ITHACA INTERSYSTEMS
ASMBLE/Z
A RELOCATING MACRO ASSEMBLER
REVISION 20

Copyright by -
® lthaca Intersystems, Inc.

ASMBLE/Z

A Relocating Macro Assembler

Copyright 1980 by
tthaca InterSystems, Inc.

Manual Revision 2

TABLE OF CONTENTS

Introduction
Features
Who Should Use This Manual
Assembling)
Assembler Operation
Once Thru Code
Relocation
Module Sections
Entry Point
External
Name
Library
Program Counter
Symbols
Listing
Source Line Format
Label Field
Instruction Field
Argument Field
Comment Field
Macros
Argument Format
arithmetic
Strings
Numbers
Relative Jumps
"Register Names
Machine Instructions
Jump
Call
Return
Restart
Accumulator
Increment
Decrement
Double AdQd
Double Subtract
Load, Store
Push, Pop
In, Out
Move Immediate
Load Immediate
Move
Block
Bit
Rotate, Shift
Miscellaneous
Assembler Instructions
Macro '

Define Byte
Define Word
Define Storage
If

Entry
External
Abs.

Rel

Data

Com-

Org

Load

Name
Include
Libfile
Egquate

Set

End

List

Error Messages
Worked Example
Running under CP/M
Running under K3

Job Status Word
Version

55
55
56
57
58
58
59
5%
58
59
A0
650
62
A3
64
AS
55
RA
67
+8
71
75
76
76
A

INTRODUCTION

ASMBLE 1is a 2Z-80 source code macro assembler which produces
either an absolute binary, a hex, or a relocatable code module

and a program listing.

The assembler allows you to specify the

devices and file names for the input and output files as well as

which output files you want generated.

it will contain a column alphabetized symbol table.

FEATURES

1)

2)

3)

5)
5)
7)

)

Two pass operation

Conditional assembly

"External labels and relocatable code

Absolute binary or hex code
Separation of code and datas spaces

Macros

- Include files

Column alphabetized symbel tzble in listing

If you ask for a listing,

ASMBLE/Z

WHC SHCULD USE THIS MANUAL?

You may be reading this manual because you want to Kknow how to
assemble, link, and run a program written in Pascal. I£f this 1is
the case, you should skip this manual and read the first part of
the 1linker manual since the Pascal compiler takes care of
generating all the assembler code that is normally required to
run a Pascal program.

On the other hand, you may want to add your own assembler
routines to a Pascal program, or vyou may want to write a
stand-alone assembler program. In that case, you should ‘read
“his entire manual and then read the linker manual.

N2
|

ASMBLE/Z ' -

ASSEMBLING

Here are the steps you go <hrough from the creation of an
assembly language program to its execution. -

1) Run the text editor, create a new SRC file on a disk,
and type in your ©program (written in assembler
mnemonics). »

2) Run the assembler which translates the assembler
mnemonic statements into machine language code.
' \J
3) If you asked the assembler to generate a relocatable
meodule, you run the linker which loads the module into
memory, and start the program.

If you asked the assembler to generate hex code, you
run the loader which translates the hex code into =z
"COM file. You then run the COM file. '

Tf you asked the assembler to generate a COM file, you
run it. .

Tn your program you tell the machine exactly what to do bg
writing a list of mnemonic machine instructions. These mnemonics
are translated, one to one, into machine executable instructions
(machine code).

Each machine instruction has its corresponding mnemonic. For
example, if you want to move a copy of the byte from the B
register into the A register you write:

MOV A,B

If you want to complement the byte in the A register you write:

- CMA -

-3 - ASMBLE/?
|

An instruction is one or more bytes long and is stored in one or
more - consecutive memory locations. You can symbolically
reference an instruction by placing a.label in front of the
instruction and referencing the label. For example, suppose you
want to write a routine that decides whether or not a value in
the A register is equal to ten. You might write:

CPI 0 ; Does A = 107

J7Z TARGET ; Yes.

XRA A : No. Make it 0.
TARGET : MOV B,A ; Save it in B.

In this example, if the A register contains ten, the machine
jumps to the instruction bearing the TARGET 1label. You can
locate this routine anywhere in memory and not worry about the
location which TARGET represents (the value of TARGET). The
assembler calculates it for you. ‘

You méy also give a wvalue to a symbol with an equate
instruction. :

ENDVAL EQU 10
Here, ENDVAL is given the absolute value ten. It has this value

no matter where it is defined. You may use it in your program as
follows:

ENDVAL. EQU 10 .
CPI ENDVAL ;s Does A = ENDVAL?
JZ TARGET ;s Yes.
XRA A : No. Make it 0.
TARGET :MOV B,A ; Save it in B.

ASMBLE/Z - 4 -

- A section of an assembly code may be switched on or off by
surrounding the code with conditional statements. For example:

FALSE EQU 9)

TRUE EQU NQOT FALSE .

ORANGE EQU TRUE
IF ORANGE

NAME: DB 'This program is called Orange'
ELSE

NAME: DB 'This program is called Lemon'
ENDIF :

In this example, the first three statements define the values of
the symbols FALSE, TRUE, and ORANGE. The conditional statements,
IF, ELSE, and ENDIF, select one of the two statements labeled
NAME for assembly.

‘Code which is often repeated, possibly with some variation, may
be stored in a macro and assembled simply by giving the name of
the macro. This saves a little typing and usually makes the
program easier to understand. For example:

PRTINT: MACRO TEXT

LXI H, TEXT
CALL TEXT

'ENDMAC

"PRINT HITEXT

HITEXT:DB 'Hi there’
In this example, the first four lines define the macro called
PRINT which <contains one dummy parameter, TEXT. When the
statement PRINT HITEXT is assembled it is replaced by:

LXI H,HITEXT
CALL TXTYP

This loads the address of the text string into the HL register
and calls TXTYP to print the string.

-5 - ASMBLE/Z

Here is a short example of a' program that reads the front panel
switches and sets the .front panel lights - accordingly. It
contains a conditional control switch, FLIP, which causes the
assembler to generate code to complement the value sent to the
lights if FLIP is true. TIf all the switches are up the program
returns control to the monitor.

; Light Test.

FALSE EQU 0
TRUE EQU NOT FALSE
FLIP EQU TRUE ; Complement flag.
LIGHTS EQU NFFH ; Front panel lights port.
SWITCH EQU OFFH : Front panel switch port.
ENDCOD EQU 111111118; Switch pattern for stop.
NDTEST:MACRO : ; Test for ENDCOD in A.

CPI ENDCOD ; Time to quit?

JZ 0 ;: Yes. Back ts monitorland.

ENDMAC

ORG 100H ; Put the code at location 1N0OH.
LooP: IN SWITCH ; Read the switches.

NDTEST ; Test for end.

TF FLIP

CMA ; Flip the bits.

ENDTF

ouT LIGHTS ; Display in the lights.

JR LOOP ; And repeat.

END Loop ; Start at LOOP.

ASMBLE/Z ' - 5 -

Here is a listing of the program ‘in the previous example as*it is

assembled. Notice how the macro and conditional code is
" ‘reated.
Light Test. ’ ASMBLE v-5b Page !

; Light Test.

0000 FALSE EQU 0

FFFF TRUE EQU NOT FALSE
FFFF FLIP EQU TRUE ; Complement flag.
O00FF LIGHTS EQU OFFH ; Front panel lights port.
O0FF SWITCH EQU - OFFH ; Frent panel switch port.
OOFF ENDCOD EQU 11111111B; Switch pattern for stop.
0000 NDTEST:MACRO ; Test for ENDCOD in A.
- CpI ENDCOD ; Time to quit?
- JZ 0 ; Yes. Back to monitorland.
ENDMAC
N100 ORG 1008 - ; Put the code at location 100F
0100 DB FF LOOP: 1IN SWITCH ; Read the switches.
NDTEST ; Test for end.
0102+FE FF o CPI ENDCOD ; Time to gquit? _
0104+CA 0000 Jz 0 " s Yes. Back to monitorlanc.
FFFF IF FLIP
01n7 2F CMA ; Flip the bits.
ENDIF
0108 D3 FF ouT . LIGHTS ; Display in the lights.
0l10A 18 F4 JR LOOP ; And repeat.
0100 END LOOP ; Start at LOOP.

-7 - ’ ASMBLE/Z

Here is a listing of the same: program except that FLIP has:been
set to false. Notice how this changes the conditional code.

Light Test. ’ ASMBLE v-5b pPat 1

; Light Test.

0000 FALSE EQU 0
FFFF TRUE EQU NOT FALSE
0000 FLIP EQU FALSE ; Complement flag.
00FF LIGHTS EQU OFFH ; Front panel lights port.
00FF - SWITCH EQU OFFH ; Front panel switcb port.
NOFF ENDCOD EQU 11111111B; Switch pattern for stop.
- 0000 NDTEST:MACRO ; Test for ENDCOD in A.
- CPI ENDCOD ;: Time to quit?)
- J2Z 0 : Yes. Back to monitorland.
ENDMAC
0100 ORG 100H ; Put the code at lecation 100H.
0100 DB FF LOOP: 1IN SWITCH ; Read the switches.
NDTEST ;: Test for end.
0102+FE FF CpI ENDCOD ; Time to quit?
0104+CA 0000 . Jz 0 - ; Yes. Back to monitorls 1.
0000 IF FLIP -
CMA ; Flip the bits.
ENDITF
0107 D3 FF ouT LIGHTS ; Display in the lights.
0109 18 FS JR . LOOP : And repeat.
01.00 END LOOP ; Start at LOOP.

ASMBLE/Z - 8 -

ASSEMBLER OPERATION

The assembler operates in two passes. 'ts operation is almost
identical in both passes.

During the first pass the input file is read and each source line
is processed. Each time a symbol is defined it is entered intc
the symbol table. All error messages except SYMBOL NOT FOUND,
REDEFINED, and OUT OF RANGE are printed during pass one.

During pass two the input file is read again and each source line
is processed. If the source line generates any machine code, it
is sent to either the binary, hex, or relocatable output file in
the proper format. A copy of the line of source text along witk

the address and generated machine code is sent to the listing
file. ‘

ONCE THRU CODE

The initialization routine used by the assembler is written ir
once through code and is located in the symbol <=able region. You
may restart or save the assembler at any time while the assembler
is asking the file name. question. After the question has beer
answered, the assembler no longer needs the initialization code
and destroys 1it. From this point on the assembler must be
reloaded in order to restart it.

-9 - ASMBLE/?

RELOCATION

Theré are two terms, module and section, which have special
meanings when used to describe relocatable code. When one or
more source files are assembled the resulting relocatable code is
called 2 module. That is, each time the assembler is used to
generate relocatable code it produces 2a single module. The
module may contain one or more sections. It may contain a

program section, a data section, ‘and one or more common
sections. : '

ASMBLE/Z can produce relocatable modules. -These modules are
loaded " into memory by the linker. Taken. together, these two
programs (the assembler and the 1linker) provide very powerful
facilities for the programmer:

1) Source code (in a SRC file)l, written with all address
references represented by symbols, can be assembled into a
relocatable module, which is then sent to the linker. The
linker can be told to load the module at nearly sny address;
that is, the module is relocatable. The relocatable modules
reguire relatively 1little processing by the linker as
compared to the processing the assembler performs on a
source file, and therefore the relocation of a module can be
accomplished in very little time.

20 Several relocatable modules can.be loaded by .the linker . into.

' different locations in memory; the linker determines the
absolute addresses so that all the code is loaded properly,
each relocatable module going into the next memory location
left free by the last relocatable module.

3) Convenient means are provided to allow various relocatable
modules to make references to each other. This means that
there can be symbols in a source file which only reference
other - places in the same source file (this means that they
can be duplicated in other source files you wish to 1link
without conflict) and, on the other hand, certain labels can
be specified as entry point symbols or external symbols
(see ENTRY and EXTERNAL section', allowing different source
files to have common symbolic references. 1If in one source
file a certain symbol is specified as an entry point, then
references to that symbol in other modules - 1if they are
declared as external symbols - will be performed correctly.
Thus, modules can c¢all subroutines and reference data in
other modules.

4) Also available are common s=2ctions. These are typically

used to transfer data between different modules. Each
relocatable module may have up to 15 of these, distinguished

ASMBLE/Z - - 10 -

5)

These features together provide a wverv £
language envirconment. The operation of
explained in detail in later sections ni

by their name - any symbolic 1label desired, or a blank
label, is permitted. When ‘the various source files are
assembled into relocatable modules and are then loaded into
memory by the 1linker, these common sections are grouped
together from all the different modules according to name.
The common sections are overlayed; the linker assumes that
any common sections with the same name (all blank commons
are assumed to have the same name) represent identical
locations in memory. This allows the different modules tc
have common tables of data, so that when one module calls =&
subroutine in another, for instance, it can pass &
reference to a table in 2 common &area that the othe:
subroutine can use to proccess data. '

Other named sections are provided: PROG, ABS, and DATA. The
PROG (program) is the defzult secticn which is assumed if nc¢
section label 1is given. ABS provides the facility for
writing absolute code that will not be relocated, when th=-
is desired. DATA is provided sc¢ that you may, 1f vy~
desire, lccate the data section of & program in a differe:.
area than the instruction area, as might be necessary if
the program is to be burned intec z BEROM.

A fac1“-ty of the linker thazt provides even more programming
power is the ability to construct library medules. Thes:
are produced in much the same way 28 2 normal relocatable
modules - by writing scurce files, assembling them ¢tz
produce relocatable modules, and linking them - except thet

nk roduces a le*ary file z:z

in the librarisan mode, the 11i crad

output instead of executable bsalute binary - code. This
library file contains relocztsble modules, but provides :
powerful additional feature. You typi 1ly load one or morTs
relocatable modules with the linker, followed by a library
file; the linker treats the likrary f‘ie in & special wayv,
in that, as it encounters esch module in the library file,
it checks to see if any references hsve been made to the
entry point symbols in that librarv mcedule. TIf the linke:

finds no regquests for these entry points, it skips thet
module of the library £ile without loading it, and moves =or
to the next. On the other hand, if the linker finds that it
needs one or more entry noints in the library file it loac:

that module.

‘lewible Z-80 assembly
ach facility is

- 11 - ASMBLE /!

'MODULE SECTIONS

A relocatable module may contain up to eighteen different
sections to allow you to store absolute, program, data, and
common code. Each section has its own program counter. At the
beginning of an assembly all program counters are set to =zero.
As the assembler generates code in one section the appropriate
program counter is incremented to keep track of the location of
each byte of code. As labels are generated they are marked as
belonging to that section of code. When you change £from one
section to another (you may do this as often as you like) the
assembler saves the program counter from the last section and
loads the pregram counter for the new section. Later on, if you
switch back to the previous section again the program counter
points to the next available byte in that section and the code
assembly continues from where it left off.

For example, if you generate three bytes in section one they are
stored at locations 00, 01, and 02 in section one's base. Then
you generate two bytes in section two. They are stored at
locations 00 and 01 in section two's base. Now, 1f you generate
another byte in section one it 1is stored at 1location 03 in
section one's base.

_ The eighteen different sections are called by name. The first
tHree sections are called ABS, PROG, and DATA (when - -the assembler
starts it specifies PROG as the default section'. The remaining
fifteen sections are called COM. Sach COM section has a user
defined name. The names are only significant in the first eight
characters (the same as symbol names). One COM section may be
unnamed. It is referred to as blank common. You may change to
zny section by giving its name as an instruction. For example:

DATA Start the DATA section.

PROG Start the PROG section.

cOoM TABLE Start a common section named TABLE.
COM Start a blank common section.

DATA Continue in the DATA section.

The assembler treats all eighteen sections alike. That is, it
maintains a separate program counter for each section and marks
all labels generated in a given section as belonging to that
section. The linker, on the other hand, treats the sections
differently. Absolute code from the ABS section is 3lways loaded
into absolute memory as specified {that is, it is not
relocated). If several modules are being linked together the
PROG and DATA sections from the various modules are loaded into
different regions of memory. All common sections of a given name
are loaded 1into the same locations. For example, assume the

ASMBLE/Z - 12 -

linker loads two modules which each contain a PROG section and a
blank common section. When the program runs, the part of the
program in the first module's PROG section might store a dat:
byte in the first location of blank common. The part of th:
program in the second module's PROG section might load the same
byte from the first location of blank common.

You should use a little caution when generating code in ABS and
COM sections. This code may be overwritten by other modules
which are linked together. For example, one module may
initialize a table in a common section in one way and another
module may initialize the table in the same common section in
another way. The order in which the modules are specified to the
linker determines which initialization is overwritten and which
one remains loaded. 7Tt is usually better to simply reserve space
in all common sections with the DS instruction and initialize
them at run time.

You may also change sections with an ORG instruction. The type
of argument (that 1is, the section 1in which the argument wa:
defined) determines the new section. For example, if BLOTZ iz
the name of a location in the data section, then:

ORG BLOTZ+27

tells the assembler to generates code in the data section 27 bytes
beyond BLOTZ. : -

You should be very careful about using the ORG instruction in
programs that use external symbels (see ENTRY and EXTERNAL
section, below). The assembler generates all references to an
external symbol of a given name as a linked list. The last
reference points to the previous teference, etc. The list must
be 1intact for the -‘linker to properly resolve the external
. symbol. If you rewrite a section of code with the ORG
instruction (for example, ORG $-20) and an external reference is
overwritten, then the linked list is broken and the linker will
do unpredictable things. This cannot happen if you use the PROG,
and DATA instructions. :

Referencing external symbols in a common section 1is also e
dangerous practice because the 1linker overlays all common
sections of the same name. 1In general, it is not a good practice
to store any executable code in common sections.

- 1R - : ASMBLE/7

ENTRY and, EXTERNAL

Modules may communicate with each other through common sections
as explained 1in the ©previous “paragraphs. They may also
communicate by specifying various locations as entry points in
one module, and as an external symbol in another module. The
linker matches up all the entry point symbols in one module with
all the external symbols in other modules it is linking.

Entry peoints and external symbols are treated as sixteen-bit
address values. Therefore, if BLOTZ is an external symbol you
may refer to it in a statement such as LXI H,BLOTZ, but you may
not refer to half of an external address in a statement such as
MVI A,BLOTZ/2545.

A module may specify certain locations as entry points, in which
case they must be defined in the same module. The module may
also specify certain locations as external to that module. These
locations must not be defined in that module but will be defined
later in the 1linking operation. For example, suppose you are
writing a navigation module . which uses trig functions
(subroutines) in another module. 1In your navigation module you
might write:

EXT SIN,COS, TAN ; define SIN, COS, TAN as externals
LHLD = ANGLE : :

" CALL 'SIN

LHLD ANGLE

CALL Ccos

In the trig function module you might write:

ENTRY SIWN,COS,TAN ; define SIN, COS, TAN as entry points.
SIN: PUSH H

POP H

RET
CQS: PUSH H

-

ASMBLE/Z - - 14 -

When the linker 1links these modules it first loads them into
memory and determines the actual':locations of the three entry
points, SIN, COS, and TAN, in the trig function module. Then it

goes through the navigation module and sets the actual addresses
for the three external symbols.

NAME

Zvery relocatable module has a name. The name is initially set
to the first eight characters of the output £file (REL file)
name. You may change the module name at any time with the NAME
instruction. You may change the name as often as you like but

only the last name specified is given to the output file. For
example:

NAME ~ TRIG

- 15 - : ASMBLE/Z

LIBRARY

‘Related relocatable modules, "~ usually subroutines, may be
collected together in a single file called a 1library. Various
modules from the library are selectively loaded by the linker
after the main routines (modules) of a program are locaded. That
is, the main routines of a ©program usually need to use
subroutines which are found in the library. The main routines
are loaded first. Whenever a main routine needs a 1library
subroutine it declares the subroutine's entry point to be
external to the main routine. The linker places the subroutine
entry point name (symbel) in the external symbol ‘table. After
the main routines have been loaded (and several symbols have been
placed into the external symbol ¢table) the linker selectively
loads the library. It compares entry point symbols from each
library module with symbols in the external symbol table. If it
finds a match, that is, if it finds that one or more entry points
in a library module will resolve external symbols, it loads the
module. If it does not find a match it skips the module (since
it does not need it) and goes on to the next one.

A module in a library may contain external symbols as well as
entry point symbels, that is, the module may require the services
of one or more other modules in the library. For example, in the
TRIG library, the TaN and COT modules calculate the tangent and
cotangent of an angle. These modules make use of the identity:
" TAN(a)=SIN(a)/C08(a), and call the SIN and C0S modules to
calculate the sine and cosine of an angle. The TAN and COT
modules also call the DIV module to perform the division.

A library should locad all necessary modules (and no unnecessary
ones) in one pass. This means that a module should appear in a
library after it has been referenced by an external symbol in
other modules. That 1is, external symbols sheculd forward
reference the medules in which the symbols are defined (as entry
points). For example, the COT module should come before the TAN
module because it uses the TAN function in its calculation
(COT(a)=1/TAN(a)). The TAN module should come before the SIN and
COS modules. The SIN and COS modules do not reference each other
and thus may appear in any order. Everything references the DIV
module so it should come last. With the library put tcgether in
this order the required modules (but no more) will be loaded no
matter what the main routine may require. :

Sometimes it is not possible to arrange library modules so that
their external symbols only reference in a forward direction.
For example, suppose that some subroutines in module A reference
some subroutines in module B and some other subroutines in module

ASMBLE/Z . - 16 -

B reference some subroutines in module A (fold your hands and
think about it). There are several things you can do to rectify
this situation: You may decide. that module A and module B should
be combined into one larger module thus eliminating the cross
referencing. Or you may find that you can eliminate the cross
referencing by moving some subroutines from one module to the
other.

However, it may not always seem possible to eliminate the cross
referencing. In that case you may put two copies of module A
into the library, one before and one after module B, If the main
routine needs module A it is loaded the first time it Iis
encountered in the library. Module A then references module B
which is loaded next. When the second copy of module A is
encountered in the library it is skipped because all external
references to it have already been resolved (resolved external
symbols are removed from the external symbol table). On the
other hand, if the main routine needs module B it is loaded first
followed by module A, In either case both modules are loaded,
only their order in memory is different.

It is a good idea to put non-modifizble execution code (pure
code) in PROG sections and modifiazble data in DATA sections.
This is true in both main routines and in libraries. 1If you ever
want to burn a program into a PROM you simply tell the linker to
load all PROG sections into the PRCM region of memory and to
allocate space in read-write memory for the data. For example,
suppose you have a pair of text buffering subroutines: one
subroutine gets a complete line of text from the keyboard and
puts it into a line buffer, the companien routine returns the
next sequential character from the line buffer each time it is
called. These two subroutines would be placed in the PROG
section of the module and the line buffer would be placed in the
DATA section.

- 17 =~ ‘ ASMBLE/Z

PROGRAM COUNTER - -

The assembler evaluates each line of source code and generates
one or more bytes of machine code. . The machine code will be
loaded into sequential memory locations later on. The assembler
keeps track of the current memory address in 1its program
counter, This is a 16 bit counter which starts with a value of
zero. Each time the assembler generates a byte of machine code,
it increments the program counter. Since each byte is stored in
a location whose address is one greater than the address of the
last byte, the value of the program counter and the value of the
current memory address always agree. This one-to=-one
correspondence is, of course, altered when a relocatable module
is loaded by the linker.

The program counter may be read with the symbol $. In the

following examples | represents the left edge of the source
line.

|HERE EQU S HERE is set to the current value of the
program counter.

There are actually eighteen different program counters; one each
for the absolute, program, and data sections, and one for each of
the fifteen different common sections. Every time a new section
.is entered the program counter for the last section is saved and
the program counter for the new section is loaded. This means
that you can generate code in a program section, £for example,
then switch to the data section, generate som2 data code, then
switch back to the program section and continue generating code
from where you left off.

ASMBLE/Z , - 18 -

SYMBOLS

A symbol represents a number or an instruction. It starts with i
letter, dollar sign, percent sign, dot, number sign, o
underscore and may contain any of the following characters:

Numbers

Upper case letters
- Lower case letters
$ Deollar sign

$ Percent sign
#

N W0

00—
A~
a

N

Dot
Number sign
Underscore

Here are some examples of symbols and non symbols:

$ A symbol may start with $.

ABC A symbol may start with a letter.

X27 A symbol may contain numbers.

4SALE A symbol must not start with a number.
D°3 A symbol must contain only alphanumeric

characters, S, %: ., %, .

When a symbol is evaluated all lower <case .characters ar:
translated into upper case characters. 'The following symbols all
have the same value:

mov
Mov
MOV

When the assembler extracts a symbol from a source line, it pick:
up characters until it has a total of eight characters or unti.
it reads a non-symbol character. Any symbol characters beyon:
the first eight are ignored. Here is a list of symbols as thes
appear in a source 1line and as they are extracted by th:
assembler:

abcl23 ABC123
A,B A

VALUE12 VALUE1l
VALUE13 VALUE1l

In the first example the lower case characters are translates
into upper case characters. In the second example the symbol i:
A and 1is terminated by the comma. In the third and fourt!
examples only the first eight characters are significant in th:
symbol. The rest are ignored. Notice that VALUEl2 and VALUEIL:

- 19 - ASMBLE/:

~are treated as the same symbol.

LISTING

The first line on each page of the listing is the program header
line. It is made up of the first line from the first source file
(with leading semicolons, spaces, and tabs stripped off), the
current date, the assembler version number, and the current
page. The remainder of the page contains the program listing.

Each listing line contains the address of the first byte of code
in the line, up to four bytes of code, and the source text which
generated the code.

The DB and DS instructions may generate more than four bytes of
code. In this case the extra code is 1listed on subsequent
lines.

Some instructions do not generate any executable code (for
example, EQU, IF, END, etc). The address is left blank in these
lines to indicate that no code is generated. However, many of

these instructions have a numeric wvalue associated with them
which is listed.’ .

Addresses associated with relocatable (non absolute) code
sections are followed by various characters to indicte the code

section in which they were generated. The characters are as
follows:

PROG
DATA
COM
EXT

A % 3 =~

Macro definitions are noted with a minus sign following the

address. Macro expansions are noted with a plus sign following
the address.

Macro definitions, macro expansions, and conditional statements
(IFY may be nested (a macro expansion may call another macro
expansion, for example). The source text is indented two spaces
for each level of nesting.

ASMBLE/Z) - 20 -

Sixteen-bit values are listed with their most significant byt
first for readability, but they: are stored with their least
significant byte first. For example, the following instruction.

. LXT . B,1234H

is listed as:
0000 01 1234 LXI B,1234H
and generates the following code:

01l
34
12

The symbol table follows the program listing. The first 1lin
contains information about the assembly (number of error
detected, number of symbols generated, and amount of unused spac
in memory). 1If the program generated any macros the next lin
contains 1information about the macros (number of characters
stored and number of macros generated). The next line conta!ng
information about section sizes (size of absolute, program, &nd
data sections) followed on subsequent lines by the names of &li
common sections and their sizes (blank common is 1listed
* *) . The symbols follow on the next page in coluwx
alphabetized order followed by their sixteen bit value writter
as four hex characters. If a value is a relocatable address it
is followed by the corresponding.relocation character (', ", ¥,
or #). Macro names are also listed in the table followed by th
letter M in place of the value.

- 21 - ASMBLE/:

 SOURCE LINE FORMAT

A source line consists of a labelvfield, an instruction field, an
argument field, and a comment field. . Each line may contain none,

any, or all of these fields. This is what a source line looks
like:) S oo

| LABEL INSTRUCTION ARGUMENT (S) COMMENT

LABEL FIELD

A label 1is a symbol which begins in the first coclumn. If a
symbol does not begin in the first column it is not a label.
This means that you may have only one label on a line since there
is only one first column on a line. It also means that you may
not indent labels.

| BOB | BOB is a label.
| CHARLIE CHARLIE is not a label; it is indented.

A label may be terminated with any non symbol character, that is,
a space, tab, colon, etc.

[MULT : Label ends with a space.
IDIV: ' Label ends with & colon.

The symbol used in a label is given the current value of the
program counter. Since the value of the program counter |is
equivalent to the current memory acddress, each label is equal to
the memory address of the first byte in its line. For example,
suppose that the current value of the program counter is 123.

[MIX: MoV A,B
[MATCH:MOV c,D

MIX is given the value 123 since the value of the program counter
is equal to 123 at the beginning of the first 1line. The
instruction MOV A,B generates one byte of code. This increments
the program counter. At the beginning of the second line it has
a value of 124 so MATCH is given a value of 124. 1In the case of
relocatable code, the assigning of actual memory addresses to
labels is deferred until the linker loads the code.

ASMBLE/Z , - 22 -

INSTRUCTION FIELD

An instruction is a symbol which does not begin in the first
column. The assembler tells the difference between labels and
instructions by noting whether or not the symbol starts in the
first column. The instruction symbol may only be terminated with
a space, tab, semicolon, or carriage return. 4

|TOP: RAL TOP is a label. RAL is an instruction.
| PCHL PCHL is an instruction.

| It does not start in the first column.
|L26:CMA L26 is a label terminated by a colon.

| CMA is an instruction.

- 23 - ASMBLE/Z

ARGUMENT FIELD

Some instructions require one or more arguments. The arguments
are separated from the instruction by one or more tabs or
spaces. If the instruction requires more than one argument the
multiple arguments must be connected by commas and must have no
intervening tabs or spaces. The only exception to this rule is
the use of the arithmetic c¢cperator NOT. It must be separated
from the argument it modifies by a tab or a space. Here are some
examples of single arguments:

COUNT A symbol

o Either the symbol C or register C

'G! A one byte text string

'AB' A two byte text string

'Time' A multi-byte text string

36 - A number

NOT TRUE An arithmetically modified symbol
TOP+2 Another arithmetically modified symbol

Here are some examples of instructions which require single and
multiple arguments:

! POP D

| ADI 100

i SUI PVAL

| . MOV . C,A

| LXI H, ADDR
| LXI B,'XY"

In the first example the instruction POP requires a single
argument which must be a register name. The instructions in the
second and third examples require a single argument which may
have any eight bit wvalue. 100 is used as the value of the
argument in the second example; the value which PVAL represents
is used as the argument value in the third example. In the
fourth example the MOV instruction requires two arguments which
must be register names. The arguments are separated by a comma.
The instructions in the last two examples reguire two arguments.
The first argument must be a register name. The second argument
may have any 16 bit value. The value of ADDR is used as the
value of the argument in the fifth example; the 16 bit value of

the text string XY is used as the arqument value in the last
example.

ASMBLE/Z - 24 -

COMMENT FIELD

Any line of source code may contain a comment. The comment is
optional. It is just a place for you to make a remark about the
source code (or anything else, for that matter). The comment
field usually contains a running commentary on the operation of
the program.

A comment is separated from the instruction or arguments by a
tab, a space, or a semicolon. If a line contains nothing but a
comment field the comment must start with a semicolon or an
asterisk. Here are some examples of source lines with comments.

l MOV . A,B This is a comment.

| CMA ; This comment starts with semicolon
! MOV D,A; This comment is separated by semicolon.
|; This line contains only a comment.

|

:50 does this one.

- 25 - ASMBLE/Z

MACROS

A macro is a named collection of one or more lines of code.
after the macro ‘has been defined,- it .may be inserted into a
program one or more times simply by typing the macro's name in
place of an instruction.’” See the ASSEMBLER INSTRUCTION section
for more detailed information about macros.

A macro is defined by the instruction MACRO. It must have a name
which starts in column one. The body of the macro follows on
subsequent lines. The end of the macro definition is indicated
by the instructiom ENDMAC. '

FLIP: MACRO DEFINE A MACRO CALLED FLIP.

| ;

| MOV A M : GET A BYTE.

T CMA ; COMPLEMENT IT.

| MOV M,A s REPLACE 1IT.

| ENDMAC ; END OF MACRO DEFINITION.

This macro may be called in program by using the name FLIP as

an instruction.

)

t LXI H, ADDR
l FLIP

POINT TO A MEMORY LOCATION,
COMPLEMENT ITS CONTENTS.

~e Wy

When the program is assembled, the macro in the preceding example
" is expanded as follows. : , .

! LXI H,ADDR ; POINT TO A MEMORY LOCATION.
| MOV A M ; GET A BYTE.

| CMA ; COMPLEMENT IT.

| MOV B,M ; REPLACE IT.

Notice that the comments in the macro definition are stored with
the macro text and appear in the 1listing when the macro |is
expanded. . If your program defines quite a few macros, a lot of
storage space may be taken up by comments. You can save this
space by starting each comment with two semicolons. This
prevents the comment from being stored.

|]COM: MACRO

| MoV a,M ; THIS COMMENT IS STORED.
| MOV M,B ;; THIS COMMENT IS NOT.
! ENDMAC : END OF MACRO DEFINITION.

This macro is expanded as follows:

| MOV AM ; THIS COMMENT IS STORED.
| MOV M,B

ASMBLE/Z . - 26 -

A macro may be defined with dummy arguments which are replaced
with real arguments when ' the macro is called later 1in the.
rogram. The dummy arguments are listed on the first line of the
macro as arguments separated by commas. Each time a dummy
argument is encountered in the body of the macro, it is replaced

with a numbered marker.

When the macro 1is <called, the real arguments are given on the
call line as arguments separated by commas. The first real
argument replaces every occurrence of the first marker in the
macro body, the second replaces the second, etc. If there are
too many real arguments the extras are ignored. 1If there are not
enough real arguments the missing ones are treated as null
arguments, that is, arguments without any characters 1in them.

OUTPUT:MACRC PORT,ADDR; DEFINE MACRO CALLED OUTBUT.

|

| LDA ADDR ; GET CONTENTS OF MEMORY LOCATION.
| ouT PORT ; TRANSMIT TO OUTPUT PORT.

I ENDMAC ; END OF MACRO DEFINITION.

The macro is called as follows:
| ouTPuUT 27H,DATA; TRANSMIT A BYTE FROM DATA TO OUTPUT PORT 27.
It is expanded like this:

| LDA - DATA - ; GET CONTENTS OF MEMORY LOCATION.
! ouT 27H ; TRANSMIT TO OUTPUT PORT.

The dummy arguments may occur anywhere in the macro body,
including the label and instruction fields.

| MACK: MACRO LAB, INS,ARGl,ARG2

|LAB: INS ARG1,ARG2

l ENDMAC
This macro is called as fellows:

| MACK ABCl,MOV,A M
It is expanded as follows:

|ABCl: MOV A,M
Dummy symbols are treated like ordinary symbols. They must start
with a letter, $, ., %, &, or . Only the first eight characters
are significant. However, <the arguments which replace the

markers when the macro is expanded may contain any number of
characters including quoted commas.

- 27 - ASMBLE/Z

A dummy argument may be concatenated with text in the macro body
by wusing - the ! as a concatenation character. Whenever !
immediately precedes or follows a dummy symbol in the macro body,
the ! and the dummy symbol are both replaced by the marker,
without any intervening space. When the macro is later expanded
the marker is replaced by a real symbol. -~

| TEXT: MACRO TAG,TXT
|T!TAG:DB TXT, 0
I ENDMAC

This macro is called as follows:

| TEXT 1,"Hi there, boys and girls”
| TEXT 2,"This is Uncle Fink"

It is expanded as follows:

fT1l: DB "Hi there, boys and girls",0
1T2: DB "This is Uncle Fink”",0

One macro definition may contain another macro definition. The
dummy arguments apply to all the macro definitions. The text for

the inner (contained) macro definition is modified and stored
inside the outer macro body.

| OUTER:MACRO ARG1,ARG2; DEFINE OUTER MACRO.

| LDA ARG1 ,

| INNER:MACRO ARG3 ; DEFINE .INNER MACRO..

| ADI ARG3 .

| ENDMAC ; END OF INNER MACRO DEFINITION.
| STA ARG2

| ENDMAC : END OF OUTER MACRO DEFINITION.

At this time QUTER has been defined but INNER has not. A call to

INNER results in an error message. INNER is defined when OUTER
is called and expanded. .

| OUTER HERE, THERE

It is expanded as follows:

1 LDA HERE

[INNER:MACRO ARG3 ; DEFINE INNER MACRO.

| aDI ARG3

| ENDMAC ; END OF INNER MACRO DEFINITION.
| STA THERE

Now INNER has also been defined. It can be called as follows:

| POINT: INNER 34

ASMBLE/Z ' - 28 -

Notice that the label POINT has been placed in front of theﬁgacro
call. It is expanded as follows: ”) ' i

| ADI 34

Finally, a macro may contain a.call to another macro. In fact,
macro expansions may be nested to sixteen levels.

[NEST: MACRO PLACE

I LDa PLACE

| "~ INNER 123 ; NESTED MACRO CALL.
| STA PLACE

! ENDMAC -

It is called as follows:

| NEST BOPPER

This is expanded as follows:

— LDA BOPPER
| ADI 123
x STA BOPPER

- 29 - ASMBLE/Z

ARGUMENT FORMAT

Each -argument may be made up of any combination of user defined
symbols, numbers, or quoted character strings. They may. be
combined by + (add), - (subtract or negate), * (multiply), /
(divide), and & (logical and). Any argument may be preceded with
the word NOT (complement). The arithmetic procedures are carried
out from left to right. No parentheses are allowed. For
example, 1+2*3 is evaluated as 9, not 7. Arithmetic symbols may
not be combined. For example, SYM1&NOT SYM2 causes an error. To
prevent the error, divide the operation into two lines. The
first line is NSYM2 EQU NOT 3SYM2. The second line contains
SYM1&NSYM2. :

ASMBLE/Z , - 30 -

RELOCATABLE SYMBOL ARITHMETIC -

Absolute symbols may be used in all arithmetic operations. For
" example, the following operations are all valid:

ABS
OFFSET EQU 27

LDA $+0OFFSET

STA TABLE-OFFSET
TABLE: DS 100

Relocatable symbols may be used in some arithmetic operations but
not in others. A constant (absolute) symbol may be added to or
subtracted from a relocatable symbol. The result of the
operation belongs to the same section as the relocatable symbol.
A relocatable symbol may not be multiplied, divided, anded, or
NOTed.

PROG

LDA TABLE-3 valid

LXI - H,TABLE/4 Not valid
TABLE: DS 100

A relocatable symbol may be subtracted from another relocatabls
symbol of the same section. The result 1is the absolute
difference between the two symbols. The two symbols may not be
in different sections because the addresses represented by the
symbols are not known until the module is linked.

DATA
TABLE: DB -
DB A

LENGTH EQU TABLE-S ; NUMBER OF BYTES IN TABLE

- 131 - ASMBLE/Z

The assembler evaluates an expression from left to right. - In. the
following example the first two terms are relocatable but the
result of the subtraction is an absolute number which may be
divided by another absolute number. : :

DATA

TABLE: DW BLOTZ
DW BLINTZ R
LENGTH EQU TABLE-$/2 ; NUMBER OF ADDRESSES IN TABLE

An external symbol may not be used in any arithmetic or logical
operation.

EXT BLOTZ ‘

LDA BLOTZ Vvalid

STA BLOTZ+3 Valid
LELD 3-BLOTZ Not valid

ASMBLE/Z h - 32 -

STRINGS

A quoted character string must start with either a single gquote
('Y or a double quote ("). The quote character is used as &
delimiter to determine the end of the string. All characters in
the string up to but not including the second delimiter are
evaluated. Both delimiters must be the same. If the second one
is missing, all remaining characters up to the end of the line
are considered part of the quote string. For example, DW 'AB' is
evaluated as 4142H.

NUMBERS

Some instructions require a single byte argument. If the value
of the evaluated argument requires more than one byte to express,
an error message is printed. For example, 260 is evaluated as
104H. MVI A,260 gives an error message. The exception to this
rule is a number whose high byte is 0FFH, such as -2 (OFFFEH).
This number returns only the low byte without an error message.

Numbers may be represented in binary, octal, decimal, or hex
notation. All numbers must start with a decimal digit (0 - 9).
That is, a hex number that starts with a letter should have a
zero before it, or it will be interpreted as a symbol (OFFH). If
the number is not a decimal number it must end with a letter to
indicate the notation.

TYPE DIGITS TERMINATION
Binary 0 - 1 B
Octal 0 - 7 0 or Q
Decimal 0 - ¢ .D or . or ncthing
Hex 0 -9, H

A - F

- 33 - - ASMBLE/Z

"Here are some examples of proper numbers:

1011001B Binary
- 1357Q. .-~ = - Octal
22440 t :
- 2468. Decimal
1234D
39
3B9CH) Hex
OFFFH ‘

ASMBLE/Z , - 34 -

RELATIVE JUMPS

The relative -jump ‘instructions require an argument which 1is
evaluated as a 154 bit address. The difference between the
address and two plus the current value of the program counter is
used as the eight bit signed relative jump offset. If the offset
cannot be expressed by an eight bit number, that 1is, if the
address is farther than plus or minus 127 bytes from the progran
counter plus two; the jump cannot be made and an error message is
printed. A relative Jjump may start and end in the same
relocatable section but it may not Jjump from one section tc
another.

- 35 - ASMBLE/!

'REGISTER NAMES

Single (eight bit) registers

(IX)
(IY)

DHOQAAWICDmEY O o P

M is a memory location whose address is in the HL register pair,
that is, HL points to register M. Memory 1locations d(IX) and
d(IY) are locations whose address is the contents of the IX or IY
register added to 4 where 4 is a signed eight bit number.
symbol d can be evaluated as a signed eight b1t number.

Interrupt vector
Memory refresh r

also be omitted altogether.

Double (16 bit) registers hav

B

D

H
PSW
SP
IX
IY

P may be substituted for PSW,

BC pair

DE pair

HL pair
Processor status
Stack pointer
Index register X
Index register Y

have the followiné names:

register
egister

e the following names:
word, A and flags

S may be substituted for SP, and

_or Y may be substituted for IX or IY in any instruction.

ASMBLE/Z

- 35 -

The
It may

MACHINE INSTRUCTIONS

This section contains the machine instructions organized inteo
logical groups. They generate code which tells the computer wha"
to " do. The first line of the description of each group. ol

instructions is an example of the proper use of an instruction in
the group. -

- 37 - ASMBLE/?

JuMp, CALL

Format: JMP BLOTZ

The Jjump and éal
evaluated as a 16 bit address.

JMP
JNZ
Jz
JINC
JC
JNV
Jv
JPO
JPE.
JP
JM

Jump.
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump

JNV generates the

JR
JMPR
JRNZ
JRZ
JRNC
JRC

DJNZ

Jump
Jump
Jump
Jump
Jump
Jump

1 1instructions require an argument which

if non-zero. .

if zero.

if no carry.

if carry.

if no overflow.

if overflow.

if parity is odd.
if parity is even.
if positive.

if minus.

same code as JPO. JV the same as JPE.

relative.

relative.

relative if non-zero.
relative if zero.
relative if no carry.
relative . if carry..

Decrement B and jump relative if B <> 0.

Format: CALL BLOTZ

CALL
CNZ
cz

cC
CNV
cv
CPO
CPE
cp
CM

CNC

call
Call
Call
Call
Call
Call
Call
call
Call
Call
Call

CNV generates the

ASMBLE/Z

a subroutine.

if non-zero.

if zero.

if no carry.

if carry.

if no overflow.
if overflow.

if parity is odd.
if parity is even.
if positive.

if minus.

same code as CPO. CV the same as CPE.

is

RETURN

Format: RET

The return instructions do not require an argument.

RET Return

RNZ Return if
RZ - Return if
RNC Return if
RC Return if
RNV Return if
RV Return if
RPO Return if
RPE Return if
RP Return if
RM Return if

RNV generates the same

RETT
RETN

from a subroutine.

non-zero.

zero.

no carry.
carry.

no overflow.
overflow.
parity is odd.
parity is even.
positive.
minus.

code as RPO. RV is

Return from interrupt.
Return from non-maskable interrupt.

the same as RPE.

ASMBLE/?

RESTART
Format: RST 3
The restart instructions require an argument which represents a

number between zero and seven.

RST n Restart at location n*8 where n is a value from 0 - 7.

ASMBLE/Z N - 40 -

ACCUMULATOR

Format: ADI 27

The accumulator immediate instructions require an argument which
is evaluated as eight bits. These instructions modify all
flags. All instructions except CPI leave the result of the

operation in the A register. The CPI instruction does not change
the A register.

ADIT Add immediate.

ACT Add immediate with carry.

SUI Subtract immediate.

SBI Subtract immediate with borrow.
ANI AND immediate.

XRI Exclusive OR immediate.

ORI OR immediate.

CPI Compare immediate.

Format: ADD 3(IX)

The accumulator register instructions require an argument which
is a single register name, A, B, C, D, E, H, L, M, d(IX), or
d(IY). These instructions modify all flags. All instructions

. except CMP ‘leave the result of the operaticn in the A register.

The CMP instruction does not change the A register.

ADD Add register to A.]

ADC Add register to A with carry.

SuB Subtract register from A. '

SBB Subtract register from A with borrow.
ANA . AND register with A.

XRA Exclusive OR register with A.

ORA OR register with A.

CMP Compare register with A.

- 41 - ASMBLE/Z

INCREMENT, DECREMENT
Format: INR A

The single register increment and decrement instructions require
an argument which is a single register neme, A, B, C, D, E, H, L,
M, d(IX), or d(1IY). All flags except carry are modified.

INR Increment the register.
DCR Decrement the register.

Format: INX H

The double register increment and decrement instructions require
an argument which is a double register name, B, D, H, SP, 1IX, or
IY. No flags are modified.

INX Increment the register pair.
DCX Decrement the register pair.

ASMBLE/Z : - 42 -

DOUBLE ADD, SUBTRACT

Format: DAD B

The double register add and subtract instructions require azan
argument which is a double register name, B, D, H, or SP. DADX
accepts IX instead of H as an argument and DADY accepts IY
instead of H as an argument. The DADC and DSBC instructions

modify all flags. The other instructions modify only the carry
flag.

DAD Add 'the register pair to HL.

DADC Add the register pair to HL with carry.

DSBC Subtract the register pair from HL with borrow.
DADX Add the register pair to IX.

DADY Add the register pair to IY.

- 43 - ’ ASMBLE/"

'LOAD, STORE
Format: LDAX B

The LDAX and STAX instructions require an argument which is a
double register name, B, or D. :

LDAX Load A from location pointed to by register pair.
STAX Store A in location pointed to by register pair.

Format: LDA BLOTZ

The load and store direct instructions require an argument which
is evaluated as a 16 bit address.

LDA Load A.

LBCD Load BC.

LDED Load DE.

LHLD Load HL.

LSPD Load stack pointer.
LIXD Load IX.

LIYD Load 1IY.

STA Store A.

SBCD Store BC.

SDED Store DE.

SHLD Store HL.

SSPD Store stack pointer.
SIXD Store IX.

SIYD Store IY.

ASMBLE/Z ' - 44 -

PUSH, POP
Format: PUSH H
The push and pop instructioné‘require an argument which is a

double register name, B, D, H, PSW, IX, or 1IY.

PUSH Push the register pair onto the stack.
POP Pop the stack into the register pair.

- 45 - ’ ASMBLE/?

INPUT, OUTPUT
Format: IN 5

The input and output ins;ructions require ‘an argument which is
evaluated as an eight bit port number. These instructions do not
modify any registers.

IN Move data from the input port into A.
ouT Move data from A to the output port.

Format: INP D

The input register and output register instructions require an
argument which is a single register name, A, B, C, D, B, H, L, or
M. The OUTP instruction does not modify any flags. The INP
instruction modifies all flags except carry. The INP M-
instruction only modifies the flags, not the memory location.

INP Move data from the input port whose port number is
in C into the register.

QuTP Move data from the register to the output port whose
port number is in C.

Format: INI

The 1input memory and the output memory instructions do not
require an argument. The zero flag is set if the B register is
decremented to zero. The carry flag is not affected.

INI . Move data from the input port whose port number is
in C into M. Decrement B. Increment HL.

INIR Do INI until B = 0.

IND Same as INI except decrement HL.

INDR Do IND until B = 0.

OUTI Move data from M to the output port whose port
number is in C. Decrement B. Increment HL.

OUTIR Do OUTI until B = 0.

ouTD Same as OQUTI except decrement HL.

OQUTDR Do OUTD until B = 0.

ASMBLE/Z - 465 -

MOVE, LOAD IMMEDIATE

Format: MVI B,27

The move immediate instructions require two arguments; a single
register name, A, B, C, D, E, H, L, M, d(IX), or 4d(IY¥), and an
argument which is evaluated as eight bits. The two arguments are
separated by a comma. '

MVI Move the number into the register.

Format: LXI H,BLOTZ

The load immediate instructions require two arguments: a double
register name, B, D, H, SP, IX, or IY, and an argument which is
evaluated as 16 bits. The two arguments are separated by a
comma.

LXI Load the number into the register pair.

Format: MOV A,B

The move instructions require two arguments. Both are single
register names, A, B, C, D, E, H, L, M, d(IX), or d(I¥). The
arguments are separated by a comma. The two arguments should no:
both be memory, that is, you can't say MOV M, (IX). '

Mov Move second register into first register.

- 47 - ASMBLE/Z

BLOCK MOVE, SEARCH
Format:A LDI

The block move and compare instructions do not require an
argument. The P/V flag 1is cleared to zero if BC is decremented
to zero. The load instructions modify only the P/V flag. The
compare instructions set the zero flag if the contents of A equal
the contents of M and also modify the sign flag. These
instructions do not change the carry flag.

LDI Move contents of memory pointed to by HL into memory
pointed to by DE. Increment DE and HL. Decrement
BC. :

LDIR Do LDI until BC = 0.

LDD Same as LDI except decrement DE and HL.

LDDR Do LDD until BC = 0.

CC1- Compare A with M. Increment HL. Decrement BC.

CCIR Do CCI until BC = 0 or A = M,

CCD Same as CPI except decrement HL.

CPDR Do CPD until BC = 0 or A = M,

ASMBLE/Z) - 48 -

BIT
Format: BSET 3,M

The bit set, reset, and test instructicns require two arguments:
an argument which represents a bit position between zero and
seven, and a single register name, A, B, C, D, E, H, L, M, d(IX),
or d(IY). The arguments are separated by a comma (bit number,

register name). Only the BIT instruction modifies any
registers. The carry flag is not changed.

BSET Set the bit in the register.,
RES Reset the bit in the register.
BIT Copy the bit in the register into the zero flag.

- 49 - ASMBLE/Z

'ROTATE, SHIFT

Format:

The fotate A instructions do not
modify only the carry flag..

RLC

RRC

RAL

RLA

RAR
RRA

ASMBLE/Z

Rotate A left 8 bits.

N
Cy <-- 7..0 <-

Rotate A right 8 bits.
| !
-> 70 .0 —'-> Cy

Rotate A, carry left 9 bits.
Same 2s RAL.

! |
- Cy ¢-= 7..0 <-

Rotate A, carry right 9 bits.

Same as RAR.

| l.
-> 7..0 ==> Cy -

require an

MSB

LSB

MSB

LSB

argument.

into carry.

into carry.

into carry.

into carry.

They

Format: RLCR D

The rotate and shift instructions require an argument which is ¢
single register name, A, B, ¢, D, E, H, L, M, 4(IX), or 4(IY).
These instructions modify all flags.

RLCR Rotate register left 8 bits. MSB into carry.

See RLC.

RLAR .= Rotate register left 9 bits. MSB into carry.
See RAL. :

RRCR Rotate register right 8 bits. LSB-into carry.
See RRC.

RRAR Rotate register right 9 bits. LSB into carry.
See RAR. ’

SLAR Shift register left 9 bits. 0 into LSB.
Cy <- 7..0 -0 MSB into carry.

SRAR Shift register right 9 bits. Sign into MSB.

LSB into carry.

| I :
-> 7..0 -> Cy

“SRLR Shift register right 9 bits. 0 into MSB.
- 0 -> 7..0 => Cy LSB into carry. ..

Format: RLD

The rotate digit instructions do not require an argument. These
instructions modify all flags except carry.

RLD Rotate four LSBs of A left with M,
P S ——
I I
A3..A0 M7..M4 M3..MO
I I [

S -l
RRD Rotate four LSBs of A right with M.
R .

I !
A3..A0 M7..M4 M3..MQO

I ol l

—> -S>

- 51 - ASMBLE/!

MISCELLANEOUS
Format: CMA

Several miscellaneous instrhctidns do not reguire an argument.
No flags are affected unless otherwise noted.

CMA Complement accumulator.

NEG Negate accumulator. All flags modified

DAA Decimal adjust accumulator. All flags modified.
STC Set carry. Only carry modified.

CMC Complement carry. Only carry modified.

NOP No operation. ’

HLT Halt.

EXAF Exchange A 1, flags 1 with A 2, flags 2.

EXX Exchange BC 1, DE 1, BL 1 with BC 2, DE 2, HL 2.

XTHL Exchange the contents of the top of the stack with HL.
XTIX Exchange the contents of the top of the stack with IX.
XTIY Exchange the contents of the top of the stack with IY.
XCHG Exchange DE with HL. .
PCHL Load the program counter from EL.
PCIX Load the program counter from IX.
PCIY Load the program counter from IY.
SPHL Load the stack pointer from HL.
SPIX Load the stack pointer from IX.
SPIY Load the stack pointer from TIY.
DI Disable interrupts.
EI Enable interrupts.
LDAI Load A with I. Zero and sign flags modified.
P/V flag gets contents of IFF.
STAI Store A in I.
LDAR Load A with R. Zero and sign flags modified.
p/V flag gets contents of IFF.
STAR Store A in R.

MO0 Set interrupt mode 0.
IM1 Set interrupt mode 1.
IM2 ° Set interrupt mode 2.

ASMBLE/Z - 52 -

ASSEMBLER INSTRUCTIONS

This section contains assembler instructions. They tell the
assembler what to do. 1In some cases they generate machine code.
The first line or lines of the description of each instruction is
an’ example of the proper use of the instruction.

- 53 - ASMBLE/"

|

'MACRO

Format: BLOTZ: MACRO REG
SLAR. - REG
ENDMAC

A macro definition requires the MACRO instruction with a label,
zero or more lines of code which are stored as the body of the
macro definition, and an ENDMAC instruction, which marks the end
of the macro body. The line containing the MACRO instruction may
also contain several dummy arguments separated by commas. A
macro definition may contain other macro definitions -(255
max imum) and calls to other macros (15 maximum).

\

Once. a macro has been defined it may be called by using the macro
name in ‘place of an instruction. The code stored for that
particular macro is recalled and entered in the program,
character by character, and alluated.

When the MACRO instruction is encountered, the label 1is entered
in. the user's symbol table and marked as a macro. The dummy
argument symbols are stored in a temporary symbel table. The
code in the body of the macro definition is stored character by
character in the macro storage space. Comments beginning with
" two semicolons. are not stored. '~ If ‘a symbol- in the body is .
encountered which matches one of the dummy argument symbols, a
numbered marker is stored in the macro storage space instead of
the symbol. If the symbol matches the first dummy symbol the
marker is given the value one, if it matches the second symbol it
is given the value two, etc. The exclamation point (!) is used
as a concatenation character. If a dummy symbol in the body is
preceded or followed by the concatenation character, the ' |is
removed along with the dummy symbol when it is replaced by a
marker. The macro definition may contain one or more embedded
macro definitions. The dummy argument symbols are compared to
symbols in all levels of the definition. All dummy symbols are
replaced by markers.

The line containing the macro call may also contain one or more
arguments separated by commas. These arguments (actually
character strings) are substituted for the markers in the macro
body. The arguments may be any length (as long as they all fit
on one line), and may contain commas in quoted strings. The
first argument string replaces every occurrence of the first
marker, the second string replaces the second marker, etc.

ASMBLE/Z - - 54 -

DEFINE BYTE, WORD
Format: DB 'ARC!'

The DB (Define Byte) and DW (Define Word) instructions may be
followed by one or more arguments. Each argument is evaluated as
a separate byte or word. If a DB argument is a text string
enclosed in single or double guotes, the seven bit ASCII value of
each character in the string is returned. :

EXPRESION CODE GENERATED .

DB 100 54
DB 'MOM' 4D
4F

4D

DW 100 64
. 00

DW 1234H,4557H 34
12

67

45

Format: DBS 'aAB',CR,LF

The DBS (Define Byte Sign) and DBZ (Define Byte Zerc’
instructions are similar to the DB instruction. They differ in
the way they treat the termination of the command line. The DBS
instruction sets the sign bit of the last character in the line.
The following pairs of lines generate the same code:

DB 'ABCDE' ,'F'+128

DBS ‘ABCDEF!

DB '‘di there' ,CR,LF+128
DBS _ 'Hi there',CR,LF

The DBZ instruction appends a zero byte to the end of the line.
The following pairs of lines generate the same code:

DB 'ABCDEF',0

DRZ "ARCDEF!

DB - 'Hi there' ,CR,LF,O0
DBS 'Hi there',CR,LF

- 55 - | ASMBLE/Z

DEFINE STORAGE
Form;t: DS 200

The DS (Define Storage) -instruction requires one argument and
reserves the amount of space (in bytes) determined by the value
of the argument. The instruction does not generate any code.
The instruction is used to allocate space in memory for variables
and tables without specifying the contents of those locations or

generating any code in the HEX or BIN files. For example, assume
SIZE represents the value 100.
. \]

! DS SIZE Reserve 100 bytes of space in memory.
I DS 14 Reserve 14 more bytes.

ASMBLE/Z - 56 =

CONDITIONAL

Format: IF °~ KFLAG
CaLL BLOTZ
ENDIF

The IF instruction requires one argument. If the value of the
argument is zero, assembly of code is suppressed until an ELSE or
ENDIF instruction is encountered at which time it resumes. If
the wvalue 1is non-zero, assembly <continues until an ELSE
instruction is encountered. Then, assembly is suppressed until
an ENDIF instruction 1is encountered. The use of the ELSE
instruction is optional. For example, assume SWITCH is equal to
zero.

IF SWITCH Argument evaluates to zero.

|
| INR A - Don't assemble this code.
| ELSE ,
| DCR A , Assemble this code instead.
| ENDIF :
| .
! IF NOT SWITCH Argument evaluates to FFFF.
! DCR A . Assemble this code.
| ENDIF
|
B MOV c,a Always assemble this code.

IF instructions (with optional ELSEs) may be hnested to 255
leyels.

- 57 - , ASMBLE/?

ENTRY, EXT

Format: ENTRY SIN,COS

The ENTRY instruction requires one or more arguments which are
symbol names. It marks those symbols as entry points. The
symbols must be defined somewhere in the program (used as a
label, for instance). Entry point symbols are passed via the
relocatable output file (REL file) to the linker to define the
symbols for use by other modules. This instruction may be used
anywhere in the program. The entry instruction is not valid when
the assembler is generating a hex or binary file. ’

Format: EXT TAN,COT

The EXT instruction requires one or more arguments which are
symbol names’ ‘It tells the assembler that those symbols are not
defined in the current program but will be defined later in other
modules. EXT symbols are passed via the REL file to the linker
to be defined by entry point symbols in other modules. This
instruction may be used anywhere 1in the program. The EXT

instruction is not valid when the assembler is generating a hex
or binary file.

ASMBLE/Z 5 - 58 -

ABS, PROG, DATA, COM

Format: ABS

The ABS, PROG (REL may be used instead of PROG), and DAT?
instructions do not require an argument. They tell the assembler
to begin or continue generating code in a particular section. If
code had been generated in that section before, the progran
counter points to the next available byte of storage so that code
generation continues from where it left off last time. Thess

instructions are not valid when the assembler is generating a hex
or binary file.

Format: COM BLOTZ

The COM instruction may take an eight character name as ar
argument. If no name is given it is assumed to be blank (all
spaces) . It tells the assembler to begin or continue generating
code in that common section in exactly the same way as the ABS,
PROG, and DATA instructions do. There may be as many as fifteer
different common sections. The COM instruction is not valid wher
the assembler is generating a hex or binary file.

- 59 - ASMBLE/ }

ORG, LOAD
Form§t: ORG 100H

The ORG instruction requires an argument which is evaluated as a
15 bit address. The instruction sets the assembler, HEX, and BIN
program counters to that address; that is, it determines the
starting address of the next block of code generated. The type
of the argument (section in which it was defined) determines the

type of the new section. For example, if GRIBLY was defined in
the data section:

ORG GRIBLY+100

tells the assembler to continue generating code in the dzta
section.

ORG 20

has an absolute argument and tells the assembler to generate code
in the absolute section.

If the line containing the ORG instruction contains a2 label, the
label is set to the new value of the program counter.

I[GUM: ORG o123 . GUM has ‘the value 123.

If you are generating a COM file you ma? not CRG below 100H +
BOOT and you may not ORG backwards (ORG to & lacastion less than
the current program counter).

Format: LOAD 1000H

The LOAD instruction 1is only wvalid when the zsgssmbler is
generating hex code. It is not wvalid when =the =zssembler Iis
generating relocatable code or COM £file cods. It r

argument which is evaluated as & 14 bit address. The instruction
forces the code generated by the assembler to be locaded into
memory whose address is different from the address sst by the ORG
instruction. This allows you to load code inte one region of
memory and later move it to another region for executicn (for
example, programming a PROM). The LOAD instruction regquires an
argument. It sets the BIN and HEX program counter tc the value
of -the argument but does not change the assembly program
counter. For example, if you were writing cede to be loaded at
24H but executed at 1003H you would use the instructicns:

ASMBLE/Z - A0 -

ORG
LOAD
DCR
JNZ

1003H
24H

LOOP

Set assembler program counter to 1003H.
Set binary and hex program counter to 243.
0D is stored at 24H. - '
C2 is stored at 25H.
03 is stored at 26H.
10 is stored at 27H.

- /A1 - ASMBLE/Z

NAME
Format: NAME TRIG

The NAME 1instruction requires an eight character name as an
argument. This name is passed via the relocatable file to the
linker and appears in the module name listing. This instruction
may be given more than once in a program but only the name
specified last is put in the REL file. 1If this instruction is
not used in a program the first eight characters of the REL file
name are used as the module name. The NAME instruction is not
valid when the assembler is generating a hex or binary file.’

ASMBLE/Z ' - 52 -

INCLUDE
Format: INCLUDE <filename>

INCLUDE temporarily changes the input file to the assembler.
This allows code in ancther file to be inserted into a program
during assembly. When. the INCLUDED file 1is exhausted, the
assembler resumes reading the source lines from the original
source file with the 1line immediately after the INCLUDE
instruction.

Note that nested INCLUDE files are not permitted (I.E. a fi}e
which 1is an argument to the INCLUDE instruction may not contain
any INCLUDE instruction).

- ”R3 - ' ASMBLE/!

LIBFILE
Format: LIBFILE "ALTLIB

The LIBFILE instruction requires an eight character name as an
argument. This name is passed via the relocatable file to the
linker and tells the linker to use the file given by this command
(with an assumed extension REL) as the 1library file. If no
LIBFILE ‘command is given the 1linker uses the default library
file, LIB.REL. This instruction may be given more than once in a
program but only the LIBFILE name specified last is put in the
REL file. The LIBFILE instruction is not wvalid when the
assembler is generating a hex or binary file.

ASMBLE/Z - 64 -

EQUATE, SET
Format: CHAR EQU 'Z°

The EQU instruction requires a label and an argument which is
evaluated as a 15 bit number. The label is given the 16 bit
value. A symbol (the 1label) may be defined only once in a
program with the EQU instruction. ‘

Format: CHAR SET 'X'

The SET instruction is similar to the EQU instruction. It
requires a label and an argument which is evaluated as a 16 bit
number. The label is given the 16 bit value. The SE1
instruction may be used to change the value of a symbol (the
label) as often as desired.

- 65 -~ ASMBLE/:

END
Format: END BLOTZ

The END instruction may be placed at the end of a program but its
use 1is optional. The END statement may have one argument
(optional) which is evaluated as a 16 bit address. The value of
the argument is used by the operating system as the starting
address of the program. The starting address must be in an ABS,
PROG, or DATA section. If it is in an EXT or COM section an
error message is printed and the starting address is ignored. If
no starting address is given, the operating system is able to
load the program but not start it. If a starting address is
given with the ORG address not equal toc the LOAD address, an
error message is printed and the starting address is ignored. (A
program cannot be executed properly unless it is loaded at its
execution address.)

1 END Program has no starting address.
| END 22H Program is started at 22H.
| END GUMBAL Program is started at GUMBAL.

ASMBLE/Z : - 66 -

LIST, NLIST, MTLIST, NMTLIST
Format: NLIST

The NLIST and- LIST pseudo-ops turn the listing off and back on.
When NLIST is encountered it suppresses the listing. When LIST
is encountered it reenables the listing.

| NLIST .

| MOV A,B Assemble this code but don't list.
] MOV D,E

| LIST

! POP H Resume listing.

The NMLIST and MLIST pseudo-ops turn the 1listing of macro
definitions and expansions off and back on. When NMLIST is
encountered it suppresses the listing of lines containing either
macro definitions or macro expansions. When MLIST is encounterec
it reenables the listing.

Format: MTLIST

The NMTLIST and MTLIST pseudo-ops turn the listing of the tex:
part of macro expansions. off and back on. =~ When NMTLIST i=
encountered it suppresses the listing of the text part of macr»
expansions (the bodies of the macros), but does not suppress thz
listing of <he hex code generated by the macros. When MTLIST i:
encountered it reenables the listing.

- 67 - ASMBLE/?

ERROR MESSAGES

Argument too big

Bad argument

Bad arithmetic operator
Bad base

Bad instruction

Rad label

Bad number

Bad symbol

Can't back up in COM file
Displacement too big

Division by 0

Dummy redefined

ASMBLE/Z

The value of the argument is greater
than 255 or less than -255.

The value of an arguﬁent in an RST
instruction is greater than seven.

An unknown character, number, or
symbeol is used in an argument.

IX or IY may not be used as an
argument with this instruction.

An unknown character is used as an
arithmetic operator.

The starting address is in a section
other than ABS, PROG, or DATA.

An entry in the instruction field is
not recognized as an instruction or

. Macro.

The label does not start with a $, %,
., OF le-ter.

The radix. character is unknown.

An improper digit appears in the
number.

The symbol does not start with a $, %,
., Or letter.

Attempted to ORG to a value less than
the current wvalue of the ©program
counter or less then 100H. Cocde in a
COM file can only go forward.

The wvalue of the displacement |is
greater than 127 or less than -128.

Attempted division by zero.

A dummy argument in the macro
definition is used more than once.

Extra argument

Extra ELSE

Extra ENDMAC

File not found

Macro not defined

MACRO symbol

Missing argument

Missing)

‘Multiple tag

Nested INCLUDE

No

No

No

‘No

No

EQU label
expression
EXT

MACRO label

relocate

Too many arguments are given for this
instruction.

The ELSE instruction does not have =

-matching IF instruction.

The ENDMAC instruction does not have &
matching MACRO instruction.

The INCLUDE file cannot be found.

A macro is called before it is
defined.

A macro name is used in an instruction
argument.

Not enouch arguments are given for the
instruction.

The) is missing from the name of an
index register.

This label has been used before.

The INCLUDE file czlls another INCLUDE
file.

The EQU instruction does not have =&
label.

An expression is not allowed with this
instruction, cnly a symbel.

An external symbol may not be usec
with this instruction.

The macroc definition does not have =z
label.

A relocatable symbol may not be used
with this instruction or arithmeti:
operation.

If the assembler 1is generating an
absolute binary or hex file 2
relocatable operation is not allowed.

A relative jump instruction jumps frem
one relocatable section to another.

- 69 - ASMBLE/Z

No StT label

Not allowed in CcoM file
Of fset not zero

Out of range

Redefined

String too long
Symbel not found

Symbol table full

Too many arithmetic
operators
Too many commons

Too many externals

Too many index registers

Toco many macro nest levels

ASMBLE/Z

The SET instruction does not have a
label. '

The LOAD instruction cannot be used
when generating COM file. Generate a
HEX file instead.

The starting address is given with the
LOAD address not equal to the ORG
address.

The destination is too far for a
relative jump.

The value of the label is changed.

A macro name Is used as a non-macro
label.

The string centains meore than two
characters.

an undefined used in an

symbol is
argument. .

There is no more room to add symbols
to the symbol table or to define more
macros.)

More than one arithmetic operator is
used in front of a symbol or number.

More than 15 common sections have been
defined.

More than one external symbol has been
used in an expression.

An index register 1is specified for
both arguments in a MOV instruction.

More than 15 macro definitions or 255
macro expansions are nested.

WORKED EXAMPLE

This section contains assembler listings of three modules. The
first module contains the main part of the program which reads a
string of characters from the keyboard and prints them. The
second and third modules contain subroutines which communicate
with either the CP/M operating system (second module) or the K3
operating system (third module). This program may be run with

either operating system simply by linking the main module with
the appropriate subroutine module.

- 71 - ' ASMBLE/?Z

Striﬁg Echo.

000D
000A

0001

0000+21
0CO3+CD
0006'21
60C9'CD
000C'77
000D'23
OOOE'FE
0n10'20
0012'35
0014'23
DC15'34%

0217+21
CO1A+CD

N01D+21
C0z0+CD
0023'C3

CC2R'44
20
57
0D
0034'0D

002+8"
0000#
oooo”
0000%

0D
F7
oA

00

003s"
0004%

gooo”

00lB#
0000%

RS
50

72.

oA

oA -

oocoo*
gooo"00C80
gooon!

ASMBLE/Z

AD
72
61
2A
00

}’String Echo.

CR

PRINT:

6F
AF
6D
0o

LF

START:

LOOP:

TITLE:

CRLF:

BUFFER:

EQU
EQU

MACRO
- LXI

" CALL

ENDMAC
EXT

PRINT
LXI
CALL

LXI

CALL

MOV

INX

CPI

JRNZ

MVI

INX

MVI

PRINT
LXI

_CALL

FRINT
LXI
CALL

JMP

DBZ

DBZ

DATA
DS
END

13

' ASMBLE v-5b Page

, ; Carriage return.
10 ; Line feed.
TEXT ; Print a text string.
H,TEXT
TXTYP
CI,TXTYP,MONITOR
TITLE
H,TITLE
TXTYP
H,BUFFER; Point to the line buffer.
CI : Get a character.
M,Aa ; Store it.
H ; Bump pointer.
CR ; End of line?
LOOP ; Not yet. Xeep going.
M,LF ; Add a line feed.
H
M,0 ; Mark the end of the line.
CRLF
H,CRLF
TXTYP :
BUFFER ; Echo the buffer.
H,BUFFER
TXTYP
MONITOR ; And return to the monitor.

'‘Demo Program' ,CR,LF,'*!

CR,LF

128 :
START

String buffer.

- 72 -

CP/M OperétinéASystem Subroutines.

0001

0000
0001
0002

0000'ES

0001+0E
0003+CD
000A'El
0n07'Co

N008'7E
0009*'23
‘0A'B7
--J0B*'C8
000C'SF
000OD'ES

ONOE+QOE
0010+CD
0013'E1l
0014°'18

0016+0E
0018+CD

01l
0005

02
0005

0o
0005

" ASMBLE v-5b Page 1

; CP/M Operating System Subroutines.
; These subroutines talk to the CP/M operating system.

I0P:

MON
CREAD
CWRITE

MACRO
MVT -
CALL

ENDMAC

EQU
EQU
EQU

ENTRY

PUSH
I0P
MV
CALL

FUNCTION; Call an I/O processor function.

C,FUNCTION
5
0 ; Return to the monitor.
1 ; Read a character.
2 ; Write a character.
CI,TXTYP,MONITOR
a character from the keyboard with echo.
H ; Save HL.
CREAD
C,CREAD
5
H

POP
RET

Write a text string pointed to by HL.

; The string ends with a

TXTYP:

MOV
INX
ORA

RZ

MoV
PUSH
I0P

MVI

CALL

POP
JR

; Return to the monitor.
MONITOR:IOP

MVI

CALL

null.
A, M ; Get a character.
H
A ; Null?
; Yes. Quit.
E,A ; Not vet.
H ; Save pointer.
CWRITE ; Write character.
~ C,CWRITE
5
B
TXTYP ; Keep going.
MON
C,.MON
5

ASMBLE/Z

,_KBLOperatingJ5ystem Subroutines. - B ASMBLE,Y?Sb Page 1

; K3 Operating System Subroutines. . .
; These subroutines talk to the K3 operating system.

0001 I0P: MACRO FUNCTION; Call an I/0 processor function
- CALL. FUNCTION
ENDMAC
D0O0Oo MON EQU ODOOOH ; Return to the monitor.
D037 CREAD EQU MON+37H ; Read a character.
DO3D CWRITE EOU MON+3DH ; Write a character.

ENTRY CI,TXTYP,MONITOR

; Read a character from the keyboard with echo.

CI: I0P CREAD
0000+CD D037 CALL CREAD
0003 ' 4F Mov C,A
} I0P CWRITE ; Echo.
0004+CD DO3D CALL CWRITE -
0007'79 MOV a,c
0008'CS RET

Write a text string pointed to by HL.

; The string ends with a null.
0009'7E TXTYP: MOV A,M ; Get a character.
000A'23 INX H
000B'B7 ORA A ; Null?
0oo0C'Cs8 RZ "3 Yes. Quit.
000D'4F MoV C,A ;: Not yet.
DO0O0E'ES PUSH H ; Save pointer.
I0P CWRITE ; Write character.
000F+CD DO3D CALL: CWRITE
0012'E1l POP H
0013'18 F4 JR TXTYP ; Keep going.
; Return to the monitor.
MONITOR:IOP MON
0015+CD DO0OOO CALL MON
END

ASMBLE/Z ' - 74 -

RUNNING THE ASSEMBLER UNDER CP/M

To run the'éssemeér type:
ASMBL <fn>.<opts>,<fn>.<opts>,<fn>.<opts> ... /<£ype>
where
<fn> is a text file with the extension SRC

<opts> is an opticnal list of options up to three letters
long. .

first letter: drive to get source from.
second letter: drive to send output file to.

third letter: drive to send listings te. If this
letter is omitted, no 1listing is
generated. If the letter is X, the
listing 1is sent to the «console
instead of the disk.

<type> specifies the type of the output file. It must be
/COM, /HEX, or /REL. If no type is specified /COM iz
assumed.

If more than one file is specified, the files will be assembled
as though they were one large file. The order in which they arsz
listed in the command line is the order in which they woulid
appear in this large file (note: no "large file" 1is actually
created). The name of the last input file is used as the name oI
the output file. 1If an option is not specified, or if a space is
used in place of a letter, the default drive 1is used. Ths
exception to this is the listing file: If a space is used, 3
listing file 1is created on the default drive, if nothing is
specified, no file is created. For example: :

A>ASMBL INIT,NAVAGAT/HEX
Assemble INIT.SRC with NAVAGAT.SRC. Get both files from drive 2
and send NAVAGAT.HEX to drive A. No listing file is generated
because no listing drive letter was specified.

C>ASMBL INIT.A,NAVAGAT. BX

Assemble the file INIT.SRC on drive A with NAVAGAT.SRC on drive

C. Send NAVAGAT.COM to drive B. Send the - listing to the
console.

- 75 - ASMBLE/:

RUNNING THE ASSEMBLER UNDER K3

The assembler recognizes two additional instructions under the K3
operating system. They are as follows:

‘Format: JSW 1000H

The JSW instruction only generates code when the assembler is
producing a BIN file under the K3 operating system. It requires
one argument which is evaluated as a 16 bit number. The value of
the argument is used by the operating system as the job status
word. If the 1000H bit is set, the program may be started at the
starting address with the operating system RUN or START
commands. If the 20008 bit is set, the program may be restarted
"at a location three less than the starting address with the
operating. system restart command. If the JSW instruction is not

given, the operating system assumes a default value for the job
status word.

| JSW 1000H Allow theAprogram to be started
but not restarted.

Format: VER '1','2','c!

The VER instruction requires three arguments which are evaluated
as three ASCII characters. These three characters are stored
only in the K3 BIN or K3 HEX file, and are read only by the K3
LIMITS program. It is recommended that the first two characters
be used for a two digit version number and that the third
character be used for a single revision letter. 1If your program
has only a single digit version number, the first character

should be a space.
! VER H |’c7|,!b!
f VER |2l,l7lllx|

version 7b.
version 27x%.

e ~we

ASMBLE/Z - 76 =~

When the - assembler = is started it asks you for fé*ifile
specification. The specification is in the following format:

DEV:NAME1.BIN(,REL, or HEX),DEV:NAME2.LST=DEV:NAME3.SRC/B/RE/H/L/G/RU/E

Not everything in the specification line needs to be typed in.
For example, the extensions (BIN, REL, HEX, LST, SRC) are always
filled in by the assembler and should . not be typed in. This
means that the source file must always have a SRC extension. The
listing file always has a LST extension, etc.

The first entry in the specification determines the device and
file name (if necessary) to which the BIN, REL, or HEX file is
sent. If the output device is non-file structured (paper tape
punch, for example), a file name is not needed. If the output is
sent to a file structured device and the file name is not given,
it is given the name of the last source file.

The /B, /RE, or /H option determines which file is generated, '
BIN, REL, or HEX. If no option is specified /B is assumed. If

no device and file name is specified but the /B, /RE, or /H

option is given a BIN, REL, or HEX file is assumed using the last

source file name. Here are some examples of proper file

specifications:

PP:=BLOTZ Cutput is sent to the paper tape punch.
DK3:TRIG=BLOTZ Output is .sent to TRIG.BIN on DK3.
DKO:=BLOTZ Qutput is sent to BLOTZ.BIN on DKO.

If the /G (get) or /RU (run) options are specified the assembler
automatically sets the /B option (clears the /RE and /H options)
and generates a BIN file. ' At the end of the assembly the
operating system is asked to get (/G) or run (/RU) the BIN file.
If any errors are detected in the assembly, the get or run
request is suppressed. .

The seccnd entry in the specification determines the device and
file name (if necessary) to which the listing file is sent. If
the output device 1is non-file structured (line printer, for
example) a file name is not needed. If the output is sent to a
file structured device and the file name 1is not given, it is
given the name of the 1last source file. If the /L option is
given without a listing file specification a LST file 1is assumed
with the name of the last source file. The listing entry is
always the second entry in the specification 1line and is
separated from the £first entry by a comma. If no BIN, REL, or
HEX file is desired, the line must start with a comma.

- 77 - ' ASMBLE/2

" | .R ASMBLE DK2:=TEST/RU
This éommand‘loads ahd runs the éSéemblek, assembles DKO:TEST.SRC
into DK2:TEST.BIN, loads, and runs DK2:TEST.BIN. :

The /E éption‘sends error messages to the 1ihe’printer. ‘This is
useful for generating a printed record of assembly errors.

If control C is typed while the program is running, the assembly
stops, all files are closed, and control returns to the monitor.

If contreol O is typed while the program is running, the listing
of error messages is suppressed. If any other key is typed, the
printing resumes. ‘

ASMBLE/Z - 78 -

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78

