
JRT SYSTEMS

PO Box 22365

San Francisco

CA94122

OWNER NOTES

Novernber 1982

Your response to our new marketing strategy of very
low pricel high qualityJ high volume software has exceeded
our wildest dreams!

Since MaYt when we slashed JRT Pascal's price from
$295 to $29.95, we've added over 10,000 new customers!
and we expect to reach 25,000 by year-end!

Because we al"low owners to make copies for friends,
the ~ctual user number is much larger.

Needless to say, we're grateful for the deluge of
orders. To handle it has taken a new office, new personnel,
and new shipping systems; even then, the mass of orders -- a
fifty times increase -- caused some delays. If your order
didn't arrive quickly, thank you also for your patience. We
believe you'll find JRT is worth the wait.

With the new capabilities, the goal of a one week
order turn-around is now is sight.

Note 1: Five and a quarter inch disk versions

Requiring only 85K of diskette space for the compiler
and 35K for the run-time system, JRT is currently the most
~ompact Pascal available for CP/M systems. For program
development in JRT Pascal on computers with five inch disk
drives, we recommend this file arrangement:

Note 2: Patch'1

Applicable version: 2.1
Error: multiplication of real

numbers by 0.0 produces
incorrect result

Patch procedure: Use CP/M program
DDT to patch EXEC. COM -
key in underlined code.

Note 3: Patch 12

Applicable version: 2.1
Error: Message ~Source file not

found' when compiling under
CP/M ver 1.4 or CDOS

Patch procedure: Use CP/M program
DDT to patch JRTPAS2.COM -
key in underlined code.

A}DDT EXEC. COM

DDT VERS 2.2
NEXT PC
5BOO 0100
-S5S3C

563C ED EB

56:3D 53_I

-.ru1.

A)SAVE 90 EXEC. COM

A)DDT JRTPAS2.COM

DDT VERS 2.2
NEXT PC
5500 0100
-A2B9

02B9 CALL

02BC CALL

02BF _.-
- jiQ,

A)5A}!E 84

3F83

413D

~RIPAS2tCOM

The ONLY disk formats available are:

5 1/4" for Osborne, Apple CP/M, North Start Superbrain,
Heath hard sector, Heath soft sector, Xerox 820, Televideo

8" single-sided, single density standard

Please specify which of these formats you need.

Note 5: Coming - JRT Pascal version 3.0

In January we'll begin shipping JRT Pascal 3~O a
major enhancement. New features include:

- builtin indexed file system
- facilities for screen and report formatting
- dynamic arrays
- improved compiler error recovery
- enhanced EXEC interrupt
- full support for file variables and GET/PUT
- expanded user manual

Of course the price of new 3.0 will still be $29.95.

Note 6; Copy and License Policy

We've had lots of questions about our policy on
copying JRT Pascal. As our ads say, permission is granted
to copy both disk and manual for friends - so long as it's
not for resale.

Permission to make copies is also specifically granted
to schools and to computer clubs for members.

If you develop application software for resale, you
may distribute the run-time system (EXEC. COM and PASCAL. LIB)
with your package - with no license or royalty fees.

Note 1: YOUR Pascal application programs

Naturally, more and more owners are developing more
and more JRT Pascal written application packages for sale -
we've heard from many of them. And - for developers our
copy and license policy is particularly attractive.

Now we're putting together a JRT Application Software
Directory and would like to list the packages you have for
sale. For free listing, just fill out the enclosed
Application Program Description and return it to us with
tangible evidence of your package such as brochure, manuals,
diskette but quickly, please: the first Directory is
scheduled for February distribution.

Note 8: New address and phone number

The new phone number for orders only is (415) 566-5100.

The address for technical questions and problem reports:

JRT Systems
Technical Services
PO Box 22365
San Francisco, CA 94122

The address for new orders:

JRT Systems
550 Irving Street
San Francisco, CA 94122

Note 9: Feedback f •• Please!

A dynamic product, new JRT Pascal versions are always
being developed. The system's main evolutionary force is
feedback from YOU - the user. We invite -- and encourage -­
you to write us your ideas about how to make JRT Pascal even
better.

JJ RRRRRR Irli Ii 11 pppppp A SSSSS CCCC A LL
JJ AR RR TnT pp pp AM ss ss ecce PIA LL

JJ RR RR TT pp pp MM 55 ce MttA LL
JJ RR RR n pp pp Nt M ss cc Nt M LL

JJ RRRRRR n pppppp PtANtMA sssss cc NtPtANit LL
JJ RRRR TT pp M M ss cc Nt Nt LL

JJ JJ RRRR n pp M M ss cc M Nt LL
JJ JJ RR RR n pp Nt Nt ss ss cc cc Nt M LL LL
JJJJ RR RR n pp Nt Nt sssss cccc Nt AA LLLLLLL

w w sssss EEEEEEE RRRRRR sssss GGGC W W II II DDDDD EEEEEEE
W W ss ss BE RR RR ss ss GGGG W W II DD DD EE

W W ss BE RR RR ss GG W W II DD DD EE
W W ss BE RR RR ss GG W W II DD DD EE

W W sssss EEEEE RRRRRR sssss GG W W II DD DD EEEEE
W W ss EE RRRR ss GGGGG W W II DD DD EE

W W ss EE RRRR ss GGGCG W W II DD DD BE
W W ss ss EE RRRR ss ss GG GG uu W II DD DD EE
W1lJ sssss EEEEEEE RR RR sssss GGCC IlWJ IIII DDDDD EEEEEEE

JRT Pascal User's Guide

COPYRIGHT

Copyright 1980. 1981, 1982 by JRT
Systems. All rights reserved. No part
of this publication may be reproduced,
transmitted t transcribed, stored in a
retrieval system, or translated into any
language or computer language, in any
form or by any means, electronic,
mechanical, magnetic, optical, chemical,
manuai or otherwiset without the prior
written permission 0' JRT Systems, Post
O"ice Box 22365 t San Francisco,
California, 94122.

DISCLAIMER

JRT Systems makes no representations or
warranties with respect to the contents
hereo' and specifically disclaims any
implied warranties 0' merchantability or
'itness 'or any particular purpose.
Further, JRT Systems reserves the right
to revise this publication and to maKe
changes from time to time in the content
hereof without obligation of JRT Systems
to noti'y any person 0' such revision or
changes.

TRADEMARKS

JRT Pascal is a trademarK 0' JRT
Systems. CP/M is a registered trademarK
and MP/M is a trademarK of Digital
Research.

JRT Pascal User's Guide

Table of Contents

1 •

3.

5.

Intr'oduct ion
1.1 JRT Pascal features
1.2 Hardware requirements
1.8 List of files

Operating JRT Pascal
2.1 Writing Pascal programs

2.1.1 Identifiers
2.1.2 Numbers
2.1.8 Comments

Compiling Pascal programs
Executing Pascal programs

Compiler Directives
3.1 Listing Control
3.2 Line trace
3.3 Procedure trace

Data
4. 1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

types
Integers
Real numbers
Booleans
Char
Structured variables
Dynamic strings
Sets
Pointers

Builtin functions
5. 1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5 t 11
5.12
5. 13
5. 14
5.15
5.16

ABS
ADDR •
ARCTAN
CHR
CONCAT
COPY
COS
EXP
FREE
HEX$ •
LENGTH
LN •
ODD
ORD
paRTIN
pas

1
1
2
2

4
4
4
5
5
6
7

9
9
9

10

1 1
11
1 1
12
12
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

JRT Pascal User's Guide

5.17 PRED •
5.18 REAL$
5. 19 ROUND
5.20 SIN
5.21 SQR
5.22 SQRT •
5.23 SUCC
5.24 TRUNC
5.25 UPCASE •

6. Builtin procedures
6.1 CALL.

6.1.1 Cal ling the CP/M operating system
6.2 DELETE.
6. 3 . DISPOSE
6.4 FILLCHAR.
6.5 INSERT
6.6 MAP
6.7 NEW
6.8 PORT OUT
6.9 SYSTEM.

7. Input/ou~put

7. 1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7. 11
7.12
7. 13

Console input/output
Sequential file processing
Random file processing
Indexed file processing
EOF
EOLN •
ERASE
OPEN •
READ t READLN •
RENAME •
RESET
REWRITE
WRITE. WRITELN •

8. LinKer

9. Customiz

10. Assembler
10.1 Entry codes
10.2 Operating JRTASM
10.3 Directives
10.4 Expressions
10.5 Parameters and return values
10.6 Debugging assembler procedures

33
34
35
86
37
88
89
40
41

42
43
44
50
51
52
5:3
54
56
58
59

60
,. 61

63
65
67
69
70
71
72
73
75
76
77
78

81

82

88
88
84
84
86
87
89

JRT Pascal User~s Guide

10.7
10.8

Convertm program
Sample assembly programs

90
90

11. Storage management 94
11.1 Main storage 94
11.2 Dynamic storage. 97

12. External Procedures and Functions. 99
12.1 Coding external procedures and functions 100
12.2 Referencing external procedures. 102

18. Debugging •
18.1 Trace options.
18.2 DEBUG procedure.
18.8 System status display.
18.4 Run-time messages.

14. Extended CASE .statement •

A. Reserved words

B. Activity analyzer •

c. BlocK letters •

D. JSTAT •

E. JGRAF •

F. Restrictions

loa
108
104
106
110

112

114

117

118

120

121

124

JRT Pascal User's Guide -1-

1 • In t r ad u c t i on

Pascal is a high level programming language named
after the French philosopher and mathematician Blaise Pascal
(1628-1662). Nicklaus Wirth developed the language
beginning in 1968. It is a descendent of the Algol family
of languages which incorporates principl~s of structured
programming.

JRT Pascal was designed specifically for the CP/M
operating system. It includes many state of the art
features not before available in any microcomputer language.

1.1 JRT Pascal features

With JRT Pascal, programs of practically unlimited
size can be developed. External procedures -and functions
written in Pascal or assembly language are separately
compiled. They are automatically loaded from disK when they
are first referenced or they may be merged with the main
program to form one module. The advanced dynamic storage
system will purge infrequently used procedures if storage
becomes full. DynamiC storage compression ensures the
optimum use of the main storage resourc ••

The floating point arithmetic provides 14 dig~ of
precision. All standard functions are supported.

The input/output system supports sequential and two
types of random disK files. With the ·~elative byte
address" optiont random files 0' variable length records can
be processed. DisK file data can be written ,in either ASCII
format or internal binary format.

The CALL builtin procedure provides direct access to
all CP/M operating system services. The MAP builtin
procedure allows any region of main storage to be' acc •• sed
as if it were a Pascal variable. Hardware input/output
ports are directly accessible.

Debugging is simplified by the line number trace and
the procedure name trace which can both be turned on and off
by the program at run-time.

Section 1: Introduction

JRT Pascal User's Cuide -2-

Activan - the activity analyzer can be used to
monitor the execution of a program and print out a histogram
showing the amount of activity in each program area.

1.2 Hardware requirements

The compiler requires a minimum of 56k of main
storage. One disK drive with at least 90K of storage is
needed but two or more are strongly recommended.

1.a List of files

JRT Pascal compiler

JRTPAS2.COM
PASCALO.INT
PASCAL1.INT
PASCAL2.INT
PASCAL3.INT
PASCAL4.INT
PASCAL. LIB

Run-ti~e environment
EXEC. COM

Externa) functions
ARCTAN.INT
COS.INT
EXP.INT
LN.INT
SIN.INT
SQRT.INT

External procedure assembler
JRTASM.INT

External procedure linKer
LINkER.INT

System customization program
CUSTOMIZ.INT

BlocK letters external procedure
LETTERS.INT

Dynamic trace control external procedure

Section 1: Introduction

JRT Pascal User's Guide

DEBUG.INT

Utility to convert Microsoft modules
CONVERTM.INT

·Statistics external procedure
JSTAT.PAS
JSTAT.INT

Graph preparation external procedure
JGRAF.PAS
JGRAF.INT

Sample as.embly language external procedures
SETBIT.ASM
RESETBIT.ASM
TESTBIT.ASM

Section 1: Introduction

-3-

JRT Pascal User's Guide -4-

2. Operating JRT Pascal

JRT Pascal is a fully CP/M compatible language system.
The distribution disK does not contain a copy of the
operating system due to copyright restrictions. It is
recommended that the distribution disK be bacKed up
immediately and not be used as the main running disK.

2.1 Writing Pascal programs

Pascal programs can be developed using any standard
editor program. The ASCII character set is used throughout
JRT Pascal.

The program file must have a CP/M filetype of 'PAS'.
The output modules produced by the compiler, linKer and
assembler are given a filetype of 'INT'. When the compiler
is processing, it creates temporary storage files with a
filetype of '$$$'. ,These are normally deleted but if
processing should be interrupted, they may remain on the
disK but will be deleted during the next operation of the
compiler.

2.1.1 Identifiers

Identifiers are the names assigned to variables,
procedures, etc. They may be up to 64 characters long. All
characters are significant. Theyare internally converted
to upper case by the compil~r.

Identifiers must begin with an alphabetic character.
Following characters may be alpha, numeric, the underline
character and the dollar sign.

xl
DISTANCE

total_value
ADDRESS

compute_and_print_average
compute_and_print_totals
MTD_sales INITIALIZE_PROe

Using meaningful data and procedure names greatly
improves the readability of programs and serves as self­
documentation.

Section 2: Operating JRT Pascal

JRT Pascal User's Guide -5-

2.1.2 Numbers

I~t.gers or whole numbers in Pascal occupy two bytes
of storage and range from -32768 to +32767. In both the
Pascal program and in input/output. they can be entered in
decimal or hexadecimal 'ormat.

Hex format integers have an 'H' suffix character. If
the first hex digit is A.B.C,D,E,F then it must be preceded
by a zero digit.

OEADH
OcfOOh
+50h

Real numbers in JRT Pascal provide 14 digits of
precision and floating point capability. The exponent can
range from -64 to +63. The numbers are stored in an 8 byte
binary-coded-decimal format which eliminates errors in
converting between internal and printable formats.

3.14159
250000.000321
2.0E-60

0.000098
0.442e+35
-15.011e+03

Real numbers must include the decimal point. The
exponent field is optional, but when used must be in a fixed
format - character 'e'. sign, 2 digits.

2.1.3 Comments

Comments in Pascal can be inserted anywhere in the
program. They can be enclosed by either braces () or by
the character pairs <* *>.

(comment sample)
(* comment sample' 2 *)

Section 2: Operating JRT Pascal

JRT Pascal User1s Guide -6-

2.2 Compiling Pascal programs

JRT Pascal is a one-step compiler, no assembly or linK
is ever required •. The assembler and linker provided are for
advanced programming with external procedures.

To compile a program enter:

JRTPAS2 filename <* options)

Examples:

JRTPAS2 TESTPCM

JRTPAS2 STATISTC SE

JRTPAS2 INVENTRY SELP

C:JRTPAS2 B:PROJECTl SE

JRTPAS2 D:PLOT $E

The filetype of the program must be 'PAS'. The
filename may be di~ferent from the program name.

The compiler option switches are:

E - error stop, interrupt processing on detection
o~ an error, issue message to console. asK user
whether or not to continue compiling

L - prepare program for I ine trace. identical to
inserting '%LTRACE directive at st,art of program

P - prepare program for procedure trace, identical
to inserting ~PTRACE directive at start of program

If errors are detected. verbal error messages wit I be
displayed at the console imbedded in the source listing.

The following ~iles are required by the compiler:

JRTPAS2.COM 21K
PASCALO.INT 21K
PASCAL1.INT 7K
PASCAL2.INT 5K

Section 2: Operating JRT Pascal

JRT Pascal User's Guide -7-

PASCAL3.INT 9K
PASCAL4.INT lK
PASCAL. LIB 18K

The compiler does not need to be located on the A:
disK. The main compiler module JRTPAS2.COM and its external
procedures can be placed on any disK drive. InitiallYt the
compiler assumes a two disK system. The CUSTOMIZ program
should be used to update the compiler's and EXEC's disK
search lists.

2.3 Executing Pascal programs

A program which has compiled with no errors can be
executed by entering:

EXEC filename <$ options)

Examples:

B:EXEC D:PLOT

EXEC TESTPGM $A

EXEC B:PROJECTl

The file PASCAL.LIB must be present on one of the
disKs.

The run-time option switches are:

A - generate an Activan interrupt
begins execution (refer to
description of Activan)

before program
appendix for

L - activate the line
been compiled with
directive)

trace (program must have
$L option or the %LTRACE

N - generate an Exec interrupt before program
begins executiont used for trace control (refer to
section on debugging)

P - activate the procedure trace (program must

Section 2: Operating JRT Pascal

JRT Pascal User's Guide

have been compiled with the SP option or the
%PTRACE directive)

While the program is running, Keying control-a or
contro)-n will cause an Activan or Exec interrupt. At that
time certain system parameters can be modified. When in
interrupt mode, Keying a space character will cause a list
of available commands to be displayed. Keying a control-p
in interrupt mode causes most system displays to be echoed
to the system printer.

If any error or warning conditions occur during the
running of the program, a verbal error message is displayed
at the console. If the error is severe and the program must
terminate, a formatted display of critical system data is
provided. This display is described in the section on
debugging.

Section 2: Operating JRT Pascal

-8-

JRT Pascal User's Guide -9-

8. Compiler Directives

Compiler directives are instructions to the compiier
which are inserted in the Pascal source program. They may
be inserted in the program anywhere a comment may appear.
(UnliKe JRT Pascal version 1. they must not be followed by a
semicolon delimiter.)

8.1 Listing Control Directives

When a Pascal program is being compiled. the listing
wil I be displayed on the system console. Three directives
are provided to control the program listing.

%NOLIST
%LIST
'PAGE

stop display of program listing
resume display of program listing
issue a form feed character to start a
new page

8.2 Line Trace Directives

JRT Pascal line tracing will optionally display the
source program line numbers as the program executes. The
size of the output module will be increased by three bytes
per line.

%LTRACE
%NOLTRACE

generate line trace codes
stop generating line trace codes - this
al lows storage saving by tracing only
a portion of the program

JRT Pascal line tracing can be turned on or off under
program control by using the SYSTEM builtin procedure. The
range of line numbers to be traced can also be modified at
run-time by this procedure. WHEN THE PROGRAM BEGINS
EXECUTION, THE LINE TRACE IS DISABLED.

SYSTEM (LTRACE)
SYSTEM (NOLTRACE
SYSTEM (LRANGE.

activate line trace
disable line trace

lower, upper)

Section 3t Compiler Directives

JRT Pascal User's Guide -10-

set range of line numbers for
line trace - lower and upper are
are integer expressions

When a program is compiled with the %LTRACE directivet
then if the run-time system detects an error conditiont the
line number wi} 1 be displayed with the error message.

3.3 Procedure Trace Directives

When procedure tracing is activated t the name of each
procedure or function will be displayed on entry and exit.
On entry to a procedure the activation count (total number
of times cal led) for that procedure is also listed.

%PTRACE
%NOPTRACE

generate procedure trace codes
stop generating procedure trace codes

Procedure tracing can be turned on or off
program control by using the SYSTEM builtin procedure.
THE PROGRAM BEGINS EXECUTION t THE PROCEDURE TRACE
DISABLED.

SYSTEM { PTRACE)
SYSTEM (NOPTRACE

activate procedure trace
disable procedure trace

under
WHEN

IS

When a program is compiled with the IPTRACE directivet
then if the run-time system detects an errort the name of
the procedure most recently activated wil I be displayed with
the error message. Note that the procedure most recently
activated is not necessarily the currently active procedure.

If
procedure
asterisK.

Section 3:

the
then

procedure
the trace

being entered is an
message is flagged

Compiler Directives

external
with an

JRT Pascal User1s Guide -11-

4. Data types

Pascal is a language rich in data types. UnliKe Basic
which provides only two or three data types, Pascal provides
eight integers, real numberst Booleanst characterst
structured variablest sets, pointers and dynamic strings.
These forms can be combined in records and arrays to form
data aggregates that closely relate to the application area.
Records and arrays can contain other records and array~ and
pointers with no restrictions on nesting or even on
recursive definitions.

It is these features
earlier languages liKe
recognizes the importance
describing the data in a
statements.

4. 1 Integers

that set Pascal apart from
Cobol. Fortrant PL/I. Pascal
of powerful facilities for

program as well as the active

Integers or whole numbers occupy two bytes. They are
represented in twos comp 1 ement format. 'The rar,ge -is -32768
to +32767.

Integer literals in the source program and in console
or disK input may be entered as hex values. Standard Intel
hex format is used. The last character must be an 'H'. A
leading zero is required if the first digit is At Sf C, Dt
E t F.

Iah +OC35H -Offh OcOOOh 1284H

4.2 Real numbers

Real numbers have 14 digits and are expressed in
floating point format. The exponent range is from -64 to
+63. The exponent field is not required in source program
or input but when present must be entered in a fixed format.
The exponent format is 'e+OO' or 'e-OO'.

Section 4: Data types

JRT Pascal User's Guide -12-

32.01e+04 1.075 -3.14159 -1234567.8901234E-47

In source programs the decimal point must be included
to distinguish rea) numbers from integers.

4.3 Booleans

Boolean variables may have only two values - TRUE or
FALSE. Boolean. may be used directly in output statements
but should not be used directly in input statements.

4.4 Char

The char data type is one character. Packed char
fields are not meaningful on 8-bit microcomputers and are
not supported. The ASCII character set is used in JRT
Pascal.

4.5 Structured variables

Structured variables are records or arrays which are
treated as aggregates. For example - a record of one type
could be compared directly against a record of another type.
Structured variables may be compared (all six operators),
assigned, input/output, concatenated, used as parameters and
function return values without restriction.

In addition to the CONCAT builtin function, the '+'
operator indicates concatenation of structured variables or
dynamic strings.

Structured variables to be compared may have different
lengths. The result is determined as if the shorter one
were extended by spaces.

In assigning structured variables oi different lengths
if the receiving field is shorter, truncation occurs. If
the receiving field is longer then the remainder of it is

Section 4: Data types

JRT Pascal User's Guide -13-

padded with spaces.

Arrays of type char constitute fixed length strings.
Unli~e dynamic strings, these have no (hidden) two byte
length prefix. Arrays of fixed length strings are useful
for many types of text processing.

TYPE
CHARIOO = ARRAY [1 •• 100J OF CHAR;
TABLE = ARRAY [1 •• 40] OF CHARIOO;
VAR
T ; TABLE;
BECIN
T : = ' '; (* CLEARS ENTIRE TABLE *)

T[1 t 8] : = ' *' ; (* STORE 1 CHARACTER *)

T(15] ;= 'JRT Pascal is the best';
•••
END;

4.6 Dynamic strings

Dynamic strings are an extension to standard Pascal.
A hidden two byte prefix on the string contains the string's
current length in bytes. JRT Pascal dynamic strings may be
up to 64K bytes in length - of course the computer's main
storage size restricts the size to a smaller value. Other
Pascals limit strings to 255 bytes.

The maximum size of a string variable is declared with
the variable definition. If no size is specified the
default is 80 bytes.

VAR
SI STRINC;
S2 STRING[40001;
S3 ; STRING[12J;

Dynamic strings may be used in the same way as
structured variables comparisons, assignment,
input/output, parameters, function return values.

Section 4: Data types

JRT Pascal User's Cuide -14-

NOTE - Dynamic string variables may not be used in
READ statements directed to ~iles, only to the console. To
read string data ~rom ~iles, ~ixed strings (arrays o~
characters) must be used.

The individual characters of a string may be accessed
and updated. I~ an attempt is made to access an element of
a string beyond the current length of the string. a run-time
error occurs.

SI[4] := 'X';
WRITELN(S2[1500J);
Sl[J] := Sl[J+IJ;
93 [1] : = UPC ASE (S3 r 1 J);

Several builtin procedures and functions are available
to enhance string processing. Refer to the sections on
builtin functions and on builtin procedures ~or complete
descriptions.

CONCAT
COpy
DELETE
INSERT
LENGTH
POS

4.7 Sets

purpose

concatenate n strings
extract portion of string
delete portion o~ string
insert a string into another
return current string size
search string for a pattern

Set variables occupy 16 bytes. The entire ASCII
character set may be represented in the 128 bits.

LOW_CASE := ['a' •• 'z'];
UP_CASE := ['A' •• 'Z'];
NUMER Ie: = [' 0 ' • • ' 9 '] ;
ALPHAMERIC := LOW_CASE + UP_CASE + NUMERIC;
ALPHABETIC ;= ALPHAMERIC - NUMERIC;

IF NOT (INPUT_CHAR IN ALPHAMERIC) THEN
WRITELN('INVALID INPUT CHAR');

Section 4: Data types

JRT Pascal User's Guide -15-

NOTE - Set variables have no meaningful format in text
format input/output. Sets may be input/output to disK files
which are o~ened for binary format processing.

Pointers contain the virtual address of
variables created by the NEW procedure and
variables created by the MAP procedure, Pointers
bytes in size.

dynamic
of ghost

are two

The value stored in a pointer variable is NOT the
actua.l address of the dynamic va.riable - it is the virtual
addriss. The actual address of a dynamic variable may be
o'btat,i'lfed wi t , the AD DR bui 1 tin "funct iorl,

"ACTUAL ... ADDRESS: = ADDR (PTR·····);

Note that the actual address of a dynamic variable may
change during program execution but the virtual address is
fixed for the life of the variable.

Section 4: Data types

\

JRT Pascal User'sCuide -16-

5. Builtin functions

JRT Pascal provides numerous builtin functions and"
several external functions. JRT extensions are indicated
with an asterisK. External functions are marKed with an
, x' •

function
-_ _---
ABS

* ADDR
x ARCTAN

CHR
* CONCAT

* COpy
x COS
x EXP
* FREE
* HEX.
* LENCTH
x LN

ODD
ORD

* PORTIN

* POS
PRED

* REAL.
ROUND

x SIN
SQR

x SQRT
SUCC
TRUNC

* UPCASE

return value

absolute value, integer/real
address of variable
arc tangent
convert integer to character
concatenate n strings
extract portion of string ~

cosine
exponential
amount of free space
convert variable to hex format
length of string
natural logarithm
test for odd value
convert character to integer
hardware port input
search string for pattern
preceding value
convert real number to string
convert real number t~int.Ger
sine
square, integer/real
square root
succeeding value
convert real number to integer
convert string to upper case

Builtin Functions

JRT Pascal User's Guide -17-

5.1 ABS

Format 1
ABS(integer_expression);

Format 2
ABS(real_expression);

The ABS standard function returns the absolute value
of an integer or a real expression.

Examples:

A := ABS(X >;

WRITELN('ABSOLUTE VALUE IS'tABS(COS(Y »);

B := ABS(X + y/ Z);

Section 5: Builtin Functions

JRT Pascal U.e~'s Guide

5.2 ADDR

Fo~m.t
ADDR(va~iab)e >;

The ADDR function returns the real
va~iab)e, a~ray element, field of a
va~iable.

-18-

address of any
record, dynamic

Note ~hat the address of a dynamic va~iab'. may change
when a sto~age compression occu~s. If the address of a
dynamic va~iab)e is needed, the ADDR function should be used
to obtain the cur~ent add~ess immediately before use.

Examples:

ADDRESS_OF_X := ADDR(X >;

AD :=ADDR(MATRIX[X, Y+5]);

DYN_VAR := ADDR(BASEA)l

DYN_VAR_2 := ADDR(BASEA.NEXTA);

Section 5: Builtin Functions

JRT Pascal User's Guide -19-

5.3 ARCTAN

Format
ARCTAN (real_expression);

This standard function returns the arc tangent o~ a
real expression.

This is implemented as an external ~unction. The
declaration ~or an external ~unction must be included in
programs which re~erence it.

FUNCTION ARCTAN (X : REAL): REAL; EXTERN;

Examples:

WRITELN(ARCTAN (A + 3~4159 »;

.VASUE := OLD_NODE. VALUE + ARCTAN(V);

Section 5: Builtin Functions

JRT Pascal User's Guide -20-

5.4 CHR

Format
CHR(integer_expression);

The CHR standard function converts an integer
expression into a character. It is often used in sending
control characters to output devices.

Examples:

WRITE(CHR(12 »;

WHILE PORTIN(MODEM = CHR(OFFH) DO 1:=1+1;

TAB := CHR(9);

CARRIAGE_RETURN := CHR(ODH >;'

LINE_FEED := CHR(OAH >;

Section 5: Builtin Functions

JRT Pascal User's Guide ~21-

5.5 CONCAT

Format
CONCAT(stringexprl f stringexpr2 t ••• f stringexprn >;

The CONCAT string function concatenates two or more
dynamic stringst literal strings or structured variables.
It returns a value of dynamic string of the length required.

The plus sign can also be used to concatenate string
expressions.

Examples:

OUTPUT_LINE := CONCAT(NAME, TABf TABf PHONE);

WRITELN(CONCAT('VALUE'. OPER f VALUE);

WRITELN('VALUE' + OPER + VALUE);

Section 5: Builtin Functions

JRT Pascal User's Guide -22-

5.6 COpy

Format
COPY(source_string. position, length);

The COPY function returns a string value extracted
from the source_string beginning at position for length
characters. The position and length parameters are integer
expressions. The first character of strings is at position
1. An error will occur if an attempt is made to copy from
an area greater than the length of the string.

Examples:

CH := COPY('ABCDEFGHIJKLMNOPQRSTUVWXYZ't
CH_NUM. 1);

WRITELN(COPY(STR t POSl STR, '*')t 5 >;

WRITELN(COPY('THIS IS A STRING', 6, 4);
(* OUTPUT OF ABOVE LINE IS 'IS A' *)

Section 5: Builtin Functions

JRT Pascal User's Guide -23-

5.7 COS

Format
CaS(real_expression);

The COS standard function returns the cosine of a real
expression.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION COS (X : REAL): REAL; EXTERN;

Examples:

WRITELN(COS(ANGLE »;"

NODE.COSINE := COS(N);

WRITELN(COS(VELOCITY I CHARCE »;

Section 5: Builtin Functions

JRT Pascal User's Guide -24-

5.8 EXP

Format
EXP(real_expression >;

The EXP function computes e to the x power. where x is
a real_expression.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION EX? (X : REAL): REAL; EXTERN;

Examples:

X := EXP(Y >;

PROJECTED_SALES := 1000 * EXP(YEAR I 100);

VOLTACE := EXP(SIN(PHASE));

SHIP_VELOCITY := EXP(WARP_FACTOR);

Section 5: Builtin Functions

JRT Pascal User's Guide

5.9 FREE

Format
FREE

-25-

The FREE integer Tunction returns the amount oT
currently available. Because the virtual storage

may delete inactive external procedurest much more
may be potentially available. The FREE Tunction

a I6-bit integer value.

storage
manager
storage
returns

IT more than 82K oT storage is availablet the
the integer would print out as negative, due to the
integer size. The Tol lowing Tunction converts
integers to real number Tormat to provide
representation Tor numbers up to 65535.

FUNCTION REALFREE : REAL;
VAR
TEMP : INTEGER;
BEGIN
TEMP ;= FREE;
IF TEMP)= 0 THEN

REALFREE := TEMP
ELSE

REAL FREE := 65536.0 + TEMP;
END;

Examples:

WRITELN('FREE SPACE =',FREE);

IF REALFREE <= 2000.0 THEN
WRITELN('STORAGE CRITICAL');

IF FREE)= 1500 THEN NEW(BUFFER);

IF FREE)= 4096 THEN BUFSIZE:=2048
ELSE BUFSIZE:=1024;

value oT
1 i mit on
unsigned
positive

RESET (INFILE t 'TEST.DAT't BINARY, BUFSIZE);

Section 5: Builtin Functions

JRT Pascal User's Cuide -26-

5.10 HEX.

Format
HEX$(any_variable);

The HEX$ function converts any variable to hex format
for display. The result is of type string and its length is
twice the length in bytes of the input variable.

Note that the 8080/280 microcomputers represent 16 bit
integers in byte-reverse formatt with low order byte
followed by high order byte. That iS t +ABCDH would appear
in storage as CDAB •. The HEX. function converts all
variables as they appear in storage. Often it is useful to
display hex integers in the more usual order ABCD. The
HEXINT function below maKes this conversion.

FUNCTION HEXINT (X ; INTEGER): STRING[4l;
VAR
A : STRING[4l;
BEGIN
A := HEX$(X);
HEX I NT : = ' , ;
HEXINT[IJ:=A[31;
HEXINT[2l:=At4l;
HEXINT[81:=A[IJ;
HEXINT[4J:=AC2J;
END;

Examples:

WRITELN(HEX$(3.14159 »;

WRITELN(HEXINT(ADDR(PTRA »);

WRITELN(HEXINT(ADDR(FCB »);

Section 5: Builtin Functions

JRT Pascal User's Guide -27-

5.11 LENGTH

Format
LENGTH (string_expression);

The LENGTH function returns an integer value which is
the current length of the string variable or expression. It
can be used with dynamic strings or structured variables.

Examples:

WRITELN(LENGTH (STR1));

IF LENGTH(STR1) < 75 THEN
STR 1 : =CONCAT (STR 1, , - - - -');

FOR 1:=1 TO LENGTH (NAME) DO

Section 5:

IF NOT (NAME[ll IN ALPHAMERIC) THEN
NAME [I 1 : = ' ';

Builtin Functions

JRT Pascal User's Guide -28-

s. 12 LN

Format
LN(real_expression);

The LN function computes the natura) logarithm of a
real expression.

This is implemented as an external function. The
declaration for an external function must be included in
programs which reference it.

FUNCTION LN (X : REAL): REAL; EXTERN;

Examples:

X : = LN(Y);

WRITELN(LN(X + SQR(Y»);

IF LN(ATOM_WEIGHT) < 1000.0 THEN
WRITELN(F1; ATOM);

A := SQRT(LN(Z»;

Section 5: Builtin Functions

JRT Pascal User's Cuide -29-

5.13 ODD

Format
ODD(integer_expression);

ODD is a Boolean function which returns the value true
if the integer_expression is odd otherwise it returns false.

Examples:

IF ODD(X) THEN TEST_FOR_PRIME(X);

IF ODD(I) THEN 1:=1+1;

WHILE ODD(PORTIN(15H» DO X:=X+l.0;

WRITELN(ODD(Y));

JRT Pascal User's Guide -30-

5.140RD

Format
ORDC character_expression);

The ORD function converts a character to an integer
value. The character_expression may be a single character
or a s t r in g • I fit i s a s t ring t the nth e fir s t by t e w ill be
converted to integer format. The conversion is based on the
ASCII character set.

Example:

REPEAT
READ(INFILE; CH)
WRITE(CH);

UNTIL ORDCCH) = lAH; C* EOF *)

<* ASCII DISPLAY *)
FOR CH := ' , TO 'z' DO

WR I TELN (CH, , = ' t ORD (CH)) ;

X : = ORD (COpy (SI tIt 1 »;

Section 5: Builtin Functions

JRT Pascal User1s Guide -81-

5.15 PORTIN

Format
PORTIN(integer_expression);

The PORTIN ~unction inputs a byte directly ~rom the
hardware port speci~ied by the integer expression. The
return value is a character.

Examples:

IF PORTIN(255) = CHR(SOH) THEN
WRITELN('HIGH BIT IS ON');

CH := PORTIN(TTY);

WHILE PORTIN(MODEM) = CHR(OFFH) DO
TIMER := TIMER + 1.0;

Section 5: Builtin Functions

JRT Pascal User's Guide -32-

5. 16 POS

Format 1
pose pattern, source);

Format 2
pose pattern, source, start_position);

Search the source string for the first occurence of
the pattern string. Return the position of the first byte
of the pattern if it was found t otherwise return zero. The
first byte is position 1.

In format 2 of the POS functiont the start position of
the search in the source string can be specified.

PROGRAM DEMO;
VAR

STR1,STR2 : STRING;
BEGIN
STR1 := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
WR I TELN (, TEST 1 :', POS (, EF' t STR 1)) ;
WR I TELN (, TEST 2 :' t POS (, D " STR 1 t 8»;
STR2 := 'XX XX XX';
WRITELN('TEST 3 :'t pose' 't STR2);
WRITELN('TEST 4 :', POS('XX't STR2, 2»;
END.

OUTPUT:
TEST 1 : 5
TEST 2 : 0
TEST 3 : 3
TEST 4 : 5

Se.ct ion 5: Builtin Functions

JRT Pascal User's Guide

5. 17 PRED

Format 1
PRED(integer_expression >;

Format 2
PRED(character_expression);

The PRED function returns
integer or a character expression.
'c' is 'b', the PRED of 98 is 97.

Example:

WRITELN(A, PRED(A) >;

WRITELN(CH, PRED(CH));

Section 5: Builtin Functions

-33-

preceding value of an
For examplet the PRED of

JRT Pascal User1s Guide -34-

5.18 REAL.

Format
REALS(real_expression >;

The REAL$ ~unction converts a real_expression to a
printable standard ~ormat ~or direct output or ~urther
editing. The output is a string of length 22, in the format
below:

, +0. 12345678901234E+00'

Examples:

WRITELN(FREQUENCY_FILE;
REALS(CYCLES / MICROSECONDS »;

STR := REAL$(VELOCITY / 7.03E-21);

Section 5: Builtin Functions

JRT Pascal User's Guide -85-

5.19 ROUND

Format
ROUND (real_expression >;

ROUND is a standard 'unction which converts a real
expression to an integer value. I' the real value's
'ractional part is greater than or equal to 0.5 then the
value is rounded up to the next higher integer.

If the real value is too large to be converted to
integer 'ormat, a warning message is issued and the value
returned is -82768 i. the real expression was negative
otherwise +32767.

Examples:

INT := ROUND (X + Y);

TEMPERATURE := ROUND (THERMOMETER_READING);

PLOT_X := ROUND (X / SCALING_FACTOR);

Section 5: Builtin Functions

JRT Pascal User's Guide -36-

5.20 SIN

Format
SIN(real_expression);

The SIN standard function returns the sine of a real
expression.

This is implemented as
declaration for an external
programs which reference it.

FUNCTION SIN (X : REAL

Examples:

WRITELN(SIN(ANGLE »;

NODE.SINE := SIN(N);

an external function. The
function must be included in

): REAL; EXTERN;

WRITELN(SIN(VELOCITY / CHARGE »;

Section 5: Builtin Functions

JRT Pascal User~s Guide -37-

5.21 SQR

Format 1
SQR(real_expression);

Format 2
SQR(integer_expression);

The SQR standard function returns either a real value
or an integer value depending on the parameter type. This
function returns the square of the parameter expression
the value multiplied by itself.

Examples:

WRITELN(~SQUARE OF X IS ~ SQR(X) >;

AREA := SQR(SIDE);

CIRCLE_AREA := PI * SQR(RADIUS >;

ENERGY := MASS * SQR(LIGHT_SPEED);

Section 5: Builtin Functions

JRT Pascal User's Guide -38-

5.22 SQRT

Format
SQRT(real_expression);

This standard function returns the square root of a
real expression.

This is implemented as
declaration for an external
programs which reference it.

an external function. The
function must be included in

FUNCTION SQRT (X : REAL): REAL; EXTERN;

Examples:

WRITELN(SQRT(A + 3.14159 »;

NODE.VALUE ;= OLD_NODE.VALUE + SQRT(V };

Section 5: Builtin Functions

JRT Pascal User#s Guide

5.23 suee

Format 1
SUCC(integer_expression >;

Format 2
SUCC(character_expression >;

The SUCC function returns
integer or a character expression.
'b# is 'CIt the SUCC of 97 is 98.

Example:

WRITELN(At SUCC(A));

WRITELN(CHt SUCC(CH));

Section 5: Builtin Functions

-39-

succeeding value of an
For examplet the SUCC of

JRT Pascal User's Guide

5.24 TRUNC

Format
TRUNC(real_expression);

TRUNC is a standard function
expression to an integer value.
the real expression is truncated.

-40-

which converts a real
The fractional portion of

If the rea} value is too large to be converted to
integer formatt a warning message is issued and the value
returned is -32768 if the real expression was negative
otherwise +32767.

Examples:

INT := TRUNC(X + Y);

TEMPERATURE := TRUNC(THERMOMETER_READING >;

PLOT_X 1= TRUNC(X / SCALINC_FACTOR >;

Section 5: Builtin Functions

JRT Pascal User's Guide -41-

5.25 UPCASE

Format
UPCASE(string_expression);

The UPCASE function converts a string expression to
all upper case letters. Non-alphabetic characters are not
changed.

Examples:

IF UPCASE(COMMAND
CMD_X;

= 'X' THEN

WRITE(Fl; UPCASE(NAME) >;

READLN(OPTION);
IF UPCASE(OPTION) = 'EXIT' THEN COTO 99;

Section 5: Builtin Functions

JRT Pascal User's Guide -42-

6. Builtin procedures

Several builtin procedures are provided in Pascal.
Most of these relate to input/output processing and are
discussed in the input/output section. The remaining
procedures are covered in this section. A list of them and
their purpose follows. JRT Pascal extensions are marKed
with an asterisK.

procedure

* CALL
* DELETE

DISPOSE
* FILLCHAR
* INSERT
* MAP

NEW
* PORT OUT
* SYSTEM

purpose

direct access to CP/M and BIOS
delete portion Ot dynamic string
de-al locate dynamic variables
initialize a string
insert string into dynamic string
access main storage
allocate dynamic variables
hardware port output
EXEC services

Section 6: Builtin Procedures

JRT Pascal User's Guide -43-

6.1 CALL

Format
CALL (addresst parameter_regs, returned_regs >;

The CALL builtin procedure allows you to maKe direct
calls to the CP/M operating system, to your own Basic
Input/Output System (BIOS), and to any machine language code
present in main storage. The 8080 data registers can be
directly setup for passing parameters to the module cal led.
The 8080 data registers which are returned from the module
may contain return values which can be used directly from
Pascal programs.

Note that this assembly language interface complements
the external procedure assembler. User subroutines which
must be written in assembler will usually be written as
external procedures and assembled. That gives the advantage
of fully automatic loading and relocation. CALL is intended
primarily for direct access to the operating system
services.

The address field is an integer expression. This
field is regarded as an unsigned 1S-bit integer. When CALL
is executed, control is transferred to the machine code at
the address. The module there must return control to Pascal
with a RET instruction. The 8080 stacK pointer must not be
modified on return to Pascal.

The 8080 t ·8085 t Z80 microcomputers have 7 one byte
data registers and a one byte flag register. The Z80 has
additional registers but these are not used in a CP/M
environment. Six of the data registers can be grouped as
two byte registers for some uses.

8080 Register Map

I A I FLAG I

I B I C 1

I D I E I

1 H 1 L I

Section 6: Builtin Procedures

JRT Pascal User's Guide -44-

The parameter_regs and returned_regs 'ields have a
particular 'ormat which must be declared in your program.
The parameter_regs 'ield is directly loaded into the
microprocessors data registers before control is transferred
to the called module. When control is returned to Pascal,
the current data registers are stored into the field
identi'ied by returned_regs. Both of these 'ields should be
declared liKe this:

TYPE DATA_REGISTERS =
RECORD
CASE INTEGER OF
1 : (FLAGtA,CtB,E,DtL,H : CHAR);
2 : (PSWtBC,DE~HL : INTEGER >;
END;

This is a variant record which de'ines the data
registers- for access in one or two bytes at a time. ,For
example, sometimes it may be necessary to regard the
register pair DE as an integer, other times it may be
necessary to treat register E alone as a single byte. Both
definitions total 8 bytes.

Note that in definition It the register names are in
an unusual sequence. This is necessary because the 8080/Z80
microprocessors store 16 bit data in a "byte-reverse"
'ormat.

Example:

VAR
PARM_REGS t RETURNED_REGS : DATA_REGISTERS;

CALL(5, PARM_REGS, RETURNED_REGS);

6.1.1 Calling the CP/M operating system

An operating system is a program which provides
services to application programs running under it. Some of
these services are "create file", "write string to printer",
"reinitialize system", and so on. Using the CALL builtin
procedure you can directly access these services from your
Pascal programs.

Section 6: Builtin Procedures

JRT Pascal Use~'s Guide -45-

The CP/M and MP/M Use~'s Guides describe in detail the
services provided and paramete~s required for each. Each
service is identified by a one byte function code. This
code is stored in register C before control is transferred
to CP/M. Many services also require an integer parameter
such as an address in register pair DE. The entry point
address for all CP/M compatible systems is location 5. At
address 5 is stored a Jump instruction to the actual CP/M
module.

The address of the BIOS (warm-start entry point) is
stored at address 0001 in main storage and may be accessed
with the MAP builtin procedure. The MAP and CALL procedures
allow direct access to all of the services provided by the
BIOS.

Section 6: Builtin Procedures

JRT Pascal User's Guide -46-

The service codes for CP/M 2.2 and MP/M are:

o system reset
1 console input
2 console output
3 reader input
4 punch output
5 printer output
6 direct console input/output
7 get I/O byte
8 set I/O byte
9 print string

10 read console buffer
11 get console status
12 return version number
18 reset disk system
14 select disK
15 open existing file
16 close file
17 search for first file control blocK
18 search for next file control blocK
19 delete file
20 read sequential
21 write sequential
22 create file
23 rename file
24 return login vector
25 return current disK
26 set DMA address
27 get addr (alloc)
28 write protect disK'
29 get read/only vector
30 set file attributes
31 get addr (disK parms)
32 set/get user code
33 read random record
34 write random record
35 compute file size
36 set random record
37 reset drive
40 write random with zero fill

Section 6: Builtin Procedures

JRT Pascal User's Guide

The following services are available in MP/M only:

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
148
144
145
146
147
148
149
150
151
152
153
154
155

Section 6:

absolute memory request
relocatable memory request
memory free
po 1 1
flag wait
flag set
create queue
open queue
delete queue
read queue
conditional read queue
write queue
conditional write queue
delay
dispatch
terminate process
create process
set priority
attach console
detach console
set console
assign console
send eLI command
call resident system process
parse filename
get console number
system data address
get date and time

Builtin Procedures

-47-

JRT Pascal User's Guide

Examples:

1. (* GET THE VERSION NUMBER FROM CP/M *>

PROCEDURE GET_VERSION;
VAR
PARM_REGS, RETURN_REGS : DATA_REGISTERS;
BEGIN
<* SET FUNCTION CODE ~= 12 *)
PARM_REGS.C := CHR(12);
CALL(5, PARM_REGS, RETURN_REGS >;

<* THE CP/M VERSION NUMBER IS RETURNED IN
REGISTER L. IF REGISTER H IS 01 THEN THE
OPERATING SYSTEM IS MP/M *>
CASE ORD(RETURNED_REGS.H) OF
o : WRITE('CP/M ');
1 I WRITE('MP/M ');
ELSE: WRITE('????');
END;
WRITE(' VERSION ');

CASE HEX$(RETURNED_REGS.L) OF
'00' : WRITELN('1.X');
'20' : WRITELN('2.0');
, 22 ' : WR I TELN (, 2. 2') ;
ELSE WRITELN(HEX$(RETURNED_REGS.L »;
END;

2. PROCEDURE WRITE_PROTECT_CURRENT_DISK;
VAR
PARM_REGS, RETURNED_REGS : DATA_REGISTERS;
BEGIN
PARM_RECS.C := CHR(28);
CALL (5, PARM_REGS t RETURNED_REGS >;
END;

Section 6: Builtin Procedures

-48-

JRT Pascal Use~'s Guide

3. PROCEDURE GET_USER_CODE;
VAR
PARM REGS. RETURNED REGS : DATA_RECISTERS;
BEGIN -
PARM_REGS.C := CHR(32);
CALL(5, PARM_REGS. RETURNED_REGS);
WRITELN('USER CODE =',ORD(RETURNED_REGS.A »;
END;

4. PROCEDURE SEARCH_FOR_FIRST
(NAME, TYPE: STRING[Sl);

TYPE
FILE_CONTROL_BLOCK =

RECORD

VAR

DISl(; CHAR;
FILENAME: ARRAY [l •• S] OF CHAR;
FILETYPE ; ARRAY [l •• S] OF CHAR;
EXTENT : CHAR;
Sl, S2 : CHAR;
RECORD_COUNT : CHAR;
BLOCKS: ARRAY [1 •• 16J OF CHAR;
CURRENT_RECORD : CHAR;
ROt Rl t R2 : CHAR;
END;

FCB :J" F I LE_ CONTROL_BLOCK;
PARM_REGS t RETURNED_REGS : DATA_REGISTERS;

BEGIN
(* SET UP FCB *>
FCB.DISI< := CHR(O);
FCB.FILENAME := NAME;
FCB.FILETYPE := TYPE;

(* SET UP PARM_REGS *>
PARM_REGS.C := CHR(17);
PARM_REGS.DE := ADDR(FCB);
CALL(5, PARM_REGS, RETURNED_REGS);

(* TEST RETURN CODE *>
IF RETURNED_REGS.A = CHR(255) THEN

WRITELN('FILE NOT FOUND');
END;

Section 6: Builtin P~ocedu~es

-49-

JRT Pascal User's Guide -50-

6.2 DELETE

Format
DELETE (string_variablet position, length);

The DELETE builtin procedure is used to delete a
number of characters from a dynamic string variable. The
first parameter refers to the string variable. The second
parameter is an integer expression which indicates the first
character to be deleted - characters in dynamic strings are
numbered from 1. The third parameter is an integer
expression which indicates the number 0' characters to be
deleted.

The hidden length field of the dynamic string variable
is updated. If the position and length parameters refer to
an area beyond the current length of the string, a run-time
error occurs.

Examples:

DELETE (TARGET_STR t 2S t 3);

DELETEC STR1, POS('END'. STR1), 3);

DELETE (STR8. 9. X + 8);

Section 6: Builtin Procedures

JRT Pascal User~5 Guide -51-

6.3 DISPOSE

Format
DISPOSE(pointer_variable);

The DISPOSE builtin procedure is used to de-a} locate
dynamic variables. The pointer_variable addresses a dynamic
variable in dynamic storage. After execution of the
procedure the space released is available for other uses.

JRT Pascal supports true dynamic storaQe \ijith auto­
compression. When blocKs are freed up, storage
fragmentation tends to occur - that is, sma) 1 unused blocKs
tend to accumulate. Because many blocKs tend to be small.
they cannot be immediately reused for another purpose. When
storage becomes short an auto-compression is initiated by
the Pascal system. In this process all freed blocKs are
gathered into the center area of storage and all needed
blocKs are moved to the top of storage. In this waYt
storage fragmentation is totally eliminated.

The DISPOSE procedure can be used to de-a) locate ghost
variables created by the MAP builtin procedure. Although
ghost variables use no real storage, they do reQuire a smat)
amount of space in the pointer tables.

Example:

PROCEDURE DISPOSE_DEMO;
TYPE
DYN_VAR = ARRAY [1 •• 200] OF CHAR;
VAR
POINTER : ADYN_VAR;
BEGIN
NEW (POINTER >; <* ALLOCATE A DYNAMIC VAR *>

<* DO SOME PROCESSINC WITH THE DYNAMIC VAR *)

DISPOSE(POINTER); (* FREE UP THE 200 BYTES *>
END;

Section 6: Builtin Procedures

JRT Pascal User's Guide -52-

6.4 FILLCHAR

Format
FILLCHAR(structured_variable, length t character);

The FILLCHAR builtin procedure is a very 'ast and
simple way to initialize a structured variable (array or
record) to a character. The length parameter is an integer
expression which indicates the number 0' bytes to be
initialized. The entire variable 'rom its 'irst byte up to
the length specified is set to the character expression
value.

CAUTION - This is a hazardous procedure since the run­
time system cannot verify that the initialization by
character has not run past the end of the variable and
perhaps overlayed other variables or program code.

Examples:

FILLCHAR(VECTOR, 160 t CHR(O));

FILLCHAR(, PRODUCT_ARRAY, 2500, '*');

Section 6: Builtin Procedures

JRT Pascal User's Guide ~5a-

6.5 INSERT

Format
INSERT(source_string, target_string_variable, position);

The INSERT builtin procedure inserts the source string
expression into the target string variable at the indicated
position. The source string may be a literal string or
other string expression. The target string must be an
actual variable. The source string is inserted into the
target variable beginning at the character indicated by the
integer expression position.

I~ the combination of parameters would cause the
target string to overflow its maximum length or if position
is less than 1, a run-time error occurs.

Examples:

INSERT('ABCD', STR1, 15);

INSERT (FILENAME, MASK, 1);

STR1 := 'MERE FACTICITY.';
INSERT('TRUTH IS NOT 't STR1, 1);

Section 6: Builtin Procedure.

(

JRT Pascal User's Guide -54-

6.6 MAP

Format
MAP< pointer_variable, address);

The MAP procedure allows the user to access any part
of the computer's storage. It uses the facilities of the
dynamic storage system and pointer variables to, in effect,
overlay a map on any area of storage. This is sometimes
called a "dsect" or "ghost variable."

UnliKe its close relative, the NEW proceduret MAP does
not actually allocate a dynamic storage blocK. Instead of
obtaining a storage block and setting the pointer variable
to point to it, it lets you specify the address. The
address can be anywhere from 0 to OFFFFH.

Like the NEW procedure, MAP does require five bytes of
pointer table space. When the ghost variable is no longer
needed, it can be removed from the table with the DISPOSE
procedure.

Examples:

1. <* ACCESS A 24 X 80 VIDEO TERMINAL *)
<* IT IS A MEMORY-MAPPED MODEL WITH ITS *>
<* VIDEO SCREEN BEGINNING AT OFOOOH *>

TYPE
SCREEN = ARRAY [1 •• 24, 1 •• 80] OF CHAR;
VAR
CRT : "SCREEN;
BEGIN
MAP(CRT t OFOOOH);

(* CLEAR THE SCREEN *>
CRTA : = ' ';
(* WRITE MESSAGE ON TOP LINE OF CRT *)
CRTA[lJ := 'MEMORY MAPPED CRT EXAMPLE';
•••
END;

Section 6: Builtin Procedures

JRT Pascal User's Guide

2. <* OBTAIN THE ADDRESS OF THE USER BIOS.*>
(* JMP INSTRUCTION AT ADDR 0 ADDRESSES *)
<* THE WARM-START ENTRY POINT IN BIOS *>

FUNCTION BIOS : INTEGER;
VAR
PTR : INTEGER;
BEGIN
MAP (PTR t 1);
B lOS : = (PTR"" - 8) ~ (* START OF BIOS *)

END;

8. (* SET THE 10BYTE AT ADDR :3 TO NEW VALUE *)

PROCEDURE SET_IOBYTE (X : CHAR);
VAR
PTR ; "CHAR;
BEGIN
MAP(PTR t :3);
PTR" ;= X;
DISPOSE(PTR);
END;

Section 6: Builtin Procedures

-55-

JRT Pascal User's Guide -56-

6.7 NEW

Format 1
NEW(pointer_variable >;

Format 2
NEW(pointer_var·iable, tag1, •• tt tagn);

The NEW procedure allocates new dynamic variables. A
block of dynamic storage of the required size is obtained.
The blocK's virtual addresst not its actual address is
stored in the pointer variable.

Virtual addressing and dynamic storage are fully
explained in the section on storage management.

After NEW has been executed, the dynamic variable may
be accessed. Dynamic variables remain al located until
specifically de-allocated by the DISPOSE procedure. If a
procedure uses NEW to al locate a dynamic "ariable, that
variable remains allocated after the procedur~ ends.

Format 2 contains 1 to n tag fields. These are the
fie 1 ds spec if ied in the CASE clause of val'"" i ar."J t records.

Section 6: Builtin Procedures

JRT Pascal User's Guide

Example:

<* PROGRAM FRAGMENT TO ALLOCATE A *)
<* LINKED LIST OF VARIABLE LENGTH. *>
<* THE ROOT OF THE LIST IS A GLOBAL *)
<* VARIABLE. NODES AFTER THE FIRST *>
<* ARE INSERTED BETWEEN THE ROOT AND *)
<* THE FIRST NODE. *>

TYPE
NODE = RECORD

VAR

NEXT INTEGER;
DATA: STRING[300J;
END;

ROOT · NODE;

PROCEDURE LINKED_LIST (COUNT
VAR
I : INTEGER;
TEMP : NODE;
BEGIN
(* ALLOCATE FIRST NODE *>
NEW(ROOT);

(* SET END_OF_LIST INDICATOR *)
ROOTA.NEXT := NIL;

(* ALLOCATE LINKED LIST *)
FOR I := 1 TO COUNT DO

BEGIN
NEW(TEMP);
TEMpA.NEXT := ROOT;
ROOT := TEMP;
END;

END; (* LINKED_LIST *)

INTEGER);

Section 6: Builtin Procedures

-57-

JRT Pascal User's Guide -58-

6.8 PORTOUT

Format
PORTOUT(port_number, byte);

The PORTOUT procedure writes a byte directty to one of
the hardware output ports. The port_number is an integer
expression. The byte is a string or char expression.

Examples:

PORTOUT(MODEM, START_CHAR >;

PORT OUT (VOICE_SYNTHESIZER, 'A');

PORTOUT(FIRE_ALARM, RESET >;

PORTOUT(TELETYPE, CHR(7));

PORTOUT(i5H t CHR(8 + X»;

Section 6: Builtin Procedures

JRT Pascal User's Guide -59-

6.9 SYSTEM

Format
SYSTEM (option);

The SYSTEM procedure allows you to control the trace
facilities, the routing of console output. dynamic storage
compression and warning messages.

The options for SYSTEM are listed. default states of
the Pascal system are indicated with an asterisK.

option

* CONS
NOCONS
LIST

* NOLIST
* WARNING

NOWARNINC
LTRACE

* NOLTRACE
LRANGE t 1 , u
PTRACE

* NOPTRACE
INITIALIZE

COMPRESS

purpose

route output to console
no output to console
route output to printer
no output to printer
display warning messages
suppress warning messages
activate line trace
disable line trace
set line range for line trace
activate procedure trace
disable procedure trace
re-initialize disK system

after disk switch
compress dynamic storage

The LRANGE option requires two additional parameters.
The lower and upper line numbers are integer expressions.

Examples:

SYSTEM (LIST);

SYSTEM (NOWARNINC >;

SYSTEM (LRANGE t 250, 300);

SYSTEM (COMPRESS);

Section 6: Builtin Procedures

JRT Pascal User's Guide

7. Input/output

JRT Pascal includes a powerful input/output
which can be used to meet virtually any
requirement. Three modes of input/output
sequential diSK, random disK - are provided.

-60-

subsystem
processing

console,

DisK files can be processed in either TEXT mode or in
BINARY mode. TEXT mode is most commonly used by BASIC
languages. Data is stored in ASCII text readable format.
BINARY mode is found on larger mini and mainframe computers.
The data is input/output in the binary format used
internally by the language. Not only is the data more
compact in some cases but it is also of fixed length. For
example, an integer in text format could occupy from two
bytes to six bytes depending on its value. But in binary
format, an integer is always exactly two bytes.

Text mode is sometimes called "stream I/O".
mode is sometimes cal led "record I/O".

Binary

Another advantage of binary format is that you can
process data files or COM files containing special control
characters.

All files in JRT Pascal are "untyped". That is you
can read and write data of any format to any file. You can
write records of entirely different formats and sizes on the
same file.

JRT Pascal also supports direct access to the hardware
input/output ports without having to write an assembly
language subroutine. The builtin function PORTIN and
builtin procedure PORTOUT are described in the sections on
builtin functions and procedures.

The procedures GET and PUT are not supported. The
standard procedures READ and WRITE are extended to support
every processing need.

Section 7: Input/output

JRT Pascal User's Guide -61-

7.1 Console input/output

Console input/output is the usual means for a program
to interact with the user. Data values can be displayed at
a video terminal or teletype and data can be Keyed in in
response.

Console input/output always occurs in text rather than
binary format. Integers, real numbers, strings, characters,
Booleans will be displayed in text format. Set variables
have no meaningful text format and cannot be written to the
console.

Using the HEX. builtin function any variable can be
converted to hex format for direct display. On console
input for integers, data may be Keyed in standard decimal
format or in hex format. An 'H' character suffix indicates
hex format.

On input to the consolet data items may be separated
by spaces, tabs, commas or semicolons. Character or
structured variable inputs which contain special characters
may be entered in single quotes. The quote character itself
may be entered by doubling it.

Sample input lines

3.14159,77
03ch, 'JRT Systems'
'don"t say you can"t'
6.70284e-25,O.0000008

Reading from the console into a dynamic string
variable is treated differently. An entire line of text is
obtained from the console and moved directly into the string
variable. Separator characters and single quotes are
ignored. The system will not allow more characters to be
Keyed in than can fit into the variable. The string
variable must be the only variable in the READ's parameter
list.

Console output can also be routed to the printer or
list device. The SYSTEM procedure is fully described in the
section on builtin procedures. Some of its options are:

SYSTEM (LIST);
SYSTEM (NOLlST);

Section 7: Input/output

route output to printer
do not route to printer

JRT Pascal User's Cuide

SYSTEM (CONS >;
SYSTEM (NOCONS);

route to console device
do not route to console

-62-

The builtin procedures/functions used in
input/output are:

console

READ. READLN
WRITE, WRITELN
EOLN

read data into storage
write data to console/printer
end of line function

Section 7: Input/output

JRT Pascal User's Guide -63-

7.2 Sequential file processing

DisK files are not inherently
Those terms apply to the means
applied to any disK file.

sequential or random.
of access which may be

Sequential file processing is generally faster than
random access because input/output can be buffered and
because the disK positioning mechanism only needs to move
short distances.

JRT Pascal lets the user obtain maximum processing
speed by defining the buffer size for sequential files. The
buffer is the holding area where disK data is loaded and
written. This area is filled or emptied in one burst - one
disK access with one head load operation. A very small
buffer may cause disK "chattering" during processing because
of frequent accesses. A large buffer will result in less
frequent but longer disK accesses.

The buffer size is specified as an integer expression
in the RESET or REWRITE procedure. It will be rounded up to
a multiple of 128. If storage is plentifult buffers of 4096
or 8192 bytes will improve processing.

The builtin procedures/functions used in sequential
disK file processing are:

RESET
REWRITE
READ t READLN
WRITE, WRITELN
EOF
EOLN
ERASE
RENAME

open file for input
open file for output
read data into storage
write data to disK
end of file function
end of line function
delete a file
rename a file

Section 7: Input/output

JRT Pascal User's Guide -64-

This sample program reads in a file and dumps it in
hex format to the console.

PROGRAM DUMP;

TYPE BLOCK = ARRAY [1 •• 16] OF CHAR;
NAME = ARRAY [1 •• 14] OF CHAR;

VAR
B : BLOCK;
DUMP_FILE: FILE OF BLOCK;
FILENAME : NAME;

BEGIN
WHILE TRUE DO (* INFINITE LOOP *)

BECIN

END.

Section 7:

WR I TE (, enter f i I e name : ');
READLN(FILENAME);
RESET (DUMP_FILE, FILENAME,

BINARY, 4096);
WHILE NOT EOF(DUMP_FILE) DO

BEGIN
READ (DUMP_FILE; B);
WRITELN(HEXt(B));
END;

CLOSE (DUMP_FILE >;
WRITELN;
END;

Input/output

JRT Pascal User1s Guide -65-

7.3 Random file processing

For many types of processing it is not Known in
advance in which sequence the records of a file will be
needed. A spelling dictionary or online inquiry customer
database obviously must use random access files.

In JRT Pascal random access is fully supported. Data
can be read and updated by providing the relative record
number (RRN) within the file for fixed length records. The
first. record is at RRN = o. For variable length records t

the data can be read or updated by providing the relative
byte address (RBA). The RBA is the location of the data
item within the file - the first byte is at RBA = O.

The RBA mode of processing gives much greater
flexibility than RRN. If all records had to be the same
size, then a1 1 must be the size of tha largest, resulting in
much wasted space and slower access.

JRT Pascal version 2.1 now supports random files up to
the CP/M maximum of 8 megabytes. The RBA or RRN value may
be an integer or a real expression. Programs written under
earlier versions are source code compatible but must be
recompiled usinq the version 2.1 compiler.

The procedures used in random file processing are:

OPEN
READ
WRITE
ERASE
RENAME

open or create random file
read data into storage
transfer data to disk
delete a file
rename afile

A sample program shows random access to a file
containing sales information for the various departments of
a retail store. The records are located· ~y department
number.

Section 71 Input/output

JRT Pasca1 User's Guide

PROGRAM INQUIRY;

LABEL 10;

TYPE
DEPT_RECORD = RECORD

INVENTORY
MTD_SALES
YTD_SALES
DISCOUNT
END;

REAL;
: REAL;

REAL;
: REAL;

VAR
INPUT_AREA
DEPT_FILE
DEPT

DEPT_RECORD;
: FILE OF DEPT_RECORD;

INTEGER;

BEGIN (* INQUIRY *>
OPEN (DEPT_FILE, 'C:DEPTDATA.RND~t BINARY);

REPEAT
WRITE('Enter dept number: ');
READLN(DEPT);
IF DEPT = 999 THEN GOTO 10; (* EXIT *>
READ (DEPT_FILE, RRN, DEPT;

INPUT_AREA >;
WRITELN;
WRITELN('dept',DEPTt

, inv', INPUT_AREA. INVENTORY:9:2,
disc'tINPUT_AREA.DISCOUNT:9:2)1

WRITELN(' MTD sales',MTD_SALES:9:2 t

YTD ~ales',YTD_SALES:9:2);
WRITELN;

10: (* EXIT LABEL *)
UNTIL DEPT = 999;

CLOSE (DEPT_FILE);
END (* INQUIRY *>.

Section 7: Input/output

-66-

JRT Pascal User's Guide -67-

7.4 Indexed file processing

In most applications where random or direct file
access is needed, there will not be a one-for-one match
between the Key and the relative record number. In these
cases some form of index must be used to match the Key to
the record number or relative byte address of the desired
data item in the file.

The index itself may be located in the file and be
maintained as the file changes. It must contain at least a
Key and a data location field for each record.

The Key which is used to locate the data is usually
some va~e liKe department numbert customer name or supplier
number concatenated to part number. I' the Key itself is
large then the index could become very large and occupy too
much main storage. In this case a shorter Key can be
created from the original Key data. For examplet a four
byte Key could be generated 'rom the 'irst, third, eighth
and tenth letters of a customer name. Duplicate Keys can
occasionally occur and may be considered in programming the
index search procedure.

When the file contains a very large number 0' records
or data items a two level index may be used. The primary
index which is Kept in storage contains the range 0' Keys
contained in each 0' the second level indexes. The primary
index is searched for the correct Key range. The correct
second level index is loaded and searched. Finally the
actual record is loaded. In many applications the one extra
disK access would be Justified by the s~vings in storage.

For the experienced programmer, the POS builtin string
function can be used to perform very fast searches of
indexes.

One method of indexed file processing places the index
as the first record on the file. The index will contain a
Key in any useful formatt an RBA value, and perhaps a record
size field 'or variable records.

After opening this indexed filet the index is read
from RBA=O into an array in storage. There it can be
searched for any particular Key. If the record is found
then using the RBA from the index it can be loaded into
storage. It can be updated if necessary and rewritten.

Section 7: Input/output

JRT Pascal User's Guide -68-

A sample program segment based on this Kind of indexed
fi le is shown. It pr'ovides onl ine access to a fi Ie of
message texts. The indexed file could be created by a
separate sequential disK program.

(*** GLOBAL TYPE AND VAR DECLARATIONS ***>
CONST
INDEX_SIZE = 100;
TYPE
INDEX_ENTRY = RECORD

MSG_NUM : INTEGER;
MSG_RBA : INTEGER;
END;

INDEX = ARRAY [I •• INDEX_SIZE] OF INDEX_ENTRY;

VAR
IX : INDEX;
MSG_FILE : FILE OF CHAR;

PROCEDURE MESSAGE (NUM ~ INTEGER >;
VAR
I : INTEGER;
MSG_BUFFER: ARRAY [1 •• 1000] OF CHAR;
BEGIN
IF NUM = 0 THEN (* INITIALIZE *>

BEGIN

ELSE

OPEN(MSG_FILE t 'B:MESSAGE.DAT'.
BINARY>;

READ(MSG_FILE t RBA t 0; IX>;
END

BEGIN <* LOCATE AND PRINT MSG *>
1:=1;
WHILE (I <= INDEX_SIZE>

AND <NUM <> IXCIJ.MSG_NUM) DO
1:=1+1;

IF I = INDEX_SIZE THEN
WRITELN('UnKnown message'tNUM>

ELSE (* LOAD MESSAGE *>

END;

BEGIN
READ(MSG_FILE t RBA t

IXCI1.MSG_RBA; MSG_BUFFER>;
WRITELN(MSG_BUFFER);
END;

END; (* MESSAGE *>

Section 7: Input/output

JRT Pascal User's Guide -69-

7.5 EOF

Format
EOF (filename);

The end of file function indicates when the end of a
file is reached during input processing. It returns a
Boolean value of true immediately after end of file
detection, otherwise it returns true. The EOF function has
no meaning in console or random disK processing.

When processing a file in text mode, end of file is
detected when all data up to the first ctl-z (lAH) has been
read. This is the standard character to indicate the end of
data.

When processing a file in binary mode, end of file is
detected when all the data in the last allocated sector of
the file has been read.

Examples:

<* COMPUTE THE AVERAGE OF A FILE OF NUMBERS *>
RESET (Fit ~DAILY.SAL't TEXT, 4096);
TOTAL := 0;
COUNT := 0;
WHILE NOT EOF(Fl) DO

BEGIN
READ<Fl; DAILY_SALES);
TOTAL := TOTAL + DAILY_SALES;
COUNT := COUNT + 1;
END;

AVERAGE := TOTAL / COUNT;
CLOSE(Fl);

<* WRITE A FILE TO THE PRINTER *>
SYSTEM (LIST);
RESET (FI, 'TEST.PAS', BINARY, 2048);
READ (F 1; CH);
<* INSTEAD OF USING EOF, WE DIRECTLY TEST FOR
A CHARACTER lAH, SINCE THIS IS BINARY FILE *)
WHILE CH <> CHR(lAH) DO

BEGIN
WRITE(CH),
READ (F 1; CH);
END;

CLOSE (Fl);

Section 7: Input/output

JRT Pascal User's Guide

7.6 EOLN

Format 1
EOLN (filename);

Format 2
EOLN;

-70-

The end of line function returns a Boolean value true
if the end of line is reached otherwise false. This
function applies only to console and text filest not to
binary files.

Format 1 is used to sense end of line while reading
disK files. Format 2 is used to sense end of line in
conso lei npu t •

This function is used primarily to read in an unKnown
number of data items from a line of text. Executing a
READLN with or without any parameterSt always resets EOLN to
false and positions the file at the start of the next line
of text.

Examples:

(* READ NUMBERS FROM CONSOLE t COMPUTE AVG *>
TOTAL := 0; COUNT:= 0;
WHILE NOT EOLN DO

READLN;

BEGIN
READ (NUMBER);
TOTAL := TOTAL + NUMBER;
COUNT := COUNT + 1;
END;

AVERAGE := TOTAL DIV COUNT;

(* READ DATA FROM FILE, COUNT LINES OF TEXT *>
LINE_COUNT := 0;
WHILE NOT EOF(Fl) DO

Sect ior, 71

BEGIN
"READ(Fl; DATA_ITEM);
PROCESS_DATAC DATA_ITEM);
IF EOLN(Fl) THEN

END;

BEGIN
LINE_COUNT := LINE_COUNT + 1;
READLN(Fl);
END;

I r,pu t lou t pu t

JRT Pascal User's Guide -71-

7.7 ERASE

Format
ERASE (filename);

The ERASE procedure deletes files from disK. It can
be used to delete files from any available disK, by
including the disK identifier in the filename.

ERASE is implemented as an external procedure. Any
program referencing it must include its declaration:

PROCEDURE ERASE (NAME: STRING(20] >; EXTERN;

Examples:

ERASE ('TESTPGM.PAS');

ERASE (CONCAT('B: 't FILENAME, FILETYPE>);

ERASE ('A:' + NAME + '.HEX' >;

ERASE (BACKUP_FILE);

Section 7: Input/output

JRT Pascal User's Guide -72-

7.S OPEN

Format 1
OPEN (file_identifier, filename, BINARY);

Format 2
OPEN (file_identifier, filename. TEXT >;

The OPEN builtin procedure is used to open files for
random access. Format 1 is used to open files in binary
mode. Format 2 is for text mode processing.

The file_identifier refers to a file variable declared
in the VAR declaration section. The filename is a string or
structured expression which may include disK identifier
letter.

The file specified by the filename is opened for use
if present. Ir not present, a new file is ,reated.

Both formats may be used with both RRN and RBA
accessing.

Examples:

OPEN INVENTORY, 'INVENTRY.DAT't BINARY);

OPEN Fl, RANGE + '.DAT', TEXT);

OPEN CASE_HISTORY t 'D:TORTS.LIB', BINARY);

OPEN DICTIONARY, 'B:SPELLING.LIB', BINARY>;

Section 7: Input/output

JRT Pascal User's Cuide

7.9 READ t READLN

Format 1 (console)
READ/LN (variable1, variable2J •••

Format 2 (sequential disK)

) .. . ,

READ/LN (fi le identifier· variable1. variable2, •••) ~

Format 8 (random disK)
READ/LN < file_identifier, RRN t integer_or_real_expr

var·iable1. variable2 t t ••);

Format 4 <random disK)
READ/LN (file_identifier, RBA t integer_or_real_expr

variable1, variable2 t •••);

-73-

The READ standard procedure is used to bring data from
console or disK into main storage.

Format 1 is used for reading data from the console
Keyboard. When it is executed it will obtain data from the
console buffer, convert to the proper format, and store the
data in the specified variables. If sufficient data is not
available, the system wi) 1 wait for more data to be Keyed
in. If data is Keyed in with an unacceptable formatt a
warning message is issued.

Dynamic string variables may only be used in READ
format 1 in console input, not in disK file input. To
read character data from disK files, arrays of characters or
records may be used.

Reading from the console into a dynamic string
variable is treated differently. An entire line of text is
obtained from the console and moved directly into the string
variable. Separator characters and singl. quotes are
ignored. The system will not allow more characters to be
Keyed in than can fit into the variable. The string
variable must be the only variable in the READ's parameter
list.

When al I data on a given input line has been read in,
the EOLN function becomes true. The READLN procedure has
the additional purpose of reseting EOLN to false. READLN
always clears out the current input line. For example, if 5
numbers were Keyed in on one line and a READLN were issued
with 8 variables in its parameter list, the iast 2 numbers

Section 7: I rl pu t lou t pu t

JRT Pascal User's Guide -74-

on that line would be lost.

Format 2 is used to read in data rrom a sequential
disK rile. Whether the rile is processed as text or binary
data is speciried when the rile is opened (RESET). The
rile_identirier must rerer to a rile which has been
successfully opened or a run-time error wil 1 occur.

Note that JRT Pascal uses a semicolon arter the
file_identifier rather than a comma.

Format 3 is used to read in data rrom a random file by
giving the relative record number (RRN) or the record
required. The first record is at RRN=O. The rile must have
been successfully opened with the OPEN procedure.
Sequential and random rile accesses cannot be mixed unless
the file is closed and re-opened in the other mode. The
size of records on the file for RRN processing is determined
when the file is declared. For example, a FILE OF REAL has
a record size of 8 bytes.

Format 4 is used to read data rrom a random file by
giving the relative byte address (REA) of the data item
required. The first byte of the file is at REA=O. The file
must have been successfully opened with the OPEN procedure.
Random processing cannot be mixed with sequential processing
but RRN and RBA processing can be mixed without re-opening
the file.

Examples

READLN(A, B);

READ (DATA_FILE; X_DATA, Y_DATA >;

READ(HISTORY_FILE, RRN, YEAR; MAJOR_EVENT);

READ(INQUIRY_FILE, RBA, 0; INDEX);

READLN; <* RESET EOLN *>

Section 7: Input/output

JRT Pascal User's Cuide -75-

7.10 RENAME

Format
RENAME (old_name, new_name);

The RENAME procedure is used to rename disK files on
any disK. The old_name and new_name are string expressions.

RENAME is implemented as an external procedure. Any
program referencing it must include its declaration:

PROCEDURE RENAME (OLD. NEWt: STRING[20J);
EXTERN;

Examples:

RENAME (~C:·TEST.PAS't ~TEST2.PAS');

RENAME (OLD_FILE_NAME, NEW_FILE_NAME >;

RENAME (DISK + OLD_NAME, NEW_NAME);

RENAME (~SORT.BAK't 'SORT.PAS');

Section 7: Input/output

JRT Pascal User's Guide -76-

7.11 RESET

Format 1
RESET (file_identifier, filename, BINARY, buFr_size >;

Format 2
RESET (file_identifier, filename, TEXT, bufr_size);

The RESET standard procedure is used to open already
existing files for sequential input. If the file specified
is not presentt a run-time error occurs.

Format 1 is used to open files in binary mode. Format
2 opens files in text mode.

The file_identifier refers to a file variable declared
in the VAR declaration section. The filename is a string or
structured expression which may include disK identifier
letter.

The bufr_size is an integer expression which indicates
the size of the input buffer to be allocated in dynamic
storage. When storage is availablet larger buffers are
preferred because they result in fewer disK accesses and
thus faster processing. The buffer size is rounded up to a
multiple of 128.

Values liKe 1024, 2048, 4096 are recommended for
bufr_size.

Examples:

RESET (INPUT_FILE, 'SOURCE.PAS't BINARY, 1024);

RESET (LOG, 'B:LOG.DAT', TEXT, 2048);

RESET (DAILY_SALES, 'C:DAILY.DAT', TEXT, 256);

RESET (STATISTICS, 'STAT.DAT', BINARY, 1024);

Section 7: Input/output

JRT Pascal User's Guide -77-

7.12 REWRITE

Format'l
REWRITE(file_identifier, filename. BINARY t bufr_size);

Format 2
REWRITE(file_identifier, filename, TEXT, bufr_size);

The REWRITE standard procedure is used to open files
for sequential disK output. A new file with the given
filename is allocated. If a file with that name already
exists t it is deleted to free the space allocated to it.

Format 1 is used to open Files in binary mode. Format
2 opens Files in text mode.

The File_identifier refers to a file variable declared
in the VAR declaration section. The filename is a string or
structured expression which may include disK identifier
letter.

The bufr_size is an integer expression which indicates
the size of the input buffer to be allocated in dynamic
storage. When storage is available, larger buffers are
preferred because they result in fewer disK accesses and
thus faster processing. The buffer size is rounded up to a
multiple of 128.

Values liKe 1024, 2048, 4096 are recommended For
bufr_size.

Examples:

REWRITE(LOG_FILEt 'F:LOG.DAT't TEXT, 512);

REWRITE(REPORT, MONTH + '.RPT't TEXT, 1024);

REWRITE(SYMBOL, PGM + '.SYM', BINARY, 256);

REWRITE(STATISTICS, 'B:STATS.DAT', TEXT. 768);

Section 7: Input/output

JRT Pascal User~s Guide

7.13 WRITE, WRITELN

Format 1 (console)
WRITE/LN (variablel, variable2, •••);

Forma t 2 (se"quen t i a r d i s~<)
WRITE/LN (fi Ie identifier variablel. variable2, •••);

Format 3 (random disK)
WRITE/LN (file_identifier, RRN, integer_or_real_expr ;

var'iablel, variable2, •••);

Format 4 (random disK)
WRITE/LN (file_identifier. RBA, integer_or_real_expr ;

variablel, variable2t. t t);

-78-

The WRITE standard procedure is used to transFer data
From main storage to the console for display or to disK For
stor·age.

Format 1 is used to write data to the console or
printer. The console is always considered to be a text
device, that is data is always converted to readable text
format before output. Standard ASCII control characters are
supported:

decimal hex. purpose
------- -------

9 09h horizontal tab
10 Oah line feed
12 Och form feed t clear screen
13 Odh carriage r'eturnt end line

For example, executing the Pascal statement
WRITE(CHR(12)); wi) 1 clear the SCreen of most types of CRT
terminals.

The WRITELN statement is identical to the WRITE except
that it also writes a carriage return character after the
data, that is, it end~the current output line. A WRITELN
may be used by itselF, without any variables. This writes a
blanK line to the output device.

Format 2 is used to write data to sequential disK
files. The file must have been successfully opened with a
REWRITE procedure. This format may be used in either binary
or text mode processing.

Section 7: Input/output

JRT Pascal User's Guide -79-

Note that JRT Pascal uses a semicolon after the
file identifier rather than a comma.

Format 3 is used to write d~ta to a random file by
giving the relative record number (RRN) of the record being
updated or created. The first record is at RRN=O. The file
must have been successfully opened with the OPEN procedure.
Sequential and random file processing cannot be mixed unless
the file is closed and re-opened in the other mode. The
size of records on the file for RRN processing is determined
when the file is declared. For example, a FILE OF REAL has
a record size of 8 bytes, the size of real variables.

Format 4 is used to write data to a random file by
giving the relative byte address (RBA) at which the data is
to be stored. The first byte of the file is at RBA=O. The
data will be stored beginning at the specified RBA and
continuing until it is all written out. The file must have
been opened with the OPEN procedure. Random processing
cannot be mixed with sequential processing but RRN and RBA
processing can be mixed without re-opening the file.

When processing in text mode. a convenient formatting
option is available. Any of the variables in the WRITE
parameter list may be suffixed with a colon and an integer
expression. This specifies the field width of the data
value being written. If the data item is shorter than this
then spaces wil I be inserted on the left of the item. This
option is used when columns of figures must be aligned.

A second option is available for real numbers. After
the field width integer expression, a second colon and
integer expression may be used to indicate the number of
digits right of the decimal place to be displayed.

Examples:

WRITELN('THE TIME IS 'tGET_TIME);

WRITE(DATA_FILE; XCIJ, X[2], X[3]);

FOR 1:=1 TO 100 DO
WRITE(DATA_FILE; XCI]);

IF DATA < 0 THEN
WRITE(NEGATIVE_DATA; DATA

ELSE

Section 7: Input/output

JRT Pascal User's Guide

WRITE(POSITIVE_DATA; DATA);

WRITELN(REPORT; TOTAL_SALES:12:2 >;

WRITE(CUSTOMER_FILE. RRN. CUST_NUM;
NEW_CUSTOMER_RECORD >;

WRITE(INQUIRY, RBA, 0; INDEX);

WRITELN; C* BLANK LINE *>

WRITE(CHR(OCH) >; (* CLEAR SCREEN *>

Section 7: Input/output

-BO-

JRT Pascal User's Guide -81-

8. LinKer'

The use of the linKer is entirely optional. It is
u$ed to merge a Pascal program INT file with some or all of
its external procedure/function INT files. It can process
procedures written in assembler as well as Pascal. To run
the linKer enter:

EXEC LINI<E~

The linKer wil I issue a prompt to the console for the
program name. After the main program has been processed t

you wil 1 be prompted to select which of the external
procedures to merge. The procedures referenced by this
program will be listed with their identification numbers (1
to 63). An asterisK indicates procedures selected.
Possible replies to the 'Procedure selection' message are
listed below. More than one number may be entered each
time. Entering zero ends the interactive portion and causes
merge processing to begin.

reply

1 to 63
-63 to -1
100
-100
o

purpose

select this procedure
de-select this procedure
select all procedures
reset. select none
end selectionf begin processing

The output module file will have the same filename
the main program and a filetype of INT. The filetype of
main program input file will be renamed to IN2. If any
the selected input procedure files are not present a
time error will occur and the linKer will te~minate.
files must be present on the A: disK.

Sec t ion S-: L i n~~er

as
the
of

run­
All

JRT Pascal User~s Guide -82-

9. Customiz

External procedures and functions are compiled
separately from the main program. They can be linKed
together with the main program using the linKer. If this is
not done then they will be automatically loaded from disK
into the computer's storage when they are first referenced.
If a short-on-storage condition arisest they may be purged
from storage if they are not currently active.

Procedures which are rarely used t liKe initialization
or error handlingt would not occupy main storage except when
needed. Also very large programs might be divided into
several phases, each corresponding to an external procedure.

The EXEC loads the external procedures from disK.
There is no need to inform EXEC on which disK each procedure
resides - it wil I search for them. This means that you do
not have to put al I the program sections on to the A: disK.

EXEC and the compiler JRTPAS2· contain ~disK search
lists' which specifies which disKs are available on the
system. The default lists are set to 'AB'. The search
lists should be modified to reflect your hardware
con'iguration. The Customiz program is provided to modify
the lists in both EXEC and JRTPAS2. To run Customiz enter:

EXEC CUSTOMIZ

You can enter the new disK search list with up·to four
disK letters speci'ied. The letters must be contiguous.
The list also determines the sequence in which the disKs are
searched for external procedures and 'unctions.

Section 9: Customiz

JRT Pascal User's Guide -S3-

10. Assembler

The JRT Pascal system provides two methods of
preparing external procedures and ~unctions written in
assembly language. A special purpose assembler is provided
which generates modules, in the correct ~ormat. The second
method may be used if a Microsoft format assembler is
available such as RMAC or MACRO-SO. The CONVERTM utility
converts the REL files produced by these assemblers into INT
format ~iles which may be accessed as external procedures.

The JRT assembler translates BOBO assembly language
into JRT relocatable format modules. These modules can be
called from a Pascal program as if they were Pascal external
procedures. Parameters may be passed to them and 'unction
return values may be received.

The JRT assembler is compatible with the standard ASM
program distributed with CP/M. Input files have a file type
o' ASM. The assembler output is a 'ile o~ type INT, which
may be linKed with the main program or automatically loaded
at run-time.

10.1 Entry codes

After an external procedure is lo~ded into main
storage, EXEC transfers control to it. A five byte code
(95,6,0,92,0) is placed at the start of the procedure to
in'orm EXEC that this is an assembler procedure rather than
Pascal. The procedure must end with a return (RET)
instruction. Any registers except the S080 stacK pointer
may be modified.

Example of entry codes:

;procedure entry
db 95,6,0,92,0 Jrequired entry codes

.. ,
;send a message to

mvi c,9
lxid,msg
ca 1 I 5

.. , .

ret

Section 10: Assembler

conso!:e
;print buf~er code
;address of messaqe
;bdos entry point

;end of procedure

JRT Pascal User's Guide

• ,
msg db 'JRTASM sample procedure'

db Odh,Oah, ~.' ;carriage return
end

-84-

If this p~ocedure were named SAMPLE.ASM then the
declaration in the Pascal program referencing it would be:

PROCEDURE SAMPLE; EXTERN;

10.2 Operating JRTASM

To assemble an external procedure enter:

EXEC JRTASM

You wi)) be prompted at the console for the input
filename and options. The options are:

1 - produce a listing on the console during pass 1
of the assembly process, use'ul for debugging

C - produce an output file of type 'COM' rather
than 'INT', this is not an external procedure but
a directly executable command file in standard
CP/M format, an ORC 100H directive should be
included since the default origin is 0

10.3 Directives

These assembler directives are supported:

directive

ORC

SET
EQU
-IF/ELSE/ENDIF

DB
DW
DS

Section 10: Assembler

purpose

set location counter, not used
in external procedures
as.i~n a value to a variable
assign a value to a fixed symbol
conditional assembly 0' code,
may be nested to 16 levels
de'ine byte, multiple operands
define word
define storage

JRT Pascal User's Guide

READ

WRITE

used to assign a new valu. to a
variablet liKe SET except that
value is obtained from console
display strings or expressions
on console

Example of directives:

a

.. ,

set 9
if a = 9
write 'a is equal to nine'
else
write 'a is not equal to nine'
endif

x read ;msg at console will asK for x
write IX squared is 't (x * x)

.. ,
a set a + 1 ;increment a

db 'string'ta t 255
;

Section 10: Assembler

-85-

JRT Pascal User's Guide -86-

10.4 Expressions

. Integer
instructions.
A symbo 1 is
otherwise it
relocatabte
Par-entheses

expressions can be used in assembler
Expressions are either 'ixed or relocatable.
relocatable i' it re'ers to an address,
is 'ixed. I' any symbol in an expression is

then the entire expression is relocatable.
may be nested to any level.

These operators are supported:

* I
NOT
MOD
EQ

Section 10:

+
AND
HIGH

NE LT

OR XOR
LOW

LE GT

Assembter

GE

JRT Pascal User's Guide -87-

10.5 Parameters and function return values

Parameters of any data type may be passed to assembler
external procedures and functions. The EXEC maintains a
data stacK which contains all static variablest parameters,
function return values and procedure linKage blocKs.

Three address pointers are used to access the data
stacK. These are available to external procedures in the
8080 register pairs on entry to the procedure.

BASE (HL) - address of the data stacK
CUR (DE) - address of the linKage blocK for

curre~tly active procedure
TOS (Be) - top of stacK t points past last

allocated byte

I 1
I 1

TOS--)I I
1---------------1
I I
1 6 bytes 1
1 1

CUR--)I 1
1---------------1
I 2 bytes- I
1---------------1
I I
I x bytes I
I 1
I 1
1---------------1
I 1

I 1
1 I
1 1
1 1
1---------------1
1 I
I 6 bytes I
1 1
1 I

BASE--)I---------------I

Section 10: Assembler

linKage blocK for
current procedure

parameter length fld

parameters of
current procedure

global variables
of main program

linKage blocK for
main program

JRT Pascal User's Guide -88-

With the three data stack pointers. the parameters
passed to the pr·ocedure can be accessed. I ~ it' is a
function the return value can be stored. Also the global
variables of the main program can be accessed. For example,
if the ~irst global variable declared in the main Pascal
program which calls the external procedure is an integer
named INTI then Just add 6 to the BASE pointer to get the
address of INTI. The BASE pointer is in register pair HL on
entry to the procedure.

Data stacK after procedure ca 1) DEMO(~ A' t 7) ;

, A' .,.
I length linKage blocK

41 0700 0300 xx xx xx xx xx xx yy
I I
CUR TOS

The two byte integer fields are in 8080 byte-reverse
format. The parameter length field is equal to three. The
linKage blocK is six bytes o~ unspecified data.

Parameters are accessed by decrementing the CUR
pointer. Pascal value parameters are actual ly present in
the data stacK. For reference parameters, the address of
the variable is present in the data stacK. I~ the procedure
has no parameters. the parameter length field is zero.

Function return values must be stored Just before the
function's first parameter in the data stacK.

Data stacK a~ter function cal 1 X:= TEST(3,8 ~ The
return value is of type integer.

3
rr'rr 0300
I
r'etur'n va I ue

8
0800

I erlg th
0400

I inkage blocK
xx xx xx xx xx xx
I
CUR

yy
I
TOS

If the return value is of type CHARt a string. or a
structured variable (entire arraYt entire record) then there
is a two byte length field between the return value and the
first parameter. This field is set by E~EC and must not be
modified. If the r'eturn value is a dynamic str'ingt the
current length field is a two byte field at the beginning of
the string. this must be set to the desired length of the

Section 10: Assembler

JRT Pascal User's Guide -89-

field.

Data stacK after function call NAME:=LOOKUP('X't 1);
The return value is of type ARRAY [1 •• 4J OF CHAR;

return value rv len
rr rr rr rr 0400

'X'
58

1
0100

10.6 Debugging assembler procedures

length linKage blocK
0300 xx xx xx xx xx xx

1
CUR

One effective way to debug external procedures written
in assembler uses the CP/M Dynamic Debugging Tool DDT. If
you are running a Pascal program under DDT then an RST 7
instruction will be seen as a breaKpoint and allow you to
use all of the DDT facilities. To run under DDT enter:

DDT EXEC. COM
Iprogram_name
GI00

When the RST 7 instruction is encountered t DDT wi}}
gain control. The displaYt modify, disassemble facilities
then can be used to examine the procedures data areas. To
resume execution, use the XP command to set the instruction
address ahead by It to get past the RST.

Section 10: Assembler

yy
I
TOS

JRT Pascal User's Guide -90-

10.7 Convertm program

The convertm program translates Microsoft format REL
files into JRT format INT fi lest Only REL files may be
input HEX files do not contain information about
relocation addresses.

To run the convertm program enter:

of the
assumed.
disK.

EXEC CONVERTM

The program will inquire at the console for the name
module to be translated. A file type of REL is

The output module INT file is placed on the same

10.8 Sample assembly programs

Three sample assembly programs are included here. Two
external procedures (setbit, resetbit> and one external
function (testbit) can be called from any Pascal program or
external function. These smal J modules provide fast and
simple bit manipulation facilities. They also illustrate
the passing and returning of parameters for assembly
language external procedures.

Section 10: Assembler

JRT Pascal User's Guide

Listing of setbit.asm

;setbit.asm
;external procedure which sets a bit on in a byte
;
; procedure setbit (var x : char; bit: integer);
; extern;
; bitl in range 0 •• 7
;
;entry code

db 95,6 t O
db 92
db 0

;on entry bc=wtos
;
;get bi tl in b_reg,.
setbit xchg

dcx h! dcx

;int vmcode
;lpn vmcode
;mode vmcode

de=wb hl=wbase

addr(x) in hl t x into c_reg
;hl=wb

h! dcx h! dcx h
mov btm ;bitl
dcx h! mov d,m! dcx hI mov e,m ;addr(x)
xchg ;hl=addr(x)
mov Ctm

;create masK
inr b
mv i at 1

loop rrc
dcr b
Jnz loop

;a=masK c=byte
ora c
mov mta
ret

;
end

Section 10: Assembler

;c=x

;incr loop count

;store byte

-91-

JRT Pascal Use~'s Guide

Listing or resetbit.asm

iresetbit.asm
;exte~nal procedu~e which ~eset bit in' a byte

; p~ocedure ~esetbit (va~ x : cha~; bit: integer);
; exte~n;

bit# in ~ange 0 •• 7
;
;ent~y code

db 95,6.0
db 92
db 0

ion entry bc=wtos
;
;get bit# in b_~egt
~esetbit xchg

dc:~ h! dcx

; int vmcode
;}pn vmcode
;mode vmcode

de=wb hl=wbase

add~(x) in hI, x into c_~eg
;hl=wb

h! dcx h! dcx h
mov btm ;bit#
dcx h! mov d,m! dcx h! mov e,m ;add~(x)
xchg ;hl=addr(x)
mov Ctm

;c~eate masK
inr b
mvi atOreh

loop rr·c
dcr b
Jnz loop

;a=masK c=byte
ana c
mov mta
~et

end

Section 10: Assemb) er·

;c=x

; incr· loop count

;sto~e byte

-92-

JRT Pascal User's Guide

Listing of testbit.asm

;testbit.asm
;external function which returns bit value of a byte
;
; function testbit (x : char; bit

boolean; extern;

; bit number is in range 0 •• 7
;
;entry code

db 95,6,0
db 92
db 0

;on entry bc=wtos
;

;int vmcode
;lpn vmcode
;mode vmcode

de=wb hl=wbase

;get bit. into b_reg and x into a_reg
testbit xchg ;hl=wb

integer):

dcx hI dcx h! dcx h! dcx h ;point to bit lownib
mov b,m ;low byte of bit
dcx h! mov a,m ;x
inr b

; sh if t loop
loop rIc

dcr b
Jnz loop
JC true ;bit is set

;false : bit is zero
dcx h! mvi mfO! dcx h! mvi m,O
ret

;true . bit is one .
true dcx h! mvi mfO! dcx h! mvi m, 1

ret . ,
end

Section 10: Assembler

-93-

JRT Pascal User's Guide -94-

11. Storage management

This section discusses the initialization and
structure of main storage in the JRT Pascal system during
execution of Pascal programs.

11.1 Main storage

When a Pascal program is started by entering the
command "EXEC prog_name" the EXEC.COM file is loaded into
main storage at address 100H by the CP/M operating system.
After EXEC receives control from CP/M it determines how much
storage is available and formats this area. EXEC then loads
the Pascal program module from disK. Processing of the
Pascal program then begins.

During program execution there are four main regions
of main storage. Starting from the lowest address these
are:

1. EXEC - the run-time environmentt this region is fixed in
size and contains the primary run-time support system

2. Pascal program module fixed in sizet this is the
compiled Pascal program from an INT file

3. Data stacK - variable in size, this region begins at the
end of the Pascal program and grows toward higher addresses;
this region contains all static variables (those created by
VAR declarations)t parameters passed to procedures and
procedure activation blocKs

4. Dynamic storage - variable in sizet this region begins at
the top of available storage and grows down toward lower
addresses; this region contains dynamic variables (those
created by the NEW procedure)t input/output bufferst file
control blocKs t external procedures and EXEC control tables

Since the data stacK and dynamic storage regions grow
toward each othert a collision between these areas is
possible when storage is nearly full. To prevent this
condition the run-time system maintains a 64 byte cushion
between the two areas. When the distance between them
becomes less than 64 bytes the run-time system taKes several
actions to restore the cushion. If there is less than 64

Section 11: Storage management

JRT Pascal User's Guide -95-

bytes of free space in main storage, the least-recently-used
procedure wil I be deleted. Dynamic storage is then
compressed (see section 11.2). Processing will continue
even if the cushion cannot be restored~ although performance
will gradually decrease. Only if there is actually a
collision between the data stacK and dynamic storage will
the run-time system recognize an error condition and
terminate processing.

Section 11: Storage management

JRT Pascal User's Guide -96-

Map of main storage use in the JRT Pascal system.

high -------------------------
address 1 dynamic storage 1

I 1
I variable in size I
I direction 1
1 of growth 1
I V 1
1-----------------------1
1 unused area I

1-----------------------1 1 data stacK 1
1 1
1 variable in size I
J direction A 1
I of growth 1 I
1 1 I
1-----------------------1
1 Pascal program I
lINT module 1
I I
1 fixed in size I

-1-----------------------1
I EXEC I
I run-time system I
I I
I fixed in size I

low 1 1
address -------------------------
100H

Section 11: Storage management

JRT Pascal User's Guide -97-

11.2 Dynamic storage

The JRT Pascal run-time system provides true dynamic
storage with auto-compression and for external procedures,
virtual storage is supported.

The JRT Pascal Dynamic Storage Management System is
designed to provide complete support for advanced features
such as dynamic data structures (linKed lists, trees,
rings, ••• > and completely automatic virtual storage for
external procedure and function code. DynamiC storage may
contain these items:

1. external procedures/functions
2. dynamic variables created by the NEW procedure
3. input/output buffers
4. file control blocKs
5. EXEC control blocKs and pointer tables
6. a free list of deallocated storage blocKs

All of these items are allocated as blocKs of dynamic
storage. Dynamic stora,ge blocKs are addressed indirectly in
JRT Pasc a lin order- to allow the blocKs to be moved dur i ng
compression by updating a pointer table. The value stored
in a pointer variable by the exetution of the NEW procedure
is a "virtual address" rather than the real address of the
blocK allocated. The virtual address is used to locate an
entry in an internal table called a pointer table, which
contains the size and real address of each storage blocK.
There may be up to 32 pointer tables and each one contains
up to 52 entries for storage blocKs. During dynamic storage
compression, the real address of a storage blocK may change
but the virtual address does not change.

The dynamic storage manager performs these services.

1. format dynamic storage and initialize pointer tables

2. maintain the free list - this is a linKed list which
contains blocKs of storage which have been deallocated by
the DISPOSE procedure, by closing a file or by purging of an
external procedure

3. allocate a storage blocK when a storage block is
requested by the NEW procedure, opening a file or loading an
external procedure, the storage manager attempts to satisfy

Section 11: Storage management

JRT Pascal User's Guide -98-

this request by searching the free list or extending the
dynamic storage region] when scanning the free list for a
blocK, the first blocK which is large enough is selected; if
this block is much too larget it is split an4 the remainder
returned to the free list; after a blocK has been found, its
real address, size and a flag field are entered in a- pointer
table

4. release a blocK of storage - add a deallocated blocK to
the free list and delete the corresponding pointer table
entries·

5. determine the amount of free space - the free space is
the sum of the sizes of all blocKs on the free list and the
size of the gap between the data stacK region and the
dynamic storage region

6. compress dynami~ storage - All of the allocated storage
blocKs are moved into the top of storage to eliminate free
space. The free list is set to a null pointer. The pointer
table entries of al I blocKs are updated. If external
procedures were moved then their relocatable addresses are
adJusted. If active external procedures were moved then the
Pascal program counter and the procedure return addresses
are adJusted.

7. convert the virtual address of a blocK to a real address

Section 11: Storage management

-99-

12. External Procedures and Functions

External procedures are a facility for segmenting
programs into separately compiled modules. With these, the
size of the entire program can be practically unlimited.
This is because, unliKe with segment procedures, overlays or
chaining, the virtual storage manager loads and when
necessary deletes program sections all automatically. This
maKes the actual storage of the computer seem much larger
than it real ly is.

Refer to the section on storage management for a full
description of virtual/dynamic storage.

External procedures are loaded into dynamic storage by
EXEC when they are first referenced, unless they were linKed
with the main program to form one module. The loading is
transparent to th~ programmer in that no planning or effort
is required.

External procedures remain in storage unless a short­
on-storage condition occurSt then the least-recently-used
procedure may be deleted. If this happens, the control
blocKs associated with the procedure are Kept so that re­
loading, if necessary, could be done more rapidly. When
main storage is severely overloaded, freQuent deleting and
reloading of external procedures may occur. This condition
is called "thrashing." Thrashing can be recognized by
unusually frequent disK accessing and little useful
processing being done by the program. It is necessary in
this case to reduce the storage requirements of the program.

Section 12~ External Procedures and Functions

JRT Pascal User's Guide "-100-

12.1 Coding external procedures and functions

The external procedure Pascal file is very similar to
a standard "internal" procedure in format. In many cases
the only differences from a standard procedure format are
that the PROCEDURE reserved word is preceded by the reserved
word EXTERN and that the whole file is ended with a period
to signify the end of the compile unit. An example of this
basic case follows.

EXTERN

<* PRINT THE TOTAL AND AVERAGE OF 4 NUMBERS *)
PROCEDURE XDEMO (A,B,C,D : REAL);
VAR
TOTAL : REAL;

BEGIN
TOTAL := A + B + C + D;
WRITELN('TOTAL =',TOTAL,

AVERAGE ='tTOTAL / 4.0)1
END; t

JRT Pascal external procedures can access all of the
global variables in the main program. The global variables
are those in the main program declared before any procedure
or function declarations. They are variables that are
available globally not only local to some procedure. In the
preceding example, TOTAL is a local variable - it is not
accessible outside of the procedure XDEMO.

To access global variables or files, their
declarations are inserted in the external procedure file
after the reserved word EXTERN and before the procedure
header. The three declaration sections CONST, TYPE, VAR may
be inserted at this point. They must be identical to the
global declarations in the main program, except that
additional constants and type identifiers may be added here.

Type identifiers may be required in the procedure
header parameter list or in a function return value
declaration. The declaration of these type identifiers
should appear in the same location as the global
declarations - Just after EXTERN.

Section 12: External Procedures and Functions

JRT Pascal Use~ls Guide

EXTERN

CONST

NAME_SIZE = 32;

TYPE

NAME = ARRAY [l •• NAME_SIZEJ OF CHAR;

CUSTOMER_RECORD = RECORD
CUST_NAME t CUST_ADDR
BALANCE
END;

: NAME;
: REAL;

VAR (* MAIN PROGRAM GLOBAL VARIABLE *)

CUSTOMER_LIST: ARRAY [1 •• 100J OF
CUSTOMER_RECORD;

(**** SEARCH CUSTOMER LIST FOR GIVEN NAME ****>
FUNCTION SEARCH (N : NAME) : CUSTOMER_RECORD;
VAR
I : INTEGER;

BEGIN
1:=1;

WHILE (N <> CUSTOMER_LISTtIJ.CUST_NAME)
AND (I <= 100) DO 1:=1+1;

IF N = CUSTOMER_LIST[IJ.CUST_NAME THEN
SEARCH;=CUSTOMER_LIST[Il

ELSE SEARCH:=";

END; •

Sect ion 12: Exte~nal P~ocedu~es and Functions

-101-

JRT Pascal User's Guide -102-

12.2 Referencing external procedures and funtions

External procedures
the main programs which
is identical to a regular
body of the procedure
EXTERN.

PROCEDURE PLOTTER

FUNCTION CUBEROOT

and functions must be declared in
reference them. Their declaration
procedure except that the entire
is replaced with the reserved word

X,t : INTEGER); EXTERN;

A ~ REAL)~ REAL; EXTERN;

For clarity it is useful to group all external
procedure declarations as the first procedure declarations
in the program. Ex~ernal procedures may reference other
external procedures, if appropriate declarations are
included in the referencing procedure.

EXEC identifies external procedures by a sequence
number. External procedures should always be declared in
the same sequence - in main program or in another externai
procedure.

Note that the user must ensure that external procedure
declarations and parameter lists are consistent among
different filest since the compiler does not validate this.

Section 12: External Procedures and Functions

JRT Pascal User~s Guide -108-

13. Debugging Pascal programs

Debugging computer programs is the process of
correcting "bugs" in a program so that it wil 1 perform as
desired. There are two phases of debugging correcting
syntax errors in a program in order to obtain an error free
compile and correcting errors which occur during the running
of the program after a clean compile. Referencing an
undeclared variable is an example of the first Kind of
error. Dividing by zero is an example of the second Kind.
This section is primarily concerned with the second Kind of
error - those that occur during program testing.

JRT Pascal provides several facilities to simplify the
location and the correction of run-time errors. The
debugging philosophy is to provide the programmer with as
much relevant information as possible in a clearly formatted
display. The run-time system detects errors at two levels
of severity - errors and warnings. When warnings occur. a
message is issued and processing continues. When an error
occurs processing must terminate.

Error and warning messages are all presented in verbal
format there are no number or letter codes to looK up.
These messages are stored on a disK file so main storage is
not wasted.

13.1 Trace options

JRT Pascal allows a trace of the program line numbers
while a program is running. This trace may be turned on or
off by the program itself. The range of line numbers to be
traced may also be set by the program.

A trace of procedure names can also be produced. On
entry to each procedure. the name and activation count is
displayed. On exit. the name of the procedure is displayed.
This feature can also be turned on or off under program
control.

The Exec interrupt mode can be entered by entering a
control-n while a program is running. In this mode the
traces and line number range can be modified. Other system
status information can also be displayed. When in interrupt

Section 13: Debugging

JRT Pascal User's Cuide -104-

modet entering a space character wil) cause a list 0' valid
commands to be displayed.

Exec interrupt allows
trace 'acility. Programmed
the SYSTEM builtin procedure.

asynchronous control 0' the
control is also supported with

An interactive external procedure to control
trace 'acilities at run-time is provided. The
procedure is described in section 13.2.

these
DEBUG

To use these traces. the 'LTRACE and 'PTRACE compiler
directives must be inserted in the program. It is
recommended that the 'irst line 0' a program being tested
contain both directives. 50 that the entire program will be
subJect to tracing. An additional advantage is that when
these options are present. i' an error or warning occurSt
the line number and latest procedure name wil I be displayed
with the error message.

The coding 0' these directives and use 0' the SYSTEM
builtin procedure to control the traces are described in the
section on compiler directives.

13.2 DEBUG procedure

The DEBUG external procedure allows the control 0' the
dynamic trace 'acilities while a program is being tested.
The procedu~e and line traces can be turned on or 0" and
the line range can be set by commands entered 'rom the
console.

The file DEBUG.INT on the distribution disK. is the
compiled external procedure module. To reference an
external procedure from a Pascal programt it is necessary to
declare it:

PROCEDURE DEBUC; EXTERN;

The procedure can be cal led from any number of places
in the test program by inserting a procedure call statement:

DEBUG;

Section 13: Debugging

JRT Pascal User's Guide -105-

When it is activated, DEBUG will interact with the
programmer to modify the current trace operations.

Listing of DEBUG. PAS

extern

procedure debug;

var
reply: char;
lower, upper : integer;

begin <* debug *>
wr i te 1 r,;
write('Activate line trace? yIn ');
readln(reply);
if upcase(reply) = 'Y' then

begin

else

write('Range of lines? lowertupper: ');
readln(lower,upper);
system(1 trace);
system(lrange,lower,upper);
end
system(noltrace);

write('Activate procedure trace? yIn: ');
readln(reply);
if upcase(reply} = 'Y' then system(ptrace)
else system(noptrace);
writeln;
end; (* debug *).

Sect ion 18: Debugging

JRT Pascal User~s Guide -106-

18.3 System status display

When an error is detected t an error message is
displayed on the console. The current line number and last
entered procedure name may also be displayed (see section
18.1). A system status display is also created - this
contains useful information about the current state of the
run-time system.

The system status display shows nine fields of
information. If external procedures are present. the
external procedure table is also formatted and displayed.

System status display

addr ~54F5
base :B3BC
low :ABB9

prog :8BA7
cur :89AC
compr:0002

size ~4B15
tos :8A83
purge:OOOO

Most of these values indicate the use of storage in
the run-time system. Storage management is discussed fully
in another section a simplified map of storage is
presented here.

I CP/M I
1----------------1
1 dynamic I
1 storage 1

low---) 1----------------1
1 1
1 unused I
1 1

tos---) 1----------------1
1 1

cur---) 1 data stacK 1
1 1

base--) 1----------------1
1 I
1 Pascal code I <--addr (of error)
1 1

prog--) 1----------------1
1 I
1 EXEC run-time I
I system 1

100h--) 1----------------1
1 reserved area 1

Section 13: Debugging

JRT Pascal User's Cuide -107-

1. addr - the address at which the error occured~ may be in
Pascal code or in dynamic storage area if error was in
external procedure

2. prog - the starting address of the main Pascal program

3. size - the size of the main program module

4. base - the base or bottom of the data stacK

5. cur - the address of the current procedure activation
blocK

6. tos - top of stacK t the address Just past the end of the
data stacK

7. low - the lowest address occupied by any dynamic storage
blocK

8. compr - a count of the number of times storage has been
auto-compressed

9. purge - a count of the number of external procedures that
have been purged from dynamic storage due to short-on­
storage condition

Section 13: Debugging

JRT Pascal User~s Guide -108-

The system status display may contain one additional
line of input/output information. The name of the most
recently referenced filet a status byte and the current
default disK will be displayed if files have been used by
the pr·ogram.

i:SAMPLE PAS 88 A

If the file was opened without specifying a
letter then i is shown otherwise the disK letter.
status byte contains several flag bits:

bit meaning

80 file is open
40 random mode - not sequential
20 text mode - not binary
10 EOLN flag set
08 input - not output or random
04 EOF flag set

Sect ior. 13:' Debugg ing

disK
The

JRT Pascal User's Guide -109-

Formatted external procedure table

exproc name addr use cnt time stat
ACCTPAYI C2AE 0000 0004 30
ACCTPAY2 3E22 0000 0165 74
GENLEDGI 0001 0000 0000 00
ACCTRECI 3F55 0001 014E F4
ACCTREC2 440C 0001 OlSA F4
SORT 0001 0000 0000 00

+ I NVENTRY 508A 0001 020D F4
CHECKS 5052 0000 0103 30

1. exproc name - the name of the external procedure or
'unction. a plus sign indicates the external procedure which
was most recently entered or exited t this is not necessarily
the currently active procedure

2. addr - the address in main storage of the external
procedure modulet if this value is 0001 then the module is
not currently in main storage

8. use cnt - a count of the number of times the procedure is
CURRENTLY active, usually this wil I be 0000 (not active) or
0001 (active), it will be greater than 0001 only if the
procedure is called recursively

4. time - in order to determine which procedure was least­
recently-used t the run-time system maintains a pseudo-timer
which is incremented once on each entry to or exit from an
external procedure the time field contains the value of
the·pseudo~timer the last time the procedure was entered or
exited

5. stat - a status indicator with several flag bits:
bi t mean ing

80 procedure is currently active
40 procedure was linKed with main program
20 procedure is currently in storage
10 procedure file control blocK is open
04 procedure address is real, not virtual

Section 18: Debugging

JRT Pascal User;s Guide -110-

13.4 Run-time messages

The run-time system provides several messages to aid
in the correction of error or exceptional conditions. In
addition to these general messages, about 75 more specific
messages of 1 to 4 lines of text are provided to describe
particular error conditions.

The general run-time messages are all prefixed with a
% character. These messages are listed here:

~Entry - indicated entry to a procedure when procedure trace
is activet procedure name and activation count are listed,
external procedures are indicated by an asterisK before the
name

~Error - fatal error detected by run-time system, program
terminates

SExit - indicates exit from procedure when procedure trace
is active, procedure name is listed, external procedures are
indicated by an asterisK before the name

SExtern - indicates that error occured while attempting to
load an external procedure module, the procedure name is
listed

SInput error - indicates a format error when reading console
input, such as entering a character string when an integer
was expected

SLine - indicates tine number where error occured t module
must have been compiled with %LTRACE option

%Main - error occured in main program BEGIN-END blocK, not
in procedure

Section 13: Debugging

JRT Pascal User's Guide -111-

IProc - error occured in proceduret not in main program
BEGIN-END blocK

ITrace - line number trace indicator

IWarning - non-fatal error condition, processing continues

Section 13: Debugging

JRT Pascal User's Guide

14. Extended CASE statement

Format

CASE selector_expression OF
label_expression •••• label_expression: statement;
•••
• • •

ELSE : statement;
END

The CASE statement is used to select one of severa)
statements for execution based on the value of the
selector_expression. The selector_expression and the
label_expressions must be of compatibile data types.

The label_expressions are evaluated sequentially. If
one is found equal to the selector. the corresponding
statement is executed. If none are equal then the optional
ELSE clause statement is executed.

The ELSE clause is a JRT Pascal extension. Also t

standard Pascal allows only constants as labels. while
expressions are al lowed here. Not more than 128 label
clauses are allowed in one CASE statement. Not more than
128 labels per label clause are allowed. ,The statements
should be followed by a semicolon. The semicolon is
optional on the last statement in the CASE statement.

Examples:

CASE I OF
2 : WRITELN('I IS 2');
4 : WRITELN('I IS 4');
ELSE: WRITELN('I IS NOT 2 OR 4');
END;

CASE LANGUAGE OF
'PASCAL' ; YEAR :=
'PL/I' : YEAR ;=
'BASIC' ; YEAR :=
END;

(* STRING EXPRESSION *)
1970;
1964;
1965;

Section 14: Extended CASE

JRT Pascal User's Guide

(* EXAMPLE OF EXPRESSIONS IN LABELS *)
CASE ANGLE OF
PHI
2.0 * PHI
a.o * PHI
ELSE
END;

: WRITELN('PHI');
: WRITELN1~TWOPHI~);
: WRITELN('THREE PHI');
: WRITELN('ANGLE NOT ON NODE');

(* EXAMPLE OF BOOLEAN SELECTOR AND LABEL EXPRESSIONS *)

(* CHECK VOLTAGE V FOR VALID RANGE *>
CASE TRUE OF
(V > 2.5) AND (V < 4.3) : PROCESS_RANGE_l;
(V > 5.6) AND (V _<= 14.08) : PROCESS_RANGE_2;
(V > 35.6) AND (V <= 100.0) : PROCESS_RANGE_a;
ELSE: WRITELN('VOLTAGE OUT OF VALID RANCES:',V);
END;

Section 14: Extended CASE

-113-

JRT Pascal Useris Guide -114-

A. Reserved words

The following words are reserved in JRT Pascal and may
not be used as identifiers.

abs
addr
and
array
begin
binary
boolean
ca It
case
char-
chr
close
compress
concat
cons
const
copy
delete
dispose
div
do
downto
else
end
eof
eo)n
extern
false
f i Ie
fitlchar
for
forward
free
function
goto
hex.
if

. .in
initialize
input
insert
integer

Appendix At Reserved words

JRT Pascal User's Guide

label
length
list
lrange
)trace
map
maxint
mod
new
n i)
nocons
no) i st
noltrace
noptrace
not
nowarning
odd
of
open
or
ord
output
page
portin
portout
pos

. pred
procedure
program
ptrace
rba
read
readln
real
real$
record
repeat
reset
rewrite
round
rrn
set
sqr
succ
string
system
text
then

Appendix A: Reserved words

-115-

JRT Pascal User's Guide

to
true
trunc
type
unt i 1
upcase
var
warning
while
wi th
wri te
writeln
xor

Append'i x A: Reserved words

-116-

JRT Pascal User's Cuide -117-

B. Activity analyzer

The activity analyzer - Activan - is a facility which
moniters the execution of a Pascal program and prints a
graph showing the amount of time spent executing each
portion 0' the program. To use Activan, a program must be
compiled with the ~LTRACE directive or the $L compile switch
on.

Activan moniters the line numbers as a program
executes and Keeps counters for the line numbers in the
specified range. The range of line numbers to be monitered
and the line spaci~g can be set and changed when the program
is running.

To run a program with Activan, specify the SA switch
when the program is started with the EXEC command.

EXEC TESTPGM $A

Before the program begins execution Activan will
request console input to specify the line range to be
monitored and the line spacing. When those parameters have
been entered, program execution wi} I begin.

If Activan is active
Activan mode is entered
printed.

when the program terminates,
so that a final histogram can be

Whit. the program in running, it can be interrupted
and control returned to Activan by Keying in a control-A
character. Activan will then request which action is
desired:

code

C
E
H
I
R
W

Appendix B:

action

clear the counters to zero
end the program
print histogram of activity
initialize the line range and spacing
run the program with Activan monitoring
run the program without Activan

Activity analyzer

JRT Pascal User's Guide -118-

C. BlocK letters

An external procedure named LETTERS is provided to
generate large blocK letters. These letters are 9 lines
high and from 4 to 10 columns wide. The external procedure
generates an entire row at a time of letters for use as
~eport headers, program identifiers, etc. The output line
may be up to 220 columns wide.

The upper case letters, numberst and dash may be input
to the external procedure. Unsupported characters are
converted to spaces. Lower case characters are converted to
upper case.

The output from LETTERS is placed in a buffer which is
an array of strings - this must be defined exactly as shown.
The declaration for. LETTERS is:

TYPE
BUFFER = ARRAY [1 •• 9] OF STRING[2201;

PROCEDURE LETTERS (INPUT_STRING : STRING;
SLANT : CHAR;
VAR B : BUFFER); EXTERN;

The input_string is the line of characters to be
converted to blocK letter format. The slant character
provides for 'streamlined' characters by slanting left or
right. Slant may be 'L' or 'R' or "t The output buffer b
refers to a variable of type buffer in the users program.
Note that b is a reference parameter.

Appendix C: BlocK letters

JRT Pascal User's Guide -119-

This sample program will print out the word 'PASCAL'
in blocK letters.

PROGRAM BLOCkS;

TYPE
BUFFER = ARRAY [1 •• 9] OF STRING[220];

VAR
I : INTEGER;
BLOCI<S_BUFR : BUFFER;

PROCEDURE LETTERS (INPUT_STRING : STRING;
SLANT : CHAR;
VAR B : BUFFER); EXTERN;

BEGIN
LETTERS('PASCAL't'R'tBLOCI<S_BUFR);
SYSTEM(LIST);
FOR 1:=1 TO 9 DO WRITELN(BLOCI<S_BUFR[Il);
END.

Appendix C: BlocK letters

JRT Pascal User's Guide -120-

D. JSTAT

Jstat is an external procedure which can be used to
compute several basic statistics given an array 0' rea}
numbers as input. It computes the arithemetic meant
standard deviation, variance, sKewness, Kurtosis and the
first four moments about the mean.

The source code for Jstat is provided on the source
disK and may be modified. The procedure is restricted to an
array of 1000 real numbers but this can be easily changed by
modifying the declaration of the data type Jstat_array and
recompiling.

While Jstat_array is declared as a 1000 element array.
a much sma} ler array may be used to hold the data values
since the input array is used as a reference parameter.

Jstat requires three parameters:

n - number of data items in the input array

x - array of up to 1000 real numbers

r - output record containing computed statistics

The following type declarations and procedure
declaration are required in the calling Pascal program.

TYPE
JSTAT_INTERFACE =

RECORD
MEANt STANDARD_DEVIATION.
VARIANCE, ~EWNESS, KURTOSIS,
M1, M2, M8 t M4 : REAL;
END;

JSTAT_ARRAY = ARRAY [1 •• 1000] OF REAL;

PROCEDURE JSTAT (N INTEGER;

Appendix D: JSTAT

VAR X : JSTAT_ARRAY;
VAR R : JSTAT_INTERFACE);

EXTERN;

JRT Pascal User's Guide -121-

E. JCRAF

Jgraf in an external procedure which formats x-y
graphs and scatter graphs. The graph size in rows and
columns and the lower and upper x and y bounds are set by
the user. A title to the graph may be provided. Once the
graph has been prepared it can be displayed on the console,
printed or stored in a disK file.

The main interface between a Pascal program and Jgraf
is a record variable of type Jgraf_interface. The setup
parameters are stored here and Jgraf uses this area for some
of its own worKing variables.

Jgraf performs several different functions, such as
initialize, plot data point, save disK file. A command code
character in Jgraf_interface informs Jgraf which operation
is required. The first call to Jgraf should be the
initialize operation '1'. After that any number of data
points may be plotted by setting the command code to 'D' and
calling Jgraf with the data point (x,y) as parameters.
Since the graph is prepared in a buffer in dynamic storage,
when graph preparation and display are done, a call with
command code 'X' should be used to delete this buffer.

code meaning

C display graph on console
D plot a data point
1 initialize graph buffer and axes
P print graph
S save graph on a disK file
X delete graph buffer

Al I Jgraf parameters except the x,y values of data
points to be plotted are stored in a record variable
Jgraf_interface. When calling Jgraf the x and y parameters
should be zero unless a data point is being plotted (command
D). The following declarations are required for use of
Jgraf.

Appendix E: JCRAF

JRT Pascal User~s Guide

Declarations required to use JGRAF

type
char9000 = array [1 •• 9000J of char;
Jgraf_interFace = record

command : char; R
plot_char : char; R
x_grid ; boolean; R
y_grid : boolean; R
rows : integer; R
columns: integer; R
x_ lower : rea 1 ; R
x_upper : rea 1 ; R
y_lower : real; R
y_upper : real; R
Filename: array [1 •• 14] of char;
ti~le : string; R

<* fields below used internally by Jgraf *)
b : char9000;
bufr_size integer;
line_size: integer·;
row_count : integer;
x_spacing: real;
y_spacing real;
end;

var
Jgraf_file : file of char;

procedure JgraF (var J9i : Jgraf_interface;
Xt y : real); extern;

-122-

IMPORTANT - Jgraf_File is always required and it must be
declared as the first file in the main program.

The required parameters in Jgraf_interface are flaged
here with an R.

The character to be placed on the graph for each data
point must be supplied in the parameter plot_char.

Jgraf always plots x and y axes and labels them every
ten rows or columns. X and y grids over the entire graph
area may optionally be plotted by setting the parameters
x_grid and y_grid to true. IF grids are not desired these

Appendix E: JGRAF

JRT Pascal User's Guide -123-

parameters should be set to false.

To save the graph on a disK file - store'S' in the
command code and store the disK filename in the filename
parameter.

Multiple graphs may be plotted simultaneously by
having multiple copies of the Jgraf_interface record.

The source code for Jgraf is provided and may be
modified.

Appendix E: JGRAF

o
.... 1-. .~ ~ ,..... ~ t-f ~ ~ t-4 ~ Jooo1 ~ · , . ,.. . . ,

I 1 1 '" • 1 1

• I '"
• I",
I I'" · '''' , I'"
• .-* -, ..
~ ~ t-!f ~ , '""":4- t-I ~ t t~ * " ~ t-t ~ ~1 ~ t--o-4 ~ en
I ,-' I 1':11 I I •

I I I *
• I I ...

• I • • • . '" ...
t-t f-t • t-f I-f t-I ~ ... '-4 ~ ~ "1 ; ~ I ... t-t t-4 to-o4

I ... I I I I I

1 '"
1 t

* • t
• I ...
• I
• 1 t • ...
• t ... 1

~-----~--------~----~--"'~------------------~---~--- ~ I I '" 1 • I
t '" 1 I 1
I "'. t

'" ... 1 I ... '" , ... '" '" ... I ,..

1 ...
>I. ~.., eo-t "'-4 ,...., : t-04 * ,..... '-f t-i '" ~ t-.......................... I ...)-41 -t ~.. IJl

t I'" I

'" '" 1
'1"

N

''I o
u

+

(.

It' >
~. ,,-r.
Lt;;

'.' '-'

'" '"
...

.......... 1-, ~ , , ... , J t-1 .-.. _ 1'-1 * ~ ~ t-t-. t ~

... 1 I 1
... t

... I
... I

... I
I • I
I ...

1 '" I t 1 ...
~ .. t ~)-t t-f 1- t-I 1-1 t-I t-.. I-t ~ ~ ~

I 1 I '" I

.................. ~ , ~--4
I I.

1 t '"
I • ...

*.1
f< ...
I ...

'"

... 1 ... , ...
'" '" ...

....
*~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~

I 1 I 1
, 1

1
1

I
1

·1

II'

... ~ ..." "''4 J-) *' ~ .. t-f .-. t-f t-•• -.. N
I ... I 1 , 1

... 1
... 1

•
'" • ...

to ...
..... ~ t-t t-t t-4 t-I t-t t-t t-t t-I .~ .. . ~-------------------------

...
•

1 ...
I ·to ...

:to 1
• 1

1 , 1
, , I

, I

• • • • 1

•
I·

..... t-t .-1 ~ t-t t-f ,.. ' -4 I-t ... ~ ", ~ ... ~, t-. ~ t-4 ~

I 1 , I • •

If) lJ') in If) I() b' .-
l't 0 r;) N

I ,

o

JRT Pascal User's Guide -124-

F. Restrictions

1. Arrays are limited to S dimensions.

2. Not more than 10 files may be declared.

8. Random disK files require CP/M 2.2 and may be up to B
megabytes in size.

4. Sets are limited to
(leftmost) corresponds
corresponds to 127.

128 elements.
to Ot the

The first element
last (rightmost)

5. Not more than 63 external procedures and functions may be
declared.

6. Not more than 1632 dynamic storage blOCKS may be
allocated at one time. The run-time system may require up
to 100 of these for file bufferst file control blocKs.
external procedures and other uses.

7. "With" statements may not be nested to more than 31
levels.

8. "Case" statements are limited to 128 clauses and 128
labels per clause.

9. Integers must be between +32767 and -32768t since they
are stored in 16 bit twos complement format. In a few cases
integers will be treated as unsigned 16 bit values with a
range of 0 to +65535. The MAP and CALL builtin procedures
require addresses which may range up to 65535. Accessing
random files by relative byte address may require byte
addresses up to 65535.

10. "Real" numbers are represented in 14 digit binary coded
decimal format. The floating point exponent range is from -
64 to +63.

11. File variables may not be used in assignment statements
or as parameters.

12. The names of procedures and functions may not be used as
parameters.

18. Literal character strings in the source program may not
exceed 127 characters.

Appendix F: Restrictions

User's Cuide -125-

14. Liter-a! character strirlgs in the '-const" section ar-e
limited to 32 characters.

15. The functions GET and PUT and buffer yariab~es are not
implemented. The standard procedures READ and WRITE are
extended to handle any Kind of inDut/ output reouirement.

Appendix F: Restr- i c t ions

PRO B L E M REP 0 R T

MAIL TO: JRT Systems, POB 22365, San Franciscot CA 94122

Name

Address

City ______________________ State __________ Zip ____ _

Please include as much in~ormation as possible about the
problem. A listing of the program code is essential
for us to duplicate the problem.

Did problem occur during compile? ___ _
execution 1 inKer assembly ___ _
other

Was there an error message? Which one?

Complete description of problem:

Are symptoms always the same or do they vary?

PRO B L E M REP 0 R T

MAIL TO~ JRT Systems, POB 22365. San Franciscot CA 94122

Name

Address

City ______________________ State __________ Zip ____ _

Please include as much information as possible about the
problem. A listing of the program code is essential
for us to duplicate the problem.

Did problem occur during compile? ___ _
execution linKer assembly ___ _
other

Was there an error message? Which one?

Complete description of problem:

Are symptoms always the same or do they vary?

