
IDE
JRT Systems, 45 Camino Alto, Mill Valley, CA 94941

JRT Pascal User's Guide

COPYRIGHT

Copyright 1983 by JRT Systems. All
rights reserved. No part of this
publication may be reproduced,
transmitted, transcribed, stored in a
retrieval system, or translated into any
language or computer language, in any
form or by any means, electronic,
mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior
written permission of JRT Systems, 45
Camino Alto, Mill Valley, California,
94941.

DISCLAIMER

JRT Systems makes no representations or
warranties with respect to the contents
hereof and specifically disclaims any
implied warranties of merchantability or
fitness for any particular purpose.
Further, JRT Systems reserves the right
to revise this publication and to make
changes from time to time in the content
hereof without obligation of JRT Systems
to notify any person of such revision or
changes.

TRADEMARKS

JRT Pascal is a trademark of JRT
Systems. CP/M is a registered trademark
and MP/M is a trademark of Digital
Research.

Supplement to JRT Pascal 3.0 User's Guide

A. programming Notes

1. All programs and external procedures prepared with JRT Pascal
versions 2.x should be recompiled with the new compiler.

2. The external functions ARCTAN, COS, EXP, LN, SIN, SQRT are
supplied in source code form and must be compiled before use.

3. Version 3.0 now suppo rts full fi 1 e var iabl es. Fi 1 e var iables
may be used as reference parameters (indicated by VAR) but should
not be used as value parameters.

4. Dynamic arrays may not be referenced as structures. Only
elements of dynamic arrays may be referenced in programs.
Fillchar should not be used to initialize dynamic arrays.

5. Dynamic arrays should always be DEALLOCATED before being
reallocated to a different size.

6. CP/,.l 2.2 is required to use the random file facilities. Since
Customiz and the Linker use random files, they also require CP/M
2.2.

B. Typographic errors

p. 3-4 List of files should include ERASE.INT, RENAME.INT,
VERIFY.INT, READTHIS. The filetype of the external functions
should be PAS rather than INT.

p. 107 In the example program TESTPICT, the external reference
is:

FUNCTION PICTURE (FMT : STRING; R : REAL): STRING; EXTERN;

p. 149 The number of blocks in the SAVE commands should be 93
for EXEC. COM and 85 for JRTPAS3.COM.

p. 173 The list of Activan commands is incorrect here and on the
Reference card. It should be:

C clear the counters
H display histogram
I initialize line range
M run program with monitoring
R run program without monitoring
Z terminate the program

p. 178 In the declaration of record type jgraf_interface, change
the field name "title" to "graf_title".

1

JRT PASCAL TECHNICAL NEWSLETTER 3=~ - ! APRIL 11; 1983

1. EXTERNAL PROCEDURE DECLARATIONS

One of the most common programming errors reported to us is
declaring external procedures in the wrong order within external
procedure modules. In the Pascal source program of an external
procedure which calls other external procedures, the procedure
header of the called procedures always comes after the header of
current procedure. That is - only global const, type and var
declarations can come between the word extern and the procedure
header.

EXTERN
{ optional global CONST, TYPE, VAR declarations }
PROCEDURE THISPROC (X,Y : INTEGER);
VAR
N, M : INTEGER; { variables local to THISPROC }

PROCEDURE EXPROCl; EXTERN;
PROCEDURE EXPROC2 (A : REAL); EXTERN;
FUNCTION EXFUNl (X : REAL): REAL; EXTERN;

BEGIN
{ THISPROC Pascal code }
END; •

Th e ext ern alp roc e d u r e e x amp 1 eon the ref ere n c e car dis i n
error.

2. FILES OF RECORD LENGTH GREATER THAN 128

The procedures GET, PUT and window variables should not be
used with files whose record length (declared in the FILE OF •••)
is greater than 128 bytes.

Random files with records of any length are allowed.
READ/WRITE may be used to sequentially input/output records
greater than 128 bytes if one of the following is done:

A. if the file's record size exceeds 128 then it should be
declared as FILE OF CHAR

B. install this patch using CP/M's DDT utility program:

A>DDT EXEC.COM
DDT VERS 1.4
NEXT PC END
SE00 0100 C7FF
-A366E
366E LXI H,7F
3671 .
-A466E
466r LXI H,7F
467 .
-G0
A>SAVE 93 EXEC.COM

JRT Pascal User's Guide

Table of Contents

JRT Pascal version 3.0

1.

2.

3.

4.

5.

Introduction
1.1 JRT Pascal features
1.2
1.3
1.4

Hardware requirements
List of files
**** FOR BEGINNERS ****

Operating JRT Pascal
2.1 Writing Pascal programs

2.1.1 Identifiers

2.2
2.3

2.1.2 Numbers
2.1.3 Comments
Compiling Pascal programs
Executing Pascal programs

Compiler Directives
3.1 Listing Control
3.2 Line trace
3.3 Procedure trace
3.4 Source file Include

Data
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

types
Integers
Real numbers
Booleans
Char
Structured variables
Dynamic strings
Sets
Pointers
Dynamic arrays

Builtin functions
5.1
5.2
5.3
5.4

5.6
5.7
5.8
5.9
5.10
5.11

ABS
ADDR
ARCTAN
CHR
CONCAT
COpy
COS
EXP
FREE
HEX$
LENGTH

1

2
2
3
3
5

11
11
11
12
12
13
14

16
16
16
17
18

19
19
19
20
20
20
21
22
23
23

26
27
28
29
30
"",
,).1

32
33
34
35
36
37

JRT Pascal User's Guide

6.

7.

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26

LN
ODD
ORD
PORTIN
POS
PRED
REAL$
ROUND
SEARCH
SIN
SQR
SQRT
SUCC
TRUNC
UPCASE

Builtin procedures
6.1 CALL

6.1.1 Calling the CP/M operating system
6.2 DELETE
6.3 DISPOSE
6.4 FILLCHAR
6.5 INSERT
6.6 MAP
6.7 NEW
6.8 PORTOUT
6.9 SYSTEM

Input/output
7.1
7.2
7.3
7.4

7.5
7.5
7.6
7.7
7.8
7.9
7.10

Console input/output
Sequential file processing
Random file processing
Indexed file processing

7.4.1 Index file format
7.4.2 Data file format
7.4.3 Using INDEX
7.4.4 INDEX commands
7.4.5 INDEX return codes
7.4.7 INDEX2 utility
7.4.8 Efficiency notes
7.4.9 Sample Indexed file program

CLOSE
EOF
EOLN
ERASE
GET
OPEN
PICTURE

38
39
40
41
42
43
44
45
46
49
50
51
52
53
54

55
56
57
63
64
65
66
67
69
71
72

73
74
76
78
80
81
82
84
85
87
88
90
91
96
97
98
99

100
101
102

JRT Pascal User's Guide

7.11 PUT . · . . · · · · · · · · · · · · 7.12 READ, READLN . . · · · · · · · · · · · · 7.13 RENAME · · · · · 7.14 RESET · . . · · · · · · · . · · 7.15 REWRITE · · · · · · · · · · 7.16 WRITE, WRITELN . · · · · · · · · · . · · · ·
8 ~ Linker

9. Customiz

10. Assembler • • • • • • • • • • • •
10.1 Entry codes. • •• • •••••••••
10.2 Operating JRTASM •••••••
10.3 Directives ••••••••••••••
10.4 Expressions ••••••••••••••••
10.5 Parameters and return values •••
10.6 Debugging assembler procedures
10.7 Convertm program ••••••
10.8 Sample assembly programs

11. Storage management
11.1 Main storage
11.2 Dynamic storage.

109
110
112
113
114
115

118

119

120
120
121
121
123
124
126
127
127

131
131
134

12. External Procedures and Functions • • • • 136
12.1 Coding external procedures and functions 137
12.2 Referencing external procedures. • • • •• 139

13. Debugging • • • • • • • •• • ••
13.1 Trace options. • • • • ••
13.2 DEBUG procedure. •• • ••
13.3 System status display ••••
13.4 Run-time messages •••••••
13.5 Common problems ••••

·

14. Extended CASE statement •

15. CRT Formatting ••••••• • • •
15.1 Structure of external procedure
15.2 Map Definition File. • ••••••
15.3 Operating CRTMAP ••••
15.4 CRTMAP example ••••••••••

140
140
141
143
147
149

154

156
157
159
161
161

JRT Pascal User's Guide

A. Reserved words 170

B. Activi ty analyzer 173

c. Block letters 174

D. JSTAT 176

E. JGRAF 177

F. Restrictions 184

JRT Pascal User's Guide -1-

JRT Pascal version 3.0

This is a major enhancement over earlier versions of
JRT Pascal:

version

1.3
1.4
2.0
2.1
2.2
3.0

release date

March 1980
August 1980
January 1982
July 1982
November 1982
January 1983

Version 3.0 includes internal improvements and these
major new features:

1. expanded user manual with 3-ring binder

2. JRT Pascal reference card

3. full support for indexed files (7.)

4. CRTMAP utility for full-screen record display (15.)

5. PICTURE external function for number formatting

6. full support for Pascal file variables and GET/PUT (7.)

7. dynamic arrays - ALLOCATE, DEALLOCATE (4.9)

8. SEARCH external function (5.20)

9. %INCLUDE directive (3.4)

10. improved compiler listing, %TITLE, %PAGE(n)

To make use of the new features, programs written for
earlier versions should be recompiled under version 3.0.

JRT Pascal User's Guide -2-

1. Introduction

Pascal is a high level programming language named
after the French philosopher and mathematician Blaise Pascal
(1623-1662) • Nicklaus Wirth developed the language
beginning in 1968. It is a descendent of the Algol family
of languages which incorporates principles of structured
programming.

JRT Pascal was designed specifically for the CP/M
operating system. It includes many state of the art
features not before available in any microcomputer language.

1.1 JRT Pascal features

With JRT Pascal, programs of practically unlimited
size can be developed. External procedures and functions
written in Pascal or assembly language are separately
compiled. They are automatically loaded from disk when they
are first referenced or they may be merged with the main
program to form one module. The advanced dynamic storage
system will purge infrequently used procedures if storage
becomes full. Dynamic storage compression ensures the
optimum use of the main storage resource.

The floating point arithmetic provides 14 digits of
precision. All standard functions are supported.

The input/output system supports sequential and two
types of random disk files. With the "relative byte
address" option, random files of variable length records can
be processed. Disk file data can be written in either ASCII
format or internal binary format.

The CALL builtin procedure provides direct access to
all CP/M operating system services. The MAP builtin
procedure allows any region of main storage to be accessed
as if it were a Pascal variable. Hardware input/output
ports are directly accessible.

Debugging is simplified by the line number trace and
the procedure name trace which can both be turned on and off
by the program at run-time.

Section 1: Introduction

JRT Pascal User's Guide -3-

Activan - the activity analyzer can be used to
monitor the execution of a program and print out a histogram
showing the amount of activity in each program area.

1.2 Hardware requirements

The compiler requires a minimum of ~hK of main
storage. One disk drive with at least 90K of storage is
needed but two or more are strongly recommended.

1.3 List of files

JRT Pascal compiler

JRTPAS3.COM
PASCAL0.INT
PASCALl.INT
PASCAL2.INT
PASCAL3.INT
PASCAL4. INT
PASCAL. LIB

Run-time environment
EXEC.COM

External functions
ARCTAN. INT
COS.INT
EXP.INT
LN. INT
SIN.INT
SQRT. INT

External procedure assembler
JRTASM. INT

External procedure linker
LINKER.INT

CRT Mapping utility
CRTMAP.PAS

System customization program
CUSTOMIZ.INT

Block letters external procedure

Section 1: Introduction

JRT Pascal User's Guide

LETTERS.INT

Indexed file processing procedures
INDEXC!J.INT
INDEXl.INT
INDEX2.INT

Table search procedure
SEARCH. INT

Report number formatting facility
PICTURE.INT

Dynamic trace control external procedure
DEBUG. INT

Utility to convert Microsoft modules
CONVERTM. INT

Statistics external procedure
JSTAT.PAS

Graph preparation external procedure
JGRAF.PAS

Sample assembly language external procedures
SETBIT.ASM
RESETBIT.ASM
TESTBIT.ASM

Section 1: Introduction

-4-

JRT Pascal User's Guide -5-

1.4 For Beginners

This section explains how to use JRT Pascal for those
who are new to personal computing or who are unfamiliar with
ncompiled n languages.

This is a tutorial on how to operate our
implementation of the Pascal language. For tutorial
information on the Pascal language itself, we refer you to
the many text books now available. The one book we strongly
recommend is the standard definition of Pascal written by
its inventor Nicklaus Wirth.

Pascal User Manual and Report
by Jensen and Wirth
published by Springer-Verlag

Developing Pascal programs

Developing a Pascal program is a three step process:

1. create or modify a Pascal source program with any
standard CP/M editor like ED or WORDSTAR

2. compile the Pascal source program into an intermediate
program

30 execute the intermediate code - run the program

This process is illustrated in the flowchart on a
following page.

File names and file types

In CP/M the names of data files and program files
consist of two parts: a filename of up to 8 characters and a
filetype of up to 3 characters. These two parts are
separated by a period.

REPORT.LST
A.PAS
A.INT
STAT. COM

Section 1: Introduction

•

JRT Pascal User's Guide

The JRT Pascal compiler
program has a filetype of PAS.
program with a filetype of INT.

Edi tors

-6-

assumes that the source
It creates an intermediate

Any standard CP/M compatible editor may be used to
create or modify programs in JRT Pascal. The demo program
listing which follows uses the CP/M line editor ED.COM.

Required files **** IMPORTANT ****

The compiler and run-time system are large and complex
programs. To make best use of limited main storage they are
divided into modules. These modules must be present on your
disks when using the compiler or run-time system. The
modules need not all be on the A: disk. They may be on
either the A: or B: disk, the Pascal system will
automatically locate them.

The compiler requires all these files:

JRTPAS3.COM
PASCAL. LIB
PASCALf2J.INT
PASCALI.INT
PASCAL2.INT
PASCAL3.INT
PASCAL4.INT

The run-time system (execution) requires these files:

EXEC.COM
PASCAL. LIB

Section 1: Introduction

JRT Pascal User's Guide -7-

Demo program

In order to clearly illustrate the program development
process, a flowchart of this process is included here. An
actual computer listing of the three step process (create,
compile, run) for a small demo program follows the
flowchart.

The demo program is named A.PAS. It computes and
displays the squares of the numbers 1 to 10.

Section 1: Introduction

Program Development Flowchart

Commands

ED A.PAS

JRTPAS3 A

EXEC A

start

ED.COM

JRTPAS3.
COM

no

EXEC.COM

yes

stop

-8-

Actions

Create/modify

the program

Compile the progr

Run the program

Actual computer listing: Create, Compile, and Run the program -9-

NEW FILE
* i

-- Use editor to create program A.PAS

1: {demo program to print squares of numbers 1 to 10)
2:
3: program a;
4;
5: var
6: i: integer~

7:
8: begin
9: for i := 1 to 10 do

10: writeln(it sqr(i));
11 : end.
12:

jrtpas2 a

JRi Pascal ver 2.2

Copyright 1982 JRT Systems

-- Compile the demo program

0000 0001:
0000 0002:
0000 0003:
0000 0004:
0003 0005:
0003 0006:
0003 0007:

{ demo program to print squares of numbers 1 to 10)

program a,

var
i : integer;

0006 0008:
0010 0009:
0028 0010:

begin
for i

0029 0011: end.
No errors detected

;= 1 to 10 do
writeln< if

Module size = 45 dec bytes
End of compile for A

exec a

sqr (i));

Exec ver 2.2 -- Run the program

1 1
2 4
3 9
4 16
5 25
6 3E;
7 49
8 64
9 81
10 100

Program termination

JRT Pascal User's Guide -10-

Basic terms

compiler - The Pascal compiler converts Pascal source programs
to intermediate program files. It reads in a Pascal source
program and writes out an INT file. The compiler also
displays the program at the terminal during the compilation
process.

debugging - Correcting errors in the program. There are two main
categories of errors or "bugs": those which can be detected
by the compiler and those which appear only during the
execution of the program. Both may be corrected by modifyi
the source program and re-compiling.

execution - This is the actual "running" of the program. The run­
time environment, EXEC, reads in an intermediate program
file from disk and executes its internal computer codes.

intermediate program - This is an internal code version of the
program which is created by the compiler. It is a file
with a filetype of INT.

source program - This is the actual Pascal program which is a text
file and may be printed or viewed on a terminal. It has a
filetype of PAS.

trace - There is a JRT Pascal feature which displays the line
number of each line in the source program during execution.
This is very useful in locating the cause of some program
errors.

Section 1: Introduction

JRT Pascal User's Guide -11-

2. Operating JRT Pascal

JRT Pascal is a fully CP/M compatible language system.
The distribution disk does not contain a copy of the
operating system due to copyright restrictions. It is
recommended that the distribution disk be backed up
immediately and not be used as the main running disk.

2.1 Writing Pascal programs

Pascal programs can be developed using any standard
editor program. The ASCII character set is used throughout
JRT Pascal.

The program file must have a CP/M filetype of 'PAS'.
The output modules produced by the compiler, linker and
assembler are given a filetype of 'INT'. When the compiler
is processing, it creates temporary storage files with a
filetype of '$$$'. These are normally deleted but if
processing should be interrupted, they may remain on the
disk but will be deleted during the next operation of the
compiler.

2.1.1 Identifiers

Identifiers are the names assigned to variables,
procedures, etc. They may be up to 64 characters long. All
characters are significant. They are internally converted
to upper case by the compiler.

Identifiers must begin with an alphabetic character.
Following characters may be alpha, numeric, the underline
character and the dollar sign.

xl
DISTANCE

total value
ADDRESS

compute_and_print_average
compute and print totals
MTD sales - - INITIALIZE PROC
percent_markup arc_cotangent

Using meaningful data and procedure names greatly
improves the readability of programs and serves as self­
documentation.

Section 2: Operating JRT Pascal

JRT Pascal User's Guide

2.1.2 Numbers

Integers or whole numbers in Pascal occupy
of storage and range from -32768 to +32767.
Pascal program and in input/output, they can be
decimal or hexadecimal format.

-12-

two bytes
In both the
entered in

Hex format integers have an 'H' suffix character. If
the first hex digit is A,B,C,D,E,F then it must be preceded
by a zero digit.

3AH
12FH
-0ffffh

0EADH
0cf00h
+50h

Real numbers in JRT Pascal provide 14 digits of
precision and floating point capability. The exponent can
range from -64 to +63. The numbers are stored in an 8 byte
binary-coded-decimal format which eliminates errors in
converting between internal and printable formats.

3.14159
250000.000321
2.0E-60

0.000098
0.442e+35
-15.0l1e+03

Real numbers must include the decimal point. The
exponent field is optional, but when used must be in a fixed
format - character 'e', sign, 2 digits.

2.1.3 Comments

Comments in Pascal can be inserted anywhere in the
program. They can be enclosed by either braces { } or by
the character pairs (* *).

{ comment sample }
(* comment sample i 2 *)

Section 2: Operating JRT Pascal

JRT Pascal User's Guide -13-

2.2 Compiling Pascal programs

JRT Pascal is a one-step compiler, no assembly or link
is ever required. The assembler and linker provided are for
advanced programming with external procedures.

To compile a program enter:

JRTPAS3 filename <$ options>

Examples:

JRTPAS3 TESTPGM

JRTPAS3 STATISTC $E

JRTPAS3 INVENTRY $EL~

C:JRTPAS3 B:PROJECTl $E

JRTPAS3 D:PLOT $E

The filetype of the program must be 'PAS'. The
filename may be different from the program name.

The compiler option switches are:

E - error stop, interrupt processing on detection
of an error, issue message to console, ask user
whether or not to continue compiling

L - prepare program for line trace, identical to
inserting %LTRACE directive at start of program

P - prepare program for procedure trace, identical
to inserting %PTRACE directive at start of program

Tx - control the output listing, x may be:
A •• P - write listing to '.LST' file on disk x
X - write listing to console device
Y write listing to list device
Z - suppress the output listing

If errors are detected, verbal error messages will be
displayed at the console imbedded in the source listing.

Section 2: Operating JRT Pascal

JRT Pascal User's Guide

The following files are required by the compiler:

JRTPAS3.COM
PASCAL. LIB
PASCAL0. INT
PASCALI. INT
PASCAL2.INT
PASCAL3.INT
PASCAL4.INT

-14-

The compiler does not need to be located on the A:
disk. The main compiler module JRTPAS3.COM and its external
procedures can be placed on any disk drive. Initially, the
compiler assumes a two disk system. The CUSTOMIZ program
should be used to update the compiler's and EXEC's disk
search lists.

2.3 Executing Pascal programs

A program which has compiled with no errors can be
executed by entering:

EXEC filename <$ options>

Examples:

B:EXEC D:PLOT

EXEC TESTPGM $A

EXEC B:PROJECTI

The file PASCAL. LIB must be present on one of the
di sks •

The run-time option switches are:

A - generate an Activan interrupt
begins execution (refer to
description of Activan)

before program
appendix for

L - activate the line
been compiled with
directive)

trace (program must have
$L option or the %LTRACE

Section 2: Operating JRT Pascal

JRT Pascal User's Guide

N - generate an Exec interrupt before program
begins execution, used for trace control (refer to
section on debugging)

P - activate the procedure
have been compiled with
%PTRACE directive)

trace
the $p

(program must
option or the

While the program is running, keying control-a or
control-n will cause an Activan or Exec interrupt. At that
time certain system parameters can be modified. When in
interrupt mode, keying a space character will cause a list
of available commands to be displayed. Keying a control-p
in interrupt mode causes most system displays to be echoed
to the system printer.

If any error or warning conditions occur during the
running of the program, a verbal error message is displayed
at the console. If the error is severe and the program must
terminate, a formatted display of critical system data is
provided. This display is described in the section on
debugging.

Section 2: Operating JRT Pascal

-15-

JRT Pascal User's Guide -16-

3. Compiler Directives

Compiler directives are instructions to the compiler
which are inserted in the Pascal source program. They may
be inserted in the program anywhere a comment may appear.
(Unlike JRT Pascal version 1, they must not be followed by a
semicolon delimiter.)

3.1 Listing Control Directives

When a Pascal program is being compiled, the listing
will be displayed on the system console. Three directives
are provided to control the program listing.

%NOLIST

%LIST

%PAGE
%PAGE(n)

stop display of program listing

resume display of program listing

start a new page in the compiler listing, and
optionally set the "lines per page" value to n

%TITLE('string') print title at top of each page, activated
by first %PAGE directive

3.2 Line Trace Directives

JRT Pascal line tracing will optionally display the
source program line numbers as the program executes. The
size of the output module will be increased by three bytes
per line.

%LTRACE
%NOLTRACE

generate line trace codes
stop generating line trace codes - this
allows storage saving by tracing only
a portion of the program

JRT Pascal line tracing can be turned on or off under
program control by using the SYSTEM builtin procedure. The
range of line numbers to be traced can also be modified at
run-time by this procedure. WHEN THE PROGRAM BEGINS

Section 3: Compiler Directives

JRT Pascal User's Guide

EXECUTION, THE LINE TRACE IS DISABLED.

SYSTEM (LTRACE) activate line trace
SYSTEM (NOLTRACE) disable line trace
SYSTEM (LRANGE, lower, upper)

-17-

set range of line numbers for
line trace - lower and upper are
are integer expressions

When a program is compiled with the %LTRACE directive,
then if the run-time system detects an error condition, the
line number will be displayed with the error message.

3.3 Procedure Trace Directives

When procedure tracing is activated, the name of each
procedure or function will be displayed on entry and exit.
On entry to a procedure the activation count (total number
of times called) for that procedure is also listed.

%PTRACE
%NOPTRACE

generate procedure trace codes
stop generating procedure trace codes

Procedure tracing can be turned on or off
program control by using the SYSTEM builtin procedure.
THE PROGRAM BEGINS EXECUTION, THE PROCEDURE TRACE
DISABLED.

SYSTEM (PTRACE)
SYSTEM (NOPTRACE

activate procedure trace
disable procedure trace

under
WHEN

IS

When a program is compiled with the %PTRACE directive,
then if the run-time system detects an error, the name of
the procedure most recently activated will be displayed with
the error message. Note that the procedure most recently
activated is not necessarily the currently active procedure.

If
procedure
asterisk.

Section 3:

the
then

procedure
the trace

being entered is an
message is flagged

Compiler Directives

external
with an

JRT Pascal User's Guide -18-

3.4 Source file Include directive

A section of source program code is sometimes used by
different main programs or external procedures. Rather than
enter this common code at each point it is used, it is
easier to use a %INCLUDE directive. This has the effect of
inserting the named Pascal code -file in place of the
directive.

%INCLUDE('filename.type')

%INCLUDE files may not be nested. This directive
should be placed on a line by itself. If the %INCLUDE is
indented with spaces then the entire included file is also
indented by the same amount.

%INCLUDE('GLOBALS.LIB')
%INCLUDE('C:VARDCLS.PAS')

%INCLUDE('B:SORTPROC.OLD')

Section 3: Compiler Directives

JRT Pascal User's Guide -19-

4. Da ta types

Pascal is a language rich in data types. Unlike Basic
which provides only two or three data types, Pascal provides
eight integers, real numbers, Booleans, characters,
structured variables, sets, pointers and dynamic strings.
These forms can be combined in records and arrays to form
data aggregates that closely relate to the application area.
Records and arrays can contain other records and arrays and
pointers with no restrictions on nesting or even on
recursive definitions.

It is these features
earlier languages like
recognizes the importance
describing the data in a
statements.

4.1 Integers

that set Pascal apart from
Cobol, Fortran, PL/I. Pascal
of powerful facilities for

program as well as the active

Integers or whole numbers occupy two bytes. They are
represented in twos complement format. The range is -32768
to +32767.

Integer literals in the source program and in console
or disk input may be entered as hex values. Standard Intel
hex format is used. The last character must be an 'H'. A
leading zero is required if the first digit is A, B, C, D,
E, F.

lah +0C35H -0ffh 0c000h l234H

4.2 Real numbers

Real numbers have 14 digits and are expressed in
floating point format. The exponent range is from -64 to
+63. The exponent field is not required in source program
or input but when present must be entered in a fixed format.
The exponent format is 'e+00' or 'e-00'.

Section 4: Data types

JRT Pascal User's Guide -20-

32.01e+04 1.075 -3.14159 -1234567.8901234E-47

In source programs the decimal point must be included
to distinguish real numbers from integers.

4.3 Booleans

Boolean variables may have only two values - TRUE or
FALSE. Booleans may be used directly in output statements
but should not be used directly in input statements.

4.4 Char

The char data type is one character. Packed char
fields are not meaningful on 8-bit microcomputers and are
not supported. The ASCII character set is used in JRT
Pascal.

4.5 Structured variables

Structured variables are records or arrays which are
treated as aggregates. For example - a record of one type
could be compared directly against a record of another type.
Structured variables may be compared (all six operators),
assigned, input/output, concatenated, used as parameters and
function return values without restriction.

In addition to the CONCAT builtin function, the '+'
operator indicates concatenation of structured variables or
dynamic strings.

Structured variables to be compared may have different
lengths. The result is determined as if the shorter one
were extended by spaces.

In assigning structured variables of different lengths
if the recelvlng field is shorter, truncation occurs. If
the receiving field is longer then the remainder of it is

Section 4: Data types

JRT Pascal User's Guide -21-

padded with spaces.

Arrays of type char constitute fixed length strings.
Unlike dynamic strings, these have no (hidden) two byte
length prefix. Arrays of fixed length strings are useful
for many types of text processing.

TYPE
CHAR100 = ARRAY [1 •• 100] OF CHAR;
TABLE = ARRAY [1 •• 40] OF CHAR100;
VAR
T : TABLE;
BEGIN
T := , 'i (* CLEARS ENTIRE TABLE *)
T [1] [8] : = '*'; (* STORE 1 CHARACTER *)
T[15] := 'JRT Pascal is the best';

END;

4.6 Dynamic strings

Dynamic strings are an extension to standard Pascal.
A hidden two byte prefix on the string contains the string's
current length in bytes. JRT Pascal dynamic strings may be
up to 64K bytes in length - of course the computer's main
storage size restricts the size to a smaller value. Other
Pascals limit strings to 255 bytes.

The maximum size of a string variable is declared with
the variable definition. If no size is specified the
default is 80 bytes.

VAR
S1 STRING;
S2 STRING[4000];
S3 STRING[12];

Dynamic strings may be used in the same way as
structured variables comparisons, assignment,
input/output, parameters, function return values.

Section 4: Data types

JRT Pascal User's Guide -22-

NOTE - Dynamic string variables may not be used in
READ statements directed to files, only to the console. To
read string data from files, fixed strings (arrays of
characters) must be used.

The individual characters of a string may be accessed
and updated. If an attempt is made to access an element of
a string beyond the current length of the string, a run-time
error occurs.

51[4] := 'X';
WRITELN (52 [1500]);
51[J] := 51[J+1];
53[1] := UPCASE(S3[1]);

Several builtin procedures and functions are available
to enhance string processing. Refer to the sections on
builtin functions and on builtin procedures for complete
descriptions.

name

CONCAT
COpy
DELETE
INSERT
LENGTH
POS

4.7 Sets

purpose

concatenate n strings
extract portion of string
delete portion of string
in£ert a string into another
return current string size
search string for a pattern

Set variables occupy 16 bytes. The entire ASCII
character set may be represented in the 128 bits.

LOW CASE : = [' a' •• ' z'] ;
UP CASE := ['A' •• 'Z'];
NUMER IC : = [' 0 ' •• ' 9'] ;
ALPHAMERIC := LOW CASE + UP CASE + NUMERIC;
ALPHABETIC := ALPHAMERIC - NUMERIC;

IF NOT (INPUT CHAR IN ALPHAMERIC) THEN
WRITELN(IINVALID INPUT CHARI);

Section 4: Data types

JRT Pascal User's Guide -23-

NOTE - Set variables have no meaningful format in text
format input/output. Sets may be input/output to disk files
which are opened for binary format processing.

4.8 Pointers

Pointers contain the virtual address of
variables created by the NEW procedure and
variables created by the MAP procedure. Pointers
bytes in size.

dynamic
of ghost
are two

The value stored in a pointer variable is NOT the
actual address of the dynamic variable - it is the virtual
address. The actual address of a dynamic variable may be
obtained with the ADDR builtin function.

ACTUAL ADDRESS := ADDR(PTR A
);

Note that the actual address of a dynamic variable may
change during program execution but the virtual address is
fixed for the life of the variable.

4.9 Dynamic arrays

Dynamic arrays are a JRT extension to the Pascal
language. Arrays are a widely used device for storing and
retrieving logically identical data elements.

Often it is not known in advance how many data
elements will be processed - thus it is necessary to create
arrays to hold the maximum number of elements that ever may
be processed.

With dynamic arrays, the array's actual size need not
be "hard-coded" into the source program. The array size may
vary with each run of the program or even at different times
within the same run.

Section 4: Data types

JRT Pascal User's Guide -24-

In some programs, dynamic arrays can greatly improve
storage use efficiency. This implies that the program can
operate over a much wider range of situations.

IMPORTANT - Dynamic arrays MUST be actual variables
they may NOT be elements of other arrays or fields of record
variables. Files of dynamic arrays are not allowed.

Declaring dynamic arrays

The declaration of dynamic arrays in either the TYPE
or VAR sections is identical to static arrays except that
the indexes are not specified as subranges. The indexes
must be specified as either the reserved word INTEGER or
CHAR. No other index declaration is allowed in dynamic
arrays. Static and dynamic indexes may not be mixed in the
same array declaration.

TYPE
MATRIX = ARRAY [INTEGER, INTEGER] OF REAL;

VAR
M : MATRIX;
TABLE ARRAY
INDEX : ARRAY

CHAR] OF STRING [20];
INTEGER, CHAR] OF INTEGER;

Allocating and deallocating dynamic arrays

A dynamic array may not be referenced until it has
been allocated. Doing so would cause a run-time error.
Allocation accomplishes two purposes:

1. establish the dynamic arrays current lower and upper
index bounds for each dimension

2. allocate storage for the dynamic array in dynamic storag

Current bounds are stored in an array control block
(ACB) which also contains an allocation flag, dimension
count, and the virtual address of the dynamic array.

A builtin procedure performs the allocation operation.

ALLOCATE (dyn_array_variable subrange_exprl, •••

Section 4: Data types

JRT Pascal User's Guide -25-

Note that an ALLOCATE must be used for each array
VARIABLE declared, NOT for array TYPEs.

ALLOCATE
ALLOCATE
ALLOCATE

M [1 •• 10, 0 •• 50]);
TAB LE [I A I •• I M I]);
INDEX [I •• I+10, CHARl •• CHAR2]);

The bounds of a dynamic array may be changed by
executing another ALLOCATE with different parameters. The
data stored in a dynamic array is lost when it is re­
ALLOCATEd.

Dynamic arrays follow the standard Pascal rules for
scope of reference. They remain allocated until they are
explicitly deallocated.

Since dynamic arrays use storage, they should be
deallocated when they are no longer needed.

DEALLOCATE

DEALLOCATE
DEALLOCATE
DEALLOCATE

M);
TABLE);
INDEX);

Dynamic arrays declared and
procedure are not automatically
termination of that procedure.

Section 4: Data types

allocated within
de-allocated on

a
the

JRT Pascal User=s Guide -26-

5. Builtin functions

JRT Pascal provides numerous builtin functions and
several external functions. JRT extensions are indicated
with an asterisk. External functions are marked with an
I x I •

function

ABS
* ADDR
x ARCTAN

CHR
* CONCAT
* COpy
x COS
x EXP
* FREE
* HEX$
* LENGTH
x LN

ODD
ORD

* paRTIN
* pas

PRED
* REAL$

ROUND
x* SEARCH

x SIN
SQR

x SQRT
SUCC
TRUNC

* UPCASE

return value

absolute value, integer/real
address of variable
arc tangent
convert integer to character
concatenate n strings
extract portion of string
cosine
exponential
amount of free space
convert variable to hex format
length of string
natural logarithm
test for odd value
convert character to integer
hardware port input
search string for pattern
preceding value
con~ert real number to string
convert real number to integer
fast table search
sine
square, integer/real
square root
succeeding value
convert real number to integer
convert string to upper case

Section 5: Builtin Functions

JRT Pascal User's Guide -27-

5.1 ABS

Format 1
ABS(integer_expression);

Format 2
ABS(real_expression);

The ABS standard function returns the absolute value
of an integer or a real expression.

Examples:

A := ABS(X);

WRITELN('ABSOLUTE VALUE IS',ABS(COS(Y »);

B := ABS(X + Y / z);

Section 5: Builtin Functions

JRT Pascal User's Guide

5.2 ADDR

Format
ADDRe variable);

The AD DR function returns the real
variable, array element, field of a
variable.

-28-

address of any
record, dynamic

Note that the address of a dynamic variable may change
when a storage compression occurs. If the address of a
dynamic variable is needed, the ADDR function should be used
to obtain the current address immediately before use.

Examples:

ADDRESS_OF_X := ADDRe X);

AD := ADDR(MATRIX[X, Y+5]);

DYN_VAR := ADDRe BASEA);

DYN VAR 2 := ADDR(BASEA.NEXT A
);

Section 5: Builtin Functions

JRT pascal User's Guide -29-

5.3 ARCTAN

Format
ARCTAN (real_expression);

This standard function returns the arc tangent of a
real expression.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION ARCTAN (X : REAL): REAL; EXTERN;

Examples:

WRITELN(ARCTAN(A + 3.14159 »;

NODE.VALUE := OLD NODE.VALUE + ARCTAN(V);

Section 5: Builtin Functions

JRT Pascal User:s Guide -30-

5.4 CHR

Format
CHR(integer_expression);

The CHR standard function converts an integer
expression into a character. It is often used in sending
control characters to output devices.

Examples:

WRITE (CHR(12 »;

WHILE paRTIN (MODEM

TAB : = CHR (9);

= CHR(0FFH) DO 1:=1+1;

CARRIAGE RETURN := CHR(0DH);

LINE FEED := CHR(0AH);

Section 5: Builtin Functions

JRT Pascal User!s Guide -31-

5.5 CONCAT

Format
CONCAT(stringexprl, stringexpr2, ••• , stringexprn);

The CONCAT string function concatenates two or more
dynamic strings, literal strings or structured variables.
It returns a value of dynamic string of the length required.

The plus sign can also be used to concatenate string
expressions.

Examples:

OUTPUT_LINE := CONCAT(NAME, TAB, TAB, PHONE);

WRITELN(CONCAT('VALUE', OPER, VALUE);

WRITELN('VALUE' + OPER + VALUE);

Section 5: Builtin Functions

JRT Pascal User!s Guide -32-

5.6 COpy

Format
COPY(string_expression, position, length);

The COpy function returns a string value extracted
from the source string beginning at position for length
characters. The position and length parameters are integer
expressions. The first character of strings is at position
1. An error will occur if an attempt is made to copy from
an area greater than the length of the string.

Examples:

CH := COPY('ABCDEFGHIJKLMNOPQRSTUVWXYZ',
CH_NUM, 1);

WRITELN(COPY(STR, POS(STR,'*'), 5);

WRITELN(COPY('THIS IS A STRING', 6, 4);
(* OUTPUT OF ABOVE LINE IS 'IS AI *)

Section 5: Builtin Functions

JRT Pascal User's Guide -33-

5.7 COS

Format
COS(real_expression);

The COS standard function returns the cosine of a real
expreSSlon.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION COS (X : REAL): REAL; EXTERN;

Examples:

WRITELN(COS(ANGLE »;

NODE.COSINE := COS(N);

WRITELN(COS(VELOCITY / CHARGE »;

Section 5: Builtin Functions

JRT Pascal User's Guide -34-

5.8 EXP

Format
EXP(real_expression);

The EXP function computes e to the x power, where x is
a real_expression.

This is implemented as
declaration for an external
programs which reference it.

an external function. The
function must be included in

FUNCTION EXP (X : REAL): REAL; EXTERN;

Examples:

X := EXP(Y);

PROJECTED SALES := 1000 * EXP(YEAR / 100);

VOLTAGE := EXP(SIN(PHASE));

SHIP VELOCITY := EXP(WARP FACTOR);

Section 5: Builtin Functions

JRT Pascal User's Guide

5.9 FREE

Format
FREE

-35-

The FREE integer function returns the amount of
storage currently available. Because the virtual storage
manager may delete inactive external procedures, much more
storage may be potentially available. The FREE function
returns a l6-bit integer value.

If more than 32K of storage is available, the
the integer would print out as negative, due to the
integer size. The following function converts
integers to real number format to provide
representation for numbers up to 65535.

FUNCTION REALFREE : REAL;
VAR
TEMP : INTEGER;
BEGIN
TEMP := FREE;
IF TEMP)= 0 THEN

REALFREE := TEMP
ELSE

REALFREE := 65536.0 + TEMP;
END;

Examples:

WRITELN('FREE SPACE =' ,FREE);

IF REALFREE (= 2000.0 THEN
WRITELN(ISTORAGE CRITICAL');

IF FREE)= 1500 THEN NEW{ BUFFER);

IF FREE)= 4096 THEN BUFSIZE:=2048
ELSE BUFSIZE:=l024;

value of
limit on
unsigned
positive

RESET{ INFILE, 'TEST.DAT I , BINARY, BUFSIZE);

Section 5: Builtin Functions

JRT Pascal User's Guide -36-

5.10 HEX$

Format
HEX$(any_variable);

The HEX$ function converts any variable to hex format
for display. The result is of type string and its length is
twice the length in bytes of the input variable.

Note that the 8080/280 microcomputers represent 16 bit
integers in byte-reverse format, with low order byte
followed by high order byte. That is, +ABCDH would appear
in storage as CDAB. The HEX$ function converts all
variables as they appear in storage. Often it is useful to
display hex integers in the more usual order ABCD. The
HEXINT function below makes this conversion.

FUNCTION HEXINT (X : INTEGER): STRING[4];
VAR
A : STRING[4];
BEGIN
A := HEX$ (X) ;
HEXINT: =' , ;
HEXINT[1]:=A[3];
HEXINT[2]:=A[4];
HEXINT[3]:=A[1];
HEXINT [4] : =A [2] ;
END;

Examples:

WRITELN(HEX$(3.14159));

WRITELN(HEXINT(ADDR(PTR A
)));

WRITELN(HEXINT(ADDR(FCB)));

Section 5: Builtin Functions

JRT Pascal User's Guide -37-

5.11 LENGTH

Format
LENGTH(dynamic_string_variable);

The LENGTH function returns an integer value which is
the current length of the string variable.

IMPORTANT - LENGTH may
string variables, not with
type.

Examples:

only be used with dynamic
expressions or any other data

WRITELN(LENGTH(STRl));

IF LENGTH(STRl) < 75 THEN
STRl:=CONCAT(STRl, ,----,);

FOR 1:=1 TO LENGTH(NAME) DO

Section 5:

IF NOT (NAME[I] IN ALPHAMERIC) THEN
NAME [I] : = ' ';

Builtin Functions

JRT Pascal User=s Guide -38-

5.12 LN

Format
LN(real_expression);

The LN function computes the natural logarithm of a
real expression.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION LN (X : REAL): REAL; EXTERN;

Examples:

X : = LN (Y);

WRITELN(LN(X + SQR(Y)));

IF LN(ATOM WEIGHT) < 1000.0 THEN
WRITELN(F1; ATOM);

A : = SQRT (LN (Z)) ;

Section 5: Builtin Functions

JRT Pascal User's Guide -39-

5.13 ODD

Format
ODD(integer_expression);

ODD is a Boolean function which returns the value true
if the integer_expression is odd otherwise it returns false.

Examples:

IF ODD(X) THEN TEST_FOR_PRIME(X);

IF 000(1) THEN 1:=1+1;

WHILE ODD(PORTIN(15H» DO X:=X+l.0;

WRITELN(ODD(Y));

Section 5: Builtin Functions

JRT Pascal useris Guide -40-

5.14 ORD

Format
ORD(character_expression);

The ORD function converts a character to an integer
value. The character expression may be a single character
or a string. If it is-a string, then the first byte will be
converted to integer format. The conversion is based on the
ASCII character set.

Example:

REPEAT
READ (INF I LE; CH)
WRITE (CH);

UNTIL ORD(CH) = lAH; (* EOF *)

(* ASCII DISPLAY *)
FOR CH := • • TO 'z' DO

WRITELN(CH, , = ',ORD(CH));

X : = ORD (COpy (S 1, I, 1));

Section 5: Builtin Functions

JRT Pascal User's Guide -41-

5.15 PORTIN

Format
PORTIN(integer_expression);

The paRTIN function inputs a byte directly from the
hardware port specified by the integer expression. The
return value is a character.

Examples:

IF PORTIN(255) = CHR(80H) THEN
WRITELN('HIGH BIT IS ON');

CH := PORTIN(TTY);

WHILE PORTIN(MODEM) = CHR(0FFH) DO
TIMER := TIMER + 1.0;

Section 5: Builtin Functions

JRT Pascal User's Guide -42-

5.16 POS

Format 1
POS(pattern, source);

Format 2
POS(pattern, source, start_position);

Search the source string for the first occurence of
the pattern string. Return the position of the first byte
of the pattern if it was found, otherwise return zero. The
first byte is position 1.

In format 2 of the POS function, the start position of
the search in the source string can be specified.

PROGRAM DEMO;
VAR

STRl,STR2 : STRING;
BEGIN
STRI := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
WRITELN('TEST 1 :', POS('EF', STRl));
WRITELN('TEST 2 :', POS('D', STRl, 8));
STR2 := 'XX XX XXii
WRITELN('TEST 3 :', POS(' " STR2»)i
WRITELN('TEST 4 :', POS('XX', STR2, 2» i
END.

OUTPUT:
TEST 1 5
TEST 2 ({}
TEST 3 3
TEST 4 5

Section 5: Builtin Functions

JRT Pascal User's Guide

5.17 PRED

Format 1
PRED(integer_expression);

Format 2
PRED(character_expression);

The PRED function returns
integer or a character expression.
'c' is 'b', the PRED of 98 is 97.

Example:

WRITELN(A, PRED(A));

WRITELN(CH, PRED(CH));

Section 5: Builtin Functions

-43-

preceding value of an
For example, the PRED of

JRT Pascal User's Guide -44-

5.18 REAL$

Format
REAL$(real_expression);

The REAL$ function converts a real expression to a
printable standard format for direct output or further
editing. The output is a string of length 22, in the format
below:

, +0.12345678901234E+00'

Examples:

WRITELN(FREQUENCY FILE;
REAL$(CYCLES / MICROSECONDS));

STR .- REAL$(VELOCITY / 7.03E-2l);

Section 5: Builtin Functions

JRT Pascal User's Guide -45-

5.19 ROUND

Format
ROUND(real expression);

ROUND is a standard function which converts a real
expression to an integer value. If the real value'S
fractional part is greater than or equal to 0.5 then the
value is rounded up to the next higher integer.

If the real value is too large to be converted to
integer format, a warning message is issued and the value
returned is -32768 if the real expression was negative
otherwise +32767.

Examples:

INT := ROUND(X + Y);

TEMPERATURE := ROUND(THERMOMETER_READING);

PLOT X := ROUND(X / SCALING FACTOR);

Section 5: Builtin Functions

-46-

5.20 SEARCH

Search is an external function which allows high
speed searches of tables. The array of records to be
searched can be any length, the individual records can be
any length, the offset to the key within the record can be
specified, and the key length can be specified.

Search takes four arguments: the array, the key, the
number of records in the array, and the search parameter
record. The count of records in the array is passed by
value. The three other arguments are passed by reference.

Declarations required to use SEARCH

zero *)

EXTERN;

Section 5:

TYPE
search param = RECORD

search mode: integer; (* must be

VAR

record length: integer;
key offset integer;
key=length : integer;
END;

record type = RECORD
(* whatever is appropriate *)
END;

record_array = ARRAY[l •• whatever]

key_type = STRING or ARRAY[l •• x] OF CHAR;

arr : record array;
key: key type;
parameters search_param;

FUNCTION SEARCH VAR arr : record array ;
VAR key : key type ;
count : INTEGER;
VAR param search_param

Builtin Functions

OF

JRT Pascal Useris Guide -47-

Using SEARCH

Set up the search parameter block (generally just once):

parameters.search mode := 0;
parameters.record-length := (* whatever *);
parameters.offset-:= 0 (* or whatever *);
parameters.key_length := (* whatever *);

SEARCH looks through an array of records for an exact
match between the search key and the key within the
records. The search mode option is provided for future
extensions to allow the array to be in sorted order, to
return the closest record, to let the array to be searched
be a linked list, or for the record to contain a pointer
to the key.

SEARCH returns -1 if the arguments are invalid, 0 if the
key cannot be found, and the index of the record if the
key can be found (starting at 1).

Example

For
containing

zero *)

*)

Section 5:

example, assume an array of
an integer index and a 6 character key.

(* type declaration *)
search param = RECORD

records

search mode: integer; (* must be

record length: integer;
key offset integer;
key-length: integer;
END;

char6 = ARRAY[1 •• 6] OF CHARi
record type = RECORD

index val : INTEGER;
key :-char6;

record array = ARRAY[1 •• 999] OF record_type;
key_type = char6;

(* variables *)
arr : record array;
key: key type;
parameters search param;
nr records : INTEGER; (* number of records

Builtin Functions

JRT Pascal useris Guide -48-

EXTERN;

*)

;

FUNCTION SEARCH (VAR arr : record array ;
VAR key : key type ;
count : INTEGER;
VAR param search_param ;

(* setup *)
parameter.mode := 0;
parameter.record length := 8;
parameter.key offset .- 2;
parameter.key=length := 6;

(* build an array of keys and indices into arr *)
(* keep track of number of records in nr records

(* use *)
ind := search (arr, key, nr records, parameter

if (ind <= 0) then
writeln('Record not found: ' key)

else
begin
(* ••• *)
end;

Record lengths and offsets

Record lengths and offsets can be determined by counting
bytes. Characters take 1 byte, integers, boolean, and
enumerated types take 2 bytes, real numbers take 8 bytes.

Section 5: Builtin Functions

JRT Pascal User's Guide -49-

5.21 SIN

Format
SIN(real_expression);

The SIN standard function returns the sine of a real
expression.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION SIN (X : REAL): REAL; EXTERN;

Examples:

WRITELN(SIN(ANGLE »;

NODE.SINE := SIN(N);

WRITELN(SIN(VELOCITY / CHARGE »;

Section 5: Builtin Functions

JRT Pascal User's Guide -50-

5.22 SQR

Format 1
SQR(real_expression);

Format 2
SQR(integer_expression);

The SQR standard function returns either a real value
or an integer value depending on the parameter type. This
function returns the square of the parameter expression
the value multiplied by itself.

Examples:

WRITELN('SQUARE OF X IS " SQR(X));

AREA := SQR(SIDE);

CIRCLE AREA := PI * SQR(RADIUS);

ENERGY := MASS * SQR(LIGHT SPEED);

Section 5: Builtin Functions

JRT Pascal User's Guide -51-

5.23 SQRT

Format
SQRT(real expression);

This standard function returns the square root of a
real expression.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION SQRT (X : REAL): REAL; EXTERN;

Examples:

WRITELN(SQRT(A + 3.14159));

NODE.VALUE := OLD NODE.VALUE + SQRT(V);

Section 5: Builtin Functions

JRT Pascal User's Guide

5.24 SUCC

Format 1
SUCC(integer_expression);

Format 2
SUCC(character_expression);

The SUCC function returns
integer or a character expression.
'b' is 'c', the SUCC of 97 is 98.

Example:

WRITELN(A, SUCC(A));

WRITELN (CH, SUCC (CH));

Section 5: Builtin Functions

-52-

succeeding value of an
For example, the SUCC of

JRT Pascal Useris Guide

5.25 TRUNC

Format
TRUNC(real expression);

TRUNC is a standard func~ion
expression to an integer value.
the real expression is truncated.

-53-

which converts a real
The fractional portion of

If the real value is too large to be converted to
integer format, a warning message is issued and the value
returned is -32768 if the real expression was negative
otherwise +32767.

Examples:

INT := TRUNC(X + Y);

TEMPERATURE := TRUNC(THERMOMETER_READING);

PLOT X := TRUNC(X / SCALING FACTOR);

Section 5: Builtin Functions

JRT Pascal User's Guide -54-

5.26 UPCASE

Format
UPCASE(string_expression);

The UPCASE function converts a string expression to
all upper case letters. Non-alphabetic characters are not
changed.

Examples:

IF UPCASE(COMMAND) = 'X' THEN
CMD_X;

WRITE(FI; UPCASE(NAME));

READLN(OPTION);
IF UPCASE(OPTION = 'EXIT' THEN GOTO 99;

Section 5: Builtin Functions

JRT Pascal User's Guide -55-

6. Builtin procedures

Several builtin procedures are provided in Pascal.
Most of these relate to input/output processing and are
discussed in the input/output section. The remaining
procedures are covered in this section. A list of them and
their purpose follows. JRT Pascal extensions are marked
with an asterisk.

procedure

* CALL
* DELETE

DISPOSE
* FILLCHAR
* INSERT
* MAP

NEW
* PORTOUT
* SYSTEM

purpose

direct access to CP/M and BIOS
delete portion of dynamic string
de-allocate dynamic variables
initialize a string
insert string into dynamic string
access main storage
allocate dynamic variables
hardware port output
EXEC services

Section 6: Builtin Procedures

JRT Pascal User;s Guide -56-

6.1 CALL

Format
CALL (address, parameter_regs, returned_regs);

The CALL builtin procedure allows you ·to make direct
calls to the CP/M operating system, to your own Basic
Input/Output System (BIOS), and to any machine language code
present in main storage. The 8080 data registers can be
directly setup for passing parameters to the module called.
The 8080 data registers which are returned from the module
may contain return values which can be used directly from
Pascal programs.

Note that this assembly language interface complements
the external procedure assembler. User subroutines which
must be written in assembler will usually be written as
external procedures and assembled. That gives the advantage
of fully automatic loading and relocation. CALL is intended
primarily for direct access to the operating system
services.

The address field is an integer expression. This
field is regarded as an unsigned l6-bit integer. When CALL
is executed, control is transferred to the machine code at
the address. The module there must return control to Pascal
with a RET instruction. The 8080 stack pointer must not be
modified on return to Pascal.

The 8080, 8085, Z80 microcomputers have 7 one byte
data registers and a one byte flag register. The Z80 has
additional registers but these are not used in a CP/M
environment. Six of the data registers can be grouped as
two byte registers for some uses.

8080 Register Map

I A I FLAG I

I B I C I

I D I E I

I H I L I

Section 6: Builtin Procedures

JRT Pascal User's Guide -57-

The parameter regs and returned regs fields have a
particular format -which must be declared in your program.
The parameter regs field is directly loaded into the
microprocessors data registers before control is transferred
to the called module. When control is returned to Pascal,
the current data registers are stored into the field
identified by returned regs. Both of these fields should be
declared like this: -

TYPE DATA REGISTERS =
RECORD
CASE INTEGER OF
1 : (FLAG,A,C,B,E,D,L,H : CHAR);
2 : (PSW, BC, DE, HL : INTEGER);
END;

This is a variant record which defines the data
registers for access in one or two bytes at a time. For
example, sometimes it may be necessary to regard the
register pair DE as an integer, other times it may be
necessary to treat register E alone as a single byte. Both
definitions total 8 bytes.

Note that in definition 1, the register names are in
an unusual sequence. This is necessary because the 8080/Z80
microprocessors store 16 bit data in a "byte-reverse"
format.

Example:

VAR
PARM_REGS, RETURNED_REGS : DATA_REGISTERS;

CALL(5, PARM_REGS, RETURNED REGS);

6.1.1 Calling the CP/M operating system

An operating system is a program which provides
services to application programs running under it. Some of
these services are "create file", "write string to printer",
"reinitialize system", and so on. Using the CALL builtin
procedure you can directly access these services from your
Pascal programs.

Sec tion 6: Builtin Procedures

JRT Pascal User's Guide -58-

The CP/M and MP/M User's Guides describe in detail the
services provided and parameters required for each. Each
service is identified by a one byte function code. This
code is stored in register C before control is transferred
to CP/M. Many services also require an integer parameter
such as an address in register pair DE. The entry point
address for all CP/M compatible systems is location 5. At
address 5 is stored a jump instruction to the actual CP/M
module.

The address of the BIOS (warm-start entry point) is
stored at address 0001 in main storage and may be accessed
with the MAP builtin procedure. The MAP and CALL procedures
allow direct access to all of the services provided by the
BIOS.

Section 6: Builtin Procedures

JRT Pascal User's Guide -59-

The service codes for CP/M 2.2 and MP/M are:

o system reset
1 console input
2 console output
3 reader input
4 punch output
5 printer output
6 direct console input/output
7 get I/O byte
8 set I/O byte
9 print string

10 read console buffer
11 get console status
12 return version number
13 reset disk system
14 select disk
15 open existing file
16 close file
17 search for first file control block
18 search for next file control block
19 delete file
20 read sequential
21 write sequential
22 create file
23 rename file
24 return login vector
25 return current disk
26 set DMA address
27 get addr (alloc)
28 write protect disk
29 get read/only vector
30 set file attributes
31 get addr (disk parms)
32 set/get user code
33 read random record
34 write random record
35 compute file size
36 set random record
37 reset drive
40 write random with zero fill

Section 6: Builtin Procedures

JRT Pascal User's Guide -60-

The following services are available in MP/M only:

128 absolute memory request
129 relocatable memory request
130 memory free
131 poll
132 flag wait
133 flag set
134 create queue
135 open queue
136 delete queue
137 read queue
138 conditional read queue
139 write queue
140 conditional write queue
141 delay
142 dispatch
143 terminate process
144 create process
145 set priority
146 attach console
147 detach console
148 set console
149 assign console
150 send eLI command
151 call resident system process
152 parse filename
153 get console number
154 system data address
155 get date and time

Section 6: Builtin Procedures

JRT Pascal User's Guide

Examples:

1. (* GET THE VERSION NUMBER FROM CP/M *)

PROCEDURE GET_VERSION;
VAR
PARM REGS, RETURN REGS : DATA_REGISTERS;
BEGIN -
(* SET FUNCTION CODE := 12 *)
PARM REGS.C := CHR(12);
CALL(5, PARM_REGS, RETURN_REGS);

(* THE CP/M VERSION NUMBER IS RETURNED IN
REGISTER L. IF REGISTER H IS 01 THEN THE
OPERATING SYSTEM IS MP/M *)
CASE ORD(RETURNED REGS.H) OF
o : WRITE('CP/M I);
1 : WRITE('MP/M ');
ELSE: WRITE('????');
END;
WRITE(' VERSION I);

CASE HEX$(RETURNED REGS.L) OF
'00' WRITELN('l.XT);

'20' WRITELN('2.0');
'22' WRITELN('2.2');
ELSE WRITELN(HEX$(RETURNED_REGS.L »;
END;

END; (* GET VERSION *)

2. PROCEDURE WRITE PROTECT CURRENT DISK;
VAR - - -
PARM REGS, RETURNED REGS : DATA REGISTERS;
BEGIN - -
PARM REGS.C := CHR(28);
CALL(5, PARM REGS, RETURNED REGS);
END; -

Section 6: Builtin Procedures

-61-

JRT Pascal Useris Guide

3. PROCEDURE GET USER CODE;
VAR --
PARM REGS, RETURNED REGS : DATA_REGISTERS;
BEGIN -
PARM REGS.C := CHR(32};
CALL(5, PARM REGS, RETURNED REGS };
WRITELN('USER-CODE =' ,ORD(RETURNED REGS.A »;
END;

4. PROCEDURE SEARCH FOR FIRST
(NAME, TYPE-: STRING[8]);

TYPE
FILE CONTROL BLOCK =

RECORD

VAR

DISK : CHAR;
FILENAME: ARRAY [1 •• 8] OF CHAR;
FILETYPE : ARRAY [1 •• 3] OF CHAR;
EXTENT : CHAR;
Sl, S2 : CHAR;
RECORD COUNT : CHAR;
BLOCKS-: ARRAY [1 •• 16] OF CHAR;
CURRENT RECORD : CHAR;
R0, Rl, R2 : CHAR;
END;

FCB FILE CONTROL BLOCK;
PARM_REGS,-RETURNED_REGS DATA_REGISTERS;

BEGIN
(* SET UP FeB *)
FCB.DISK := CHR(0);
FCB.FILENAME := NAME;
FCB.FILETYPE := TYPE;

(* SET UP PARM REGS *)
PARM REGS.C :=-CHR(17};
PARM-REGS.DE := ADDR(FCB};
CALL(5, PARM_REGS, RETURNED_REGS);

(* TEST RETURN CODE *)
IF RETURNED REGS.A = CHR(255) THEN

WRITELN('FILE NOT FOUND');
END;

Section 6: Builtin Procedures

-62-

JRT Pascal User's Guide -63-

6.2 DELETE

Format
DELETE (string_variable, position, length);

The DELETE builtin procedure is used to delete a
number of characters from a dynamic string variable. The
first parameter refers to the string variable, NOT a string
expression. The second parameter is an integer expression
which indicates the first character to be deleted
characters in dynamic strings are numbered from 1. The
third parameter is an integer expression which indicates the
number of characters to be deleted.

The hidden length field of the dynamic string variable
is updated. If the position and length parameters refer to
an area beyond the current length of the string, a run-time
error occurs.

Examples:

DELETE(TARGET_STR, 25, 3);

DELETE (STRl, POS('END', STRl) , 3);

DELETE (STR3, 9, X + 3);

Section 6: Builtin Procedures

JRT Pascal User's Guide -64-

6.3 DISPOSE

Format
DISPOSE(pointer_variable);

The DISPOSE builtin procedure is used to de-allocate
dynamic variables. The pointer variable addresses a dynamic
variable in dynamic storage.- After execution of the
procedure the space released is available for other uses.

JRT Pascal supports true dynamic storage with auto­
compression. When blocks are freed up, storage
fragmentation tends to occur - that is, small unused blocks
tend to accumulate. Because many blocks tend to be small,
they cannot be immediately reused for another purpose. When
storage becomes short an auto-compression is initiated by
the Pascal sy~tem. In this process all freed blocks are
gathered into the center area of storage and all needed
blocks are moved to the top of storage. In this way,
storage fragmentation is totally eliminated.

The DISPOSE procedure can be used to de-allocate ghost
variables created by the MAP builtin procedure. Although
ghost variables use no real storage, they do require a small
amount of space in the pointer tables.

Example:

PROCEDURE DISPOSE_DEMO;
TYPE
DYN VAR = ARRAY [1 •• 200] OF CHAR;
VAR-
POINTER A DYN_VAR;
BEGIN
NEW(POINTER); (* ALLOCATE A DYNAMIC VAR *)

(* DO SOME PROCESSING WITH THE DYNAMIC VAR *)

DISPOSE(POINTER); (* FREE UP THE 200 BYTES *)
END;

Section 6: Builtin Procedures

JRT Pascal User's Guide -65-

6.4 FILLCHAR

Format
FILLCHAR(structured_variable, length, character);

The FILLCHAR builtin procedure is a very fast and
simple way to initialize a structured variable (array or
record) to a character. The length parameter is an integer
expression which indicates the number of bytes to be
initialized. The entire variable from its first byte up to
the length specified is set to the character expression
value.

CAUTION - This is a hazardous procedure since the run­
time system cannot verify that the initialization by
character has not run past the end of the variable and
perhaps overlayed other variables or program code.

Examples:

FILLCHAR(VECTOR, 160, CHR(0))i

FILLCHAR(PRODUCT_ARRAY, 2500, '*');

Section 6: Builtin Procedures

JRT Pascal User's Guide -66-

6.5 INSERT

Format
INSERT(source_string, target_string_variable, position);

The INSERT builtin procedure inserts the source string
expression into the target string variable at the indicated
position. The source string may be a literal string or
other string expression. The target string MUST be an
actual variable. The source string is inserted into the
target variable beginning at the character indicated by the
integer expression position.

If the combination of parameters would cause the
target string to overflow its maximum length or if position
is less than 1, a run-time error occurs.

Examples:

INSERT('ABCD', STRl, 15);

INSERT(FILENAME, MASK, 1);

STRI := 'MERE FACTICITY.';
INSERT('TRUTH IS NOT', STRl, 1);

Section 6: Builtin Procedures

JRT Pascal User's Guide -67-

6.6 MAP

Format
MAP(pointer_varlable, address);

The MAP procedure allows the user to access any part
of cne computer's storage. It uses the facilities of the
dynamic storage system and pointer variables to, in effect,
overlay a map on any area of storage. This is sometimes
called a "dsect" or "ghost variable."

Unlike its close relative, the NEW procedure, MAP does
not actually allocate a dynamic storage block. Instead of
obtaining a storage block and setting the pointer variable
to point to it, it lets you specify the address. The
address can be a~ywhere from 0 to 0FFFFH.

Like the NEW procedure, MAP does require five bytes of
pointer table space. When the ghost variable is no longer
needed, it can be removed from the table with the DISPOSE
procedure.

Examples:

1. (* ACCESS A 24 X 80 VIDEO TERMINAL *)
(* IT IS A MEMORY-MAPPED MODEL WITH ITS *)
(* VIDEO SCREEN BEGINNING AT 0F000H *)

TYPE
SCREEN = ARRAY [1 •• 24, 1 •• 80] OF CHAR;
VAR
CRT : A SCREEN;
BEGIN
MAP(CRT, 0F000H);

(* CLEAR THE SCREEN *)
CRT A

: = , ';

(* WRITE MESSAGE ON TOP LINE OF CRT *)
CRT A [I] := 'MEMORY MAPPED CRT EXAMPLE';

END;

Section 6: Builtin Procedures

JRT Pascal User's Guide

2. (* OBTAIN THE ADDRESS OF THE USER BIOS.*)
(* JMP INSTRUCTION AT ADDR 0 ADDRESSES *)
(* THE WARM-START ENTRY POINT IN BIOS *)

FUNCTION BIOS : INTEGER;
VAR
PTR : ""INTEGER;
BEGIN
MAP (PTR, 1);
BIOS .- (PTR"" - 3); (* START OF BIOS *)
END;

3. (* SET THE IOBYTE AT ADDR 3 TO NEW VALUE *)

PROCEDURE SET IOBYTE (X : CHAR);
VAR
PTR : "" CHAR;
BEGIN
MAP (PTR, 3);
PTR"" := X;
DISPOSE(PTR);
END;

Section 6: Builtin Procedures

-68-

JRT Pascal

6.7 NEW

Format 1

User's "; ~""'" uUJ.uc

NEW(pointer_variable);

Format 2
NEW(pointer_variable, tagl, ••• , tagn);

-69-

The NEW procedure allocates new dynamic variables. A
block of dynamic storage of the required size is obtained.
The block's virtual address, not its actual address is
stored in the pointer variable.

Virtual addressing and dynamic storage are fully
explained in the section on storage management.

After NEW has been executed, the dynamic variable may
be accessed. Dynamic variables remain allocated until
specifically de-allocated by the DISPOSE procedure. If a
procedure uses NEW to allocate a dynamic variable, that
variable remains allocated after the procedure ends.

Format 2 contains 1 to n tag fields. These are the
fields specified in the CASE clause of variant records.

Section 6: Builtin Procedures

Example:

(* PROGRAM FRAGMENT TO ALLOCATE A *)
(* LINKED LIST OF VARIABLE LENGTH. *)
(* THE ROOT OF THE LIST IS A GLOBAL *)
(* VARIABLE. NODES AFTER THE FIRST *)
(* ARE INSERTED BETWEEN THE ROOT AND *)
(* THE FIRST NODE. *)

TYPE
NODE =

VAR

RECORD
NEXT
DATA
END;

ROOT "NODE;

INTEGER;
STRING[300];

PROCEDURE LINKED LIST (COUNT
VAR
I : INTEGER;
TEMP : "NODE;
BEGIN
(* ALLOCATE FIRST NODE *)
NEW(ROOT);

(* SET END OF LIST INDICATOR *)
ROOT".NEXT-:=-NIL;

(* ALLOCATE LINKED LIST *)
FOR I := 1 TO COUNT DO

BEGIN
NEW (TEMP);
TEMP".NEXT := ROOT;
ROOT := TEMP;
END;

END; (* LINKED LIST *)

INTEGER);

Section 6: Builtin Procedures

JRT Pascal User:s Guide

6.8 PORTOUT

Format
PORTOUT(port_number, byte);

The PORTOUT procedure writes a byte directly to one of
the hardware output ports. The port number is an integer
expression. The byte is a string or char expression.

Examples:

PORTOUT(MODEM, START_CHAR);

PORTOUT(VOICE_SYNTHESIZER, 'A');

PORTOUT(FIRE_ALARM, RESET);

PORTOUT(TELETYPE, CHR(7));

PORTOUT(ISH, CHR(3 + X));

Section 6: Builtin Procedures

JRT -72-

6.9 SYSTEM

Format
SYSTEM { option);

The SYSTEM procedure allows you to control the trace
facilities, the routing of console output, dynamic storage
compression and warning messages.

The options for SYSTEM are listed, default states of
the Pascal system are indicated with an asterisk.

option

* CONS
NOCONS
LIST

* NOLIST
* WARNING

NOWARNING
LTRACE

* NOLTRACE
LRANGE,l,u
PTRACE

* NOPTRACE
INITIALIZE

COMPRESS

purpose

route output to console
no output to console
route output to printer
no output to printer
display warning messages
suppress warning messages
activate line trace
disable line trace
set line range for line trace
activate procedure trace
disable procedure trace
re-initialize disk system

after disk switch
compress dynamic storage

The LRANGE option requires two additional parameters.
The lower and upper line numbers are integer expressions.

Examples:

SYSTEM (LIST);

SYSTEM{ NOWARNING)i

SYSTEM(LRANGE, 250, 300);

SYSTEM(COMPRESS);

Section 6: Builtin Procedures

JRT Pascal User's Guide -73-

7. Input/output

JRT Pascal includes a powerful input/output subsystem
which can be used to meet virtually any processing
requirement. Four modes of input/output console,
sequential disk, random disk, indexed disk - are provided.

D1SK files can be processed in either TEXT mode or In
BINARY mode. TEXT mode is most commonly used by BASIC
languages. Data is stored in ASCII text readable format.
BINARY mode is found on larger mini and mainframe computers.
The data is input/output in the binary format used
internally by the language. Not only 1S the data more
compact in some cases but it is also of fixed length. For
example, an integer in text format could occupy from two
bytes to six bytes depending on its value. But in binary
format, an integer is always exactly two bytes.

Text mode is sometimes called "stream I/O".
mode is sometimes called "record I/O".

Binary

Another advantage of binary format is that you can
process data files or COM files containing special control
characters.

All files in JRT Pascal are "untyped". That is you
can read and write data of any format to any file. You can
write records of entirely different formats and sizes on the
same file.

JRT Pascal also supports direct access to the hardware
input/output ports without having to write an assembly
language subroutine. The builtin function PORTIN and
builtin procedure PORTOUT are described in the sections on
builtin functions and procedures.

JRT Pascal version 3
variables. Files may now
procedures, allocated locally
records or arrays, be used
Pascal builtin procedures GET

Section 7: Input/output

now supports Pascal
be passed as parameters

in procedures, be used
in assignment statements.
and PUT are now supported.

file
to
in

The

JRT pascal User's Guide -74-

7.1 Console input/output

Console input/output is the usual means for a program
to interact with the user. Data values can be displayed at
a video terminal or teletype and data can be keyed in in
response.

Console input/output always occurs in text rather than
binary format. Integers, real numbers, strings, characters,
Booleans will be displayed in text format. Set variables
have no meaningful text format and cannot be written to the
console.

IMPORTANT - Since the console is regarded as a text
device, data items are delimited by commas, spaces, tabs and
semicolons. To read one character at a time use this
function:

FUNCTION GET CHAR : CHAR;
VAR R : RECORD

FLAG,A,C,B,E,D,L,L
END;

BEGIN
R.C := CHR(l);
CALL{ 5,R,R);
GET CHAR := R.A
END;

CHAR;

Using the HEX$ builtin function any variable can be
converted to hex format for direct display. On console
input for integers, data may be keyed in standard decimal
format or in hex format. An 'H' character suffix indicates
hex format.

On input to the console, data items may be separated
by spaces, tabs, commas or semicolons. Character or
structured variable inputs which contain special characters
may be entered in single quotes. The quote ch3racter itself
may be entered by doubling it.

Sample input lines

3.14159,77
03ch,'JRT Systems'
'don"t say you can"t'
6.70234e-25,0.0000003

Section 7: Input/output

JRT Pascal User's Guide -75-

Reading from the console into a dynamic string
variable is treated differently. An entire line of text is
obtained from the console and moved directly into the string
variable. Separator characters and single quotes are
ignored. The system will not allow more characters to be
keyed in than can fit into the variable. The string
variable must be the only variable in the READ's parameter
list.

Console output can also be routed to the printer or
list device. The SYSTEM procedure is fully described in the
section on builtin procedures. Some of its options are:

SYSTEM(LIST);
SYSTEM (NOLIST);
SYSTEM (CONS);
SYSTEM (NOCONS);

route output to printer
do not route to printer
route to console device
do not route to console

The builtin procedures/functions used in
input/output are:

READ, READLN
WRITE, WRITELN
EOLN

read data into storage
write data to console/printer
end of line function

Section 7: Input/output

console

JRT Pascal User's Guide -76-

7.2 Sequential file processing

Disk files are not inherently
Those terms apply to the means
applied to any disk file.

sequential or random.
of access which may be

Sequential file processing is generally faster than
random access because input/output can be buffered and
because the disk positioning mechanism only needs to move
short distances.

JRT Pascal lets the user obtain maximum processing
speed by defining the buffer size for sequential files. The
buffer is the holding area where disk data is loaded and
written. This area is filled or emptied in one burst - one
disk access with one head load operation. A very small
buffer may cause disk nchattering n during processing because
of frequent accesses. A large buffer will result in less
frequent but longer disk accesses.

The buffer size is specified as an integer expression
in the RESET or REWRITE procedure. It will be rounded up to
a multiple of 128. If storage is plentiful, buffers of 4096
or 8192 bytes will improve processing.

The builtin procedures/functions used in· sequential
disk file processing are:

RESET
REWRITE
CLOSE
READ, READLN
WRITE, WRITELN
EOF
EOLN
ERASE
RENAME

open file for input
open file for output
terminate file processing
read data into storage
write data to disk
end of file function
end of line function
delete a file
rename a file

Section 7: Input/output

JRT pascal Useris Guide -77-

This sample program reads in a file and dumps it in
hex format to the console.

PROGRAM DUMP;

TYPE BLOCK = ARRAY [1 •• 16] OF CHAR;
NAME = ARRAY [1 •• 14] OF CHAR;

VAR
B : BLOCK;
DUMP FILE : FILE OF BLOCK;
FILENAME NAME;

BEGIN
WHILE TRUE DO (* INFINITE LOOP *)

BEGIN

END.

Section 7:

WRITE('enter file name: I);
READLN(FILENAME);
RESET(DUMP FILE, FILENAME,

BINARY, 4096);
WHILE NOT EOF(DUMP FILE) DO

BEGIN -
READ (DUMP FILE; B);
WRITELN(HEX$(B));
END;

CLOSE(DUMP FILE);
WRITELN;
END;

Input/output

JRT - - - -.,
.t:'d~::H.;d.l. User!s ,.. .. _: ..3_

UU.LUt:
..,n

-/0-

7.3 Random file processing

CP/M version 2.2 or higher is required to use JRT
Pascal random file processing.

For many types of processing it is not known in
advance in which sequence the records of a file will be
needed. A spelling dictionary or online inquiry customer
database obviously must use random access files.

In JRT Pascal random access is fully supported. Data
can be read and updated by providing the relative record
number (RRN) within the file for fixed length records. The
first record is at RRN = 0. For variable length records,
the data can be read or updated by providing the relative
byte address (RBA). The RBA is the location of the data
item within the file - the first byte is at RBA = 0.

The RBA mode of processing gives much greater
flexibility than RRN. If all records had to be the same
size, then all must be the size of the largest, resulting in
much wasted space and slower access.

JRT Pascal version 2.1 now supports random files up to
the CP/M maximum of 8 megabytes. The RBA or RRN value may
be an integer or a real expression. Programs written under
earlier versions are source code compatible but must be
recompiled using the version 2.1 compiler.

The procedures used in random file processing are:

OPEN
CLOSE
READ
WRITE
ERASE
RENAME

open or create random file
terminate file processing
read data into storage
transfer data to disk
delete a file
rename a file

A sample program shows random access to a file
containing sales information for the various departments of
a retail store. The records are located by department
number.

Section 7: Input/output

JRT Pascal User=s Guide

PROGRAM INQUIRY;

LABEL 10;

TYPE
DEPT RECORD = RECORD

INVENTORY
MTD SALES
YTD SALES
DISCOUNT
END;

VAR
DEPT RECORD;

REAL;
REAL;
REAL;
REALi

INPUT AREA
DEPT FILE
DEPT-

FILE-OF DEPT_RECORD;
INTEGER;

BEGIN (* INQUIRY *)
OPEN(DEPT_FILE, 'C:DEPTDATA.RND', BINARY);

REPEAT
WRITE('Enter dept number: I);
READLN(DEPT);
IF DEPT = 999 THEN GOTO 10; (* EXIT *)
READ(DEPT FILE, RRN, DEPT;

INPUT AREA);
WRITELNi -
WRITELN('dept' ,DEPT,

, inv',INPUT AREA. INVENTORY: 9: 2,
disc' ,INPUT AREA.DISCOUNT:9:2);

-79=

WRITELN (' , MTD salesT,INPUT AREA.MTD SALES:9:2,
YTD sales' ,INPUT_AREA.YTD_SALES:9:2);

WRITELN;
10: (* EXIT LABEL *)
UNTIL DEPT = 999;

CLOSE(DEPT FILE);
END (* INQUIRY *) •

Section 7: Input/output

-80-

7.4 Indexed file processing

CP/M version 2.2 or higher is required to use JRT
Pascal indexed file processing.

JRT Pascal version 3 now provides full support for
indexed files. The index file system is implemented as 2
external procedures so that it occupies no main storage when
it is not being used.

Indexed files consist of two separate disk files: the
main data file with a filetype of DAT and an index file with
a filetype of IX0.

The indexed file system has 3 components. INDEX0
external procedure performs most of the functions. INDEXI
external procedure compresses the data files and rebalances
the indexes. The INDEX2 program is executed by itself and
reorganizes the files for more efficient access.

The ex te r nal
operations:

procedure

A add a new record

INDEX0 performs

B read first record (beginning)
C close file
D delete a record
F flush buffers, close and reopen files
N new file allocation
a open file

these

Q query whether indexes should be balanced
R read a record
S read next record in sequence
U update a record
W issue warning messages
Z turn off warning messages

INDEXI performs these operations.

J
K

rebalance the indexes
compress data file and balance indexes

Records must all be the same size - from 16 to
bytes. They need not be a multiple of 128 bytes.
maximum number of records depends on the key size:

Section 7: Input/output

2048
The

JRT Pascal User's Guide -81-

(1024 DIV (KEY_SIZE + 3)) * 256

key size

4
6
8

15

max records

32767 (---
28928
23808
14336

Not more than 32767
records ever allowed

The maximum number of records should be set to
somewhat less than the maximum theoretical number of
records, to prevent the loss of a record when adding to an
unbalanced file. Note also that the file of indexes will
be 257K when the maximum number of records are entered,
so a reasonable (high) estimate should be used for the
maximum number of records.

IMPORTANT - No key should contain all zeroes, since a
zero key is used to indicate deleted keys and records.

The key must be the first field in each record. The
key size may be from 2 to 32 bytes.

A utility program INDEX2 is provided to reorganize the
data file and generate new index files.

7.4.1 Index file format

up to
bytes.

The index file is divided into one primary index and
256 secondary indexes. Each index block is 1024

The primary index contains 256
of these is the first 4 bytes
secondary index.

4 byte fieIds.
of the lowest key

Each
in a

The secondary indexes contain actual key values and 3
byte record locator fields. The number of keys per
secondary index is:

1024 DIV (KEY_SIZE + 3)

Section 7: Input/output

JRT Pascal User's Guide -82-

7.4.2 Data file format

The data file consists of a 1024 byte 'control record
followed by the data records.

The control record contains the filename, maximum
record count, current record count, key size, record size,
delete count, and deleted record list.

Section 7: Input/output

Index file format

1 K blocks primary index

up to 256

secondary indexes

Data file format

control record 1 K

data records

JRT Pascal User's Guide -84-

7.4.3 Using INDEX0

The indexed file system is implemented in an external
procedure named INDEX0. To access it, these declarations
are required in your main program.

TYPE
KEY TYPE = -------- {your key type declarations }
RECORD TYPE = ------ {your record type declarations }
INDEX RECORD = RECORD

DISK : CHAR;
FILENAME: ARRAY [1 •• 8] OF CHAR;
RETURN CODE : INTEGER;
RESERVED: ARRAY [1 •• 200] OF CHAR;
END;

PROCEDURE INDEX0 (COMMAND : CHAR;
VAR KEY : KEY_TYPE;
VAR DATA : RECORD TYPE;
VAR IR : INDEX RECORD); EXTERN;

To use INDEX0 the index record must be initialized
with the filename and disk-on which the file is located.
The return code is set by INDEX0 and indicates if each
operation was successfully completed. Warning messages may
optionally be issued, see command 'W'.

An indexed file must be allocated before it can be
opened or used in any way.

Each time INDEX0 is called a valid command
be passed. The key, data, and ir parameters
required although key and data will not be used
command.

code must
are also

by every

It is allowed to have multiple indexed files open at
the same time. Each one is identified by a different
index record.

The index record (IR) should be set to blanks
before individual fields are initialized. For a given
index file, the first call to INDEX0 in a program should be
to open ('0') or create ('N') the index and data files.
(INDEX0 can be called with 'WI first, so that error
messages will be printed.)

Section 7: Input/output

-85-

7.4.4 INDEX commands

Commands J and K are processed by INDEXl. All others
are processed by INDEX0.

A add a new record
- insert new key lnto index, if duplicate key

exists, abort operation
- write new data record to data file

B read first record (begin)
- read the first record (in sorted

order)
- returns key and record

C close indexed files
this MUST be done on completion of processing
or newly written data may be lost

D delete a record
- nullify key entry for record
- add record locator to delete list

F flush buffers, close and reopen files
- flush buffers that have changed
- close files to preserve changes

J rebalance indexes (INDEXl)
- uses temporary file
- delets old index file
- renames new index file

K rebalance indexes and compact data file (INDEXl)
- uses temporary files
- deletes old index and data files
- renames new index and data files
- reopen files for further processing

N new file allocation

Section 7:

program will inquire at the console the
parameters of the new indexed file

1. record size in bytes
2. key size in bytes
3. maximum number of records to be

allowed; the index file will be
allocated based on this number

Input/output

,.nm n ____ ' '1"... __ ' _ f""'I ... !~_ nr
-00-unL ra~~a~ U~CL ~ UU~UC

o

Q

R

S

U

W

z

- index files are left open for
further processing

- files must be closed (or flushed)
to preserve the new contents

open indexed files
- open the index and data files
- load the primary index into dynamic storage

query data base status
- return 'Y' in key[l] if the data

base should be reorganized ('J')
- else return 'N' in key[l]

read a record
- search the indexes for the key
- read the data record into the user's record

variable

read next record in sequence
- will read next record after a

pr ev i 0 us 'B', 'R', 'S', 0 r 'U'

update a record
- the update operation MUST ALWAYS be preceded

by a read operation with the same key
- write modified record to data file

warning messages
- turn on the warning message feature
- causes non-zero return codes to print

verbal error messages

turn off warning messages

Section 7: Input/output

JRT Pascal User;s Guide

7.4.5 INDEX return codes

o successful completion

1 duplicate key

2 maximum number of records exceeded

3 key not found

4 update key does not match read key or
previous read was not successful

5 key value does not match key in record

6 second open or new without closing previous
file

7 invalid command (eg. 'M' or an'S' without
a preceeding 'B', 'R', 'S', or lUI)

8 file not open

9 serious error

7.4.6 Balanced indexes

-87-

Searching for records is usually very efficient,
both in random and sequential modes. Adding to a data
base is usually efficient until one or more of the
secondary indexes gets full. (If records are added in
sorted order, then the addition process will be very
efficient.) INDEX0 will not automatically "balance" keys in
the index files, so that additions fill up the
secondary indexes.

Section 7: Input/output

-88-

Your program can "Query" the status of an indexed
file by using 'Q' in a call the index. The first letter of
the key will be set to 'Y' if the indexes should be
balanced, and 'N' if that is not necessary yet. (INDEX0
decides that the indexes should be balanced when an add
('A') must move a secondary index from one block to
another) •

Reorganizing indexes

To reorganize an indexed file so that adding new
records will be efficient, set the record argument to all
bl an k san d call IN DE Xl with co mm an d ' J ' (for ad Jus tor
Justify). INDEXI will create a new balanced index file on
the same disk as the current index file. There must be
space for the new index file, which will be called
name.$$I. INDEXI will then delete the old .IX0 file and
rename the new file to name.IX0. Reorganization takes 2500
to 3200 bytes of space in main memory as well as space on
the disk, so it is never done automatically. INDEXI must
be declared as an external procedure (just as INDEX0 was
declared) if your program is going to balance indexes "on
the fly".

PROCEDURE INDEXI (COMMAND : CHAR;
VAR KEY : KEY TYPE;
VAR DATA : RECORD TYPE;
VAR IR : INDEX_RECORD); EXTERN;

INDEXI supports the J and K operations which are
described in section 7.4.4.

In general, the record variable should be set to
all blanks before INDEXI is called.

7.4.7 INDEX2 utility

EXEC INDEX2 to rebalance the indexes in the file and
to compact the data after many deletions. INDEX2 will
ask for the name of the disk drive containing the indexed
files (A to P), the name of the index files (which you
would enter without any. or .DAT or .IX0), and the name
of the disk drive to contain the new balanced and
compacted files. You can have the new files put on the
same or another disk drive as the original files.

Section 7: Input/output

JRT Pascal User's Guide -89-

INDEX2
records. If
used.

will also ask for a new number of maximum
you enter 0, the previous maximum will be

Compressing data from within a program

INDEX2 uses INDEX0 and INDEXl to perform the actual
indexed file accesses. Highly sophisticated programs can
also use INDEXl to compact the data file as well as
balance the indexes. Call INDEXl with the command 'K'
(kompress) to do a complete reorganization. If the
record argument is set to all blanks, then the same disk
drive and same maximum record count will be used in
creating the new data base copies. If the record
argument is given the following structure, then
alternate disk drives or a different maximum number of
records can be set.

VAR
new param : RECORD

- new disk flag: CHAR;
new-disk-: CHAR;
max=nr_flag : CHAR;
max nr rec : INTEGER;
old-leave : CHAR;
END;

Set new param.new disk flag to 'Y' if
new param.new disk contains- another disk drive letter (such
as 'C'). -Set new_param.max_nr flag to 'Y' if
new param.max nr rec contains a new maximum number of
records, such as 2000.

The new disk flag only works with the 'K' option.
The old leave flag only works with the 'K' option when a
new_disk is specified.

When the 'K' option is used, the record passed must be
big enough to hold records read from the disk. You might
want to assign rec to contain new_param, and then call
INDEXl, for example

Section 7: Input/output

JRT Pascal User's Guide -90-

rec := new param;
INDEXl ('KT , key, rec, ir);

Most programs will not need to use the K option,
since the equivalent can be done as needed by having the
user issue the CP/M command EXEC INDEX2, preferably after
the data bases have been copied to backup disks.

7.4.8 Efficiency notes

Reading records from the data base is only slow
when very many keys have the same first four characters. If
the indexes in more than one secondary index block have
the same first four characters, INDEX0 may have to search
more than one secondary index block to find a given
record. Generally, this will not occur.

Random output in general under CP/M is inefficient
due to buffering requirements. Random output will be
most efficient with double density disks with lk blocks or
with single density disks with 128 byte blocks.

Maximum number of records

The maximum number of records should be set to
somewhat (50 to 200) less than the theoretical maximum.
If, for example, 8 byte keys are declared with up to
23808 records, 256 records are entered, the indexes are
balanced (with 'J'). There will now be 256 secondary
indexes blocks with one key each. Then, if 92 records are
added with key greater than the 256th record, the last
secondary index will be full. Since one secondary index
block can hold 93 8 byte keys, adding a 93rd key larger
than the 256th will "overflow" the top secondary index
block. A serious error.

Currently, the maximum number of records is
for index files with 2, 3, and 4 byte keys.

Section 7: Input/output

32767

JRT Pascal User's Guide -91-

7.4.9 Sample indexed file program

The following simple program will let you create,
add to, query, close, and search any data base. It
assumes that the record and the key are alphanumberic
(printable) information. You can enter individual
commands to the program, which will call INDEX0 (or
INDEX1) to perform the equivalent command. The runtime
example that follows the listing of TSTINDEX shows the
creation of a simple address file, with 16 character
search keys and (one line) addresses up to 80 characters
long. The resulting records are then 96 bytes long.

Section 7: Input/output

JRT Pascal User's Guide

PROGRAM tstindex;

TYPE

VAR

key t = ARRAY[l •• 256] of CHAR;
rec-t = ARRAY[l •• 2048] of CHAR;
ctrI rec = RECORD

c 1 : ARRAY[l •• 4] of INTEGER;
rec size : INTEGER;
c 2-: INTEGER;
key size : INTEGER;
end;

index record = RECORD
disk : CHAR;
filename: ARRAY[l •• 8] of CHAR;
return code : INTEGER;
res 1 -: INTEGER;
ctl-: "'ctrl rec;
reserved: ARRAY[l •• l96] of CHAR;
END;

key key_t;
rec rec t;
cmd CHAR;
ir : index record;
tem_d : ARRAY[1 •• 2048] of CHAR;

PROCEDURE INDEX0 (command : CHAR;
var key : key_t;
var rec : rec t;
var ir : index record); extern;

PROCEDURE INDEXl (command : CHAR;
var key : key t;
var rec : rec-t;
var ir : indei record); extern;

Section 7: Input/output

-92-

JRT Pascal User's Guide

BEGIN (* ts t i nd ex *)
ir := ' ';
wr i te ('Di sk: ');
readln(ir.disk);
write('File: I);
readln(ir.filename);
REPEAT

wr i te (, cmd: ');
readln(cmd) ;
cmd .- upcase(cmd);
key : = , ';
rec : = , ';
IF (cmd in ['A', 'D', 'R', 'U']) THEN

BEGIN
wr i te (, ke y : ');
readln(key) ;
IF (cmd in ['A', 'U']) THEN

BEGIN
wr i te (, da ta: ');
readln(tem d);

-93-

rec := copy(key, 1, ir.ctlA.key size) +
copy(tem d, 1, ir.ctlA.rec size -

-ir.ctlA.key_size);

END.

END;
END;

(* justify or kompress must call INDEXI *)
IF (cmd in ['J', 'K']) THEN

ELSE

BEGIN
rec : = , ';
INDEXI (cmd, key, rec, ir);
END

INDEX0(cmd, key, rec, ir);
IF (ir.return_code <> 0) THEN

BEGIN
writeln('Error:', ir.return_code);
END;

IF (cmd = 'Q') THEN
writeln(Iquery result: " key[l]);

IF (cmd in [' B I, 'R', 'S']) THEN
BEGIN
writeln('key: I, copy(rec, 1, ir.ctlA.key size»;
writeln(Idata: " copy(rec, ir.ctlA.key sIze + 1,

ir.ctlA.rec size - ir.ctlA.key_size»;
END;

UNTIL (cmd = I?');

Section 7: Input/output

JRT Pascal User's Guide -94-

Execution of TSTINDEX is shown for a simple data
base with 16 character names and up to 96 characters of
information (which happen to be addresses). Note that the
key length and record length are entered from the terminal
in the N command.

A>EXEC B:TSTINDEX
Exec ver 3.0

Disk: B
File: ADDRESS
cmd: W
cmd: N
Record size in bytes: 96
Key size in bytes: 16
Maximum number of records: 500
cmd: A
key: JRT
data: 'JRT Systems/45 Camino Alto/Mill Valley, CA 94941'
cmd: A
key: OLD
data: 'Old JRT Office/550 Irving St/SF, CA 94122'
cmd: B
key: JRT
data: JRT Systems/45 Camino Alto/Mill Valley, CA 94941
cmd: S
key: OLD
data: Old JRT Office/550 Irving St/SF, CA 94122
cmd: S
%INDEX error: Key not found
Error: 3
cmd: a
key: LITTLE
data: 'Little Italy/4109 24th St/SF, CA 94114'
cmd: a
key: SZECHWAN
data: 'Szechwan Court/1668 Haight St/SF, CA 94117'
cmd: f
cmd: r
key: JRT
key: JRT
data: JRT Systems/45 Camino Alto/Mill Valley, CA 94941
cmd: r
key: OTHER
%INDEX error: Key not found
return code 3
cmd: z

Section 7: Input/output

JRT Pascal User's Guide

cmd: ?
Error: 7

Program termination

Section 7: Input/output

-95-

JRT Pascal User's Guide -96-

7.5 CLOSE

Format
CLOSE (file_variable);

The CLOSE builtin procedure terminates processing
against a disk The CLOSE builtin procedure terminates
processing against a sequential or random disk file. If a
sequential output file is not properly closed, the data
written out will be lost because CLOSE updates the disk
directory. This procedure also releases storage reserved
for input/output buffers of sequential files.

Examples:

CLOSE
CLOSE
CLOSE

Section 7:

Fl);
DATA FILE);
MASTER CUSTOMER REPORT);

Input/output

JRT Pascal User's Guide -97-

7.5 EOF

Format
EOF (file_variable);

The end of file function indicates when the end of a
file is reached during input processing. It returns a
Boolean value of true immediately after end of file
detection, otherwise it returns false. The EOF function has
no meaning in console or random disk processing.

When processing a file in text mode, end of file is
detected when all data up to the first ctl-z (IAH) has been
read. This is the standard character to indicate the end of
data.

When processing a file in binary mode, end of file is
detected when all the data in the last allocated sector of
the file has been read.

Examples:

(* COMPUTE THE AVERAGE OF A FILE OF NUMBERS *)
RESET(FI, 'DAILY.SAL', TEXT, 4096);
TOTAL := 0;
COUNT := 0;
WHILE NOT EOF(FI) DO

BEGIN
READ(FIi DAILY SALES);
TOTAL := TOTAL-+ DAILY_SALES;
COUNT := COUNT + 1;
END;

AVERAGE := TOTAL / COUNT;
CLOSE (FI);

(* WRITE A FILE TO THE PRINTER *)
SYSTEM (LIST);
RESET(FI, 'TEST.PAS', BINARY, 2048);
READ(FI; CH);
(* INSTEAD OF USING EOF, WE DIRECTLY TEST FOR
A CHARACTER lAH, SINCE THIS IS BINARY FILE
WHILE CH <> CHR(lAH) DO

BEGIN
WRITE (CH);
READ(FI; CH);
END;

CLOSE (FI);

Section 7: Input/output

*' - I

JRT Pascal User's Guide -98-

7.6 EOLN

Format 1
EOLN (file variable);

Format 2
EOLN;

The end of line function returns a Boolean value
if the end of line is reached otherwise false.
function applies only to console and text files, not
binary files.

true
This

to

Format 1 is used to sense end of line while reading
disk files. Format 2 is used to sense end of line in
console input.

This function is used primarily to read in an unknown
number of data items from a line of text. Executing a
READLN with or without any parameters, always resets EOLN to
false and positions the file at the start of the next line
of text.

Examples:

(* READ NUMBERS FROM CONSOLE, COMPUTE AVG *)
TOTAL := 0; COUNT:= 0;
WHILE NOT EOLN DO

READLN;

BEGIN
READ(NUMBER);
TOTAL := TOTAL + NUMBER;
COUNT .- COUNT + 1;
END;

AVERAGE := TOTAL DIV COUNT;

(* READ DATA FROM FILE, COUNT LINES OF TEXT *)
LINE_COUNT := 0;
WHILE NOT EOF{Fl) DO

Section 7:

BEGIN
READ(Fl; DATA ITEM);
PROCESS DATA(-DATA ITEM);
IF EOLN(Fl) THEN -

END;

BEGIN
LINE COUNT := LINE COUNT + 1;
READLN (Fl) ;
END;

Input/output

JRT Pascal User's Guide -99-

7.7 ERASE

Format
ERASE (filename);

The ERASE procedure deletes files from disk. It can
be used to delete files from any available disk, by
including the disk identifier in the filename.

ERASE is implemented as an external procedure. Any
program referencing it must include its declaration:

PROCEDURE ERASE (NAME: STRING[20]); EXTERN;

Examples:

ERASE ('TESTPGM.PAS');

ERASE(CONCAT('8:', FILENAME, FILETYPE));

ERASE ('A:' + NAME + '.HEX');

ERASE (BACKUP FILE);

Section 7: Input/output

JRT Pascal User's Guide

7.8 GET

Format
GET (file variable);

This standard Pascal procedure moves
item from the sequential file into the
variable. If there is not another data item
then the EOF function becomes true.

-100-

the next data
file's buffer

in the file

The READ procedure allows reading directly from a file
into any variable.

READ (F; X);

is equivalent to:
X : = F ;
GET (F);

Section 7: Input/output

JRT Pascal User's Guide -101-

7.9 OPEN

Format I
OPEN (file_variable, filename, BINARY)i

Format 2
OPEN (file_variable, filename, TEXT)i

The OPEN builtin procedure is used to open files for
random access. Format 1 is used to open files in binary
mode. Format 2 is for text mode processing.

The file variable refers to a file variable declared
in the VAR declaration section. The filename is a string or
structured expression which may include disk identifier
letter.

The file specified by the filename is opened for use
if present. If not present, a new file is created.

Both formats may be used with both RRN and RBA
accessing.

Examples:

OPEN INVENTORY, 'INVENTRY.DAT', BINARY)i

OPEN FI, RANGE + '.DAT', TEXT)i

OPEN CASE_HISTORY, 'D:TORTS.LIB', BINARY)i

OPEN DICTIONARY, 'B:SPELLING.LIB', BINARY)i

Section 7: Input/output

JRT Pascal User's Guide -102-

7.10 PICTURE

The external function PICTURE allows you to format
(real) numbers in powerful ways. Check printing is easy, as
are commas within a number and exponential notation.
Floating (or fixed) dollar signs are easy to specify.
Credit and debit indications can be included. Literal
characters such as currency signs can also be put in the
formated string. COBOL and PL/I programmers will find
familiar features such as with trailing signs.

PICTURE takes a format string and a real number as
arguments. It returns a formated string, which can be
printed on the console, the line printer, written to a
file, concatenated with other strings, or saved for
further processing. For example,

RES$:= PICTURE("*$tt,ttt.tt", 1456.20);
WRITELN ("Sum:", PICTURE("#t#,#tt.t## ttt",

6583.1234567»;

will set RES$ (which should be declared as a
array of characters) to the eleven
**$1,456.20 and write a line consisting of
characters Sum: 6,583.123 456.

string or
characters

the twenty

PICTURE is supplied as a compiled
(the file PICTURE.INT). PICTURE must
program that uses it as

external function
be declared in any

FUNCTION PICTURE (FMT : STRING; R
STRING; EXTERN;

REAL)

The format string is not hard
generally puts one character in
every character in the format
exceptions marked with a * The
summarized below.

to create. PICTURE
the result string for
string, with the
format characters are

Note that you will usually need only pound
commas, and periods in your formats.

signs,

Section 7: Input/output

JRT Pascal User's Guide

Format Replaced wi th

Literal zero (used only with exponential
notation)
A decimal digit (always)
Space (or fill character)

-103-

9
B
CR
DB
E

CR if the number is positive, else spaces
DB if the number is negative, else spaces
Exponent (consisting of E, sign, and two
digits) (*)

E+ii

L
S
V
Z

+

i
%

*
**
*$
**$

,

/

space
....

* or *
_$ or $

Exponent (sign and digit indications are
ignored) (*)
Literal L (as a currency sign)
Minus or plus sign
Implied decimal point (*)
Digit or fill character
Minus sign if number is negative, else

space
Plus sign if number is positive, else

minus sign
Digit or fill character
Digit or fill character
Asterisk fill
Asterisk fill and one digit
Asterisk fill and floating dollar sign
Asterisk fill, floating dollar sign, and

one digit
Comma if digit has already been formated

else space
Literal / (or fill character)
Literal : (or fill character)
Literal space (or fill character)
Exponent (E, sign, and two digits) (*)
Exponent (*)
Next character is included literally (*)

Next character is included literally (*)
A single asterisk (*)
A single dollar sign (*)

Examples (our favorite formats)

-i.iii iii................ Large and small numbers
$ii.ii Price of JRT Pascal
iii,iii Number of happy customers
*$iii,iii.ii Checks (especially pay checks)
-ii,iii,iii,iii,iii.ii Change in the national debt

Section 7: Input/output

JRT Pascal User's Guide -104-

In general, PICTURE can use any format with legal
characters. It is possible to create ridiculous formats,
such as "-+". An appropriate matching string will be
returned (either space plus or minus minus in this
case) • If the format contains an invalid format
character, PICTURE will complain and will return a two
character string ??

Upper case and lower case letters are equivalent in the
format, so E or e can be used for the exponent.

Simple number formating

Pound signs (i) are usually used to indicate where
digits should be placed. A decimal point indicates where the
decimal point should go. PICTURE does NO rounding, but just
truncates insignificant digits. (The vertical bar just
indicates the start of the result, and will not be included
in the actual result.)

Format Number
iiiii 15000

-2.6
-17.98

iii.ii 29.95
-10.756

Punctuation

Result
115000
1 -2
I -17
1 29.95
1-10.75

Length
5
5
5
6
6

A
THE
put

Commas can be inserted in the formated number.
comma in the format will cause a comma AT
CORRESPONDING POSITION if a digit has already been
into the result. If no significant digit has been
then a space or asterisk 1S substituted. Note
PICTURE DOES NOT automatically put commas every
position. You can place commas in any meaningful
meaningless) position in your number.

seen,
that

third
(or

Format
iii,iii
i,iii
i,iiiiii

Number
2470
-999
2743562

Result
I 2,470
1 -999
12,743562

Length
7
5
8

COUNT YOUR COMMAS and DIGITS. Commas can be used after the
decimal point if desired.

A space (or B) works exactly the same as commas for

Section 7: Input/output

JRT Pascal User's Guide -105-

those of you who want to punctuate numbers with spaces
instead of commas. Note that this is different from the
PRINT USING statement in Basics, which treat blanks as
delimiters.

Exponential Notation

Exponential notation is indicated either with an
uparrow (A) or the letter E. Following uparrows, signs, and
digit indicators are ignored, so you can use AAAA or E+i#.
The formated exponent ALWAYS takes four characters:
the letter E, the sign of the exponent, and two digits.

If you want PICTURE to create numbers in
exponential notation with a leading 0 before the decimal
point, you can use the digit 0 in a format before the
decimal.

Format Number Result Length

#.###A 15000 11.500E+04 9
-2.5 1-.250E+01 9

###.####A 15000 1150.0000E+01 12
-2.5 1-25.0000E-01 12

###.####E+## -2.5 1-25.0000E-01 12
0.### ###AAAA 15000 10.150 000E+05 13

Signs

Normally, PICTURE will put a minus sign before the
first significant digit in a number if that number is
negative. This is called a floating sign, and will take up
one digit position. You can have PICTURE handle the sign
in many other ways. To put the minus sign (or blank) in
a fixed position, use a - in the format. The minus sign
can be before the first significant digit or at the end of
the number.

To put a negative or a positive sign in a fixed
position, use a plus sign (+) or an S instead of the
minus sign.

Format
-####

####+

Section 7:

Number
-12
134
-12
134

Input/output

Result
1- 12
1 134
I 12-
1 134+

Length
5
5
5
5

JRT Pascal Useris Guide -106-

With exponential notation, you will generally want
to specify the location of the sign, since a floating
sign will cause one less digit before the decimal to be
printed with negative numbers than with positive
numbers.

Format
-0.### ###

-#.######
-.###'"
+.###'"

.###-'"

Number
15000
-15000
15000
15001
15001
-2.506
15001
-2.506

Result
I 0.150 000E+05
1-0.150 000E+05
I 1.500000E+04
I .150E+04
1+.150E+04
1-.250E+01
I .150 E+04
1.250-E+01

Length
14
14
13

9
9
9
9
9

Note that you can put the sign in a number of
inappropriate places and can even have the sign appear
more than once.

Dollar signs and check printing

Floating dollar signs and asterisk fill work in a
straightforward manner, and will produce the sort of
results you would want for printing dollar amounts or
checks. To enter a $ or * at a fixed position, use one of
the "literal next" characters, the underline () or
backslash () before the * or $.

Format
$##,###.##

$##,###.##

Number
2745.23
2745.23

Result
1$ 2,745.23
I $2,745.23

Length
10
10

Note that the **, $$, and **$ formats are optional in
JRT Pascal's PICTURE function. They are equivalent to *#,
$#, and *$# respectively.

The only exceptions to the "one format character, one
result character" rule are

Section 7:

1) the two "literal next" characters (and)
which do not appear in the result

2) the V, which is not printed
3) the two exponent characters (... and E) which

always take four characters (and which
cause following"', +, -, i, and 9 specifi
cations to be ignored in the format).

Input/output

JRT Pascal User's Guide -107-

Overflow

Overflow occurs when the number to be formated
cannot fit in the format provided, as when 1000 is to be
formated in a three digit field (iii). When that
happens, PICTURE puts a % in place of all digits. In
exponential notation, the only cause of overflow is with
negative numbers when no sign is indicated and no digits are
allowed before the decimal point.

Format
-ii
iiiiii
*$i,iii
.iii A

Number
200005
-4000102
400102
-207

Testing formats for PICTURE

Result
I %%
1-%%%%%
1*$%,%%%
1.%%%E+03

Length
3
6
7
8

Here is a routine you can use to test your own
picture specifications. (We use a extension of this
program that allows file input and output to test ours.)
The program reads the number of real numbers to be
formated and the numbers to be formated. It then reads
one format specification at a time and prints each of
the numbers in that format.

PROGRAM TESTPICT;

CONST

VAR

MAX REAL = 100;

I : INTEGER;
NR REALS : INTEGER;
PIC : STRING;
REAL_ARR : ARRAY[1 •• MAX_REAL] OF REAL;

EXTERN PICTURE (FMT : STRING; R : REAL) : STRING;

BEGIN
REPEAT

WRITE('Number of real numbers to format: I};
READLN(NR REALS);
UNTIL (NR-REALS < MAX REAL);

FOR I := 1 TO NR REALS DO -
READ(REAL ARR[I]);

READLN; -

Section 7: Input/output

JRT Pascal User's Guide

REPEAT

END.

WRITE('Format: I);
READLN(PIC);
IF (PIC <> '*') THEN

FOR I := 1 TO NR REALS DO
BEGIN
WRITELN(I:3, ' "

REAL$(REAL ARR[I]), , I',
PICTURE(PIC, REAL ARR[I]),
'I'); -

END;
UNTIL (PIC = '*');

-108-

Note that currently, JRT Pascal requires that real
numbers entered in exponential form must have a sign and two
decimal digits. This restriction will be relaxed in the
future.

Formats for ex-COBOL and PL/I programmers

The format character V can be used
decimal point without printing one.
used. The. will always be included
be used in place of i, and 9 can be
of a digit.

to set an implied
(V. and .V can also be

in the result. Z can
used to force printing

The "literal" / and: can be used. They will be replaced by
the fill character (space or *) if appropriate.
Multiple + and - signs can be used in place of i to
cause floating signs.

Subtle differences between JRT Pascal's PICTURE and
other languages will be found. Use the TESTPICT routine to
experiment as needed.

Section 7: Input/output

JRT Pascal User's Guide -109-

7.11 PUT

Format
PUT (file variable)i

This standard Pascal procedure appends the current
value of the buffer variable to the sequential file.

The WRITE procedure allows writing directly to a file
from any variable.

WRITE (Fi X)i

is equivalent to:

FA : = Xi
PUT (F)i

Section 7: Input/output

JRT Pascal User's Guide

7.12 READ, READLN

Format 1 (console)
READ/LN (variablel, variable2, •••);

Format 2 (sequential disk)
READ/LN (file variable; variablel, variable2, •••);

Format 3 (random disk)
READ/LN (file variable, RRN, integer or real expr ;

- variablel, variable2,~ ••); -

Format 4 (random disk)
READ/LN (file variable, RBA, integer or real expr

- variablel, variable2,~ ••);

-110-

The READ standard procedure is used to bring data from
console or disk into main storage.

Format 1 is used for reading data from the console
keyboard. When it is executed it will obtain data from the
console buffer, convert to the proper format, and store the
data in the specified variables. If sufficient data is not
available, the system will wait for more data to be keyed
in. If data is keyed in with an unacceptable format, a
warning message is issued.

Dynamic string variables may only be used in READ
format 1 in console input, not in disk file input. To
read character data from disk files, arrays of characters or
records may be used.

Reading from the console into a dynamic string
variable is treated differently. An entire line of text is
obtained from the console and moved directly into the string
variable. Separator characters and single quotes are
ignored. The system will not allow more characters to be
keyed in than can fit into the variable. The string
variable must be the only variable in the READ's parameter
list.

When all data on a given input line has been read in,
the EOLN function becomes true. The READLN procedure has
the additional purpose of reseting EOLN to false. READLN
always clears out the current input line. For example, if 5
numbers were keyed in on one line and a READLN were issued
with 3 variables in its parameter list, the last 2 numbers

Section 7: Input/output

JRT Pascal User's Guide -111-

on that line would be lost.

Format 2 is used to read in data from a sequential
disk file. Whether the file is processed as text or binary
data is specified when the file is opened (RESET). The
file variable must refer to a file which has been
successfully opened or a run-time error will occur.

Note that JRT Pascal uses a semicolon after the
file variable rather than a comma.

Format 3 is used to read in data from a random file by
giving the relative record number (RRN) of the record
required. The first record is at RRN=0. The file must have
been successfully opened with the OPEN procedure.
Sequential and random file accesses cannot be mixed unless
the file is closed and re-opened in the other mode. The
size of records on the file for RRN processing is determined
when the file is declared. For example, a FILE OF REAL has
a record size of 8 bytes.

Format 4 is used to read data from a random file by
giving the relative byte address (RBA) of the data item
required. The first byte of the file is at RBA=0. The file
must have been successfully opened with the OPEN procedure.
Random processing cannot be mixed with sequential processing
but RRN and RBA processing can be mixed without re-opening
the file.

Examples

READLN(A, B);

READ(DATA_FILE; X_DATA, Y_DATA);

READ(HISTORY_FILE, RRN, YEAR; MAJOR_EVENT);

READ(INQUIRY_FILE, RBA, 0; INDEX);

READLN; (* RESET EOLN *)

Section 7: Input/output

JRT Pascal User's Guide -112-

7.13 RENAME

Format
RENAME (old_name, new_name);

The RENAME procedure is used to rename disk files on
any disk. The old name and new_name are string expressions.

RENAME is implemented as an external procedure. Any
program referencing it must include its declaration:

PROCEDURE RENAME (OLD, NEW1 : STRING[20]);
EXTERN;

Examples:

RENAME ('C:TEST.PAS', 'TEST2.PAS');

RENAME (OLD_FILE_NAME, NEW_FILE_NAME)i

RENAME (DISK + OLD_NAME, NEW_NAME);

RENAME ('SORT.SAK', 'SORT.PAS');

Section 7: Input/output

JRT Pascal User's Guide -113-

7.14 RESET

Format 1
RESET (file_variable, filename, BINARY, bufr_size);

Format 2
RESET (file_variable, filename, TEXT, bufr_size);

The RESET standard procedure is used to open already
existing files for sequential input.

IMPORTANT CHANGE from version 2 to version 3 of JRT
Pascal: RESET now set the EOF function to true and issues a
warning message if the file does not exist on disk. It used
to cause the program to terminate with an error. All
programs should now test EOF immediately after RESET.

Format 1 is used to open files in binary mode. Format
2 opens files in text mode.

The file variable refers to a file variable declared
in the VAR declaration section. The filename is a string or
structured expression which may include disk identifier
letter.

The bufr size is an integer expression which indicates
the size of -the input buffer to be allocated in dynamic
storage. When storage is available, larger buffers are
preferred because they result in fewer disk accesses and
thus faster processing. The buffer size is rounded up to a
multiple of 128.

Values like 1024, 2048, 4096 are recommended for
bufr size.

Examples:

RESET(INPUT_FILE, 'SOURCE.PAS', BINARY, 1024);

RESET(LOG, 'B:LOG.DAT', TEXT, 2048);

RESET(DAILY_SALES, 'C:DAILY.DAT', TEXT, 256);

RESET(STATISTICS, 'STAT.DAT', BINARY, 1024);

Section 7: Input/output

JRT pascal User's Guide -114-

7.15 REWRITE

Format 1
REWRITE (file_variable, filename, BINARY, bufr_size);

Format 2
REWRITE (file_variable, filename, TEXT, bufr_size);

The REWRITE standard procedure is used to open files
for sequential disk output. A new file with the given
filename is allocated. If a file with that name already
exists, it is deleted to free the space allocated to it.

Format 1 is used to open files in binary mode. Format
2 opens files in text mode.

The file variable refers to a file variable declared
in the VAR declaration section. The filename is a string or
structured expression which may include disk identifier
letter.

The bufr size is an integer expression which indicates
the size of -the input buffer to be allocated in dynamic
storage. When storage is available, larger buffers are
preferred because they result in fewer disk accesses and
thus faster processing. The buffer size is rounded up to a
multiple of 128.

Values like 1024, 2048, 4096 are recommended for
bufr size.

Examples:

REWRITE (LOG_FILE, 'F:LOG.DAT', TEXT, 512);

REWRITE (REPORT, MONTH + '.RPT', TEXT, 1024);

REWRITE (SYMBOL, PGM + '.SYM', BINARY, 256);

REWRITE (STATISTICS, 'B:STATS.DAT', TEXT, 768);

Section 7: Input/output

JRT Pascal User's Guide

7.16 WRITE, WRITELN

Format 1 (console)
WRITE/LN (variablel, variable2, •••);

Format 2 (sequential disk)
WRITE/LN (file_variable; variablel, variable2, •••);

Format 3 (random disk)
WRITE/LN (file variable, RRN, integer or real expr ;

-variablel, variable2,.~.);

Format 4 (random disk)
WRITE/LN (file variable, RBA, integer or real expr ;

-variablel, variable2,.~.);

-115-

The WRITE standard procedure is used to transfer data
from main storage to the console for display or to disk for
storage.

Format 1 is used to write data to the console or
printer. The console is always considered to be a text
device, that is data is always converted to readable text
format before output. Standard ASCII control characters are
supported:

decimal hex purpose
------- -------

9 09h horizontal tab
10 0ah line feed
12 0ch form feed, clear screen
13 0dh carriage return, end line

For example, executing the Pascal statement
WRITE(CHR(12)); will clear the screen of most types of CRT
terminals.

The WRITELN statement is identical to the WRITE except
that it also writes a carriage return character after the
data, that is, it ends the current output line. A WRITELN
may be used by itself, without any variables. This writes a
blank line to the output device.

Format 2 is used to write data to sequential disk
files. The file must have been successfully opened with a
REWRITE procedure. This format may be used in either binary
or text mode processing.

Section 7: Input/output

JRT Pascal User's Guide -116-

Note that JRT Pascal uses a semicolon after the
file variable rather than a comma.

Format 3 is used to write data to a random file by
giving the relative record number (RRN) of the record being
updated or created. The first record is at RRN=0. The file
must have been successfully opened with the OPEN procedure.
Sequential and random file processing cannot be mixed unless
the file is closed and re-opened in the other mode. The
size of records on the file for RRN processing is determined
when the file is declared. For example, a FILE OF REAL has
a record size of 8 bytes, the size of real variables.

Format 4 is used to write data to a random file by
giving the relative byte address (RBA) at which the data is
to be stored. The first byte of the file is at RBA=0. The
data will be stored beginning at the specified RBA and
continuing until it is all written out. The file must have
been opened with the OPEN procedure. Random processing
cannot be mixed with sequential processing but RRN and RBA
processing can be mixed without re-opening the file.

When processing in text mode, a convenient formatting
option is available. Any of the variables in the WRITE
parameter list may be suffixed with a colon and an integer
expression. This specifies the field width of the data
value being written. If the data item is shorter than this
then spaces will be inserted on the left of the item. This
option is used when columns of figures must be aligned.

A second option is available for real numbers. After
the field width integer expression, a second colon and
integer expression may be used to indicate the number of
digits right of the decimal place to be displayed.

Examples:

WRITELN('THE TIME IS ',GET_TIME);

WRITE(DATA_FILE; X[l], X[2], X[3]);

FOR 1:=1 TO 100 DO
WRITE(DATA_FILE; X[I]);

IF DATA < 0 THEN
WRITE(NEGATIVE_DATA; DATA)

ELSE

Section 7: Input/output

JRT Pascal User's Guide

WRITE (POSITIVE_DATA; DATA);

WRITELN(REPORT; TOTAL_SALES:12:2);

WRITE(CUSTOMER FILE, RRN, CUST NUM;
NEW_CUSTOMER_RECORD); -

WRITE(INQUIRY, RBA, 0; INDEX);

WRITELN; (* BLANK LINE *)

WRITE (CHR(0CH)); (* CLEAR SCREEN *)

Section 7: Input/output

-117-

JRT Pascal User's Guide -118-

8. Linker

The use of the linker is entirely optional.
used to merge a Pascal program INT file with some or
its external procedure/function INT files. It can
procedures written in assembler as well as Pascal.
the linker enter:

It is
all of

process
To run

EXEC LINKER

The linker will issue a prompt to the console for the
program name. After the main program has been processed,
you will be prompted to select which of the external
procedures to merge. The procedures referenced by this
program will be listed with their identification numbers (1
to 63). An asterisk indicates procedures selected.
possible replies to the 'Procedure selection' message are
listed below. More than one number may be entered each
time. Entering zero ends the interactive portion and causes
merge processing to begin.

reply

1 to 63
-63 to -1
100
-100
o

purpose

select this procedure
de-select this procedure
select all procedures
reset, select none
end selection, begin processing

The output module file will have the same filename
the main program and a filetype of INT. The filetype of
main program input file will be renamed to IN2. If any
the selected input procedure files are not present a
time error will occur and the linker will terminate.
files must be present on the A: disk.

Section 8: Linker

as
the
of

run­
All

JRT Pascal User's Guide -119-

9. Customiz

External procedures and functions are compiled
separately from the main program. They can be linked
together with the main program using the linker. If this is
not done then they will be automatically loaded from disk
into the computer's storage when they are first referenced.
If a short-on-storage condition arises, they may be purged
from storage if they are not currently active.

Procedures which are rarely used, like initialization
or error handling, would not occupy main storage except when
needed. Also very large programs might be divided into
several phases, each corresponding to an external procedure.

The EXEC loads the external procedures from disk.
There is no need to inform EXEC on which disk each procedure
resides - it will search for them. This means that you do
not have to put all the program sections on to the A: disk.

EXEC and the compiler JRTPAS3 contain 'disk search
lists' which specifies which disks are available on the
system. The default lists are set to 'ABI. The search
lists should be modified to reflect your hardware
configuration. The Customiz program is provided to modify
the lists in both EXEC and JRTPAS3. To run Customiz enter:

EXEC CUSTOMIZ

You can enter the new disk search list with up to four
disk letters specified. The letters must be contiguous.
The list also determines the sequence in which the disks are
searched for external procedures and functions.

Section 9: Customiz

JRT Pascal User's Guide -120-

10. Assembler

The JRT Pascal system provides two methods of
preparing external procedures and functions written in
assembly language. A special purpose assembler is provided
which generates modules in the correct format. The second
method may be used if a Microsoft format assembler is
available such as RMAC or MACRO-80. The CONVERTM utility
converts the REL files produced by these assemblers into INT
format files which may be accessed as external procedures.

The JRT assembler translates 8080
into JRT relocatable format modules.
called from a pascal program as if they
procedures. Parameters may be passed
return values may be received.

assembly language
These modules can be
were Pascal external
to them and function

The JRT assembler is compatible with the standard ASM
program distributed with CP/M. Input files have a file type
of ASM. The assembler output is a file of type INT, which
may be linked with the main program or automatically loaded
at run-time.

10.1 Entry codes

After an external procedure is loaded into main
storage, EXEC transfers control to it. A five byte code
(95,6,0,92,0) is placed at the start of the procedure to
inform EXEC that this is an assembler procedure rather than
Pascal. The procedure must end with a return (RET)
instruction. Any registers except the 8080 stack pointer
may be modified.

Example of entry codes:

iprocedure entry
db 95,6,0,92,0 irequired entry codes

i
isend a message to

i

Section 10:

mvi c,9
lxi d,msg
call 5

ret

Assembler

console
iprint buffer code
iaddress of message
ibdos entry point

iend of procedure

JRT Pascal User's Guide

;
msg db 'JRTASM sample procedure'

db 0dh,0ah,'$' ;carriage return
end

-121-

If this procedure were named SAMPLE.ASM then the
declaration in the Pascal program referencing it would be:

PROCEDURE SAMPLE; EXTERN;

10.2 Operating JRTASM

To assemble an external procedure enter:

EXEC JRTASM

You will be prompted at the console for the input
filename and options. The options are:

1 - produce a listing on the console during pass 1
of the assembly process, useful for debugging

C - produce an output file of type 'COM' rather
than 'INT', this is not an external procedure but
a directly executable command file in standard
CP/M format; an ORG 100H directive should be
included since the default origin is 0

10.3 Directives

These assembler directives are supported:

directive

ORG

SET
EQU
IF/ELSE/ENDIF

DB
DW
DS

Section 10: Assembler

purpose

set location counter, not used
in external procedures
assign a value to a variable
assign a value to a fixed symbol
conditional assembly of code,
may be nested to 16 levels
define byte, multiple operands
define word
define storage

JRT Pascal User's Guide

READ

WRITE

used to assign a new value to a
variable, like SET except that
value is obtained from console
display strings or expressions
on console

Example of directives:

a

x

i
a

i

Section 10:

set 9
if a = 9
write 'a is equal to nine'
else
write 'a is not equal to nine'
endif

read imsg at console will ask for x
write 'x squared is ',(x * x)

set a + 1 iincrement a
db 'string' ,a,255

Assembler

-122-

JRT Pascal User's Guide -123-

10.4 Expressions

Integer expressions can be used in assembler
instructions. Expressions are either fixed or relocatable.
A symbol is relocatable if it refers to an address,
otherwise it is fixed. If any symbol in an expression is
relocatable then the entire expression is relocatable.
Parentheses may be nested to any level.

These operators are supported:

* /
NOT
MOD
EQ

Section 10:

+
AND
HIGH

NE LT

OR XOR
LOW

LE GT

Assembler

GE

JRT Pascal User's Guide -124-

10.5 Parameters and function return values

Parameters of any data type may be passed to assembler
external procedures and functions. The EXEC maintains a
data stack which contains all static variables, parameters,
function return values and procedure linkage blocks.

Three address pointers are used to access the data
stack. These are available to external procedures in the
8080 register pairs on entry to the procedure.

BASE (HL) - address of the data stack
CUR (DE) - address of the linkage block for

currently active procedure
TOS (BC) - top of stack, points past last

allocated byte

1 1
1 1

TOS-->1 1
1---------------1
1 1
1 6 bytes 1
1 1

CUR-->1 1
1---------------1
1 2 bytes 1
1---------------1
1 1
1 x bytes 1
1 1
1 1
1---------------1
1 1

1 1
1 1
1 1
1 1
1---------------1
1 1
1 6 bytes 1
1 1
1 1

BASE-->1---------------1

Section 10: Assembler

linkage block for
current procedure

parameter length fld

parameters of
current procedure

global variables
of main program

linkage block for
main program

JRT Pascal User's Guide -125-

With the three data stack pointers, the parameters
passed to the procedure can be accessed. If it is a
function the return value can be stored. Also the global
variables of the main program can be accessed. For example,
if the first global variable declared in the main Pascal
program which calls the external procedure is an integer
named INTI then just add 6 to the BASE pointer to get the
address of INTI. The BASE pointer is in register pair HL on
entry to the procedure.

Data stack after procedure call DEMO(• A' ,7) ;

• A' 7 length linkage block
41 0700 0300 xx xx xx xx xx xx yy

I I
CUR TOS

The two byte integer fields are in 8080 byte-reverse
format. The parameter length field is equal to three. The
linkage block is six bytes of unspecified data.

Parameters are accessed by decrementing the CUR
pointer. Pascal value parameters are actually present in
the data stack. For reference parameters, the address of
the variable is present in the data stack. If the procedure
has no parameters, the parameter length field is zero.

Function return values must be stored just before the
function's first parameter in the data stack.

Data stack after function call X := TEST(3,8) ; The
return value is of type integer.

3 8 length linkage block
rrrr 0300 0800 0400 xx xx xx xx xx xx yy
I I I
return value CUR TOS

If the return value is of type CHAR, a string, or a
structured variable (entire array, entire record) then there
is a two byte length field between the return value and the
first parameter. This field is set by EXEC and must not be
modified. If the return value is a dynamic string, the
current length field is a two byte field at the beginning of
the string, this must be set to the desired length of the

Section 10: Assembler

JRT Pascal User's Guide -126-

field.

Data stack after function call NAME:=LOOKUP('X',l);
The return value is of type ARRAY [1 •• 4] OF CHAR;

return value rv len
rr rr rr rr 0400

, X,

58
1
0100

10.6 Debugging assembler procedures

length linkage block
0300 xx xx xx xx xx xx

I
CUR

One effective way to debug external procedures written
in assembler uses the CP/M Dynamic Debugging Tool DDT. If
you are running a Pascal program under DDT then an RST 7
instruction will be seen as a breakpoint and allow you to
use all of the DDT facilities. To run under DDT enter:

DDT EXEC. COM
Iprogram name
G100 -

When the RST 7 instruction is encountered, DDT will
gain control. The display, modify, disassemble facilities
then can be used to examine the procedures data areas. To
resume execution, use the XP command to set the instruction
address ahead by 1, to get past the RST.

Section 10: Assembler

yy
I
TOS

JRT Pascal User's Guide -127-

10.7 Convertm program

The convertm program translates Microsoft format REL
files into JRT format INT files. Only REL files may be
input HEX files do not contain information about
relocation addresses.

To run the convertm program enter:

of the
assumed.
disk.

EXEC CONVERTM

The program will inquire at the console for the name
module to be translated. A file type of REL is

The output module INT file is placed on the same

10.8 Sample assembly programs

Three sample assembly programs are included here. Two
external procedures (setbit, resetbit) and one external
function (testbit) can be called from any Pascal program or
external function. These small modules provide fast and
simple bit manipulation facilities. They also illustrate
the passing and returning of parameters for assembly
language external procedures.

Section 10: Assembler

JRT Pascal User's Guide

Listing of setbit.asm

;setbit.asm
;external procedure which sets a bit on in a byte
;
; procedure setbit (var x : char; bit: integer);
; extern;
; bit# in range 0 •• 7
;
;entry code

db 95,6,0
db 92
db 0

ion entry bc=wtos
;
;get bit# in b reg,
setbit xchg

dcx h! dcx
mov b,m
dcx h! mov
xchg
mov c,m

;create mask
inr b
mvi a,l

loop rrc
dcr b
jnz loop

;a=mask c=byte
ora c
mov m,a
ret

;
end

;int vmcode
;lpn vmcode
;mode vmcode

de=wb hl=wbase

addr(x) in hI, x into c_reg
;hl=wb

h! dcx h! dcx h
;bit#

d,m! dcx h! mov e,m ;addr(x)
ihl=addr(x)
iC=X

; incr loop count

;store byte

Section 10: Assembler

-128-

JRT Pascal User's Guide

Listing of resetbit.asm

;resetbit.asm
;external procedure which reset bit in a byte
i
; procedure resetbit (var x : char; bit: integer);
; extern;
; biti in range O •• 7
;
;entry code

db 95,6,O
db 92
db °

ion entry bc=wtos
;
;get biti in b reg,
resetbit xchg

dcx hI dcx
mov b,m
dcx h! mov
xchg
mov c,m

;create mask
inr b
mvi a,0feh

loop rrc
dcr b
jnz loop

;a=mask c=byte

;

ana c
mov m,a
ret

end

;int vmcode
;lpn vmcode
imode vmcode

de=wb hl=wbase

addr(x} in hI, x into c_reg
;hl=wb

hI dcx h! dcx h
;biti

d,m! dcx hI mov e,m ;addr(x)
;hl=addr(x)
iC=X

; inc r loop count

;store byte

Section 10: Assembler

-129-

JRT Pascal User's Guide

Listing of testbit.asm

;testbit.asm
;external function which returns bit value of a byte
;
; function testbit (x : char; bit
; boolean; extern;
;
; bit number is in range O •• 7
i
;entry code

db 95,6,O
db 92

db °
ion entry bc=wtos
;

;int vmcode
;lpn vmcode
;mode vmcode

de=wb hl=wbase

iget bit# into b reg and x into a reg
testbit xchg ;hl=wb -

in teger):

dcx hI dcx h! dcx hI dcx h ;point to bit lownib
mov b,m ;low byte of bit
dcx hI mov a,m ;x
inr b

;shift loop
loop rIc

dcr b
jnz loop
jc true ;bit is set

;false : bit is zero

itrue
true

;

dcx h! mvi m,0! dcx h! mvi m,0
ret
bit is one
dcx hI mvi m,0! dcx hI mvi m,l
ret

end

section 10: Assembler

-130-

JRT Pascal User's Guide -131-

11. Storage management

This section discusses the initialization and
structure of main storage in the JRT Pascal system during
execution of Pascal programs.

11.1 Main storage

When a Pascal program is started by entering the
command "EXEC prog name" the EXEC. COM file is loaded into
main storage at address l00H by the CP/M operating system.
After EXEC receives control from CP/M it determines how much
storage is available and formats this area. EXEC then loads
the Pascal program module from disk. Processing of the
Pascal program then begins.

During program execution there are four main regions
of main storage. Starting from the lowest address these
are:

1. EXEC - the run-time environment, this region is fixed in
size and contains the primary run-time support system

2. Pascal program module fixed in size, this is the
compiled Pascal program from an INT file

3e Data stack - variable in size, this region begins at the
end of the Pascal program and grows toward higher addresses;
this region contains all static variables (those created by
VAR declarations), parameters passed to procedures and
procedure activation blocks

4. Dynamic storage - variable in size, this region begins at
the top of available storage and grows down toward lower
addresses; this region contains dynamic variables (those
created by the NEW procedure), input/output buffers, file
control blocks, external procedures and EXEC control tables

Since ~ne data stack and dynamic storage regions grow
toward each other, a collision between these areas is
possible when storage is nearly full. To prevent this
condition the run-time system maintains a 64 byte cushion
between the two areas. When the distance between them
becomes less than 64 bytes the run-time system takes several
actions to restore the cushion. If there is less than 64

Section 11: Storage management

JRT Pascal User's Guide -132-

bytes of free space in main storage, the least-recently-used
procedure will be deleted. Dynamic storage is then
compressed (see section 11.2). Processing will continue
even if the cushion cannot be restored, although performance
will gradually decrease. Only if there is actually a
collision between the data stack and dynamic storage will
the run-time system recognize an error condition and
terminate processing.

Section 11: Storage management

JRT Pascal User's Guide

Map of main storage use in the JRT Pascal system.

high
address

low
address
1(()(()H

1 dynamic storage 1
1 1
1 variable in size 1
1 direction 1 1
1 of growth 1 1
1 V 1
1-----------------------1
1 unused area 1
1-----------------------1
1 data stack 1
1 1
1 variable in size 1
1 direction A 1
1 of growth 1 1
111
1-----------------------1
1 Pascal program 1
1 1NT module 1
1 1
1 fixed in size 1
1-----------------------1
1 EXEC 1
1 run-time system 1
1 1
1 fixed in size 1
1 1

Section 11: Storage management

-133-

JRT Pascal Useris Guide -134-

11.2 Dynamic storage

The JRT Pascal run-time system provides true dynamic
storage with auto-compression and for external procedures,
virtual storage is supported.

The JRT Pascal Dynamic Storage Management System is
designed to provide complete support for advanced features
such as dynamic data structures (linked lists, trees,
rings, •••) and completely automatic virtual storage for
external procedure and function code. Dynamic storage may
contain these items:

1. external procedures/functions
2. dynamic variables created by the NEW procedure
3. input/output buffers
4. file control blocks
5. EXEC control blocks and pointer tables
6. a free list of deallocated storage blocks

All of these items are allocated as blocks of dynamic
storage. Dynamic storage blocks are addressed indirectly in
JRT pascal in order to allow the blocks to be moved during
compression by updating a pointer table. The value stored
in a pointer variable by the execution of the NEW procedure
is a "virtual address" rather than the real address of the
block allocated. The virtual address is used to locate an
entry in an internal table called a pointer table, which
contains the size and real address of each storage block.
There may be up to 32 pointer tables and each one contains
up to 52 entries for storage blocks. During dynamic storage
compression, the real address of a storage block may change
but the virtual address does not change.

The dynamic storage manager performs these services.

1. format dynamic storage and initialize pointer tables

2. maintain the free list - this is a linked list which
contains blocks of storage which have been deallocated by
the DISPOSE procedure, by closing a file or by purging of an
external procedure

3. allocate a storage block when a storage block is
requested by the NEW procedure, opening a file or loading an
external procedure, the storage manager attempts to satisfy

Section 11: Storage management

JRT Pascal User's Guide -135-

this request by searching the free list or extending the
dynamic storage region; when scanning the free list for a
block, the first block which is large enough is selected; if
this block is much too large, it is split and the remainder
returned to the free list; after a block has been found, its
real address, size and a flag field are entered in a pointer
table

4. release a block of storage - add a deallocated block to
the free list and delete the corresponding pointer table
entries

5. determine the amount of free space - the free space is
the sum of the sizes of all blocks on the free list and the
size of the gap between the data stack region and the
dynamic storage region

6. compress dynamic storage - All of the allocated storage
blocks are moved into the top of storage to eliminate free
space. The free list is set to a null pointer. The pointer
table entries of all blocks are updated. If external
procedures were moved then their relocatable addresses are
adjusted. If active external procedures were moved then the
Pascal program counter and the procedure return addresses
are adjusted.

7. convert the virtual address of a block to a real address

Section 11: Storage management

JRT Pascal User's Guide -136-

12. External Procedures and Functions

External procedures are a facility for segmenting
programs into separately compiled modules. With these, the
size of the entire program can be practically unlimited.
This is because, unlike with segment procedures, overlays or
chaining, the virtual storage manager loads and when
necessary deletes program sections all automatically. This
makes the actual storage ot the computer seem much larger
than it really is.

Refer to the section on storage management for a full
description of virtual/dynamic storage.

External procedures are loaded into dynamic storage by
EXEC when they are first referenced, unless they were linked
with the main program to form one module. The loading is
transparent to the programmer in that no planning or effort
is required.

External procedures remain in storage unless a short­
on-storage condition occurs, then the least-recently-used
procedure may be deleted. If this happens, the control
blocks associated with the procedure are kept so that re­
loading, if necessary, could be done more rapidly. When
main storage is severely overloaded, frequent deleting and
reloading of external procedures may occur. This condition
is called "thrashing." Thrashing can be recognized by
unusually frequent disk accessing and little useful
processing being done by the program. It is necessary in
this case to reduce the storage requirements of the program.

Section 12: External Procedures and Functions

JRT Pascal User's Guide -137-

12.1 Coding external procedures and functions

The external procedure Pascal file is very similar to
a standard "internal" procedure in format. In many cases
the only differences from a standard procedure format are
that the PROCEDURE reserved word is preceded by the reserved
word EXTERN and that the whole file is ended with a period
to signify the end of the compile unit. An example of this
basic case follows.

EXTERN

(* PRINT THE TOTAL AND AVERAGE OF 4 NUMBERS *)
PROCEDURE XDEMO (A,B,C,D : REAL);
VAR
TOTAL : REAL;

BEGIN
TOTAL := A + B + C + D;
WRITELN('TOTAL =' ,TOTAL,

, AVERAGE =',TOTAL / 4.0);
END; •

JRT Pascal external procedures can access all of the
global variables in the main program. The global variables
are those in the main program declared before any procedure
or function declarations. They are variables that are
available globally not only local to some procedure. In the
preceding example, TOTAL is a local variable - it is not
accessible outside of the procedure XDEMO.

To access global variables or files, their
declarations are inserted in the external procedure file
after the reserved word EXTERN and before the procedure
header. The three declaration sections CONST, TYPE, VAR may
be inserted at this point. They must be identical to the
global declarations in the main program, except that
additional constants and type identifiers may be added here.

Type identifiers may be required in the procedure
header parameter list or in a function return value
declaration. The declaration of these type identifiers
should appear in the same location as the global
declarations - just after EXTERN.

Section 12: External Procedures and Functions

JRT Pascal User's Guide

EXTERN

CONST

NAME SIZE = 32;

TYPE

NAME = ARRAY [l •• NAME_SIZE] OF CHAR;

CUSTOMER RECORD = RECORD
CUST NAME, CUST ADDR
BALANCE
END;

NAME;
REAL;

VAR (* MAIN PROGRAM GLOBAL VARIABLE *)

CUSTOMER LIST ARRAY [1 •• 100] OF
CUSTOMER_RECORD;

(**** SEARCH CUSTOMER LIST FOR GIVEN NAME ****)
FUNCTION SEARCH (N : NAME) : CUSTOMER_RECORD;
VAR
I : INTEGER;

BEGIN
I:=l;

WHILE (N <> CUSTOMER LIST[I].CUST NAME)
AND (I <= 100)-DO I:=I+1;-

IF N = CUSTOMER LIST[I].CUST NAME THEN
SEARCH:=CUSTOMER LISTEI]

ELSE SEARCH:=' '; -

END; •

Section 12: External Procedures and Functions

-138-

JRT Pascal User's Guide -139-

12.2 Referencing external procedures and funtions

External procedures and functions must be declared in
the main programs which reference them. Their declaration
is identical to a regular procedure except that the entire
body of the procedure is replaced with the reserved word
EXTERN.

PROCEDURE PLOTTER X,Y: INTEGER); EXTERN;

FUNCTION CUBEROOT A : REAL): REAL; EXTERN;

For clarity it is useful to group all external
procedure declarations as the first procedure declarations
in the program. External procedures may reference other
external procedures, if appropriate declarations are
included in the referencing procedure.

EXEC identifies external procedures by a sequence
number. External procedures should always be declared in
the same sequence - in main program or in another external
procedure.

Note that the user must ensure that external procedure
declarations and parameter lists are consistent among
different files, since the compiler does not validate this.

Section 12: External Procedures and Functions

JRT Pascal User's Guide -140-

13. Debugging Pascal programs

Debugging computer programs is the process of
correcting "bugs" in a program so that it will perform as
desired. There are two phases of debugging correcting
syntax errors in a program in order to obtain an error free
compile and correcting errors which occur during the running
of the program after a clean compile. Referencing an
undeclared variable is an example of the first kind of
error. Dividing by zero is an example of the second kind.
This section is primarily concerned with the second kind of
error - those that occur during program testing.

JRT Pascal provides several facilities to simplify the
location and the correction of run-time errors. The
debugging philosophy is to provide the programmer with as
much relevant information as possible in a clearly formatted
display. The run-time system detects errors at two levels
of severity - errors and warnings. When warnings occur, a
message is issued and processing continues. When an error
occurs processing must terminate.

Error and warning messages are all presented in verbal
format there are no number or letter codes to look up.
These messages are stored on a disk file so main storage is
not wasted.

13.1 Trace options

JRT Pascal allows a trace of the program line numbers
while a program is running. This trace may be turned on or
off by the program itself. The range of line numbers to be
traced may also be set by the program.

A trace of procedure names can also be produced. On
entry to each procedure, the name and activation count is
displayed. On exit, the name of the procedure is displayed.
This feature can also be turned on or off under program
control.

The Exec interrupt mode can be entered by entering a
control-n while a program is running. In this mode the
traces and line number range can be modified. Other system
status information can also be displayed. When in interrupt

Section 13: Debugging

JRT Pascal Useris Guide -141=

mode, entering a space character will cause a list of valid
commands to be displayed.

Exec interrupt allows
trace facility. Programmed
the SYSTEM builtin procedure.

asynchronous control of the
control is also supported with

An interactive external procedure to control
trace facilities at run-time is provided. The
procedure is described in section 13.2.

these
DEBUG

To use these traces, the %LTRACE and %PTRACE compiler
directives must be inserted in the program. It is
recommended that the first line of a program being tested
contain both directives, so that the entire program will be
subject to tracing. An additional advantage is that when
these options are present, if an error or warning occurs,
the line number and latest procedure name will be displayed
with the error message.

The coding of these directives and use of the SYSTEM
builtin procedure to control the traces are described in the
section on compiler directives.

13.2 DEBUG procedure

The DEBUG external procedure allows the control of the
dynamic trace facilities while a program is being tested.
The procedure and line traces can be turned on or off and
the line range can be set by commands entered from the
console.

The file DEBUG.INT on the distribution disk, is the
compiled external procedure module. To reference an
external procedure from a Pascal program, it is necessary to
declare it:

PROCEDURE DEBUG; EXTERN;

The procedure can be called from any number of places
in the test program by inserting a procedure call statement:

DEBUG;

Section 13: Debugging

-142-

When it is activated, DEBUG will interact with the
programmer to modify the current trace operations.

Listing of DEBUG. PAS

extern

procedure debug;

var
reply: char;
lower, upper: integer;

begin (* debug *)
writeln;
write(IActivate line trace? yin I);
readln(reply) ;
if upcase(reply) = Iyl then

begin
write(IRange of lines? lower,upper I);
readln(lower,upper);
system(ltrace);
system(lrange,lower,upper);
end

else system(noltrace);

write('Activate procedure trace? yin: I);
readln(reply) ;
if upcase(reply) = 'Y' then system(ptrace)
else system(noptrace);
writeln;
end; (* debug *).

Section 13: Debugg ing

JRT Pascal User's Guide -143-

13.3 System status display

When an error is detected, an error message is
displayed on the console. The current line number and last
entered procedure name may also be displayed (see section
13.1). A system status display is also created - this
contains useful information about the current state of the
rl1n_rimA C:::\1c:::t-Am I., "--z, , •

The system status display shows nine fields of
information. If external procedures are present, the
external procedure table is also formatted and displayed.

System status display

addr : 54F5
base :83BC
low :A8B9

prog :3BA7
cur :89AC
compr:0002

size :4815
tos :8A33
purge:0000

Most of these values indicate the use of storage in
the run-time system. Storage management is discussed fully
in another section a simplified map of storage is
presented here.

I CP/M I
1----------------1
I dynamic I
I storage I

low---) 1----------------1
I I
I unused I
I I

tos---) 1----------------1
I I

cur---) I data stack I
I I

base--) 1----------------1
I I
I Pascal code I <--addr (of error)
I I

prog--> 1----------------1
I I
I EXEC run-time I
I system I

100h--) 1----------------1
I reserved area I

Section 13: Debugg ing

JRT Pascal User's Guide -144-

1. addr - the address at which the error occured, may be in
Pascal code or in dynamic storage area if error was in
external procedure

2. prog - the starting address of the main Pascal program

3. size - the size of the main program module

4. base - the base or bottom of the data stack

5. cur - the address of the current procedure activation
block

6. tos - top of stack, the address just past the end of the
data stack

7. low - the lowest address occupied by any dynamic storage
block

8. compr - a count of the number of times storage has been
auto-compressed

9. purge - a count of the number of external procedures that
have been purged from dynamic storage due to short-on­
storage condition

Section 13: Debugg ing

JRT Pascal User's Guide -145-

The system status display may contain one additional
line of input/output information. The name of the most
recently referenced file, a status byte and the current
default disk will be displayed if files have been used by
the program.

@:SAMPLE PAS 88 A

If the file was opened without specifying a
letter then @ is shown otherwise the disk letter.
status byte contains several flag bits:

bit meaning

80
40
20
10
08
04

Section 13:

file is open
random mode - not sequential
text mode - not binary
EOLN flag set
input - not output or random
EOF flag set

Debugg ing

disk
The

JRT Pascal User's Guide -146-

Formatted external procedure table

exproc name addr use cnt time stat
ACCTPAYI C2AE 0000 0004 30
ACCTPAY2 3E22 0000 0165 74
GENLEDGI 0001 0000 0000 00
ACCTREC1 3F55 0001 014E F4
ACCTREC2 440C 0001 015A F4
SORT 0001 0000 0000 00

+INVENTRY 503A 0001 020D F4
CHECKS 5052 0000 0103 30

1. exproc name - the name of the external procedure or
function, a plus sign indicates the external procedure which
was most recently entered or exited, this is not necessarily
the currently active procedure

2. addr - the address in main storage of the external
procedure module, if this value is 0001 then the module is
not currently in main storage

3. use cnt - a count of the number of times the procedure is
CURRENTLY active, usually this will be 0000 (not active) or
0001 (active), it will be greater than 0001 only if the
procedure is called recursively

4. time - in order to determine which procedure was least­
recently-used, the run-time system maintains a pseudo-timer
which is incremented once on each entry to or exit from an
external procedure the time field contains the value of
the pseudo-timer the last time the procedure was entered or
exited

5. stat - a status indicator with several flag bits:
bit meaning

80 procedure is currently active
40 procedure was linked with main program
20 procedure is currently in storage
10 procedure file control block is open
04 procedure address is real, not virtual

Section 13: Debugging

JRT Pascal User's Guide -147-

13.4 Run-time messages

The run-time system provides several messages to aid
in the correction of error or exceptional conditions. In
addition to these general messages, about 75 more specific
messages of 1 to 4 lines of text are provided to describe
particular error conditions.

The general run-time messages are all prefixed with a
% character. These messages are listed here:

%Entry - indicated entry to a procedure when procedure trace
is active, procedure name and activation count are listed,
external procedures are indicated by an asterisk before the
name

%Error - fatal error detected by run-time system, program
terminates

%Exit - indicates exit from procedure when procedure trace
is active, procedure name is listed, external procedures are
indicated by an asterisk before the name

%Extern - indicates that error occured while attempting to
load an external procedure module, the procedure name is
listed

%Input error - indicates a format error when reading console
input, such as entering a character string when an integer
was expected

%Line - indicates line number where error occured, module
must have been compiled with %LTRACE option

%Main - error occured in main program BEGIN-END block, not
in procedure

Section 13: Debugging

JRT Pascal User's Guide -148-

%Proc - error occured in procedure, not in main program
BEGIN-END block

%Trace - line number trace indicator

%Warning - non-fatal error condition, processing continues

Section 13: Debugg ing

JRT Pascal User's Guide -149-

13.5 Common Problems

A. General difficulties

1. The master disks accidently got erased by a program •••
MAKE BACKUP COPIES OF JRT PASCAL when you first get
it. May we suggest: Remember the Master Disk, to keep it
whollyo As a read only disk e Pleasee

2. The disks will not boot up when one is put in drive A
and the system is reset ••• After you copy JRT Pascal to
your own working disks, put a copy of YOUR operating
system (using SYSGEN or whatever YOUR operating system calls
it) on the working disks. We cannot put your operating
system on disks we distribute.

3. With CP/M 1.4, C/DOS or the equivalents, CUSTOMIZ,
LINKER, and random i-o in general will not work ••• Sorry
about that, but to get random i-o on 8 megabyte files,
CP/M 2.2 would be required. LINKER is never required for
JRT Pascal. The function of CUSTOMIZ can be performed by
two simple patches in DDT. This involves patching the
disk search list in EXEC.COM and JRTPAS3.COM. Both
lists are at 155 hex and consist of up to four upper case
letters followed by a Z.

A>DDT EXEC. COM
-S155
0155 41 41
0156 42 42
0157 4A 5A (an upper case Z)
0158 (2J(2J •

-G0
A>SAVE EXEC.COM

For JRTPAS3.COM, the SAVE command is

A>SAVE JRTPAS3.COM

4. The diagnostic "JRTPAS3?" or "SOURCE FILE NOT FOUND"
comes up ••• CP/M needs to know the drive on which the file
to be run is located, if it is not the current default
drive. JRTPAS3 needs to know the drive on which the
source file to be compiled is located. Further, that
source file must have a .PAS suffix on the name. So, for
example, you may need to type B:JRTPAS3 B:PGM if the
default drive is A: and both JRTPAS3 and PGM.PAS are on

Section 13: Debugg ing

JRT Pascal User's Guide -151-

the B: drive.

5. The compiler and everything else does not fit on one
disk ••• There are many possible ways to set JRT Pascal up
when you have a system with small drive capacities. One is:

On disk A:
- EXEC. COM
- your editor

(ED, Wordstar, etc.)
- the PASCAL source program

being developed
- perhaps PASCAL. LIB

On Disk B:
- JRTPAS3.COM

PASCAL0.INT
PASCALI.INT
PASCAL2.INT
PASCAL3.INT
PASCAL4.INT
PASCAL. LIB

You Osborne owners may need to do some shuffling until you
find the the arrangement that works best for you. For
example, the compiler disk could be on drive A:, which
would alternate with the Wordstar disk as necessary
(with appropriate control-Cis after disk changes). The
source and object programs could then stay on B:, perhaps
with EXEC.COM and another copy of PASCAL.LIB.

Be sure there is a copy of your operating system on each
disk you put in drive A.

6. The compiler (or run-time) used to work, but
now it doesn't... Use EXEC VERIFY to check the compiler
and/or run-time files again. Even if the sums agree, a
file or files may have gotten shuffled by a malfunctioning
program, hardware errors, or bad diskette handling. If
necessary, go back to the original master disks and copy
the needed files to a new diskette. If necessary, act as
if you just got JRT Pascal.

7. EXEC VERIFY does not even work... Make sure that
EXEC.COM, VERIFY.INT, and PASCAL. LIB are MOUNTED on your
disk system, and that you told CP/M the right drive for
EXEC. COM and that you gave EXEC the right location for
VERIFY. INT. You may need to use B:EXEC B:VERIFY if the
files are on B:. Remember when you run EXEC.COM that
PASCAL. LIB must be present.

8. BOOS errors show up when a DIR is requested of a
master disk ••• Make sure that you system is expecting a
disk in the format provided. For example, single density
8". Some operating systems can not sense a density change or
disk format change once they have determined "the format for

Section 13: Debugging

JRT Pascal User's Guide -151-

that drive". A system reset may be needed.

B. Compiler Errors

1. String literal too long... Somewhere in the
program, a literal string does not have a closing (or
opening single quote): This error is caught by the lexical
scanner before the program is listed. (Most editors make it
easy to search for all lines with single quotes).

2. Block structure inval id (and other strange
diagnostics) ••• Perhaps the program is attempting to
declare or use a reserved word. The list of reserved words
in JRT Pascal is somewhat longer than standard. For example,
LENGTH and POS are reserved.

3. Compiler acts like something is not there ••• Many
versions of Wordstar will set the high-order bit of
the 'current' character when a file is closed, even
when editing in non- document mode. ALWAYS end an edi t
with (AQC) before (A KD) • Also, use PIP
newfile.PAS=oldfile.PAS[Z] to clear off parity bits.

4. Compiler "goes away" ••• Hit system reset, then look
for undeclared variables, types, or constants in the next
line not listed. Also check for; or , used inappropriately.

5. Out of memory... Split the program into a main
program and external procedures so that each portion is
600 to 1200 lines long. (Maximum length depends on the
program and the available memory.)

6. Array out of bounds at end of compilation •••
External procedure names can be 8 characters long and should
not contain $ or characters, since the exproc name is
turned into a CP/M file name.

C. Run-time Errors

1. Object file not found ••• Make sure that the source
program is compiled successfully, and that the

EXEC appropriate drive is indicated on the file name,
B: PGM.

as

2. Library not present ••• PASCAL.LIB must be present on
one of the drives in the "disk search list" (usually A: or

Section 13: Debugging

JRT Pascal User's Guide -152-

B:) •

3. Files never get written to •••
CLOSE(file variable) is required after files have been
written, so that CP/M performs a proper close on the file.
Otherwise, the file size will be the next lower multiple
of 16K in size. Usually zero.

4. Reading characters from a file, most of the characters
in a word get skipped ••• The difference between binary and
text modes are significant. If you want every character
in a file, use binary mode in the reset or open
statement.

5. Reading from a file in binary mode, end of file is
hard to determine ••• Control-Z (lah) marks the end of a text
file (unless the real end of file on a 128 byte boundary
occurs). Text for both character = CHR(26) and EOF. For
binary records, a special record of all 255 (0ffh) or all
EOF's (lah) may be needed to mark the end of the file,
since CP/M only keeps track of 128 byte sectors.

6. External procedures get all mixed up... Declare
external procedures properly. When external procedures
refer to other external procedures, the declaration order
count must match those in the main program.

If your main has

FUNCTION COS(R
FUNCTION SIN(R

REAL): REAL; EXTERN;
REAL): REAL; EXTERN;

and your exproc has declared only

FUNCTION SIN(R : REAL): REAL; EXTERN;

10 and behold, the exproc will get a value of 1.0 if it
passes 0.0 to what it thinks is SIN. The exproc will
have actually called COS. Internally, external
procedures refer to other external procedures by
number. 'Dummy' declarations such as PROCEDURE Xl;
EXTERN; can be used as place holders, as long as the
names are unique. The name used in the MAIN program will be
used to find the external procedure on the disk.

7. Values are not returned correctly from external
functions (or arguments are not passed correctly to external
procedures) ••• Make sure the declaration of arguments in

Section 13: Debugg ing

JRT Pascal User's Guide -153-

the calling program match those in the external procedure.
If a VAR is missing in one and present in another, you could
have trouble.

8. Control-C does not stop a program (or control-N does
not stop it either) ••• Use control-N to cause an execution
interrupt (you can either exit the program with Z or
continue with R as appropriate). Use %LTRACE or $L when
compiling the program to allow execution interrupts and
also error diagnostics with line numbers.

Section 13: Debugging

JRT Pascal Useris Guide

14. Extended CASE statement

Format

CASE selector expression OF
label_expressIon ,label_expression

ELSE : statement;
END

-154-

statement;

The CASE statement is used to select one of several
statements for execution based on the value of the
selector expression. The selector expression and the
label_expressions must be of compatibTle data types.

The label expressions are evaluated sequentially. If
one is found -equal to the selector, the corresponding
statement is executed. If none are equal then the optional
ELSE clause statement is executed.

The ELSE clause is a JRT Pascal extension. Also,
standard Pascal allows only constants as labels, while
expressions are allowed here. Not more than 128 label
clauses are allowed in one CASE statement. Not more than
128 labels per label clause are allowed. The statements
should be followed by a semicolon. The semicolon is
optional on the last statement in the CASE statement.

Examples:

CASE I OF
2 : WRITELN('I IS 2');
4 : WRITELN('I IS 4');
ELSE: WRITELN('I IS NOT 2 OR 4');
END;

CASE LANGUAGE OF
'PASCAL' YEAR
'PL/I' YEAR
'BASIC' YEAR
END;

(* STRING EXPRESSION *)
:= 1970;
:= 1964;
:= 1965;

Section 14: Extended CASE

JRT Pascal User's Guide

(* EXAMPLE
CASE ANGLE
PHI
2.0 * PHI
3.0 * PHI
ELSE
END;

OF EXPRESSIONS IN LABELS *)
OF

WRITELN('PHI');
WRITELN('TWO PHI');
WRITELN('THREE PHI');
WRITELN('ANGLE NOT ON NODE');

(* EXAMPLE OF BOOLEAN SELECTOR AND LABEL EXPRESSIONS *)

(* CHECK VOLTAGE V FOR VALID RANGE *)
CASE TRUE OF
(V > 2.5) AND (V < 4.3)
(V > 5.6) AND (V <= 14.08)
(V > 35.6) AND (V <= 100.0)
ELSE: WRITELN('VOLTAGE OUT
END;

Section 14: Extended CASE

PROCESS RANGE 1;
: PROCESS-RANGE-2;
: PROCESS-RANGE-3;

OF VALID RANGES: ',V);

-155-

JRT Pascal User's Guide -156-

15. CRT Formatting

This section describes JRT Pascal CRT formatting
facitlites. It requires a basic knowledge of Pascal and of
JRT Pascal external procedures.

The CRTMAP utility enables the user to quickly
a CRT terminal screen. One record at a time
displayed.

format
may be

The utility program takes as its input a Map
Description File (MDF) which describes the CRT map in a
simple command language. The utility generates the source
program for a Pascal external procedure which may then be
compiled. This external procedure contains all the logic to
display all or part of one record data type. Descriptive
information may also be displayed on the screen.

Source code for CRTMAP is included and its features
may be modified or extended. The distributed version of
CRTMAP assumes a Televideo display terminal. It may be
adapted to any other terminal or computer by modifying two
lines in the program. These lines specify the control codes
for cursor positioning and clearing the screen. Consult
your Display terminal user manual for the codes for your
system. The cursor positioning code is in procedure GOTOXY
in the CRTMAP.PAS file. The screen clear code is procedure
CLEAR.

Procedure PART2 from CRTMAP.PAS is reproduced here.
This code generates "part2" of the generated external
procedure. The line marked XXX contains the terminal codes
for clearing the CRT screen. The line marked YYY contains
the terminal codes for moving the cursor to a particular
position.

Section 15: CRT Formatting

JRT Pascal User=s Guide

procedure pa rt 2;
begin
wr i teln (f2; 'procedure clear;');
writeln(f2; 'begin');
writeln(f2; 'write(chr(27),"*");'); {XXX}
writeln(f2; 'end;');
writeln(f2);
writeln(f2; 'procedure gotoxy (x,y : integer) it);
writeln(f2; 'begin');
writeln(f2; 'write(chr(27),"=",chr(y+20h),chr(x+20h));'); {YYY}
wr i te 1 n (f 2; 'end;');
writeln(f2);
end; {part2}

The CRT screen coordinates have the origin 0,0 in the
upper left corner.

o I
I
I

Y I
I
I

23 I

x 79

I
I
I
I
I
I
I

The first coordinate X indicates the column, the second Y
indicates the row.

15.1 Structure of the external procedure

CRTMAP generates a Pascal external procedure according
to the parameters in the Map Description File. This
external procedure then does the display formatting of your
data record.

Structure of the generated external procedure

Section 15: CRT Formatting

JRT Pascal

PARTI

PART2

PART3

EXTERN
TYPE
%INCLUDE type declaration filename
PROCEDURE exproc name

(VAR R: type_name);

PROCEDURE CLEAR;
PROCEDURE GOTOXY;

-158-

PROCEDURE DISPLAY; { format the CRT }

PART4 •• PART8 (omitted)

PART9

Section 15:

BEGIN
main line code
END;:

CRT Formatting

JRT Pascal User's Guide -159-

15.2 Map Definition File

The MDF defines the format of the CRT screen for the
display of one record type. CRTMAP recognizes seven
different MDF commands.

The MDF commands MUST be entered in a fixed sequence
except for LITERAL and FIELD which may be intermixed. There
should be one command per line. Blank lines may be inserted
for readability.

EXPROC = eeeeeeee
INCLUDE = iiiiiiii
RECORD = rrrrrrr

any number of intermixed LITERAL and FIELD commands

CURSOR = x,y
END

MDF Commands

EXPROC - the name of the external procedure to be generated
by CRTMAP

INCLUDE - the name of the %INCLUDE file which contains the TYPE
declaration of the record to be displayed and all TYPEs
and CONSTants to which it refers

example:
INCLUDE = TYPES.DCL

RECORD - the name of the record data type to be displayed - this
type declaration is in the include file

LITERAL - causes a character string to be displayed on the CRT
screen, the string must be entered between single quotes

LITERAL column, row, 'literal string to be displayed'

examples:
LITERAL 0,0,'* this is the upper left corner'

Section 15: CRT Formatting

JRT Pascal User's Guide

LITERAL 40,12,'* this is about the center'
LITERAL 0,23,'bottom row of the crt'

-160-

screen coordinates have the origin 0,0 in the upper left
corner, first number X is the column, second number Y is
the row

FIELD - causes a field in the input record to be displayed at the
specified location, may include optional minimum width
and decimal places numbers for integers and reals

FIELD column, row, field name {:min_width {:dec_places}}

examples:
FIELD 10,20, customer name
FIELD 12,20, account ba1ance:10:2
FIELD 20,60, days_until_armageddon:1

CURSOR - specifies where the cursor should be positioned on the
screen after the record is displayed

CURSOR column, row

END - indicates end of Map Description File, ALWAYS required

Section 15: CRT Formatting

JRT Pascal User's Guide -161-

15.3 Operating CRTMAP

To operate CRTMAP, first prepare the Map Description
File (section 15.2). Prepare a file containing the record
to be displayed and its subordinate type declarations - this
will be the INCLUDE file.

Make sure the CRTMAP utility was modified to support
your terminal type (see section 15.).

To run the utility enter:

EXEC CRTMAP

It will ask for the "filename.type" of your Map
Description File.

On successful termination of CRTMAP, the new external
procedure source file will be found on the default disk. It
must be compiled with the JRT Pascal version 3 compiler.

15.4 CRTMAP example

An example of the use of the CRTMAP utility is
provided here. A simple customer record is formatted and
displayed. The Map Definition File named MDF is listed.
The include file named CUSTOMER. PAS contains the main record
declaration CUST and a subordinate declaration CHAR30.

The external procedure generated by CRTMAP is named
CUSTMAP.PAS and is listed.

A complete compiler listing of CRTMAP.PAS follows.

Section 15: CRT Formatting

Operation flowchart of CRTMAP utility (ver 3.0)

Map
Description

File

CRTMAP
utility

Pascal
source code
external
procedure

JRTPAS3
compiler

compiled
CRT mapping
external
procedure

%include
file

-162-

CRT Screen formatted by CUSTMAP external procedure

---------- CUSTOMER RECORD ----------

o

Name PASCAL, BLAISE

Addr 777 RUE D'ARGENT

City PARIS

Balance $ 1490.34

-163-

File CUSTOMER.PAS
comtains TYPE declaration of customer data record

-
CHAR30 = ARRAY [1 •• 30] OF CHAR;
CUST = RECORD

FILE MDF

NAME: CHAR30;
ADDRESS": CHAR30;
CITY : CHAR30;
BALANCE : REAL;
END;

cOt'tair.s Map Definition File which describes CRT screen format

EXPROC = CUSTMAP
INCLUDE = CUSTOMER. PAS
RECORD = CUST

LITERAL = 0,0, '---------- CUSTOMER RECORD ----------

LITERAL = 5,3, 'Name'
FIELD = 12,3,NAME

LITERAL = 5,5, 'Addr '
FIELD = 12,5,ADDRESS

LITERAL = 5,7, 'City'
FIELD = 12,7,CITY

LITERAL = 5,14, 'Balance $'
FIELD = 15,14,BALANCE:8:2

CURSOR = 0,22
END

-161+-

File CUS'IMAP.PAS
Pascal external procedure generated by CRTMAP utility

extern

type
'include ('CUSTOMER.PAS #1)

procedure CUSTMAP

procedure clear;
begin
wr i t e (chr (27) , , * ') ;
end;

(var r

procedure gotoxy (x,y : integer);
begin

CUST

wr i te (chr (27) , , =' , chr (y+20h) , chr (x+20h)) ;
end;

procedure display;
begin
clear;
gotoxy(0 ,0) ;
write('---------- CUSTOMER RECORD ---------- ') ;
gotoxy(5 ,3
write('Name ');
gotoxy(12 ,3
write(r.NAME);
gotoxy(5 ,5
write('Addr ');
gotoxy(12 ,5
write(r.ADDRESS);
gotoxy(5 ,7
write('City');
gotoxy (12 ,7
write(r.CITY);
gotoxy(5 ,14
write('Balance $');
gotoxy(15 ,14
write(r.BALANCE:8:2);
gotoxy(0 ,22
end;

begin
display;
end; •

) ;

) ;

) ;

) ;

) .. ,
) ;

) ;

) ;

-165-

-166-

JRT Pascal ver 3.0 CRTMAP P:U:iA nn1
- -0 - - - -

0000 0002:
0000 0003:
0000 0004:
0000 OOOS:
0000 0006:
0000 0001:
0000 0008:
0000 0009:
0003 0010:
0010 0011:
0010 0012:
0010 0013:
0010 0014:
0010 001S:
0010 0016:
0010 0011:
0010 0018:
0010 0019:
0010 0020:
0010 0021:
0010 0022:
0010 0023:
0010 0024:
0010 002S:
0013 0026:
0013 0021:
0016 0028:
001A 0029:
001E 0030:
0028 0031:
002C 0032:
002C 0033:
0034 0034:
003S 003S:
0035 0036:
0035 0031:
003B 0038:
004C 0039:
0081 0040:
008D 0041:
OOSE 0042:
OOSE 0043:
OOSE 0044:
0091 004S:
0091 0046:
0091 0041:
0094 0048:
009D 0049:
OOAC OOSO:
OOAC 0051:

CRT Mapping Utility

'page(SO)

(This version setup for Televideo terminals. To adapt 1
terminals modify PROCEDURE PART2 which generates the cur~
positioning (gotoxy) and clear screen (clear) codes.)

program crtmap;

type
char1S = array [1 •• 16] of char;

var
ch : char;
alphameric : set of char;
end_of_file : boolean;
map_file_name: string[15l;
word : char1S;
exproc_name : char16;
include_name: char16;
record_name : char16;
fi, f2 : file of char;

procedure error (msg string[40l >;
var
dummy : char1S;
begin
writeln;
writeln;
writeln(msg);
writeln;
{ abnormally terminate - return to CP/M)
call(O,dummy,dummy);
end;

procedure get_char;
begin
read(f!; ch);
if ch = chr(1ah) then error('Premature end of input file'
write(ch);
end;

procedure get_word;
label 99;
var
i : integer;
begin
word : = ' ';
while not (ch in alphameric) do

begin

JRT Pascal

OOBl 0052:
00B4 0053:
00C4 0054:
00C9 0055:
OOCE 0056:
OODC 0057:
OODC 0058:
OOEF 0059:
OOFS 0060;
OOFE 0061:
0101 0062:
010E 0063:
010F 0064:
010F 0065:
010F 0066:
010F 0067:
0115 0068:
012C 0069:
0130 0070:
0157 0071:
0160 0072:
0164 0073:
0168 0074:
0177 0075:
017C 0076:
0185 0077:
01A7 0078:
01AC 0079:
01E1 0080:
01E6 0081:
01F2 0082:
020A 0083:
020F 0084:
0246 0085:
024B 0086:
0257 0087:
025C 0088:
0291 0089:
0296 0090:
02A2 0091:
02A3 0092:
02A3 0093:
02A3 0094:
02A3 0095:
02A9 0096:
02DF 0097:
02F4 0098:
02FF 0099:
0312 0100:
033C 0101:

-167-

ver 3.0

CRT Mapping Utility

word[1] := ch;
i : = 2;
get_char;
while (ch in alphameric) do

begin
word[il := ch;
i ;= i + 1;
get_char;
end;

word := upcase(word);
end; {get_word)

procedure init;
begin
writeln('CRTMAP ver 3.0');
writeln;
write('name of Map Description File ');
readln(map_file_name};
writeln;
writeln;
reset(f1,map_file_name t binary,256);
end_of_file := false;
ch : = ' ';

Page

a I phame ric : = [' A ' •• 'Z ' t 'a' , , ' z ' t ' 0 ' , • ' 9 ' , I : ' t ' • '] ;

get_word;

1\1\1"\
VV&.

if word (> 'EXPROC' then error('EXPROC command expected');
get_word;
exproc_name := word;
rewrite(f2 t exproc_name + ',pas', binary, 256);
get_word;
if word <> 'INCLUDE' then errore 'INCLUDE command expected');
get_word;
include_name := word;
get_word;
if word <> 'RECORD' then error('RECORD command expected');
get_word;
record_name := word;
end; {init)

procedure part1;
begin
writeln(f2; '{ CRTMAP generated external procedure)');
writeln(f2; 'extern');
writeln{f2);
wr i tel n (f 2; , type') ;
writeln(f2; "include ("', include_name, "')');

Tr.If' 'r"I ____ ,

U.nJ .rO::l><"c:a.l.

0347 0102:
0386 0103:
I) ; I) ;

0391 0104:
0392 0105:
0392 0106:
0392 0107:
0392 0108:
0398 0109:
03B7 0110:
03CB 0111 :
03ED 0112:
0400 0113:
040B 0114:
043D 0115:
0451 0116:
0489 0117:
049C 0118:
04A7 0119:
04A8 0120:
04A8 0121:
04A8 0122:
04A8 0123:
04A8 0124:
04AB 0125:
04AE 0126:
04AE 0127:
04B1 0128:
04B6 0129:
04C2 0130:
04C7 0131:
04D3 0132:
0507 0133:
0508 0134:
0508 0135:
0508 0136:
OSOE 0137:
050E 0138:
OS2E 0139:
0536 0140:
0566 0141:
057B 0142:
057B 0143:
058E 0144:
0593 0145:
05Al 0146:
05B2 0147:
05B3 0148:
05B3 0149:
05B3 0150:
05B6 0151:

-168-

~ 1\
wtV

CRT Mapping Utility

writeln(f2);

003

writeln(f2; 'procedure 'texproc_namet '(var r t recor

writeln(f2);
end; {partl}

procedure part2;
begin
writeln(f2; 'procedure clear;');
writeln(f2; 'begin');
writeln(f2; 'write(chr(27)t' '*");');
writeln(f2; 'end;');
writeln(f2);
writeln(f2; 'procedure gotoxy (x,y: integer);');
writeln(f2; 'begin');
wr i tel n (f 2; , wr i t e (c hr (27) , , , = ' , t C hr (y + 2 0 h) t c hr (x + 2 0 h)) ; ,
writeln(f2; 'end;');
writeln(f2);
end; {part2}

procedure part3; {create DISPLAY procedure}

procedure process_coordinates;
var
x_coord t y_coord : char1S;
begin
get_word;
x_coord := word;
get_word;
y_coord := word;
writeln(f2; 'gotoxy(',x_coordt't 'ty_coord t ');');

end;

procedure process_string;
begin
{find start of string}
while not (ch in ["",chr(Odh),' ',chr(9),chr(lah)]) do

get_char;
if ch <> "" then error('Literal strin.g expected');
write(f2; 'write(');
repeat

write(f2; ch);
get_char;

until ch = chr(Odh);
writeln(f2; ');');
end;

begin {part3}

JRT Pascal ver 3.0 CRT MAP

05D7 0152:
05EB 0153:
0600 0154:
0608 0155:
0608 0156:
060D 0157:
0613 0158:
0621 0159:
0621 0160:
0626 0161:
062B 0162:
062E 0163:
063A 0164:
063A 0165:
063F 0166:
0644 0167:

CRT Mapping Utility

writeln(f2; 'procedure display;');
writeln(f2; 'begin');
writeln(f2; 'clear;');
while not end_of_file do

begin
get_word;
case word of
'LITERAL'

'FIELD'

begin
process_coordinates;
process_string;
end;

begin
process_coordinates;
get_word;

-169-

Page 004

066C
066F

0168:
0169:

writeln(f2; 'write(r.'tword t ');');

end;
0684 0170:
0696 0171:
06D3 0172:
cted');
06D4 0173:
06D7 0174:
06EA 0175:
06F5 0176:
06F6 0177:
06F6 0178:
06F6 0179:
06FS 0180:
06FC 0181:
0710 0182:
0727 0183:
073B 0184:
073C 0185:
073C 0186:
073C 0187:

'CURSOR' : process_coordinates;
'END' : end_of_file := true;
else: error('LITERAL t FIELD t CURSOR or END command

end;
end;

wr i tel n (f 2; 'end;');
writeln(f2);
end; {part3}

procedure part9;
begin
writeln(f2; 'begin');
writeln(f2; 'display;');
wr it e 1 n (f 2; 'end;.');
end; {part9}

073F 0188: begin {crtmap}
0744 0189: init;
0749 0190: partl;
074E 0191: part2;
0753 0192: part3;
0758 0193: part9;
075C 0194: close(f!);
0760 0195: close(f2);
0761 0196: end {crtmap}.
No errors detected
Module size = 1893 dec bytes
End of compile for CRTMAP

JRT Pascal Useris Guide -170-

A. Reserved words

The following words are reserved in JRT Pascal and may
not be used as identifiers.

abs
addr
allocate
and
array
begin
binary
boolean
call
case
char
chr
close
compress
concat
cons
const
copy
deallocate
delete
dispose
div
do
downto
else
end
eof
eoln
extern
false
file
fillchar
for
forward
free
function
get
goto
hex$
if
in
include

Appendix A: Reserved words

JRT Pascal User's Guide

initialize
input
insert
integer
label
length
list
lrange
ltrace
map
maxint
mod
new
nil
nocons
nolist
nol trace
noptrace
not
nowarning
odd
of
open
or
ord
output
page
portin
portout
pos
pred
procedure
program
ptrace
put
rba
read
readln
real
real$
record
repeat
reset
rewrite
round
rrn
set
sqr

Appendix A: Reserved words

-171-

JRT Pascal User's Guide

succ
string
system
text
then
title
to
true
trunc
type
until
upcase
var
warning
while
with
write
writeln
xor

Appendix A: Reserved words

-172-

JRT Pascal User's Guide -173-

B. Activity analyzer

The activity analyzer - Activan - is a facility which
moniters the execution of a Pascal program and prints a
graph showing the amount of time spent executing each
portion of the program. To use Activan, a program must be
compiled with the %LTRACE directive or the $L compile switch
on.

Activan moniters the line numbers as a program
executes and keeps counters for the line numbers in the
specified range. The range of line numbers to be monitered
and the line spacing can be set and changed when the program
is running.

To run a program with Activan, specify the $A switch
when the program is started with the EXEC command.

EXEC TESTPGM $A

Before the program begins execution Activan will
request console input to specify the line range to be
monitored and the line spacing. When those parameters have
been entered, program execution will begin.

If Activan is active
Activan mode is entered
printed.

when the program terminates,
so that a final histogram can be

While the program in running, it can be interrupted
and control returned to Activan by keying in a control-A
character. Activan will then request which action is
desired:

code

C
E
H
T
~

R
W

Appendix B:

action

clear the counters to zero
end the program
~r~n~ h~stogram ~f activity
initialiZe the line range and spacing
run the program with Activan monitoring
run the program without Activan

Activity analyzer

JRT Pascal User's Guide -174-

c. Block letters

An external procedure named LETTERS is provided to
generate large block letters. These letters are 9 lines
high and from 4 to 10 columns wide. The external procedure
generates an entire row at a time of letters for use as
report headers, program identifiers, etc. The output line
may be up to 220 columns wide.

The upper case letters, numbers, and dash may be input
to the external procedure. Unsupported characters are
converted to spaces. Lower case characters are converted to
upper case.

The output from LETTERS is placed in a buffer which is
an array of strings - this must be defined exactly as shown.
The declaration for LETTERS is:

TYPE
BUFFER = ARRAY [1 •• 9] OF STRING[220];

PROCEDURE LETTERS (INPUT STRING : STRING;
SLANT- CHAR;
VAR B : BUFFER); EXTERN;

The input string is the line of characters to be
converted to block letter format. The slant character
provides for 'streamlined' characters by slanting left or
right. Slant may be 'L' or 'R' or ' '. The output buffer b
refers to a variable of type buffer in the users program.
Note that b is a reference parameter.

Appendix C: Block letters

JRT Pascal User's Guide -175-

This sample program will print out the word 'PASCAL'
in block letters.

PROGRAM BLOCKS;

TYPE
BUFFER = ARRAY [1==9] OF STRING[220];

VAR
I : INTEGER;
BLOCKS BUFR : BUFFER;

PROCEDURE LETTERS (INPUT STRING : STRING;
SLANT- CHAR;
VAR B : BUFFER); EXTERN;

BEGIN
LETTERS('PASCAL','R',BLOCKS BUFR);
SYSTEM(LIST); -
FOR I:=l TO 9 DO WRITELN(BLOCKS_BUFR[I]);
END.

Appendix C: Block letters

JRT Pascal User's Guide

D. JSTAT

Jstat is an external procedure which can be
compute several basic statistics given an array
numbers as input. It computes the arithemetic
standard deviation, variance, skewness, kurtosis
first four moments about the mean.

-176-

used to
of real

mean,
and the

The source code for jstat is provided on the source
disk and may be modified. The procedure is restricted to an
array of 1000 real numbers but this can be easily changed by
modifying the declaration of the data type jstat_array and
recompiling.

While jstat array is declared as a 1000 element array,
a much smaller -array may be used to hold the data values
since the input array is used as a reference parameter.

Jstat requires three parameters:

n - number of data items in the input array

x - array of up to 1000 real numbers

r - output record containing computed statistics

The following type declarations and procedure
declaration are required in the calling Pascal program.

TYPE
JSTAT INTERFACE =

RECORD
MEAN, STANDARD DEVIATION,
VARIANCE, SKEWNESS, KURTOSIS,
M1, M2, M3, M4 : REAL;
END;

JSTAT ARRAY = ARRAY [1 •• 1000] OF REAL;

PROCEDURE JSTAT (N INTEGER;

Appendix D: JSTAT

VAR X JSTAT ARRAY;
VAR R JSTAT-INTERFACE);

EXTERN;

JRT Pascal User's Guide -177-

E. JGRAF

JGRAF is an external procedure which formats x-y graphs
and scatter graphs. The graph size in rows and columns and
the lower and upper x and y bounds are set by the calling
program. A title to the graph may be provided. Once the
graph has been prepared, it can be displayed on the console,
printed, or stored in a disk file.

Any
number
(within

number of data points can be plotted. Any
of separate plots can be prepared simultaneously
memory limitations) •

To use JGRAF, your program (or occasionally an
external procedure) must declare the char9000 and
jgraf interface types. Your program must then declare
one (or more) variables of type jgraf interface. For
convenience, the interface variable will be called jgi in
this document. Your program could call the interface
variable(s) anything appropriate. Your program must also
declare JGRAF as an external procedure.

The declarations for sample main program to take
plotting commands from a disk file and create a plot is
shown here. (The body of the sample program is listed
later.) Everything listed here is required of any
program using JGRAF except for the declarations noted as
specific to jg.

Appendix E: JGRAF

JRT Pascal User's Guide

program jg;
%ltrace %ptrace (* optional - suggested *)

type
char9000 = array [1 •• 9000]
jgraf interface = record

of char;

- command: char;
plot char: char;
x grTd : boolean;
y-grid : boolean;
rows : integer;
columns integer;
x lower real;
x upper real;
y=lower real;

(* R *)
(* R *)
(* R *)
(* R *)
(* R *)
(* R *)
(* R *)
(* R *)
(* R *)
(* R *) y upper real;

fTlename : array
title: string;

[1 •• 14] of char;
(* R *)

(* fields below used internally by jgraf *)
b : A char9000;

var

bufr size integer;
line-size integer;
row count integer;
x spacing real;
y-spacing real;
end;

jgi : jgraf_interface;

(* following are used by program jg *)
file name: array[1 •• 20] of char;
title: array[1 •• 24] of char;
inf : file of char;
x, y : real;
command: char;
(* end of variables used by sample program *)

procedure jgraf (var jg : jgraf interface;
x, y real);-extern;

(* end of declarations *)

-178-

To produce graphs, your program must first set all
members of jgi marked (* R *) in the jgraf_interface type

Appendix E: JGRAF

JRT Pascal User's Guide -179-

declaration to appropriate values.

Jgi.x_grid would be set to false if grid lines
running across the graph should be omitted. Jgi.y grid is
set to false if grid lines running up and down are- to be
omitted. Jgi.rows and jgi.columns contain the number of
lines and number of characters across the body of the plot
itself (minus one).

The number of rows and columns should normally be
divisible by 10. Plot size can be calculated as (number of
columns + 16) * (number of lines + 5), which should not
exceed 9000 characters. The length of jgi.title should be
less than the number of columns in the plot.

Once all the required members of jgi are initialized,
set jgi.command to 'I' and call JGRAF, as

JGI.COMMAND := 'I';
JGRAF (JGI, 0.0, 0.0);

(Note that the examples listed here in upper case are
for illustration only and are not part of the program jg.)

Then, to place data points on the graph, set
j g i • command to ' 0' and call JGRAF for each
appropr ia te points. Do this as often
two distinct curves, you could get
for one set of points, then set it to
JGRAF with another set of points.

JGI.COMMAND := '0';
JGI.PLOT CHAR := '*';
JGRAF (JGI, 15.4, 199.2);
JGRAF (JGI, 15.9, 205.7);
JGI.PLOT CHAR := Ii';
JGRAF (JGI, 9.0, 105.0);

as needed.
jgi.plot char

' # ' before

of the
To get

to ' * ,
calling

To print the graph on the console, set jgi.command to
'c' and call JGRAPH with x and y arguments zero, as

JGI.COMMAND := iC i
;

JGRAPH (JGI, 0.0, 0.0);

If you want
the console, set
calling JGRAF.

Appendix E: JGRAF

output to the line printer as
jgi.command to 'pi instead of 'C'

well as
befo re

JRT Pascal User's Guide -189-

To write the graph to a file, set jgi.filename to
the desired name, jgi.command to'S', and call JGRAF.

JGI.FILENAME := 'B:PLOT.5';
JGI.COMMAND := 'SI;
JGRAF(JGI, 0.0, 0.0 };

More data points can be
printing, so that development
succession. Further, by setting
I}, data points can be erased
not be restored}.

added to a graph after
or trends can be plotted in
jgi.plot char to a space (I
(though the grid lines will

If you want to print more than one graph using the
same interface record (jgi) or want JGRAF to free the memory
allocated to produce a graph, you can set jgi.command
to IX I before calling JGRAF. This will free the buffers
allocated by JGRAF (in the I command) •

Note that every call to JGRAF that is not providing
data (jgi.command = IDI) should have the x and yarguments
equal to 0.0.

The body of the sample program jg is included here,
and illustrates one use of JGRAF. Jg takes a disk file of
commands as input and produces one or more plots as
directed. Commands on the disk file are similar to the
options to JGRAF, with the addition of two commands. T
followed by Ititle' may preceed the I command. Period (.)
followed by a space and a new plot character will reset
the current plot character.

begin (* jg *)
write('General graphing input file: I);
readln(file name};
reset(inf, file name, text, 512};
jgi.title := ' ';
while (not eof(inf)} do

begin

Appendix E:

read(inf; command);
command := upcase(command};
writeln('db I, command};
jgi.command := command;
case command of
ITI: begin

JGRAF

readln (inf; title);
jgi.title := title;
end;

JRT Pascal User's Guide -181-

, I ' :

• D' :

, . ' :
'C' :
, P' :

's' :

, X' :
else:

end;
close (inf) ;
end.

begin
readln (inf; jgi.rows, jgi.columns,

jgi.x lower, jgi.x upper,
jgi.y-lower, jgi.y-upper);

jgi.plot char-:= '*'; -
jgi.x grTd := true;
jgi.y-grid := true;

1* note that all required members *)
(* of jgi have been set *)

jgraf(jgi, 0.0,0.0);
writeln(' done I');
end;
beg in
read(inf; x, y);
jgraf(jgi, x, y);
end;
readln(inf; jgi.plot char);
jgraf(jgi, 0.0, 0.0);
jgraf(jgi, 0.0, 0.0);
begin
readln(inf; file name);
jgi.filename := file name;
jgraf(jgi, 0.0, 0.0);
end;
jgraf(jgi, 0.0, 0.0);
writeln('Unrecognized command: " command);
end;

Given the input file SAMPLE.DAT aa follows

T 'Sample'
I 20 40 0 40 0 60
D 5 6 D 6 10
D 7 12 D 8 15
D 9 16 D 10 16 . #
D 5 2 D 32 6
D 32 27 ,.,
\",

S sample.out
X

Appendix E: JGRAF

JRT Pascal User's Guide

Jg will produce the (uninspired) output
SAMPLE.OUT as follows given the input listed above.

JGRAF ver 3.0 **** Sample ****

A

60 -1---------1---------1---------1---------1
11111
11111
11111
11111
11111
11111
1 I I I I
111 I I
I I I I I

30 -1---------1---------1---------1---------1
1 1 I 1 =It 1
I I I 1 I
I I I I I
1 I 1 I I
I *** 1 I 1
I * I 1 I I
1 * 1 1 I I
I * 1 I I =It 1
I =It 1 I I I

o -1---------1---------1---------1---------1

0 10 20 30 40

summary of the commands to JGRAF is included
reference:

code meaning

C display graph on console
D plot a data point
1 initialize graph buffer and axes
P print graph
S save graph on a disk file
X delete graph buffer

-182-

file

for

The source code for jgraf is provided and may be
modified. For example, the number of lines between the
x grid lines can be changed to 6 (or 8) so that grid lines
form a one inch square on printers with 10 characters per

Appendix E: JGRAF

JRT Pascal User's Guide -183-

inch and 6 (or 8) lines per inch.

JGRAF is not limited to scatter plots. With
appropriate selection of data points, histograms can be
produced. Contour plots (and even isometric drawings) are
also possible.

Appendix E: JGRAF

JRT Pascal User's Guide -184-

F. Restrictions

1. Arrays are limited to 8 dimensions.

2. Literal character strings in the "const" section are
limited to 32 characters.

3. Random disk files require CP/M 2.2 and may be up to 8
megabytes in size.

4. Sets are limited to 128 elements.
(leftmost) corresponds to 0, the
corresponds to 127.

The first element
last (rightmost)

5. Not more than 63 external procedures and functions may be
declared.

6. Not more than 1632 dynamic storage blocks may be
allocated at one time. The run-time system may require up
to 100 of these for file buffers, file control blocks,
external procedures and other uses.

7. "With" statements may not be nested to more than 31
levels.

8. "Case" statements are limited to 128 clauses and 128
labels per clause.

9. Integers must be between +32767 and -32768, since they
are stored in 16 bit twos complement format. In a few cases
integers will be treated as unsigned 16 bit values with a
range of 0 to +65535. The MAP and CALL builtin procedures
require addresses which may range up to 65535. Accessing
random files by relative byte address may require byte
addresses up to 65535.

10. "Real" numbers are represented in 14 digit binary coded
decimal format. The floating point exponent range is from -
64 to +63.

11. The names of procedures and functions may not be used as
parameters.

12. Literal character strings in the source program may not
exceed 127 characters.

Appendix F: Restrictions

MAIL TO:

Name

Company

Address

City

CP/M version

PRO B L E M REP 0 R T

JRT Systems
Technical Services
45 Camino Al to
Mill Valley, CA 94941

State

Disk format

Zip __ _

Date Approx purchase date

Please include as much information as possible about the
problem. A listing of the program code is essential
for us to duplicate the problem.

Did problem occur during compile?
execution linker assembly
other

Was there an error message? Which one?

Complete description of problem:

Are symptoms always the same or do they vary?

