SMC-200 O.E.M. REFERENCE MANUAL R-SMC-201-X

July 30, 1982

SMC-200 O.E.M Reference Manual

Section	<u>Title</u>	Page
1	Introduction	3
. 2	Hardware Theory of Operation	
3	Software Theory of Operation	7
4	Installation	29
5	Maintenance	35
6	Sample Driver Routines	41

This page left intentionally blank.

Introduction

Section 1

Introduction

Section	<u>Title</u>	Page
1.1	Scope	5
1.2	Content	5
1.3	Product Description	5
1.4	Specifications	6
1.5	References	6

1.1 Scope:

The intent of this manual is to provide the user of the KONAN SMC-200 Controller all the necessary data to integrate the controller into his system and, if the user so elects, to maintain the controller. No attempt is made to cover disk drives in this manual.

1.2 Content:

The contents of this manual have been divided into seven major sections. The seven sections are as follows:

Section 1, Introduction

Describes the scope and the content of the manual, provides a generalized product description and references related publications.

Section 2. Hardware Theory of Operation

This section contains information on commands, timing, and schematics. It is provided only after completion of a non-disclosure agreement.

Section 3. Software Theory of Operation

Contains the programming information required to use the KONAN SMC-200 Controller.

Section 4. Installation

This section contains information concerning the installation and cabling of the KONAN SMC-200 Controller.

Section 5, Maintenance

This section contains the maintenance information required to repair the KONAN SMC-200 Controller.

Section 6. Sample Driver

1.3 Product Description:

The KONAN SMC-200 Controller interfaces disk drives with a flat cable storage module interface to computers utilizing an S-100 Bus. Each controller is capable of handling two drives, providing a maximum storage capacity of more than 1.2 billion bytes of storage per controller. The SMC-200 is format compatible with it's predicessor the SMC-100.

1.4 Specifications:

Power requirements:

Typical Maximum

-16V 325mamp 400mamp

+8V 1.5amp 2amp

NOTE: The -16V load is reduced by 125 mamp when power save is on.

1.5 References:

The following publications contain information pertinent to KONAN's SMC-200 interface:

- Magnetic Peripherals Inc. (CDC)
 Flat cable interface specification for the SMD, MMD, and CMD families.
 Specification number 64712400.
- Fujitsu America Inc. M2201 Disk cartridge drive OEM reference manual
- Fujitsu America Inc. M225X Fixed disk unit (FDU) OEM reference manual
- 4. Memorex Corporation 601 Disk storage drive, Product specifications 601.80-02
- 5. Konan's SMC-200 CP/M Support Package #R-SMC-202-A.

Software Theory of Operation Section 3

Software Theory of Operation

Section	Title	Page
3.1	General Software Theory	9
3.2	Specific Commands	10
3.3	Select Operation	18
3.4	Seek Operation	19
3.5	Formatting	20
3.6	Write Operation	22
3.7	Read Operation	23
3.8	Data Recovery Procedures	24
3.9	Disk Address Changes	26
3.10	Mapping	28

3.1 General Software Theory:

The KONAN SMC-200 Controller appears to the system as six I.O. locations. The six I.O. locations provide the following functions:

I.O. LOCA	TION	FUNCTION	
0 and 1	(write Only)	Bus Drivers	Controls the bus and select lines to the disk drivers.
2	(write only)	Command Register	Used to initiate the follow- ing: DMA and disk transfers, disk selection, head selec- tion, seeks, and recovery operations.
3	(write only)	Sector Address	Selects the sector to be used for the next read or write operation.
4	(read only)	Sector Buffer	Allows software to read and write the sector buffer.
5 and 6	(not use	đ)	
7	(read, write)	Status	Allows done, ready and error status to be read. Writing to this I.O. port resets the sector buffer address.

Each of these I.O. locations are accessed by use of the IN and OUT instructions with the appropriate address. The most significant five bits are set by the customer (see Section 4, Installation). These five bits are represented by the letter "X" in the following discussions. The least significant three bits are the I.O. locations referenced above.

3.2 Specific Commands:

This subsection will describe in detail each of the software commands.

3.2.1 Bus and Select Lines --

Out instructions to X0 and X1 will place data on the bus and select lines. No function will be initiated.

Figure 3.1, Bus and Select Commands, illustrates the function of each bit in X0 and X1.

Figure 3.1, Bus and Select Commands

Definition of the bus data depends upon the command following the XØ and Xl OUT instructions. Figure 3.2 defines the bus data for each of the three possible bus line commands.

Bit seven (7) of XØ is a power save option. When this bit is set true, to a one (1), the bus bits Ø thru 9 will not be driven. This decreases the -16V draw and allows the controller to run cooler. To use this feature, set Power Save false, (0), when entering your driver routines and true, (1), when exiting. When not using power fail, simply set bit 7 of XØ to a Ø at all times.

Note: the Power Fail Option does not deselect the drive. The sector counter and other status remains valid, preventing and performance loss.

	BUS	CYLINDER	HEAD	FAULT
	BIT	ADDRESS	SELECT	RECOVERY
MSB	9 8 7 6 5 4 3 2 1 0	29 28 27 26 25 24 23 22 21 20	X X X X 24 23 22 21 20	Release Strobe Late Strobe Early Return to zero X Fault Clear Servo Offset Minus Servo Offset Plus X

X indicates don't care

Figure 3.2, Bus Definitions

3.2.2 Command Register --

All disk operations are initiated by OUT instructions to the command register, X2. Figure 3.3 defines the command register.

Figure 3.3, Command Register

The following is a list of all legal commands and the setup requirements of each.

- 00H Resets DONE and INTERRUPT, no data set-up required.
- Writes the contents of the sector buffer to the disk. The data is written on the currently selected drive, head and track at the sector selected by the sector address register (OUT X3).
- Reads a sector from the disk into the sector buffer. The sector read is defined by the sector register and is taken from the currently selected drive, head, and track.
- 10H This command causes the select tag line to be strobed. Prior to issuing this command the address of the drive to be selected is set into the X0 register.
- 20H Causes the selected drive to seek to the cylinder selected by Bus 0 9 lines (set by OUT X0 and X1).
- 40H Selects the disk head identified by the bus lines (set by OUT X1).
- 80H Performs the fault clear function identified by the bus lines.
- 88H Reads a sector from the disk (same as 08H) with error recovery functions selected by OUT X0 and X1.

3.2.3 Sector Address --

The sector address register is loaded with an output instruction to X3. The next read or write disk operation will be at the sector address loaded. The least significant bit of the sector address register is bit 0.

xxxx,x011							
7	6	5	4	3	2	1	Ø
M							L
S B							S B

Pigure 3.4, Sector Address Register

3.2.4 Sector Buffer --

The sector buffer is a 1K RAM on KONAN's SMC-200 Controller that is logically placed between the disk and the user's memory. The purpose of the RAM is to overcome an inherent transfer rate problem and to free the user from memory timing restraints. Generally only a portion of the sector buffer is used. The size of this segment is equal to the number of bytes of user data plus the number of bytes of header. Most commonly, 256 bytes of data and 4 bytes of header are used. This means that 260 sector buffer locations would be used (0 to 259). The sector buffer size, in this case 260 bytes, must be strapped on the controller. (See Section 5, Installation.)

The sector buffer can be accessed in four different ways. These are:

1.	I.O.	OUT instru	ction	(X4)
2.	I.O.	IN instruc	tion	(X4)
4.	Disk	Write	(01	to X2)
5.	Disk	Read	(Ø8	to X2)

In the first two instances, the transfer is between the users processor and the sector buffer. The last two transfer data between the disk and the sector buffer. The sector buffer has its own address counter. Any sector buffer access will cause the address counter to increment once for each byte written or read. The sector buffer address counter cannot be directly accessed by software, except to set it to zero. The format of the sector buffer I.O. commands is shown in Figure 3.5, Sector Buffer Command.

Figure 3.5, Sector Buffer Command

Figure 3.6, Typical Sector Buffer Format, depicts a buffer of 260 characters. The first four characters are used for header and the following 256 for user data. To load the buffer, the user would first insure that the sector buffer address was zero. This is done with an OUT to X7. (Accumulator data is ignored.) Header data may now be entered. This is accomplished by placing the appropriate header data in the accumulator and then performing an OUT to X4, the sector buffer. The first byte would be written into address 000 and then the address would automatically be incremented to 001. The next three header bytes are written in the same manner, leaving the sector buffer address set to 004. The user continues this method of transfer for the data.

Address

```
000 HEADER BYTE 1
001 HEADER BYTE 2
002 HEADER BYTE 3
003 HEADER BYTE 4
004 DATA BYTE 1
005 DATA BYTE 2
```

259 DATA BYTE 256, END OF SECTOR

1023 END OF SECTOR BUFFER

Figure 3.6, Typical Sector Buffer Format

3.2.5 Status --

The status register serves two purposes. Primarily, it is accessed by an IN instruction to provide disk and controller status information. It is also used with an OUT instruction to set the sector buffer address to zero. In this case, the contents of the accumulator are ignored. Figure 3.7 illustrates the status register bit definition when used with the IN instruction.

Pigure 3.7, Status Register Bit Definition

The following defines the status bits:

DONE

Is set true at the completion if a seek operation (successful or unsuccessful) and upon the completion of a disk transfer. Selecting a disk <u>may</u> also cause DONE. If interrupts are enabled, one will be generated each time DONE goes true.

DISK READY

Indicates that the selected disk is up to speed, the heads are positioned over the recording tracks, and no fault condition exists in the drive.

DISK FAULT

Indicates a fault condition exists in the selected drive.

ON CYLINDER

Indicates the heads are positioned over a track.

BUSY

Used only on dual channel disks. Indicates that the selected drive is currently being accessed by, or is reserved by, another controller.

CHECKSUM ERROR

Indicates a read error has occurred. Will be cleared by the next successful read.

SEEK ERROR

Indicates a seek error has occurred on the selected drive. The error may only be cleared by performing a RTZ (Return to Zero).

SELECTED

Indicates that the last select operation was successful.

WRITE PROTECT

Indicates that current selected head is Write Protected.

NOTE: Bit 3 is selected via a jumper to be Write Protect or Busy.

3.3 Select Operation:

The select operation requires two output instructions. The first output places the address of the drive to be selected on the address lines. Then the select command is issued. The format to specify the address is shown in Figure 3.8.

Figure 3.8, Select Address Register

The select command is a Hex 10 to register X2. Selection of the first drive is accomplished with a 00 out to port X0 followed by a 10 Hex out to X2. The state of Power Save and Bus 8.9 do not matter when doing a select. The Select bits and TAG lines, (command strobes), are not power down by Power Save.

MVI	A,10H	SET ADDRESS FOR DRIVE 1 IN ACCUMULATOR
OUT	9ØH	LOAD SELECT LINES
MVI	A,10H	SELECT COMMAND TO ACCUMULATOR
OUT	9 2 H	ISSUE COMMAND
IN	97H	GET STATUS
ANI	01 H	·
JΖ	ERROR	IF SELECTED FAILED JUMP TO ERROR
XRA	A	
OUT	92H	CLEAR ANY FALSE INTERRUPT

The select sequence is instantaneous. A false DONE-INTERRUPT may be generated during the select sequence. This can be cleared by an OUT X2 (92 in our example) to clear DONE. The selected drive will remain selected until a new select sequence is performed or the drive is powered off.

3.4 Seek Operation:

The heads may be positioned over any cylinder by a seek operation. The bus lines are set to the desired track address and then a seek command starts the seek. Bus lines are set as follows:

Figure 3.9, Cylinder Address

The cylinder command is issued with an output of 20H to the X2 register. The following is an example of a seek subroutine. It is assumed that the drive was previously selected.

- * CALL THE FOLLOWING WITH THE DESIRED CYLINDER
- * ADDRESS IN REGISTERS D & E

	~***					_					
SEEK	VOM	A,D									
	OUT	90H		PLAC	e Mse	3 OF	CYLINDE	R ADDR	ESS	ON	BUS
	MOV	A,E									
	OUT	91H					CYLINDER				
	MVI	A,21	H	LOAD	ACCU	MULA	TOR WITH	SEEK	COMM	AND)
	OUT	92H		DO TH	IE SE	EK					

Following a seek it is necessary to wait until the drive has completed the seek before any further disk operation is done. This wait can be accomplished via interrupts allowing the processor to be free for other tasks, or by waiting for a done status.

* WAIT FOR SEEK DONE OR ERROR

WSK IN 97H GET STATUS

ANI 80H CHECK FOR DONE

JZ WSK ANI Ø2H

RZ RETURN IF ERROR FALSE

JMP ERROR SEEK FAILED

3.5 Formatting:

Due to the extremely high density on today's state of the art disk drives, it is desirable to provide assurances that data is written and read from the appropriate locations on the disk. Prior to using a new disk surface, it should be formatted; that is, address data is written at each sector on the disk. Subsequent reading of the disk will involve verification of the address data prior to placing the data into user memory. The format data (called header), is at the beginning of each sector and physically contiguous with it. This technique conserves disk space but requires the header data to be rewritten with each write.

Figure 3.10, Header Format, shows the suggested header format. The following points should be noted:

- 1. A new header must be rewritten with each write.
- 2. Header should be verified for each sector on a read and one sector should be read prior to writing if a seek has been performed.

Figure 3.19, Header Format

Additional information on formatting is contained in the Installation Section.

3.6 Write Operation:

The write requires two separate data transfers. Data is first transferred to the sector buffer from the users RAM and then the data is transferred to the disk. Figure 3.11, Typical Write, is an example of a write operation.

Figure 3.11, Typical Write

3.7 Read Operation:

The disk is read by first positioning the heads, selecting the appropriate head, and then performing the read. This leaves the read data in the sector buffer. The sector buffer data is then transferred to the user RAM. The read operation will be explained by an example. Figure 3.12, Typical Read.

Figure 3.12, Typical Read

3.8 Data Recovery Procedures:

Typically, storage module drives have recoverable error rates of approximately one in every 10¹⁰ bits. Non-recoverable errors occur at a rate of one in every 10¹³ bits. Proper recovery procedures can, therefore, improve the users data integrity 1000 times over systems not using recovery procedures. Some SMD drives provide a head offset and others do not. Proper error recovery includes 3 attempts to read the record at zero offset and nominal strobe, and 2 attempts to read at each offset position (if so equipped) with early, nominal, and late strobes (19 reads).

Figure 3.13, Data Recovery Procedures, shows one approach to recovery on a drive with offset.

Care should be taken to insure that track offset is turned off prior to attempting to seek or write. When track offset is set or changed, a delay is required prior to performing the next disk function. Fortunately, a full disk revolution must take place between attempts to read the same sector. This will generally provide adequate time to change the offset. Following a successful recovery, it would be possible, however, to turn off the offset and select a following sector too soon. Software must, therefore, provide a delay if a track offset condition was true when exiting error recovery routines. This delay varies between various disk manufacturers. Reference appropriate drive manufacturers specifications for details.

3.9 Address Changes

When the disk address changes, ie. new head, track, unit, or sector, the new address is selected by software. Some of these selections are immediate, (head, unit, sector) and one, track, requires some time to perform. The following points are of interest:

- 1. Unit select causes the sector counter to become invalid.
- 2. Head select is usually immediate with no adverse effects on the sector counter. CMD DRIVES ARE AN EXCEPTION! When the volumn bit changes in a CMD drive it <u>must</u> be followed by a seek operation.
- 3. Seeking, (track select), requires time for the heads to move. To insure that the sector counter did not get "glitched" during the seek, reads and writes are inhibited until index. This is transparent to the user. It insures proper sector selection but can cause a slight performance decrease.
- 4. Unit select must always be followed by a seek, even if the cylinder number has not changed.

Figure 3.14 on the following page will insure proper address selection without unnecessary delays.

Figure 3.14, Address Selection

If unit, head, or track is changed, all of them are selected. If a CMD will not be used, the Head change test can be deleted, with head selection done with Select sector.

3.10 Mapping

It is advised that all systems have some method of reallocating disk space in order to avoid media flaws. Generally, this can be handled by the operating system through allocation maps or special directory entries. This task can also be performed in the disk driver code, making it transparent to the operating system. An excellent example of track mapping can be found in Konan's CP/M support package.

Installation

Section 4

Installation

Section	<u>Title</u>	Page
4.1	Strapping	31
4.2	Installing Controller	32
4.3	Disk Format	33

4.1 Strapping:

4.1.1 Sector Size

Straps A --> E set the sector size. Options are:

A	В	C	D	B						
in	out	out	in	out	256 byte	sector				
in					256 byte	sector	+	four	bytes	header
in					512 byte	sector				
out					512 byte	sector	+	four	bytes	header

4.1.2 Preamble length

Straps F --> N select the preamble length as follows:

P	1
H	2
J	4
K	8
L	16
M	32
N	64

The preamble may be set to any value from 1 to 127, STRAPS ARE OUT TO ENABLE A COUNT AND IN TO DISABLE. Standard preamble is 31, straps F, H, J, K and L out, M and N in.

4.1.3 Board Address

Straps P --> W select the board address as follows:

W	80 hex	Installing a strap sets the correspond-
V	40 hex	ing address to zero. Removing strap
P	20 hex	sets it to a 1. Standard base is 90
S	10 hex	hex, 10010XXX.
\mathbf{T}	8 hex	W, S out
		V, P, and T in

4.1.4 Busy 1 Protected Option

Strap X-Y selects the definition of bit 3 of the status register.

STRAP Y selects Write Protect, this is the normal setting.

STRAP X selects Busy. Busy is used when two SMC-200's are accessing a shared disk drive. The drive must have the dual port option.

4.2 Installing Controller:

Figure 4.1 Cable Routing

Figure 4.1 shows proper cable routing. The bus cable (the 60 pin flat cable), connects the controller to one drive only. The remaining drives are "daisy-chained" together with bus cables. The bus cables may be connected to the drives in any order indpendent of the drives unit numbers. The final drive must have a terminator. Maximum length of all bus cables combined may not exceed 100 feet. Radial cables connect to each drive. These cables must be routed to the appropriate drive. Jl connects to drive 0, J2 to drive 1.

4.3 Disk Format

The Sector format used by the SMC-200 is as follows:

Preamble can be from 1 to 128 bytes. This must be set equal to or greater than the drive manufacturers minimum. A sync byte follows the preamble.

The header is not required, but due to the high density of SMD drives it is highly recommended that the header be used to identify the head, sector and track address to prevent positioning and head selection errors. All the following explanations and figures will assume a header of four bytes (the header is physically contiguous with data to conserve disk space). The data field (including header) can be any length up to 1024 bytes. This is always followed by three CRC bytes and one pad byte. The postamble will extend to the next sector mark. The length of the sector is equal to the length of the:

preamble + sync + header + data + CRC + pad + postamble

To determine the maximum number of sectors, the total number of data bytes per track must be divided by the number of bytes per sector. Often the division leaves a remainder which will be present on the disk surface as a fragment of a sector which cannot be used. In many cases this remainder can be divided between the sectors to extend the postamble. This may or may not improve reliability.

This page left blank intentionally.

Maintenance

Section 5

Maintenance

Section	Title	Page
5.1	Maintenance Philosophy	37
5.2	Cables	37
5.3	Bringing Up The System	38

5.1 Maintenance Philosophy:

The SMC-200 requires no preventative maintenance. The suggested method of repair is by replacement. When a board fails it should be replaced with a good board and the faulty board returned to KONAN for repair.

5.2 Cables:

When installing the cables on the CMD* Drive pin 1 is the top most pin on the radial and the bus cables.

The radial cable is shielded; therefore, the black stripe must correspond to pin 1.

The bus cable is multiple twisted pairs and the designation for pin 1 is not critical as long as the color code is consistent.

Multiple insertions of these cables have a tendency to weaken the connections and the mass termination to the actual cable. Therefore, it is recommended that as few cable changes as possible be done, using care not to pull on the actual cable itself.

Some of the symptoms of the improper cabling are:

the drive faults (bus cable) the system hangs (radial cable)

*Due to the popularity of the CDC CMD Drive, it is used here as an example; however, the SMC-200 is compatible with any Storage Module Drive.

5.3 Bringing Up A System:

The recommended procedure for bringing up a system that is provided with a CP/M Support Package is:

- 1. Run IORAM. This diagnostic checks the capability of the SMC-200 onboard buffer to be read and written via I/O Commands.
- 2. Run LACEDIAG. A scratch disk must be installed in the drive and it must be up to speed and ready with no faults indicated.

This test serves two purposes:

- a. It test the disk subsystem independently of the BIOS or Boot ROM
- b. It aids in the location of Media flaws.

IMPORTANT! THIS TEST DESTROYS THE DATA AND MEDIA MAP ON THE DRIVES(S) BEING TESTED.

After running the Diagnostic/Media test the drive must be reformatted (and mapped if desired).

Disk Diagnostic/Media Test Abstract

Upon entering the Konan Media/Diagnostic test the following message is printed:

KONAN MEDIA TEST REVISION N DD-DD-DD where N is the revision and D is the last date updated.

DMA DISABLED BASE OF I.O. PORTS IS 90 SECTOR SIZE = 512

The operator is then prompted as follows:

<u>UNIT?</u> Enter a one (1) digit number corresponding to the unit to test. (Normally 0)

DRIVE TYPE? (C=CMD M=MMD)? Enter C for CMD (ie. Phoenix, M for all others.

CRCTEST? (N=NO Y=YES)? If yes, CRC is force to be bad. If following read fails to detect bad CRC and error is printed. Normally enter N.

BYTE FOR BYTE COMPARE?? Verifies each byte of data in addition to the CRC in header tests. Greatly slows the test. Normally enter N.

TEST READ DATA AT ALL OFFSETS? Causes the strobe early/late and offset forward/backward to be used on each read pass. Aids in finding marginal data. Greatly slows the test. Normally enter N.

FIRST TRACK? Decimal address of the first track to be tested.

LAST TRACK? Decimal address of the last track to be tested.

FIRST HEAD? Address of first head to test with CMD. Zero is for removable, 1 for first fixed, 2 for next, etc.. For MMD, zero = zero, l = l, etc..

LAST HEAD? Address of last head to test.

INTERLACE PATTERN? Interlace pattern. Allows speed of diagnostic to be matched to system/disk.

LAST SECTOR? Last sector to test. Enter Ø to test only one sector per track, 35 to test all 36 sectors.

The operator may interrupt the test at any time by pressing a Control C, this will print the following message:

BREAK TYPE D FOR DOS, R TO RESTART AND CR TO PRINT STATUS AND CONTINUE

Typing D will cause a return to CP/M via a JMP 0. R will restart the test, and carriage return will print the status as follows:

FULL PASSES=09 R,W PASSES-0037 ERRORS-000000 SECTORS READ=0000E808 0002 0 00

Where FULL PASSES equal the number of times the drive has written and read all selected sectors with the following patterns: All zeroes, All ones, Ripple up, Ripple down, floating zero and floating one. One each read/write pass the base for the ripple and floating patterns changes.

R,W PASSES is a hex number equal to the number of read write passes through the selected portion of the disk.

ERRORS is a total of all errors occurring since the test was started, in hex.

SECTORS READ is the hex number of sectors read.

The last line is the decimal address where the break occured. The first four digits are track, then sector and finally head.

DATA ERRORS PRINT AS FOLLOWS:

	·
Decimal	Hex
Track	Track, Head, Sector
Head	in the form Good/Bad
Sector	In the lota Good, bud
	4445/2222 41/22 11/22 1 22
0005 1 33	0005/FFFF 01/FF 21/FF L,BD
0005 1 33	0005/FFFF 01/FF 21/FF L,BD
0005 1 02	0005/FFFF 01/00 02/05 L,GD
0005 1 02	0005/0005 01/01 02/ID L,GD,R
PASS 0002	1 14 0002/FFFF 01/FF 0E/FF N,BD
0002 1 14	0002/FFFF 01/FF 0E/FF N,BD
0002 1 18	0002/FFFF 01/FF 12/FF N,BD
TRCK H SC	TRACK HEAD SCTR TYPE WORD, GOOD/BAD
0002 1 18	0002/FFFF 01/FF 12/FF N,BD
0002 1 22	0002/FFFF 01/FF 16/FF N,BD
0002 1 22	0002/FFFF 01/FF 16/FF N,BD
0002 1 26	0002/FFFF 01/FF 1A/FF N,BD
0002 1 26	0002/0002 01/01 1A/0E N,GD,R <retry, if="" is<="" retry="" td=""></retry,>
DDD2 1 20	always bad, error is
53.00 0005	usually a write error
PASS 0005	1 00 FFFA/FFFA FE/FE FF/FF E,BD
0005 1 00	FFFA/FFFA FE/FE FF/FF E,BD
0005 1 04	FFFA/FFFA FE/FE FB/FB E,BD
0005 1 04	FFFA/FFFA FE/FE FB/FB E,BD
0005 1 08	FFFA/FFFA FE/FE F7/F7 E,BD
TRCK H SC	TRACK HEAD SCTR TYPE WORD, GOOD/BAD
0005 1 08	FFFA/FFFA FE/FE F7/F7 E,BD 013,00/08 <word 13="" bad<="" is="" td=""></word>
0005 1 12	FFFA/FFFA FE/FE F3/F3 E,BD 013,00/08 it should have
	been 00, was 08
	Seen bbywas bo
CRC	

BD=BAD GD=GOOD

If bad data, the first four words print in this area. If this is blank then data was OK.

NON-DATA ERRORS

Non-data errors are also displayed. After printing them the status also prints. There errors are:

SELECT ERROR: (could not select unit)
TIMEOUT ERROR: (done loop timed out)
WRITE FAULT ERROR
SEEK ERROR
HEAD SELECT ERROR

SAMPLE DRIVER ROUTINES Section 6

Sample Driver Routines

Section	<u>Title</u>	Page
6.1	Write Routine	43
6.2	Read Routine	44
6.3	Read Recovery	46
6.4	Disk Address Selection	47
6.5	Seek Routine	50
6.6	Mapper Routine	52

The following sample routines are taken from KONAN'S CP/M Support Package. They interface to CP/M's blocking and deblocking algorithms, using 512 byte sectors.

6.1 Write Routine

The disk address is selected by the KCOMMON routine, covered later. Note that there is no error recovery. The philosophy here is that all write errors are fatal and to retry is risking damage to the data base. (Something must be "broke" in order to get a write error).

```
WRITEHST:
                          ; ENTRY INTO THE WRITE PROGRAM
         CALL
                  KCOMMON ; SETS SECTOR, DMA, HEAD, TRACK, UNIT
         RC
                          ; ERROR RETURN
         XRA
                          ;CLEAR BUS
         OUT
                  BUSL
         OUT
                  BUSU
                          BUS IS NOW CLEARED
         OUT
                  STATU
                          SECTOR BUFFER NOW ZEROED
         WRITE THE HEADER NOW (TRACK MSB, TRACK LSB, HEAD, SECTOR)
. 3
                          POINT TO THE TRACK
         LXI
                  H, PTRK
         MVI
                  B,4
                          HEADER BYTE COUNT
 HEADWT
         MOV
                  A,M
                          GET BYTE IN ACUMULATOR
                  SCTBU
         OUT
                          ;SEND IT
         INX
                  H
         DCR
                          ;DECREMENT COUNT
                  В
                          ; IF NOT DONE JMP TO HEADER WRITE
         JNZ
                  HEADWT
                          ********
         IP
                  DMA
         MVI
                  A, Ø2
                          ;DMA WRITE COMMAND
         OUT
                  CMND
                          DO THE WRITE
                          , ********************
          ENDIF
          IF
                  NOT DMA ; ***************
         LXI
                  H, HSTBUF; IO WRITE LOOP
         LXI
                  D, HSTSIZ
 NXIOW
         MOV
                  A,M
          OUT
                  SCTBU
          INX
                  H
          DCR
                  E
          JNZ
                  NXIOW
         DCR
                  D
         JNZ
                  NXIOW
                          · *****************
          ENDIF
          OUT
                  STATU
          MVI
                  A,1
                          DISK WRITE COMMAND
          OUT
                  CMND
                          DO THE WRITE
          CALL
                          ;WAIT FOR IT TO FINISH
                  WT
                  A, 'A'
          MVI
                          ; ERROR A IS A TIMEOUT
          JC
                  ERREPORT
                                  ; IF TIMEOUT, PRINT A
          IN
                  STATU
                          GET STATU
          ANI
                  2ØH
                          ; IS FAULT ON?
                  A, 'B'
          MVI
                  ERREPORT
          JNZ
                                   PRINT B IF WRITE FAULT
 REPORT END STATUS
          RET
                          DONE WITH WRITE
```

6.2 Read Routine

The read routine has been divided into two sections - READHST and READINT. READINT reads the data into the sector buffer. READHST calls READINT and transfers the data to the host. This separation is done to allow the Mapping code to call readint allowing it to read data into the buffer but avoiding a host transfer. Errors are handled by the next section, Read Recovery.

```
READS VIA READINT THEN DOES DMA
                ; READ SUBROUTINE.
READHST:
                READINT ; PLACE DATA INTO THE SECTOR BUFFER
        CALL
                        *****
                DMA
        IF
                        ;DMA READ COMMAND
        MVI
                A,04H
                CMND
                        DO THE READ
        OUT
        ENDIF
                NOT DMA ;**************
        IF
                H, HSTBUF; IO READ LOOP
        LXI
                D, HSTSIZ
        LXI
                SCTBU
        IN
NXIOR
        MOV
                M.A
        INX
                H
        DCR
        JNZ
                NXIOR
        DCR
                D
                NXIOR
        JNZ
                        ******
        ENDIF
        RET
                        RETURN
                READ TO SECTOR BUFFER
READINT:
                KCOMMON ; SET SECTOR, DMA, TRACK, HEAD, AND UNIT
        CALL
                        ERROR RETURN
        RC
                        GENERATE A ZERO
        XRA
                        CLEAN UP LOWER BUS
        OUT
                BUSL
                        CLEAN UP UPPER BUS
        OUT
                BUSU
                        ZERO THE ERROR COUNT
        STA
                CERRC
                        ;SET BUFFER TO ZERO
                STATU
RDKON
        OUT
                H88,A
                        DISK READ COMMAND
        MVI
                        DO THE READ
        OUT
                CMND
                WT
                        WAIT FOR DONE
        CALL
                A,'C'
        IVM
                                 PRINT C IF TIMEOUT ERROR
                ERREPORT
        CC
                         GO ATTEMPT TO RECOVER THE TIMEOUT
        JC
                RCOVRE
                         GET ENDING STATUS
                STATU
        IN
                        ; IS CHECKSUM ON?
        ANI
                4H
                                 GO REPORT/RECOVER
                CHKRECOV
        JNZ
                WE WILL NOW TEST THE HEADER
;
                        ; POINT TO THE TRACK
                H, PTRK
        LXI
                         NUMBER OF HEADER BYTES
        MVI
                B,4
                         ZERO BUFFER ADDRESS
        OUT
                STATU
                         GET HEADER READ
HDRTST
        IN
                SCTBU
        CMP
                FRMTRCV ; RECOVER IF DIFFERENT -
        JNZ
        DCR
```

INX H
JNZ HDRTST ; IF HEADER COUNT IS NON ZERO TEST ONE MORE
WHEN WE ARIVE HERE THE READ IS DONE.
RET

6.3 Read Recovery

The data recovery program follows. It follows the flow described in Figure 3.15, Data Recovery Procedures.

```
READ RECOVERY PROGRAM FOLLOWS
CHKRECOV:
                A, 'D'
        MVI
                                 PRINT A D IF CHECKSUM ERROR
                ERREPORT
        CALL
        JMP
                RCOVRE
FRMTRCV MVI
                A, 'E'
                                 PRINT A E IF FORMAT ERROR
        CALL
                ERREPORT
RCOVRE: LDA
                CERRC
                         ; INCREMENT THE COUNT
        INR
                Α
                         ; SAVE THE NEW COUNT
        STA
                CERRC
        MOV
                         ;SAVE THE ERROR COUNT
                C,A
                        GET LAST 2 BITS, STROBE EARLY AND LATE
                3
        ANI
        CPI
                3
                        NOT LEGAL TO HAVE BOTH ON
        JZ
                RCOVRE
                       ; IF ILLEGAL, GO TO NEXT CERRC
        VOM
                         GET THE ERROR COUNT
                A,C
                         GET THE OFFSET MINUS AND PLUS BITS
        ANI
                18H
        CPI
                18H
                        ; ARE THE BOTH ON?
                RCOVRE ; IF SO GO TO THE NEXT COUNT
        JΖ
                A,C
                        RESTORE THE ERROR COUNT
        VOM
                        ; IS THIS THE START OF THE SECOND PASS?
        CPI
                20H
                        ; IF 20H WE WILL RETRY SEL, SEEK, MAPPER ETC.
        CZ
                PANIC
                         RESTORE THE ERROR COUNT
        LDA
                CERRC
                         ; PLACE IT IN C FOR FUTURE RECALL
        VOM
                C,A
                         ;TIME TO GIVE UP?
        ADI
                ØDCH
                                 ; IF CARRY WE HAVE A HARD READ ERROR
        JC
                HARDRDER
        IF WE GET HERE WE ARE READY TO SET RECOVERY BITS AND TRY AGAIN
7
                         RESTORE ERROR COUNT
                A,C
        VOM
                         POSITION BITS
        RRC
                         GET OFFSETS PLUS STROBE EARLY
        ANI
                8CH
        OUT
                BUSL
                         SET THE BITS
                         RESTORE ERROR COUNT
        MOV
                A,C
        RRC
                         ; POSITION BITS
        ANI
                1
                         ;STROBE LATE BIT
                         BUS NOW COMPLETE
        OUT
                BUSU
                         ;GO DO THE READ RECOVERY
        JMP
                RDKON
HARDRDER:
                         ; HARD DISK READ ERROR
                         SET THE READ BUFFER TO ADDRESS 4
        IN
                STATU
        IN
                SCTBU
        IN
                SCTBU
                SCTBU
        IN
        MVI
                A, 'F'
                         ; HARD ERROR
                ERREPORT
        JMP
```

6.4 Disk Address Selection

The KCOMMON routine is used by both the read and the write to select sector unit, head and track. It also sets the DMA address, useful only for those using DMA and an SMC-100.

The HSTPHY routine transforms CP/M addresses into hard disk addresses. This routine is CP/M unique and probably of no interest to non-CP/M users.

COMCON determines if head, track, or unit have changed. If any have changed, all are reselected by the NEWADD: routine. Note that 15 is added to head address for CMD drives.

```
KONAN DISK READ AND WRITE COMMON ROUTINE
;
        SETS THE SECTOR, DMA, UNIT, HEAD, AND TRACK
7
                     NOTE THAT EVERY HEAD SELECT IS
        ADDRESSES.
        FOLLOWED BY A SEEK TO MAINTAIN COMPATIBILITY
        WITH CMD DRIVES.
7
        RETURNS WITH CARRY SET IF ERROR, RESET IF NOT
. 3
7
KCOMMON:
                          ; MAKE A ZERO
        XRA
                 A
                          ;SET ERROR FLAG TO ZERO
                 DIOST
        STA
                                  ; PLACE DMA ADDRESS IN H&L
                 H, HSTBUF
        LXI
                          GET LSB OF DMA ADDRESS
        VOM
                 A,L
                          ; SET LSB OF DMA ADDRESS
                 DMACL
        OUT
                          GET MSB OF DMA ADDRESS
        VOM
                 A,H
                          ;SET MSB OF DMA ADDRESS
         OUT
                 DMACU
                          ; MAKE A ZERO
         XRA
                 A
                          CLEAR THE LOWER BUS
         OUT
                 BUSL
                          CLEAR THE UPPER BUS
                 BUSU
         OUT
                 HSTPHY
         CALL
         JMP
                 COMCON
         ; CALCULATE THE PHYSICAL ADDRESS
HSTPHY
         LHLD
                 HSTTRK
                          ;402 IS MAX TRACK PER UNIT
         LXI
                 D_{r} - 402
                          ; IF CARRY TRACK IS ILLEGAL
         DAD
                 D
                          ; ERROR N IS ILLEGAL TRACK
         MVI
                 A, 'N'
                 ERREPORT
         CC
         RC
                          ;OFFSET FOR INNER TRACKS
         LXI
                 D,402
                          ;CPM TRACK
                 HSTTRK
         LHLD
                          ; Ø FOR A, 1 FOR B, ETC
                  HSTDSK
         LDA
         IF
                  FLPIST
                  NUMDSK-NUMHRD
         SUI
         ENDIF
                          PLACE LSB IN CARRY
         RRC
                          ; DO NOT ADD 402 IF INNER
         JNC
                  INNER
         DAD
                          ;ADD 402 IF OUTER
                  D
                          REMOVE END AROUND CARRY
                  ØFH
 INNER
         ANI
                          ;B=UNIT, INITIALLY 0
         IVM
                  B, 0
                          ; IS HEADQ LARGER THEN HSTDSK?
                  HEADQ
NUNIT
         CPI
                  UNDONE 'B IS UNIT, A IS HEAD
         JC
                          DECREMENT BY THE NUMBER OF HEADS PER UNIT
                  HEADQ
         SBI
                          INCREMENT THE UNIT
         INR
                  B
```

```
UNDONE
        STA
                PHEAD
                         REMAINDER IS THE PHYSICAL HEAD
        VOM
                A,B
        STA
                 PUNIT
                         JUNIT IS THE QUOTIENT
                         :MSB OF TRACK
        MOV
                A,H
                         STORE IT IN PHYSICAL UPPER TRACK
        STA
                 PTRK
        MOV
                         ;LSB OF TRACK;
                 A,L
        STA
                 PTRK+1
                         STORE IT IN PHYSICAL LOWER TRACK
        LDA
                HSTSEC
        OUT
                SCTAD
        STA
                PSECTOR
        RET
      . PHYSICAL ADDRESS IS NOW SET
3
; WE WILL NOW CHECK TO SEE IF SELECT IS TRUE, AND IF THE TRACK
;, HEAD, AND UNIT ADDRESSES ARE THE SAME AS THE LAST TRANSFER,
STORED IN OLDUNIT, OLDTRK, AND OLDHEAD.
COMCON
        IN
                 STATU
                         GET THE STATUS
                         ; PLACE SELECTED BIT INTO CARRY
        RRC
                         ; IF NOT SELECT FORCE NEW ADDRESS
        JNC
                 NEWADD
        TEST NEW VS OLD ADDRESS
;
                                 ;H,L POINT TO OLD ADDRESS
                 H, OLDUNIT
        LXI
        LXI
                 D, PUNIT ; D&E POINT TO NEW ADDRESS
                         NUMBER OF BYTES TO CHECK
        MVI
                 B, 4
                         GET NEW ADDRESS BYTE
ADCMP
        LDAX
                D
                         COMPARE IT TO OLD
        CMP
                 M
                         ; IF DIFERENT GO TO NEW ADDRESS
        JNZ
                 NEWADD
        DCR
                 В
                         ; INCREMENT THE POINTER TO CURRENT ADDRESS
        INX
                 H
                         INCREMENT THE POINTER TO DESIRED ADDRESS
        INX
                 D
                         ; IF LOOP IS NOT DONE COMPARE ONE MORE
                 ADCMP
        JNZ
        RETURN WITHOUT ERROR, SAME ADDRESS
7
                         CLEAR CARRY
        XRA
                 A
        RET
NEWADD:
        SET OLD TO PHYSICAL
;
        LXI
                 D, OLDUNIT
        LXI
                 H, PUNIT
        IVM
                 B,4
                         ; COUNT
UPDATE
        MOV
                 A,M
                         GET NEW
                         ;UPDATE OLD
        STAX
                 D
        INX
                 D
        INX
                 H
        DCR
                 В
        JNZ
                 UPDATE
                         GET THE PHYSICAL UNIT
        LDA
                 PUNIT
        RRC
                         ;UNIT IS UPPER HALF OF BYTE
        RRC
        RRC
        RRC
        OUT
                 BUSU
                         ; PLACE IT ON THE BUS
        IVM
                 A,10H
                         ;SELECT COMMAND
        OUT
                 CMND
                         ;SELECT I
```

```
GET STATUS
                STATU
        IN
                         ; PLACE SELECT IN CARRY
        RRC
                         CARRY 1 IF NOT SELECTED
        CMC
                         ; SELECT ERROR
                A, 'G'
        IVM
                                 ; PRINT IT
                ERREPORT
        JC
                PHEAD
        LDA
                CMD
        IF
        CPI
                         ; IS HEAD ZERO LEAVE ALLONE
                HDJUST
        JΖ
                         ; ADD 15 TO SET LOLUME TAG
                15
        ADI
        ENDIF
                         ;SET IT ON THE BUS
                BUSL
        OUT
HDJUST
                         ;SET HEAD COMMAND
                A,40H
        MVI
                         ; DO THE HEAD SELECT
                 CMND
        OUT
                         GET THE STATUS
                 STATU
        IN
                         ;TEST DISK FAULT BUT
                 20H
        ANI
                 A, 'H'
        MVI
                                  ; IF FAULT IS ONE, REPORT IT
                 ERREPORT
        JNZ
```

6.5 Seek Routine

The seek example contains a complex mapping facility and retries. Most of the code is conditional and is only used if mapping is enabled.

```
SEEK ROUTINE
7
        TRACK SUBSTITUTION INCLUDED
7
SEEK:
        CALL
                 GSEEK
                         GO PERFORM THE SEEK
                         ; RETURN IF SEEK WAS GOOD (NO CARRY)
        RNC
        IF HERE, FIRST SEEK ATTEMPT FAILED
ï
                 RECAL
                         ; RECAL DRIVE TO ATTEMMPT TO CLEAR ERROR
        CALL
                          GIVE IT ONE MORE TRY
        CALL
                 GSEEK
                          ; IF NO ERROR IT RECOVERED
        RNC
        IF HERE, HARD SEEK ERROR OCCURED
.;
                         ;SET A TO ALL ONES
        IVM
                 A, ØFFH
                 OLDUNIT : THIS WILL CAUSE A SELECT AND SEEK UPON
        STA
                         NEXT ACCESS
7
                 A, 'I'
        MVI
        JMP
                 ERREPORT
                                  REPORT THE SEEK ERROR
GSEEK:
        COMPRIZE COMMPOSITE ADDRESS TO SEARCH TRACK TABLE FOR
                 PTRK
        LDA
        MOV
                 D,A
                 PTRK+1
        LDA
        MOV
                 E,A
                          ; MAP THE TRACK IF MAP IS ENABLED
        IP
                 MAPEN
                 PHEAD
                          GET THE HEAD NUMBER
        LDA
        RLC
        RLC
                          ;PLACE HEAD IN BITS 5-2
                          STRIP ANY ENTRA JUNK
        ANI
                 1CH ·
        ORA
                 D
                          OR IN MSB OF TRACK
        VOM
                 D,A
                          GET UNIT NUMBER
        LDA
                 PUNIT
        RRC
        RRC
        RRC
                          2UNIT NOW IN 6-4
        ANI
                 6 Ø H
                          OR HEAD TO UNIT/TRACK
         ORA
                 D
        MOV
                          ;D IS NOW HEAD, UNIT, TRACKMSB
                 D,A
                          ;SET B,C,TABLE ENTRY PIONTER, TO ZERO
        MVI
                 C,Ø
                                  ;H&L NOW POINT TO THE TABLE
        LXI
FINDT
                 H, SUBTBL
                          GET BYTE FORM THE TABLE, FIRST HALF
FINDN
        MOV
                 A,M
                          ; ADD MSB TO SEE IF IT WAS ON
        ADI
                 8ØH
                 SUBDONE : IF CARRY THE SUBSTITUTION IS DONE
         JC
         MOV
                          ;LSB OF DESIRED
                 A,D
        CMP
                          ; IS IT THE SAME?
                 M
                          ; INCREMENT THE POINTER
         INX
                 H
                 NOCMP
                          JMP NO COMPARE IF DIFFERENT
         JNZ
                          MSB OF DESIRED
        VOM
                 A,E
        CMP
                 M
                          IS IT THE SAME
```

```
; IF ZERO GO DO THE SUBSTITUTION
                 SUBT
        JZ
                         ; INCREMENT THE POINTER
                H
NOCMP
        INX
                         ; INCREMENT THE LOCATION IN THE TABLE
                C.
        INR
                         GET TABLE POSITION
                 A,C.
        VOM
                                  ; CAUSE CARRY IF MAXMAP OR LESS
                 MAXMAP+1
        CPI
                         ; INVERT CARRY,
        CMC
                         ;M IS MAP OVERRUN ERROR
                 A, 'M'
        MVI
                                  ;PRINT M IF CARRY
        CC
                 ERREPORT
                         GO TEST THE NEXT ENTRY
        JMP
                 FINDN
                         B, C=THE TABLE ENTRY WHERE THE MATCH OCCURED
        IVM
                 B,0
SUBT:
                                  THE BEGIN OF THE SUBSTITUTION TRACKS
                 H, MAXTRK+1
        LXI
                         ; H&L NOW EQUAL THE NEW TRACK
        DAD
                 В
                         ; D&E NOW EQUAL THE NEW TRACK
        XCHG
                         GO SEE IF THE SPARE IS MAPPED
                 FINDT
        JMP
        ENDIF
SUBSTITUTION IS DONE, DO THE SEEK TO THE TRACK IN D&E
SUBDONE
                         ;LSB OF TRACK
        VOM
                 A,E
        OUT
                 BUSL
                          ;MSB OF TRACK
        VOM
                 A,D
                         ;STRIP ALL BUT TRACK
                 3
         ANI
                         BUS NOW SET TO TRACK
        OUT
                 BUSU
                         SEEK COMMAND
        IVM
                 A,20H
                          DO THE SEEK
         OUT
                 CMND
                          ;WAIT FOR DONE
         CALL
                 WT
         MVI
                 A,'J'
                                  PRINT J IF SEEK TIMEOUT
                 ERREPORT
         JC
         RET
```

6.6 Mapper Routine

The mapper routine builds a list of all bad tracks on drives present. This is used by the Seek program to substitute spare tracks for bad tracks. This routine is usually called at boot time. If this routine was not called, if a new drive is now powered up, or if a pack has been changed, the 6 Seek program will automatically call this program and rebuild the list.

```
MAPPER ROUTINE
        GETS THE MAPS OFF EACH DISK AND MAKES A SYSTEM WIDE
        MAP OF ALL BAD TRACKS
MAXMAP
        EOU
                 65
                         ;20 ENTRIES ALLOWED
MAXUNIT EQU
                 1
                         ; NUMBER OF DISK UNITS
        IP
                         ; ASSEMBLE ONLY IF MAP IS ENABLED
                 MAPEN
SMAPPER
        SET PHYSICAL ADDRESS TO FIRST
7
        XRA
                         ; MAKE A ZERO
                 A
        STA
                 HSTTRK
        STA
                 HSTTRK+1
        STA
                 HSTDSK
        LXI
                 H, SUBTBL
        SHLD
                 SUBPNT
        MVI
                                  ;LAST SECTOR NUMBER
                 A, HSTSPT-1
        STA
                 HSTSEC ;SET IT FOR KCOMMON
        CLEAR THE MAP
7
        MVI
                 A,ØE5H
        MVI
                 B,2*MAXMAP+1
CLRMAP
        MOV
                 M,A
        INX
                 H
        DCR
        JNZ
                 CLRMAP
GETMAP
                 ;SEE IF SURFACE IS PRESENT
        CALL
                 HSTPHY
        LDA
                 PUNIT
        RLC
        RLC
        RLC
        RLC
        OUT
                 BUSU
        MVI
                 A,10H
                          ;SELECT UNIT COMMAND
                 CMND
        OUT
        IN
                 STATU
                          CHECK UNIT STATUS
        ANI
        JΖ
                 NEXTMAP ; IF NOT SELECTED GO TO NEXTMAP
        LDA
                 PHEAD
        IF
                 CMD
        CPI
                 Ø
        JΖ
                 CARTH
                         ; IF CARTRIDGE THE HEAD ADDRESS IS GOOD
        ADI
                          OTHERWISE SET VOLUMN BIT
        ENDIF
CARTH
        TUO
                 BUSL
```

```
A,40H
        MVI
                          ; SELECT HEAD
        OUT
                 CMND
                 STATU
        IN
        ANI
                 2ØH .
                 NEXTMAP
        JNZ
                 READINT ; READ WITHOUT DMA
        CALL
        JC
                 NEXTMAP
RDMAPBUF:
        LHLD
                 SUBPNT
                          ;SET H&LTO MAP ADDRESS
                 SCTBU
                          GET FIRST BYTW
NBADTRK IN
                          ; IS IT THE END
                 ØE5H
        CPI
                 NEXTMAP ; IF END DO THE NEXT SURFACE
        JΖ
                          ; PUT BYTE IN B (TRACK MSB)
                 B,A
        MOV
                          GET THE UNIT NUMBER
        LDA
                 PUNIT
                          POISITION UNIT BITS
        RRC
        RRC
        RRC
                 6 Ø H
                          GET RID OF ANY OTHER JUNK
        ANI
        ORA
                 В
                          ; PUT TRACK AND UNIT IN B
        VOM
                 B,A
                          GET HEAD
                 PHEAD
        LDA
                          POISITION BITS
        RLC
        RLC
                 1CH
        ANI
                          OR WITH TRACK AND UNIT
        ORA
                 В
                          ; PLACE INTO TABLE
        VOM
                 M,A
                          POINT TO NEXT BYTE IN TABLE
        INX
                 H
                          GET SECOND BYTE OF TABLE
                 SCTBU
        IN
                          ; ENTRY IS COMPLETE
        VOM
                 M,A
                          POINT TO NEXT
         INX
                 H
                          SET END OF TABLE
        MVI
                 M,ØE5H
        TEST FOR FULL
                 D, SUBTBL+2*MAXMAP
        LXI
         VOM
                 A,H
         CMP
                 NBADTRK
         JNZ
         MOV
                 A,L
         CMP
                 E
         JNZ
                 NBADTRK
                 A,'M'
         MVI
         CALL
                 ERREPORT
                 NBADTRK ;GO GET ADDRESS OF NEXT BAD TRACK
         JMP
NEXTMAP:
         SHLD
                 SUBPNT
                 HSTDSK
         LDA
         INR
                 A
         INR
                 A
         STA
                 HSTDSK
                 2*HEADQ ; ARE WE DONE ?
         CPI
         RZ
                  ; IF SO, RETURN
```

```
GETMAP
        JMP
        ENDIF
        IF HERE WE ARE DONE!
7
       DO NOT CHANGE THE ORDER OF THE NEXT 9 BYTES
CERRC
       DB
                Ø
                        ; ERROR COUNTER
                        ; DESIRED PHYSICAL UNIT
PUNIT
       DS
                1
                        DESIRED REAL TRACK ADDRESS
                2
PTRK
        DS
PHEAD
        DS
                1
                        ; DESIRED HEAD
PSECTOR DS
                1
                        ; DESIRED SECTOR, 512 BYTE
                        ; LAST HEAD SELECTED, FF TO CAUSE INITIAL SEL.
OLDUNIT DB
                ØFFH
OLDTRK DW
                        ;LAST TRACK SEEKED
                ØFFFFH
                        ;LAST HEAD ACCESSED
OLDHEAD DB
                ØFFH
```

SML-200 INTERFACE SUPPLEMENT

I. Intent

The intent of this manual is to define the interface of the SML-200 in sufficient detail to allow its use as a stand alone controller. This manual must be used in conjunction with the SMC O.E.M. Reference Manual, R-SMC-201-X.

II. Mechanical Interface

Figure 2.1 shows the physical outline of the SML-200 PCB.

The edge connector is a 100 pin (dual 50) with .125 spacing.

J1 and J2 are dual .100 spacing, .025 square gold posts with 26 pins.

J3 is a 60 pin dual .100 spacing, .025 square gold posts

III. Signal Description:

This section is divided into two parts. The first section covers mandatory signals which must be used to interface the SMC-200. Additional signals are covered in the next section, optional signal lines. It is intended that these be used only when it simplifies the users interfacing task to do so.

Note that a separate data out and data in buss are provided. These can and usually are, tied together, forming a bidirectional data buss.

Mandatory Signals

Pin #	Name	Description
1 111 4	2,444	_
1	+5V	regulated +5V
35	DOL	
36	DOØ	
38	DO4	
39	DO5	
40	DO6	
41	DI2	
42	DI3	
43	DI7	
5 0	GND	GND
51	+5V	+5V, regulated
52	-5V	-5V, regulated
53	GND	GND
77	PWR*	Write Strobe
78	PDBIN	Read Strobe
7 9	AØ	Selects one of
80	Al	seven on board
81	A2	registers
88	DO2	
89	DO3	
90	DO7	
91	DI4	
92	DI5	
93	D16	
94	DI7	
95	DIØ	
100	GND	

Optional Signals

Pin #	Name	Description
13	PWRFAIL*	disables drive on power down
29	A5	board select address
30	A4	board select address
31	A3	board select address
45	SOUT	can be used to qualify PWR
46	SINP	can be usd to qualify PDBIN
75	RESET*	clears controller
82	A6	board select address
83	A7	board select address

When not in use, GND pins 29,30,31,82,83, pull up 45,46,13,75

IV. Timing

READ CYCLE

WRITE CYCLE

