IS—68K CPU

INTEGRATED SOLUTIONS 68K CPU
HARDWARE REFERENCE MANUAL

REVISION 1.0

March, 1984

INTEGRATED SOLUTIONS, INC.
2240 Lundy Ave.
San Jose, Ca. 95131

Preliminary Edition, January 1983
1st Edition, March 1984

Copyright {C) 1983 by Integrated Solutions, Inc.,

All Rights Reserved

The material in this manual is for information only and is subject to change without notice.

Integrated Solutions, Inc., assumes no responsibility for any errors which may appear in this
manual.

e (Class A Computing Devices:
NOTICE:

This equipment generates, uses and may emit radio frequency energy. The equipment
has been type tested and found to comply with the limits for a Class A computing device
pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable
protection against such radio frequency interference when operated in a commercial en-
vironment. Operation of this equipment in a residential area may cause interference in
which case the user at his own expense may be required to take measures to correct the in-
terference.

DEC, LSI-11, and RL02 are trademarks of Digital Equipment Corporation.

-3-

PREFACE

This manual describes the Integrated Solutions IS-68K, LSI-11 Bus Compatible
68000/68010-based CPU Board. It contains specifications, installation procedures, a
technical description and limited troubleshooting information for the IS-68K. It also
contains initialization and programming procedures for the on-board serial ports and
counter/timer chips. Part of the technical description assumes that the user is somewhat
familiar with the architecture of the 68000/68010 processors. For more information on the

architecture and programming of the 68000 family, see the appropriate Motorola, Hita-
chi, Rockwell or Signetics reference manuals.

-4-

TABLE OF CONTENTS

Page

1. Introduction 6
1.1 Features 6
1.2 Performance 6
1.3 Specifications 6
1.4 Memory Management 9
1.5 On-Board/Local Bus Memory 10
1.5.1 Local Memory Bus 10
1.5.2 Local Bus Timing 12
1.6 Serial Ports 13
1.7 Traps and Interrupts 13
1.8 DMA Arbitration 15
1.9 . Memory Arbitration 15
2.0 Configuration 17
2.1 Jumpers 17
2.1.1 Jumpers E1,E2,E3 - Eprom Speed 17
2.1.2 Jumpers E4-E7 - Bus Timeout 17
2.1.3 Jumpers E8-E11, E16-E21, E43-E48 Serial Port #0 17
2.1.4 Jumpers E12-E15,E22-E27, E37-E42 Serial Port #1 18
2.1.5 Jumpers E28-E29-E30 - CTC Input CLock 19
2.2 Dipswitch | 19
2.3 1/0 Connector Pinout 20
3.0 Operation/ Programming 23
3.1 ON-Board 1/O Addresses 23
3.1.1 Segment Registers - 400001H -7F0001H 23
3.1.2 Page Registers - 800000H -BFF000H 24

3.1.2.1 Accessed Bit 25

3.1.2.2 Page Written Bit
3.1.3 Exception/Context Register - C10001H
3.1.4 Serial Ports/Counter Timer - C20001H-C21007H
3.1.5 Status Register - C30000H
Appendix A - Programming the Serial Ports
Appendix B - MACSBUG Commands
Appendix C - Downloading and 'S’ Record Format

Appendix D - Memory Managment Unit

Appendix E - DART and CTC Application Notes

25

26

27

27

-6-

SECTION 1

INTRODUCTION

1.1 Features

The 1S-68K card is a high performance, highly integrated CPU on the LSI-11 Bus. It is
specifically designed for those users who want to combine the processing speed, large Instruc-
tion space and sophisticated instruction set of the Motorola 68000/68010 processors with
the large variety of peripherals available on the LSI-11 bus. In addition, the card offers a
higher level of integration than the existing LSI-11 processors, combining up to 1 megabyte
of parity memory, up to 32k bytes of PROM, and two high speed serial ports with pro-
grammable baud rates on a single Quad form factor card.

1.2 Performance

The IS-68K has been designed to maximize the performance available from the
68000/68010 processors. It will operate at 10MHz (12MHz -12 option) with no walit states
out of the on-board or local bus expansion memory. Dual porting the on-board and local
bus memory permits all on-board and local bus memory to be accessed by DMA devices
on the LSI-11 Bus and also permits the 68000/68010 to continue operating while DMA
transfers are underway. The 68000 continues executing at full speed while DMA transfers
are occuring to LSI-11 bus memory. It continues executing at reduced speed if DMA
accesses to on-board/local bus memory are made, while memory accesses are automati-
cally arbitrated between the 68000 and the DMA bus master.

1.8 Specifications
1.3.1 Processor

The processor of the IS-68K CPU board is a Motorola 68000 or 68010. There are no
hardware differences between the 68000 and 68010 versions of the IS-68K. All IS-68K boards
have hardware support for demand paging.

1.3.2 Bus

The system bus of the IS-68K is LSI-11 compatible. It meets all requirements of DEC STD
160 WITH 22-bit addressing. The "B" revision of the processor board (released March, 1984)
supports block mode transfers as defined in DEC STD 160.

1.3.3 Address Space

A 22-bit logical address space is mapped to a 22- bit physical address space through the
memory management subsystem. The memory management subsystem together with the
user mode of the 68000/68010 processors provides the protection features required to
support a large multiuser environment.

i.3.4 Memory

Configurations:

128k, and 256k implemented with 64k RAMS.
512k, and 1024k implemented with 256k RAMS.

-7-

Byte parity generation and checking implemented on all versions.
1.3.5 Memory Management

The IS-68K board contains two levels of memory management, a segmentation front end
and a paging back end. Each process can have from 1 to 64 segments associated with it.
Segments contain from 1 to 16 4k byte pages. Support for demand paging through page
accessed and page modified bits is associated with each page. These bits are automati-
cally updated by hardware on each page reference.

1.3.8 Local Memory Bus

The on-board memory is expandabie to 4 megabytes over the local memory bus. Local
memory, as well as on-board memory runs with no wait states. All local memory is accessible
from the LSI-11 bus through the two port memory arbitrator.

1.3.7 LSI-11 Bus Memory

All memory accesses above the local memory are routed over the LSI-11 bus. The transition
between local and LSI-11 bus memory is controlled by the local memory limit switch on the
IS-68K (see Section 1.3.12).

1.3.8 PROM Sockets

The IS-68K contains two on-board PROM sockets configurable for 2716, 2732, 2764 or
27198 ROMS or EPROMS. The IS-68K is optionally available with two sets of EPROMs.
On the IS-68K, the PROMs are located starting at address CO0000H in the 68000/68010 on-
board 1/O space. In addition some special hardware has been added to the CPU board to map
the bottom eight bytes of system mode logical address space (addresses 000000H to 000007H)
into the bottom eight bytes of the PROM space (addresses C00000H to C00007H). In this
manner when the IS-68K board powers up, the initial system stack pointer and initial PC are
always taken as long words from the bottom eight bytes of the PROM.

MACS PROMs - The MACS PROMs are a set of 2732 EPROMs containing the Motorola
MACSBUG monitor. A description of the commands supported under this monitor is
contained in Appendix B.

UNIPS PROMs - The UNIPS PROMSs are a set of 2764 EPROMs containing the UNIX
bootstraps required to boot System 3 or System 5 Unix from a variety of different DEC
compatible devices. For BSD 4.2 Unix the PROMs are 27128s because of the larger
number of drivers and higher complexity of the bootstrap device drivers.

1.3.9 Serial Ports

The two serial ports on the board both support either RS423 (RS232C compatible) asyn-
chronous communication or RS422 balanced synchronous communication with external
clocking. Both channels offer full modem control support while in asynchronous mode and
limited modem control support in synchronous mode. Channels 0 and 1 can be independently
configured for synchronous or asynchronous communications.

1.3.10 Eiecirical Inierface

The IS-68K interfaces with the 22 bit LSI-11 bus. A Quad form factor board is used with
the bus interface implemented on A and B connectors. There are no signals on the Cand D

-8-

connectors. DEC approved bus drivers, receivers and transceivers are used for all bus sig-
nals. All AC and DC requirements of DEC Standard 160 are adhered to. The board sup-
ports BPOK and BDCOK power up/down protocol, as well as BEVNTL and the generation
of SRUN (pin AF1) signal. By using the CD connectors for power and ground only, the board
is compatible with all LSI-11 bus backplanes.

1.3.11 Indicators
4 LEDs at the top of the board:

1 Motorola 68000 HALT indicator
1 latched PWR FAIL

1 latched LOCAL PARITY ERROR
1 latched BUS PARITY ERROR

1.3.12 Configuration Switches (8 switches)

SW 1-4 - Local memory limit switch: All memory accesses above this limit go to the
LSI-11 bus.

SW 5-6 - Default baud rate of console port: settable to 300, 1200, 2400 or 9600 baud.
Settable to any other four standard baud rates (up to 38.4K), at the time of order
upon customer request. Moving the jumper associated with pins E28-E29-E30 will
also halve the baud rates produced. (See section 2.1.5.). These switches set the baud
rate according to the above definition with both the MACS and UNIPS PROM:s. However,
the switches are software readible and the on-board firmware must make the conversion
between switch setting and programmed baud rate.

SW 7-8 - Used by the UNIPS PROMs to control autobooting and the type of SMD disk
from which to boot. See the appropriate Unix Installation notes for a more detailed
description.

1.3.13 Power Requirements

-+ 5v - 4.0 amps typical, 5 amps maximum
<+ 12v - .1 amps maximum

1.3.14 Environmental

Temperature: 0°C to 50 * C (operating)
-40° C to 65" C (non-operating)

Humidity: 10% to 90% (non-condensing)
1.3.15 Options

-MACS two 2732 EPROMs containing
Motorola MACSBUG power up diagnostics and
autoboot capability (no PROMs standard)

- UNIPS two 2764 E Proms containing self test diagnostics
MMU Initialization logic, and Unix bootstrap loaders

(required for Unix)

- 10 10 MHz board (8MHz standard)

-12 12 MHz board

- 10V 10 MHz board with 68010 virtual memory processor

- 12V 12 MHz board with 68010 virtual memory processor (available
2nd quarter 1984)

-128 128k bytes of parity memory (256k standard)

- 512 512k bytes of parity memory (available 2nd qtr 84)

- 1024 1024k bytes of parity memory(avaiiable 2nd qtr 84)

1.4 Memory Management

The memory management unit is based on 5 high speed static 1kx4 RAMS and consists of a
segmentation front end followed by a paged back end. This is the same memory management
style used on many current generation mainframe computers. The segmentation unit takes
bits 21-16 of the 68000 logical address and uses it as an index into the segment register
bank along with the contents of the context register (4 bits) to be described in more
detail later. The segment register array consists of 1024 registers each 8 bits wide. The
combination of 6 logical address bits and 4 context register bits select one unique segment
register on each memory access. Out of the segment register bank come 8 bits, the upper
two of which are used for to encode four protection modes and the bottom six of which are
used as an index into the page table. The two protection bits are encoded as follows:

00 - no access
01 - read and execute access only
10 - read/write access

11 - execute access only in user mode. Any access permitted in System mode

1.4.1 Page map

The six segment number bits coming out of the segment register are concatenated with bits
15-12 of the logical address to form a 10 bit entry into the page table. The page table Is
1024 registers, each 12 bits wide. Out of the page table comes a 10 bit physical page
number which is combined with bits 11-0 of the 68000 logical address to a form a 22 bit phy-
sical memory address. From the programmers point of view, each process consists of from
1-64 segments, each segment containing from 1 to 16 4k pages. This page size should be
optimal for a iarge number of processes to be simultaneously memory resident without wasi-
ing memory space due to unused partial pages and at the same time minimizing the number
of memory management registers that must be changed to load a new process. The
SFCH-SFFH number pages have special meanings, two pages {(3FCH and 3FDH]} being used
as the non-existant page and two pages (3FEH and 3FFH) being used as the I/O page for the
LSI-11 bus. The other two bits coming out of the page register are used as page

- 10 -

accessed and page dirty bits for demand paging. They are automatically updated by the
hardware on each memory access.

1.4.2 Context register

In an effort to minimize context switching overhead, there are actually 16 sets of 64 seg-
ments present in the segment map. A four bit context register, settable only by the system,
selects which user context (1 -15) is to be used when a user program is running. Whenever
the 68000 is in supervisor mode, the system context (0) is automatically used. The user
context, however, Is preserved when a switch is made from user mode to system mode and
back to user mode such as when servicing interrupts. Thus, when 15 or fewer processes are
simultaneously memory resident, context switching only requires modifying the context
number in the context register.

1.5 On-board/Local Memory

The IS-68K CPU board comes equipped with 256k bytes (128k bytes optional) of on-board
memory. This memory is implemented with high speed 64k dynamic RAMS and accesses
from the 68000 are accomplished with no wait states. This type of performance is avail-
able because the on-board memory is dual-ported; the 68000 accesses it via a different path
than the LSI-11 bus and does not have to follow LSI-11 bus protocol. For high perfor-
mance applications, the on-board memory can be extended to the full 4 megabyte address
space of the 22 bit LSI-11 bus via the two 34 pin local bus expansion connectors at the top of
the IS-68K card. When configured this way, the IS-68K allows a full 4 megabyte 68000 sys-
tem to run with no wait states at 8, 10 or 12 MHz.

All on-board local bus memory is fully accessible from the LSI-11 bus when DMA devices are
bus master. Further, because of the performance limitations of the LSI-11 bus only 50%
of the on- board memory bandwidth can be used even if a device transfers at the ideal
maximum LSI-11 bus rate. The dual-ported memory system allows the remaining memory
bandwidth to be used by the 68000.

NOTE

The first 256k bytes of memory always appears at the bottom of the LSI-11
bus physicai memory space. If more memory is present on the local bus, it
appears at the next ascending physical memory locations up to the limit of the
local bus memory present.

Users of the first IS-68K boards with only 128k bytes (no longer available) also have a
further limitation. Because the address limit switch selects addresses with a granularity of
256k bytes, the IS-68K always thinks that it has at least 256k of on-board memory. This
means that with 128k byte boards, a 128k hole appears above the on-board memory where
the other 128k bank of memory normally sits. Accesses to this memory space do not result
fn bus errors but no information can be read or written from this space. The effect of
this problem can be negated to a large extent by programming the memory management
unit never to access this physical memory space.

1.5.1 Local Memory Bus

The local memory bus is implemented as a means of extending the on-board memory with
its fast access characteristics and dual- ported nature. The local memory bus {s Imple-
mented with 38 control, data and signal lines on 2 34 pin ribbon cable connectors.
The connectors are designated J3 and J4 at the top of the IS-68K.

- 11 -

NOTE
On early versions of the IS-68K, the J4 connector is designated J1.

The following signals are implemented on the J4 connector:

J4-1 XBUFDI10 (external buffered data 10)

J4-2 XBUFDO09

J4-4 XBUFD15

J4-6 XBUFD14

Ja-7 XBUFD11

J4-8 XBUFD13

J4-9 XBUFDI12

J4-12 XBUFDO8

J4-14 XBPAROUTH (external buffered parity out -most sig byte)
J4-16 XBUFD02

J4-17 XBUFD00

J4-19 XBUFDO7

J4-21 XBUFD04

J4-22 XBUFDO06

J4-24 XBUFDO05

J4-26 XBUFDO1

J4-28 XBUFD03

J4-30 XBPAROUTL (external buffered parity out-least sig byte)
J4-32 XBPINH* (external buffered parity in -most sig byte)
J4-34 XBPINL* (external buffered parity in -least sig byte)

The following signals are implemented on the J3 connector:

J3-1 XBAD17 (buffered non-multiplexed address 17)
J3-3 XBCAS* (buffered column address strobe)
J3-5 XBREF (buffered refresh signal)

J3-7 XBRAS* (buffered row address strobe)
J3-9 XBMUX1 (buffered multiplexed address 1)
J3-11 XBMUXS5

J3-13 XBMUXO0

J3-15 XBMUXT

J3-17 XBMUX6

J3-19 XBMUX3

J3-21 XBMUX2

J3-23 XBMUX4

J3-25 XBAD21

J3-27 XBADI18

J3-29 XBAD19

J3-31 XBAD20

J3-33 XBWRL (buffered write low byte)

J3-34 XBWRH (buffered write high byte)

The signals on the local memory bus can be grouped into four functional groups:

1.5.1.1 The Data Group

The data group consists of the 16 bidirectional data lines, the two byte parity in lines and
the two byte parity out lines. The parity in and out lines are unidirectional.

-12-

1.5.1.2 The Multiplexed Address Group

There are eight unidirectional multiplexed address lines. These lines contain a physical
addresses 1 through 8 at RAS time and physical addresses 9 through 16 at CAS time. The
source of these physical addresses depends on whether the cycle is a 68000 cycle or an LSI-
11 bus cycle. In addition, during refresh cycles, these lines contain the refresh address.
1.5.1.3 The Non-multiplexed Address Group

These five lines contain non-multiplexed physical addresses 17- 21. The non-multiplexed
addresses are guaranteed valid from 35ns before RAS is asserted and are valid through the
entire RAS cycle.

1.5.1.4 The Control Group

The five signals in the control group are as follows:

XBRAS* - This signal is asserted to indicate that a memory cycle has begun and that row
addresses are valid on XBMUXO0-7.

XBCAS* - This signal always follows 40ns after XBRAS* and indicates that the column
addresses are valid on XBMUXO-7. In the case of refresh cycles, XBCAS* still occurs but
must be supressed at the memory chips themselves.

XBREF - This signal is asserted at least 40ns in advance of RAS to indicate that the
forthcoming memory cycle is a memory refresh cycle. The RAS lines of all memory devices
must be asserted low at RAS time and CAS must be suppressed to all memory devices.
XBWRH - This signal indicates that a write is to be performed on the most significant byte
of the addresses memory location. This signal is always stable at least Ons before the
assertion of XBCAS* and is stable until the negation of XBRAS*.

XBWRL - This signal indicates that a write is to be performed on the least significant byte
of the addressed memory location. This signal is always stable at least Ons before the
assertion of XBCAS* and is stable until the negation of XBRAS*.

1.5.2 Local Bus Timing

Figure 1.5 shows the timing requirements of typical read and write signals on the Local
Bus. The significant parameters are:

TARasSu - address set up time before RAS* is asserted - 35ns {this parameter applies
to both the multiplexed and non- multiplexed addresses)

TARasHd - multiplexed address hold time after RAS* is asserted - 25ns

TACasSu - multiplexed address (column addr) set up time before CAS* is asserted - Ons
TACasHd - multiplexed address {column addr) hold time after CAS* is asserted - 100ns
TRASPr - minimum RAS precharge time - 85ns (12 MHz) 100ns (10 MHz) 125ns (8 MHZ)

TRASCy - minimum RAS cycle time - 130ns (12 MHz) 150ns (10 MHz) 187ns (8 MHz)

-13 -

TDRAS - data access time from RAS - 100ns (12 MHz) 120ns (10 MHz) 158ns (8 MHz)
TRC - time interval between RAS assertion and CAS assertion - 45- 551ns
TWCASSu - stable WRITE HIGH and WRITE LOW signals before CAS* is asserted - Ons

TWDCASSu - stable write data high and low bytes before CAS* is asserted including par-
ity data - 25ns

TWDCASHA - stable write data, high, low bytes and parity, after CAS is asserted - 100ns
1.6 Serial Ports

A combination of a Zilog CTC and a Zilog DART are used to implement two serial
ports with programmable baud rate. The serial ports can be used in asynchronous com-
munications at rates up to 38.4 kilobits per second and in synchronous communications up
to 1 megabit per second. Almost all characteristics of the serial ports are programmable
including the number of bits/word, the number of start bits, the number of stop bits, the
number of bits per character, whether interrupts occur on various conditions, the
interrupt vector, etc. (See Appendix A, and the Zilog application notes in Appendix E for
more information on programming the DART and CTC.). The DART and CTC are properly
initialized for operation at the baud rate set in switches 5 and 6 by both the MACS and
UNIPS PROMs.

1.7 Traps and Interrupts
1.7.1 Interrupts

The IS-68K uses the seven level interrupt scheme of the 68000 to service interrupts from
sources on-board and off-board. The off- board interrupts include the four LSI-11 bus inter-
rupt levels and four hardware related sources of level seven non-maskable interrupts.
The 68000 level seven interrupt differs from the other six levels in that it is non-maskable,
i.e., no matter what priority level is set, it will still be serviced.

1.7.1.1 Level 1-4 Interrupts

The LSI-11 Bus Interrupts. The four LSI-11 bus interrupts are mapped into the following
68000 interrupt levels:

LSI-11 BUS Motorola

IRQ4 Level 1
IRQ5 Level 2
IRQ6 Level 3
IRQ7 Level 4

These four interrupts are vectored with the vector coming from the LSI-11 bus. The LSI-
11 vector is converted to an address in the 68000 vector table by multiplying it by four. For
example, the LSI-11 bus RLO2 interrupt at 160(8) will vector through Motorola location
1COh. The IS-68K does not have the same restriction that the LSI-11 bus does that vec-
tors must have even addresses. The effect of this restriction, however, Is to permit the
LSI-11 bus to access only every other location in the vector table.

A second restriction requires the LSI-11 bus vectored interrupts to appear in the 68000
user interrupt space from 100h to 3FCh. This means that LSI-11 bus vectors from 100(8)
to 377(8) are permitted. This range includes almost all LSI-11 bus standard vectors and

-14 -

the bottom of the floating vector table.
1.7.1.2 Level 5 Interrupt

The BEVNTL line. The only interrupt at level 5 is the LSI-11 bus BEVNTL line. The
BEVNTL line contains a 60Hz TTL level compatible signal generated by DEC or DEC compa-
tible power supplies that is received by the IS-68K and latched on the falling edge. Because
the BEVNTL line has no interrupt associated with it, the BEVNT interrupt is autovectored
at level 5. This means that it always traps through location 074h.

1.7.1.8 Level 6 Interrupts

The On-Board Serial Ports. The on board serial ports and optionally the counter/timer
chip interrupt at level 6. A vector Is provided by the serial 1/O ports and counter/timer
chip at interrupt acknowledge time. Like the LSI-11 bus vectors, these vectors are multi-
plied by four to get the vector address at the bottom of the 68000 logical address space.
Because the Zilog DART chips used for the serial ports and the Zilog CTC chips can
modify their base vectors to respond to different interrupt sources, the user must be
careful that the on-board level 6 interrupts do not conflict with the LSI-11 bus vectors.
(See Appendix A for more information on programming the Zilog DART.)

1.7.1.4 Level T Interrupts

Level 7 interrupts are reserved for hardware related problems that must be brought to
the immediate attention of the 68000. Because no vectors are associated with level seven
interrupts, they are all autovectored through the same location, 07CH.

BPOKH falling edge - The falling edge of the BPOKH signal indicates that the
power supply has only four milliseconds of power left. This falling edge generates a
level 7 interrupt to get the processors immediate attention. In addition, this occurence
Is latched into the on-board STATUS register at location C30000H, bit 9.

On-board Parity Error - A parity error in on-board memory causes a level 7 inter-
rupt when the memory access is made from the 68000. The occurence of the parity
error is also latched into the STATUS register bit 7. If another device were bus master
when the parity error occured in on-board memory, the response would be different.
In this case, the response would be to suppress the bus REPLY signal and cause a bus
error in the DMA device to indicate to it that the parity error had occured.

Bus Parity Error - The LSI-11 bus defines a protocol where the assertion of both
address lines 17 and 18 (BDAL 17 and 18) at data in time indicates that a parity error
has occured in the device being accessed. The IS-68K recognizes this protocol and
Immediately asserts a level 7 interrupt. This occurence is also latched into the STATUS
register bit 8.

BHALT line - The falling edge of the LSI-11 bus BHALTL line causes a level 7
interrupt. This occurence fs also latched into the STATUS register bit 6.

1.8 DMA Arbitration

The IS-68K board serves as the DMA arbitrator for the LSI-11 system into which it
is inserted. DMA arbitration is not handled by the 68000 but is Instead handled by a
completely separate plece of TTL logic for performance reasons. The arbitrator
conforms to LSI-11 bus specifications with & maximum DMA latency (request to grant

-15-

time) of 200 ns (150 ns average) except in the situation where the 68000 is using the
LSI-11 bus. In this case, the DMA arbitrator cannot issue the bus grant until the 68000
is through with its current bus cycle. If, however, the 68000 is using on-board/local
bus memory at the time of the request, the GRANT is always issued with an average
latency of 150 ns.

The second case where DMA latency may be affected is when one device has the bus
AND another is requesting its use AND the 68000 is requesting its use concurrently. In
this case, the 68000 will be given the bus for one cycle only at the conclusion of the first
master’s use of the bus. After completing one cycle, the second requester will be
granted bus mastership. Note that when the 68000 is executing out of on-
board/local bus memory, instruction execution and servicing of on-board interrupts
can still occur concurrently with DMA transfers.

In the case of off-board interrupts, the 68000 will be suspended in the IACK {interrupt
acknowledge) cycle until the current master relinquishes the bus. The 68000 will then
conclude the interrupt acknowledge cycle, immediately after which the second master
will be granted the bus if another bus request is pending.

1.9 Memory Arbitration

The memory arbitration unit allocates memory cycles among the three possible
requesters of the on-board memory in the following priority order:

e 68000 memory requests

e refresh requests (one refresh request occurs every 12.8
microseconds)

oL SI-11 bus requests

The priority order is important only when two or more requesters simultaneously
request the use of on-board memory. In all other cases, memory cycles are awarded on
a first come-first served basis. Further it is important to note that the on-board
memory always runs at the maximum possible rate of a cycle every 260ns (12 MHz
board, 300ns - 10MHz, 375ns - 8 MHz) when any requests are pending.

Even though the LSI-11 bus is at the minimum priority level, it is almost always
guaranteed an access within one memory cycle. This is because the 68000, even if
accessing memory at the maximum rate possible, does not request the use of the bus
for one clock cycle after completing each memory cycle. Any LSI-11 memory request
pending is honored at this time. The only exception to this is the case where a
refresh request was also pending. In this case, the refresh request would be granted
and then the LSI-11 bus memory request would be honored. Thus it would theoreti-
cally be possible for the LSI-11 bus and the 68000 to both request bus use constantly
and alternate memory cycles. This would allow one LSI-11 cycle every 520ns for a
memory transfer rate of 3.85 megabytes/second. Unfortunately, the LSI-11 bus proto-
col will not support memory requests that frequently. Empirical studies of the IS-68K
have shown that what actually happens with a DMA device that performs fairly close
to the upper limit of the LSI-11 bus bandwidth is that the LSI-11 DMA device will per-
form a memory cycle every two 68000 cycles for a total transfer rate of 2.4 mega-
bytes per second. In situations where this level of performance is unacceptable,
the performance can be improved a little by stopping the 68000 processor while
doing DMA transfers. When this is done, the maximum transfer rate increases to 2.7
megabytes per second and is limited only by the memory arbitration time and the LSI-
11 bus protocol itself.

- 16 -

The disadvantage of this method of increasing the DMA bandwidth is that the 68000 no
longer can perform meaningful work while DMA transfers are underway. However, if
the 68000 has nothing meaningful to do while a DMA transfer is pending, it is certainly
better to STOP it (by executing the STOP instruction) rather than executing a tight code
loop waiting for completion.

Average BDOUTL to REPLYL time on memory writes is 140ns (97ns min - 172ns max
12mhz board). Average BDINL to REPLYL time on memory reads Is 315ns (12 mhz
board). This time is much longer than the memory access time and is required fn
order to check the parity of the information coming out of the memory in order to
suppress REPLY when a parity error occurs. The impact of slow READ operations is
somewhat minimized by the fact that in most operating systems, writes from disk to
memory are four times as frequent as reads from memory to disk.

1.9.4 Block Mode Memory Operation

Revision 2.0 of the IS68K board supports block mode memory operation as defined in the
latest LSI-11 Bus Technical Specification. Under block mode operation, a single address
serves as the starting address for multiple data transfers. With the IS68K block mode
design, up to 16 words will be transferred in a single block transfer. Under block mode
writes from the disk into memory (again four times as frequent as data reads from
memory), one word transfer can occur approximately every 570ns for an effective
transfer rate of just under 3.5 megabytes per second. With block mode read from
memory to the disk, a word transfer can occur every 695ns for an effective transfer rate
of 2.8 megabytes per second.

Mode Dual-Ported Memory Maximum Transfer Rate (MBytes/sec)
Disk to Memory Memory to Disk
Non-Block Mode 2.4* 2.2%
Block Mode (Rev 2.0) 3.5 2.8

Figure 1.9.4 LSI-11 Bus Memory DMA Bandwith
*In these two cases, maximum transfer rate is almost completely a function
of LSI-11 bus protocol rather than the response time of the dual-ported memory.

-17 -

SECTION 2

CONFIGURATION

2.1 Jumpers
2.1.1 Jumpers E1,E2,ES

These jumpers control the number of wait states when accesses are made to the on-
board EPROMS.

E2-E3 - two wait states are inserted on 68000 accesses. EPROM access times of 260
ns or better are required fo 12 MHz operation, 320 ns or better for 10 MHz operation,
400 ns or better for 8 MHz operation.

E1-E3 - four wait states are inserted on 68000 accesses. EPROM access times of 430 ns
or better are required for 12 MHz operation, 520 ns or better for 10 MHz operation,
650 ns or better for 8 MHz operation.

The factory configuration is E1-E3.

Jumper | 12MHz | 10MHz
E1-E3 430ns 520ns
E2-E3 260ns 320ns

Figure 2.1.1 EPROM Access Time (nano seconds)
2.1.2 Jumpers E4-E7

E4, E5, E6 and E7 control the LSI-11 bus timeout timing. There are three possible
timeout timings that can be set by tieing jumper post E4, E5 or E6 to E7. Only one
post of these three should be attached to E7. The board is shipped from the factory
with the default of E5-E7 and it should be left in that configuration for most appli-
cations.

Jumper | 12MHz | 10MHz | 8MHz
E6-E7 11.0 12.8 16
E5-E7 22.0 25.6 32
E4-E7 44.0 51.2 64

Figure 2.1.2 Bus Timeout Timing (microseconds)
2.1.8 Jumpers ES1-36

Jumpers E31,E32,E33,E34,E35,E36 control the configuration of the EPROM sockets to
allow the use of 2716,2732,2764,28128 type PROMS or EPROMS.

E32-E33 E35-E36 -2716 type EPROMS (2kx8)
E32-E33 E34-E36 -2732 type EPROMS (4kx8)
E32-E33 E34-E36 -2764 type EPROMS (8kx8)
E31-E33 E34-E36 -27128 type EPROMS (16kx8)

2 20 2 34 2 34
51 J20s B I3 3zdl B JI 339
E2l—eg000eccoppe— 3 :
E20 JJ [LEMEZ
E19 E£52
El6 E25
e8| |Lea?
e17dle2e
E7
E8 (Elas !’/EG
E”]. El :
59_.} SOJP |\Es
l 4
EI0 El4 E
’ E36
E34—3 ¢35
sT—E3I
E32—"\g33

]]

FIG.2.1 CONmIGURATION

-18-

2.1.4 Jumpers E8-E11,E16-E21,E43-E48

Jumpers E43,E44,E45,E46,E47,E48 configure serial port #0 to operate in RS423
(RS232C compatible) asynchronous mode or RS422 halanced synchronous mode. In syn-
chronous mode, an external clock must be provided on the CLK and CLK RET lines.
Jumpers E16-E21 are used in conjunction with the above jumpers to allow each
receiver to have its own RETURN line in synchronous mode or to tie all receivers
together to a common ground point in asynchronous mode.

For asynchronous operation on Channel 0,the following connections should be made:

E8-Ei0 - This ties the internally generated counter $imer channe! 0 baud rate out-
put to the transmitter and receiver clock inputs on the SIO/DART chips.

E9-E11 This ties the CTSO signal received on Pin 4 of the J2 connector into the
SIO/DART chip.

E16-E17, E19-E21 This ties the return path for all serial channels to a common
point. In addition, E49-E21 ties these return paths to Board Ground.

E43-E44, E47-E48 This provides the proper voltages to the Channel 0 26L.S30 bus
driver to allow it to operate in RS423 mode.

For synchronous operation on Channel 0, the following connections should be made:
E10-E11 This allows a baud clock generated externally to operate the SIO chip.

E16-E18, E20-E21 This configures each signal line to have its own RETURN.
Since E49 (Board Ground) is not used in this configuration, these returns are not
connected to ground for differential mode operation.

E44-E45, E46-E47 These provide the proper voltages to operate the 26LS30
chip in RS422 balanced synchronous mode.

For channel 1, a similar set of connections is made. For asynchronous operation:

E12-E14 - This ties the Internally generated counter timer channel 1 baud rate
output to the transmitter and receiver clock inputs for channel 1 on the SIO/DART
chips.

E13-E15 This ties the CTS1 signal received on Pin 14 of the J2 connector into the
SIO/DART chip.

E22-E23,E25-E26 This ties the return path for all serial receivers to a common
point. In addition, these points must be tied to Board Ground. If channel 0 is wired
up in asynchronous mode, this can be accomplished by tying E16-E17; otherwise, E16
should be tied directly to E49 (Board Ground).

E37-E38,E41-E42 This provides the proper voltages to the 26LS30 bus driver to
allow it to operate in RS423 mode

For synchronous operation on Channel 1, the following connections should be made:

-19 -

E14-E15 This allows a baud clock generated externally to operate the SIO/DART
chip.

E22-E24,E25-E27 This configures each signal to have its own RETURN. These
returns are not connected to ground for differential mode operation.

E38-E39, E40-E41 These provide the proper voltages to operate the Channel
#1 26LS30 chip in RS422 balanced synchronous mode.

The factory default configuration is both channels wired for asynchronous operation.

ERRATA

On Rev 1.0 boards, there is no Jumper post to tie the Input RETURN lines to
Board Ground. This is hecessary for reliable operation of the asynchronous
channels. This is accomplished on Rev 1.0 boards by tieing E17-E16 and E23
to the GND pin of chip J17 (pin 10). The board is factory configured in this
manner.

2.1.5 Jumpers E28-E30 CTC Input
The CTC input clock can be programmed to be 1 /4 or 1/8 the 68000 clock rate.

E28-E30 The CTC input clock is 1/4 the 68000 clock rate. This is the factory
default position.

E29-E30 The CTC input clock is 1/8 the 68000 clock rate. The baud rates pro-
duced by the CTC are all exactly 1/2 the factory default rates. This jumper can
effectively be used to support baud rates that are exactly 1/2 the four baud rates
provided by MACSBUG. See Section 2.2.

2.2 Dipswitch

The single eight pin dipswitch at position B10 controls three independent functions.
Switch positions 1-4 control the transition between iocal bus memory and LSI-11 bus
memory. These switches allow from 1 to 16 256k byte segments of physical memory to
be placed on the local bus. When all four positions are closed, it indicates that only

256k bytes of memory are present on the local bus.

The following table indicates the switch settings for various amounts of memory
present on the local bus:

Memory on Local Bus Including Switch Switch Switch Switch

CPU Resident Memory 1 2 3 4

256k bytes close close close close
512k bytes close close close open
768K bytes close open close close
1024k bytes close open close open
1.25 meg close close open close

1.5 meg close close open open

-920-

1.75 meg close open open close
2.00 meg close open open open
2.25 meg open close close close
2.50 meg open close close open
2.75 meg open open close close
3.00 meg open open close open
3.25 meg open close open close
3.50 meg open close open open
3.75 meg open open open close
4.00 meg open open open open
ERRATA

On boards Rev A2 and earlier, setting all four switches open will put all 4.00
megabytes on the local bus. This has the problem that the upper 8 kbytes of
the four megabyte address space (the I/O page of the LSI-11 bus) cannot be
accessed by the IS68K. There are two solutions to this problem. For those
users who must have the capability of putting a full 4 megabytes of memory on
their system, a one wire change is available from Integrated Solutions to fix
this problem. The other solution is to limit high speed memory to 3.75 mega-
bytes or less. The problem has been fixed on boards REV A3 and later. On
these boards, setting all the switches open will result in all four megabytes of
memory minus the I/O page being available on the high speed bus. All I/O
page references will go out on the LSI-11 bus.

Switch positions 5,6,7,8 are software readable switches that appear in the STATUS
register at bit positions 3,2,1,0:

SW5 - bit position 3
SW6 - bit position 2
SWT - bit position 1
SW8 - bit position 0
Under MACSBUG the switches have the following functions:
SW5 and SW6 set the console baud rate at power up according to the following table:

SW5 - closed, SW6 - closed - 9600 baud
SW5 - closed, SW6 - open - 2400 baud
SW5 - open, SW6 - closed - 1200 baud
SW5 - open, SW6 - open - 300 baud

If the jumper between E29-E30 is installed, the baud rates will be 4800 baud, 1200
baud, 600 baud, and 150 baud respectively.

SW7 and SW8 have no function under MACSBUG.

2.8 1/O Connector Pinout

Connector J2 contains the I/O connections for the two serial ports. The signals on
the connector are different depending on whether one or both ports are configured

for synchronous operation.

NOTE - Pin 1 is marked by a square pad on the IS68K board for all ribbon cabie

connectors.
Port #0 - Asynchronous Configuration

J2-1 TXDO out

J2-2 RXD0 in

J2-3 RTS0 out

J2-4 CTSO in

J2-5 not used

J2-6 CHO COMMON RET
J2-7 DCDO in

J2-8 DTRO out

J2-9 not used

J2-10 not used

Port #0 - RS422 Synchronous

J2-1 TXDO out
J2-2 RXD0 in
J2-3 RTSO out
J2-4 CLKO in
J2-5 RTSO RET out
J2-6 DCDO RET in
J2-7 DCD0 in
J2-8 TXDO RET out
J2-9 CLKO RET in
J2-10 RXDO RET in

Port #1 - Asynchronous Configuration

J2-11 TXD1 out

J2-12 RXD1 in

J2-13 RTS1 out

J2-14 CTS1 in

J2-15 not used

J2-16 CH1 COMMON RET
J2-i7 DCDi in

J2-18 DTR1 out

J2-19 not used

J2-20 not used

Port #1 - Synchronous

J2-11 TXDO0 out
J2-12RXD0 1In
J2-13 RTSO0 out
J2-14 CLKO IN in
J2-15 RTSO RET out
J2-16 DCDO RET in
J2-17 DCDO0 in
J2-18 TXDO RET out
J2-19 CLKO RET in
J2-20 RXDO RET in

-99_

Both ports are factory configured for asynchronous operation. One common use of port 1
is for loading information to/from another computer system via a serial link. In this
mode, a cable that reverses TXD and RXD must be used to make both computers look
like they are talking to terminals. This is commonly called a NULL MODEM. See the
section on configuration for instructions on making the serial ports operate in synchro-
nous mode.

- 93 -

SECTION 3

OPERATION/PROGRAMMING

3.1 On-Board I/O Addresses

The 68000 logical address space from 400000H to FFFFFFH fis dedicated to on-
board I/O. On-board I/O is only accessible when the 68000 is in Supervisor mode; an
attempt to access on-board I/O while in user mode will result in a bus-error trap. Note
that this restriction is controlled by the PROTECTION PROM on a socket in position
D10. Contact Integrated Solutions directly if more information on the PROTECTION
PROM is required.

3.1.1 Segment Registers

There are 16 sets of of 64 segment registers; one set is assigned to each of the 16 con-
texts. Each segment register is eight bits long, is readable and writable, and is accessed
over the least significant half of the bus (ie, the least significant byte of a word opera-
tion or an odd byte address).

The segment registers are loaded through the following I/O addressing mechanism:

Address Contents

bits 23,22 01 - indicates that the segment register
bank is selected

bits 21-16 OH-3FH - select one of the 64 registers
in the context

bits 15-12 OH-FH - selects one of the 16 contexts
bits 11-1 not decoded/don't care
bit 0 the 8 bits of the segment register are

located on the least significant half of the
bus

NOTE

The segment registers are 8 bits long and are located on the least significant
half of the bus. They can either be accessed via a byte access to the
corresponding odd address or a word access to the corresponding even
address. In the case of a word access, the upper eight bits of the bus are a
don’t care.

The following are examples of two typical segment register access addresses:
420001H - segment register #2 of context #0, the system context
536001H - segment register #19 of context #6

Each segment register contains 6 address translation bits, bits 5-0, which select one of

-94-

64 sets of 16 page registers and two protection bits 7 and 6. The protection bits are
encoded for the following four access modes. Only mode 11, execute only, makes any
distinction between supervisor and user mode in its functioning.

bit 7 Dbité

0 0 no access, any attempt to access this
segment (supervisor or user mode) will
result in a bus error trap.

0 1 read only and execute access, any attempt
to write this segment (supervisor or user
mode) will result in a bus error trap.

1 0 read/write access, all forms of access
are permiited in both supervisor and
user modes.

i 1 all forms of access are permitted in

supervisor mode but program references
only are permitted in user mode.

The following examples give typical segment register entries:
BOH - select page register set 0 (page registers 000H-00FH) for read/write access.

The 68000 logical address bits 15 -12 select which page register is used to complete the
translation.

7TEH - select page register set 62 (3EOH-3EFH) for read only access. Again, logical
address bits 15-12 select which page register in the set are used to complete the trans-
lation.

3.1.2 Page Registers

There are 1024 page registers which are accessed from 800000H- BFF000H in the

68000 logical address space. The page registers are each 12 bits long and are accessed
by word references to even addresses according to the following mechanism:

Address Contents

bits 23-22 10 - indicates that the page register bank is
selected

bits 21-12 000H-3FFH - selects one of the 1024 page
registers

bits 11-1 not decoded/don’t care

bit 0 0 - page registers must be accessed via word
accesses; byte accesses are not supported

The addresses of the first and second page registers are 800000H and 801000H respec-

.
tively and the addresses of the last two page registers are BFE0OOOH and BFF000H. Each

-95 -
page register contains 12 bits which are used as follows:

Bit Funetion

bits 11-2 the 10 address translation bits which select
one of the 1024 physical pages (each page is 4 kbytes long)
of memory that are to be accessed

bit 1 the page accessed bit

bit 0 the page written bit

To form a 22 bit physical address, the 10 tranlated address bits from the page register
concatenated with the bottom 12 bits of logical address from the 68000:

selected page registerflogical address ==> physical address
contents bits 11-2 |bits 11-0 bits 21-0

Four page register contents have special meaning:

3FCH and 3FDH - page register contents 3FCH and 3FDH always indicate the
invalid page. Any attempt to access the invalid page either in supervisor mode or user
mode will result in a bus error trap.

3FEH and 3FFH - page register contents 3FEH and 3FFH always refer to the LSI-11 bus
I/O page. When these two pages are accessed, the LSI-11 bus BBS7 signal is asserted.
In addition, the I/O page is always assumed to be located on the LSI-11 bus even if all 4
megabytes of physical memory are located on the local bus (see section 2.2). The upper
16 kilobytes of memory even if present in the system are not accessible by the 63000.

3.1.2.1 Page Accessed Bit (bit 1 of the page register)

The page accessed bit can be ioaded as either 0 or 1 when the page register is loaded
and it is changed to ‘1’ whenever an access to that page is made: In normal opera-
tion, the page register accessed bits are written to zero as a process or part of a pro-
cess is loaded into memory by the operating system. When any access to that page is
made in the course of executing the process, the bit is converted to a '1'. The operating
system, in the course of swapping out pages will examine the page accessed bits as part
of deciding which pages to page out.

8.1.2.2 Page Written Bit (bit 0 of the page register)

The page written bit can be loaded as either 0 or 1 when the page register is loaded and
it is changed to '1" whenever any change to that page is made. In normal operation, the
page written bits are written to zero as a process or part of a process is loaded into
memory by the operating system. When any change to that page is made in the course
of executing the process, the bit is converted to a '1". Pages which have not been
changed can be paged out by simply loading the new page over them; the old page does
not have to be written to the swapping device.

5.1.3 Context/Exception Register - C10001H -

- 96 -

The context/exception register is eight bits long is writable and readable and is I>cated
on the least significant half of the data bus. A special access method has been imple-
mented to save hardware. The context/exception register MUST be written with a
viord refernce to location C10000H (the upper byte of data is discarded) and it must
be read with a byte reference to location C10001H. Attempting to write the register
with a byte write to location C10001H will result in no update. The context/exception
register has two four bit fields with the following functions:

Context bits — bits 7T-4 —

The context register allows the user to select which context, i.e., which set of seg-
ment registers is used when the processor is in user mode. When the processor is in
supervisor mode, context 0 is always used regardless of the contents of the context
register but the contents of the context register are preserved. In this manner, a user
process can be interrupted, a switch to context 0 made automatically by the hardware
and the interrupt serviced and a return to the previous user context made without touch-
ing the context register.

Exception bits — bits 3-0 -

The exception register has 4 read/write bits, three of which allow the user to deter-
mine the source of a bus error and the fourth of which serves as a parity enable bit to
enable on-board parity checking.

bit 3 - bus timeout
A bus timeout can occur for one of several reasons:

e an attempt was made in either supervisor or user mode to access memory
which is not existent. In this case, bits 2 and 1 will be reset.

e an attempt was made in user mode to access the on/board I/O space. In this
case, the bus timeout bit will be set as well as bit 1, the protection violation bit.

e an attempt was made to access segments which have been set no access in the seg-
ment register, an attempt was made to write segments which are read only, or an
attempt was made to access pages which have been marked invalid and the physi-
cal memory was located on the LSI-11 bus. If the physical memory is present on
the local bus, only the protection violation bit Is set; no bus timeout occurs.

bit 2 - invalid page

This bit is set when an effort is made to access a page that has been marked invalid in
the page register. The invalid page bit will occur by itself when the physical page is
located in local bus memory and in conjunction with the bus timeout bit when the page
is located on the LSI-11 bus. In neither case is any memory write performed even if the
memory is physically present in the system.

bit 1 - protection violation
A protection violation can occur either when an access is made to a protected segment,

or in user mode, an attempt is made to access on-board 1/O (a 68000 logical address
above 3FFFFFH).

-3

bit 0 - parity enable

When this bit s set to 1, parity is enabled for on-board/local bus memory. When
cleared, parity is not checked, but parity is generated for al!l on-board memory writes.
Parity errors will occur if the memory is not written to before being accessed if par-
ity is enabled. The memory must initially be purged of all parity errors before parity
is enabled.

NOTE

The four exception bits of the context/exception register are cleared to
zero on system reset/power up.

3.1.4 Serial Ports/Counter-Timer - C20001-C21007

The IS-68K board has two serial ports and four counter/timer channels. Two of the
counter/timer channels are dedicated to providing programmable baud rate for the two
serial channels and the remaining two channels are concatenated to form a single
programmable timer. This timer can be used to generate interrupts every 1/60th of a
second if the IS-68K is used in a system that does not have a power supply that gen-
erates a BEVNT every 1/60th of a second or it can be used as a general purpose pro-
grammable timer in control applications.

The counter/timer chip is a Zilog CTC chip and is accessed at the following addresses:

C20001 - Channel 0
C20003 - Channel 1
C20005 - Channel 2
C20007 - Channel 3

The serial chip is either a Zilog DART chip or a Zilog SIO chip. The SIO provides SDLC
and HDLC capabilities that are not present in the DART. Both the DART and the SIO
support asynchronous and high speed synchronous communications. All IS-68Ks are
shipped with DARTS unless the SIO is specified. There are four ports associated with
the DART: :

C21001 - DART Channel 0 DATA
C21003 - DART Channel 1 DATA
C21005 - DART Channel 0 CONTROL
C21007 - DART Channel 1 CONTROL

3.1.5 Status Register - C30000H

The status register is located at word location C30000h and has ten bits which are read
only. The four latched error bits, bits 5 through 9, can be cleared by any write opera-
tion to the status register. The data written is irrelevant; all four bits are always
cleared by the write operation. The bits in the status register have the following func-
tions:

Bit Funetion

9 PWR FAIL - The falling edge of the BPOK
signal is latched. This indicates that a DEC
compatible power supply has a minimum of 4

- 98-

ms. of power remaining.

8 BUS PARITY ERROR - An error has been
detected and latched on an LSI-11 bus read

7 ON-BOARD PARITY ERROR - A 68000 read access
to on-board/local bus memory has resulted in
a parity error.

6 HALT line - The falling edge of the HALT
line has been detected and latched.

5 Inverted BPOKH - This signal goes low
whenever BPOK 1is high and high whenever BPOKH
is low. This signal could be used to resume
processing after a power failure only when
BPOKH has become active again.

4 Inverted BHALTL - This line is high when
BHALTL is asserted on the LSI-11 bus and low
when BHALTL is not asserted (processor
enabled). This line could be used to emulate
the DEC HALT function by Inhibiting the
processor from running when the HALT line is
asserted.

3 Dipswitch bit 5
2 Dipswitch bit 6
1 Dipswitch bit 7

0 Dipswitch bit 8

Once an error is latched into the one of the upper four bits of the status register, it
remains there until cleared by one of the following events:

e another error occurs in which case the new error will be latched into the
appropriate bit of the STATUS register and a second level 7 interrupt will occur.

e a system RESET is executed externally by dropping BDCOKH on the LSI-11
bus or internally by executing the 68000 RESET instruction.

e any write operation to the STATUS register

APPENDIX A
INITIALIZING AND PROGRAMMING THE SERIAL PORTS
A.1 Initialising

The Zilog DART on the IS-68K board is a two channel, full duplex
asynchronous/synchronous serial control chip, with full modem control. Both chan-
nels are completely independent, so that one may be operating in synchronous mode at
one clock rate while the other is operating in asynchronous mode at another clock
rate. Baud rates in asynchronous mode are programmable through the programming
of two channels of the associated counter/timer chip. In synchronous mode, the clock
must be externally generated for both transmission and reception. Baud rates up
to 1 megabit/second can be supported in this mode by the hardware.

Before data can be transmitted and received via the DART, it must be initialized to
define the operating characteristics of each of its two channels. Initialization of the
DART consists of writing a string of control bytes to each of its two control registers
which are located at C21005H and C21007H. The control register at C21005H
corresponds to channel 0 and the control register at C21007H corresponds to channel
1. There are actually 5 write registers and 2 read registers associated with each
channel of the DART. In addition, there is an additional read/write register associated
with channel 1 which is not present in the channel 0 write register array. Of these 16
registers only WRITE REGISTER 0 and READ REGISTER 0 of the two channels are
accessible directly. The remaining 12 registers must be accessed by writing a pointer to
WRITE REGISTER 0 of the corresponding channel. The next read or write operation
will then cause the pointed—to register to be accessed.

The following is a detailed description of the functions of the WRITE and READ
REGISTER bits:

e WRITE REGISTER 0

WRITE REGISTER 0 has two functions; it has bits 5,4,3 which implement com-
mands directly and bits 2,1,0 which serve as a pointer to allow accessing of other
write and read registers. Bits 7 and 6 of write register 0 are not used in this
application.

bits 5,4,3
000 - null code - no function directly implemented
010 - reset external status/interrupts

Performing this function has two effects. The piece of READ REGISTER 0 called
external status is updated to agree with the current state of the lines entering the
DART. This is important because once a change in one of the external status lines
(inciuding a BREAK condition on the data receive line) is detected by the DART,
bits 7-3 are permanently latched in that condition until the next RESET EXTERNAL
STATUS/INTERRUPTS is received.

The RESET EXTERNAL STATUS/INTERRUPTS, for example, must be issued repeat-
edly after a BREAK condition is detected by the DART in order to detect the end of
the BREAK. If not issued, the BREAK bit in READ REGISTER 0 will stay latched

-30-

forever.

The second function of this command is to reset pending interrupts that are
associated with this change in external status.

011 - channel reset

This command should always be the first command issued to each channel of the DART
when the DART is initialized.

100 - enable interrupt on next received character

This command has meaning only when the DART is set up only to interrupt on the
first received character. It resets the DART so that it will interrupt on the next received
character and must be issued in the received character interrupt service routine when
the DART is set up in this mode.

101 - reset transmitter interrupt pending

A transmitter Interrupt will occur when the transmitter input buffer (a two deep
SILO) goes empty. This command allows this interrupt to be reset without being ser-
viced.

110 - error reset

This command should be issued when one of the three error conditions - parity
error, data overrun error, or framing error (bits 4,5,6 in read register 1) is detected.
These error bits have the same characteristic that the EXTERNAL STATUS bits in
READ REGISTER 0 have, i.e., they are latched until cleared by this command.

111 - return from interrupt (channel 0 only)

This command is the last command issued before returning from the interrupt service

routine. Its effect is to clear the DART interrupt that was serviced and setup the
DART for subsequent interrupts.

The remaining combinations of bits 5,4,3 have no meaning in the DART.

bits 2,1,0
These bits are used to point to one of the other five write registers or one of the two
directly inaccessible read registers of the DART. The next read or write operation to
the DART will cause the pointed to register to be accessed. One of the commands in bits
5,4,3 s often simultaneously executed with the pointing operation. Often this com-
mand is the RESET EXTERNAL STATUS/INTERRUPTS command.

e WRITE REGISTER 1

bits 7,6,5 - not used in this application

bits 4,3 -

00 - disable receiver interrupts

-381-

01 - interrupt on first received character only

10 - interrupt on all received characters (vector is affected by
parity error)

11 - interrupt on all recelved characters (vector is not affected
by parity error)

bit 2

Enable STATUS affects vector (this bit present in channel 1 only but affects both chan-
nels). If this bit is enabled, bits 3,2,1 of the vector programmed into the DART will be
modified to a value that depends on the source of the interrupt.

bit 1 - enable transmitter interrupts

bit 0 - enable interrupts on changes in external conditions (CTS,DCD)

e WRITE REGISTER 2 (Present in channel 1 only but affects both channels)
bits 7-0

These 8 bits form the base interrupt vector. Remember that the raw interrupt vector
must be multiplied by four to give the entry in the 68000 interrupt vector table at the
bottom of physical memory. In addition, if the STATUS AFFECTS VECTOR bit in
WRITE REGISTER 1 is on, bits 3-1 of the interrupt vector will be modified depend-
ing on the source of the interrupt.

e WRITE REGISTER 3
bits 7,6

00 - 5 bits/char on receiving characters
01 - 7 bits/char on receiving characters
10 - 6 bits/char on receiving characters
11 - 8 bits/char on receiving characters

bit 5

Enables a feature called AUTOENABLE which automatically performs the following
modem control functions:

DATA CARRIER DETECT (DCD on the serial I/O connector) must be asserted before
reception of characters will take place and CLEAR TO SEND (CTS on the serial 1/0
connector) must be assertéed before transmission of characters can begin. This bit
should be programmed with caution because once set, the serial channel will hang if
transmission or reception of characters is attempted without the appropriate signal
line assertion.

bits 4-1 not used - must be Os
bit 0 - receiver enable

This bit must be a 1’ to enable reception of characters.

-32-

bits 7,6-
00 - straight thru mode. The incoming clock is used directly as the -baud rate. This

clock can ONLY be used if the incoming data is synchronized to be valid during the ris-
ing edge of the clock, i.e. only for synchronous operation.

01 - divide by 16 clock mode. The incoming clock from the CTC (counter timer chip)
is divided by 16 before being used as the baud rate.

10 - divide by 32 clock mode. The incoming clock from the CTC is divided by 32 before
being used as the baud rate.

11 - divide by 64 clock mode. The incoming clock from the CTC is divided by 64 before
being used as the baud rate.

o WRITE REGISTER §
bit 7

DTR - This bit directly controls the DTR line on the serial interface. Setting the
bit to 1 results in an active DATA TERMINAL READY line.

bits 6,5
00 - transmit with 5 bits/character
01 - transmit with 7 bits/character
10 - transmit with 6 bits/character
11 - transmit with 8 bits/character
bit 4

SEND BREAK - causes a continuous break to be sent on the TxD line of the correspond-
ing channel until the bit is cleared.

bit 3

Tx ENABLE - This bit must be set to enable transmission of characters.
bit 2

Not used.
bit 1

RTS - This bit directly controls the RTS line on the serial interface. A '1’ causes an
active READY TO SEND signal.

* READ REGISTER 0
bits 7,5,3

These bits are the EXTERNAL STATUS bits. Bit 7 monitors a BREAK condition in
the received data line while bits 5 and 3 monitor CTS and DCD respectively. Any

- 33 -

BREAK or change in the CTS or DCD lines will cause the corresponding bit to go to one
and the other two bits latched in their zero state. This condition can be reset by issuing
the RESET EXTERNAL STATUS/ INTERRUPTS command. :

bits 6,4
Not used.

bit 2
Tx Buffer Empty - This bit goes to '1' whenever the transmit buffer can receive
another character. Because, the transmit path is double-buffered, it does not neces-
sarilly mean that the last character has been fully transmitted. See READ REGISTER 1
bit O for this function.

bit 1

Interrupt Pending - (implemented in channel 0 only) This bit indicates that some
interrupt is currently pending in the DART.

bit 0

Rx Character Available - This bit goes to ‘I’ whenever a character has been
assembled in the receive SILO and is ready for pickup.

e READ REGISTER 1

bit 7
Not used.

bit 6,5,4
Error Bits - These are the three latched error bits that can occur on character recep-
tion. Bit 6 corresponds to Framing Error, bit 5 corresponds to Receiver Overrun and bit
4 corresponds to Receiver Parity Error. Once one of these bits is latched, the three
bits can be reset by issuing an ERROR RESET command.

bits 3,2,1
Not used.

bit 0

All Sent - This bit goes to one whenever all the characters put in the transmitter SILO
have been transmitted.

e READ REGISTER 2 (Channel 1 only)
bits 7-0
Interrupt Vector - This register allows the programmed interrupt vector to be read. If

STATUS AFFECTS VECTOR Is set, this register will have the current modified vector
in it.

-34-

A.2 Interrupt Vectors

The Zilog DART has a versatile interrupt scheme in which the DART chip Itself will
automatically vary the interrupt vector under the different interrupt conditions. This
is a useful construct when the speed of interrupt response is critical. The alternative of
having only one interrupt vector and having the interrupt service routine sort out the
source of the interrupt causes a speed degradation. There are eight possible vectors
which may be issued by the DART, four for each channel. A bit in WRITE REGIS-
TER 1 when set allows the modified vectors to be generated. Unfortunately, the DART
modifies vectors by simply changing bits 3-1 of the vector word. This places two con-
straints on the vectors that can be generated by the DART:

e The base vector must be xxxx000xb (binary) in order for eight unique vectors to be
generated. The eight vectors generated are the permutations of bits 3-1 with bits 7-4
and 0 remaining unchanged.

o The vectors, when multiplied by four, should remain within the Motorola user interrupt
space. This means that vectors from 40H to FFH are permitted. Note that there is no
protection in the 68000 against vectors below 40H but they should be used with cau-
tion so that they do not overlap the system traps.

The modified vectors than can be generated are:

xxxx000x - channel 1 Transmit Buffer Empty - must have Tx Interrupt enabled.

xxxx001x - channel 1 External Status Transition - must have interrupt on changes in
external conditions enabled.

xxxx010x - channel 1 Character Received - must have one form of receiver interrupts
enabled

xxxx011x - channel 1 Special Receive Condition - the special receive condition inter-
rupt always occurs if receiver interrupts have been enabled.

xxxx100x - Channel 0 Transmit Buffer Empty
xxxx101x - Channel 0 External Status Transition
xxxx110x - Channel 0 Character Received
xxxx111x - Channel 0 Special Receive Condition
A.3 Special Receive Condition

A special receive condition occurs if in the process of receiving a character one of the
following erroneous conditions occurs:

e a parity error occurs if parity checking is enabled.
e a data overrun occurs. The three character SILO of the DART has overflowed.
e a framing error occurs.

Once a special receive condition has been detected, it will be latched in READ REG 1

-35-

bits 6,5,4 until the ERROR RESET command is issued.

A.4 Typical DART Initialisation Sequence

The DART fis typically initialized in a short program loop which writes a string of
bytes into the control register of each channel. The following code is the MACSBUG
PROM resident code which initializes the DARTS.

LEA SIOTAB,A!L ;LOAD ADDRESS OF PARAMETER TABLE
MOVL #8C21005,A0 ;CHANNEL 0 CONTROL PORT
MOV #8,D0

SIOOLP: MOVB (A1)+,A0
DBRA DO0,SIOOLP

;NOW PROGRAM CHANNEL 1

ADDQ #2,A0 ;POINT TO CHAN 1 CONTROL PORT
LEA SIOTAB,A1 ;POINT TO BEGINNING OF TABLE
MOV #8,D0 ;$SET UP LOOP AGAIN

SIOILP: MOVB (A1)+,A0
DBRA DO,SIOILP
SIOTAB: .BYTE 18,14,44,13,0C1,
15,0EA,11,00,00

A.5 Typical Operation of the DART:

Once the DART is initialized, it can be programmed by writing or reading 8 bit parallel
data directly from the data port for the appropriate channel. To transmit data to the
DART, the user would poll the TRANSMIT BUFFER EMPTY bit of READ REGISTER
0 before stuffing a character into the DART.

TXLOOP: BTST.B #2,8C21005 ;CHK IF XMIT BUFFER IS EMPTY
BEQ TXLOOP
MOV.B D0,$C21001 ;;SEND DATA OUT

To read from channel 0 of the DART, the user would poll bit zero of READ REGISTER
0 until a character was received.

RXLOOP: BTST.B #0,$C21005
BEQ RXLOOP
MOVB $C21001,D0 ;SAVE DATA IN DO

A more complete routine would look at the break bit in READ REGISTER 0

RXLOOP: MOVB $C21005,D0
BTST #7,D0 ;CHK THE BREAK BIT
BNE BREAK ;}BRANCH IF BREAK SET
BTST #0,D0
BEQ RXLOOP
MOVB $C21001,D0 iSAVE DATA IN DO

- 36 -

BREAK: MOVB #818,$C21005 ;ISSUE RESET EXTERNAL

;$STATUS/INTERRUPTS
BTSTB #7,$C21005 ;IS BREAK STILL SET
BNE BREAK ;YES KEEP LOOPING

;NOW ENTER THE BREAK SERVICE ROUTINE

- 37 -

APPENDIX B
MACSBUG COMMANDS

B.1 Overview

The MACSBUG option provides a resident firmware monitor for the 68000. This moni-

tor supports a variety of commands for debugging and downloading progams, Including
commands to:

e display or change registers and men/lory

* control program execution through branching, breakpoints,
and single and multiple stepping

o selectively display tracing information at breakpoints
and while stepping

e communicate with a host computer

e use a limited form of relative addressing with certain of
the above commands.

In addition, programming effort is eased somewhat by commands to perform arithmetic
mode conversions and to allow symbolic access to numbers and memory locations.

These commands are discussed in detail in the following sections.

The MACSBUG command prompt is an asterisk (*). This prompt is shown in the
examples in this Appendix; it is not to be entered by the user.

Input to MACSBUG is buffered. A control X ("X) cancels the line being entered; 'H,
RUBOUT, and DEL delete the last character entered (but do not erase it from the
screen - to redraw the line enter “D). A ‘W will stop output to the console; entering
any other character will start it again. The BREAK key will stop almost anything
MACSBUG is doing (but will not kill a user program running under MACSBUG).

B.2 Displaying or Changing Registers and Memory
B.2.1 Displaying Registers

The hex contents of any of the 68000's registers can be displayed by entering the name
of the register in response to the MACSBUG prompt. For example,

*A3<cr>
might produce
A3=0000146A.

The names of the registers are as follows:

DO, ..., D7 data registers
AO, ..., A7 address registers

PC program counter

SR status register

SS supervisor stack pointer
US user stack pointer.

Recall that A7 is SS in supervisor mode, US in user mode.

-388-

All of the address or data registers can be displayed by entering A or D, respectively.
For example,

D<cer>
D0=00000000 D1=FFFFFFF2 D2=1479630A D3=00000001
D4=FFFFFFFF D5=00000000 D6=00000000 D7=A0369741

Registers can also be displayed as part of a trace display. (See B.4.)

B.2.2 Changing Registers

Data can be entered into registers in either hex or ASCII. Hex is the default; to enter
- ASCII data, enclose it in single quotes. The simplest way to change a register is to enter
the register name followed by the new data; thus

*SR 0<cr>
will clear the status register, while

*D3 ‘Fred'<er>
will put 46726564 (ASCII 'Fred’) in data register 3. An attempt to put more than four
characters of ASCII data in a register will result in a SYNTAX ERROR message, while
an attempt to enter more than eight hex digits will result in simply ERROR.
(MACBUG's error messages are sometimes slightly obscure.) Data items shorter
then eight hex digits or four ASCII characters will be padded on the left with zeroes.

To display the contents of a register and optionally change it, enter the name of the
register followed by a colon. For example,
*Ad:<or>
might produce
A4=00001A47 ?
To change the value in A4, enter the new value after the question mark; e.g.,
A4=00001A47 ? 1A43
If the old value is satisfactory, simply enter a carriage return.

It is also possible to cycle through the address or data registers, examining and
optionally changing them one at a time, by entering A: or D: and responding to the ensu-
ing question marks with new data or carriage returns.

B.2.3 Displaying Memory

Memory Is displayed in chunks of sixteen (hex 10) bytes. Hex and ASCII representa-
tions are shown side-by-side. To display the contents of an address, use the DM
command followed by the hex address. Thus,

*DM 3000
might produce

003000 58 50 71 00 00 FF 00 FF 00 00 00 00 00 FF 00 FF XPq......

The contents of the indicated address will always be the first data displayed, so with
the data above

*DM 3001
might give

003001 50 71 00 00 FF 00 FF 00 00 00 00 00 FF 00 FF 00 Pq.......

To display more than sixteen bytes starting at a given address, enter

*DM start n
where start is the hex address from which to start displaying data and n is either the
hex number of bytes desired or the hex location at which to stop the display. This is,
of course, ambiguous. The ambiguity is resolved by the convention that if n is greater
than start it is the ending address, while if n is less than or equal to start it is an
ftem count. In either event, the number of bytes displayed will be a multiple of
sixteen. Thus

*DM 100 100

*DM 100 IFF .

*DM 100 1F0

*DM 100 F1
will all display the 256 (hex 100) locations 100 to 1FF.

It is possible to send display output to port 2 on the board rather than port 1 by using
the DM2 command in place of DM in the above.

B.2.4 Changing Memory
B.2.4.1 The SM Command

To set the contents of memory, use the SM command followed by an address and one or
more data items (separated by blanks). Data items can be hex or ASCII; ASCII data
must be enclosed in single quotes.

The SM command is strictly byte-oriented. This requires caution when entering data,
particularly hex data. :

Hex data can be from one to eight digits, plus as many leading zeroes as desired.
(Although it is possible, as shown in the example below, to enter numbers larger than
eight digits by the addition of leading zeroes, such techniques might be invalidated by
future versions of the firmware.) Leading zeroes are significant; the entire
number, including leading zeroes, is right justified in the smallest number of bytes pos-
sible, with an extra leading zero if necessary to fill out the leftmost byte. There is an
exception to this: if the data item is eight hex digits with the most significant an 8 or
greater (i.e,, if the 32-bit hex number is negative) all nibbles that would have been
filled by leading zeroes are instead filled with Fs. (It is simplest to think of the
numbers as being sign-extended, but this may be confusing: leading zeroes are still
significant in determining the number of bytes to be changed.) Perhaps an example
will clarify things:

*SM 2000 1 002 00012345678 OFFFFFFFF 4587

*DM 2000
002000 01 00 02 00 00 12 34 56 78 FF FF FF FF FF 45 67
Here the 1 occupies one byte, the 2 occupies two bytes (one extra byte for its second
leading zero and an extra leading zero to pad out the extra byte), the FFFFFFFF occu-
pies five bytes (one extra nibble for its leading zero and a second nibble to pad, both
nibbles filled with F's), and the 4567 occupies two bytes.

ASCII data can be from one to 256 characters in length. (At present slightly longer
strings are handied correctly, but there is no guarantee that they will be accepted by
future versions of the firmware.) An attempt to enter longer strings can result In either
an error message or in silent truncation of the data,

- 40 -

ASCII and hex data can be mixed in one SM command. For example,
*SM 2000 °cat’ 416 'dog’ 417 'turkey’
*DM 2000
002000 63 61 74 04 16646F 67041774 75 72 6B 65 79
cat..dog..turkey

When putting more than one data item on a line it is wise to restrict the total
length of the data (hex digits plus characters) to no more than 256.

B.2.4.2 The OP Command

Memory can also be changed by using the OP command to open memory at a given
address. This command enters a subcommand mode in which MACSBUG displays an
address and its contents, then waits for the user to reply. Either hex or ASCII data
can then be entered (or no data can be entered and the location will be left unchanged),
followed by one of the following subcommands:

(CR) go to the next location
go to the previous location
= stay at the same location
exit subcommand mode (end OP)

One disadvantage of this method is that it is strictly one byte at a time. An attempt
to enter more than one character or two hex digits results in all but the rightmost
character or two digits being discarded. This may be seen in the following exam-
ple:

*OP 2000
MACSBUG prompts User responds '
002000 00°? 21
002001 007 716
002002 00? =
002002 4A? :K’
002001 16°?
002000 21°?
Now
*DM 2000
ylelds

002000 2116 4B
B.2.5 Accessing Memory Through Windows

In addition to the methods of sections B.2.3 and B.2.4, memory can be displayed and
changed through "windows." A window is simply an effective address that has been
given a special name. Windows are named WO through WT7; their corresponding
memory locations are MO through M7. The following effective addressing modes are
available for windows:

Example Mode
20F4 absolute
(AS5) register indirect

-41-

2F(A5) register indirect with displacement

2F(A5,D4) indexed register indirect with
displacement

(*) . PC relative

2F(*) PC relative with displacement

2F(*,A5) PC relative with index and displacement

The term displacement is used rather than the usual offset because "offset" has spe-
cial meaning in MACSBUG (see B.6).

Windows are defined by the W command:

*Wn.l EA
where n is the window number (from 0 to 7), 1is the length of the window in bytes
(from one to four - a length of zero "closes" or deactivates the window), and EA is nota-
tion for an effective address. It is assumed that the reader is familiar with the
addressing modes of the 68000; the syntax of the available effective addressing
modes should be clear from the example above. If W followed by a window number is
entered alone, MACSBUG will respond with the effective address of that window. For
Instance,

*W3.4 10(A3,D2)

*A3 2000

*D2 20

*W3
would result in

W3.4 10(A3,D2)=2030
This is a laborious way to do simple addition, but much can happen in practice after
the definition of W3; the bare W3 might be a useful reminder.

Once windows have been opened, the associated effective addresses can be treated as if
they were registers. In the above example,
*M3 1A47
will put 1A47 into memory location 2030; the result can be checked by entering
*M3
to which the computer should respond
M3=00001A47
The result could also be checked by a
*DM 2030
as long as the values in A3 and D2 have not changed. Observe that the effective address
M3 changes as the values in A3 and D2 change. For instance, if we now enter
*D3 40

*W3
the effective address becomes 2050, not 2030.

The window lengths defined by *Wl.n EA are enforced; an error will result from an
attempt to put more data into memory than can fit in the specified length.

Data in windows can also be printed as part of a trace display. (See B.4.)
B.3 Controlling Program Execution
B.3.1 Starting Execution

Execution of a program can be started by using the G command. This command has

-49-

three forms -

*G start execution at address in PC

*(address start execution at this zddress

*G TILL address set a temporary breakpoint at this
address, then begin execution at
address in PC

In the last of these, the temporary breakpoint is cleared as soon as any breakpoint is
encountered; otherwise, it behaves as any other breakpoint.

B.$.2 Stopping Execution - Breakpoints

Once a user program begins executing under MACSBUG, it will continue until it
completes execution (it may stop as the result of an interrupt, but it must process the
interrupt itself - MACSBUG will not halt a user program on receiving a BREAK), or
encounters a breakpoint.

MACSBUG allows a user to set up to eight breakpoints, each of which may have an
associated count. To set a breakpoint at an address, enter

*BR address
to remove it, enter

*BR -address
For a list of all active breakpoints, simply enter

*BR
Breakpoints in MACSBUG may have an associated count. A breakpoint set with
a count of n will not stop execution until the nth time it is hit. When a breakpoint
with a count greater than one is encountered, the program does not halt; instead, the
count Is decremented and certain trace information is displayed (see B.4 - the trace
display is also printed when execution is stopped by a breakpoint). To enter a break-
point with a count, simply follow its address with a colon and the count in the BR
command; for example,

*BR 2000:4
There is no practical difference between a breakpoint with a count of one and one
with a count of zero {no count) except that the former will show its count in response to
a *BR.

All breakpoints in a program can be removed by entering
*BR CLEAR

B.3.8 Stepping Through Execution ~ the T Command

MACSBUG provides convenient features for stepping and tracing through program
execution. To step through the next instruction (i.e., to execute the instruction pointed
to by PC), simply enter

*T
The instruction will be executed and the trace display (B.4) will be printed.

Tc execute the next n Instructions, printing the trace display after each, enter
*T n
To trace until a certain address is reached, enter
*T TILL address
This will step through one instruction at a time, printing the trace display after each,
until either the specified address or some breakpoint is reached.

- 43 -

All of these commands put MACSBUG in trace mode - the normal * prompt is replaced
by :* and simply hitting (CR) will cause the next instruction to be traced. {Any other
MACSBUG command can also be entered; anything but a (CR) or one of the trace com-
mands will automatically end trace mode.)

B.4 The Trace Display

The user can exercise control over the trace display (the information displayed while
tracing and when breakpoints are hit) by using the TD command. The basic form of this
command is

*TD reg.format
where reg is one of the following:

e registers DO,...,D7, AO0,...,A7, PC, SR, US, and SS

e register classes A and D

e window addresses WO0,...,W7

e window contents MO,...,M7
and format is one of the following:

e 0 to remove the item from the display

* 1,2, 3, or 4 to display one to four bytes in hex

(with leading zeroes if necessary)

Z or D to display four bytes (a long word) in hex

or decimal, respectively - signed, with no leading

zeroes
Observe that reg.format pairs can be concatenated on the command line. For example,
one might enter

*TD D1.1 A5.3 PC.3 M1.D M2.0

The A and D register classes are an exception to the formatting rules. A.1 and D.1
simply put all the address and data registers, respectively, in the display in four byte
unsigned hex format. A.2, A.3, A.4, A.Z, A.D, A.R, and A.S have the same effect as
A.1; D.2, D.3, D.4, D.Z, D.D, D.R, and D.S act the same as D.1. (See below for R and S
formats.)

If a window has been defined to be less than four bytes wide, printing it with Z or D
format will print only as many bytes as the width of the window; in this case it will be
treated as unsigned. For example,

*Wi.4 2000

*M1 FFFFFFFF

*TD M1.Z

*TD
will print

Mi=-1
{TD by itself prints the trace dispiay), while

*W1.3 2000

*TD
would now print

MI1=FFFFFF

It is possible to separate blocks in successive trace displays by defining a line separa-
tor. To use, say, "' as the line separator, enter

*TD L.!
This will cause a row of exclamation points to be printed after each trace display,

thus making it somewhat easier to read the output. To remove the line separator enter
*TD L.

-44 -

To clear the trace display (remove everything, including the line separator) enter

*TD CL
If no TD commands have been entered to MACSBUG, the default trace display format
is

*TD PC.3 SR.2US.4 8S.4 D.1 A.1L.-
The display can be reset to this default by entering

*TD AL
There are two other options for the format parameter - R and S. These will be dis-
cussed here although both refer to material from later sections of this Appendix.

If the user has defined an offset (see B.6), s/he may wish to make part or all of the
display relative to this offset. This is accomplished by using R as the format character.
Thus

*TD AL.R
will cause the offset to be subtracted from Al and the resuit printed in Z format fol-
lowed by the letter R. For example,

*OF 2000

*Al 1IEFF

*TD
would now print

Al1=-1R
Finally, if the user has defined symbols with the SY command (see B.7), the S format
may be useful. For instance, if we enter

*TD A3.S
then each time the display is to be printed the value in A3 will be compared with the
(four byte) value in the symbol table. If the value in A3 is found in the table, the
corresponding name from the symbol table will be printed (eight characters). If not,
the value itself will be printed as eight hex digits.

B.5 Communicating with a Host Computer
B.5.1 Console/Host Communication — Transparent Mode

It is often necessary for the console to communicate directly with a host computer
(for example, to do compilations and assemblies). This can be done by putting
MACSBUG in transparent mode. In transparent mode commands and data entered on
the console go directly to the host computer, while the host’s transmissions go
directly to the console. To enter transparent mode, enter
*P2 endchar

where endchar is a character which, when entered on the console, will end transparent
mode. Obviously, the endchar should be one that is not needed in communication with
the host. If no endchar is entered, the default is ‘A (control A).

If no reply from the host is needed, entering * in response to MACSBUG's * prompt
will send the remainder of the command line to the host (port 2); thus

**ce -0 file.c &
might be used to start a C compilation on a host Unix system without leaving
MACSBUG.

B.5.2 Downloading and Verifying

The commands in B.5.1 provide a means of direct communication between the console
and the host; those In this section provide for communication between the host and

the 68000 (needed for downloading programs).

The RE command is used to download 'S’ records from the host (port.2). The general
form of the command is

*RE;=text .
where the text after the = is sent to the host to encourage it to begin transmission. For
example,

*RE;=LOAD FILE.DATA
where LOAD Is a program that converts FILE.DATA into 'S’ records and controls the
host’s end of the download.

If an illegal character or bad checksum is encountered during the download, an error
message Will be issued. (As there is no handshaking or other control of the download
by the 68000, it is likely that some subsequent records will be lost while the error mes-
sage is being printed.) To ignore checksums, use

*RE;-C =text
To display data as it Is being read, use

*RE;-X =text
To do both,

*RE;-CX =text
Although the 'S’ records contain address information, the data can be loaded at a
different address by using a global offset. (Observe that this will not generally accom-
plish a relocation of a program.)

Downloaded data can be checked using the VE command:
*VE;=text
can be used to read the same 'S’ records again and print any that are different.

For more information on downloading and 'S’ records, refer to Appendix C.
B.8 Using Relative Addressing -~ the Offset

MACSBUG allows the user to doa limited form of relative addressing by defining
a global offset. This hex value will automatically be added to the values in the BR, G,
SM, and DM commands. In addition, the offset is added to the address of data
downloaded by the RE command and can be used with the TD command as discussed in
B.4.

To set the offset, enter
*OF n
where n is the hex value of the offset. To clear the offset, enter
*QF 0
To display its current value, enter simply
*OF
An alternate offset can be used with any command that uses the offset by following
the data with a comma and the alternate offset. For example,
*OF 2000

*BR 10,3000
will set the breakpoint at 3010, not 2010. To use no offset at all with one of these com-
mands, use the comma with no alternate offset. In the above,

*BR 10,
would set the breakpoint at absolute 10.

- 46 -

Commands that do not use the offset (such as SY) can be forced to do so by following the
data with an R. For example,
*OF 1000

*SY ADD 1000R
will define ADD to have the value 2000 (see B.8).

B.7 Performing Arithmetic Mode Conversions

MACSBUG allows easy conversion from decimal to hex and vice versa. To convert
from decimal to hex, enter
*CVan
To convert from hex to decimal, enter
*CV $n
To convert the value of a symbol from hex to decimal, enter
*CV name

where name is the name of the symbol in question.

To calculate an offset or displacement, enter

*CV value,offset
This adds value and offset together and prints the result in hex and decimal. This com-
mand is tricky; value and offset are both assumed to be decimal unless preceded by dol-
lar signs. To add the global offset to a value, enter

*CV value,0R
or
*CV valueR

Here are some examples of the CV command.
*CV $10
$10=&16
*CV 16
$10=&16
*CV 10,10
$14=&20
*CV 10,810
$1A=&26
*OF 1000
*CV 10,10R
$1014=8&4116

In the last example, both tens are decimal, while the global offset 1000 is hex.
B.8 Defining and Using Symbols

Frequently used or significant addresses or other numbers can be defined symbolically
with the SY command. To define a symbol, enter
*SY name value
where name is from one to eight characters chosen from A,...Z, 0,...,9, period, and
dollar sign. The name must begin with a letter or a period. Te undefine 2 symbel, enter
*SY -name
To print the value of a symbol, enter
*SY name
(Observe that if name is an address this prints the address, not its contents.)

-47-

To print the first symbol (alphabetically) with a given value, enter
*SY value

To print the entire symbol table, sorted alphabetically, enter
*SY

Symbols can be used most places ordinary constants can be used. The global offset is
not used in defining or printing symbols. For example,

*OF 1000

*SY MIX 1009

*SY MIX

MIX =1009

*BR MIX

*BR

BRKPTS= 2009
Here the offset is not used with SY, but is used with BR.

MACSBUG will not accept TILL, ALL, or CLEAR as symbols.

B.9 Summary
Command

X

H, RUBOUT, DEL
D

‘W
BREAK
‘A

reg
AorD
reg data
reg ‘data’
reg:
A:or D:

~
LY
A

DM start n

SM address data
SM address ‘data’
OP address

Wn.l EA

Mn

G

G address

G TILL address

BR address

BR -address

BR

BR address:count
BR CLEAR

T

Tn

T TILL address

*(CR)
TD reg.format

TD L.char
TD CL

TD AL

P2 endchar
*text
RE;=text
VE;=text
OF address
CVn

CV $n

CV m,n

SY name value
SY name
SY

- 48 -

Meaning

cancel line being entered

delete last character entered

redraw command line

halt output until another character entered
stop everything (except user program)

exit transparent mode (default endchar)

display register
disp!a}r all A or D recisters

el im Wi ar avmpaCVTa

enter hex data in register

enter ASCII data in register

display old value; request new one

cycle through A or D registers, displaying
and requesting new values

display memory in hex and ASCII - from start
to n if n > start, otherwise n bytes

enter hex data into memory (bytewise)
enter ASCII data into memory

open memory at address for changing
define window

look through window n into memory

start execution at address in PC

start execution at given address

set temporary breakpoint at address, start
execution at address in PC

set breakpoint at address

remove breakpoint at address

list all active breakpoints

set a breakpoint with a count

clear all breakpoints

single step and print trace display

step n instructions, trace display after each
like G TILL address, but print trace display
after each instruction

step one instruction in trace mode

put (format) register, register class, or
window in trace display

define char as trace display line separator
clear trace display

put all registers in trace display (default)
enter transparent mode; get out with endchar
send text to host

read 'S’ records

verify 'S’ records

define address as global offset

convert n from decimal to hex

convert n from hex to decimal

add m and n; print result in hex and decimal
define symbol

print symbol

print all symbols

APPENDIX C

Downloading and 'S’ Record Format

Object data to be downloaded to the IS-68K using MACSBUG’s RE command must be
In °S’ record format. The 'S’ record format was devised by Motorola for the purpose of
encoding data files in printable form for transportation between computer systems. ‘S’
records are character strings made up of five fields which define:

o the type of 'S’ record
‘s the record length

e the load address

e a data field

® a checksum

Each 'S’ record begins with the letter 'S’ followed by the number 0,1,2,8,9. Each of these
numbers indicates a specific type of 'S’ record. The types of 'S’ records are as follows:

S0 | The header record for a block of 'S’ records. The header record
contains a valid record length field, has a 16 bit starting

address of all zeroes, a code/data field containing any kind of
information desired and a valid checksum. The SO0 record is ignored
by the MACSBUG 'S’ record loader and is optional.

S1 | The S1 record is a data record which contains a valid record
length field, a valid 16 bit starting address, a code/data field
containing data to be loaded at the starting address and a valid
checksum.

S2 The S2 record is a data record which contains a valid record
length field, a valid 24 bit starting address, a code/data field
containing data to be loaded at the starting address and a valid
checksum.

S8 | The S8 record is a terminating record which contains a valid

record count, an optional 24 bit address of the location to which
MACSBUG is to transfer control after loading the 'S’ record and a
checksum. ‘There is no data field. The S8 record is optional and
causes MACSBUG to return control to the keyboard monitor if there
is no start address.

S9 The S9 record is a terminating record which contains a valid

record dount, an optional 16 bit address of the location to which
MACSBUG is to transfer control after loading the 'S’ record and a
checksum. There Is no data field. The S9 record is optional and
causes MACSBUG to return control to the keyboard monitor if there
is no start address.

- 50 -

characters 1-2

SO if this is the first °S’ record
S1 if address field {s two bytes
S2 if address field is three bytes
S8,S9 if this is the last 'S’ record

characters 3-4

number of character pairs remaining in
this 'S’ record (in hex)

characters 5-8

two- or three-byte (depending on

(or 5-10) second character) hex address at
which to load following data

rest of characters | data

{except last two)

last two checksum of address and data fields

characters

The checksum is the least significant byte of the one’s complement of the sum
of the values represented by the character pairs in the record length, address

and data fields.

Shown below is a typical 'S’ record module consisting of an SO record, four S1 records
and an S9 terminating record. Remember that the SO and S9 records are optional.

S00600004844521B

NOTE

$1130000285F245F2212226A000424290008237C2A
$11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952

S107003000144ED492
S9030000FC

The first three S1 records contain 13H (19 decimal) character pairs and the final S1
record contains seven character pairs. Note that the starting addresses for the four Si

records are 0000H, 0010H, 0020H, and 0030H respectively.

For more information on downloading and verifying with the RE and VE commands, see

Appendix B.

- 51 -

APPENDIX D
SETTING UP THE MEMORY MANAGEMENT UNIT :

On the IS-68K, all memory references both in supervisor 4nd user modes go through the
memory managment unit. Therefore, before RAM memory can be accessed, the
memory management unit must be initialized to permit address translations to occur
in a valid manner. The following code sets up the SUPERVISOR (context #0) memory
management unit up in transparent mode, ie, 68000 logical addresses are translated to

the same physical addresses.

MMUSET: MOVE.W #$80,D0 ;GIVE ALL SEGMENTS READ/WRITE
;sACCESS
MOVE.L $400001,A0 sTHE ADD OF FIRST SYSTEM
sMODE SEGMENT
MOVEW #83F,D1 ;A LOOP COUNT, THERE ARE 64
;$SYSTEM MODE SEGMENTS
SEGLP: MOVE.B DO0,(A0) ;WRITE INTO SEGMENT REG
ADDQ.W #1,D0 ;POINT TO NEXT PAGE REG SET
ADD.L #$10000,A0 ;POINT TO NEXT SEGMENT REG
DBRA D1,SEGLP
MOVE.W #8$3FF,D1 ;THERE ARE 1024 PAGE REGS
CLR.W DO ;POINT TO THE BOTTOM OF
;sPHYSCIAL MEMORY. NOTE THAT
;yTHE BOTTOM TWO BITS OF PAGE
;sREGISTER ARE PAGE WRITTEN AND
;PAGE ACCESSED
MOVE.L $800000,A0 ;FIRST PAGE REG POINTED TO
PAGLP: MOVE.W DO0,(A0) ;sWRITE THE PAGE REG
ADD.W #4,D0 ;TREMEMBER BOTTOM TWO BITS
ADD.W #$1000,A0 ;POINTS TO NEXT PAGE REG
DBRA D1,PAGLP sPROGRAM ALL 1024 PAGE REGS

Using the Z80° S10
In Asynchronous
Communications

/

Application
Note

July 1980

Introduction.

The Z80 Serial Input/Output (SIO) controller
is designed for use in a wide variety of serial-
to-parallel input and parallel-to-serial output
applications. In this application note, only
asynchronous applications are considered. The
emphasis is almost completely on software

implementation, with only modest reference to
hardware considerations.

While reference is made only to the
Z80 SIO, the entire text also applies to the
280 DART, which is functionally identical to
the 280 SIO in asynchronous applications. .

Protocol

Communication, either on an external data
link or to a local peripheral, occurs in one of
two basic formats: synchronous or asyn-
chronous. In synchronous communication, a
message is sent as a continuous string of
characters where the string is preceded and
terminated by control characters; the pre-
ceding control characters are used by the
receiving device to synchronize its clock with
the transmitter’s clock. In asynchronous com-
munication, which is described in this applica-
tion note, there is no attempt at synchronizing
the clocks on the transmitting and receiving
devices. Instead, each fixed-length character
(rather than character string) is preceded and
terminated by “framing bits" that identify the
beginning and end of the character. The time
between bits within a character is approx-
imately constant, since the clocks or “baud
rates” in the transmitter and receiver are
selected to be the same, but the time between

characters can vary.

Thus, in asynchronous communication, each
character to be transmitted is preceded by a
“start” framing bit and followed by one or
more “'stop” framing bits. A start bit is a
logical 0 and a stop bit is a logical 1. The
receiver will look for a start bit, assemble the
character up to the number of bits the SIO has
been programmed for, and then expect to find
a stop bit. The time between the start and stop
bits is approximately constant, but the time
between characters can vary. When one char-
acter ends, the receiving device will wait idly
for the start of the next character while the
transmitter continues te send stop or
“marking” bits (both the stop bits and the
marking bits are logical 1). Figure 1 illus-
trates this. A very common application of asyn-
chronous communication is with keyboard
devices, where the time between the operator’s
keystrokes can vary considerably.

v

WEBSAGE FLOW

PARITY MAY BE
000, EVEN. OR NONE

i

e B O N A o]

1.1%.0R2
STO® BT

5.6, 7, OR § BITS PEN

L3
1.2,3.4.0.6.7. 008 BITS PER

START PARITY

' ¢
”un“' ”uu”'!!uu!!'
ﬂL \

Figure 1. Asynchronous Dats Format

26-0003-0340

2-47

Protocol
(Continued)

1f the transmitter’s clock is slightly faster

than the receiver’s clock, the transmitter can
be programmed to send additional stop bits,
which will allow the receiver to catch up. If
the receiver runs slightly faster than the trans-
mitter, then the receiver will see somewhat
larger gaps between characters than the trans-
mitter does, but the characters will normally

still be received properly. This tolerance of
minor frequency deviations is an important
advantage of using asynchronous /0. Note
however that errors, called “framing errors,”
can still occur if the transmitter and receiver
differ substantially in speed, since data bits
may then be erroneously treated as start or
stop bits.

Modes

The SIO may be used in one of three modes:
Polled, Interrupt, or Block Transfer, depend-
ing on the capabilities of the CPU. In Polled
mode the CPU reads a status register in the
SIO periodically to determine if a data
character has been received or is ready for
transmission. When the SIO is ready, the CPU
handles the transfer within its main program.

In Interrupt mode, which is far more com-
mon, the SIO informs the CPU via an interrupt
signal that a single-character transfer is
required. To accomplish this, the CPU must be
able to check for the presence of interrupt
signals (or “interrupt requests”) at the end of
most instruction cycles. When the CPU detects
an interrupt it branches to an interrupt service
routine which handles the single-character
transfer. The beginning memory address of
this interrupt service routine can be derived,
in part, from an “interrupt vector” (8-bit byte)
supplied by the SIO during the interrupt
acknowledge cycle.

In Block Transfer mode, the SIO is used in

conjunction with a DMA (direct memory
access) controller or with the Z80 or Z8000
CPU block transfer instructions for very fast
transfers. The SIO interrupts the CPU or DMA
only when the first character of a message
becomes available, and thereafter the SIO uses
only its Wait/Ready output pin to signal its
readiness for subsequent characier transfers.
Due to the faster transfer speeds achievable,
Block Transfer mode is most commonly used in
synchronous communication and only rarely in
asynchronous formats. It is therefore not
treated with specific examples in this applica-
tion note.

Since Polled mode requires CPU overhead
regardless of whether or not an I/O device
desires attention, Interrupt mode is usually the
preferred alternative when it is supported by
the CPU. Note that the choice of Polled or
Interrupt mode is independent of the choice of
synchronous or asynchronous I/Q. This latter
choice is usually determined by the type of
device to which the system is communicating.

SIO Con-
figurations

The SIO comes in four different 40-pin
configurations: SIC/0, SIO/1, SIO/2, and
SIO/9. The first three of these support two
independent full-duplex channels, each with
separate contro! and status registers used by
the CPU to write control bytes and read status
bytes. The SIO/Q differs from the first three
versions in that it supports only one full-duplex
channel. The product specifications for these

versions explain this in full.

There are 4] different signals needed for
complete two-channel implementation in the
SIO/0, SIO/1, and SIO/2, but only 40 pins are
available. Therefore, the versions differ by
either omitting one signal or bonding two
signals together. The dual-channel asyn-
chronous-only 280 DART has the same pin
configuration as the SIO/0.

S10-CPU
Hardware
Interfacing

The serial-to-parallel and parallel-to-serial
conversions required for serial I/O are per-
formed automatically by the SIO. The device is
connected to a CPU by an 8-bit bidirectional
data path, plus interrupt and 1/O control
signals.

The SIO was designed to interface easily to
a 780 CPU, as shown in Figure 2. Cther
microprocessors require a small amount of
external logic to generate the necessary inter-
face signals.

The SIO provides a sophisticated vectored-
interrupt facility to signal events that require
CPU intervention. The interrupt structure is
based on the 28C peripheral daisy chain. Non-
780 microprocessors that are unable to utilize
external vectored interrupts require some

additional external logic to utilize efficiently
this interrupt facility. Some non-Z80 system
designs do not utilize the vectored interrupt
structure of the SIO at all. Instead, these
require the CPU to poll the SIO's status
through the data bus or to use non-vectored
SIO interrupts.

Microprocessors such as the 8080 and 6800
need some signal translation logic to generate
SIO read/write and clock timing. CPU signals
which synchronize a peripheral device read or
write operation are gated to form the proper
1/O signals for the SIO. The SIO is selected
by some processor-dependent function of the
address bus in a memory or [/O addressing
space.

[N
&

Reference In the next section we begin with a dis- material covered, the following publications
Material cussion of features common to all forms of are needed:
a;ynchronous /0. This is followed by »dlscus- ® 780 SIO Product Specification or 280 DART
sions of polled asynchronous I/O and interrupt o
! - Product Specification
asynchronous I/O. Next is a series of ire-)
quently asked guestions about the SIO when ® 280 SIO Technical Manual
used in asynchronous applications. Finally, an B 280 Family Program Interrupt Structure
example of a s?mp}e n}terfupt-dnver? asyn- @ 280 CPU Technical Manual
chronous application is given and discussed in '
detail. For a complete understanding of the B 780 Assembly Language Programming
Manual
+5V
o %
04
Nv —4; 4 T
| §
Ay DECODEN CE
Ay BA
Ao ci
° 2 | 9226 | soomy Croce o
«5V "1
A \
o)
s228 ioR =3
oW iRa
A
Do-0r Q > Do-0;
oo
Az-Ays j DECODER CE
| 4
Ay BiA
Ao - ¢
U W e % %o
e =
” +5vVO=ed Wi
» o ok
m.ﬂ
CLOCK
1)
o
14
cK
Figure 2. SIO Hardware Interfacing
26-00C3-034 2-49

Operational Considerations.

All of the SIO options to be discussed here
are software controllable and are set by the
CPU. Thus, use of the SIO begins with an
initialization phase where the various options
are set by writing control bytes. These options
are established separately for each of the two

channels supported by the SIO if both chan-
nels are used. Before giving an overview of
how initialization is done, we will describe
some of the basic characteristics of SIO oper-
ations that are common to both the Polled and
Interrupt-driven modes.

Addressing
the SI1O

The CPU must have a means to identify any
specific I/0 device, including any attached
SIO. In a Z80 CPU environment, this is done
by using the lower 8 bits of the address bus
(Ag-A7)._Typically, the A; bit is wired to the
SIO's B/A input pin for selecting access to
Channel A or Channel B, and the Ag bit is
wired to the SIO's C/D input pin for selecting
the use of the data bus as an avenue for
transferring control/status information (C) or
actual data messages (D). The remaining bits
of the address bus, Ay-A7, contain a port
address that uniquely identifies the SIO

device. These latter six lines are usually wired
to an external decoding chip which activates
that SIO’s Chip Enable (CE) input pin when its
address appears on A-A; of the address bus.

The bar notation drawn above the names of
certain signal lines, such as B/A and C/D,
refer to signals which are interpreted as active
when their logic sense—and voltage level—is
Low. For example, the B/A pin specifies Chan-
nel B of the SIO when it carries a logic 1 (high
voltage) and it specifies Channel A when it
carries a logic O (low voltage).

Asynch-
ronous
Format

Operations

Bits per Character. The SIO can receive or
transmit 5, 6, 7, or 8 bits per character. This
can be different for transmission and recep-
tion, and different for each channel. ASCII
characters, for example, are usually transmit-
ted as 7 bits. The SIO can in fact transmit
fewer than 5 bits per character when set to the
5-bit mode; this is discussed further in the sec-
tion entitled “Questions and Answers.”

Parity. A parity bit is an additional bit added
to a character for error checking. The parity
bit is set to 0 or 1 in order tc make the total
number of Is in the character (including parity
bit) even or odd, depending on whether even
or odd parity is selected. The SIO can be set
either to add an optional parity bit to the “bits
per character” described above, or not to add
such a bit. When a parity bit is included,
either even or odd parity can be chosen. This

selection can be made independently for each
channel.

Start and Stop Bits. There are two types of
framing bits for each character: start and stop.
When transmitting asynchronously, the SIO
automatically inserts one start bit {(logic 0) at
the beginning of each character transmitted.
The SIO can be programmed to set the
number of stop bits inserted at the end of each
character to either 1, 1%, or 2. The receiver
always checks for 1 stop bit. Stop bits refer to
the length of time that the stop value, a logic
1, will be transmitted; thus 1V stop bits means
that a | will be transmitted for the length of
clock time that 1Yz bits would normally take
up. & logic] level that continues after the
specified number of stop bits is called a
“marking” condition or "mark bits.”

CPU-SIO
Character
Transfers

The SIO always passes 8-bit bytes to the
CPU for each character received, no matter
how many "bits per character” are specified in
the SIO initialization phase. If the number of
“bits per character” is less than eight, parity
and/or stop bits will be inciuded in the byte
sent to the CPU. The received character starts
with the least-significant bit (Dg) and continues
to the most-significant bit; it is immediately

followed by the parity bit (if parity is enabled)
and by the stop bit, which will be logic 1
unless there is a framing error. The remainder
of the byte, if space is still available, is filled
with logic 1s (marking). If the “bits per char-
acter” is eighi, then ihe byte sent o the CPU
will contain only the data bits. In all cases, the
start bit is stripped off by the SIO and is not
transmitted to the CPU,

Clock
Divider

The SIO has five input pins for clock
signals. One of these inputs (CLK) is used
only for internal timing and does not affect
transmission or reception rates. The other four
clock inputs (RxCA, TxCA, RxCB, and
TxCB) are used for timing the reception and
transmission rates in Channels A and B. Only
these last four are involved in "clock divid-
ing.” A clock divider within the SIO can be

programmed to cause reception/transmission
clocking at the actual input clock rate or at
1716, 1/32, or 1/64 of the input clock rate. The
receiver and transmitter clock divisions within
& given channel must be the same, although
their input clock rates can be different. The x1
clock rate can be used only if the transitions of
the Receive clock are synchronized to occur
during valid data bit times.

2-50

Auto
Enables

The SIO has an Auto Enables feature that
allows automatic SIO response and telephone
answering. When Auto Enables is set for a par-
ticular channel, a transition to logical 0 (Low
input level) on the respective Data Carrier

Detect (DCD) input will enable reception, and
a transition to logical 0 on the respective Clear
To Send (CTS) input will enable transmission.
This is described below under the heading
“Modem Control.”

Special
Receive
Conditions

There are three error conditions that can
occur when the SIO is receiving data. Each of
these will cause a status bit to be set, and if
operating in Interrupt mode, the SIO can
optionally be programmed to interrupt the
CPU on such an error. The error conditions
are called “'special receive conditions” and
they include:

@ Framing error. If a stop bit is not detected
in its correct location after the parity bit (if
used) or after the most-significant data bit
(if parity is not used), a framing error will
result. The start bit preceding the char-
acter’s data bits is not considered in deter-
mining a framing error, although character
assembly will not begin until a start bit is
detected.

8 Parity error. If parity bits are attached by
the external I/O device and checked by the
SIO while receiving characters, a parity
error will occur whenever the number of
logic] data bits in the character (including
the parity bit) does not correspond to the
odd/even setting of the parity-checking
function.

N Receiver overrun error. S!O buffers can
hold up to three characters. If a character is
received when the buffers are full (i.e.,
characters have not been read by the CPU),
an SIO receiver overrun error will result. In
this case, the most recently received char-
acter overwrites the next most recently
received character.

Modem
Control

Five signal lines on the SIO are provided
for optional modem control, although these
lines can also be used for other general-
purpose control functions. They are:

RTS (Request To Send). An output from the
SIO to tell its modem that the SIO is ready to
transmit data.

DTR (Data Terminal Ready). An output from
the SIO to tell its modem that the SIO is ready
to receive data.

CTS (Clear To Send). An input to the SIO
from its modem that enables SIO transmission
if the Auto Enables function is used.

DCD (Data Carrier Detect). An input to the
SIO from its modem that enables SIO recep-
tion if the Auto Enables function is used.

810
{CHANNEL A)

SYNC (Synchronization). A spare input to the
SIO in asynchronous applications. This input
may be used for the Ring Indicator function, if
necessary, or for general-purpose inputs.

In most applications of asynchronous I/O
that use modems, the and DTR control
lines and the Auio Enables function are acti-
vated during the initialization sequence, and
they are left active until no further I/O is
expected. This causes the SIO to tell its
modem continuously that the SIO is ready to
transmit and receive data, and it allows the
modem to enable automatically the SIO's trans-
mission and reception of data. Figure 3 illus-
trates this.

T TO SEND

CLEAR TO SEND
TRANSMITTER

DATA TERMINAL READY

DATA CAARIER DETECT

RECEIVER

1 (Single Ch 1)

26-0003-0342

2-5]

External/
Status
Interrupts

A change in the status of certain external
inputs to the SIO will cause status bits in the
SIO to be set. In the Polled Mode, these status
bits can be read by the CPU. In the Interrupt
mode, the SIO can also be programmed to
interrupt the CPU when the change occurs.
There are three such “external/status” condi-
tions that can cause these events:

® DCD. Reflects the value of the DCD input.
@ CTS. Reflects the value of the CTS input.

® Break. A series of logic O or “spacing” bits.

Note that the DCD and CTS status bits are
the inverse of the S]O lines, i.e., the DCD bit
will be 1 when the DCD line is Low.

Any transition in any direction (i.e., to logic
0 or to logic 1) on any of these inputs to the
SIO will cause the related status bit to be
latched and (optionally) cause an interrupt.
The SIO status bits are latched after a transi-
tion on any one of them. The status must be
reset (using an SIO command) before new
transitions can be reflected in the status bits.

Initialization

The SIO contains eight write registers for
Channel B (WR0-WR?7) and seven write
registers for Channel A (all except write
register WR2). These are described fully in
the 280 SIO Technical Manucl and are
summarized in Appendix B. The registers are
programmed separately for each channel to
configure the functional personality of the
channel. WR2 exists only in the Channel B
register set and contains the interrupt vector
for both channels. Bits in each register are
named D7 (most significant) through Dy. With
the exception of WRO, programming the write
registers requires two bytes: the first byte is to
WRO and contains pointer bits for selection of
one of the other registers; the second byte is
written to the register selected. WRO0 is a
special case in that all of the basic commands
can be written to it with a single byte.

There are also three read registers, named
RRO through RR2, from which status results
of operations can be read by the CPU (see
Appendix B). Both channels have a set of

read registers, but register RR2 exists only in
Channel B.

Let us now look at the typical sequence of
write registers that are loaded to initialize
the SIO for either Polled or Interrupt-driven
asynchronous I/O. Figure 4 illustrates the
sequence. Except for step E, this loading is
done for each channe! when both are used.
Steps E and F are described further in the sec-
tion on “Interrupt-Driven Environments.”

Registers WR6 and WR7 are not used in
asynchronous I/O. They apply only to syn-
chronous communication.

The related publications on the SIO should
be referred to at this point. They will be
necessary in following the discussion of func-
tions. In particular, the following material
should be reviewed:

280 SIO Technical Manual, pages 9-12
(" Asynchronous Operation’’)

280 SIO Technical Manual, pages 29-37
(*Z80 SIO Programming’’)

A. Load WRC. This is done to reset the SIO.

B. Load WR4. This specifies the clock divider, number of
stop bits, and parity selection. Since register WR4
establishes the general form of /O for which the SIO is to
be used, 1t 1s best to set WR4 values first.

C. Load WR3. This specifies the number of receive bits
per character, Auto Enable selection, and turns on the
receiver enabling bit,

D. Load WR5. This specifies the number of transmit bits
per character, turns off the bit that transmits the Break
signal, turns on the bits indicating Data Terminal Ready
and Request To Send, and turns on the transmitier
enabling bit.

E. Load WR2. (Interrupt mode only and Channel B only.)
This specifies the interrupt vector,

F. Load WR1. (Interrupt mode only.) This specifies
various interrupt-handling options that wili be expiained
later.

NOTES:

Steps A through F are periormed i1n sequence

*Charnel B oniy

1Interrupt mode orly. Poiling mode begins 1O after step D

LOAD
WRO

£gT 84

].Lr———u

R
-

C

Figure 4. Typical Initialization Sequence (One Channel)

2-:52

26-0003 034>

SECTION

Polled Environments.

In a typical Polled environment, the SIO is
initialized and then periodically checked for
completion of an I/O operation. Of course, if
the checking is not frequent enough, received
characters may be lost or the transmitter may
be operated at a slower data rate than that of

which it is capable. Initialization for Polled IO
follows the general outline described in the
last section. We now give an overview of
routines necessary for the CPU to check
whether a character has been received by the
SIO or whether the SIO is ready to transmit a
character.

Character To check whether a character has been In any case, if bit Dy of register RRO is O,
Reception received, and to obtain a received character if polled receive processing terminates with no
one is available, the sequence illustrated in character to receive. Depending on the facil-
Figure 5 should be followed after the SIO is ities of the associated CPU, this step may be
initialized. We assume that reception was repeated until a character is available (or
enabled during initialization; if it was not, the possibly a time-out occurs), or the CPU
Rx Enable bit in register WR3 must be turned may return to other tasks and repeat this
on before reception can occur. This must be process later.
done for each channel to be checked. 1f bit Dg of register RRO is 1, then at least

Bit Dy of register RRO is set to | by the SIO one character is available to be read. In this
if there is at least one character available to be case, the value of register RR1 should first be
received. The SIO contains a three-character read and stored to avoid losing any error infor-
input buffer for each channel, so more than mation (the manner in which it is read is
one character may be available to be received. explained later). The character in the data
Removing the last available character from the register is then read. Note that the character
read buffer for a particular channel turns off must be read to clear the buffer even if there is
bit Dg. an error found.

If bit Dg of register RRO is 0, then no Finally, it is necessary to check the value
character is available to be received. In this stored from register RR1 to determine if the
case it is recommended that checks be made of character received was valid. Up to three bits
bit D to determine if a Break sequence (null need to be checked: bit 6 is set to 1 for a
character plus a framing error) has been framing error, bit 5 is set to 1 for a receiver
received. If so, a Reset External/Status Inter- overrun error (which occurs when the receive
rupts command should be given; this will set buffers are overwritten, i.e., no character has
the External/Status bits in register RRO to the been removed and more than three characters
values of the signals currently being received. have been received), and bit 4 is set to] for a
Thus, if the Break sequence has terminated, parity error (if parity is enabled at initial-
the next check of bit D; will so indicate. It may ization time). In case of a receiver overrun or
also be desirable to check bit 3 of register RRO parity error, an Error Reset command must be
which reports the value of the Data Carrier given to reset the bits.

Detect (DCD) bit.
|
READ RRO
READ RR1
}
READ
CHARACTER
YES | meser
ERRCRS
NO NO
YES
L__J WESET EXTERWAL I |
STATUS INTERRUPTS
Figure 5. Polled Recsive Routine
26-0003-0344

2-53

Character

To check that an initialized SIO is ready to

Transmission transmit a character on a channel, and if so to

transmit the character, the steps illustrated in
Figure 6 should be followed. We assume that
the Request To Send (RTS) bit in WRS, if
required by the external receiving device,
and the Transmit (Tx) Enable bit were set at
initialization.

Depending on the external receiving device,
the following bits in register RRO should be
checked: bit 3 (DCD), to determine if a data
carrier has been detected; bit 5 (CTS), to
determine if the device has signalled that it is
clear to send; and bit 7 (Break), to determine
if a Break sequence has been received. If any
of these situations have occurred, the bits in
register RRO must be reset by sending the
Reset External/Status Interrupts command, and
the transmit sequence must be started again.

Next, bit 2 of register RRO is checked. If this
bit is 0, then the transmit buffer is not empty
and a new character cannot yet be transmitted.
Depending on the capabilities of the CPU, this
is repeated until a character can be trans-
mitted (or a timeout occurs), or the CPU may
return to other tasks and start again later.

If bit 2 of register RRO is 1, then the transmit
buffer is empty and the CPU may pass the

character to be transmitted to the SIO, com-
pleting the transmit processing. On the

280 CPU, this is done with an OUT instruction
to the SIO data port.

READ RRO

RESET EXTERNAL
STATUS INTERRUPTS

oCch
cw\uog’o STATE

NO

PUT CHARACTER
N Tx BUFFER

Figure §. Polled Transmit

Assumptions

Example

Now let us consider some examples in more
detail. We assume we are given an external
device to which we will input and output 8-bit
characters, with odd parity, using the Auto
Enables feature. We will support this device
with 17O polling routines following the patterns
illustrated in Figures 5 and 6. We assume that
the CPU will provide space to receive char-
acters from the SIO as fast as the characters
are received by the SIO, and that the CPU will
transier characters as fast as the output can be
accomplished by the SIO.

We specily this example by giving the con-
trol bytes (commands) written to the SIO and
the status bytes that must be read from the
SIO. Recall that to write a command to a regis-
ter, except register WRO, the number of the
register to be written is first sent to register
WRO; the following byte will be sent to the
named register. Similarly, to read a register
other than RRO (the default), the number of the
register to be read is sent to register WRO; the
following byte will return the register named.

Initialization

We begin with the initialization code for the
SIO. This follows the outline illustrated in
Figure 4. In the following sample code, each
time register WRO is changed to point to
another register, the Reset External/Status
Interrupts command is given simultaneously.
Whenever a transition on any of the external
lines occurs, the bits reporting such a transi-
tion are latched until the Reset External/Status
Interrupts command is given. Up to two transi-
tions can be remembered by the SIO. There-
fore, it is desirable to do at least two different

Reset External/Status Interrupts commands as
late as possible in the initialization so that the
status bits reflect the most recent information.
Since it doesn’t hurt, we include these com-
mands each time WRO is changed to point to
another register. This is an easy way to code
the initialization to insure that the appropriate
resets occur.

In the example below, the logic states on the
C/D control line and the system data bus
(D7-Dy) are illustrated, together with
comments.

2-54

26-0003-0345

Initialization
(Continued)

c/h

1

oljo]| ¥

Etfects and Comments

Channel Reset d sent to register WRO (Ds-D3).
Point WRO to WR4 (D-Dp) and issue a Reset External/
Status Interrupts command (D5-D3). Throughout the
initialization, whenever we point WRO to another
register, we will also issue this command for the

reasons noted above.

Set WR4 to indicate the following parameters (from left
to right):
A. Run at 1/64 the input clock rate (D7-Dg).
B. Disable the sync bits and send out 2 stop bits per
character (Ds-D).
C. Enable odd parity (D;-Dg).

Point WRO to WR3.

Set WR3 to indicate the following:
A. B-bit characters to be received (D7-Dg)-
B. Auto Enables on (Ds).
C. Receive {Rx) Enable on (Dg).

Point WRO to WRS.

Set WRS to indicate the following:
A. Data Terminal Ready (DTR) on (D7).
B. 8-bit characters to be transmitted (Dg-Ds).
C. Break not to be transmitted (Dy).
D. Transmit (Tx) Enable on (D3).
E. Request To Send (RTS) on (D))

Reset and
Error

Sequences

In the receive and transmit routines that fol-
low, we treat errors such as a transition on the
Data Carrier Detect line by calling for a “reset
sequence” to set the values in read register
RRO to reflect the current values found at
the pins. This sequence consists of giving
the Reset External/Status Interrupts com-
mand and beginning the driver over again.
The command takes the form of a write to
register WRO:

Dy Dy Dy D¢ Dy Dy D1 Do
o JoJo 1 JoJofolo
Permits the status bits in RRO to reflect current status.

This command does not turn off the latches
for such things as parity errors stored in bits
4-6 of register RR1. When such an error
occurs and the latches must be reset, we will

call for an “error sequence.” This sequence
consists of giving the Error Reset command
and beginning the driver over again. The
command also takes the form of a write to
register WRO:

Dy Dy Dy D¢ Dy D2 D Dy

o]olllllolololo
Resets the /atches in register RR.

When specifying the result of reading
register RRO or RR1 or specifying data, we will
indicate the values read as follows:

Dy Dg Dy D¢ Dy Dz Dy Dy

p|p|]po]p[Dp]D[D|D
Recd a byte from the designated register..

Receive and
Transmit
Routines

Now we will first give an example
of the receive routine. This parallels the
preceding discussion of “Character
Reception.”

The framing error in this routine is reported
on a character-by-character basis and it is not

necessary to execute an “error sequence” if it
is the only error received. However, it is not
harmful to do so.

Next, we give an example of transmission
code that parallels the above discussion on
“Character Transmission.”

2-55

Receive and
Transmit
Routines
{Continued)

Bits sent and r¢ cefved
€6 D Dy Ds Dy Dy D; D Dy

1 D D D D D D D D

0 D; | Dg { Ds | Dy | D3 | Dy | Dy | Dg

Effects and Comments (Receive Routine)

Read a byte from RRO (the default read register); if
Do =0 then no character is ready to be received. In
this case, if D7 (Break) or D3 (Data Carrier Detect)
have changed state, then execute a “reset sequence.”
If Dg=0 and D7 and D3 have not changed state, then
no character is ready to be received; either loop on
this read or try again later.

Point WRO to read from RR1; we will now check for
errors in the character read. Note that Reset Exter-
nal/Status Interrupt Commands are not done normally
to avoid losing a line-status change.

Read a byte from RR1; if either bit Dg=1 (framing
error), Dg= (receive overrun error), or Dg=1
{parity error), the character is invalid and an “error
sequence” should be executed after the following step.

Read in the data byte received. This must be done to
clear the SIO buffer even if an error is detected.

_ Bits sent and received
CD Dy Dg Dy Dy Dy D; D Dy

1 D D D D D D D D

0 D D D D D D D D

Effects and Comments (Transmit Routine)

Read a byte from RRO: if either bit D3 (Data Carrier
Detect), Ds (Clear To Send) or Dy (Break) have
changed state, a “"reset sequence” should be executed.
1f D3. Ds and Dy have not changed state, then it
D2 =0, the transmit buffer is not yet empty and
a transmit cannot take place; either loop, reading RRO,
or try again later.

Send the data byte to be transmitted.

SECTION

Interrupt-Driven Environments.

In a typical interrupt-driven environment,
the SIO is initialized and the first transmission,
if any, is begun. Thereafter, further I/O is
interrupt driven. When action by the CPU is
needed, an SIO interrupt causes the CPU to
branch to an interrupt service routine after the
CPU first saves state information.

In common usage, if /O is interrupt driven,
all interrupts are enabled and each different
type of interrupt is used to cause a CPU
branch to a different memory address. There is
perhaps one frequent exception to this: parity
errors are sometimes checked only at the end
of a sequence of characters. The SIO facili-
tates this kind of operation since the parity
error bit in read register RR1 is latched; once
the bit is set it is not reset until an explicit

reset operation is done. Thus, if a parity error
has occurred on any character since last reset,
bit 4 in register RR1 will be set. It is then
possible to set register WR1 so that parity
errors do not cause an error interrupt when a
character is received. The user then has the
obligation to poll for the value of the parity
bit upon completion of the sequence.

SIO initialization for Interrupt mode nor-
mally requires two steps not used in Polled
mode: an interrupt vector (if used) must be
stored in write register WR2 of Channel B and
write register WR1 must be initialized to
specify the form of interrupt handling. It is
preferable to initialize the interrupt vector in
WR2 first. In this way an interrupt that arrives
after the enabling bits are set in WR1 will
cause proper interrupt servicing.

Interrupt
Veciors

The interrupt vector, register WR2 of Chan-
nel B, is an 8-bit memory address. When an
interrupt occurs (and note that an interrupt
can only occur after interrupts have been
enabled by writing to register WR1) the inter-
rupt vector is normally taken as one byte of an
address used by the CPU to find the location
of the interrupt service routine. It is also
possible to cause the particular type of inter-
rupt condition to modify the address vector in
WR2 before branching, resulting in a branch

to a different memory location for each inter-
rupt condition. This is a very useful construct;
it permits short, special-purpose interrupt
routines. The alternative, to have one general-
purpose interrupt routine which must deter-
mine the situation before proceeding, can be
quite inefficient. This is usually undesirable
since the speed of interrupt-service routines is
often a critical factor in determining system
performance.

2-56

Interrupt
Vectors
{Continued)

There are at most eight different types of
interrupts that the SIO may cause, four for
each of the two channels. If bit 1 in register
WR1 of Channel B has been turned on so that
an interrupt will modify the interrupt vector,
the three bits (1-3) of the vector will be
changed to reflect the particular type of inter-
rupt. These interrupts follow a hardware-set
priority as follows, starting with the highest
priority:

Channel A Special Receive Condition sets bits

3-1 of WRI to 111,

Channe! A Characier Received seis bits 3-1
to 110,

Channel A Transmit Buffer Empty sets bits 3-1
t0 100,

Channel A External/Status Transition sets bits
3-1to 101.

Channel B Special Receive Condition sets bits
3-1to0 011,

Channe! B Character Received sets bits 3-1
to 010,

Channe! B Transmit Buffer Empty sets bits 3-1
to 000,

Channel B External/Status Transition sets bits
3-1 to 001.

For example, suppose that the interrupt vec-
tor had the value 11110001 and the Status
Affects Vector bit is enabled, along with all
interrupt-enable bits. When an External/Status
transition occurs in Channel A, the three zeros
(bits 3-1) would be modified to 101, yielding
an interrupt vector of 11111011. The value of
the interrupt vector, as modified, may be
tained by reading register RR2 in Channel B.

Note that when a character is received,
either the Special Receive Condition or Rx
Character Available interrupt will occur,
depending on whether or not an error
occurred; the two will never occur simul-
taneously. Therefore, these two interrupts have
equal priority. Note also that you can select
not to be interrupted on some of the eight con-
ditions; in this case, the presence of a par-
ticular condition for which interrupts are not
desired can be determined by polling.

Suppose that interrupts have been enabled
for all possible cases, and that the Status
Affects Vector bit has aiso been enabled,
allowing a different routine to handle each
possible interrupt. As each interrupt causes a
branch to a location only two bytes higher than
the last interrupt, it is not possible to place a
routine directly at the location where the vec-
tored interrupt branches. In a Z80 CPU envi-
ronment, these addresses refer to a table in
memory which contains the actual starting
location of the interrupt service routine. Also,
since the state information saved by a CPU is
rarely all of the information necessary to prop-
erly preserve a computation state, a typical
interrupt service routine will begin by saving
additional information and end by restoring
that information. This is shown briefly in the
examples of code in Appendix A.

1t is possible to connect several SIOs using
the interrupt mechanism and the IEI and IEO
lines on the SIO to determine a priority for
interrupt service. This mechanism is discussed
on page 42 of the Z80 SIO Technica!l Manual
and in the Z80 Family Program Interrupt
Structure Manual. We do not go into it further
in this application note.

Initialization

In general, the initialization procedure
illustrated in Figure 4 can still be followed. All
six steps (A through F) are required here.
After completing the first four steps, which are
the same as initialization for polled I/O, it is
necessary to load an interrupt vector into WR2
of Channel B. Information is then written into
register WR1 specilying which interrupts are
to be enabled and whether a specific kind of
interrupt should modify the interrupt vector.

Now let us give an example. As in the polled
example, we assume that we are given a
device to which we will input and output 8-bit
characters, with odd parity, using the Auto
Enables feature. We also assume the CPU will
provide space to store characters as received.

We do not discuss the SIO commands and
registers in detail. This is done in the Z80 S/O
Technical Manual. A summary of the register
bit assignments taken from the Z80 SIO Seria/
Input/Output Product Specification is included
at the end of this note. Recall that to write a

register other than register WRO, the number
of the register to be written is first sent to
register WRO, and the following byte will be
sent to the named register. Similarly, to read a
register other than RRO (the default), the
number of the register to be read is first writ-
ten to register WRO and the next byte read will
return the contents of the register named.

In our example below, each time register
WRO is changed to point to another register,
the Reset External/Status Interrupts command
is alsc given. Whenever a transition on any of
the external/status lines occurs, the bits report-
ing the transition are latched until the Reset
External/Status Interrupts command is given.
Up to two transitions can be remembered by
the internal logic of the SIO. Therefore, it 1s
desirable toc do at least two different Reset
Extern.al/Status Interrupt commands as late as
possible in the initialization so that the status
bits reflect the most recent information. Since
it doesn’t hurt, we give these commands each

257

Initialization time WRO is changed to point to another reg-

{Continued)

ister. This is an easy way to code the initial-
ization to assure that the appropriate resets
occur.

The columns below show the logic states on
the C/D control line and the system data bus
{D7-Dp). together with co nments.

_ Bits sent to the 81O

CD Dy Dy Dy D¢ D3y D D
1 0 0 0 1 1 0 0
1 0 4] o 1 0 1 0

Etiocts and Comments

Ch] Reset d sent to register WRO (Ds-Dj3).

Point WRO to WR4 (D2-Dp) and issue a Reset Exter-
nal/Status Interrupts command (Ds-D3). Throughout
the initialization, whenever we point WR0 to another
register we will also issue & Reset External/Status
Interrupts command for the reasons noted above.

Set WR4 to indicate the following parameters (from left
to right):
A. Run at 1/64 the clock rate (D7-Dg).
B. Disable the sync bits and send out 2 stop bits per
character (Ds-D»).
C. Enable odd parity (D;-Dp).

Point WRO to WR3.

Set WR3 to indicate the following:
A. B-bit characters {o be received (D7-Dy).
B. Auto Enables on (Ds).
C. Rx Enable on (Dp).

Point WRO to WRS.

Set WRS to indicate the following:
A. Dats Terminal Ready (DTR) on (D7).
B. B-bit characters to be transmitted (Dg-Ds).
C. Break not to be transmitted (D).
D. Tx Enable on (D3).
E. Request To Send (RTS) on (D).

Point WRO to WR2 (Channe! B only).

Set the interrupt vector to point to address 11100000
(which is hax EQ and decimal 224). Once interrupts
are snabled, they will cause 2 branch fo this memory
location, modified as described above if the Status
Affects Vector bit is turned on (which it will be here}
This vector is only set for Channe! B, but it applies
to both channels. It has no effect when set 1n
Channe] A.

Point WRO to WRI.

Set WRI to indicate the following:

A. Cause interrupts on all characters received,
treating & perity error as a8 Special Receive
Condition interrupt (Dg-D3).

B. Turn on the Status Affects Vector feature. causing
interrupts to modify the status vector—meaningfu!
only on Channel B, but will not hurt if set for
Channe! A (Dj).

C. Enable interrupts due to transmit buffer being
empty (D)).

D. Enable External/Status interrupts (Dg).

"
4

Special A Special Receive Condition interrupt value of register RR1 to gather statistics on
Receive occurs (a) if a parity error has occurred, (b) if performance or determine whether to accept
Cendition there is a receiver overrun error (data is being the character. In some applications, a
Interrupts overwritten because the channel's three-byte character may still be acceptable if received
receiver buffer is full and a new character is with a framing error.
being received), or (c) if there is a framing In specifying the result of reading register
error. The processing in this case is the fol- RRO, RR1, or specifying data, we will indicate
lowing: the values as follows:
1. Issue an Error Reset command (to register Dy Dy Dy D¢ Dy By D Dy
WRO) to reset the latches in register RR1. D l D] D I D] D] D J D] D
2. Rgad the character from the read buffer and Recd o byte from the designated reguster.
discard it to empty the buffer. We now present an example of processing a
It may be desirable to read and store the Special Receive Condition interrupt.
- Bits sent and received
Cc/D Dy D¢ Dy D¢ D3 D3 Dy Dy Effects and Comments

1 0 0 0 0 o] 0 0 1 If we need to know what kind of error occurred. we
point WRO to read from RR1. Note that the Reset
External/Status Interrups command 1s not usec. This
avoids losing & valid interrupt.

1 D D D D D D D D Read a byte from RR1; one or more of bit Dg (iraming
error), Ds (receive overrun error), or Dy (parity error)
will be] to indicate the specific error.

1 0 0 1] 0 0 o] 0 Give an Error Reset command to reset all the error
latches

0 D D D D D D D D Read in the data byte received. This must be done to
clear the receiver buffer, but the characier will gener-
ally be disregarded. '

Received (Rx) When an Rx Character Available interrupt with character lengths of 5, 6, or 7 bits, the
Character occurs, the character need only be read from received parity bit will be transferred with the
Interrupts the read buffer and stored. If parity is enabled character. Any unused bits will be Is.
External/ To respond to an External/Status Interrupt, interrupt, it is necessary to read register RRC.
Status all that is necessary is to send a Reset Exter- In this case, the complete processing takes the
InterTupts nal/Status Interrupts command. However, if following form:

you wish to find the specific cause of the

- Bits sent and received

CD Dy Dg Dg D¢ Dy D3 D Do Etfects and Comments

1 Dy | Dg | Ds | Dg | Da | Dy | D) | Do Read register RRO; bit Dy (Break), Ds (Clear To Send).
or D3 (Data Carrier Detect) will have had & transition
to indicate the cause of the interrupt.

1 0 0 0 1 0 0 0 0 Give a Reset External/Status Interrupts command to se
the latches in RRO to their current values and stop
External/Status Interrupts untii another transition
occurs.

Tromsmit (Tx) The final kind of interrupt is a Tx Buffer rupts until the next character has been loaded
Buffer Empty Empty interrupt. If another character is ready into the transmitter buffer.
Interrupts to be transmitted on this channe], a Tx Buffer The Reset Tx Interrupt Pending command to

Empty interrupt indicates that it is time to do
80. To respond to this interrupt, you need only
send the next character. If no other character
is ready to transmit, it may be desirable to
mark the availability of the transmit mechanism
for future use. In addition, you should send a
Reset Tx Interrupt Pending command. This
command prevents further transmitter inter-

WRO takes the following form:
Dy Dg Dy D¢ Dy Dy D Dy
o[ol 1ol [of ofc

Reset Tx interrup! Pending command, no Tx Empty inter-
rupts wili be given unti! ofter the next charocter has been
ploced in the transmit buffer.

2-59

Assembler
Code

To take these examples further, let us use
280 Assembler code to implement the routines
for a single channel. We assume that the loca-
tion stored in register WR2 points to the
appropriate interrupt service routine. We also
assume that the following constants have
already been defined:

810ctrl. The address of the SIO's Channel B
control port (we assume Channel B in order to
include code to initialize the interrupt vector).

S10data. The address of the SIO's Channe! B
data port.

X. An address pointing to locations in memory
that will be used to store various values.

We will write data as binary constants; the
“B” suffix indicates this. In most cases, binary
constants will be referred to by the command
names. We begin with the initialization
routine:

INIT: LD C.SIOctr]
LD A,00011000B
out ©) A
LD A,00010100B
ouT (C).A
LD A.1100110iB
ouT (©) A
1D A,000]0011B
ouT) .A
1D A.11100001B
ouT © A
LD A,00010101B
ouT (C).A
LD A.11101010B
ouT) .A
LD A.000]10010B
OouT (C) A
LD A,11100000B
ouT (C).A
LD A.,00010001B
ouT < .A
1D A.00010111B
ouT <) .A
RET

:place the address of the SIO in the C register for
; use in subsequent output

:Jload Channe) Reset command in A register

;give Channel Reset command

;write to register WRC pointing it to register WR4

;output basic VO parameters to WR4

;write to register WR0 pointing it to register WR3

;output receive parameters to WR3

;write to register WRO pointing it to register WRS

;output transmit parameters to WRS

;write to register WRO pointing it to register WR2
; (Channel B only) ’

;output the interrupt vector to WRZ: in this case it is
; decimal location 224

;write to register WRO pointing it to register WR]

;outpul interrupt parameters to WRI

;return from initialization routine

Now let us look {irst at some sample codes
for the Special Receive Condition interrupt
routine, following the example above.

SlOspecint: PUSE AF

LD A.,00000001B
ouT (SIOctr]) LA
N A (S1Octzl)
LD X).A

1D A 001100008
ouT (SiOctrl) LA

IN A,(S1Odata)
POP AF

El

RET!

This is followed by a simple receive interrupt
routine that will fetch the character received
and store it in a temporary location.

;save registers which will be used in this routine
;write to register WRO pointing it to register RR
;fetch register RRI

;store result for later error analysis

;send an Error Reset command to reset device
; latches

sfetch the character received—we will discard this
; character since an error occurred during its
; reception

;restore saved registers
;enable interrupts

;return from interrupt

2-60

280
Assembler
Code
(Continued)

SIOrecint: PUSH AF

N A,(SIOdata)
LD X) A

POP AF

El

RETI

;save registers which will be used in this routine
sfetch the character received

;store result for later use

;restore saved registers

;enable interrupts

;return from interrupt

Of course, this last routine is probably far
too simple to be useful. It is more likely that
an interrupt routine will {ill up a buffer of
characters. A more complex example of a
receive interrupt routine is contained in the

SIOextint: PUSH AF

LD A,00010000B
OouT (SIOctrl) LA

N A,(SIOctr])
LD X).A
POP AF

El

RETI

chapter entitled "A Longer Example.”

We now give a simpie interrupt rouiine for
an External/Status Interrupt, again assuming
that the status contents of SIO register RRO are
stored in temporary location X:

;save registers which will be used in this routine

:send a Reset External/Status Interrupts command

;fetch register RRO

;store result for later analysis
;restore saved registers
;enable interrupts

;return from interrupt

Finally, we give the processing for a
transmit interrupt routine in the case where no
more characters are to be transmitted.

1t is likely that this code would just be a por-
tion of a more general transmit interrupt

SIOtrnint: PUSH AF
LD A,00101000B
ouT (SIOctr]) A

POP AF
El
RETI

routine which would transmit a buffer-full of
information at a time. A more complex exam-
ple is included in the section entitled "A
Longer Example.”

;save registers which will be used in this routine

:send a Reset Tx Interrupt Pending command

;restore saved registers
;Enable Interrupts
:Return From Interrupt

2-6]

SECTION
S

Hardware
Considerations

Questions and Answers.

Q: Can a sioppy system clock cause prob-
lems in SIO operation?

A: Yes; the specifications for the system
clock are very tight and must be met closely
to prevent SIO malfunction. The clock high
voltage must be greater than Vec— 0.6V but
Jess than +5.5V. The clock low voltage
must be greater than — 0.3V but less than
+0.45V. The transitions between these two
levels must be made in less than 30 ns. This
does not apply to the RxC and TxC inputs
which are standard TTL levels.

Q: When is a received character available to
be read?

A: Data will be available & maximum of 13
syste_n_1_clock cycles from the rising edge of
the RxC signal which samples the last bit of
the data.

Q: What is the maximum time between
character-insertion for transmission and
next-character transmission?

A: This will vary depending on the speed of
the line over which the character is being
transmitted.

Q: Are the control lines to the SIO synchro-
nous with the system clock so that noise may
exist on the buses any time before setup
reguirements are satistied?

R: Yes.

Q: In asynchronous use must receiver and
transmitter clock rates be the same?

A: No, the SIO allows receive and transmit
for each channel to use a different clock
(thus up to four different clocks for receiv-
ing and transmitting data can be used on
each SIO). However, the clock multiplier
for each channel must be the same.

Q: Do Wait states have to be added when
using the SIO with other processors other
than the Z80 CPU?

A: No, provided that setup times specified for
the SIO are met.

Q: If the Auto Enables bit in register WR3 is
set, will a change in state on the DCD (Data
Carrier Detect) or CIS (Clear To Send)
lines still cause an interrupt?

A: Yes, provided that External/Status Inter-
rupts are enabled (bit O in register WRI1).

Q: Is the M! line used by the SIO if no inter-
rupts are enabled? _

A: No, and in this case the M1 input should
be tied high.

Q: Will the SIO continue to interrupt for a
condition if the condition persists and the
interrupt remains enabled?

A: Yes.

Q: What is the maximum data rate of
the SI10?

It is 1/5 the rate of the system clock
(CLK). For example, if the system clock
operates at 4 MHz, the SIO’s maximum
transier rate is 800K bits (100K bytes)
per second.

A:

Q: What pins are edge sensitive and should
be strapped to avoid strange interrupts?

A: The external synchronization (SYNC) pins
and any other external status pins that are
not used, including CTS, and DCD.

Q: What happens if the transmitter or
receiver is disabled, while processing 2
character, by turning off its associated
enable bit (bit 3 in register WR5 for transmit
or bit 0 in register WR3 for receive)?

A: The transmitter will complete the
character transmission in an orderly fashion.
The receiver, however, will not finish. It will
lose the character being received and no
interrupt will occur.

Register
Contents

Q: Does the Tx Buifer Empty (bit 2 in register
RRO get set when the last byte in the buffer
is in the process of being shifted out?

K. No. The bit is set when the transmit buffer
has already become empty. Similerly, the
Tx Buffer Empty interrupt will not occur
until the buifer is empty. The same is true
for reception: the Rx Character Available
bit {bit 0 in register RRO) is not set until the
entire character is in the receive buffer, and
the Rx Character Available interrupt will
not occur until the entire character has
been moved into the buffer.

Q: If an Rx Overrun error occurs (and
bit 5 of register RR1 becomes latched on)
because a new character has arrived, which
character gets lost?

A: The most recently received character
overwrites the next most recently received
character.

Q: Does the Reset External/Status Interrupts
command reset any of the status bits in
register RRO?

A: No. However, when a transition occurs on
any of the five External/Status bits in
register RRO, all of the status bits are
latched in their current position until a
Reset External/Status Interrupts command is
issued. Thus. the command does permit the
appropriate bits of register RRO to reflect
the current signal values and should be
done immediately after processing each
transition on the channel.

2-62

Special

Uses

Q: If the CPU does not have the return from
interrupt sequence (RET! instruction on the
Z80 CPU), how may the SIO be informed of
the completion of interrupt handling?

A: This may be done by writing the Return
From Interrupt command (binary, 00111000)
to WRO in Channel A of the SIO.

Q. If the CPU can be interrupted but cannot
be used with vectored interrupts, how
should processing be done?

A: Immediately after being interrupted, pro-
ceed in a manner similar to polling the SIO
for both receive and transmit. Alternatively,
the Status Affects Vector bit (bit 2 in
register WR1) may be set and a 0 byte
placed into the interrupt vector (register
WR2 in Channel B). Then, the contents of
the interrupt vector can be used to deter-
mine the cause of the interrupt and the
channel on which the interrupt occurred.
This can be queried by reading register RR1
of Channel B. Also, M1 should be tied High
and no equivalent to an interrupt acknowl-
edge should be issued.

Q: How can the Wait/Ready (W/RDY) signal
be used by the CPU in asynchronous I/O?
A: The W/RDY signal is most commonly used
in Block Transfer Mode with a DMA, and

this use is described in the Z80 DMA
Technical Manucl. However, W/RDY may
be directly connected to the 280 CPU WAIT
line in order to use the block /O instruc-
tions OTDR, OTIR, INDR, and INIR. In this
case, the SIO can be used for block transfer
reception. To do this, the SIO is configured
to interrupt on the first character received
only (by settings bits 4 and 3 of register
WRI to 01) and additional characters are
sensed using the W/RDY line. The block I/O
instructions decrement a byte counter to
determine when 1/O is complete.

Q: Can the SYNC pin have any use in asyn-
chronous I/O?

A: It may be used as a general-purpose
input. For example, by connecting it to a
modem ring indicator, the status of that ring
indicator can be monitored by the CPU.

Q: How can the SIO be used to transmit
characters containing fewer than 5 bits?

A: First, set bits 6 and 5 in register WRS to
indicate that five or fewer bits per character
will be transmitted. The SIO then deter-
mines the number of bits to actually transmit
from the data byte itself. The data byte
should consist of zero or more ls, three s,
and the data to be transmitted. Thus, begin-
ning the data byte with 11110001 will cause
only the last bit to be transmitted:

Contents of data byte
{(d = arbitrary value)

D; Dg Ds Dy D3 Dy Dy Dy

I 1 1t 1 0 0 0 d 1
1 11 06 0 0 d d 2
1 1 0 0 0 d d d 3
1 0 0 0 d d d d 4
0 0 0 ddddgd s

*The nightmost number of bits indicated wili be trensmitted.

Q: Can a Break sequence be sent for a fixed
number of character periods?

A: Yes. Break is continuously transmitted as
logic O by setting bit 4 of register WR5. You
can then send characters to the transmitter
as long as the Break level is desired to per-
sist. A Break signal, rather than the char-
acters sent, will actually be transmitted, but
each bit of each character sent will be
clocked as if it were transmitted. The All
Sent bit, bit 0 of register RR1, is set to !
when the last bit of a character is clocked
for transmission, and this may be used to
determine when to reset bit 4 of register
WRS and stop the Break signal.

Q: If a Break sequence is initiated by setting
bit 4 of register WR5, will any character
in the process of being transmitted be
completed?

A: No. Break is effective immediately when
bit 4 of WR5 is set. The “all sent” bit in
register RR1 should be monitored to deter-
mine when it is safe to initiate a Break
sequence.

2-63

SECTION

A Longer Example.

In this section, we give a longer example of
asynchronous interrupt-driven full-duplex I/O
using the SIO. The code for this example is
contained in Appendix A, and the basic
routines are flow charted in Figures 7-12.

The example includes code for initialization
of the SIO, initialization of a receive buffer
interrupt routine, and a transfer routine which
causes a buffer of up to 80 characters of infor-
mation to be transmitted on Channel A and a
buffer of up to 80 characters of information to
be received from Channel A. The transfer
routine stops when either all data is received
or an error occurs. Completion of an operation
on a buffer for both receive and transmit is
indicated by a carriage return character.
Additional routines (not included in this exam-
ple) would be needed to call the initialization
code and initiate the transfer routine. There-
fore, we do not present a complete example;
that would only be possible when all details of
a particular communication environment and
operating system were known.

The code begins by defining the value of the
SIO control and data channels, followed by
location definitions for the interrupt vector.
There is then a series of constant definitions of
the various fields in each register of the SIO.
This is followed by a table-driven SIO initiali-
zation routine called "SIO__init,” shown in
Figure 7, which uses the table beginning at
the location “"SIOltable.” The SIO__Init routine
initializes the SIO with exactly the same

{

SET TRANSMIT BUFFER POINTER TO BEGINNING
OF TRANSMIT BUFFER. SET RECEIVE BUFFER
POINTER TO BEGINNING OF RECEIVE
BUFFER. SET RECEIVE BUFFER COUNTER.
TRANSMIT STATUS WORD, AND RECEIVE
STATUS WORD TO ZERO

3

START TRANSMISSION OF FIRST
CHARACTER IN THE BUFFER.

YES

RECEPTION

COMPLETE OR

OVERRUN
?

RETUAN

Figure 8. Inierrupi-Driven
Transmit Routine

|

LOAD | REGISTER WITH
WIGH BYTE OF INTERRUPT-
TABLE ADDRESS.

LOAD A MEMORY LOCATION
WITH LOW SYTE OF
INTERRUPT-TABLE ADDRESS.

t

LOAD HL REGISTER WITH
BEGINNING ADDRESS OF
810 INITIALIZATION TABLE.

MOVE DATA WORD FROM
INTTIALIZATION TABLE TO
A REQISTER; INCREMENT HL.

OUTPUT DATA WORD YO
CONTROL PORY OF BOTH
$10 CHANNELS.

Figure 7. Interrupt-Driven
Initialization Routine

¢

.

QET NEXT CHARACTER.
TRANSMIT, AND INCREMENT
TRANSMIT BUFFER POINTER

URN OFF NO

STOAE UPDATED VALUE OF
TRANSMIT BUFFER POINTER

'
rmvon: SAVED aeamﬂ

RETURN FROM INTERRUPY

Figure 5. Tramamitier Bulfer
Empty Interrupt Routine

26-0003-U34€ 26-0003-0347 26-0003-034€

A Longer
Example
(Continued)

parameters as the interrupt-driven example in
the previous section. The table-driten version
is presented simply as an alternative means of
coding this material.

A short routine for filling the receive buffer
with “"FF” (hex) characters and buffer defini-
tions follows the SIO__Init routine. This in turn
is followed by the transfer routine, Figure 8,
which begins transmitting on Channel A;
transmission and reception is thereafter
directed by the interrupt routines. After the
transfer routine begins output, it checks for
various error conditions and loops until there
is either completion or an error.

Then the four interrupt routines follow:
TxBEmpty, Figure 9, is called on a transmit
buffer interrupt; it begins transmission of the
next character in the buffer. A carriage return
stops transmission. RecvChar, Figure 10, is
called on a normal receive interrupt; it places
the received character in the buffer if the buf-
fer is not full and updates receive counters.
The routines SpRecvChar, Figure 11, and
ExtStatus, Figure 12, are error interrupts; they
update information to indicate the nature of
the error.

The code of this example can be used in a
situation where data is being sent to a device
which echoes the data sent. In such a case, the
transmit and receive buffers could be com-
pared upon completion for line or transmission
errors.

!

[SAVE REGISTERS I

i

STORE CONTENTS OF
RR? IN RECEIVE
STATUS WORD.

i

RESET EAROR LATCHES
W 3i0.

FETCH ANO DISCARD
CHARACTER.

[RESTORE SAVED REGISTERS]

RETURN FROM INTERRUPT

Figure 11. Special Receive Condition
Interrupt Routine

l SAVE REQGISTERS I

FETCH CHARACTER AND
PUT IN B REGISTER

RECEIVE
BUFFER

YES FuLL

$ET RECEIVE
STATUS WORD

T0
“QVERFLOW™

BET RECEVE
STATUS WORD

INCREMENT RECEIVE BUFFER
COUNTER AND RECEIVE BUFFER
POINTER. STORE B REGISTER
CONTENTS WHERE RECEIVE
BUFFER POINTS TO.

!

WAS
CHARACTER A
CARRIAGE RETURN

?

[RESTORE SAVED REGISTERS '

!

RETURN FROM INTERRUPT

Figure 10. Receive Character
Interrupt Routine

STORE CONTENTS OF RRD
N THE TRANSMIT
STATUS WORD.

'

SEND THE RESET
EXTEANALSTATUS
INTERRUPTS COMMAND

:

RESTORE SAVED REGISTERS

RETURN FROM INTERRUPT

Figure]12. External/Status
Interrupt Routine

26-0003-034% 26-0003-035¢ 26-0003-035!

2-65

Appendix A

Interrupt-Driven Code Example

SIO Port Identifiers and System Address Bus Addresses WR3 Commands
BS: EQU O00H ;Receive 5 bits/character
SIO: EQU 40H RENABL: EQU 0lH :Receiver enable
. ENRCVR: EQU 0lH :Receiver enable
SIOADete: B Eon2 SCLINH: EQU O2H 'Sync character load imhibit
SIOBData: EQU SIO+3 ADSRCH: EQU 04H ;Address search mode
SIOBCtr: EQU SIO+4 RCRCEN: EQU 08H :Receive CRC enable
HUNT: EQU 10H ;Enter hunt mode
AUTOEN: EQU 20H ;Auto enables
B7: EQU 40H ;:Receive 7 bits/character
Table of Interrupt Vectors B6: EQU 80H ;Receive 6 bits/character
The table (Ini_Tab) starts at the lowest priority vector, which Bs: EQU OCOH :Receive B bits'character
should be dddd000d.
WR{ Commands
ORG ODOH :starts at address with low SYNC: EQU 00H :Sync modes enable
: byte = 11010000 NOPRTY: EQU O0H :Disable parity
Int_Tab: DEFW TxBEmpty :interrupt types for Channel B ODD: EQU O0H :0dd parity
DEFW ExtStat MONO: EQU 00H :B bit sync character
DEFW RxChar Cl: EQU 00H ;X1 clock mode
DEFW SpRxCond PARITY: EQU OlH ;Enable panty
EVEN: EQU 02H ;Even parity
gEga ExBSEmpty .interrupt types for Channel A 1 EQU 04H 1 stop bit character
E xtStat SIHALF: EQU 08H ;1 and a half stop bits/character
DEFW RxChar S2: EQU OCH ;2 stop bitsicharacter
DEFW SpRxCond BISYNC: EQU I0H :16 bt sync character
SDLC: EQU 20H ;SDLC mode
ESYNC: EQU 30H ;External sync mode
Command Identitiers and Values Cl6: EQU 40H :X16 clock mode
Includes all control bytes for asynchronous and synchronous 1/O. ggi 288 %};H)X(gi z}z: :23:
WR0 Commands WRS Commands
RO: EQU 00H ;SIO register powmnters T5: EQU 00H ;Transmit 5 bits'character
Rl: EQU 0lH XCRCEN: EQU OiH ;Transmit CRC enabie
R2: EQU 02H RTS: EQU 02H :Regues: to send
R3: EQU 03H SELCRC: EQU 04H :Select CRC-16 polynomiai
R4: EQU 04H XENABL: EQU 0BH ;Transmtter enabie
RS: EQU 0SH BREAK: EQU 10H ;Send break
Ré: EQU 06H T7: EQU 20H :Transms! 7 bits character
R7: EQU O7H T6: EQU 40H ;Transmit 6 bits/character
NC: EQU 00H :Nuil Code T8: EQU 60H ;Transmit 8 bits/character
SA: EQU 08H :Send Abort (SDLC) DTR: EQU B0H ;Data termina; ready
RESI: EQU 10H :Reset Ext/Stat Int
CHRST: EQU 18H :Channel Rese! Inttialization
EIONRC: EQU 20H :Enable Int On Next Rx Char SIO_ Init: LD HL, Int_Tab
RTIP: EQU 28K ;:Reset Tx Int Pending 1D AH
ER: EQU 30H ;Error Reset LD LA
RFL EQU 38H ;Return From Int LD Al
RRCC: EQU 40H ;:Reset Rx CRC Checker LD (I_Loc). A
RICG: EQU 80H :Reset Tx CRC Generator LD HL. SIOlable
RTUEL: EQU OCOH :Reset Tx Under/'EOM Latch Init_Loop: LD A(HL) loop for mnitialization
INC HL
WR! Commands cr o]
WAIT: EQU 00H :Wait function RET z
DRCVRI: EQU 00H ;Disable Receive interrupts ouT (S]OAC_"”’A
EXTIE: EQU OIH :External interrupt enabie our (SIOBCtri). A
XMTRIE: EQU 02H :Transmit interrupt enable IR Imt_Loop
SAVECT: EQU 04H ;Status affects vector SlOltable: DEFB CR table for imiiahization
FIRSTC: EQU 08H :Rx interrupt on fhirst character DEFB R4 + RESI
PAVECT: EQU 10H ;Rx interrupt on al] characters DEFB C64 + ODD + PARITY + S2
; {(panty atfects vector) DEFB R3 + RESI
PDAVCT: EQU 18H :Rx interrupt on all characters DEFB BB + AUTOEN + ENRCVR
; (parity doesn't afject vector) DEFB RS + RESI
WRONRT: EQU 20H ;Wait/Ready on receive DEFB DTR + RTS + T8 + XENABL
RDY: EQU 40H ;Ready function DEFB R2 + RES]
WRDYEN: EQU 80H :WaivReady enable L_Loc: DEFS 1 -location of 1t tabie
DEFB R] + RESI ;address
WR2 Commands DEFB EXTIE + XMTRIE + SAVECT + PAVECT

2-66

Receiver Butier Initialization

Bui__Init: LD A, Builength :fill receiver buffer
LD B.A ; with FF characters
LD HL.RBuifer ; to detect errors
LD A CFFH

Buf__1: LD (HL),A ;a loop for Bui__Init
INC HL
DINZ Buf__l
RET

Buflength: EQU 80 :bulfer length

XButier: DEFS Builength :Tx buffer starting location
RButter: DEFS Buflength ;:Rx bufter starting location

XBufPtir: DEFS 2 ;Tx pointer
RBuiPtr: DEFS 2 :Rx pointer
RBuiCtr: DEEFS 1 :Rx counter

Transmit Routine (see Figure 8)
Initiates transmission of a butier-iull of data and terminates when
an error is detected or a complete buffer has beer received.

RxStat: DEFS 1 :Receive Status Word
TxStat: DEFS] ;Transmit Status Word
Complete: EQU 1
CR: EQU O0DH
Break: EQU BOH
EOM: EQU 8CH
Overflow: EQU OFFH
Transfer: LD HL,XBuifer ;setup to begin Tx
INC HL
LD (XBufPtr) HL

LD HL.RBuffer

LD (RBufPir).HL

XOR A :A=0
LD (RBuiCtr), A

LD (TxStat),A

LD (RxStat) A
LD A SIOAData :start Tx task
LD CA
LD HL.(XBuffer) ;first character
LD A (HL)
OuT (C)L.A
Tloop: LD A (TxStat) ;await Tx completion or error
cp 0
RET NZ
LD A (RxStat)
Cp Overllow
RET z
CP Complete
RET Z
IR NZ.Tloop
RET

Transmitter Buifer Empty Routine (see Figure 9)
TxBEmpty PUSH AF

PUSH BC

PUSH HL

LD HL.(XBulPtr}

LD A SIOADaia

LD C.A

LD A.(HL)

OUTl

Cp CR

IR NZ, TxBExit :last character?

LD A RTIP ;Reset Tx Int Pending

INC o

OouT (CLA ;to contrc} port
TxBExit: LD (XBufPirj,HL :save pointer

POP HL

POP BC

POP AF

El

RETI

Receive Character Routine (see Figure 10)

RxChar: PUSH AF

Over:

PUSH BC

LD A,SIOAData

LD C.A

IN A O ;get character
1D BA

1D A, (RBuiCtr)

CP BufLength

R Z,Over

INC A ;bump counter
LD (RBuiCtr), A

LD AR

LD HL.(RBufPtr) :bump pomter
D (HL).A

INC HL

LD (RBuiPtr), HL

Ccp CR

IR NZ RxExit

1D A ,Complete

LD (RxStat), A

IR RxExit

LD A Overtlow indicate error

LD (RxStat). A

RxExit: POP BC

POP AF
El
RETI

Special Receive Condition Routine (see Figure 11}
SpRxCond: PUSH AF

PUSH BC

LD A SIOAData

LD C.A

LD ARl ;get RR1
INC C

OouT (C).A

IN AC)

LD (RxStat) A ;save status
LD AER ;Reset Errors
DEC C

OuT (C)LA

DEC C

IN A.(C) :qet character
POP BC

POP AF

El

RETI

Externcl/Status Routine (see Figure 12)

ExtStatus: PUSH AF

END

PUSH BC

LD A SIOACtr

D C.A

IN ALO) :get RRO
LD (TxStat) A

LD A RES] :Reset Ext Stat Int
ouT (C)A

POP BC

POP AF

El

RETI

2-67

Appendix B

Read Register Bit Functions

Rx CHARACTER AVAILABLE
INT PENDING (CH. A ONLY)
Tx BUFFER EMPTY

bco
SYNC/HUNT
(24 .
=
BREAKABORT
“Useq Wer ExternaiSiatus
Interuo” Mooe
READ REGISTER 1t
0, "Dy 0, b, B
L—— ALL SENT
| FIELD BTS | FIELD BITS IN
N PREVIOUS SECOND PREVIOUS
BYTE SYTE
1.¢ 0 [3
© 1 0 o 4
110 o (] .
6 0 (] (3
1.0 1 [7
o 1 1 ¢ s
11 1 .
o0 0 2 1]
b PARITY ERROR *Residue Daia For Egn
e Rz OVERRUN ERAOR Rx BisiCha-acte: Programmec
et CRC/FRAMING ERROR

END OF FRAME (SOLC)

TUsed Wi Specia Recewe Conamor Mooe

READ REGISTER 2

var
va VECTOR
S

tvanape * Siatuc A'tec!s
vecior 15 Programmed

2-68

Appendix C

Write Register Bit Functions

'WRITE REGISTER 0

Dy Dy Dy 0.0y By Di'0p

| I | o 0|z lntmsrsno | L_:‘m"““—‘—
G & 1 REGISTER? ARITY EVEN/ODD
0 t © REGISTER2 1
© 1 1 REGISTER3 0 O SYNC MODES ENABLE
1 0 O REGISTER4 0 1 1STOP BITICHARACTER
1 0 1 MEGISTERS 1 0 1% S§TOP ms«cuucxsn
1 1 0 REGISTERS 1 1 2 STOP BITS/CHARA
1 1 1 REGISTER?
0 0 8BIT SYNC CHARACTER
0 0 0 NULLC 0 3 18 BIT SYNC CHARACTER
& 01 SENDHORT:S 1 0 S$OLC MODE (01111110 FLAG)
o 10 uEsETEmsu'rus m'rsnurrs l 1 1 EXTERWAL SYNC MODE
6 1 1 CHANNEL RESET I
1 0 © ENABLE INT ON NEXT R1 CHARACTER 0 0 X1 CLOCK MODE
4 0 1 RESET TxINT PENDING 0 1 X18 CLOCK MODE
1 1 0 ENROR RESET 1 0 X22 CLOCK MODE
1 1 1 RETURN FROM INT (CH-A ORLY) 1 1 X84 CLOCK MODE

NULL CODE

RESET Rx CRC CHECKER

RESET Tx CRC GENERATOR
RESET Tx UNDERRUN/EOM LATCH

WRITE REGISTER | 4 3

I L——zx'r INT ENABLE l L 1s cmc EnaBLE
Tx INT ENABLE ATS
STATUS AFFECTS VECTOR $OLC/ICRC 16

Tx ENABLE

0

1

[]

1

(CH. BONLY)
SEND BREAK
° Rx INT DISABLE
[Rx INT ON FIRST CHARACTE 0 © Ta5BITS (OR LESSYCHARACTER
1 INT ON ALL Rx CHARACTERS (PAR(YV AFFECTS VECTOR) % . 8 1 Tx7 BITS/CHARACTER
1 INT ON ALL Rx CHARACTERS (PARITY DOES NOT AFFECT 1 0 Tx6BITSCHARACTER
VECTOR) T 1 Tx8 BITS/CHARACTER

WAIT/READY ON AT 0 Or DTR

WATMEADY FUNCTION Spec.a

WAIT/READY ENABLE Cona.sor

WRITE REGISTER 2 (CHANNEL B ONLY)

D, D, Dy D, D D,
‘ L—W | l—_tVNC BITO
vi SYNC BIT 1
v2 SYNC BIT 2
v3 INTERRUPT SYNC BIT2 \
vé VECTOR SYNC BIT 4
V5 SYNC BIT §
ve SYNC BIT &
L SYNC BIT 7

®x ENABLE I L—-
SYNC CHARACTER LOAD INHIBIT
ADDRESS SEARCH MODE (SOLC)

Rx CRC ENABLE
ENTER HUNT PHASE 5VNC BIT 12
AUTO ENABLE! SYNC BIT 13
SYNC BIT 14
SYNC BIT 15

© 0 Rx5BITS/ICHARACTER
0 1 Ra?BITSCHARACTER
10 S/CHARACTER
Tt SICHARACTER

2-63

Z8430
Z80° CTC Counter/
Timer Circuit

Y4

Product
Specification

June 1982
Features 8 Four independently programmable B Selectable positive or negative trigger
counter/timer channels, each with a initiates timer operation.
readable downcounter and a selectable ® Standard Z-80 Family daisy-chain interrupt
16 or 256 prescaler. Downcounters are structure provides fully vectored, prioritized
reloaded automatically at zero count. interrupts without external logic. The CTC
B Three channels have Zero Count/Timeout may alsc be used as an interrupt controller.
outputs capable of driving Darlington B Interfaces directly to the Z-80 CPU or—for
transistors. baud rate generation—to the 2-80 SIO.
General The Z-80 CTC four-channel counter/timer each channel is programmed with two bytes; a
Description can be programmed by system software for a third is necessary when interrupts are enabled.
broad range of counting and timing applica- Once started, the CTC counts down, reloads
tions. The four independently programmable its time constant automatically, and resumes
channels of the Z-80 CTC satisfy common counting. Software timing loops are completely
microcomputer system requirements for event eliminated. Interrupt processing is simplified
counting, interrupt and interval timing, and because only one vector need be specified; the
general clock rate generation. CTC internally generates a unigue vector for
Systemn design is simplified because the CTC each channel.
connects directly to both the Z-80 CPU and the The Z-80 CTC requires a single +5 V power
Z-80 SIO with no additional logic. In larger supply and the standard Z-80 single-phase
systems, eddress decoders and buffers may be system clock. 1t is fabricated with n-channel
required. silicon-gate depletion-load technology, and
Programming the CTC is straightforward: packaged in a 28-pin plastic or ceramic DIP.
=t Do CLRTRGo [
i D1 200y p—>
g D2
CU | @i D; CLK/TRG; fat—e B 2 0.
OaTe | =10 ZCMOs b—a- | cMaNNEL o E ; tJa gy
-—d Dy SIGNALS e C 5 2 .
-1 Dy CLKITRG, fe— o [« 2] oo
e Ll zemo; = ® ano s [+sv
- : S wOe ere 2 [] cuwmha,
]) [zcno, 0 C
eou'r:;t —j s 2e70, : 2804 cTC : ztz::;
FROM | — Wi REET fo— oo, 00 2 [cixmae,
e e b o o B
—] RD 280 CTC G g E] (-9
DAISY [—u i 280A CTC m—o:n 18] cs
CHAIN { wt [z 1+ [REsEr
-] 10 | 12 wilE
conTroL | =—1 T 1 [1] o
LK QIV GID
Figure). Pin Functions Figure 2. Pin Assignments
2041-0i54 0155

8l

1D 082

Functional
Description

The Z-80 CTC has four independent counter/
timer channels. Each channel is individually
programmed with two words: a control word
and a time-constant word. The control word
selects the operating mode (counter or timer),
enables or disables the channel interrupt, and
selects certain other operating parameters. If
the timing mode is selected, the control word
also sets a prescaler, which divides the system
clock by either 16 or 256. The time-constant
word is a value from 1 to 256.

During operation, the individual counter
channel counts down from the preset time con-
stant value. In counter mode operation the
counter decrements on each of the CLK/TRG
input pulses until zero count is reached. Each
decrement is synchronized by the system
clock. For counts greater than 256, more than
one counter can be cascaded. At zero count,
the down-counter is automatically reset with
the time constant value.

The timer mode determines time intervals as
small as 4 gs (Z-80A) or 6.4 us (2-80) without
additional logic or software timing loops. Time
intervals are generated by dividing the system
clock with a prescaler that decrements

a preset down-counter.

Thus, the time interval is an in egral mul-
tiple of the clock period, the prescaler value
(16 or 256) and the time constant that is preset
in the down-counter. A timer is triggered auto-
matically when its time constant value is pro-
grammed, or by an external CLK/TRG input.

Three channels have two outputs that occur
at zero count. The first output is a zero-
count/timeout pulse at the ZC/TO output. The
fourth channel (Channel 3) does not have a
ZC/TO output; interrupt request is the only
output available from Channel 3.

The second output is Interrupt Request
(INT), which occurs if the channe! has its
interrupt enabled during programming. When
the Z-80 CPU acknowledges Interrupt Request,
the Z-80 CTC places an interrupt vector on the
data bus.

The four channels of the Z-80 CTC are fully
prioritized and {it into four contiguous slots in
a standard Z-80 daisy-chain interrupt struc-
ture. Channel 0 is the highest priority and
Channel 3 the lowest. Interrupts can be
individually enabled (or disabled) for each of
the four channels. ’

Architecture

The CTC has four major elements, as shown
in Figure 3.

® CPU bus /O

8 Channel control logic

B Interrupt logic

B Counter/timer circuits

CPU Bus I/0. The CPU bus /O circuit
decodes the address inputs, and interfaces the
CPU date and control signals to the CTC for
distribution on the internal bus.

g
s
§
383

e £
(o)
N

Internal Control Logic. The CTC internal
control logic controls overall chip operating
functions such as the chip enable, reset, and
read/write logic.

Interrupt Logic. The interrupt control logic
ensures that the CTC interrupts interface prop-
erly with the Z-80 CPU interrupt system. The
logic controls the interrupt priority of the CTC
as a function of the IEI signal. If IEI is High,
the CTC has priority. During interrupt

| I—-

D

Lo0IC

3 cmo
‘ 4 CLKTRG

Figure 3. Functional Block Diagram

82

Architecture
(Continued)

processing, the interrupt logic holds IEO Low,
which inhibits the interrupt operation on lower
priority devices. If the IEIl input goes Low,
priority is relinquished and the interrupt logic
drives IEO Low.

If a channel is programmed to request an
interrupt, the interrupt logic drives J[EO Low at
the zero count, and generates an INT signal to
the Z-80 CPU. When the Z-80 CPU responds
with interrupt acknowledge (M1 and IORQ),
then the interrupt logic arbitrates the CTC
internal priorities, and the interrupt control
logic places a unique interrupt vector on the
data bus.

1f an interrupt is pending, the interrupt logic
holds IEO Low. When the Z-80 CPU issues a
Return From Interrupt (RETI) instruction, each
peripheral device decodes the first byte
(EDjg). If the device has a pending interrupt,
it raises IEO (High) for one M1 cycle. This
ensures that all lower priority devices can
decode the entire RETI instruction and reset

properly.

CHANNEL
CONTROL
LoaIc

THAE
CONSTANT
REGISTER

INTEANAL BUS

3-BIT
DOWN: bep- 20170
COUNTER

CLKTAG —————"1

=

Figure 4. Counter/Timer Block Diagram

Counter/Timer Circuits. The CTC has four
independent counter/timer circuits, each con-
taining the logic shown in Figure 4.

Channel Control Logic. The channel control
logic receives the 8-bit channel control word
when the counter/timer channel is pro-
grammed. The channel control logic decodes

the control word and sets the following
operating conditions:

8 Interrupt enable (or disable)

8 Operating mode (timer or counter)

8 Timer mode prescaler factor (16 or 256)

® Active slope for CLK/TRG input

® Timer mode trigger {automatic or CLK/TRG
input)

@ Time constant data word to follow

& Software resst

Time Constant Register. When the counter/

timer channel is programmed, the time con-

stant register receives and stores an 8-bit time

constant value, which can be anywhere from 1

to 256 (0 = 256). This constant is automatic-

ally loaded into the down-counter when the

counter/timer channel is initialized, and subse-

guently after each zero count.

Prescaler. The prescaler, which is used only
in timer mode, divides the system clock fre-
quency by a factor of either 16 or 256. The
prescaler output clocks the down-counter dur-
ing timer operation. The effect of the prescaler
on the down-counter is a multiplication of the
system clock period by 16 or 256. The pre-
scaler factor is programmed by bit 5 of the
channe! control word.

Down-Counter. Prior to each count cycle, the
down-counter is loaded with the time constant
register contents. The counter is then
decremented one of two ways, depending on
operating mode:

B8 By the prescaler output (timer mode)
B By the trigger pulses into the CLK/TRG
input (counter mode)

Without disturbing the down-count, the Z-80
CPU can read the count remaining at any time
by performing an I/O read operation at the
port address assigned to the CTC channel.
When the down-counter reaches the zero
count, the ZC/TO output generates a positive-
going pulse. When the interrupt is enabled,
zero count also triggers an interrupt request
signal (INT) from the interrupt logic.

2u4: U058

83

1D 08Z

Programming Each Z2-80 CTC channel must be pro-

grammed prior to operation. Programming
consists of writing two words to the /O port
that corresponds to the desired channel. The
first word is a control word that selects the
operating mode and other parameters; the
second word is a time constant, which is a
binary data word with a value from 1 to 256. A
time constant word must be preceded by a
channel control word.

After initialization, channels may be
reprogrammed at any time. If updated control
and time constant words are written to a chan-
nel during the count operation, the count con-
tinues to zero before the new time constant is
loaded into the counter.

If the interrupt on any Z-80 CTC channel is
enabled, the programming procedure should
also include an interrupt vector. Only one vec-
tor is required for all four channels, because
the interrupt logic automatically modifies the
vector for the channel requesting service.

A control word is identified by a | in bit 0.
A 1 in bit 2 indicates a time constant word is to
follow. Interrupt vectors are always addressed
to Channel 0, and identified by a 0 in bit 0.

Addressing. During programming, channels
are addressed with the channel select pins CS)
and CS;. A 2-bit binary code selects the
appropriate channel as shown in the following
table.

Channel CS; CS¢
0 0 0
1 0 1
2 1 0
3 1 1

Reset. The CTC has both hardware and soft-
ware resets. The hardware reset terminates all
down-counts and disables all CTC interrupts
by resetting the interrupt bits in the control
registers. In addition, the ZC/TO and Interrupt
outputs go inactive, IEO reflects IEl, and

Do-D7 go to the tigh-impedance state. All
channels must be completely reprogrammed
after a hardware reset.)

The software reset is controlled by bit 1 in
the channel control word. When a channel
receives a software reset, it stops counting.
When a software reset is used, the other bits in
the control word also change the contents of
the channel control register. After a software
reset a new time constant word must be written
to the same channel.

1f the channel control word has both bits D;
and D5 set to 1, the addressed channel stops
operating, pending a new time constant word.
The channel is ready to resume after the new
constant is programmed. In timer mode, if
D3 = 0, operation is triggered automatically
when the time constant word is loaded.
Channsl Contral Word Programming. The
channe! control word is shown in Figure 5. It
sets the modes and parameters described
below.

Interrupt Enable. D; enables the interrupt, so
that an interrupt output (INT) is generated at
zero count. Interrupts may be programmed in
either mode and may be enabled or disabled
at any time.

Operating Mode. Dg selects either timer or
counter mode.

Prescaler Factor. (Timer Mode Only). Ds

- selects factor—either 16 or 256.

Trigger Slope. Dy selects the active edge or
slope of the CLK/TRG input pulses. Note that
reprogramming the CLK/TRG slope during
operation is equivalent to issuing an active
edge. If the trigger slope is changed by a con-
trol word update while a channel is pending
operation in timer mode, the result is the same
as a CLK/TRG pulse and the timer starts.
Similarly, if the channel is in counter mode,
the counter decremenis.

[s.Je.Te. o550 [0, [0
't ENABLES INTERRUPT 0 = VECTOR

0 DISABLES INTERRUPT

bR 1
© SELECTS TIMER MODE
1 SELECTS COUNTER MODE

ER VALUS
1t & VALUE OF 286
© = VALUE OF 18

© = N0 TIME CONSTANT FOLLOWS
1 » TIME CONSTANT FOLLOWS

CLK/TRG EDOE SELEC TIOH
0 SELECTS FALLING EDOE
1 SELECTS RISING EDGE

™E
1 = CLI/TRG PULSE STARTS TIMER
*TMER MODE ONLY

Figure 5. Channel Controi Word

Programming
{Continued)

Trigger Mode (Timer Mode Only). Dj selects
the trigger mode for timer operation. When D3
is reset to 0, the timer is triggered automatic-
ally. The time constant word is programmed
during an /O write operation, which takes one
machine cycle. At the end of the write opera-
tion there is a setup delay of one clock period.
The timer starts automatically (decrements) on
the rising edge of the second clock pulse (T2)
of the machine cycle following the write opera-
tion. Once started, the timer runs coni:n-
uously. At zero count the timer reloads
auiomatically and continues counting without
interruption or delay, until stopped by a reset.

When Dj is set to 1, the timer is triggered
externally through the CLK/TRG input. The
time constant word is programmed during an
1/O write operation, which takes one machine
cycle. The timer is ready for operation on the
rising edge of the second clock pulse (T7) of
the {ollowing machine cycle. Note that the first
timer decrement follows the active edge of the
CLK/TRG pulse by a delay time of one clock
cycle if a minimum setup time to the rising
edge of clock is met. If this minimum is not
met, the delay is extended by another clock
period. Consequently, for immediate trigger-
ing, the CLK/TRG input must precede T2 by
one clock cycle plus its minimum setup time. If
the minimum time is not met, the timer will
start on the third clock cycle (T3).

Once started the timer operates contin-
uously, without interruption or delay, until
stopped by a reset.

Time Constant to Follow. A 1 in D indicates
that the next word addressed to the selected
channel is a time constant data word for the
time constant register. The time constant word
may be written at any time.

A 0 in Dj indicates no time constant word is
to follow. This is ordinarily used when the
channel is already in operation and the new
channel control word is an update. A channel
will not operate without a time constant value.
The only way to write a time constant value is
to write a control word with D5 set.

Figure 6. Time Constant Word

Software Reset. Setting D) to 1 causes a soft-
ware reset, which is described in the Reset
section.

Control Word. Setting Dp to 1 identifies the
word as a control word.

Time Constant Programming. Before a chan-
nel can start counting it must receive a time
constant word from the CPU. During program-
ming or reprogramming, a channel control
word in which bit 2 is set must precede the
time constant word to indicate that the next
word is a time constant. The time constant
word can be any value from 1 to 256 (Figure
6). Note that 00y¢ is interpreted as 256.

In timer mode, the time interval is controlled
by three factors:

8 The system clock period (¢)

B The prescaler factor (P), which multiplies
the interval by either 16 or 256

B The time constant (T), which is programmed
into the time constant register

Consequently, the time interval is the pro-
duct of ¢ xP xT. The minimum timer resolu-
tion is 16 x ¢ (4 us with a 4 MHz clock). The
maximum timer interval is 256 x ¢ x 256 (16.4 ms
with & 4 MHz clock). For longer intervals
timers may be cascaded.

Interrupt Vector Programming. If the Z-80
CTC has one or more interrupts enabled, it
can supply interrupt vectors to the Z-80 CPU.
To do so, the Z-80 CTC must be pre-pro-
grammed with the most-significant five bits of
the interrupt vector. Programming consists of
writing a vector word to the I/O port cor-
responding to the 2-80 CTC Channel 0. Note
that Dy of the vector word is always zero, to
distinguish the vector from a channel control
word. D; and D> are not used in programming
the vector word. These bits are supplied by
the interrupt logic to identify the channel
requesting interrupt service with a unigue
interrupt vector (Figure 7). Channel O has the
highest priority.

D:O-D-D-Dsh:bau

‘ = INTERRUPT VECTOR WORD
V1-¥3 1 = CONTROL WORD

SUPPLIED
BY USER
CHANNEL IDENTIFIER
um“ATICALLY INSERTED
Y CTC)

‘ (] CNAOINEL 0
6 1 m CMANNEL 1
1 O = CMANNEL 2
1 1 e CHAMNEL D

Figure 7. Interrupt Vector Word

204, Uikl Ui

85

5 082

Description

CE. Chip Enable (input, active Low). When
enabled the CTC accepts control words, inter-
rupt vectors, or time constant data words from
the data bus during an IO write cycle; or
transmits the contents of the down-counter to
the CPU during an I/O read cycle. In most
applications this signal is decoded from the
eight least significant bits of the address bus
for any of the four /O port addresses that are
mapped to the four counter-timer channels.

CLK. System Clock (input). Standard single-
phase Z-80 system clock.

CLEK/TRGy-CLK/TRG3. External Clock/Timer
Trigger (input, user-selectable active High or
Low). Four pins corresponding to the four Z-80
CTC channels. In counter mode, every active

edge on this pin decrements the down-counter.

In timer mode, an active edge starts the timer.
CS¢-CS,. Channel Select (inputs active High).
Two-bit binary address code selects one of the
four CTC channels for an I/O write or read
(usually connecied to Ag and A)).

Dy-Dy. System Data Bus (bidirectional,
3-state). Transfers all data and commands
between the Z-80 CPU and the Z-80 CTC.

I G
ki

L)

kv

cre
2870; WY
[3

_s
11

[l _ %o
RaCa [4 INT
ica w0 ®
Rl
Tice

wWRDYS ®OY
L]

= =

Figure 8. A Typical Z-90 Environment

IEl. Interrupt Enable In (input, active High).
A High indicates that no other interrupting
devices of higher pricrity in the daisy chain
are being serviced by the Z-80 CPU.

IEO. Interrupt Enable Out (output, active
High). High only if IEl is High and the Z-80
CPU is not servicing an interrupt from any
Z-80 CTC channel. IEO blocks lower priority
devices from interrupting while a higher
priority interrupting device is being serviced.

INT. Interrupt Request (output, open drain,
active Low). Low when any Z-80 CTC channe!
that has been programmed to enable interrupts
has a zero-count condition in its down-counter.

JIORQ. Input/Output Reguest (input from CPU,
active Low). Used with CE and RD to transfer
data and channel control words between the
Z-80 CPU and the Z-80 CTC. During a write
cycle, JORQ and CE are active and RD
inactive. The Z-80 CTC does not receive a
specific write signal; rather, it internally
Ferates its own from the inverse of an active

D signal. In a read cycle, JORQ, CE and RD
are active; the contents of the down-counter
are read by the Z-80 CPU. If IORQ and M are
both true, the CPU is acknowledging an inter-
rupt request, and the highest priority inter-
rupting channel places its interrupt vector on
the Z-80 data bus.

M1. Mochine Cycle One (input from CPU,
active Low). When Mi and IORQ are active,
the Z-80 CPU is acknowledging an interrupt.
The Z-80 CTC then places an interrupt vector
on the data bus if it has highest priority, and if
a channel has requesied an interrupt (INT).

RD. Read Cycle Status (input, active Low).
Used in conjunction with and CE to
transfer data and channel control words
between the Z-80 CPU and the Z-80 CTC.

RESET. Rese (input active Low). Terminates
all down-counts and disables all interrupts by
resetting the interrupt bits in all control
registers; the ZC/TO and the Interrupt outputs
go inactive; [EO reflects IEI; Dg-D7 go to the
high-impedance state.

ZC/T0y-2ZC/TO3. Zero Count/Timeout (output,
active High). Three ZC/TC pins corresponding
to 2-80 CTC chennels 2 through 0 (Channe! 2
has no ZC/TO pin). In both counter and timer
modes the output is an active High puise whex
the down-counter decrements to zero.

Timing Read Cycle Timing. Figure 9 shows read
cycle timing. This cycle reads the contents of a
down-counter without disturbing the count.
During clock cycle T, the Z-80 CPU initiates a
read cycle by driving the following inputs
Low: RD, IORQ, and CE. A 2-bit binary code
at inputs CS; and CSy selects the channel to
be read. M1 must be High to distinguish this
cycle from an interrupt acknowledge. No addi-
tional wait states are allowed.

T T2 Twa Ts T
ex_[1TMLTLILIML
€80, €84, EE X craxneLavoress X0

{ o)

DATA —)

Figure 9. Read Cycle Timing

Write Cycle Timing. Figure 10 shows write
cycle timing for loading control, time constant
or vector words.]

The CTC does not have a write signal input,
5o it generates one internally when the read
(RD) input is High during T). During T
IORQ and CE inputs are Low. M1 must be
High to distinguish a write cycle from an inter-
rupt acknowledge. A 2-bit binary code at
inputs CS; and CSg selects the channel to be
addressed, and the word being written is
placed on the Z-80 data bus. The data word is

DATA D .G

Figure 10. Write Cycle Timing

latched into the appropriate register with the
rising edge of clock cycle Ts.

e
NTERNAL STARY THAING
b} e ——————————

Figure 11. Timer Mode Timing

Timer Operation. In the timer mode, a
CLK/TRG pulse input starts the timer (Figure
11) on the second succeeding rising edge of
CLK. The trigger pulse is asynchronous, and

it

must have a minimum width. A minimum lead

time (210 ns) is required between the active

edge of the CLK/TRG and the next rising edge

of CLK to enable the prescaler on the follow-
ing clock edge. If the CLK/TRG edge occurs
closer than this, the initiation of the timer

function is delayed one clock cycle. This cor-

responds to the startup timing discussed in the

programming section. The timer can also be

started automatically if so programmed by the

channel control word.

Figure 12. Counter Mode Timing

Counter Operation. In the counter mode, the

CLK/TRG pulse input decrements the down-
counter. The trigger is asynchronous, but the
count is synchronized with CLK. For the

decrement to occur on the next rising edga of

CLK, the trigger edge must precede CLK by
minimum lead time as shown in Figure 12. If
the lead time is less than specified, the count
is delayed by one clock cycle. The trigger
pulse must have a minimum width, and the

a

trigger period must be at least twice the clock

period.

The ZC/TO output occurs immediately after

zero count, and follows the rising CLK edge.

204:-0162. 0163, 0164, 0165

87

Interrupt
Operation

+SV

NGNEST PRICRITY

The Z2-80 CTC follows the Z-80 sys em inter-
rupt protocol for nested priority interrupts and
return from interrupt, wherein the interrupt
priority of a peripheral is determined by its
location in a daisy chain. Two lines—IE] and
1IEC—in the CTC connect it to the system daisy
chain. The device closest to the +5 V supply
has the highest priority (Figure 13). For addi-
tional information on the Z-80 interrupt struc-
ture, refer to the Z-80 CPU Product Specifica-
tion and the Z-80 CPU Technical Manual.

LOWEST PRIORITY
DEVICE DEVICE

DEVICE 0 DEVICE 1 DEVICE 2 DEVICE 3

Figure 13. Daisy-Chain Interrupt Priorities

Within the Z-80 CTC, interrupt priority is
predetermined by channel number: Channel 0
has the highest priority, and Channel 3 the
lowest. If a device or channel is being serviced
with an interrupt routine, it cannot be inter-
rupted by a device or channel with lower
priority until service is complete. Higher
priority devices or channels may interrupt the
servicing of lower priority devices or channels.

A 7-80 CTC channel may be programmed to
request an interrupt every time its down-
counter reaches zero. Note that the CPU must
be programmed for interrupt mode 2. Some
time after the interrupt request, the CPU sends
an interrupt acknowledge. The CTC interrupt
control logic determines the highest priority
channel that is requesting an interrupt. Then,
if the CTC IEl input is High (indicating that it
has priority within the system daisy chain) it
places an 8-bit interrupt vector on the system
data bus. The high-order five bits of this vector

L]
D A W
BATA J‘ VECTOR ‘ﬁ

Figure i4. interrupi Acknowledge Timing

ming process; the next two bits are provided
by the CTC interrupt control logic as a binary
code that identifies the highest priority chan-
nel requesting an interrupt; the low-order bit
is always zero.

Interrupt Acknowledge Timing. Figure 14
shows interrupt acknowledge timing. After an
interrupt request, the Z-80 CPU sends an inter-
rupt acknowledge (M1 and IORQ). All chan-
nels are inhibited from changing their inter-
rupt request status when M1 is active—about
two clock cycles earlier than IORQ. RD is
High to distinguish this cycle from an instruc-
tion fetch.

The CTC interrupt logic determines the
highest priority channel requesting an inter-
rupt. If the CTC interrupt enable input (IE) is
High, the highest priority interrupting channel
within the CTC places its interrupt vector on
the data bus when IORQ goes Low. Two wait
states (Twpa) are automatically inserted at this
time to allow the daisy chain to stabilize. Addi-
tional wait states may be added.

Return from Interrupt Timing. At the end of
an interrupt service routine the RETI (Return
From Interrupt) instruction initializes the daisy
chain enable lines for proper control of nested
priority interrupt handling. The CTC decodes
the 2-byte RETI code internally and determines
whether it is intended for a channel being ser-
viced. Figure 15 shows RETI timing.

If several Z-80 peripherals are in the daisy
chain, IEI settles active (High) on the chip
currently being serviced when the opcode
ED)¢ is decoded. Ii the following opcode is
4Djg, the peripheral being serviced is released
and its JEO becomes active. Additional wait
states are allowed.

Figure 15. Return From Interrupt Timing

2041-016€. 0167 0168

Z8470 Z80° DART
Dual Asynchronous
Receiver/Transmitter

74

Zilog

Product
Specification

June 1982
Features ® Two independent full-duplex channels with B Break generation and detection as well as
separate modem controls. Modem status can parity-, overrun- and framing-error detec-
be monitored. tion are available.

B In x1 clock mode, data rates are 0 to 500K B Interrupt features include a programmable
bits/second with a 2.5 MHz clock, or 0 to interrupt vector, a “'status affects vector”
800K bits/second with a 4.0 MHz clock. mode for fast interrupt processing, and the

B Receiver data registers are gquadruply buf- standard Z-80 peripheral daisy-chain inter-
fered; the transmitter is doubly buffered. rupt structure that provides automatic inter-

! rupt vectoring with no external logic.

B Programmable options include 1, 1% or 2 P) _g . o9
stop bits; even, odd or no parity; and x1, [| On-ghxp logic for ring indication and
x16, x32 and x64 clock modes. carrier-detect status.

Description The Z-80 DART (Dual-Channel Asynchro- modem controls are not needed, these lines
nous Receiver/Transmitter) is a dual-channel can be used for general-purpose I/O.
multi-function peripheral component that Zilog also offers the Z-80 SI1O, a more ver-
satisfies a wide variety of asynchronous serial satile device that provides synchronous
data communications requirements in micro- (Bisync, HDLC and SDLC) as well as asyn-
computer systems. The Z-80 DART is used as a chronous operation.
serial-to-parallel, parallel-to-serial converter/ The Z-80 DART is fabricated with n-channel
controller in asynchronous applications. In silicon-gate depletion-load technology, and is
addition, the device also provides modem con- packaged in a 40-pin plastic or ceramic DIP.
trols for both channels. In applications where

(Oy [MDA \
0y -t po—— KA
Dy peeeeet TEOA
Py { o le—— TiTA 0y w[]o,
-2 PP — —— o = o,
[Pc«,a L) nLjo.
Oy] o KA oy L4 & Y
\ O @] SN 1 Y wr 20 [] iSRS
feee TSR m-oou‘ L] wi]TE
- o uJei
TE ot ftr—— BEBE n nijob
REEET et Z-8C DART Voo R[] K5
M - WRETA »n []ono
CONTROL | iORG cme—tnf | S 3 K 30 [} wmove
o S— "E"E" » :‘
W » 0®
& Kt
O e | :z : Te08
. }cn-- o Ml
— oA | wi) e
Pr— fe—o wopEw a n[om
frrM :] cr: conTROL 5 a e
CONTROL | 120 =t | S o n [RESEY
+EV GND CLK
Figure 1. Z80 DART Pin Functions Figure 2. Pin Assignments
2044-002, 007 109

Pin
Description

B/A. Channel A Or B Select (input, High
selects Channel B). This input defines which
channel is accessed during a data transfer be-
tweeri the CPU and the Z-80 DART.

C/D. Control Or Data Select (input, High
selects Control). This input specifies the type
of information (control or data) transferred on
the data bus between the CPU and the Z-80
DART.

CE. Chip Enable (input, active Low). A Low at
this input enables the Z-80 DART to accept
command or data input from the CPU during a
write cycle, or to transmit data to the CPU
during a read cycle.

CLK. System Clock (input). The Z-80 DART
uses the standard Z-80 single-phase system
clock to synchronize internal signals.

CTSA, CTSB. Clear To Send (inputs, active

Low). When programmed as Auto Enables, a
Low on these inputs enables the respective
transmitter. If not programmed as Auto
Enables, these inputs may be programmed as
general-purpose inputs. Both inputs are
Schmitt-trigger buffered to accommodate slow-
risetime signals.

Dg-Dy. System Data Bus (bidirectional,
3-state) transfers data and commands between
the CPU and the Z-80 DART.

DCDA. DCDB. Doata Carrier Detect (inputs,
active Low). These pins function as receiver
enables if the Z-80 DART is programmed for
Auto Enables; otherwise they may be used as
general-purpose input pins. Both pins are
Schmitt-trigger buffered.

DTRA . DTRB. Data Terminal Ready (outputs,

active Low). These outputs follow the state pro-
grammed into the DTR bit. They can also be
programmed as general-purpose outputs.

IEl. Interrupt Enable In (input, active High) is
used with IEO to form a priority daisy chain
when there is more than one interrupt-driven
device. A High on this line indicates that no
other device of higher priority is being ser-
viced by a CPU interrupt service routine.

IEO. Interrupt Enable Qut (output, active
High). IEQ is High only if IE] is High and the
CPU is not servicing an interrupt from this
2-80 DART. Thus, this signal blocks lower
priority devices from interrupting while a
higher priority device is being serviced by its
CPU interrupt service routine.

INT. Interrupt Request (output, open drain,
active Low). When the Z-80 DART is re-
questing an interrupt, it pulls INT Low.

ML Machine Cycle One (input from Z-80
CPU, active Low). When M1 and RD are both
active, the Z-80 CPU is fetching an instruction
from memory; when MI is active while IORQ is
active, the Z-80 DART accepts M1 and JORQ

as an interrupt acknowledge if the Z-30 DART
is the highest priority device that has inter-
rupted the Z-80 CPU.

IORQ. /nput/Output Request {input from CPU,
active Low). IORQ is used in conjunction with
B/&, C/D, CE and RD to transfer commands
and data between the CPU and the Z-80
DART. When CE, RD and IORQ are all
active, the channel selected by B/A transfers
data to the CPU (a read operation). When CE
and IORQ are active, but RD is inactive, the
channel selected by B/A is written to by the
CPU with either data or control information as
specitied by C/D.

RxCA, RxCB. Receiver Clocks (inputs).
Receive data is sampled on the rising edge of
RxC. The Receive Clocks may be 1, 16, 32 or
64 times the data rate.

RD. Reod Cycle Status. (input from CPU, ac-
tive Low). If RD is active, a memory or I/0O
read operation is in progress.

RxDA, RxDB. Receive Daia (inputs, active
High).

RESET. Reset (input, active Low). Disables
both receivers and transmitters, forces TxDA
and TxDB marking, forces the modem controls
High and disables all interrupts.

RIX. RIB. Ring Indicator (inputs, Active
Low). These inputs are similar to CTS and
DCD. The 2-80 DART detects both logic level
transitions and interrupts the CPU. When not
used in switched-line applications, these inputs
can be used as general-purpose inputs.

RTSK. RTSB. Request to Send (outputs, .
active Low). When the RTS bit is set, the RTS
output goes Low. When the RTS bit is reset,
the output goes High after the transmitter
empties.

TxCA. TxCB. Transmitter Clocks (inputs). TxD
changes on the falling edge of TxC. The
Transmitter Clocks may be 1, 16, 32 or 64
times the data rate; however, the clock
multiplier for the transmitter and the receiver
must be the same. The Transmit Clock inputs
are Schmitt-trigger buffered. Both the Receiver
and Transmitter Clocks may be driven by the
Z-80 CTC Counter Time Circuit for program-
mable baud rate generation.

TxDA. TxDB. Tronsmit Data (outputs, active
High).

W/RDYK. W/RDYB. Wait/Ready (outputs,
open drain when programmed for Wait func-
tion, driven High and Low when programmed
for Ready function). These dual-purpose out-
puts may be programmed as Ready lines for a
DMA controller or as Wait lines that syn-
chronize the CPU to the Z-80 DART data rate.
The reset state is open drain.

110

Functional
Description

The functional capabilities of the Z-80 DART
can be described from two different points of
view: as a data communications device, it
transmits and receives serial data, and meets
the requirements of asynchronous data com-
munications protocols; as a Z-80 family
peripheral, it interacts with the Z-80 CPU and
other Z-80 peripheral circuits, and shares the
data, address and control buses, as well as
being a part of the Z-80 interrupt structure. As
a peripheral to other microprocessors, the Z-80
DART offers valuable features such as non-
vectored interrupts, polling and simple hand-
shake capability.

The first part of the following functional
description introduces Z-80 DART data com-
munications capabilities; the second part
describes the interaction between the CPU and
the Z-80 DART.

The Z-80 DART offers RS-232 serial com-
munications support by providing device
signals for external modem control. In addition
to dual-channel Request To Send, Clear To
Send, and Data Carrier Detect ports, the Z-80
DART also features a dual channel Ring In-
dicator (RIA, RIB) input to facilitate
Jocal/remote or station-to-station communica-
tion capability.

Communications Capabilities. The Z-80
DART provides two independent full-duplex
channels for use as an asynchronous
receiver/transmitter. The following is a short
description of receiver/transmitter capabilities.
For more details, refer to the Asynchronous
Mode section of the Z-80 SIO Technical
Manual. The Z-80 DART offers transmission
and reception of five to eight bits per
character, plus optional even or odd parity.
The transmitter can supply one, one and a half
or two stop bits per character and can provide
a break output at any time. The receiver break
detection logic interrupts the CPU both at the
start and end of a received break. Reception is
protected from spikes by a transient spike re-
jection mechanism that checks the signal one-
half a bit time after a Low level is detected on
the Receive Daia input. If the Low does not
persist—as in the case of a transient—the
character assembly process is not started.

Framing errors and overrun errors are
detected and buffered together with the
character on which they occurred. Vectored
interrupts allow fast servicing of interrupting
conditions using dedicated routines. Further-
more, a built-in checking process avoids inter-
preting a framing error as a new start bit: a
framing error results in the addition of one-half
a bit time to the point at which the search for
the next start bit is begun.

The Z-80 DART does not require symmetric
Transmit and Receive Clock signals—a feature
that allows it to be used with a Z-80 CTC or
any other clock source. The transmitier and
receiver can handle data at a rate of 1, 1/16,
1/32 or 1/64 of the clock rate supplied to the
Receive and Transmit Clock inputs. When
using Channel B, the bit rates for transmit and
receive operations must be the same because
RxC and TxC are bonded together (RxTxCB).

1/0 Interiace Capabilities. The Z-80 DART
offers the choice of Polling, Interrupt (vectored
or non-vectored) and Block Transfer modes to
transfer data, status and control information to

and from the CPU. The Block Transfer mode
can be implemented under CPU or DMA
control.

-

SENAL DATA
CHANNELA e
[e— crammer cLocks
A
INTERNAL CHANNEL A
CONTROL READWRITE
Loaic REGISTERS
pt
CHANNELA Lo WODEMOR
odaceere | orvenconaoLs
oa STATUS —
TA] et Tk
cru
o < WTERNAL BUS
contROL 7 f—
—— cmers 2 wonen
oSBCRETE | |—e omhEn conTaOLS
STATUS —
WTERRUPT *——] WTERRUPT CHANNEL B
CONTROL ——af CONTROL READWRITE
UNES <—] LOGIC AEQISTERS
== sowaLpata
CHANNELS [CHANNEL CLOCK

1

+BVGND CLK

Figure 3. Block Diagram

2044-001

111

i4vda 08z

Functional
Description
(Continued)

POLLING. There are no interrupts in the
Polled mode. Status registers RRO and RR] are
updated at appropriate times for each function
being performed. All the interrupt modes of
the Z-80 DART must be disabled to operate the
device in a polled environment.

While in its Polling sequence, the CPU
examines the status contained in RRO for each
channel; the RRO status bits serve as an
acknowledge to the Poll inquiry. The two RRO

status bits Dy and D, indicate that a data
transfer is needed. The status also indicates
Error or other special status conditions (see
"Z-80 DART Progrumming”). The Special
Receive Condition status contained in RR1
does not have to be read in a Polling sequence
because the status bits in RR1 are accom-
panied by a Receive Character Available
status in RRO.

INTERRUPTS. The Z-80 DART offers an
elaborate interrupt scheme that provides fast
interrupt response in real-time applications. As
a member of the Z-80 family, the Z-80 DART
can be daisy-chained along with other Z-80
peripherals for peripheral interrupt-priority
resolution. In addition, the internal interrupts
of the Z-80 DART are nested to prioritize the
various interrupts generated by Channels A
and B. Channel B registers WR2 and RR2 con-
tain the interrupt vector that points to an inter-
rupt service routine in the memory. To
eliminate the necessity of writing a status
analysis routine, the Z-80 DART can modify the
interrupt vector in RR2 so it points directly to
one of eight interrupt service routines. This is
done under program control by setting a pro-
gram bit (WR1, D,) in Channel B called
“Status Affects Vector.” When this bit is set,
the interrupt vector in RR2 is modified accord-
ing to the assigned priority of the various
interrupting conditions.

Transmit interrupts, Receive interrupts and
External/Status interrupts are the main sources
of interrupts. Each interrupt source is enabled
under program control with Channel A having
a higher priority than Channel B, and with
Receiver, Transmit and External/Status inter-
rupts prioritized in that order within each
channel. When the Transmit interrupt is
enabled, the CPU is interrupted by the
transmit butfer becoming empty. (This implies
that the transmitter must have had a data
character written into it so it can become

empty.) When enabled, the receiver can inter-
rupt the CPU in one of three ways:

@ Interrupt on the first received character
8 Interrupt on all received characters
® Interrupt on a Special Receive condition

Interrupt On First Character is typically
used with the Block Transfer mode. Interrupt
On All Receive Characters can optionally
modify the interrupt vector in the event of
a parity error. The Special Receive Condition
interrupt can occur on a character basis. The
Special Receive condition can cause an inter-
rupt only if the Interrupt On First Receive
Character or Interrupt On All Receive Char-
acters mode is selected. In Interrupt On First
Receive Character, an interrupt can occur
from Special Receive conditions (except Parity
Error) after the first receive character interrupt
(example: Receive Overrun interrupt).

The main function of the External/Status
interrupt is to monitor the signal transitions of
the CTS, DCD and RI pins; however, an
External/Status interrupt is also caused by the
detection of a Break sequence in the data
stream. The interrupt caused by the Break
sequence has a special feature that allows the
Z-80 DART to interrupt when the Break
sequence is detected or terminated. This
feature facilitates the proper termination of the
current message, correct initialization of the
next message, and the accurate timing of the
Break condition.

CPU/DMA BLOCK TRANSFER. The Z-80.
DART provides a Block Transfer mode to
accommodate CPU block transfer functions
and DMA block transfers (Z-80 DMA or other
designs). The Block Transfer mode uses the

Y output in conjunction with the
Wait/Ready bits of Write Register 1. The

Y output can be defined under software
control as a Wait line in the CPU Block

Transfer mode or as a Ready line in the DMA
Block Transfer mode.

To a DMA controller, the Z-80 DART Ready
output indicates that the Z-80 DART is ready to
transfer data to or from memory. To the CPU,
the Wait output indicates that the 2.80 DART is
not ready to transfer data, thereby requesting
the CPU to extend the I/O cycle.

112

Internal The device internal structure includes a Z-80

Architecture CPU interface, internal control and interrupt
logic, and two full-duplex channels. Each
channel contains read and write regisiers, and
discrete control and status logic that provides
the interface to modems or other external
devices.

The read and write register group includes
five 8-bit control registers and two status
registers. The interrupt vector is written into
an additional 8-bit register (Write Register 2)
in Channel B that may be read through Read
Register 2 in Channel B. The registers for both
channels are designated as follows:

NANNEes are Qesl

WRO-WR5 — Write Registers 0 through 5
RRO-RR2 — Read Registers 0 through 2

The bit assignment and functional grouping
of each register is configured to simplify and

organize the programming process.

The logic for both channels provides for-
mats, bit synchronization and validation for
data transferred to and from the channel inter-
face. The modem control inputs Clear to Send
(CTS), Data Carrier Detect (DCD) and Ring
Indicator (RI) are monitored by the control
logic under program control. All the modem
control signals are general purpose in nature
and can be used for functions other than
modem control.

For automatic interrupt vectoring, the inter-
rupt contro} logic determines which channel
and which device within the channe! has the

highest priority. Priority is fixed with Channel
A assigned a higher priority than Channel B;
Receive, Transmit and External/Status inter-
rupts are prioritized in that order within each
channel.

Data Path. The transmit and receive data path
illustrated for Channel A in Figure 4 is iden-
tical for both channels. The receiver has three
8-bit buffer registers in a FIFO arrangement in
addition to the 8-bit receive shift register. This
scheme creates additional time for the CPU to

service a Receive Character Available inter-
rupt in a high-speed data transfer.

The transmitter has an B-bit transmit data
register that is loaded from the internal data
bus, and a 9-bit transmit shift register that is
loaded from the transmit data register.

]

INTERNAL DATA BUS

RECEIWVE RECEIVE
] e
DATA ERROR
PN B SR
FiFO PIFO
RECEIVE . START TRANSMIT
#xCA —»{ CLOCK SHIFT REGISTER | T 2.BIT DELAY bt TXDA
L0GIC
RECEWVE RECEIVE
e TRANSHIT
—] 38MTs |e-d SHIFT AEGISTER ERROR 7568
DELAY ABTs) Loaic CLOCK LOGIC

Figure 4. Data Path

2044-003

113

44YQa 082

Read.
Write and
Interrupt
Timing

Read Cycle. The timing signals generated by
a Z-80 CPU input instruction to read a Data or

Status byte from the Z-80 DART are illustrated
in Figure 5a.

Write Cycle. Figure 5b illustrates the timing
and data signals generated by a Z-80 CPU out-

pt t instruction to write a Data or Control byte
into the Z-80 DART.

Interrupt Acknowledge Cycle. After receiv-
ing an Interrupt Request signal (INT pulled
Low), the Z-80 CPU sends an [nterrupt
Acknowledge signal (MI and {ORQ both Low).
The daisy-chained interrupt circuits determine
the highest priority interrupt requestor. The IEI
of the highest priority peripheral is terminated
High. For any peripheral that has no interrupt
pending or under service, IEO =1EI. Any
peripheral that does have an interrupt pending
or under service forces its IEO Low.

To insure stable conditions in the daisy
chain, all interrupt status signals are prevented
from changing while M1 is Low. When IORQ is
Low, the highest priority interrupt requestor
(the one with IEI High) places its interrupt vec-
tor on the data bus and sets its internal
interrupt-under-service latch.

Refer to the Z-80 SIO Technical Manual for
additional details on the interrupt daisy chain
and interrupt nesting.

Return From Interrupt Cycle. Normally, the
2-80 CPU issues an RETI (Return From Inter-
rupt) instruction at the end of an interrupt ser-
vice routine. RETI is a 2-byte opcode (ED-4D)
that resets the interrupt-under-service latch to
terminate the interrupt that has just been
processed.

1, T, Tw T 13
cLOCK

&E X/ cranneLavpress X0

IORG

[-]

[]
DATA { ot)

T T2 Tw Tw T3 Te

e LML ML
&\ S

v /T

[
w D7 N
(ere)—

Figure Sc. Interrupt Acknowledge Cycle

When used with other CPUs, the Z-80 DART
allows the user to return from the interrupt
cycle with a special command called “Return
From Interrupt” in Write Register O of Channel
A. This command is interpreted by the Z-80
DART in exactly the same way it would inter-
pret an RET] command on the data bus.

CLOCK

cE ¥/ crawneLaooaess X0

1]

DATA X w L

Figure 5b. Write Cycle

AR

;

|
¥
iﬁ—_/ \/ :
i
ooty ()
I
=== T
W et i
|

mo 'L/

Figure 54. Return from Interrupt Cycle

114

2044-008, 009, 010, 01!

Z-80 DART

To program the Z-80 DART, the system pro-

Programming gram first issues a series of commands that

initialize the basic mode and then other com-
mnds that qualify conditions within the select-
ed mode. For example, the character length,
clock rate, number of stop bits, even or odd
parity are first set, then the Interrupt mode
and, finally, receiver or transmitter enable.

Both channels contain command registers
that must be programmed via the system pro-
gram prior to operation. The Channel Select
input (B/A) an! the Control/Data input (C/D)
are the command structure addressing con-
trols, and are normally controlled by the CPU
address bus.

Write Registers. The 2-80 DART contains six
registers (WRO-WRS) in each channel that are
programmed separately by the system program
to configure the functional personality of the
channels (Figure 4). With the exception of
WRO0, programming the write registers requires
two bytes. The first byte contains three bits
(Dy-Dy) that point to the selected register; the
second byte is the actua) control word that is
written into the register to configure the Z-80
DART.

WRO is a special case in that all the basic
commands (CMDy-CMD,) can be accessed
with a single byte. Reset (internal or external)
initializes the pointer bits Dy-D, to point to
WRO. This means that a register cannot be

pointed to in the same operation as a channel
reset.

Write Register Functions

WRO Register pointers, initialization commands for

the various modes, etc. .
WR1 Transmit/Receive interrupt and data transfer
mode definition.
WR2
WR3 Receive parameters and control

Interrupt vector (Channel B only}

/R4 Transmit/Receive miscellaneous parameters
and modes

WR5 Transmit parameters and controls

Read Registers. The Z-80 DART contains
three registers (RR0O-RR2) that can be read to
obtain the status information for each channel
(except for RR2, which applies to Channel B
only). The status information includes error
conditions, interrupt vector and standard
communications-interface signals.

To read the contents of a selected read
register other than RRO, the system program
must first write the pointer byte to WRO in
exactly the same way as a write register opera-
tion. Then, by executing an input instruction,
the contents of the addressed read register can
be read by the CPU.

The status bits of RRO and RR1 are carefully
grouped to simplify status monitoring. For
example, when the interrupt vector indicates
that a Special Receive Condition interrupt has
occurred, all the appropriate error bits can be
read from a single register (RR1).

Read Register Functions

RRO Transmit/Receive buffer status, interrupt
status and external status

RRl Special Receive Condition status
RR2 Modified interrupt vector (Channel B only)

115

1EYda 082

Z-80 DART
Read and Write

R.gi“.n I_L Rx CHARACTER AVAILASLE
INT PENDING (CH. A ONLY)
Tx BUFFER EMPTY
ocp
L]

USED WITH “EXTERNAL/
cTs STATUS INTERRUPT"
wOT usED | MODE
BREAK

READ REGISTER 0

READ REGISTER 2

READ REGISTER 1*

SRDDDAD

T [L b=

PARITY ERROR vaer
LY ERROR vae .
ERROR ve [VECTOR
NOT USED vs
*Used wit- Specia: Receve Condion Moce ve
L 24

“*Vanadte I' “Siatus Aflecis
vecior is Programmed

WRITE REGISTER 0 WRITE REGISTER 1

_—
—:o 0 © REGISTERD L oxr wr nsae
O 0 1 REGISTER1 Ta INT ENABLE
0 1 0 REGISTER? STATUS AFFECTS VECTOR
0 1 1 REGISTER3 (CH. B ONLY)
1 0 0 REGISTER4
1 0 1 PREGISTERS 0 0 RxINTDISABLE
D 1 RxINTON FIRST CHARACTER Oh ON
1 0 NTON ALL Rx CHARACTERS (PARITY | gpECIAL
AFFECTS VECTOR) RECEIVE
g : g :g#tucsggf 1 1 ONTON ALL Rx CHARACTERS (PARITY | CONDITION
DOES NOT AFFECT VECTOR)
0 1 8 WESET EXT/STATUS INTERRUPTS
© 1 1 CHANNEL MESET WAIT/READY ON R/T
1 0 0 ENABLEINT ON NEXT Ax CHARACTER |
1 0 1 RESET TxINT PENDING WAITEADY FUNCTION
11 0 RESET ENABLE
1T 1 1 RETURN FROM INT (CH-A ONLY)
e NOT USED
WRITE REGISTER 2 (CHARNEL B ONLY) WRITE REGISTER 3
CIICIICN N CY
vo I L s emance
NOT USED (MUST BE PROGRANMED 0)

AUTO ENABLES

] Rx 6
BITS/CHARACTER

= I

vi
v2
o

V3 \ TERRUPT 0 1 m7

ve [VECTOR 10 Ru8BITSICHARACTER
v 11 Rx3BITBICHARACTER
ve

v

'WRITE REGISTER 4 'WRITE REGISTER §
| SRR

' I L PARITY ENABLE L NOT USED
PARITY EVEWDTD
H Vb %OT USED
HE - L___ N
10 1y STOP BITSICHARACTER Tx ENABLE
1 1 28TOP BITSICHARACTER ssnn BREAK
NOT USED © 0 TuEBTS(OR LESSYCHARACTER
0 1 Ta?BITSICHARACT
X1 CLOCK MODE 10 TresmSCHARACTER
11 Ta$BITSCHARACTER

X32 CLOCK MODE

o ¢
o 1 X18 CLOCK MODE
1 [
1 1 X84 CLOCK MODE

OTR

116

2044-004, 005

N

KLNISIOWND

+5Y T
DRYRBLY 7v1 | St& swTy 7
]RDOUT) LYY +SVY '8
12 AR\Y
13 BRECL 2 P Is PWREAL
Qcryc 12 3 W g? 87K D R ¥
RPLY N - a1 ST LS 74
8c BPoxXh 5 9 8
1 ’ 1@ DRVRPLY* o= 1%/\9 25 22”‘
BUF POX . 9,
22¢ 27hE LEVZRES % |}
9 STAT % s El E3 oromorx
7B MoTAT 13 8 3p- Y2 Qe O—0
DINORDOUT 2b\® EBOIO% emuzcika 1 L3393
S3971, E * PARECLR™ 1 4y 4 E2
o 13 oraie i, 1 b XCEP Qs - MoTFC2
12 \2 8 ACK % opl2 PROMENA % MoTA \6 .8 l& 1D
NaTAR i3 1% YECTL [7-T MOTA 20 8:1 16C en W2
Motaz 2 4 oY Toc s 2 MOTA OE 2.5 Ne [2
s ©
M’N—_‘—: F138 L#& INTACK * CONDAZ3 | noTAa @7 10
+5Y o] 238 ho ZBIACK % _CONDA22 S MOTA 21 i
CONDAS % q 1 BEYNTCLR % 5 MC 22¢ 4 22A _Mora 19 1
| 7 LEVTCLR % —_‘@3 3la 7 56 SEGREGENA MOTA I8 2 liec
1 3 3
2bé PGREGENAYX MoTA T 3 2L2‘¢ 5
' BOTTOMS PRLLS 123 13- SECREGENAR Hota @6 'z :I 193¢
' @ 2la abt_wc 3{%:5 PGREGENA MoTa @S 13 2 —= BoTTons
BUSPARITY 3 ' LA MOTA (S 419y)5
PWRFAIL ‘3)1.5 s lt MOTAI12 5
PARITY ERR 2 j2¢o MOTAZA . : NoTA @3
BBLTLANE 12| 28c DoTAZ = S " MotA 13
2 i® ll_; 8 MOTA 1%
2 3 2t MoTA ¢4
o .‘ VPR 4 Moveca MoTa ||
1 18 25D *3V 26 3, 12D MOTA 1@
® 9 —ONBRDCY(1D, 13l aR 4
IOMHECLR % 9 LSiTY 27 ol g}, 8 } INTACK % MoTa 9
58 —EBODTACK } . L2 lacackx 26 uHe 2c
i AF- - 7 PROMDTY, “7@5 18] Dracks rorrel 28 e
* o - a2 _REGDIK 9] 280¢ MNOTEC D 6 17¢C
ERNESYSY -Busnyx 8] Mée8@ep "ora23d S +5Y
P 18 RESET* 9 €
58 IOMUZCLY 5 MOTRW % MOTA22 4 |S32p
- == — " 17 NOTHLT % ac oy a .
. , o N % itq., ERRA 11 L2 130y, MOTWR® . 12
8P O BIRQ7* I _ s\ s e MOTUDS* &€ 72 am R P ol2 HALTLINE
] 2l ho o BEVNY 2 ¢ NOTLDS: 8B MOTAS Do < 47K BUFHLINE
| v % 157
PPIY= 1 N L) Can I Ny ¥ 23] 1PLYL* 41, o | 1578
9442 J5p ° apll 1343 ;v BT 28 | IPLI* - v c
ARl > a2 13 aplt—-»=2aq p2 22 IPLO* 8A LEV7RES*]!D
2 30 o =L3 1} 5D M 59 .
t q_42./s5n QP /—-an"“———a5 g 1DALRX +sYy
AL‘ID4 + 5¢C 192de MOTA2
° sy d rnglaﬁ_‘tl 17
5B LSVIs . is nOTAIS 46 58 MOTDIS 18 BUFDIS s s AV Lo
.5V ’svz > R notTALT__ 45 ss momm: 3 7 Burpiy) s Am- o ®
SEREL (nowme asl |56 MoTpia] 14 16 Buo Y |7 6 A3 S BEWWIL ., o
€63 MOTAXRX r’n—m A 2 cesRA3 sz motore A\ 5 F245 15__BuFD12 E i LS373 e A" BRI - zg 1 es ™
€ 3 Rl g I®Kka (novawa s2f . |58 MOTOW] 16 5 BuFpn] 19 AW n
BAl [>-BDCOKM Y _MOoTA13 41} s 59 MOID@ < 9l I7F BUFD1® 1I5H (2 A'® BEVNTCLR¥)2
dar P _NoTA12 40 69 MOTDO 8 2_purpos J i 2 A°
3 I HFD _MoTan 39 61 “OTD@B: 7 gurpos 1 | s J®
NNOTRID 38
= Z mog 8 | v i By QS BEVNTINTX
NOTAP 37| 19 In
LS17
N NoTAe8 36 2 MoTDQY 7 Burpo? | 4 AT OMWE CLrk O 5;
98 o1A 63 MOTDO6 : BUEDPG q 18 gl A4S I —
o GR BT SOP \NMOTAGG 3] MoTpos] & el murpes § 17 o S
N 88 \\13 Je MOTHLT * N_MOTADS 33 MOTDG4 < 5 au;ne&\ 13 2] A% :
1 8% hd o 3 f
O 2 MOTDR@®A 21 F245 [i18] BUED I8} LS373 (sS1 A
| o Nseay iotneay 4} Fu3 et s b1 INTEGRATED _SOLUTIONS,INC.
3|81 o- * N_MoTA®2 30 4 Morpal " 3 ! ¥ buFméL\ 3 At [SCALE APPROVED BY: DWN:
o1nal 29 5 MoTneg] 8 Butbcb@\ 8 /* IDATE REVISED:
g L | N -
aT2 > BNITL m _MQTDxx _Burpxx_ [IS-68K -CPU
MOTWRHK. ADRY [Ty
} 2 |DWI
o 520001 C [RYS. 1 /7

RRPLY L
BUED
E@— e XA XBUFDIWS J&- &
3
|OMHZ CLX % INTACK % 5 SB B +5V N > XBUFDIA J&.&
2 279 N S XBUFDVL Ja-nl
HENEBYS Busta 2 A Rig18en XxBUFDW L -7
vou 2% INTAC K, 2 2 AN2 0 b
el 1o ¥0 . s c , 3 N 5 |22 b BBRKO xS XBUFDI® Jd -1
s \8 13 12 n Q2 D Q ° Q D Q n_2
oFeBbREQ 12|, ol 9 Oup @ ® e 4B A% 38 N SXBUFDEI 3 2
9 s\Th S\74 S\T4 Si74 S\74 R3 < 396 N > XBUFD®B8 JH_1
S74 . > > N — XDUFDST 3I%.1g
donwEchk N 6D o CLR g Civ [T ar {— (LR f ‘é‘ BUSTY <L ﬁx&qugé 311._:2:'1
i [! ! ‘ 7 : L2 N S ABUFD OS5 J4 24
NoTAS Wy ? not R*la@"— JB-3. 5810243 15 N~ XBUFDOY J4-24
_MOTW/R %3]
Nomccessx | oy L8 38 18,20.23,25.27. N~ xBUFD®3 J4-28
myeew O] o 3% a SRV DN 29,312 GND N —~ XBUFD®2 J4-16
rel 70 DRYCLR % MOTR/W % T@_@ N > X BUFDBI Jh.26
5 N S XBUFDPP In.7
. §é ADRTIME %
'3 8
> BOALS* BV2
2C {> BORWW % pul
14 15 1310 21 ¢ 7 — 4> BONL\RZ % BT2
> 8 > s0nLVL % BS2
S\ SiTh BUST3%
IBMHECLY L L L 5o —————— > ®Boaln* BR2
3¢ —{> BhALId Rk BP2
DRYCLR % T ————{> BOMBOx BNL
vaw ——> BOALoBy BRM2Z
BUFDxXx
L sl 1lis RDALAX
A\‘I_D_:‘élu 13 RSYNC : 1 's\ —
. " 1y ' :‘-'rs N 6 1% A
Awa[>ODIN% 12 @ RDWN HAVEBUS (L P 1 o i el i N Ht
8esy [, ot LY e Bhisloan |7 A
AEL O BDOVT * 1 3 ADouT GATEBUS vOou 13/ 2 A 3 12{ 4 16 A
2A 5 DRYRPLY 4!) 1 T 12| 4l i2f y LS24Yy
AFL BRPOLY % 4 < RRPLY HAVEBUS 1312 7 3 1 ViTThe il NT N
- 2o af2 DRV < o ": 5|0 e PNt 3/
7 2 l £ 2 fss 3 IGMHZCLK 3 >78 S B. w/ W e :\“ 2]
2 LEANTCLE O 2 1
:': S HAVEBUS E oo P &D RDouY 9.9 2/ s e'cﬁt 3 N 18
é
28 |e BERR¥ | T s D
' 15 13 2 n 1o 9 N 8 D ' ’ l s
[3 2 14 5, @ > q] @& Ls\3 BUSDTK : il

) 20 a o 2D 2° 20 2l o8 7L sl . -

S XTTY svin SVia SR . i 10 NI 5 A
iprMv 9 _ HAVEBYS 12 / 3 7 e
CLK% LR LR ADRTME - 13| TC 7 1 13 N 3

LR CLR 6 A L/ 5
v 4 Y DRV DATA .8 é 5] ges\ e N & i6__A
- I 25 SELECTADR y) st/ 2| 13n 3 hid N 7/
vou 1 e e AN\ 919 NG . ’3 , LS8y
o] 2
L 5 ! Levzciry 1 23R 3 13 215 8 ¢ 3Ne 14 A
P AS [+ — L‘l__\ BUSTL ‘;’% 5 : 279 lSI 2 E " o 2N 8 13 H 12_A
Puy ALl 1 9 \S ~-BusI2 4 " L_2% 1 114 86a\ K2 18 A
15 N\ 1 /—L
3 ‘5 Fols TS H] | ' L 6 2\u 9 /
PRY AL 2 16 '3 DRVCLR % P aes i 24T 3 Levzresx © e
Tmoran o] 228 [N _DRNciR* i9y 279/] RESETX | Jo8 HERE
Moraw 2 B ‘Lo 3 Au2
NnoT ™G 17 3 i PARINML A | ABDALGS] % L— (> 2DALga X BHL
Y1 % 4! AN ——{ BDALSS* BI2
MmotaAsg 8 b2 : PARINLO 5)se2 5 OF o CoBemik | S eorled s Br2
NoTAB B 3] 7 9E spz}P 2l QR2— n/c BEL
N 2 3 BOALGLE L[S BOALG7X% BLL
1] 19 PARITY ENA 4.5 3 SW3 -
ADRTIME % DAL XX Lts & BFY
, D —ORLXX Mux Rw 3lie oNBDCYC g §p& PARITY ERR BDALDI %
_Movaer s LJ;' 1N ‘
NOIADE 8 12/ CAS \ S INC
F -
fothes 21, oy [. 2 Ny SCALE: APPROVED BY - DWN:
_NOTA®S & e A3 DATE: REVISED:
2 ———
MNOTADD?. (AT 3 A 8 RPLYIN -
_MOTAG) 1l 2 A IS 68K CP
® RN
MOTILDSHk D) 7./ / , PWG
N - 52000l nom: 2/ 7

LAY TPy FEN7RES

a3 KN . 78 RADRIT ¢ =2 L
125 MNZCLK R® IN348b RADRIE Zl_s_;z@}___v\ :
2.59MHZECLK DRV DATA J
I l‘l‘ TTYLSMUZ lggFF {iq;’j_ DRV D IN
R N T
1>T5V 13 osls 2
o R 2 . . A
l“‘ -t < s - - : % DINORDOUT_9, g¢ o _
e 6[N IBMUECLK % 5222 |22¢45 DRVRPLY% 10 (N8 _u ol 3YNca
Vo / I 1371 L 2N3S04 £5a8d Saz= I D)
23 /25A A?.@M“Z 8 2 S\63 :q. lg@@ﬂ— Q2 —cq 'i M g ‘i Qa c.j Tt. o ; S174 |
0sC . . 224 cC2 w " N igMuzl L
. 50000300008 5P 3¢
z oo 2z - -
1 2olus, IOMRECLK O O
‘eki 1an <L SELECTADR
8 2 6BKILLK +5yY
SMHZCLK ishiz| af 5 WD L
PUTA2L g s RADR 21 ws[. nyp |5 11 2[J PR ls
PRYALD il 1] RADR 2D 13 7
R21 & 8 CR1 R23 PHEYA W 57 RADR 14 ROINC 3 L3714
IKQ ¢s INUIYR 22 o -5V —— -2 51 Behl e 12 8B
, . PHYAI1S 2 3 RADR1B 0| L5853 VEEB LR
e s WAVEBUS % 1]
+12 v _ R22 , na BT ne |z =
AD2 , BD2 555 5 e A N
€02 ,002 iomril ol 26a/8 Tk Tev
15V -T NI E 13
c3= .gos [swity &
—>_GND T ™F — < " :W ag
AC2, ATY , AMI, AT\ @m;-[-_ 1 _ - SWiT2 15 em
BC2 BY\, BMV BT\ L cu QORRCYCX S
’) » — IOMF == SWITY_ e ™Y
€z ,CTy, Cmy Cry 5V RAS 4|S00@ & 1ji2prs
o>t SV RAMNUX XX A e PHYANE 5 e| RADR\P? L
1
AA2, BA2, BUI , , PHYA b 2 3| RADR\G
cA2 ,DA2, BU\ RaDRIe 7| ™ |s 7h1| *— |3 euvawl MOTW/RR & | 8S% o] kwTET
. s 6N s s PHYAIS DRVEBBS?
15— 5\ s FRTAD : _DRY T3 N
4 /—2) N9 _“____ﬂ‘_T_A_‘i D:,-i
A Ty 'S AN s I PHYAI3 3, ADRTIME %
|2/—3 L5334 |2 3N 3liLs2uy 7 PHYA 12
0 18| 14 P9 2h18] 1efF |2 " MOTDXX PHY A XX
|d>‘ 17 16 ;\IG ; 18 J u} COMDYMEN 7
g 13 12 NI2 8] N s 6B 154 PHYA2) [3 PHYAAD
a PR 16 4 Pwyaze 5 BE s 28
RSYNC W 1] corpere 282 9 S\ DRYER3T
s d 6 2] L5245 [I7TA4 euyaig 4 é +8 Jg
AAS 2 @3_!) 5 v o 7 [HYAIE 2 1OPAGE
v 6\ 8‘—;—_ 1/ PHYAV\T njea
27D 8/"& — s Z 4 — |a 8 __9| Ls|2:s' WA PUYALG w2\l o 2E . 6F
A i o s EN) 34 _Pavais 21132 2] S31)
A 12 4\4 8 ;.\ N__ 6 o 4/ PuyAIy 13 PHYAL INVPG X
3 L 6 '
1'% 5314 3 Hisagy o vOH !
) 12 18 2 4 GATEPG * of ! MOTWR % i
s Tal 13F [, 203l W' 7 3 D
AR s N N 2) > - 15
2 L1 ¢ 6 FREERE—N 2 2 _v 8 paYmy 2
) E_ﬁ) W ' 1moTAXX ' N3 178 7T PwYAL2 [— BUST3 *
ROALRX / A N4 15245 lié PGACCESS
REFCYC % REFCYC ,:_i 15 PGWRTIEN
Tl - 2l e
) : ! S8l leB 2z we
1315 G XBMURT g 2 LANT 2 1o g N 13 /e
13,17 S XBRMURE 3 B I b N 7 c 2 120 gl LS245 e
Ja.n XBRUXS 1wl 8249 |6 Shisl 15244 |6 1 12
13.23 — XBAVLY 9] " |n &N o 83 \ g| LS 393 J
1 153
13-19 XBMVUK3 a3) 3N s \s 4 INT GRAT
31 Ssmues o 3 b : 0 : EGRATED SOLUTIONS, INC.
13-9 < RBRUNL 1 8 188 8 9 SCALE APPROVED BY: [DWN:
1313 < XBMUYD 1o _5___1;:_61___4 3 ST DATE: REVISED:
.z T e l IS-68K CPU

520000 . |c Q& /7

QORRLYC % 12 ==X

\! RAD %
22D : 3|5P8
—_—
noToo wlo Q| :,/i 200 RAS o se E l > xBRAS X 3.7
notpe8 V3., Qz / Lo2khYy cas 3 > xeAS % 13-3
WMOTDBT 3l0s Q)2 MoTD B 7 REFCYC * 15| s28@ |3 > XBREF 313-5
MOTD@E 144, ‘-s‘“; < MUXALT % A 9 > x 8017 13-
MOTDOS 6lns * |
WMOTDa4 4 ipe as|Z " MOTDDS isi
WREXCEP* S
[X V3 1 MOTDO4 —
v e 1 > WRRA* 2 SF '8 > »BWRHW 13.3n
T L '3 RDEXCERX WRL % 4 ! > XBWRL 33-33
MOTFC 2 PARINRAY 81 s240 |12 > xBPINW I%-32
‘ [SECRES IR POREGENAX 12 ~n ERR NS © = O xBPINL X I5-3%
oIS dis ™\ 1 erIERPG % |
ul..S 2432
EYS EGREGENA%
lho Y9237 | o SEGREGENAM L7oN 3 GATESEG %
A 3y 2432
Slan 2
2 A by 3F PuyAVR
3 15 ?.Y 7
[3 3D
28 MOTR/W 2
T3 1y P NOTRI % Ls \ ! wWiDS
21D NOTIDS%* | 3 J a2
1YY
i ; V7
[PUY Al 5 T
MOTALS u) — S SEGREGENA 4|SP9 D ? &d 18R
200 Lsi75 2
MOTAVE s 1 2\A g iIs |3 224 22A
5 2 vars [o L=5 13K 188 G3Zig 8 <]9 |g‘u
MOTAV2 8] R T 5
PGACCESS
SEGREGENA® j [6 e " ") 3 I MOTRW 3
Is 15 I8A Soo|2
MOTAS 2 V3 El A +5V A ;
; ! MoTALS 5) 15 : '
o 2 — Lo MOTA LD 3 L Nen PGWRIEN 2l zht
NOTA) & we pe WE b= MOTAZ 3l PGREGENA g LSI75
MOTALD 2\ 9wn-2 norshl 4]2149H-2 1] \o|see 8 ol jon
MoTa\g \7 NOTN2D 1
21 6}2i1u9n-1 POEWR % AT
MOTA\E 2 20724 € NOTIMD 1" 20/21C : \s 250 ,
MO AT 16 MOTp\D 2 6] 198 L & '
MOTAG 5198 vvebd MNOT BT 16 e b8, PGREGENA - [U_PD@__ "
TP VIR NOoInS sl v vl naLTCYe 2
-PROTBNTS ¥ -8 \ 8 he
WOTDXX . PROTBAT] u}e] ujs oo A ONBDCYC 2
W - 12]13 13 1% 2c BUusT3> s @'
_____4 11) . BusTay 3@.7% 4
N 8 12 ‘ :
\ 7 13 9 1@ MOTALY
N 2 18) 2 MOTA2®
L9245 - 13| L5367 |1y MOTAIQ
3 3 MOTAL
N
Bl 7B 16 21% 8
N 5 'S " 12 MNOIRYT
L & 1 1 6 WOIMG
-
. ' 7) A4 -5?
GATESEG % i\9 \ Hm '—“—1 PGREGENRAX V] 7§
MOTWR* -~ |
16 STEb® PGWR % 3 e P2
S n
\ Y4 (4 5
LS\5 LOcALOB 7§2149d-2 6} 2man L POWR¥
269 MoIalS 2 " Moths L 88)
MOT ALY 20 Py 8 _WNoTAll] s 8
MoTAR 4 T 1 MOTAI3 16 ! INTEGRATED SOLUTIONS,INC.
3 MoTAVL 7]
€53 : MoTaL2 SCALE APPROVED BY: |DWN:
gs2__ gsl $. 1y ‘3‘“l PHYA 1S _ PHY BT o [R L AL I DATG+ REVISED:
Eso_ E19 - PHYA'D PRYRALC . _
PnyAze Dt - IS-68K CPU
) PHYAZI PRy B i DWG /
520001 c |Rom: 4/ 7

o2 kY liﬁ.,__.zd—é—cx L2 1 4 5. 6A . R4 % 1850
. — . ~ -) i'g‘_’," ‘2lx Qb2 i -
PHYA2L 15]na gl : ornacin S —2277], SE &j@ > ADNGED¥ ASZ
FlR S
_OHYAL® 13 |ps gzl SWAT2 L E lq>r'\\-\ZC\.‘ﬁ§] 5“3G 9 RS 23905
Puya\9 12 Al Bi 4 T3 — ’3E_P?_
_PuyAl8 12 | ng Bol 2 SWHITH ['°L
" 3 8 3 12
lopAGE | S8 [PR 8 R
VEA 7} TE {5 _.ks 5eQo 9@@
2 L‘{‘Eé 1Svwuzciw 13| LS T2V
! AYB 1.25MHEZ L% 34 g;‘s £7 — 91333 th '1
618 5 c CR* 3 P _
conAS AGT YECTIA ! R - = 2y BoRCR ¥ 4 i 1 5EQ DG 4 o Q 5
MOTAS . 9 6c 3 B OFF;BREQ 2 53\3 et —q 9 e
! 8)S92 L g 13 11 B8A 42 r—c| > SW3 > S8
@ | ‘ HAVEBUS %
5 Q s 6cC loMWECLR A |)
| svry | CONDMENM GATEBUS 5 ibs 3 TMEOLTY ap Lsoy
I@HNTCLR% Op, 2D | GDQE g D 28 8 Ls V1@ 3 B
e ONBDCY C ¥ LS\ 10 BERR % 6 = 9402 E>°—
VOHM INVPG % 8 /P2 7 113 12 3 2
. a5 P g s 10 5174 LS\74 [RNAVEBUS
S rrcray L) LY P g : sl | o
‘ 3 3]
2 22 VECTIACKRX% IS 3.4
FCca 1 i PROIVIOL 1I@MRZ CLK _ RAS 27€E
FCA 6| 256xn 27D DDu-6-59
@
FCo 5] pron |1@ Momccessx 3_oNBDCrc % J a
CONDMEM ONBDcCYC 9 |Fe2
ROT 3 95 DQJ——)
2
_PROTBIT® 4] p 21BIC
MOTWR® || vou 5)S0 2ol [ORRCYLX
L REFCYC*®
‘“l__‘if rﬂ- apl-8 12 K 3599 REFCYC
JACS.SRY . Wqy 1] 12
.2SMuT Lk 13 4 2718 S 26wl N =) 53D 2] |5
B LE G Q | 26D 343"
. 13
& 1 zecin
ECYL*T“’ SYNC s Qcye % e8KrcLK g ap
ISMuZcL DRVRPLY %
= X Y 2 18] 23c 1IPMUZCLK X d abs acye. 4
3 L;‘%__r
26D 1
REFCYC 2 hd
MUXAL] & 1)32 3 2 3 |y 229) RASI%
RDOULT 3, 9¢ P L 1537 EAAA2 HALFCYC
RWITBT C AP - 6 |, N Wn 12 " 2540 ANSD %
: 2, 9¢ _RDw 19,0 . S mas 5 RPe'
RADRY7 mio R aps Hisw)iz 3he > s pSc sx RN %
RADRGPS 3lpa Q|2 ll‘uvz\; 1 3 MOYRW % uf,Ls58 . B\ e N
RADR 21 nlpy UC Qe 8c - 31, 27 " o 2 TSN ¢ < Bhz4 2 y 6
RADR2® 11 Q2 LADR29® MOTUDS % 5 |n 12¢ " UXW ; ‘g 6 WRYW SiTY Si7s
RADRID blos -5 ogls LADR !9 MOTLDS % Iuf,, Ml LTSS lonvzciy 94 3¢ 25 ac
RADR\S 6loc ' T o7 LADRI3 s o . : WRL
. . J LADR2I | 'Sl MUKWRE i |'_; 12 | .
" 2 D ESET %
R S .
SYNC | al
P
8E 20 ae
. ONBDLYC * 12
: : _PROTVIOL % vs}‘ CPUBDRAY 12 MRZCLK 3 LeTY 6
aAD2 J3-25 - - 136 8 D> ¢ Qp—=
XBAD2Y <} oyl 12 { 10¢ 2 220 cpep %]
313.3 3 ah3 Sé 57 LS\ 6 s 19]S37)‘rs 5JV?V\# =
XBADLY - 37 8 £54 £55 262/ acye & 268 e
13.29 S157, s puyazi E33 8] 1o 3 2 6 1229, casix
XBADIDY p— 12 2A NEXY AN :
¥ 19D 35.”___2‘:37_»“_1_& <Y 2 ROG
13.27 . an! A\9 | INTEGRATED SOLUTIONS,INC
XBADIB O Mg alz PHYAIS —CAS] hd
! SCALE: APPROVED BY: |[DWN:
13.2.5,6,8.10,12 14, 1‘5 . DATE; REVISED:
16,20,22,24,26,28,

39,32 ,34% GND lS“GBK CPU
" 000 ["c [Res. 5/7

Page missing from original document

| ECN RN TESCRIVIN
_ LS 1 | WS CeaE S
———0—0 A 5 - AW DT F2% 70 TUDOANT TRFE
2.5 MHZCLK 32 125 MuZcik S5 T AURED NTE FOR
€28 | E29 +5V -5y
E“S‘EQS:LEQGI E4B
MOTOX X 4 8' 27PF
é 25/26F 26LS30 e 4
L N IS 3&&- 2 P 1S <2 | TXDS o 32-0)
. @ |V 13 21]7LPF
N 16 i @ 3 N 3] DTRG/TXDPREY . o
wOTDAE mEr sl ° T
; . 21| 22| 23 A 7 s@té 7 N o 'lex | RTSD —~ 15.04
M Y o e P
N 3! ‘
SNz Z8® . 3N 2iz8p & & ! RIS2RET > 2.5
4 \ cicno q rev 2 3 sibf/2 18 26/27F
3N 28] - ;I 2-2 K Ra €8 %E‘a . 2Zels3y CTS®/ CLKka o 12-08
2 27 s 1| \ a3 I |3<!|5 Ele GE(a CLKPRET S J2.09
! N—-26] 29@:23E @ 5o s l Eie EW 19 *_EN
?h—25 = P E- Rxpo o 12-02
S 12 ”\Ilsp \ £19 CEZKD RYDBRET o 32-10
+5V =9
MOTA2 19 Vec 24 13 T ZINT & vees= I9F) E49
MOTAL 8l ioes GND=31 s ol E2 Do > j2-07
LTcos 6]) .% MOTA = 2 <Je _— CH@RET /DCRO RET (37. 06
16]L
MGIETEIE MQTAL 38 1}
o A ¢ 26 %8 4 N e | > 32-13
ESORD‘ SI1o g 35 9 Iﬁ - 27PF
Z RQ I DRAQ & 20-24F |25 »3%1 3 i(L) —{> J2-18 oY
RESET : ' 8 L7 [27FF
-1 1Y W Pl E3T
EMHZCLK 24 '%&’- 2 { > 1o —> 32-1n .
' 27TH —— N/c €39
ZB8ORD & 32 ’a 25/26F ¢ lﬁrl " o 3215
261830 | &
Z8QIORQ* 36 B3 26LS372 0 E4¢
: 1 n . E41
RESET & 21 Elk E\S %1,» I CTS1/CLky > 11-\8 }EQ?_
gg 223 CLRIRET S0 1o
SMUZCLK 2¢ 28 n -l _sv
1 {E2S E1T
RXD1
> 12-2
8% :Zzs ~RXDIRET 1~ 57.290
22 -V |
PROMENA & : Qt_[bedh o> 12-17
MOTWR & -1 CMIREY)
> 32-\6
MOTARX N MOTDX X
4 N
23S 1 i
45V £32 22, 29 45V 2%, 29 13V TIMEOUT €
) g3 26 28 26 28] 2N 1]] 6
130 €33 2 27 : 217 INUPG 19, LSI57 SiT4
1
.1—5_!__5;%5 ?.7‘6’32 | N\ 2 |7!:6’37. \ 1 ___7._ ' 13
12| E2a 23 164/128 23 ieki 128 PROTVIOL 2
] 3a i D T 1OE 12 4 e
N © 2] N_21] :
SN 2% V(28 ‘:_z_m ViC28 _PAR\TYENA 13
EIN 25 N__25)
EIN | GND:14 gl | GNDi4 s RESET %!
7 19 7 N L 19 :
6 N . R L 6] 7 25¢
N 5] J_\ N S| c . EX(FP % s <
SN elient '_Tﬁ“‘ Sh_¢| 18/19 ﬂ.ﬂ MOTWR % ,ﬁlLS)% ,
N 1] pre pe 1'* :;7 D/E E_j: Lso4 25¢ :
3 8 is |2 N8| 1S 10 ﬁy‘mr‘u—L
N 8] 8
2 3 P (O N 2 2 wos Ipge 9)S% S INTEGRATED SOLUTIONS,INC.
N _19] _"‘-_\m "Nt 1z z SCALE: APPROVED B&Y: DWN:
1" 9 1] ' &F . |REVISED:
DATE:
4 - \e AL RERR & Lfoan 2 3 i, :
I > g IS-68K CPU
\ MOTOX%XX / i DWG
520001 C |Now: 7/7

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	17a
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	_01_ASYNC
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16
	_17
	_18
	_19
	_20
	_21
	_22
	_23
	_24
	_25_CTC
	_26
	_27
	_28
	_29
	_30
	_31
	_32
	_33_DART
	_34
	_35
	_36
	_37
	_38
	_39
	_40
	_SCHEM1
	_SCHEM2
	_SCHEM3
	_SCHEM4
	_SCHEM5
	_SCHEM6
	_SCHEM7

