dependent considerations into the operating system itself. The only alterna-
tives seem to be to load, with all programs, routines for dealing with each device, which is expensive in
space, or to depend on some means of dynamically linking to the routine appropriate to each device when it
is actually needed, which is expensive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both convenient and
efficient. Because the shell operates as an ordinary, swappable user program, it consumes no ‘‘wired-
down’’ space in the system proper, and it may be made as powerful as desired at little cost. In particular,
given the framework in which the shell executes as a process that spawns other processes to perform com-
mands, the notions of I/O redirection, background processes, command files, and user-selectable system
interfaces all become essentially trivial to implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation of a care-
fully selected set of fertile ideas, and especially in showing that they can be keys to the implementation of a
small yet powerful operating system.

The fork operation, essentially as we implemented it, was present in the GENIE time-sharing system.
lampson deutsch 930 manual 1965 system preliminary On a number of points we were influenced by Mul-
tics, which suggested the particular form of the I/O system calls multics input output feiertag organick and
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both the name of the shell and its general functions. The notion that the shell should create a process for
each command was also suggested to us by the early design of Multics, although in that system it was later
dropped for efficiency reasons. A similar scheme is used by TENEX. bobrow burchfiel tenex

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation. Those of
our users not involved in document preparation tend to use the system for program development, especially
language work. There are few important ‘“applications’’ programs.

Overall, we have today:
125 user population
33 maximum simultaneous users
1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a ‘‘background’’ process that runs at the lowest possible priority; it is used to soak up any idle CPU
time. It has been used to produce a million-digit approximation to the constant e, and other semi-infinite
problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours

230 connect hours
62 different users
240 log-ins
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A. What’s new: highlights of the UNIX1/32V System

32-bit world. UNIX/32V handles 32-bit addresses and 32-bit data. Devices are addressable to 2°! bytes,
files to 2°° bytes.

Portability. Code of the operating system and most utilities has been extensively revised to minimize its
dependence on particular hardware. UNIX/32V is highly compatible with UNIX version 7.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object level. A For-
tran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured programming, user
profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is now highly
compatible with TROFF. MS macro package provides canned commands for many common formatting
and layout situations. TBL provides an easy to learn language for preparing complicated tabular material.
REEFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream of
indefinite length. AWK report generator does free-field pattern selection and arithmetic operations.

Program development. MAKE controls re-creation of complicated software, arranging for minimal
recompilation.
Debugging. ADB does postmortem and breakpoint debugging.

C language. The language now supports definable data types, generalized initialization, block structure,
long integers, unions, explicit type conversions. The LINT verifier does strong type checking and detection
of probable errors and portability problems even across separately compiled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic actions into
arecognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters adapted to
various devices are now standard.

Standard input-output package. Highly efficient buffered stream /O is integrated with formatted input
and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in many other ways
too numerous to relate.

} UNIX is a Trademark of Bell Laboratories.
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B. Hardware
The UNIX/32V operating system runs on a DEC VAX-11/780* with at least the following equipment:
memory: 256K bytes or more.
disk: RP06, RMO03, or equivalent.
tape: any 9-track MASSBUS-compatible tape drive.
The following equipment is strongly recommended:
communications controller such as DZ11 or DL11.
full duplex 96-character ASCII terminals.
extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space specified is
enough to run and maintain UNIX/32V, and to keep all source on line. More memory will be needed to
handle a large number of users, big data bases, diversified complements of devices, or large programs. The
resident code occupies 40-55K bytes depending on configuration; system data also occupies 30-55K bytes.

C. Software

Most of the programs available as UNIX/32V commands are listed. Source code and printed manuals
are distributed for all of the listed software except games. Almost all of the code is written in C. Com-
mands are self-contained and do not require extra setup information, unless specifically noted as ‘‘interac-
tive.”” Interactive programs can be made to run from a prepared script simply by redirecting input. Most
programs intended for interactive use (e.g., the editor) allow for an escape to command level (the Shell).
Most file processing commands can also go from standard input to standard output (“‘filters’’). The piping
facility of the Shell may be used to connect such filters directly to the input or output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, and a compiler for the programming
language C—enough software to write and run new applications and to maintain or modify UNIX/32V
itself,

1.1. Operating System

OUNIX The basic resident code on which everything else depends. Supports the system calls,
and maintains the file system. A general description of UNIX design philosophy and sys-
tem facilities appeared in the Communications of the ACM, July, 1974. A more exten-
sive survey is in the Bell System Technical Journal for July-August 1978. Capabilities
include:

OReentrant code for user processes.

O*“‘Group’’ access permissions for cooperative projects, with overlapping memberships.

O Alarm-clock timeouts.

OTimer-interrupt sampling and interprocess monitoring for debugging and measure-
ment.

OMultiplexed I/O for machine-to-machine communication.

ODEVICES  All /O is logically synchronous. I/O devices are simply files in the file system. Nor-
mally, invisible buffering makes all physical record structure and device characteristics
transparent and exploits the hardware’s ability to do overlapped I/O. Unbuffered physi-
cal record I/O is available for unusual applications. Drivers for these devices are avail-
able:

O Asynchronous interfaces: DZ11, DL11. Support for most common ASCII terminals.
O Automatic calling unit interface: DN11.

*VAX is a Trademark of Digital Equipment Corporation.
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OBOOT

OPrinter/plotter: Versatek.
OMagnetic tape: TE16.
OPack type disk: RP06, RM03; minimum-latency seek scheduling.
OPhysical memory of VAX-11, or mapped memory in resident system.
ONull device.
ORecipies are supplied to aid the construction of drivers for:
Asynchronous interface: DH11.
Synchronous-interface: DU11.
DECtape: TC11.
Fixed head disk: RS11, RS03 and RS04.
Cartridge-type disk: RKOS.
Phototypesetter: Graphic Systems System/1 through DR11C.

Procedures to get UNIX/32V started.

1.2. User Access Control

OLOGIN

OPASSWD

ONEWGRP

Sign on as a new user.

O Verify password and establish user’s individual and group (project) identity.
O Adapt to characteristics of terminal.

OBEstablish working directory.

O Announce presence of mail (from MAIL).

OPublish message of the day.

OExecute user-specified profile.

O Start command interpreter or other initial program.

Change a password.
OUser can change his own password.
OPasswords are kept encrypted for security.

Change working group (project). Protects against unauthorized changes to projects.

1.3. Terminal Handling

OTABS
OSTTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible from the
input, these options are set automatically by LOGIN.

OHalf vs. full duplex.

OCarriage return+line feed vs. newline.

Olnterpretation of tabs.

OParity.

OMapping of upper case to lower.

ORaw vs. edited input.

ODelays for tabs, newlines and carriage returns.

1.4. File Manipulation

OCAT

acp

OPR

Concatenate one or more files onto standard output. Particularly used for unadorned
printing, for inserting data into a pipeline, and for buffering output that comes in dribs
and drabs. Works on any file regardiess of contents.

Copy one file to another, or a set of files to a directory. Works on any file regardless of
contents.

Print files with title, date, and page number on every page.
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OLPR
ocMp
OTAIL

0O SPLIT
ODD

0O SuM

UNIX 32/V — Summary

OMuiticolumn output.
OParallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.
Compare two files and report if different.

Print last # lines of input
OMay print last n characters, or from » lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for editing (ED).

Physical file format translator, for exchanging data with foreign systems, especially IBM
370’s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

ORM

OLN
oMy

O CHMOD
0O CHOWN
O CHGRP
OMKDIR
ORMDIR
ocb
OFIND

Remove a file. Only the name goes away if any other names are linked to the file.
O Step through a directory deleting files interactively.
ODelete entire directory hierarchies.
““Link’’ another name (alias) to an existing file.
Move a file or files. Used for renaming files.
Change permissions on one or more files. Executable by files’ owner.
Change owner of one or more files.
Change group (project) to which a file belongs.
Make a new directory.
Remove a directory.
Change working directory.
Prowl the directory hierarchy finding every file that meets specified criteria.
OCriteria include;
name matches a given pattern,
creation date in given range,
date of last use in given range,
given permissions,
given owner,
given special file characteristics,
boolean combinations of above.

O Any directory may be considered to be the root.
OPerform specified command on each file found.

1.6. Running of Programs

OSH

The Shell, or command language interpreter.
O Supply arguments to and run any executable program.,
ORedirect standard input, standard output, and standard error files.
OPipes: simultaneous execution with output of one process connected to the input of
another.
O Compose compound commands using:
if ... then ... else,
case switches,
while loops,
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OTEST

OEXPR

OWAIT
OREAD
OECHO

0O SLEEP
ONOHUP
ONICE
OKILL
OCRON

OAT
OTEE

for loops over lists,
break, continue and exit,
parentheses for grouping.
OInitiate background processes.
OPerform Shell programs, i.e., command scripts with substitutable arguments.
OConstruct argument lists from all file names satisfying specified patterns.
OTake special action on traps and interrupts.
OUser-settable search path for finding commands.
OExecutes user-settable profile upon login.
OOptionally announces presence of mail as it arrives.
OProvides variables and parameters with default setting.

Tests for use in Shell conditionals.

O String comparison.

OFile nature and accessibility.
OBoolean combinations of the above.

String computations for calculating command arguments.
OlInteger arithmetic
OPattern matching

Wait for termination of asynchronously running processes.
Read a line from terminal, for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in Shell programs,
or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.
Run a command in low (or high) priority.

Terminate named processes.

Schedule regular actions at specified times.

O Actions are arbitrary programs.

OTimes are conjunctions of month, day of month, day of week, hour and minute.
Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.
Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

aoLs

OFILE

ODATE

ODF

List the names of one, several, or all files in one or more directories.

O Alphabetic or temporal sorting, up or down.

OOptional information: size, owner, group, date last modified, date last accessed, per-
missions, i-node number.

Try to determine what kind of information is in a file by consulting the file system index
and by reading the file itself.

Print today’s date and time. Has considerable knowledge of calendric and horological
peculiarities.

OMay set UNIX/32V’s idea of date and time.

Report amount of free space on file system devices.
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ODu
OQuUOT
OWHO

arps

OIOSTAT

aoTTY
OPWD
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Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who'’s on the system.
OList of presently logged in users, ports and times on.
OOptional history of all logins and logouts.

Report on active processes.

OList your own or everybody’s processes.

OTell what commands are being executed.

OOptional status information: state and scheduling info, priority, attached terminal,
what it’s waiting for, size.

Print statistics about system I/O activity.
Print name of your terminal.
Print name of your working directory.

1.8. Backup and Maintenance

OMOUNT

O UMOUNT

OMKFS
OMKNOD

aoTe
OTAR

ODUMP

ORESTOR
asu

ODCHECK
OICHECK
ONCHECK

Attach a device containing a file system to the tree of directories. Protects against non-
sense arrangements.

Remove the file system contained on a device from the tree of directories. Protects
against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical devices,
virtual devices, physical memory, etc.

Manage file archives on magnetic tape or DECtape. TAR is newer.
OCollect files into an archive.

OUpdate DECtape archive by date.

OReplace or delete DECtape files.

OPrint table of contents.

ORetrieve from archive.

Dump the file system stored on a specified device, selectively by date, or indiscrim-
inately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof. Requires a
password.

Check consistency of file system.

OPrint gross statistics: number of files, number of directories, number of special files,
space used, space free.

OReport duplicate use of space.

ORetrieve lost space.

OReport inaccessible files.

OCheck consistency of directories.

OList names of all files.
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OCLRI Peremptorily expunge a file and its space from a file system. Used to repair damaged file
systems.
OSYNC Force all outstanding I/O on the system to completion. Used to shut down gracefully.

1.9. Accounting
The timing information on which the reports are based can be manually cleared or shut off completely.

OAC Publish cumulative connect time report.
OConnect time by user or by day.
OFor all users or for selected users.

OSA Publish Shell accounting report. Gives usage information on each command executed.
ONumber of times used.
OTotal system time, user time and elapsed time.
OOptional averages and percentages.
O Sorting on various fields.

1.10. Communication

OMAIL Mail a message to one or more users. Also used to read and dispose of incoming mail.
The presence of mail is announced by LOGIN and optionally by SH.
OEach message can be disposed of individually.
OMessages can be saved in files or forwarded.

O CALENDAR Automatic reminder service for events of today and tomorrow.

O WRITE Establish direct terminal communication with another user.
OWALL Write to all users.
OMESG Inhibit receipt of messages from WRITE and WALL.
gacu Call up another time-sharing system.

O Transparent interface to remote machine.

OFile transmission.

OTake remote input from local file or put remote output into local file.
ORemote system need not be UNIX/32V.

guuce UNIX to UNIX copy.
O Automatic queuing until line becomes available and remote machine is up.
OCopy between two remote machines.
ODifferences, mail, etc., between two machines.

1.11. Basic Program Development Tools
Some of these utilities are used as integral parts of the higher level languages described in section 2.

OAR Maintain archives and libraries. Combines several files into one for housekeeping
efficiency.
OCreate new archive.
OUpdate archive by date.
OReplace or delete files.
OPrint table of contents.
ORetrieve from archive.

OAS Assembler.
OCreates object program consisting of
code, normally read-only and sharable,
initialized data or read-write code,
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O Library

O ADB

Ooob

OLD

OLORDER

ONM

O SIZE

O STRIP
OTIME
O PROF

OMAKE

UNIX 32/V — Summary

uninitialized data.
ORelocatable object code is directly executable without further transformation.
OObject code normally includes a symbol table.
O*“‘Conditional jump’’ instructions become branches or branches plus jumps depending
on distance.

The basic run-time library. These routines are used freely by all software.

OBuffered character-by-character I/O.

OFormatted input and output conversion (SCANF and PRINTF) for standard input and
output, files, in-memory conversion.

OStorage allocator.

OTime conversions.

ONumber conversions.

OPassword encryption.

OQuicksort.

ORandom number generator.

OMathematical function library, including trigonometric functions and inverses,
exponential, logarithm, square root, bessel functions.

Interactive debugger.
OPostmortem dumping.
OExamination of arbitrary files, with no limit on size.
Olnteractive breakpoint debugging with the debugger as a separate process.
O Symbolic reference to local and global variables.
O Stack trace for C programs.
OOQutput formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions
OPatching.
O Searching for integer, character, or floating patterns.

Dump any file. Output options include any combination of octal or decimal or hex by
words, octal by bytes, ASCII, opcodes, hexadecimal.

ORange of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from specified
libraries.

OResulting code is sharable by defauit.

Places object file names in proper order for loading, so that files depending on others
come after them.

Print the namelist (symbol table) of an object program. Provides control over the style
and order of names that are printed.

Report the memory requirements of one or more object files.
Remove the relocation and symbol table information from an object file to save space.
Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-sampling the
execution of a program.
O Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file dependen-
cies to make new version; uses time last changed to deduce minimum amount of work
necessary.
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OKnows about CC, YACC, LEX, etc.
1.12. UNIX/32V Programmer’s Manual

0 Manual Machine-readable version of the UNIX/32V Programmer’s Manual.
OSystem overview.
O All commands.
O All system calls.
O All subroutines in C and assembler libraries.
O All devices and other special files.
OFormats of file system and kinds of files known to system software.
OBoot and maintenance procedures.

OMAN Print specified manual section on your terminal.
1.13. Computer-Aided Instruction

COLEARN A program for interpreting CAI scripts, plus scripts for learning about UNIX/32V by using
it.
O Scripts for basic files and commands, editor, advanced files and commands, EQN, MS
macros, C programming language.

2. Languages
2.1, The C Language

acc Compile and/or link edit programs in the C language. The UNIX/32V operating system,

most of the subsystems and C itself are written in C. For a full description of C, read The

C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall,

1978.

OGeneral purpose language designed for structured programming.

OData types include character, integer, float, double, pointers to all types, functions
returning above types, arrays of all types, structures and unions of all types.

OOperations intended to give machine-independent control of full machine facility,
including to-memory operations and pointer arithmetic.

OMacro preprocessor for parameterized code and inclusion of standard files.

O All procedures recursive, with parameters by value.

OMachine-independent pointer manipulation.

OObject code uses full addressing capability of the VAX-11.

ORuntime library gives access to all system facilities.

ODefinable data types.

OBlock structure

OLINT Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.
OFull cross-module checking of separately compiled programs.

OCB A beautifier for C programs. Does proper indentation and placement of braces.
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2.2. Fortran

OF77

ORATFOR

OSTRUCT
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A full compiler for ANSI Standard Fortran 77.

OCompatible with C and supporting tools at object level.

OOptional source compatibility with Fortran 66.

OFree format source.

OOptional subscript-range checking, detection of uninitialized variables.

OAIll widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-byte
complex.

Ratfor adds rational control structure i l1a C to Fortran.
OCompound statements.

OlIf-else, do, for, while, repeat-until, break, next statements.
O Symbolic constants.

OFile insertion.

OFree format source

O Translation of relationals like >, >=.

OProduces genuine Fortran to carry away.

OMay be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using statement
grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

ODC

OBC

Interactive programmable desk calculator. Has named storage locations as well as con-
ventional stack for holding integers or programs.
OUnlimited precision decimal arithmetic.
O Appropriate treatment of decimal fractions.
O Arbitrary input and output radices, in particular binary, octal, decimal and hexade-
cimal.
OReverse Polish operators:
+—*/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.

O All the capabilities of DC with a high-level syntax.

O Arrays and recursive functions.

OlImmediate evaluation of expressions and evaluation of functions upon call.
O Arbitrary precision elementary functions: exp, sin, cos, atan.

OGo-to-less programming.

2.4. Macroprocessing

OM4

A general purpose macroprocessor.

O Stream-oriented, recognizes macros anywhere in text.

O Syntax fits with functional syntax of most higher-level languages.
OCan evaluate integer arithmetic expressions.

2.5. Compiler-compilers

OYACC

An LR(1)-based compiler writing system. During execution of resulting parsers, arbi-
trary C functions may be called to do code generation or semantic actions.
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OLEX

OBNF syntax specifications.
OPrecedence relations.
O Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isolation of
each lexical token.

OPFaull regular expression, plus left and right context dependence.

OResulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

OED

OpPTX
O SPELL

OLOOK
OCRYPT

Interactive context editor. Random access to all lines of a file.

OFind lines by number or pattern. Patterns may include: specified characters, don’t
care characters, choices among characters, repetitions of these constructs, beginning of
line, end of line.

O Add, delete, change, copy, move or join lines.

OPermute or split contents of a line.

OReplace one or all instances of a pattern within a line.

OCombine or split files.

OEscape to Shell (command language) during editing.

ODo any of above operations on every pattern-selected line in a given range.

OOptional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word list.
025,000-word list includes proper names.

OHandles common prefixes and suffixes.

OCollects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.
Encrypt and decrypt files for security.

3.2, Document Formatting

O TROFF
ONROFF

Advanced typesetting. TROFF drives a Graphic Systems phototypesetter; NROFF drives

ascii terminals of all types. This summary was typeset using TROFF. TROFF and

NROFF are capable of elaborate feats of formatting, when appropriately programmed.

TROFF and NROFF accept the same input language.

OCompletely definable page format keyed to dynamically planted ‘‘interrupts’’ at
specified lines.

OMaintains several separately definable typesetting environments (e.g., one for body
text, one for footnotes, and one for unusually elaborate headings).

O Arbitrary number of output pools can be combined at will.

OMacros with substitutable arguments, and macros invocable in mid-line.

O Computation and printing of numerical quantities.

OConditional execution of macros.

O Tabular layout facility.

OPositions expressible in inches, centimeters, ems, points, machine units or arithmetic
combinations thereof.

O Access to character-width computation for unusually difficult layout problems.
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OOverstrikes, built-up brackets, horizontal and vertical line drawing.

ODynamic relative or absolute positioning and size selection, globally or at the character
level.

OCan exploit the characteristics of the terminal being used, for approximating special
characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultaneously) in 15
sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the postpro-
cessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF, although
unskilled personnel can easily be trained to enter documents according to canned formats such as those
provided by MS, below. TROFF and EQN are essentially identical to NROFF and NEQN so it is usually
possible to define interchangeable formats to produce approximate proof copy on terminals before actual
typesetting. The preprocessors MS, TBL, and REFER are fully compatible with TROFF and NROFF.

OMS A standardized manuscript layout package for use with NROFF/TROFF. This document
was formatted with MS.
OPage numbers and draft dates.
O Automatically numbered subheads.
OFootnotes.
OSingle or double column.
OParagraphing, display and indentation.
ONumbered equations.

OEQN A mathematical typesetting preprocessor for TROFF. Translates easily readable formu-
1as, either in-line or displayed, into detailed typesetting instructions. Formulas are writ-
ten in a style like this:

sigma sup 2 "=" 1 over N sum from i=1 to N ( x sub i — x bar ) sup 2
which produces:

o= 7%r (i—x)?

O Automatic calculation of size changes for subscripts, sub-subscripts, etc.

OFull vocabulary of Greek letters and special symbols, such as ‘gamma’, ‘GAMMA’,
‘integral’.

O Automatic calculation of large bracket sizes.

O Vertical ““piling”’ of formulae for matrices, conditional alternatives, etc.

Olntegrals, sums, etc., with arbitrarily complex limits,

ODiacriticals: dots, double dots, hats, bars, etc.

OEgasily learned by nonprogrammers and mathematical typists.

ONEQN A version of EQN for NROFF; accepts the same input language. Prepares formulas for
display on any terminal that NROFF knows about, for example, those based on Diablo
printing mechanism.

O Same facilities as EQN within graphical capability of terminal.

OTBL A preprocessor for NROFF/TROFF that translates simple descriptions of table layouts

and contents into detailed typesetting instructions.

OComputes column widths.

OHandles left- and right-justified columns, centered columns and decimal-point align-
ment.

OPlaces column titles.

OTable entries can be text, which is adjusted to fit.
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O REFER

aTC

OCOL
ODEROFF

OCan box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
OReferences may be printed in any style, as they occur or collected at the end.
OMay be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for checking
TROFF page layout before typesetting.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

OCHECKEQ Check document for possible errors in EQN usage.

4. Information Handling

OSORT

OTSORT
OUNIQ

OTR

O DIFF

OocoMM

OJOIN
OGREP

OLOOK
awc
OSED

O AWK

Sort or merge ASCII files line-by-line. No limit on input size.
O Sort up or down.

O Sort lexicographically or on numeric key.

OMutltiple keys located by delimiters or by character position.
OMay sort upper case together with lower into dictionary order.
OOptionally suppress duplicate data.

Topological sort — converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
OPublish lines that were originally unique, duplicated, or both.
OMay give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
OMay coalesce selected repeated characters.
OMay delete selected characters.

Report line changes, additions and deletions necessary to bring two files into agreement.
OMay produce an editor script to convert one file into another.
O A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows lines present
in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
OMay print all lines that fail to match.

ODMay print count of hits.

ODMay print first hit in each file.

Binary search in sorted file for lines with specified prefix.
Count the lines, ‘‘words’’ (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations on each
line of an input stream of unbounded length.

OLines may be selected by address or range of addresses.

OControl flow and conditional testing.

OMultiple output streams.

OMulti-line capability.

Pattern scanning and processing language. Searches input for patterns, and performs
actions on each line of input that satisfies the pattern.
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5. Graphics
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OpPatterns include regular expressions, arithmetic and lexicographic conditions, boolean
combinations and ranges of these.

ODeata treated as string or numeric as appropriate.

OCan break input into fields; fields are variables.

O Variables and arrays (with non-numeric subscripts).

OFull set of arithmetic operators and control flow.

OMultiple output streams to files and pipes.

OOutput can be formatted as desired.

OMulti-line capabilities.

The programs in this section are predominantly intended for use with Tektronix 4014 storage scopes.

OGRAPH

O SPLINE
OPLOT

Prepares a graph of a set of input numbers.

OlInput scaled to fit standard plotting area.

O Abscissae may be supplied automatically.

OGraph may be labeled.

OControl over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programs on various
terminals. Filters provided for 4014, DASI terminals, Versatec printer/plotter.

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else

OBACKGAMMON

A player of modest accomplishment.

OBCD Converts ascii to card-image form.

OCAL Print a calendar of specified month and year.

{0 CHING The I Ching. Place your own interpretation on the output.

OFORTUNE  Presents a random fortune cookie on each invocation. Limited jar of cookies included.

O UNITS Convert amounts between different scales of measurement. Knows hundreds of units.
For example, how many km/sec is a parsec/megayear?

O ARITHMETIC
Speed and accuracy test for number facts.

aQuiz Test your knowledge of Shakespeare, Presidents, capitals, etc.

OwuMP Hunt the wumpus, thrilling search in a dangerous cave.

OHANGMAN Word-guessing game. Uses a dictionary supplied with SPELL.

O FISH Children’s card-guessing game.



UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

ABSTRACT

This paper is an introduction to programming on the UNIXT system. The emphasis
is on how to write programs that interface to the operating system, either directly or
through the standard I/O library. The topics discussed include

e handling command arguments

rudimentary I/O; the standard input and output

the standard I/O library; file system access

low-level /O: open, read, write, close, seek

processes: exec, fork, pipes

signals — interrupts, etc. _

There is also an appendix which describes the standard I/O library in detail.

1. INTRODUCTION

This paper describes how to write programs that interface with the UNIX operating system in anon-
trivial way. This includes programs that use files by name, that use pipes, that invoke other commands as
they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of The UNIX
Programmer's Manual [1] for Version 7 UNIX. There is no attempt to be complete; only generally useful
material is dealt with. It is assumed that you will be programming in C, so you must be able to read the
language roughly up to the level of The C Programming Language {2]. Some of the material in sections 2
through 4 is based on topics covered more carefully there. You should also be familiar with UNIX itself at
least to the level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made available to
the function main as an argument count argc and an array argv of pointers to character strings that con-
tain the arguments. By convention, argv[0] is the command name itself, so argc is always greater than
0.

The following program illustrates the mechanism: it simply echoes its arguments back to the termi-
nal. (This is essentially the echo command.)

+ UNIX is a trademark of Bell Laboratories.
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main(argec, argv) /* echo arguments */
int arge:;
char *argv[]:;
{
int i;

for (i = 1; i < argc; i++)
printf ("%s%c", argv([i], (i<argec-1l) 2 ' ’ : '\n’);
}

argv is a pointer to an array whose individual elements are pointers to arrays of characters; each is ter-
minated by \0, 50 they can be treated as strings. The program starts by printing argv[1] and loops until it
has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them around so
other routines can get at them, you must copy them to external variables.

2.2. The *“Standard Input’’ and ‘‘Standard Output’’

The simplest input mechanism is to read the ‘‘standard input,’”’ which is generally the user’s termi-
nal. The function getchar returns the next input character each time it is called. A file may be substituted
for the terminal by using the < convention: if prog uses getchar, then the command line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about where its input is
coming from. This is also true if the input comes from another program via the

otherprog | prog

provides the standard input for prog from the standard output of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error) on whatever you are
reading. The value of EOF is normally defined to be -1, but it is unwise to take any advantage of that
knowledge. As will become clear shortly, this value is automatically defined for you when you compile a
program, and need not be of any concern.

Similarly, putchar (c) puts the character ¢ on the “‘standard output,”” which is also by default the
terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfile

writes the standard output on out£ile instead of the terminal. outfile is created if it doesn’t exist; if it
already exists, its previous contents are overwritten. And a pipe can be used:

prog | otherprog

puts the standard output of prog into the standard input of otherprog.

The function print £, which formats output in various ways, uses the same mechanism as putchar
does, so calls to printf and putchar may be intermixed in any order; the output will appear in the order
of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the standard input
and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as getchar, 50
calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with getchar,
putchar, scanf, and printf may be entirely adequate, and it is almost always enough to get started.
This is particularly true if the UNIX pipe facility is used to connect the output of one program to the input
of the next. For example, the following program strips out all ascii control characters from its input (except
for newline and tab).
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#include <stdio.h>

main () /* ccstrip: strip non-graphic characters */
{
int c;
while ((c = getchar()) != EOF)
if ((c>= 7 ' §& ¢ < 0177) || ¢ == '\t’ || c == ’'\n’)

putchar(c) ;
exit (0);
}

The line
#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usrfincludelstdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:
cat filel file2 ... | ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exit at the end is not
necessary to make the program work properly, but it assures that any caller of the program will see a nor-
mal termination status (conventionally 0) from the program when it completes. Section 6 discusses status
returns in more detail.

3. THE STANDARD /O LIBRARY

The ‘‘Standard I/O Library’’ is a collection of routines intended to provide efficient and portable /O
services for most C programs. The standard I/O library is available on each system that supports C, so pro-
grams that confine their system interactions to its facilities can be transported from one system to another
essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a more
complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard output, which
we have assumed are magically pre-defined. The next step is to write a program that accesses a file that is
not already connected to the program. One simple example is wc, which counts the lines, words and char-
acters in a set of files. For instance, the command

we X.c y.cC

prints the number of lines, words and characters in x.c and y. ¢ and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the file sys-
tem names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard library
function fopen. fopen takes an external name (like x. c or y.c), does some housekeeping and negotia-
tion with the operating system, and returns an internal name which must be used in subsequent reads or
writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains informa-
tion about the file, such as the location of a buffer, the current character position in the buffer, whether the
file is being read or written, and the like. Users don’t need to know the details, because part of the standard
/O definitions obtained by including stdio.h is a structure definition called FILE. The only declaration
needed for a file pointer is exemplified by

FILE *fp, *fopen();
This says that £p is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a type name, like
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int, not a structure tag.
The actual call to fopen in a program is
fp = fopen (name, mode);

The first argument of fopen is the name of the file, as a character string. The second argument is the
mode, also as a character string, which indicates how you intend to use the file. The only allowable modes
are read ("x"), write ("w"), or append ("a").

If a file that you open for writing or appending does not exist, it is created (if possible). Opening an
existing file for writing causes the old contents to be discarded. Trying to read a file that does not exist is
an error, and there may be other causes of error as well (like trying to read a file when you don’t have per-
mission). If there is any error, fopen will return the null pointer value NULL (which is defined as zero in
stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several possibili-
ties, of which getc and putc are the simplest. getc returns the next character from a file; it needs the file
pointer to tell it what file. Thus

c = getc(fp)

places in ¢ the next character from the file referred to by £p; it returns EOF when it reaches end of file.
putc is the inverse of getc:

putc(c, £fp)

puts the character ¢ on the file £p and returns c. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided for
them. These files are the standard input, the standard output, and the standard error output; the correspond-
ing file pointers are called stdin, stdout, and stderr. Normally these are all connected to the terminal,
but may be redirected to files or pipes as described in Section 2.2. stdin, stdout and stderr are pre-
defined in the I/O library as the standard input, output and error files; they may be used anywhere an object
of type FILE * can be. They are constants, however, not variables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic design is one that
has been found convenient for many programs: if there are command-line arguments, they are processed
in order. If there are no arguments, the standard input is processed. This way the program can be used
stand-alone or as part of a larger process.
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#include <stdio.h>

main (arge, argv) /* wc: count lines, words, chars */
int argc;
char *argv[]:;
{
int ¢, i, inword;
FILE *fp, *fopen():;
long linect, wordect, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

i=1;
fp = stdin;
do {
if (argc > 1 && (fp=fopen(argv(i], "r")) == NULL) {
fprintf (stderr, "wc: can’t open %s\n", argv[i]):;
continue;

}

linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF) {
charct++;
if (c == ’\n’)
linect++;
if (c == "' ' |} c == '\t’ || ¢ == "\n’)
inword = Q;
else if (inword == 0) {
inword = 1;
wordct++;
}

}
printf ("$71d %71d %$71d4", linect, wordct, charct);

printf(argc > 1 ? " %$s\n" : "\n", argvii]):;
fclose (fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (++i < argc):;
if (argc > 2)
printf ("$71d %71d %71d total\n", tlinect, twordct, tcharct);
exit (0);
}

The function fprintf is identical to print£, save that the first argument is a file pointer that specifies the
file to be written.

The function £close is the inverse of fopen; it breaks the connection between the file pointer and
the external name that was established by fopen, freeing the file pointer for another file. Since there is a
limit on the number of files that a program may have open simultaneously, it’s a good idea to free things
when they are no longer needed. There is also another reason to call fclose on an output file — it flushes
the buffer in which putc is collecting output. (fclose is called automatically for each open file when a
program terminates normally.)

3.2. Error Handling — Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output written on
stderr appears on the user’s terminal even if the standard output is redirected. wc writes its diagnostics
on stderr instead of stdout so that if one of the files can’t be accessed for some reason, the message
finds its way to the user’s terminal instead of disappearing down a pipeline or into an output file.
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The program actually signals errors in another way, using the function exit to terminate program
execution. The argument of exit is available to whatever process called it (see Section 6), so the success
or failure of the program can be tested by another program that uses this one as a sub-process. By conven-
tion, a return value of O signals that all is well; non-zero values signal abnormal situations.

exit itself calls fclose for each open output file, to flush out any buffered output, then calls a rou-
tine named _exit. The function _exit causes immediate termination without any buffer flushing; it may
be called directly if desired.

3.3. Miscellaneous I/O Functions
The standard I/O library provides several other I/0 functions besides those we have illustrated above.

Normally output with putc, etc., is buffered (except to stderr); to force it out immediately, use
f£flush (fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with fprint£) that
specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to £scanf and fprint£, except that the first argu-
ment names a character string instead of a file pointer. The conversion is done from the string for sscanf
and into it for sprintf.

fgets (buf, size, fp) copies the next line from £p, up to and including a newline, into buf; at
most size~-1 characters are copied; it returns NULL at end of file. fputs (buf, £p) writes the string in
buf onto file £p.

The function ungetc(c, fp) ‘‘pushes back’’ the character c onto the input stream £p; a subse-
quent call to getc, £scanf, etc., will encounter c. Only one character of pushback per file is permitted.

4. LOW-LEVEL 'O

This section describes the bottom level of /O on the UNIX system. The lowest level of I/O in UNIX
provides no buffering or any other services; it is in fact a direct entry into the operating system. You are
entirely on your own, but on the other hand, you have the most control over what happens. And since the
calls and usage are quite simple, this isn’t as bad as it sounds.

4.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files, because all
peripheral devices, even the user’s terminal, are files in the file system. This means that a single, homo-
geneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of your
intent to do so, a process called ‘‘opening’’ the file. If you are going to write on a file, it may also be
necessary to create it. The system checks your right to do so (Does the file exist? Do you have permission
to access it?), and if all is well, returns a small positive integer called a file descriptor. Whenever 1/O is to
be done on the file, the file descriptor is used instead of the name to identify the file. (This is roughly
analogous to the use of READ(S,...) and WRITE(S,...) in Fortran.) All information about an open file is main-
tained by the system; the user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors are
more fundamental. A file pointer is a pointer to a structure that contains, among other things, the file
descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist to
make this convenient. When the command interpreter (the ‘°shell’’) runs a program, it opens three files,
with file descriptors 0, 1, and 2, called the standard input, the standard output, and the standard error out-
put. All of these are normally connected to the terminal, so if a program reads file descriptor 0 and writes
file descriptors 1 and 2, it can do terminal I/O without worrying about opening the files.

If I/0 is redirected to and from files with < and >, as in
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prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named files.
Similar observations hold if the input or output is associated with a pipe. Normally file descriptor 2
remains attached to the terminal, so error messages can go there. In all cases, the file assignments are
changed by the shell, not by the program. The program does not need to know where its input comes from
nor where its output goes, so long as it uses file 0 for input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the first argument is
a file descriptor. The second argument is a buffer in your program where the data is to come from or go to.
The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading, the number of
bytes returned may be less than the number asked for, because fewer than n bytes remained to be read.
(When the file is a terminal, read normally reads only up to the next newline, which is generally less than
what was requested.) A return value of zero bytes implies end of file, and -1 indicates an error of some
sort. For writing, the returned value is the number of bytes actually written; it is generally an error if this
isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are 1,
which means one character at a time (‘‘unbuffered’”), and 512, which corresponds to a physical blocksize
on many peripheral devices. This latter size will be most efficient, but even character at a time I/O is not
inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This pro-
gram will copy anything to anything, since the input and output can be redirected to any file or device.

#define BUFSIZE 512 /* best size for PDP-11 UNIX */

main () /* copy input to output */
{

char buf [BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(l, buf, n);
exit (0);
}

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to be written
by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered input.

#define CMASK 0377 /* for making char’s > 0 */

getchar () /* unbuffered single character input */
{

char c;

return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);
}

¢ must be declared chsr, because read accepts a character pointer. The character being returned must be
masked with 0377 to ensure that it is positive; otherwise sign extension may make it negative. (The
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constant 0377 is appropriate for the PDP-11 but not necessarily for other machines.)
The second version of getchar does input in big chunks, and hands out the characters one at a time.

#define CMASK 0377 /* for making char’s > 0 */
#define BUFSIZE 512

getchar () /* buffered version */

{
static char buf [BUFSIZE];
static char *bufp = buf;
static int n=20;

if (n == 0) { /* buffer is empty */
n = read (0, buf, BUFSIZE);
bufp = buf;
}
return((--n >= Q) ? *bufp++ & CMASK : EOF);

4.3. Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open files in order to
read or write them. There are two system entry points for this, open and creat [sic].

open is rather like the fopen discussed in the previous section, except that instead of returning a file
pointer, it returns a file descriptor, which is just an int.

int £d;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file name. The
access mode argument is different, however: rwmode is O for read, 1 for write, and 2 for read and write
access. open returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try t0 open a file that does not exist. The entry point creat is provided to create new
files, or to re-write old ones.

fd = creat (name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file already exists,
creat will truncate it to zero length; it is not an error to creat a file that already exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode argument.
In the UNIX file system, there are nine bits of protection information associated with a file, controlling read,
write and execute permission for the owner of the file, for the owner’s group, and for all others. Thus a
three-digit octal number is most convenient for specifying the permissions. For example, 0755 specifies
read, write and execute permission for the owner, and read and execute permission for the group and
everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one file to
another. (The main simplification is that our version copies only one file, and does not permit the second
argument to be a directory.)
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#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others */

main (argec, argv) /* cp: copy f1 to £f2 */
int arge;
char *argv(];

{
int f£f1, £2, n;
char buf [BUFSIZE];

if (argc != 3)
error ("Usage: cp from to", NULL);
if ((f1 = open{argv(l], 0)) == -1)
error ("cp: can’t open %s", argv(l]);
if ((£2 = creat (argv(2], PMODE)) == -1}
error ("cp: can’t create %s", argv[2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error ("cp: write error", NULL):;
exit (0);
}

error(sl, s2) /* print error message and die */
char *sl, *s2;
{
printf (sl, s82);
printf ("\n");
exit (1),
}

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may have
open simultaneously. Accordingly, any program which intends to process many files must be prepared to
re-use file descriptors. The routine close breaks the connection between a file descriptor and an open file,
and frees the file descriptor for use with some other file. Termination of a program via exit or return from
the main program closes all open files.

The function unlink (filename) removes the file £ilename from the file system.

4.4, Random Access — Seek and Lseek

File /O is normally sequential: each read or write takes place at a position in the file right after
the previous one. When necessary, however, a file can be read or written in any arbitrary order. The sys-
tem call 1seek provides a way to move around in a file without actually reading or writing:

lseek (fd, offset, origin);

forces the current position in the file whose descriptor is £d to move to position of £set, which is taken
relative to the location specified by origin. Subsequent reading or writing will begin at that position.
offset iS a long; £d and origin are int’s. origin can be 0, 1, or 2 to specify that offset is to be
measured from the beginning, from the current position, or from the end of the file respectively. For exam-
Ple, to append to a file, seek to the end before writing:

lseek (fd, 0L, 2);
To get back to the beginning (‘‘rewind’’),
lseek (fd, OL, 0);
Notice the 0L argument; it could also be written as (long) 0.
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With 1seek, it is possible to treat files more or less like large arrays, at the price of slower access.
For example, the following simple function reads any number of bytes from any arbitrary place in a file.

get (fd, pos, buf, n) /* read n bytes from position pos */
int £4, n;
long pos;
char *buf;
{
lseek (fd, pos, 0); /* get to pos */
return (read (fd, buf, n));

}

In pre-version 7 UNIX, the basic entry point to the IO system is called seek. seek is identical to
1seek, except that its offset argument is an int rather than a long. Accordingly, since PDP-11 integers
have only 16 bits, the offset specified for seek is limited to 65,535; for this reason, origin values of 3,
4, 5 cause seek to multiply the given offset by 512 (the number of bytes in one physical block) and then
interpret origin as if it were 0, 1, or 2 respectively. Thus to get to an arbitrary place in a large file
requires two seeks, first one which selects the block, then one which has origin equal to 1 and moves to
the desired byte within the block.

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries into the sys-
tem can incur errors. Usually they indicate an error by returning a value of —1. Sometimes it is nice to
know what sort of error occurred; for this purpose all these routines, when appropriate, leave an error
number in the external cell errno. The meanings of the various error numbers are listed in the introduc-
tion to Section II of the UNIX Programmer’s Manual, so your program can, for example, determine if an
attempt to open a file failed because it did not exist or because the user lacked permission to read it.
Perhaps more commonly, you may want to print out the reason for failure. The routine perror will print a
message associated with the value of errno; more generally, sys_errno is an array of character strings
which can be indexed by errno and printed by your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one’s own. This section
describes how to execute a program from within another.

5.1. The ““System’’ Function

The easiest way to execute a program from another is to use the standard library routine system
system takes one argument, a command string exactly as typed at the terminal (except for the newline at
the end) and executes it. For instance, to time-stamp the output of a program,

main ()

{
system("date");
/* rest of processing */

}

If the command string has to be built from pieces, the in-memory formatting capabilities of sprintf may
be useful.

Remember than getc and putc normally buffer their input; terminal I/O will not be properly syn-
chronized unless this buffering is defeated. For output, use ££1ush; for input, see setbuf in the appendix.

5.2. Low-Level Process Creation — Execl and Execv

If you’re not using the standard library, or if you need finer control over what happens, you will have
to construct calls to other programs using the more primitive routines that the standard library’s system
routine is based on.
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The most basic operation is to execute another program without returning, by using the routine
execl. To print the date as the last action of a running program, use

execl ("/bin/date", "date", NULL);

The first argument to execl is the file name of the command; you have to know where it is found in the file
system. The second argument is conventionaily the program name (that is, the last component of the file
name), but this is seldom used except as a place-holder. If the command takes arguments, they are strung
out after this; the end of the list is marked by a NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits. There is no
return to the original program.

More realistically, a program might fall into two or more phases that communicate only through tem-
porary files. Here it is natural to make the second pass simply an execl call from the first.

The one exception to the rule that the original program never gets control back occurs when there is
an error, for example if the file can’t be found or is not executable. If you don’t know where date is
located, say

execl ("/bin/date", "date", NULL);
execl (" /usr/bin/date", "date", NULL);
fprintf (stderr, "Someone stole ’‘date’\n");

A variant of execl called execv is useful when you don’t know in advance how many arguments
there are going to be. The call is

execv (filename, argp):;

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL s0 execv
can tell where the list ends. As with execl, filename is the file in which the program is found, and
argp[0] is the name of the program. (This arrangement is identical to the argv array for program argu-
ments.)

Neither of these routines provides the niceties of normal command execution. There is no automatic
search of multiple directories — you have to know precisely where the command is located. Nor do you
get the expansion of metacharacters like <, >, *, 2, and {] in the argument list. If you want these, use
execl to invoke the shell sh, which then does all the work. Construct a string commandline that contains
the complete command as it would have been typed at the terminal, then say

execl ("/bin/sh", "sh", "-c", commandline, NULL):;

The shell is assumed to be at a fixed place, /bin/sh. Its argument ~c says to treat the next argument as a
whole command line, so it does just what you want. The only problem is in constructing the right informa-
tion in commandline.

5.3. Control of Processes — Fork and Wait

So far what we’ve talked about isn’t really all that useful by itself. Now we will show how to regain
control after running a program with execl or execv. Since these routines simply overlay the new pro-
gram on the old one, to save the old one requires that it first be split into two copies; one of these can be
overlaid, while the other waits for the new, overlaying program to finish. The splitting is done by a routine
called fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between the two is
the value of proc_id, the ‘“‘process id.”’ In one of these processes (the ‘‘child’’), proc_id is zero. In the
other (the ‘‘parent’’), proc_id is non-zero; it is the process number of the child. Thus the basic way to
call, and return from, another program is

if (fork() == 0)
execl ("/bin/sh", "sh", "-c", emd, NULL); /* in child */
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And in fact, except for handling errors, this is sufficient. The fork makes two copies of the program. In
the child, the value returned by fork is zero, so it calls execl which does the command and then dies. In
the parent, fork returns non-zero so it skips the execl. (If there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself. This can be
done with the function wait:

int status;

if (fork() == Q)
execl(...);
wait (&status);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork, or the possibility
that there might be more than one child running simultaneously. (The wait returns the process id of the
terminated child, if you want to check it against the value returned by fork.) Finally, this fragment doesn’t
deal with any funny behavior on the part of the child (which is reported in status). Still, these three lines
are the heart of the standard library’s system routine, which we’ll show in a moment.

The status returned by wait encodes in its low-order eight bits the system’s idea of the child’s ter-
mination status; it is O for normal termination and non-zero to indicate various kinds of problems. The next
higher eight bits are taken from the argument of the call to exit which caused a normal termination of the
child process. It is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing at the
right files, and all other possible file descriptors are available for use. When this program calls another one,
correct etiquette suggests making sure the same conditions hold. Neither fork nor the exec calls affects
open files in any way. If the parent is buffering output that must come out before output from the child, the
parent must flush its buffers before the exec1, Conversely, if a caller buffers an input stream, the called
program will lose any information that has been read by the caller.

5.4. Pipes

A pipe is an I/O channel intended for use between two cooperating processes: one process writes
into the pipe, while the other reads. The system looks after buffering the data and synchronizing the two
processes. Most pipes are created by the shell, as in

ls | pr

which connects the standard output of 1s to the standard input of pr. Sometimes, however, it is most con-
venient for a process to set up its own plumbing; in this section, we will illustrate how the pipe connection
is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int £d[2];

stat = pipe(£fd):;
if (stat == ~1)
/* there was an error ... */

£d is an array of two file descriptors, where £d[0] is the read side of the pipe and £d[1] is for writing.
These may be used in read, write and close calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a pipe
which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is closed, a sub-
sequent read will encounter end of file. i

To illustrate the use of pipes in a realistic setting, let us write a function called popen (cmd, mode),
which creates a process cmd (just as system does), and returns a file descriptor that will either read or
write that process, according to mode. That is, the call
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fout = popen ("pr", WRITE):;

creates a process that executes the pr command; subsequent write calls using the file descriptor fout will
send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two copies of itself.
The child decides whether it is supposed to read or write, closes the other side of the pipe, then calls the
shell (via execl) to run the desired process. The parent likewise closes the end of the pipe it does not use.
These closes are necessary to make end-of-file tests work properly. For example, if a child that intends to
read fails to close the write end of the pipe, it will never see the end of the pipe file, just because there is
one writer potentially active.

#include <stdio.h>

#define READ 0O

#define WRITE 1

#define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;

popen (cmd, mode)
char *cmd;
int mode;
{
int p[2];

if (pipe(p) < 0)
return (NULL) ;

if ((popen_pid = fork()) == 0) {
close (tst (p[WRITE], p[READ]));
close(tst (0, 1));
dup (tst (p[READ], p[WRITE]));
close(tst (p[READ], p[WRITE]));
execl ("/bin/sh", "sh", "-c", cmd, 0);
_exit (1); /* disaster has occurred if we get here */

}

if (popen pid == -1)
return (NULL) ;

close(tst (p[READ], p[WRITE])):

return (tst (p[WRITE], p[READ])):

}

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child process that
will read data from the parent. Then the first close closes the write side of the pipe, leaving the read side
open. The lines

close(tst (0, 1));
dup (tst (p [READ], p[WRITE])):

are the conventional way to associate the pipe descriptor with the standard input of the child. The close
closes file descriptor 0, that is, the standard input. dup is a system call that returns a duplicate of an already
open file descriptor. File descriptors are assigned in increasing order and the first available one is returned,
so the effect of the dup is to copy the file descriptor for the pipe (read side) to file descriptor O; thus the
read side of the pipe becomes the standard input. (Yes, this is a bit tricky, but it’s a standard idiom.)
Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from the
parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by popen.
The main reason for using a separate function rather than close is that it is desirable to wait for the termi-
nation of the child process. First, the return value from pclose indicates whether the process succeeded.
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Equally important when a process creates several children is that only a bounded number of unwaited-for
children can exist, even if some of them have terminated; performing the wait lays the child to rest. Thus:

#include <signal.h>

pclose(£d) /* close pipe fd */

int £d;

{
register r, (*hstat) (), (*istat) (), (*gstat) ();
int status;
extern int popen_pid;

close(fd);
istat = signal (SIGINT, SIG_IGN);
gstat = signal (SIGQUIT, SIG_IGN);
hstat = signal (SIGHUP, SIG_IGN);
while ((r = wait (&status)) != popen pid && r != -1);
if (r == -1)

status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, gstat):;
signal (SIGHUP, hstat);
return (status);

}

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is the topic of
the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the sin-
gle shared variable popen_pid,; it really should be an array indexed by file descriptor. A popen function,
with slightly different arguments and return value is available as part of the standard I/O library discussed
below. As currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world (like inter-
rupts), and with program faults. Since there’s nothing very useful that can be done from within C about
program faults, which arise mainly from illegal memory references or from execution of peculiar instruc-
tions, we’ll discuss only the outside-world signals: interrupt, which is sent when the DEL character is
typed; quit, generated by the FS characier; hangup, caused by hanging up the phone; and terminate, gen-
erated by the kill command. When one of these events occurs, the signal is sent to all processes which
were started from the corresponding terminal; unless other arrangements have been made, the signal ter-
minates the process. In the quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the first specifies
the signal, and the second specifies how to treat it. The first argument is just a number code, but the second
is the address is either a function, or a somewhat strange code that requests that the signal either be
ignored, or that it be given the default action. The include file signal.h gives names for the various argu-
ments, and should always be included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);
causes interrupts to be ignored, while
signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous value of the
signal. The second argument to signal may instead be the name of a function (which has to be declared
explicitly if the compiler hasn’t seen it already). In this case, the named routine will be called when the
signal occurs. Most commonly this facility is used to allow the program to clean up unfinished business
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before terminating, for example to delete a temporary file:
#include <signal.h>

main ()
{

int onintr();

if (signal (SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/* Process ... */

exit (0);
}

onintr()

{
unlink (tempfile);
exit (1);

}

Why the test and the double call to signal? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non-interactively
(started by &), the shell turns off interrupts for it so it won’t be stopped by interrupts intended for fore-
ground processes. If this program began by announcing that all interrupts were to be sent to the onintr
routine regardless, that would undo the shell’s effort to protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore inter-
rupts if they are already being ignored. The code as written depends on the fact that signal returns the
previous state of a particular signal. If signals were already being ignored, the process should continue to
ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to stop
what it is doing and retum to its own command-processing loop. Think of a text editor: interrupting a long
printout should not cause it to terminate and lose the work already done. The outline of the code for this
case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf sijbuf;

main ()
{
int (*istat) (), onintr();

istat = signal (SIGINT, SIG_IGN); /* save original status */
setjmp (sjbuf) ; /* save current stack position */
if (istat != SIG_IGN)

signal (SIGINT, onintr);

/* main processing loop */

}

onintr ()

{

printf ("\nInterrupt\n");

longimp (sjbuf) ; /* return to saved state */
}

The include file set jmp .h declares the type jmp_buf an object in which the state can be saved. sibuf is
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such an object; it is an array of some sort. The set jmp routine then saves the state of things. When an
interrupt occurs, a call is forced to the onintr routine, which can print a message, set flags, or whatever.
longjmp takes as argument an object stored into by set jmp, and restores control to the location after the
call to set jmp, 50 control (and the stack level) will pop back to the place in the main routine where the sig-
nal is set up and the main loop entered. Notice, by the way, that the signal gets set again after an interrupt
occurs. This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for example
in the middle of updating a linked list. If the routine called on occurrence of a signal sets a flag and then
returns instead of calling exit or longjmp, execution will continue at the exact point it was interrupted.
The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the terminal
when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it were really
true, as we said above, that ““‘execution resumes at the exact point it was interrupted,’’ the program would
continue reading the terminal until the user typed another line. This behavior might well be confusing,
since the user might not know that the program is reading; he presumably would prefer to have the signal
take effect instantly. The method chosen to resolve this difficulty is to terminate the terminal read when
execution resumes after the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for ‘‘errors’’
which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal, wait,
and pause.) A program whose onintxr program just sets intflag, resets the interrupt signal, and returns,
should usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (intflag)
/* EOF caused by interrupt */
else
/* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with execution
of other programs. Suppose a program catches interrupts, and also includes a method (like *“!”’ in the edi-
tor) whereby other programs can be executed. Then the code should look something like this:

if (fork() == 0)

execl(...);
signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait (&status); /* until the child is done */
signal (SIGINT, onintr);/* restore interrupts */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call catches its own
interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop, and probably
read your terminal. But the calling program will also pop out of its wait for the subprogram and read your
terminal, Having two processes reading your terminal is very unfortunate, since the system figuratively
flips a coin to decide who should get each line of input. A simple way out is to have the parent program
ignore interrupts until the child is done. This reasoning is reflected in the standard I/O library function
system
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#include <signal.h>

system(s) /* run command string s */
char *s;
{
int status, pid, w;
register int (*istat) (), (*gstat) ();

if ((pid = fork()) == 0) {
execl ("/bin/sh", "sh", "-c", s, 0);
_exit (127);

}

istat = signal (SIGINT, SIG_IGN);

gstat = signal (SIGQUIT, SIG_IGN);

while ((w = wait (&status)) != pid && w != -1)

if (W == -1)

status = -1;
signal (SIGINT, istat):
signal (SIGQUIT, gstat):;
return(status);

}

As an aside on declarations, the function signal obviously has a rather strange second argument. It
is in fact a pointer to a function delivering an integer, and this is also the type of the signal routine itself.
The two values SIG_IGN and SIG_DFL have the right type, but are chosen so they coincide with no possi-
ble actual functions. For the enthusiast, here is how they are defined for the PDP-11; the definitions should
be sufficiently ugly and nonportable to encourage use of the include file.

#define SIG_DFL (int (*) ())O
#define SIG_IGN (int (*)())1
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Appendix — The Standard I/O Library

D. M. Ritchie

The standard I/O library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesitation in
using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use mars the
understandability and portability of many programs using older packages.

3.  The interface provided should be applicable on all machines, whether or not the programs which
implement it are directly portable to other systems, or to machines other than the PDP-11 running a
version of UNIX,

1. General Usage
Each program using the library must have the line
#include <stdio.h>
which defines certain macros and variables. The routines are in the normal C library, so no special library
argument is needed for loading. All names in the include file intended only for internal use begin with an

underscore _ to reduce the possibility of collision with a user name. The names intended to be visible out-
side the package are

stdin The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

EOF is actually —1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to streams.

BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user. See setbuf,
below.

getc, getchar, putc, putchar, feof, ferror, fileno
‘ are defined as macros. Their actions are described below; they are mentioned here to point out
that it is not possible to redeclare them and that they are not actually functions; thus, for exam-
ple, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output flushing
where appropriate. The names stdin, stdout, and stderr are in effect constants and may not be
assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. £ilename is a character string specifying the
name. type is a character string (not a single character). It may be ", "w", or "a" to indicate
intent to read, write, or append. The value returned is a file pointer. If it is NULL the attempt to open
failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If the
attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the new file. Often
the reopened stream is stdin or stdout.

int getc(ioptr) FILE #*ioptr;
returns the next character from the stream named by ioptr, which is a pointer to a file such as
returned by fopen, or the name stdin. The integer EOF is returned on end-of-file or when an error
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occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an argument,
etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character ¢ on the output stream named by ioptr, which is a value returned from
fopen Or perhaps stdout or stderr. The character is returned as value, but EOF is returned on
€rTor. ‘

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated by the
I/O system is freed. fclose is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named by ioptr is written out. Output files are
normally buffered if and only if they are not directed to the terminal; however, stderr always starts
off unbuffered and remains so unless setbuf is used, or unless it is reopened.

exit (errcode) ;
terminates the process and returns its argument as status to the parent. This is a special version of the
routine which calls ££1ush for each output file. To terminate without flushing, use _exit.

feof (ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named stream. The error
indication lasts until the file has been closed.

getchar();
is identical to getc (stdin).

putchar(c);
is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character pointer s. The read terminates
with a newline character. The newline character is placed in the buffer followed by a null character.
fgets returns the first argument, or NULL if error or end-of-file occurred.

fputs (s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No newline is appended.
No value is returned.

ungetc(c, ioptr) FILE *ioptr;
The argument character < is pushed back on the input stream named by ioptr. Only one character
may be pushed back.

printf(format, al, ...) char *format;

fprintf (ioptr, format, al, ...) FILE *ioptr; char *format;

sprintf (s, format, al, ...)char *s, *format;
printf writes on the standard output. fprintf writes on the named output stream. sprintf puts
characters in the character array (string) named by s. The specifications are as described in section
print£(3) of the UNIX Programmer’s Manual.

scanf (format, al, ...) char *format;
fscanf (ioptr, format, al, ...) FILE *ioptr; char *format;
sscanf (s, format, al, ...) char *s, *format;
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scanf reads from the standard input. f£scanf reads from the named input stream. sscanf reads
from the character string supplied as s. scanf reads characters, interprets them according to a for-
mat, and stores the results in its arguments. Each routine expects as arguments a control string
format, and a set of arguments, each of which must be a pointer, indicating where the converted
input shouid be stored.

scanf returns as its value the number of successfully matched and assigned input items. This can be
used to decide how many input items were found. On end of file, EOF is returned; note that this is
different from 0, which means that the next input character does not match what was called for in the
control string.

fread(ptr, sizeof (*ptr), nitems, ioptr) FILE *ioptr;
reads nitems of data beginning at ptr from file ioptr. No advance notification that binary /O is
being done is required; when, for portability reasons, it becomes required, it will be done by adding
an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof (*ptr), nitems, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptxr. It is not very useful except on input, since a rewound output
file is still open only for output.

system(string) char *string;

The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file or
error, but since this a perfectly good integer feof and ferror should be used. A “‘word’’ is 16 bits
on the PDP-11. '

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf (ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before I/O has started. If buf is NULL, the
stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a character array
of sufficient size:

char buf [BUFSIZ];

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek (ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named by ioptr is adjusted. offset is a long integer. If
ptrname is 0, the offset is measured from the beginning of the file; if ptrname is 1, the offset is
measured from the current read or write pointer; if pt rname is 2, the offset is measured from the end
of the file. The routine accounts properly for any buffering. (When this routine is used on non-UNIX
systems, the offset must be a value returned from ftell and the ptrname must be 0).

long ftell (ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this call is
useful only for handing to £seek, 50 as to position the file to the same place it was when ftell was
called.)

getpw (uid, buf) char *buf;
The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and O is returned. If no line is found corresponding to the user
ID then 1 is returned.
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char *malloc (num);
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any purpose.
NULL is returned if no space is available.

char *calloc (num, size):;
allocates space for num items each of size size. The space is guaranteed to be set to O and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available .

cfree (ptr) char *ptr;
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloc.

The following are macros whose definitions may be obtained by including <ctype .h>.
isalpha (c) returns non-zero if the argument is alphabetic.

isupper (c) returns non-zero if the argument is upper-case alphabetic.

islower (c) returns non-zero if the argument is lower-case alphabetic.

isdigit (c) returns non-zero if the argument is a digit.

isspace (c) returns non-zero if the argument is a spacing character: tab, newline, carriage return, vertical
tab, form feed, space.

ispunct (c¢) returns non-zero if the argument is any punctuation character, i.e., not a space, letter, digit or
control character.

isalnum (c) returns non-zero if the argument is a letter or a digit.

isprint (c) returns non-zero if the argument is printable — a letter, digit, or punctuation character.
isentrl (c) returns non-zero if the argument is a control character.

isascii (c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.
toupper (c) returns the upper-case character corresponding to the lower-case letter c.

tolower (c) returns the lower-case character corresponding to the upper-case letter c.
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K. Thompson

ABSTRACT

This paper describes in high-level terms the implementation of the resident UNIX¥
kernel. This discussion is broken into three parts. The first part describes how the UNIX
system views processes, users, and programs. The second part describes the I/O system.
The last part describes the UNIX file system.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assembly code.
The assembly code can be further broken down into 200 lines included for the sake of efficiency (they
could have been written in C) and 800 lines to perform hardware functions not possible in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression ‘‘the UNIX
operating system.’’ The kernel is the only UNIX code that cannot be substituted by a user to his own liking.
For this reason, the kernel should make as few real decisions as possible. This does not mean to allow the
user a million options to do the same thing. Rather, it means to allow only one way to do one thing, but
have that way be the least-common divisor of all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a great power.
It is a soap-box platform on ‘‘the way things should be done.”” Even so, if ‘‘the way’’ is too radical, no
one will follow it. Every important decision was weighed carefully. Throughout, simplicity has been sub-
stituted for efficiency. Complex algorithms are used only if their complexity can be localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process. When a sys-
tem function is required, the user process calls the system as a subroutine. At some point in this call, there
is a distinct switch of environments. After this, the process is said to be a system process. In the normal
definition of processes, the user and system processes are different phases of the same process (they never
execute simultaneously). For protection, each system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all processes exe-
cuting the same code. There is no functional benefit from shared-text segments. An efficiency benefit
comes from the fact that there is no need to swap read-only segments out because the original copy on
secondary memory is still current. This is a great benefit to interactive programs that tend to be swapped
while waiting for terminal input. Furthermore, if two processes are executing simultaneously from the
same copy of a read-only segment, only one copy needs to reside in primary memory. This is a secondary
effect, because simultaneous execution of a program is not common. It is ironic that this effect, which
reduces the use of primary memory, only comes into play when there is an overabundance of primary
memory, that is, when there is enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained from the text table. A text table
entry holds the location of the text segment on secondary memory. If the segment is loaded, that table also
holds the primary memory location and the count of the number of processes sharing this entry. When this
count is reduced to zero, the entry is freed along with any primary and secondary memory holding the

+ UNIX is a trademark of Bell Laboratories.
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segment. When a process first executes a shared-text segment, a text table entry is allocated and the seg-
ment is loaded onto secondary memory. If a second process executes a text segment that is already allo-
cated, the entry reference count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As far as pos-
sible, the system does not use the user’s data segment to hold system data. In parueular, there are no I/O
buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the sysiem as a
result of memory faults, is used for a stack. The second boundary is only grown (or shrunk) by explicit
requests. The contents of newly allocated primary memory is initialized to zero.

Also associated and swapped with a process is a small fixed-size system data segment. This segment
contains all the data about the process that the system needs only when the process is active. Examples of
the kind of data contained in the system data segment are: saved central processor registers, open file
descriptors, accounting information, scratch data area, and the stack for the system phase of the process.
The system data segment is not addressable from the user process and is therefore protected.

Last, there is a process table with one entry per process. This entry contains ail the data needed by
the system when the process is not active. Examples are the process’s name, the location of the other seg-
ments, and scheduling information. The process table entry is allocated when the process is created, and
freed when the process terminates. This process entry is always directly addressable by the kernel.

Figure 1 shows the relationships between the various process control data. In a sense, the process
table is the definition of all processes, because all the data associated with a process may be accessed start-
ing from the process table entry.

Process Table Text Table
Process ] Text
Table Table
Entry Entry
Resident
\L System
Swapped Data
Segment User
Text
User ———=»  Segment
Data
I) Segment
User
Address
Space

Fig. 1—Process control data structure,

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a copy of
the original process (parent). There is no detectable sharing of primary memory between the two
processes. (Of course, if the parent process was executing from a read-only text segment, the child will
share the text segment.) Copies of all writable data segments are made for the child process. Files that
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were open before the fork are truly shared after the fork. The processes are informed as to their part in the
relationship to allow them to select their own (usually non-identical) destiny. The parent may wait for the
termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments of the pro-
cess for new text and data segments specified in the file. The old segments are lost. Doing an exec does
not change processes; the process that did the exec persists, but after the exec it is executing a different
program. Files that were open before the exec remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another program, say the
second pass, then it simply execs the second program. This is analogous to a ‘‘goto.”” If a program wishes
to regain control after execing a second program, it should fork a child process, have the child exec the
second program, and have the parent wait for the child. This is analogous to a ‘‘call.’” Breaking up the
call into a binding followed by a transfer is similar to the subroutine linkage in SL-5." griswold hanson sl5
overview

2.2, Swapping

The major data associated with a process (the user data segment, the system data segment, and the
text segment) are swapped to and from secondary memory, as needed. The user data segment and the sys-
tem data segment are kept in contiguous primary memory to reduce swapping latency. (When low-latency
devices, such as bubbles, CCDs, or scatter/gather devices, are used, this decision will have to be recon-
sidered.) Allocation of both primary and secondary memory is performed by the same simple first-fit algo-
rithm. When a process grows, a new piece of primary memory is allocated. The contents of the old
memory is copied to the new memory. The old memory is freed and the tables are updated. If there is not
enough primary memory, secondary memory is allocated instead. The process is swapped out onto the
secondary memory, ready to be swapped in with its new size.

One separate process in the kemel, the swapping process, simply swaps the other processes in and
out of primary memory. It examines the process table looking for a process that is swapped out and is
ready to run. It allocates primary memory for that process and reads its segments into primary memory,
where that process competes for the central processor with other loaded processes. If no primary memory
is available, the swapping process makes memory available by examining the process table for processes
that can be swapped out.. It selects a process to swap out, writes it to secondary memory, frees the primary
memory, and then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly many
processes that are swapped out is to be swapped in? This is decided by secondary storage residence time.
The one with the longest time out is swapped in first. There is a slight penalty for larger processes. Which
of the possibly many processes that are loaded is to be swapped out? Processes that are waiting for slow
events (i.e., not currently running or waiting for disk I/O) are picked first, by age in primary memory, again
with size penalties. The other processes are examined by the same age algorithm, but are not taken out
unless they are at least of some age. This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary memory, these
algorithms cause total swapping. This is not bad in itself, because the swapping does not impact the execu-
tion of the resident processes. However, if the swapping device must also be used for file storage, the
swapping traffic severely impacts the file system traffic. It is exactly these small systems that tend to dou-
ble usage of limited disk resources.

2.3. Synchronization and scheduling

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables associated
with those events. For example, a process that is waiting for any of its children to terminate will wait for
an event that is the address of its own process table entry. When a process terminates, it signals the event
represented by its parent’s process table entry. Signaling an event on which no process is waiting has no
effect. Similarly, signaling an event on which many processes are waiting will wake all of them up. This
differs considerably from Dijkstra’s P and V synchronization operations,” dijkstra sequential processes
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1968 in that no memory is associated with events. Thus there need be no allocation of events prior to their
use. Events exist simply by being used.

On the negative side, because there is no memory associated with events, no notion of ‘‘how much”’
can be signaled via the event mechanism. For example, processes that want memory might wait on an
event associated with memory allocation. When any amount of memory becomes available, the event
would be signaled. All the competing processes would then wake up to fight over the new memory. (In
reality, the swapping process is the only process that waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for that event and the time that process
enters the wait state, then the process will wait on an event that has already happened (and may never hap-
pen again). This race condition happens because there is no memory associated with the event to indicate
that the event has occurred; the only action of an event is to change a set of processes from wait state to run
state. This problem is relieved largely by the fact that process switching can only occur in the kernel by
explicit calls to the event-wait mechanism. If the event in question is signaled by another process, then
there is no problem. But if the event is signaled by a hardware interrupt, then special care must be taken.
These synchronization races pose the biggest problem when UNIX is adapted to multiple-processor
configurations.> hawley meyer multiprocessing unix

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of the
processes has called event-wait. The remaining process is the one currently executing. When it calls
event-wait, a process whose event has been signaled is selected and that process returns from its call to
event-wait.

Which of the runable processes is to run next? Associated with each process is a priority. The prior-
ity of a system process is assigned by the code issuing the wait on an event. This is roughly equivalent to
the response that one would expect on such an event. Disk events have high priority, teletype events are
low, and time-of-day events are very low. (From observation, the difference in system process priorities
has little or no performance impact.) All user-process priorities are lower than the lowest system priority.
User-process priorities are assigned by an algorithm based on the recent ratio of the amount of compute
time to real time consumed by the process. A process that has used a lot of compute time in the last real-
time unit is assigned a low user priority. Because interactive processes are characterized by low ratios of
compute to real time, interactive response is maintained without any special arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking all system
processes first and user processes second. The compute-to-real-time ratio is updated every second. Thus,
all other things being equal, looping user processes will be scheduled round-robin with a 1-second quan-
tum. A high-priority process waking up will preempt a running, low-priority process. The scheduling
algorithm has a very desirable negative feedback character. If a process uses its high priority to hog the
computer, its priority will drop. At the same time, if a low-priority process is ignored for a long time, its
priority will rise.

3. YO SYSTEM

The I/O system is broken into two completely separate systems: the block I/O system and the char-
acter I/O system. In retrospect, the names should have been “*structured I/O’’ and ‘‘unstructured I/O,”’
respectively; while the term *“block I/O’’ has some meaning, ‘‘character I/O’’ is a complete misnomer.

Devices are characterized by a major device number, a minor device number, and a class (block or
character). For each class, there is an array of entry points into the device drivers. The major device
number is used to index the array when calling the code for a particular device driver. The minor device
number is passed to the device driver as an argument. The minor number has no significance other than
that attributed to it by the driver. Usnally, the driver uses the minor number to access one of several identi-
cal physical devices.

The use of the array of entry points (configuration table) as the only connection between the system
code and the device drivers is very important. Early versions of the system had a much less formal connec-
tion with the drivers, so that it was extremely hard to handcraft differently configured systems. Now it is
possible to create new device drivers in an average of a few hours. The configuration table in most cases is
created automatically by a program that reads the system’s parts list.
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3.1. Block I/O system

The model block I/O device consists of randomly addressed, secondary memory blocks of 512 bytes
each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The block device driver has
the job of emulating this model on a physical device.

The block I/O devices are accessed through a layer of buffering software. The system maintains a
list of buffers (typically between 10 and 70) each assigned a device name and a device address. This buffer
pool constitutes a data cache for the block devices. On a read request, the cache is searched for the desired
block. If the block is found, the data are made available to the requester without any physical [/O. If the
block is not in the cache, the least recently used block in the cache is renamed, the correct device driver is
called to fill up the renamed buffer, and then the data are made available. Write requests are handled in an
analogous manner. The correct buffer is found and relabeled if necessary. The write is performed simply
by marking the buffer as ‘‘dirty.”” The physical I/O is then deferred until the buffer is renamed.

The benefits in reduction of physical I/O of this scheme are substantial, especially considering the
file system implementation. There are, however, some drawbacks. The asynchronous nature of the algo-
rithm makes error reporting and meaningful user error handling almost impossible. The cavalier approach
to 1/O error handling in the UNIX system is partly due to the asynchronous nature of the block I/O system.
A second problem is in the delayed writes. If the system stops unexpectedly, it is almost certain that there
is a lot of logically complete, but physically incomplete, I/O in the buffers. There is a system primitive to
flush all outstanding 1/O activity from the buffers. Periodic use of this primitive helps, but does not solve,
the problem. Finally, the associativity in the buffers can alter the physical I/O sequence from that of the
logical I/O sequence. This means that there are times when data structures on disk are inconsistent, even
though the software is careful to perform I/O in the correct order. On non-random devices, notably mag-
netic tape, the inversions of writes can be disastrous. The problem with magnetic tapes is ‘‘cured” by
allowing only one outstanding write request per drive.

3.2. Character I/O system

The character I/O system consists of all devices that do not fall into the block I/O model. This
includes the ‘‘classical’’ character devices such as communications lines, paper tape, and line printers. It
also includes magnetic tape and disks when they are not used in a stereotyped way, for example, 80-byte
physical records on tape and track-at-a-time disk copies. In short, the character I/O interface means
*‘everything other than block.”” I/O requests from the user are sent to the device driver essentially unal-
tered. The implementation of these requests is, of course, up to the device driver. There are guidelines and
conventions to help the implementation of certain types of device drivers.

3.2.1. Disk drivers

Disk drivers are implemented with a queue of transaction records. Each record holds a read/write
flag, a primary memory address, a secondary memory address, and a transfer byte count. Swapping is
accomplished by passing such a record to the swapping device driver. The block 1/O interface is imple-
mented by passing such records with requests to fill and empty system buffers. The character I/O interface
to the disk drivers create a transaction record that points directly into the user area. The routine that creates
this record also insures that the user is not swapped during this I/O transaction. Thus by implementing the
general disk driver, it is possible to use the disk as a block device, a character device, and a swap device.
The only really disk-specific code in normal disk drivers is the pre-sort of transactions to minimize latency
for a particular device, and the actual issuing of the I/O request.

3.2.2. Character lists

Real character-oriented devices may be implemented using the common code to handle character
lists. A character list is a queue of characters. One routine puts a character on a queue. Another gets a
character from a queue. It is also possible to ask how many characters are currently on a queue. Storage
for all queues in the system comes from a single common pool. Putting a character on a queue will allocate
space from the common pool and link the character onto the data structure defining the queue. Getting a
character from a queue returns the corresponding space to the pool.
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A typical character-output device (paper tape punch, for example) is implemented by passing charac-
ters from the user onto a character queue until some maximum number of characters is on the queue. The
I/O is prodded to start as soon as there is anything on the queue and, once started, it is sustained by
hardware completion interrupts. Each time there is a completion interrupt, the driver gets the next charac-
ter from the queue and sends it to the hardware. The number of characters on the queue is checked and, as
the count falls through some intermediate level, an event (the queue address) is signaled. The process that
is passing characters from the user to the queue can be waiting on the event, and refill the queue to its max-
imum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very similar
manner.

Another class of character devices is the terminals. A terminal is represented by three character
queues. There are two input queues (raw and canonical) and an output queue. Characters going to the out-
put of a terminal are handled by common code exactly as described above. The main difference is that
there is also code to interpret the output stream as ASCII characters and to perform some translations, e.g.,
escapes for deficient terminals. Another common aspect of terminals is code to insert real-time delay after
certain control characters,

Input on terminals is a little different. Characters are collected from the terminal and placed on a raw
input queue. Some device-dependent code conversion and escape interpretation is handled here. When a
line is complete in the raw queue, an event is signaled. The code catching this signal then copies a line
from the raw queue to a canonical queue performing the character erase and line kill editing. User read
requests on terminals can be directed at either the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as character I/O
drivers. An example is a driver that reads and writes unmapped primary memory as an I/O device. Some
devices are too fast to be treated a character at time, but do not fit the disk I/O mold. Examples are fast
communications lines and fast line printers. These devices either have their own buffers or ‘‘borrow’’
block I/O buffers for a while and then give them back.

4. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of files is implied
by the system. Files are attached anywhere (and possibly multiply) onto a hierarchy of directories. Direc-
tories are simply files that users cannot write. For a further discussion of the external view of files and
directories. See Ref. 3

The UNIX file system is a disk data structure accessed completely through the block I/O system. As
stated before, the canonical view of a ‘‘disk’’ is a randomly addressable array of 512-byte blocks. A file
system breaks the disk into four self-identifying regions. The first block (address 0) is unused by the file
system. It is left aside for booting procedures. The second block (address 1) contains the so-cailed
‘‘super-block.”” This block, among other things, contains the size of the disk and the boundaries of the
other regions. Next comes the i-list, a list of file definitions. Each file definition is a 64-byte structure,
called an i-node. The offset of a particular i-node within the i-list is called its i-number. The combination
of device name (major and minor numbers) and i-number serves to uniquely name a particular file. After
the i-list, and to the end of the disk, come free storage blocks that are available for the contents of files.

The free space on a disk is maintained by a linked list of available disk blocks. Every block in this
chain contains a disk address of the next block in the chain. The remaining space contains the address of
up to 50 disk blocks that are also free. Thus with one I/O operation, the system obtains 50 free blocks and
a pointer where to find more. The disk allocation algorithms are very straightforward. Since all allocation
is in fixed-size blocks and there is strict accounting of space, there is no need to compact or garbage col-
lect. However, as disk space becomes dispersed, latency gradually increases. Some installations choose to
occasionally compact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the first 10
blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh address points at a block
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that contains the addresses of the next 128 blocks of the file. If the file is still larger than this (70,656
bytes), then the twelfth block points at up to 128 blocks, each pointing to 128 blocks of the file. Files yet
larger (8,459,264 bytes) use the thirteenth address for a ‘triple indirect’” address. The algorithm ends here
with the maximum file size of 1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new type of
file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-byte entries consisting
of a 14-byte name and an i-number. The root of the hierarchy is at a known i-number (viz., 2). The file
system structure allows an arbitrary, directed graph of directories with regular files linked in at arbitrary
places in this graph. In fact, very early UNIX systems used such a structure. Administration of such a
structure became so chaotic that later systems were restricted to a directory tree. Even now, with regular
files linked multiply into arbitrary places in the tree, accounting for space has become a problem. It may
become necessary to restrict the entire structure to a tree, and allow a new form of linking that is subser-
vient to the tree structure,

The file system allows easy creation, easy removal, easy random accessing, and very easy space allo-
cation. With most physical addresses confined to a small contiguous section of disk, it is also easy to
dump, restore, and check the consistency of the file system. Large files suffer from indirect addressing, but
the cache prevents most of the implied physical I/O without adding much execution. The space overhead
properties of this scheme are quite good. For example, on one particular file system, there are 25,000 files
containing 130M bytes of data-file content. The overhead (i-node, indirect blocks, and last block breakage)
is about 11.5M bytes. The directory structure to support these files has about 1,500 directories containing
0.6M bytes of directory content and about 0.5M bytes of overhead in accessing the directories. Added up
any way, this comes out to less than a 10 percent overhead for actual stored data. Most systems have this
much overhead in padded trailing blanks alone.

4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around access to the
i-node. The system maintains a table of all active i-nodes. As a new file is accessed, the system locates the
corresponding i-node, allocates an i-node table entry, and reads the i-node into primary memory. As in the
buffer cache, the table entry is considered to be the current version of the i-node. Modifications to the i-
node are made to the table entry. When the last access to the i-node goes away, the table entry is copied
back to the secondary store i-list and the table entry is freed.

All 1/O operations on files are carried out with the aid of the corresponding i-node table entry. The
accessing of a file is a straightforward impiementation of the algorithms mentioned previously. The user is
not aware of i-nodes and i-numbers. References to the file system are made in terms of path names of the
directory tree. Converting a path name into an i-node table entry is also straightforward. Starting at some
known i-node (the root or the current directory of some process), the next component of the path name is
searched by reading the directory. This gives an i-number and an implied device (that of the directory).
Thus the next i-node table entry can be accessed. If that was the last component of the path name, then this
i-node is the result. If not, this i-node is the directory needed to look up the next component of the path
name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of these are
open, create, read, write, seek, and close. The data structures maintained are shown in Fig. 2. In the sys-
tem data segment associated with a user, there is room for some (usually between 10 and 50) open files.
This open file table consists of pointers that can be used to access corresponding i-node table entries.
Associated with each of these open files is a current IO pointer. This is a byte offset of the next read/write
operation on the file. The system treats each read/write request as random with an implied seek to the I/O
pointer. The user usually thinks of the file as sequential with the I/O pointer automatically counting the
number of bytes that have been read/written from the file. The user may, of course, perform random I/O by
setting the I/O pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common I/O pointer and yet
have separate 1/O pointers for independent processes that access the same file. With these two conditions,
the I/O pointer cannot reside in the i-node table nor can it reside in the list of open files for the process. A
new table (the open file table) was invented for the sole purpose of holding the I/O pointer. Processes that
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Fig. 2—File system data structure.

share the same open file (the result of forks) share a common open file table entry. A separate open of the
same file will only share the i-node table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open converts a file system path name
into an i-node table entry. A pointer to the i-node table entry is placed in a newly created open file table
entry. A pointer to the file table entry is placed in the system data segment for the process. create first
creates a new i-node entry, writes the i-number into a directory, and then builds the same structure as for an
open. read and write just access the i-node entry as described above. seek simply manipulates the I/O
pointer. No physical seeking is done. close just frees the structures built by open and create. Reference
counts are kept on the open file table entries and the i-node table entries to free these structures after the
last reference goes away. unlink simply decrements the count of the number of directories pointing at the
given i-node. When the last reference to an i-node table entry goes away, if the i-node has no directories
pointing to it, then the file is removed and the i-node is freed. This delayed removal of files prevents prob-
lems arising from removing active files. A file may be removed while still open. The resulting unnamed
file vanishes when the file is closed. This is a method of obtaining temporary files.
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There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of implied
seeks before each read or write in order to implement first-in-first-out. There are also checks and syn-
chronization to prevent the writer from grossly outproducing the reader and to prevent the reader from
overtaking the writer.

4.2. Mounted file systems

The file system of a UNIX system starts with some designated block device formatted as described
above to contain a hierarchy. The root of this structure is the root of the UNIX file system. A second for-
matted block device may be mounted at any leaf of the current hierarchy. This logically extends the
current hierarchy. The implementation of mounting is trivial. A mount table is maintained containing
pairs of designated leaf i-nodes and block devices. When converting a path name into an i-node, a check is
made to see if the new i-node is a designated leaf. If it is, the i-node of the root of the block device
replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file lives. Thusa
file system consisting of many mounted devices does not have a common pool of free secondary storage
space. This separation of space on different devices is necessary to allow easy unmounting of a device.

4.3. Other system functions

There are some other things that the system does for the user—a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well developed because
our use of the system in computing science research does not need them. There are some features that are
missed in some applications, for example, better inter-process communication.

The UNIX kemnel is an I/O multiplexer more than a complete operating system. This is as it should
be. Because of this outlook, many features are found in most other operating systems that are missing from
the UNIX kemnel. For example, the UNIX kernel does not support file access methods, file disposition, file
formats, file maximum size, spooling, command language, logical records, physical records, assignment of
logical file names, logical file names, more than one character set, an operator’s console, an operator, log-
in, or log-out. Many of these things are symptoms rather than features. Many of these things are imple-
mented in user software using the kernel as a tool. A good example of this is the command language.3
bourne shell 1978 bstj %Q This issue Each user may have his own command language. Maintenance of
such code is as easy as maintaining user code. The idea of implementing *‘system’’ code with general user
primitives comes directly from MULTICS .
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The UNIX I/O System

Dennis M. Ritchie

This paper gives an overview of the workings of the UNIXt /O system. It was written with an eye
toward providing guidance to writers of device driver routines, and is oriented more toward describing the
environment and nature of device drivers than the implementation of that part of the file system which
deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file system as dis-
cussed in the paper ‘‘The UNIX Time-sharing System.”” A more detailed discussion appears in ‘““UNIX
Implementation;’’ the current document restates parts of that one, but is still more detailed. It is most use-
ful in conjunction with a copy of the system code, since it is basically an exegesis of that code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for devices
like disks, tapes, and DECtape which work, or can work, with addressible 512-byte blocks. Ordinary mag-
netic tape just barely fits in this category, since by use of forward and backward spacing any block can be
read, even though blocks can be written only at the end of the tape. Block devices can at least potentially
contain a mounted file system. The interface to block devices is very highly structured; the drivers for
these devices share a great many routines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work must be
done by the driver itself. '

Devices of both types are named by a major and a minor device number. These numbers are gen-
erally stored as an integer with the minor device number in the low-order 8 bits and the major device
number in the next-higher 8 bits; macros major and minor are available to access these numbers. The
major device number selects which driver will deal with the device; the minor device number is not used
by the rest of the system but is passed to the driver at appropriate times. Typically the minor number
selects a subdevice attached to a given controller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate tables; they
both start at O and therefore overlap.

Overview of /O

The purpose of the open and creat system calls is to set up entries in three separate system tables.
The first of these is the u_ofile table, which is stored in the system’s per-process data area u. This table is
indexed by the file descriptor returned by the open or creat, and is accessed during a read, write, or other
operation on the open file. An entry contains only a pointer to the corresponding entry of the file table,
which is a per-system data base. There is one entry in the file table for each instance of open or creat.
This table is per-system because the same instance of an open file must be shared among the several
processes which can result from forks after the file is opened. A file table entry contains flags which indi-
cate whether the file was open for reading or writing or is a pipe, and a count which is used to decide when
all processes using the entry have terminated or closed the file (so the entry can be abandoned). There is
also a 32-bit file offset which is used to indicate where in the file the next read or write will take place.
Finally, there is a pointer to the entry for the file in the inode table, which contains a copy of the file’s i-
node.

1UNIX is a Trademark of Bell Laboratories.
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Certain open files can be designated ‘‘multiplexed’’ files, and several other flags apply to such chan-
nels. In such a case, instead of an offset, there is a pointer to an associated multiplex channel table. Multi-
plex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the same file is
opened several times, it will have several entries in this table. However, there is at most one entry in the
inode table for a given file. Also, a file may enter the inode table not only because it is open, but also
because it is the current directory of some process or because it is a special file containing a currently-
mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on the disk;
the modified and accessed times are not stored, and the entry is augmented by a flag word containing infor-
mation about the entry, a count used to determine when it may be allowed to disappear, and the device and
i-number whence the entry came. Also, the several block numbers that give addressing information for the
file are expanded from the 3-byte, compressed format used on the disk to full long quantities.

During the processing of an open or creat call for a special file, the system always calls the device’s
open routine to allow for any special processing required (rewinding a tape, turning on the data-terminal-
ready lead of a modem, etc.). However, the close routine is called only when the last process closes a file,
that is, when the i-node table entry is being deallocated. Thus it is not feasible for a device to maintain, or
depend on, a count of its users, although it is quite possible to implement an exclusive-use device which
cannot be reopened until it has been closed.

When a read or write takes place, the user’s arguments and the file table entry are used to set up the
variables u.u_base, u.u_count, and u.u_offset which respectively contain the (user) address of the /O tar-
get area, the byte-count for the transfer, and the current location in the file. If the file referred to is a
character-type special file, the appropriate read or write routine is called; it is responsible for transferring
data and updating the count and current location appropriately as discussed below. Otherwise, the current
location is used to calculate a logical block number in the file. If the file is an ordinary file the logical block
number must be mapped (possibly using indirect blocks) to a physical block number; a block-type special
file need not be mapped. This mapping is performed by the bmap routine. In any event, the resulting phy-
sical block number is used, as discussed below, to read or write the appropriate device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each device provides
five routines: open, close, read, write, and special-function (to implement the ioctl system call). Any of
these may be missing. If a call on the routine should be ignored, (e.g. oper on non-exclusive devices that
require no setup) the cdevsw entry can be given as nulldev; if it should be considered an error, (e.g. write
on read-only devices) nodev is used. For terminals, the cdevsw structure also contains a pointer to the ity
structure associated with the terminal.

The open routine is called each time the file is opened with the full device number as argument. The
second argument is a flag which is non-zero only if the device is to be written upon.

The close routine is called only when the file is closed for the last time, that is when the very last
process in which the file is open closes it. This means it is not possible for the driver to maintain its own
count of its users. The first argument is the device number; the second is a flag which is non-zero if the file
was open for writing in the process which performs the final close.

When write is called, it is supplied the device as argument. The per-user variable u.u_count has
been set to the number of characters indicated by the user; for character devices, this number may be 0 ini-
tially. u.u_base is the address supplied by the user from which to start taking characters. The system may
call the routine internally, so the flag u.u_segflg is supplied that indicates, if on, that u.u_base refers to the
system address space instead of the user’s.

The write routine should copy up to u.u_count characters from the user’s buffer to the device, decre-
menting u.u_count for each character passed. For most drivers, which work one character at a time, the
routine cpass( ) is used to pick up characters from the user’s buffer. Successive calls on it return the char-
acters to be written until u.u_count goes to 0 or an error occurs, when it returns —1. Cpass takes care of
interrogating u.u_segfig and updating u.u_count.
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Write routines which want to transfer a probably large number of characters into an internal buffer
may also use the routine iomove(buffer, offset, count, flag) which is faster when many characters must be
moved. Jomove transfers up to count characters into the buffer starting offset bytes from the start of the
buffer; flag should be B_WRITE (which is 0) in the write case. Caution: the caller is responsible for mak-
ing sure the count is not too large and is non-zero. As an efficiency note, iomove is much slower if any of
buffer +offset, count or u.u_base is odd.

The device’s read routine is called under conditions similar to write, except that u.u_count is
guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available; it takes care
of housekeeping like cpass and returns —1 as the last character specified by u.u_count is returned to the
user; before that time, O is returned. Jomove is also usable as with write; the ﬁag should be B_READ but
the same cautions apply.

The ““special-functions’’ routine is invoked by the stty and gtty system calls as follows: (*p) (dev,
v) where p is a pointer to the device’s routine, dev is the device number, and v is a vector. In the gty
case, the device is supposed to place up to 3 words of status information into the vector; this will be
returned to the caller. In the stty case, v is 0; the device should take up to 3 words of control information
from the array u.u_arg/0..2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt occurs, it is
turned into a C-compatible call on the devices’s interrupt routine. The interrupt-catching mechanism
makes the low-order four bits of the ‘‘new PS’’ word in the trap vector for the interrupt available to the
interrupt handler. This is conventionally used by drivers which deal with multiple similar devices to
encode the minor device number. After the interrupt has been processed, a return from the interrupt
handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most of these
handlers, for example, need a place to buffer characters in the internal interface between their ‘‘top half”’
(read/write) and ‘‘bottom half’’ (interrupt) routines. For relatively low data-rate devices, the best mechan-
ism is the character queue maintained by the routines getc and putc. A queue header has the structure

struct {
int c_cc; /* character count */
char *c_cf; /* first character */
char *c_cl;/* last character */

} queue;

A character is placed on the end of a queue by putc(c, &queue) where c is the character and queue is the
queue header. The routine returns -1 if there is no space to put the character, 0 otherwise. The first char-
acter on the queue may be retrieved by gerc(&queue) which returns either the (non-negative) character or
-1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in the
standard system there are only some 600 character slots available. Thus device handlers, especially write
routines, must take care to avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The call
sleep(event, priority) causes the process to wait (allowing other processes to run) until the event occurs; at
that time, the process is marked ready-to-run and the call will return when there is no process with higher
priority.

The call wakeup(event) indicates that the event has happened, that is, causes processes sleeping on
the event to be awakened. The event is an arbitrary quantity agreed upon by the sleeper and the waker-up.
By convention, it is the address of some data area used by the driver, which guarantees that events are
unique.

Processes sleeping on an event should not assume that the event has really happened; they should
check that the conditions which caused them to sleep no longer hold.

Priorities can range from O to 127; a higher numerical value indicates a less-favored scheduling
situation. A distinction is made between processes sleeping at priority less than the parameter PZERO and
those at numerically larger priorities. The former cannot be interrupted by signals, although it is
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conceivable that it may be swapped out. Thus it is a bad idea to sleep with priority less than PZERO on an
event which might never occur. On the other hand, calls to sleep with larger priority may never return if
the process is terminated by some signal in the meantime. Incidentally, it is a gross error to call sleep in a
routine called at interrupt time, since the process which is running is almost certainly not the process which
should go to sleep. Likewise, none of the variables in the user area “‘u.”’ should be touched, let alone
changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible to supply a
wakeup, (for example, a device going on-line, which does not generally cause an interrupt), the call
sleep(&ibolt, priority) may be given. Lbolt is an external cell whose address is awakened once every 4
seconds by the clock interrupt routine.

The routines spi4( ), spl5( ). spl6( ), spl7( ) are available to set the processor priority level as indi-
cated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(func, arg, interval) will be useful.
This routine arranges that after interval sixtieths of a second, the func will be called with arg as argument,
in the style (*func)(arg). Timeouts are used, for example, to provide real-time delays after function charac-
ters like new-line and tab in typewriter output, and to terminate an attempt to read the 201 Dataphone dp if
there is no response within a specified number of seconds. Notice that the number of sixtieths of a second
is limited to 32767, since it must appear to be positive, and that only a bounded number of timeouts can be
going on at once. Also, the specified func is called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of buffers con-
taining the images of blocks of data on the various devices. The most important purpose of these routines
is to assure that several processes that access the same block of the same device in multiprogrammed
fashion maintain a consistent view of the data in the block. A secondary but still important purpose is to
increase the efficiency of the system by keeping in-core copies of blocks that are being accessed fre-
quently. The main data base for this mechanism is the table of buffers buf. Each buffer header contains a
pair of pointers (b_forw, b_back) which maintain a doubly-linked list of the buffers associated with a par-
ticular block device, and a pair of pointers (av_forw, av_back) which generally maintain a doubly-linked
list of blocks which are ‘“free,”’ that is, eligible to be reallocated for another transaction. Buffers that have
I/O in progress or are busy for other purposes do not appear in this list. The buffer header also contains the
device and block number to which the buffer refers, and a pointer to the actual storage associated with the
buffer. There is a word count which is the negative of the number of words to be transferred to or from the
buffer; there is also an error byte and a residual word count used to communicate information from an /O
routine to its caller. Finally, there is a flag word with bits indicating the status of the buffer. These flags
will be discussed below.

Seven routines constitute the most important part of the interface with the rest of the system. Given a
device and block number, both bread and getblk return a pointer to a buffer header for the block; the.
difference is that bread is guaranteed to return a buffer actually containing the current data for the block,
while getblk returns a buffer which contains the data in the block only if it is already in core (whether it is
or not is indicated by the B_DONE bit; see below). In either case the buffer, and the corresponding device
block, is made ‘‘busy,” so that other processes referring to it are obliged to wait until it becomes free.
Getblk is used, for example, when a block is about to be totally rewritten, so that its previous contents are
not useful; still, no other process can be allowed to refer to the block until the new data is placed into it.

The breada routine is used to implement read-ahead. it is logically similar to bread, but takes as an
additional argument the number of a block (on the same device) to be read asynchronously after the
specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other processes. It
is called, for example, after data has been extracted following a bread. There are three subtly-different
write routines, all of which take a buffer pointer as argument, and all of which logically release the buffer
for use by others and place it on the free list. Bwrite puts the buffer on the appropriate device queue, waits
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for the write to be done, and sets the user’s error flag if required. Bawrite places the buffer on the device’s
queue, but does not wait for completion, so that errors cannot be reflected directly to the user. Bdwrite
does not start any /O operation at all, but merely marks the buffer so that if it happens to be grabbed from
the free list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that /O takes place correctly, and that errors are reflected
to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful when more overlap is
desired (because no wait is required for I/O to finish) but when it is reasonably certain that the write is
really required. Bdwrite is used when there is doubt that the write is needed at the moment. For example,
bdwrite is called when the last byte of a write system call falls short of the end of a block, on the assump-
tion that another write will be given soon which will re-use the same block. On the other hand, as the end
of a block is passed, bawrite is called, since probably the block will not be accessed again soon and one
might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively to the
use of the caller, and make others wait, while one of brelse, bwrite, bawrite, or bdwrite must eventually be
called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer. Since
they provide one important channel for information between the drivers and the block I/O system, it is
important to understand these flags. The following names are manifest constants which select the associ-
ated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below) to indicate a
read operation. The symbol B_WRITE is defined as 0 and does not define a flag; it is provided
as a mnemonic convenience to callers of routines like swap which have a separate argument
which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is turned on
when the operation completes, whether normally as the result of an error. It is also used as
part of the return argument of getblk to indicate if 1 that the returned buffer actually contains
the data in the requested block.

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an I/O or other error occurred. If
it is set the b_error byte of the buffer header may contain an error code if it is non-zero. If
b_error is 0 the nature of the error is not specified. Actually no driver at present sets b_error;
the latter is provided for a future improvement whereby a more detailed error-reporting
scheme may be implemented.

B_BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to someone’s
exclusive use. The buffer still remains attached to the list of blocks associated with its device,
however. When getblk (or bread, which calls it) searches the buffer list for a given device
and finds the requested block with this bit on, it sleeps until the bit clears.

B_PHYS This bit is set for raw I/O transactions that need to allocate the Unibus map on an 11/70.

B_MAP  This bit is set on buffers that have the Unibus map allocated, so that the iodone routine knows
to deallocate the map.

B_WANTED
This flag is used in conjunction with the B_BUSY bit. Before sleeping as described just above,
getblk sets this ﬂag Conversely, when the block is freed and the busy bit goes down (in
brelse) a wakeup is given for the block header whenever B_WANTED is on. This strategem
avoids the overhead of having to call wakeup every time a ‘buffer is freed on the chance that
someone might want it.

B_AGE  This bit may be set on buffers just before releasing them; if it is on, the buffer is placed at the
head of the free list, rather than at the tail. It is a performance heuristic used when the caller
judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer should be
released when the write has been finished, usually at interrupt time. The difference between
bwrite and bawrite is that the former starts I/O, waits until it is done, and frees the buffer.
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The latter merely sets this bit and starts /O. The bit indicates that relse should be called for
the buffer on completion.

B_DELWRIThis bit is set by bdwrite before releasing the buffer. When getblk, while searching for a free
block, discovers the bit is 1 in a buffer it would otherwise grab, it causes the block to be writ-
ten out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each block dev-
ice.

Just as for character devices, block device drivers may supply an open and a close routine called
respectively on each open and on the final close of the device. Instead of separate read and write routines,
each block device driver has a strategy routine which is called with a pointer to a buffer header as argu-
ment. As discussed, the buffer header contains a read/write flag, the core address, the block number, a
(negative) word count, and the major and minor device number. The role of the strategy routine is to carry
out the operation as requested by the information in the buffer header. When the transaction is complete
the B_DONE (and possibly the B_ERROR) bits should be set. Then if the B_ASYNC bit is set, brelse
should be called; otherwise, wakeup. In cases where the device is capable, under error-free operation, of
transferring fewer words than requested, the device’s word-count register should be placed in the residual
count slot of the buffer header; otherwise, the residual count should be set to 0. This particular mechanism
is really for the benefit of the magtape driver; when reading this device records shorter than requested are
quite normal, and the user should be told the actual length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header allocated as dis-
cussed above, all that is actually required is that the argument be a pointer to a place containing the
appropriate information. For example the swap routine, which manages movement of core images to and
from the swapping device, uses the strategy routine for this device. Care has to be taken that no extraneous
bits get turned on in the flag word.

The device’s table specified by bdevsw has a byte to contain an active flag and an error count, a pair
of links which constitute the head of the chain of buffers for the device (b_forw, b_back), and a first and
last pointer for a device queue. Of these things, all are used solely by the device driver itself except for the
buffer-chain pointers. Typically the flag encodes the state of the device, and is used at a2 minimum to indi-
cate that the device is currently engaged in transferring information and no new command should be
issued. The error count is useful for counting retries when errors occur. The device queue is used to
remember stacked requests; in the simplest case it may be maintained as a first-in first-out list. Since
buffers which have been handed over to the strategy routines are never on the list of free buffers, the
pointers in the buffer which maintain the free list (av_forw, av_back) are also used to contain the pointers
which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp) arranges that
the buffer to which bp points be released or awakened, as appropriate, when the strategy module has
finished with the buffer, either normally or after an error. (In the latter case the B_ERROR bit has presum-
ably been set.)

The routine geterror(bp) can be used to examine the error bit in a buffer header and arrange that any
error indication found therein is reflected to the user. It may be called only in the non-interrupt part of a
driver when /O has completed (B_DONE has been set).

Raw Block-device I/0

A scheme has been set up whereby block device drivers may provide the ability to transfer informa-
tion directly between the user’s core image and the device without the use of buffers and in blocks as large
as the caller requests. The method involves setting up a character-type special file corresponding to the
raw device and providing read and write routines which set up what is usually a private, non-shared buffer
header with the appropriate information and call the device’s strategy routine. If desired, separate open
and close routines may be provided but this is usually unnecessary. A special-function routine might come
in handy, especially for magtape.
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A great deal of work has to be done to generate the ‘‘appropriate information’’ to put in the argu-
ment buffer for the strategy module; the worst part is to map relocated user addresses to physical addresses.
Most of this work is done by physio(strat, bp, dev, rw) whose arguments are the name of the strategy rou-
tine strat, the buffer pointer bp, the device number dev, and a read-write flag rw whose value is either
‘B_READ or B_WRITE. Physio makes sure that the user’s base address and count are even (because most
devices work in words) and that the core area affected is contiguous in physical space; it delays until the
buffer is not busy, and makes it busy while the operation is in progress; and it sets up user error return
information.
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ABSTRACT

EFL is a clean, general purpose computer language intended to encourage portable
programming. It has a uniform and readable syntax and good data and control flow
structuring. EFL programs can be translated into efficient Fortran code, so the EFL.pro-
grammer can take advantage of the ubiquity of Fortran, the valuable libraries of software
written in that language, and the portability that comes with the use of a standardized
language, without suffering from Fortran’s many failings as a language. It is especially
useful for numeric programs. The EFL language permits the programmer to express
complicated ideas in a comprehensible way, while permitting access to the power of the
Fortran environment. EFL can be viewed as a descendant of B. W. Kemighan’s Ratfor
[1]; the name originally stood for ‘Extended Fortran Language’. The current version of
the EFL compiler is written in portable C.

1. INTRODUCTION

1.1. Purpose

EFL is a clean, general purpose computer language intended to encourage portable programming. It
has a uniform and readable syntax and good data and control flow structuring. EFL programs can be
translated into efficient Fortran code, so the EFL programmer can take advantage of the ubiquity of For-
tran, the valuable libraries of software written in that language, and the portability that comes with the use
of a standardized language, without suffering from Fortran’s many failings as a language. It is especially
useful for numeric programs. Thus, the EFL language permits the programmer to express complicated
ideas in a comprehensible way, while permitting access to the power of the Fortran environment.

1.2. History

EFL can be viewed as a descendant of B. W. Kernighan’s Ratfor [1]; the name originally stood for
‘Extended Fortran Language’. A. D. Hall designed the initial version of the language and wrote a prelim-
inary version of a compiler. I extended and modified the language and wrote a full compiler (in C) for it.
The current compiler is much more than a simple preprocessor: it attempts to diagnose all syntax errors, to
provide readable Fortran output, and to avoid a number of niggling restrictions. To achieve this goal, a siz-
able two-pass translator is needed.

1.3. Notation

In examples and syntax specifications, boldface type is used to indicate literal words and punctua-
tion, such as while. Words in italic type indicate an item in a category, such as an expression. A construct
surrounded by double brackets represents a list of one or more of those items, separated by commas. Thus,
the notation
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item
could refer to any of the following:
item
item, item
item, item, item
The reader should have a fair degree of familiarity with some procedural language. There will be

occasional references to Ratfor and to Fortran which may be ignored if the reader is unfamiliar with those
languages.
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2. LEXICAL FORM

2.1. Character Set
The following characters are legal in an EFL program:

letters abcdefghijklm
nopqrstuvwxyz

digits 0123456789

white space  blank tab

quotes n

sharp #

continuation  _

braces {1}

parentheses ()

other s 3% .+ — %/
=<> &~ 1|8

Letter case (upper or lower) is ignored except within strings, so ‘a’ and ‘A’ are treated as the same charac-
ter. All of the examples below are printed in lower case. An exclamation mark (‘!’) may be used in place
of a tilde (“~*). Square brackets (‘[’ and ‘]’) may be used in place of braces (‘{’ and ‘}’).

2.2. Lines

EFL is a line-oriented language. Except in special cases (discussed below), the end of a line marks
the end of a token and the end of a statement. The trailing portion of a line may be used for a comment.
There is a mechanism for diverting input from one source file to another, so a single line in the program
may be replaced by a number of lines from the other file. Diagnostic messages are labeled with the line
number of the file on which they are detected.

2.2.1. White Space

Outside of a character string or comment, any sequence of one or more spaces or tab characters acts
as a single space. Such a space terminates a token.

2.2.2. Comments

A comment may appear at the end of any line. It is introduced by a sharp (#) character, and contin-
ues to the end of the line. (A sharp inside of a quoted string does not mark a comment.) The sharp and
succeeding characters on the line are discarded. A blank line is also a comment. Comments have no effect
on execution.

22.3. Include Files
It is possible to insert the contents of a file at a point in the source text, by referencing it in a line like

include joe

No statement or comment may follow an include on a line. In effect, the include line is replaced by the
lines in the named file, but diagnostics refer to the line number in the included file. Includes may be nested
at least ten deep.

2.2.4. Continuation

Lines may be continued explicitly by using the underscore (_) character. If the last character of a
line (after comments and trailing white space have been stripped) is an underscore, the end of line and the
- initial blanks on the next line are ignored. Underscores are ignored in other contexts (except inside of
quoted strings). Thus
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1_000_000_
000

equals 10°,

There are also rules for continuing lines automatically: the end of line is ignored whenever it is obvi-
ous that the statement is not complete, To be specific, a statement is continued if the last token on a line is
an operator, comma, left brace, or left parenthesis. (A statement is not continued just because of unbal-
anced braces or parentheses.) Some compound statements are also continued automatically; these points
are noted in the sections on executable statements.

2.2.5. Multiple Statements on a Line

A semicolon terminates the current statement. Thus, it is possible to write more than one statement
on a line. A line consisting only of a semicolon, or a semicolon following a semicolon, forms a null state-
ment.

2.3. Tokens

A program is made up of a sequence of tokens. Each token is a sequence of characters. A blank ter-
minates any token other than a quoted string. End of line also terminates a token unless explicit continua-
tion (see above) is signaled by an underscore.

2.3.1. Identifiers

An identifier is a letter or a letter followed by letters or digits. The following is a list of the reserved
words that have special meaning in EFL. They will be discussed later.

array exit precision
automatic external procedure
break false read

call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit  sizeof
default include static
define initial struct
dimension integer  subroutine
do internal ftrue
double lengthof until
doubleprecision logical value

else long while

end next write
equivalence option writebin

The use of these words is discussed below. These words may not be used for any other purpose.

2.3.2, Strings

A character string is a sequence of characters surrounded by quotation marks. If the string is
bounded by single-quote marks ( * ), it may contain double quote marks ( " ), and vice versa. A quoted
string may not be broken across a line boundary.

“hello there”
"ain’t misbehavin™"
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2.3.3. Integer Constants
An integer constant is a sequence of one or more digits.

0
57
123456

2.3.4. Floating Point Constants

A floating point constant contains a dot and/or an exponent field. An exponent field is a letter d or e
followed by an optionally signed integer constant. If I and J are integer constants and E is an exponent
field, then a floating constant has one of the following forms:

J

L
J
IE
IE
JE
IJE

2.3.5. Punctuation
Certain characters are used to group or separate objects in the language. These are

paréntheses ()

braces {1}
comma ,
semicolon ;
colon

end-of-line

The end-of-line is a token (statement separator) when the line is neither blank nor continued.

2.3.6. Operators
The EFL operators are written as sequences of one or more non-alphanumeric characters.

4 — k[ k%

< L= > >= == "=
&& || & |

= —— /= L2

&&= ||= &= |=
-> . $

A dot (“.”) is an operator when it qualifies a structure element name, but not when it acts as a decimal point
in a numeric constant. There is a special mode (see the Atavisms section) in which some of the operators
may be represented by a string consisting of a dot, an identifier, and a dot (e.g., .It. ).

2.4. Macros

EFL has a simple macro substitution facility. An identifier may be defined to be equal to a string of
tokens; whenever that name appears as a token in the program, the string replaces it. A macro name is
given a value in a define statement like

definecount n+=1
Any time the name count appears in the program, it is replaced by the statement

n+=1
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A define statement must appear alone on a line; the form is
define name rest-of-line

Trailing comments are part of the string.
3. PROGRAM FORM

3.1. Files

A file is a sequence of lines. A file is compiled as a single unit. It may contain one or more pro-
cedures. Declarations and options that appear outside of a procedure affect the succeeding procedures on
that file.

3.2. Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has a name by which it is
invoked. (The first procedure invoked during execution, known as the main procedure, has the null name.)
Procedure calls and argument passing are discussed in Section 8.

3.3. Blocks

Statements may be formed into groups inside of a procedure. To describe the scope of names, it is
convenient to introduce the ideas of block and of nesting level. The beginning of a program file is at nest-
ing level zero. Any options, macro definitions, or variable declarations there are also at level zero. The
text immediately following a procedure statement is at level 1. After the declarations, a left brace marks
the beginning of a new block and increases the nesting level by 1; a right brace drops the level by 1.
(Braces inside declarations do not mark blocks.) (See Section 7.2). An end statement marks the end of the
procedure, level 1, and the return to level 0. A name (variable or macro) that is defined at level k& is defined
throughout that block and in all deeper nested levels in which that name is not redefined or redeclared.
Thus, a procedure might look like the following:

# block 0
procedure george
real x
x=2
ifx>2)
{ # new block
integer x # a different variable
dox=17
write(,x)
} # end of block
end # end of procedure, return to block 0

3.4. Statements
A statement is terminated by end of line or by a semicolon. Statements are of the following types:
Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in Section 10. The include, define, and end statements have been
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described above; they may not be followed by another statement on a line. Each procedure begins with a
procedure statements and finishes with an end statement; these are discussed in Section 8. Declarations
describe types and values of variables and procedures. Executable statements cause specific actions to be
taken. A block is an example of an executable statement; it is made up of declarative and executable state-
ments.

3.5. Labels

An executable statement may have a label ‘which may be used in a branch statement. A label is an
identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal("bad input”)

4. DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The programmer may define objects made up
of variables of basic type; other aggregates may then be defined in terms of previously defined aggregates.

4.1. Basic Types
The basic types are

logical
integer
field(m:n)
real

complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer may take on any whole number
value in some machine-dependent range. A field quantity is an integer restricted to a particular closed
interval (Im:n]). A ‘real’ quantity is a floating point approximation to a real or rational number. A long
real is a more precise approximation to a rational. (Real quantities are represented as single precision float-
ing point numbers; long reals are double precision floating point numbers.) A complex quantity is an
approximation to a complex number, and is represented as a pair of reals. A character quantity is a fixed-
length string of n characters.

4.2. Constants
There is a notation for a constant of each basic type.
A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus sign, as in

17
94 .
+6

0

A long real (‘double precision’) constant is a floating point constant containing an exponent field that
begins with the letter d. A real (‘single precision’) constant is any other floating point constant. A real or
long real constant may be preceded by a plus or minus sign. The following are valid real constants:
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173

-4

79e—6 (=7.9x107%)
14e9 (=1.4x10'9)

The following are valid long real constants

79d-6 (=7.9x1079)
5d3

A character constant is a quoted string.

4.3. Variables

A variable is a quantity with a name and a location. At any particular time the variable may also
have a value. (A variable is said to be undefined before it is initialized or assigned its first value, and after
certain indefinite operations are performed.) Each variable has certain attributes:

4.3.1. Storage Class

The association of a name and a location is either transitory or permanent. Transitory association is
achieved when arguments are passed to procedures. Other associations are permanent (static). (A future
extension of EFL, may include dynamically allocated variables.)

4.3.2, Scope of Names

The names of common areas are global, as are procedure names: these names may be used any-
where in the program. All other names are local to the block in which they are declared.

4.3.3. Precision

Floating point variables are either of normal or long precision. This attribute may be stated indepen-
dently of the basic type.

4.4. Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the same type. The index
set is always a cross-product of intervals of integers. The lower and upper bounds of the intervals must be
constants for arrays that are local or common. A formal argument array may have intervals that are of
length equal to one of the other formal arguments. An element of an array is denoted by the array name
followed by a parenthesized comma-separated list of integer values, each of which must lie within the
corresponding interval. (The intervals may include negative numbers.) Entire arrays may be passed as
procedure arguments or in input/output lists, or they may be initialized; all other array references must be
to individual elements.

4.5. Structures

It is possible to define new types which are made up of elements of other types. The compound
object is known as a structure; its constituents are called members of the structure. The structure may be
given a name, which acts as a type name in the remaining statements within the scope of its declaration.
The elements of a structure may be of any type (including previously defined structures), or they may be
arrays of such objects. Entire structures may be passed to procedures or be used in input/output lists; indi-
vidual elements of structures may be referenced. The uses of structures will be detailed below. The fol-
lowing structure might represent a symbol table:
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struct tableentry
{

character(8) name

integer hashvalue

integer numberofelements
field(0:1) initialized, used, set
field(0:10) type

) .

5. EXPRESSIONS
Expressions are syntactic forms that yield a value. An expression may have any of the following
forms, recursively applied:

primary

( expression )

unary-operator expression

expression binary-operator expression

In the following table of operators, all operators on a line have equal precedence and have higher pre-
cedence than operators on later lines. The meanings of these operators are described in sections 5.3 and
54.

= —= *= [= *¥= &= l: &&= ”:
Examples of expressions are

a<b && b<c
—(a + sin(x)) / (5+cos(x))**2

5.1. Primaries
Primaries are the basic elements of expressions, as follows:

5.1.1. Constants
Constants are described in Section 4.2.

5.1.2. Variables

Scalar variable names are primaries. They may appear on the left or the right side of an assignment.
Unqualified names of aggregates (structures or arrays) may only appear as procedure arguments and in
input/output lists.

5.1.3. Array Elements

An element of an array is denoted by the array name followed by a parentheslzed list of subscripts,
one integer value for each declared dimension:

a(d)
b(6,-3,4)
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5.1.4. Structure Members

A structure name followed by a dot followed by the name of a member of that structure constitutes a
reference to that element. If that element is itself a structure, the reference may be further qualified.

ab
x(3).y(4).z(5)

5.1.5. Procedure Invocations
A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename ( expression )
procedurename ( expression-1, ..., expression-n )

The procedurename is either the name of a variable declared external or it is the name of a function
known to the EFL compiler (see Section 8.5), or it is the actual name of a procedure, as it appears in a pro-
cedure statement. If a procedurename is declared external and is an argument of the current procedure, it
is associated with the procedure name passed as actual argument; otherwise it is the actual name of a pro-
cedure. Each expression in the above is called an acrual argument. Examples of procedure invocations
are

f(x)
work()
g(x, y+3, ’xx’)

When one of these procedure invocations is to be performed, each of the actual argument expressions is
first evaluated. The types, precisions, and bounds of actual and formal arguments should agree. If an
actual argument is a variable name, array element, or structure member, the called procedure is permitted
to use the corresponding formal argument as the left side of an assignment or in an input list; otherwise it
may only use the value. After the formal and actual arguments are associated, control is passed to the first
executable statement of the procedure. When a return statement is executed in that procedure, or when
control reaches the end statement of that procedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by the attributes of the procedurename that are
declared or implied in the calling procedure, which must agree with the attributes declared for the function
in its procedure. In the special case of a generic function, the type of the result is also affected by the type
of the argument. See Chapter 8 for details.

5.1.6. Input/Output Expressions

The EFL input/output syntactic forms may be used as integer primaries that have a non-zero value if
an error occurs during the input or output. See Section 7.7.

5.1.7. Coercions
An expression of one precision or type may be converted to another by an expression of the form

attributes ( expression )

At present, the only attributes permitted are precision and basic types. Attributes are separated by white
space. An arithmetic value of one type may be coerced to any other arithmetic type; a character expression
of one length may be coerced to a character expression of another length; logical expressions may not be
coerced to a nonlogical type. As a special case, a quantity of complex or long complex type may be con-
structed from two integer or real quantities by passing two expressions (separated by a comma) in the coer-
cion. Examples and equivalent values are

integer(5.3) =§
long real(5) = 5.0d0
complex(5,3) = 5+3i
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Most conversions are done implicitly, since most binary operators permit operands of different arithmetic
types. Explicit coercions are of most use when it is necessary to convert the type of an actual argument to
match that of the corresponding formal parameter in a procedure call.

5.1.8. Sizes
There is a notation which yields the amount of memory required to store a datum or an item of
specified type:
sizeof ( leftside )
sizeof ( attributes)

In the first case, leftside can denote a variable, array, array element, or structure member. The value of
sizeof is an integer, which gives the size in arbitrary units. If the size is needed in terms of the size of some
specific unit, this can be computed by division:

sizeof(x) / sizeof(integer)
yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof because certain data
types require final padding on some machines. The lengthof operator gives this larger value, again in arbi-
trary units. The syntax is

lengthof ( leftside )
lengthof ( attributes )

5.2. Parentheses

An expression surrounded by parentheses is itself an expression. A parenthesized expression must
be evaluated before an expression of which it is a part is evaluated.

5.3. Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary operator has the same
type as its operand.

5.3.1. Arithmetic
Unary + has no effect. A unary — yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator — subtracts one from its
operand. The value of either expression is the resuit of the addition or subtraction. For these two opera-
tors, the operand must be a scalar, array element, or structure member of arithmetic type. (As a side effect,
the operand value is changed.)

5.3.2. Logical
The only logical unary operator is complement (). This operator is defined by the equations
~ true = false
- false = true

5.4. Binary Operators

Most EFL operators have two operands, separated by the operator. Because the character set must
be limited, some of the operators are denoted by strings of two or three special characters. All binary
operators except exponentiation are left associative,
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54.1. Arithmetic

The binary arithmetic operators are

addition
subtraction
multiplication
division

**  exponentiation

~ % | +

Exponentiation is right associative: a**b**c = a**(b**c) = a®) The operations have the conventional
meanings: 8+2=10,8-2=6,8+2=16,8/2=4,8++2=82=64.

The type of the result of a binary operation A op B is determined by the types of its operands:

Type of B
Type of A integer real long real complex long complex
integer integer real long real complex long complex
real real real long real complex long complex
long real long real long real long real long complex  long complex
complex complex complex long complex complex long complex
long complex | long complex long complex long complex long complex long complex

If the type of an operand differs from the type of the result, the calculation is done as if the operand were
first coerced to the type of the result. If both operands are integers, the result is of type integer, and is com-
puted exactly. (Quotients are truncated toward zero, so 8/3=2.)

5.4.2. Logical
The two binary logical operations in EFL, and and or, are defined by the truth tables:
A B AandB AorB
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of evaluation is specified. The expres-
sion

a&&b

is evaluated by first evaluating a; if it is false then the expression is false and b is not evaluated; otherwise
the expression has the value of b. The expression '
al|b

is evaluated by first evaluating a; if it is true then the expression is true and b is not evaluated; otherwise
the expression has the value of b. The other forms of the operators (& for and and | for or) do not imply
an order of evaluation. With the latter operators, the compiler may speed up the code by evaluating the
operands in any order.

5.4.3. Relational Operators
There are six relations between arithmetic quantities. These operators are not associative.
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EFL Operator Meaning

< <  lessthan

<= < less than or equal to
== = equalto

= # notequal to

> >  greater than

>= 2  greater than or equal

Since the complex numbers are not ordered, the only relational operators that may take complex operands
are == and "=, The character collating sequence is not defined.

5.4.4. Assignment Operators
All of the assignment operators are right associative. The simple form of assignment is
basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure member of basic type. This state-
ment computes the expression on the right side, and stores that value (possibly after coercing the value to
the type of the left side) in the location named by the left side. The value of the assignment expression is
the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary arithmetic and logical operator.
In each case, a op=b is equivalent to @ = a op b. (The operator and equal sign must not be separated by
blanks.) Thus, n+=2 adds 2 ton. The location of the left side is evaluated only once.

5.5. Dynamic Structures

EFL does not have an address (pointer, reference) type. However, there is a notation for dynamic
structures,

leftside —> structurename

This expression is a structure with the shape implied by structurename but starting at the location of left-
side. In effect, this overlays the structure template at the specified location. The leftside must be a vari-
_ able, array, array element, or structure member. The type of the leftside must be one of the types in the
structure declaration. An element of such a structure is denoted in the usual way using the dot operator.
Thus,

place(i) — st.elt
refers to the elt member of the st structure starting at the i#* element of the array place.

5.6. Repetition Operator
Inside of a list, an element of the form

integer-constant-expression $ constant-expression
is equivalent to the appearance of the expression a number of times equal to the first expression. Thus,
(3,3%4,5)
is equivalent to
3,4,4,4,5

5.7. Constant Expressions

If an expression is built up out of operators (other than functions) and constants, the value of the
expression is a constant, and may be used anywhere a constant is required.
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6. DECLARATIONS
Declarations statement describe the meaning, shape, and size of named objects in the EFL language.

6.1. Syntax

A declaration statement is made up of attributes and variables. Declaration statements are of two
form:

attributes variable-list
attributes { declarations }

In the first case, each name in the variable-list has the specified attributes. In the second, each name in the
declarations also has the specified attributes. A variable name may appear in more than one variable list,
s0 long as the attributes are not contradictory. Each name of a nonargument variable may be accompanied
by an initial value specification. The declarations inside the braces are one or more declaration statements.
Examples of declarations are

integer k=2
long real b(7,3)

common(cname)
{
integer i
long real array(5,0:3) x, y
character(7) ch
}

6.2. Attributes

6.2.1. Basic Types

The following are basic types in declarations
logical
integer
field(m:n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant expressions with the properties k>0 and
n>m,

6.2.2, Arrays
The dimensionality may be declared by an array attribute
array(bi,...,b)

Each of the b; may either be a single integer expression or a pair of integer expressions separated by a
colon. The pair of expressions form a lower and an upper bound; the single expression is an upper bound
with an implied lower bound of 1. The number of dimensions is equal to 7, the number of bounds. All of
the integer expressions must be constants. An exception is permitted only if all of the variables associated
with an array declarator are formal arguments of the procedure; in this case, each bound must have the pro-
perty that upper —lower+1 is equal to a formal argument of the procedure. (The compiler has limited abil-
ity to simplify expressions, but it will recognize important cases such as (0:n—1). The upper bound for the
last dimension (b, ) may be marked by an asterisk ( * ) if the size of the array is not known. The following
are legal array attributes:
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array(5)

array(5, 1:5, -3:0)
array(5, *)
array(0:m-1, m)

6.2.3. Structures
A structure declaration is of the form

struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were the name of a type in the rest of its scope.
Each name that appears inside the declarations is a member of the structure, and has a special meaning
when used to qualify any variable declared with the structure type. A name may appear as a member of
any number of structures, and may also be the name of an ordinary variable, since a structure member
name is used only in contexts where the parent type is known. The following are valid structure attributes

struct xx
{

integer a, b
real x(5)
}

struct { xx z(3); character(5) y }
The last line defines a structure containing an array of three xx’s and a character string.

6.2.4. Precision

Variables of floating point (real or complex) type may be declared to be long to ensure they have
higher precision than ordinary floating point variables. The default precision is short.

6.2.5. Common

Certain objects called common areas have extemnal scope, and may be referenced by any procedure
that has a declaration for the name using a

common ( commonareaname )

attribute. All of the variables declared with a particular common attribute are in the same block; the order
in which they are declared is significant. Declarations for the same block in differing procedures must
have the variables in the same order and with the same types, precision, and shapes, though not necessarily
with the same names. '

6.2.6. External

If a name is used as the procedure name in a procedure invocation, it is implicitly declared to have
the external attribute. If a procedure name is to be passed as an argument, it is necessary to declare it in a
statement of the form

external name

If a name has the external attribute and it is a formal argument of the procedure, then it is associated with a
procedure identifier passed as an actual argument at each call. If the name is not a formal argument, then
that name is the actual name of a procedure, as it appears in the corresponding procedure statement.

6.3. Variable List

The elements of a variable list in a declaration consist of a name, an optional dimension
specification, and an optional initial value specification. The name follows the usual rules. The dimension
specification is the same form and meaning as the parenthesized list in an array attribute. The initial value



PS2:6-16 The Programming Language EFL

specification is an equal sign (=) followed by a constant expression. If the name is an array, the right side
of the equal sign may be a parenthesized list of constant expressions, or repeated elements or lists; the total
number of elements in the list must not exceed the number of elements of the array, which are filled in
column-major order. '

6.4. The Initial Statement
An initial value may also be specified for a simple variable, array, array element, or member of a
structure using a statement of the form
initial var = val

The var may be a variable name, array element specification, or member of structure. The right side fol-
lows the same rules as for an initial value specification in other declaration statements.

7. EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements — otherwise it would not do anything and
would not need to be run. Statements are frequently made up of other statements. Blocks are the most
obvious case, but many other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can be broken without an
explicit continuation. A square ([J) in the syntax represents a point where the end of a line will be ignored.

7.1. Expression Statements

7.1.1. Subroutine Call

A procedure invocation that returns no value is known as a subroutine call. Such an invocation is a
statement. Examples are

work(in, out)
run()

Input/output statements (see Section 7.7) resemble procedure invocations but do not yield a value. If
an error occurs the program stops.

7.1.2, Assignment Statements
An expression that is a simple assignment (=) or a compound assignment (+= etc.) is a statement:
a=b
a = sin(x)/6
X*=zy

7.2. Blocks

A block is a compound statement that acts as a statement. A block begins with a left brace, option-
ally followed by declarations, optionally followed by executable statements, followed by a right brace. A
block may be used anywhere a statement is permitted. A block is not an expression and does not have a
value. An example of a block is

{
integeri # this variable is unknown outside the braces
big=0
doi=1n
if(big < a(@)
big = a(i)
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7.3. Test Statements
Test statements permit execution of certain statements conditional on the truth of a predicate.

7.3.1. If Statement
The simplest of the test statements is the if statement, of form

* if (logical-expression ) [ statement

The logical expression is evaluated; if it is true, then the statement is executed.

7.3.2. If-Else
A more general statement is of the form

if (logical-expression ) [ statement-1 O else O statement-2

If the expression is true then statement-1 is executed, otherwise statement-2 is executed. Either of the
consequent statements may itself be an if-else so a completely nested test sequence is possible:

if(x<y)
if(a<b)
k=1
else
k=2
else
if(a<b)
m=1
else
m=2

An else applies to the nearest preceding un-elsed if. A more common use is as a sequential test:

if(x==1)
k=1

else if(x==3 | x==5)
k=2

else
k=3

7.3.3. Select Statement
A multiway test on the value of a quantity is succinctly stated as a select statement, which has the
general form
select( expression ) O block
Inside the block two special types of labels are recognized. A prefix of the form
case constant :

marks the statement to which control is passed if the expression in the select has a value equal to one of the
case constants. If the expression equals none of these constants, but there is a label default inside the
select, a branch is taken to that point; otherwise the statement following the right brace is executed. Once
execution begins at a case or default label, it continues until the next case or default is encountered. The
else-if example above is better written as
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select(x)

{

case 1:
k=1

case 3,5:
k=2

default:
k=3

}

Note that control does not ‘fall through’ to the next case.

7.4. Loops

The loop forms provide the best way of repeating a statement or sequence of operations. The sim-
plest (while) form is theoretically sufficient, but it is very convenient to have the more general loops avail-
able, since each expresses a mode of control that arises frequently in practice.

7.4.1. While Statement
This construct has the form
while ( logical-expression ) O] statement

The expression is evaluated; if it is true, the statement is executed, and then the test is performed again. If
the expression is false, execution proceeds to the next statement.

7.5. For Statement
The for statement is a more elaborate looping construct. It has the form

for ( initial-statement , (1 logical-expression , (0 iteration-statement ) 0] body-statement
Except for the behavior of the next statement (see Section 7.6.3), this construct is equivalent to

initial-statement

while ( logical-expression )
{
body-statement
iteration-statement

}

This form is useful for general arithmetic iterations, and for various pointer-type operations. The sum of
the integers from 1 to 100 can be computed by the fragment

n=0
for(i=1,i<=100,i +=1)
n+=i
Alternatively, the computation could be done by the single statement
for( {n=0; i=1}, i<=100, {n+=i; ++i})
H

Note that the body of the for loop is a null statement in this case. An example of following a linked list
will be given later.

7.5.1. Repeat Statement
The statement

repeat [ statement
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executes the statement, then does it again, without any termination test. Obviously, a test inside the state-
ment is needed to stop the loop.

7.5.2. Repeat...Until Statement
The while loop performs a test before each iteration. The statement

repeat O statement O] until ( logical-expression )

executes the statement, then evaluates the logical; if the logical is true the loop is complete; otherwise con-
trol returns to the statement. Thus, the body is always executed at least once. The until refers to the
nearest preceding repeat that has not been paired with an until. In practice, this appears to be the least fre-
quently used looping construct.

7.5.3. Do Loops
The simple arithmetic progression is a very common one in numerical applications. EFL has a spe-
cial loop form for ranging over an ascending arithmetic sequence

do variable = expression-1, expression-2, expression-3
statement

The variable is first given the value expression-1. The statement is executed, then expression-3 is added to
the variable. The loop is repeated until the variable exceeds expression-2. If expression-3 and the preced-
ing comma are omitted, the increment is taken to be 1. The loop above is equivalent to

t2 = expression-2
- t3 = expression-3
for(variable = expression-1, variable <= 2, variable += t3)
statement

(The compiler translates EFL do statements into Fortran DO statements, which are in turn usually compiled
into excellent code.) The do variable may not be changed inside of the loop, and expression-1 must not
exceed expression-2. The sum of the first hundred positive integers could be computed by

n=0
doi=1,100
n+=i

7.6. Branch Statements
Most of the need for branch statements in programs can be averted by using the loop and test con-
structs, but there are programs where they are very useful.

7.6.1. Goto Statement
The most general, and most dangerous, branching statement is the simple unconditional
goto label

After executing this statement, the next statement performed is the one following the given label. Inside of
a select the case labels of that block may be used as labels, as in the following example:
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select(k)

{
case 1:

error(7)
case 2:

k=2

goto case 4
case 3:

k=5

goto case 4
case 4;

fixup(k)

goto default
default:

prmsg("ouch")
}

{If two select statements are nested, the case labels of the outer select are not accessible from the inner
one.)

7.6.2. Break Statement

A safer statement is one which transfers control to the statement following the current select or loop
form. A statement of this sort is almost always needed in a repeat loop:

repeat

{
do a computation

if( finished )
break
}

More general forms permit controlling a branch out of more than one construct.
break 3

transfers control to the statement following the third loop and/or select surrounding the statement. It is
possible to specify which type of construct (for, while, repeat, do, or select) is to be counted. The state-
ment

break while
breaks out of the first surrounding while statement. Either of the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

7.6.3. Next Statement

The next statement causes the first surrounding loop statement to go on to the next iteration: the next
operation performed is the test of a while, the iteration-statement of a for, the body of a repeat, the test of
a repeat...until, or the increment of a do. Elaborations similar to those for break are available:
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next

next 3
next 3 for
next for 3

A next statement ignores select statements,

7.6.4. Return

The last statement of a procedure is followed by a return of control to the caller. If it is desired to
effect such a return from any other point in the procedure, a

return

statement may be executed. Inside a function procedure, the function value is specified as an argument of
the statement:

return ( expression )

7.7. Input/Output Statements

EFL has two input statements (read and readbin), two output statements (write and writebin), and
three control statements (endfile, rewind, and backspace). These forms may be used either as a primary
with a integer value or as a statement. If an exception occurs when one of these forms is used as a state-
ment, the result is undefined but will probably be treated as a fatal error. If they are used in a context
where they return a value, they return zero if no exception occurs. For the input forms, a negative value
indicates end-of-file and a positive value an error. The input/output part of EFL very strongly reflects the
facilities of Fortran.

7.7.1. Input/Output Units

Each J/O statement refers to a ‘unit’, identified by a small positive integer, - Two special units are
defined by EFL, the standard input unit and the standard output unit. These particular units are assumed if
no unit is specified in an /O transmission statement.

The data on the unit are organized into records. These records may be read or written in a fixed
sequence, and each transmission moves an integral number of records. Transmission proceeds from the
first record until the end of file.

7.7.2. Binary Input/Qutput

The readbin and writebin statements transmit data in a machine-dependent but swift manner. The
statements are of the form

writebin( unit , binary-output-list )
readbin( unit , binary-input-list)

Each statement moves one unformatted record between storage and the device. The unit is an integer
expression. A binary-output-list is an iolist (see below) without any format specifiers. A binary-input-list
is an iolist without format specifiers in which each of the expressions is a variable name, array element, or
structure member.

7.7.3. Formatted Input/Output

The read and write statements transmit data in the form of lines of characters. Each statement
moves one or more records (lines). Numbers are translated into decimal notation. The exact form of the
lines is determined by format specifications, whether provided explicitly in the statement or implicitly. The
syntax of the statements is
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write( unit , formatted-output-list )
read( unit , formatted-input-list )

The lists are of the same form as for binary I/O, except that the lists may include format specifications. If
the unit is omitted, the standard input or output unit is used.

1.7.4. Tolists

An iolist specifies a set of values to be written or a set of variables into which values are to be read.
An iolist is a list of one or more ioexpressions of the form

expression

{ iolist }

do-specification { iolist }
For formatted I/O, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the values in the braces are
transmitted repeatedly until the do execution is complete.

7.7.5. Formats

The following are permissible format-specifiers. The quantities w, d, and k must be integer constant
expressions.
i(w) integer with w digits
f(w,d)  floating point number of w characters,
d of them to the right of the decimal point.
e(w,d) floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked with the letter e
I(w) logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively
¢ character string of width equal to the length of the datum
c(w) character string of width w
s(k) skip & lines
x(k) skip k spaces
" use the characters inside the string as a Fortran format

If no format is specified for an item in a formatted input/output statement, a default form is chosen.

If an item in a list is an array name, then the entire array is transmitted as a sequence of elements,
each with its own format. The elements are transmitted in column-major order, the same order used for
array initializations.

7.7.6. Manipulation statements
The three input/output statements
backspace(unit)

rewind(unit)
endfile(unit)

look like ordinary procedure calls, but may be used either as statements or as integer expressions which
yield non-zero if an error is detected. backspace causes the specified unit to back up, so that the next read
will re-read the previous record, and the next write will over-write it. rewind moves the device to its
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beginning, so that the next input statement will read the first record. endfile causes the file to be marked so
that the record most recently written will be the last record on the file, and any attempt to read past is an
error.

8. PROCEDURES

Procedures are the basic unit of an EFL program, and provide the means of segmenting a program
into separately compilable and named parts.

8.1. Procedure Statement
Each procedure begins with a statement of one of the forms

procedure

attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ( name )

The first case specifies the main procedure, where execution begins. In the two other cases, the attributes
may specify precision and type, or they may be omitted entirely. The precision and type of the procedure
may be declared in an ordinary declaration statement. If no type is declared, then the procedure is called a
subroutine and no value may be returned for it. Otherwise, the procedure is a function and a value of the
declared type is returned for each call. Each name inside the parentheses in the last form above is called a
formal argument of the procedure.

8.2. End Statement
Each procedure terminates with a statement

end

8.3. Argument Association

When a procedure is invoked, the actual arguments are evaluated. If an actual argument is the name
of a variable, an array element, or a structure member, that entity becomes associated with the formal argu-
ment, and the procedure may reference the values in the object, and assign to it. Otherwise, the value of
the actual is associated with the formal argument, but the procedure may not attempt to change the value of
that formal argument.

If the value of one of the arguments is changed in the procedure, it is not permitted that the
corresponding actual argument be associated with another formal argument or with a common element that
is referenced in the procedure.

8.4. Execution and Return Values

After actual and formal arguments have been associated, control passes to the first executable state-
ment of the procedure. Control returns to the invoker either when the end statement of the procedure is
reached or when a return statement is executed. If the procedure is a function (has a declared type), and a
return(value ) is executed, the value is coerced to the correct type and precision and returned.

8.5. Known Functions

A number of functions are known to EFL, and need not be declared. The compiler knows the types
of these functions. Some of them are generic; i.e., they name a family of functions that differ in the types
of their arguments and retum values. The compiler chooses which element of the set to invoke based upon
the attributes of the actual arguments.
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8.5.1. Minimum and Maximum Functions

The generic functions are min and max. The min calls return the value of their smallest argument;
the max calls return the value of their largest argument. These are the only functions that may take dif-
ferent numbers of arguments in different calls. If any of the arguments are long real then the result is long
real, Otherwise, if any of the arguments are real then the result is real; otherwise all the arguments and
the result must be integer. Examples are

mi.ll(s, X, -3020)
max(i, z)

8.5.2. Absolute Value

The abs function is a generic function that returns the magnitude of its argument. For integer and
real arguments the type of the result is identical to the type of the argument; for complex arguments the
type of the result is the real of the same precision.

8.5.3. Elementary Functions

The following generic functions take arguments of real, long real, or complex type and return a
result of the same type:

sin sine function

cos cosine function

exp exponential function (e*).
log natural (base ¢) logarithm

logl) common (base 10) logarithm
sqrt square root function (‘/; ).

In addition, the following functions accept only real or long real arguments:

atan  atan(x)=tan"x

atan2  atan2(x,y)=tan-! %f-

8.5.4. Other Generic Functions

The sign functions takes two arguments of identical type; sign(x,y)=s5gn(y)|x|. The mod func-
tion yields the remainder of its first argument when divided by its second. These functions accept integer
and real arguments.

9. ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of old Fortran or Ratfor
programs to EFL.

9.1. Escape Lines

In order to make use of nonstandard features of the local Fortran compiler, it is occasionally neces-
sary to pass a particular line through to the EFL compiler output. A line that begins with a percent sign
(‘%) is copied through to the output, with the percent sign removed but no other change. Inside of a pro-
cedure, each escape line is treated as an executable statement. If a sequence of lines constitute a continued
Fortran statement, they should be enclosed in braces.

9.2, Call Statement
A subroutine call may be preceded by the keyword call.
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call joe
call work(17)

9.3. Obsolete Keywords
The following keywords are recognized as synonyms of EFL keywords:

Fortran EFL
double precision  long real
function procedure
subroutine procedure (untyped)

9.4. Numeric Labels

Standard statement labels are identifiers. A numeric (positive integer constant) label is also permit-
ted; the colon is optional following a numeric label.

9.5. Implicit Declarations

If a name is used but does not appear in a declaration, the EFL compiler gives a warning and
assumes a declaration for it. If it is used in the context of a procedure invocation, it is assumed to be a pro-
cedure name; otherwise it is assumed to be a local variable defined at nesting level 1 in the current pro-
cedure, The assumed type is determined by the first letter of the name. The association of letters and types
may be given in an implicit statement, with syntax

implicit ( letter-list) type
where a letter-list is a list of individual letters or ranges (pair of letters separated by a minus sign). If no
implicit statement appears, the following rules are assumed:

implicit (a—h, 0—z) real
implicit (i—n) integer

9.6. Computed goto

Fortran contains an indexed multi-way branch; this facility may be used in EFL by the computed
GOTO:

goto ( label ), expression
The expression must be of type integer and be positive but be no larger than the number of labels in the list.
Control is passed to the statement marked by the label whose position in the list is equal to the expression.

9.7. Go To Statement
In unconditional and computed goto statements, it is permissible to separate the go and to words, as
in

- 80 to Xyz

9.8. Dot Names

Fortran uses a restricted character set, and represents certain operators by multi-character sequences.
There is an option (dots=on; see Section 10.2) which forces the compiler to recognize the forms in the
second column below:
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< Jt.
<= Jde.

> .gt.
>= .ge.
== £q.
= ne.
& .and.
| OF.
&&  .andand.
1 .oror.
- .not.
true .true.
false .false.

In this mode, no structure element may be named It, le, etc. The readable forms in the left column are
always recognized.
9.9. Complex Constants
A complex constant may be written as a parenthesized list of real quantities, such as
1.5,3.0)
The preferred notation is by a type coercion,
‘ complex(1.5, 3.0)

9.10. Function Values

The preferred way to return a value from a function in EFL is the return{value ) construct. How-
ever, the name of the function acts as a variable to which values may be assigned; an ordinary return state-
ment returns the last value assigned to that name as the function value.
9.11. Equivalence

A statement of the form

equivalence vy, vj, ..., v,
declares that each of the v; starts at the same memory location. Each of the v; may be a variable name,
array element name, or structure member.
9.12. Minimum and Maximum Functions

There are a number of non-generic functions in this category, which differ in the required types of
the arguments and the type of the return value. They may also have variable numbers of arguments, but all
the arguments must have the same type.



The Programming Language EFL

PS2:6-27

Function = Argument Type Result Type
amin( integer real
aminl real real
min0 integer integer
minl real integer
dminl long real long real
amax( integer real
amax1 real real
max0 integer integer
max1 real integer
dmax1 long real long real

10. COMPILER OPTIONS

A number of options can be used to control the output and to tailor it for various compilers and sys-
tems. The defaults chosen are conservative, but it is sometimes necessary to change the output to match
peculiarities of the target environment.

Options are set with statements of the form
option opt
where each opt is of one of the forms
optionname
optionname = optionvalue

The optionvalue is either a constant (numeric or string) or a name associated with that option. The two
names yes and no apply to a number of options.

10.1. Default Options

Each option has a defauit setting. It is possible to change the whole set of defaults to those appropri-
ate for a particular environment by using the system option. At present, the only valid values are
system=unix and system=gcos.

10.2. Input Language Options

The dots option determines whether the compiler recognizes .It. and similar forms. The default set-
ting is no.
10.3. Input/Output Error Handling

The ioerror option can be given three values: none means that none of the /O statements may be
used in expressions, since there is no way to detect errors. The implementation of the ibm form uses
ERR= and END-= clauses. The implementation of the fortran77 form uses IOSTAT= clauses.

10.4. Continuation Conventions

By default, continued Fortran statements are indicated by a character in column 6 (Standard Fortran).
The option continue=column1 puts an ampersand (&) in the first column of the continued lines instead.

10.5. Default Formats

If no format is specified for a datum in an iolist for a read or write statement, a default is provided.
The default formats can be changed by setting certain options
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Option - Type
iformat integer
rformat real
dformat  long real
zformat complex
zdformat  long complex
Iformat logical

The associated value must be a Fortran format, such as

option rformat=f22.6

10.6. Alignments and Sizes

In order to implement character variables, structures, and the sizeof and lengthof operators, it is
necessary to know how much space various Fortran data types require, and what boundary alignment pro-
perties they demand. The relevant options are

Fortran Type Size Option Alignment Option

integer isize ialign
real rsize ralign
long real dsize dalign
complex zsize zalign
logical Isize lalign

The sizes are given in terms of an arbitrary unit; the alignment is given in the same units. The option char-
perint gives the number of characters per integer variable.

10.7. Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input and output units. The default
values are finin=5 and ftnout=6.

10.8. Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded by the value of the procheader
option.

No Hollerith strings will be passed as subroutine arguments if hollincall=no is specified.

The Fortran statement numbers normally start at 1 and increase by 1. It is possible to change the
increment value by using the deltastno option.

11. EXAMPLES

In order to show the flavor or programming in EFL, we present a few examples. They are short, but
show some of the convenience of the language.

11.1. File Copying

The following short program copies the standard input to the standard output, provided that the input
is a formatted file containing lines no longer than a hundred characters.
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procedure # main program
character(100) line

while( read(, line) ==0)
write( , line)
end

Since read returns zero until the end of file (or a read error), this program keeps reading and writing until
the input is exhausted.

11.2. Matrix Multiplication

The following procedure multiplies the mxn matrix a by the nXp matrix b to give the m Xp matrix c.
The calculation obeys the formula c;; = Y auxby;.

procedure matmul(a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), ¢(m,p)

doi=1m
doj=1p

{

c(i,j) =0

dok=1n

, c(ij) += a(ik) * b(k,j)
end

11.3. Searching a Linked List

Assume we have a list of pairs of numbers (x,y). The list is stored as a linked list sorted in ascend-
ing order of x values. The following procedure searches this list for a particular value of x and returns the
corresponding y value.

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

# list is an array of structures.
# Each structure contains a thread index value, an x, and a y value.

struct
{
integer nextindex
integer x, y
} list(*)
integer first, p, arg

for(p = first , p~=LAST && list(p).x<=x , p = list(p).nextindex)
if(list(p).x == x)
return( list(p).y )

return(NOTFOUND)
end

The search is a single for loop that begins with the head of the list and examines items until either the list is
exhausted (p==LAST) or until it is known that the specified value is not on the list (list(p).x > x). The two
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tests in the conjunction must be performed in the specified order to avoid using an invalid subscript in the
list(p) reference. Therefore, the && operator is used. The next element in the chain is found by the itera-
tion statement p=list(p).nextindex.

11.4. Walking a Tree

As an example of a more complicated problem, let us imagine we have an expression tree stored in a
common area, and that we want to print out an infix form of the tree. Each node is either a leaf (containing
a numeric value) or it is a binary operator, pointing to a left and a right descendant. In a recursive
language, such a tree walk would be implement by the following simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit stack to keep track of the
current state of the computation. The following procedure calls a procedure outch to print a single charac-
ter and a procedure outval to print a value.

procedure walk(first) # print out an expression tree

integer first ‘ # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

{

character(1) op

integer leftp, rightp

real val

} tree(100) # array of structures
struct

{

integer nextstate

integer nodep

} stackframe(100)
define NODE tree(currentnode)
define STACK stackframe(stackdepth)
# nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

# (initialize stack with root node
stackdepth =1
STACK.nextstate = DOWN
STACK.nodep = first
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while( stackdepth >0 )
{
currentnode = STACK.nodep
select(STACK .nextstate)
{
case DOWN:
if(NODE.op==" ") #a leaf
{
outval( NODE.val )
stackdepth—=1
}
else { #abinary operator node
outch( " (")
STACK nextstate = LEFT
stackdepth += 1

STACK .nextstate = DOWN
STACK.nodep = NODE leftp
}

case LEFT:
outch( NODE.op )
STACK.nextstate = RIGHT
stackdepth +=1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT:
outch( ")")
stackdepth —=1
}

}
end

12. PORTABILITY

One of the major goals of the EFL language is to make it easy to write portable programs. The out-
put of the EFL compiler is intended to be acceptable to any Standard Fortran compiler (unless the for-
tran77 option is specified).

12.1. Primitives

Certain EFL operations cannot be implemented in portable Fortran, so a few machine-dependent pro-
cedures must be provided in each environment.

12.1.1, Character String Copying

The subroutine eflasc is called to copy one character string to another. If the target string is shorter
than the source, the final characters are not copied. If the target string is longer, its end is padded with
blanks. The calling sequence is

subroutine eflasc(a, la, b, 1b)
integer a(*), 1a, b(*), Ib

and it must copy the first Ib characters from b to the first la characters of a.
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12.1.2. Character String Comparisons
The function eflcmc is invoked to determine the order of two character strings. The declaration is

integer function eflicmc(a, la, b, Ib)
integer a(*), la, b(*), Ib

The function returns a negative value if the string a of length la precedes the string b of length Ib. It
returns zero if the strings are equal, and a positive value otherwise. If-the strings are of differing length, the
comparison is carried out as if the end of the shorter string were padded with blanks.
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APPENDIX A. Relation Between EFL and Ratfor

There are a number of differences between Ratfor and EFL, since EFL is a defined language while
Ratfor is the union of the special control structures and the language accepted by the underlying Fortran
compiler. Ratfor running over Standard Fortran is almost a subset of EFL. Most of the features described
in the Atavisms section are present to ease the conversion of Ratfor programs to EFL.

There are a few incompatibilities: The syntax of the for statement is slightly different in the two
languages: the three clauses are separated by semicolons in Ratfor, but by commas in EFL. (The initial
and iteration statements may be compound statements in EFL because of this change). The input/output
syntax is quite different in the two languages, and there is no FORMAT statement in EFL. There are no
ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored declaration syntax, block structure, assign-
ment and sequential test operators, generic functions, and data structures. EFL permits more general forms
for expressions, and provides a more uniform syntax. (One need not worry about the Fortran/Ratfor res-
trictions on subscript or DO expression forms, for example.)

APPENDIX B. COMPILER

B.1. Current Version

The current version of the EFL compiler is a two-pass translator written in portable C. It implements
all of the features of the language described above except for long complex numbers. Versions of this
compiler run under the and UNIX} operating systems.

B.2. Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and file name (if known) on which
the error was detected. Warnings are given for variables that are used but not explicitly declared.

B.3. Quality of Fortran Produced

The Fortran produced by EFL is quite clean and readable. To the extent possible, the variable names
that appear in the EFL program are used in the Fortran code. The bodies of loops and test constructs are
indented. Statement numbers are consecutive. Few unneeded GOTO and CONTINUE statements are
used. It is considered a compiler bug if incorrect Fortran is produced (except for escaped lines). The fol-
lowing is the Fortran procedure produced by the EFL compiler for the matrix multiplication example (Sec-
tion 11.2):

subroutine matmul(a, b, ¢, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3i=1m
do 2j=1p
e, j) =0
do 1k=1n
c@, j) = c(, j)+al, k)*b(k, j)
1 continue
2 continue
3 continue
end

The following is the procedure for the tree walk (Section 11.4):

1 UNIX is a trademark of Bell Laboratories.
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subroutine walk(first)

integer first

common /nodes/ tree

integer tree(4, 100)

real treel(4, 100)

integer staame(2, 100), stapth, curode
integer consti(1)

equivalence (tree(1,1), treel(1,1))

data const1(1)/4h /

print out an expression tree
index of root node
array of structures

nextstate values

initialize stack with root node

stapth = 1
staame(l, stapth) = 1
staame(2, stapth) = first

1 if (stapth .le. 0) goto 9

curode = staame(2, stapth)
goto 7
if (tree(l, curode) .ne. constl(1)) goto 3
call outval(treel(4, curode))

¢ a leaf

3

(]

8

9

stapth = stapth-1
goto 4
call outch(1h()

a binary operator node

- staame(1, stapth) = 2

stapth = stapth+1

staame(1, stapth) = 1

staame(2, stapth) = tree(2, curode)
goto 8
call outch(tree(l, curode))
staame(l, stapth) = 3
stapth = stapth+1
staame(l, stapth) = 1
staame(2, stapth) = tree(3, curode)
goto 8
call outch(1h))
stapth = stapth-1
goto 8
if (staame(1, stapth) .eq. 3) goto 6
if (staame(1, stapth) .eq. 2) goto 5
if (staame(l, stapth) .eq. 1) goto 2

continue
goto 1
continue
end

APPENDIX C. CONSTRAINTS ON THE DESIGN OF THE EFL LANGUAGE

Although Fortran can be used to simulate any finite computation, there are realistic limits on the gen-
erality of a language that can be translated into Fortran. The design of EFL was constrained by the imple-
mentation strategy. Certain of the restrictions are petty (six character external names), but others are
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sweeping (lack of pointer variables). The following paragraphs describe the major limitations imposed by
Fortran.

C.1. External Names

External names (procedure and COMMON block names) must be no longer than six characters in
Fortran. Further, an external name is global to the entire program. Therefore, EFL can support block
structure within a procedure, but it can have only one level of external name if the EFL procedures are to
be compilable separately, as are Fortran procedures.

C.2. Procedure Interface

The Fortran standards, in effect, permit arguments to be passed between Fortran procedures either by
reference or by copy-in/copy-out. This indeterminacy of specification shows through into EFL. A pro-
gram that depends on the method of argument transmission is illegal in either language.

There are no procedure-valued variables in Fortran: a procedure name may only be passed as an
argument or be invoked; it cannot be stored. Fortran (and EFL) would be noticeably simpler if a procedure
variable mechanism were available.

C.3. Pointers

The most grievous problem with Fortran is its lack of a pointer-like data type. The implementation
of the compiler would have been far easier if certain hard cases could have been handled by pointers.
Further, the language could have been simplified considerably if pointers were accessible in Fortran.
(There are several ways of simulating pointers by using subscripts, but they founder on the problems of
external variables and initialization.)

C.4. Recursion

Fortran procedures are not recursive, so it was not practical to permit EFL procedures to be recur-
sive. (Recursive procedures with arguments can be simulated only with great pain.)

C.5. Storage Allocation

The definition of Fortran does not specify the lifetime of variables. It would be possible but cumber-
some to implement stack or heap storage disciplines by using COMMON blocks.
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1. Background

FP stands for a Functional Programming language. Functional programs deal with functions instead
of values. There is no explicit representation of state, there are no assignment statments, and hence, no
variables. Owing to the lack of state, FP functions are free from side-effects; so we say the FP is applica-
tive,

All functions take one argument and they are evaluated using the single FP operation, application
(the colon 2’ is the apply operator). For example, we read +:<3 4> as ‘‘apply the function ’+’ to its
argument <3 4>’’.

Functional programs express a functional-level combination of their components instead of describ-
ing state changes using value-oriented expressions. For example, we write the function returning the sin of
the cos of its input, i.e., sin (cos(x)), as: sin@ cos. This is a functional expression, consisting of the single
combining form called compose ('@’ is the compose operator) and its functional arguments sin and cos.

All combining forms take functions as arguments and return functions as results; functions may
either be applied, e.g., sin@ cos: 3, or used as a functional argument in another functional expression, e.g.,
tan @ sin @ cos.

As we have seen, FP’s combining forms allow us to express control abstractions without the use of
variables. The apply to all functional form (&) is another case in point. The function '& exp’ exponen-
tiates all the elements of its argument:

&exp : <1.02.0> = <2.718 7.389> (1.1)

In (1.1) there are no induction variables, nor a loop bounds specification. Moreover, the code is useful for
any size argument, 50 long as the sub-elements of its argument conform to the domain of the exp function.

We must change our view of the programming process to adapt to the functional style. Instead of
writing down a set of steps that manipulate and assign values, we compose functional expressions using the
higher-level functional forms. For example, the function that adds a scalar to all elements of a vector will
be written in two steps. First, the function that distributes the scalar amongst each element of the vector:

distl : <3 <4 6>>=<<34><36>> (1.2)
Next, the function that adds the pairs of elements that make up a sequence;
&+:<<34><36>>=<79> 1.3)

In a value-oriented programming language the computation would be expressed as:
&+ :distl : <3 <4 6>>, (14)

which means to apply ’distl’ to the input and then to apply '+’ to every element of the result. In FP we
write (1.4) as:

&+ @distl: <3 <4 6>>. (L.5)

The functional expression of (1.5) replaces the two step value expression of (1.4).

Often, functional expressions are built from the inside out, as in LISP. In the next example we
derive a function that scales then shifts a vector, i.e., for scalars a, » and a vector ¥, compute a + b,
This FP function will have three arguments, namely a,b and ¥. Of course, FP does not use formal
parameter names, so they will be designated by the function symbols 1, 2, 3. The first code segment scales
¥ by b (defintions are delimited with curly braces *{}°):

{scaleVec &* @ distl @ [2,3]} (1.6)
The code segment in (1.5) shifts the vector. The completed function is:
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{changeVec &+ @ distl @ [1 , scaleVec]) 1.7)

In the derivation of the program we wrote from right to left, first doing the dist!’s and then compos-
ing with the apply-to-all functional form. Using an imperative language, such as Pascal, we would write
the program from the outside in, writing the loop before inserting the arithmetic operators.

Although FP encourages a recursive programming style, it provides combining forms to avoid expli-
cit recursion. For example, the right insert combining form (!) can be used to write a function that adds
up a list of numbers:

1+ :<123>=6 (1.8)
The equivalent, recursive function is much longer:

{addNumbers (null -> %0 ; + @ [1, addNumbers @ tl])} (1.9)
The generality of the combining forms encourages hierarchical program development. Unlike APL,

which restricts the use of combining forms to certain builtin functions, FP allows combining forms to take
any functional expression as an argument.
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2. System Description

2.1. Objects

The set of objects Q consists of the atoms and sequences <xi, X3, ..., X¢g> (Where the x; € Q).
(Lisp users should note the similarity to the list structure syntax, just replace the parenthesis by angle
brackets and commas by blanks. There are no ’quoted’ objects, i.e., ’abc). The atoms uniquely determine
the set of valid objects and consist of the numbers (of the type found in FRANZ LIsP [Fod80]), quoted ascii
strings ("abcd"), and unquoted alphanumeric strings (abc3). There are three predefined atoms, T and F,
that correspond to the logical values ’true’ and ’false’, and the undefined atom ?, bottom. Bottom denotes
the value returned as the result of an undefined operation, e.g., division by zero. The empty sequence, <>
is also an atom. The following are examples of valid FP objects:

? 1.47 3883883388888
ab "CD" <1,<2,3>>
<> T <a,<>>

There is one restriction on object construction: no object may contain the undefined atom, such an object is
itself undefined, e.g., <1,? > = 7. This property is the so-called ‘‘bottom preserving property’’ [Ba78].

2.2. Application

This is the single FP operation and is designated by the colon (":"). For a function ¢ and an object x,
o:x is an application and its meaning is the object that results from applying o to x (i.e., evaluating 6(x)).
We say that ¢ is the operator and that x is the operand. The following are examples of applications:

+:<7,8> = 15 thel,23> = <23>
l:i<abecd> = a 2:<abyecd> = b

2.3. Functions

All functions (F) map objects into objects, moreover, they are strict:
0:?=?2,\t ceF (2.1)

To formally characterize the primitive functions, we use a modification of McCarthy’s conditional expres-
sions [Mc60}]:

P1—2€1;" " Dn —>E€x ;x4 2.2)
This statement is interpreted as follows: return function e if the predicate "py’ istrue , ..., e, if 'ps’ is
true. If none of the predicates are satisfied then default to e,41. It is assumed thatx, x;, y, y;, z; € Q.

2.3.1. Structural

Selector Functions
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For a nonzero integer 1,

Rix=
X=<X1, X2 ..., %k>10 < U<k 5 xy;
X=X, X2 000y XS XK SP<O > Xpipag; ?

pick: <n x> =
X=<X1, X2, ..., x>0 <n Sk o x,;
X=<X1,X2 ..., Xk> 1 —kSn<0 = Xp4ne1; ?

The user should note that the function symbols 1,2,3,... are to be distinguished from the atoms
1,2,3,....

last:x =
X=<> > <>
X=<X1, X2, .. .5 Xg> 1 k21 > x5 ?

first:x =
X=<> <>
X=<X Yy X2y ..oy Xg> k21 = x1;?

Tail Functions

th:x=
X=<X1> > <>}

X=X, X2 ooy > k22 ><Xg, ..., X>;?
thr:x =

=<X1> > <>}

X=X, X2 0oy Xg> K22 <Xy, 000, Xp1> 3 ?

Note: There is also a function front that is equivalent to tir.
Distribute from left and right

distl : x =
X=<Y ,<>> = <>y
XS<Y <21y 2200 v oy ZkDD =P <Y 213000y <Y 2k >>5 7
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distr: x =
=C<CD,Y > = <>
X=CKY L Y2 e v s P92 D> > S<Y1,Z2 D>500y<VksZ2 >>3 7
Identity
idix=x
out:x =x

Out is similar to id. Like id it returns its argument as the result, unlike id it prints its result on stdout
— It is the only function with a side effect. Out is intended to be used for debugging only.

Append left and right

apndl:x =
X=<Y,<>> =) <Yy >;

X=CY €21, 22 <« oy ZEDD> DSV, 21,22, - -0y k>3 7

apndr :x =
X=<<>,2> = <255
X=CKY 13 Y2 0o e s YE2ZD> =D <Y1, Y200 es Yy 2237

Transpose

trans : x =
X=CC D0y <S> = <)
XSKX X2 o oo s XE> =D <Pl e oo Ym>3 7

wherex,- =<Kt oo s Xim > N Yj T<X1js oo 1 Xkj >
1sisk , 1<j<m.

reverse : x =
x=<> -}
X=X X e vy Xk> =2 <Xy oo X120 2

Rotate Left and Right

rotl: x =
X=<CD> =) <O XR<CX D> S <X 1>)
X=<X1, X2, ..., Xg>XK22 = <X, .., Xk X135 7

rotr x =
X=CD> =) <>, X=<X1> —» <X1>,
X=Xy X2y o ey XpD>JR22 = <Xpy X1y« o o s Xy X1} ?
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concat : x =
X=C<XLs + + s Xk >9<X2 v+ 1 X2 Dpes<Emls o W Xmp > 1k, mun,p >0
KX11s o oo s X1k s e o+ 3 Xmsr oo o s Xmls e oo .x,,.,>;?

Concatenate removes all occurrences of the null sequence:

concat : <<1,3>,<>,24>,<>,<5>>=<1,3,2,4,5> 2.3)

pair:x =

X=<X1, X2 - .0 Xk > 1 k>0 Kk is even — <<x1,X2>, .. ., <Xp-1,Xk >>

X=<X1,X2, ..., Xg>1k>0xk is odd — <<x1,x3>,...,<xx>>;?
split:x =

X=X D> =) <X D,<>>;

X=<X1, X2 0000 XS $kS>1 > <<Xy oo W XR2] >9<K k1A 410 - < < 1 X D57
iota :x =

x=0— <>;

xeNto<1.2,...x>;?

2.3.2. Predicate (Test) Functions
atom:x =x €atoms > T;x#?>F;?

eq:x =x =<y,z>yy=z - T;x=<y,z>yy #z -5 F;?

Also less than (<), greater than (>), greater than or equal (>=), less than or equal (<=), not equal ("=);
’=’ is a synonym for eq.

mll:x =x=<>->T;x#? - F;?

length:x =x=<x1,%3,..., > 2 k;x=<>—>0;?

2.3.3. Arithmetic/Logical

+:1x =x=<y,2>1Y,z are numbers —y+z;? —:1X =X=<Y,2> 1Y,z are numbers —y-z;?
*.x =x=<y,z2>1Y,z are numbers - yxz;? | :x =x=<y,z> 1Y,z are numbers xz#0 > y+z;?

And, or, not, xor

and :<x,y>=x=T>y;x=F - F;?

or :<x,y>=x=F—-y;x=T>T;?
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XOr : <X,y> =
x=T yy=T — F; x=F yy=F - F;
x=T y=F - T;x=Fyy=T - T;?

not:x =x=T—>F;x=F->T;?

2.3.4. Library Routines

sin : x =x is a number — sin(x); ?

asin : x =x is anumbery |x | <1 = sinI(x); ?
€os : x =x is a number — cos (x); ?

acos:x =x isanumbery |x | <1 — cos~!(x); ?
exp : x =x is a number — e*: ?

log : x = x is a positive number — In(x); ?

mod : <x,y>=x and y are numbers — x —yxlé;-J :?

2.4. Functional Forms

Functional forms define new functions by operating on function and object parameters of the form.
The resultant expressions can be compared and contrasted to the value-oriented expressions of traditional
programming languages. The distinction lies in the domain of the operators; functional forms manipulate
functions, while traditional operators manipulate values.

One functional form is composition. For two functions ¢ and y the form ¢ @ y denotes their com-
position ¢ o

@ V) :x=¢:(yx), 7 x€Q 24)
The constant function takes an object parameter:

%xy =y=? = 2;x, \* x,y €Q 2.5)
The function %? always returns ?.

In the following description of the functional forms, we assume that &, &;, G, 0;, T, and 1; are func-
tions and that x, x;, y are objects.

Composition

c@ t):x =0:(1:x)

Construction
[O1,...,0n]X = <O1:X,...,Cn X >

Note that construction is also bottom-preserving, e.g.,



Berkeley FP User’s Manual, Rev. 4.1 PS2:7-11

+1:<3,05=<3,2>=? (2.6)

Condition

E->07)x =
Ex)=T > 0cx;
Ex)=F - 1x;?

The reader should be aware of the distinction between functional expressions, in the variant of
McCarthy’s conditional expression, and the functional form introduced here. In the former case the result
is a value, while in the latter case the result is a function. Unlike Backus’ FP, the conditional form must be
enclosed in parenthesis, e.g.,

(isNegative -> - @ [%0,id] ; id) 2.7

Constant

IDoxy=y=? —-2;x, \t x€Q
This function returns its object parameter as its result.

Right Insert

Iox =
xX=<>—>erx;
X=<X1> = X,
X=<X13 X2 ..., Xk > 1 k>2 2 O1<cx1, 16<X2, ..., Xg>>; 7

e.g., +:<4,5,6>=15.

If o has aright identity element ¢, then !o:<> =¢f, e.8.,

H:<>=0and !* : <>=1 2.8)

Currently, identity functions are defined for + (0), — (0), * (1), / (1), also for and (T), or (F), xor (F). All
other unit functions default to bottom (?).

Tree Insert
lo:x=
X=<> > efix;
X=<X1> —> X1,

X=<X1, X2 ..., Xg> k>l —
C:<|Oi<xt, ... X[k2) >, | O <X[hsdl41s - - - 2 Xk >>37
eg.,

[+:<4,5,6,7> = +:<+:<4,5>,+:<6,7>> = 15 2.9)
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Tree insert uses the same identity functions as right insert.

Apply to All

&ox=
X=<> ~)<>;
X=CX 3 X2 e v ey Xg> ~> <OXp, ..., OXg>; 7

While

(while € o):x =
E:x=T — (while & o):(o:x);

Ex=F—x;?

2.5. User Defined Functions
An FP definition is entered as follows:

{fn-name fn-form}, (2.10)

where fn-name is an ascii string consisting of letters, numbers and the underline symbol, and fa-form is any
valid functional form, including a single primitive or defined function. For example the function

{factorial I* @ iota)} 2.11)

is the non-recursive definition of the factorial function. Since FP systems are applicative it is permis-
sible to substitute the actual definition of a function for any reference to it in a functional form: if
f=1@2thenf :x=1@2:x, \* x€ Q.

References to undefined functions bottom out:

fx=?\txeQ,f & 2.12)
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3. Getting on and off the System

Startup FP from the shell by entering the command:

lusr/local/fp.

The system will prompt you for input by indenting over six character positions. Exit from FP (back
to the shell) with a control/D ("D).

3.1. Comments

A user may end any line (including a command) with a comment; the comment character is *#’. The
interpreter will ignore any character after the *#’ until it encounters a newline character or end-of-file,
whichever comes first.

3.2. Breaks

Breaks interrupt any work in progress causing the system to do a FRANZ reset before returning con-
trol back to the user.

3.3. Non-Termination

LISP’s namestack may, on occasion, overflow. FP responds by printing ‘‘non-terminating’’ and
returning bottom as the result of the application. It does a FRANZ reset before returning control to the user.

4, System Commands

System commands start with a right parenthesis and they are followed by the command-name and
possibly one or more arguments. All this information must be typed on a single line, and any number of
spaces or tabs may be used to separate the components.

4.1. Load

Redirect the standard input to the file named by the command’s argument. If the file doesn’t exist
then FP appends *.fp’ to the file-name and retries the open (error if the file doesn’t exist). This command
allows the user to read in FP function definitions from a file. The user can also read in applications, but
such operation is of little utility since none of the input is echoed at the terminal. Normally, FP returns
control to the user on an end-of-file. It will also do so whenever it does a FRANZ reset, e.g., whenever the
user issues a break, or whenever the system encounters a non-terminating application.

4.2. Save
Output the source text for all user-defined functions to the file named by the argument.

4.3. Csave and Fsave

These commands output the lisp code for all the user-defined functions, including the original
source-code, to the file named by the argument. Csave pretty prints the code, Fsave does not. Unless the
user wishes to examine the code, he should use ’fsave’; it is about ten times faster than ’csave’, and the
resulting file will be about three times smaller.

These commands are intended to be used with the liszt compiler and the ’cload’ command, as
explained below. ;

4.4. Cload

This command loads or fasls in the file shown by the argument. First, FP appends a ’.0’ to the file-
name, and attempts a load. Failing that, it tries to load the file named by the argument. If the user outputs
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his function definitions using fsave or csave, and then compiles them using liszt, then he may fasl in the
compiled code and speed up the execution of his defined functions by a factor of 5 to 10.

4.5. Pfn

Print the source text(s) (at the terminal) for the user-defined function(s) named by the argument(s)
(error if the function doesn’t exist).

4.6. Delete
Delete the user-defined function(s) named by the argument (error if the function doesn’t exist).

4.7. Fns

List the names of all user-defined functions in alphabetical order. Traced functions are labeled by a
trailing '@’ (see § 4.7 for sample output).

4.8. Stats

The *‘stats’’ command has several options that help the user manage the collection of dynamic statis-
tics for functions! and functional forms. Option names follow the keyword “‘stats”’, e.g., **)stats reset’’.

The statistic package records the frequency of usage for each function and functional form; also the
size? of all the arguments for all functions and functional expressions. These two measures allow the user
to derive the average argument size per call. For functional forms the package tallies the frequency of each
functional argument. Construction has an additional statistic that tells the number of functional arguments
involved in the construction.

Statistics are gathered whenever the mode is on, except for applications that ‘‘bottom out’’ (i.e.,
return bottom — 7). Statistic collection slows the system down by X2 to >4. The following printout illus-
trates the use of the statistic package (user input is emboldened):

! Measurement of user-defined functions is done with the aid of the trace package, discussed in § 4.9.

2 +Size”’ is the top-level length of the argument, for most functions. Exceptions are: apndl, dist! (top-level length of the second
element), apndyr, distr (top-level length of the first element), and transpose (top level length of each top level element).
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)stats on
Stats collection turned on.
+:<34>
7
*@iota :3
6
)stats print
plus: times 1
times: times 2
iota: times 1
insert: times 1 size 3
Functional Args
Name Times
times 1
compos: times 1 size 1
Functional Args
Name Times
insert 1
iota
4.8.1. On

Enable statistics collection.

4.8.2. Off

Disable statistics collection. The user may selectively collect statistics using the on and off com-

mands.

4.8.3. Print

Print the dynamic statistics at the terminal, or, output them to a file. The latter option requires an

additional argument, e.g., ‘*)stats print fooBar’’ prints the stats to the file ‘‘fooBar’’.

4.8.4. Reset

Reset the dynamic statistics counters. To prevent accidental loss of collected statistics, the system
will query the user if he tries to reset the counters without first outputting the data (the system will also

query the user if he tries to log out without outputting the data).
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4.9. Trace

Enable or disable the tracing and the dynamic measurement of the user defined functions named by
the argument(s). The first argument tells whether to turn tracing off or on and the others give the name of
the functions affected. The tracing and untracing commands are independent of the dynamic statistics
commands. This command is cumulative e.g., *)trace on f1°, followed by ’)trace on f2° is equivalent to
*trace on f1 £2°.

FP tracer output is similar to the FRANZ tracer output: function entries and exits, call ievel, the func-
tional argument (remember that FP functions have only one argument!), and the result, are printed at the
terminal:

)pfn fact
{fact (eq0 -> %1 ; * @ [id, fact @ s1])}
)ns

eq0 fact sl

Jrace on fact
Mns

eq0 fact@ sl
fact:2

1 >Enter> fact [2]
|2 >Enter> fact [1]
| 3 >Enter> fact [0]
|3 <EXIT< fact 1
|2 <EXIT< fact 1
1 <EXIT< fact 2

2

4.10. Timer

FpP provides a simple timing facility to time top-level applications. The command ‘)timer on’’ puts
the system in timing mode, ‘‘)timer off”’ turns the mode off (the mode is 1mtxal]y off). While in tmung
mode, the system reports CPU time, garbage collection time, and elapsed time, in seconds. The timing
output follows the printout of the result of the application.

4.11. Script

Open or close a script file. The first argument gives the option, the second the optional script file-
name. The ‘“‘open’ option causes a new script-file to be opened and any currently open script file to be
closed. If the file cannot be opened, FP sends and error message and, if a script file was already opened, it
remains open. The command ’’)script close’’ closes an open script file. The user may elect to append
script output to the script-file with the append mode.

4.12, Help
Print a short summary of all the system commands:
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)help
Commands are;
load <file> Redirect input from <file>
save <file> Save defined fns in <file>
pfn <fnl> ... Print source text of <fnl> ...
delete <fnl> ... Delete <fnl> ...
fns List all functions
stats on/off/reset/print [file] Collect and print dynamic stats
trace on/off <fnl> ... Start/Stop exec trace of <fnl> ...
timer on/of Turn timer on/off
script open/close/append Open or close a script-file
lisp Exit to the lisp system (return with *"D’)
debug on/off Turn debugger output on/off
csave <file> Output Lisp code for all user-defined fns
cload <file> Load Lisp code from a file (may be compiled)
fsave <file> Same as csave except without pretty-printing

4.13. Special System Functions
There are two system functions that are not generally meant to be used by average users.

4.13.1. Lisp
This exits to the lisp system. Use ""D" to return to FP.

4,132, Debug

Turns the 'debug’ flag on or off. The command ‘*)debug on’’ turns the flag on, ‘“)debug off’’ tumns
the flag off. The main purpose of the command is to print out the parse tree.
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5. Programming Examples

We will start off by developing a larger FP program, mergeSort. We measure mergeSort using the
trace package, and then we comment on the measurements. Following mergeSort we show an actual ses-
sion at the terminal.
§.1, MergeSort

The source code for mergeSort is:

# Use a divide and conquer strategy

{mergeSort | merge}

{merge atEnd @ mergeHelp @ [[], fixLists]}

# Must convert atomic arguments into sequences

# Atomic arguments occur at the leaves of the execution tree
{fixLists &{atom -> [id] ; id)}

# Merge until one or both input lists are empty

{mergeHelp (while and @ &(not@null) @ 2
(firstIsSmaller -> takeFirst ;
takeSecond))}

# Find the list with the smaller first element
{firstIsSmaller < @ {1@1@2, 1@2@2]}

# Take the first element of the first list

{takeFirst [apndr@{1,1@1@2], [1@1@2, 2@2]]}

# Take the first element of the second list
{takeSecond [apndr@[1,1@2@2], [1@2, 1@2@2]1]}

# If one list isn’t null, then append it to the

# end of the merged list

{atEnd (firstIsNull -> concat@{1,2@2] ;
concat@(1,1@2])}

{firstIsNull null@1@2}

The merge sort algorithm uses a divide and conquer strategy; it splits the input in half, recursively
sorts each half, and then merges the sorted lists. Of course, all these sub-sorts can execute in parallel, and
the tree-insert () functional form expresses this concurrency. Merge removes successively larger elements
from the heads of the two lists (either takeFirst or takeSecond) and appends these elements to the end of
the merged sequence. Merge terminates when one sequence is empty, and then atEnd appends any remain-
ing non-empty sequence to the end of the merged one.

On the next page we give the trace of the function merge, which information we can use to determine
the structure of merge’s execution tree. Since the tree is well-balanced, many of the merge’s could be exe-
cuted in parallel. Using this trace we can also calculate the average length of the arguments passed to
merge, or a distribution of argument lengths. This information is useful for determining communication
costs.
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)trace on merge

mergeSort: <03-21 11 8-22-33>
| 3 >Enter> merge [<0 3>]
| 3 <EXIT< merge <03>
| 3 >Enter> merge [<-2 1>]
|3 <EXIT< merge <-2 1>
|2 >Enter> merge [<<0 3> <-2 1>>]
|2 <EXIT< merge <-2013>
| 3 >Enter> merge [<11 8>]
|3 <EXIT< merge <8 11>
| 3 >Enter> merge [<-22 -33>]
|3 <EXIT< merge <-33 -22>
|2 >Enter> merge [<<8 11> <-33 -22>>]
|2 <EXIT< merge <-33-22811>
1 >Enter> merge [<<-201 3> <-33-22 8 11>>]
1 <EXIT< merge <-33-22-20138 11>

<-33.22-2013811>
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5.2. FP Session
User input is emboldened, terminal output in Roman script.

fp

FP, v.4.111/31/82
)load ex_man

{all_le}

{sort}

{abs_val}

{find}

{ip}

{mm}

{eq0}

{fact}

{subl}

{alt_fnd}

{alt_fact}
)ns

abs_val all le alt fact alt fod eq0 fact find
ip mm sort subl

abs_val:3

abs_val : -3

abs_val: 0

abs_val : <-5 0 66>

&abs_val : <-5 0 66>
<50 66>
)pfn abs_val
{abs_val ((> @ [id,%0]) -> id ; (- @ [%0,id]))}
[id,%0] : -3
<-30>
[%0,id] : -3
<0-3>
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- @[%0,id] : -3

3

all le:<1357>
T

all le:<1057>
F

)pfa all_le
{all_le! and @ &<= @ distl @ [1,4]}
distt@[1,t1]: <1234>

<<12><13><14>>

&<=@distl @ [1,t]] : <123 4>

<TTT>
tand:<FTT>
F
tand:<TTT>
T

sort: <3124>

<1234>

sort : <1>
<1>

sort: <>
?

sort: 4
?

)pfn sort

{sort (null @ d -> [1] ; (all_le -> apndl @ [1,sort@tl]; sort@rotl))}

fact: 3

)pfn fact subl eq0

PS2:7-21
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{fact (eq0 -> %1 ; *@[id , fact@sub1])}
{subl -@[id,%1]}
{eq0 = @ [id,%0]}

&fact:<12345>
<12624 120>
eqd:3
F
eql: <>
F
eq0: 0
T
subl:3
2
%1:3
1
alt_fact:3
6
)pfn alt_fact

{alt_fact !* @ iota}

iota:3
<123>
*@iota:3
6
1+:<123>
6
find : <3 <34 5>>
T

find : <<> <34 <>>>
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find : <3 <4 55>

)pfn find
{find (null@2 -> %F ; (=@[1,1@2] -> %T ; find@[1,1@2]))}
[1,1@2] : <3 <34 5>>
<3<45>>
[L1@2]: <3 <34 5>>
<33>
alt fod : <3 <3 4 5>>

)pfo alt_fnd
{alt_fnd ! or @ &eq @ distl }

distl : <3 <34 5>>
<<33><34><3 55>

&eq @ distl : <3<345>>
<TFF>

lor:<TFT>
tor: <FFF>

)delete alt_fnd
)ns

abs_val all le alt fact eq0 fact find ip
mm sort subl

alt_fod : <3 <34 5>>
alt_fnd not defined

?

{gg}

{g}
g:3
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non-terminating
?
[Return to top level]

FP, v. 4.0 10/8/82
[+*]:<34>

<712>

[+*:<34>
syntax error:

[+*:<34>

a

ip:<<345><567>>
74
)pfo ip
{ip '+ @ &* @ trans}
trans : <<34 5> <56 7>>
<<3 5> <4 6> <5 7>>
&* @trans: <<345><567>>
<1524 35>
mm : <<<1 0> <0 I>> <<3 4> <5 6>>>
<<34> <5 6>>
)pfn mm
{mm &&ip @ &distl @ distr @[1,trans@2]}
[Ltrans@2] : <<<1 0> <0 15> <<3 4> <5 6>>>
<<<1 0> <0 1>> <<3 4> <5 6>>>
distr : <<<1 0> <0 I>> <<3 4> <5 6>>>
<<<1 0> <<3 4> <5 6>>> <<0 1> <<3 4> <5 6>>>>
&distl s <<<1 0> <<3 4> <§ 65>> <<0 1> <<3 4> <5 6>>>>

<<<<1 0> <3 4>> <<1 0> <5 655> <<<0 1> <3 4>> <<0 1> <5 6>>>>
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&ip @ &dist & distr @ [1,trans @ 2] : <<<1 0> <0 15> <<3 4> <5 6>>>
syntax error:
[+*:<34>

&ip @ &distl & distr @ [1,trans @ 2] : <<<1 0> <0 1>> <<3 4> <5 6>>>

&ip @ &distl @ distr @ [1,trans@2] : <<<1 0> <0 1>> <<3 4> <5 6>>>
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6. Implementation Notes

FP was written in 3000 lines of FRANZ LISP [Fod 80]. Table 1 breaks down the distribution of the
code by functionality.

Functionality | % gbgtesz

compiler 34

user interface 32

dynamic stats 16

primitives 14

miscellaneous 3
Table 1

6.1. The Top Level

The top-level function runFp starts up the subsystem by calling the routine fpMain, that takes three
arguments:

(1) A boolean argument that says whether debugging output will be
enabled.

(2) AFontidentifier. Currently the only one is supported *asc (ASCII).

(3) A boolean argument that identifies whether the interpreter was invoked
from the shell. If so then all exits from FP return the user back to the
shell.

The compiler converts the FP functions into LISP equivalents in two stages: first it forms the parse
tree, and then it does the code generation.

6.2. The Scanner

The scanner consists of a main routine, get_tkn, and a set of action functions. There exists one set of
action functions for each character font (currently only ASCII is supported). All the action functions are
named scan $<font>, where <font> is the specified font, and each is keyed on a particular character (or
sometimes a particular character-type — e.g., a letter or a number). ger_tkn returns the token type, and any
ancillary information, e.g., for the token "name" the name itself will also be provided. (See Appendix C
for the font-token name correspondences). When a character has been read the scanner finds the action
function by doing a

(get ‘scan$ <font> <char>)

A syntax error message will be generated if no action exists for the particular character read.

6.3. The Parser

The main parsing function, parse, accepts a single argument, that identifies the parsing context, or type of
construct being handled. Table 2 shows the valid parsing contexts.



Berkeley FP User’s Manual, Rev. 4.1

PS2:7-27

id construct
top_lev initial call
constr3$ construction
compos$$ | composition
alpha$$ apply-to-all
insert$$ insert
s tree insert
arrow$$ affirmative clause

of conditional
semi$$ negative clause

of conditional
lparen$$ | parenthetic expr.
while$$ while

Table 2, Valid Parsing Contexts

For each type of token there exists a set of parse action functions, of the name p$<tkn-name>. Each
parse-action function is keyed on a valid context, and it is looked up in the same manner as scan action
functions are looked up. If an action function cannot be found, then there is a syntax error in the source
code. Parsing proceeds as follows: initially parse is called from the top-level, with the context argument
set to “‘top_lev’’. Certain tokens cause parse to be recursively invoked using that token as a context. The
result is the parse tree.

6.4. The Code Generator

The system compiles FP source into LISP source. Normally, this code is interpreted by the FRANZ
LISP system. To speed up the implementation, there is an option to compile into machine code using the
liszt compiler [Joy 79]. This feature improves performance tenfold, for some programs.

The compiler expands all functional forms into their LISP equivalents instead of inserting calls to
functions that generate the code at run-time. Otherwise, liszt would be ineffective in speeding up execution
since all the functional forms would be executed interpretively. Although the amount of code generated by
an expanding compiler is 3 or 4 times greater than would be generated by a non-expanding compiler, even
in interpreted mode the code runs twice as quickly as unexpanded code. With lisz¢t compilation this perfor-
mance advantage increases to more than tenfold.

A parse tree is either an atom or a hunk of parse trees. An atomic parse-tree identifies either an fp
built-in function or a user defined function. The hunk-type parse tree represents functional forms, e.g.,
compose or construct. The first element identifies the functional form and the other elements are its func-
tional parameters (they may in turn be functional forms). Table 3 shows the parse-tree formats.
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Form Format
user-defined | <atom>
fp builtin <atom>
apply-to-all | {alpha$3 @}
insert {insert 33 @}
tree insert {ti33 @}
select {select $3 p}
constant {constant $3 1}
conditional | {condit$$ ®; ©; O3}
while {while $3 ®; o}
compose {compos 3§ ©1 Dy}
construct {constr$$ &1 Dy ,..., ®, nil}

Note: @ and the d; are parse-trees and p is an optionally
signed integer constant.

Table 3, Parse-Tree Formats

6.5. Function Definition and Application

Once the code has been generated, then the system defines the function via putd. The source code is
placed onto a property list, ‘sources , to permit later access by the system commands.

For an application, the indicated function is compiled and then defined, only temporarily, as tmp $3.
The single argument is read and tmp $§ is applied to it.

6.6. Function Naming Conventions

‘When the parser detects a named primitive function, it returns the name <name >$fp, where <name>
is the name that was parsed (all primitive function-names end in $fp). See Appendix D for the symbolic
(e.g., compose, +) function names.

Any name that isn’t found in the list of builtin functions is assumed to represent a user-defined func-
tion; hence, it isn’t possible to redefine FP primitive functions. FP protects itself from accidental or mali-
cious internal destruction by appending the suffix *‘_fp’’ to all user-defined function names, before they
are defined.

6.7. Measurement Impelementation

This work was done by Dorab Patel at UCLA. Most of the measurement code is in the file
’fpMeasures.l’. Many of the remaining changes were effected in ’primFp.l’, to add calls on the measure-
ment package at run-time; to ’codeGen.l’, to add tracing of user defined functions; to ’utils.l’, to add the
new system commands; and to *fpMain.l’, to protect the user from forgetting to output statistics when he
leaves FP.

6.7.1. Data Structures

All the statistics are in the property list of the global symbol Measures. Associated with each each
function (primitive or user-defined, or functional form) is an indicator; the statistics gathered for each
function are the corresponding values. The names corresponding to primitive functions and functional
forms end in *$fp’ and the names corresponding to user-defined functions end in ’_fp’. Each of the pro-
perty values is an association list:

(get *Measures ’rotl$fp) ==> ((times . 0) (size . 0))
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The car of the pair is the name of the statistic (i.e., times, size) and the cdr is the value. There is one
exception. Functional forms have a statistic called funargtyp. Instead of being a dotted pair, it is a list of
two elements:

(get "Measures ’compose$fp) ==>
((times . 2) (size . 4) (funargtyp ((select3fp . 2) (sub3fp . 2))))

The car is the atom ’funargtyp’ and the cdr is an alist. Each element of the alist consists of a func-
tional argument-frequency dotted pair.

The statistic packages uses two other global symbols., The symbol DynTraceFlg is non-nil if
dynamic statistics are being collected and is nil otherwise. The symbol TracedFns is a list (initially nil) of
the names of the user functions being traced.

6.7.2. Interpretation of Data Structures

6.7.2.1. Times

The number of times this function has been called. All functions and functional forms have this
statistic.

6.7.2.2. Size

The sum of the sizes of the arguments passed to this function. This could be divided by the times
statistic to give the average size of argument this function was passed. With few exceptions, the size of an
object is its top-level length (note: version 4.0 defined the size as the total number of atoms in the object);
the empty sequence, ‘‘<>"’, has a size of 0 and all other atoms have size of one. The exceptions are: apnd!,
distl (top-level length of the second element), apndr, distr (top-level length of the first element), and tran-
spose (top level length of each top level element).

This statistic is not collected for some primitive functions (mainly binary operators like +,-,*).

6.7.2.3. Funargno
The number of functional arguments supplied to a functional form.
Currently this statistic is gatherered only for the construction functional form.

6.7.2.4. Funargtyp

How many times the named function was used as a functional parameter to the particular functional
form.

6.8. Trace Information

The level number of a call shows the number of steps required to execute the function on an ideal
machine (i.e., one with unbounded resources). The level number is calculated under an assumption of
infinite resources, and the system evaluates the condition of a conditional before evaluating either of its
clauses. The number of functions executed at each level can give an idea of the distribution of parallelism
in the given FP program. '
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Appendix A: Local Modifications

1. Character Set Changes

Backus [Ba78] used some characters that do not appear on our ASCII terminals, so we have made
the following substitutions:

constant
insert
apply-to-all
composition
arrow
empty set
bottom
divide
multiply

s~ VOrR-§

X++oel o~y

2. Syntactic Modifications

2.1. While and Conditional
While and conditional functional expressions must be enclosed in parenthesis, e.g.,

(whilef g)
@->f38

2.2. Function Definitions

Function definitions are enclosed by curly braces; they consist of a name-definition pair, separated by
blanks. For example:

{fact !* @ iota}

defines the function fact (the reader should recognize this as the non-recursive factorial function).

2.3. Sequence Construction
It is not necessary to separate elements of a sequences with a comma; a blank will suffice:

<1,23>=<123>

For nested sequences, the terminating right angle bracket acts as the delimiter:

<<1,2,3>,<4,5,65> = <<12 3><4 5 6>>
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3. User Interface

We have provided a rich set of commands that allow the user to catalog, print, and delete functions,
to load them from a file and to save them away. The user may generate script files, dynamically trace and
measure functional expression execution, generate debugging output, and, temporarily exit to the FRANZ
LISP system. A command must begin with a right parenthesis. Consult Appendix C for a complete descrip-
tion of the command syntax.

Debugging in FP is difficult; all undefined results map to a single atom — bottom (*“?’’). To pinpoint
the cause of an error the user can use the special debugging output function, out, or the tracer.

4. Additions and Ommissions

Many relational functions have been added: <, >, =, #, <, 2; their syntax is: <, >, =, =, <=, >=.
Also added are the iota function (This is the APL iota function an n-element sequence of natural numbers)
and the exclusive OR (€) function.

Several new structural functions have been added: pair pairs up successive elements of a sequence,
split splits a sequence into two (roughly) equal halves, last returns the last element of the sequence (<> if
the sequence is empty), first returns the first element of the sequence (<> if it is empty), and concat con-
catenates all subsequences of a sequence, squeezing out null sequences (<>). Front is equivalent to tir.
Pick is a parameterized form of the selector function; the first component of the argument selects a single
element from the second component. Out is the only side-effect function; it is equivalent to the id function
but it also prints its argument out at the terminal. This function is intended to be used only for debugging.

One new functional form has been added, tree insert. This functional form breaks up the the argu-
ment into two roughly equal pieces applying itself recursively to the two halves. The functional parameter
is applied to the result.

The binary-to-unary functions ("bu’) has been omitted.

Seven mathematical library functions have been added: sin, cos, asin (sin™!), acos (cos™!), log, exp,
and mod (the remainder function)
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1. BNF Syntax

fpInput —
fnDef -
application —
name —
nameList —»
object -
fpSequence —
atom —
funForm —

simpFn —»
fpDefined —
fpBuiltin —»

selectFn —»
relFn —
binaryFn —»
libFn —
composition —
construction —
formList —
conditional —»
constantFn —
insertion —»
alpha —»

while -

II. Precedences

1. %, !, &
2. @

3. [---1

4. e e
s. while
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Appendix B: FP Grammar

(fnDef | application | fpCmds)* | *"D’

*{’ name funForm '}’

funForm ’:’ object

letter (letter | digit|’_’)*

(name)*

atom | fpSequence | °?’

’<’ (e ] object ((",’ |’ *) object)*) >’

T’ |’F’ | ’<>’ | ™ (ascii-char)* *"* | (letter | digit)* | number

simpFn | composition | construction | conditional |
constantFn | insertion | alpha | while | ’(’ funForm °)’

fpDefined | fpBuiltin

name

selectFn | ’tI’ | ’id’ | ’atom’ | *not’ | ’eq’ | relFn | *null’ | 'reverse’ |
*distl’ | *distr’ | ’length’ | binaryFn | ’trans’ | ’apndl’ | ’apndr’ |
*tIr’ | *rotl’ | ’rotr’ | *iota’ | ’pair’ | *split’ | ’concat’ | "last’ | *libFn’
(e1’+’ | ’~") unsignednteger

S R e e e

12711’/ | or’ | ’and’ | *xor’

’sin’ | cos’ | *asin’ | ’acos’ | "log’ | ’exp’ | "'mod’

funForm ’@’ funForm -

’[’ formList '}’

¢ | funForm (’,” funForm)*

’(* funForm ’->’ funForm ;> funForm ’)’

"%’ object

’1” funForm | ’|” funForm

’&’ funForm

*(* *while’ funForm funForm ’)’

(highest)

(least)

» Command Syntax is listed in Appendix C.
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Appendix C: Command Syntax

All commands begin with a right parenthesis (**)*).

Yins

)pfn <nameList>

)load <UNIX file name>
)cload <UNIX file name>
)save <UNIX file name>
)csave <UNIX file name>
)fsave <UNIX file name>
)delete <nameList>

)stats on

)stats off

)stats reset

)stats print [UNIX file name]
Jtrace on <nameList>

)trace off <nameList>

Jtimer on

)timer off

)debug on

)debug off

)script open <UNIX file name>
Jscript close

Jscript append <UNIX file name>
Yhelp

lisp
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Appendix D: Token-Name Correspondences

Token Name
[ Ibrack$$
] rbrack$$
{ Ibrace$$
} rbrace$$
( Iparen$$
) rparen$$
@ compos$$
! insert$$
| ti$$
& alpha$$
; semi$$
: colon$$
s comma$$
+ builtin$$
+ue | select$$
* builtin$$
/ builtin$$
= builtin$$
- builtin$$
-> arrow$$
- select$$
> builtin$$ )
>= builtin$$
< builtin$$
<= builtin$$
"= builtin$$
%0? | constant$$

* W is an optionally signed integer constant.

® 0 is any FP object.
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Appendix E: Symbolic Primitive Function Names

The scanner assigns names to the alphabetic primitive functions by appending the string *‘$fp’’ to
the end of the function name. The following table designates the naming assignments to the non-alphabetic
primitive function names.

Function Name
+ plus$fp
- minus$fp
* times$fp
/ div$fp
= eq$fp
> gtéfp

>= ges$fp
< 1e$fp

<= le$fp
"= ne$fp
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ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

statement grouping

if-else and switch for decision-making

while, for, do, and repeat-until for looping

break and next for controlling loop exits
some “‘syntactic sugar’’:

unobtrusive comment convention

translation of >, >=, etc., into .GT., .GE,, etc.
return(expression) statement for functions
define statement for symbolic parameters
include statement for including source files

......a‘...

free form input (multiple statements/line, automatic continuation)

Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other environments. Ratfor is
written in itself in this way, so it is also portable; versions of Ratfor are now running on at least two dozen
different types of computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple-

mentation, and user experience.

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet there
are many occasions when they are forced to use
it. For example, Fortran is often the only
language thoroughly supported on the local com-
puter. Indeed, it is the closest thing to a universal
programming language currently available: with
care it is possible to write large, truly portable
Fortran programs[1]. Finally, Fortran is often the

most ‘‘efficient’”’ language available, particularly
for programs requiring much computation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
— conditional branches and loops — which
express the logic of the program. The conditional
statements in Fortran are primitive. The Arith-
metic IF forces the user into at least two statement
numbers and two (implied) GOTO’s; it leads to
unintelligible code, and is eschewed by good pro-

This paper is a revised and expanded version of oe published in Software—Practice and Experience, October 1975. The
Ratfor described here is the one in use on UNIX and Goos at Bell Laboratories, Murray Hilt, N. J.
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grammers. The Logical IF is better, in that the
test part can be stated clearly, but hopelessly res-
trictive because the statement that follows the IF
can only be one Fortran statement (with some
JSurther restrictions!). And of course there can be
no ELSE part to a Fortran IF: there is no way to
specify an alternative action if the IF is not
satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine for
““1 to N in steps of 1 (or 2 or ...)”’, but there is no
direct way to go backwards, or even (in ANSI
Fortran{2]) to go from 1 to N-1. And of course
the DO is useless if one’s problem doesn’t map
into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand, and thus hard to
debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a prepro-
cessor. This is the approach taken with Ratfor.
(The preprocessor idea is of course not new, and
preprocessors for Fortran are especially popular
today. A recent listing [3] of preprocessors
shows more than 50, of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of For-
tran (universality, portability, efficiency) while
hiding the worst Fortran inadequacies. The
language is Fortran except for two aspects. First,
since control flow is central to any program,
regardless of the specific application, the primary
task of Ratfor is to conceal this part of Fortran
from the user, by providing decent control flow
structures. These structures are sufficient and
comfortable for structured programming in the
narrow sense of programming without GOTO’s.
Second, since the preprocessor must examine an
entire program to translate the control structure, it
is possible at the same time to clean up many of
the ‘‘cosmetic’’ deficiencies of Fortran, and thus
provide a language which is easier and more
pleasant to read and write.

Beyond these two aspects — control flow
and cosmetics — Ratfor does nothing about the
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host of other weaknesses of Fortran. Although it
would be straightforward to extend it to provide
character strings, for example, they are not
needed by everyone, and of course the preproces-
sor would be harder to implement. Throughout,
the design principle which has determined what
should be in Ratfor and what should not has been
Ratfor doesn’t know any Fortran. Any language
feature which would require that Ratfor really
understand Fortran has been omitted. We will
return to this point in the section on implementa-
tion,

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con-
structs, rather than to throw in everything that has
ever been thought useful by someone.

The rest of this section contains an informal
description of the Ratfor language. The control
flow aspects will be quite familiar to readers used
to languages like Algol, PL/I, Pascal, etc., and the
cosmetic changes are equally straightforward.
We shall concentrate on showing what the
language looks like.

Statement Grouping

Fortran provides no way to group state-
ments together, short of making them into a sub-
routine. The standard construction ‘‘if a condi-
tion is true, do this group of things,’’ for example,

if (x > 100)
{ call error("x>100"); err = 1;
return }

cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

if (x .le. 100) goto 10
call error(Shx>100)
err=1
return
10

When the program doesn’t work, or when it must
be modified, this must be translated back into a
clearer form before one can be sure what it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in Rat-
for. A group of statements can be treated as a
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unit by enclosing them in the braces { and }. This
is true throughout the language: wherever a sin-
gle Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have For-
tran meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The char-
acter ‘‘>’’ is clearer than ‘‘GT.”, so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many Fortran
compilers permit character strings in quotes (like
"x>100"), quotes are not allowed in ANSI Fortran,
so Ratfor converts it into the right number of H’s:
computers count better than people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi-
colons. The example above could also be written
as

if (x> 100) {
call error("x>100")
er=1
return

}

In this case, no semicolon is needed at the end of
each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con-
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par-
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader. ’

The ‘“else’’ Clause

Ratfor provides an else statement to handle
the construction ‘‘if a condition is true, do this
thing, otherwise do that thing.”’
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if (@a<=b)

{ sw=0; write(6, 1) a, b }
else

{ sw=1; write(6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is circu-
itous indeed:

if (a .gt. b) goto 10
sw=0
write(6, 1) a, b
goto 20
10 sw=1
write(6, 1) b, a
20 .

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a translation.
To understand the Fortran version, one must scan
the entire program to make sure that no other
statement branches to statements 10 or 20 before
one knows that indeed this is an if-else construc-
tion. With the Ratfor version, there is no question
about how one gets to the parts of the statement.
The if-else is a single unit, which can be read,
understood, and ignored if not relevant. The pro-
gram says what it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:

if (a <=b)
sw=0
else
sw=1
The syntax of the if statement is
if (legal Fortran condition)
Ratfor statement
else
Ratfor statement

where the else part is optional. The legal Fortran
condition is anything that can legally go into a
Fortran Logical Ir. Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ratfor statement is
any Ratfor or Fortran statement, or any collection
of them in braces.



PS2:8-4

Nested if’s

Since the statement that follows an if or an
else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this problem:
the variable f is to be set to —1 if x is less than
zero, to +1 if x is greater than 100, and to 0 other-
wise. Then in Ratfor, we write

if(x<0)
fa-1
else if (x > 100)
f=+1
else
f=0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any version
written in straight Fortran will necessarily be
indirect because Fortran does not let you say what
you mean. And as always, clever shortcuts may
turn out to be too clever to understand a year
from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if (...)

else if (...)

else if (...)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases; in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each one is followed
by the code associated with it. Read down the list
of decisions until one is found that is satisfied.
The code associated with this condition is exe-
cuted, and then the entire structure is finished.
The trailing else part handles the ‘‘default’’ case,
where none of the other conditions apply. If there
is no default action, this final else part is omitted:
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if (x <0)
x=0

else if (x > 100)
x =100

if-else ambiguity

There is one thing to notice about compli-
cated structures involving nested if’s and else’s.
Consider

if(x>0)
if(y>0)
write(6, 1) x, y
else
write(6, 2) y

There are two if’s and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else’ed if. Thus in this case,
the else goes with the inner if, as we have indi-
cated by the indentation.

It is a wise practice to resolve such cases by
explicit braces, just to make your intent clear. In
the case above, we would write

f(x>0){
if(y>0)
write(6, 1) x, y
else
write(6, 2) y
}

which does not change the meaning, but leaves no
doubt in the reader’s mind. If we want the other
association, we must write

if(x>0){
if(y>0)
write(6, 1) x, y
}
else
write(6, 2) y

The ““switch’’ Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression. The
syntax is
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switch (expression) {

case exprl :
statements

case expr2, expr3 :
statements

default:
statements

}

Each case is followed by a list of comma-
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn until
one matches, at which time the statements follow-
ing that case are executed. If no cases match
expression, and there is a default section, the
statements with it are done; if there is no default,
nothing is done. In all situations, as soon as some
block of statements is executed, the entire switch
is exited immediately. (Readers familiar with
Cf4] should beware that this behavior is not the
same as the C switch.)

The “‘do’’ Statement

The do statement in Ratfor is quite similar
to the DO statement in Fortran, except that it uses
no statement number. The statement number,
after all, serves only to mark the end of the DO,
and this can be done just as easily with braces.
Thus

doi=1,n{
x(i) = 0.0
y(@) = 0.0
z(i) = 0.0

}

is the same as

do10i=1,n
x(i) = 0.0
y() = 0.0
2(1))=0.0

10  continue
The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyword do has to be
something that can legally go into a Fortran DO
statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran), they can be
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used in a Ratfor do.

The Ratfor statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

doi=1,n
x() = 0.0

Slightly more complicated,

doi=1,n
doj=1,n
m(, j) =0
sets the entire array m to zero, and

doi=1,n
doj=1,n
if (i <j)
m(, j) = -1
else if (i == j)
m(i, j)=0
else
m(i, j) = +1
sets the upper triangle of m to —1, the diagonal to
zero, and the lower triangie to +1. (The operator
== is ‘‘equals’’, that is, ‘“ EQ.”’.) In each case,
the statement that follows the do is logically a
single statement, even though complicated, and
thus needs no braces.

“break’ and ‘‘next”

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera-
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the loop,
so it causes the next iteration to be done. For
example, this code skips over negative values in
an array:

doi=1,n{
if (x(i) < 0.0)
next
process positive element
}

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and mnext can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus
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break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iterates the
second enclosing loop. (Realistically, multi-level
break’s and next’s are not likely to be much used
because they lead to code that is hard to under-
stand and somewhat risky to change.)

The ““while’’ Statement

One of the problems with the Fortran DO
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DOI=2,1

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn’t be. Of course a Ratfor do
can easily be preceded by a test
if j <=k)
doi=j,k {

) —_—

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO state-
ment is that it encourages that a program be writ-
ten in terms of an arithmetic progression with
small positive steps, even though that may not be
the best way to write it. If code has to be con-
torted to fit the requirements imposed by the For-
tran DO, it is that much harder to write and under-
stand.

To overcome these difficulties, Ratfor pro-
vides a while statement, which is simply a loop:
““while some condition is true, repeat this group
of statements”. It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two termination criteria.
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real function sin(x, e)
# returns sin(x) to accuracy e, by
#sin(x) = x — x**3/3! 4 x**5/5! ~ __,

sin = x
term = x

i=3

while (abs(term)>e & i<100) {
term = —term * x**2 / float(i*(i—1))
sin = sin + term
i=i+2

}

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be done
zero times, that is, no attempt will be made to
compute x**3 and thus a potential underfiow is
avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears — the code works at one of its boun-
daries. (The test i<100 is the other boundary —
making sure the routine stops after some max-
imum number of iterations.)

As an aside, a sharp character ““#’’ in a line
marks the beginning of a comment; the rest of the
line is comment. Comments and code can co-
exist on the same line — one can make marginal
remarks, which is not possible with Fortran’s *‘C
in column 1’ convention. Blank lines are also
permitted anywhere (they are not in Fortran); they
should be used to emphasize the natural divisions
of a program.

The syntax of the while statement is

while (legal Fortran condition)
Ratfor statement

As with the if, legal Fortran condition is some-
thing that can go into a Fortran Logical IF, and
Ratfor statement is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose mextch is a function which
returns the next input character both as a function
value and in its argument. Then a loop to find the
first non-blank character is just

while (nextch(ich) == iblank)
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A semicolon by itself is a null statement, which is
necessary here to mark the end of the while; if it
were not present, the while would control the
next statement. When the loop is broken, ich
contains the first non-blank. Of course the same
code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few com-
pilers) believe this line is illegal. The language at
one’s disposal strongly influences how one thinks
about a problem.

The ‘“for”’ Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali-
zation and increment steps as part of the state-
ment. For example, a DO loop is just

for=1li<c=n;i=i+1)...
This is equivalent to

i=1
while (i <=n) {

i=i+1
}
The initialization and increment of i have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the advan-
tage that they will be done zero times if n is less
than 1; this is not true of the do.

The loop of the sine routine in the previous
section can be re-written with a for as

for (i=3; abs(term) > e & i < 100;
i=i+2) { :
term = —term * x**2 / float(i*(i—1))
sin = sin + term

The syntax of the for statement is

for (init ; condition ; increment )
Ratfor statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before the
test. condition is again anything that is legal in a
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logical IF. Any of init, condition, and increment
may be omitted, although the semicolons must
always be present. A non-existent condition is
treated as always true, so for(;) is an indefinite
repeat. (But see the repeat-until in the next sec-
tion.) :

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with 2 DO statement,
and obscure to write out with IF’s and GOTO’s.
For example, here is a backwards DO loop to find
the last non-blank character on a card:

for(i=80;i>0;i=i-1)
if (card(i) != blank)
break

(‘*1="" is the same as **NE.”). The code scans the
columns from 80 through to 1. If a non-blank is
found, the loop is immediately broken. (break
and next work in for’s and while’s just as in
do’s). If i reaches zero, the card is all blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for-
ward, and we must explicitly set up proper condi-
tions when we fall out of the loop. (Forgetting
this is a common error.) Thus:

DO10J=1,80
I=81-1]
IF (CARD(I) NE. BLANK) GO TO 11
10 CONTINUE
I=0
11

The version that uses the for handles the termina-
tion condition properly for free; i is zero when we
fall out of the for loop.

The increment in a for need not be an arith-
metic progression; the following program walks
along a list (stored in an integer array ptr) until a
zero pointer is found, adding up elements from a
parallel array of values:

sum = 0.0
for (i = first; 1 > 0; i = ptr(i))
sum = sum + value(i)
Notice that the code works correctly if the list is

empty. Again, placing the test at the top of a loop
instead of the bottom eliminates a potential boun-

dary error,
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The ‘“repeat-until’’ statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service is
provided by the repeat-until:

repeat
Ratfor statement
until (legal Fortran condition)

The Ratfor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact{8], the
repeat-until statement is much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don’t handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part of
do, while and repeat-until, and to the increment
step of a for.

“return’ Statement

The standard Fortran mechanism for return-
ing a value from a function uses the name of the
function as a variable which can be assigned to;
the last value stored in it is the function value
upon return. For example, here is a routine equal
which returns 1 if two arrays are identical, and
zero if they differ. The array ends are marked by
the special value —1.
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# equal _ compare strl to str2;

#  return 1 if equal, O if not
integer function equai(strl, str2)
integer str1(100), str2(100)
integer i

for (i = 1; strl(i) == str2(i);i=i+ 1)
if (strl(i) ==-1) {

equal = 1
return
}
equal =0
return
end

In many languages (e.g., PL/I) one instead
says

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return state-
ment — in a function F, return(expression) is
equivalent to

{ F = expression; return }
For example, here is equal again:

# equal _ compare strl to str2;

#  return 1 if equal, O if not
integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for (i=1;strl(i) == str2(i);i=1i+ 1)
if (str1(i) ==-1)
return(1)
return(0)
end

If there is no parenthesized expression after
return, a normal RETURN is made. (Another ver-
sion of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand programs. Accordingly,
Ratfor provides a number of cosmetic facilities
which may be used to make programs more read-
able.
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Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automaticaily,
as are long conditions in if, while, for, and until.
Blank lines are ignored. Multiple statements may
appear on one line, if they are separated by semi-
colons. No semicolon is needed at the end of a
line, if Ratfor can make some reasonable guess
about whether the statement ends there. Lines
ending with any of the characters

=+-*’|&(—

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all-
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello™)
is converted into

write(6, 100)
100 format(5Shhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise unal-
tered (except for formatting — it may get split
across card boundaries during the reformatting
process). Within quoted strings, the backslash ‘\’
serves as an escape character; the next character
is taken literally. This provides a way to get
quotes (and of course the backslash itself) into
quoted strings:

B\

is a string containing a backslash and an apos-
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character ‘%’
is left absolutely unaltered except for stripping off
the ‘%’ and moving the line one position to the
left. This is useful for inserting control cards, and
other things that should not be transmogrified
(like an existing Fortran program). Use ‘%’ only
for ordinary statements, not for the condition
parts of if, while, etc., or the output may come out
in an unexpected place.

The following character translations are
made, except within single or double quotes or on
a line beginning with a ‘%’.
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== .eq. = .ne.
> .gt. >= .ge.
< e <= le.
& .and. | .or.
! .not. - aot.

In addition, the following translations are pro-
vided for input devices with restricted character
sets.

[
$(

-~
e
—

$ }

‘‘define’’ Statement

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), (ROWS, COLS)
if i>ROWS | j>COLS)...
Alternately, definitions may be written as
define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym-
bolic parameters for most constants, to help make
clear the function of what would otherwise be
mysterious numbers. As an example, here is the
routine equal again, this time with symbolic con-
stants.
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define YES 1
define NO 0
define EOS -1
define ARB 100

# equal _ compare strl to str2;

# return YES if equal, NO if not
integer function equal(str1, str2)
integer str1(ARB), sr2(ARB)
integer i

for (i = 1; str1(i) == str2(i);
i=i+1)
if (str1(i) == EOS)
return(YES)
return(NO)
end

““include’’ Statement
The statement

include file

inserts the file found on input stream file into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks on
a file, and include that file whenever a copy is
needed:

subroutine x
include commonblocks

end

suroutine y
include commonblocks

end

This ensures that all copies of the COMMON
blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such as
missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back to
the Ratfor source.

Keywords are reserved — using if, else,
etc., as variable names will typically wreak
havoc. Don’t leave spaces in keywords. Don’t
use the Arithmetic IF.
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The Fortran nH convention is not recog-
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on the
UNIX operating system{5]. The language is
specified by a context free grammar and the com-
piler constructed using the YACC compiler-
compiler[6].

The Ratfor grammar is simple and straight-

forward, being essentially
prog :stat
| prog stat

stat  :if (...) stat

if (...) stat else stat

while (...) stat

for (...; ...; ...) stat

do ... stat

repeat stat

repeat stat until (...)

switch (...) { case ...: prog ...
default: prog }

return

break

next

digits stat

{prog }

| anything unrecognizable

The observation that Ratfor knows no Fortran fol-
lows directly from the rule that says a statement is
‘‘anything unrecognizable’’. In fact most of For-
tran falls into this category, since any statement
that does not begin with one of the keywords is
by definition ‘‘unrecognizable.”’

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied to
the output with appropriate character translation
and formatting. (Leading digits are treated as a
label.) Keywords cause only slightly more com-
plicated actions. For example, when if is recog-
nized, two consecutive labels L and L+1 are gen-
erated and the value of L is stacked. The condi-
tion is then isolated, and the code

if (.not. (condition)) goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested if’s, of course), the code

L continue

is generated, unless there is an else clause, in
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which case the code is

gotoL+1
L continue

In this latter case, the code
L+1 continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there is
no trailing else,

ifi>0)x=a
should be left alone, not converted into

if (.not. (i .gt. 0)) goto 100
X=2
100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of ‘“‘inefficiency”” will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by ‘%’.

The use of a compiler-compiler is definitely
the preferred method of software development.
The language is well-defined, with few syntactic
irregularities. Implementation is quite simple; the
original construction took under a week. The
language is sufficiently simple, however, that an
ad hoc recognizer can be readily constructed to
do the same job if no compiler-compiler is avail-
able,

The C version of Ratfor is used on UNIX
and on the Honeywell GCOs systems. C com-
pilers are not as widely available as Fortran, how-
ever, so there is also a Ratfor written in itself and
originally bootstrapped with the C version. The
Ratfor version was written so as to translate into
the portable subset of Fortran described in [1], so
it is portable, having been run essentially without
change on at least twelve distinct machines. (The
main restrictions of the portable subset are: only
one character per machine word; subscripts in the
form c*vtc; avoiding expressions in places like
DO loops; consistency in subroutine argument
usage, and in COMMON declarations. Ratfor itself
will not gratuitously generate non-standard For-
tran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C); this
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compiles into 2500 lines of Fortran. This expan-
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe-
cution time of the Ratfor version is dominated by
two routines that read and write cards. Clearly
these routines could be replaced by machine
coded local versions; unless this is done, the
efficiency of other parts of the translation process
is largely irrelevant.

4. EXPERIENCE

Good Things

“It’s so much better than Fortran’ is the
most common response of users when asked how
well Ratfor meets their needs. Although cynics
might consider this to be vacuous, it does seem to
be true that decent control flow and cosmetics
converts Fortran from a bad language into quite a
reasonable one, assuming that Fortran data struc-
tures are adequate for the task at hand.

Although there are no quantitative results,
users feel that coding in Ratfor is at least twice as
fast as in Fortran. More important, debugging
and subsequent revision are much faster than in
Fortran. Partly this is simply because the code

- can be read. The looping statements which test at

the top instead of the bottom seem to eliminate or
at least reduce the occurrence of a wide class of
boundary errors. And of course it is easy to do
structured programming in Ratfor; this self-
discipline also contributes markedly to reliability.

One interesting and encouraging fact is that
programs written in Ratfor tend to be as readable
as programs written in more modern languages
like Pascal. Once one is freed from the shackles
of Fortran’s clerical detail and rigid input format,
it is easy to write code that is readable, even
esthetically pleasing. For example, here is a Rat-
for implementation of the linear table search dis-
cussed by Knuth [7]:

Am+l)=x
for (i=1; A(@) !=x;i=i+1)

if (i > m) {

m=i
B@l)=1
}
else

B(i)=B(@) +1

A large corpus (5400 lines) of Ratfor, including a
subset of the Ratfor preprocessor itself, can be
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found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran, and in a few cases this may be difficult to
relate back to the offending Ratfor line, especially
if the implementation conceals the generated For-
tran. This problem could be dealt with by tagging
each generated line with some indication of the
source line that created it, but this is inherently
implementation-dependent, so no action has yet
been taken. Error message interpretation is actu-
ally not so arduous as might be thought. Since
Ratfor generates no variables, only a simple pat-
tern of IF’s and GOTO’s, data-related errors like
missing DIMENSION statements are easy to find in
the Fortran. Furthermore, there has been a steady
improvement in Ratfor’s ability to catch trivial
syntactic errors like unbalanced parentheses and
quotes.

There are a number of implementation
weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved. This
rarely makes any difference, except for those
hardy souls who want to use an Arithmetic IF. A
few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a
‘%’ is not really a complete solution, although it
serves as a stop-gap. The best long-term solution
is provided by the program Struct [9], which con-
verts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is ‘‘unreadable”
because it is not tastefully formatted and contains
extraneous CONTINUE statements. To some extent
this can be ameliorated (Ratfor now has an option
to copy Ratfor comments into the generated For-
tran), but it has always seemed that effort is better
spent on the input language than on the output
esthetics.

One final problem is partly attributable to
success — since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation,
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5. CONCLUSIONS

Ratfor demonstrates that with modest effort
it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor is
clearly a useful way to extend or ameliorate the
facilities of a base language.

When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possible
for a given effort. One must avoid throwing in
“‘features’’ — things which the user may trivially
construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is presum-
ably capable of the self-discipline required to
prepare neat input that reflects his thoughts. It is
much more important that the language provide
free-form input so he can format it neatly. No
one should read the output anyway except in the
most dire circumstances.
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Appendix: Usage on UNIX and GCOS.
Beware — local customs vary. Check with a native before going into the jungle.

UNIX

The program ratfor is the basic translator; it takes either a list of file names or the standard input and
writes Fortran on the standard output. Options include —6x, which uses x as a continuation character in
column 6 (UNIX uses & in column 1), and —C, which causes Ratfor comments to be copied into the gen-
erated Fortran.

The program re provides an interface to the ratfor command which is much the same as cc. Thus
rc [options] files

compiles the files specified by files. Files with names ending in .r are Ratfor source; other files are assumed
to be for the loader. The flags —C and —6x described above are recognized, as are

—  compile only; don’t load

-f  save intermediate Fortran .f files

-r  Ratfor only; implies —c and —f

-2 use big Fortran compiler (for large programs)

-U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOS

The program Jratfor is the bare translator, and is identical to the UNIX version, except that the con-
tinuation convention is & in column 6. Thus

Jratfor files >output

translates the Ratfor source on files and collects the generated Fortran on file ‘output’ for subsequent pro-
cessing.

Jrec provides much the same services as rc (within the limitations of GCOs), regrettably with a some-
what different syntax. Options recognized by Jre include

name Ratfor source or library, depending on type
h=/name make TSS H=* file (runnable version); run as /name
r=/name update and use random library

a= compile as ascii (default is bed)

C= copy comments into Fortran

f=name Fortran source file

g=name gmap source file

Other options are as specified for the /cc command described in [4].

TSO, TSS, and other systems
Ratfor exists on various other systems; check with the author for specifics.
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Please take a minute to comment on the accuracy and completeness of this manual. Your assistance will help us
to better identify and respond to specific documentation issues. If necessary, you may attach an additional page
with comments. Thank you in advance for your cooperation.

| Manual Title:  UNIX Prog. Supplement (PS2) Part Number: 490147 Rev. A ]
Name: Title:

Company: Phone: ( )

Address:

City: State: Zip Code:

1. Please rate this manual for the following:
Poor Fair Good Excellent

Clarity (m] 0 (mi m|
Completeness O a a 0
Organization o 0 | o
Technical Content/Accuracy a a =] [m]
Readability (m] m] m| [mi

Please comment:

2. Does this manual contain enough examples and figures?
YesO NoO

Please comment:

3. Is any information missing from this manual?
YesO NoO

Please comment:

4, Is this manual adequate for your purposes?
Yes O NoO

Please comment on how this manual can be improved:
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