JRT SYSTEMS

PO Box 22365

San Francisco

CA 94122

.H’SO\L

WNER NOTES

November 13582

Your response to our new marketing strategy of very
low price/ high quality/ high volume software has exceeded
our wildest dreams!

Since May, when we slashed JRT Pascal’s price from
$293 to $29,95, we’'ve added over 10,000 new customers! --
and we expect to reach 25,000 by year-end!

- Because we allow owners to make <copies for friends,
the actual user number is much larger.

Needless to say, we’'re grateful for the deluge of
orders, To handle it has taken a new office, new personnel,
and new shipping systems; even then, the mass of orders -- a
fifty times increase -- caused some delays, If your order
didn’t arrive quickly, thank you also for your patience, We
believe ypu'll find JRT is worth the wait.

With the new capabilities, the goal of =a one week
order turn-arpund is now is sight,

--

Note 4: Five and a quarter inch disk versions

Requiring only 85K of diskette space for the compiler
and 35K for the run-time system, JRT is currently the most
campact Pascal available for CP/M systems, For program
development in JRT Pascal on computers with five inch disk
drives, we recommend this file arrangement:

Note 2: Patch #1

Applicable version: 2.1

Error: multiplication of real
numbers by 0.0 produces
incorrect result

Patch procedure: Use CP/M program
DDT to patch EXEC.COM -
key in underlined code.

NotekB: Fatch #2

Applicable version: 2.1

Error: Message “Source file not
found’ when compiling under
CP/M ver 1.4 or CDOS

Patch procedure: Use CP/M program
DDT to patch JRTPAS2.COM -
key in underlined code.

B T B R T e LR

A>DDT EXEC.COM

DDT VERS 2.2
NEXT PC
5B00 0100

-8363C
563C ED EB
563D 53

-GO

A>SAVE 90 EXEC.COM

L

A>DDT JRTPAS2.COM

DDT VERS 2.2
NEXT PC

5500 0100

-A2B9

02B8 CALL 3F83
02BC CALL 413D
02BF _._

-GOo

A 4 PAS2.COM

v e e e P R A YR P R A o £ i e

The ONLY disk formats available are:

3 1/4" for Osborne, Apple CP/M, Nerth Star, Superbrain,
Heath hard sector, Heath soft sector, Xerox 820, Televideo

8" single-sided, single density standard

Please specify which of these formats you need,

e o am M s e e am e e e M e M e e e em e M ke e et Mw e e NS Me o me e Gm o G ke we e e e e e e me e e e e

Note 3: Coming - JRT Pascal version 3.0

In January we’'ll begin shipping JRT Pascal 3.0 - a
major enhancement. New features include:

- builtin indexed file system

- facilities for screen and report formatting
- dynamic arrays

- improved compiler error recovery

- enhanced EXEC interrupt

- full support for file variables and GET/PUT
- expanded user manual

Of course the price of new 3,0 will still be %23,985,

e e e e m w m o e o o A o R Mo e P M o e e e A N E o M W e e et o W o oM o o o e

Note &6: Copy and License Policy

We“'ve had lots of Qquestions about our policy on
copying JRT Pascal, As our ads say, permission is granted
to copy both disk and manual for friends - so long as it’'s
not for resale, :

Fermission to make copies is also specifically granted
to schools and to computer clubs for members,

If you develop application software for resale, vyou
may distribute the run-time system (EXEC,COM and PASCAL.LIB)
with vour package - with no license or royvalty fees.

I T T T O I R R T T T R)

Note 7: YOUR FPascal application programs

Naturally, more and more owners are developing more
and more JRT Pascal written application packages for sale -
we’‘'ve heard from many of them., And - for developers - our
copy and license policy is particularly attractive.

Now we 're putting together a JRT Application Software
Directory and would like to list the packages you have for
sale., For free listing, Jjust fill out the enclosed
Application Program Description and return it to us with
tangible evidence of your package such as brochure, manuals,
diskette - but quickly, please: the first Directory is
scheduled for February distribution.

e e e e e e e e e e M e e e e s e M e e e e de e e M Ge T G S e W G W e G ke A e e W S e 4e mm e e e e e R e

Note 8: New address and phone number

The new phone number for orders only is (445) S66-5100,

The address for technical questions and problem reports:

JRT Systems

Technical Services

PO Box 22365

San Francisco, CA 54122

The address for new orders:

JRT Systens
950 Irving Street
San Francisco, CA 94122

e e ws e em e o we e W M e e M e e SR WR G e e G N G B e e G e G e e M e G N e M e e e e e e e W e Wn W e e e e e

Note 39: Feedback .:.+ Please!

A dynamic product, new JRT Pascal versions are always
being developed, The system’s main evolutionary force is
feedback from YOU - the user, We invite -- and encourage --
you to write us your ideas about how to make JRT Pascal even
better. .

JRT Pascal User’'s Guide

COPYRIGHT

Copyright 1980, 1981, 1982 by JRT
Systems., A}l rights reserved, No part
of this publication may be reproduced,
transmitted, transcribed, stored in a
retrieval system, or translated into any
language or computer language, in any
form or by any means, electronic,
mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior
written permission of JRT Systems, Fost
Oftice Box 22365, San Francisco,
California, 94122,

DISCLAIMER

JRT Systems makes no representations or
warranties with respect to the contents
hereof and specifically disclaims any
implied warranties of merchantability or
fitness for any particular purpose.,
Further, JRT Systems reserves the right
to revise this publication and to make
changes from time to time in the content
hereof without obligation of JRT Systems
to notify any person of such revision or
changes.

TRADEMARKS

JRT Pascal is a trademark of JRT
Systems, CP/M is a registered trademark
and MP/M is a trademark of Digita)
Research.

JRT Pascal

User ‘s Guide

Table of Contents

1.

2,

3.

Se

Introduction .+ + + + +

[*
1.1 JRT Pascal features . .
1.2 Hardware requirements .
1.3 List of files I R)
Operating JRT Pascal .+ + +
2.1 Writing Pascal programs
2.141 Identifiers I
2:,1,2 Numbers .+ + +« +
2.1.3 Comments + + + +

2.2 Compiling Pascal programs

2,3 Executing Pascal programs
Compiler Directives + + + +
3.1 Llstlng Control [S S
3.2 Line trace + + + ¢ + o+
3.3 Procedure trace .+ « +
Data types I T T T S S S S
4,1 Integers S S S S S S S
4,2 Real numbers + + + + +
4,3 Booleans + + + + v o+ &+ 4
4,4 Char + + + ¢ v v & & &+ »
4,3 Structured variables . .
4,6 Dynamic strings .+ +« +
4,7 Sets + + v ¢ v s o+ s 4 s
4,8 Pointers « + + + + o+ 1+
Builtin functions + + + + +
501 ABS + + + * + * * * + +
502 ADDR + * + * * + L1 + (] 4
503 ARCTAN + + ¢+ * * + * * +
Sed CHR v v v v v v 4 v 4
505 CONCAT + * [* L] + * + *
506 COPY L] + * . + * * * * L]
507 COS + * * + * L] L] * + *
508 Exp * + + * * L] * * + 4
509 FREE + + * [1] [3 + * 4+ +
50 10 HEX$ L] + + ¢+ * . * * [} *
5.11 LENGTH Cr b b e e e
50 12 LN L] L) * * * * * [[[L]
Se13 0DD v v v v v b e e e
SC 14 ORD + L] * + * + L] * + L]
515 PORTIN +« ¢+ ¢ ¢+ ¢+ o ¢ 4+
5' 16 POS L) + * [. [+ [(] +

* * e -

.- * + e

.- o o o

.-+ e e - e

-

-

> * ® & & * e * =

.- e * e

* o > e

- * 2+ -

> * o e

> * & *® e & o * -

- * - o

* o * o @

- o

-

.- * @ ® o > o =

- o o = * e o -

.- + e v e e

-

-

* * ® * o+ e e o e

‘> e * e

-

* ® @& ® o * e

.- o 2+ =

-

* * * e o+ »

* * @ * o v e * e

* & o @ e =

-

* ® e+ * + * e e =

* * o -

* * @+ e + e

-

* - * 6 * e * e = e

(SENIE

NMOANs b

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32

JRT Pascal User‘'s Guide

9.17 PRED . 33

L L L S S T S S ST S ST ST S S
5.18 REAL% L S T T S S S S S Y YRR S S SR S ¥ 24
35.19 ROUND I L O T T S S S ST SR S T T S 35
5.20 SIN [S S S S S T T Y Y TR ST S SN S S SR SR 36
5.21 SQR L L T S S S N T T T S S S SR SR ST S a7
522 SAQRT + v v v v v o v v v v e v b e e 38
523 SUCC » v v v v v e L S ST ST S ST S S S S 39
5.24 TRUNC L S T T SR SR SR S ST ST ST S S S R 40
525 UPCASE v v v v v 4 v 4 v v 4 6 4 4 s 4 v 41
6. Builtin procedures L S S O N S T Y S ST Y Y S 42
6.1 0 Y 0 P 43
6.1.,1 Calling the CP/M operating system . . 44
6:62 DELETE + ¢« o v 4 4 v ¢ % ¢ % % 4 4 4 v 4 & 50
6.3 . DISPOSE S T S S Y S ST S S S S S S S S S 51
6¢4 FILLCHAR + v v v ¢ v v 4 4 4 v 4 0 o 4 v 4 532
6.5 INSERT v v v v v 0 v 6 v v & v 4 4 4 v & 4 s 53
6.6 MAP L R L L L L L L O T S S S S S TR S) sS4
6 + 7 NEw * * * + L] L4 + * * L] * + * + L] 4+ 14 * + L] 55
6.8 PORTOUT L L T S S L L T T T T S 58
6.9 SYSTEM + v v v o ¢ 0 o v 0 b b b e e 59
7 Input/output L L R S S O L O S S S S T SR S 60
71 Console input/output « o+ v+t e b 0y e e 61
7.2 BSeqguential file processing + + + + v 2 s 4 £3
7.3 Random file Processing o + o o+ 4 v 4 b o+ o+ e 63
7+4 Indexed file processing .+ « + s +« + 4+ v s 67
7.3 EOF L S S S T S S ST T S S SUNNY S S SN SR S &9
746 EOLN + v ¢ v o ¢ v 0 % 4 5 4 v o 4 v s 70
7.7 ERASE L S T S S S S S S T T R S S T T 71
7+8 O0OPEN + v o v o o v v o v 4 e vy e e e s 72
7+9 READ, READLN + + v v o+ o v ¢ 4 o o 0 v s s+ s 73
7+10 RENAME v + v o v v v 0 s ¢ % & o % % 4 v ¢ 73
7+11 RESET L T S S S S S S S S S S SR ST S T T S 76
7.12 REWRITE T L L S T S T S S S S ST S S SR S 7
7+13 WRITE, WRITELN + + v + + v o v o v v v s v 78
8, Linker L S L L T S S S S S S S ST S ST SN SR S 81
9. Customiz L T S S S S S S S S Y S ST TR SR S Y T T 82
10, Assembler « « o+ o+ ¢ o ¢ v 0 v e b e e e e s s 83
10,1 Entry codes . . S T T L L T T T S Y 83
10,2 Operatlng JRTASM L L Y N S T SR S S 84
10,3 Directives [T T T T S S SN ST SRR SN SRR S S S 84
10,4 EXPressions + o+ o+ v ¢ v ¢ 4 2+ 4 4 o+ s 4 4 86
10,5 Parameters and return values .+ « « + + ¢ 87
10.6 Debugging assembler procedures .+ + + + + & 89

JRT Pascal

11,

12,

13,

14,

A,

B.

D.
E,

F.

User s Guide

10.7 Convertm program ., .

10.8 Sample assembly programs

Storage management o+ o+ .+
11,1 Main storage .+ + +
11,2 Dynamic storage

-
-
-

L]

L]

+

*

External Procedures and Functions .
12,1 Coding external

12.2 Referencing external procedures .
Debugg@ing « + «+ + ¢ ¢« v v + 4 4 4
13:1 Trace options + + + + « + +
13.2 DEBUG procedure .+ + + + 4+ 4+ o
13,3 System status display + + +
13:4 Run-time messages + o+ + + +

Extended CASE statement . .

Reserved words .+ + + + 4+
Activity analyzer +« + + +
Block letters + + + + + o+
JSTAT + v v v v ¢ 0 v 0 0 s
JGRAF &+ v v v v v 0 0 0 v

Restrictions + + + ¢ 4+ o+

* ® e e -

.- * e * e

L

L]

> * o e @

*

* ® & ® o

L

procedures and functions

*

¢ ® e e

¢

*

> ® o * e

- * e & °

20
90

94

97

99
100
102
103
103
104
106
110

112

114
117
118
120
121

124

JRT Pascal User’'s Guide N : -1-
1. Introduction

Pascal is a high level programming language named
after the French philosopher and mathematician Blaise Pascal
{1623-1662)., Nicklaus Wirth developed the language
beginning in 1968, It is a descendent of the Algol family
of languages which incorporates principles of structured
programming. , : ' -

JRT Pascal was designed specifically for the CP/M
operating system, It includes many state of the art
features not before available in any microcomputer |anguage.

1.1 JRT Pascal features

With JRT Pascaly programs of practicaily unlimited
size can be developed., External procedures and functions
written in Pascal or assembly language are separately
compiled: They are automatically loaded from disk when they
are first referenced or they may be merged with the main
program to form one modulie., The advanced dynamic storage
system will purge infrequently used procedures if storage
becomes full, Dynamic storage compression ensures the
optimum use of the main storage resource.,

The floating point arithmetic provides 14 digits of
precision. All standard functions are supported.

The input/output system supports sequential and two
types of random disk files, With the “relative byte
address” option, random files of variable length records can
be processed, Disk file data can be written in either ASCII
format or internal binary format.

The CALL builtin procedure provides direct access to
all CP/M operating system services. The MAP builtin
procedure allows any region of main storage to be accessed
as if it were a Pascal variable, Hardware input/ocutput
ports are directly accessible.

Debugging is simplified by the line number trace and

the procedure name trace which can both be turned on and off
by the program at run-time,

Section 1: Introduction

JRT Pascal Usér's Cuide -2-

Activan - the activity analyzer - can be used to
monitor the execution of a program and print out a histogram
showing the amount of activity in each program area.

1,2 Hardware requirements

The compiler requires a minimum of SBK of main
storage. One disk drive with at least 90K of storage is
needed but two or more are strongly recommended.

1.3 VList of files
JRT Pascal compiler

JRTPAS2.COM
PASCALO. INT
PASCAL1. INT
PASCAL2. INT
PASCAL3., INT
PASCAL4. INT
PASCAL.LIB

Run-time environment
EXEC, COM

External functions
ARCTAN, INT
COS. INT
EXP. INT
LN, INT
SIN, INT
SAQRT. INT

External procedure assembier
JRTASM, INT

External procedure 1linker
LINKER. INT

System customization program
CUSTOMIZ. INT

Block letters external procedure
LETTERS. INT

Dynamic trace control external procedure

Section 1: Introduction

JRT Pascal User’'s Guide

DEBUG. INT

Utility to convert Microsoft modules
CONVERTM. INT

‘Statistics external procedure
JSTAT.PAS
JSTAT., INT

Graph preparation external procedure
JGRAF . PAS
JGRAF, INT

Sample assembly language external procedures
SETBIT.ASM
RESETBIT.ASM
TESTBIT.ASM

Section 13 Introduction

JRT Pascal User’s Guide ’ -4-

2, Operating JRT Pascal

JRT Pascal is a fully CP/M compatible language system.,
The distribution disk does not contain a <c¢opy of the
operating system due to copyright restrictions, It is
recommended that the distribution disKk be backed up
immediately and not be used as the main running disk,

2.1 Writing Pascal programs

Pascal programs can be developed using any standard
editor program. The ASCII character set is used throughout
JRT Pascal.

The program file must have a CP/M filetype of 'PAS’.,
The output modules produced by the compiler, linkKer and
assemblier are given a filetype of ‘INT’'. When the compiler
is processing, it creates temporary storage files with a
filetype of '$%$%°, .These are normally deleted but if
processing should be interrupted, they may remain on the
disk but will be deleted during the next operation of the
compiler,

2:141 Identifiers

Identifiers are the names assigned to variables,
procedures, etc, They may be up to 64 characters long., All
characters are significant. They are internalily converted
to upper case by the compiler,

Identifiers must begin with an alphabetic character,
Folliowing characters may be alpha, numeric, the underline
character and the dollar sign. '

x1 total_value
DISTANCE ADDRESS
compute_and_print_average
compute_and_print_totals

MTD_sales INITIALIZE_PROC
percent_markup arc_cotangent

Using meaningful data and procedure names greatly

improves the readability of programs and serves as self-
documentation.

Section 2: Operating JRT Pascal

JRT Pascal User’'s Guide -5-

2,12 Numbers

Integers or whole numbers in Pascal occupy two bytes
of storage and range from -32768 to +32767. In both the
Pascal program and in input/output, they can be entered in
decimal or hexadecimal format.

Hex format integers have an 'H’ suffix character, If
the first hex digit is A,B,C,D,E,F then it must be preceded
by a zero digit.

3AH OEADH
12FH 0c#00h
~0FFFFh +50h

Real numbers in JRT Pascal provide 14 digits of
precision and floating point capability., The exponent can
range from -64 to +63. The numbers are stored in an 8 byte
binary-coded-decimal format which eliminates errors in
converting between internal and printable formats.,

3.14159 0.000098
250000.000321 0.442e+35
2,0E-60 -15.011e+03

Real numbers must include the decimal point, The
exponent field is optional, but when used must be in a fixed
format - character ‘&', sign, 2 digits.

2,1,3 Comments

Comments in Pascal can be inserted anywhere in the
program, They can be enclosed by either braces { > or by
the character pairs (¥ #),

{ comment sample 2
(¥ comment sample # 2 %)

Section 2: Operating JRT Pascal

JRT Pascal User’'s Guide -6-

2,2 Compiling Pascal programs
JRT Pascal is a one-step compiler, no assembly or link
is ever required. The assembler and |inker provided are for
~advanced programming with external procedures.
To compile a program‘enter:
JRTPAS2 filename <% option;>
Examples:
JRTPASZ TESTPGM
JRTPAS2 STATISTC SE
JRTPAS2 INVENTRY $ELP
C:JRTPAS2 B:PROJECT! S$E
JRTPASZ D:PLOT $E
The filetype of the program must be ‘PAS’, The
filename may be different from the program name.
The compiler option switches are:
E - error stop, interrupt processing on detection
of an error, issue message to console, ask user

whether or not to continue compiling

L - prepare program for line trace, identical to
inserting %LTRACE directive at start of program

P - prepare program for procedure trace, identical
to inserting %PTRACE directive at start of program
If# errors are detected, verbal error messages will be

displayed at the console imbedded in the source listing.

The following files are regquired by the compiler:

JRTPASZ2.,COM 21K
PASCALO. INT 21K
PASCAL1. INT 7K
PASCALZ2. INT SK

Section 2: Operating JRT Pascal

JRT Pascal User’'s Guide -7 -

PASCALZ, INT 9K
PASCAL4, INT 1K
PASCAL.LIE 132K

The compiler does not need to be located ocn the A:

disk:, The main compiier module JRTPAS2.COM arnd its external

procedures can be placed on any disk drive. Initially, the

compiler assumes a two disk system. The CUSTOMIZ program
should be used to update the compiler’'s and EXEC's disk
search lists.,

2.3 Executing Pascal programs

A proagram which has compiied with no errors can be
executed by entering:

EXEC filename <% options:
Exampies:
B:EXEC D:PLOT
EXEC TESTPGM <A
EXEC B:PROJECTI
The file PASCAL.LIB must be present on one of the
disks,
The run-time option switches are:
A - generate an Activan interrupt before program
begins execution {refer to appendix tor
description of Activan)
L - activate the line trace (program must have
been compiled with $L option or the %LTRACE
directive)
N - generate an Exec interrupt before program
begins execution, used for trace control (refer to

section on debugging)

P - activate the procedure trace (program must

Section 2: Operating JRT Pascal

JRET Pascal User’'s Guide

have been compiled with the $P option or the
%*PTREACE directive)

While the program is running, keving controi-a or
control-n will cause an Activan or Exec interrupt. At that
time certain system parameters can be modified., When in
interrupt mode, keying a space character will cause a list
of available commands to be displayed, FKeying a control-p
in interrupt mode causes most system displays to be echoed
to the system printer. v

If any error or warning conditions occur during the
running of the program, a verbal error message is displavyed
at the console, I# the error is severe and the program must
terminate, a formatted display of critical system data is
provided, This display is described in the section on
debugging.

Section 2@ Operating JRT Pascal

JRT Pascal User 's Guide -9-

3. Compiler Directives

Compiler directives are instructions to the compiier
which are inserted in the Pascal source program. They may
be inserted in the program anywhere a comment may appear.
(UnlikKe JRT Pascal version 1, they must not be followed by a
semicolon delimiter,)

3.1 Listing Control! Directives

When a Pascal program is being compiled, the listing
will be displayed on the system console. Three directives
are provided to control the program listing.

%“NOLIST stop display of program listing

%LIST resume display of program listing

%PAGE issue a form feed character to start a
rew page

3.2 Line Trace Directives

JRT Pascal line tracing will optionally display the
source program line numbers as the program executes, The
size of the output module will be increased by three bytes
per line.

*LTRACE generate line trace codes

ZNOLTRACE stop generating line trace codes - this
allows storage saving by tracing only
a portion of the program

JRT Pascal iline tracing can be turned on or off under
program control by using the S5YSTEM builtin procedure. The
range of line numbers to be traced can also be modified at
run-time by this procedure. WHEN THE PROGRAM BEGINS
EXECUTION, THE LINE TRACE IS DISABLED.,

SYSTEM(LTRACE) activate iine trace

SYSTEM(NOLTRACE) disable line trace
SYSTEM(LRANGE, lower, upper)

Section 31 Compiler Directives

JRT Pascal User 's Guide -10-

set range of line numbers for
line trace - lower and upper are
are integer expressions

When a program is compiled with the %LTRACE directive,
then if the run-time system detects an error condition, the
line number wilil be displayed with the error message.

3.3 Procedure Trace Directives

Whern procedure tracing is activated, the name of each
procedure or function will be displiayed on entry and exit.
On entry to a procedure the activation count (total number
of times cailed) for that procedure is also listed.,

*PTRACE generate procedure trace codes
*NOPTRACE stop generating procedure trace codes

Procedure tracing can be turned on or off under
program control by using the STYSTEM builtin procedure. WHEN
THE PROGRAM BEGINS EXECUTION, THE PROCEDURE TRACE 18
DISAELED.

SYSTEM(PTRACE) activate procedure trace
SYSTEM(NOPTRACE) disablie procedure trace

When a program is compiled with the %PTRACE directive,
then if the run-time system detects an error,; the name of
the procedure most recently activated will be displayed with
the error message. Note that the procedure most recently
activated is not necessariiy the currently active procedure.

If the procedure being entered is an external
procedure then the trace message is fiagged with an
asterisk.,

Section 3: Compiler Directives

JRT Pascal User ‘s Guide -11-

4, Data types

Pascal is a language rich in data types., Unlike Basic
which provides only two or three data types, Pascal provides
eight - integers, real numbers, Booleans, characters, .
structured variables; sets, pointers and dynamic strings.
These forms can be combined in records and arrays to form
data aggregates that closely relate to the application area.
Records and arrays can contain other records and arrayd and
pointers with no restrictions on nesting or even on
recursive definitions.,

It is these features that set Pascal apart from
earlier languages like Caoboly, Fortran, PL/I. Pascal
recognizes the importance of powerful facilities for
describing the data in a3 program as well as the active
statements.,

4,1 Integers

Integers or whole numbers occupy two bytes., They are
represented in twos compiement format. The range is -32768
to +32767.,

Integer literals in the source program and in console
or disk input may bhe entered as hex values. Standard Intel
hex format is used, The last character must be an 'H’, A
leading zero is required if the first digit is A, B, C, D,
E, F.

fah +0C35H -0ffh 0c000h 1234H

4,2 Real numbers

Real numbers have 14 digits and are expressed in
fioating point format. The exponent range is from -64 to
+63, The exponent field is not required in source program
or input but when present must be entered in a fixed format.
The exponent format is ‘e+00” or ‘e-00",

Sectiornn 41 Data types

JRT Pascal User’'s Guide _ -12-

32.01e+04 1,075 -3.141539 -1234567.8901234E-47

In source programs the decimal point must be included
to distinguish real numbers from integers.

4,3 Booleans

Boolean variables may have only two values - TRUE or
FALSE, Boocleans may be used directly in output statements
but should not be used directly in input statements.

4,4 Char

The char data type is one character, Packed char
fields are not meaningful on 8-bit microcomputers and are
not supported. The ASCII character set is used in JRT
Pascal.,

4,5 Structured variables

Structured variables are records or arrays which are
treated as aggregates. For example - a record of one type
could be compared directly against a record of another type.
Structured variables may be compared (all six operators),
assigned, input/output, concatenated, used as parameters and
function return values without restriction.

In addition to the CONCAT builtin function, the ‘+’
operator indicates concatenation of structured variables or
dynamic strings.,

Structured variables to be compared may have different
lengths, The result is determined as if the shorter one
were extended by spaces.

In assigning structured variables of different lengths
if the receiving +field is shorter, truncation occurs. If
the receiving field is longer then the remainder of it is

’

Section 4: Data types

JRT Pascal User s Guide . -13-

padded with spaces.,

Arrays of type char constitute fixed length strings,
Unlike dynamic strings, these have no (hidden) twe byte
length prefix, Arrays of fixed length strings are useful
for many types of text processing.

TYPE
CHAR100 = ARRAY [1..100] OF CHAR;
TABLE = ARRAY [1..40]1 OF CHAR100;

VAR

T : TABLE;

BEGIN

T 1= ° 73 (# CLEARS ENTIRE TABLE %)
TL1,81 := “#°3 (% STORE 1 CHARACTER *)

*
TL1S]1 1= “JRT Pascal is the best’';
L I

ENDj

4,6 Dynamic strings

Dynamic strings are an extension to standard Pascal.,
A hidden two byte prefix on the string contains the string’s
current length in bytes. JRT Pascal dynamic strings may be
up to 64K bytes in length - of course the computer’'s main
storage size restricts the size to a smaller value, Other
Pascals limit strings to 255 bytes.

The maximum size of a string variable is dectared with
the variable definition, If no size 1is specified the
default is 80 bytes,

VAR

81 : STRING;

§2 :+ STRINGI[40001;
S3 : STRINGIL121;

Dynamic strings may be used in the same way as
structured variables - comparisons, assignment,
input/output, parameters, function return values.

Section 4: Data types

JRT Pascal User 's Guide ~14-~

NOTE -~ Dynamic string variables may not be used in
READ statements directed to files, only to the console, To
read string data from files, fixed strings (arrays of
characters) must be used.

The individual characters of a string may be accessed
and updated, If an attempt is made to access an element of
a string beyond the current length of the string, a run-time
error occurs.,

S1[4] 1= "X’y

WRITELN(S2015001)3
SilJd]l 1= 81lJ+11;

83011 := UPCASE(S3[11)3

Several builtin procedures and functions are available
to enhance string processing. Refer to the sections on
buiitin functions and on builtin procedures for complete
descriptions.,

riame purpose

CONCAT concatenate n strings

CoPY extract portion of string

DELETE delete portion of string

INSERT insert a string into another

LENGTH return current string size

POS search string for a pattern
4,7 Sets

Set variables occupy 16 bytes, The entire ASCII

character set may be represented in the 128 bits,

LOW_CASE := ["'a’'++ 2713

UP_CASE = [‘A".."2713

NUMERIC := ['0"..°9°13

ALPHAMERIC := LOW_CASE + UP_CASE + NUMERIC;

ALPHABETIC := ALPHAMERIC - NUMERIC;

IF NOT (INPUT_CHAR IN ALPHAMERIC) THEN
WRITELN(‘ INVALID INPUT CHAR’);

Section 4 Data types

JRT Pascal User's Guide . =15~

NOTE - Set variables have no meaningful format in text
format input/output, Sets may be input/output. to disk Flles
‘which are opened for binary format processing.

, 4.§ T?ointers

Pointers contain the virtual address of = dynamic
variables created by the NEW procedure and of qhost
variables created by the MAP procedure. Pointers are two
bytes in size. '

L The value stored in a pointer variable is NOT the
actual address of the dynamic variable - it is the virtua)
" address, The actual address of a dynamic variable may be
obtatried with theé ADDR builtin function.,

' ACTUAL_ADDRESS := ADDR(PTR™);

Note that the actual! address of a dynamic variable may
change during program execution but the vxrtual address is
fixed for the life of the variable. :

Section 4: Data types

JRT Pascal User’'s Guide -16-

9+ Builtin functions

JRT Pascal provides numerous builtin functions and
several external functions. JRT extensions are indicated
with an asterisk, External functions are marked with an
‘X’

function return value
ABS absolute value, integer/real
ADDR ' address of variable
x ARCTAN arc tangent
CHR convert integer to character
*# CONCAT concatenate n strings
* COPY extract portion of string -
x COS cosine
x EXP exponential :
¥ FREE amount of free space
* HEXS convert variable to hex format
LENGTH length of string
x LN natural logarithm
oDD test for odd value
ORD convert character to integer
% PORTIN hardware port input
POS ‘ search string for pattern
PRED preceding value
REALS convert real number to string
ROUND convert real number tdinteger
x SIN sine
SAQR square, integer/real
x S@RT square root
SUCC succeeding value
TRUNC convert real number to integer
* UPCASE convert string to upper case

Section 5: Builtin Functions

JRT Pascal User’'s Guide -17-

5.1 ABS

Format 1
ABS{ integer_expression)3

Format 2
AES{ real_expression)

The ABS standard function returns the absolute value
of an integer or a real expression.,

Examples:
A 1= ABS(X)3
WRITELN(“ABSOLUTE VALUE IS',AES{ COS(Y)))3

B := ABS(X + Y / Z)3

Section 5: Builtin Furnctions

JRT Pascal User’'s Guide -18-

5.2 ADDR

Format
ADDR(variable)3

The ADDR function returns the real address of any
variable, array element, field of a record, dynamic
variable. :

Note that the address of a dynamic variable may change
when a storage compression occurs. If the address of a
dynamic variabie is needed, the ADDR function should be used
to obtain the current address immediately before use.
Examples:

ADDRESS_OF_X := ADDR{ X)3
AD := ADDR{ MATRIXL X, ¥+35 1)}
DYN_VAR := ADDR{ BASE")i

DYN_VAR_2 := ADDR{ BASE".NEXT"):

Section 5@ Builtin Functions

JRT Pascal User’'s Guide -19-

5.3 ARCTAN
Format
ARCTAN(real_expression)3

This standard function returns the arc ' tangent of a
real expression.

This is implemented as an external function., The
declaration for an external function must be included in

programs which reference it.,

FUNCTION ARCTAN (X : REAL): REAL3; EXTERN;

Examplies:
WRITELN{ ARCTAN(A + 354159));

+VASUE := OLD_NODE.VALUE + ARCTAN(V)3

Section 5: Builtin Functions

JRT Pascal User’'s Guide -20-

5.4 CHR
Format

CHR!{ integer_expression)3

The CHR standard function converts an integer
expression into a character, It is often used in sending
control characters to output devices.

Exampies:
WRITE(CHR(12))3
WHILE PORTIN(MODEM) = CHR(OFFH) DO I:=I+13
TAB := CHR{ 9)3
CARRIAGE_RETURN := CHR(ODH)3

LINE_FEED := CHR({ 0AH)3

Section S: Builtin Functions

JRT Pascal User's Guide -21-

5.3 CONCAT

Format
CONCAT(stringexprl, stringexpr2,..., stringexprn)3

The CONCAT string function concatenates two or more
dynamic strings, literal strings or structured variables.
It returns a value of dynamic string of the length reqguired.,

The plus sign can also be used to concatenate string
expressions.

Examples:

OUTPUT_LINE := CONCAT(NAME, TAB, TAB, PHONE)3
WRITELN(CONCAT{(°VALUE’, OPER, VALUE);

WRITELN(°VALUE’ + OPER + VALUE)3

Section 9: Builtin Functions

JRT Pascal User’'s Guide -22-

5.6 COPY

Format
COPY(source_string, position, length)

The COPY function returns a string value extracted
from the source_string beginning at position for length
characters. The position and length parameters are integer
expressions, The first character of strings is at position
1+ An error will occur if an attempt is made to copy from
an area greater than the length of the string.

Examples:

CH := COPY(‘ABCDEFGHIJKLMNOP@RSTUVWXYZ',
CH_NUM, 1)3

WRITELN(COPY{(STR, POS{ STR, "#°), 3)3}

WRITELN(COPY{(°‘THIS IS8 A STRING', 6, 4);
{(#* OUTPUT OF ABOVE LINE IS ‘IS A" #)

Section 9: Builtin Functions

JRT Pascal User’'s Guide -23-

5.7 COS
Format
COS5(real_expression)3

The COS standard function returns the cosine of a real
expression.,

This is implemented as an external function., The
declaration for an externa) function must be included in

programs which reference it.

FUNCTION COS (X : REAL): REAL; EXTERN;

Examples:
WRITELN(COS(ANGLE))3
NODE,COSINE 1= COS(N)3

WRITELN(COS(VELOCITY / CHARGE));

Section 5@ Builtin Functions

JRT Pascal User's Cuide -24-

5.8 EXP
Format
EXP(real_expression)}
_ The EXP function computes e to the x power, where x is
a real_expression.
This is implemented as an external function. The
decliaration for an external function must be included in

programs which reference it.,

FUNCTION EXP (X ¢ REAL): REAL; EXTERN;

Examples:
X 3= EXP({ Y)3
PROJECTED_SALES := 1000 # EXP{ YEAR / 100)3
VOLTAGE := EXP(SIN(PHASE))3

SHIP_VELOCITY := EXP(WARP_FACTOR);

Section 3: Builtin Functions

JRT Pasca! User’'s Guide -25-

5.9 FREE

Format
FREE

The FREE integer function returns the amount of
storage currently available. Because the virtual storage
manager may delete inactive external procedures, much more
storage may be potentially available. The FREE function
returns a 16-bit integer value.

If more than 32K of storage is available, the value of
the integer would print ocut as negative, due to the limit on
integer size. The following function converts unsigned
integers to real number format to provide positive
representation for numbers up to 63535.

L

FUNCTION REALFREE : REAL;
VAR
TEMP : INTEGER;
BEGIN
TEMP := FREE;
IF TEMP >= 0 THEN
REALFREE := TEMP
ELSE
REALFREE := 65536.0 + TEMP;
END;

Examples:

WRITELN('FREE SPACE =',FREE);

IF REALFREE <= 2000.0 THEN
WRITELN('STORAGE CRITICAL)

IF FREE >= 1500 THEN NEW(BUFFER)3
IF FREE >= 4096 THEN BUFSIZE:=2048

ELSE BUFSIZE:=1024;
RESET(INFILE, °‘TEST.DAT’, BINARY, BUFSIZE)j

Section 5: Builtin Functions

JRT Pascal User ‘s Guide ’ -26-

S5.10 HEX®

Format
HEX#$(any_variable)i

The HEX$ function converts any variable to hex format
for display, The result is of type string and its length is
twice the length in bytes of the input variable,

Note that the B080/Z80 microcomputers represent 16 bit
integers in byte-reverse format, with low order byte
followed by high order byte. That is, +ABCDH would appear
in storage as CDAB, The HEX$ function converts all
variables as they appear in storage., Often it is useful to
display hex integers in the more usual order ABCD, The
HEXINT function below makes this conversion.,

FUNCTION HEXINT (X 3 INTEGER): STRING[41;
VAR

A : STRINGIL[41;
BEGIN

A 1= HEX$(X)}
HEXINT:=" "3
HEXINTL11:=A[313
HEXINTI[21:=A[4];
HEXINTI31:=A[11;
HEXINTI41:=A[2];
END;

Examples:
WRITELN{ HEX%{ 3,14159));:
WRITELN(HEXINT(ADDR(PTR”)))3

WRITELN(HEXINT(ADDR(FCB)))3

Section 9: Builtin Functions

JRT Pascal User’'s Guide -27 -

S+11 LENGTH
Format

LENGTH(string_expression)

The LENGTH function returns an integer value which
the current length of the string variable or expression.
can be used with dynamic strings or structured variables.
Examples:

WRITELN(LENGTH(STR1))3

IF LENGTH(STR1) < 75 THEN
STR1:=CONCAT(STR1, ‘----")3

FOR I:=1 TO LENGTH(NAME) DO

IF NOT (NAMELI] IN ALPHAMERIC) THEN
NAMELI):=" 3

Section 5: Builtin Functions

is
It

‘JRT Pascal User’'s Guide -28-

S+12 LN
Format
LN(real_expression);

The LN function computes the natural logarithm of a
real expression,

This is implemented as an external function, The
declaration for an external function must be included in

programs which reference it,

FUNCTION LN (X :+ REAL): REAL; EXTERN;

Examplies:
X 3= LNC Y)3
WRITELN(LN(X + SQR(Y)))}

IF LN{ ATOM_WEIGHT) < 1000.0 THEN
WRITELN(F1; ATOM);

A = SERT(LN(Z));

Section 5: Builtin Functions

JRT Pascal User’'s Guide -29-

9.13 ODD
Format

ODD{ integer_expression)j

ODD is a Boolean function which returns the value true
if the integer_expression is odd otherwise it returns false.,

Examples:
IF ODD(X) THEN TEST_FOR_PRIME(X);
IF ODD(I) THEN I:=I+13
WHILE ODD(PORTIN(1SH)) DO X:=X+1.0§

WRITELN(ODD(Y))3

JRT Pascal User’'s Guide . =30~

9+14 ORD

Format
ORD(character_expression)3

The ORD function converts a character to an integer
value. The character_expression may be a single character
or a string., If it is a string, then the first byte will be
converted to integer format. The conversion is based on the
ASCII character set,

Example:
REPEAT
READ(INFILEs; CH)
WRITE(CH)3
UNTIL ORD(CH) = 1AH; (% EOF)

(# ASCII DISPLAY #)
FOR CH = ° °~ TO "z* DO
WRITELN(CH, ° = °,ORD(CH));

X = ORD(COPY(S1, I, 1))j

Section 5: Builtin Functions

JRT Pascal User’'s Guide

5,15 PORTIN
Format

PORTIN(integer_expression)3

The PORTIN function inputs a byte directly from
hardware port specified by the integer expression.
return value is a character.

Examplies:

IF PORTIN(255) = CHR{(80H) THEN
WRITELN{ "HIGH BIT IS ON’)3

CH := PORTIN(TTY);

WHILE PORTIN(MODEM) = CHR(OFFH) DO
TIMER := TIMER + 1.03

Section 9@ Builtin Functions

the
The

JRT Pascal User’'s Guide » -32-

9.16 POS

Format 1|
POS(pattern, source)3

Format 2
POS(pattern, source, start_position)3

Search the source string for the first occurence of
the pattern string, Return the position of the first byte
of the pattern if it was found, otherwise return zero. The
first byte is position 1.

In format 2 of the POS function, the start position of
the search in the source string can be specified.

PROGRAM DEMO;
VAR

STR1,STR2 : STRING;
BEGIN
STR1 := ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ®
WRITELN(‘TEST 1 :‘, POS('EF’, STR1));
WRITELN{ ‘TEST 2 :°, POS('D’, STR1, 8))3
STR2 1= ‘XX XX XX'3
WRITELN(‘TEST 3 :', POS(’ °, STR2));
WRITELN(‘TEST 4 :°, POS('XX’, STR2, 2))}

END.
OUTPUT:
TEST 1 + S
TEST 2 + 0O
TEST 3 : 3
TEST 4 : S

Section 35: Builtin Functions

JRT Pascal User’'s Guide -33-

5.17 PRED
Format 1

PRED(integer_expression);

Format 2
PRED(character_expression)3

The PRED function returns preceding value of an
integer or a character expression., For example, the PRED of
is ‘b’, the PRED of 98 is 97.

’ .

c
Example:

WRITELN(A, PRED(A))i

WRITELN(CH, PRED(CH));

Section 9: Builtin Functions

JRT Pascal User’'s Guide -34-

S5.18 REALS$
Format

REAL$(real_expression)i

The REAL$ function converts a real_expression to a
printable standard format for direct output or further
editing. The output is a string of length 22, in the format
below:

© +0,12345678901234E+00°

Examples:

WRITELN(FREQUENCY_FILE;
REAL$(CYCLES / MICROSECONDS));

STR := REAL$(VELOCITY / 7.03E-21)}

Section 35: Builtin Functions

JRT Pascal User’'s Guide -35-

5.19 ROUND
Format

ROUND(real_expression)3

ROUND is a standard function which converts a real
expression to an integer value, If the real value’'s
fractional part is greater than or equal to 0.5 then the
value is rounded up to the next higher integer. '

I the real value is too iarge to be converted to
integer format, a warning message is issued and the value
returned is -32768 1if the real expression was negative
otherwise +32767.

Examples:
INT 2= ROUND(X + 1)3
TEMPERATURE := ROUND(THERMOMETER_READING);

PLOT_X := ROUND{ X / SCALING_FACTOR);

Section 5: Builtin Functions

JRT Pascal User’'s Guide -36-

3,20 SIN
Format
SIN(real_expression)3

The SIN standard function returns the sine of a real
expression.

This is implemented as an external function. The
declaration +for an external function must be included in

programs which reference it,

FUNCTION SIN (X : REAL): REAL:; EXTERN;

Examples:
WRITELN(SIN(ANGLE))3
NODE,.SINE = SIN(N)3

WRITELN(SIN(VELOCITY / CHARGE));

Section 5: Builtin Functions

JRT Pascal User’'s Guide -37 -

9.21 8GR

Format 1
SQR(real_expression)3

Format 2

SQR(integer_expression)3

The SQR standard function returns either a real value
or an integer value depending on the parameter type. This
function returns the square of the parameter expression -
the value multiplied by itself.,

Examples:
WRITELN{ °‘SQUARE OF X IS8 ‘, BQR{(X))3
AREA := SQR(SIDE);
CIRCLE_AREA := PI * SQR({ RADIUS)

ENERGY := MASS # SQR(LICGHT_SPEED)

Section 35: Builtin Functions

JRT Pascal User’'s Guide -38-

9.22 SQRT

Format
SQRT(real_expression)i

This standard function returns the square root of a
real expression,

This is implemented as an external function, The
declaration for an external function must be included in
programs which reference it.

¢

FUNCTION SQRT (X : REAL): REAL; EXTERN;

Examples:
WRITELN(S@RT(A + 3,14159));

NODE.VALUE := OLD_NODE.VALUE + SQRT(V)3

Section 5: Builtin Functions

JRT Pascal User’‘'s Guide -39-

§.23 SUCC
Format 1
SUCC(integer_expression)3

Format 2
SUCC(character_expression)

The SUCC function returns succeeding value of an
integer or a character expression. For example, the SUCC of
‘h’ is ‘¢’, the SUCC of 97 is 98.

Example:

WRITELN(A, SUCC(A))3
WRITELN(CH, SUCC(CH))3

Section S: Builtin Functions

JRT Pascal User’'s Guide -40~

S5+24 TRUNC
Format

TRUNC{ real_expression)3

TRUNC is a standard function which converts a real
expression to an integer value. The fractional portion of
the real expression is truncated.

I¥f the real value is too large to be converted to
integer format, a warning message is issued and the value

returned is -32768 if the real expression was negative
otherwise +32767.,

Examples:
INT 2= TRUNC(X + Y)3
TEMPERATURE := TRUNC(THERMOMETER_READING)3

PLOT_X := TRUNC(X / SCALING_FACTOR)3

Section 3@ Builtin Functions

JRT Pascal User’'s Guide -41-

5,25 UPCASE
Format
UPCASE(string_expression);

The UPCASE function converts a string expression to
all upper case letters. Non-alphabetic characters are not

changed.

Examples:

IF UPCASE(COMMAND) = ‘X’ THEN
CMD_X;

WRITE(F13 UPCASE(NAME))3

READLN(OPTION)3
IF UPCASE(OPTION) = °‘EXIT’" THEN GOTO 99;

Section 5: Builtin Functions

JRT Pascal User’s Guide -42-

6. Builtin procedures

Several builtin procedures are provided in Pascal,
Most of these relate to input/output processing and are
discussed in the input/output section. The remaining
procedures are covered in this section. A list of them and
their purpose follows, JRT Pascal extensions are marked
with an asterisk,

procedure purpose

CALL direct access to CP/M and BIOS

DELETE delete portion of dynamic string
DISPOSE de-allocate dynamic variables

FILLCHAR initialize a string

*# INSERT insert string into dynamic string

- % MAP access main storage
NEW allocate dynamic variables

*# PORTOUT hardware port output

* SYSTEM EXEC services

Section 6: Builtin Procedures

JRT Pascal User’'s Guide -43-

6.1 CALL

Format
CALL (address, parameter_regs, returned_regs)3

The CALL builtin procedure allows you to make direct
calls to the CP/M operating system, to your own BRasic
Input/Output System (BIOS), and to any machine ianguage code
present in main storage. The 8080 data registers can be
directly setup for passing parameters to the module called.
The 8080 data registers which are returned from the module
may contain return values which can be used directly from
Pascal programs.,

Note that this assembly lanquage interface complements
the external procedure assembler., User subroutines which
must be written in assembler will wusually be written as
external procedures and assembled. That gives the advantage
of fully automatic loading and relocation, CALL is intended
primarily for direct access to the operating system
services.

The address field is an integer expression. This
field 1is regarded as an unsigned 16-bit integer. When CALL
is executed, control is transferred to the machine c¢ode at
the address:., The module there must return control to Pascal
with a RET instruction, The 8080 stack pointer must not be
modified on return to Pascal.

The 8080, 80835, Z80 microcomputers have 7 one byte
data registers and a one byte flag register. The Z80 has
additional registers but these are not wused in a CP/M
environment. Six of the data registers can be grouped as
two byte registers for some uses.,

8080 Register Map

—————————————————

—————————————————

o e o - e n ew e W e e

Section 6: Builtin Procedures

JRT Pascal User’'s Guide -44-

The parameter_regs and returned_regs fields have a
particutar format which must be declared in your program.
The parameter_regs field 1is directly loaded into the
microprocessors data registers before control is transferred
to the called module. When control is returned to Pascal,
the current data registers are stored into the field
identified by returned_regs. Both of these fields should be
declared like this:

TYPE DATA_REGISTERS =
RECORD
CASE INTEGER OF
1 : (FLAG)A’C'B’E’D’L,H : CHAR)3
2 + { PSW,BC,DE,HL : INTEGER)3
END;

This is a variant record which defines the data
registers. for access in one or two bytes at a time. For

example, sometimes it may be necessary to regard the
register pair DE as an integer, other times it may be
necessary to treat register E alone as a single byte, Both

definitions total 8 bytes,

Note that in definition i, the register names are in
an unusual sequence, This is necessary because the 8080/280
microprocessors store 16 bit data in a “"byte-reverse"”
format.,

Example:

VAR
PARM_REGS, RETURNED_REGS : DATA_REGISTERS;

CALL(5, PARM_REGS, RETURNED_REGS);

6.1.1 Caliing the CP/M operating system

An operating system is a program which provides
services to application programs running under it, Some of
these services are "create file”, "write string to printer",
"reinitialize system", and so on. Using the CALL builtin
procedure you can directly access these services from your
Pascal programs.

Section 6: Builtin Procedures

JRT Pascal User ‘s Guide -45-

The CP/M and MP/M User 's Guides describe in detail the
services provided and parameters required for each, Each
service is identified by a one byte function code. This
code is stored in register C before control is transferred
to CP/M. Many services also require an integer parameter
such as an address 1in register pair DE. The entry point
address for all CP/M compatible systems is location 5, At
address S5 is stored a jump instruction to the actual CP/M
module,

The address of the BIOS (warm-start entry point) is
stored at address 0001 in main storage and may be accessed
with the MAP builtin procedure. The MAP and CALL procedures
allow direct access to all of the services provided by the
E10S,

Section 6: Builtin Procedures

JRT Pascal User’'s Cuide

The service codes for CP/M 2.2 and MP/M are:

system reset
console input
console output
reader input

punch output
printer output
direct console input/output
get 1/0 byte

set I/0 byte

print string

read console buffer
11 get console status

WONOMTASWN~O

[
O

12 returr version number

13 reset disk system

14 select disk

i35 open existing file

16 close file

17 search for first file control block
18 search for next file control block
19 delete file

20 read sequential

21 write sequential

22 create file

23 rename file

24 return login vector

25 return current disk

26 set DMA address

27 get addr (alloc)

28 write protect disk

29 get read/only vector

30 set file attributes

31 get addr {(disk parms)

32 set/get user code

33 read random record

34 write random record

35 compute file size

36 set random record

37 reset drive

40 write random with zero fill

Section 6: Builtin Procedures

JRT Pascal User ‘s Guide

The following services are available in MP/M only:

128 absolute memory request
129 relocatable memory request
130 memory free

131 poll

132 flag wait

133 flag set

134 create queue

135 open queue

136 delete queue

137 read queue

138 conditional read queue
139 write queue

140 conditional write queue
141 delay

142 dispatch

143 terminate process

144 create process

145 set priority

146 attach console

147 detach console

148 set console

149 assign console

150 send CLI command

151 call resident system process
152 parse filename

153 get consoie number

154 system data address

155 get date and time

Section 6: Builtin Procédures

JRT Pascal User’'s Guide

Examplies:

1,

-

(# GET THE VERSION NUMBER FROM CP/M #)

PROCEDURE GET_VERSION;

VAR

PARM_REGS, RETURN_REGS : DATA_REGISTERS;
BEGIN

(# SET FUNCTION CODE := 12 #)
PARM_REGS.C := CHR(12)

CALL(5, PARM_REGS, RETURN_REGS);

{(* THE CP/M VERSION NUMBER IS RETURNED IN
REGISTER L, IF REGISTER H IS 01 THEN THE
OPERATING SYSTEM IS MP/M *)
CASE ORD(RETURNED_REGS.H) OF

0 : WRITE('CP/M ")3

1 + WRITE('MP/M ")y

ELSE : WRITE(??77)}

END;

WRITE(® VERSION ‘)3

CASE HEX$(RETURNED_REGS.L) OF

‘00 + WRITELN('1.X°)3

‘207 + WRITELN('2.0°)3

‘227 t WRITELN('2.2°)3

ELSE : WRITELN(HEX®%(RETURNED_REGS.L));
END;

END; (% GET_VERSION *)

PROCEDURE WRITE_PROTECT_CURRENT_DISK3;

VAR

PARM_REGS, RETURNED_REGS : DATA_REGISTERS;
BEGIN

PARM_REGS.C :1= CHR(28);

CALL(S5, PARM_REGS, RETURNED_REGS)j

END3

Section 6: Builtin Procedures

-48-

JRT Pascal User’'s Guide

3. PROCEDURE GET_USER_CODE;
VAR

PARM_REGS, RETURNED_REGS : DATA_REGISTERS;

BEGIN
PARM_REGS.C := CHR(32);

CALL(5, PARM_REGS, RETURNED_REGS);
WRITELN("USER CODE =, ORD{ RETURNED_REGS.A))

END3;

4, PROCEDURE SEARCH_FOR_FIRST
{ NAME, TYPE : STRINGILS8])3
TYPE
FILE_CONTROL_BLOCK =
RECORD
DISK : CHARj

FILENAME : ARRAY [1..8] OF CHAR;
FILETYPE : ARRAY [1.,.31 OF CHAR;

EXTENT : CHAR;
S1, 52 : CHAR;
RECORD_COUNT : CHAR;

BLOCKS : ARRAY [1..161 OF CHARj

CURRENT_RECORD : CHAR;
RO, R1, RZ : CHAR;
END;

VAR

FCB :..FILE_CONTROL_BLOCK3

PARM_REGS, RETURNED_REGS : DATA_REGISTERS;

BEGIN

(¥* SET UP FCB #)
FCB.DISK := CHR{O0)3;
FCB.FILENAME := NAME;
FCB.FILETYPE := TYPE;

(# SET UP PARM_REGS #)
PARM_REGS.C := CHR(17)3
PARM_REGS.DE := ADDR(FCB);

CALL(5, PARM_REGS, RETURNED_REGS);

(# TEST RETURN CODE #)

IF RETURNED_REGS.A = CHR(255) THEN
WRITELN('FILE NOT FOUND);

END3

Section 6: Builtin Procedures

]

-49-

JRT Pascal User’'s Guide : -50-

6.2 DELETE

Format
DELETE(string_variable, position, length);

The DELETE builtin procedure is used to delete a
number of characters from a dynamic string variablie, The
first parameter refers to the string variable. The second
parameter is an integer expression which indicates the first
character to be deleted - characters in dynamic strings are
numbered from 1. The third parameter is an integer
expression which indicates the number of characters to be
deleted,

The hidden length field of the dynamic string variable
is updated, If the position and length parameters refer to
an area beyond the current length of the string, a run-time
error occurs,

Examples:
DELETE(TARGET_STR, 25, 3)3
DELETE(STRi, POS("END’, STR1), 3)3

DELETE(8STR3, 9, X + 3)3

Section 6: Builtin Procedures

JRT Pascal User’'s Guide -51-

6.3 DISPOSE

Format
DISPOSE(pointer_variable)3

The DISPOSE buiitin procedure is used to de-allocate
dynamic variables, The pointer_variable addresses a dynamic
variable in dynamic storage. After execution of the
procedure the space released is available for other uses,

JRT Pascal supports true dynamic storage with auto-
compression, When blocks are freed ups storage
fragmentation tends to occur - that is, smail unused blocks
tend to accumuliate. PBecause many blocks tend to be small,
they cannot be immediateiy reused for another purpose. When
storage becomes short an auto-compression is initiated by

the Pascal system:. In this process all freed blocks are
gathered into the <center area of storage and all needed
bliocks are moved to the top of storage. In this way,

storage fragmentation is totally eliminated.

The DISPOSE procedure car be used to de-allocate ghost
variables «created by the MAP builitin procedure, Although
ghost variables use no real storage, they do require a small
amount of space in the pointer tables.

Example:

PROCEDURE DISPOSE_DEMO;

TYPE

DYN_VAR = ARRAY [1..,2001 OF CHAR;
VAR

POINTER : ~DYN_VAR;

BEGIN

NEW(POINTER); (% ALLOCATE A DYNAMIC VAR %)
(# DO SOME PROCESSING WITH THE DYNAMIC VAR *)

DISPOSE(POINTER)3 (% FREE UP THE 200 BYTES #)
END3

Section 6: Builtin Procedures

JRT Pascal User’'s Guide -52-

6.4 FILLCHAR

Format
FILLCHAR(structured_variable, length, character)3

The FILLCHAR builtin procedure is a very fast and
simple way to initialize a structured variable (array or
record) to a character. The length parameter is an integer
expression which indicates the number of bytes to be
initialized, The entire variable from its first byte up to
the length specified is set to the character expression
value,

CAUTION - This is a hazardous procedure since the run-
time system cannot verify that ¢the initialization by
character has not run past the end of the variable and
perhaps overlayed other variables or program code.

Examples:
FILLCHAR(VECTOR, 1680, CHR(0))3

FILLCHAR(PRODUCT_ARRAY, 2500, "*°)3

Section 6: Builtin Procedures

JRT Pascal User’'s Guide -93-

6.5 INSERT

Format
INSERT(source_string, target_string_variable, position)j

The INSERT builtin procedure inserts the source string
expression into the target string variable at the indicated
position, The source string may be =a literal string or
other string expression, The target string must be an
actual variable:. The source string is inserted into the
target variable beginning at the character indicated by the
integer expression position.

I# the combination of parameters would cause the
target string to overflow its maximum length or if position
ig less than |, a run-time error occurs.

Examples:
INSERT("ABCD’, STR1, 15);
INSERT(FILENAME, MASK, 1)3

STR1 := "MERE FACTICITY, "}
INSERT(°‘TRUTH IS NOT °, STRi, 1)3

Section 6: Builtin Procedures

JRT Pascal User s Guide -54-

6.6 MAFP

Format
MAP{ pointer_variable, address)i

The MAP procedure allows the user to access any part
of the computer’'s storage. It uses the facilities of the
dynamic storage system and pointer variables to, in effect,
overliay a map on any area of storage. This is sometimes
called a “"dsect"” or "ghost variabile."

Unlike its close relative, the NEW procedure, MAP does
not actually allocate a dynamic storage block:. Instead of
obtaining a storage block and setting the pointer variable
to point to it, it lets vyou specify the address. The
address can be anywhere from 0 to OFFFFH,

LiKe the NEW procedure, MAP does require five bytes of
pointer table space. When the ghost variable is no longer
needed, it can be removed from the table with the DISPOSE
procedure.,

Examples:

1, (#* ACCESS A 24 X 80 VIDEO TERMINAL *)
(# IT 1S A MEMORY-MAPPED MODEL WITH ITS #)
(# VIDEO SCREEN BEGINNING AT OFO0O0O0OH #)
TYPE
SCREEN = ARRAY [1..24, 1..80]1 OF CHAR;
VAR
CRT : ~SCREEN;
BEGIN

MAP({ CRT, OF000H);

(# CLEAR THE SCREEN #)
CRT* = ° 3

{(# WRITE MESSAGE ON TOP LINE OF CRT #)
CRT~[{11 := "MEMORY MAPPED CRT EXAMPLE";

LI B

END;

Section 6@ Builtin Procedures

JRT Pascal User’'s Guide -35-~

3

{(* OBTAIN THE ADDRESS OF THE USER EIQS.*)
(¥* JMP INSTRUCTION AT ADDR O ADDRESSES *)
(* THE WARM-START ENTRY POINT IN BIOS #)

FUNCTION EBIOS : INTEGER:

VAR

PTR : ~INTEGER;:

BEGIN

MAP(PTR, 1)3

BIOS := (PTR™ - 3)3 (% START OF RIOS #*)
END3

(#* SET THE IOBYTE AT ADDR 3 TO NEW VALUE *)

PROCEDURE SET_IOBYTE (X : CHAR):
VAR

PTR 1 ~CHAR;

BEGIN

MAP(PTR, 3)i

PTR” 1= X3

DISPOSE(PTR)3

END;

Section 6% Builtin Procedures

JRT Pascal User 's Guide -56-

6.7 NEW

Format 1
NEW(pointer_variable)i

Format 2
NEW(pointer_variable, tagl;..., tagn)j

The NEW procedure allocates new dynamic variables. A
block of dynamic storage of the required size is obtained.,
The block’'s virtual address, not its actual address is
stored in the pointer variable.

Virtual addressing and dynamic storage are fully
explained in the section on storage management.

After NEW has been executed, the dynamic variable may
be accessed. Dynamic variables remain allocated until
specifically de-allocated by the DISPOSE procedure. If a
procedure uses NEW to allocate a dynamic variable, that
variable remains allocated after the procedure ends.,

Format 2 ceontains | to n tag fields., These are the
fields specified in the CASE clause of variant records.

Section 6: Builtin Procedures

JRT Pascal User’'s Guide
Examplie:
(*#* PROGEAM FRACMENT TO ALLOCATE A
{* LINKED LIST OF VARIABLE LENGTH,
(# THE ROOT OF THE LIST 1S5 A GLOEAL
(# VARIABLE., NODES AFTER THE FIRST
(# ARE INSERTED BETWEEN THE ROOT AND
(#* THE FIRST NODE.
TYPE
NODE = RECORD
NEXT : INTEGER;
DATA : STRINGI[3001;
END3
VAR
ROOT : ~NODE;
PROCEDURE LINKED_LIST (COUNT : INTEGER
VAR
I + INTEGER;
TEMP : ~NODE:
BEGIN
(* ALLOCATE FIRST NODE %)
NEW(ROOT)3
(#* SET END_OF_LIST INDICATOR #)

ROO

{*
FOR

END

Section 6:

T*NEXT := NIL:

ALLOCATE LINKED LIST *)
I := 1 TO COUNT DO

BEGCIN
NEW(TEMP)3
TEMP~,.NEXT := ROOT;
ROOT := TEMP;
END;

s (¥ LINKED_LIST %)

Builtin Procedures

*)

*)
*)

*)

)3

-57 -

JRT Pascal User’'s Guide -58-

6.8 PORTOUT
Format

PORTOUT(port_number, byte)3

The PORTOUT procedure writes a byte directly to one of
the hardware output ports, The port_number is an integer
expression, The byte is a string or char expression.
Examples:

PORTOQUT(MODEM, START_CHAR)
PORTOUT(VOICE_SYNTHESIZER, ‘A’)3
PORTOUT(FIRE_ALARM, RESET);
PORTOUT(TELETYPE, CHR(7))3

PORTOUT(15H, CHR{ 3 + X))3

Section 6: Builtin Procedures

JRT Pascal User’'s Guide -59-
6.9 SYSTEM
Format
SYSTEM(option)3
The SYSTEM procedure allows you to control the trace

facilities, the routing of console output,
compression and warning messages.

dynamic storage

The options for SYSTEM are
the Pascal

listed, default
system are indicated with an asterisk.

states of

option purpose

CONS route output to consocle
NOCONS no output to console
LIST route output to printer

*# NOLIST no output to printer
WARNING display warning messages
NOWARNING suppress warning messages
LTRACE activate line trace
NOLTRACE disable line trace
LRANGE, 1, u set line range for line trace
PTRACE activate procedure trace

* NOPTRACE disable procedure trace
INITIALIZE re-initialize disk system

after disk switch

COMPRESS compress dynamic storage

The LRANGE option requires two additional parameters.

The lower and upper line numbers

Examples:

SYSTEM(LIST)3

SYSTEM(NOWARNING);

SYSTEM(LRANGE, 250, 300

SYSTEM(COMPRESS)3

Section 6: Builtin Procedures

are integer expressions.

JRT Pascal User’'s Guide -60-

7+ Input/output

JRT Pascal includes a powerful input/output subsystem
- which can be used to meet virtually any processing -
requirement, Three modes of input/output - console,
sequential disk, random disk - are provided.,

Disk files can be processed in either TEXT mode or in
BINARY mode. TEXT mode 1is most commonliy used by BASIC
languages, Data is stored in ASCII text readable format,
BINARY mode is found on ltarger mini and mainframe computers.
The data is input/output in the binary format used
internally by the Jlanguage. Not only is the data more
compact in some cases but it is aiso of fixed length, For
example, an integer in text format could occupy from two
bytes to six bytes depending on its value, But in binary
format, an integer is always exactly two bytes.,

Text mode is sometimes called "stream 1/0", Binary
mode is sometimes called “"record 1/0",

Another advantage of binary format is that you can
process data files or COM files containing special control
characters., ;

All files in JRT Pascal are "untyped”. That is vyou
can read and write data of any format to any file, You can
write records of entirely different formats and sizes on the
same file.

JRT Pascal also supports direct access to the hardware
input/output ports without having to write an assembly
language subroutine. The builtin function PORTIN and
builtin procedure PORTOUT are described in the sections on
builtin functions and procedures.

The procedures GET and PUT are not supported. The

standard procedures READ and WRITE are extended to support
every processing need. '

Section 7: Input/output

JRT Pascal User’'s Guide -6~

7+1 Console input/output

Console input/output is the usual means for a program
to interact with the user, Data values can be displayed at .
a video terminal or teletype and data can be Keyed in in
response.

Console input/output always occurs in text rather than
binary format. Integers, real numbers, strings, characters,
Booleans will be displayed in text format, Set variables
have no meaningful text format and cannot be written to the
console,

Using the HEX% builtin function any variable can be
converted to hex format for direct display. On console
input for integers, data may be Keyed in standard decimal
format or in hex format. An ‘H’ character suffix indicates
hex format.,

On input to the console, data items may be separated
by spaces, tabs, commas or semicolons., Character or
structured variable inputs which contain special characters
may be entered in single quotes. The quote character itself
may be entered by doubling it,

Sample input lines

3.14159,77

03ch, "JRT Systems’
‘don” ‘'t say you can’’‘t’
6.70234e-25,0.0000003

Reading from the console into a dynamic string
variable 1is treated differently, An entire iine of text is
obtained from the console and moved directly into the string
variable, Separator characters and single Qquotes are
ignored. The system will not allow more characters to be
Keyed in than can fit into the variable. The string
variable must be the only variable in the READ’'s parameter
list.

Console output ¢an also be routed to the printer or
list device. The SYSTEM procedure is fully described in the
section on builtin procedures. Some of its options are:

SYSTEM(LIST)3 route output to printer
SYSTEM(NOLIST)3 do not route to printer

Section 73 Input/output

JRT Pascal User’'s Guide -62-

SYSTEM{ CONS)3 route to console device
SYSTEM(NOCONS)3 do not route to console

The builtin procedures/functions used in console
input/output are:

READ, READLN read data into storage

WRITE, WRITELN write data to console/printer
EOLN end of line function

Section 7: Input/output

JRT Pascal User’'s Cuide - =63~

7.2 Sequential file processing

Disk files are not inherently sequential or random.
Those terms apply to the means of access which may be
applied to any disk file.

Sequential file processing is generally faster than
random access because input/output can be buffered and
because the disk positioning mechanism only needs to move
short distances.,

JRT Pascal lets the user obtain maximum processing
speed by defining the buffer size for sequential files. The
buffer is the holding area where disKk data is Jloaded and
written, This area is filled or emptied in one burst - one

disk access with one head lcad operation. A very small
buffer may cause disk "chattering" during processing because
of frequent accesses, A large buffer will result in less

frequent but longer disk accesses.

The buffer size is specified as an integer expression
in the RESET or REWRITE procedure. It will be rounded up to
a multiple of 128, If storage is plentiful, buffers of 4096
or 8192 bytes will improve processing.

The builtin procedureslfunttions used in sequential
disk file processing are: :

RESET open file for input
REWRITE open file for ocutput
READ, READLN read data into storage
WRITE, WRITELN write data to disk

EOF end of file function
EOLN end of line function
ERASE delete a file
RENAME rename 3 file

Section 7t Input/output

JRT Pascal User ‘s Guide

This sample program reads in a file and dumps
hex format to the console,

PROGRAM DUMP;

TYPE BLOCK = ARRAY [1..,16] OF CHAR;
NAME = ARRAY [1..14] OF CHAR;

VAR

B : BLOCK;

DUMP_FILE : FILE OF BLOCK;
FILENAME : NAME;

BEGCIN
WHILE TRUE DO {(# INFINITE LOOP)
BEGIN
WRITE('enter file name : ‘)3
READLN(FILENAME);
RESET(DUMP_FILE, FILENAME,
BINARY, 4096);
WHILE NOT EOF(DUMP_FILE) DO
BEGIN
READ{(DUMP_FILE; B);
WRITELN(HEX${(B));
END3
CLOSE(DUMP_FILE)3
WRITELN;
END;
END.,

Section 7: Input/output

JRT Pascal User’'s Guide -85~

7.3 Random file processing

For many types of processing it 1is not Known in
advance in which sequence the records of a file will be .
needed, A spelling dictionary or online inquiry customer
database obviousliy must use random access files.

In JRT Pascal random access is fully supported. Data
can be read and updated by providing the relative record
number (RRN) within the file for fixed length records. The
first record is at RRN = 0, For variable length records,
the data can be read or updated by providing the relative
byte address (RBA). The RBA 1is the location of the data
item within the file - the first byte is at RBA = 0,

The RBA mode of processing gives much greater
flexibility ¢than RBEN., If# all records had to be the same
size, then all must be the size of the largest, resulting in
much wasted space and slower access.

JRT Pascal version 2.1 now supports random files up to
the CP/M maximum of 8 megabytes. The RBA or RRN value may
be an integer or a real expression, Programs written under
earlier versions are source code compatible but must be
recompiled using -the version 2.1 compiler, :

The procedures used in random file processing are:

OPEN open or create random file

READ : read data into storage
WRITE .~ transfer data to disk
ERASE. delete a file :
RENAME rename a file

A sample program shows random access to a file
containing sales information for the various departments of
a retail store. The records are located by department
number, C . P :

Section 71 Input/output

JRT Pascal User ‘s Guide

PROGRAM INQUIRY;

LABEL 103

TYPE

DEPT_RECORD = RECORD
INVENTORY t REAL;:
MTD_SALES : REAL;
YTD_SALES t+ REAL:
DISCOUNT : REAL;
END;

VAR

INPUT_AREA : DEPT_RECORD;
DEPT_FILE : FILE OF DEPT_RECORD;
DEPT : INTEGER;

BEGIN (# INQUIRY #)
OPEN(DEPT_FILE, °‘C:DEPTDATA.RND’, BINARY)j;

REPEAT .
WRITE("Enter dept number : ')}
READLN(DEPT)3
IF DEPT = 999 THEN GOTO 103 (% EXIT %)
READ(DEPT_FILE, RRN, DEPT;
INPUT_AREA)3
WRITELN;
WRITELN(‘dept’, DEPT,
! inv’, INPUT_AREA. INVENTORY:9:2,
disc’, INPUT_AREA.DISCOUNT:9:2)
WRITELN({ " MTD sales’,MTD_SALES:9:2,
: YTD sales’, YTD_SALES:9:2)3§ .
WRITELN;
10: (# EXIT LABEL #*)
~UNTIL DEPT = 999;

CLOSE(DEPT_FILE)3
END (# INQUIRY #),

Section 7: Input/output

JRT Pascal User’ s Guide -67 -

7+4 Indexed file processing

In most applications where random or direct file
access is needed, there will not be a one-for-one match
between the Key and the relative record number, In these
cases some form of index must be used to match the Key to
the record number or relative byte address of the desired
data item in the file,

The index itself may be located in the file and be
maintained as the file changes, It must contain at least a
Key and a data location field for each record.,

The Key which is used to locate the data is usually
some vadbe |ike department number, customer name or supplier
number concatenated to part number. If the Kkey itself is
large then the index could become very large and occupy too
much main storage. In this case a shorter Key can be
created from the original Key data. For exampie, a four
byte Key could be generated from the first, third, eighth
and tenth letters of a customer name., Duplicate keys can
occasionally occur and may be considered in programming the
index search procedure.

When the file contains a very large number of records
or data items a two level index may be used:. The primary
index which is Kept in storage contains the range of Kkeys
contained in each of the second level indexes, The primary
index is searched for the correct Key range. The correct
second level index is lopaded and searched. Finally the
actual record is loaded, In many applications the one extra
disk access would be justified by the savings in storage.

For the experienced programmer, the P0OS builtin string
function c¢an be used to perform very fast searches of
indexes.,

One method of indexed file processing places the index
as the first record on the file, The index will contain a
kKey in any useful format, an RBA value, and perhaps a record
size field for variable records.

After opening this indexed file, the index is read
from RBA=0 into an array in storage. There it can be
searched for any particular Key., If the record is found
then using the RBA from the index it can be loaded into
storage. It can be updated if necessary and rewritten,

Section 73 Input/output

JRT Pasc

al User’'s Guide

-68-

A sample program segment based on this Kind of indexed
shown., It provides online access to a file of
texts. The indexed file <could be created by

tile is
message
separate

sequential disk program,

(#%% CLOBAL TYPE AND VAR DECLARATIONS #*#%)
CONST
INDEX_SIZE = 1003

TYPE
INDEX_ENTRY = RECORD
MSG_NUM t INTEGER;
MS5G_RBA t INTEGER;
END;
INDEX = ARRAY [1..INDEX_SIZE] OF INDEX_ENTRY;
VAR
IX + INDEX;

Section

MSG_FILE : FILE OF CHAR;

»

PROCEDURE MESSAGE (NUM : INTEGER)
VAR

1 : INTEGER;

MSC_BUFFER : ARRAY [1.,,10001 OF CHAR;
BEGIN

IF NUM = 0 THEN (% INITIALIZE %)

BEGIN

OPEN(MSG_FILE, "B:i:MESSAGE.DAT’,
BINARY)3

READ(MSG_FILE, RBA, 0; IX);

END

ELSE
BEGIN (# LOCATE AND PRINT MSC #)
=13 .
WHILE (I <= INDEX_SIZE)
AND (NUM <> IXII]1.MSBG_NUM) DO
Ix=1+13
IF I = INDEX_SIZE THEN
WRITELN(‘Unknown message ' ; NUM)
ELSE (*# LOAD MESSAGE #)
BEGIN
READ(MSCG_FILE, RBA,
IX[LI1.MSG_RBAy MSG_BUFFER);
WRITELN(MSG_BUFFER)3
END3;
END3
END; (% MESSAGE %)

71 Input/output

a

JRT Pascal User’'s Guide -69-

7+9 EOF

Format
EOF (filername);

The end of file function indicates when the end of a
file is reached during input processing. It returns a
Boolean value of true immediately after end of file
detection, otherwise it returns true, The EOF function has
no meaning in console or random disk processing.

When processing a file in text mode, end of file is
detected when all data up to the first ctli-z (1AH) has been
read. This is the standard character to indicate the end of
data.

When processing a file in binary mode, end of file is
detected when all the data in the last allocated sector of
the file has been read.

Examplies:

(# COMPUTE THE AVERAGE OF A FILE OF NUMBERS *)
RESET(Fi, ‘DAILY.SAL’, TEXT, 4096);
TOTAL := 03
COUNT := 03
WHILE NOT EOF(F1) DO
BEGIN
READ(F1; DAILY_SALES);
TOTAL := TOTAL + DAILY_SALES;
COUNT := COUNT + 13
END;
AVERAGE := TOTAL / COUNT;
CLOSE(F1)3

(# WRITE A FILE TO THE PRINTER *)
SYSTEM(LIST);
RESET{(F1, 'TEST.PAS’, BINARY, 2048);
READ(Fi3 CH)3
(# INSTEAD OF USING EQOF, WE DIRECTLY TEST FOR
A CHARACTER 1AH, SINCE THIS IS BINARY FILE %)
WHILE CH <> CHR(1AH) DO

BEGIN

WRITE{(CH)3

READ{(F1; CH);

ENDj
CLOSE(F1)3

Section 7: Input/output

JRT Pascal User's Guide -70~

7.6 EOLN

Format 1
EOLN (filename)3

Format 2
EOLN;

The end of line function returns a Boolean value true
if the end of line 1is reached otherwise false, This
function applies only to console and text files, not to
binary files.

Format 1 is used to sense end of line while reading
disk files, Format 2 is used to sense end of line in
conscdle input.

This function is used primarily to read in an unknown
number of data items from a line of text. Executing a
READLN with or without any parameters, always resets EOLN to
false and positions the file at the start of the next line
of text.

Examples:

(#* READ NUMBERS FROM CONSOLE, COMPUTE AVG *)
TOTAL := 03 COUNT := 03
WHILE NOT EOLN DO
BEGIN
READ(NUMBER)
TOTAL := TOTAL + NUMBER;
COUNT := COUNT + 13
END;
READLN;
AVERAGCE := TOTAL DIV COUNT;

(# READ DATA FROM FILE, COUNT LINES OF TEXT #)
LINE_COUNT := 03
WHILE NOT EOF(F1) DO
BEGIN
'READ(F1; DATA_ITEM);
PROCESS_DATA(DATA_ITEM);
IF EOLN(F1) THEN
BEGIN
LINE_COUNT := LINE_COUNT + 13
READLN(F1);
END;
END;

Section 7t Input/output

JRT Pascal User’'s Guide -71-

7+7 ERASE
Format

ERASE (filename);

The ERASE procedure deletes files from disk. It
be used to delete files from any available disk,
including the disk identifier in the filename,

ERASE is implemented as an external procedure.
program referencing it must include its declaration:

PROCEDURE ERASE (NAME : STRINGI20])3 EXTERN;:

Examples:
ERASE(‘TESTPGM.PAS’)3
ERASE(CONCAT(°B:’, FILENAME, FILETYPFE))3
ERASE(‘A:’ + NAME + “.HEX’)3

ERASE(BACKUP_FILE)3

Section 73 Input/output

can
by

Any

JRT Pascal User’'s Guide -72-

7.8 OPEN

Format 1
OPEN (file_identifier, filename, BINARY)3

Format 2
OPEN (file_identifier, filename, TEXT):

The OPEN builtin procedure is used to open ¢files for
random access, Format 1 is used to open files in binary
mode, Format 2 is for text mode processing.

The file_identifier refers to a file variable declared
in the VAR declaration section. The filename is a string or

structured expression which may include disk identifier
letter,

The file specified by the filename is opened for use
if present. If not present, a new file is ¢reated,

Both formats may be used with both RRN and RBA
accessing.,

Examples:
OPEN (INVENTORY, °'INVENTRY.DAT’, BINARY)
OPEN (F1, RANGE + °,DAT’, TEXT);
OPEN (CASE_HISTORY, ‘D:TORTS.LIB’, BINARY)j
OPEN (DICTIONARY, °‘B:SPELLING.LIB’, BINARY)}

Section 73 Input/output

JRT Pascal User’'s Guide ~-73-

7+9 READ, READLN

Format 1 (console)
READ/LN { variablel, variable2;...)3

Format 2 (sequential disk)
READ/LN (file_identifier §{ variablel, variableZ,...,)i

Format 3 (random disk)
READ/LN (file_identifier, RRN, integer_or_real_expr j
variablel, variabieZ,...})3

Format 4 (random disk)
READ/LN (file_identitfier, RBA, integer_or_real_expr ;
' variablel, variabie2)+,+)3

The READ standard procedure is used to bring data from
console or disk into main storage.

Format 1| is used for reading data from the console
Keyboard, When it is executed it will obhtain data from the
console buffer, convert to the proper format, and store the
data in the specified variables. I# sufficient data is not
available, the system will wait for more data to be Keyed
in, If data is KkKeyed in with an unacceptable format, a
warning message is issued.

Dynamic string variables may only be wused in READ
format { - in console input, not in disk file input. To
read character data from disk files, arrays of characters or
records may be used,

Reading from - the <console into a dynamic string
variable 1is treated differently. An entire line of text is
obtained from the console and moved directly into the string
variable. Separator characters and single quotes are
ignored:, The system will not allow more characters to be
keved in than can fit into the variable. The string
variable must be the only variable in the READ’'s parameter
list.,

Whern all data on a given input line has been read in,
the EOLN functiorn becomes true. The READLN procedure has
the additional purpose of reseting EOLN to false. READLN
always clears out the current input line. For example, if S
numbers were Keyed in on one line and a READLN were issued
with 2 variables in its parameter list, the iast 2 numbers

Section 7: Input/output

JRT Pascal Useﬁ's Guide -7 4~

on that line would be lost,

Format 2 is used to read in data from 3 sequential
disk +file, Whether the file is processed as text or binary
data is specified when the file 1is opened (RESET). The
file_identifier must refer to a8 file which has been
successfully opened or a run-time error will occur.

Note that JRT Pascal uses a3 semicolon after the
file_identifier rather thanm a comms.

Format 2 is used to read in data from a random file by
giving the relative record number (RRN) of the record
required, The first record is at RRN=0., The file must have
been successfully opened with the OPEN procedure,
Sequential and random file accesses cannot be mixed unless
the file is closed and re-opened in the other mode. The
size of records on the file for RRN processing is determined
when the file is declared. For example, a FILE OF REAL has
a record size of 8 bytes.

Format 4 is used to read data from a random file by
giving the relative byte address (RBA) of the data item
required. The first byte of the file is at REA=0, The file
must have been successfully opened with the OPEN procedure,
Random processing cannot be mixed with sequential processing
but RRN and RBA processing can be mixed without re-opening
the file,

Examples
READLN(A, B)j
READ(DATA_FILE; X_DATA, Y_DATA)j
READ(HISTORY_FILE, RRN, YEAR; MAJOR_EVENT)3
READ(INQUIRY_FILE, RBA, 03 INDEX)j;

READLN; (* RESET EOLN %)

Section 7@ Input/output

JRT Pascal User's Guide -75~

7+10 RENAME
Format
RENAME (old_name, new_name)3
The RENAME procedure is used to rename disk files on

any disk. The old_name and new_name are string expressions.

RENAME is implemented as an external procedure. Ary
program referencing it must include its declaration:

PROCEDURE RENAME (OLD, NEW1 : STRING[201)3
EXTERN;
Examplies:
RENAME("C:TEST.PAS‘, ‘TESTZ2.PAS’)3
RENAME(OLD_FILE_NAME, NEW_FILE_NAME);
RENAME(DISK + OLD_NAME, NEW_NAME)3

RENAME(°‘SORT.BAK', °‘SORT.PAS5‘)i

Section 7: Input/outputs

JRT Pascal User ‘s Guide ~-76-

7+11 RESET

Format 1
RESET (file_identifier, filename, BINARY, bufr_size)

Format 2
RESET (file_identifier, filename, TEXT, bufr_size)i

The RESET standard procedure is used to open already
existing files for sequential input. If the file specified
is not present, a run-time error occurs.

Format 1 is used to open files in binary mode. Format
2 opens files in text mode.

The file_identifier refers to a file variable declared
in the VAR declaration section, The filename is a string or
structured expression which may include disk identifier
letter,

The bufr_size is an integer expression which indicates
the size of the input buffer to be allocated in dynamic
storage. When storage is available, larger buffers are
preferred because they result in fewer disk accesses and
thus faster processing., The buffer size is rounded up to a
multiple of 128,

Values like 1024, 2048, 4096 are recommended for
bufr_size.

Examplés:
RESET(INPUT_FILE, °‘SQURCE.PAS‘, RINARY, 1024);
RESET(LOG, °‘B:LOG.DAT’, TEXT, 2048)j;
RESET(DAILY_SALES, ‘C:DAILY.DAT’, TEXT, 256);
RESET(STATISTICS, ‘STAT.DAT’, BINARY, 1024);

Section 7: Input/output

JRT Pascal User’'s Guide -77-

7+12 REWRITE

Format 1
REWRITE(file_identifier, filename, BINARY, bufr_size)y

Format 2
REWRITE(file_identifier, filename, TEXT, bufr_size);

The REWRITE standard procedure is used to open files
for sequential disk output, A new file with the given
filename is allocated, If a file with that name already
existsy it is deleted to free the space allocated to it.

Format 1| is used to open files in binary mode. Format
2 opens files in text mode.

The file_identifier refers to a fiie variable declared
in the VAR declaration section. The filename is a string or
structured expression which may include disk identifier
letter.,

The bufr_size is an integer expression which indicates
the size of the input buffer to be allocated in dynamic
storage, When storage is available, larger buffers are
preferred because they result in fewer disk accesses and
thus faster processing. The buffer size is rounded up to a
mulitiple of 128,

Values like 1024, 2048, 4096 are recommended for
bufr_size. -

Examples:
REWRITE(LOG_FILE, °‘F:LOG.DAT’, TEXT, 512)3
REWRITE(REPORT, MONTH + °‘.RPT’, TEXT, 1024);
REWRITE(SYMBOL, PGM + ‘.85YM’, BINARY, 256)3

REWRITE(STATISTICS, °"B:STATS.DAT’, TEXT, 768)3

Section 7@ Input/output

JRT Pascal User s Guide ~78~-

7+13 WRITE, WRITELN

Format 1 (consoie)
WRITE/LN (variablel, variable2,.,..,)3

Format 2 (sequential disk)
WRITE/LN (file_identifier ;3 variablel, variabie2,..+4)3

Format 3 (random disk)
WRITE/LN (file_identifier, RREN, integer_or_real_expr 3}
variablel, variableZ,..+)

Format 4 (random disk)
WRITE/LN (file_identifier, RBA, integer_or_real_expr 3}
variablel, variabie2;..+)3

The WRITE standard procedure is used to transfer data
from main storage to the console for display or to disk for
storage.

Format 1 is used to write data to the console or
printer, The console 1is always considered to be a text
device, that is data is always converted to readable text
format before output. Standard ASCII control characters are
supported:

decimal hex purpose
9 09h horizontal tab
10 Oah line feed
12 0ch form feed, clear screen
13 0dh carriage return, end line
For example, executing the Pascal statement

WRITE(CHR(12))3 will clear the screen of most types of CRT
terminals.,

The WRITELN statement is identical to the WRITE except
that it also writes a carriage return character after the
data, that is, it endathe current output line. A WRITELN
may be used by itself, without any variables. This writes a
bitank line to the output device,

Format 2 is used to write data to sequential disk
filesy, The file must have been successfully opened with a
REWRITE procedure. This format may be used in either binary
or text mode processing.

Section 7 Input/output

JRT Pascal \User’'s Guide -79-

Note that JRT Pascal uses a semicolon after the
file_identifier rather than a comma.

Format 3 is used to write data to a random file by
giving the relative record number (RRN) of the record being
updated or created. The first record is at RRN=0, The file
must have been successfully opened with the OPEN procedure.
Sequential and random file processing carnnot be mixed unless
the file 1is closed and re-opened in the other mode:. The
size of records on the file for RRN processing is determined
when the file is declared. For example, a FILE OF REAL has
a record size of 8 bytes, the size of real variables.

Format 4 is used to write data to a random file by
giving the relative byte address (RBA) at which the data is
to be stored. The first byte of the file is at REA=0, The
data will be stored beginning at the specified RBA and
continuing until it is all written out. The file must have
been opened with the OPEN procedure, Random processing
cannot be mixed with sequential processing but RRN and REA
processing can be mixed without re-opening the file.

When processing in text mode, a convenient formatting
option is available:. Any of the variables in the WRITE
parameter list may be suffixed with a colon afd an integer
expression. This gspecifies the field width of the data
value being written. If the data item is shorter than this
then spaces will be inserted on the left of the item. This
option is used when columns of figures must be aligned.

A second option is available for real numbers. After
the field width integer expression, a second colon and
integer expression may be used to indicate the number of
digits right of the decimal place to he dispiayed.

Examples:
WRITELN{(‘THE TIME 18 °,GET_TIME)3
WRITE(DATA_FILE; X[131, X[2], XI[3]1);

FOR I:=1 TO 100 DO
WRITE(DATA_FILE; X[I1)3

IF DATA < 0 THEN

WRITE(NEGATIVE_DATA; DATA)
ELSE

Section 7: Input/output

JRT Pascal User's Quide -80-

WRITE(POSITIVE_DATA; DATA);
WRITELN(REPORT; TOTAL_SALES:12:2);

WRITE(CUSTOMER_FILE, RRN, CUST_NUM;
NEW_CUSTOMER_RECORD)3

WRITE(INQUIRY, RBA, 03 INDEX);
WRITELN; (# BLANK LINE #)

WRITE(CHR(OCH)); (# CLEAR SCREEN #*)

Section 7 Input/output

JRT Pascal User’'s Guide -81-

8, Linker

~ The use of the linker is entirely optional. It is
used to merge a Pascal program INT file with some or all of
its external procedure/function INT files., It <can process
procedures written in assembler as well as Pascal:. To run
the linker enter:

EXEC LINKER

The linKer will issue a prompt to the console for the
program name. After the main program has been processed,
you will be prompted to select which of the external

procedures to merge, The procedures referenced by this
program will be listed with their identification numbers (1
to 63)., An asterisk indicates procedures selected.
Possible replies to the 'Procedure selection’ message are
listed below,., More than one number may be entered each
time. Entering zero ends the interactive portion and causes
merge processing to begin.

reply purpose

1 to 63 select this procedure

-632 to -1 de-select this procedure

100 select all procedures

-100 reset, select none

0 end selection, beqgin processing

The output module file will have the same filename as
the main program and a filetype of INT., The filetype of the
main program input file will be renamed to IN2. If any of
the selected input procedure files are not present a run-
time error will occur and the linker will terminate. All
files must be present on the A: disk.

Section B: Linker

JRT Pascal User s Guide -82-

9, Customiz

External procedures and functions are compiled
separately from the main program. They c¢an be linked
together with the main program using the linker, If this is
not done then they will be automatically loaded from disk
into the computer’'s storage when they are first referenced.
I a short-on-storage condition arises, they may be purged
from storage if they are not currently active.

Procedures which are rarely used, like initialization
or error handling, would not occupy main storage except when
needed. Also very large programs might be divided into
several phases, each corresponding to an external procedure.

The EXEC locads the external procedures from disk.,
There is no need to inform EXEC on which disk each procedure
resides - it will search for them. This means that you do
not have to put all the program sections on to the A: disk.

EXEC and the compiler JRTPASZ contain “disk search
lists’ which specifies which disks are available on the
system, The default lists are set to ‘AB’. The search
lists should be modified to reflect vyour hardware
configuration, The Customiz program is provided to modify
the tists in both EXEC and JRTPAS2., To run Customiz enter:

EXEC CUSTOMIZ
You can enter the new disk search list with up to four
disk letters specifieds The letters must be contiguous.,

The list also determines the sequence in which the disks are
searched for external procedures and functions.

Section 9: Customiz

JRT Pascal User‘'s Guide . -83-

10, Assembler

The JRT Pascal system provides two methods of
preparing external procedures and functions written in
assembly language. A special purpose assembler is provided
which generates modules in the correct format., The second
method may be used if a Microsoft format assembler is
available such as RMAC or MACRO-80. The CONVERTM utility
converts the REL files produced by these assembliers into INT
format files which may be accessed as external procedures.

The JRT assembler translates 8080 assembly language
into JRT relocatable format modules, These modules can be
called from a Pascal program as if they were Pascal external
procedures, Parameters may be passed to them and function
return values may be received.

The JRT assembler is compatible with the standard ASM
program distributed with CP/M. Input files have a file type
of ASM. The assembler output is a file of type INT, which
may be linKed with the main program or automatically loaded
at run-time,

10.1 Entry codes

"After an external procedure is loaded into main
storage, EXEC transfers control to it. A five byte code
(95,6,0,92,0) is placed at the start of the procedure to
inform EXEC that this is an assembler procedure rather than
Pascal, The procedure must end with a return (RET)
instruction, Any registers except the 3080 stack pointer
may be modified., :

Example of entry codes:

sprocedure entry :
: db 95,6,0,92,0 3required entry codes

3 E -
1send a message to console
- mvi €9 iprint buffer code

Ixi d,msg jaddress of message

call § sbdos entry point
3 ;

ret ~ send of procedure

Section 10: Assembler

JRT Pascal User's Guide ' -84-

e

msg db ‘JRTASM sample procedure’
db 0dh, 0ah, “$° jcarriage return
end - :

If this procedure were named SAMPLE}ASM then the
declaration in the Pascal program referencing it would be:

PROCEDURE SAMPLE; EXTERN;
10,2 Operating JRTASM

To assemble an external procedure enter:
EXEC JRTASM |

You will be prompted at the console for the input
filename and options. The options are:

1 - produce a listing on the console during pass 1|
of the assembly process, useful for debugging

C - produce an output file of type ‘COM’ rather
than “INT’, this is not an external procedure but
a directly executable command file in standard
CP/M format, an ORG 100H directive should be
included since the default origin is 0

10.3 Directives

These assembler directives are supported:

directive purpose

ORG ' set location counter, nbt used
in external procedures

SET assign a value to a variable

EQU ‘ - assign a value to a fixed symbol

1F/ELSE/ENDIF conditional assembly of code,
‘ may be nested to 16 levels

DB ' define byte, multiple operands
DW define word
DS define storage

Section 10: Assembler

JRT Pascal

READ

WRITE

Example

A e -

-e

Section 10:

User ‘s Guide

of directives:

set 9
if a =
write
else
write
endif

read
write

set a + 1|

db

Assembler

‘a is equal

‘a is not equal

‘x squared is

used to assign a new value to a
variable, like SET except that
value is obtained from console
display strings or expressions
on console

to nine’

to nine’

imsg at console will ask for x

X * x)

sincrement a

‘string’,a, 255

JRT Pascal User’'s Guide s -86-

10.4 Expressions

"Integer expressions can be used in assembler
instructions, Expressions are either fixed or relocatable,
A symbol is relocatable if it refers to an address,
otherwise it is fixed., If any symbol in an expression is
relocatable then the entire expression 1is relocatable.,
Parentheses may be nested to any level,

These operators are supported:
¥ / 0+ -
NOT AND OR XOR

MOD HIGH LOW
EQ NE LT LE GT GE

Section 10: Assembler

JRT Pascal User ‘s Guide ~-87-

10,5 Parameters and function return values

Parameters of any data type may be passed to assembler
external procedures and functions:, The EXEC maintains a
data stack which contains all static variables, parameters,
function return values and procedure linkage blocks.,

Three address pointers are used to access the data
stack:, These are available to external procedures in the
8080 register pairs on entry to the procedure.

BASE (HL) - address of the data stack

CUR (DE) - address of the linkage block for
currently active procedure

TOS (BC) - top of stack, points past last
allocated byte

1 I
I 1
TOS-->1 I
== e - I
I 1
I 6 bytes I linkage block for
I 1 current procedure
CUR-->1 I
J-cccmmemcrmee e I
I 2 bytes—— I parameter length fid
[-mmmmmre e e 1
I I
1 x bytes I parameters of
1 I current procedure
1 I
I-w--rmmmmme e I
1 I
I I
1 I
I I gleobal variables
1 I of main program
Jowmmrrmemccce 1
1 1
I 6 bytes 1 1linkage block for
1 I wmwain program
I 1
BABE-->[--=-~-mecveeem- I

Section 10: Assembler

JRT Pascal User’'s Guide -88-

With the three data stack pointers, the parameters
passed to the procedure can be accessed. I+ it 1is a
function the return value can be stored., Aiso the global
variables of the main program can be accessed. For example,
if the first global variable declared 'in the main Pascal
program which calls the external procedure is an inteqger
named INT! then just add 6 to the BASE pointer to get the
address of INT1, The BASE pointer is in register pair HL on
entry to the procedure,

Data stack after procedure call DEMO(“A",7)3
‘AT F length linkage block
41 0700 0300 XX XX XX XX XX XX Yy
I I
CUR TOS

The two byte integer fields are in 8080 byte-reverse
format, The parameter length field is equal to three, The
linkage block is six bytes of unspecified data.

Parameters are accessed by decrementing the CUR
pointer. Pascal value parameters are actually present in
the data stack:. For reference parameters, the address of
the variable is present in the data stack, If the procedure
has no parameters, the parameter length field is zero.

Function return values must be stored ,just before the
function’s first parameter in the data stack.

Data stack after function call X 1= TEST(3,8 & The
return value is of type integer.,

3 8 lerngth linkage block
rrere 0300 0800 0400 R XK EX XX XX KX Yy
I 1 1
return value CUR TOS

If the return value is of type CHAF, a string, or a
structured variable (entire array, entire record) then there
is a two byte length field between the return value and the
first parameter, This field i5 set by EXEC and must not be
modified. If the return value 1is =a dynamic string, the
current length field is a twe byte field at the beginning of
the string, this must be set to the desired length of the

Section 10: Assembhler

JRT Pascal User's Guide -89-

field,

Data stack after function call NAME:=LOOKUP("X',1)3
The return value is of type ARRAY [1.,.4] OF CHAR;

return value rv len X1 length linkage block

re rr rrrre 0400 58 0100 0300 xx xx XX XX XX X% Yy
1 I
CUR TOS

10,6 Debugging assembler procedures

One effective way to debug external procedures written
in assembler uses the CP/M Dynamic Debugging Tecol DDT. 1I¢
you are running a Pascal program under DDT then an RST 7
instruction will be seen as a breakpoint and allow you to
use all of the DDT facilities, To run under DDT enter:

DDT EXEC.COM
Iprogram_name
G100

When the RST 7 instruction is encountered, DDT will
gain control. The display, modify, disassemble facilities
then can be used to examine the procedures data areas. To
resume execution, use the XP command to set the instruction
address ahead by 1, to get past the RST.

Section 10: Assembler

JRT Pascal User's Guide -90-

10,7 Convertm program

The convertm program translates Microsoft format REL
files into JRT ¢format INT files, Only REL files may be
input - HEX files do not contain information about
relocation addresses.

To run the convertm program enter:

EXEC CONVERTM

The program will inguire at the console for the name
of the module to bke transiated, A +file type of REL is
assumed, The output module INT file is placed on the same
disk.,

10,8 BSample assembly programs

Three sample assembly programs are included here. Two
external procedures (sethit, resethit) and one external
function (testhit) can he called from any Pascal program or
external function. These small modules provide fast and
simple bit manipulation facilities, They alsc illustrate
the passing and returning of parameters for assembly
language external procedures.

Section 10: Assemblier

JRT Pascal User’'s Guide -91-

Listing of setbit.asm

ssetbit.asm
jexternal procedure which sets a bit on in a byte

procedure setbit (var x 3 charji bit ¢ integer)3
externsy
bit# in range 0..7

W W S W S8 B

entry code

db 95,6,0 1int vmcode
db 92 11pn vmcode
db 0 smode vmcode

jon entry bc=wtos de=wb hl=whase

]
jget bit# in b_reg, addri{(x) in hl, x into c_reg

sethit xchg thi=wb
dex ht dex h! dex h! docx h
mov b, m 1bhit#
dex h! mov dym! dex h! mov eym jaddri(x)
xchg shi=addr{x)
mov c,m jC=x
jcreate mask
inr b s1incr loop count
mvi a,l
1o00p rrc
der b
Jinz loop
sasmask c¢=hyte
ora ¢
mov m, a jstore byte
ret
3
end

Section 10: Assembler

JRT’Péscal User ‘s Guide

Listing of resetbit,asm

jresetbit.asm
jexternal procedure which reset bit in a byte

procedure resetbit (var x @ chary bit : integer);j
externs; '
bit# in range 0..7

B e Se VP B AP

entry code

db 95,6,0 1int vmcode
db 92 11pn vmcode
db 0 imode vmcode

jon entry bcswtos deswb hl=wbase

-

A
sget bit# in b_reg, addr{x) in hil, x into c_reg

resetbit xchg thi=uwb
dex h! dex h! dex h! decx h
mov b, m shit#
dex h! mov dym! dex h! mov e,m jaddr(x)
xchg shi=addr{x)
mov csMm 1c=%
jcreate mask
inr b t1incr loop count
mvi a,0feh
loop rrc
dcr b
Jinz loop
ja=mask c=byte
ana ¢
mov m,; a jstore byte
ret
3
end

Section 10: Assembler

-92-

JRT Pascal User’'s Guide

Listing of testbit.asm

jtestbit.asm

jexternal function which returns bit value of a byte

function testbit (x : chari bit : integer):
boolean; extern;

bit number is in range 0..7

W B9 SY Ss Be I W¢

entry code

db 95,6,0 1int vmcode
db 92 1tpn vmcode
db 0 imode vmcode

jon ehtry bc=wtos de=wb hl=wbase

3
jget bit# into b_reg and x into a_reg

testbit x=chg thi=wb
dex ht dex k! dex hil dex h 3point to bit
mov b,m jlow byte of bit
dcx h! mov a,m 3x
inr b
sshift loop
loop ric
der b
Jjnz loop
Jj€ true tbit is set

1false ¢ bit is zero
decx ht mvi my0! dex h! mvi m, 0

ret

jtrue ¢ bit is one

true dcx h! mvi my 0! dex h! mvi m, 1
ret

3
end

Section 10: Assembler

lownib

JRT Pascal User‘'s Guide : : ~94-

11, Storage management

This section discusses the initialization and
structure of main storage in the JRT Pascal system during
execution of Pascal programs.,

11.1 Main storage

When a Pascal program is started by entering the
command "EXEC prog_name" the EXEC.COM file is loaded into
main storage at address 100H by the CP/M operating system.
After EXEC receives control from CP/M it determines how much
storage is available and formats this area, EXEC then loads
the Pascal program module from disk. Processing of the
Pascal program then begins, ‘ ‘

During program execution there are four main regions
of main storage, BStarting from the lopowest address these
are: ‘

1, EXEC - the run-time environment, this region is fixed in
size and contains the primary run-time support system

2. Pascal program module - fixed in size, this 1is the
compiled Pascal program from an INT file

3, Data stack - variable in size, this region begins at the
end of the Pascal program and grows toward higher addresses:
this region contains all static variables (those created by
VAR declarations), parameters passed to procedures and
procedure activation blocKks

4, Dynamic storage - variable in size, this region begins at
the top of available storage and grows down toward lower
addresses; this region contains dynamic variables (those
created by the NEW procedure), input/output buffers, file
control blocks, external procedures and EXEC control tables

Since the data stack and dynamic storage regions grow
toward each other, a collision between these areas is
possible when storage is nearly full, Te prevent this
condition the run-time system maintains a 64 byte cushion
between the two areas. When the distance between them
becomes less than 64 bytes the run-time system takes several
actions to restore the cushion. I+ there is less than 64

Section {1: Storage management

~

JRT Pascal User’'s Guide -95-

bytes of free space in main storage, the least-recently-used
procedure will be deleted. Dynamic storage is then
compressed (see section 11.2). Processing will continue
even if the cushion cannot be restored; although performance
will gradually decrease, Only if there is actually a
collision between the data stack and dynamic storage will
the run-time system recognize an error condition and
terminate processing.

Section 11 Storage management

JRT Pascal User’'s Guide

Map of main storage use in the JRT Pascal system.

high ~--cc-recncrcccccccnncaa-
address 1 dynamic storage - I
I ‘ 1
I variable in size I
1 direction [I
I of growth 1 I
I \) 1
R LR T L I
I unused area I
IR R L R R I
I data stack I
I - ' I
I variable in size I
I direction A I
I of growth 1 I
I I I
I L L R -==1
1 Pascal program I
I INT module I
1 1
I fixed in size I
L L LR I
I EXEC : 1
I run-time syste 1
1 I
I fixed in size I
low 1 . I
address ------c-ccccmeccncccnann-
100H

Section 11i: Storage management

-96-

JRT Pascal User’'s Guide -97-

11.2 Dynamic storage

The JRT Pascal run-time system provides true dynamic
storage with auto-compression and for external procedures,
virtual storage is supported.

The JRT Pascal Dynamic Storage Management System is
designed to provide complete support for advanced features
such as dynamic data structures (linked 1lists, trees,
ringsy.«.) and completely automatic virtual storage for
external procedure and function code. Dynamic storage may
contain these items:

1, external procedures/functions

2, dynamic variables created by the NEW procedure
3, input/output buffers

4, file control blocks

5. EXEC control blocks and pointer tables

6. a free list of deallocated storage blocks

All of these items are allocated as blocks of dynamic
storage. Dynamic storage blocks are addressed indirectly in
JRT Pascal in order to allow the blocks to be moved during
compression by updating a pointer table. The value stored
in a pointer variable by the execution of the NEW procedure
is a "virtual address” rather than the real address of the
block allocated. The virtual address is used to locate an
entry in an - internal table called a pointer table, which
contains the size and real address of each storage block.
There may be up to 32 pointer tables and each one contains
up to 52 entries for storage blocks. During dynamic storage
compression, the real address of a storage block may change
but the virtual address does not change.

The dynamic storage manager performs these services.
1, format dynamic storage and initialize pointer tables
2, maintain the free list - this is a2 1linked 1list which
contains blocKs of storage which have been deallocated by
the DISPOSE procedure; by closing a file or by purging of an
external procedure
3, allocate a storage block - when a storage block is

requested by the NEW procedure, opening a file or loading an
external procedure, the storage manager attempts to satisfy

Section 11: Storage management

JRT Pascal User’'s Guide -98-

this request by searching the free list or extending the
dynamic storage regioni when scanning the free list for a
block, the first block which is large enough is selected; if -
this block is much too large, it is split and the remainder
returned to the free list; after 38 block has been found, its
real address, size and a flag field are entered in a pointer
table ‘

4, release a block of storage - add a deallocated block to
the free 1list and delete the corresponding pointer table
entries

S5, determine the amount of free space - the free space is
the sum of the sizes of all blocks on the free list and the
size of the gap between the data stack region and the
dynamic storage region

6. compress dynamic storage - All of the allocated storage
blocks are moved into the top of storage to eliminate free
space+ The free list is set to a null pointer, The pointer
table entries of all blocks are updated. If external
procedures were moved then their relocatable addresses are
adjusted: If active external procedures were moved then the
Pascal program counter and the procedure return addresses
are adjusted.

7+ convert the virtual address of a block to a real address

Section 11: Storage management

JRT-Pascal User s Guide -99-

12, External Procedures and Functions

External procedures are a facility for segmenting
programs into separately compiled modules. With these, the
size of the entire program can be practically unlimited,
This is because, unlike with segment procedures, overlays or
chaining, ¢the virtual storage manager loads and when
necessary deletes program sections all automatically. This
makes the actual storage of the computer seem much larger
than it really is.,

Refer to the section on storage management for a full
description of virtual/dynamic storage.

External procedures are loaded into dynamic storage by
EXEC when they are first referenced, unless they were linked
with the main program to form one module, The loading is
transparent to the programmer in that no planning or effort
is required.

External procedures remain in storage unless a short-
on-storage condition occurs, then the least-recently-used
procedure may be deleted., I# this happens, the control
blocks associated with the procedure are kKept so that re-
loading, if necessary, could be done more rapidly, When
main storage is severely overloaded, frequent deleting and
relpoading of external procedures may occur, This condition
is called “thrashing.” Thrashing can be recognized by
unusually frequent disk accessing and little useful
processing being done by the program. It is necessary in
this case to reduce the storage requirements of the program.

Section 12: External Procedures and Functions

JRT Pascal User’'s Guide --100-

12:.1 Coding external procedures and functions

The external procedure Pascal file is very similar to
a standard “internal"” procedure in format. In many cases
the only differences from a standard procedure format are
that the PROCEDURE reserved word is preceded by the reserved
word EXTERN and that the whole file is ended with a period
to signify the end of the compile unit. An example of this
basic case follows.,

EXTERN

(# PRINT THE TOTAL AND AVERAGE OF 4 NUMBERS #)
PROCEDURE XDEMO (A,B,C,D : REAL)

VAR

TOTAL : REALj

BEGIN
TOTAL := A + B + C + D3
WRITELN('TOTAL =, TOTAL,

* AVERAGE =",TOTAL / 4.0)3
END; .

JRT Pascal external procedures can access all of the
global variables in the main program. The global variables
are those in the main program declared before any procedure
or function declarations, They are variables that are
available globally not only local to some procedure., In the
preceding example, TOTAL is a loc¢al variable - it is not
accessible outside of the procedure XDEMO,

To access global variables or files, their
declarations are inserted in the external procedure file
after the reserved word EXTERN and before the procedure
header. The three declaration sections CONST, TYPE, VAR may
be inserted at this point, They must be identical to the
global declarations in the main program, except that
additional constants and type identifiers may be added here.

Type identifiers may be required in the procedure

header parameter list or in a function return value
declaration., The declaration of these type identifiers
should appear in the same location as the global

declarations - just after EXTERN,

Section 12: External Procedures and Functions

JRT Pascal User’'s Guide -101-

EXTERN

CONST

NAME_SIZE = 323

TYPE

NAME = ARRAY [1..NAME_SIZE] OF CHAR;

CUSTOMER_RECORD = RECORD

CUST_NAME, CUST_ADDR t NAME;
BALANCE + REAL;
END;

VAR (¥ MAIN PROGRAM GLOBAL VARIABLE #)

CUSTOMER_LIST ¢ ARRAY ([1..100] OF
: CUSTOMER_RECORD;

(#%#% SEARCH CUSTOMER LIST FOR GIVEN NAME #*%x%¥%)
FUNCTION SEARCH (N : NAME) : CUSTOMER_RECORDj

VAR
1 + INTEGER;

BEGIN

Iz=13

WHILE (N <> CUSTOMER_LISTILI].CUST_NAME)
' AND (I <= 100) DO Ii=1+1;

IF N = CUSTOMER_LISTII].CUST_NAME THEN
SEARCH: =CUSTOMER_LISTI1I]
ELSE SEARCH:=" '3

END; .

Section 12: External Procedures and Functions

JRT Pascal User’'s Guide -102-

12,2 Referencing external procedures and funtions

External procedures and functions must be declared in
the main programs which reference them, Their declaration
is identical teo a regular procedure except that the entire
body of the procedure is replaced with the reserved word
EXTERN.,

PROCEDURE PLOTTER (X,Y : INTEGER)3; EXTERN;3

FUNCTION CUBEROOT (A : REAL): REALj; EXTERN;

For clarity it 1is useful to group all external
procedure declarations as the first procedure declarations
in the program. External procedures may reference other
external procedures, if appropriate declarations are
included in the referencing procedure,

EXEC identifies external procedures by a sequence
number. External procedures should always be decliared in
the same sequence - in main program or in another external
procedure,

Note that the user must ensure that external procedure
declarations and parameter Jists are consistent among
different files, since the compiler does not validate this,

Section 123 External Procedures and Functions

JRT Pascal User ‘s Guide -103-

13, Debugging Pascal programs

Debugging computer programs is the process of
correcting “"bugs" in a program so that it will perform as
desired. There are two phases of debugging - correcting
syntax errors in a program in order to obtain an error free
compile and correcting errors which occur during the running
of the program after a clean compile., Referencing an
undeclared variable is an example of the +first Kind of
error, Dividing by zero is an example of the second Kind,
This section is primarily concerned with the second Kind of
error - those that occur during program testing.,

JRT Pascal provides several facilities to simplify the
location and the correction of run-time errors. The
debugging philosophy is to provide the programmer with as
much relevant information as possible in a clearly formatted
display, The run-time system detects errors at two levels
of severity - errors and warnings. When warnings occur, a
message is issued and processing continues., When an error
occurs processing must terminate.

Error and warning messages are all presented in verbal
format - there are no number or letter codes to 100K up.
These messages are stored on a disk file so main storage is
not wasted.

13.1 Trace options

JRT Pascal allows a trace of the program line numbers
while a program is running, This trace may be turned on or
off by the program itself, The range of line numbers to be
traced may also be set by the program.

A trace of procedure names can also be produced, On
entry to each procedure, the name and activation count is
displayed, On exit, the name of the procedure is displaved.
This feature can also be turned on or off under program
control.,

The Exec interrupt mode can be entered by entering a
control-n while a program is running:, In this mode the
traces and line number range can be modified, Other system
status information can also be displayed. When in interrupt

Section 13: Debugging

JRT Pascal User’'s Guide -104-

mode, entering a space character will cause a list of valid
commands to be displiayed.,

Exec interrupt allows asynchronous control of the
trace facility., Programmed control is also supported with
the SYSTEM builtin procedure,

An interactive external procedure to control these
trace facilities at run-time 1is provided, The DEBUG
procedure is described in section 13,2,

To use these traces, the %ZLTRACE and %PTRACE compiler
directives must be inserted in the program. It |is
recommended that the first line of a program being tested
contain both directives, so that the entire program will be
subject to tracing. An additional advantage is that when
these options are present, if an error or warning occurs,
the line number and latest procedure name will be displayed
with the error message.

The coding of these directives and use of the SYSTEM
builtin procedure to control the traces are described in the
section on compiler directives,

13.2 DEBUG procedure

The DEBUG external procedure allows the control of the
dynamic trace facilities while a program is being tested.
The procedure anmd line traces can be turned on or off and
the line range can be set by commands entered from the
console.,

The file DEBUG.,INT on the distribution disk, 1is the
compiled external procedure module, To reference an
external procedure from a Pascal program, it is necessary to
declare it:

PROCEDURE DEERUG; EXTERN;

The procedure can be called from any number of places
in the test program by inserting a procedure call statement:

DEERUG;

Section 13: Debugging

JRT Pascal User’'s Guide

When it is activated,

Listing of DEBUG.PAS

extern
procedure debug;

var
reply t char;
lower,; upper integer;

begin (% debuqg ¥)

writeling

write(' Activate line trace?

readin(reply)y

if upcase(reply) = ‘Y* then
begin

write(Range of lines?

readin(lower,upper);
system{ ltrace)i

DEBUG

y/n

will
programmer to modify the current trace operations,

’

)3

system(lrange, lower,upper)3

end
else system(noltrace)

write({ Activate procedure trace?

readin{reply);

y/n

interact

’

lower, upper @)3

1);

if upcase(reply) = 'Y’ then system{ ptrace)

else system{ noptrace)i
writeing
end; (% debug *),.

Section 13: Debugging

with

-105-

the

JRT Pascal User’'s Guide -106~

13.3 System status dispiay

When an error is detected, an errcor message is
displayed on the console. The current line number and itast
entered procedure name may also be displayed (see section
13.1)y, A system status display is also <¢reated - this
contains useful information about the current state of the
run-time system.

The system status display shows nine fields of
information. I¢ external procedures are present, the
external procedure table is also formatted and displayed,

System status displiay

addr :1354F5 prog :3BA7 size 14815
base :83EC cur 189AC tos :8A33
low :A8B9 compr: 0002 purge: 0000

Most of these values indicate the use of storage in
the run-time system. Storage management is discussed fully
in another section - a simpiified map of storage is
presented here.

1 CP/M 1
I R B 1
I dynamic I
I storage I
low===> Jeeemreemrc e mme I
1 1
I unused 1
1 1
tog---> lr-rmmccrr e e e 1
1 1
cur---> I data stack 1
1 1
basg--» J~=---ccrmmecnna- I
1 1
I Pascal code I <{--addr (of error)
1 1
prog--2 I---=-ccrcecccne- I
1 1
I EXEC run-time 1
I system I
100h~--> J--mecremeecmeem 1

D e e e e I T A

Section 13: Debugging

JRT Pascal User’'s Guide -107-

1, addr - the address at which the error occured, may be in
Pascal <code or in dynamic storage area if error was in
external procedure

2, prog - the starting address of the main Pascal program

3, size - the size of the main program mcodule

4, base - the base or bottom of the data stack

5y cur - the address of the current procedure activation
block

6. tos - top of stack, the address just past the end of the

data stack

7. low - the lowest address occupied by any dynamic storage
block

8, compr - a count of the number of times storage has been
auto-compressed

9, purge - a count of the number of external procedures that

have been purged from dynamic storage due to short-on-
storage condition

Section 13: Debugging

JRT Pascal User s Guide -108-

The system status display may contain one additional
line of input/output information. The name of the most
recently referenced file, a status byte and the current
default disk will be displayed if files have been used by
the program.

@:5AMPLE PAS 88 A
If the file was opened without specifying a disk

letter then 8 is shown otherwise the disk letter. The
status byte contains several flag bits:

bit meaning

80 file is open

40 random mode - not sequential
20 text mode - not binary

10 EOLN flag set

08 input - not output or random
04 EQF flag set

Section 13: + Debugging

JRT Pascal User’'s Guide -109-

Formatted external procedure table

exproc name addr use cnt time stat
ACCTPAY1 C2AE 0000 0004 30
ACCTPAYZ2 3E22 0000 0165 74
GCENLEDG1 0001 0000 0000 00
ACCTREC1 3F55 0001 014E F4
ACCTREC2 440C 0001 015A F4
SORT 0001 0000 0000 00
+ INVENTRY 503A 0001 020D F4
CHECKS 5052 0000 0103 30

1, exproc name - the name of the external procedure or
function; a plus sign indicates the external! procedure which
was most recently entered or exited, this is not necessarily
the currently active procedure

2. addr - the address in main storage of the external
procedure module, if this value is 0001 then the module is
not currently in main storage

3, use cnt - a count of the number of times the procedure is
CURRENTLY active, usually this will be 0000 (not active) or
0001 (active), it will be greater than 0001 only 1if the
procedure is called recursively

4, time - in order to determine which procedure was Ileast-
recently-used, the run-time system maintains a pseudec-timer
which is incremented once on each entry to or exit from an
external procedure - the time field contains the value of
the pseudo-timer the last time the procedure was entered or
exited

S. stat - a status indicator with several flag bits:

bit meaning

ao procedure is currently active

40 procedure was linked with main program
20 procedure is currently in storage

10 procedure file control block is open
04 procedure address is real, not virtual

Section 13: Debugging

JRT Pascal User’'s Guide . =110~

13.4 Run-time messages

The run-time system provides several messages to aid
in the correction of error or exceptional conditions. In
addition to these general messages, about 75 more specific
messages o©of 1 to 4 lines of text are provided to describe
particular error conditions.

The general run-time messages are all prefixed with a
% character, These messages are listed here:

%Entry - indicated entry to a procedure when procedure trace
is active, procedure name and activation count are listed,
external procedures are indicated by an asterisk before the
name

%Error - fatal error detected by run-time system, program
terminates

%Exit - indicates exit from procedure when procedure trace
is active, procedure name is listed, external procedures are
indicated by an asterisk before the name

%Extern - indicates that error occured while attempting to
load an external procedure module, the procedure name is
listed :

%Input error - indicates a format error when reading console
input, such as entering a character string when an integer
was expected

%#Line - indicates line number where error occured, module
must have been compiled with %ZLTRACE option

%Main - error occured in main program BEGIN-END bhiock, not
in procedure

Section 13: Debugging

JRT Pascal User’'s Guide -111-~

%Proc - error occured in procedure, not 'in main progbam
BEGIN-END block :

%Trace - line number trace indicator

X¥Warning - non-fatal error condition, processing continues

Section 13: Debugging

JRT Pascal User’'s Guide : -112-

14, Extended CASE statement
Format

CASE selector_expression OF ,
label_expression ... , label_expression : statement;
L AN}

LR 2N)
ELSE : statements
END

The CASE statement is used to select one of several
statements for execution based on the value of the
selector_expression. The selector_expression and the
label_expressions must be of compatibile data types.,

The label_expressions are evaluated sequentially, If
one is found equal to the selector, the corresponding
statement is executed. I1# none are equal then the optional
ELSE clause statement is executed.

The ELSE clause is a JRT Pascal extension, Also,
standard Pascal allows only constants as labels, while
expressions are allowed here. Not more than 128 label
clauses are allowed in one CABE statement. Not more than
128 labels per label clause are allowed., . The statements
should be followed by a semicolon., The semicolon is
optional on the last statement in the CASE statement.

Examples:

CASE 1 OF

2 + WRITELN('I IS 2');

4 : WRITELN('I IS 4°);

ELSE : WRITELN(’I IS NOT 2 OR 4°);

END;

CASE LANGUAGE OF (# STRING EXPRESSION #)
"PASCAL" ¢ YEAR := 19703 :
‘PL/1° t YEAR :1= 19643

‘BASIC” t YEAR := 19653

END3

Section 14: Extended CASE

JRT Pascal User’'s Guide -113-

(#+ EXAMPLE OF EXPRESSIONS IN LABELS #)
CASE ANGLE OF

PHI t WRITELN('PHI’)3

2,0 # PHI t WRITELN{ TWO PHI’)j

3.0 *# PHI t WRITELN('THREE PHI");

ELSE t WRITELN(‘ANGLE NOT ON NODE’)3
END;

(# EXAMPLE OF BOOLEAN SELECTOR AND LABEL EXPRESSIONS +)

(# CHECK VOLTAGE V FOR VALID RANGE #)

CASE TRUE OF

(V > 2,5) AND (V < 4,3) PROCESS_RANGE_13
(V > 5.6) AND (V <= 14,08) PROCESS_RANGE_23
(V > 35.6) AND (V <= 100.0) : PROCESS_RANGE_3;
ELSE : WRITELN(‘VOLTAGE OUT OF VALID RANGES:’,V);
END;

® e 94

Section 14: Extended CASE

JRT Pascal User’'s Guide -114-

A, Reserved words

The following words are reserved in JRT Pascal and may
not be used as identifiers.

abs
addr
and
array
begin
binary
boolean
call
case
char
chr
close
compress
concat
cons
const
copy
delete
dispose
div
do
downto
else
end
eof
eoln
extern
false
“tile
tillchar
for
forward
free
function
goto
hex$
if
An
initialize
input
insert
integer

Appendix A: Reserved words

JRT Pascal User's Guide

label
length
list
lrange
ltrace
map
maxint
mod

new

nil
nocons
nolist
noltrace
noptrace
not
nowarning
odd

of

open

or

ord
output
page
portin
portout
pos

. pred
procedure
program
ptrace
rba
read
readln
real
reals
record
repeat
reset
rewrite
round
rrn

set

sqr
succ
string
system
text
then

Appendix A: Reserved words

-115-

JRT Pascal

to

true
trunc
type
until
upcase
var
warning
while
with
write
writeln
xor

Appendix A:

User‘'s Guide

Reserved words

-116-

JRT Pascal User’'s Guide _ -117-

B:, Activity analyzer

The activity analyzer - Activan - is a facility which
moniters the execution of a Pascal program and prints a
graph showing the amount of time spent executing each
portion of the program. To use Activan, a program must be
compiled with the ZLTRACE directive or the $L compile switch
Oon.

Activan moniters the line numbers as a program
executes and Keeps counters for the line numbers in the
specified range. The range of line numbers to be monitered
and the line spacing can be set and changed when the program
is running.

To run a program with Activan, specify the $A switch
when the program is started with the EXEC command.

EXEC TESTPCM $A

Before the program begins execution Activan wil)
request console input to specify the line range to be
monitored and the line spacing. When those parameters have
been entered, program execution will begin.

I# Activan is active when the program terminates,
Activan mode is entered so that a final histogram can be
printed,

While the program in running, it can be interrupted
and control returned to Activan by Keying in a control-A

character, Activan will then request which action |is
desired:

code action

c clear the counters to zero

E end the program

H print histogram of activity

I initialize the line range and spacing

R run the program with Activan monitoring

W run the program without Activan

Appendix B: Activity analyzer

JRT Pascal User’'s Guide . -118-

C+ BlocK letters

An external procedure named LETTERS is provided to
generate large bhlock letters: These letters are 9 lines
high and from 4 to 10 columns wide. The external procedure
generates an entire row at a time of letters for use as
report headers, program identifiers, etc., The output line
may be up to 220 columns wide.,

The upper case letters, numbers, and dash may be input
to the external procedure, Unsupported characters are
converted to spaces. Lower case characters are converted to
upper case.,

The output from LETTERS is placed in a buffer which is
an array of strings - this must be defined exactly as shown.
The declaration for. LETTERS is:

TYPE
BUFFER = ARRAY [1..9]1 OF STRING[2201;

PROCEDURE LETTERS (INPUT_STRING : STRING;

SLANT : CHAR;
VAR B : BUFFER)3 EXTERN;j;
The input_string is the line of characters to be

converted to block letter format. The silant character

provides for ‘streamlined’ characters by slanting left or
right., Slant may be 'L° or ‘R’° or ° °. The output buffer b
refers to a variable of type buffer in the users program,

Note that b is a reference parameter.

Appendix C: Block letters

JRT Pascal User’'s Guide -119-

This sample program will print out the word ‘PASCAL’
in block letters.

PROGRAM ELOCKS;

TYPE
BUFFER = ARRAY [1..9]1 OF STRING[2201;

VAR
1 : INTEGER;
BLOCKS_BUFR : BUFFER;

PROCEDURE LETTERS (INPUT_STRING : STRING;.
SLANT : CHAR;:
VAR B : BUFFER); EXTERNj

BEGIN ,
LETTERS("PASCAL ", "R’ , BLOCKS_BUFR) ;
SYSTEM(LIST);

FOR I:=1 TO 9 DO WRITELN(BLOCKS_BUFRLI])j;
END.

Appendix C: Bliock letters

JRT Pascal User’'s Guide -120-

D. JSTAT

Jstat is an external procedure which can be used to
compute several basic statistics given an array of real
numbers as input. It computes the arithemetic mean,
standard deviation, variance, skewness, Kkurtosis and the
first four moments about the mean,

The source code for jstat is provided on the source
disk and may be modified. The procedure is restricted to an
array of 1000 real numbers but this can be easily changed by
modifying the declaration of the data type ,jstat_array and
recompiling.,

While jstat_array is declared as a 1000 element array,
a much smaller array may be used to hold the data values
since the input array is used as a reference parameter.,

Jstat requires three parameters:
n - number of data items in the input array
x - array of up to 1000 real numbers

r - output record containing computed statistics

The following type declarations and procedure
declaration are required in the calling Pascal program,

TYPE

JSTAT_INTERFACE =
RECORD
MEAN, STANDARD_DEVIATION,
VARIANCE, SEWNESS, KURTOSIS,
M1, M2, M3, M4 : REAL;
END;

JSTAT_ARRAY = ARRAY [1..1000] OF REAL;

PROCEDURE JSTAT (N : INTEGER;

VAR X : JSTAT_ARRAY;
VAR R : JSTAT_INTERFACE);
EXTERN;

Appendix D: JSTAT

JRT Pascal User’'s Guide -121-

E. JGRAF

Jgraf in an external procedure which formats x-y
graphs and scatter graphs. The graph size in rows and
columns and the lower and upper x and vy bounds are set by
the wuser, A title to the graph may be provided. Once the
graph has been prepared it can be displayed on the console,
printed or stored in a disk file.

The main interface between a Pascal program and graf
is a record variable of type ,jgraf_interface. The setup
parameters are stored here and jgraf uses this area for some
of its own workKing variables.

Jdgraf performs several different functions, such as
initialize, plot data point, save disk file, A command code
character in jgraf_interface informs jgraf which operation
is required. The #first call to jgraf should be the
initialize operation 'I°y After that any number of data
points may be plotted by setting the command code to ‘D’ and
calling jgraf with the data point (x,y) as parameters.
Since the graph is prepared in a buffer in dynamic storage,
when graph preparation and display are done, a call with
command code ‘X’ should be used to delete this buffer.

code meaning

display graph on console

plot a data point

initialize graph buffer and axes
print graph

save graph on a disk file

delete graph buffer

HKWo—OO

All jgraf parameters except the x,y values of data
points to be plotted are stored in a record variable
jgraf_interface, When calling jgraf the x and y parameters
should be zero unless a data point is being plotted (command
D). The following declarations are required for use of
Jjaraf,

Appendix E: JGRAF

JRT Pascal User s Guide -122-

Declarations required to use JGRAF

type
char9000 = array [1,.9000] of chary

jgraf_interface = record
command : char; R
plot_char : chary R
x_grid : booleans R
y_grid : boolean; R
rows : integer; R
columns t integer; R
x_lower : real; R
x_upper : real;s R
y_lower : reals R
y_upper :t real;s; R
filename : array [1.,.14] of charg
title : strings R

(# fields below used internally by ,jgraf #)
b t+ ~char9000;

bufr_size : integer;
line_size t integers
row_count : integer;
%x_spacing : real;
y_spacing : real;
end;

var
jgraf_file : file of char;

procedure jgraf (var jgi : jgraf_interface;
Xy Y t real)3 extern;

IMPORTANT - Jgraf_file is always required and it must be
declared as the first file in the main program.

The required parameters in jgraf_interface are flaged
here with an R,

The character to be placed on the graph for each data
point must be supplied in the parameter plot_char,

Jgraf always plots x and y axes and labels them every
ten rows or columns. X and y grids over the entire graph
area may optionally be plotted by setting the parameters
x_grid and vy_grid to true. 1If grids are not desired these

Appendix E: JGRAF

JRT Pascal User’'s Guide _ -123-

parameters should be set to false.

To save the graph on a disk file - store ‘S’ in the
command code and store the disk filename in the filename
parameter.,

Multiple graphs may be plotted simultaneously by
having multiple copies of the jgraf_interface record.

The source code for jgraf 1is provided and may be
modified,

Appendix E: JGRAF

o1

6 g

V4

9 i~

-

£ : Z

14 0

e GE T S B B i Cn T e E e e B it S - R4

e Pt pud e

e Pl P God Pt bt bt bt Pt ey Bt Ped bed et

Jecfemccnc e naena

i

-
£ 3

L R I e e i e R R i N I NP R I

e e by et

BEES
» *

*

rr e e mm--

T e e CET T B TR R

I 1

mm .-

P e N el Rl Rl e e B o]
I S S I e O e)

1

®

-

#*

*

[

*

]
]
]
'
i
]
L3
]
]
2

E

Lol B e e B I e B e R I I e e I B I N]

Pt bomh Bt ped Peg K A oy St

R e e ke ikl kel R

.. ----

- -

LT

*

*

*

*-

*®

EhER

*

St Bt A Bt e bt Pd Bt Pt i bt o Gt Pl Bat e Ded et b bl Sod et Pk 1od Bt ey bed g et

{eemem—en-

I

e Pt bt et e et e

[ecmananae

T P red e) bt ed bt Py

Pt pap Pt e Pl Bol Y bt g bt bl b A by

* »I

1

—

R R IR B

[

1

e B R N R R

I

I»

Lo
*

*
*
*
*
*
*
g bt) bt Pt K bt P 4

I

i B I I R e e I R I I e o I]
L I I B T)

-

1

O I R R

1
1
!
I
1
I
I
I
1

i I

*xk%x (X % £'Z3;£03 +

*

*%

S T T puptpiy i

L J

EEE R Rt TR L D

LR R i BT

LR R R R

(XyuTE

4 A et et Pt bt Pt b 4

e e

i »

| S

e B I R e e I A e e I I e T N N N

Ere%

1

4 M4 i Pmg et Pf g =t by

Pt e bt Pt g Pt ped Bt

1
1

Pt et bt et Pt Pt Pt

I

I *
1

*
E)
*

*
*
*

*
B T L T
.

e I I e e I e e e e e e I A R N e R e e e el el e N e N R e N N N R]

Pt P i et et bt et bt)) B e) g

EE R P SRR LY LR SR AL

lllll!lllHl!lllllll&llll!llll

Pt bed Y T et Yt et Pt

T T B

E R ke dadiatad

Y i,

4 Pt Pt et Bt Pt ed P B ¢

L I R e)

1

*

I »

1

*e

SR B B B B B B e IR
*
*

Ll B I I I I]

I

I D R O e L I e T I I T I I e I R I R N A el I N e el N el e R e N N NN

- G*'1-

- &0~

- &1

- L
gz

0'f JzA

JRT Pascal! User’'s Guide -124-

F. Restrictions

1, Arrays are limited to B dimensions,
2+ Not more than 10 files may be deciared.

3, Réndom disk files require CP/M 2.2 and may be up to 8
megabytes in size.

4, Sets are limited to 128 elements., The first element
(leftmost) corresponds to 0, the last (rightmost)
corresponds to 127,

S5+ Not more than 63 external procedures and functions may be
declared.

6+ Not more than 1632 dynamic storage blocks may be
allocated at one time., The run-time system may require up
to 100 of these for file buffers, file control blocks,
external procedures and other uses.

7+ "With" statements may not be nested to more than 3!
levels,

8, "Case"” statements are limited to 128 clauses and 128
labels per clause.

9. Integers must be between +32767 and -32768, since they
are stored in 16 bit twos compliement format, In a few cases
integers will be treated as unsigned 16 bit values with a
range of 0 to +63535., The MAP and CALL builtin procedures
require addresses which may range up to 63539, Accessing
random files by relative byte address may require byte
addresses up to 653535,

10. "Real" numbers are represented in 14 digit binary coded
decimal format, The floating point exponent range is from -
64 to +63.

11, File variables may not be used in assignment statements
or as parameters.

12, The names of procedures and functions may not be used as
parameters.,

13, Literal character strings in the source program may not
exceed 127 characters,

Appendix F: Restrictions

JRT Pascal User s Guide -1258-

14, Literat character strings in the 'const” section are
limited to 32 characters.

15, The functions GET and PUT and buffer variabies are not
impliemented, The standard procedures PFEAD and WRITE are
extended to handlie any kKind of input/ ocutput reguirement.,

Appendix Fz: Restrictions

PROBLEM REPORT

MAIL TO: JRT Systems, POB 22363, San Francisco, CA
Name ___ _

Address _ _ _

CitY State ____ ______ Zip _____

Please include as much information as possible about the
problem, A listing of the program code is essential
for us to duplicate the problem.

Did problem occur during compile? ____
execution ____ linkKer ____ assembly
other

———

——— .t ————— — - - - — — o ———

Was there an error message? Which one?

Complete description of problem:

Are symptoms always the same or do they vary?

94122

PROBLEM REPORT

MAIL TO: JRT Systems, POB 22365, S5an Francisco, CA
Name ____ __ _ _

Address ______ _ _

City _ _ _ _ State __________ Zip _____

Please include as much information as possible about the
problem: A listing of the program code is essential
for us to duplicate the probliem.

Did problem occur during compile? ____
execution ____ linkKer ____ assembly
other

e e e o ——— — —r— — " —— " =

Was there an error message? Which one?

Complete description of problem:

Are symptoms always the same or do they vary?

94122

