
ITHACA INTERSYSTEMS
INTERPEST

PASCAL ERROR SOLVING TOOL
AN INTERACTIVE SYMBOLIC DEBUGGER

FOR PASCAUZ
REVISION 1.1

Copyright by
-9 Ithaca Intersystems. Inc.

InterPEST
(InterSystems Pascal Error Solvin9 Tool)

An rnteractive Symbolic Debugger for Pascal/Z

Reference Manual

Revision 1.1

Copyright c 1981 Ithaca InterSystems, Inc.

COPYRIGHT NOTICE

This software and documentation is copyrighted by ITHACA
INTERSYSTEMS, INC. and all rights are reserved. Furthermore,
this copyrighted software product is distributed by ITHACA
INTERSYSTEMS, INC. for the use of the original customer only,
and no 1 icense is granted herein to copy, dupl icate, sell or
otherwise distribute either the software or any associated
documentation to any other person, firm or entity.

TRADEMARK NOTICE

Whenever referred to throughout this manual, Pascal/Z, InterPEST,
ASMBLE/Z and LINK/Z are trademarks of ITHACA INTERSYSTEMS, INC.;
CP/M is a registered trademark of Digital Research; Z and Z-80
are registered trademarks of Zilog, Inc.

TABLE OF CONTENTS

Introduction ... 1
General Information •••• " •••••••••••••••••••••••••••••••• ' •••• 2
How to use InterPEST ••••••••••••••••• ~~ •••••••••••••••••••• 4
Running InterPEST .. :~ .. ~•.• ~ 6
Using InterPEST•......•.......•....................... 7
S pee i f i cat ion s •• '. • . • • . • • • • • •• ". • • • • • • • • . 8
Errors ..•.....•.. 9
Troubleshooting •••••••.•••••••.••••••••••••••••••••••••••• 10
Description of Command Syntax .••••••••.•••••••••••.••.••.• ll

Modify•...........•.................. 12
Mod i f y the b rea k po i n t tab 1 e (M B) ••..••••.•.•••••..••• 1 2
Modify break conditions (MC) ••••.••••.••••••••.••.•••• 13
Modify variable value (MV) ••••••••••.•••..••••••..... 16

Modifying global variables ••••••••••.....••..•...•.• 16
Modifying local variables •••••••••••••..•.••.•••.•.• 18

Display_•.. 19
Display breakpoint table (DB) .••••••••• ; ••.•••.•....•. 19
Display break conditions (DC) .•••.••••..•.••.........• 20
Display last ten statements (ON) ••••••••.•••.•••.••••• 21
Display procedure/function stack (DP) •••••••••..•.•.•. 22
Display current runtime requirements (DR} •....•••....• 23
Display current statement and module numbers (DS) .•.•• 24
Display variable type and value (DV) •..•.•.••.••.•.••• 25

Displaying global variables ••••.••...•..•••....•.••. 25
Displaying local variables •••••.••••••.•...••.••..•• 27

Continue•....... ~ 28
Continue execution to next breakpoint (CB) •••••••••.•. 28
Continue execution for n statements (CN) ••.•..•.•..... 29

Quit (Q) •• 30
Set ..•••.•••••.•••••••••.••••• ~ ...•.••••.•••...••..•. .. ".31

Set the procedure/function entry/exit indicator (SE) •. 31
Set the program counter to beg inning (SP) .••.•• 0 •••••• 32
Set a watch on a routine (SR) •.•••••••.••••••..•.•••.. 33
Set the trace indicator (ST) •••••••••..••••••••.••••.• 34
Set watch on variable (SW) •••.•.•••.•••...•..••••.•... '35

InterPEST Reference Manual Page 1

INTRODUCTION TO InterPEST

InterPEST (Intersystems Pascal Error Solving Tool) is the
interactive symbolic debugger for use 'with programs generated by
the Pascal/Z compiler and software package. InterPEST is
designed to aid in isolating and correcting faul ts in a Pascal

. program.

Inter-PEST allows the user to set both absolute and conditional
b rea k po in t s , to dis pIa y the s e b rea k po in t s a S we 11 a s va ria b 1 e s
and statement/module numbers, to display runtime requirements at
any po in t in the program, to display the last ten sta tements
executed, and to display the procedure/function stack. InterPEST
also allows the user to modify both global and local variables,
including subscripts of arrays, fields of records, and
enumeration types.

The interactive nature of InterPEST obviates the need "for
manually "tracing" through a program, and permits the user great
freedom in setting up a series of conditions which can quickly be
changed as the program flow demands. The wide range of available
commands in InterPEST provides the Pascal/Z user with a powerful
and versatile software debugging tool.

InterPEST Reference Manual Page 2·

GENERAL INFORMATION ON InterPEST

The debugger adds approximately 12K when linked with a Pascal/Z
program.

Only types w!1ich are declared globally may be accessed by the
debugger. Locally declared variables of global types may be
accessed.

The T (Trace) and E (Extended error messages) compiler options
will have no effect when using the debugger. The C (Control C
checking) option should be disabled, otherwise user output files
will not be closed when exitting the debugger.

When using InterPEST, any command involving a symbolic reference
(a variable or procedure/function name, such as DV, MV, SW, SR,

·e t c •) will r e qui reo n e 0 r m 0 red is k a c c e 5 s e s , 5 inc e the 5 ym bo 1·
and type information is stored on diskette. The SR (set a watch
on a rout ine) command wi 11 requi re one disk access fa reach
procedure/function entry. Thus disk I/O may slow down program
execution significantly when using the debugger. (If using the
Cache BIOS as provided with the Inter-Systems Pascal Development
System (PDS), this does not apply.)

If the program being executed contains READ statements, the user
will have to input info·rmation from the console. Since it is not
always apparent that .the program is demanding input, often it
appears that the debugger is "hung". If it appears that this is
so, try inputting some data.

If the program being executed contains WRITE statements, the
debugger output may often appear somewhat garbled since it will
be interspersed with the program output. Using WRITELN
statements rather than WRITEs during debugging can alleviate this
problem.

Another problem may arise if debugging a program which requires
addi tional parameters in the command tail. When the debugger
asks for the SYM/TYP file name, it accepts only a single CP/M
file name as input. This problem may be circumvented by
inserting a breakpo int in the prog ram before the end of line
(EOLN) condition is tested, or before the program deals with the
remainder of the command tail. Then enter CB (continue until the
breakpoint) followed by the remaining 'paramete~s, as follows:

--->-CB <parameter> •• <parameter>-

as the next command to the debugger.

E.G. When debugging an editor requiring a text file as input,
you might enter: CB manual.txt

One note of caution: CP/M converts all input to capitals before
processing. The debugger does not do this; therefore the program
will be receiving lower case input, which it may not accept if it
was expecting normal input from the command tail. Thus when
using the above procedure, it is advisable to enter the entire

InterPEST Reference Manual-' Page 3

command in capital letters.

InterPEST,Reference Manual Page 4

HOW TO USE InterPEST

To use the debugger, compile your Pascal program, specifying a
total of five drive letters, as follows:

-A)PASCAL48 [or PASCAL54] PRIMES.AABAX-

The compiler generates five files during compilation.

The first letter after the dot specifies the dr~ve from which the
compiler should take the Pascal sourCE: (.PAS) file as input, in
this case drive A.

The second letter specifies the drive to which the Z-80 source
(.SRC) file should be output, in this case drive A.

The third letter specifies the drive to which the listing (.LST)
file should be output, in this case drive B.

The fourth letter specifies the drive to which the symbol (.SYM)
and type (.TYP) files should be output. These files contain
symbolic reference information for the debugger.

The fifth letter must always be X, and indicates that the
debugger is being invoked. When the fifth letter is specified,
the compiler outputs a fifth file of the form ##.DBG, where ## is
a .module number. If not using separate compilation, the defa ul t
is 00. If using separate compilation, a unique .DBG file will be
output for each module compiled. There is a maximum of sixteen
modules permitted (0 •• 15), therefore debugging more than sixteen
modules at one -time will cause problems when using the debugger.

(The program will be compiled as described on pages 46-49 of the
PASC~L/Z IMPLEMENTATION MANUAL.)

The program must then be assembled using XMAIN.SRC (instead of
the ordinary MAIN.SRC) or XEMAIN.SRC for separately compiled
modules. The debugger may not be used for debugging external
assembly language routines.

To assemble, type:

-A)ASMBL XMAIN,PRIMES/REB-

This indicates that the assembler should generate a relocatable
object code module (.REL file) to be linked with the debugger.
XMA IN. S R Cor X EMA IN. S R C m u 5 t a I way s bet h e fir s t f i lei nth e
command line to the assembler.

The next step is to link the program with the debugger and the
library., To do so, type:

-A)LINK PRIMES DEBUG/N:PRIMES/E-

T.his command links the debugger ,with PRIMES.
specifies

The /N:PRIMES

InterPEST Reference Manual Page 5

tha t the I inker should generate a command (. COM) file wi th the
name PRIMES. The library (LIB.REL) is automatically linked in,
and IE specifies that control should then be returned to the
operating system.

InterPEST Reference Manual Page 6

RUNNING InterPEST

To invoke the debugger, type the name of the .COM file, as
follows:

-A>PRIMES-

The screen will come back with:

Pascal/Z debugger v-I.O
SYM/TYP file name

At this point, enter the file name with the .SYM and .TYP
extensions, in this example, PRIMES. The debugger will return
wi ~h the statement and module number s 0 f the beg inning of the
main program and a prompt,' to which the user may respond with any
of the commands summarized on page 7 and described in detail on
pages 12-35.

SYM/TYP file name -- -PRIMES­
<MAIN> Sta tement 16, mod ul e 0
---)

If any of the fo]lowing files is not on the logged-in drive, the
'drive letter must be ~pecified:

,<file n'ame)'.COM
<file name>.SYM
< f i 1 e nam e> • TYP
i#.DBG

Once debugging is finished, the program must be reassembled and
relinked without the debugger information~ as described on pages
46-49 of the PASCAL/Z IMPLEMENTATION MANUAL.

(For further information on compiling I assembling and linking
Pascal/Z programs, see pages 46-49 of the PASCAL/Z IMPLEMENTATION
MANUAL.)

InterPEST Reference 'Manual Page 7

. USING InterPEST

Once the debugger has been linked with the user' 5 program, and
execution of the' program has begun, all commands are given by
typing the necessary code followed by a carriage return line feed"
(CRLF) •

The following is a summary of the available commands, which are
described in detail in the succeeding pages:

MB [:If *]
MC [var]
MV [var]

DB
DC
DN
DP
DR
DS
DV

CB
CN [if]

Q

SE

SP

SR <routine>

ST
SW [var]

Modify the breakpoint table
Modify the break conditions
Modify the variable value

Display the breakpoint table
Display the break conditions
Display the last ten statements executed
Display the procedure/function stack
Display the current runtime requirements
Display current statement and module numbers
Display the variable type and value

Continue execution until the next breakp~int
Continue execution for i more statements, or
until the next breakpoint.

Qu.i t the debugger
operating system

and return to the

Set the procedure/function entry/exit
indicator
Set the program counter to the beginning of
the main program
Set a watch on a routine (procedure or
function)
Set the trace indicator
Set a watch on the variable

RELATIONAL OPERATORS ("RELOPS")

LT Less than (<)

GT Greater than (>)
LE Less than or equal to (<=)
GE Greater than or equal to { >=
EQ Equal to (=)
NE Not equal to (<>)

Typing HELP, H, or ? gives ,the menu of commands.

Hitting the DELETE key at any point while in the debugger will
halt execution of the current debugger command and return control
to the debugger.

InterPEST Reference Man~al Page 8

SPECIFICATIONS

SIZE -- The debugger adds approximately 12K when linked to the.
Pascal/Z program. .

BREAKPOINT T~BLE -- The breakpoint table will hold a maximum of
ten entries at. anyone time.

CONDITIONAL BREAKPOINTS There may be a maximum of ten break
conditions in effect at anyone time.

MODULES a maximum of sixteen modules may be debugged
simulta~eously.

MODIFYING VARIABLES -- All global variables or locally declared
variables of global types may be modified, with the exception of
the following: any REAL variables, Pascal files variables,
pointers, strings, sets, arrays of at'rays, and arrays of other
excepted variables.

DISPLAYING VARIABLES -- All global variables or locally declared
variables of global types may be displayed, with the exception of
the following: Pascal file variables; arrays of arrays, and
arrays of other excepted ·variables.

POINTERS -- When a pointer variable is displayed, the value given
will be that of the variable pointed to.

CN COMMAND the maximum number of statements which may be
specified using the CN command is MAXINT . (32767) •

PROCEDURE/FUNCTION STACK -- only the outermost twenty-five calls
on the procedure/function stack will be displayed. The debugger
will give a message specifying the number of calls not
displayed.

Any operation which is dependent on a procedure or function name
(e.g. anything involving local variables: modifying, displaying,
setting a watch on a local variable or a routine, displaying the
procedure/function stack) will not function properly if nested
more than twenty-five levels.

NOTE: The result of a statement is not available until the
execution of the statement is completed.

EXAMPLE

If A gets set equal to TRUE in statement 1, a DV of A will not
return TRUE until statement 2 is the current statement (as
displayed when commanding DS).

Similarly, when a breakpoint is specified, program execution will
hal t. be for e the ex e cut ion 0 f the b rea k s tat em e n t .

InterPEST Reference Manual " Page 9

ERRORS

Any errors in the debugger command syntax or in input will be
caught by the debugger and the user will be warned and
reprompted. Once an error message is displayed on the screen,
ignore all debugger output until the next prompt ("--->" or
"Val ue -- " for enumeration types). (Sometimes the debugger may
output strange messages after an error message is displayed,
because of the way in which it stores information.)

If the "message "Enumerati6n:<badval>" is generated when trying to
display or modify an enumeration type, this means that the
ordinal value of the enumerator given exceeded the ordinal value"
of any possible enumerators •

. When running the debugger, any error in the user's program will
return control to the debugger. The program counter will
automatically be reset to the beginning of the main program (as
in the SP debugge r command). Prog ram execution wi 11 no t be
continued beyond the error until the error is corrected and the
prog ram is recompiled, reassembled,. and reI inked wi th the
debugger.

Any debugger error will return with the message "Fatal debugger
error" and control will be returned to the operating system.
Examples of fatal debugger errors are "stack overflow", "file not
found", "type error'on input", and "read beyond end of file". . "

InterPEST Reference Manual

TROUBLESHOOTING

This section contains a description of
encountered when using InterPEST, as well
them.

. Page .LU

some common probl ems
as methods of solving

One probl em which occur s fa i r ly 0 ften is tha t a breakpo int has
been set and when the debugger finds the breakpoint it displays
"Breakpoint encountered -- " and then hangs. This is due to the
fact that the debugger has accessed the wrong i#.DBG file.

If two programs are being debugged using the same disk, the .DBG
files generated during compilation may be output into an alread~
existing .DBG file with the same module number. This utterly
confuses the debugger, so care must be taken when debugging more
than one program on "a single disk.

When displaying a variable, if the results shown by the debugger
are inaccurate, this may be due to uninitialized variables.
Ma kin g c e r ta in t hat a 11 va ria b 1 e s are in i t i ali zed a t the ve r y
beginning of the program will eliminate any spur"ious results.

OtHer problems which may arise when 'using InterPEST (e.g. if the
debugger "hangs") may be solved by recompiling, reassembling and
relinking the Pascal/Z program with the debugger. If this does
not correct the problem, contact InterSystems for assistance.

InterPEST Reference Manual

DESCRIPTION OF COMMAND SYNTAX

The following sections of the manual
description of InterPEST command syntax.

contain

Page 11·

a detailed

Note that anything specified in square brackets ([]) is
optional. If this information is not provided in the ini tial
command line, the user will be prompted by the debugger. For the
purposes of explanation, in the following description it is
ass urn e d th a t the use r p r ov ide sam in i mum 0 fin form a t ion in the
command line. Anything specified in angle brackets «» must be
included in the command line.

In the following pages, user commands and responses are displayed
in· -bold- face. Most of the example interchanges refer to the
PRIMES program found on the Pascal/Z Distribution Diskette.

InterPEST Reference Manual Page 12

MODIFY

The commands under the modify heading allow the user to set or to
modify various aspects of the program.

-MB- [stmt if [mod if]] Modify the breakpoint table

This command allows the user to set and to modify breakpoints
statement and module numbers (NOT line numbers) at which program
execution should be halted. Program execution will halt before
the break statement is executed.

To add a breakpoint, simply type MB and when prompted, type the
sta tement and modul e number s 0 f the des ired breakpo int. The
n urn b e r s s h 0 u 1 d be s epa rat e d by asp ace. I f a mod u 1 e n urn be r i s
not specified, the default will be module o.

To delete a breakpoint, follow the same procedure; if the
statement and module numbers specified are those of an existing
breakpoint, that breakpoint will be eliminated from the
breakpoint table.

Th e b rea k po in t tab 1 e will hoI dam a x im urn 0 f ten b rea k po in t sat
anyone time.

EXAMPLE

---)-MS­
Breakpoint
Breakpoint
---)-MB 22 0-
Breakpoint
---)

deleted.

ln~erp~~T Hererence Manual J:'age J.-'

[variable] Modify break conditions

This command allows the' user to' sef' cond i tional . breakpo ints -­
breakpoints which will become effective only if certain
cond i tions occur dur ing prog ram execution. A cond i tional
breakpoint will cause program execution to halt only if the
variable reaches the condition specified.

To set a conditional breakpoint, type Me and when prompted, type
the variable to be watched. If the variable ts a structured
type, the user will be prompted for a subscript or field name.
The subscript must be an integer.

The user
operator.

will then be prompted for
The permissible relops are:

LT Less than (<)
GT Greater than (>)

a

LE Less than or equal to (<=)
GE Greater than or equal to (>=
EQ Equal to (=)
NE Not equal to (<>)

"relop", a relational

Once a relop has been specified, the user will be prompted with:
"Var or Const -- "

At this point" specifying Const or C (constant) will elicit a
prompt· for an constant value. Specifying Var or V' (variable)
will elicit another prompt for the name of the variable. If the
variable given is a structured type, the user will again be
prompted for a subscript or field name. The subscript must be an
integer.

The debu~ger will always look first for a global variable of the
name given. If the variable initially specified is not found
g 10 bOa 11 y , the deb ug g e r 100 k sat the pro c e d u r e / fun c t ion s t a c k ,
starting with the innermost call,~ and finds the first local
variable of that name. The break condition is then set on that
variable. When the break condition is reached, the debugger will
display the break condition, indicate that the variable is a
local variable, and give the name of the procedure or function in
which the variable may be found.

Local variables may be accessed only when the procedure/function
is active, i.e. when the program counter is inside the procedure
or function.

A break condition may be specifically set on a local variable by
spec i fying the modul e number, proced ure/f unct ion name, and the
variable name separated by colons. The user will be prompted as
usual if the variable is a structured type.

If a break condition is set and the variable does not reach the
condition before the procedure/function is exitted, that
condition will usually have no effect.

Problems can arise, however, since. the object of the break

InterPEST·Reference Manual Page 14

is stored in a specific memory location. If the contents of that
memory location are changed later in the program (i.e. after the
procedure/function is exitted), the break condition will be
displayed, but will not be accurate since that memory location is
no longer associated with . the local variable specified.
Therefore caution is advised when setting break conditions
(including a watch, described later) involving local variables.

Once the
disabled.

conditional breakpoint has been reached, it is

Conditional breakpoints may only be set for integers, characters,
booleans and enumeration types.

There ,may be a maximum ·of ten conditional breakpoints specified
at anyone time.

EXAMPLE 1

--->-MC-
Variable -- -count­
Relop --- -It-
Var or Const -c-
Value -- -5-
--->

EXAMPLE 2

--->-MC­
Variable a
Relop --- -eq-
Var or Const -- v
Variable -- -employee­
Field name -- -age-
--->

EXAMPLE 3

--->-MC-
Variable -~ -O:factor:i­
Relop -- -ge
Var or Const -c-
Value -- -4-
--->-MC-
Variable -- -i­
Local: FACTOR
Relop -- -ge-
Var or Const -c-
Value -4-
--->

InterPEST Reference Manual ,Page 15

Thus the final expression for Example 1 will equivalent to:
When count < 5, halt

and the final expression for Example 2 will be equivalent to:
When count = employee.age~ halt

The final expressions for Example 3 will be equivalent to:
When i (a variable local to the procedure/function
FACTOR) >= 4, halt

InterPEST Reference Manual Page 16

~MV- Modify the variable value

This command allows the user to modify the value of a variable,
but not its type. Both global and local variables may be
modified, although the procedures differ with the scope of the
variable, as described below.

When given the name of the variable to modify, the debugger will
first look for a global variable of that name. If the variable
specified is not found globally, then the debugger looks at the
proc ed ure/f unct ion stack, sta r ting wi th the inne rmost call, and
finds the first local variable of that name.

The following types of variables may not be modified:

Any REAL variables (may only be displayed)
Pascal file variables (cannot be modified or
displayed)
Pointers (may only display the value pointed to)
Strings (may only be displayed)
Sets (may only be displayed)
Arrays of: arrays or file variables (cannot be
modified or displayed), and other excepted variables
(cannot be modified) .

Fields of records and elements of arrays may be modified only if
they contain types which may be legally modified.

Note that a variable may not be modified by specifying the the
name of another variable as the new value.

Modifying Global Variables

-MV- [variable]

To modify a global variable, type MV and when prompted, specify
the variable name. If the variable is a structured type, the
user will be prompted for a subscript or a field name. The
subscript must be an integer.

When prompted again, specify any constant as the new value for
the variable.

InterPEST Reference Manual

EXAMPLE

---)-MV-
Variable -- -count­
New value -- -6-
---)-MV-
Variable -- -employee­
Field name -- -age­
New value -- -23-
---)-MV-
Variable -- -days-
Subscript -monday-
New value -- -thursday-
---)

Page 17

InterPEST Reference Manual Page 18

Modifying Local Variables

-MV- [module #:procedure/function name:local variable]

Local variables may be accessed only when the procedure/function
is active, i.e. only when the program counter is inside the
procedure or function.

To specifically modify a local variable, ·type MV and when
prompted, specify the variable by module number,
procedure/function name and the local varia'ble name, separated by
colons. As usual, if the variable is a structured type, the user
will be reprompted.

Parameters being passed to a procedure or function may also be
accessed in the same way.

EXAMPLE

---)-MV-
Variable -- -O:factor:divide­
New value -- -false-
---)-MV-
Variable -- -O:update:employee­
Field -- -age-
New value -- -32-
---)

InterPEST Reference Manual Page 19

DISPLAY

The commands under ~he display heading allow the user to view the
status of var ious aspects of the program: the breakpo ints, the·
break conditions, the procedure/function stack, the runtime
requirements, statement and module numbers, and variables.

-DB- Display the breakpoint table

This command displays the
cur r en t 1 Y set b rea k po in t s •
conditions.

statement and
This will

module numbers of
not display break

Note that the debugger will allow the user to set breakpo ints
after the end of the program, but that this will have no effect
upon program execution.

EXAMPLE

---)-DB­
Statement
Statement
Statement
Statement
---)

12, module 0
23, module ·0
14, modul.e 1
32, module 3

InterPEST Reference Manual

·-DC- Display break conditions

. This command displays any
watches) currently set.
breakpoints.

EXAMPLE

---)-DC­
COUNT
A
PRIMES
---)

LT Integer: 5
EQ AGE
GT Integer: 4

conditional
This will

breakpoints
not display

Page 20

(including
ordinary

InterPEST Reference Manual Page 21

-DN- Display the last ten statements executed

T his dis P 1 a y s the s tat em en t and rn 0 d ul e n urn b e r S 0 f the 1 as t ten
statements executed.

EXAMPLE

---)-DN­
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
---)

9, module 0
10, module 0
11, modul e a
12, module 0
13, module 0
1, module 0
2, module 0
14, module 0
22, module 0
27, module a

InterPEST Reference Manual Page 22

-DP- Display the procedure/function stack

This displays the procedure/function stack, specifying each
procedure or function called and the statement and module numbers
from which it was called.

A maximum of twenty-five calls will be displayed. If there have
been more than twenty-five calls, only the outermost calls will
be displayed. The debugger will give a message specifying the
number of calls which are not displayed.

EXAMPLE

---)-DP­
FACTOR
FACTOR
---)

called from
called from

Statement
Statement

13, module 0
21, module 0

InterPEST Reference Manual Page 23

.
-DR- Display the current runtime' requi~ements

This displays the· current runtime requirements, including the
locations of the stack and heap pointers, the amounts of used·
stack and heap space, and the amount of memory remaining.

Note that the debugger occupies 12K, so that this extra space
will be available when the debugger is not invoked.

EXAMPLE

---)-DR­
Stack pointer
BC71
---)

Stack usage
2739

Heap pointer
4FD3

Heap usage
0000

Free
6C7E

InterPEST Reference Manual Page 24

:"'DS - Di splay" current sta temen t and mod ule numbers

Th i s d i spl ays the" st'a tement and mod ul e numbers 0 f the cur rent
location of the program counter, as well as the program block.

EXAMPLE 1

---)-DS-
(MAIN) Statement -- 16, module 0
---)

EXAMPLE 2

---)-DS­
FACTOR

----)

Statement -- 13, module 0

InterPEST Reference Manual Page 25

-DV Display the variable type and value

This command allows the user to display the type and value of any
variable. Both global and local variables may be displayed f

although the procedures differ with the scope of the variable, as
described below.

If the variable specified is not global, the debugger looks at
the procedure/function stack, star ting wi th the innermost call,
and finds the first local variable of that name. The variable
name, type and value are then displayed, as well as the name of
the procedure or function in which the variable can be found.

The onl y var i abIes wh ich may not be displayed are Pa scal file
variables, arrays of arrays, and arrays of file variables. Note
that when displaying a pointer variable, the value displayed will

'be that of the variable pointed to.

Displaying Global Variables

-DV- [var iable]

To display a global variable, type DV and when prompted, specify
the variable. If the variable is a structured type" the user
will be prompted for a subscript or field name. The subscript
must be an integer.

InterPEST Reference Manual

EXAMPLE

---)-DV-
Variable
Integer: 1
---)-DV-
Variable primes
Subscript -- -4-
Integer: 5
---)-DV-
Variable -prime-
Boolean: TRUE
---)-DV-
Variable -- -record­
Field name -- -alpha­
Char: g
---)-DV-
Variable name
String: laurie
---)-DV-
Variable -- -i­
Local: FACTOR
In teg er: 3
---)-DV-
Variable season
Set contains:
Enumeration: SPRING
Enumeration: SUMMER
Enumeration: AUTUMN
Enumeration: WINTER
--->-DV-
Variable -- -collection­
Subscript -- -2-
Field riame -- -c~

-Boolean: FALSE
--->-DV-
Var~able -- -amount­
Real: 3.399999E+00
---)

Page 26

InterPEST Reference Manual Page 27

CONTINUE

The commands under the continue heading allow continuation of
program execution under user control.

-C8- Continue execution to the next breakpoint

This command will cause program' execution to begin at the current
statement and to continue until the next specified breakpoint or
break condition has been reached. The statement and module
numbers of the breakpoint (or. the break condition met including
the s t a tern e n tan d mod ul e numb e r sat w h i chi twa s rea c he d) will
then be displayed.

If no breakpoint has been set, the execution of the program will
continue until finished.

EXAMPLE 1

Break encountered -- FACTOR Statement -- 12, module a

---)

EXAMPLE 2

Break encountered -- COUNT LT Integer: 5
<MAIN) Statement -- 17, module 0

---)

EXAMPLE 3

---)-SR FACTOR-
---)-CB-

Break encountered -- FACTOR Statement -- 1, module 0

---)

InterPEST Reference Manual Page 28

- eN - [#] Con t in u e ex e cut ion for [#:] 5 tat em e n t s ,or un til
the next breakpoint

This command will cause program execution to begin at the current
statement and to continue for the number of statements specified
in brackets. The statement and module numbers of the breakpoint
or break condition will then be displayed.

If no number is given, the default is 1. Once
specified, that number will become the default
changed by giving the full CN [#] command again.

a number
until it

is
is

If a breakpoint or break condition is reached before the number
of statements specified in brackets is completed, execution will
halt at the breakpoint.

EXAMPLE

---)-DS-
<MAIN) Statement 16, module 0
---)-CN-
<MAIN) Statement 17, module 0
---)-CN 2-
(MAIN> Statement 19, module a
---)-CN-
<MAIN) Statement 21, module 0
---)

InterPEST Reference Manual Page 29

QUIT

-Q- Quit the debugger

This command will cause an exit from the debugger and control
will be returned to the operating system.

Note that Control C checking must be disabled or user output
files will not be closed upon exitting the debugger.

EXAMPLE

Cache CP/M 4h 3/25/81

A>

InterPEST Reference Manual Page 30

SET

The commands under the set heading allow the user to set or
enable various functions of the debugger.

-SE- Set the procedure/function entry/exit indicator

This command will cause the name of each procedure and function
to be displayed as it is entered and exitted.

Giving this command will reverse its current status: if enabled,
the command will ret~rn TRUE, and if disabled, the command wil~
return FALSE.

EXAMPLE

---)-SE-
TRUE
---)-CN­
Entering FACTOR
Leaving Factor.
---)-SE-
FALSE·
---)

In.ter PEST Ref erence Manual Page 31

-SP- Set the prog ra~. counter to the beg inning 0 f the main
program

This command
statement of
program.

EXAMPLE

---)-SP-

.
will set the program

the main program, not
counter to the beginning

to the first line of the

<MAIN) Statement -- 16, module 0
---)

InterPEST Reference Manual Page 32,

'-SR <routine)- Set' a watch on the routine

This command
procedure or
about to be
debugger.

allows' the user to set a watch on routine (a
function) • Each time the procedure or function is
entered, a breakpoint will be generated by the

To enable the routine watch, type SR followed by the name of the
procedure or function to be watched. This information must be
included in the initial command line: there will be no prompt as
in other commands where additional information is optional.

To disable the watch, simply type SR. There is no need to enter
the routine name.

Only one watch on a routine may be in effect at any time.

EXAMPLE

---)-SR FACTOR-
---)

InterPEST Reference Manual Page 33

- S T - , Set t h. ,t:r a,C .:;, . .1 n_dJ~t..QJOi4~

This command will toggle ~he Ntra~~N compiler option, and display
the statement an..Ai~ mQ.5.:!u.l .. ~'~.-r1 ·;y.~ach statement as it is
exec u t ed.· ' .' I!.- : ~ ~:";--;' r -~t,.:, '':1~ y~ ;,~,. ~:.. ;. ,-~1i '::

~~'-

,Giving this command will reverse its current status: if enabled,
the command will return TRUE, and if disabled, the command will
return FALSE.

EXAMPLE

---)-ST­
TRUE
---)-CN 3-
<MAIN)
<MAIN) .
<MAIN)
---)-ST­
FALSE

Statement -- 17, module 0
Statement" ~- 18":',~$Htule 0 a i,a t em. n t:-t:-~;,:,;,i~~,;' _~~:oA~l e '0

---)

InterPEST Reference Manual Page 34

-SW- [variat?le] Set a watch on the variable

This command will set a watch on the specified variable. When
the value of the variable changes in any way, program execution
will be halted and the break condition and statement/module
numbers will be displayed. A watch is essentially the same as a
break condition, only no specific condition is to be met--change
is the only criterion.

To set a watch, type SW and when prompted, type the variable to
be watched. If the variable is a structured type, the user will
be prompted again for a subscript or field name. The subscript
must be an integer.

To ~et a watch on a local variable, see the section on "Modifying
break conditions" (Me) earlier in this manual.

When a watch is set on a variable, the break condition [variable]
NE [constant] will appear in the table of break conditions (not
the breakpoint table) and can be displayed with the DC (display
break conditions) command.

The watch is disabled the first time the variable changes.

A wa t c h may 0 n 1 y be s' e ton the follow i n g va ria b 1 e s : in t e 9 e r s ,
cha~acters, booleans and enumeration types.

EXAMPLE

---)-sw-
Variable -- -count­
---)-CN-

Break encountered COUNT NE Integer: 3
(MAIN> Statement -- 18, module 0

---)

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

