
ITHACA INTERSYSTEMS
ASMBLEIZ

A RELOCATING MACRO ASSEMBLER
REVlSION 2.0

Copyright by .
c Ithaca Intersystems, Inc.

ASMBLE/Z

A Relocating Macro Assembler

~ Copyright 19BO by
lthaca InterSystems, Inc.

Manual Rev~sion ?

TABLE OF CONTENTS

Introduction 1
Features 1

Who Should Use This Manual 2
Assembling . 3
Assembler Operation 9
Once Thru Code 9
Relocation 10

Module Sections 12
Entry Point 14
External 14
Name 15
Library 1~

Program Counter 18
Symbols 19
Listing 20
Source Line Format 22

Label Field 22
Instruction Field 23
Argument Field 24
Comment Field 25

Macros 26
Argument Format 30
Arithmetic 31
Strings 33
Numbers 33
Relat.ive Jumps 35

. Reg ister" Names 36
Machine Instructions 37

Jump 38
Call 38
Return 39
Restart 40
Accumulator 41
Increment 42
Decrement 42
Double Add 43
Double Subtract 43
Load, Store 44
Push, Pop 45
In, Out 46
Move Immediate 47
Load Immediate 47
Move 47
Block 48
Bit 49
Rotate, Shift 50
Miscellaneous 52

Assembler Instructions S3
Macro 54

Define Byte
Define Word
De fine Storage
If
Entry
External
Abs.
ReI
Data
Com'
Org
Load
Name
Include
Libfile
Equate
Set
End
List

Error Messages
Wor.ked Example
Running under CP/M
Running under K3

Job Status Word
Version

55
55
stS
57
58
58
59
59
59
59
~o

;;0
62
1;3
~4
t:;S
~S
.:;&;

~7
'::;8
71
7S
7F.
7€
7(:"

INTRODUCTION

ASMBLE is a Z-80 source code macro assembler which produces
either an absolute binary, a hex, or a relocatable code modulE
and a program. listing. The assembler allows you to specify the
devices and file names for the input and output files as well as
which output files you want generated. If you ask for a listing,
it will contain a column alphabetized symbol table.

FEATURES

1) Two pass operation

2) Conditional assembly

3) • Ex·t'ern-a1 labels and relocatable code

4) Absol ute binary or hex code

C;) Sepa rat ion 0 f cod e and dat.a spaces

'i) ~_acros

'7) .I n c 1 ud e f i 1 e-s .

q) Column alphabetized s}~bol table in listing

- 1- - ASMBLE/Z

~vHO SHOULD USE THIS MANUAL?

You may be reading this manual because you wnnt to know how to
~ssemble, link, and run a program written in Pascal. If this is
the case, you should skip this manual and read the first part of
the linker manual since the Pascal compiler t~kes c~re of
9 en era tin gall th e ass em b 1 e r cod e t h c:: tis norm all y r e qui r ed to
run a ~asc~l pr?gram.

On the other hand, you may want to add your own assembler
~outines to a Pascal program, or you may want to write a
3tand-alone assembler program. "(n that case, you should "rearl
this entire manual and then read the linker manual.

ASMBLE/Z - '- -

ASSEMBLING

Here are the steps you go ~hrough from the creation of ?n
assembly Innguage program to its execution.

1) Run the t ex ted ito r, ere ate a new S RC f i 1 eon a dis k ,
and type in your program (written in assembler
mnemonics) •

2) Run the ~ssembler which translates the assembler
mnemonic statements into ma~hine language code.

~) If you asked the assembler to generate a 'relocatable
module, you run the li~ket which loads the module into
memory, and start the p~og ram.

If you asked the assembler to generate hex code, you
run the loader which translates ,the hex code into a

'COM file. You then run the COM file.

If you asked the assembler to generate a COM file, yo~
run it.

1n your prog ram you tell the mac:hine exactl y whAt to do b;}
writing.a list of mnemonic machine instructions. These mnemonics
are translated., one to one, into machine·.executable instructions
(machine code' • .

Each machine instruction has its corresponding mnemonic. For
example, if you want to move a copy 0 f the byte from the B
register into the A register you write:

MOV A,B

If you want to complement the byte in the A register you write:

eMA

- ~ - ASMBLE/'li

i

·.~n instruction is one or more bytes long and is stored in one or
more consecutive memory locations. You can symbolically
reference an instruction by placing a . label in front of the
instruction and referencing the label. For example, suppose you
want to write a routine that decides whether or not a value in
the ~ register is equal to ten. You might write:

CPI 10 · , Does ~ = lO?
IJZ TARGET Yes.
XRA A No. Make it O.

TARGET:MOV B,A · Save i·t in B. ,

Tnt his e x am p 1 e , i f the a. reg i s t e r com t a ins ten , the mac h i n e
jumps to the instruction ber.t ring the' TARGET 1 abel. You· can
locate this routine anY'YIrhere in memory and not worry about the
location which TARGET represents (the value of TARGET). The
assembler calculates it for you.

You may also give a value to a symbol with an equate
instruction.

ENDVAL EQU 10

Here, ENDVAL is given the absolute v~lue ten. It has this value
no matter where it is de~ined. You ~ay use it in your program as
follows:

ENDVAL. EQU
CPI
IJZ
XRA

TARGET:MOV

ASMBLE/Z

10
ENDVAL
TARGET
A
B,A

· ,
i

Does A = ENDVAL?
Yes.
No. to1nke it o.
Save it in B.

- 4 -

A. section 0 f an ass~mbl y code ~ay be swi tched
sur~ounding the code with conditional statements.

: -' FALSE EQU n
TRUE EQU NOT FALSE
ORANGE EQU TRUE

IF (JRANGE

on . or off by
For example:

NAME: DB 'This program is called Orange'
ELSE

NA~E: DB 'This program is called Lemon'
ENDIF

In this example, the first three statements define the v~lues of
the symbols FALSE, TRUE, and OR~NGE. The conditfonal statements,
IF, ELSE, and ENDIF, select one of the two statements labeled
Nk~E for ~ssembly.

·tode which is often repeated, ?ossibly with some variation, may
be stored in a macro and assembled simply by giving th~ name of
the macro. Thi s saves ali ttle typi.ng and usuall y makes the
program easier to understand. For example:

PR1NT: M~CRO

LXI
CALL
ENDM.~C

. PRINT

HITEXT:OB

TEXT
H,TEXT
TEXT

HITEXT

'Hi there'

In t his e x am pIe, the fir s t f 0 urI in e s de fin e th e mac roc a 11 eo
PRINT which contains. one dummy parameter, TEXT. When the
statement PRINT HITEXT is assembled it is replaced by:

LXI
CALL

H,HITEXT
TXTYP

This loads the address of the text string into the HL register
and calls TXTYP to print the string.

- c; - ASMBLE/z

Here is rt. short 'example of a'o program that reads the fr'ont panel
switches and sets ,the -front panel lights' accordingly. It
cont? ins a cond i tional control swi tch, FLIP, which causes the
assembler to generate code to complement the value sent to the
lights if FLIP is true. If all the switches -are up the program
returns control to the monitor.

; Light Test.

FALSE EQU
TRUE EQU

FLTP EQU

LIGHTS EQU
SWITCH EQU

BNDCOD EQU

NDTEST:MACRO
CPI
,1Z
ENDMAC

ORG

a
NOT FALSE

TRUE

OFFH
OFFH

; Complement flag.

i Front panel lights port.
; Front panel switch port.

111111118: Switch pattern for stop.

; ~est for ENDCOD in A.
ENDCOD Time to quit?
n Yes. Back to monitorland.

10na i Put the code at location lOOH.

LOOP: IN SWITCH; Read the switches.

ASMBLE/Z

NDTES"!' Test for end.

1:F
CMA
END1:F

OUT
JR

END

FLIP

LIGHTS
LOOP

LOOP

; Flip the bits.

Display in the lights.
And ,repeat.

; Start at LOOP.

- t; -

Here, is a': listing' of" the'program "in" th'e previous' example as';':lt:: is
~ssembled. Notice how the macro· and 'conditional code is'
'rea,ted.

Light Test.

0000
FFFF

FFFF

OOFF
DOFF

DOFF

0000

0100

alan DB FF

0102+FE FF
010'4+CA 0000'

FFFF
Olf)7 2F

0108 03 FF
OlOA 18 F4

0100

; Lig ht Test.

FALSE. EQU
TRUE EQU

FLIP EQU

LIGHTS EQU
SWITCH EQU

ENDeOD EQU

NDTEST:MACRO
CPI
JZ

ENDMAC

ORG"' ,

LOOP: IN
NDTEST

CPI
JZ

IF
CMA
ENDIF

OUT
JR

ENO

- 7 -

o
NOT FALSE

TRUE ;

OFFH
OFFH ;

111111l1B;

;
ENDeOD
0

10OH' ;

SWITCH ;
;

ENDeOD
0

FLIP
;

LIGHTS ;
LO'OP ;

LOOP ;

ASMBLE v-Sb Page 1

Complement flag.

Front panel rights port.
Front panel switch port.

Switch pattern for stop.

Test for ENDeOD in A.
; Time to quit?
; Yes. Back to monitorland.

Put the code at location loa:;

Read the switches.
Test for end.

.i, Time to quit?
; . Yes. Back to monitorlanc.

FI ip the bits.

Display in the lights.
And repeat.

Start at LOOP.

ASMBL~/Z

,Here is a listing of- the same:' program' except that FLIP has;',been ":
set to false. Notice how this changes the conditional code.

Light Test.

0000
FFFF

0000

OOFF
OOFF '

()OFF

nooa

0100

(llOO DB FF

Ol02+FE FF
01n4+CA nooo

0000

0107 03 FF
0109 lR FS

OlOO

ASMBLE/Z

i Light Test.

FALSE EQU
TRUE EQU

FLIP EQU

LIGliTS EQU
SWITCH EQU

ENDCOD EQU

NDTEST:MACRO
CPI
,JZ

ENDMAC

ORG

LOOP: "IN
NDTEST

CPI
JZ

IF
eMA
El-JDtF

OUT
JR

END

- R -

o
NOT FALSE

FALSE

OFFH
OFFH

ASMBLE v-5b pa~. ~

Complement flag.

Front panel lights port.
Front p~nel switch port.

11111111B: Switch pattern for stop.

. ,
ENDCOD
o

JC10H

Test for ENDeOD in A.
Time to qui t?

: Yes. Back to monit~rland.

~ut the code at location lnOH.

SWITCH ; Read the switches.
Test for end.

ENDeOD ; Time to quit?
a ; Yes. Back to moni torlr ~.

FLIP
Flip the bits.

LIGHTS Display in the lights.
LOOP And repeat.

LOOP i Start at LOO?

ASSEMBLER OPERATION

The nssembler operates in two passes.
identical in both passes.

tts operation is almost

During the first pass the input file is read an~ each source line
is processed. Each time a symbol is defined it is entered inte
the symbol table. All error messages except SYMBOL NOT FOUNT),
REDEFINED, and OUT OF RANGE are printed during pass one.

During pass two the input file is read again and each source line
is processed. If the source line generates any machine code, it
is sent to either the binary, hex, or relocatable output file im
the proper format. A copy of the line of source text along witt
the address and generated machine code is sent to the listing
file.

ONCE THRU CODE

The in i t i al i zat ion routine used by the assembl er· is wr i tten in
once through code and is located in the symbol ;:able region. Yot:
may restart or save the assembler at any time ~lile the assembler
is ~sking the file name. question. After the question hnS beer.
answered, the 'assembler no longer needs the ini tial ization code
and destroys it. From this point on the assembler must bE
reloaded in order to restart it.

- 9 - ASMBLE/'~

RELOC~TIO~

There are two terms, module and section, which have special
meanings when used to describe relocatable code. When one or
more source files are assembled the resulting relocatable code is
c;:1lled a module. That is, each time the assembler is used to
gene ra te relocatab Ie code it prod uces a sing Ie module. The
module may contain one or more sections. It may contain a
prog ram section, a data section ,'and one or more common
sections.

ASMBLE/Z can produce relocatable modules. ·These modules are
10 ad ed . into memo ry by the 1 inker • Ta ken, tog ether, these two
programs (the assembler and the linker) provide very powerful
facilities for the programmer:

l) Source code (in a SRC file), written with all address
references represented by symbols, can be assembled into a
reloca tabl e mod ul e, wh ich is then sen t to the I inke r . The
linker can be told to IQad the module at nearly any address:
that is~ the module is relocatable. The relocatable modules
require relatively little processing by the linker as
compared to the processing the assembler performs on n
sour~e file, and therefore the relocation of a module can be
accomplisheo in very little time.

'2\ Several relocatabl'e modules can, be l,oaded by.the linker, into,
different loc'ations' in memo·ry~ the linker determines the
absolute addresses so that all the code is loaded properly,
each relocatable module going into the next memory location
left free by the last relocatable module.

"3) Convenient means are provided to allow various relocatable
mod ul es to rna ke re fe rences to each other. Th is means tha t
there can be sy~bols in a source file which only reference
other- place.s in the same source file (this means that they
can be duplicated in other source files you wish to link
without conflict) and, on the other hand, certain labels can
be specified as entry point symbols or external symbols
(see ENTRY and EXTERNAL section), allowing different source
files to have common symbolic references. If in one source
file a certain symbol is specified as an ~ntry point, then
references to that symbol in other, ~odules - if they are
declared as external symbols - will be performed correctly.
Th us, mod ul es can call subrout i nes and refe r ence da ta in
other modules.

L1) .~lso available are common sections. These are typic2l11y
used to transfer datn between different modules. Each
relocatable module may have up to l~ of these, distinguished

ASMBLE/Z - 1(') -

by their name any symbol ic label desired, or a blank
label, is permitted. When 'the various source files' are
assembled into relocatable modules and are then loaned into
memory by the 1 i'nker, these cor:tmon sections are grouped
together from all the different modules according to nC:Hne.
The common sections are overlayed: the 1 inker assumes that
any common sections wi th the same name ((ill bl ank commons
are assumed to have the same name) represent identical
locations in memory. Thi s a 110w5 the d i ffe rent mod ules tc
have common tables of data, so that when one module calls c
subroutine in anoth~r, for in.stan.ce, it can pass a
reference to a table in a common area that the other
subroutine can use to process datae

S) Other named sections are provi~ed: PROG r ASS, and DATA. The
PROG (program) is the defaul t section which is assumed if DC

section label is given. ABS provides the facility for
writing abs~lute code that will not be relocated, when th~'
is desired. DATA is provided so that you may, if yr'.
desi re, locate the data section. 0 f a prog ram in a d i ffer:e~.
area than the instruc:tion area, as might be necessary if
the program is to be burned into a PROMQ

~) A facility of the linker that prvv~des even more programmin~
power is the ability to construct library modules. These
are pr()duced in much the same w?y 2S ,:.! normal relocatablE
modules by writing source files r assembling them tc
produce relocatable modules, and linking them - .except that
in the librari-an mode, the linker prOOtlCes' a library file c.:
output instead 0 f executable absol ute binary· cooe. Th i s
library file contains relocatable modules, but provides E

powerful additional feature. You typically load one or mO~E
relocatable modules wi th the 1 inker f followed by a 1 ibrar)
file: the linker treats the library file in a special way;
in that, as it encounters eNch module in the library fil~1
i t c h ec ks to see i fan y ref ere nee 5 h 0 v e b e'e n mad e tot;-: E

entry po int symbols in the.t 1 iora ry IY1Cdul e ~ !f the 1 inkE:!
finds no requests for these en try po in ts , it ski ps th;-;. t
module of the library fil~ without loading it, nnd moves ~~
to the next. On the other hand~ if the linker finds that it
needs one or more entry points in the library file it loac~
that module.

These features together provide a very fle~{ible Z-RO assembl~
language environment. The operation of each facility i;
explained in detail in later sections of this ~anual.

- 11 -

.~O]jULE SECTIONS

A relocat~ble module may contain up to eighteen different
sections to allow you to store absolute, program, dnta, and
(:ommon code. Each section has its own program counter. At the
beg inning of an assembly all program counters are set to zero.
As the assembler generC\tes code in one section the appropriate
program counter is incremented to keep track of the location of
each byte of code. As labels are generated they are marked as
belong ing to that section 0 f code. When yoU" change from one
section to another (you may do this as often as you like) the
assembler saves the program counter from the last section and
loads the program counter for the new section. Later on, if you
switch back to the previous section again the program counter
points to the next available byte in that section c=ind the code
assembly continues from where it left off.

For example, if you generate three bytes in section one they are
stored at" locations on, 01, and O? in section one t s base. Then
you generate two bytes in section two. They are stored at
locations 00 and 01 in section two's base. Now., if you generate
another byte in section one it is stored at location () ~ in
section one's base.

The ekghteen different sections are called by name. The first
three sections are called ;85, PROG," and DATA (when·the assembler
starts it spec i fies PROG as the defaul t section'. The remaining
fifteen sections are called COM. ~ach COh1 section has a user
defined name. The names are only significant in the first eight
charClcters (the same as symbol names). One COM section may be
unnamed. It is referred to (=\s blank common. You may change to
any section by giving its name as an instruction. For example:

DATA
PRtJG
COM
COM
DATA

T~BLE

Star"t the DATA section.
Start the PROG section.
Start a common section named TABLE.
Start a blank common section.
Continue in the DATA section.

The assembl er trea ts all eighteen sect ions al i ke. That is, it
maintains a separate program counter for each section and marks
all labels generated in a given section as belonging to that
section. The 1 in ke r, on the other hanci, trea ts the sections
~ifferently. Absolute code from the ABS section is always loaded
into absol ute memory as spec i fi ed (that is, it is not
relocated). If several modules are being linked together the
PROG and DATA sections from the various modules are loaded into
different regions of memory. All common sections of a given n~me
are loaded into the same locations. For example, assume· the

ASMBLE!Z - l~ -

linker loads two modules which each contain a PROG section and a
blank common section. When the program runs, the part of th':
program in the first module's PROG section might store a" dat3
byte in the first location of blank common. The part of th::
program in the second module's PROG section might load the same
byte from the first location of blank. common.

You should use a little caution when generating code in ABS and
COM s~ctions. This code may be overwritten by. other modules
which are 1 inked together. For exampl e, one module may
initialize a table in a common section in one way and another
mod ul e may ini tial i ze the table in the same common section in
another way. The order in which the modules are specified to the
1 inke r determines wh i ch i ni t i al i za ti on is overwr it ten and wh i ch
one remains loaded. rt is usually better to simply reserve space
ina 11 co mm 0 n sec t ion s wi th the D Sin s t r u c t ion and in i t i ali z e
them ~t run time.

You may also change sections with an ORG instruction. The type
of argument (that is, the section in which the argument Wc$

defined) determines the new section. For example, if BLOTZ il
the name of a location in the data section, then:

ORG BLOTZ+?i

tells the assembler to generate code in the data section 2i bytes
~eyond' ·BLOTZ·.

You should be very careful about using the ORG instruction in
programs that use external symbols (see ENTRY and EXTERNAL
section, below). The assembl·er gen~rates all references to an
external symbol of a .g iven name as a I inked 1 ist. The last
reference points to the previous reference, etc. The I ist must
be intact for the ·linker to properly resolve the external

" symbol. If you rewri te a section of code wi th the ORG
instruction (for example, ORG S-~O) and an external reference is
overwritten, then th~ linked list is broken and the linker will
do unpredictable things. This c~nnot happen if you use the PROG~
and D~T~ instructions.

Referencing external symbols in a common section is also a
dangerous practice because the linker overlays all common
se~tions of the same name. In general, it is not n good practice
to store any executable code in common sections.

- l~ - ~SMBLE/1'

ENTRY arid. EXTERNAL

Manules may communicate' wi th'each other t!1rollgh common sections
as explained in t 11 e' p r ev i 0 II spa rag r n p ~ s • . They rna y, also
communicate by specifying various locations as entry points in
one module, and as an external symbol in another module.. The
linker matches up all the entry point symbols in one module with
all the external symbols in other modules. it is linking.

Entry points and external symbols are treated as 'sixteen-bit
address values. Therefore, if BLOTZ is an external symbol you
may refer to it in a statement such nS LX! H,BLOTZ, but you may
not refer to half of an external address in a statement such as
MVI A,BLOTZ/2St:;.

A module may specify certain locations as entry points, in which
case they must be de fined in the same module.. The mod ul e may
also specify certain locations as external to that module. These
locations must not be defined in th~t module but will be defined
later in the link~ng operntion. For example, suppose you are
writing ~ navigation module. which uses trig functions
(subroutines) in another module. 1:n your navigation module you
might write:

EXT
LHLD

. CALL

LHLD
CALL

SIN,COS,TAN
ANGLE
SIN

ANGLE
COS

define SIN, COS, TAN as externals'

In the trig function module you might write:

SIN:

cos:

ASMBLE/Z

ENTRY
PUSH

P0P
RET
PUSH

SIN,COS,T~N

H

H

H

- 14 -

; define SIN, COS, TAN nS entry points.

When __ the linker links these modules it first loads them into
memory and dete rmines the- actual": locat ions of the three entry
points, SIN, COS, and TAN, in the.trig function module. Then it
goes through the navigation module 'and sets the actual addresses
for the three external symbols.

3very relocatable module has a name. The name is initially set
to the first eight characters of the output file (REL file)
name. You may change the module name at any time with the NAME
instruction. You may change the name as orten as you like but
only the last name specified is given to the output file. For
example:

NAME TRIG

- 15 - ASMBLE/Z

LIBRARY

'Related relocatable modules'," us'ually subroutines, may be
collected together in a single file called a library_ Various
modules from the library are selectively-' loaded by the linker
after the main routines (modules) of a program are loaded. That
is, the main routines of a program usually need to use
subroutines which are found in the 1 ibrary. The main routines
are loaded fi rst. Whenever a main routine needs a 1 ibrary
subroutine it declares the subroutine's entry point to be
external to the main routine. The I inker places the subroutine
entry point name (symbol) in the external symbol ·table. After
the main routines have been loaded (and several symbols have 'been
placed into the external symbol table) the linker selectively
loads the library. It compares entry point symbols from each
library module with symbols in the external symbol table. If it
finds a match, that is, if it finds that one or more entry points
in a I ibr'ary mod ule will resolve external symbols, it loads the
module~ If it does not find a match it skips the module (since
it does not need it) and goes on to the next one.

A module in a library. may contain external sYmbols as well as
entry point symbols, that is, the module may require the services
of one or more other modules in the library. For example, in the
TRIG library, the TAN and COT modules calculate the tangent and
cotangent of an angle. These modules make use of the identity:
TAN(a)=SIN(a)/COS(a),. and call the S:IN and COS modules to
cal cuI ate the sine and cosine 0 f an angl e. The' TAN and COT
modules also call the DIV module to perform the qivision.

A library should load all necessary modules (and no unnecessary
ones) in one pass. This means th~t a module should appear in a
1 ibrary after it has been referenced by an external symbol in
other modules. That is, external symbols should forward
reference the modules in which the symbols are defined (as entry
points). For example, the COT module should come before the TAN
module because it uses the TAN function in its calculation
(COT(a)=l/TAN(a)). The TAN module should come before the SIN and
COS modules. The SIN and COS modules do not reference each other
and thus may appear in any order. Everything references the DIV
module so it should come last. With the library put together in
this order the required modules (but no more) will be loaded no
matter what the main routine may require.

Sometimes it is not possible to arrange library modules so that
their external symbols only reference in a forward direction.
For example, suppose that some subroutines in module A reference
some subroutines in module B and some other subroutines in module

ASMBLE!Z - If; -

B reference some subroutines in' module A (fold your hands and
think about it). There are several things you can do to rectify
this situation: You may decide. that module A and module B should
be combined into one larger module thus eliminating the cross
referencing. Or you may find that you can eliminate' the cross
referencing by moving some subroutines from one module to the
other.

However, it may not always seem possible to eliminate the cross
referencing. In that case you may put two copies of module A
into the library, one before and one after module B. If the main
routine needs module A it is loaded the first, time it, is
encountered in the library. Module A then references module B
which is loaded next. When the second copy of· module A is
encoun tered in the library it is ski pped beca use all external
references to it have al ready been resolved (resolved external
symbols are removed fr'om the ex.ternal symbol table). On the
other hand, if the main routine needs module B it is loaded first
followed by module 'A. In either case both modules are loaded,
only their order in memory is differ~nt.

It is a good idea to put non-modifiable execution code (pure
code) in PROG sections and modifiable data in D~.TA sections.
This is true in both main routines and in libraries. If you eve:
want to burn a program into a PROM you simply tell the linker to
load all PROG s,ections into the PROM reg ion of memory and to
allocate 'space in read-'"ri te memory for, the data. For example 'I

suppose you have a pair of text buffering subroutines: one
subroutine gets a complete line of te~t from the keyboard and
puts it into a line buffer, the companion routine returns the
next sequential character from the 1 ine buffer each time it is
called. These two " subroutines would be placed in the FROG
section of the module and the line buffer would be placed in the
DATA section.

- 17 - ASMBLE/Z

PROGRAM COUNTER-

The "assembler" evaluates each line of source code and generates
one or more bytes" ·of machine code • ·The machine code will be
loaded into sequential memory locations later on. The assembler
keeps track of the current memory address in its program
counter. This is a 16 bit counter which starts with a value of
zero. Each time the assembler generates a byte of machine code,
it increments the program counter. - Since each byte is stored in
a location whose address is one greater than the address of the
last byte, the value of the program counter and the value of the
current memory address always agree. This one-to-one
correspondence is, of course, altered when a relocatable module
is loaded by the linker.

The program counter
following' examples I
line.

IHERE EQU $

may be read wi th the symbol
represents the left edge of

s .
the

In the
source

HERE is set to the current value of the
prog ram counter.

There are actually eighteen different program counters; one each
for the absolute, program, and data sections, and one for each of
the fifteen different common sections. Every time a new section

.is entered ~he program ~ounter for- the last sec~ion ~s saved and
the program counter for the new - section is loaded. This means
that you can generate code in a program section, for example,
then swi tch to the data section, generate som~: data code, then
swi tch back to the prog ram section and continue generating code
from where you left off.

ASMBLE!Z - 18 -

SYMBOLS

A symbol represents a number or an instruction. It starts with
let ter , doll ar sign, percent sign, dot, number sign, 0:

underscore and may contain any of the following characters:

0-9
A-Z
a-z

$
%

Numbers
Upper case letters
Lower case letters
Dollar sign
Percent sign
Dot
Number sign
Underscore

Here are some examples of symbols and non symbols:

$
ABC
X27

4SALE
DA 3

A symbol may start with S.
A symbol may start wlth a letter.
A symbol may contain numbers.

A symbol must not start with a number.
A symbol must contain only alphanumeric
characters, $, %, ., t,

Whe~ a symbol is evaluated' all lower case. characters ar~
transla·ted into upper case characters •. The follo.wing symbols al~
have the same value:

mov
Mov
MOV

When the assembler extracts a symbol from a source line, it pick~
up characters until it has a total of .e ight characters or unt i:.
it reads a non-symbol character. Any symbol characters beyorJ!
the fi rst eight are ignored. Here is a 1 ist of symbols as the:
appear in a source line and as they are extracted by th~
assembler:

abc123
A,B
VALUE 12
VALUE13

ABCl23
A
VALUEl
VALUEl

In the first example the lower case characters are translate{
into upper case characters. In the second example the symbol i!
A and is terminated by the comma. In the third and fourt:
examples only the first eight characters are significant in the
symbol. The rest are ignored. Notice that VALUE12 and VALUE1:

- 19 ASMBLE/:

are treated as the same symbol.

LISTING

The first line on each page of the listing is the program header
line. It is made up of the first line from the first source file
(with leading semicolons, spaces, and tabs stripped off) I the
current date, the assembler version number, and the current
page. The remainder of the page contains the prog'ram listing.

Each listing line contains the address of the first byte of code
in the line, up to four bytes. of code, and the source text which
generated the code.

The DB and DS instructions may generate more than four bytes of
code. In this case the extra code is listed on subsequent
lines.

Some instructions do not generate any executable code (for
example, EQU, IF, END, etc). The address is left blank in these
1 ines to indicate that no code is generated. However, many of
these instructions have a .numeric value ·associated wi th .them
which is listed.'

Addresses associated with relocatable (non absolute) code
sections are followed by various characters to indicte the code
section in which they were generated. The characters are as
follows:

"
*

FROG
DATA
COM
EXT

Macro definitions are noted with a minus sign following the
address. Macro expansions are noted wi th a plus sign following
the address.

Macro definitions, macro expansions, and conditional statements
(IF) may be nested (a macro expansion may call another macro
expansion, for example). The source text is indented two spaces
for each level of nesting.

ASMBLE!Z - 20 -

Sixteen-bi t val ues are 1 isted wi th thei r most signi ficant bytt
first for readability, but they:'~ are stored with their leas1
significant byte first. For example, the following instruction,

LXI B,1234H

is listed as:

0000 01 1234 LXI B,1234H

and generates the following code:

01
34
12

The symbol table follows - the program listing. The first lin
contains information about the assembly (number of error
detected, number of symbols generated, and amount of unused spac
in memory). If the program generated any macros the r:lext 1 in
contains information about the macros (number of character~
stored and number of macros generated). The next line conta: T'lE

information about section sizes (size of absolute, program, C~JC
data sections) followed on subsequen t I ines by the names 0 f a lj
common sections and their sizes (blank common is listed as
* *). The symbols follow on the next page in col'.xn:
alphabetized order followed by their sixteen bit value writter
as four hex characters. If a value is a relocatable address i~
is followed by ~h~.corresponding . relocation cha~actei (', ", *,
or i). MacI'o names are also listed in the table followed by the
letter M in place of the value.

- 21 - ASMBLE/~

, SOURCE, LINE ,FORMAT

A source line consists of a label field, an instruction field, an
argument field,~and a comment field. - Each line may contain ,none,
any, 0 raIl 0 f th e s e fie 1 d s • Th i sis wh a t a sou r c eli n e 100 k s
1 ike:

I LABEL INSTRUCTION ARGUMENT(S) COMMENT

LABEL FIELD

A 1 abel is a symbol which beg ins in the fi rst col umn. If a
symbol does not beg in in the first col urnn it is not a 1 abel.
This means that you may hav~ only one label on a line since there
is only one first column on a line. It also means that you may
not indent labels.

I BOB BOB is a label.
I CHARLIE CHARLIE is not a label; it is indented.

A label may be terminated with any non symbol character, that is,
a space, tab, colon, etc.

I MULT
"DIV:

Label ends with a space.
Label ends with a ciolon~

The symbol used in a label is given the current value of the
program counter. Since the value of the program counter is
equivalent to the current memory address, each label is equal to
the memory address of the first byte in its line. For example,
suppose that the current value of the program counter is 123.

IMIX: MOV A,B
IMAT~H:MOV C,D

MIX is given the value 123 since the value of the program counter
is equal to 123 at the beginning of the first line. The
instruction MOV A,B generates one byte of code. This increments
the program counter. At the beginning of the second line it has,
a value of 124 so MATCH is given a value of 124. In the case of
relocatable code, the assigning of actual memory addresses to
labels is deferred until the linker loads the code.

ASMBLE/Z - 22 -

INSTRUCTION FIELD

An instruction is a symbol which does not beg in in the fi rst
column. The assembler tells the difference between labels and
instructions by 'noting whether' or not the symbol star.ts in the
first column.' The instruction symbol may only be terminated with
a space, tab, semicolon, or carriage return. '

ITOP: RAL
I PCHL
I
\L26:CMA
I

TOP is a label. RAL is an instruction.
PCHL is an instruction.
It does not start in the first column.
L2~ is a label terminated by a ~olon.
CMA is an instruction.

- 23 - ASMBLE!Z

,ARGUMENT FIELD

Some instructions require one or more" arguments. The. arguments
are separated' from the instruction ~y ~ne or more tabs or
spaces. If the instruction requi res more than one argument the
multiple arguments must be connected by commas and must have no
intervening tabs or spaces. The only exception to this rule is
the use 0 f th ear i thm e tic 0 pe r a to r NOT. It m us t be s epa rat ed
from the argument it modifies by a· tab or a space. Here are some
examples of single arguments:

COUNT
C
'G'
'AB'
, Time'
36 .
NOT TRUE
TOP+2

A symbol
Either the symbol C or register C
A one byte te~t string
A two byte text string
A multi-byte text string
A number
An arithmetically modified symbol
Another arithmetically modified symbol

He re are some exampl es of instructions wh i ch requi re sing 1 e and
multiple arguments:

POP D
ADI 100
SUI PVAL

MOV e,A
LXI H,ADDR
LXI B,'XY'

In the first example the instruction POP requires a single
argument which must be a register name. The instructions in the
second and third examples require a single argument which may
have any eight bi t val ue. 100 is used as the val ue 0 f the
argument in the second example;' the value which PVAL represents
is used as the argument value in the third example. In the
fourth example the MOV instruction requires two arguments which
must be register names. The arguments are separated by a comma.
The instructions in the last two examples require two arguments.
The fi rst a rgumen t must be a reg ister name. The second argument
may have any 16 bit value. The value of ADDR is used as the
value of the argument in the fifth example; the l~ bit value of
the text string' XY is used as the argument value in the last
example. .

ASMBLE/Z - 24 -

COMMENT FIELD

Any line of source code may contain a comment. The comment is
optional. It is just a place for you to make a remark about the
source code (or anything else, for that matter). The comment
field usually contains a running commentary on the operation of
the prog ram.

A comment is separated from the instruction or arguments by a
tab, a space, or a semicolon. If a line contains nothing but a
comment field the comment must start with a semicolon or an
asterisk. Here are some examples of source lines with comments.

I MOV
I CMA
I MOV
I; This line
I

A,B This is a comment.
; This comment starts with semicolon

D,A; This comment is separated by semicolon.
contains only a comment.

;50 does this one.

- 25 - ASMB LE/Z

MACROS

A macro is a' named collection of' one or more lines' of code.
After the macro ,has been defined,·,' it. may be inserted into a
program one or more time~ simply by typing' the macro's name in
place of an instruction'.' See the ASSEMBLER' INSTRUCTION section
for more detailed information about macros.

A macro is defined by the instruction MACRO. It must have a name
which starts in column one. The body of the macro follows on
subsequent lines. The end· of the macro definition is indicated
by the instruction ENDMAC.

I FLIP: MACRO ; DEFINE A MACRO .CALLED FLIP.
I MOV A,M . GET A BYTE. ,
I CMA ; COMPLEMENT IT.
I MOV M,A REPLACE IT.
I ENDMAC ; END OF MACRO DEFINITION.

This macro may be called in a program by using the name FL~P as
an instruction.

LXI
FLIP

H,ADDR POINT TO A MEMORY LOCATION.
; COMPLEMENT ITS CONTENTS.

When the program is assE'mbled, the macro in the p~eceding example
is expanded as follows.

LXI
MOV
CMA
MOV

H,ADDR
A,M

8,M

i POINT TO A MEMORY LOCATION.
GET A BYTE.
COMPLEMENT IT.
REPLACE IT.

Notice that the comments in the macro definition are stored with
the macro text and appear in the listing when the macro is
expanded •. If your program defines quite a few macros, a lot of
storage space may be taken up by comments. You can save this
space by starting each comment with two semicolons. This
prevents the comment from being stored.

I COM:
I
I
I

MACRO
MOV
MOV
ENDMAC

A,M
M,B

; THIS COMMENT IS STORED.
;; THIS COMMENT IS NOT.
; END OF MACRO DEFINITION.

This macro is expanded as follows:

ASMBLE/Z

MOV
MOV

A,M
M,B

; THIS COMMENT IS STORED.

- 26 -

A macro may be defined'with dummy arguments which are replaced
wi th real arguments when·'. the' macro is called later in the

r 0 g- r am • Th e d umm y a r g urn en t s are 1 i s ted '0 nth e fir s t 1 in e 0 f the
macro as arguments separated, by commas. Each time a dummy
argument is encountered in the body of the'macro, it is replaced
with a numbered marker.

When the macro is called, the real arguments are given on the
call line as arguments separated by commas. The first real
argument replaces every occurrence of the first marker in the
macro body, the second replaces the second, etc. If there are
too many real arguments the extras are ignored. If there are not
enough real arguments the missing ones are treated as null
arguments, that is, arguments without any characters in them.

!OUTPUT:MACRO
I' LDA

PORT,ADDR; DEFINE MACRO CALLED OUTPUT.
ADDR ; GET CONTENTS OF MEMORY LOCATION.

I OUT
I ENDMAC

PORT ; T~ANSMIT TO OUTPUT PORT.
;' END OF MACRO DEFINITION.

The macro is called as follows:

0UTPUT 27H,DATA; TRANSMIT A BYTE FROM DATA TO OUTPUT PORT 27.

It is expanded like this:

LDA
OUT

DATA
27H

; GET CONTENTS OF MEMORY LOCATION~'

; TRANSMIT TO OUTPUT PORT.

The dummy arguments may occur anywhere in the macro body,
including the label and instruction fields.

IMACK: MACRO
I LAB: INS
I ENDMAC

LAB,INS,ARGl,ARG2
ARGI,ARG2

This macro is called as follows:

MACK ABCl,MOV,A,M

It is expanded as follows:

IABCI: MOV A,M

Dummy symbols are treated like ordinary symbols. They must start
with a letter, $, ., %, 4, or • Only the first eight characters
are significant. However, the arguments which' replace the
markers when the macro is expanded may contain any number of
characters including quoted commas.

- 27 - ASMBLE/Z

A dummy argument may be concatenated with text in the macro body
by using the ! as a concatenation character. Whenever
immediately precedes or follows a dummy symbol in the macro body,
the ! and the dummy symbol are both replaced by the marker,
without any intervening space. When the macro is later expanded
the marker is replaced b'y a real symbol.

ITEXT: MACRO
ITITAG:D8
I' ENDMAC

TAG,TXT
TXT,O

This macro is called as follows:

TEXT
TEXT

1,"Hi there, boys and girls"
2,"This is Uncle Fink"

It is expanded as follows:

I Tl':
., T2:

DB
DB

"Hi there, boys and girls",O
"This is Uncle Finkn,o

One macro definition may contain another macro definition. The
dummy arguments apply to all the macro definitions. The text for
the inner (contained) macro definition is modified and stored
inside the outer macro body_

IOUTER:MACRO ARG1,ARG2; DEFINE OUTER MACRO.
I LDA ARGI
IINNER:MACRO . ARG3 DEFINE .INNER- MACHOe.
I ADI ARG3
I ENDMAC END OF INNER MACHO DEFINITION.
I STA ARG2
I ENDMAC END OF OUTER MACRO DEFINITION.

At this time OUTER has been defined but INNER has not. A call. to
INNER resul ts in an error message e INNER is defined when OUTER
is called and expanded.

OUTER HERE, THERE

It is expanded as follows:

I LDA
IINNER:MACRO
I ADI
I ENDMAC
I STA

HERE
ARG3
ARG3

THERE

DEFINE INNER MACRO.

END OF INNER MACRO, DEFINITION.

Now INNER has also been defined. It can be called as follows:

IPOINT:INNER 34

ASMBLE!Z - 28 -

Notice that the label POINT has been placed in front of the"',macro
call. It is expanded as follows:

ADI 34

Finally, a macro may contain a.call to another macro. In fact,
macro expansions may be nested to sixteen levels.

INEST: MACRO PLACE
I LDA PLACE
I INNER 123 ; NESTED MACRO CALL.
I STA PLACE
I ENDMAC

It is call ed as follows:

NEST SOPPER

This is expanded as follows:

LDA BOPPER
ADI 123
STA BOPPER

- 29 - ASMBLE/Z

ARGUMENT FORMA'T

Each -argument may be made up -of any combination of user defined
symbols, numbers I or quoted character strings. They may, be
combined by + (add),' - (subtract' or neg'ate), * (rnul tiply), /
(divide), and & (logical and) ~ Any'argume'nt may be preceded with
the word NOT (complement). The arithmetic procedures are carried
out from left to right. No parentheses are allowed. For
example, 1+2*3 is evaluated as 9, not 7~ Arithmetic symbols may
not be combined. For example, SYM1&NOT SYM2 causes an error. To
prevent the error, divide the operation into two 1 ines. The
first line is NSYM2 E·QU NOT ?YM2. The second line contains
SYM1&NSYM2.

ASMBLE/ Z - JO -

RELOCATABLE SYMBOL ARITHMETIC

Absolute symbois may- be used in all arithmetic operations. For
example, the following operations are all valid:

ABS
OFFSET EQU 27

LDA S+OFFSET
STA TABLE-OFFSET

TABLE: OS 100

Relocatable symbols may be used in some arithmetic operations but
not in others. A constant (absolute)' symbol may be added to or
subtracted from a relocatable symbol. The resul t 0 f the
operation belongs to the same section as the relocatable symbol.
A relocatable symbol may not be multiplied, divided, anded, or
NOTed.

PROG
LOA
LXI

TABLE-3
H,TABLE/4

TABLE: OS 100

Valid
Not val id

-.
. A re+.ocatable symbol' may be subtr·ac~ed from ,another relocatablE;:.
symbol of the same section. The result is the absolute
difference between the two symbols. The two symbols may not be
in different: sections because the addresses represented by the
symbols are not known until the module is linked.

DATA
TABLE: OB 'A'

DB
LENGTH EQU

f Z •
TABLE-S NUMBER OF BYTES IN TABLE

- 31 - ASMBLE/Z

The assembler evaluates an expression from left to right. --In-the
following example the fi rst two terms are relocatable but the
resul t of the subtraction is an absolute number which may be
divided by another absolute number.

DATA
TABLE: DW

DW
LENGTH EQU

BLOTZ

BLINTZ
TABLE-$/2 ; NUMBER OF ADDRESSES IN TABLE

An external symbol may not be used in any arithmetic or logical
operation.

ASMBLE!Z

EXT
LDA
STA
LHLD

BLOTZ
BLOTZ Valid
BLOTZ+3 Valid
3-BLOTZ Not valid

- 32 -

STRINGS

A quoted character string must start with either a single quote
(') or a double quote (tf). The quote character is used as a
delimiter to determine the end, of the string. All characters in
the string up to but not including the' second delimiter are
evaluated. Both delimiters must be the same. If the second one
is missing, all remaining 'characters up to the end of the line
are considered part of the quote string. For example, DW 'AB' is
evaluated as 4142H.

NUMBERS

Some instructions requi re a sing le byte argument. If the val ue
of the evaluated argument requires more than one byte to express 1

an error message is printed. For example, 2~O is eval.uated a£·
104H. MVI A,260 gives an error message. The ex.ception to thiE
rule is a number whose high byte is OFFH, such as -2 (OFFFEH).
This number returns only the low byte without an error message~

Numbers may be represented in binary, octal, decimal, or hex
no tat i on • All n um b e r s m us t s tar t with a dec i mal dig i t (a - 9).
That is, a hex ~umber that starts wi th a 1 etter should have a
zero before it" or it will be interpreted as a symbol (OFFH). If
the' number is not a decimal number it must' end wi th a letter to
indicate the notation.

TYPE DIGITS TERMINATION

Binary 0 - 1 B,
Octal 0 - 7 0 or Q
Decimal 0 - 9 ·0 or or nothing
Hex 0 - 9, H

A - F

- 33 - ASMBLE!Z

Here 'are some examples of proper numbers:

lOllOOlB

1357Q, , .
224~O

. 24fS8.
1234D

99

3B9CH
OFFFH

ASMBLE!Z

~.inary

Octal

Decimal

Hex

- 34 -

RELATIVE JUMPS

The reI ative ,j urnp . 'i nstructions' requi re an arg ument . wh ich is
evaluated as a l~ bit address. The difference between the
address and two plus the current value of the program counter iSI

used as the eight bit signed relative jump offset. If the offset
canna t be expressed by an eight bi t number, that is, if the
address is farther than plus or minus 127 bytes from the prograrr
counter plus two; the jump cannot be made and an error message is
printed. A relative jump may start and end in the same
relocatable section but it may not jump from one section tc
another.

- 35 - ASMBLE/:

REGISTER NAMES

Single' (eight bit) registers have the following names:

A
B
C
D
E
H
L
M
d (IX)
d(IY)
I
R

Interrupt vector register
Memory refresh register

M is a memory location whose address is in the HL register pair,
that l,s, HL points to register M. Memory locations d (IX) and
d(IY) are locations whose address is the contents of the IX or IY
register added to d where d is a signed eight bit number. The
symbol d can be eval uated as a signed eight bit number. It may
also be omitted' altogether.

Double (16 bit) registers have the following names:

B Be pair
D DE p·air
H HL pair
PSW Processor status word, A and flags
sp stack pointer
IX Index reg ister X
IY Index register Y

P may be substituted for PSW, S .may be substituted for SP, and X
or Y may be substituted for IX or IY in any instruction.

ASMBLE!Z 1~ -

MACHINE INSTRUCTIONS

Th is section con tains the machine instructions 0 rg ani zed int,:.;
logical groups. They generate ·code which tells the computer who".
to do. The first line of the description of each group. c>:
instructions is an example of the proper use of an instruction in
the group_

- 37 - ASMBLE/

JUMP, CALL

Format: JMP BLOTZ

The j urnp and call instructions requi re an argument which is
evaluated as a 16 bit address.

JMP Jump.
JNZ Jump if non-zero.
JZ Jump if zero.
JNC Jump if no carry.
JC Jump if carry.
JNV Jump if no overflow.
JV Jump if overflow.
JPO Jump if parity is odd.
JPE Jump if parity is even.
JP Jump if pos i tive.
JM Jump if minus.

JNV generates the same code as JPO. JV the same as JPE.

JR
JMPR
JRNZ
JRZ
JRNC
JRC

DJNZ

Jump relative.
Jump relative.
Jump relative if non-zero.
Jump relative if zero.
Jump relative if no carry.
Jump relative.if ·carry •.

Decrement B and jump relative if B <> o.

Fo rma t : CALL B LOTZ

CALL Call a subroutine.
CNZ Call if non-zero.
CZ Call if zero.
CNC Call if no carry_
CC Call if carry.
CNV Call if no overflow.
CV Call if overflow.
CPO Call if parity is odd.
CPE Call if parity is even.
CP Call if positive.
CM Call if minus.

CNV generates the same code as cpo. CV the same as ePEe

ASMBLE/Z - 38 -

RETURN

Format: RET

The return instructions do not require an argQ~ent.

RET Return from a subroutine.
RNZ Return if non-zero.
RZ Return if zero.
RNC Return if no carry.
Re Return if carry.
RNV Return if no overflow.
RV Return if overflow.
RPO Return if parity is odd.
RPE Return if parity is even ..
RP Return if positive.
RM Return if minus.

RNV generates the same code as RPO. RV is the same as RPE.

RET!
RETN

Return from interrupt.
Return from non-maskable interrupt.

- 39 - ASMBLE/2

RESTART

Fo rma t : RST 3

The restart instructions require an argument which represents a
number between zero and seven.

RST n Restart at location n*R where n is a value from 0 - 7.

ASMBLE!Z 40

ACCUMULATOR

Fo rmat: ADI 27

The accumulator immediate instructions require an argument which
is evaluated as eight bitse These instructions modify all
flags. All instructions except CPI leave the result of the
operation in the A register. The CPI instruction does not change
the A register.

ADI Add immediate.
ACI Add immediate with carry.
SUI Subtract immediate.
53I Subtract immediate with borrow.
ANI AND immediate.
XRI Exclusive OR immediate.
ORI OR immediate.
CPI Compare immediate.

Fo rmat: ADD 3 (IX)

The accumulator register instructions require an argument which
i s a sing 1 e reg i s t ern am e, A , B , C , D , E , H , L , M, d (I X), 0 r
d CIY). These instructions modify all flags. All instructions
except" eMF "leave th~ result of the operation ih the A registere
The CMP instruction does not change the A register.

ADD Add register to A.
ADC Add register to A with carry_
SUB Subtract register from A.
SBB Subtract register from A with borrow_
ANA AND register with A.
XRA Exclusive OR register with A.
ORA OR register with A.
CMP Compare register with A.

- 41 - ASMBLE/Z

INCREMENT, DECREMENT

Format: INR A

The single register increment and decrement insiruction~ require
an argument which is a single register name, A, B, C, 0, E, H, L,
M, d (IX), or d (IY). All flags except carry are modified.

INR Increment the register.
DCR Decrement the registe~.

Fo rmat: INX H

The double register increment and decrement instructions require
an argument which is a double register name, B, 0, H, SP, IX, or
IY. No flags· are modified.

INX
DCX

ASMBLE!Z

Increment the register pair.
Decrement the register pair.

- 42 -

DOUBLE ADD, SUBTRACT

Fo rmat : DAD B

The double reg ister add and subtract instructions requi re an
argument which is a double register name, B, D, H, or SP. 0 DADX
accepts IX instead of H as an arg ument and DADY acc epts I1
instead of H as 0 an argument. The DADe and DSBC instructions
modify all flags. The other instructions modify only the carr)!
flag.

DAD
DADC
DSBe
DADX
DADY

Add >the reg ister pa i r to HL.
Add the register pair to HL with carry.
Subtract the register pair from HL with borrow.
Add the register pair to IX.
Add the reg ister pa i r to IY.o

- 43 - ASMBLE/:

LOAD, . STORE

Format: LDAX B

The LDAX· and STAX instructions require an argument which is a
double register name, B, or D •

LDAX
STAX

. Load A from location pointed to by register pair.
Store A in location pointed to by register pair.

Fo rma t: LDA BLOTZ

The load and store direct instructions require an argument which
is evalua~ed as a 15 bit address.

LDA Load A.
LBCD Load BC.
LDED Load DE.
LHLD Load HL.
LSPD Load stack po inter.
LIXD Load IX.
LIYD Load IY.
STA Store A.
SBCD Store BC.
SDED Store DE.
SHLD Store HL.
SSPD Store stack pointer.
SIXD Store IX.
SIYD Store I¥.

ASMBLE/Z - 44 -

PUSH, POP

Format: PUSH H

- -

The push and pop instructions requi re an argument which is a
double register name, B, D, H, PSW, IX, or lY.

PUSH
POP

Push the register pair onto the stack.
Pop the stack into the register pair.

- 45 - ASMBLE/2

INPUT, OUTPUT

Fo rmat: IN 5

The input and output instructions require--an argument which is
evaluated as an eight bit 'port number. . These instructions do not
modify any registers.

IN Move data from th~ input port into A.
OUT Move data from A to the output port.

Format: INP D

The input reg ister and output reg ister instructions requi re an
argument which is a single register name, A, a, C, D, E, H, L, or
M. The OUTP instruction does not mod ify any flag s. The INP
instruction modifies all flags except carry. The INP M'
instruction only modifies the flags, not the memory location.

INP

OUTP

Format: INI

Move data from the input port who.se port number is
in C into the register.
Move data from the register to the output port whose
port number is in C.

The input memory and the output memory instructions d.o not
require an argument. The zero flag is. set if the B regi;;ter. is
decremented to zero. The carry flag is not affected. '

INI

INIR
IND
INDR
OUTI

OUTIR
aUTD
OUTDR

ASMBLE/Z

Move data from the input port whose port number is
in C into M. Decrement B. Increment HL.
Do INI until a = o.
Same as IN! except decrement HL.
Do IND until B = o.
Move data from M to the output port whose port
number is in C. Decrement B. Increment HL.
Do OUTI until B = o.
Same as OUTI except decrement HL.
Do OUTD until a = o.

- 4'i -

MOVE, LOAD IMMEDIATE

Format: MVI B, 27

The move immediate instructions require two arguments; a single
reg i s t ern am e, A , B , C , D , E , H , L , M, d (I X), 0 r d (I Y), a nd an
argument which is eval uated as eight bi ts. The. two argUments are
separated by a comma.

MVI Move the number into the reg ister.

Format: LXI H, BLOTZ

The load immediate inst.ructions requi re two arguments: a double
register name, S, 0, H, SP, IX, or IY, and an- argument which is
evaluated as 16 bits. The two arguments are separated by a
comma.

LXI Load the number into the register pair.

Format: MOV- A,B -

The move instructions require two arguments. Both are single
reg is t ern am e s, A , B , C , 0 , E , H , L , M , d (I X), 0 r d (IY). Th e
arguments are separated by a comma. The two arguments should not
both be memory, that is, you can1t say ~OV M,{IX). -

MOV Move second register into first register.

- 47 - ASMBLE/2

BLOCK MOVE, SEARCH

Format: LDl

The block move and ~ompare instructions do not require an
argument. The P/V flag is cleared to zero if BC is decremented
to zero. The load instructions modify only the p/v flag. The
compare instrpctions set the zero flag if the contents of A" equal
the contents 6f M and also modify the" sign flag. These
instructions do not change the carry flag.

LDl

LDIR
LDD
LDDR
CCI"
CCIR
CCD
CPDR

ASMBLE/.Z

Move contents of memory pointed to by HL into me"mory
pointed to by DE. Increment DE and Hr.. Decrement
BC.
Do LDI until BC = o.
Same as LDI except decrement DE and HL.
Do LDD until BC = o.
Compare A with M. Increment HL. Decrement BC.
Do CCl until Be = 0 or A = M.
Same as CPI except decrement BL.
Do CPD until Be = 0 or A = M.

- 48 -

BIT

Format: BSET 3,M

The bit set, reset, and test instructions require two arguments:
an argument which represents a bit position between zero and
seven, and a single register name, A, S, C, D, E, H, L, M, d(IX),
or d (IY). The arguments are separated by a comma (bi t number,
register name). Only the BIT instruction modifies any
registers. The carry flag is not changed@

BSET
RES
BIT

Set the bit in the registere
Reset the bit in the register.
Copy the bit in ~he register into the zero flag.

- 49 - ASMBLE!Z

ROTATE, SHIFT

Format: RLC

The rotate A instructions do not require an argument.
modify only the carry flag.

RLC

RRC

RAL
RLA

RAR
RRA

ASMBLE/Z

Rotate A left 8 bits.

I I
Cy <-- 7 •• 0· <-

Rotate A right 8 bits.

I
-> 7 •• 0 --> Cy

Rotate A, carry left 9 bits.
Same as RAL.

1
- Cy <-- 7 •• 0 <-

Rotate A, carry right 9 bits.
Same as RAR.

f.
-) 7.~O --> Cy

- 50 -

MSB into carry.

LSB into carry.

MSB into carry.

LSB into carry.

They

Fa rmat: RLCR D

The rotate and shi ft instructions requi re an argument which is G

sing Ie reg i s t ern ame, A, B, C, 0, E, H, L, M, d (! X), 0 r d (I Y) •
These instruc~ions modify all flags.

RLCR

RLAR

RRCR

RRAR

SLAR

SRAR

-SRLR

Format: RLD

Rotate reg ister left 8 bi ts.
See RLC.

Rotate register left 9 bits .,
See RAL.

Rotate reg i.ster right 8 bits.
See RRC.

Rotate reg ister right 9 bits.
See RAR.

Shift register left 9 bits.
Cy <- 7 •• 0 <- 0

Shift register right 9 bits.

1-'
-) 7 •. 0 -) Cy

Shift register right 9 bits.
o -) 7 •• 0 -> Cy

MSB into carry.

MSB into carry.

LSB "into carry.

LSB into carry.

o into LSB.
MSB into carry.

Sign into MSB.
LSB into carry.

o into MSB.
LSB into carry.

The rotate digit instructions do not require an ar9ument. These
in~tructions modify all flags except carry.

RLD Rotate four LSBs of A left with M.
--->---------

I I
A3 •• AO M7 •• M4 M3 •• MO

I I I I
---<- -<--

RRD Rotate four LSBs of A right with M.
---<---------

I I
A3 •• AO M7 •• M4 M3 •• MO

I I I I
--->- ->--

- 51 - ASMBLE/~

~ISCELLANEOUS

Fo rm.at: CMA

Several miscellaneous instructions do not requi re an argument.
No flags are affected unless otherwise noted.

CMA
NEG
DAA
STC
CMC
NOP
HLT
EXAF
EXX
XTHL
XTIX
XTIY
XCHG
PCHL
PCIX
PCIY
SPHL
SPIX
SPIY
DI
E1
LDAI

STAI
LDAR

STAR
IMO
IMl
IM2

ASMBLE/Z

Complement accumulator.
Negate accumulator. All flags modified
Decimal adjust accumulator. All flags modified.
Set carry. Only carry modified.
Complement carry. Only carry modified.
No operation.
Halt.
Exchange A 1, flags 1 with A 2, flags 2.
Exchange Be 1, DE 1, HL I with BC 2, DE 2, HL 2.
Exchange the contents of the top of the stack with HL.
Exchange the contents of the top of the stack with IX.
Exchange the contents of the top of the stack with IY.
Exchange DE with HL.
Load the program counter from HL.
Load the program counter from IX~
Load the program counter from lY.
Load the stack pointer from HL.
Load the stack pointer from IX.
Load the stack pointer from lY.
Disable interrupts'.
Enable interrupts.
Load A with I. Zero and sign flags modified.
p/V flag gets contents of IFF.
Store A in I.
Load A with R. Zero and sign flags modified.
p/V flag gets contents of IFF.
Store A in R.
Set interrupt mode o.
Set interrupt mode 1.
Set interrupt mode 2.

- 52 -

ASSEMBLER INSTRUCTIONS

This section contains assembler instructions. They tell the
assembler what to do. In some cases they generate machine code.
The first line or lines of the description of each instruction is
an· example of the proper use of the instruction.

- 53 - ASMBLE/:

MACRO

Format: -BLOTZ: MAC~O REG
SLAR, _c REG
ENDMAC

A macr9 definition requires the MACRO instruction with a label,
zero or more lines of code which are stored as the body of the
macro definition, and an ENDMAC instruction, which marks the end
of the macro body_ The line containing the MACRO instruction may
also contain several. dummy arguments separated by commas. A
macro definition may contain other macro definitions . (255
max imum) and calls to other macros (15 max imum) _

Once. a macro has been defined it may be called by using the macro
name in 'place of an instruction _ The code stored for that
particular macro is recalled and entered in the program,
character by character, and ~luated.

When the MACR,O instruction is encountered, the 'label is entered
in- the user's symbol table and marked as a macro. The dummy
argument symbols are stored in a temporary symbol table. The
code in the body of the macro definition is stored character by
character in the macro stor,age space. Comments beg inning wi th
'two semicolons.·are not stored •. If-'a symbol· in the. body· is.
encountered which matches one of the dummy argument symbols, a
numbered marker is, stored in the macro storage space instead of
the symbol. If the symbol matches the first dummy symbol the
marker is given the value one, if it matches the second symbol it
is given the value two, etc. The exclamation point (!) is used
a's a concatenation character. If a dummy symbol in the body is
preceded or followed by the concatenation character, the 1 is
removed along wi th the dummy symbol when it is replaced by a
marker. The macro defini tion may conta in one or more embedded
macro definitions. The dummy argument symbols are compared to
symbols in all levels of the definition. All dummy symbols are
replaced by markers.

The line containing the macro call may also contain one or more
arguments separated by commas. These arguments (actually
cha racte r str ings) ar.e substi tuted for the marke'rs in the macro
body. The arguments may be any length (as long as they all fit
on one line), and may contain commas in quoted strings. The
first argument s:tring replaces every occurrence of the first
marker, the second string replaces the second marker, etc.

ASMBLE!Z - 54 -

DEFINE. BYTE, WORD

Format: DB 'ABC'

The DB (Define Byte) and' DW (Define Word) instructions may be
followed by one or more arguments. Each argument is evaluated as
a separate byte or word. If a DB· argument is a text string
enclosed in single or double quotes, the seven bit ASCII value of
each character in the string is returned.

EXPRESION CODE GENERATED

DB 100 64
DB I MOM' 40

4F
4D

DW 100 ~4

00
DW 1234H,4S';7H 34

12
F,7
45

Fo nn at: DB S ' AB' , C R , LF

The DBS (Define Byte Sign) and DBZ (Define Byte Zerc~:'
instructions are similar to the DB instruction. They differ in
the way. they treat the termination of the command 1 ine. The DBS
instruction sets the sign bit of the last character in the linee
The following pairs of lines generate the same code:

DB 'ABCDE' , 'F ' +128
DBS 'ABCDEF'

DB f Hi. the r e' , C R , LF + 12 8
DBS 'Hi there' ,CR, LF

The DBZ instruction appends a zero byte to the end of the line.
The following pairs of lines generate the same code:

DB 'ABCDEF',Q
DBZ 'ABCDEF'

DB 'Hi there' ,CR,LF,O
DBS 'Hi there' ,CR,LF

- 55 - ASMBLE/'Z

DEFINE STORAGE
. '

Fo rmat: DS 200

The DS .(Define Storage) -instruction requires one argument - and
reserves the amount of space (in bytes) determined by the value
of the argument. The instruction does not generate any code.
The instruction is used to allocate space in memory for variables
and tables without specifying the contents of those locations or
generating any code in the HEX or BIN files. For example, assume
SIZE represents the value 100.

ASMBLE!Z

DS
DS

SIZE
14

Reserve 100 bytes of space in memory_
Reserve 14 more bytes.

- 56 -

CONDITIONAL

Fe rmat: IF KFLAG
CALL BLOTZ
ENDIF

The IF instruction_ requires one argument. If the value of the
argum~nt is zero, assembly of code is suppressed until an ELSE or
ENDIF instruction is encountered at which time it resumes. If
the val ue is non-zero, assembl y continues until an ELSE
instruction is encountered. Then, assembly is suppressed until
an ENDIF instruction is encountered. The use of the ELSE
instruction is optional. For example, assume SWITCH is equal to
zero.

I
I
I
I
I
I
I
I
I
I

- I

IF
INR
ELSE
DCR
ENDIF

IF
OCR
ENDIF

MOV

SWITCH
A

A

Argument evaluates to zero.
Don't assemble this code.

Assemble this code instead.

NOT SWITCH Argument evaluates to FFFF.
A Assemble this code.

C,A Always assemble this code"

IF instructions (with optional ELSEs) may be riested- to 255
1 evels.

- 57 - ASMBLE/L

ENTRY, EXT

Fo rmat: ENTRY SIN, COS

The ENTRY instruction requires one or more arguments which are
symbol names. It marks those symbols as entry points. The
symbols must be defined somewhere in the program (used as a
label, for instance). Entry point· symbols are passed via the
relocatable output file (REL file) to the linker to define the
symbols for use by other modules. This instruction may be used
anywhere in the program. The entry instruction is not valid when
the assembler is generating a hex or binary file.

Format: EXT TAN,COT

The EXT instruction requi res one or more arguments which are
symbol names·. 1'It tells the assembler that those symbols are not
defined in the current program but will be defined later in other
modules. EXT symbols are passed via the REL f.ile to the 1 inker
to be defined by entry point- symbols in other modules. This
instruction may be used anywhere in the program. The EXT
instruction is not valid when the assembler is generating a hex
or binary file.

ASMBLE/Z - 58 -

ASS, PROG, DATA, CO~

Format: ABS

The ABS, PROG (REL may be used instead of FROG), and DATA
instructions do not require an argument. They tell the assembler
to begin or continue generating code in a particular section. If
code had been generated In that section before, the progran
counter points to the next available byte of storage so that code
generation continues from where it left off last time. ThesE
instructions are not valid when the assembler is ~enerating a het
or binary file.

Format: COM BLOTZ

The COM instruction may take an eight character name as ar.
argument. If no name is oiven it is assumed to be blank (all
spaces). It tells the ass~mbler to beg in or continue 9 eneratinq
code in that common section in exactly the same way as the ABS"
PROG, and DATA instructions do. There may be as many as fifteer.
different common sections. The COM instruction is not valid whe~
the assembler is generating a hex or binary file.

- 59 - ASMBLE/

ORG, LOAD

Fa rmat: ORG lOOH

The ORG instruction requires an argument which is evaluated as a
IS bit address. The instruction sets the assembler f HEX, and BIN
prog ram counters to that address; that is, it determines the
starting address of the next block of code generated. The type
of the argument (sectio~ in which it was defined) determines the
type of the new section. For example, if GRISLY was defined. in
the data section:

ORG GRIBLY+lOO

tells the assembler to continue generating code in the data
section.

ORG 20

has an absolute argument and tells the assembler to generate code
in the absolute section.

If the line containing the ORG instruction contains a label, the
label is set to the new value of the program c~~nter~

IGUM: ORG 123 GUM· has . the val t:. e 12 3 «.

If you are generating a COM file you may not ORG b~low lOCH +
BOOT and you may not ORG backwards (ORG to a lo~ation less than
the current program counter) •

Fa rmat: LOAD lOOOH

The LOAD instruction is only valid when the assembler is
generating hex code. It is not valid when 'the cssembler is
generating relocatable code or COM file cods.. It requi res an
argument which is evaluated as a 1~ bit address" The l:llstruction
forces the code generated by the assembler to be loaded into
memory whose address is different from the address set by the ORG
instruction. This allows you to load code into one region of
memory and later move it to another region for execution (for
example, programming a PROM). The LOAD instructiol'l requires an
argument. It sets the BIN and HEX program counter to the value
of . the argument but does not change the assembly program
counter. For example, if you were writing code to be loaded at
24H but executed at l003H you would use the instructions:

ASMBLE/Z - iiO -

I ORG 1003H Set assembler program counter to 1003H.
I LOAD 24H Set binary and hex program coun ter to ,24H.
ILOOP: DCR C OD is stored at 24H. .. :,
I JNZ LOOP C? is stored at 25H.
I 03 is stored at 2fiH.
I 10 is stored at 27H.

- (-)1 - ASMBLE/Z

NAME

Format: NAME TRIG

The NAME instruction requires an eight character name as an
argument. This name is passed via the relocatable file to the
linker and appears in the module name listing. This instruction
may be given more than once in' a program but only the name
specified last is put in the REt file. If this instruction is
not used in a program the first eight characters of the REL file
name are used as the module name. The NAME instruction is not
valid when the assembler is generating a hex or binary file •.

ASMBLE/Z - 1)2 -

INCLUDE

Fo rmat: INCLUDE <filename>

INCLUDE tempo'rarily" changes the input file to the assembler ..
This allows code in another file to be inserted into a program
during assembly. When the INCLUDED file is exhausted, the
assembler resumes reading the source lines from the original
source file" with the line immediately after the INCLUDE
instruction.

Note that nested INCLUDE files are not permitted (I.E.
which is an argument to the INCLUDE instruction may not
any INCLUDE instruction).

- '13 -

a fi 1 e
contain

ASMBLE/~

LIBFILE

Format: LIBFILE ALTLIB

The LIBFILE instruction requi res an eight character name as an
argument. This name is passed via the relocatable file to the
linker and tells the linker to use the file given by this command
(with an assumed extension REL) as the library file. If no
LIBFILE . command is given the linker uses the default library
file, LIB.REL. This instruction may be given more than once in a
program but only the LIBFILE name specified last is put in the
REL file. The LIBFILE instruction is not valid when'the
assembler is generating a hex or binary file.

ASMBLE/Z - 64 -

EQUATE, SET

Format: CHAR EQU • z I

The EQU instruction requires a label and an argument which is
evaluated as a l-=i bit number. The label is given the lli bit
value. A symbol (the label) may be defined only once in a
program with the EQU instruction.

Format: CHAR SET 'X'

The SET instruction is similar to the EQU instruction. It
requires a label arid an argument which is evaluated as a l~ bit
number. The label is given the 1'; bit value. The SE'I
instruction may be used to change the val ue 0 f a sym,bol (the
label) as often as desired.

- '55 - ASMBLE!i

END .

Format: END BLOTZ

The END instruction may be placed at the end of a program but its
use is optional. The END statement may have one argument
(optional) which is evaluated as a 16 bit address. The value of
the argument is used by the operating system as the starting
address of the program. The starting address must be in an ASS,
PROG, or DATA section. If it is in an EXT or COM section an
error message is printed and the starting address is ignored. If
no starting address is given, the operating system is able to
loa d th e p r og ram but not s tar tit. I f a s tar t i ng add res sis
given wi th the ORG address not equal to the LOAD address, an
error message is printed and the starting address is ignored. (A
program cannot be executed p~operly unless it is loaded at its
execution- address.)

ASMBLE/Z

El'.1D
END
END

22H
GUMBAL

Program has no starting address.
Program is started at 22H.
Program is started at GUMBAL.

- '16 -

LIST, NLIST, MTLIST, .NMTLIST

Format: .NLIST

The NLIST and· LIST pseudo-ops turn the 1 i sting off and back on.
When NLIST is encountered it suppresses the listing. When ·LIST
is encountered it reenables the listing.

NLIST
MOV
MOV
LIST
POP

A,B
O,E

H

Assemble this code but don't list.

Resume listing.

The NMLIST and MLIST pseudo-ops turn the listing of macro
definitIons and expansions. off and back on. When N~LIST is
encountered it suppresses the listing of lines containing either
macro definitions or macro expansions. When MLIST is encounterec
it reenables the listing.

Format: MTLIST

The NMTLIST and MTLIST pseudo-ops turn the 1 isting of the te~:
part o.f macro exp~nsions. off anq back on •. When N.M.TLIST 1:':

encountered" it suppresses the listing of' the text part of· macr:)
expansions (the bodies of the macros), but does not suppress the
1 isting of ~he hex code generated by the macros. When MTLIST i.3
encountered it reenables the listing.

- 67 - ASMBLE/Z

ERROR MESSAGES

Arg umen t too big

Bad argument

Bad arithmetic operator

Bad base

Bad instruction

Bad label

Bad· number

The value of the argument is greater
than-255 or less than -255 •

. ~

The value of an argument in an RST
instruction is greater than seven.

An unknown char acter, number,
symbol is used in an argument.

or

IX or IY may not be used as an
argument with this instruction.

An unknown character is used as an
arithmetic operator.

The starting address is in a section
other than ABS, PROG, or DATA.

An entry in the instruction field is
not recogni zed as an instruction or

- macro.

The label does not start with a $, %,
., or lei:ter.

The rad fx· char~cter is unkn·own.

An imprope r dig it appears in -the
number.

Bad symbol The symbol does not start with a $, %,
., or letter.

Can I t back up in COM file Attempted to ORG to a val ue less than
the current value of the program
counter or less then lOOH. Code in a
COM file can only go forward.

Displacement too big

Division by 0

Dummy redefined

ASMBLE!Z

The value of the displacement is
greater than 127 or less than -128.

Attempted division by zero.

A dummy argument in the macro
definition is used more than once.

- ~8 -

Extra argument

Extra ELSE

Extra ENDMAC

Fi 1 e not found

Macro not defined

MACRO symbol

Missing argument

Missing

:Mul ti pIe tag

Nested INCLUDE

No EQU label

No expression

No EXT

No MACRO label

No relocate

Too many arguments are given for this
instruction.

The ELSE instructi~n does not have c
-matching IF instruction.

The ENDMAC instruction does not have a
matching MACRO instruction.

The INCLUDE file cannot be found.

A macro
defined.

is called before it is

A macro name is used in an instruction
argument .'

Not enough ar.g uments are given for thE­
instruction.

The) is missing from the name of an
index register.

This label has been used before.

The INCLUDE file calls another INCLUDE
file.

The _ EQU instruction does not have c
label.

An expression is not allowed with this
instruction, only a symbol.

An external symbol may not be usee
with this instruction.

The macro defini tion does not have c.
label.

A relocatable symbol may not be use'-:
with this instruction or arithmeti~
operation.

If the assembler is
a b so 1 ute ·b ina r y 0 r
relocatable operation

generating an
hex file G

is not allowed.

A relative jump instruction jumps fro~
one relocatable section to another.

- 69 - ASMBLE/Z

No SET 1 abel

Not allowed in COM file

Offset not zero

Out 0 f range

Redefined

String too long

Symbol not found

Symbol table full

Too many arithmetic
operators

Too many commons

Too many externals

Too many index registers

The SET instruction does not have a
label.

The LOAD instruction cannot be used
when generating COM file. Generate a
HEX file instead.

The starting address is given with the
LOAD address not equal to the ORG
address.

The destination is too far for a
reI at i v e j um p •

The value of the label is changed.

A macro name is used as a non-macro
label.

The string contains more than two
characters.

An undefined symbol is used in an
argument.

There is no more room to add symbols
to the symbol table or to define more
macros.

More than one arithmetic operator is
used in front of a symbol or number.

More than 15 common sections have been
defined.

More than one external symbol has been
used in an expression.

An index register
both arguments in a

is specified for
MOV instruction.

Too many macro nest levels More than 15 macro definitions or 255
macro expansions are nested.

ASMB LE/Z - 70 -

WORKED EXAMPLE

This section contains assembler listings of three modules. The
first module contains the main part of the program which reads a
string of characters from the keyboard and prints them. The
second and third modules contain subroutines which communicate
wi th ei ther the CP/M operating system (second module) or the K3
operating system (thi rd module). This program may be run wi th
either operating system simply by linking the main module with
the appropriate subroutine module.

- 71 - ASMBLE/2

Str ing Echo.

OOOD
OOOA

-.
; String Echo.

CR
LF

EQU
EQU

13
10

, ~ > •

; Carriage return.
; Lin,e feed.

ASMBLE v-5b Page 1

0001 PRINT: - MACRO TEXT;' Print a'text string.

0000+21 002~'
0003+CD OOOOi
0006'21 0000"
OOC9'CD OOOOi
000C'77
0000'23
OOOE'FE 00
0010'20 F7
0012'36 OA
0014'23
00lS'3fi 00

0017+21 0-036'
OOlA+CD 0(104#

aOlD+21 0000"
0020+CD 001B#
0023'C3 00004

START:

LOOP:

LXI H,TEXT. _
CALL TXTYP'

ENDMAC

EXT CI,TXTYP,MONITOR

PRINT
LXI
CALL

LXI
CALL
MOV
INX
CPI
JRNZ
MVI
INX
MVI
PRINT

LXI
CALL

FRINT
LXI
CALL

JMP

TITLE
H,TITLE
TXTYP

H,BUFFER; Point to the line buffer.
CI Get a character.
M,A Store it.
H ; Bump pointer.
CR End of line?
LOOP Not yet. Keep going.
M,LF ; Add a line feed.
H
M,a Mark the end of the line.
CRLF

H,CRLF
TXTYP

BUFFER i Echo the buffer.
H,BUFFER
TXTYP

MONITOR; And return to the monitor.

002~'44 ~5 ~D 6FTITLE: DBZ
20 50 72 +SF

'Demo program' ,CR,LF,'*'

57 72. fi 1 fiD
OD OA 2A 00

003~'OD OA-OO CRLF: DBZ

oooott
0000"0080

0000'

ASMBLE/Z

DATA
BUFFER:DS

END

CR,LF

128
START

- 72 -

String buffer.

CP/M Opera~ing, System Subroutines. ASMBLE v~5b Page 1

0001

0000
0001
0002

OOOO'ES

OOOl+OE 01
0003+CD 0005
OOO(.)'EI
on07'C9

0OO8'7E
0009'?'3

'OA t B 7
--_JOB t e8
OOOC'SF
nOOD'E5

onOE+OE 02
OOlO+CD 0005
0013'El
0014'18 F2

0016+0E no
0018+CD 0005

; . CP/M' Op~rating System Subroutines.
; These subroutines talk to the CP/M operating system.

IOP: MACRO . FUNCTION; Call an I/O processor function.
MVI· C,FUNCTION
CALL 5

ENDMAC

MON EQU
CREAD EQU
CWRITE EQU

o
1
2

Return to the monitor.
Read a character.

; Write a character.

ENTRY CI,TXTYP,MONlTOR

; Read a character from the keyboard wi th echo.
CI: PUSH H ; Save HL.

lOP CREAD
MV! C,CREAD
CALL 5

POP H
RET

Write a text string po in ted to by HL. . The str ing' ends with a null. I

TXTYP: MOV A,M ; Get a character.
INX H
ORA A Null?
RZ ; Yes. Qui t.
MOV E,A Not yet.
PUSH R ; S a v e po in t e r •
lOP CWRITE ; Write' character.

MVI C,CWRlTE
CALL 5

POP H
JR TXTYP ; Keep going.

Return to the monitor.
MONlTOR:IOP MON

MVI C,MON
CALL 5

- 73 - ASMBLE/Z

K3~ .. Operating .. System Subroutines.

0001

DOOO
0037
D030

OOOO+CD 0037
0003' 4F'

0004+CD D03D
0007'79
0008'C9

0OO9'7E
OOOA t 23
00OB'B7
oaoc'cs
OOOD'4F
OOOE'ES

OOOF+CD D03D
0012'EI
0013'18 F4

0015+CD 0000

~SMBLE/Z

; K3 Operating System Subroutines.
i These subroutines talk to the K3 operating system.

rop: MACRO
CALL.

FUNCTION; Callan I/O processor functio~
FUNCTION

ENDMAC

Return to the monitor.
Read a character.

MON EQU
CREAD EQU
CWRITE EOU

ODOOOH
MON+37H
MON+3DH ; Write a character.

ENTRY CI,TXTYP,MONITOR

; Read a character from the keyboard with echo.
CI: lOP CREAD

CALL CREAD
MOV C,A
lOP CWRITE; Echo.

CALL a~RITE .
MOV A,C'
RET

Write a text string pointed to by HL.
; The string ends with a null.
TXTYP: MOV A,M . Get (~ character. ,

INX H
ORA A i Null'?
RZ ; Yes. Quit.
MOV C,A i Not yet.
PUSH H ; Save po inter.
rop CWRITE Write character.

CALL· CWRlTE
POP H
JR TXTYP Keep go i ng.

; Return to the monitor.
MONITOR:IOP MON

CALL MON
END

- 74 -

RUNNING THE ASSEMBLER UNDER CP/M

To run the assembler type:

where

ASMBL <fn>.<opts>,<fn>.<opts>,<fn>.<opts> /<type>

<fn> is a text file with the extension SRC

<opts> is an optional list of options up to three letters
long.

first letter: drive to get source from.

second letter: drive to send output file to.

third letter: drive to send listings to. If thi3
letter is omitted, no listing is
generated. If the letter is X, the
1 isting is sent to the consol·e
instead of the disk.

<type>· spec i fi es the type 0 f the output file. It must be
/COM, IHEX, or /REL. If no type is specified /COM is
assumed.

If more than ·one file is specified, the files wi!"l be assembled
as though they were one large file. The order in which they ar?
1 isted in the command 1 ine is the order in which they would
appear in this large file (note: no "large file" is actua11?
created). The name of the last input file is used as the name 0:
the output file. If an option is not specified, or if a space is
used in pIa ceo f ale t t e r , th e d e fa ul t d r i v e· i s us e d • Th i!
exception to this is the listing file: If a space is used, a.
listing file is created on the default drive, if nothing is
specified, no file is created. For example:

A>ASMBL INIT,NAVAGAT/HEX

Assemble INIT.SRC with NAVAGAT.SRC. Get both files from drive ~
and send NAVAGAT.HEX to drive A. No listing file is generated
because no listing driva letter was specified.

C)ASMBL INIT.A,NAVAGAT. ax

Assemble the file INIT.SRC on drive A with NAV~GAT.SRC on drivE
C. Send NAVAGAT.COM to drive B. Send the· listing to the
console.

- 75 - ASMBLE/~

RUNNING THE ASSEMBLER UNDER K3

The assembler recognizes two additional instructions under the K3
operating system. They are as follows:

Fo rmat: JSW 1000H

The JSW instruction only generates' code' when the assembler is
producing a BIN file under the K3 operating system. It requires
one argument which is evaluated as a 16 bit number. The value of
the a rg ument is used by the operating system as the job status
word. If the lOODH bit is set, the program may be started at the
starting address with the operating system RUN or START
commands. If the 2000B bit is set, the program may be restarted

. at a location three less than the starting address wi th the
operating. system restart command. If the JSW instruction is not
given, the operating system assumes a default value for the job
status word.

JSW lOOOH Allow the prog ram to be started
but not restarted.

Fo rmat: VER '1',' 2' , , c'

The VER instruction requires three arguments which are evaluated
as three ASCII characters. These three characters are stored
only in the K3 BIN or K3 HEX file, and are read only by the K3
LIMITS program. It is recommended that the first two characters
be used fo r a two dig it version number and that the thi rd
character be used for a single revision letter.· If your program
has only a single digit version number, the first character
should be a space.

ASMBLE/Z

VER
VER

t ','7' ,'b'
'2' ,'7' ,'x'

- 7Ft -

version 7b.
; version 27x.

Wh e nth e' ass em b 1 e r' iss ta r ted ita s k s yo ufo r : a"':' f i 1 e
specifi~~tion. The specification is in the following format:

DEV:NAMEl.BIN(,REL, or HEX) ,DEV:NAME2.LST=DEV:NAME3.SRC/B/RE/H/L/G/RU/E

Not everything in the specification line needs to be typed in.
For example, the extensions (BIN, REL, HEX, LST, SRe) are always
filled in by the assembler and should not be typed in. This
means that the source file must always have a SRe extension. The
listing file always has a LST extension, etc.

The first entry in the specification determines the device and
file name (if necessary) to which the BIN, REL, or HEX file is
sent. If the output device is non-file structured (paper tape
punch, for example) , a file name is not needed. If the output is
sent to a file structured device and the file name is not given,
it is given the name of the last source file.

The '/B, IRE, or IH option determines which file is generated, .
BIN, REL, or HEX. If no option is specified /B is assumed. If
no device and file name is specified but the /B, /RE, or /H
option is given a BIN, REL, or HEX file is assumed using the last
source file name. Here are some examples of proper file
specifications:

PP:=BLOTZ Output is sent to the paper tape punch.
DK3:TRIG=BLOTZ Output is ·sent to TRIG. BIN on DK3.
DKO:=B~OTZ ,Output is sent to BLOTZ.BIN qn DKO.

If the /G (get) or /RU (run) options are specified the assembler
automatically sets the /B option (clears the IRE and /H options)
and generates a BIN file. At the end of the assembly the
operating system is asked to get (/G) or run (/RU) the BIN file.
If any errors are detected in the' assembly, the get cr run
request is suppresSed.

The second entry in the specification determines the device and
file name (if necessary) to which the listing file is sent. If
the output device is non-file structured (line printer, for
example) a file name is not needed. If the output is sent to a
file structured device and the file name is not given, it is
given the name of the last source file. If the /L option is
given without a listing file specification a LST file is assumed
with the name of the last source file. The listing entry is
always the second entry in the specification line and is
separated from the first entry by a comma. If no BIN, REL, or
HEX file is desired, the line must start with a comma.

- 77 - ASMBLE/Z

I • R ASM'BLE DK2: =TEST/RU

'This command loads and runs the assembler, assembles DKO:TEST.SRC
into DK2:TEST.BIN, loads, and runs DK2:TEST.BIN.

The IE option 'sends error messages to the line printer. This is
useful for generating a printed record of assembly errors.

If control C is typed while the program is running, the assembly
stops, all files are closed, and control returns to the monitor.

If control a is typed while the program is running, the 1 isting
of error messages is suppressed. If any other key is typed, the
printing resumes.

ASMBLE!Z - 78 -

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78

