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PREFACE 

The construction program on the MANIAC was started in the summer 

of 1949 and the computer was completely tested in March, 1952. The 

group of engineers is under the direction of J. Richardson and consisted, 

at various times, of W. Orvedahl, E. Klein, H. Demuth, T. Gardiner, 

H. Parsons, R. Merwin, and J. Breese. In addition, V. Gafke and 

J. Caulfield provided considerable assistance. Since its completion, 

solutions to many numerical problems have been computed. 

There are several phases to the solution o~ a problem by an elec­

tronic computer. First, there is the formulation of the problem itself 

by the mathematician or theoretical physicist. Second, this is followed 

by the detailed preparation of the problem by the programmer for the 

specific computer. Finally, there is the actual running of the problem 

on the computer. The present work is primarily an attempt to discuss in 

some detail the last two stages. 

The volume consists of six chapters. Chapter I, Introduction, de­

scribes some of the general features of the computer and defines the 

field of activity associated with it. The treatment is intentionally 

brief. The remaining chapters are devoted to an elaboration of the 

salient points. 

Chapter II, Coding and Flow Diagrams, is the "raison d'etre tt of the 

opus. Beginning with some elementary problems, it gradually takes the 

reader through a coding preparation of some complex exercises. The 

elements of a flow diagram are discussed. 

Chapter III, Binary Arithmetic, discusses the various arithmetic 

operations in ter.ms of the binary system. By the time the reader finishes 

this part , it is hoped he will regard the binary system as the "natural" 

one for arithmetic. 

Chapter IV, The Computer, is concerned with a simplified discussion 

of the various components. The objective here is that some knowledge of 

the engineering side of a computer is very useful to personnel running 

problems on it. Aiding in the detection of malfunctions and in the locali­

zation of them, the programmer helps the engineer in maintaining high per­

formance of the computer. 
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Chapter V, Descriptive Coding and Subroutines, describes the 

methods of descriptive coding the the use of the computer itself to 

aid the programmer in the preparation of problem codes. The discus­

sion of subroutines finds a natural place here. 

Chapter VI, Operating Procedures 7 essentially summarizes some of 

the material of the earlier sections and describes systematically the 

steps involved in automatic computations.l processes, including "which 

buttons on the computer to press when". 

Finally, an Appendix is included. It contains some optional and, 

we hope, useful material. 

Los Alamos, New Mexico 

December 15, 1951. 

John B. Jackson 

N. Metropolis 
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all members of the MANIAC group who deluged us with criticisms, es­
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I. INTRODUCTION 

We shall give first a brief description of the general features 

and characteristics of the computer which has been constructed here. 

(i) It is a general purpose computer in contradistinction to a 

special purpose type. Its design engenders adequate flexibility to 

handle a wide variety of mathematical problems. The special purpose 

type may be much simpler in design and more direct in its application 

to a particular type of problem, but it has its obvious limitations. 

We do not discuss it further. 

(ii) It is a digital, rather than an analogue, computer. Compu­

ters have been built which use various analogy devices that correspond 

to a continuous variable representation. In such analogy computers, 

numerical information is expressed as measurements of some physical 

quantity. ·Among other reasons, it may be mentioned that accuracy re­

quirements argue for the digital type. 

(iii) It is electronic (vacuum tubes) in character, as opposed to 

electro-mechanical (relays). Although both methods are sufficiently 

reliable, the former is many times faster. For the· maJority of prob­

lems, where the number of operations involved is at least in the hun­

dred thousand range, the difference in speed is quite serious. 

The fqur basic arithmetical operations performed are addition, 

8ubtraction, multiplication and division. In principle, one might 

conceive of a simple computer that does only subtraction, and effects 

the others by repeated application of that ~Jndamental operation. 

This is not very practical. On the other hand, one might have argued 

for including other operations in the basic list; e.g., square rooting, 

as indeed the ENIAC has included. It appears, however, that the fre­

quency of occurrence of any of these does not warrant the added compli­

cation in equipment, especially since these more complicated operations 

can be effected by rather simple iterative procedures based on the four 

~ntal operations. 

Besides these four arithmetical processes, there are included a 

fev operations whiCh are of a purely logical character, but first, 
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Some Remarks on Arithmetic 

The bandling of numerical quantities is done in a digital fashion. 

The binary system is used for the representation of numbers rather than 

the conventional decimal system. Everyone knows that in the latter sys­

tem a number is expressed as a sum of powers of ten with individual co­

factors 0 to 9; e.g., 

41.23 = ~.lol + 1-100 + g-lO-l + 1.10-2 

In a stmilar fashion a number may be expressed in the binary system by 

powers of two with co-factors either £ or !; e.g., 

101.01 = 1.22 + 0-21 + 1.20 + 0.2-1 + 1.2-2 

As in the decimal system, the binary point separates the terms with 

positive exponents from those with negative exponents. The standard 

capacity for handling numbers in the present computer is 39 numerical 

bigits preceded by a sign bigit. (The word bigit is defined as binar,y 

digit.) There is sufficient flexibility to permit rather easy treat­

ment of those cases requiring higher precision. 

For the various arithmetical operations in the computer, it is 

assumed that the binary point lies immediately to the left of the first 

numerical bigit, so that all numbers lie in the range 

-1 <. x <: 1. 

It may appear at first that this restriction places a considerable 

additional burden on the preparation of a problem for the computer. 

Actually, however, it is quite a simple matter to scale numbers to the 

appropriate size beforehand, such that the result of any operation does 

not exceed the allowed range. In those instances where it is not pos­

sible to provide approprfate scaling factors in advance, one does have 

recourse to procedures which adjust the sizes of numbers--the so-called 

floating point routines. 

As mentioned above, the first bigit on the left is used to indicate 

the Sign of a number. One possible convention that might be used would 

be to say that bigit £ in that location indicates a positive quantity 

and that a 1 is to be interpreted as a negative sign. However, it is 

more convenient to do something different in the case of negative numbers. 



In the computer, a negative number x is represented by its complement 

c with respect to 2, namely 

Since 

c will be in the range 

c = 2 - IxL 
Ixl<l, 

1< c <2 

so that the "sign" bigit will be ! in every case of complementation. 

For positive numbers it will always be Q. For example, suppose 

x = -.101ll0l0l ...•. 011j 

then c = 1.010001010 .•..• 101 

is its representation in the computer. One observes that a very simple 

method for obtaining the complement of a number with respect 2, is to 

"reflect" the number, that is, to replace Q with! and conversely, 

then to add 1 in the extreme right place. Electronically, inter­

changing Q and! is easily done. As discussed in detail in later 

sections, a "flip-flop", or "toggle", is an electronic device which 

has two stable states; it is essentially a twin triode (a standard 

type of vacuum tube); either one side is in a conducting state (and 

its tube elements have one set of definite voltages) with the other side 

non-conducting (cut-off, and its corresponding elements have another set 

of voltages) or the opposite situation obtains. It is a symmetrical 

situation. Normally one examines the voltage level at some particular 

point of the circuit, say the grid voltage of one of the triodes, and 

assigns one voltage to the bigit Q and the other to 1. To obtain the 

complement of a number in a series of such f1'ip-flops, one would merely 

examine the opposite symmetrical point of the circuit of each flip-flop; 

since, if a given flip-flop is in a state corresponding to a !, the 

other side of the flip-flop would have a voltage level at the corres­

ponding point identified as a Q. Additional circuitry is required to 

insert a ! in the extreme right~hand position. 

The notion of complement numbers is a very useful one. Subtrac­

tion of two numbers can be replaced by addition. This is convenient 

since the same electronic circuitry designed to effect addition suf­

fices for the subtraction process. Instead of performing d = (a-b) 

by direct subtraction techniques, one may add to ~ the complement of b. 

That this yields the correct difference can be seen from the following: 
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Assume a, b > O. 

a + (2-b) 2 + (a-b) = 10. + (a-b) 

in binary form. If a >b, and since both a and b have absolute magni­

tudes less than unity, the difference (a-b) is positive and less than 
I unity. The co-factor 1 of 2 does not appear in the computer, the 

capacity of the computer has been exceeded and that bigit is lost. 

The 0 co-factor of 2
0 does of course appear, and indicates that the 

difference (a-b) is positive. In the event a< b, our answer would be: 

I <: d = 2 - (b-a) < 2, 

which is precisel! the desired form for a negative difference, namely 

the camplemant with respect to 2. Here the co-factor of 20 is appro­

priately a!. ,The cases where ~ and/or ~ are negative are left as 

exercises for the curious students. 

Principal Components 

Although the computer functions as an entity, it is convenient to 

speak of its various components. These are: 

(i) 
(ii) 

(iii) 

(iv) 

Arithmetic Unit 

arithmetic unit 

memory 

input-output 

control 

The arithmetic unit performs the operations of addition, subtrac­

tion, multiplication and division in binary fashion. It is also con­

cerned with such auxiliary operations as shifting of a number to the 

-4-

left or right. Finally, it is associated with certain logical operations. 

In appearance the arithmetic unit is similar to the one in Princeton. 

A parallepiped structure of channel aluminum has six panels on each of 

its two long sides. The outer panels in each case are reserved for con­

trol chassis, the middle four are used for the arithmetic unit proper. 

Three horizontal rows of arithmetical chassis are located on one of the 

two prinCipal sides. Each chassis contains two registers. The various 

registers are designated Rl, R2, .•• R6, starting with the lowest. A 

register is the residence, or temporary storage, of one of the numerical 
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factors in an arithmetical operation. In each such operation three 

factors occur, so that at first it might be supposed that three regis­

ters would suffice. However, the requirement of shifting in multipli­

cation and division necessitates two more. These considerations account 

for the first five registers; the last, R6, is used exclusively in asso­

ciation with the control and does not participate in any of the basic 

arithmetical operations, although physically it is located within the 

arithmetic unit. Rl is the associated register for shifting a number 

in R2, a principal register. Physically, the pair forms a chassis. 

Similarly, R3 is associated with the principal register, R4. R5 is a 

non-shifting register with respect to arithmetic operations. 

Before discussing the four basic arithmetical operations, we 

digress to consider the manner in which a number in one of the two 

principal registers is shifted. To begin with, a register is an ensemble 

of 40 "flip-flops", or "toggles", and as mentioned earlier, each flip­

flop has two stable states. One of these states represents the binary 

digit Q and the other the binary digit!. The set of flip-flops may 

then be used to represent a 39-bigit number and its sign. 

There exists a variety of methods for electronically transferring 

information contained in one set of toggles to another. For example, 

suppose that a given toggle contains a I and it is desired to transfer 

this information to a second toggle. By means of an interconnecting 

"gate" tube, it is possible (as a result of a voltage change on the 

gate tube) to set the receiving toggle to a !, irrespective of its pre­

vious state. Another scheme is to have first set the receiving toggle, 

say to Q, as a separate operation. When the appropriate voltage change 

is applied to the gate tube, the receiving toggle is set to a !, other­

wise it remains appropria.tely unchanged. This method is actually the 

simpler of the two and is the one used. In common parlance we say 

the receiving flip-flops are "cleared" to Q1s and !IS a.re "gated in". 

Clearly, Q's and !IS could ~e interchanged in the preceding statement 

and provide an alternative scheme. 



A flip-flop may be symbolically represented as a rectangle in the 

form of two squares; the shading of one square may be said to corres­

pond to a Q, the shading of the other to a 1. A gate tube is indicated 

by a circle. 

There is a set of gates which connects the flip-flop! of R2 to the 

corresponding ones of Rl. These may be shown diagrammatically. 

o o o o 
Before After 

Rl has been previously cleared to Q's. The information in R2 is 101. 

When an appropriate voltage change is applied to the gate tubes, the 

first flip-flop of Rl will change its state to represent a !, the 

second remains unchanged, and the third behaves like the first. Rl 

will then have received the information 101. 

There is a second set of gates which connects the flip-flops of 

Rl with the flip-flops of R2 displaced one to the left. 

o o o o 
R2 

RI 

o o 

Before After 
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R2 is cleared to O's. When these gates are opened, the information 

in RI is transferred to R2 displaced once to the left. Thus, by 

these sequences of operations, a number originally in R2 is shifted 

one place to the left. 

Finally, there is a set of "diagonally-right" gates to provide 

for a shift to the right. Repeated application of the sequence of 

operations results in a shift by ~ places. It perhaps should be men­

tioned that these three sets of gates are unilateral in action and 

represent all of the interconnections between RI and R2. 

The four basic arithmetical operations are done in terms of simple 

additions, with shifts where required. Subtraction of a number a is 

performed by the addition of its complement. Multiplication is done by 

the detection of the successive bigits of the multiplier, beginning 

with the rightmost bigit. If the bigit is a !, an addition of the mul­

tiplicand to the partial product is performed followed by a shift of 

the partial product one place to the right. A 2 multiplier bigit merely 

shifts the partial product to the right by one, and the next multiplier 

bigit is examined. For division, the so-called "non-restoring" scheme 

is used. The complement of the divisor is added to the partial remain­

der if the signs of the divisor and partial remainder agree; if the 

signs disagree, the divisor is added directly. A 0 is indicated for 

the corresponding quotient bigit in the first case, and a ! for the 

latter. Strictly speaking, -! and not 0 is the appropriate bigit. 

But -! is indeed very inconvenient to represent in the computer. As 

von Neumann first pointed out, the pseudo-quotient obtained in this 

way is very simply related to the true quotient. We shall go into 

details later. 

The adder proper is physically located on the side opposite the 

registers, and consists of two rows of chassis. One of the two inputs 

is directly from the register R2. The second input is from R5. Here, 

however, a choice is made between the number itself or its complement, 

corresponding to the operation of addition or subtraction. The output 

of the adder is transferred by means of a set of gates to RI. R2 is 

then cleared and the sum transferred from RI to R2. Symbolically, 

-7-



(Step 3) 

(Step I) 
Selector 

Augend (or Complement) 

ADDER 

To recapitulate, the addition process (or subtraction) involves 

adding to the number in R2 the number (or its complement) in R5. The 

sum appears finally in R2. The fact that the sum replaces one of the 

terms is very convenient for the multiplication and division processes, 

where the sum is the partial product or the partial remainder, respec­

tively. The multiplicand or the divisor resides accordingly in R5. 

In the multiplication process the multiplier factor is in R4 and 

the multiplicand is in R5. R2 is cleared initially. The 39th flip­

flop of R4 is examined. If it is a~, an addition is ordered and the 

first partial product is formed in R2. (In this first step, the trivial 

sum of the multiplicand and Q's is done.) The multiplier is now shifted 

one place to the right, thus placing the next digit to "be examined in 

the end flip-flop of R4. Simultaneously, the partial product in R2 is 

also shifted one place to the right. In the event that the first 

digit is a Q, the addition of course is not done but the shifting in 

both R2 and R4 does take place. It will be noted that the multiplier 

factor is gradually disappearing in R4. It is convenient, therefore, 

-8. 



to insert the bigits of the partial product that would otherwise be 

lost as a result of the right shift in R2, into the leftmost flip-flop 

of R4. Thus the right half of the complete product appears finally in 

R4 and the significant portion in R2. 

For division, the dividend is in R2 and the divisor in R5. A com­

parison of signs is made and a direct addition is made for unlike signs; 

for like signs the complement of the divisor is sent to the adder. 

Accordingly, a 2 or a ! is introduced into the 39th flip-flop of R4. 

Both R2 and R4 are shifted one place to the left. The sign of the 

partial remainder is again compared with that of the divisor and the 

process repeated 39 times. The quotient appears in R4, and the re­

mainder in R2. 

The following short table summarizes the above: 

Addition a + b = Sum 
Location R2 R5 R2 

Subtraction a - b = Difference 

R2 R5 R2 

Multiplication a X b = Product Left + Product Right 

R5 R4 R2 R4 

Division a+b= Quotient + Remainder 

R2 R5 R4 R2 

Memory 

Thus far we have talked of the various arithmetical operations 

without indicating how the numbers get to the several registers ini­

tially, or where the intermediate results are stored. Nor have we 

said anything about the location of the sequence of orders associated 

with a problem. The component of the computer associated with this 
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activity is described as the memory. Clearly, some of its desired 

funct ions are: 

(i) to receive and store information from the outside--sequences 

of instructions as well as initial sets of numbers, 

(ii) to transfer numbers upon instruction to the arithmetic unit, 

(iii) to receive and retain intermediate results of a calculation 

until needed at some later stage of the calculation, 

(iv) to send instructions as needed to the control, 

(v) to transfer the final results to the output mechanism for 

external consumption. 

We distinguish two levels of' memory; internal and. externA.l ~ The 

internal memory is more intimately related to the arithmetic unit and 

control. It communicates directly with these two units and provides 

individual numbers and instructions as needed. 

Physically, the internal memory is an ensemble of 40 cathode-ray 

tubes that act in concert, each tube simultaneously providing one 

bigit of a 4o-bigit number upon instruction. The access time, or 

total time required to transfer a number from the internal memory to 

the arithmetic unit, is less than ten micro-seconds. The capacity of 

the internal memory is 1024 forty-bigit numbers; these may be arbi­

trarily divided between numbers and instructions. 

The location or reference in the internal memory of a particular 

number or instruction is called its address. In our syste'm of instruc­

tions there is, associated with each instruction, a single address that 

refers to a particular number to be called up and operated upon in the 

arithmetic unit. An instruction consists therefore of a particular 

operation specified by a group of bigits, together with an address 

specified by another set of bigi ts . It turns out that le.ss than 20 

bigits are required for each complete instruction, so that it is con­

venient to place two instructions in one memory location. We shall 

amplify these rema~ks in the discussion of the control. 

Normally, 40 bigits are used for the representation of a true 

number. For those cases where sufficient accuracy is obtained from 

20 bigits, including sign, there is sufficient flexibility to store 
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conveniently two 20-bigit numbers in one memory location; separation 

taking place when needed in the arithmetic unit by shifting. 

-11-

The external memory is a magnetic drum. It communicates only with 

the internal memory; therefore, when numbers stored on the magnetic 

drum are to be used in computation, they are first sent into the elec­

trostatic memory and operated upon from there. The drum has a capacity 

of 10,000 forty-bigit numbers. Numbers are transferred between the 

external and internal memory in groups of fifty; hence the addressing 

of numbers on the drum is by groups of fifty rather than as single num­

bers. Any group of fifty numbers is stored serially along the circum­

ference of the drum. Such a group of storage is called a drum track, and 

there are 200 such tracks on the drum. The access time for the drum is 

85 milliseconds per block of fifty words. 

Input-Output 

The set of coded symbols corresponding to the sequence of instruc­

tions, together with the set of initial numbers and parameter~ is first 

punched on paper tape with the use of a modified rlexovr! ter. A 

second tape is then prepared, being punched independently of the first 

but simultaneously compared with the first; this is merely a checking 

procedure. The information is then transferred from the verified tape 

to the internal memory by means of the input device. 

The initial set of numbers on the tape is in coded-decimal form; 

that is, each decimal character is represented by a tetrad of binary 

dig! ts • For example, the aggregate 1234567890 together vi th accompany­

ing space symbols would appear on the tape as: 

o 
00 

00000000000 
0000 

00 00 o 0 000 
Space I 2 34 5 6 1 8 9 0 Space 

Guide Holes 

The punehed holes correspond to the big1t ! and unpunched pOSitions 

to O. A sequence of such tetrads of binary digits is obviously not 



the true binary representation of the corresponding decimal number; 

e.g. , 

decimal number 24 

coded decimal 0010 0100 

true binary 11000 

Consequently, it is first necessary to convert the initial set of 

coded-decimal numbers into true binaries. But this is a quite simple 

algorithm which the computer can be directed to perform before enter­

ing upon the problem proper. The initial set which must thus be con­

verted is usually quite small compared to the number of numbers the 

computer handles in the course of the problp-m; 60 th~t th~ t;~ in­

vested for the conversion is relatively negligible. The same remark 

applies for the conversion from true binary to coded-decimal repre­

sentation for the output process; it being still desirable to view 

answers in decimal notation. 

When the desired results are properly converted into coded-decimal 

notation, they may be directed to the output. The output will simul­

taneously print the results and punch them on teletype tape. This tape 

is desirable in the event that the answers are to be reintroduced into 

the computer. 

It should be remarked that beginning with the second. problem of 

any given type it will not again be necessary to manual punch the 

sequence of instructions. The original tape will be adequate. It is 

only necessary to punch the new initial numbers and parameters. This 

portion is usually a small fraction of the total. Finally, it should 

be noted that the casual observer need never be aware of the fact that 

internally the computer uses the binary representation for numbers. 

Control 

The control may be likened to a central ne rvous system. Its parts 

spread out phYSically over the whole computer. It interconnects the 

various other components and transfers information from one to the 

other, as well as directs the operations associated with them 

indiVidually. 
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Among its various activities, it must: 

(i) direct the input component to read information from the tele­

type tape and transfer it to the internal memory, 

(ii) conversely, direct the memory to transfer information to the 

output tape and printer, 

(iii) effect the basic arithmetic operations, 

(iv) be able to start at some point in a sequence of orders, ex­

tract the first order (from the internal memory), interpret and provide 

pulses and voltage changes to the components concerned so as to execute 

the particular order, and when finished proceed to the next order. 

These activities are specified by a variety of orders. 

In the present control scheme, a one-address system is used; that 

is, associated with each order is an address referring to some memory 

location which contains the number upon which the particular order 

operates. For example, there are eight orders that transfer a number 

from the memory to R2. The eight possibilities arise from the three 

choices: 

(1) Clear or do not clear R2 before adding number into it. 

(2) Complement or do not complement the number being added to R2. 

(3) Add the number or its magnitude. 

These are the addition and subtraction orders. There are two mul­

tiplication orders; one rounds off the product to 39 bigits, the other 

provides a precise 78 bigit product. There is one division order, one 

order transferring a number from the memory to R4. There are six 
orders associated with transfers to the memory, a right and left shift, 

print, read, and stop orders. Finally, there are a few logical orders 

that involve an interruption of the present sequence of orders and a 

transfer of control to some other sequence. 

Eight bigits are used to designate an order. Twelve more are con­

veniently available, of which ten are actually used at present,for the 

address. Thus each order is 20 bigits, and two orders are equivalent 

in storage to one true number. Word is used to describe a 4o-bigit 

aggregate; this may be either an order pair or a true number. A coder 
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is ·provided ~th the set of symbols that correspond to the various 

orders. These code symbols are various pairs of the six letters, 

A,B, ••• F. 

Let us now attempt a summary by describing the various steps in 

machine operation. Assume a tape has been prepared with instructions 

and initial set of numbers. First the tape is fed into the input. 

The tetrads are read into R5 in. serial fashion. Ten tetrads, corres­

ponding to either a true number or to two orders fill R5. A signal 

is automatically provided that causes the contents of R5 to be trans­

ferred to the first memory location; the second set of ten tetrads is 

~c~d into P.5, etc. Whe~ the complete tape has been reed into the 
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memory, the computer 1s ready to do business. The operator presses 

a "start" button. The contents of the first memory location or first 

word go to R6; these are the first two orders. The first one is ex­

amined and executed, then the second. The next word goes to R6 and 

the sequence continues. Flexibility exists which enables the sequence 

to be interrupted at some point and the control transferred to some 

other point in the sequence. For example, it may be desired to re­

peat a sequence a fixed number of times before proceeding further, as 

in some iteration scheme. This is conveniently handled by the logical 

orders. In fact, it .1s possible to have the number of repetitions be 

dependent on the fulfillment of some condition in the problem, so 

that the number of repetitions varies from case to case. Finally, 

the desired numerical quantities can be reconverted from binary to 

binary-decimal fom, and printed. 

Problem Preparation and Operating Techniques 

We conclude the present introductory chapter with a brief commen­

tary on the various steps leading up to the execution of a problem by 

the computer. The first step concerns the formulation of the problem 

itself. One method would be Simply the writing down of the various 

equations and the various steps to be taken, te~ther with the neces­

sary explanatory remarks. This approach, although feasible, may often 

become quite complicated and untractable. Instead we follow von Neumann 



who proposed the idea of a flow-diagram. This is a very elegant, 

logical and mathematical description of the problem to be computed. 

It makes use of a set of conventionalized symbols to describe the 

course of the control at every stage of the problem. Represented in 
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a very concise way are~ (i) the purely mathematical operations, (ii) var­

ious logical steps and decisions together with a precise indication of 

the nature of the corresponding criteria, (iii) the contents of the rele­

vant part of the memory at points where the question might naturally 

arise. 

The flow-diagram of a problem is prepared by the mathematician or 

physicist. The symbols are few in number, their meanings simple enough 

so that they are easily mastered. A flow-diagram may be drawn without 

a specific computer in mind. In practice, however, one usually does 

plan on the use of a specific computer and takes advantage of this fact 

in his planning of a problem. A quite superficial knowledge of the 

particular computer suffices. The important characteristics are: 

(1) the capacity of the inner memory, ( ii) the nature of the external 

memory, (iii) the extent of the vocabulary, both arithmetical and 

logical. 

The next step in the preparation is the coding. This process 

consists conveniently of two parts. In the·first, the coder prepares a 

sequence of instructions using a set of readily interpretable symbols 

that indicate the general nature of the operations. For example, say 

at some point in the sequence a number is in register R2 and it is in­

tended to add to it another number at the moment residing somewhere in 

the memory. A possible notation, and the one used here, is: 

m-+Ah 

where m indicates that a number in the memory is to be sent to R2. For 

historical reaso~8, the letter A has been used as a symbol for R2; the 

original intent being that R2 1s the accumulator register. h indicates 

that R2 is not to clear 1 ts contents before receiving from the memory 

but to hold them for a true addition process. It is observed that the 

specific binary symbols which the computer can interpret are not used 

yet, nor is the specific location of the number in the memory given. 



There is, however, some point to this preliminary step in the coding. 

In the first place, there are likely to be several improvements or 

modifications made before one is satisfied with the sequence of in­

structions finally adopted for a given problem. This form 1s much 

easier to follow, both from the point of making a sample hand. calcu­

lation (for checking purposes) as well as in trouble-shooting (in the 

event this is necessary) after the problem has reached the computer. 

The second step in the coding is a straightforward translitera­

tion from the coder's notation to teletype symbols. This is routine. 

A gf ven large problem may often be divided into So set of smaller 

problems. Some members of this set may occur frequently enough so 

that it becomes worthwhile to have these portions coded in quite general 

terms and, in a sense, treated as individual orders but on a somewhat 

broader basis. For example, integration by Simpson's Rule, or the in­

version ot an (n x n) matrix. These SUb-routines, as they are conven­

tionally called, would form a library of general orders. A problem a.t 

hand would then first be decomposed into the sub-routines available 

from the library, and the remainder coded from the basic individual 

orders. Obviously some preparations a.re required for each individual 

use of a sub-routine; in the case of the inversion of a matrix, the 

location of the particular. elements for the problem at hand must be 

specified. Nevertheless, there is a great reduction 1n effort, espe­

cially 1n checking. 

-16-



-17-

. 
II. CODING AND FLOW DIAGRAMS 

Introduction 

The computer can perform a set of basic operations, both arithmetical 

and logical. It may be desirable to keep the set small as added electronic 

equipment (which is roughly proportional to the number of opera.tions) in­

creases the physical complexity of the computer and complicates maintenance. 

A modest number of thirty-six operations have been chosen to comprise this 

set. The choice, however, is fluid in that the set may be modified as the 

need for change is shown. 

We say that the computer has a language of its own, ~or it is able 

to interpret and execute the given set of orders. We speak of' the orders 

as the vocabulary of the computer. Coding is the translation of' the language 

of the mathematician into,the language of the computer. 

The four fundamental arithmetic operations (addition, subtraction, 

multiplication and division) are a part of the vocabulary. All of' the 

arithmetic operations of the vocabulary, of which there are about twenty, 

involve the four fundamental operations. 

The first step in the preparation of any problem for the computer 

is to arrange the work so that the only arithmetic operations involved are 

addition, subtraction, multiplication and division. In other words, the 

problem must be reduced to a form in which it can be solved by numerical 

procedures. 

The usual mathematical formulation of the problems with which we shall 

be concerned is a differential equation, or a coupled set of such equa­

tions, together with a group of boundary (or initial) conditions. There 

are other types of problems, but they occur less frequently. 

The differential equations are of such complexity that analytical 

methods are not known for obtaining their solutions. The only recourse 

is to numerical procedures; therefore these problems are ideally suited 

for the computer. 

The first step in the solution of the problem is to replace the dif­

ferential equations by a set of finite difference equations. We do not 

discuss here the stability or convergence of' such methods, but only mention 

them as necessary considerations in writing the difference equations. In 
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suCh a process of translation, derivatives are replaced by difference 

quotients, integrals by sums, transcendental functions by algebraic 

functions, etc. The problem is now tractable in terms of the vocabulary 

of the computer as it involves only the fundamental operations. 

The next step toward a solution is the preparation of the flow 

diagram. The flow diagram represents the path to be followed by the 

computer in the solution of the problem. 

of lines oriented with direction arrows. 

It represents this by sequences 

At points of the diagram where 

computation is to be performed, the lines are interrupted and boxes are 

inserted that indicate the "local" computation that is to be performed. 

The diagram represents the purely mathematical operations, the logical 

steps and decisions, and the relevant memory storage that is required. 

Five kinds of boxes represent the desired information: 

(i) The operation box 

(ii) The alternative box 

(iii) The substitution box 

(iv) The assertion box 

(v) The storage box 

These are discussed in detail later. 

When the flow diagram is completed, the solution is at the coding 

level; but before discussing the coding we first discuss some background 

matters. Each of the thirty-six operations of the vocabulary is referred 

to as an order. Each order has associated with it a number that specifies 

the location in the memory of the number upon which the order is to 

operate; e.g., in the multiply order the associated number specifies the 

location in the memory of the multiplicand factor. This number location 

is called an address. The memory contains 1024 words. The addresses of 

these words consist of the decimal numbers 0 through 1023. Binary-wise, 

it requires ten bigi ts to express an address as 1023 == llllllllll. 
Eight bigits are used for each order; hence eighteen bigits are necessary 

for each order wl.th its address. It is convenient, however, to allow 

twenty bigits for their expression as twenty bigits comprise half of a 

word. Each order with its associated address is called an instruction. 

Two instructions are stored per word, giving the memory in principle a 

capacity of 2048 instructions. However, memory storage is also necessary 

for true numbers, so that in general there will be some combination of 

instructions and numbers stored. 



The computer uses a one-address system. Each instruction may r~fer 

to at most one memory location. Some instructions involve only the 

arithmetic unit and do not refer to the memory. In these instances the 

address portion has a different function which is described later. 
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To illustrate the one-address system consider a simple example of 

summing two numbers, ~ and ~, which are residing in the memory: The sum 

s = (a+b) is to be stored in the memory. Three instructions are required: 

(i) 
(ii) 

(iii) 

An instruction to 

An instruction to 

form the sum s = 
An instruction to 

bring ~ 

bring ~ 

(a+b) 

store s -

into the arithmetic unit 

into the arithmetic unit and to 

in the memory 

If a is in the arithmetic unit as a result of some previous operation, 

only the latter two instructions are needed. If a three-address system 

were used, the above sequence could be expressed with one order which 

specified all three addresses: the location of ~, the location of ~, and 

the location at which s is to be stored. We defer any discussion of the 

merits of the one-address system versus those of the multiple address type. 

The process of coding involves writing down a sequence of instructions 

to perform the operations indicated on the flow diagram with the desired 

set of numbers. 

The coding in all but the simplest of problems is not a linear se­

quence. (That is, the control does not follow a unique path; at various 

points in a problem several courses may be available.) Certain portions 

of the coded sequence may be performed several times, whereas other sections 

are omitted temporarily. The logical orders that have been included in the 

vocabulary provide for such procedures. Furthermore, the coding is not a 

static sequence in that it usually does not remain fixed throughout the 

course of the problem. There are certain orders that allow portions of 

the coding to be altered so that subsequent tr~versals through the sequence 

give rise to a variety of patterns. 

It is these dynamic and non-linear characteristics of the coding 

which provide the desired flexibility for scientific computation but 

which, on the other hand, give rise to complications in coding. 
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~e remainder of this chapter presents a step-by-step approach to 

coding, beginning with very simple examples and systematically progressing 

to examples of increasing complexity. 

Before coding any actual examples we first discuss the vocabulary as 

shown in Table I. It contains a list of the explici t orders with a de­

scription of each. It will be noted that there are two types of symbols. 

The first column gives the abbreviated logical symbol for each order, 

while the second column gives the actual code for the computer. 

Orders I through 8 are the addition and subtraction orders. All of 

these involve R2 (the accumulator register) and a memory location that is 

specified in the instruction. The first four of these orders clear R2 

(set it to Q's) and then add (subtract) the specified word to the Q's 
in R2. The remaining four orders actually add (subtract) the content's 

of the specified memory location to the m.nnber residing in R2. In a 

sense, the first four orders are communication orders (they do, however, also 

allow the magnitude or complement of a number to be inserted) while the 

latter four are true add or subtract orders. 

Consider the example of forming the sum (difference) of two numbers, 

! and £, and storing the sum s = (a + b), (difference s = a - b) in 

the memory. Assume that a and b are residing in the memory, say at ad­

dresses! and g, respectively; and the sum (difference) is to be stored 

in 1. The instructions are: 

1. m~Ac 1 a to R2 

m~Ah 
2. (m-+Ah-) 2 

3. A---4m 3 

s = 
(s = 

s to 3 

a +.b to R2 
a - b) 

Each order has immediately following it the memory address to which 

the instruction refers. In a column to the right of the instruction is 

shown the action that takes place due to each instruction. 

If the sum of more than two numbers is formed it is not necessary to 

send each sum of two numbers into the memory and repeat the three orders. 

A sum of several numbers may be formed in R2 which requires one additional 

order for each new number added to the sum; only the final sum is sent to 

the memory. 

In orders 2, 4, 6, and 8 where subtraction is desired this is done by 

taking the complement of the number with respect to 2 and then performing 
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TABLE I 

(m is the word at address m in the memory) 
(The word at its original position is never cleared) 

Abbreviation Code 

1. m---.Ac 

2. m---+Ac-

3. m~cM 

4. m~Ac-M 

5. m-...Ah 

6. m--'Ah-

1. m-taAhM 

8. m--+Ah-M 

9. m---.Q 

10. 

11. 

12. 

13· 
14. 

15· 

16. 

x 

X, 

. . 

T 

T' 
c 

c· 

AA 

AB 

AE 

AF 

BA 

BB 

BE 

BF 

EB 

DA 

DB 

DD 

CA 

CB 

CC 

CD 

EC 

DC 

Replace the number in R2 by!. 

Replace the number in R2 by the complement (the 

negative) of !!. 
Replace the number in R2 by the absolute value 

of m. 
Replace the number in R2 by the cOmplement of 

the absolute value of m. 

Add m to the number in R2. 

Add to the number in R2 the Complement of !. 

Add to the number in R2 the absolute value of m. 

Add to the number in R2 the complement of the 

absolute value of m. 

Replace the number in R4 by!!. 

Clear R2 and multiply!! by the number in R4. The 

39 most significant bigits of the product appear 

in R2. The 2-39 bigi t position of R2 is set to !. 
R4 is set to O·s. 

Clear R2 and multiply !! by the number in R4. The 

left-hand 39 bigits appear in R2, the right-hand 

39 bigits in R4. The sign bigit of R4 is set to Q • 
Divide the number in R2 by!. The quotient appears 

in R4, two times the remainder appears in R2. 

Transfer the control to the left-hand order of m. 

Transfer the control to the right-hand order of !_ 
If the number in R2 is ~ 0, transfer the control 

as in T, otherwise continue to next order in sequence. 

If the number in R2 is ~ 0, transfer the control 

as in T',otherwise continue to next order in sequence. 

Replace !! by the number in R4. 

Replace !! by the number in R2. 



19. S--+m FA 

20 • S---Jom' FB 

21. H6---+m FC 

22. BS~m' FD 

23. Rn EE 

24. Ln DE 

25. a~Ac EF 

26. a--+Ah DF 

21. DS ED 

28. F1exo Print EA 

29. Read FF 

30. FE 

31. Punch CF 

32 • Sync Print CE 
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TABLE I (Cont.) 

Replace the address (bigits 8-19) of the 1eft­

hand order of ~ by the 12 bigits 8-19 in R2. 

Replace the address (bigits 28-39) of the right­

hand order of ~ by the 12 bigits 28-39 in R2. 

Replace the left-hand 20 bigits (bigits 0-19) of 

~ by the 20 bigits 0-19 in R2. 

Replace the right-hand 20 bigits (bigits 20-39) 

of ~ by the 20 bigits 20-39 in R2. 

Right shift R2 and R4 n places where n is 

specified in the address bigits of the order. 

This replaces the contents Ao' Al ••• ~39 of R2 

and Go' Gl ••• G
39 

of R4 by AO ••• AO' Al ••• 

••• A3B-n' A39-n, and A39-n+l , A39-n+2 ••• A39, 

Go' Gl •.• G39-n • 

Left shift R2 and. R4 D places where n 1s speci-

fied in the address bigits of the order. This re­

places the contents AO' Al. ••• A39 of R2 and Go' 

Gl ••• a
39 

of R4 by An' An+l ••• A
39

, 0 ···0 and 

a , a 1 .•• G39, A , Al. ••• A 2' A 1· n n+ 0 n- n-

Replace the number in R2 by the 12 address bigits 

of this order (into positions 0-11 of R2). 

Add to the number in R2 the 12 address bigits of 

this order (into positions 0-11 of R2). 

Set the Sign bigit of the number in R2 to O. 

Print ~ on the page printer (slow speed). 

Replace ~ by the next word to come under the read­

ing bead of the paper tape reader. 

(NOT PRESDTLY USED) 

Punch ~ on paper tape. 

To be used in a subroutine which s1multaneousl.y 

prints ~i' ~i+l' ~i+2 and !i+3; ! is to be com­
municated to the routine (high speed). 



33. m~D 

35. Q-+t 

36. t--+Q 

37. stop 

BD 

BC 

AD 

AC 

OFF 

TABLE I (Concl.) 

Read 50 successive words from the memory 

starting with the vord at the address speci­

fied by bigits 8-19 of the instruction. Write 

these 50 vords into the drum on the track 

specified by bigits 20-27. Then transfer the 

control to the left-hand instruction of the 

word at the address specified by the bigits 

28-39. 
Read the 50 vorda from the track of the d.rmn 

specified by bigits 20-27 of the instruction. 

Write these vords into 50 successive memory 

locations starting with the address specified 

by bigits 8-19- Then transfer the control to 

the left-hand instruction of the vord at the 

address specified by bigits 28-39. 

Wri te the number in R4 onto the magneti c tape. 

Replace the number in R4 by the first vord to 

come under the reading head of the magnetic 

tape reader. 

stop computation. (Pressing start next order 

button will allow machine to continue in nor­

mal sequence.) 

NOTE: An address of 800 refers to the quotient register (R4) when 

using orders 1 through 8; i.e., AA800 says replace the number 

in R2 by the number in R4. 
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a normal addition. The complement scheme is described in detail in the 

chapter on binary arithmetic. When an address 100000000000 which cor­

responds to 2048 decimally is used with any of the orders 1 through 8, 
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it has the effect of treating R4 (the quotient register) as a memoryposi­

tiOD with the address 2048. The number residing in R4 can then be added 

into R2 as described by anyone of the orders 1 through 8. 
Order 9 transmits a number from.the memory to R4 (the quotient regis­

ter). R4 does not have add facilities; hence a number being transmitted 

to R4 replaces the number that is in R4. 

Orders 10 and 11 are the two multiplication orders. Before either 

of these orders may be given, the multiplier must be in R4 (either as 

the result of some previous operation or by a preceding m~Q order). 

The 39 most significant bigi ts of the product appear in R2. Order 10 

gives only the 39 most significant bigits of the product rounded off. 

Order 11 gives a full 78 bigit product; the rightmost 39 bigits appear 

in R4. The multiply order supplies the multiplicand. 

Order 12 is the divide order. It is assumed that the dividend is in 

place in R2; the divide order itself provides the 'divisor. The quotient 

is located in R4, and tylO times the remainder appears in .R2. 

Order 13 is a transfer order. This interrupts a sequence and causes 

the computer to continue with another sequence beginning with the in­

struction'specified by the address part of the transfer instruction. As 

an example of a transfer instruction, suppose that a sequence of in­

structions is being performed and in the 25th step of the sequence a 

transfer is encountered: 

25 T 125 

124 

125 
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The transfer instruction has the address 125, so that the sequence 

of code from 26 to 124 is omi ttedo The computer would execute Instruction 

125 and continue sequentially from there. 

Since an instruction word. consists of two instructions and the flexi­

bility of being able to transfer into either instruction of a word. is de­

sired, it is necessary to have two transfer orders to accomplish this. 

This accounts for Order 14, the T' order, as well as Order 13. Hence, in 

the above example, 25 may have read ~ or T' 125, depending on whether 

the transfer was desired to the left or right instruction of Instruction 

Word 125. 
The two conditional transfer orders, 15 and 16, either execute the 

transfer as in the T orders discussed immediately above, or the orders 

require no action, in which case the computer continues along the original 

sequence. The conditional transfer is effective or not, depending on the 

sign of the number, N, in R2 at the time the order is to be performed: 

if N ~ 0, the transfer does occur, and a new sequence of instructions is 

started at the location specified by the address part of the instruction; 

if N<O, the computer continues with the original sequence of instructions. 

Orders 17 and 18 are the two orders that send information from the 

arithmetic unit to the memory. Order 17 transmits from R4 to the memory, 

and 18 transmits from R2 to the memory. When any register or memory lo­

cation sends information to any other register or memory location, the in­

formation is still available at its original position. 

Orders 19 through 22 are the sUbstitution orders. These orders make 

alterations in instructions. By means of 19 and 20, any instruction may 

have its address changed. The new address is first formed in R2 and then 

inserted into the desired instruction by means of a SUbstitution order. 

The use of the SUbstitution orders is explained in detail in Problem 2. 

The two half word substitution orders (Numbers 21 and 22) may alter whole 

instructions rather than just the address. These two orders may also be 

used in storing half precision numbers. The details of their use will be 

covered by later examples. 

Orders 23 and 24 are the right and left shift orders. They give a 

means of dividing or multiplying by powers of 2 by shifting a number 

right or left in R2; e.g., if' a number a = 0.00001111 is residing in R2 



and it is desired to multiply this number by 24, this can be effected 

by a left shift of 4 places, which displaces the number 4 units to the 

left. 

a = O.OOOO1lll 

a x 24 = O.l1ll0000 
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A right shift effects division by powers of 2 by displacing the number 

to the right. In a left shift· R4 may be considered an extension of R2 

to the leftj hence a number shifting left out of R2 fills into R4 begin­

ning in the least significant end of R4. In a right shift R4 may be 

considered an extension of R2 to the right and a number shifting right 

,out of R2 fills into R4 beginning in the most significant end of R4. 

Since R2 and R4 are so interconnected for shifting operations, these 

operations may be used for separating a multiplex of numbers occupying 

one word. Either a left or right shift of 40 places will transfer 

completely a number from R2' to R4. 

Orders 25 and 26, a~Ac and a~Ah, treat their associated ad­

dresses as true numbers. The addresses of these instructions are sent 

into R2 (either a clearing or an adding action) into bigit positions 0 

through 11. Many times in the type of problem in which we will be in­

terested there are small numerical constants of three sign1fican~ decimal 

digits or less. Rather than use an entire memory location to store such 

constants, they can often be expressed in the address position of an 

a~A instruction. As an example consider that a quantity 

ax2 + bx 

has been formed and is in R2. It is desired to add a constant term k 

where ~ = .583. This may be expressed in the a~Ah order as 

• • 

• 

• • 

• a:x.2 + bx in R2 

(iii) a~Ah 583 ax2 + bx + (.583 = k) to R2 

where .583 is expressed by its binary equivalent. Eleven bigits give 

the same precision as 3.3 decimal digits, so any three-decimal digit 

~raction may be expressed in the address position of an a--+A order. 



The explanation of the remainder of the orders as given in Table I 

is adequate; hence lfe return to the task at hand, the coding of typical 

problem-examples o 

The coding of a problem may be divided into tvo parts: 

(i) The logical coding 

(ii) The computer (numerical) coding 
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Each of these parts involves several steps. At the present level of our 

knowledge and skill, it seems convenient to have both a logical and a 

numerical. symbol for each order. The logical symbols are used in part (i), 

while the numerical symbols are used in part (ii). 

The logical. symbol attempts to be a descriptive abbreviatbn of the 

action of that instruction; the associated memory location is preJiminarily 

specified by a combination of a letter and a number; the letter identifies 

some group storage and the number identifies a member of that group; e.g., 

~Ac B.4 is interpreted as: Bring from the ~ry to the ~ccumulator 

(R2), ,£learing the accumUlator first, the number at memory location B.4. 
One reason for not assigning specific numerical memory locations at the 

outset of a problem is that the extent and disposition of the memory re­

quirements are not immediately obvious 0 A set of logical symbols is. more 

meaningful. to the coder than an abstract code; it expedites the actual cod­

ing and facilitates checking. 

The abstract coding is merely a transliteration from the logical 

code to the numerical code.· The numerical code is shown in the second 

column from the left in Table I. Each order is represented by a com­

bination of two of the letters, A,B,C,D,E,F, where each letter expresses 

a tetrad (4) of bigits. These are: 

A 

B 

C 

1010 

1011 

1100 

D 

E 

F 

1101 

1110 

1111 

When the coding has been written in numerical form, the teletype tape 

(which is the present means of putting the coded sequence into the memory 

unit) is prepared. The actual coding examples are treated in the follow­

ing pages. 



Problem 1 

We propose to form the rational function y with constant co­

efficients where 
2 ax + bx + c y = ex + f 

Assume that ~, .!, ~, !:., ~, and f are in the memory at known addresses. 

As previously mentioned, the memory locations are denoted by capital 

letters rather than using true number addresses; e.g., the notation 

A.l: a implies that the quantity.!: is stored in the memory at address 

A.l. The storage of the problem is: 

A.l:a 
A.2:b 
A.3::£ 

A.4:e 
A.5:f 
A.6:x 

and when y is formed it is to be stored in A.1. 

As a preparatory step in coding the problem, we form y by a 

sequence of arithmetic operations in which each step involves only one 

operation. Such a sequence is: 

1. e·x 

2. ex + f 

3. a·x 

4. ax + b 

5. (ax + b)x 

6. ax2 + bx + c 

1. ax2 + bx + c y = ex + f 

Since the computer can accomplish only one arithmetic operation at 

a time, the above sequence is precisely the procedure that one must go 

through in coding the problem, insofar as the arithmetic is concerned. 
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We now proceed with the coding. In the prelininary logical code, 

each instruction is treated as a word rather than the actual case of 

two instructions per word. The left-hand column is the code abbrevia­

tion, and the next column indicates the operations that have taken place 

in the arithmetic unit, while the last column is conveniently used for 

memory storage. During the course of the problem, a storage location 

in the memory is needed to store an intermediate value of the computa­

tion. This position is denoted as B.l. 



-29-

The sequence is: 

1. m--+Q A.6 x to R4 

2. X A.4 e·x in R2 

3. m~Ah A.5 ex + f in R2 

4. A---+m B.l ex + f to B.I 

5. m-4Q A.I a to R4 

6. X A.6 a·x in R2 

1. m~Ah A.2 ax + b in R2 

8. L40 ax + b to R4 

9. X A.6 (ax + b)x in R2 

10. m~Ah A.3 ax2 + bx + c in R2 

2 
11. . B.I ax +bx+ c 

in R4 . Y = ex + :f 

12. ~m A.1 y to A.1 
Note that the denominator was formed before the numerator. If the reverse 

had been the case, the numerator when f"ormed would have been stored in, 

say, B.I. When the denominator was formed it, too, would have been stored 

in, say, B.2. The n1lIlleratorwould then be brought in and the division per­

formed. Coding in this fashion, however, would have required two addition­

al instructions and one word more storage in all making the coding two 

words longer than it is at present. 

Instruction 8 In the above sequence, which is L40, is a means of" 

communication from R2 to R4. L40 shifts the entire word including the 

Sign from R2 to R4. If" this were not available , it would be necessary 

to send the word from R2 to the memory and then from the memory to R4, 

thus requiring one additional instruction. 

Recall that each instruction word in the memory actually contains 

two instructions. The next step of the coding is to arrange the sequence 

of instructions into 'WOrds. If we assume that the routine starts at 

address 1 in the memory, the sequence then occupies memory locations 

1 through 6 (since it contains 12 instructions, 6 words are required). 

At this time, the constants of the problem are gi ven true memory ad­

dresses. Since there are six such quantities (where each quantity com­

prises one word), memory locations 1 through 12 are allotted for these. 

When 1.. is formed it will be stored at address 13. One temporary loca­

tion is needed which is deSignated as 14. 



The sequence becomes: 

1. m~Q 12 X 10 

2. m ·----;.Ah 11 A~m 14 

3. m~Q 1 X 12 

4. m~Ah 8 L 40 

5. X 12 m~Ah 9 
6. • 14 Q~m 13 

1. a 

8. b 

9. c 

10. e 

11. f 

I? x 

13. 

14. 

Memory locations 13 and 14 are used for quantities formed within the 

routine; hence they must be empty or their contents must be irrelevant 

at the time the sequence is to be executed by the computer. 

When the coding is in final form such that the input teletype tape 

is to be prepared, one has the instructions reduced to numerical form 

and has available the true numerics for all of the involved quantities. 

Assume, for example, that 

a = .015329 e = .83291 

b = .12391 f = .69136 

c = .011326 x = .32915 
The final coding is: 

1. EB012DAOIO 8. 0.123910000 

2. BAOIIDC014 9. 0.011326000 

3. EB001DA012 10. 0.832910000 

4. BAoo8DE040 11. 0.691360000 

5. DAOl2BA009 12 .. 0.329150000 

6. DD014EC013 13. 0.000000000 

1. 0.01532900 14. 0.000000000 

-30-
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Problem 2 

We modify the preceding problem with a slight logical twist. 

Assume that the calculation of the rational function Z is a part of 

some larger problem and that! has been computed as part of a pre-

vious routine and stored in some memor,y location other than the one 

assigned to it (A.6 in the preceding example). Indeed, there may be a 

series of such x values. Further, when 1. is computed it 1s to be stored, 

not in A.7, but at some other memor,y location where it will be used in 

subsequent parts of the calculation. In other words, we ask what modi­

fications must be made to the sequence of instructions in Problem I in 

order to render it more flexible and assimilable in a larger problem. 

One possibility is to reserve memor,y location A.6, not for storing 

x itself as was done earlier, but instead to store the address at which 

! may be found. A.6 does not contain .!, but it does tell us where in 

the memory! is located. Similarly, we may use A.1, not to store Z it­
self, but to contain the address at which l is to be stored when formed. 

Suppose then, as a preceding part of some problem, ~ has been com­

puted and stored in, say, memory location M.l; and we wish to use the 

routine outlined in Problem 1 to calculate the rational function given 

there with the stipulation that 1. should be stored in N.l. 

It is necessary to place the address M.I in location A.6 and ad­

dress N.£ in location A.7. Thus, in the course of the calculation, 

when! is required, A.6 is consulted, giving the information where .! 

is actually located. Finally, A.7 provides the information where ~ is 

to be stored, namely in N.l. Thus, this rational function routine may 

be used several times in the course of a large problem; each time, how­

ever, it is necessary to provide the corresponding address for the lo­

cations.! and 1... 
Making these changes in this routine leads to the simplest illus­

tration of using the substitution order. Without attempting to justify 

the utility of it at this point, we proceed with the simple example. 

Instructions 1 through 6 of the following code sequence are 

the additional instructions required for the substitutions. The function 

of these first instructions is to provide appropriate addresses to sub­

sequent instructions that involve.! and l. Recall that x resides at 
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location M.l, and the numerical value of M.l is at A.6. The preliminary 

instructions thus involve taking the numerical quantity M.l from location 

A.6 in the memory to the arithmetic unit. From there it may be inserted 

into the address part of the instruction that ~irst involves x. This 

is accomplished by the substitution order. Repeated application of this 

order introduces this same address into all the other instructions that 

require it. In the example observe that Instruction 8 of the code is the 

first instruction referring to ! and requiring the particular address 

where x resides. Two instructions, here taken to be 1 and 2, are re­

quired to provide Instruction 8 with the appropriate address. These are: 

(i) An instruction to transfer the contents of A.6, namely the 

address of !, to the arithmetic lli~it; 

(ii) A substitution order which has the effect of transferring 

this address of x into Instruction 8. 
Inasmuch as this address is also required for Instructions 11 and 15, 

two more substitution orders, Instructions 3 and 4, are needed for them. 

Finally, the address referring to the location of l is needed for In­

struction 18; two more instructions, 5 and 6, accomplish this, thus ac­

counting for the six preparatory instructions. 

At the start of the problem, Instructions 8, 11, 15, and 18 have 

blank addresses. After the control bas proceeded through Instruction 6, 
all of the instructions have the proper addresses. 

The storage is as before, with the changes as noted above, 

A.l: a 

A.2: b 

A.3: c 

A.4: e 

A.5: f 

A.6: M.I 

A.7: N.l 

B.l: 

M.l: x 

N.l: 
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The coding is: 

1. m~Ac A.6 M.l to R2 

2. S~m 8 M.l to (8-19)8 

3. S~m 11 M.1 to (8-19)11 

4. S~m 15 M.1 to (8-19)15 

5. m~Ac A.1 N.1 to R2 

6. S~m 18 N.1 to (8-19)18 

7. m----"Q A.4 e to R4 

8. X [ ] e·x in R2 

9. m~Ah A.5 ex + f in R2 

10. A~m B.l ex + f to B.l 

11. m---JQ [ ] x to R4 

12. X A.l a·x in R2 

13. m---+Ah A.2 ax + b in R2 

14. L40 ax + b to R4 

15. X [ ] 2 + bx in R2 ax 

16. m--+Ah A.3 ax2 + bx + c in R2 

2 + bx + c 11. B.l ax in R4 • Y = ex + f 

18. Q---+m [ ] 1. to N.l 

In coding the problem into word form, the instructions into which 

addresses are being substituted may be either the left-hand or the right­

hand instruction of a word. In Table I, Orders 19 and 20 account for 

this. They read: 

"19. S----+m Replace the address (bigits 8-19) of the left-hand 

order of !! by the 12 bigi ts 8-19 in R2. 

20. S~m' Replace the address (bigits 28-39) of the right-hand 

order of ! by the 12 bigi ts 28-39 in R2. If 

Since it is desirable to substitute into either a left-hand or right­

hand instruction from an address which has been brought into R2, the fol­

lowing custom in storing addresses is adopted: Consider an address x as 

an integer which may assume values from .Q to 1023. Rather than storing 

~, store 

where (x)o is called the memory position mark x. Since ~ is an integer, 

when (x) 0 is brought into R2 the addresses are so positioned that either 

S~m or S~m' may be used as required. 
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The instructions are now paired into words. There are 18 instructions 

or 9 words which, if the coding starts at word !, give instruction-words 

from address! through 9. The numerics then start with address 10 and go 

through address 17. 
1. m~Ac 

2. S --7m 

3. m-4Ac 

4. m~Q 

5. m~Ah 

6. m~Q 

7. m-4Ah 

8. X 

9. • 
10. a 

11. b 

12. c 

13. e 

14. f 

15. (M.l) 
0 

16. (N.l) 
0 

17. 

15 
6 

16 
13 
14 

[ ] 
11 

[ ] 
17 

S~m' 

S~m 

S-~m' 

X 

A~m 

X 

L40 
m-4Ah 

Q~m 

4 

8 

9 
[ ] 
17 
10 

12 

[ ] 

The storage has been changed to include the appropriate values 

(M.l) and (N.l) • o 0 
In the final coding, Instructions 4', 6, 8, and 9' may initially 

be given any address as this address is irrelevant (the correct addresses 

are supplied during the course of the computation). For uniformity, the 

plan of initially setting these addresses to 0 is adopted. 



Problem 3 
The numbers aI' a2, a

3 
•• 0 an and the numbers bl , b2, b

3 
••• bn 

are stored in the memory. It is desired to form the following product 

sum 
n kaibi = ~bl + a 2b2 + ••• + anbn 

The storage of the ~. s and E. I S is arranged so that 

A.l:a
l

, A.2:a
2 

••• A.i:a
i 

••• A.n:a
n 

and 

That is, the ~IS are stored consecutively in one section of the memory 

and the E.1s are stored consecutively in another section. The sum, when 

it is formed, is to be stored in the memory at address C.l. 

If n = 1, the coding is trivial; it is: 

1. m~Q A.l al to R4 

2. X B.l alb 1 in R2 

3. A ~m e.l al bl to C.l 
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The problem may be extended to n = 2 by adding the following instructions: 

4. m~Q A.2 a
2 

to R4 

5. X B.2 a
2

b
2 

in R2 

6. m~Ah e.l a
l 

b
l 

+ 8
2

b
2 

in R2 

7. A~m C.l albl + a2b2 to C.l 

One method of extending the coding to the general case of ~ elements 

in the sum is to have the first three instructions followed by (n - 1) re­

petitions of Instructions 4 through 7 with the appropriate A.i and B.i 

being used in place of the A.2 and B.2. This method becomes very costly 

with respect to available memory space as ~ becomes large, since each in­

crease of ~ by! increases the code by four instructions. 

The coding for the general case ~ is: 

1. m~Q A.l al to R4 

2. X B.l alb 1 in R2 

3. A~m e.l 

4. m~Q A.2 8 2 to R4 

5. X B.2 a2b
2 in R2 

6. m-4Ah C.l albl + a2b2 in R2 

7. A~m e.l 



8. m ---;-Q 

9. x 
10. m~Ah 

li. A ·---;om 

• 

• 

4i-4. m -?oQ 

4i-3. X 

4i-2. m ----+Ah 

A.3 

B.3 

e.l 

e.l 

A.i 

a
3 

to R4 

a
3
b

3 
in R2 

albl + a2b2 + a
3
b3 

a
i 

to R4 

aibi in R2 

in R2 

albl + a2b2 + a
3
b

3 

albl + a2b2 + ••• + aibi in R2 
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to e.l 

4i-l. A---»m 

B.i 

e.l 

e.l albl + a2b2 + ••• +aibitoe.l 

• 

• 

• 

4n-4. m~Q A.n 

4n-3. X B.n 

4n-2. m~Ah e.l 

4n-l. A-~m e.l 

4n. STOP 

a to R4 n 
ab in R2 n n 
albl + a2b2 + ••• + 

n 
a b = . a.b. in R2 nn .: __ 1.1. 

1.=0 .n 
.. aib. to e.l 

1=1 1. 

By using this method, 4n instructions are needed. If n is large, 

say 50-100, then 200 to 400 instructions or 100 to 200 words of coding 

are needed. 

Note, however, that the only changes in the coding for each! are 

the changes in the addresses of the instructions (m~Q A.i) and (X B.1), 
and as i is increased by ! the addresses of these two instructions are also 

increased by!. 

If by some means the computer can be directed to go repeatedly through 

the coding and at each traversal to increase by ! the addresses of the in­

structions (m ~Q A. i) and (X B. i) ,the length of the total coding can be 

shortened greatly. By means of the transfer orders a section of the coding 

can be traversed as many times as is desired; and at each passage through 

the coding the instructions (m~Q A.i) and (X B.i) are brought into the 

arithmetic unit and ! is added (in the correct address position) to each 

of them. It is, of course, necessary to have available in the memory the 
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appropriate! to increase the addresses. It may be either 1 x 2-19, 

1 x 2-39 or, in fact, both may be needed. At present we store 1 x 2-m 

in C.2, and fix upon ~ later in the coding. The sequence is: 

1. m~Q A.l al to R4 
2. X B.l albl in R2 

3. A~m C.l a
l
b1 to C.l 

4. m~Q A.2 a2 to R4 

5. X B.2 a
2
b

2 in R2 

6. m~Ah C.l albl + a2b2 in R2 

7. A~m C.l albl + a2b2 to C.l 

8. m~Ac 4 (m~Q A.2) to R2 

9. m~Ah C.2 (m-+Q A.2 + 1) in R2 

10. A~m 4 (m-----+Q A.3) to 4 
11. ~Ac 5 (X B.2) to R2 

12. m~Ah C.2 (X B.2 + 1) in R2 

13. A~m 5 (X B.3) to 5 
14. T 4 

The first seven instructions are the same as before. Instructions 

8, 9~ and 10 bring Instruction 4 into the arithmetic unit, add 1 to its 

address, and again store the instruction in 4, its correct location. 

Instructions 11, 12, and 13 do the same to Instruction 5. Instruction 14 

transfers the control back to Instruction 4 to traverse that section of 

coding again (the necessary addresses have been increased by!). 

The above sequence is not yet complete as it does not provide a 

means of stopping the cyclic process when!!. is reached. By changing 

the transfer order to a conditional transfer order and adding the follow­

ing instructions, we introduce a means of knowing when the cyclic process 

is finished. The number of traversals through the cyclic process is kept 

track of by keeping a count in, say, location C.3, and for each passage 

the count is increased by one and also examined to determine whether the 

desired value has been reached. It is this examination which is performed 

by the conditional transfer order. To initiate the count we store 2 x 2-m• 

Since the first two terms of the product sum albl + a2b2 are formed be­

fore the counting process is initiated, these two terms are included in 

the count by starting the count at 2. When the count reaches n, instead 

of transferring back to Instruction 4 the control goes along the other 

branch of the conditional transfer instruction, and in this case terminates 

wi th a stop order. 



The additional coding is added, starting at Instruction 14. 

14. m~Ac C.3 2 x 2-m to R2 

15. m~Ah C.2 (2+1) x 2-m = 3 x 2-m in R2 

6 -m 1. A ---"m C. 3 3 x 2 to c. 3 
~ 4 n x 2 is needed; it is stored in C. • 

11. m---+Ac c.4 
18. m~Ah- C.3 

19. C 4 

20. STOP 

n x 2-m to R2 

n x 2 -m - 3 x 2 -m in R2 
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Note that the count in C.3 is increased just before it is subtracted 
-m -m from n x 2 • When the count becomes equal to n x 2 , the subtraction 

gives 0 (which is interpreted as positive) and the conditional transfer 

sends the control back to Instruction 4 to finish the nth term of the pro-

duct sum. The next time through the sequence the count is increased to 

n + 1; the subtraction now gives a negative difference; and the conditional 

transfer is not effective. The control then proceeds to Instruction 20 and 

stops as is desired. 

The coding is 20 instructions, which is 10 words. We start the se­

quence at address !j hence it occupies words 1 through 10. Four words 

of storage are needed during the course of the problem; for these ad­

dresses 11 through 14 are assigned. Let us set n to 100 and store the 

ai's in 16 tprough 115 and the bi's in 116 through 215. 

The sequence is: 

1. m~Q 16 X 116 

2. A~m 11 m~Q 17 

3. X 117 m--+Ab 11 

4. A-+m 11 m~Ac 2 

5. m~Ah 12 A~m 2 

6. m~Ac 3 m~Ah 15 

1. A~m 3 m~Ac 13 

8. m--..Ah 12 A--4m 13 

9. m--+Ac 14 m-+Ah- 13 

10. C' 2 STOP 

11. 

12. 1 x 2-39 

13. 2 x 2-39 

14. n x 2-39 = 100 x 2-39 

15. 1 x 2-19 



115. alOO 
116. b

l 
111. b

2 

• 
215. b lOO 

In words 12 and 15, 1 x 2-39 and 1 x 2-19 are stored. These are 

both needed as the two instructions that have their addresses increased 

are in opposite sides of thei~ respective words. 

The code sequence is reduced from 200 words to 15 words by being 

able to use the same section of code repeatedly and altering addresses 

of the instructions as the control proceeds through the code. 
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The use of sUbstitution orders in this problem was purposely avoided. 

As we shall presently see, the change in addresses could have been accom­

plished more efficiently by their use. However, our purpose is not neces­

sarily to illustrate the shortest method for coding a sequence but to 

illustrate many methods so that a broad foundation may be laid for subse­

quent work. 

We adopt the nomenclature set forth by von Neumann and call any such 

repetitive process (whether it be the above, or a solution of a partial 

differential equation by successive approximations, or numerical integra­

tion of a function by some stepwise method, or other iterative procedures) 

a simple induction. 

We have now reached the point where any further examples have a 

great enough complexity to demand a systematic approach. This leads to 

the discussion of the flow diagram. 
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Flow Diagram 

The flow diagram, as the name implies, indicates the course of the 

control through a coded sequence of instructions. As previously men­

tioned, the flow diagram represents in a concise way 

(i) The purely mathematical operations 

(ii) The various logical steps and decisions together with a pre­

cise indication of the corresponding criteria 

(iii) The contents of the relevant parts of the memory where the 

que'stion might naturally arise 

To facilitate the interpretation of such diagrams and to avoid 

ambiguities, it is convenient to have a set of conventionalized symbols 

associated with these flow diagrams. 

The direction of motion of the control through the flow diagram is 

indicated by lines oriented with arrows as in Figure 1. A simple in­

duction is denoted by a closed loop as in Figure 2 and is called an 

induction loop. 
.. -

• • 

l J 
, 

• " -
Figure 1. Figure 2. 

Any non-looped segment of the flow diagram is described as a linear 

section, while a looped segment is said to be non-linear. 

By themselves the above lines are incomplete as they do not show 

the arithmetic or logical processes that are involved. The arithmetical 

operations are described in the operation boxes. Figure. 3 shows the 

symbolization of the operation box. 

Description of .. ~~-~-
- .... _~---4 Arith. Oper. -

Figure 3.' 



The operation box has one entrance and one exit for the control. The 

contents of the box indicate the arithmetic operations and transfers 

of information among the various storage locations that are to take 

place when the control reaches that stage. Individually, an operation 

box may be treated as a linear portion of the flow diagram, although 

it may be an element of an induction loop. Each operation box of a 

flow diagram is identified by an Arabic numeral. 

The induction loop as shown in Figure 3 is not complete, as it 

shows neither a point of entrance nor a point of exit. 

To show the former, two or more paths of a flow diagram merge into 

a common continuation.as sho1in by the heavy l~nes of Figure 4. These 

mergers are not unique to an induction loop for they are also useful 

where several linear sequences have a common continuation. 

Figure 4. 

In order to effect an exit from an induction loop, use is made of 

a second type of box called the alternative box (conditional transfer 

bOX). The alternative box has one entrance, but two exits which are 

labeled the positive (uon-negative) and the negative exits. This box 

specifies the criterion by which the control follows either one exit or 

the other. The decision is usually based upon some mathematical ex­

pression that is first formed in the Accumulator. In the coding, the 

conditional transfer instruction is given immediately after the dis­

criminating quantity has been formed in the Accumulator. If the quan­

tity is positive or 2, the control proceeds along the so-called posi­

tive branch, whereas if the quantity is negative, the negative branch 
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is followed. By convention, the positive branch corresponds to an 

interruption of the sequence and a transfer of the control to the in­

struction pair specified by the address part of the conditional transfer. 

On the negative branch the control proceeds sequentially without inter­

ruption. The alternative box may be associated with a linear sequence 



of a flow diagram as well as with an induction loop; i.e., a linear 

sequence may divide into two sequences, the choice of which may be 

made by an alternative box. Figure 5 illustrates an alternative box 

(emphasized by heavy lines) used in a linear sequence, and also in 

association with an induction loop. The alternative box is identified 

by an Arabic numeral, as is the operati on box. 

3 

in 

Figure 5 

Since an alternative box is the means of exit from an induction 

loop, it is the alternative box that indicates when the loop has been 

traversed the appropriate number of times. The quantity upon which the 

conditional transfer instruction is to act should then remain positive 

until the loop has been traversed the correct number of times and then 

this quantity is to become negative. (It may happen, at times, that it 

is more advantageous for the negative branch to return through the loop, 

with the positive branch providing the exit.) As an example: 
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If we are doing an iterative process to approximate some function-­

say a trigonometric function, square root of a number, or some other such 

scheme--then we know that the error in the approximation to the function 

is less than the difference between any two successive approximations. 

We then decide upon the accuracy, say 0, for the approximation to the 

function. If we denote an approximate by Si' then the desired accuracy 

is obtained when lSi - Si+ll < o. Therefore, in such a process, if the 

conditional transfer acts upon the quantity lSi - 8i +l l - 0, this quan­

tity will be positive until the desired condition obtains. 

An induction loop may involve a process in which the loop is to 

be traversed a fixed number of times. For these processes a simple 

counting procedure is used to determine the termination of the induction. 



In the initial step of the induction the count is set to some starting 

value (usually Q or !). At each traversal of the loop the count, which 

may be called!" is increased by!. An upper limit to the count, which 

is called!, is chosen, such that the quantity I-i first becomes 

negative when the loop has been traversed the correct number of times, 

hence satisfying the required conditions. 

In a linear sequence the alternative box often indicates a single 

quantity which is the result of previous computation where the course 

to be followed depends upon this quantity being positive or negative. 

Figure 6 indicates several alternative boxes with their contents. 

Figure 6. 

By means of an alternative box an induction loop may be traversed 

as many times as desired and then the control is advanced to the next 

stage of a calculation. Each time the induction loop is traversed the 

control essentially repeats a fixed sequence of orders. At each tra­

versal, though, the control operates on a different set of numbers and 

either sends the results to fixed memory positions each time, or else 

sends the results to locations dependent upon the set of numbers being 

operated upon. The operation boxes in an induction loop should contain 

relationships that are valid in general for any traversal through the 

loop; e.g., consider the iterative process for the square root of a 

number u where u < 1 (we defer any mathematical discussion until later). 

The first approximation Z is chosen equal to !, and the successive 
o 

ones given by 
Z = 1 

0 

Zl 2-l (Z + u/Z ) o 0 

Z2 = 2-l (Zl + u/Zl ) 
• 

Zi+l = 2-l (Zi + U/Zi ) 

• 



The successive iterates are to be done in an induction loop where 

is an initial step apart from the loon. In the first traversal of 

the loop 

is computed. The next traversal computes 

= 

Z 
o 
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the third traversal Z3' and so on. How, then, with one set of equations 

in an operation box is the desired notation indicated for each traversal? 

This is done in the following manner: 

The contents of the operation box do not represent any specific tra­

versal of the loop; hence an index is adopted that represents the general 

traversal; eog., for the square root the operation box would contain 

Zi+l = 2-
l

(Zi + u/Zi )· 

This index is the variable of induction that describes the inductive pro­

cess, for if 

lim 
i -. (J) 

Z = 1 o 

Zi+l _. 2-
l

(Zi + u/Zi ) 

Zi+l =-V;;-

(i = 0,1,2 ••• ) 

then the process in question is completely described. Although the 

operation box does give the general expression, a means is needed for 

ascribing the appropriate value to the variable of induction for each 

traversal. This is done by the substitution box. Its function is to 

bring into agreement the notation of all quantities in which the vari­

able of induction occurs with the notation that corresponds to a speci­

fic traversal of the loop. In other words, the Rubstitution box makes 

the notation agree with the set of numbers upon which the succeeding 

boxes act during the forthcoming traversal. of the loop. 

A substitution is indicated as a~i. It is interpreted as 

meaning that during the forthcoming interval and until a new substitu­

tion is made, everywhere that .! occurs it is to be replaced by!:. This 

first case is obvious enough. However, the substitutions are not re­

stricted to constants replacing the variable of induction. In fact, 

the substitution often contains some function of !; e.g., the substitu­

tion of i+l ~ i is used frequently. In the instance where the variable 

i occurs in both members of the substitution, it may conveniently be 



interpreted in the foliowing way: For the i's that occur to the left 

of the arrow the substitution from the preceding interval remains valid. 

The quantities on the left of the arrow will then not contain! anywhere 

in their expression and the substitution is made as described above; 

e.g., suppose that a substitution a~i has been indicated. After a 

sequence of boxes a new substitution i+l~i is then indicated. First 

substitute ~ (the value of the immediately preceding substitution) for 

the i that occurs to the left of the arrow. The sUbstitution now reads 

a+l ~ i an:l we then proceed as in the above simple case. The next time 

the control returns to this substitution box it would be interpreted as 

(a+l) + I = a + 2 ~ i. 

Note that SUbstitution boxes do not involve any arithmetic operations 

or transfers of numbers. They merely make changes in notation (trans­

formations) such that the flow diagram indicates each stage of the compu­

tation in a precise manner. The substitution box is identified by a 

lower case Latin letter. 

We continue with the square root example and illustrate the use of 

substitution boxes. The flow diagram for the process is: 

20= I to A.I 

(i) 

(ii) 

b 
2 3 

1"-liP-,.e.-t2 i+1 =2-
1
(2j + t.) to A.I 

----- I 
IZj-Zj+ll-cS 
-----"+ 

Figure 1. 

Operation box 1 initiates the induction by setting Z = 1 
- 0 

and storing it in A.I 

Substitution box b indicates that everywhere in the following 

boxes up to the next substitution box wherever the variable of 

induction i occurs it is to be replaced by Q. 
(iii) As a result of box~, operation box 2 indicates that 

Z = 2-I (Z + u/z ) 
1 0 0 

and Zl is stored in A.I. The alternative box, box 3, indi­

cates that the conditional transfer is to act upon Izo - zll - o. 
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(iv) Box ~ is a sUbstitution box of the second type discussed in the 

preceding paragraphs, namely the sUbstitution i+l--+i. In the 

interval leading into this box the substitution O--+i was 

valid. We replace the ! to the left of the arrow by 2. The 

substitution is then l~i. Operation box 2 now indicates 

= 

and alternative box 3 indicates I Zl - Z21 - o. When substitution 

box ~ is again traversed, it will indicate 2~i, and the iter­

ative process is advanced another step. 

With the aid of the substitution box we have been able to describe 

completely and precisely the desired inductive process. 

Throughout the flow diagram many symbols and notations are introduced 

(such as the variable of induction) that are relevant only in the flow 

diagram and often for only isolated parts of the flow diagram. These 

quantities are usually without any physical meaning apart from the 

process that they are describing in the flow diagram. These quantities 

are called bound variables. The Z 's of the square root routine are such 

a variable. In passing from one section of the flow diagram to another 

these bound variables may take on new significance in describing some 

other process (such as the variable of induction! in the induction lOOp). 

The concept of the substitution box is extended to cover substitutions 

involving any bound variables. 

There is one other box that is an integral part of the flow diagram; 

it is the assertion box. Its usefulness stems from the fact that at cer­

tain points of the flow diagram, bound variables may acquire a fixed 

value with a fixed meaning; e.g., in the square root diagram when 

Z. 1 - Zi < 0, then to sufficient accuracy Z. 1 = -Vu, where u is the 
~ H-

number for which the square ro~t is "being extracted. Whenever such con-

ditions are attained one may state this relationship by means of an 

assertion box. Hence, if we again consider the flow diagram of the square 

root routine and consider the negative branch which terminates the process, 

we have: 
3 

... llli -litll -81- II> 

f+ 
Figure 8. 
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When the control completes the process and proceeds along the negative 

branch, then Z. 1 is the desired -Vu. This fact is stated in the 
l.+ 

assertion box. The assertion box is identified by.a crosshatch (ti). 
The discussion of the various boxes is completed by discussing the 

storage boxes. There are two kinds of storage with which we are concerned. 

In the first place, there will be a set of numbers that originate with 

the problem and will remain unchanged throughout the course of the problem. 

The storage necessary for this type of quantity is called static storage. 

The storage requirement that originates from computation within the prob­

lem is called dynamic storage. We are not concerned here with the static 

storage as it is unchanged throughout a problem. However, at certain 

points along the flow diagram it is convenient to indicate the contents 

of the dynamic storage concerned with the local computation about to be 

performed. The storage boxes are connected to the flow lines of the dia­

gram by dotted lines. (These boxes are not an integral part of the flow 

diagram.) In Figure 9 the flow diagram for the square rootroutlne. is .. shown 

complete with storage boxes. 

I A.I IAol?il IAo':~i+d 
I r--______ ---=2=, I 
I I ,...--___ -. 

Zo: I to A.I I 2i+I=2-I(Zi+~)toA.I I ~--.-_"'" 

Figure 9. 

The examples indicate a complete set of storage boxes indicating all 

relevant changes. In actual practice, however, the procedure will be· to 

indicate storage boxes only when they are useful and needed for clarity. 

The SUbstitutions indicated by the SUbstitution boxes are also valid 

for the stora.ge boxes. Consider Figure 9: on either side of the substi­

tution box £, a storage box is indicated. The storage box to the left of 

Box b shows that A.I:Z, while the box to the right of Box b shows that 
- 0 -

A.I:Z .• If, however, 0 is substituted for the i as is indicated by Box b, 
l. _. - -

the two storage boxes agree, as they should at this time. Similarly, the 

storage box immediately to the left of Box 2 is brought into agreement 

with the storage box to the right of Box 2 each time substitution box c 

is traversed. 



Let us recapitulate at this time: 

(i) The operation box indicates the arithmetic operations and the 

transfers of numbers that are to take place. In the arithmetic 

operations the relationships are expressed by equality signs; 

i.e., y = ax2 
+ bx + c, y = f(x,t), or some other such expression. 

The quantity that is being formed is always written as the ieft 

member of the equation while all of the known values are included 

in the right member of the equation. The operation box has an ac­

companying identifying letter or number. Arabic numerals are used 

to identify such boxes. 

(ii) The alternative box is associated with the conditional transfer. 

-~-

The conditional transfer acts upon the quantity or quantities in­

dicated in the box; and the control follows the positive exit or 

negative exit, according as the transfer is effective or not. The 

address of the conditional transfer instruction must be the address 

corresponding to the positive exit of the box; and immediately after 

the conditional transfer instruction is the sequence that the nega­

tive branch will follow. 

(iii) The substitution box indicates changes that occur in bound variables. 

These are changes in notation (or transformations, if you like) and 

they do not involve any arithmetic operations or transfers of numbers. 

The substitution box is usually concerned with the variable of in­

duction in an inductive process; and by attributing su~cessive values 

to the variable of induction wherever it occurs in the general ex­

preSSion of the process, the induction is completely described. The 

contents of the substitution box are indicated with an arrow, such 

as a~i where this is read as substitute a for i. 

(iv) The assertion box states an existing condition. At certain points 

of the diagram a bound variable may acquire a fixed value. The asser­

tion box merely states this fact. 

(v) The storage box indicates the relevant storage locations of the quan­

tities needed for computation in a sequence of operation boxes. 

We have now completed the discussion of the important components of 

the flow diagram. There are certain refinements to the flow diagram that 

will be introduced as the need for them arises in the forthcoming examples. 



Problem 4 
We propose to extract the square root of a number ~ by means of 

the iterative process 

lim 
i~oo 

Zi+l 

Z. 1 
~+ 

= 2-1 (Z. + ujZ.) 
~ ~ 

=Vu 

( '_. 0 1 2 = " ... ) 
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Since the computer requires that all numbers be in the ranee -1 ~ x <: 1, 

~ is restricted so that 0 ~ u< 1. At each step of the iterative process 

the division u/Z
i 

must be performed. Since u < Zi must hold for this 

to be a legal operation, it must either be shown that this condition does 

hold or else the necessary adjustments must be made (by coding) such that 

the condition is true. 

We propose to show the former as follows: 

Zi+l = 2-
1

(Zi + u/zi ) 

Zi+l -.fi = Zi/2 + U/2Zi - Ju 

= (1/2Z.XZ~ - 2Zi~ + u) 
I ~ 

Zi+l - v'U = (1/2Zi(Zi - Ju)2 

(Eq. 1) 

(Eq. 2) 

Ass:ume Zo> 0, then from (Eq. 1) all Zi > O. Since all Zi> 0, the 

right member of (Eq. 2) is positive; hence the left member is positive and 

Zi+? Vu >u. 

If Z > u, which is done by setting Z = 1, then all o 0 

Zi> u 

and the quotient u/Zi will not exceed the allowed limits of the computer. 

In choosing Zo = 1, Zl is formed as 

-1 -1 
Zl = 2 + 2 u 

which is used as the first step of the inductive scheme. 

We must ascertain which Zi+l is to terminate the induction. This 

could be done by determining the number of iterations necessary to com­

pute the worst case, namely u = 2-39, and then traverse the induction 

loop that fixed number of times, irrespective of the size of u. Let us, 

however, do something slightly different. 



We know u to within an error 6u where 

6u = 2-1 .2-39 = 2-40 

as this is an error introduced by the physical size of the computer 

The error 6Ju in determining v'U is found as 

u +6u = C/ii +~)2 

u+6u = u+ ~ 

neglecting second order terms. Hence, 

M = 6u 
2ft 

For our case 

For u = 0 we have 

6u = ~)2 

2-40 = ~.;u)2 
. ..20 

Eo =6Ju = 2 

The error £ varie.s from 2-20 when u = 0 to 2 -41 when u = 1. 
u 

The iterative process should certainly stop whenever 

then 

We propose to show that whenever 

< -21 
Zi - Zi+l-- 2 

and the iterative process is complete. 

First let us show that 

Since all 

then 

u/Zi~VU 

Zi + u/Zi ~ Zi +JU 

1/2(Zi + u/Zi)~ 1/2(Zi +VU) 

-50-



The left-hand side is by the definition of the iterative process equal 

to Z. 1; hence 
1.+ 

Zi+l ~ 1/2 (Zi + Ju) 

Zi+l -ym ~ 1/2(Zi -Ju) 

From this it follows that 

then 

Zi+l -Ju ~ Zi - Zi+l­

If the iterative process is terminated when 

< -21 
Zi - Zi+l -.. 2 

r.;; < -21 
Zi+l -vu -- 2 

and adding these two inequalities gives 

Hence, from (Eq_ 2) 

we define 

then 

Since 

and 

r.. -20 
Zi -v' u ~ 2 -

< -40 2Z. t. __ 2 • 
1. 1. 

VU/Z
i 

< 1 

2Zi (v'u/Zi)€i ~ 2-
40 

e
i 
~ 2-4l/./U_ 

This completes the proof, for if the induction is stopped when 

< -21 
Zi - Zi+l -- 2 

then 
. J'; < '" __ 2-41 , Cu Zi+l - VY. = e i -- \:, U /,/LI. 

as is desired. 

Since the flow diagram has previously been discussed in detail, 

we turn directly to the coding which is done with the aid of the flow 

diagram. 
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I Aol"zd 
2 

Figure 10. 

2i+1 =2-'(Zj + ~.l to A.I t---__ 

I 

-1 storage locations are needed for ~, for the number 2 ,for the 
-21 number 2 ,and a temporary ·location for intermediate results. These 

are designated as 
B.l: u 

B.2: 2-1 

and the Zls are stored in A.l; hence utilizing the same location for 

the successive iterates. 
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In the initial coding each box is treated independently. The coding 

is: 

Box 1. 

1. 'm~Ac B.l u to R2 

2. R 1 2-1 (u) in R2 

3. m~Ah B.2 zl = 2-t (1+U) in R2 

4. A~m A.I Zl to A.l 

Box 2. 

1. m~Ac B.l u to R2 

2. . A.I u/Zi in R4 

3. Q--+m B.4 u/Zi to B.4 

4. m~Ac B.4 u/Z. to R2 
l. 

5. m~Ah- A.l u/Zi - Z i 
in R2 



6. R 1 (Z. 1 - Z.) = 2-
l

(u/Z. - Zi) in R2 
~+ ~ ~ 

1. A~m B.4 

8. m-+Ah A.l 

9. A~m A.l 

Box 3. 

1. m-+Ac- B.4 

2. m~Ah- B.3 
Z; - Z. 1 to R2 

.. 1+ -21 
Z. - Z. 1 - 2 in R2 
~ 1+ 

3. c Box 2,1 

4. Stop 

In Box 2, observe how Z. 1 is fonned. ·It is known that Z. < 1 
1+ 1 

and u/Z. < 1, but it does not follow that Z. + u/Z. < 1. Z. 1 could 
1 -1 1 1 -1 1+ 

be formed by first obtaining 2 (u/Z.) and then adding 2 Z. to it. 
1 -1 1 

This, however, would require additional orders as 2 Zi would have to 

be formed and stored before proceeding to 2-1 (u/zi ), in order that the 

addi tion of the two terms could take place at this time. It is more 

efficient to form Zi+l in the following way: since Zi and u/Zi 
are both positive, the difference 

u/Z i - Zi < 1. 

Therefore, the difference is formed and shifted right !to obtain 

2-
1 (u/Z. - Z.). 

1 1. 

Observe that 
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2-
1 (u/Z. - Z.). 

1 1 
(Eq. 3) 

If Zi is now added to both members, then 

Zi+l = 2-
1

(U/Zi - Zi) + Zi = 2-1 (u/Z. + Z.). 
1 1 

Equation 3 above expresses the negative of the quantity Zi - Zi+l 

desired for the discrimination in Box 3. zi+l - Zl is stored in B.4 

so that it will be directly available for Box 3. In fact, if Z. 1 had 
1+ 

not been formed by first forming and saving the quantity Zi+l - Zi' 

Zi+l could not have been stored in A.l, as Zi would then still be 

needed for Box 3. This would mean that Z. 1 would be sent to B.4 until 
1+ 

the completion of Box 3 at which time it could be sent to A.l. Again, 

this would have required additional coding. 



In pairing the instructions into words, we start the coding at 

Word 1. No connecting instructions are needed. between the boxes. 

The total number of instructions is: 

Box 1: 
Box 2: 

4 instructions 
9 

Box 3: 
and a "stop" instruction 

3 
1 

total : 17 instructions 

which require 9 words. Five words of storage are needed which account 

for Words 10 through 14. The sequence is: 

1. m~Ac 10 R 1 

2. m~Ah 11 A~m 13 

3. m~Ac 10 + 13 

4. Q~m 14 m~Ac 14 

5. m~Ah- 13 R 1 

6. A---.m 14 m--.Ah 13 

7. A~m 13 m~Ac- 14 

8. m~Ah- 12 C 3 

9. Stop 

10. u 

11. 2 -1 

12. 2-21 

13. 

14. 
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The conditional transfer instruction in the right half of Word 8 
transfers to the first instruction of Box 2. When the instructions are 

paired, the first word of Box 2 becomes the left-hand instruction of Word 3; 
hence the conditional transfer instruction is the transfer to the left-hand 

instruction of Instruction-pair 3. 
Before discussion of Problems 5 and 6, on the conversion of numbers 

from one base system to another, some remarks should be made on the form 

of input and output data. Although the computer operates with numbers ex­

pressed in the binary base, the human operator is apt to find that he has, 

through years of exposure, become firmly bound to the decimal number sys­

tem. It is then certainly to the advantage of the operator to find some 

means of communication to and from the machine that can be expressed in 

decimSl numbers. Before discussing the problems related to such a scheme, 

we first make a few remarks on the input-output problem in general. 



Even though we are at present mainly interested in input and out­

put data in the decimal number system we do not wish to exclude input 

-55-

and output as true binary numbers. In fact, whenever any data is printed 

for subsequent consumption by the computer it should obviously remain in 

the binary base; furthermore, it is both convenient and simple to have 

instruction words coded in their true binary form. As we have more ex­

perience with the computer and with binary numbers, our dependence upon 

the decimal system may wane, and we may find ourselves operating solely 

with binary numbers. We first consider the input-output in the binary 

system and from that develop the scheme for handling decimal numbers. 

It is not practical to have the keyboard of the tape punch or the 

type bars of the printer operate in true binary notation, for this would 

mean that forty characters would have to be printed or punched per word; 

and even though one needs to recognize only Q's and !'s, it is difficult 

to examine words forty characters long. Let us arrange the bigits into 

groups of, say, three or four bigits and specify a character to identify 

each unique combination. We choose groups of three or four since these 

correspond to eight and sixteen unique characters, respectively, which 

are ea.ch fairly close in number to the usual ten characters in the deci­

mal system. Such choices shorten the word length from forty bigits to 

either thirteen or ten characters, accordingly. For the present discus­

sion, we fix upon groups of fours (tetrads) and id,entify each tetrad by 

a single character. Since sixteen characters are needed, we are really 

operating in the hexadecimal (16) number base. For those tetrads that 

have single decimal digit equivalents, the corresponding decimal charac­

ters are used to identify them. The remaining six tetrads are identified 

by the letters· A,B •• 0 F. Table II shows the hexadecimal characters 

with their binary tetrad equivalents. 

TABLE II 

a 0000 4 0100 8 1000 C 1100 
1 0001 5 0101 9 1001 D 1101 
2 0010 6 0110 A 1010 E lilO 
3 OOll 7 Olll B 1011 F llll 

The keyboard of the tape punch and the type bars of the page printer 

have sixteen characters. In tape preparation, the conversion from hexa­

decimal to binary is effected directly by the punching equipment. When 

one of the sixteen keys of the keyboard is depressed the punch is set up 



so that it punches the binary equivalent on the tape (in a tetrad of 

bigits). Similarly, when printing is desired a tetrad of bigits actuates 

the type bars and the hexadecimal equivalent is printed. 

To return to the decimal input-output problem, we have at our dis­

posal the first ten ordinal characters of the hexadecimal notation which 

are identical to the ten decimal characters 0,1 ••• 9. To prepare a tape 

of decimal information, we depress the keys corresponding to the individual 

decimal characters of the desired number. The punch converts the decimal 

characters into tetrads of bigits which give a "coded-decimal" representa­

tion of the number. The coded-decimal form of a number is not identical 

to the number's true binary equivalent. For example, consider the decimal 

number 512. Its coded-decimal representation is 0101 0001 0010 while its 

true binary representation is 1000000000. There is a very simple algorithm 

by which we can convert the coded-decimal number into its true binary equi­

valent. The output problem involves the converse. We need an algorithm by 

wh:ich a true binary number can be converted into its coded-decimal equi­

valent so that the printer may produce the number in its decimal form. We 

consider first the input problem--the conversion of a coded-decimal number 

into its true binary equiva.lent. 

Problem 5 
Since a tetrad of bigi ts is used to represent 8- single decimal digit, 

and since the standard word length is forty bigits, each word is comprised 

of ten tetrad.s. The first tetrad on the left is used to indicate the sign 

of a number. This means that the computer is able to store a nine digit 

coded-decimal number with its sign. In following the present sign repre­

sentation for binary numbers, the tetrad 0000 designates a positive num­

ber and the tetrad 1111 designates a negative number. Negative coded­

decimal numbers are represented. as signed numbers rather than as complement 

numbers as used for negative binary numbers. As examples, a positive and -a 

negative coded-decimal number are shown. 

+ .765432109: 0000 0111 0110 0101 0100 0011 0010 0001 0000 1001 

- .543010678: llll 0101 0100 0011 0000 0001 0000 0110 0111 1000 

The conversion of coded-decimal number a' into the true binary number 

a may be performed as follows: The absolute value of a' is converted and 

then the sign is determined. The absolute value is obtained by neglecting 

the sign tetrad of a'. The sign tetrad comprises bigi ts (0 - 3); hence 

I a'i = bigits (4-39) of a' o~ latl <1 (Eq. 4) 



Recall that each decimal digit treated as an integer is represented by 

its true binary equivalent in the coded-decimal notation. The tetrad 

represented by the bigits 

(4i-4i+3) (i = 1,2 ••• 9) 

-')7-

beginning at the left of ~' represents the decimal digit !i. The first 
-1 tetrad from the left corresponds to the 10 position, the second tetrad 

to the 10-2, and so on. Therefore, 

(4i-41+3) = 10-iw. (i = 1,2 ••• 9) (Eq. 5) 
~ 

and furthermore, ~ 

I all = k IO-ivi; (Eq. 6) 

e.g., la', = .0111 0101 0110 1001 0001 0000 0100 0011 1000 = .756910438 = 

= ~ IO-ivi = 
f:;;l 

Since each tetrad is, by itself, in true binary form if considered as an 

integer, one method of converting the number is to divide each tetrad by 

its appropriate power of 10 (expressed, of course, as a binary number) 

and add the results of all such divisions; e.g., .25 is .0010 0101 in 

coded-decimal form and to convert this to a true binary we perform the 

steps 
0010 0101 0010 0101 
1010 + (1010)(1010) = 1010 + 1100100 = 0.01, 

and 0.01 is the true binary form of the decimal number .25. However, 

let us do something slightly different. Multiply and divide the right 

member of (Eq. 6) by 109• 2-39• This gives 

l.I09- i
Vi •2-39 

109• 2-39 
(Eq. 7) 

The conversion may now be effected by multiplying each tetrad Wi by 

109- i • 2-39, adding the products of all such multiplications, and then 

dividing the resultant sum by 109• 2-39• Each tetrad Wi has a co-
9 i factor, 10 - , which is ten greater than the cofactor of the immediately 

succeeding tetrad. The conversion from the coded decimal number A' to 

the binary number ~ is then described by the following inductive pro-

cess. 



a = 0 
0 

a
l = lOa + 2-39w 

0 1 

a
2 = 10al + 2-39w 

2 

a. 1 = 10ai + 2-39w 
1.+ 1+1 

• 

a
9 = 10aB + 2-39w 

9 

a = 
a

9 
109 • 2-39 

The tetrads are isolated with the aid of the left shift order. 

First the magnitude of ~I is formed by bringing ~I into R2 (the 

Accumulator) and effecting a left shift of 4. The portion of ~' left 

in R2 is I !:'I. R4 (the quotient register) is then set to Q. A subse­

quent left shift by 4 now has the effect that !l appears in the ex­

treme right of R4. The first tetrad ~l has thus been separated from 

the remaining tetrads, and since !l appears in the extreme right of 

R4 it is 2-39w
1

, as desired. !:l is now formed as: 

-39 al = 10ao + 2 wI-

~2 is isolated in the same manner as was !l and then ~2 is formed, 

and so on, until ~9 is formed. A multiplication by ten at each step 

cannot directly be done as this is an illegal operation, since allowed 

multiplication factors must be in the range I x I < 1. However, a multi­

plication by ten may be simulated by doing a series of left shifts and 

an addition for 
3 10a

i 
= 2 a

i 
+ 2a

i
• 

The inductive process may be written as: 

a = 0 
0 
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ai +1 = 23a + 2a. + 2-39w (i = 0,1 ••• 8) 
i l. i+l 

a = 
a

9 
109• 2-39 



The wi I s are also formed by an inductive scheme where 

wl 

w2 

= 24a l 
0 

= 24a l 

1 

24 1 = a i 

a l = 0 

(integer part) 

(integer part) 

(integer part) 

4 w9 = 2 a'a (integer part) 

lall 

a l = 24a l (fractional part) 
1 0 

a l = 24 1 (fractional part) 
2 

a l 

I 24 , 
a 1+1 = a 1 (fractional part) 

a l

9 
= 0 = 24a1a (fractional part) 

There remains finally the determination of the appropriate sign to 

affix to the true binary number a. It is recalled that the extreme left 

tetrad is reserved to denote the Sign of ~I. A sufficient method is to 

examine the leftmost bigi t of ~'. If this is £, a'?: 0 and a is to be 

posi ti ve • If the leftmost bigi t of a 1 is a !, then a 1 <-- 0 and a is 

to be formed as a complement. 

The only operations that are performed on ~ I, the coded-decimal num­

ber, are a series of left shifts by 4. To simplify the coding and flow 

diagram, the number a • is treated as though the binary point is immedi­

ately left of the first bigit position. In other words, the normal sign 
o -1 bigit (the 2 position) is treated as a numerical bigit, in fact the 2 

bigit position. After the first left shift of ~. by 4, the first signi­

ficant bigit of wl is in the leftmost bigit position. After WI is 

isolated by a left shift of 4 places, the first bigit of w2 is in the 

leftmost bigit pOSition, and so on with the remaining w·s. The conse­

quence of treating a l in this fashion is discussed in the coding of 

the problem. 

Since nine tetrads must be operated upon, the induction loop must be 

traversed nine times. The method used for determining when to stop in the 

induction is essentially to discriminate upon the quantity 

I - i (I = a; and i = 1, 2 ••• 9, successively) 

When i = 9 (which corresponds to the completion of the 9th traversal of 

the induction loop), the discrimination on (I - i) becomes negative for 

the first time and the induction process is stopped as desired. 
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The storage requirements are as follows: a l (the coded-decimal 

number) is initially in the memory at address A.l. When a (the true 

binary number) is formed. it is to be stored at A.2. storage is needed 

for the numbers 0 and 109.2-39• These are stored in C.l and C.2, re­

spectively. Four intermediate storage locations are needed during the 

course of the conversion. These are designated as B.l, B.2, B.3, and 

B.4. 

We are now ready to draw the flow diagram and do the coding. The 

flow diagram is shown in Figure 11. 

over 

In the flow diagram, Box 1 sets up the initial steps of the inductions 

a' and a. It sets 

a' 0 = I a'i = 
4 2 a' (fractional part) 

a = 0 o 
8·S is indicated in the description of the induction on the preceding page. 

This box also sets the upper limit 1=8 of the induction. Box~, Box 2, 

and Box ~ complete the description of the induction. Box 2 forms 

a' i +l = 2
4
a' i (fractional part) 

with Boxes ~ and ~ ascribing the appropriate values to the variable of 

induction i. In Box 3, the conditional transfer box, the quantity upon 

which the discrimination is made is more conveniently I-(i+l) rather 

than I-i as previously discussed. In discriminating upon I-(i+l), 

i assumes the values 0,1 ••• 8. This is then equivalent to the discri­

mination I-i where i = 1,2 ••• 9. Box 4 forms I~J by dividing ~9 

by 109.2-39• Finally, Boxes 5, 6, and 7 are concerned with determining 

the correct sign for the true binary number a. 

The coding is: 

Box 1. 

1. m~Ac A.l a l to R2 

2. L 4 a l = I a'i = 24a' in R2 
0 

3. A-+m B.l a' to B.l 
0 

4. a·~Ac 0 a = 0 to R2 
0 

5. A~m B.2 a to B.2 
8·2-ll I = 8_2-11 0 

6_ a~Ac to R2 

7. A-+m B.3 I to B.3 



" G> 

CODED DECI MAL to BI NARY CONVERSION 

a~ = 24
a'(fractional part) to B.I 

t----tI! .............. ao = 0 to B.2 
I = 8 to B.3 

c 

I B.I : ao 

B.2 :ao 

B.3:! 

b 
, .. I 1 + I ...... i I .. ., lSI 

6 
a= -101 toA.2 

7 
0= 101 to A.2 

, 
,~ 

IA.2: 0-] 

--1[2'1011 IB.2: Ogl 
4 I * 

, I 10 I = Og + 2-39 log to B.21 .. : oil -I --. 

STORAGE 

A.I : a I C.I : 0 
A.2: a(when formed) C.2: 109 .2-39 

2 

",J B.I' 0; 
B.2: 0 1 
B.3: 1- i 

a~+1 =2
40; (fractional part) to B.I 

01+1 =23aj +2a i+ 2-39• 24ai (integer part) to B.2 
~- i -I to B.3 

B.I: -
B.2: -
B.3~ -
8.4: -

I 
B.I : a i+1 

---.... B.2: 0i+1 
B.3:1-i-1 

I 
0, 
~ 
I 



Box 2. 

1. m~Ac B.l 

2. m~ C.l 

L 4 

4. A--¥m B.l 

B.4 

6. m--7Ac B.2 

7. L 2 

B.2 

9. L 1 

10. m--+Ah B.4 

110 A---+m B.2 

12. m--+Ac 

Box 3. 
1. m-+Ac B.3 

2. C 2,1 

Box 4. 

1. m --+Ac B.2 

20 C.2 

B.2 

Box 50 
1. m---+Ac A.I 

2. C 7,1 

Box 6. 

1. m~Ac- B.2 

2. A~m A.2 

30 Stop 

a' . to R2 
1 

o to 34 

2-39 4 I (. t) w. 1 = 2 a . 1nt.p. to R4 1+ J. 

a'i+1 = 2
4
a ' i (fract.pt.) in R2 

a
i 

to R2 

2 
2 a

i 
in R2 

2 2 a i + a i in R2 

3 2 a
i 

+ 2a
i 

in R2 

a'. 1 to B.1 J.+ 

2-39w. to B.4 
J.+1 

3 -39 
a i +1 = 2 a i + 2 wi+1 in R2 

I-i to R2 

I-i-1 in R2 

I - (i+1) to R2 

a
9 

to R2 

a 1 to B.2 
i+ 

I - (i+1) to B.3 

laJ = a
9
/109.2-39 in R4 

fal to B.2 

a l to R2 

a = -I al to R2 

a to A.2 
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Box 7. 
1. m--'>Ac B.2 a = (al to R2 

2. A---)-m A.2 a to A.2 

3. T 6,3 
In the coding in Box 1 the a ~ Ac order has been used in In­

structions 4 and 6. Recall that this order replaces the number in R2 

by the twelve address bigits of the instruction; i.e., R2 is cleared 

to O's and the twelve address bigits of the instruction a--+Ac are 

added into R2 into positions Q through 11. In Instruction 4, the num­

ber 0 is desired in R2j hence the instruction a--+Ac has 0 as its 

address. Instruction 6 forms 1=8. Since the integer 8 cannot be 

stored, we store 8.2-m where m is at least 4 so that 8·2-m
<: 1. 

The a~Ac may be utilized to form ! and save the word of storage 

that would be needed initially to store the 8·2-m• Since I is formed 

8 -4 8 -=-5 8-11 in this manner we have the freedom of choosing 1=·2 , ·2 ••• ·2 • 

I is chosen as 8.2-11 for this case. In Box 2 where (I-i-1) is formed 
-m the 1 that is.subtracted must have the same cofactor 2 as does the !; 

hence to do this the instruction a ~Ah is used with the associated 

address being _1.2-11 == FFF in hexadecimal notation. 

In Box 2, the first five instructions are concerned with forming 

2-39wi +l and a l
i +l • Before the left shift of 4 is executed (Instruc-

'tion 3), R4 must be set to Q. This is done because 2-39w
i
+l is needed 

by itself and if R4 were not Q the left shift of 4 would place 2-39w
i
+

l 
into R4, but whatever number ¥.. that had been in R4 at the time of the 

shift would merely be shifted left 4 places and R4 would contain 

24y + 2-39wi +l rather than the desired 2-39wi +l • For clarity, we show 

in the following example how a left shift of 4 isolates each tetrad. 

Suppose the number 0.98 is to be converted into true binary form. In 

coded-decimal form it first appears in R2 as the following sequence of 

tetrads: 
0.98·· • 0000 1001 1000··· 

(+) (9) (8) 

Normally, the leftmost bigit is reserved for the sign bigit. Inasmuch 

as no arithmetic operations are to be performed on ali except for shift­

ing to the left, it is convenient to disregard the usual function of the 

leftmost position as corresponding to the sign bigit. The aim at this 

point is merely to separate successively the various tetrads. The first 



left shift of 4 produces in R2 

a'o = I a'i = 1001 1000··· 

The next time a left shift of 4 occurs, R2 contains 

a' = 1000···· •••• 
1 

and R4 has 00····0·········1001. Since 2-39.w. 
l. 
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is desired, one sees that in R4 the usual binary point convention is re­

storedj namely, after the firstbigit position. Hence the tetrad in R4 
can participate in normal arithmetic operations. 

If one had adhered strictly to the sign convention for R2, some 

needless complications in the coding would have resulted. 

Also in Box 2 we see that 2-39w in R4 must be sent to temporary 
i+l 

storage (Instruction 5) before 
3 ai +l = 2 ai + 2ai 

is formed in R2 (Instructions 6 through 9). This is necessary as R4 
shifts in concert with R2, hence altering its contents. 

The final coding is left as an exercise for the student, and the 

conversion of a true bihary number into its coded-decimal equivalent is 

considered. 



Problem 6 

When the formal calculation of a problem on the computer is finished 

the desired answers are to be converted from true binary form into coded­

decimal notation so that the teletype page printer produces the true deci­

mal representation of the desired numbers. 

We develop this conversion scheme in the following way: The true 

binary number ~ is to be converted into its coded-decimal equivalent a'. 

Since coded-decimal numbers are stored as signed numbers rather than comple­

ment numbers, I a I is first converted to I a'i ' and then the appropriate sign 

is prefixed. Since I a I < 1, it has a decimal equivalent which may be wri t-

ten as 

lal = lO-lWl + IO-2W2 + ••• + IO-9w9• (Eq.8) 

The problem is to determine the w's. If IOlal (multiplication by ten in 

binary form) is formed, there is an integer part and a fractional part to 

the number. We see from (Eq. 9) that the integer part corresponds to the 

decimal digit ~l. 

IOla\ (Eq. 9) 

of IOlai is nov' multiplied by ten, the integer part If the fractional part 

is just !2' etc. The 

decimal digits is used: 

:following inductive process to produce each of the 

a = I at 0 

lOa = WI + a l 0 

IOal = w2 + a2 

• 
• 

IOai = wi+l + ai +l 

loa8 = w9 + a9 
where the ~i's are the binary equivalents of the decimal digits. In the 

coded-decimal representation, each decimal digit is represented as a tetrad 

of bigitsj hence each !i is separated as a tetrad of bigits. This is done 

by multiplying by ten in the following way: 

4( -1 -3) IOai = 2 2 a i + 2 a
i

• 
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The left shift of 4 separates the integer part (wi +l ) from the fractional 

part (ai +l ) by shifting wi+l into the quotient register (R4) as a tetrad 

and leaving the fractional part in the accumulator (R2). 

The coded-decimal number at is formed by the following inductive 

process: 

a' o 

a' 
1 

a' 
2 

a'i+l 

• 
• 

a' 
9 

a' 

Oifa~O 

=( F'2-39 if a < 0 

= 2
4a' + 2-39w o 1 

= 24a' + 2-39w 
1 2 

4 2-39w = 2 a' + i i+l 

4 2-39w = 2 a' + 8 9 

= a' 
9 

Note that each w. is desired as 2-39w., which is precisely the 
-~ ~ 

quantity that appears on the right in R4 as a result of the left shift of 

4 places. 

As in the previous problem the induction has nine steps; hence the 

same index representation is used. The flow diagram is Sh01~ in Figure 120 

The required storage is indicated on the flow diagram. The coding is: 

Box 1. 

1. m---+Ac 

2. e 

Box 2. 

1. m~Ac 

2. A--+m 

Box 4. 
1. m~AcM 

2. A~m 

3. a--.Ac 

4. A~m 

A.I 

3,1 

e.l 

Bol 

A.l 

B.2 
8 -11 -2 

B.3 

a to R2 

a' = F x 2-39 to R2 o 
at to B.l' 

o 

-1 2 a to B.2 o 
I = 8 to R2 

I to B.3 
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BINARY to CODED DECIMAL CONVERSION 

4 
0 0 = I 0 I to B. 2 

'" .. I~ = 8 to B.3 I .. 
I -39 

0 0 = F·2 to B.I 
e b 

I 
B.I: 0 0 

B.2: 0 0 

B.3:1 

.... ... ..... I r---~~--~li+l~i II-------------------------------------------~-----------------------------

~ 
I 
I 

=#: 
- 0 8= 1 

I 'I 
1 0 =09 

5 

""" J B.I : o~ 
B.2: OJ 
B.3: 1- i 

t 4 -I -3 
ai+1 = froe ional port of 2 (2 OJ +2 01 ) to B.2 

2-39 WI = integer part of 24 (2-1 0i + 2-30 j ) 
I 4 I -39 

0itl =2 al+2 ·W1+1 to B.I 
1- i -I to B.3 

I 

B.I=oi+1 
_~6 __ ___ 

1.1 -( i + I ) I.. J 
... • I 

---0 B.2: 0i+1 

B.3: I-i-I 

A.I : 0 

A.2: 0' (when formed) 
C.I : F X 2-39 

C.2: 0 

STORAGE 
+ 

B.I:­
B.2: -

B.3:­
B.4: -

I 
0\ 
-..J 
I 



Box 5. 
1. m--+Ac B.2 

2. R2 

3. m~Ah B.2 

4. m--+Q B.1 

5. L4 

6. Q---.m B.1 

7. R1 

8. DS 

9. A--+m B.2 

10. m~Ac B.3 

11. a~Ah -1·2 -11 

Box 6. 
1. e 4,4 

Box 7. 
1. m--+Ac B.1 

2. A--:;m A.2 

3. stop 

Box 3. 

1. m ---=.Ac e.2 

2. A--J>m B.1 

3. T 4,1 
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-1 2 ai to R2 

2-3a 
i in R2 

-1 -3 2 a i + 2 ai in R2 

a' i to R4 

a i +1 = 4( -1 -3) 2 2 a i + 2 ai fract. pt. in R2 

, = 24a' + 2-39w in R4 a i+1 i i+1 

a'i+1 to B.1 

-1 
2 si+1 in R2 

-1 
2 ai +1 to B.2 

I-i to R2 

I-i-1 in R2 

a' to R2 

0- to R2 

a' to A.2 

a' = 0 to B.1 o 

In Box 5 ai +1 and a' i +l are formed simultaneously. R4 is utilized 

for at i+1 and R2 for si+1. This can be done since 

S'1+1 and 

·are formed by s left shift of 4 and R2 and R4 shift in concert. As in 
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the prev}ous problem (the conversion from coded-decimal form to binary 

form) the binary point in R2 is treated as though it were immediately left 

of the sign bigit. The reason for this is the same as in the previous ex­

ample--the sign of R2 shifts with the number; hence, when the left shift 

of 4 is performed, the sign position should contain the first bigit of the 

wi+l that is being isolated. There is, however, the complication intro­

duced of having to shift the number a. to the right in forming the 
-~ 

quantity 
-1 -3 2 a

i 
+ 2 a

i
• 

Recall that in a right shift the sign bigit fills into the bigit positions 

vacated by the shift. The quantity a. is a positive fraction; hence, in 
-l. 

shifting right, Q's should fill into the vacated positions. However, in 

using the Sign position as the first significant bigit of ~i' whatever this 

first bigit is, either a ! or a Q, it will fill into the vacated positions. 

ThiS, then, would give an incorrect result if the first bigit were a 1. To 

avoid this difficulty first form 2-1a which means that the sign Pos~tion 
no longer contains a significant bigit of a.. Then set the Sign to _0 and 

-l. 

proceed in a normal fashion. ~n Box 4 where we first set 

we have really formed 
-1 2 a 

o 

since a has the normal binary point convention. In all subsequent steps 
-1 ( 2 a i +l is formed by a right shift of ! followed by a drop sign order see 

Box 5, Instructions 7 and 8). Instruction 1 of Box 5 brings 2-l ai into 
-1 -3 the accumulator and the quantity 2 a i + 2 ai is subsequently formed. 

Instruction 4 places a l
• into R4; and Instruction 5, the left shift of 4, 
~ 

t~~n forms a'i+1 in R4 and ai +1 in R2. Instructions 7 and 8 then form 

2 a i +1 and prefix the correct positive sign. 

Instructions 10 and 11 of Box 5 form (1-1-1) but note that the quantity 

is not immediately stored. Since (1-i-1) is in R2, Box 6 consists only of 

the conditional transfer instruction. Instead of the conditional transfer 

instruction transferring to the first instruction of Box 5, it transfers to 

the last instruction of Box 4. The last instruction of Box 4 is the in­

struction that initially sent ! to storage; hence that same instruction is 

now used to store (I-i-1). This saves a needless duplication of a storage 

order. In the previous conversion problem, the same scheme could have been 
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used. Compare the last two instructions of Box 5 and all of Box 6 of 

this problem with Instructions 12, 13, and 14 of Box 2 and all instructions 

of Box 3 of the previous problem. 

In coding the various boxes, they have been coded in the sequence that 

corresponds to their correct position in the final coding. This sequence 

is Boxes 1, 2, 4, 5, 6, 1, and finally, 3. Box 2 must immediately follow 

Box 1 as it corresponds to the negative branch of the transfer. Then con­

tinuing from Box 2, the flow lines go to Boxes 4, 5, 6, and 1. We may in­

sert Box 3 after Box 1 since Box 3 is reached from Box 1 by the satisfied 

conditional transfer, and then Instruction 3 of Box 3 sends the control to 

Box 4 as is desired. 
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Problem 7 
We propose to evaluate the integral Laf(x)dx where a <: 1. We 

o 
assume that f(x) is continuous in the interval 0 ~ x ~ a and that the 

value of the integral as' well as the value of any intermediate steps of 

the integration lies in the range of the computer. The value of the in­

tegral is approximated by Simpson's method for stepwise integratlon. The 

function f(x) is given at the equidistant values xo(=O), Xl' x2 ••• xr(=a). 

The values f(Xo) f(x
l

) f(x
2

) ••• f(Xr ) are stored in the memory at r+l 

consecutive storage locations. If X is taken as the interval between the 

various x. IS, then Simpson's Rule may be stated as 
J. 

where C is the error term. To evaluate an integral by Simpson's Rule r 
f(x) must be determined at an odd number of x values (an even number 

of ~x intervals). 

The integral is evaluated by using the following inductive process: 

L_1 = 0 

L + 6
3
x f(x

o
) Lo = 

-1 6x. 

L1 = L + 1tf f(xl ) 
026x 

L2 = L + T f(X2 ) 
1 

• 
• L. + Sf f(xi ) s {: 4 when i is odd 
Li 

= where 
2 when I is i-l even 

• 
• 6x ( 
LI =, r + 3 f XI) 

I-I ' 

where L I:::: J::'f(X) (Xo = 0, XI = a) to the desired accuracy. 

The inductive scheme that is chosen to describe the integration 1s 

perhaps neither the simplest 1n coding nor the shortest 1n' computing time. 

It is used principally because an innovation 1s introduced into the flow 

diagram. 
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. Three decisions must be made in traversing the induction: 

(i) If ! = 0 or I, then ~3X f(Xi ) is added to the partial summation. 

(ii) If i is odd, then ~x f(xi ) is added to the partial summation. 

(iii) If i is even, then ~x f(xi ) is added to the partial summation. 

As previously discussed, the conditional transfer instruction 

allows the control to make a decision and follow one of two paths, dependent 

upon the decision. To make three decisions as outlined above, two alterna­

tive boxes could be used in sequence. However, let us approach the problem 

in a slightly different manner. 

The first time through the induction it is desired to form ~3X f(x ). 

As ~3X f(xo) is formed, the next step of the induction is to form ~~ ~(xl) 
and as f(xl ) is operated on it is known that neA~ 2~; f(x

2
) is to be 

formed. In fact, at each passage through the induction it is known what 

the forthcoming traversal should form. Let us, then, represent three 

operation boxes which for convenience we call Boxes 2, 3, and 4. Box 2 

forms ~3x f (xi); Box 3 forms 4~ f (xi); and Box 4 forms 2;X f (Xi) • 

Rather than use a sequence of alternative boxes to direct the control to 

the correct operation box (Box 2, 3, or 4, according as i = 0 or I, 

i = odd, ! = even # 0 nor I), a transfer instruction is used to which is 

supplied, at the appropriate time, the various addresses corresponding to 

the entrance points of Boxes 2, 3, or 4. To simplify the discussion this 

transfer instruction is called &. In the initial traversal of the induction, 

~ is to have an address that sends the control to Box 2 where it forms 

~3x f(Xo ); hence in setting up the initial step of the induction the address 

corresponding to Box 2 is supplied to ~. At the time that the control is 

operating in Box 2, it is known that the next step of the induction should 

form 4~x f(xl ) which corresponds to Box 3; hence as part of the operations 

performed in Box 2 the address for Box 3 is supplied to ~. Similarly, 

when the control traverses Box 3 it is knovffi that the next traversal of the 

induction should involve Box 4 which forms 2~ f(X2); hence Box 3 supplies, 

among other things, the address of Box 4 to ~. And when in Box 4, the con­

trol should return to Box 2 on the next traversal so ~ is supplied with 

the address corresponding to Box 3. The final step of the induction is to 

form b; f(X
I

). This is done by a discrimination on i-I, which is negative 

until i=I, at which time the last term is formed. 
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The position of the flow diagram at which the transfer instruction ~ 

occurs is represented by an interruption in the flow line with a circle con­

taining the Greek letter ~. The circle has one point of entrance but no 

point of exit. See Figure 13. In general, the Greek letter is not restricted 

to ~ and any letter could be used. The various points to which the transfer 

is to send the control are also represented by circles which contain the same 

Greek letter as the transfer circle. These Greek letters are, however, in­

dexed for identification. These circles have no point of entrance but one 

point of exit as shown in Figure 14. 

(5) ) 

) @ (5) » 

e :> 

Figure 13. Figure 14. 

Such a set of symbols is said to represent a set of variable remote 

connections. 

The appropriate addresses are supplied to the transfer .1. in various 

operation boxes by making use of the substitution instructions. The opera­

tion is denoted as 0 = ~ where we enclose the ~i t S in circles to 

show that they are addresses which are concerned with variable remote con­

nections. 0 = ~ is interpreted as meaning that the address repre­

sented by ~i is to be supplied (substituted) into the transfer instruction ~. 

The flow diagram includes the use of the variable remote connections. The 

flow diagram is shown in Figure 15. 
At any step of the integration I i is used to represent the sum of' the 

terms in Simpson I s Rule up to that point. When the integration is completed 

~I represents the value of the integral to the desired accuracy. 

Box 1 of the flow diagram sets ~-l to 2 as an initial step for the 

induction. The variable of induction i is set to O. ~ is set to ~l so 

that the first traversal of the induction will be through Box 2. 

Immediately following Box 2, ~ is set to ~3 so that after going 

through Box: 2 the next traversal will correctly include Box 3. In Box 3, ~ 

is set to ~2 so that the following traversal includes Box 4, and so on until 

the induction is completed. At each traversal of the induction only one of 

the boxes, 2, 3, or 4, is included. 



b 
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A.2:0 A.2: i I A.I :L'I I A.I, :):-'1 

I I ~* ________________ _ 
I a I A = AI if i = 0 L_I= 0 to A.I 

t----I.-..t 0 to A. 2 

CD=@ 

5 

A.I :Li-I 
A.2: i 
A.3: u j 

6 

1,.--....., I 
~,......-I-........ A = A2 if i # 0 or I, but i even ___ --J 

--

A = A3 if i odd 

2 

Of = 2~ x f(x,)to A.3 

3 
4~x 

O"j = -3- f(x j ) to A.3 

0=G) 

i + I to A.2 '--""1--1 

9 

Xl 
A.I: J f(x)dx f--­

Xo 

~NTEGRATION by SIMPSON'S RULE 

FIG. 15 
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Box 7 discriminates on the quantity i+1-I. This means that the con­

d.itional transfer is effective when i = I-I. At this time LI -1 has 

just been formed. The final step of the induction, the formation of ~I 
is done in Box 9. 

storage is needed to store the numbers corresponding to the addresses 

AI' A2 , and A
3

• These addresses are stored as position marks and 

B.1: (Al)o 

B.2: (A2)0 

B.3: (A
3

)0 

The following storage is also needed: 

B.4: (1) o 
B.5: (I) 

~xo 
B.6: "3 

The values of f(Xi ) are stored in °1+1 successive locations where C.O 

stores f(xo)' C.l: f(x
l

) ••• C.i: f(Xi ) ••• C.I: f(~). The value of the· 

initial address C.O is needed and it is stored in 

B.7: (C.O) o 

as a position mark. Any particular value 

metic unit by forming its address as 

f(x. ) 
l. 

is brought into the arith-

(C.i) = (C.O) + (i) in R2 
000 

The address C.l is then substituted into the instruction which is to operate 

upon the corresponding 

The coding is: 

Box 1. 

1. a--+Ac 0 

2. A ____ m A.I 

3. A--.m A.2 

4. m--.Ac B.l 

5. S--..m I,ll 

6. m---.Ac B.7 
7. m---+Ah A.2 

8. S~m 1,10 

9. m--+Q B.6 

10. X [e.i] 
11. T [A ] 

rex. ). 
1. 

0 to R2 

~-l = 0 to A.l 

0 to A.2 

(A1 )o to R2 

Al to (8-19)11 

(c.o) to R2 
0 

(C.i) = (c.o) + (i) in R2 
0 0 0 

C.i to (8-19)10 6x 
"3 to R4 

6; :f(x
i

) in R2 
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Box 2. 

1. A----+m A.3 0. = ~X :f'(X
i

) ro A.3 
~ 

Box 5. 
1. m--+Ac B.3 ("-3)0 to R2 

2. S---..m I,ll A3 to(8-19)ll 

Box 6. 

1. m.--+Ac A.3 °1 to R2 

2. m-.-.Ah A.l L1 = Li -1 + °i in R2 

3. A--.m A.l L1 to A.1 

Box 7. 

1. m~c A.2 (i) to R2 
0 

2. m---+Ah B.4 (i+1) in R2 0 
3. m---..Ah- B.5 (i+l-r) in R2 

0 

4. C 9,1 

Box 8. 

1. m-.-.Ac A.2 (1) to R2 
0 

2. m--4Ah B.4 (i+1) in R2 
0 

3. A~m A.2 (1+1) to A.2 
0 

4. T 1,6 

Box 3. 

L(2) 4&c in R2 1. °1 = T f(x1) 
2. A---..m A.3 °1 to A.3 

3. m---+Ac B.2 (A2)0 to R2 A2 to (8-19)11 
4. S--+m I,ll 

5. T 6,1 

Box 4. 
1. L(I) °i = 

2~ T f(x1) in R2 
2. A---ilm A.3 °1 to A.3 

3. T 5,1 



Box 9. 
1. m--..Q B.6 6x to R4 

3 
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2. X e.I 6; f(X r ) in R2 

3. m~Ah A.l ~I = in R2 

6x In Boxes 2, 3, and 4 the quantity ~ f(Xi ) is needed. Rather than 

code this separately in ~ach box, it is coded immediately preceding the 

variable transfer ~. This is coded in Instructions 6 through 10 of Box 1. 

The transfer instruction at the end of Box 8 transfers the control into In-

struction 6 of Box 1 for this computation is to be done for all traversals 

in the induction. The coding of Boxes 2, 3, and 4 starts with the quantity 

6
3
x f(x

i
) in R2. 

There are 38 instructions in all. Pairing these into words gives 19 

words of instructions. 

The word cod1ngis: 

1. a~Ac 000 A-iI'm 028 

2. A---+m 029 m~Ac 021 

3. S---..m 006 m--+Ac 021 

4. m~Ah 029 S~m' 005 

5. m~Q 026 X [ J 
6. T' [ ] A--+m 030 

7. m---+Ac 023 S---+m 006 

8. m-Ac 030 m~Ah 028 

9. A~m 028 m--.Ac 029 

10. m~Ah 024 m---.Ah- 025 

11. e 018 m~Ac 029 

12. m~Ah 024 A---..m 029 

13. T' 003 L(2) 002 

14. A--+m 030 m ...... Ac 022 

15. S--'m 006 T 008 

16. [ J L(l) 001 

17. A---+m 030 T 001 

18. m~Q 026 X (e.l) 
19. m---.Ah 028 A---+m 028 

20. stop 
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21. (A.l ) 0 = (6) 
o 

22. (A.2 )o = (16) o 
23. (A.3)o = 

24. (1) o 

(13) 
o 

25. (I) o 

26. 6; 
27. (C.O) o 
28. A.l 

29. A.2 

30. A.3 

The transfer instruction A. must transfer the control at various 

phases of the problem into Box 2, Instruction 1; into Box 3, Instruction 1; 

and into Box 4, Instruction 1. As the coding was done the transfer was 

fixed as a prime transfer since Box 2, Instruction 1, and Box 3, Instruction 1 

each were on the right side of their respective words. The first instruction 

of Box 4, however, naturally ~alls as the left side of an instruction word. 

This meant that the left half of Word 16, the start of Box 4, was left blank 

and Box 4 was started as the right-hand instruction. Perhaps by shifting 

the arrangement of Boxes 3, 4, and 9 this could have been avoided. 

A better method of avoiding this would be to use the half word substitu­

tion instruction. In Words 21, 22, and 23, where the numerical values of 

A.i·s are stored, rather than storing just the addresses the following should 

be stored: 

21. (A.l)o = CB006cBOo6 

22. (A.2 ) 0 = CA016CA016 

23. (A.
3

) 0 = CB013CB013 
Then by a half word substitution the order as well as the address of the trans­

fer instruction may be altered. Box 4 would now start with the left-hand in­

struction of Word 16 ~hich saves the previously wasted half word. 

In the right-hand instruction of Word 18, the address C.I is inserted 

in parentheses. C.I is a known address, but for the example no numerical 

values were assigned for the C.i storage, nor was the number of intervals 

I determined. For this reason the C.I is indicated in parentheses rather 

than as a numerical address. 



The addresses of the instructions in the word code are written as 

three characters. Writing numerical addresses in this fashion tends to 

avoid errors in transcribing the word code into the numerical code as 

addresses are represented in the numerical code by three characters. 
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Problem 8 
Although the computer operates with a fixed binary point, at 

times it is advantageous to use a floating binary point. The float­

ing point method (hereinafter referred to as FPM) allows each number 

to be expressed as a fraction and a characteristic (an exponent). 

For example the decimal numb~r 
1198.543210 

or its equivalent 

.1198543210 x 10
4 

expressed in floating point notation would be 

.1198543210, + 4 
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where the +4 is the positive exponent of 10 associated with the number. 

Similarly, a binary number 

1011.1001 

expressed in floating point notation would be 

.10111001, + 100 

where the +100 is the positive exponent of 2 associated with the number. 

The discussion here will pertain only to floating binary point 

operation. Although the computer operates with binary numbers, there 

are floating point schemes where the characteristic (exponent) may be 

expressed to a base other than the base two, such as the more familiar 

decimal base. Since the computer operates with binary numbers, it is 

inherently easier to use the floating binary point scheme, or at least 

a scheme where the base of the characteristic is a power of two, such 

as the octal or hexadecimal base. For much of the floating point 

operation a choice of expressing the characteristic to a base 16, 32, 

or even 128 might simplify floating point procedures. 

The need for FPM may arise where the ranges (the maximum and mini­

mum) of the quantities entering into the computation are not known with­

in reasonable limits; or where the range of the quantities is so great 

that the scaling of numbers for fixed binary point operation causes un­

due loss of the Significant figures of the numbers. When a problem is 

scaled for fixed point operation, the loss of significant figures caused 

by the numbers becoming too small is as important a consideration as is 

numbers becoming too large. 
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The use of the FPM is, in general, discouraged for must compu­

tation as it greatly slows down the effective computer speed. In 

most problems, scaling may be accomplished without undue loss of 

significant figures. In cases where the scaling is difficult to 

accomplish, a scheme of self-adjusting scaling or the use of scaling 

checks may be employed as an aid to scaling. 

Addition is chosen as the example for FPM. The other operations 

are accomplished by a somewhat similar scheme. 

To add two numbers that are represented in floating point nota­

tion, the exponents must first be made the same. This may be shown 

by the following decimal example: 

+ 

These numbers are 

.153, 3 

.325, 2 

.153 x 10~ 

.325 x 10 
and for the numbers to be summed, the powers of 10 must be the same; 

therefore, 
3 .153 x 103 .0325 x 10 

.1855 x 103 

To do the operations in the computer, all numbers must be less 

than 1. The smaller exponent must always be made equal to the larger 

as this has the effect of making the number whose exponent is in­

creased, smaller, which keeps it less than 1. 

The addition operation is accomplished by the computer as follows: 

(i) The exponents are compared. If they are not the same, the 

smaller exponent is increased. The difference between the 

exponents is the amount by which the smaller is increased. 

(ii) For each increase of the exponent by 1, the number should be 
-1 - -1 

multiplied by 2 • A multiplication by 2 corresponds to 

the number being shifted right by!. 

(iii) After the smaller number has been adjusted, the addition is 

done. The exponent of the sum is the same exponent as the 

numbers, unless the sum is greater than!. In this case 

the sum is shifted right ! and the exponent is increased by!. 



For example: 

+ a = • 11111101, 100 
b = .10110010, 011 
s 

The exponent of b is ! less than the exponent of ~; there­

fore b is shifted right !, and! is added to its exponent. 

Now 
a = 0.llllll0l, 100 

+ b = 0 .01011001, 100 
s = 1.01010110, 100 

The sum of the two n~bers is greater than ! so ! is 

shifted right ! and the exponent is increased by!. 

s = 0.10101011, 101 
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In the computer, if the sum of the numbers is greater than !, it 

cannot be adjusted simply by a right shift of 1 as indicated above 

since the sign bigit propagates in a right shift. To avoid this dif­

ficulty, the addend and augend are each shifted right by ! and their 

exponents increased by ! before the addition is done. Then no spillage 

can occur in the addition. 

Numbers to be operated on by FPM are adjusted into a standard 
-1 form where the first significant bigit of the number is in the 2 

bigit pOSition. All fractions F are therefore in the range 

1/2 ~ F < 1 

Floating point numbers have 27 Significant bigits which, with the sign 

bigit, occupy bigit pOSitions 0 through 27. Positions 28 through 39 

of the word are used for storing the exponent, and a number and its 

associated exponent are stored in one word. The 27 bigits of the num­

ber correspond to about 8 decimal digits. The 12 bigits allowed for 

the exponent are more than ample; however, 12 are used since the bigits 

(28-39) may be conveniently manipulated by the s~m' instruction. 

Positive and negative exponents are allowed, and the 12 bigits 

(28-39) for expressing the exponent ~ give a range 

- 2048 ~n < 2048 

Negative exponents are represented as complement numbers. The first 

bigit of the exponent is considered its sign bigit. The exponent ~ is 
. -11 an integer and it is represented as n·2 • 



We propose to form the sum of two numbers !: and ~ with exponents 

ct and {j, respectively. The fractions a and b are in standard nota­

tion, that is 

1/2~a, b<l 

After the addition, the sum ! is adjusted to standard form. 

As a first step of the procedure, !: and ~ are each shifted right 

by ! and their respective exponents are increased by !. This insures 

that the sum. s = a + b < 1. 
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The difference in the exponents is determined. It the difference 

is greater than 27, the sum. is set to the value of the number with the 

larger exponent. A difference of more than 27 ~ans that the smaller 

exponent must be increased by at least 28, and the number associated 

with the exponent must be shifted right the corresponding number of 

places. Since the numbers are represented as a sign bigit and 27 sig­

nif~cant bigits, a number shifted right by 28 places can make no con­

tribution to the sum. If the difference in the exponents 1s less than 

28, the smaller 1s adjusted to be equal to the larger. The sum of the 

numbers is then formed and put in standard notation. We now examine 

the flow diagram shown in Figure 16. The storage of the problem is: 

A.I: a (0-27)a(28-39) 
A.2: b (0-27»)9(28-39) 
A.3: s (0-27) cr (28-39) 

Box 1 shifts ~ and ~ right! and increases each of the exponents. 

Box 3 discriminates on the difference of the exponents to determine which 

exponent is the greater. The problem is arranged so that the number 

with the larger exponent must be in location B.I and its exponent must 

be in B. 3. If a ~ {j no changes of storage need be made. If a < )9 
then the positions of !: and ~ are interchanged and~tl is put into B.3. 
This is done in Box 4. Box 5 discriminates on the difference of the ex­

ponents to see if this difference is greater than 27. If the difference 

is greater than 27, the sum is set to ~, the number with the larger ex­

ponent. If the difference is less than 28, the sum is 
_I Cl_DI 

s = a+2 f-Ib 

and the exponent is the exponent of!:. A discrimination is made on the 

sum s to see if it is in standard form. If it is not, the sum is shifted 



0' = 2-10 to B. I 

tf = 2-1 b to B.2 

(a+ I) 2-11 to B.3 

(~+ I) 2- 11 to B.4 
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2 

1------....... ------; 8-2-1l=(ct-~)2-11 to B.5 

B.I: 0' 

B.2 : tf 
B.3 :(a+1)2-11 

R 4 : ( ~ 4- " ?-II 

I B~5: '8· 2': il-

B.3: (j -2- 11 

A.3: 5 

B.I : 0 

B.2: b 

3 

b 

b' to B.I 
0' to B.2 
+1 )2-11 to B.3 

, 
0-+0 

o 

o'-+b 

B.3: (J; -2- 11 o 1- _____ _ 

B.5: 8 -2- 11 

10 

50 = 0 to A.3 
9 '-----:--...... =11= --_..&....-_--, 

4 

6 5 to (O-27)A.3 ......-...... ....&.....---f S = Sj 
(T to (28-39)A.3 (J" = (J"j 

8 b to A.3 

5i+1 = 25 i to A. 3 + 
- -I 

lSi I -2 ~---"""--""'-~_---J (jj+1 2- 11 =(~ -I )2- 11 to B.3 

FLOATING POINT ADDITION 

FIG. 16 



-1 left until the first significant bigit is in the 2 bigit position. 

This is done in Boxes 7 and 8. Box 9 combines the sum and its ex­

ponent and stores them in A.3. 
The storage locations B.1, B.2, B.3, B.4, and B.5 are needed to 

store inter.mediate values during the computation. 

The coding is: 

Box 1. 

1. m-+Ac 

2. R(l) 
3. A~m 
4. m~Ac 

5. R(l) 
6. A~ 

7. ~Ac 
8. L(28) 

9. a--.Ah 

A. A---+m 

B. m--.Ac 

c. L(28) 

D. a~Ah 

A.1 

B.1 

A.2 

B.2 

A.1 

a (0-21) ,d'(28-39) to R2 

at = 2-1a in R2 

at to B.1 

b (0-27) ,(3<28-39) to R2 

b' = 2-~ in R2 

b' to B.2 

a(0-27) ,a(28-39) to R2 

a·2-11 in R2 

(.a +1)2-11 in R2 
-11 ( cr+1)2 to B.3 

b (0-27),~(28-39) to R2 
IJ -11 
1-1·2 in R2 

(,8+1)2-11 in R2 
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E. A~m ({B+1)2-11 to B.4 

Box 2. 

1. m--+Ac B.3 

2. m~- B.4 

3. ~m 

Box 3. 
1. . C 

Box 4. 
1. m~Q 

2. m~Ac 

3. ~m 
4. A--.m 

5. m--.Ac 

6. A~m 

5,1 

B.2 

B.1 

B.1 

B.2 

B.4 

B.3 

(a+1) .2-11 to R2 

o = (cr -,8 )2-11 in R2 

o 1n R2 

b t toR4 

at to R2 

o to B.5 

a = b' to B.1 

b = a' to B.2 



Box 5. 
l.. m--+AcM B.5 

8 -ll 
2. a-tAh -2·2 

3. c l.0,1 

Box 6. 
l.. m~AcM B.5 

2. R(8) 
3. S~m 6,5 
4. m--+Ac 

5. R(n) 

6. m~Ah 
7. A~m 

Box 7. 
1. m---+AcM 

2. a-+Ah 

3· c 

Box 8. 

l.. m-+Ac 

2. L(l) 

3. A--+m 

4. m--+Ac 

5. a~Ah 

6. A-+JI 

7 . T 

. Box 9. 
1. m--+Ac 

2. R(28) 
3. S--+m' 

4. Stop 

Box 10. 

l.. m~c 

2. A--"'JI 

3. T 

B.2 

[ l ol J 
B.1 

A·3 

A·3 

B·3 
-2 -ll 

B.3 
7,1 

B.1 

A.3 

1,1 

, 0 \2-11 to R2 

(lol-28)2-11 
1n R2 

101·2-ll to R2 

10 1.2 -l.9 1n R2 

b to R2 

2- lo1b in R2 

8 = a + 2- loib 
o 

(811 to R2 

18i l - 1/2 in R2 

8
i 

t:> R2 

8 1+1 = 281 in R2 

a.2-11 to R2 

0.2-39 in R2 

a to R2 

a to (28-39)A.3 

8 = a to A.3 o 
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In the coding of Box 1, the exponent is not cleared out of positions 

28 through 39. These positions do not affect the answer. The numbering 

of the instructions in Box 1 is done hexadecimally. There are E in­

structions which corresponds to 14 decimally. 

In the coding of problems for the computer, the numbering is done 

hexadecima1JYj therefore in all furtber examples the numbering will be 

hexadecimal. 

In Box 9, where ! and !! are combined,! is already residing in 

A.3. !! is brought into R2 and shifted right by 28 so that it is in pOSitions 

28 through 39 of R2. It is then sent to A.3 by means of a substitution in­

struction, and A.3 correctly contains 

5(0-27), 0(28-39) 
The floating point addition as set up would not be practical to in­

corporate into a large problem ~here many suCh additions are done. As 

coded, 49 instructi ons are used, several of which are lengthy shifts. In 

floating point routines, time becomes a determining factor and the routines 

must be constructed with that in mind. There are several ways in which the 

time involved in the present routine could be shortened. However, we are 

interested at this time in demonstrating floating point procedures without 

attempting to develop the most satisfactory scheme. 

The present problem does not take into account a method of handling 

a number that is zero. A way of doing this is not to allow an exact zero, 

but to say that zero is to be represented as the fraction 1/2, with an 

appropriate negative exponent. The negative exponent needs to be at least 

28 amaller than the amallest exponent encountered in the problem concerned. 

An addition would treat this number as zero in fOrming the sum. The fraction 

part as 1/2 is suggested so that all numbers are represented in the stand­

ardnotation. 

The code in final form contains 25 words since there are 49 instructions. 

If the code starts at zero, 25 words would occupy addresses 0 through 19, 

hexadecimally. B.l, B.2, B.3, B.4, and B.5 are the addresses lA through 

lE, and A.l, A.2, and A.3 are addresses IF, 20, 21, respectively. 
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The code is: 

O. m.-,..Ac OlF R(l) 001 

1. A-4-m OlA m--+Ac 020 

2. R(l) 001 A~m OlB 

3. ~Ac OlF L(28) OlC 

4. &.--:»Ah 001 A-:t-m OlC 

5. m---:)o-Ac 020 L(28) OlC 

6. a--..Ah 001 A~m OlD 

1. m---+Ac OlC m~Ah- OlD 

8. A~m OlE C OOC 

9. m~Q OlB m~Ac OlA 

A. Q~m OlA A--+m OlB 

B. m~Ac OlD A~m OlC 

C. m~AcM OlE ~Ah FE4 

D. C 018 m~AcM OlE 

E. R(28) 01C ~mt ooF 

F. m--+Ac OlB R(o) 000 

10. m~Ah OlA A~m 021 

11. m~cM 021 a--+Ah COO 

12. C 016 m~Ac 021 

13. L(l) 001 A--+m 021 

14. m---+Ac OlC a--+Ah FFF 

15. A~m OlC T 011 

16. m~Ac Ole R(28) 01C 

.11. S--+mt 021 stop 

180 m--+Ac OlA A--+m 021 

19. T 011 

lA. 

lB. 

lC. 

lD. 

lEe 

IF. a,~ 

20. b,~ 
21. s,a 



Instruction 5 of Box 6 becomes the right hand instruction of OOF. 

The substitution instruction (Box 6, Instruction 3) that substitutes the 

address into Instruction 5 of Box 6 must be an s~ml instruction as 

is indicated. Instruction 2 of Box 6 must be changed to R(~8) rather 

than R(8) to accommodate the s~m'. 
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Problem 9 

The standard 40 bigit number (including sign) provides sufficient 

accuracy for must computation; however, certain problems may arise 

where added precision is necessary. To handle such cases, mul tiple 

precision routines must be used. These routines effect the basic 

operations with numbers that are 18, 111, or k·39 (k =1, 2 ••• K) 

bigits in length. For the present purpose, which is to illustrate 

such methods, only double precision (numbers 18 bigits in length) is 

considered. 

In the treatment of multiple precision numbers, some convention 

must be adopted for the sign bigits of the auxi~iary components, the 

principal component' having of course the same for.m as the standard 

size numbers. A convenient pattern is to set to Q the sign bigits of 

all auxiliary components. Hence, for the double precis ion number x ~ 0, 

the representation is simply 

x = x· + 2-39x" 

where x· is the principal component and x" the auxiliary one. 

For x < 0, it should be represented as a 18 bigit complement, 

the sign bigit of the principal component -·being ! and that of the 

auxiliary being Q by our convention. This implies that the two parts 

of (2- x ) are 

2 - x· 

1 -

- 2 

x" 

-39 and 

The example chosen is double preciSion division, for it in itself 

includes a double precision multiplication and subtraction. The division 

is performed by forming first the reciprocal of the divisor to double 

precision, followed by a double precision multiplication with the 

dividend. We first consider double preciSion addition, SUbtraction and 

multiplication. 

A double preCision addition 

s = x + y 

is done by first adding the less significant components XII and y". The 

sum may be greater than!. Recall that x" and y" each had a sign bigit 
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of Q so that a ! in the sign position of this sum indicates spillage 

'rather than a ne gat i ve number. This spillage corresponds to a carry 

into the 2-39 position of the more significant part of the sum; there­

fore, we may write 

s" = x" + yll (mod 1) 

The more significant part of the sum is 
Sl 

E 
o 

= x' + y' +E o 

= ( 2 - 39 if carry present 
o if no carry present 

Finally, the double precision sum is 

s = s' + 2-39s 11 

In order to for.m a difference of two double precision numbers, 

the complement of the number being subtracted is first obtained. An 
addition is then performed as indicated above. 

In the double precision multiplication, the product 

p = xy 

is to be formed. For simplicity of discussion, first assume x,Y3- o. 
Algebraically, the multiplication is 

p = (Xl + 2-39x lf )(y' + 2-39y ll) 

= Xlyl + 2-39xlfy' + 2-39x'ylt + 2-78x lly " 

Each term on the right bas 78 bigits, so we may write the product 

(neglecting roundoff on the ext~me right) as 

p = (Xlyl)1 + 2-39(X'y')1I + 2-39~"y')' + 2-39(X'ylt)I 

pi = (Xlyl}1 

pit = (Xlyl)1I + (Xlfyl)I + (Xlyll)I 

P II is f'ormed first. In the partial. summing, carries may be produced that 

must be added into the 2-39 position of' pl. The summing is done in two 

steps as 

with 

s = ~x Iyl) II + {xlly'} I] (mod 1) 

_ {1 if carry present 
Eo - 0 if no carry present 
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p" = [8 + (X'y") I J (mod 1) 

E = {l if carry present 
1 0 if no carrY present· 

This completes the multiplication for· x, y ~ 0 and 

pIt = (x Iy I)" + (x"y I ) I + (Xlytl)1 _ E - E1 0 

P '. = (x'y')' + 2-39( E + E l ) 
0 

p = pi + 2-39p" 

In order to treat the double precision multiplication when either 

the multiplier or the multiplicand is negative, we refer to the algebraic 

derivation of the multiplication. (See chapter on Binary Arithmetic.) 

A product ~ is formed as r i 
p = (~ + u)( 2 + 1 + v) 

o i-
where 

(
1 if u 

~o = 0 if u 
is negative 
is positive 

The product expanded is 

p = ~ ~ 2i + ~ + ~ v + u .!J 2i + u + uv 
o i~ 0 0 i~ 

p = ~ v + 240u - ~ + u + uv + 240~ o 0 

p(mod 2) = ~ v + 2 - u + u + uv o 

If u is negative, ~ = 1 and a term v appears in the product. A 
o -

correction of (2-v) is then necessary: For simple precision, if ! is 

negative the terms (2-u) and ~ are generated during the multiplication 

and precisely compensate each other; hence, no correction term is neces­

sary when! is negative. This compensation is not exact in double pre­

cision, and a small correction is required. Now in a double precision 

multiplication 

p = xy, 

a correction term of 

2 - Y 

is necessary if ! is negative (indicated by the sign of Xl). All inter-

mediate products involving x· have a correction added, namely the comple­

ment of the multiplicand. The terms involved are 

(X'yl)1 and (Xly")1 



The term (X'y')" of course does not suffer any correction, and the 

corrections as done by the computer are, respectively, 

(2-y' ) and (2_Y") 

Combining these two terms appropriately one gets the correction as 

done by the computer for a negative multiplier !, namely 

2 - y' + 2-39(2_y") 

The true correction, however, should be 

2 - y = 2 _ y' - 2-39 + 2-39(l_y") 
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The most significant part of the correction term is 2-39 too large. It 

is adjusted by subtracting 2-39 from (x'y')'. The least significant 

part of the correction term is ! too large. It'is adjusted by setting 

the sign bigit of (X'y"), to O. (leSs pedagogically, but more concisely, 
- 8 

it may be said that the computer correction is too large by 2-3 , and 

this is compensated by subtracting 2-39 twice.) 

A negative multiplier which necessitates the above additional cor­

rections may be detected by examining the sign of (x 'y") , • L:. always 

has a sign of 0; therefore, if 

(X'y")'< 0, then x<:O 

and 2-39 is subtracted from (x·y·)· and the sign of (X'y")' is set to O. 

If (X,y"), > 0, then x> 0 

and no correction is necessary. If 

(X'y")' = 0 

and if yU = 0 

then ~ may be negative, and examining (x'yU). will not indicate this. 

However, in such a case, the correction as done by the computer is the 

precise one and no further steps are necessary. 

When the multiplicand l is negative, the terms (x'y')· and. (XUy.). 

suffer the standard correction by the computer (as a negative 

~ultiplicand is indicated by the sign of y'). We have seen above that 

the single multiplication process which forms the products (x·y·)· and 

(X"y' ). generates pairwise the terms 

x', (2-x') and x", (2_X") 

The first pair compensate precisely; the second pair is really 

2-39(x lI+2_XU) = 2(2-39) 



As before, this quantity must be subtracted from the collection to 

obtain the precise multiple product, and again this is accomplished 

by subtracting 2-39 from the more significant part and ! from the 

less significant part. If 

(x tty' ) '<: 0 then y' <: 0 

and 2-39 is subtracted from (x'y')' and the sign of (xlfy'), is set to O. 

If (x"y')' ~ 0 then no correction is needed. 
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A double precision product involving all necessary correction terms 

is done as follows: 

Form (X'y")I. If 
E = 2-39 

0 
(x'y")' < 0 

then set sign of (X'ylf), to O. 
E 

0 
(x 'y") ':::' 0 = O. 

Form (x"y')'. If 

(x"y')' < 0 E1 = 2 -39 

then set sign of (x"y' ) , to O. 

(x"y' ), :::. 0 

Form (x 'y' )' and (x'y') It. Then form. the 

s :: (x'yrt), + 

El = 
sum. 

(x"y' ) , • 

O. 

If 

p" is formed as 

If 

p' is formed as 

and 

s:::,l 

s<l 

pIt = 

p"~ 1 

plt< 1 

p' = 

E2 :: 2-39 then set sign of ! to 2. 
E2 = o. 

(x'y' ) 11 + s. 

E'3 = 2-39 then set sign of pIt to O. 

E3 :: O. 

(x 'y' ) I - Eo E + E + E - 1 2 3 

p = p' + 2-39p lt. 

We now return to the division process. The double precision quotient 

Q = x/y 
is to be formed. As a first step the reciprocal of l is obtained to 78 



figures. The reciprocal of y 

Z o 

Zi+l 

Zi+l 
lim 

i.-,. 00 

is found by the iterative scheme 

= l/y' 
2 

= 2Zi - yZi 

= l/y. 

Such a scheme is error-squaring; therefore if the guess Z is precise 
o 

to 39 bigits, Zl is precise to 78 bigitso The scheme is shown to be 

erro~quaring by the following: 

Multiply both sides of the above equation by -y. This gives 

2 2 
-yZi+l = -2Zi y + Y Zi 

Adding! to both members gives 

1 - yZi+l = 

= 

2 2 
1 - 2Zi Y + Y Zi 

(l-yZi) is the error in the i th approximation. The error (l-yZi+l) is 
th the error of the (i+l) approximation whiCh as indicated above is the 

square of the error of the ith approximation. 
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The reciprocal of Z cannot be determined directly as it is greater 
n+2 than 1. Hence, the reciprocal of the scaled quantity 2 y is found where 

1/2:E:. 2\r1< 1, hence 1(2n+2Y)-1< 1. 

The unsealed quotient is obtained in two steps. First ~ may be multiplied 

by 2n, inasmuch as Ixl <: IY); after the division a left shift of two is 

then performed. 

Zo is precise to 39 figures; consequently Zl is precise to 78 figures. 

Zl involves a double precision multiplication in the term 

2ny • Z2 
o 

The subtraction 

Eq. (1) 

is not a true double precision subtraction as 2Z contains just 39 figures. o 
A double precision complement of 22·2nyZ 2 must be taken however. Note 

2 0 
that a factor 2 is incorporated into the subtrahend in the above subtraction. 
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This is necessary because of the 2-2 factor introduced in forming Z in 
Eq. (1). Using Zl' the quotient . 0 

Ql = Zl · x 

is formed by a double precision multiplication. Then 

Q = 22Q 
1 

Since Q is formed by a left shift of g, only 16 bigits are determined 

in Q rather than the desired 78. 
We now discuss the flow diagram of Figures 17 and 18. Boxes 1 and 

2 of the flow diagram adjust ~ and l so that 

," 1/2~ly)<1 

Box 4 stores l and Z20 into the four appropriate locations to be 

used by the double pre~ision multiplication routine. Since two double 

precision multiplications are required and since they are at two different 

locations on the flow diagram, the multiplication routine is arranged 60 

that it can be used from any of several places. Four locations are re­

served for the factors in the multiplication and upon completing the multi­

plication a variable remote connection is set as an exit point from the 

routine. Box 4 also sets the exit from the multiplication as~= ~ 
which corresponds to the first instruction of Box 5. 

Box 5 forms Zl and then sends Zl and ~ to the appropriate locations 

for the multiplication routine, and the exit is set as ® = ® which 

corresponds to the first instruction of Box 6. 
Box 6 shifts ~ left by g to give the desired Q. 

The multiplication routine is contained in Boxes 1 through 14, num­

bering hexadectmally. The boxes follow the multiplication procedure as 

outlined; hence, no further discussion is necessary. 

The storage of the problem is: 

A.I: Xl 

A.2: XU A.4: yU 

The number 2-39 is needed, and it is stored in A.5 as 

A.5: _2- 39 

The addresses d 1 and a 2 need to be stored. They are stored as posi­

tion marks at addresses A.6 and A.1. 

A.6: «1'1)0 

A.1: (ct2 )0 



6 

Q = 22QI 

Q' to B.I 

a" to B.2 

A.I : x~ 
A.2:x~ 
A.3:y~ 

A.4: Y~' 

____ B.I : 0; 

B.2 :Q'j 

QI; : p" 

2 

Yntl =2Yn 

b 
1---oII __ ~ 

Yntl to A.3 

Y~tl to A.4 
xn+1 : 2x n 
x~+1 to A.I 

x~+ I to A.2 

2 2 
~I : 2262 Yn 20 

u
l

: z; to B. I 

1--oI __ ~ u": ll; to B.2 

Vi: Xl to B.3 

v": x" to B.4 

5 

DOUBLE PRECISION DIVISION 

FIG. 17 

2-2 
~O:-I- to B.5 

Yn 

I I t B I u : Yn 0 . 

u
ll

: Y~ to B.2 

-91-

3 

4 

, 2 I 

v :(i!o) toB.3 

VII: {i!~)11 to B.4 

@:@ 

(Yn z~ )1 = pi 

( ~2)" = II Yn 0 p 

1 
I 
I 
I .. - 2 II B.21 (Yn 20 ) 

B.5: 20 
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(u' V")' to C.3 
B.I :Ul 

B.2:u" 
B.3:v l 

B.4: v" 

----~~ ~~.-~ 

1 + 
Set exit (a) to (aj ) 

t--...a.-.~--t (u' v') I to C.I I--~--t 

(u'v')" to C.2 '-------II 

C 

EO: 0 to C.5 

( U' V" )' 0 5 to C.3 

EO: - 2-39 to C.5 

8 

(u" v')' OS to C.4 5: (u" v')' + (u' v')" to C.2 +-------:-___ t----_-4I--I I EI : EO-2-39 to C.5 

C.4: (u"v')' 

9 

C.2:{u'y')" 
C.3 :(U'y")' ·C.5:EI _______ ----.. __ -------1 (u" y')' to C.4 
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C.3 t (u' y")' 

C~5: EO 

14 

EI : EO+O to C.5 

E 
F 10 

(5) OS to C.2 .--__ -----,...--__ --1 p": 5+{u'v")' to B.2 
E2 : EI + 2-39 to C.5 I 

l 

C.2:5 
C.3 1 (u' v")' 
C.5:E2 

B.I: p' 
B.2: p" 

I 
I 
I 

C.I .(u'v')' 
C.5:E3 
B.2 I p" 

(p") OS to 8.2 

E3 : E2 + 2-39 to C.5 

1----- -

12 

a t---------=-I------__ ~--------~ pi: (u' v')' + E 3 to B.I 

DOUBLE PRECISION DIVISION 

FI G. 18 

d 
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Ten words of intermediate storage are needed for the computation. This 

storage is designated as 

B.1 C.1 
B.2 C.2 
B.3 C.3 
B.4 c.4 
B.5 C.5 

The coding is: 

Box 1 

1. ~AcM A.3 I Y~ 1 to R2 
2. a~Ah -1/2 (Y~ I- 1/2 in R2 

3. C 3,1 

Box 2 

1. m--+Ac AG4 y" n to R2 

2. L(l) 2y" in R2 n 
3. ~Q A.3 y' to R4 

n 
4. L(1) 2(y' + 2-39y " ) in R4 and R2 n D 
5. Q---4m A.3 Y'n+1 to A.3 

6. R(1) 

7. 00 

8. A~m A.4 II 

Yn+1 to A.4 

9. m~Ac A.2 x" 
n 

to R2 

A .. L(1) 2x" n in R2 

B. m--+Q A.1 x' to R4 n 
C. L(l) 2(x' + 2-39x") in R4 and R2 n n 
D. Q-+m A.1 x' n+1 to A.l 

E. R(l) 

F. DS 

lOG A~m A.2 x" n+l to A.2 

11. T 1,1 

Box 3 

1. a-.Ac 1/4 1/4 to R2 

2. + A.3 z = 1/4 • y' in R4 
0 

3. Q~m B.5 Z to B.5 
0 



Box 4 
1. m~Q 

2. Q~m 

3. m--7Q 

4. Q~m 
5. m~Q 

6. XI 

A.3 

B.l 

A.4 
B.2 

B.5 

8. Q~m B.4 

9. m~Ac A.6 

A. T 

Box 5 
1. m~Ac B.2 

2. L(l) 

3. m-+Q B.l 

4. L(2) 

5. Q~m B.l 

6. R(l) 

1. DS 

8. A~m B.2 

9. m~Ac- B.l 

A. m~Ac A.5 

B. m~Ah B.5 

c. m~Ah B.5 

D. A---+m B.l 

E. m~Ac- B.2 

F. DS 

10. A~m B.2 

11. m~Ac A.l 

12'. A~m B.3 

13. m~Ac A.2 

14. A~m B.4 

.15. m~Ac 

16. T 

y' to R4 

y" to R4 

z to R4 
o 

Xi to R2 

XU to R2 

y' to B.l 

yrt to B.2 

to B.l 

in R2 

ZI to B.l 

zit to B.2 
1 

Xl to B.3 

x" to B.4 

-100-
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Box 6 
1. m~c B.2 Q" 

1 
to R2 

2. L(l) 2QII 
1 in R2 

3. m~Q B.1 Q' 1 in R4 

4. L(2) Q' in R4, 2Q" in B2 

5. Q-7m, B.l Q' to B.1 

6. R(l) Q" in R2 

7. DS 

B. A~m B.2 Q" to B.2 

9. stop 

Box 7 
1. S~m 12,4 (a. ) in R2 ai to (B-19)11,4 

]. 0 

2. m--+Q B.l u' to R4 

3. X' B.3 I (u'v')' in R2, (u·y·)" in R4 

4. A--+m C.1 (u'y')' to C.1 

5. Q--.m C.2 (U·y·)" to C.2 

BoxB 
10 m~Q B.1 u' to R4 

2. X B.4 (U·yll)., in R2 

30 c 9,3 

Box 9 

1. m~ A.5 Eo = _2-39 to R4 

2. DB (u 'ytl) 'DS in R2 

3. A--..m C.3 (u'vtl ). to C.3 

4. Q---+m C.5 Eo to Ca 5 

Box A 

1. m~Q B.2 U" to R4 

2. X B03 (u"y') • in R2 

3. C B,3 
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BoxB 

1. m~Q A·5 -2 -39 to R4 
2. DS (unv') IDS inR2 

3. A~m c.4 (u"v' ) I to c.4 
4. m-+Ac C.5 Eo to R2 

5. m~Ah 800 El = Eo + (contents of R4) 
6. A~m C.5 E1 to C.5 

Box C 

1. m~Ac c.4 (unv') , to R2 

2. m~Ah C.2 S = (u"v')' + (u'v l )" in R2 

3. A----.m Co 2 S to C.2 

BoxD 

1. C F,l 

BoxE 

1. DS (s)ns in R2 

20 A~m Co2 S to C.2 

3. m~Ac C.5 El to R2 

4. m~Ah- A·5 E2 = E + 2-39 in R2 
1 

5. A--.m C·5 E2 to C.5 

BoxF 

1. m~Ac C.2 S to R2 

2. m~Ah C. 3 pIt = s+ (u 'v") I in R2 

3. A--+m Bo2 pIt to B.2 

Box 10 

1. C 12,1 

Box II 

1. DS (p")DS in R2 

2. A--!)-m B.2 pit to B.2 

3. m--+Ac Co 5 E2 to R2 

4. m-+Ah- A·5 E3 = E + 2-39 in R2 
2 

5. A~m C·5 E3 to C.5 
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Box 12 

1. m~Ac C.l (Xlyl)1 to R2 

2. m~Ah C·5 pi = (Xlyl)1 + E3 in R2 

3. A~m B.l pi to B.l 

4. T [a] 

The double precision shift in Box 2 is done by placing twice the 

less significant part of the number into R2. Its first significant bigi t 

is then in the sign position of R2. The more significant part of the num­

ber is put into R4. A left shift of I now shifts the 78 bigits correctly 

as the Sign bigit position of R2 fi~ into 2-39 bigit position of R4. 

The quantity in R4 is stored. The quantity in R2 is then shifted right! 

and the sign bigit is set to Q. This is done to keep the l~ss significant 

part of the number, the part in R2, in correct form. 

In Box 5, the complement of 22yz2 iS needed. Recall that the comple­
o 

ment of a 78 bigit number is 

2 _ 22yZ 2 = 2 _f( 22yZ 2), + 2-39(22yZ 2)~ 
o ~ o. 0 J 

= 2 - (22yZ 2), _ 2-39 + 2-39 ~ _ (22yZ 2)"J 
o 0 

Since the complement is to be added to a standard 39 bigit number, the 

less significant part has only to be complemented as indicated and sent 

into storage. The more significant part is complemented as indicated 

and added to the 2Z and the result is sent to storage. 
o 

In the multiplication routine (UIV")I and (U"VI)I are formed using 

multiplication with round-off. This accounts for the possible contri­
-78 butions from the neglected terms involving the coefficient 2 • This 

does not, however, always give a correct round-off. 

Note that Box 13 is not coded. It is not necessary to code it if 

the conditional transfer of Box 8 goes to Box 9) Instruction 3. Since 

{U'V")I is formed as a multiply with round-off, R4 contains Q.. This 0 

is set to E and Instruction 4 of Box 9 stores it correctly. Instruction 
o 

3 of Box 9 stores the (u I v" ) I • Similarly, Box 1q is not coded and the 

conditional transfer of Box A transfers into Instruction 3 of Box B. 

Note the last two instructions of Box 4 and Box 5. Box 4 brings 

( ~l)o into R2 and then transfers to the multiplication routine. Box 5 
brings {(f 2)0 into R2 and then transfers to the multiplication routine. 
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The first instruction of the multiplication routine then substitutes 

the address ct'l or ct
2 

as the case may be, into the transfer instruc­

tion at the end of the multiplication routine. 

There are, in all, 107 instructions in the code; which is 54 words. 

The code is to start at Word OJ therefore Words 0 through 35, hexadecim­

ally, are the code. Words 36 through 3C are A.l through A.7, respectively. 

Words 3D through 41 are B.l through B.5, and Words 42 through 46 are C.l 

through C.5, respectively. 

The coding paired into words is: 

o. m~AcM 

1. C 

2. L(l) 

3. L(l) 

4. R(l) 
5. A~m 
6. L(l) 

7. L(l) 

8. R(l) 
9. A~m 
A. a~Ac 

B. Q---7m 

C. Q~m 

D. Q~m 

E. XI 

F. Q~m 

10. T 

11. L(l) 

12. L(2) 

13. R(l) 
14. A~m 

15. m~Ah 

16. m~Ah 

17. m~Ac-

18. A---+m 

19. A~m 

lA. A--+m 

lB. T 

lC. L(l) 

038 

OOA 

001 

001 

001 

039 

001 

001 

001 

037 
200 

041 

030 
03E 

041 

040 

020 

001 

002 

001 

03E 

03A 
041 

03E 

03E 

03F 
040 

020 

001 

S-7Ah 

m~Ac 

m~Q 

Q~m 

OS 

. ... 
m~Q 

m~Q 

m~Q 

A~m 

m~Ac 

m---:,.Ac 

m---+Q 

~m 

DS 

coo 
039 

038 

038 

000 

037 

036 

036 

000 

000 

038 

038 

039 

041 

03F 

0313 
03E 

03D 

030 
000 

m~Ac- 030 
m~Ah 041 

A~m 030 
OS 000 

m~Ac 036 

m-4Ac 037 

m-4Ac 03C 

m~Ac 03E 

m~Q 030 
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lD. L(2) 002 Q~m 031> 
lEe R(l) 001 DS 000 

IF. A~m 03E Stop 

20. ~m 035 m~Q 031> 
21. X' 03F A~m 042 

22. ~m 043 m~Q 03D 

23. X 040 C 025 
24. m~Q 03A DS 000 

25. A~m 044 ~m 046 
26. m~Q 03E X 03F 
27. c· 028 m~Q 03A 
28. DS 000 A~m 045 
29. m~Ac 046 m~Ah 800 
2A. A~m 046 m~Ac 045 
2B. m~Ah 043 A---::,.m 043 
2C. C 02F DS 000 
2D. A---.:;m 043 m-4-Ac 046 

2E. m~Ah- 03A A---+m 046 
2F. m~Ac 043 m--4-Ah 044 

30. A~m 03E C' 033 
31. DS 000 A--+m 03E 
32. m-4Ac 046 m~Ah- 03A 
33. A-4m 046 m~Ac 042 

34. m~Ah 046 A--+m 031) 

35. T' [ ] 
36. A.l x' 

31. A.2 x" 

38. A.3 yl 

39. A.4 y" 

3A. A.5 -2 -39 FFF ••• FF 

3B. A.6 ( a 1 )0 0001000010 

3C. A.7 ( cr 2)0 OOOlBOOOlB 

3D. B.l 42. C.l 

3E. B.2 43. C.2 

3F. B.3 44. C.3 
40. B.4 45. c.4 
41. B.5 46. C.5 
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Problem 10 

The problems previously discussed have all been of an analytical 

character where the efficiency of solution is dep~ndent upon the speed 

and flexibility of the arithmetic unit. We now consider a problem of 

a combinatorial nature which falls into a class of problems where the 

efficiency of solution depends on the flexibility of the logical con­

trol. The problem is a simple sorting procedure. 

A set of N numbers, subject to no degree of monotony whatever, is 

to be sorted into a monotonic decreasing sequence. In order to simplify 

the discussion, we assume that the number of numbers to be sorted is 

N = 2
P 

where P is a positive integer. 

The sorting is accomplished by repeated meshings of groups of num­

bers. Meshing is the process of combining groups of elements (numbers) 

in a prescribed fashion. For the present sorting procedure we are 

meshing groups two at a time. Two groups, each monotonic decreasing, 

are meshed into a single monotonic decreasing group; e.g., groups sand 

~ of length £ and ~ elements, respectively, (where the elements of S 

and ~ are in a monotonic decreasing sequence) are meshed into a group 

v=e+~ 
of length b + c elements where v is also a monotonic decreasing sequence. 

Since we have restricted the N numbers to be sorted to be 

N = 2
P 

we may without further loss of generality say that any two groups to be 

meshed are to contain the same number of elements. 

The procedure is as follows: Consider the original sequence of num­

bers as N groups, where each group contains one element. These N groups 

are then meshed two at a time into N/2 groups each containing two elements. 

The N/2 groups are meshed two at a time into N/4 groups each containing 

four elements. This meshing process is continued until the sorting is 

complete (one group of N elements is formed). In each of the meshings 

the monotonic decreasing sequence is preserved. Hence, for the various 

meshings there are N/2i groups of 21 elements each, where i (=1,2···N/2) 
specifies the particular meshing. 



The meshing of two groups s and ~ is done as follows. Each 

group contains J numbers and the numbers xi belong to s, and y. be-
- J 

long to ~. The groups are monotonic decreasing so 

xi::::' xi+l and Yj~ Yj+l where i,j (=1,2···J) 

The groups s and ~ are to be meshed into a group 11 wi th elements 

called v where 
'n 

v n:;::' v n+l n (=1,2·· ·2J) 

The elements xl and Yl are compared. Then 

if (1) xl~ Yl , vI = xl 

or if (2) xl < Yl , vI = Yl 

If (1) holds, then x
2 

is compared with Yl • Then 

if (3) x2 ~ Yl , v2 = x2 
or if (4) x2 < Y

1
, v2 = 11 

However, if (2) holds rather than (1) , Xl is compared with Y2 • Then 

if (5) >' x l -- Y2, v2 = Xl 

or if (6) Xl < Y2, v2 = Y2 

The meshing of elements Xi and Y j follows the above: 

if (a) Xi ~ Yj , v = Xi (n = i + j - 1) n 

or if (b) Xi < Yj , v = Yj n 
If (a) holds i and n are increased by ! and the process is repeated. 

If (b) holds ~ and ~ are increased by ! and the process is repeated. 

The meshing continues until either all of the numbers Xi or all of 

the numbers Y j are incorporated into 71 • The remaining elements of 

-1.0'( -

the non-exhausted set are then directly included as the last elements 

of II • 

A meshing of two groups, each containing J elements, needs at most 

2J - I comparisons of the elements to complete the meshing. 

The number of elements involved in a sorting may often exceed the 

capacity of the electrostatic memory; hence, we consider the problem 

which requires the magnetic drum. However, we further simplify the dis­

cussion and assume that each drum track contains 64 (=26) words rather 

than the actual 50 words. 



Once the sorting procedure given here is understood, it is 

easily generalized to any number of elements and to any number of 

words per drum track; e.g., 50 in our instance. 

The ! numbers subject to no degree of monotony whatever are 

stored on the drum on M consecutive tracks. The numbers on the drum 

are considered as two sets, Xl and YI , where Xl is the first N/2 

numbers on the drum and Y
I 

is the remainder. Xl and YI each contain 
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N/2 groups of one· number. The groups of Xl are meshed with the groups 

of YI to form a set VI of N/2 groups of two numbers each. To accomplish 

this initial step, the first track (64 numbers) of Xl and the first 

track of YI are brought into the memory. The first number of Xl is 

meshed with the first number of Y
I 

and the two are stored properly 

in the electrostatic memory. This is repeated with the second elements 

of the sets, and so on. When 64 numbers have been meshed into groups 

of two, the 64 numbers are sent to the first drum track of the second 

set of M tracks on the drum; when 64 more numbers have been meshed 

they are then sent to the drum, and so' on, until the entire set Xl 

has been meshed with Yl • Whenever the 64 numbers from either the 

set Xl or YI have been exhausted, another track of 64 numbers of the 

appropriate set is brought into the memory. The set VI consists of 

N/2 groups (each of two elements) where each group is a monotonic de­

creasing sequence. 

The set VI is now considered as two sets X
2 

and Y2, where X2 is 

the first N/2 numbers and Y2 the remaining numbers. X2 and Y2 each 

contain N/4 groups (of two elements) and each group has the desired 

monotony. The groups of the set X
2 

are meshed with the groups of the 

set Y2 to form a set V2 of N/4 groups (of four elements) where each 

group is a monotonic decreasing sequence. 

We then have the following inductive process: Two sets of 

numbers X and Y each contain N/2P groups (of 2P-1 elements). The 
p p 

groups of X are meshed with the groups of Y to form the set V , 
P P P 

where V contains N/2P groups (of 2P elements). The set X I is 
P ~ 
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the first N/2 numbers of V ., and Y 1 the remal.nl.ng numbers. XP+l and 
p+l p p+ p 

Yp+l each contain N/2 groups (of 2 numbers). 

For a further discussion and elaboration of the sorting procedure 

we draw the flow diagram. 

The flow diagram contains three induction loops. They are: 

(i) the induction concerned with the mesh cycles 

(ii) that concerned with the meshing of a group within the sets 

during any mesh cycle 

(iii) that concerned with the transfer of elements between the 

memory and the drum 

Eleven distinct indices (variables of induction) are needed in 

the flow diagram to describe the inductions. 

The index ~ (=O,1,2···P) describes the induction over the mesh 

cycles. It is used in connection with the sets X and Y. It keeps 
p p 

account of the mesh cycle. E has no relevance other than as an index, 

and it need not be stored. 

The index ~ (=1,2···N), where N is the total number of elements 

being sorted, indicates the current number of elements that have been 

meshed during any mesh cycle~. It is also used in a discrimination 
th to indicate the completion of the p mesh cycle; therefore, n is a 

stored quantity. 

The indices !, J, and k describe the induction concerned with the 

meshing of the groups within the two sets. 

The index ~ (=1,2,22 .•. ) indicates the number of elements in 

the groups of the two sets X and Y. k and ~ are simply related: 
p p 

during mesh cycle p the number of elements in the groups within X 
p 

and Y is k = 2P • 
P 
The indices i and j indicate the elements x. and y. of the groups 

- l. J 
within the sets X and Y. The indices i and j are used in discrimina-

p p --
tions with k to indicate the completion of the meshing of any two 

groups within the sets; hence, !, j, and k are all stored quantities. 

Rather than using i and J as indices which range over i,j (=1,2 ••. k), 



.~e let! and.~ be such that i,j (=l,2· •• N/2). That is, ! and ~ 

range over the total number of elements of X and Y. The dis-
. p . p 

crimination of! and ~ cannot then be done directly with the index 
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~, since they are not reset to ! at the time they become equal to !; 
·in fact, they continue increasing until they ·reach N/2. To accomplish 

the desired dis,crimination, an index K (=k, 2k, 3k •• eN/2) is· intro­

duced; and when 

1 ~ i, j ~ k 

k + l,::::i, j ~2k 

and so on, until K = N/2. 

then K:· k 

then K ='2k 

At the completion of each mesh cycle ~, the in~ex ~ is doubled; 

i.e., when E. is increased by ! to become ~, then k = 2P is increased 

to k = ~l. This index k is used to determine the completion of the 
" ,- . .. P 

sorting. The sorting is complete when p = P, at which time k = 2 = Nj 

hence, a discrimination on k - N becomes positive for the first time 

wheJ} k = ~, and the process is terminated • 

. The indices ~, ~, and ~ are the indices describing the induction 

concerned with the drum and i', j', n' (=1,2·· ·64). The indic·es i' and 

jl indicate when the 64 elements Xi or Yj which are in the memory are 

meshed. They also keep account of which two elements of the 64 elements 

Xi and Yj ~re being meshed. Whenever i' or j' reaches 64, a new trac~ 

. of elements Xi or· Y j' respectively, is brqught from the drum into the 

memory. The index n 'indicates the Dumber of elements x. and Yj that . 
1. I 

, I 

have been meshed and stored in locations in the memory. Whenn' reaches 

its maximum value, the 64 elements which have been meshed and stored 

in the electrostatic memory are subsequently sent to the drum. The in­

dices i', j', and n' are needed in discriminations and in: addresses; 

hence, they are stored numbers. Tqer~ are three indices concerned with 

the drum 'Which are, in themselves, addresses. They are Tx, Ty, and Tv. 

Tx is the· addres,s of the drum track which contains the 64 elements of 

the set X that are to be sent into the memory. Ty is the correspond-. p . 
ing drum address forY. The index Tv is the address of the drum track 

p 
upon which the 64 meshed ,elements are to be stored. Now that we have 

d~f1ned the necessary indices, the flow diagrBm.of Figure 19 may be 

examined in detail. 
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In what follows, decimal and hexadecimal numbers both enter into 

the discussion. The hexadecimal numbers usually refer to instructions 

and box numbers, hence entering only in the role of "labels" or "names." 

The decimal numbers are usually used where the numerical character of 

the number is significant. However, at places where there might be 

confusion if the number is intended to be decimal it is underlined. 

Boxes 1, 2, and 3 set up the necessary indices. Boxes 4, 5, 6, 7, 
8, 10, and 11 are the boxes of the meshing of the groups within the sets. 

Box 12 is an alternative box that indicates when the N elements have all 

been meshed. Boxes A, B, C, D, E, and F are the boxes concerned with the 

transfer of numbers between the drum and the memory. Boxes 13, 15, and 

16 set up necessary values at the completion of one meshing of the sets 

X and Y in order to start the next cycle in the meshing. Box 14 deter-
p p 

mines when the entire process is completed. 

Box 1 sets the index k = (1) since the first meshing is in groups 
o 

of one element. It sets the initial drwn addresses for Tx, Ty, and Tv. 

It also sets the address ® = @. This is discussed in more detail 

when Boxes 15 and 16 are discussed. 

Box 2 sets up the indices k, j, n, ii, j', and nl. These indices 

are all set to (1). This box also sends the contents of tracks Tx and 
o 

Ty into the memory. 

Box 3 sets up an index K = k. 

Box 4 is the alternative box that indicates when all of the elements 

Y
j 

of a particular group of the set Yp have been meshed. Boxes 5 and 7 

indicate when all of the elements x. of a particular group of the set X 
1 P 

have been meshed. If the elements of the two groups have not been ex-

hausted, the control proceeds to Box 10 to determine which is the larger, 

x. or y .• 
1 J 

If x. ~ 
1 

i and i' are 

Y., from Box 
J 

10 the control proceeds to Box 11, and v = x .• 
n 1 

increased by (1). If X.<: Y., from Box 10 
o 1 J 

the control pro-

ceeds to Box 8, and v = y.. j and j' are increased by (1) • 
n J 0 

If all of the elements of a particular group of the set Yare meshed 
p 

and stored, and the corresponding elements of the set X are not, the dis­
p 

crimination of Box 4 is negative and that of Box 5 is still positive; 

hence the control proceeds to Box 11, where the element v = x. is stored. 
n 1 



Drum tracks 

Co to CO+M/2 ;X P 
Drum tracksTx : xP (xI' x2' .. ,'. XN/2 ) 

Drum tracksTy: y P (YI 'Y2' .... YN/2) 

0.1; k 
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Co+M/2+1 t~ CotM; yP 
I 
I 

a I 
,..---~ I 

V.h': vn 

I 
(1)0 to 0.1 

Tx= coto 0.2 
b 

I 
I (I )oto 0.5,0.6,0.7, 0.8,O.9,0.A , 

Ty= Co + M/2 to 0.3 

Tv = dO to 0.4 

@=@j) 

K+k to O. B 

Vn = Xi to V.nl 

I + I to 005 
11+ I to 0.8 

t-II.....,--..... -f Drum Tx to Xol - X064 
"--_..... Drum Ty to V.I -V.64 

0.5:; 0.8:;1 
0.6: j 0.9: j' 
0.7;n O.A:n' 

/I 

8 

to V.n l 

(1)0 to 0.9 
~-----t __ ----I Ty+1 to 0.3 

~~--I 

OrumTy+1 to Vol-V.64 

,..---------......,0 h 

9 

(1)0 to 0.8 Tx+ I ~ Tx 
Tx + I to 0.2 I--..... ~ I ~ i I I--__ -...Jo. __ ~ 

Drum Tx+ I to X.I- X.64 

(1)0 to O.A 
VI to v64 to Tv (Drum) 

Tv + I to 0.4 

F 

A SIMPLE SORTING PROCEDURE 

FIG. 19 

2 
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This condition holds until all of the elements of the particular group 

of the set X have been incorporated into the meshed sequence. A 
p 

similar condition holds for the entry of the control from Box 7 to 

Box 8. In this instance, the elements of a particular group of the 

set X have all been exhausted and those of the set Y have not. p p 
The Alternative Box 12 determines when N elements have been meshed. 

The control proceeds to Box 13 when this obtains, and the control pro­

ceeds to Box 4 when the meshing is not complete. 

The Alternative Box A determines when 64 elements of Y have been 
p 

meshed. If they have, Box B sends 64 new elements y. into the memory_ 
- J 

Box C and Box D determine if 64 elements of the set X are exhausted, 
p 

and if they are, 64 new elements xi are sent to the memory. 

Box E determines when 64.elements have been meshed and stored in 

the memory. Box F subsequently stores the 64 elements onto the drum. 

Box 14 terminates the sorting process when k = N. However, if the 

sorting is not complete, Box 15 or Box 16 sets up the new initial drum 

addresses for subsequent meshing. Recall that in Box 1 the address 

® = ® was set up. This means that upon the first traversal through 

Box 14 the control proceeds to Box 15 as is desired. In Box 15 the ad­

dress ® = ~ is set up so that on the next traversal of Box 14 the 

control proceeds to Box 16 where the addreSS® = ® is restored, and 

so on, until the sorting is complete. Upon the completion of either 

Box 15 or Box 16, the control returns to Box 2, where the i, j, n, ii, 

jl, and n l indices are reset to (1) in order to repeat the induction 
o 

process. 

The storage needed for the problem is as follows: The quantity 

(1) is needed and 
o 

B.l: (1) 
o 

The four initial drum track addresses are stored, scaled by 2-27 and 

B.2: -27 c -2 
o 

(c + M/2)2-27 
o 

d _2-27 
o 

(d + M/2)2-27 
o -27 The quantity 1-2 is needed for altering the drum track addresses and 

B.6: 1-2-27 
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Three memory addresses are needed. They are base addresses for the 

storage of the numbers Xl.' y , and v ; and they are designated (X.O) , 
j n 0 

(Y.O) and (V.O) • The storage is o 0 

B.1: (X.O) 
o 

B.8: (Y.O) 
o 

B.9: (V.O) 
o 

where the address (X.il) = (X.O) + (i l ), and X.i': x .• Similarly, 
000 1 

Y.j': Yj and V.nl: v. The number (64) is needed for discriminations and n -0 

B.A: (64)0 

The total number of elements N is needed and 

B.B: (N) o 
. The drum instructions occupy full words where bigi ts 28-39 specify an 

address to which the control transfers upon completion of the drum in­

structions. The addresses for these transfers need to be stored. Four 

such addresses are needed and they are 

B.e: (Box 12, 1)2-39 

B.D: (Box 2, 10)2-39 

B.E: (Box 3, 1)2-39 

B.F: (Box E, 1)2-39 

The addresses ® and@ are needed. They are stored as position marks in 

B .10 : ( fj 1 ) 0 

B.ll: ({32)0 

Eleven words of intermediate storage a:ce needed during the course of the 

computation. They are designated as D.l, D.2 ••• D.9, D.A, D.B. The 

required electrostatic 

tions; the drum storage 

The coding is: 

Boxl 

1. m~Ac B.I 

2. A~m D.I 

3. m~Ac B.2 

4. A~m D.2 

5. m~Ac B·3 
6. A~m D·3 
1. m~Ac B.4 

8. A~m D.4 

storage for the numbers being meshed is 192 loca­

is 2M tracks. 

(1) to R2 o 

c • o 
2-27 to R2 

d • 2-27 to R2 
o 

to R2 

(1) to D.1 o 

T = c • x 0 
-21 2 to D.2 

T = (c + M/2)2-21 to D.3 y 0 

-21 T = d • 2 to D 4 v 0 • 
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Box J. (Cont.) 

9. m---;)oAc B.I0 ( $J.)o to R2 

A. S-4-m J.4,4- {3J. to (8-19)14,4 

Box 2 

1. m---;)-Ac B.l (1) to R2 
0 

2. A~m D.5 (1) 
0 

to D.5 

3. A~m D.6 (1) to D.6 
0 

4. A---=>-m D.1 (1) to D.? 
0 

5· A~m D.8 (1) to D.B 
0 

6. A~m D.9 (1) 
0 

to D.9 

1. A~m D.A (1) to D.A 
0 

8. m---+Ac D.2 T to R2 x 
(Box 2,10)2-39 

9· m~Ah B.D T + in R2 
x 

A. HS~m 2,F 

B. m~c D.3 T to R2 
y 

(Box 3,1)2-39 C. m~Ah B.E T + in R2 
y 

D. HS~m 2,11 

E. ~m X.l (xl to x6.!!.) to L1. to x.64 
F. [ Tx 2,10J 

10. D~ Y.l (Yl to Y64) to Y.l to L.6!f: 
11. [T 3,1 ] 

y 
Box 3 

1. m~Ac D.l (k) to R2 
0 

2. A~m D.B (k) to D.B 
0 

Box 4 
1. m~Ac D.B (K) to R2 

0 

2. m---WUl- D.6 (K-j) in R2 
0 

3. C 1,1 

Box 5 

1. m~Ac D.B (K) to R2 
0 

2. m~Ah- D~5 (K-i) in R2 
0 

3. C 11,1 

Box 6 

1. m--+Ac D.B (K) to R2 
0 

2. m~Ah D.I (K+k) in R2 
0 

3. A--.m D.B (K+k) to D.B 
0 

4. T 4,1 



Box 7 
1. m--+Ac D.B 

2. m~Ah- D.5 

3· 
Box 8 

c 

1. m~Ac 

2. m-+Ah 

3. S~m 

4. m~Ac 

5. m~Ah 

6. A---+m 

7. m~Ac 

8. m~Ah 

9. A~m 
A. m--+Ac 

B. m---+Ah 

c. S~m 

D. m~Ac 

E. A~m 

Box 9 
1. m---+Ac 

2. m---+Ah 

3. A-4m 

4. m~Ac 

5. m~Ah 
6. A~m 

Box A 

10,1 

B.8 

D.9 
8,D 
D.6 
B.l 

D.6 
D.9 
B.l 

D.9 
B.9 
D.A 

8,E 

[Y. j'1 
[V.n I] 

B.l 

D.A 

B.l 

D.A 

1. m~Ac B.A 

2. m~Ah- D.9 

3· 
Box B 

c 

1. m~Ac 

2. m-+Ah 

3. A-+m 

C,l 

D.3 
B.6 
D.3 

(K) to R2 
o 

(K-i) to R2 o 

(Y .0). to R2 
o 

(Y • j , ) 0 = (Y. 0 ) 0 + (j') 0 in R2 

(j) to R2 
o 

(j+1) in R2 
o 

(j') to R2 o 
(j'+l) in R2 o 

(V.o) to R2 o 

Y., to (8-19}8,n 
J 

(j+l) to D.6 
o 

(j'+l) to D.9 o 

in R2 
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(V.n') = (V.O) + (n') 
000 

V·n' to (8-19)8,E 

v = y. 
n . J 

en) to R2 o 
(n+l) in R2 

o 

(n') to R2 
• 0 

(n+l) in R2 o 

(64) to R2 
-0 

(64-j') in R2 
- 0 

T to R2 
y 

T + 1 in R2 y 

v to V.n' 
n 

(n+l) to D.7 
o 

(n'+l) to D.A o 

T + 1 to D.3 
Y: 



Box B (Cont.) 

4. m~Ah B.F 

5. HS~m B,9 

6. m~Ac B.l 

7. A~m D.9 

8. ~m Y.1 

9. [Ty + 1 E,l] 
Box C 

1. m~Ac B.A 

2. m~- D.B 

C 

BoxD 
1. m~Ac 

2. m~Ah 

3. A~m 

4. m~Ah 

5. HS~m 
6. m--+Ac 

1. A~m 
8. D~m 

9. [Tx+ 1 

BoxE 

E,l 

D.2 

B.6 
D.2 

B.F 

E,9 
B.l 

D.B 

X.1 

E,l] 

1. m~Ac B.A 

2. m~Ah- D.A 

3. c 
BoxF 

1. m~Ac 

2. m~Ah 

3. A~m 

4. m~Ah-

5. m~Ah 

6. HS-+m 

1. m-4Ac 

8. A~m 
9. m~D 
A. [T 

v 

12,1 

D.4 

B.6 
D.4 

B.6 
B.C 

10,A 

B.1 

D.A 

V.1 

12,lJ 

T + 1 + (Box E,1)2-39 in R2 
y 

(1) to R2 o 

(64)0 to R2 
(64-i') in R2 

o 

T to R2 
x 

T + 1 in R2 x 
T + 1 in D.2 x 

Tx + 1 + (Box E,l) 2-39 in R2 

(1) to R2 
o 

(64) to R2 
o 

(64-n') in R2 
o 

T to R2 v 
T + 1 in R2 

v 
T + 1 to D.4 

v 
T in R2 

v 
T + (Box 12,1)2-39 in R2 

v 

(1) to R2 
o 

(1) to D.A o 
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Box 10 

1. m~Ac B.7 (X.O) to R2 
0 

2. m--..+Ah D.B (X.i') = (X.O) + (i') in R2 o 0 0 
3. S~m 10,7 X. i' to (B-19)10,7 
4. m~Ac B.& (Y.O) to R2 

0 
5. m~ D·9 (Y.j') = (y.o) + (jl)O in R2 
6. 

o 0 
S--?m 10,B Y . I to (B-19)10,B .J 

7. m~Ac [X.i'J xi to R2 
B. m~Ah- [Y. j I] xi - y. in R2 

J 
9. C 11,1 
A. T B,l 

Box 11 

1. m~Ac B.7 (X.O) to R2 
0 

2. m---+Ah D.B (X.i') = (X.O) + (i' ) in R2 o 0 0 

3. S~m 11,D X.i' to (B-19)II,D 
4. m~Ac B·9 (V.O) to R2 

0 

5· m~Ah D.A (V.n') = (v.o) + (n 1 ) in R2 o 0 0 

6. S--..+m II,E V.n' to (B-19)11,E 
7. m~Ac D·5 (i) to R2 

0 

B. m~Ah B.l (i+l) in R2 
0 

9. A---:;m D·5 (i+l) to D.5 
0 

A. m~Ac D.B (i 1 ) to R2 
0 

B. m~Ah B.l (i'+l) in R2 
0 

c. A~m D.B (i'+l) to D.B 
0 

D. m~Ac [X.i 'J v = x. to R2 n 1 

E .• A---:,m [V.n l] v to V.n' n 
F. T 9,1 

Box 12 

1. m~Ac B.B (N) to R2 
0 

2. m~Ah- D.7 (N-n) in R2 
0 

3. C 4,1 

Box 13 

1. m~Ac D.l (k) to R2 
0 

2. L(I) 1 (2k) in R2 
0 

3 .• A~m D.l (2k) to D.l 
0 



Box 14 

1. m---+-Ac 

2. m~Ah-

3. C 

4. T 

Box l5 
1. m~Ac 

2. A~m 

3. m~Ac 

4. A--+m 

5· m~Ac 

6. A~m 

7. m~Ac 

8. S--?m 

9. T 

Box 16 

1. m~Ac 

2. A~m 

3. m~Ac 

4. A~m 

5· m~Ac 

6. A~m 

7. m~Ac 

8. S~m 

9· T 

A. Stop 

D.l 

B.B 

16,A 

[~J 

B.4 

D.2 

B·5 

D·3 

B.2 

D.4 

B.ll 

14,4 

2,1 

B.2 

D.2 

B.3 

D.3 

B.4 

D.4 

B.I0 

14,4 

2,1 

(k) to R2 
o 

(k-N) in R2 
o 

-27 T = d . 2 to R2 
x 0 
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T to D.2 x 
T = (d + Mj2)2-27 to R2 

y 0 

-27 T = c . 2 v 0 

({:J2)o to R2 

c • o 
2-27 to R2 

-27 d ·2 to R2 
o 

to R2 

to R2 

T to D.3 y 

T to D.4 
v 

~2 to (8-19)14,4 

T = c • 2-27 to D.2 
x 0 

T = (c + M/2)2-27 to D.3 
y 0 

-27 
T = d • 2 to D 4 

v 0 • 

)91 to (8-19)14,4 

Recall that the magnetic drum instructions each occupy a full word. 

The drum instructions are: 

"m~D 

~m 

BD 

BC 

Read 50 successive words from the memory starting with 
the word at the address specified by bigits 8-19 of 
the instruction. Write these 50 words into the drum 
on the track specified by bigits 20-27. Then transfer 
the control to the left-band instruction of the word 
at the address specified by the bigits 28-39. 

Read tbe 50 words from the track of the drum specified 
by bigits 20-27 of the instruction. Write these words 
into 50 successive memory locations starting with the 
address specified by bigits 8-19. Then transfer the 
control to the left-hand instruction of the word at 
the address specified by bigits 28-39." 
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For the present problem we assume that 64 words are transferred, rather 

than the L£. expressed by the instructions. 

Instructions E and F of Box 2 comprise a drum instruction. In 'the 

final coding these two instructions must be in the same word. Instruc­

tions E and F are interpreted as: Read 64 words from track Tx of the 

drum, and write them into the memory at the addresses X.l through x.64; 
then transfer the control to Instruction 10 of Box 2. This means that 

Instruction 10 of Box 2 must appear on the left side of an instruction 

word in the final coding. 

Note that Instructiop F of Box 2, the right-hand 20 bigits of the 

drum instruction, is formed in R2 by Instructions 8 and 9 and then sent 

to F by an IIS---"m instruction. This is necessary since Tx is a variable 

address. (In Box 2, Tx may be either c or d.) There is no instruction 
o 0 

that will modify only bigits 20-27 of a word in the memory, so one method 

of altering the drum track address is to modify bigits 20-39 of the drum 

instruction by an ~m instruction. This method necessitates storing 

the address which is to constitute bigits 28-39, the transfer portion, of 

the instruction. Instruction 8 of Box 2 brings the track Tx.2-21 into 

H2. Instruction 9 adds to this the address of (Box 2, Instruction 10)2-39• 
The half-word substitution is then'effected by Instruction A. In the 

final coding this must be an HB--+m' instruction. 

Instructions 10 and 11 of Box 2 also comprise a drum instruction 

where the right-hand 20 bigits, Instruction 11, are generated as discussed 

for the previous drum instruction. 

Instructions 8 and 9 of Box B, Instructions 8 and 9 of Box D, and 

Instructions 9 and A of Box F are drum instructions. Note in Box Band 

Box D, where the coding would normally end with a transfer instruction to 

send the control to Box E, Instruction 1, and in Box F, where the coding 

would normally end with a transfer to Box l2, Instruction 1, that the 

drum instruction performs this function. When possible then, it is use­

ful to incorporate the drum instructions at points where transfers must 

normally take place. 

The drum instructions in Boxes B, D, and F are similar in treatment 

to the previous discussion; hence the only fUrther comment needed is 

that the drum instruction in Box F is an m--+D instruction. 
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In the pairing of the coding into words one has to ascertain that 

Box 2, Instructions E and 10; Box 3, Instruction 1, Box D, Instruction 8; 
Box 12, Instruction 1; Box E, Instruction 1; and Box F, Instruction 9, 
all are the left-hand instructions of their respective instruction words. 

We begin the coding at Word 000. There are, in all, !23 instructions, 

which is 76 1/2 code words. The code would normally occupy Words 000 

through 04c hexadecimally. However, four "dummy'''- instructions need to be 

inserted to obtain the correct positioning of those instructions which 

must begin on the left. This adds two words to the code, and it occupies 

Words 000 through 04E. 

The constant storage begins at 04F. The 11 words of B storage occupy 

locations 04F through 05F. The 11 words of intermediate storage occupy 

Words 060 through eGA. 
The routine and storage occupy 101 words of the memory ooo-oGA. 

Numerical ~lues are inserted for the addresses (x.e) , (Y.O) and (V.O) . 
000 

They are chosen as: 

(x.o) :;:: (o6A) 
0 0 

(Y.O) :;:: (OM) 
0 0 

(V.O) :;:: (OEA) 
0 0 

The algebraic addresses are left for the drum tracks as they depend in 

part on the total number of numbers being sorted. The quantity (N) o 
which is the total number of numbers is also left in algebraic notation. 

The coding, with the necessary "dummy" instructions, is: 

O. m~Ac 

1. m~Ac 

2. m~Ac 

3. m~Ac 

4. m---7Ac 

5. m~Ac 

6. A-4m 

1. A~m 
8. A~m 
9. m~Ah 

A. m--+Ac 

B. HS--+m' 

04F 

050 

051 
052 

05E 
04F 

065 
061 

069 
05B 

062 

OOD 

A~m 

A~m 

A~m 

A~m 

HS~m' 

~m 

A~m 

A~m 

m~Ac 

~m' 

m~Ah 

060 

061 
062 

063 

044 
064 
066 

068 

061 
ooc 
05C 

(D S 000) "dummy" 
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C. D--¥m 06B 00000 

D. D~m OAB 00000 

E. m~Ac 060 A~m 06A 

F. m~c 06A m~Ah- 065 

10. C 014 m~Ac 06A 

11. m~Ah- 064 C 038 

12. m--40Ac 06A m---+Ah 060 

13· A~m 06A T OOF 

14. m~Ac 06A m~Ah- 064 

15. C 033 m~Ac 056 

16. m~Ah 068 S~m' OlB 

17. m~Ac 065 m-+Ah 04F 

18. A~m 065 m~Ac 068 

19. m~Ah 04F A~m 068 

lA. m~Ac 0.57 m~Ah 069 

lB. S~m 01C m~Ac 000 

1C. A~m 000 m--'7Ac 066 

ID. m~Ah 04F A~m 066 

lEe m~Ac 069 m~Ah 04F 

IF. A---+m 069 m-4Ac 058 

20. m---?>Ah- 068 C 026 

21. m-+Ac 062 m~Ah 054 

22. A~m 062 m~Ah 05D 

23. HS~m' 025 m---?Ac 04F 

24. A~m 068 (D S 000) "dummy" 

25· D---7'm OAB 00000 

26. m--7Ac 058 m~Ah- 067 

27. C 02C m~Ac 061 

28. m~Ah 054 A~m 061 

29. m--:)Ah 05D HS~m' 02B 

2A. m----+Ac 04F A~m 067 

2B. D~m 06B 00000 

2C. m~Ac 058 m--4Ah- 069 

2D. C 040 m~Ac 063 

2E. m~Ah 054 A~m 063 

2F. m~Ah- 054 m~Ah 05A 
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30. HS~m' 032 m~Ac 04F 

31. A~m 069 (D S 000) "dummy" 

32. m~D OEB 00000 

33· m~Ac 055 m~Ah 067 

34. S-4m 036 m~Ac 056 

35· m-4Ah 068 S~m' 036 

36. m~Ac 000 m~Ah- 000 

37. C 038 T' 015 

38. m---;)-Ac 055 m~Ah 067 

39. S~m 03E m~Ac 057 

3A. m----!)oAh 069 S~m' 03E 
3B. m-7Ac 064 ~Ah 04F 

3C. A~m 064 m~Ac 067 

3D. m~Ah 04F A~m 067 

3E. m~Ac 000 A~m 000 

3F. T' OlC (00000) "dummy" 

40. m~Ac 059 m~Ah- 066 

41. C OOF m~Ac 060 

42. L(1) 001 A~m 060 

43. m~Ac 060 m~Ah- 059 
44. C 04E T 000 

45. m~Ac 052 A~m 061 

46. m~Ac 053 A~m 062 

47. m---!)oAc 050 A~m 063 
48. m---+Ac 05F HS--+m' 044 

49. T 005 m~Ac 050 
4A. A~m 061 m~Ac 051 
4B. A--+m 062 m~Ac 052 
4c. A~m 063· m~Ac 05E 
4D. HS--+m' 044 T . 005 
4E. STOP 

4F. (1) 
0 

50. -27 c ·2 
0 

51. (c + M/2)2-27 
0 

52. d .2-27 
0 



53· 

54. 

55· 

56. 

57. 

58. 

59· 

5A. 

5B. 

(x.O) = (06A) 
o 0 

(Y .0) = ( OM) 
o 0 

(v.O) = (OEA) 
o 0 

(64) = (040) 
. 0 0 

(N)O 

12,1 = (040)2-39 

2,10 = (OOD)2-39 

5C. 3,1 = (00E)2-39 

5D. E,l = (02C)2-39 

5E. ( ~ 1) 0 = (cA045) 0 

5F. ( f3 2 ) 0 = ( CB049 ) 0 

60. D.I 
61. D.2 

62. D.3 
63· D.4 
64. D·5 
65· D.6 
66. D.7 
67. D.8 

68. D.9 
69. D.A 
6A. D.B 
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The first drum instruction (Box 2, Instructions E and F) would not 

normally have been in one word in the paired coding. A "dummy" instruc­

tion, DSOOO, was inserted on the right-ha.nd side of Word OOB in order to 

position the drum instruction correctly in Word OOC. The right 20 bigits 

of the drum instruction are not indicated as they are supplied from the 

problem. In punching a tape, five 0'5 could be punched for right-ha.nd 

portion of Word OOC. 
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Upon positioning OOC correctly, the next drum instruction, Word OOD, 

and the first instruction of Box 3, Word aOE, are in the correct position. 

The drum instruction in Box B, Instructions 8 and 9, also needed a 

IIdummyll instruction inserted as the right-hand instruction of Word 024 

to position the drum instruction correctly into Word 025. Similarly, the 

drum instruction in Box F, Instructions 9 and A, needs a "dummyll instruc­

tion inserted in the right-hand side of 031 to position the drum instruc­

tion correctlY into 032. Instructionsl of Boxes 12 and E need to be left­

hand instructions since they are entered by the transfer portion of drum 

instructions. Box E is in the correct position as it begins on the left 

of Word 02C; however, Box 12 does not naturally begin on the left, hence 

a dummy instruction (00000) is inserted into 03F' following the last in­

struction of Box 11. Box 12 then begins on the left of Word 040 as is 

desired. The dummy instruction may be inserted as all O's since the in­

struction is never executed by the control as Box 11 ends in a transfer 

instruction. 

({jl)o and (~2)0 are stored as 

05E: 

05F: 

( Ill) 0 

( {j2)0 

= (cA045) 
o 

= (CB049) 
o 

rather than as addresses. This is done since the entrances @ and ~ 
which are Box 15,1 and Box 16,1 do not both begin on the same side 

of their respective words. The addresses ~ and ~ are supplied 

to Box 14, Instruction 4 (Word 044') by an HS--?m' instruction; hence 

the order as well as the address is modified appropriately. 

The sorting procedure as presented is valid only if all of the num­

bers have the same sign (i.e., either all positive or all negative). If 

numbers of mixed sign are to be sorted, Box 10 would need to be modified 

as numbers of' oppoai ta aign could proocntly cause spillage. 
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Problem 11 

. We evaluate and tabulate a sequence of values for sin x where the 

argument x is not given in any systematic order. The values of x are 

punched on paper tape for use in the sine computation. When sin x is 

determined for each value· of x, it is stored with its. argument as one 

word. The first 20 bigits (0-19) store x and bigits(20-39) store 

sin x. The values of x and sin x are then printea and punched by the 

.flexowriter. 

The method used for evaluating sin x is the Taylor's series ex­

pansion of the function. 

sin x = x 3 x5 x7 
x - 3! + 5! - 7! + ... 

The following induction describes the series: 

0'1 = x L 
2 1 

x 

L3 0'3 = -0' • 1 3-2 

2 L 0' j+2 -0' x = ( j+l) (.j+2) j j+2 

= sin x· 

= x 

~ + = <13 
1 

~. + 0' j+2 = 
J 

For the example it is assumed that 0 .:::: x < 1, where x is in radians. 

It then follows that sin x < 1. 

From the induction process it is seen that the formation of the 

term <1 j+2 involves a division by (j+l) (j+2). Since.si is an integer, 

the division cannot be done directly. To allow this diviSion, ~ 1s 
-n scaled by 2 ,determined by 

As the O'j+2 is desired as an unscaled quantity, the numerator is scaled 

by the same factor as is the denominator which gives the resultant quo­

tient unscaled. In order to preserve significant figures, <1 j+2 is 

formed as follows! 



= 
-n 2 x 
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The induction is terminated when the difference between two suc­

cessive terms is less than a predetermined amount b , where the size of 

b is determined by the number of figures desired in the approx~tion 

to sin x. 

term 0 .• 
J 

The difference between two successive approximations is the 

The discrimination is on the quantity 

10j) - ~ 

The absolute value of o. is used, since o. may be positive or 
J J 

negative. 

The storage needed is as follows: The constants 1.2-n and ~ 
are stored at B.l and B.2, respectively. The number !, representing 

the total number of values of the argument x, is stored at B.3 as 

I·2-m, and 1·2-m is stored at B.4 where 2-m is such that I·2-m<: 1. 

The values xl' x2' x3 ••• xI are punched onto paper tape as input dat~. 

Seven intermediate storage locations are needed. They are designated 

as D.l, D.2 ••• D.7. 
No explanatory remarks are needed for the flow diagram which is 

shown in Figure 20, so we turn directly to the coding. 

Box 1 

1. m--:J..c 

2. A~m 

Box 2 

1. Read 

Box 3 

1. m_Ac 

2. A~m 

3· A---.m 

4. R(n) 

5· A___.m 

6. m---.Ac 

1. A-+m 

B.4 

D.7 

D.l 

D.l 

D.2 

D.3 

n 

D.4 

B.l 

D·5 

to R2 

-D 2 x. in R2 
l. 

x. to D.l 
l. 

1 

Li = Xi to D.2 

1 to D.3 °i = Xi 

-n 
2 Xi to D.4 

1·2-n to D.5 
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3 
I 

~i=Xj to 0.2 

2 1_ ':2 
o-j - xi to D . .J 

~~ ..... Read xi to 0.1 
'-------I 2-nxj to 0.4 

\·2-n to 0.5 

d 

9 

( i+1)2-m to 0.7 

0.2:~~ 
D.3:o-i 

0.4:2-nXj 

0.5: j·2-n 

j+2 
D.2:2i 

0.3: 0-/+2 

0.5: (j +2)2-n 

xi to (0-19) 0.6 

Sin xi to (20-39) 0.6 

7 

4 

........ I-r-I Print and Punch xi, Sin xi ......... 1---<0---10.6: (0-19)Xj,(20-39)Sin xi I 
1....-_......----' 

I 

L __ , 0.7: i· 2-m I 

SINE by TAYLOR'S SERIES EXPANSION 

FIG. 20 
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Box 4 

1. m-->Ac D·5 o 2-n J. to R2 

2. m--4Ah B.l (j+l)2-n in R2 

3. A~m D·5 (j+l)2-n to D.5 

4. m~Ac- D.4 -n 
-2 xi to R2 

5· D·5 - xi 
in R4 A j+l 

6. X D·3 
.1 xi 

in B2 -ai J+l 
j xi 

1. A~m D.3 -oi j+l to D.3 

8. m~Ac D.5 (j+l)2-n to R2 

9. m~Ah B.l (j+2)2-n in R2 

A. A--+m D·5 (j+2)2-n to D.5 

B. ~Ac D.4 -n 
2 xi to R2 

c. . D·5 
xi 

in R4 . j+2 
0+2 j x x D. X D·3 oJ = -oi j+l j+2 in R2 i 

E. A:---+m D·3 
j+2 to D.3 o. 
l. 

F. m~Ah D.2 Lj
+

2 
= rj 

j+2 in R2 + o. 
i i l. 

J+2 
10. A-+m D.2 Li to D.2 

Box 5 

1. m~AcM D.3 I (J~ I to R2 
2. m----1)-Ah - B.2 I °i 1- b in R2 

3. c Box 4,1 

Box 6 

1.. m~Ac D.l xi to R2 

2. H~m D.6 xi to (0-19)D.6 

3. IIl-4>Ac D.2 sin xi to R2 

4. R(20) 20 -20 2 sin xi in R2 

5· HS-+ml D.6 sin xi to (20-39)D.6 

Box 1 
1. Flexoprint D.6 (O-19)x

i
(20-39)sin xi 

to Printer 

2. Punch D.6 (O-19)xi (20-39)sin xi 

to Punch 



Box 8 
1. m~c 

2. ~Ah-

3. c 
Box 9 

1. m~Ac 

2. m--WUl 

3. A__..m 

4. T 

Box A 

1. Stop 

D.1 

B.3 

Box A,l 

D.1 

B.4 

D.1 

Box 2,1 

i·2-m to R2 

(i_I)2-m in R2 

i·2-m to R2 

(i+l)2-m in R2 

(i+l)2-m to D.7 

The coding needed in Box 2 is merely the read instruction. The 

read instruction does the following: 

Read the next word to come under the reading head of the 
photo-electric reader and send the wo~ to the memory at 
the address specified with the instruction. 
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In Box 3, Instruction 4 specifies only a right shift of ~ places. In 
-n an actual problem the scaling factor 2 would be determined and the 

numerical value of n would be inserted as the address of the R(n) in­

struction. Box 6 stores the xi and s in xi into one word D. 6 by making 

use of the HS~m and HS-4m J instructions. Instruction 2 of Box 6 

stores the first 20 bigits of xi into bigits 0-19 of D.6. This in­

struction does not alter bigits 20-39 of D.6. Instructions 4 and 5 
store the first 20 bigits of sin xi into bigits 20-39 of D.6. Since the 

HS-.m' order replaces bigi ts 20-39 of !!! by bigi ts 20-39 of R2, the num­

ber. in R2 must be positioned so that the 20 bigits to be sent to m are 

in bigits 20-39 of R2. Instruction 4 shifts sin x right 20 bigits so 

that the 20 most significant bigits of sin x are in (20-39)R2. In­

struction 5 is then an HS--+m' D.6 which stores sin x into (20-39)D.6. 

Box 7 requires two instructions, one to print D.6 and one to punch D.6 

In .this example the H8--+m and HS~m' instructions were used to 

store half-precision (20 bigits) numbers, as compared to Problem 10 

where they were used in modifying instructions. 
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The pairing or the code into words should present no dirriculties. 

If the code sequence is started at address 000 the paired coding is: 

0. m---"J1Ac 019 A~m 020 

1. Read OlA m~Ac OlA 

2. A~m alB A--:,m OIC 

3· R{n} {n} A---:;m OlD 
4. m~c 016 A~m OlE 

5· m--+Ac OlE m~Ah 016 
6. A~m OlE m~Ac- OlD 

7. ~ OlE X OIC . 
8. A--+m OIC m~Ac OlE 

9- m~Ah 016 A~m QlE 

A. m~Ac OlD . OlE . 
B. X OIC A--4m OIC 
C_ m~Ah OIB A~m OIB 
D_ m--7AcM OIC m~Ah- 017 

E. C 005 m~Ac OlA 

F. HS~m OIF m~Ac 01B 

10. R(20} 014 HS--+m' 0lP' 

I!. F1exoprintOlF Punch OlF 

12. m~Ac 020 m~Ah- 018 

13- c' 015 m~Ac 020 

14. m---+Ah 019 A---+m 020 

15. T 001 Stop 
16_ 1-2-n 

17, ~ 
18. I-2-m 

19. 1-2-m 

lA. 

lB. 

lC. 

ID. 

lEe 

IF. 

20_ 
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Problem 12 

During the course of a lengthy computation it is desirable to 

make a periodic record of the contents of the memory. This record 

should be in a form that can be read back into the memory. Then, in 

the event of a computer malfunction which causes a computational error, 

one has only to read the last record of the memory contents back into 

the computer and resume the computation. If such a record is not 

available, the computation often has to be restarted from the beginning; 

and several hours, or even several days, of computational time may be 

lost. These periodic records of the memory contents help to keep the 

time lost due to computational errors at a minimum. 

Such periodic records also increase the flexibility of the com­

puter, for it becomes a simple task to interrupt a problem at any stage 

of the computation and start computation on a different problem. To in­

terrupt a problem, one has only to record the memory contents and to 

know the instruction with which the control is to resume the computation. 

To resume, the record is read back into the memory and the control is 

sent to the desired starting instruction. 

A magnetic tape unit has been adapted to the computer as an auxili­

ary input-output device for making these periodic records of the memory 

contents. A further discussion of the magnetic tape unit and its opera­

tional procedures is given in the chapter on operating procedures. 

In this problem we outline two routines which are concerned with 

the magnetic tape unit. The first of these routines transfers the con­

tents of the memory except for the routine itself to the magnetic tape. 

The second of the routines transfers the contents of the magnetic tape 

into the memory at the addresses specified by the routine. 

Routine 1: Memory to magnetic tape. 

This routine reads successively the words in the memory beginning 

with the first word beyond this routine and ending with the last word 

(1023) of the memory. As these words are read from the memory they are 

written onto the magnetic tape in a serial fashion beginning at a pre­

marked section of the magnetic tape (details are discussed in the chapter 

on operating procedures). 

A sum is formed of the contents of the memory (excluding this 

routine). The sum is: 1023 
Sl = .L 

l=C o 

m. 
1 
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where c is the address of the first recorded word and m. is the word 
o 1 

at address i in the memory. This sum is recorded on the magnetic tape 

immediately following the word m
l023

' and the sum is also printed. 

The sum is f~rmed as a checking procedure for the magnetic tape unit. 

When the words on the tape are read back into the memory, the memory 

is summed and this sum must agree with the sum made at the time the 

contents of the" memory were sent to the tape. If the two do not agree, 

an error has occurred and the record sent to the tape has not been 

transmitted correctly into the memory. 

The inductive procedure should cause no difficulty, so we turn 

directly to the flow diagram in Figure 21. Box 1 sets up the initial 

values of the induction. Box 2 sends the word m. to the magnetic tape. 
1 

The partial summation 

is also formed. Note in Box 2 the expression 

[delay L(40D 

This has the following meaning: Each Q~t instruction is preceded by 

an L(40) shift instruction. During the traversal of this routine by 

the control, the magnetic tape is running continuously, and the L(40) 

instruction gives a certain spacing between words on the tape. This 

spacing is necessary to insure accurate transmission at some later oc­

casion of the data from the tape back into the memory. Again this is 

discussed more thoroughly in the chapter on operating procedures. 

Note in Alternative Box 3 how the induction is terminated. The 

discrimination is upon 

Now when 

and 

However, when 

where M·i(= c , c +1 ••• 1023) 
o 0 

M·i < 1023 

M·i+l < 1024 

(M.i+l)2-10 < 1 

Moi = 1023 

which means that the last word in the memory has been sent to the 

magnetic tape 

M·i+l = 1024 



0.1 : (M.c)iIO 

0.2 : 2: C- 1 
I 
I 

8 I M.O =O~ 2:C_I=Oto 0.2 
Start . ~ -10 10 

(M.c)2 = Co' 2- to 0,1 

I 
I a 

~_~I :-............ : c -1)0 i I 

b 

---
D. I :(M.i)2-10 

D. 2 : ~ i-I - - - - - - - -" 

M.i :mj 

"2 _------------"1 
[delay L(40)] 

mj to tape 

~i = ~i.r-ml to 0.2 
(M. i + 1)2-lO to 0.1 

0.1 :(M.i+I)2:IO~ _____ r 
0.2 : ~i 

3 

'--------___ =f-----+-t[ (M. i+ 1 ) 2-10 j 

13FF = i I 

4 

[delay L(40~ 

Stopt---------__ ..... ----I SI =~3FFto tape 

Print Sj 

MEMORY TO MAGNETIC TAPE 

FIG. 21 
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and 

(M.i+l)2-l0 = 1 

which appears in the computer as a negative number and the control 

proceeds to Box 4. This discrimination really allows the positive 

discriminating quaBtity to increase until it exceeds ror the rirst 

time the allowed range ror numbers in the computer. The errect to 

the computer is a change in the sign bigit or the number upon which 

the discrimination is made. 

Box 4 sends the summation ~3FF (3FF = 1023) to the tape and 

also prints the sum. 

The only storage needed in the problem is ror two intermediate 
, . 

values of the computation. These values are the address M.i and the 

partial summation L i. They are stored in D.l and D.2, respectively. 

The coding or the problem is: 

Box 1 

1. a~Ac 0 

2. A~m D.2 

3. a~Ac 
-10 c ·2 

0 

4. A~m D.l 

Box 2 

1. R(9) 9 

2. S~m 2,5 

3· L(40) 

4. m~Ac D.2 

5· m~Q [M.i] 

6. m~Ah 800 

7. A~m D.2 

8. Q~t 

9. m~Ac D.l 

A. a~Ah 1.2-10 

Box 3. 

1. e 1,4 

Box 4 

1. L(40) 

2. m~Q D.2 

3. Q~t 

4. Flexoprint D.2 

5· Stop 

L
C

- l = 0 to R2 

(M.i)2-19 in R2 

L i-I to R2 
m

i 
to R4 

Ii = Li - 1 + mi 

(M.i)2-10 to R2 

L c -1 = 0 to D.2 
to R2 

in R2 

( ) -10 M.c 2 to D.l 

M.i to (8-19)5 

m. to tape 
~ 

(M.i+l)2-10 
= (M.i)2-10 + 1.2-10 in R2 

Sl to tape 

Sl to printer 
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( ) -10 In Box 1 the starting ~dress c 2 is stored as the address 
o 

portion of an a~Ac instruction. The instruction clears R2 and 

b . 2-10 . tit· 0 11 f R2 An A i t ti r~ngs c · ~n 0 pos ~ons - 0 • a~ c ns ruc . on may o 
often be utilized in this manner for storing and forming addresses. 

Since the address as formed is 

it cannot directly be used in conjunction with an S~m instruction, 

as the bigits of an address to be substituted must appear in R2 as 

(M.i)2-19 or (M.i)2-39 

( ) -10 Instruction 1 of Box 2 shifts M.i 2 right by nine places so that 

the bigits in R2 are 
-19 

(M.i)2 

Consequently, the instruction that receives this address must reside 

on the left-hand side of the instruction-pair. 

Instruction 6 of Box 2 adds mi to the quantity L i-I which is in 

R2 as the result of Instruction 4. Instruction 6 reads 

m~Ah 800 

Recall that any of the add orders (orders 1-8 of the vocabulary, Table I) 

treat R4 as a memory location with the address 2048 = 800 hexadecimally. 

m--""Ah 800 adds the contents of R4 into R2. Now R4 contains mi as the 

result of Instruction 5, so that 

Li 
is formed in R2 as desired. 

Instruction 8 of Box 2 is the Q~t instruction. The instruction 

is 

AD Wri te the number in R4 onto the magnetic tape. It 

The quantity m. to be sent to the tape is in R4 as the result of 
~ 

Instruction 5 of Box 2. The address portion of the Q--+t instruction 

has no relevance (the address is usually set to 000 for convenience; 

it may, however, be set to any value). 

~nstructions 9 and A of Box 2 form (M.i+l)2-l0, in R2. Rather 

( ) -10 than storing M.1+1 2 into D.l, it is left in R2 for the discrimina-

tion of Box 3, Instruction 1. The conditional transfer of Box 3, if 

effective, sends the control to Box 1, Instruction 4, where the contents 
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( ) -10 of R2, M.i+l 2 are sent to storage. We saw previously that upon 

( ) 
-10 entry into Box 2 from Box 1, the quantity M.i 2 was in R2. Box 2 

is also entered from the plus branch of Alternative Box 3, an,d from 

( ) -10 this entry the quantity M.i 2 is correctly in R2. 

Box 4, Instructions 1, 2, and 3 send ~ 3FF onto the magnetic 

tape. Again, as in Box 2, an instruction L(40) precedes the Q--+t in­

struction. 

The routine as outlined is to be coded beginning with Word 000. 

The paired coding occupies Words 000 through 009 and the storage needed 

is designated as OOA and OOB. The initial address c is then OOC. The 
0 

paired coding is: 

O. a~Ac 000 A-+m OOB 

1. a----.Ac 018 A----,m OOA 

2. R(9) 009 S--+m 004 

3. L(40) 028 m--+Ac OOB 

4. m~Q locoJ m~Ah Boo 

5· A--+m COB Q~t 000 

6. m--+Ac OOA a--+Ah 002 

7. C· 001 L(40) 02B 
B. m---.Q OOB Q~t 000 

9. Flexoprint OOB Stop 

A. 

B. 

The left-hand instruction of Word 001 sets up the initial address c • 
W II 0 

It is to be (OOC)2- which is (01B)2- ; hence, the address of the in-

struction is 01B. 

Routine 2: Magnetic tape to memory. 

This routine is to be used in conjunction with Routine 1. It reads 

successively the 'words ~ram the magnetic tape (which had been written onto 

the tape by utilizing Routine 1) and writes them into the memory at the 

addresses that they had originally occupied. Routine 1 sent Words OOC 

through 3FF onto the tape; therefore, this routine reads the words from 

the tape and writes them into the memory at the addresses OOC through 3FF. 



b 

-10 D.I ;(M.c)2 

D.2: :LC- I 
I 

I 
I a 
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. -10 D.I ~(M.I)2 1-____ _ 

0.2 : 2: j _
1 

0.1 : (M.i+niO 
0.2:2:1 
M ' · .1' mj 

2 

tape to M.i 

2: j = 2:j_1 + mj to 0.2 

(M. i+l)ilOto 0.1 

1-----

s, (tape) to 0.1 
Print ·S, 

Print S2 =~3FF 

MAGNETIC TAPE TO MEMORY 

FIG.22 



After the words mi where i (= 12, 13 

memory, a sum 

1023) are sent to the 

c = 12 (dec.) o 
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is formed and printed. Also printed is the word immediately following 

ml023 on the magnetic tape. The latter is Sl' the sum of the memory 

contents (hence the sum of the words on the tape) when the tape record 

was made. The sums Sl and S2 are identical, if no errors have been made 

by the computer or the magnetic tape. The procedures to be followed if 

81 and 82 do not agree are outlined in the chapter on operating procedures. 

The flow diagram shown in Figure. 22 is so similar to the flow dia. 

gr.am of Routine 1 that we turn directly to the coding without further 

comment. 

The coding is: 

Box 1 

1. a---=)Ac 

2. A~m D.2 

3. a~Ac 'c .2-10 
0 

4. A~m D.1 

Box 2 

1. R(9) 

2. S~m 2,5 

3. S--+m 2,7 

4. t--+Q 

5. Q~m [M.i] 
6. m~Ac D.2 

7. m--+Ah [M.i] 

8. A~m D.2 

9. m--+Ac D.1 

A. a--+Ah 1.2-10 

Box 3 

1. c 1,4 

Box 4 
1. t~Q 

2. Q~m 

3· F1exoprint D.1 

4. F1exoprint D.2 

5· Stop 

\" - 0 L c-l -

(M.i)2-10 

to R2 r 1 to D.2 
-10 c-

c ·2 to R2 
o 10 

(M.C)2- to D.1 

~.i to (8-19)5 

M.i to (8-19)7 

m. 
l. 

in R2 

to M.i 

~i to D.2 

(M.i+1)2-10 = (M.i)2-10 + 1.2-10 in R2 

S to R4 
1 

81 to D.1 

Sl to Printer 

82 to Printer 
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In the formation of each successive term of the partial summation 

~i' in Box 2, Instructions 6, 7, and 8, the contribution mi is added 

from its memory location M.i rather than from R4 where it also exists. 

The checking obtained by this summing process is more complete than 

if m. were added fromR4. 
1 

The t--+Q instruction which is Instruction 4 of Box 2 and In-

struction 1 of Box 4 is: 

"t-7Q AC Replace the number in R4 by the first word to come 
under the reading head of the magnetic tape reader. tI 

Again, ·as in the Q~t instruction, the address of the instruction has 

no relevance. Note that the L(40) instruction which preceded each Q~t 

instruction is not used with the ~Q instructions. 

In the paired coding, Instructions 5 and 7 of Box 2 must be left­

hand instructions since the address M.i which is being substituted is 

in R2 as 

(M.i)2-19 

In Box 4, Instructions 3 and 4 print the summations 81 and S2. A 

visual check is then made of the numbers rather than allowing the com­

puter to do the comparison. This has the added feature that these two 

numbers printed may also be checked against the number Sl which was 

printed when the tape record was made. 

This routine is coded into Address 000 and occupies Words 000 

through 009. D.l and D.2 are designated as OOA and OOB, respectively. 

Again, c is OOC. The paired coding is: 
0 

o. a-+Ac 000 A~m OOB 

1. a~Ac 018 A.--+m OOA 

2. R(9) 009 S~m 004 

3. 8~m 005 t~Q 000 

4. Q---+m [ 000] m~Ac OOB 

5· m--+Ah [ 000] A~m OOB 

6. m--+Ac OOA a~Ah 002 

1. c· 001 t~Q 000 

8. Q--+m OOA Flexoprint OOA 

9. Flexoprint ooB Stop 

A. 

B. 



-141-

We have in this problem taken the liberty of incorporating checking 

features into the two related routines without either discussing the need 

for such checking features or discussing what the procedures are if this 

checking indicates an error in the transmission. This checking is such 

an integral part of the routines which make use of the magnetic tape unit 

that we do not feel that the routines should be presented without includ­

ing them. 
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Problem 13 

We develo~ a routine for the synchroprinter, the high-speed page 

printer that has been adapted to the computer as a part of the output 

equipment. The synchroprinter has a maximum operating speed of 36,000 

characters per minute. The ordinal numbers 0, 1, 2 ••• 9; the letters 

A, B··· F; a decimal point; and a minus sign are the eighteen distinct 

characters that may be printed. A line at a time is printed, where a 

line consists of 40 characters. Recall that the synchroprint order reads: 

IISync Print CE To be used in a subroutine which simultaneously 

prints ~i' ~i+1' ~i+2 and ~i+3; i is to be com­
municated to the routine (high speed)." 

Inasmuch as four words are printed s~ultaneously, it is not surprising 

that a special routine is required. Further discussion of the synchro­

printer is given in the chapters IV and VI on The Computer and Operating 

Procedures, respectively. 

In order to achieve the high speed of operation, the printer operates 

as follows: 

To print an aggregate of forty digits (a line) there are eighteen 

distinct print cycles. All the Fls of the aggregate are printed simul­

taneously in Cycle 1, all the E's of the aggregate are printed simultane­

ously in Cycle 2, and so on to Cycle 16 which prints all the Q's, to 

Cycle 17 for the dectmal points, and to Cycle 18 for the minus signs. 

Since there are these eighteen distinct cycles l one has only to supply 

the digital information which corresponds to the cycle. That is, during 

Cycle 1, only the digital information for the F's is needed, and so on. 

This information is obviously binary. For Cycle 1 it is either to print 

an F in a particular digit position, or not to print it. The line of 

print is 40 digits and a register contains 40 bigits, so a register may 

supply the binary data (either print or do not print) to the printer for 

each cycle. The register R2 is used for this purpose. During the i th 

print cycle i (= 1,2 ••• 18) an appropriate naber which _pecifies the 

diS1 t po,i tiona to be printed i8 brought into B2. A 0 in any position ot 
- th 

the nlDlber in R2 corresponds to the presence ot the character ot the 1 



cycle in the respective digit position of the line, whereas a 1 indi­

cates the absence of the corresponding character. 

For simplicity of design, the paper feed is vertically down. 

Hence, to achieve a conventional listing, the characters must be in­

verted and left, right interchanged, so that the leftmost bigit of R2 

corresponds to the rightmost bigit of the print line while 2-39 of R2 

corresponds to the leftmost bigit of the print line. 

The procedure to print a line corresponding to four 10-digit (10-

tetrad) words is as follows: 

The four words are fanned out into an 18 x 40 array which occupies 

18 successive memory locations. The rows of the array (the eighteen 

locations) correspond to the characters of the printer. The columns 

of the array correspond to the digit position within the line of print. 

The first row of the array corresponds to the minus sign, the second to 

the decimal point, the third to the Q, the fourth to the !, and so on, 

through the 18th row which corresponds to the F. Column Qcorresponds 

to digit position 39 of the line, column 1 to digit pOSition 38, and so 

on, through column 39, which corresponds to digit pOSition Q of the line. 

We define an element of the array as aij , where! corresponds to 

the row of the array and j corresponds to the column. If 

a ij = 0 

the i th character is to be printed in column .J. (digit pOSition 39 - j)-

If 

a ij = 1 

the character is not to be printed. No column of the array may contain 

more than one Q; that is, only one character may be printed in any 

digit position. However, if a column contains l's only, then no character 

is printed in the corresponding digit position. 

The elements of the array are initially set to 1. The first tetrad 

of the first word is examined and found to have the value !, then a 0 

is inserted into the appropriate element a i ,39- The second tetrad is 

examined and a 0 is inserted into the corresponding element a i ,38; and 

so on, until the forty tetrads of the four words have been examined and 

o has been inserted into the appropriate elements of the array. 
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The inductive process of fanning the four words Into the array is 

described as follows: The elements of the 18 x 40 array are initially 

set to 1. The insertion of zeros into elements in the two rows of the 

array corresponding to the minus sign and the decimal point is treated 

apart from the induction. Hence, we may regard the rows as being 

specified by the values of the tetrads with 

O~i~F. 

The tetrads of the words must be isolated to obtain the values i. They 

are isolated as follows: The four words are specified as 

~ k (=0,1,2,3). 

In each word there are ten tetrads 

i n (=0,1,2···9). k,n 

The induction for isolating the tetrads of any word ~ is over the in­

dex n and it is 
Ck,_l = ~ 

ck,n = 2
4

Ck ,n_l (fractional part) 

i = 24
c (integer part) k,n k,n-l 

where o ~ n ~ 9. 
After the row i is determined, the column i must be determined so that 

the element aij may be set to O. The column ~ is easily seen to be 

given by 

j = 39 - (10k + n) 
th We specify the i row of the array as r i • Then after determining the 

appropriate ! and ~ values we have only to perform the operation 

r - 2- j 
i 

to set the element aij to O. 

The printing sequence proper, which is carried out after the array 

is formed, may now be given. Within the sequence, each of the eighteen 

print cycles is determined by a print order. The first print order 

actuates the printer and the remaining seventeen print orders act in a 

timing capacity to keep the printer and computer in synchronization. 

Once the printer has been actuated it proceeds through its eighteen 



cycles at a fixed rate independently of the computer. Each of· the 

seventeen print orders must be given before the printer is ready to 

perform that particular cycle. The order has the effect that the 

computer waits for the printer until the cycle is complete and then 

proceeds to the next instruction of the sequence. The printer operates 

at a speed of roughly 1.5 milliseconds between its print cycles. The 

print sequence must have no more than 1.5 milliseconds elapse between 

successive print orders. 

Immediately preceding each print order, the appropriate word of 

the array is brought into R2. Cycle 1 prints the F's so that Word 18 

of the array is the first word to be brought into H2. It is followed 

by a print order which actuates the printer and executes Cycle 1. 

Word 17 of the array is brought in and the succeeding print order exe­

cutes Cycle 2 and prints the E's. This continues until the eighteen 

print cycles have been completed. 

Even though the eighteen distinct characters may not all appear 

in any given printed line, it is necessary that eighteen print orders 

corresponding to the eighteen characters be given. Those characters 

that do not appear have their respective row in the array containing 

all lis so that nothing is printed during the corresponding print cycle. 

We now turn to the flow diagram shown in Figure 23. The storage 

needed is as follows: The four words mo ' ml , m2, and m3 which are to 

be printed are stored in D.I, D.2, D.3, and D.4, respectively. The 

eighteen words needed for the array are designated (the addresses are 

hexadecimal): E.I: r_ 

E.2: r. 

E.3: r 
0 

E.4: r
l 

E.12: 

The following constants are needed 

-39 B.I: -2 
B.2: 2-7 + 2-19 + 2-39 

B.3: 0 
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Three initial addresses are stored. They are 

B.4: (D.l) o 
B.5: (E.3) 

o 
B.6: (E .12) 

o 

(D.l) is the base address for the four words to be printed. (E.3) o 0 

is the base address to which i is added to form the address of r .• 
~ 

(E.12) is the base address used in the printing sequence. Four Mords 
o 

of intermediate storage are needed. They are d~signated as D.5, D.6, 
D.7, and D.B. 

Boxes 1, 2, and 3 of the flow diagram set the eighteen rows of 

the array to alII's. Boxes 4 through A form a double induction that 

records O's into the appropriate elements a .. of the array. Boxes B, 
~J 

C, D, and E are the print sequence proper. 

Box 1 sets the initial index of r 0 2-7 for storing !'s into the 

rows r
i

. Box 2 stores _2- 39 into the rows 

r I _i where i (=0,1,2 "·17, decimally) 

The discrimination of Box 3 is on 

(I - i - 2)2-7 

Immediately after 

r = o -2 -39 

is stored, (i = 17, dec.) i is increased by!; hence the quantity 

I - 1 - (i+l)2-7 

is correctly negative for the first time as 

I = 18'2-7, dec. 

Box 4 sets up the initial conditions for the induction over k. It 

sends the initial address (D.l) to D.7 where it becomes (D.l+k) as 
o 0 

k = 0 initially_ It also sends the number 

_2- 39 to D.5 

where it is to become 

-2-
j 

j == 39 - (10k + n) 

k and n are both initially Q; hence .J. is initially 39, as is desired. 

Box 5 sets up the induction over n. The word ~ becomes ck,_I' 
-11 -11 6 and N·2 is set to 9-2 • Box forms c

k 
and i by shifting ck 1 ,n - ,n-
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2 10.6:(1-i-1l2-7 1 
I ~-------------------------~ 

a 1 rr . = _2-39 to E.l-i 
~ 

3 I 
r----., I -I 

"'-'~1-1>2-7=17'2-7to 0.6t--1i1---.t 1-Ili~'---...... -t(J-i-2)2-7 to 0.6 

s 
j-I-+j 
n+l~n 

f 

6 

Ck n = 24
Ck n_l(fractlonal part) to O.S , , 

i = 24
Ck n_l(integer partho R4 

t-----c:rl!3---I ' 

rj - 2-j to E.3+ i 

B -2-(j-l) to 0.5 

C 

................ --------1 rI _ i to R2 

Print 

A SYNCHROPRINTER ROUTINE 

FIG.23 

.-----.-, I 
I 

c 
_2-39 to 0.5 

(0.1)0 to 0.7 

O~n 

39-(IOk+n)-+- j 

0.5:-2- j 
0.6 ~(N-n)2-11 

----OS'C .. k n-I , 
E.3+i: ri 

4 

5 

d 
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left four places. i is in R4 as 2-39i and c k is in R2. The appro­,n 
priate element aij is set to Q by the operation 

r
i 

- 2-
j to E.3+1 

Note that 

where i (=O,l··.F) 

E.l and E. 2 contain r _ and r. of the array, and they do not enter into 

this print routine, but they mu~t exist as all !I S • Alternative Box 7 
terminates the double induction and sends the control to the print 

sequence. The discrimination is on 

-2- j 

This quantity appears negative to the computer until j = ~l, at which 

time -2- j appears as Q in the computer. It is then a positive number 

with respect to discrimination and the control is sent to the start of 

Box B. Note in Box 6 that ~ is decreased to j - 1 after the operation 

r
i 

- 2-
j to E.3+1 

When j = 0 the last step of the induction is completed and a Q. is stored 

in the leftmost bigit of the row r .• ~ is then decreased to j- - 1 = -1 
1. 

and the quantity 
-2- j 

becomes positive for the first time. 

Boxes B, C, D, and E bring out the rows of the array and print 

them, starting with r I , which corresponds to the character F, and de­

creasing to r , which corresponds to character O. Print orders are 
o . -

given corresponding to tb~ rows r. and r_, even though these characters 

are not printed by the routine. After the print order for r _ has been 

given, the discrimination of Box E is negative for the first time and 

the routine terminates. 

The coding of the routine is: 

Box 1 

1. a~Ac 11.2-7 11· 2 -7 (= 17 • 2 -7 de c • ) to R2 
Box 2 

1. m~Ah B.6 (1-1)2-7 + (E.I) = 11.2-7 + (E·12)o in R2 
0 

2. S----+m 2,4 E.I-i to (8-19)2,4 

3. m----+Q B.l -2 -39 to R4 



Box"2 (Cont.) 

4. Q~m [E .I-iJ 

5. m~Ah- B.2 

Box 3 

1. C 2,2 

Box 4 

2. m~Ac B.4 

3. A---+m D.1 

Box 5 
1. m~Ac 

2. S~m 

3. a~Ac 

4. A~m 
5. m~Ac 

6. A-+m 

Box 6 

5,5 
9.2-11 

D.6 

[D.k+lJ 
D.B 

1. m~Ac D.B 

2. m~Q B.3 

3. L(4) 4 

4. A~m D.B 

5. m~Ac B.5 

6. m~Ah Boo 

1. S~m 
B. S---+m 

9. m~Ac 

A. m~Ah 

B. ~m 

c. m---+Ac 

D. L(l) 

Box 1 

6,9 
6,B 

LE.3+1] 

D·5 
[Ee 3+ i J 
D·5 

1 

D·5 

1. C B,l 
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-39 r. = -2 to E. I -i 
J. 

(I-i-2)2-1 + (E. I -i-I) in R2 
o 

(D.l) to R2 o 

(D.k+l) to R2 o 

(D.l) to D.7 o 

D.k+l to (B-19)5,5 
N·2-11= 9.2-11 to R2 

. N .2-11 to D.6 

Ck,_l to D.B 

ck 1 to R2 ,n-
O to R4 

~.2-39 in R4; c
k 

in R2 
,n 

(E.3)o to R2 

c
k 

to D.B ,n 

E.3·2-19 + (E.3+i )2-39 in R2 

r. to R2 
J. 

r i - 2- j in R2 

-2- j to R2 

_2-(j-l) in R2 

E.3+i to (B-19)6,9 

E.3+i to (8-19)6,B 

-j 
r

i 
- 2 to E.3+i 



Box 8 

1. m~Ac 

2. a~Ah 

3· A---+m 

Box 9 

1. e 
Box A 

1. m~Ac 

2. m-->Ah 

3. A~m 
4. T 

Box B 

1. a~Ac 

Box e 

D.6 

-2 -11 

D.6 

6,1 

D.1 

B.2 

D.1 

5,1 

11.2-1 

( ) -11 N-n 2 to R2 

( ) -11 N-n-l 2 in R2 

(D.k+l) to R2 o 
(D.k+2) in R2 

o 

(N_n_l)2-11 to D.6 

(D.k+2) to D.1 
o 
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1. m~Ah 

2. S~m 

3. A----.m 

B.6 

e,4 
D.6 

[E.I-i] 

(1_1)2-7 + (E.I)o = 11.2-1 + (E.12)o in R2 

E.l-i to (8-19)C,4 

(l-1-1)2-1 + (E.l-i) to D.6 
o 

4. m~Ac 

5. Syncprint 

Box D 

1. m~Ac 

2. m~Ah-

Box E 

1. e 
2. Stop 

D.6 

B.2 

C,2 

r
l

_
i 

to R2 

'l (I-i-l)2- + (E.I-l) to R2 
7 0 

(I-i-2)2- + (E.I-i-l) in R2 
o 

In the induction storing _2- 39 to all r
i

, the register R2 is 

needed only in forming (I-i-l)2-1 and in forming the addresses 

(E.I-i) • These two operations may be performed simultaneously and 
o 

the quantities (I-i-1)2-1 and (E.l-i) are left in R2 throughout the 
o 

induction. Therefore the quantity 11.2-1 (=11.2-1 dec.) need only 

be sent to R2 in Box 1, and it is not stored into D.6. During the 

traversal of Box 2, R2 contains 

(I-i-1)2-7 + (E.I-i) 
o 

Instruction 5 subtracts the contents of B.2 from R2. B.2 contains 

the constant 
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so that the subtraction gives 

(I-i-2)2-7 + (E.I-i-l) o 

in R2 as is desired. The quantity _2- 39 that is sent to all addresses 

E.I-l is stored from R4. The only instruction needed in Box 3 is the 

conditional transfer as the quantity (17-i-2)2-7 upon which the trans­

fer acts is in R2 from Box 2. 
39 -j In Box 4, Instruction 1 stores -2- to D.5 where it becomes -2 

The quantity _2- 39 exists in R4 as a result of Box 2. 

Instruction 2 of Box 6 sends a to R4 and Instruction 3, an L(4), 

isolates i in R4 as 
2-39i 

The quantity i·2-39 is added from R4 into the (E.3) in R2 by making use 
o 

of the m~Ah 800 instruction where the address 800 refers to R4. In-

structions 7 and 8 must both be S~ml instructions in the final code 

since the pertinent address in R2. is 

(E. 3+i)2-39 

In Box C where the print order is given the scheme used in Box 2 of 

having the index and the address in one word as 

(I-i-l)2-7 + (E. I-i) o 

is utilized. In this instance, however, the word cannot be left in R2 

during the induction as the rows r. to be printed must be brought into 
1. 

R2. Instruction 5 is the print. Since! is initially Q the rows of 

the array r I _
i 

are correctly brought into R2 beginning with r F • 

Box D subtracts 

from 
(I-i-l)2-7 + (E.I-i) 

o 

and leaves the result in H2. Box E then needs only the conditional 

transfer order. As long as (I-i-2}2-7 is a positive number the transfer 

sends the control to Instruction 2 of Box C. 



The coding contains ~ instructions, which is 24 1/2 words. We 

start the code at Word 000. Upon examination it is revea.1ed that In­

structions 9 and B of Box 6 naturally occur as left-hand instructions 
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in the final code. It is necessa.ry for them to be on the right; there­

fore a dummy instruction must be inserted for positioning. This gives 

25 words of code which occupy addresses 000 through 018 in the memory. 

Thel8 words of the array occupy addresses 019 through 02A. The 6 words 

of B storage are then in addresses 02B through 030, and the 8 words of 

D storage are in addresses 031 through 038. 

The coding is: 

000 a~Ac 

001 S--?m 

002 Q~m 

003 e 
004 m--)-Ac 

005 m~Ac 

006 a~Ac 

007 m~Ac 

008 m~Ac 

009 L(4) 

OOA m~Ac 

OOB S~m' 

ooe (DS 

OOD m~Ah 

OOE m~Ac 

OOF A~m 

010 m~Ac 

011 A--:)m 

012 m~Ac 

013 A~m 

014 a.~Ac 

015 S~m 

016 m---)oAc 

017 m~Ac 

018 C 

110 

002 

000 

001 

02E 

037 

009 

000 

038 

004 

02F 

ooe 
000) 

035 

035 

035 

036 

036 

031 
037 

110 

016 

000 

036 

015 

m~Ah 030 

m-+Q 02B 

m~Ah- 02e 

~m 035 

A-4m 037 

S~m 007 

A~m 036 

A~m 038 

m~Q 02D 

A~m 038 

~Ah 800 

~m' OOD 

m~Ac 000 

A~m 000 

L(l) 001 

C 014 

a~Ah FFF 

C ooB 
m~Ah 02C 

T 005 

m~Ah 030 

A~m 036 

SyncprintOOO 

m~Ah- 02C 

Stop 
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019 r -
OlA r. 

OIB r 
0 

OIC r l 
OlD r 2 
OlE r3 
OIF r4 
020 r5 
021 r6 
022 r7 
023 r8 
024 r9 
025 rA 
026 rB 
027 rC 
028 rD 
029 r E 
02A rF 

-39 02B B.l: -2 

02C B.2: 2-7 + 2-19 + 2-39 

02D B.3: 0 

02E B.4: (D.I) = (00031) 
o 0 

02F E·5: (E.3) = (OOOIB) 
o 0 

030 B.6: (E.12) = (OOO2A) 
o 0 

031 D.l 

032 D.2 

033 D.3 

034 D.4 

035 D·5 

036 D.6 

037 D.7 

038 D.8 
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III. BINARY ARITHMETIC 

We begin the study of arithmetic as it reiates to the computer 

by discussing (i) the allowed ranges of numbers and (ii) the treat­

ment of negative numbers. 

The allowed number range may be approached in two ways. There 

is the so-called "floating binary point ll method and the "fixed binary 

point" method. We have adopted the latter approach; however, a few 

cursory remarks may be made about the former. 

The "floating binary point" allows each number to be expressed 

as a fraction and a characteristic. That is, the binary number 

1011.1101 would be expressed as (0.10111101, +100) where the 100 is 

the positive exponent of 2 associated with the number. An argument 

in favor of such a scheme is that it alleviates the scaling considera­

tions at the coding stage which one otherwise encounters in working 

with a fixed binary point. It is felt, however, that scaling is not 

a serious problem and that the time spent in arranging suitable scale 

factors is small in comparison to the total time spent in preparing 

an interesting problem for the computer. Two definite arguments 

against the floating binary point are: (i) It increases the complex­

ity of the computer which in turn increases maintenance difficulties. 

(ii) It increases the time necessary to perform each operation. In 

many problems that are contemplated the time required for their solu­

tion is a principal factor; hence advantages of speed are important. 

In the "fixed binary point" method the binary point in the present 

computer is taken between the first and second bigits from the left. 

The binary point might have been fixed between any other bigit pair. 

This fixed binary point places an upper limit on the size of a number 

in the computer. 

Since it is necessary to be able to distinguish between positive 

and negative numbers, and since their treatment has a direct bearing 

on the allowed range of numbers, we digress temporarily and discuss 

the IIsignll of a number. 

Although there are many possibilities for the representation of 

numbers in the computer, we consider the two most common ones: 

(i) "signedll numbers and (ii) "complement ff numbers. In the first 



scheme the leftmost bigit would indicate the "sign". The sign 

bigit would be a Q or ! according as the number is non-negative 

or negative. In each instance the sign bigit is followed by the 

actual numerical bigits. Clearly, in this case the magnitude of 

all numbers would be less than 1. 

In the second scheme of "complement" numbers, since 

= 

we write x as 

then take for our representation of x 

N 

i~ 2i + 1 + x. 

For positive !, that is x~ 0, the above equation gives: 

( N+l) -x mod 2 = x. 
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If also, Ixl<:l, the leftmost bigit contains a Q as in the preceding 

scheme. For the ne gat i ve values of ~, ° > x > -1, the integral part 

of the number's representation is a sequence of !'s, (N+l) in length, 

followed by a fractional part equal to (l-(xj). Since the computer 

contains numbers modulo 2, it contains the complete fractional part 

and the first integer to the left of the binary point; hence the 

lef.tmost bigit contains a!. Therefore, in the complement scheme, 

if I xl < 1, the "sign" of a ntnnber may be identified by examining 

the leftmost bigit. This is not a true "sign ll and the bigit has 

numerical significance. However, for convenience it is called the 

sign bigit. 

In either the "signed" ntnnber representation or the "complement" 

ntnnber representation Ix 1 < 1, and the IIsign" of the ntnnber is de­

termined by the leftmost bigit. 

Since the sign of a number is identified by examining the sign 

bigit, we are naturally led to treating zero as positive for compu­

tational purposes. Since a 1 in the sign bigit indicates a negative 



number and since the sign bigit also has numerical significance, 

one may interpret! in the sign bigit followed by all 2's as the 

integer -! and operate with it accordingly. The allowed number 

range in the computer is then -l~ x < 1. 

All numbers are of the form: 

i 2 + 1 + x, 

where N may be any suitably chosen value 0 For the discussion of 

addition and subtraction it suffices to take N=O and to consider 

a negative number as represented by its complement with respect to 

2. For the multiplication process, N~ 39. The details are con­

sidered presently. Since the computer contains numbers modulo 2, 
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we actually see! or (2-lxl) according as ! is positive or negative, 

and we refer either to the number or its complement with respect to 

2. However, the existence of the (N+l) bigits left of the binary 

point is implied. 

Shifting 

Shifting is one of the more basic operations the computer per­

forms and perhaps should be the first of the arithmetic operations 

discussed. The left and right shift provide a means of multiplying by 

2
n where -4o~ n ~ 40. 

Recall that x is represented as: 

N i l 2 + (l.+x). 

Performing a left shift of .!! places, 0 ~ n~ 40, gives: 

2nx(mod 2N+1.) _ f 21 + 2n + 2nx 
:[=n 

N . 
= ~o 21 + (1.+2

n
x) 

which conforms with the adopted complement notation. 
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As previously stated, all numbers in the computer must have 

a numeric value less than!i therefore, for this "power" shift to 

be a legitimate operation 

or 

In the computer where the left shift takes place modulo 2, the sign 

bigit is treated as a numerical bigit, and at each step of the 
-1 shift the 2 bigit shifts into the sign bigit. After an n-fold 

shift where Ixl <: 2-n, the shifted number still has the proper sign 

representation as is indicated by the alg~braic representation. 

There are other schemes of left shifting; for example, where 

the sign is not affected and numerical bigits are lost from the 2-1 

bigit position. For purposes of power shifting this scheme is com­

parable to the scheme adopted. However, when one uses shifting' 

facilities to separate a multiplex of numbers stored as a40-bigit 

aggregate our scheme allows much more flexibility. This is not 

the place for a discussion of non-standard operation; hence we de­

lay the discussion of shifting as it applies to such cases until a 

later time. 

Performing a right shift of !! places, 0 ~ n ~ 40 , gives: 

N . 
-n -n ~ J. -n( ) 2 x = 2 2 + 2 l+x 

f-

N 
~ i-n -n -n = i=b 2 + 2 + 2 x 

= 

= 

= 

~ 21 + (~ 2-1+2-n+2-nX) 

N-n . 
~o 21 + (1_2-n+2-n+2-nx) 

N-n . 
~o 21 + (1+2-

n
x) 

N - n = NI > 0 

Nt L 2i + (l+2-nx) 
i=o 

which conforms with our complement notation. 

N>n 



-158-

Phenomenologically, one may say that in a right shift the sign 

bigit fills into the bigit positions that are vacated by the shift. 

The output to the right of the 2-39 position is still available else­

where, but is of no concern in the present discussion. 

For examples of shifting, consider a left shift of 4 and a right 

shift of 4 where ~ is in each case a negative number. A negative ~ 

is used as it provides the more interesting example. The shift ex­

amples are considered modulo 2 as this is the computer representation. 

(i) shift x left 4, x = -0.00001011 

2-lx I = 1.11110101 
4 

2 (2-!x P = 11111.01010000 
4 2 (2.-(xl )mod 2 = 1.01010000 equivalent to the 

signed number -0.10110000 

(ii) shift right 4, x = -0.10101011 

2-l x l = 1.01010101 

2-4(2_ (x P = 1.111101010101 then truncating 

gives 2-
4
(2-lx P = 1.11110101 equivalent to the 

signed number -0.00001011 

In the right shift the resulting number may be in error by at most 1 

in the rightmost position because of the truncation. One can reduce 

this truncation error by introducing a "round-off" scheme in the 

right shift. 

Addition and Subtraction 

Consider the sum S = (x+y). Not only must I x I, (y J <: 1, but 

lsi <: 1. (x+y) is represented in complement notation as 

~ i N i N i ko 2 + 1 + x + l 2 + 1 + y = 2 ko 2 + 2 + (x+y) 

N+l i N+l . 
i~O 2 + (1+x+y) = l 23. +. (1+8). 

Hence S is of the same form as x and y. If (x+y) ~ 0, then 

N+l i ) N 1 Cl2 +(1+8) mod2+ = 8~O. 
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If (x+y)<: 0, then the result is: 

In either case we have the correct interpretation. Since the result 

is viewed modulo 2, we may set N=O in the above equations without 

affecting the results. Therefore, in addition and subtraction num­

bers are of the form (2+u), where -1 ~ u < 1. 

(2+x) + (2+Y) = 4 + (x+y) 4 + S 

and if (x+y)~ 0, then (4+S)mod 2:: S. On the other hand, if 

(X+y) < 0, then (4-1 S) )mod 2 = 2-1 s J • Therefore, the signs of ! 

and l do not alter the process and one may, by means of addition, 

effect either sums or differences. 

Clearly, if it is desired to form the difference (x-y) of two 

numbers ! and ~ where their representations are 

N . 
and I 22 + (l+y), 

2=0 

we must first represent -~ in this notation which is 

f 21 + (l-y). 
1=0 

This is referred to as the complement of ~ with respect to 2N. For 

subtraction it suffices to be able to form the complement of numbers 

with respect to 2. 

To form the complement (2-y), write 

2 _ y = (2_2-n_y) + 2-n 

where n is the rightmost bigit position. Since 

n . -n 2 - 2 = I 2-
2

, 

2=0 

(2_2-n_y) is the reflection of each bigit of y; that is, where there 

is a ! in l there will be a Q in (2_2-n_y). The complement is com­

pleted by adding 2-n to the difference. For example, 

2 - 2-12 = 1.1111 1111 1111 

- y = 
which reflects each bigit of y: 
Adding! into the rightmost bigit 

gives the complement 2 - y = 

-0.1101 0110 1011 
1.0010 1001 0100 

1 

1.0010 1001 0101 



This method of reflecting each bigit and adding! into the 

rightmost bigit position is, in essence, the method by which the 

computer forms complements. 

Example s of addi tioD and. subtraction are: 
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(1) x = 0.00101011; y = 0.01000111; form S = x + y 

x + y = 

x = 0.00101011 

y = 0.01000111 

S = 0.01110010 

(2) x = 0.10101101; y = 0.11010110; 

x = 0.10101101 

2 - Y = 1.00101010 

2 + (x-y) = 2 -Is) = 1.11010111 

Multiplication 

form S = x - y 

We consider the multiplication of ~, a 39-bigit multiplicand and 

sign, by!, a 39-bigit multiplier and sign. The product P is a 78-
bigit product and sign. It has previously been stated that (x), 

I y I < 1; therefore it follows that I P I <: 1. Here is an advantage of 

placing the binary point to the left of the first numerical bigit. 

If lxi, \y\:> 1 were allowed, the product P could be greater than 

either factor, and P would have its binary point in a position dif­

ferent from either that of ! or l-

To develop a multiplication scheme, consider two numbers ! and 

l where lxi, Iyl <: 1. Since ~he complement notation is used, their 

product is: 

= 
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Using the relation N 

~2i = 2N+1 _ 1, 

One obtains: 
P = 1 + x + y + xy + 2N+l _ 1 + 2N+lx _ 

_ x + 2N+l _ 1 + 2N+l y _ y + 22N+2 _ 2.2N+l + 1. 

Collecting terms: 
P = 22N+2 + 2N+l(x+y) + xy. 

Since 
2N 2 2N+l i 2 + = I2 +1 

J.=o 

rewrite the product as: 

N+l ( ) 2N

l
+l

2
'i P = 2 x+y + + (l+xy). 

=0 

Either (x+y) = 0, or /x+yJ ~ 2-39; hence, if we choose N=39, 2N+l(x+y) 

is either 0 or greater than 2. Since the computer contains numbers 
-40 

modulo 2,2 (x+y)mod 2= 0, and we see P as : 

P mod 2 = 2 + xy, 

the correct complement notation. 

The scheme as outlined is not desirable for the computer as it 

considers x mod 240 which implies that the multiplication is a 78-step 

process rather than the conventional 39 steps. 

One may modify the scheme so that it treats only the fractional 

part (but not the sign bigit) of the multiplier~. Here, x has the 

representation (~o +x) where ~o = 0 if x ~ 0 and ~o = 1 if 

x < 0; i.e., the complement of ~ with respect to .! if ~ is negative. 

By a procedure similar to the above, one finds 

~
. 40 40 

(~+x)( 2J.+l +y ) = 2 ~ + 2 x + ~oy + xy. 
o i= 0 

Rewrite the product P as 

P = 240~ + 240(x~2-39) + 2 + ~ Y + xy. 
o 0 

Then, as in the preceding case, consider P mod 2 and 

P mod 2 - 2 + ~oy + xy. 

If x ~ 0, then ~o.= 0 and 

P mod 2 = 2 + xy, 
the correct product using complement notation. If x < 0, then 

and P mod 2 _ 2 + y + xy. 
~ = 1 o 



-162-

Clearly, one needs to subtract ~ to gain the desired product. An 

additional step is required in this scheme if the multiplier is 

negative, namely adding the complement of the multiplicand l to the 

product. 

The multiplication is accomplished by examining the multiplier 

a bigit at a time, beginning with the least significant bigit, and per­

forming the indicated operation. If the multiplier bigit is a!, the 

multiplicand is added into the partial product; then the sum and multi­

plier are shifted right one place. If the multiplier bigit is a 2, 
the partial product and multiplier are merely shifted right one. The 

multiplication involves 40 steps; the first 39 steps either add the 

multiplicand to the partial product and shift the sum right one unit, 

or merely shift the partial product right one unit according as the 

examined bigit of the multiplier is ! or Q. The 40th step adds the 

complement of the multiplicand to the partial product or does nothing 

according as the sign bigit of the multiplier is ! or 2. 
The computer can only perform operations modulo 2; therefore some 

way is needed of simulating the multiplicand modulo 240. To find a 

suitable method, we examine whether there is a simple relation between 

the sign of the partial products, as viewed in the computer, and the 

sign of the multiplicand for the scheme discussed immediately above. 

We now prove that after the first ! is encountered in the examination 

of the successive bigits of the multiplier (prior to that the partial 

product is zero), the signs of the multiplicand and the partial product 

agree. 

Assume the partial product p. is of the form: 
N ~ 

Pi = ~ 2i + (l+b) where lb I < 1; 
th f=b 

if the (i+l) bigit of the multiplier is a 1 
N . N i-

2pi+1 = l21. + (l+b) + 1:02 + (l+y) 

N 
= 21:0 2i + (2+b+y) 

N. b+ 
Pi+1 = ~21. + (1~). 

Nowlb I < 1 and I y I < 1; therefore lb+yl/2 = lb II < 1 and 
N . 

Pi +1 = l21. + (l+b I ). Eq. (1) 



-163-

For the case where the (i+l)th big1t of the mult1plier 1s a 0, it is 

,easy to see that ~' of Eq. (1) is equal to b/2. The partial product 

is originally 2" but after the first! appears in the multiplier, the 

partial product ~ is: 

IYI < 1 

ly/21 < 1 

Therefore, by induction all succeeding partial products are of the 

form: 

Ibl < 1 

Inasmuch as the various increments to the partial product all have 

the same sign, namely that of the multiplicand, and since it has been 

shown that Ib'l < 1 for all possibilities, it 1s clear that the sign 

of the partial product agrees with that of the multiplicand (again, 

after the first! appears in the multipli~r). Hence, if it is arranged 

so that this condition is satisfied in the course of multiplication as 
40 done by the computer, then one bas simulated the multiplicand modulo 2 

and the above scheme may be adopted. 

It turns out, however, that multiplication as done by the 

computer may cause the sign bigit to change; consequently it must be 

arranged to keep it invariant after the first ! of the multiplier 

appears. To see that the Sign bigi t may change if no precautions are 

taken, consider the magnitude of the Pi'S: 

and 

2P i +l = Pi + Y 

Pi+Y 
Pi +l = -2-

IPi+Y1 ~ IP~ + Iyl <: 2 

1Pi+Y1 
-- <. 1 2 

IPi+11 <: 1. 

where Iyl <:. 1 
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Since Po = 0, by induction all IP~ < 1. Although IPil <: 1, 2 IP~ 

is not necessarily less than one, but 21P~ < 2. At each step 21P~ 

is formed and then shifted right one unit. This implies that in form­

ing 2p. one does not lose significant bigits of the partial product, 
1 

but the "sign" bigit may be lost. The 10s6 of the "sign" bigit is the 

result of the addition at each step being done modulo 2. 

The multiplication of a 39-bigit number by a 39-bigit number gives 

a 78-bigit product. When one is interested in single precision opera­

tion, i.e., operation ,"ith 39-bigit numbers, the 78-bigit product is 

'rounded-off" to 39 bigits. That is, the 78-bigit product is approxi­

mated by a 39-bigit product. There are several methods for doing 

"round-off' that are applicable to our needs. We have chosen for 

multiplication the scheme in which all bigits beyond and including the 

nth bigit are ignored and the nth bigit is set to a 1. At this point 

we do not plan to argue the validity of this round-off scheme. We 

may, however, state that the scheme is unbiased, and it has a variance 

of 1/3·2
2n

. 

The multiplication may be summarized as follows: There are 39 

steps in which the multiplier is examined a bigit at a time. At each 

examination the multiplicand is added to the partial product or nothing 

is done, according as the multiplier bigit is a I or a O. In either 

case the result is shifted right one unit and the process is repeated 

for 39 steps. When the first! appears in the multiplier, the sign 

bigit of the partial product is, on this and all subsequent steps, 

set equal to the sign bigit of the multiplicand. The 40th step either 

adds in the complement of the multiplicand or does nothing, according 

as the sign of the multiplier is a 1 or a O. And at the end of the 

40th step the 39th bigit of the pro~uct is set to a 1 if the multipli­

cation is dane with round-off; or nothing is done if the multiplication 

is without round-off. 

\'le consider t,,,o examples of multiplication. For simplicity we use 

three-bigit multipliers and multiplicands. Both examples are with nega­

tive multiplicands as this affords the most interesting cases. The first 
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example has a positive multiplier and the product is rounded-off to 

three bigits. This round-off to three bigits, of course, tends to 

give a more distorted product than would occur in the computer where 

the product is rounded-off to 39 bigits. The second example has a 

negative multiplier; hence, as a correction, the complement of the 

multiplicand is added to the product in the last step. This example 

considers multiplication without round-off. 

Example 1: 

x 

xy 

xy(ro) 

Step (i): 

0.111 = 

1.001111 

= 1.001 = 

(i) 

(Ii) 

(iii) 

(iv) 

7/8 y = 1.001 = -7/8 
= - 49/64 

-1/8 (The round-off scheme used is to 

set the 2-3 position to a !. 
this instance it is a !; hence 

no change is made.) 

y = 1.001 
P = 0.000 

o 

p = 0.000 
o +L = 1.001 

2Pl = 1.001 
P = 1.1001 

1 

PI = 1.1001 
+L = 1.001 
2p2 =Ili 0.1011 
P2 1.01011 

P2 = 1.01011 
+l- = 1.001 
2p 3 =[]j 0 • 01111 
P3 = 1.001111 

x = 0.111 o 

= 1.001 

In 

Initially (p = 0). The rightmost bigit of the multiplier 
o 

is examined. Since it is a !, l 1s added to Po to give 

2Pl' We have a negative multiplicand; hence, from this 

step on, the sign of the partial product is set to the 

sign of the multiplicand. 2p1 is shifted right one place 
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to give PI' and the sign of PI is set to a 1. Xo is 

shifted right one place to form Xl' which again has a ! 
in the rightmost position. 

Step (ii): l is added to PI to form 2P2· (Note that in adding (Y+Pl ) 

2p2 is written as [1]0.1011. The ~ does not exist in the 

computer as it adds modulo 2; hence the ~ is shown in 

brackets and does not enter into the product.) 2p2 is 

shifted right to form P
2

, and the sign b1git is set to a 

!. Xl is shifted right to give x2 . 

Step (iii): Identical in procedure to Step (ii). 

Step (iv): x3 is examined and the rightmost bigit (the original Sign 

of the multiplier) is a 2; hence no correction term is 

needed. Round-off is indicated; hence the right-hand 

three bigits are truncated and the 2-3 blgit is set to 

Example 2: 

x 

xy 

a 1. In this instance it is a 1; therefore no action is 

required. 

1.101 = 
0.001111 

(1) 

(il) 

(lil) 

(iv) 

-3/8 y 

15/64 

Y = 1.011 
P = 0.000 o 

p = 0.000 
o +Y = 1.011 

2P1 = r:orr 
P - 1.1011 1 -

p = 1.1011 
2pl = 1.1011 

2 p = 1.11011 
2 

P2 = 1.11011 
+Y = 1.011 
2p 3 =[1] 1.00111 
P3 = 1.100111 

P = 1.100111 
+(2-y) 3 = 0.101 

p =[:U 0 • 001111 
= 0.001111 

1.011 -5/8 

x = 1.101 o 

Xl = 1.110 

X
2 

= 1.111 

X3 = 1.111 
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Steps (i) and (iii): These are identical in procedure to the preced-

Step (ii): 

Step (iv): 

Division 

ing example. 

The multiplier bigit is a Q; hence PI is shifted right 

one Wlit to form P2. 

The rightmost bigit of x3 is a ~ indicating the comple­

ment correction. (2-y) is added to P3 to give the cor-

rect product, P. (If round-off had been indicated, the 

right-hand three bigits ·would now be truncated and the 

2-3 bigit of the product set to a 1. 

The division scheme adopted for the computer is a pseudo-non­

restoring scheme. Before discussing the scheme, we compare a true 

non-restoring scheme with the more familiar restoring type of division. 

For simplicity of discussion, we assert that ~, the dividend, and 

l, the divisor, are positive. Further we assert that for any division 

scheme 

Ixl «YI < 1 

(all numbers in the computer must be less than ~). 

In the restoring scheme, the divisor is continually subtracted 

from the partial remainder (the dividend on the first step) until the 

remainder is less than the divisor. The number of such subtractions 

is then recorded in the appropriate position in the quotient. The 

partial remainder is then shifted left one unit and the process is 

repeated. 

In the non-restoring scheme the divisor is subtracted from the 

partial remainder (the dividend on the first step) until the partial 

remainder becomes negative. The number of such subtractions is then 

recorded in the appropriate position in the quotient. The partial re­

mainder is then shifted left one unit, but now the divisor is added 

to the partial remainder until the partial remainder again becomes a 

positive quantity. The number of such additions is then appropriately 

positioned and subtracted from the existing partial quotient. 
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These two sequences are then repeated ad infinitum with the sign 

of the partial remainder being either positive or negative. The quo­

tient is formed by a succession of additions and subtractions. 

If we consider the binary base, a well ordered division may have 

only one addition or subtraction for each fixed quotient position. 

This may be seen most clearly by referring again to the restoring 

scheme. If the dividend is initially less than the divisor, then for 

any fixed quotient position there may be at most (m-l) subtractions 

(where ~ is the number base) before the partial remainder becomes 

smaller than the divisor. In the non-restoring scheme it is not neces­

sary to have more than (m-l) subtractions or additions for a fixed 

quotient position, as it suffices to know that the dividend is less 

than the divisor. Since (m=2) for the binary case, one addition or 

subtraction suffices for each quotient position. 

An example of a well-ordered non-restoring division in binary form is: 

15/6~ + 3/4 = 5/16 

(1x2°f_~1x2-1)_(1x2-2)+1x2-3)_(1x2-~l 
0.11/0.001 II} 

1.01 (1) 
1.011111 
0.011. 
1.110111 
0.0011 
0.000011 
1.11101 
1.111101 
0.000011 
0.000000 

(li) 

(iii) 

(Iv) 

(v) 

Collecting terms of the quotient gives: 

1 x 20 + 1 x 2-3 1.0010 

-1 -2 -4) (lx2 +lx2 +1x2 = -(0.1101) 

5/16 = 0.0101 

Step (i): The sign of the divisor and dividend (partial remainder) 

are the same. The first quotient position is chosen 

as the 20 position; hence a 1 is recorded and the divisor 



Step (ii): 
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is subtracted from the dividend (the subtraction is done 

using complement notation). 

The partial remainder is now negative; hence its sign dif-
. -1 

fers from that of the divisor. -1 is recorded in the 2 

quotient position and the (diviSO;) x 2-1 is added to the 

partial remainder. In the computer the partial remainder 

is shifted left one unit rather than shifting the divisor 

right one unit as it is added. In essence the two are 

equi valent; however the former is more advantageous with 

respect to computer operation. 

Step (iii): The partial remainder is still negative, a -1 is inserted 

into the 2-2 quotient position, and the (div~sor) x 2-2 

Step (iv): 

Step (v): 

Step (vi): 

is added to the part ia1 remainder. 

The partial remainder is positive; hence a 1 is recorded 

in the 2-3 position of the quotient and the (divisor) x 

2 - 3 is subtracted from the partial remainder. 

The partial remainder is negative, so -1 is recorded in 
-4 - 4 

the 2 position of the ~uotient. The (divisor) x 2-

is added to the partial remainder giving a new partial 

remainder of 0 which terminates the division. 

The indicated additions and subtractions in the quotient 

are performed. The result is the desired quotient. 

Note that the restriction of treating ~ and l as positive numbers 

is not necessary in the non-restoring scheme as the sign of the partial 

remainder (x, initially) may be either positive or negative. It is not 

needed to know the specific Sign of each factor but only the relation 

between the Sign of the divisor and dividend. Hence, in further dis-

cussion no sign restrictions are necessary. 

As each step of the quotient involves an addition or a subtraction, 

the true non-restoring scheme would necessitate a second register that 

had all the complications associated with the adding facilities. There 

is, however, a simple relationship between the true non-restoring quo­

tient that is written as a series of l's and -!'s and a pseudo-non­

restoring quotient obtained by replacing the -! by 2 wherever it occurs. 

This relation, first shown by von Neumann, may be found as follows: 
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Write the true quotient Q in non-restoring form as: 

Q :: o -~ -n.. 
2 A. + 2 "'1 + •.. + 2 "- + r o n n 

where Ai may be ±1 and r may be positive or negative. Using the 
- n 

transformation Ai = 2c
i
-l where ci = 0 if Ai = -1 and ci = 1 if A.i = 1, 

one obtains: 

Q 

( 0 -1 -n ) (0 -1 -n) 2 2 C +2 cl + ... +2 C - 2 +2 + .•• +2 + r o n n 

If we assert that the pseudo-quotient Cis: 

o -1 -n 
C 2 Co + 2 c1 + .•. + 2 cn' 

then, since 

( 
0 -1 -n) - 2 +2 + .•. +2 

2 + Q 

__ _~n 2-1 __ ( -n) - 2-2 , 
=0 

-n 2C + 2 + r . 
n 

If we form the pseudo-quotient C, multiply it by g (a simple left shift), 

and add 2 -n, the result is (2+Q) which is the correct complement nota­

tion with res:pec,~ to 2. In our instance 2-n 
= 2-39 (the rightmost bigit 

position) . 

The 2-39 that 1s introduced is, in effect, round-off of the same 

type as that used in multiplication. 

The pseudo-non-restoring scheme 1s the one actually used in the 

computer. 

For an example of division, divide 

49/128 -7/8 = -7/16 

Divisor Partial Remainder Quotient 

x = r 0.0110001 = 49/128, 0 
0 

y 1.001 = -7/8, 

(1) r = 0.0110001 
0 1.001 +L = 

r l = 1.1000001 o. 



(ii) 

(iii) 

(iv) 

(v) 

(vi) 

step (i): 

2r1 = 11.0000010 
+(2-y) = 0.111 

1.1110010 

2r2 = 11.1100100 
+(2-y) = 0.111 

r3 0.1010100 

2r 3 = 0 1.0101000 
+y = 1.001 

r4 0.0111000 

2r4 = 0 0.1110000 
+Y = 1.001 

Q == 2C + 2 

r5 0.0000000 

c 
-4 

0.1100 

1.1001 
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0.1 

0.11 

0.110 

0.1100 

-7/16 
The sign of the partial remainder (dividend at this step) 

and the sign of the divisor ar~ different; hence the di­

visor (y) is added to the partial remainder (r ) and a 0 
o 

is recorded in the quotient. 

Step (i1): The sign of r l and l are the same; hence the complement 

of l is added to 2r
1 

and a 1 is recorded in the quotient. 

Step (iii): The sign of r
2 

and l are the same; hence the complement 

of l is added to 2r
2 

and a ! is recorded in the quotient. 

Step (iv): The sign of r3 and l are different; hence l is added to 

2r
3 

and a Q is recorded in the quotient. 

Step (v): The sign of r 4 and l are different; hence l is added to 

2r4 and a 2. is recorded in the qu'otient. (r
5

=0) so the 

division steps are completed. 

Step (Vi): Shift C, the quotient resulting from the first 5 steps, 
-4 left one place and add 2 . This gives the true Q. 

The computer would not terminate, as we have done, when the re­

mainder is O. It would carry the division out to 40 steps rather 

than 5, and then insert a ! into the 2-39 pOSition. Obviously this 

does not give an exact answer. In fact, the computer quotient for the 

given example would be Q = 1.1000111 ... 111, = -(7/16 + 2-39). 
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IV THE COMPUTER 

Block Diagram 

In this part we discuss in more detail the various components of 

the computer and the various interactions between them. We begin with 

a simple block diagram of the computer: 

CONTROL 

The block diagram shows the components with their various intercon­

nections. Some of these connections are for logical (non-arithmetical) 

operations and others to transfer numerical data from one component 

to another. It is observed that the control is the central agency in 

the organization and directs the operation of the other components. 

It signals the input to read new information into the internal memory 

and receives a signal when the operation is completed. The control 

directs the internal memory to provide the next order to be executed; 

further, it transfers numbers from the memory to the arithmetic unit, 

and conversely. The control directs the transfer of numbers between 

the internal and external memory. It supplies the sequence of pulses 

and voltage changes to the arithmetic unit to effect the various 

mathematical operations. Finally, it instructs the output to punch 

a paper tape and print page information from the memory for external 

use. 
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Arithmetic Unit 

We follow the same pattern as in the Introduction and begin with 

the arithmetic unit. A schematic cross-section of the arithmetic unit 

proper is shown: 

.------, 
R6-~ ARITHMETIC 

GATE 
CHASSIS 

Q{::-t~~ 
{

R2 I.~ ( 
ADDER 

A R I L J>:= ....... 6-+---
I 

Mg. 1 

L-_____ ...J 

Scm-tic Cro •• -8ect10D of Art tbaet1c UD1 t. 
Circl •• with the -U arrova in41cate gate tube., 
or electronic CIV1 tcheo • AlDO ohovn U'O tho 1Dtor­
connection. tor the addition proce ••• 

The six registers, Rl, R2, •.• R6, are mounted in pairs on three horizon­

tal, three-dimensional chassis, a type proposed by Bigelow. It is 

sometimes convenient to refer to the pair, RI, R2, by the Single let­

ter A (for accumulator); R3, R4 are designated by Q (for quotient 

register). Rl and R3 provide a method for the shifting of numbers in 

R2 and R4, respectively, so it is quite natural to think of the two 

doublets of registers, A and Q, as Single entities. However, R5 and 

R6 are not so interconnected; in fact they perform quite different 

functions. Nevertheless, it is compact to have them also juxtaposed. 

Opposite the three chassis of registers are three other sets, quite 

similar in appearance. The lower two constitute the adder proper; the 

topmost is called the arithmetic gate chassis. 

We discuss first the registers. Each register is a set of 40 

flip-flops. Between the two rows of flip-flops in a chassis are two 

other rows of tubes. These are the so-called gate tubes (electronic 
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switches) and allow for four different types of switching action. (Each 

tube contains two halves which can be used independently; such tubes 

are sometimes called double triodes.) 

A flip-flop is a relatively simple electronic circuit containing a 

tube consisting of two separate parts, such that either one half is con­

ducting current and the other is cut off, or the converse. These two 

modes of operation correspond to two stable configurations, and one state 

is said to represent a "0", the other a "1". A flip-flop is schematically 

drawn as a rectangle of two squares, one being shaded to indicate con­

duction. We adopt the following convention: 

o 

A small neon is connected to each flip-f'lop; "off" corresponds to a a 
and "on" to a 1. 

As mentioned in the Introduction there are two alternative methods 

for transferring information from one set of flip-flops to another. 

Consider two sets of flip-flops, A and B. There exist circuits--gating 

schemes--whereby it is possible to transfer information from A--+B in­

dependent of the previous states of the individual flip-flops of B. 

The alternative procedure would be to first reset all of B to O's and 

then cause only those flip-flops of B to be set to 1 whose correspond­

ing flip-flops in A contain 1. Quite clearly, B could be first reset 

(or "Cleared") to alII's a.nd then the a's from A could be transferred 

to the corresponding flip-flops of B. The latter method with both 

schemes of "clearing" and gating is used in the computer. 

We indicate diagrammatically how a number 0011···0 in, say, R2 

is shifted to the right by one binary place. Rl initially contains an 

arbitrary number fran some previous operation. (See Figure below.) 

As a result of the four steps, the number originally in R2 has been 

shifted to the right by one binary place. It is observed that the left­

most flip-flop of Rl, the flip-flop of the sign bigit, has an additional 

gate leading to the "sign" flip-flop of R2, as is of course required 
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0 0 I I • ••• 0 number to be 

~ ~ ~ ~ ~ shifted right • ••• by one place 

I 0 0 • ••• I 

FU ~ ~ ~ .... ~ arbitrary 
number 

Initial State 

0 0 I I • • • • 0 

~ ~ ~ ~ .... ~ 

o~ I~ ~ I ~- ---I ~ CL CL· • •• CL Clear Bus 

Step 1. Clear RI to ZEROS by voltage pulse on Clear Bus. 
Symbol = CoRI 

o o 
Step 2. Flip -flops of R2 containing "1" cause corresponding 

flip-flops of RI to set to II," when voltage pulse I. 
applied to gate tubes. 

-....----------------------Clear Bus 

R2 • • • • 

RI • ••• 

S te p 3. Crea r R 2 to II III Symbbl eel R2 
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o o o 
R2 

RI 
o o o 

Step 4. Flip-flops of R I containing "0" cause 
correspondi ng fli p - flops of R 2 to set to II 0 II • 

to propagate the sign bigit. With the aid of a third set of gate 

tubes connected diagonally to the left, shifting to the left by one 

binary place is essentially the same sequence as in the above, except 

that in Step 4 the third set of gates would be pulsed. 

It is convenient to label the sequence of toggles in a register 

by 0,1, ..• 39 starting from the left, so that there is a one-to-one 

correspondence between a flip-flop and the magnitude of the exponent 

of that binary place; e.g., OR2 designates the sign flip-flop of R2, 

(O-7)R1 refers to the first eight flip-flops of RI. 

The chassis with R3 and R4 has a similar set of gate connections. 

In fact, whenever a shift occurs in A the same process occurs in Q; 

both multiplication and division processes make use of the simultan­

eous shifting. Furthermore, it is desirable in some instances not to 

lose the information which would otherwise disappear by truncation at 

the ends of A. In order to retain the information, flip-flop ORI is 

connected to 39R4, and the information being truncated at the left of 

A is introduced at the right in Q. The information being truncated 



at the left of Q is lost. Symbolically, 

empyrean 

Q 

A 

Fig. 2 

••••••••••• 
••••••••••• 

•• • • •• • • • • • 
••••••••••• 

Nature of left shift operation, showing 
interconnection of A and Q. 
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The sign flip-flop of A, OR2, is treated the same as the others of R2j 

i.e., the original sign of a number in R2 gets shifted, along with the 

numerical part. This type of shift operation facilitates the separa­

tion of multiple stored numbers. 

In the right shift operations, Q again acts as a reservoir for 

the bigits spilling out of A. Here the bigits are introduced at the 

left in Q, beginning with the "sign" flip-flop, OR4. Diagrannnatically, 

• •••••••••• 
Q • •••••••••• 

• • •• •• • • • •• 
A • •••••••••• 

Fig. 3 Nature of right shift operation 

Thus we can imagine that for the left shifts, Q is the continuation of 
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A on the left, and for the right shifts, Q is the extension of A on 

the right. For the right shift operation, it is of course necessary 

that the original sign bigit of R2 propagate. For example, a right 

shift by five binary places of the complement number, say 1001 •.• in R2, 

results in 111111001 ••••• 

The Addition Process 

A schematic drawing of the addition process is given in Figure 4. 

MEMORY 

5 J------~i:ZI ADDER 

3 
4 

Fig. 4 Schematic cross-section of the arithmetic unit 
that participates in the addition process. As 
usual, circles indicate gate tubes. The small 
arrows represent symbolically the signals that 
stimulate the gating action. The clearing ac­
tions associated with each gating action are 

not shown. 
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The 40 stages of the various registers are represented by simple squares. 

As before, circles represent "gates". The two inputs to the adder are 

-from R2 and R5. R2 is statica.lly connected to the adder, so that its 

contents are always sent there, irrespective of whether or not an addi­

tion operation is being pursued. The number to be added to that in R2 

comes initially from some memory location into R5. The pulse, indicated 

by 2 in Figure 4, gates this number into the adder. There the sum is 

formed. During this process, in preparation for receiving the sum, RI 

is cleared. Finally gating action 4 transfers the sum from RI~R2. This 

latter gating action involves a displa.cement of the bigits to the right by 

one. In order to keep the position of the binary point unchanged, gating 

action 3 effects a shift of one to the left. An alternative scheme would 

be to have gating action 3 bring the sum into RI without any shift. Then 

transfer to R2 with a right shift; return to Rl directly; but then go 

back to R2 with a left shift. This doubling back costs two extra clear­

ing and gating actions. In place of this we have introduced another set 

of gates, in which the sum is brought into Rl displaced once to the left; 

then a single transfer to R2 completes the process. It should be men­

tbned that it is necessary to have an extra flip-flop, eRl, beyond ORl, 

which connects to OR2, the sign flip-flop of R2. 

We have seen earlier that the subtraction d=(a-b) may be performed 

by adding to ~ the complement of £. We have also indicated that the 

complement information is quite naturally available in a set of flip­

flops. Indeed, if a set of gates is connected to the adder from the 

side of the toggles opposite that normally used in addition, we can per­

form subtraction. Gating action 5, of Figure 4, transfers the comple­

ment of the number in R5 to the adder; the result (here, the difference) 

again appears finally in R2. Thus the addition and subtraction processes 

differ only in the choice of gating action 2 or 5, respectively. When­

ever the "complement" gate 5 is used it must, of course, be accompanied 

by the insertion of a 1 into the 39th stage of the adder in order to 

obtain the true complement of the number in R5. This insertion is 

effected by stimulating a carry input into the 39th stage of the adder. 
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Multiplication 

Inasmuch as multiplication is a series of additions, the nature 

of the addition process dictates in large part the role of the various 

registers in the multiplication process. When the multiply order is 

given, it is assumed that the multiplier factor is already residing 

in R4 as a result of a preceding instruction or of an earlier arith­

metical operation. The address associated with this order refers to 

the memory location containing the multiplicand. The operation begins 

with the transfer of the multiplicand from the memory to R5; simulta­

neously R2 is cleared in preParation for the successive partial pro­

ducts. We distinguish two types of multiplication: 

(i) no round-off, in which the full 78 bigits and sign are 

available, the Significant portion appears in R2, and the right half 

appears in R4j 

(Ii) round-off, in which the first 39 bigits rounded-off are in 

R2. The remaining portion of the product is truncated. 

In both types of multiplication the first step is the examination 

of the bigit in 39R4, the rightmost bigit of the multiplier. If it is 

a !, an addition of the multiplicand and the partial product (at" first," 

Q) is performed. R2 and R4 are then shifted to the right by one place. 

In the event that the bigit is a Q, R2 and R4 shift without an addi­

tion. The succeeding bigit of the multiplier is now examined in R4 
and an addition is performed if the bigit is 1. Because of the pre­

ceding right shift of the partial product in R2, the direct addition 

of the multiplicand to it is appropriately placed. Note that the 

bigits being shifted out of R2 are no longer involved in the partial 

product sum. In the case of "nro" (no round-off) they are introduced 

into R4 at the left, where room is being made available by the right 

shifting of the multiplier. In "ro" multiplication, R4 is empty at 

the end of the process. The final step in the process involves the 

"multiplicand correction" (as discussed in the section on binary 

arithmetic) in the event the multiplier is negative, and the round-

off procedure if the latter is indicated~ 

The successive additions that occur in forming the partial pro­

ducts differ in one respect from the single addition process associated 
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with the addition orders. In the latter case it will be recalled 

that the gate connection from the adder to Rl was such that the out­

put of the adder was displaced one to the left, so that in the sub­

sequent right-diagonal transfer from Rl ~ H2 the binary point is 

unchanged. In the multiplication process, a right shift of one is 

precisely what is needed of the partial sum; hence the gating from 
th the adder to R1 is direct; i.e., the i stage of the adder is con-

th nected to the i stage of HI, and the subsequent transfer from 

Rl~ R2 introduces the desired right shift by one. 

In the control panel immediately to the left of the adder chassis 

is a six stage binary counter called the operations counter. At the 

beginning of the multiplication process, this counter is set to 23, 

and each cycle of the multiplication adds!. It is arranged so that 

the iterative routine is interrupted after the counter reaches 63j i.e., 

the counter is filled with l's. The full counter then terminates the 

routine, stimulates the multiplicand correction in the event of a nega­

tive multiplier, and finally initiates the round-off procedure if in­

dicated. The sign bigit of the multiplier is at this time residing in 

39R4 and is detected there. 

We conclude the discussion of the multiplication by an example 

wi th "nro". The particular problem is 

in binary form: 

in complement form: 

( 13) (11) = 143 
lb x 15 25b 

(-0.1101) x (-0.1011) = (0.10001111) 

(1.0011) x (1.0101) = (0.10001111) 

The first row of the sketch shows the initial configuration. In 

Step 1 we have included Rl and R3 to show their respective gate 

connections to R2 and R4. There is no connection from the adder to 

eRl; it is set to correspond to OR5. In the subsequent steps only 

the principals, R2 and R4, are shown. In the example we assume that 

the arithmetic unit has only 5 stages instead of the actual 40. 
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o 123 4 0 I 234 

R21 0 I 0 101 0 I 0 I· R411 I 0 II 10 II I 

Step I 

R211 II II I 0 I 0 I R411 II II I 0 II I Step 2 

Step 3 

R211 II loll II I R411 II II II II I Step 4 

R21 0 II I 0 10 I 0 I R41 0 II II II II I Step 5 

At the end ot Stop 4 tho itoro.t:lvCt proeed11Jle 1s co1lPleted, and the 

lip ot tho oultiplier io by nov at the extreme right nip-flop. Step 5 

i8 a true addition of the cocplement of the multiplicand, inasmuch as 

the multiplier io negative. SimultQneously R4 is shifted to the right 

by one 80 that the right half of the final product is properly posi­

tioned. For reasons of' unif'ormity OR4 is always set to Q in this step, 

irrespective of the true sign of' the product. 

If' the multiplication were rounded-off', the rightmost f'lip-f'lop of' 

R2 would always be set to ! and R4 would contain all Q's. 
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Division 

We now discuss the various steps of the division process. It 

will be recalled that we use a so-called "pseudo-non-restoring" 

type of d1 vision rather than the usual "restoring" form. It is 

assumed that the dividend is already 1n place in A as a result of a 

previous instruction or operation. The first step 1s to transfer the 

divisor from some memory location, specified by the address part of 

the divide instruction, to R5. The signs of the divisor and dividend 

are then compared. If they agree the complement of the divisor is 

added to the dividend; and accordingly a ! is set into 39R4, the regis­

ter which eventually contains the whole of the quotient. On the other 

hand, if the signs of the two terms differ, the divisor is added di­

rectly to the dividend, and 39R4 is left undisturbed. Inasmuch as R4 

vas cleared to Q's at the start, if 39R4 is left undisturbed this cor­

responds to the insertion of a Q. Q is then shifted one to the left. 

By virtue of the gate connections used here, in particular the fact 

that the transfer from R1~ R2 is diagonally left, the partial remain­

der appears in R2 already shifted to the left by one. The signs of 

the partial remainder and the divisor are again compared and 39R4 

again set appropriately. This process is done 40 times. In this 

manner the pseudo-quotient is obtained. We have seen that the pseudo­

quotient is simply related to the true quotient • Finally, the round­

off is performed. 

Inasmuch as the desired shift of the partial remainder is to the 

left, it is necessary to have an extra flip-flop precede 0R2 in order 

not to lose the sign of the partial remainder. It is designated as 

eR2 • Further, along with the preparatory step of securing the di visor, 

it is necessary to set eR2 to agree with 0R2. At the completion of 

the operation, Q contains the rounded-off quotient and A has twice the 

remainder. 

As an illustrative example, we consider a four-bigit division: 

0.1001/-0.1101 = (~)J{~) = 0.1001/1.0011 
Binary Computer 

At the start of the process, R2 contains the dividend, R5 the divisor, 

and R4 is cleared to 0' s • eR2 is made the same as OR2, in this case 

O. The first sign comparison of eR2 and OR5 shows disagreement; 

hence the contents of R5 are sent to the adder directly, and a 0 is 



partial rernainder ( quotient) (unchanged) 

e 0 I 2 3 4 

R2[OlO"ITfOJo[I] R4[O]01olo101 RS[1101o111 11 

Step I 

e 0 I 234 
R2101011loillO] R4Io]olo[j-@] Step 2 

R21 I II (] I 0 II [0] R4[OJCfl I I 0 I 0 I Step 3 

R2[ 0 10 II II [T[OJ R41 0 II I 0 II 101 Step 4 

Initio I 
State 
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set in the rightmost flip-flop of R4 and transferred, via R3, one place 

to the left. In the second sign comparison, the signs agree and the com­

plement of the contents of R5 is sent to the adder directly and a ! ap­

pears in R4, etc. At Step 5, R4 contains 10100. (The last stage is 

always Q at the completion of intermediate steps.) The round-off pro­

cedure corresponds to setting the rightmost flip-flop to !, a.nd the 

quotient is 1.0101 (= -0.1011). Twice the remainder resides in R2 be­

cause of the shift occurring in each addition process. 

Memory 

The memory (internal and external) component of the computer pro­

vides the storage facility for numbers and instructions. The interna.l 

memory is electrostatic storage and the external memory is magnetic drum 

storage. In what follows reference to "memory" refers to the internal 

memory and reference to "drum lt implies externa.l memory. 

The memory consists of 40 cathode ray tubes (crt), commercially 

available two inch tubes, type 2BP1. Each tube is mounted in a separate 

metal conta.iner, together with some associated electronic circuitry. 

The units have been designed so that they may be easily connected into 

the computer, or easily removed in case of malfunction and replaced by 

tested spares. The ensemble is located immediately above the arithmetic 

unit. 

Each unit of the memory communicates with one, and only one, stage 

of the arithmetic unit; that is to say, the 40 units of the memory are 

connected in parallel with the 40 stages of the arithmetic component. 

Each unit has a capacity of 1024 bigits. These are arranged in a 

32 x 32 square array. If the various positions are numbered from 0-1023, 

clearly it requires 10 bigits (210 = 1024) to specify a location or, as it 

is commonly called, an address. Once an address is specified, all units 

switch to the corresponding position in their square arrays, and communi­

cate simultaneously to the arithmetic unit the corresponding bigits. 

Data sent to the memory, either initially as input material or 

during the course of computation, must be continuously regenerated in 

order to be retained effectively. Indeed, the cathode ray tubes are con­

tinually regenerating the contained information unless interupted to go 

through an action cycle when the arithmetic unit asks for a new order pair 

or number, or else when the memory is to receive new information. After 

the interruption the memory returns to regeneration. 
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Without entering into a discussion of the theory of storage 

tubes, let us make a few simplified remarks on "writing" am "reading" 

of information in crt. 

(i) Writing: the prescription for inserting a £ at some loca­

tion is to turn the beam on for a few microseconds. To write a !, 
the beam is turned on for a few microseconds exactly as in writing a 

£; but then the beam is displaced a few spot diameters and kept on a 

few microseconds longer in the new position. In either case, the 

procedure is independent of what conditions existed beforehand; in 

other words, there is nothing required that corresponds to erasing. 

(ii) Reading: the beam is turned on for a few microseconds in 

the undisplaced position. If a 2 is residing there, there will be a 

small negative pulse on the pickup screen on the outside face of the 

tube. On the other hand, if a I were there the pulse on the pickup 

screen would be positive. These pulses are amplified and used to 

set flip-flops accordingly. We discuss this presently; however, it 

might be mentioned here that, in the event of a 2, the associated 

negative pulse turns the beam off before it is displaced; hence the 

o at that spot is not destroyed and is available for repeated consul­

tations. The positive pulse does not turn the beam off until the 

beam is displaced; hence the ! is inta.ct also. 

A very much simplified logical diagram of the memory system is 

shown in Figure 5. 

from---.a...I 

Information 

toRS toRS 

Fig. 5 Memory System. Abbreviations: D.A. 
R.C. 
C.C. 

deflection adder 
regeneration counter 
control counter 
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Only one of the 40 cathode ray tubes with its associated amplifier 

and flip-flop is shown. The deflection adder is a device that,converts 

a lO-bigit number into a pair of voltages which are applied to the de­

fIe cting plates of the crt. There are three inputs (Via gate tubes) 

into the deflection adder. Normally, the regeneration counter is 

sending its systematic addresses to it. When an action cycle is called 

for, the deflection adder receives an address either from the control 

counter or from R6 in preparation for activity at the location speci­

fied by them. 

In a regeneration cycle, an address from the regeneration counter 

is sent to the deflection adder and there converted into a deflection 

voltage on the crt. The electron beam is then turned on to read the 

information at that spot. An amplified positive pulse from the pickup 

plate, corresponding to a !, will set the flip-flop and all~w the beam 

to stay on in its slightly displaced position; thus a ! is rewritten 

in that spot. If the pulse is negative, the flip-flop is not set; the 

beam is turned off before it gets displaced; and a 0 is rewritten. In 

the meantime, the regeneration counter is advanced by one; the flip-flop 

is then reset; and the cycle is repeated for the succeeding spot. In 

this way, the complete pattern is continuously regenerated. 

At some point in this process let us assume that an action cycle 

is demanded and that this action is to read a number from the memory to 

the arithmetic unit, into either R5 or R6. There is an interlock (not 

shown in the diagram) whicn allows the regeneration process to complete 

the present cycle; but in the next cycle, instead of gating an address 

to the deflection adder from the regeneration counter, the address is 

either taken from R6 or from the control counter, according as an order 

is being executed ora new order pair is being asked for. Reading pro­

ceeds and the flip-flop is either set to the! state or left undisturbed. 

The information, in addition to being sent back into the crt, is also 

gated into R5 or R6 as desired, by means of the gates shown in the 

diagram. 

If the action cycle calls for writing into the memory, either from 

R2 or R5, the corresponding gates are opened and again the flip-flop 

is set or left undisturbed according as the bigit is ! or Q. Here, too, 

the flip-flop controls the length of time the beam is on, hence whether 
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it is to "write" a 1 or O. 

There exists a variety of possible paths of communication between 

the various registers of the arithmetic unit and the memory. Obviously, 

R6 must be able to receive order pairs from the memory; it suffices that 

this connection is unilateral. R2 must be able to send to and receive 

fr0m the memory; similarly, R4. Finally R5 needs to receive from the 

memory (for example, in multiplication). The scheme adopted is shown 

in Figures 6 and 7. 
In the first are shown the 

gate connections from the memory. 

R6 connection is straightforward 

and requires no additional com­

ments. A number from the memory 

is gated into R2 by first being 

gated into R5, from there to the 

adder, then to Rl, and. finally to 

B2j the last having been previous-

ly cleared or not as desired. R4 

communicates vith the memory via R5. 

Fig. 6 
Gate connection to the arith­
metic uni t from the memory. 

The connections to the ID!!mory are shawn in F1gure 7. R2 and R5 

communicate directly nth the memo17j R4 reaehea the memory via R;. 

There exists a certain amount of flexibility in the gate connections 

from R2 and R5 to the memory. It is possible to send a compoeite word 

to the memory, one part baing from R2 and the remainder from R5. This 

arrangement is usoful in the substitution order where it is desired to 

change the address part of an order 

residing in the memory by an addreoo 

at the moment in R2. This 1s exe­

cuted by first bringing all of the 

vord from the memory into R5, trutD 

sending all but the old address 

part backj, the ney addreoo being 

supplied from R2, where tho appro­

priate set of 12 gates is oponed. 

Use is also made of this floxibl11-

ty of composition in the half-vord 

substItution. 

Fig. 7 
Gate connections to the mem­
ory from the arithmetic unit. 
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The external memory is a magnetic drum system built for the computer 

by Engineering Research Associates, Inc., of St. Paul, Minnesota. The 

drum prorer is a precision cylinder whose surface carries a magnetizable 

iron oxide. The cylinder is 8 1/2 inches in diameter and 15 inches in 

length. The drum cylinder is completely enclosed in a housing on which 

are mounted 202 magnetic heads for reading and writing information on 

the drum. When in operation with the computer, the drum is continuously 

rotating at 3450~. The drum is mounted with the associated electronic 

gear in a 7 foot cabinet which is approximately 5 feet wide and 30 inches 

deep. 

The drum has a capacity of 10,000 forty-bigit words. However, these 

words are not singly addressed and the communication between the drum 

and the memory is in blocks of fifty words. The addressing is done by 

200 drum tracks where each contains fifty words arranged serially around 

the periphery of the cylinder. A separate magnetic head is associated 

with each drum track. There are 202 magnetic heads in all; two of these 

are for indexing purposes and the rest are concerned with the 200 storage 

tracks. 

Due to peculiarities in the ERA logical design of the drum, the 

track addresses range from 0-255 with certain addresses being omitted. 

Table III shows the correspondence between the ordinal numbers and the 

actual track addresses. There are, however, routines in existence which 

allow one to address the drum tracks sequentially as addresses 0-C7 

(0-199, decimally) in the process of coding. Since the communication 

with the drum is by tracks where any block of 50 words comes from a single 

track (one magnetic head), we observe that the drum is a serial storage 

system in contrast to the parallel storage of the memory. 

It requires between four and five revolutions of the drum to read 

or write a track of words. The drum speed of 3450 rpm gives a drum period 

of 17 milliseconds, so that it requires between 68 to 85 milliseconds 

~or 50 words to be read from, or written onto, the drum. This is, on 

the average, 78.5 milliseconds per 50 words. 

The drum instructions each require a full word for their expression. 

The drum orders are: 



o 0 

1 1 

2 2 

3 3 
4 4 

5 5 
6 6 

7 7 
8 8 

9 9 
A A 
B B 

C C 

D D 

E E 
F F 

10 10 

II 11 

12 12 

13 13 
14 14 

15 15 
16 16 

17 11 

18 18 

19 20 

lA 21 

lB 22 

1C 23 

lD 24 

lE 25 

IF 26 

20 27 

21 28 

"22 29 

23 2A 

24 2B 

25 2C 

26 2D 

27 2E 

28 2F 

29 30 

2A 31 

2B 32 

2C 33 

2D 34 

2E 35 
2F 36 
30 31 

31 38 

32 40 

33 41 
34 42 

35 43 
36 44 

31 45 

38 46 

39 41 
3A 48 
3B 49 
3C 4A 

3D 4B 

3E 4c 

3F 4D 

40 4E 
41 4F 

42 50 
43 51 
44 52 
45 54 

46 56 

47 ·58 
1£ 5A 
49 5C 
4A 5E 

4B 60 

4c 61 
4D 62 

4E 63 

4F 64 

50 65 

51 66 

52 67 

53 68 

54 69 
55 6A 
56 6B 
57 6c 

58 6D 
59 6E 

5A 6F 

5B 10 

5C 11 

5D 12 

5E 14 
5F 16 

60 18 

61 7A 

62 1c 
63 7E 

Table III 

64 80 

65 81 

66 82 

61 83 
68 84 

69 85 
6A 86 

6B 81 
6c 88 

6n 89 

6E 8A 

6F 8B 

10 8c 

71 8n 
12 BE 

13 8F 

14 90 

15 91 
16 92 

11 94 
18 95 

79 98 
1A 99 

1B 9C 
1c 9D 

1D AO 

1E Al 

1F A2. 

80 A3 

81 A4 

82 A5 
83 A6 

84 A1 

85 A8 

86 A9 
87 AA 

88 AB 

89 AC 

8A AD 

8B AE 

Bc AF 

8n BO 

8E B1 

8F B2 

90 B4 

91 B5 

92 B8 

93 B9 
94 Be 

95 BD 

96 co 
97 Cl 

98 C2 

99 C3 
9A c4 

9B C5 
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A6 Do 
A1 D1 
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A9 D3 
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AD DA 

AE DB 

AF EO 

BO El 

Bl E2 
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B3 E4 

B4 E5 

B5 E6 

B6 E1 

B1 E8 

B8 E9 

B9 EA 

BA EB 

BB EC 

BC ED 

BD EE 

BE EF 

BF FO 

CO Fl 

Cl F2 

C2 F3 
C3 F4 
c4 F8 

C5 F9 
c6 FA 

en FB 
I 

1....1 

'8 
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Read 50 successive words from the memory starting with 
the word at address specified by bigits 8-19 'of the 
instruction. Write these 50 words into the drum on 
the track specified by bigits 20-27. Then transfer 
the control to the left-hand instruction of the word 
at the address specified by the bigits 28-39. 

Read the 50 words from the track of the drum specified 
by bigits 20-27 of the instruction. Write these words 
into 50 successive memory locations starting with the 
address specified by bigits 8-19. Then transfer the 
control to the left-hand instruction of the word at 
the address specified by bigits 28-39." 

An example of a drum instruction in hexadecimal notation is 

BD 137 29 2BF. 

This is interpreted as: Read 50 words from the memory beginning with the 

word at address 137. Write these 50 words into the drum at track 29. 

Upon completion of the instruction the control transfers to the left­

hand instruction of the word at address 2BF in the memory. 

During a drum instruction R4 serves as a transition register between 

the parallel storage of the memory and the serial storage of the drum. 

That is, in transmitting to the drum each word is brought into R4 from 

the memory (parallel) and then shifted out of R4 to the drum (serial). 

In transmitting from the drum each word shifts into R4 (serial) and then 

is stored from R4 into the memory (parallel). 

In order to transmit 50 words between the memory and the drum there 

must be a register or a counter which specifies the appropriate memory 

addresses. The control counter is used for this purpose. This means 

then that the control counter contains, at the completion of the trans­

mission of the 50 words, the address of the 50th memory word concerned 

with the instruction. This, in general, is not the address of the next 

instruction word to be brought into R6; hence the drum instruction ends 

in a transfer which sets the control counter to the desired address for 

the next instruction word of the code sequence. 

In the use of auxiliary eqUipment such as the drum, it is desirable 

to incorporate some sort of checking feature. The checking of the drum 

1s by summing procedures similar to those used in loading. That is, 

when 50 words are transmitted from the memory to the drum, a sum of the 

words is formed and stored in an appropriate location. Upon transmitting 

this track of information back into the memory , a sum 1s again formed 
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and checked against the previously formed sum. It was initially in-

tended that this summing be done entirely by programmed routine; however, 

it was observed that summing could be done electronically on the D~m 

instruction with practically no additional equipment; hence this feature 

was incorporated as follows: If in the D~m instruction one writes the 

initial memory address ~ as m + 800, the sum of the 50 words is accumu­

lated in R2. R2 is not cleared to zero prior to the start of the sum-

ming; hence the sum is added into the contents of H2. At the completion 

of the instruction, the sum is left in R2 and may be checked with further 

programming. One still needs the summing routine for the m~D instruction. 

Input-Output 

The input component exists in two forms. 

paper tape reader and the magnetic tape unit. 

is initially via the photo-electric reader. 

There is the photo-electric 

All input to the computer 

For input by the photo-electric reader, information on the paper tape 

is punched transversely in groups of four bigits, called tetrads. Usually 

a decimal digit or a logical character is represented by a single tetrad. 

For each separate decimal digit, the true binary representation is used 

where a punched hole corresponds to a 1 and a blank to a O. Clearly, the 

true binary representation of a sequence of decimal digits is not given 

by the sequence of tetrads (cf. page 56). However, the conversion to 

the true binary number is quite simple and is done by the computer 

through a conversion routine before the actual computation starts. 

We distinguish two methods of reading information from the paper 

tape into the memory. There is, first, an initial loading process which 

begins by setting the control counter to the desired initial address. 

The first word (10 tetrads) from the paper tape is transmitted by the 

reader into R5. The space symbol which terminates each word initiates 

the transfer of the word from R5 to the memory location specified by the 

control counter. The control counter is advanced one, the second word 

is read and transmitted to the second memory location, etc. The end 

of the loading process is indicated by the presence of two consecutive 

space symbols. The control counter resets to the initial address, the 

first order pair may then be brought into R6, and the problem started. 
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R5 has been made into a shifting register by making use of a short 

term memory facility afforded by a simple resistance-capacity circuit 

connected between each stage of R5. The speed of the photo-electric 

reader is sufficiently slow compared to electronic speeds that it is 

possible to scan the transverse series of holes of a tetrad and still 

have time to shift R5 four times per tetrad. In this way the parallel 

information in tetradic form is converted into a strictly serial pattern. 

The use of R5 in association with the reader affords two desirable 

features. First, the functioning of the memory is divorced from that 

of the arithmetic unit so that, in the event of some malfunction, iso­

lation of the difficulty is greatly facilitated. Second, since each 

word passes through R5 en route to the memory, it may be added into R2 

so that during the loading process R2 acts as an accumulator of partial 

sums. At the completion of the loading the number residing in R2 is the 

sum of the contents of the tape, and it may be compared with a known 

correct value. This provides a useful preliminary check of the reader 

and associated electronics. 

The second method of reading from the paper tape is, of course, 

the single read instruction which transfers a word (the next one in 

the series) from the tape to the memory location specified by the ad­

dress part of that instruction. The use of this instruction in a 

small induction loop makes it possible to read whole blocks of words 

from the tape to the memory. 

The magnetic tape unit serves as an input and output device. The 

magnetic tape drive is a standard audio-broadcast unit that was pur­

chased from the Ampex Electric Corporation, San Carlos, California. 

The tape drive with our own associated electronic gear is mounted in 

a console cabinet of approximate dimensions 3 feet high by 2 feet wide 

by 2 feet deep. The unit is used as a single channel serial system 

where the magnetic tape reels contain 1200 feet of 1/4 inch wide Scotch 

Sound Recording Tape. 

The reels of magnetic tape are, in general, premarked into sections 

which will accommodate 1024 forty-bigit words. There are fifteen such 

sections on a 1200 foot reel. The markings dividing these sections are 

short lengths made transparent by removing the magnetizable material 

from the tape. 



-194-

Since the unit is used only as an input-output device, there is no 

automatic addressing of the fifteen marked sections, and there are only 

manual searching facilities. 

The manual searching is afforded by a photo-cell hooked into the 

tape drive mechanism and a fast forward and reverse for driving the tape. 

The fast forward and reverse allows one to advance or reverse the tape 

at a speed of roughly four seconds per block of 1024 words. The photo­

cell actuates a brake whenever a transparent length of tape passes in 

front of it. With this, one can then advance or reverse a tape as many 

blocks as desired. 

The operating speed of the tape is 15 inches per second. The pack­

ing density of the tape is 12.6 zeros per inch, or 51.1 ones per inch, 

which is an average of 64.8 bigits per inch. The time required to record 

a memory load onto the tape is 40.9 seconds, if the information is all 

zeros, or 51 seconds if the information is all ones. This gives an 

average record time of 45.9 seconds per memory load. 

The magnetic tape unit has no completely automatic load feature as 

does the reader; hence all information from the magnetic tape is ·read 

into the computer by a programmed routine. 

tape to R4, is: 

The tape order, reading from 

"t~Q AC Replace the number in R4 by the first word to come under 
the reading head of the magnetic tape reader. 11 

To insure accurate reading of data from the tape to the computer, a 

timing feature must be incorporated in the writing process, i.e., in the 

computer to tape routine. This feature is a time delay between the trans­

mission of successive words from the computer to the tape, and it is ac­

complished by an L(4o) instruction given prior to each Q--+t instruction. 

This delay in recording on the magnetic tape gives adequate spacing be­

tween words to insure proper transmittal by the tape "call" routine 

which does not include the L(4o) delay. 

As in the drum, a checking feature has been incorporated into the 

magnetic tape routines by summing. In the computer to tape routine, the 

words sent to the tape are summed. The sum is printed and re corded on 

the tape as the last word of the record. Upon "calling" the information 

back into the computer via the tape to computer routine, the contents of 

the tape are summed except for the last word. The sum is then compared 

with the last word of the record; the last word being the sum formed 

when the record was made. 
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output from the computer may be accomplished by four mechanisms. 

There is the magnetic tape already discussed, the Synchroprinter, a high­

speed page printer; the Flexoprinter, a slow-speed page printer; and the 

Flexopunch, a slow-speed tape punch. No further comments are needed for 

the magnetic tape unit; hence we turn to the printers and punch. 

The Synchroprinter is a high-speed page printer that was purchased 

from the ANelex Corporation, Concord, New Hampshire. The Synchroprinter 

and i~s associated electronic gear are mounted in a cabinet of approxi­

mate dimensions 5 feet 6 inches high by 1 foot 10 inches wide by 1 foot 

1 inches deep. The printer has a maximum operating speed of fifteen 

lines per second which is 36,000 characters per minute. 

The characters that may be printed are the ordinal numbers 0,1,2 ••• 

8,9; the letters A,B ••• F; a decimal pOint; and a minus sign. The 

printer achieves its speed by printing a line at a time where a line con­

sists of 40 characters; these may be four 10-digit numbers or any other 

aggregate. The printer operates on the following principle: There are 

40 type wheels, each containing the 18 available characters. The 40 
wheels are rigidly mounted on a metal cylinder. All of the O's, l's, 

2's, etc., of the 40 wheels are aligned. This cylinder rotates at a 

constant speed whether the printer is being actuated or not. Dun. ng any 

one revolution of the cylinder a line may be printed. In printing an 

aggregate of 40 characters all of the O's of the aggregate are printed 

simultaneously, then the l's, the 2'6, and so on, until after one revolu­

tion of the type cylinder the 40 characters of the line are printed. 

There are two apparent methods of operating such a printer. 

The first is to supply the correct digital information to all 40 

type wh~els simultaneously and then allow each wheel to print at the 

proper time. As is known, a 4o-bigit register may represent only 10 

coded-decimal or hexadecimal Charactersj hence to represent 40 such 

characters, four standard registers would be needed. Although this 

method is very simple from a coding viewpoint the electronic gear in­

volved makes such a scheme prohibitive. 

The second method and the one adopted for the printer involves 

very little. additional. electronic equipment. Inasmuch as the O· s of 

a line are printed simultaneously and then the las, the 2's, and so on, 
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only the a's digital information needs to be supplied to the appropriate 

type wheels when the O's are to be printed, and similarly for the re­

maining digits. During the Q print cycle the information that needs 

to be supplied to eaCh type wheel is binar,y, i.e., either print or do 

not print. Since a register contains 40 bigits, and since a line for 

the printer is 40 characters, a register may supply the necessary binary 

information to the print wheels. The register R2 is used for this 

purpose. 

To print an aggregate of 40 digits, the 40 digits are first repre­

sented by an 18-row, 4o-column matrix (i.e., 18 consecutive memory 

locations) where the rows represent the 18 characters present on a 

print wheel, and the columns correspond to the digit position in the 

aggregate. For electronic convenience a 0 in any element corresponds 

to the presence of a digit and a ! corresponds to the absence of that 

digit. As an example, consider a 4-row, 6-column matrix where the 

number 302132 is represented. It is: 
0: 1 0 1 1 1 1 

1: 111011 

2: 1 1 0 1 1 0 

3: 0 1 1 1 0 1 

where rows correspond to the digits 0 -73 in order from top to bottom, 

and the leftmost column corresponds to the most significant digit posi­

tion. To represent an 18 x 40 array or matrix in the computer 18 words 

of storage are required. .After such an array has been formed a 1ine 

may be printed. Row 0 is brought into R2 for the Q print cycle, row 1 

for the! print cycle, row 2 for the ~ print cycleJ and so on. 

A timing problem is involved, as only about 1.5 milliseco~ds exist 

between adjoining print cycles once the printer is actuated. The print 

order itself acts as a timing element. To print a line 18 print orders 

are given as part of a subroutine. The first of the 18 actuates the 

printer and the rest act in a timing capacity. It is necessary that the 

time elapsing between successive print orders be less than 1.5 milli­

seconds, and for safety it is recommended that the time be kept somewhat 

1ess. When each print order is gi yen the appropriate row of the matrix 

must be in R2. 

Although the described scheme comp1icates the print subroutine it 

is felt that the reliability obtained by inc1ud1ng no new electronic 

gear certainly justifies the added complications of the coding. 
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The matrix is formed in the computer so that the first row cor­

responds to the minus sign, the second row to the decimal pOint, the 

third row to digit 0, the fourth row to digit 1 ••• the 17th row to 

the letter E, and the 18th row to the letter F. The type is arranged 

on the print cylinder so that the sequence of printing the characters 

is F, E, D, c··· 3, 2, 1, 0, ., -. This means that the words corres­

ponding to the rows of the matrix must be brought into R2 beginning 

wi th row 18 (the letter F) and ending with row 1 (the minus sign). 

The paper feed for the printer operates from top to bottom past 

the print cylinder. The first line printed then appears at the bottom 

of a column of lines. In order to have the first line printed appear 

at the top of a column of lines (as it customarily does) the type 

characters on the wheels have been inverted. If the mirror image of 

a 4o-digit aggregate is then printed it comes out of the printer in­

verted, but upon turning the copy upright one has a conventional list­

ing which for a column of lines would read from top to bottom and from 

left to right. To print a mirror image of the aggregate the order of 

the colunmsof the array is reversed; i.e., the rightmost column cor­

responds to the most,significant digit and the leftmost column to the 

least significant digit. The 4 x 6 matrix of the previous example for 

the number 302132 should be formed as 

The print order is: 

111101 

110111 

011011 

101110 

Sync Print CE To be used in a subroutine which prints simul-

taneously ~i' ~i+l' ~i+2' ~i+3; ! must be 
supplied to the routine. 

The address bigits of the print instruction have no relevance with 

respect to the instruction. 

An example of a Synchroprint routine is g~ven as Problem 13 of 

Chapter II. There is, in addition to the high-speed printer, a modi­

fied Teletype page printer that has an operating speed of 396 charac­

ters (36 10-digit words and spaces) per minute. The printer is 
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modified to 16 cha.racters; the ordinal numbers 0,1,2 ••• 9, and the 

letters A,B,C F. This printer is actuated by the print order 

"Flexoprint EA Print!!! on the page printer (slow speed)." 

The reason for retaining this printer in a.ddition to the Synchro­

printer is that one may print directly any word in the memory. To 

print a word via the Synchroprinter involves a routine,whlle the Tele­

type printer needs only an instruction. Whenever any volume of print­

ing is desired, however, the faster Synchroprinter is used. 

The Flexowriter punch allows one to punch information from the 

computer onto paper tape for subsequent use. The punch is a modified 

Flexowriter punch for five hole paper tape. Its speed of operation is 

869 characters (79 la-digit words and accompanying spa.ces) per minute. 

The punch order is: 

"Punch CF Punch!!! on paper tape." 

Due to the very slow speed of the punch, the magnetic tape is used 

whenever practicable for output needed in a. form to be used as subse­

quent input. 

Control 

The control is the agency which directs the various activities of 

the computer. Some'parts of the control relate specifically to the 

detail operation of the various components, such as the memory control 

concerned with the regeneration of stored information. To some extent 

these have been discussed under the respective headings in previous 

sections. Here we propose to consider some of the more general fea­

tures of the control. 

The instructions for the computer are of the one-address type; 

i.e., an order is associated with a single address referring to some 

memory location that contains a number upon which the specific order 

1s to operate. This system of instructions is much simpler in struc­

ture than some proposed schemes for other computers. There have been 

proposals for four-address instructions; the first two addresses speci­

fying the two factors o~ an operation (say in multiplication, the mul­

tiplicand and multiplier), the third referring to the destination for 

the result, and the last to the location in the memory of the next in­

struction. We do not cite the various advantages for the several pro­

posals except to remark that simplicity is a rather compelling argument. 
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The normal word length in the memory is 40 big1ts. An instruction 

1s 20 bigits, so that instructions are stored in pairs. Of the 20 

bigits, 8 are used for specifying the order, and 12 remain for the 

address. Actually 10 suffice vith our present memory capacity of 

.1024 (= 210), so that 2 bigits are available for future expansion or 

for some other purpose. 

The 8 bigits describing an order are initially punched onto a 

paper tape as tvo tetrads. In principle any of the 16 possibilities 

0,1,2 ••• 9, A,B ••• F might be used for each tetrad. Thus a maximum of 

256 possibilities is available. Our present feeling is that the num­

ber of useful orders will not exceed 36; thus only letters in pairs 

are used to designate an order. This is useful in coding. 

Let us begin at some point in the cycle of activity and describe 

the sequence of events that ,leads back to the same point; after that 

we indicate ~ththe aid of aome logical diagrams how some of these 

things are accomplished. 

Assume tba t a pair of orders bas Just been brought into R6. The 

order part of the left-hand instruction must be interpreted and the 

corresponding sequence of pulses and voltage changes provided. At the 

same time the address part is sent to the deflection adder of the mem­

ory in preparation for communication with the memory. When this in­

struction is completed, the control then examines the instruction re­

siding in the right half of R6 and takes the necessary measures to 

execute it. In the meantime, the control counter is advanced by one 

so that when the right hand instruction is completed the next order 

pair can be brought to R6, and thus complete the cycle. 

It is convenient to subdivide this part of the control into three 

sections: The first is concerned with the interpretation of the eight 

bigits as a specific order, and is called the order matrix. The sec­

'ond, called the operations control, provides a set of pulses forexe-

cuting a given order. The third, the instruction control, deals with 

the "red tape" associated with doing the left half of an order pair, 

then the right half, and then seeking a new order pair. 

The Order Matrix: Inasmuch as it has been decided to use only 

letters (and not include decimal digits) to specify orders, each tet­

rad of a pair begins with a! (letters correspo~d to the digits 10-15). 
Therefore, of the eight digits, only six are used to discriminate among 
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the various orders. To simplify the discussion, assume we are concerned 

with only two bigits. (The case for six is an obvious extension.) These 

two bigits are in two flip-flops of R6; and imagine further that in each 

flip-flop two wires tap in at symmetrical points of the flip-flop as 

shown diagrammatically 1n 

Figure 8. If! has a Q, A 

has a definite voltage V, 

and B has another definite 

voltage VI; if ! has a!, 

the voltages are inter­

changed, that on A is V' 

and on B it is V. The 

voltages on C and D depend 

on the contents of II in 

precisely the same way. 

1 ]I 

A B c D 

Fig. 8 A two stage order matrix. 

Consider next a two level Iland_gate ll with the following properties: 

If, and only if, the input voltages are both V, a signal is given to 

the output. We now construct four such lIand-gates II with inputs from 

the set A,B,C,D; the specific connections are shown in the diagram. 

Clearly, if the contents of I and II are 0,0 the above condition is 

satisfied for only the topmost gate and a pulse is given out along 

the 2 output. Similarly, if the contents are 0,1 a pulse goes out 

along the! output, etc. To envisage the actual order matrix, ima­

gine that there are 6 flip-flops with various connections to 36 fland_ 

gates ll of level six; i.e., six conditions must be satisfied to stimu­

late an output. Thus from a series of bigits we actuate a unique 

line corresponding to that particular set. 

The Operations Control: The operations control is essentially a 

pulse generator producing a sequence of seven pulses. Four of these 

pulses are of fixed length; the remaining three may be variable. The 

necessity for pulses of variable duration stems from the fact that 

the time required for certain operations is somewhat indeterminate. 

For example, if an action cycle is required of the memory at some 

moment, it is necessary to wait until the memory completes its present 

regeneration cycle before going into action. Inasmuch as the waiting 

period is somewhat arbitrary, the time from the instant the action 

cycle is requested to completion is slightly indefinite. The comple-
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tion of the operation terminates the ~ulse and the operations control 

then generates the next pulse. 

Some of the more complex orders require more than just one sequence 

of such pulses; hence one of the provisions made is to permit the opera­

tions control to go through its paces the required number of cycles. On 

the other hand, some of the simpler orders do not need the full comple­

ment of seven pulses and, in the interest of speed, provision is made to 

terminate the sequence at some earlier point. 
We now consider a very much simplified example of an order, by way 

of illustrating how an actuated line from the output of the order matrix 

and Ghe signals from the operations control combine to execute the given 

order. Say the order is a shift to the left by one place of a number 

in R2. A series of "and-gates" of level two are connected to the out­

put line from the order matrix that corresponds to this order. Tne 

output line is thus a common static input to all of these gates. The 

second inputs are the various timed pulses from the operations control. 

These connections are shown in Figure 9. 

.. .. 

start Signal From 
lnstructions Control 

Clear R' to zeros r--' 
\.c-------- tit I I 

Gate "ones" vertically I 1 
from R2'" RI i ~ I 

~-----------t2~1 
Clear R2 to .. zeros" -tQ~ I I Operations 

t3 I Control 
Gate "ones" diagonally I I 'I,) 
left from RI~R2 ~ 

Finish signal to Instructions
t4 -! y II 

Control; also prevent +<>1 I 1 
subsequent pulses t I 

5 I I 
L+-J 

t 
Fig. 9 Gate connections for a simplified order. 



When the first signal tl is produced, condi tiona at gate I are 

satisfied and an output signal is produced and 18 sent to the 

clear bus of Bl. Its effect is to set all the :flip-flops ot Bl 

to the 0 state. After a short delay, pulse t2 1s produced and 

directed to gate II. This output sets those flip-flops of Rl to 

! to match the corresponding flip-flops of R2 or, simply said, 

1 's are gated into Rl from R2 vertically. The subsequent steps 
are obvious. 
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The Instruction Control: It includes the following functions: 

(i) Communication with the memory to obtain the next order pair. 

Signals must be given to clear R6, to send the address fram the control 

counter to the deflection adder, and to transfer the order pair from 

the memory to R6. 
(ii) Transfer of the order part of the left instruction to the 

order matrix and of the address to the deflection adder of the memory; 

upon completion to examine the instruction in the right half of R6. 
(iii) Sending a start signal to the operations control. 

(iv) In the event that the left order is a transfer order, the 

sequence is interrupted, the new order pair is brought into R6, and 

a new sequence of instructions is started. There is also provision to 

skip the left order for those cases where the transfer is to begin a 

new sequence of instructions with the right half of an order pair. 

(v) Finally, it must advance the control counter by one after 

each order pair, and also receive the finish signal from the opera­

tions control .. 

In order to make convenient gate connections between the various 

functions of the control, a collection of vertical bus wires is acces­

sible in the control panel immediately to the left of the registers. 

A cross-sectional layout of the arrangement is shown in Figure 11. The 

notation is as follows: 

clear RJ (J=l,2, ••• 6) to! (i=O,l); 

th 
n timed signal (n:l,2, ••• 6); 

~
eft diagonally; 

gate ! from RJ ~ RJ I either right " ; 
straight; 



Hold 

Finish 

Set Trans FF 

Set Rt Trans FF 

Cycle Input 

Start Toggle 0 

allows variation in length of t2 and/or t3; 

finish signal from operations control to 

instruction control; 
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sets a flip-flop in instruction control to 

indicate transfer to new sequence of instruc­

tions; 

sets a flip-flop in instruction control to 

indicate transfer to new sequence beginning 

with right half; 

input to operations control to repeat sequence 

of timed signals; 

a special timed signal which permits cycling 

operations control twice in a given order. 
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v. DESCRIPTIVE CODING AND SUBROUTINES 

Recall from Chapter II that the steps in the preparation of a 

code of a problem are: 

1. The logical coding is first prepared. In this coding the logical 

rather than the computer symbols are used. Each box of the flow 

diagram is treated independently and the instructions within the 

box are numbered consecutively beginning with!. Indexed Latin 

letters are used to indicate the addresses of the necessary stor­

age of the problem. 
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2. The computer code is then prepared. In this coding the instructions 

are paired into words and these instruction words are sequenced and 

numbered (addressed) according to their subsequent residence in the 

memory. The computer symbols for the orders are written in place of 

the logical symbols. Numerical addresses are assigned to the storage, 

and the addresses of instructions referring to storage are modified 

accordingly. 

3. The computer code is checked so that any errors may be corrected be­

fore the code is punched onto paper tape for subsequent input to the 

computer. 

As one examines these steps in detail, the question quite naturally 

arises as to whether the computer might be instructed to carry out part 

of the coding process. The question can be answered in the affirmative, 

and the purpose here is to describe a method for coding in which "the com­

puter is instructed to carry out all of Step 2 of the coding procedure. 

The method is by no means unique. The motivation for its choice is 

found in the desire to use the computer as an aid in constructing a usable 

code which is tailored in the manner described in Chapter II, and to re­

lieve the person preparing the code of much of the routine work involved, 

and possibly to reduce the number of errors. 

The method in general is as follows: A logical code using a pre-

scribed set of symbols and following a prescribed set of rules is pre­

pared. These symbols identify the various kinds of storage of the problem 

(e.g., numerical constants or logical quantities) and the addresses of the 

various instructions of the problem. This logical code is checked for 

errors and after any needed corrections are inserted, a punched tape of 
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this logical code is prepared. This tape is then used as input data by 

a routine designed to assemble a computer code from this material. 

The assembly routine reads the individual instructions from the 

logical code tape and pairs these instructions properly into instruc­

tion ~ords; assigns addresses to these instruction words; and stores 

them into the proper location. The absolute (numerical) addresses of 

the storage of the problem are assigned by the assembly routine, and the 

instructions referring to this storage have their addresses translated 

accordingly. The addresses of instructions that do not refer to stor­

age (i.e., instructions that refer to other instructions) are also 

translated into their absolute value. When this computer code is com­

pletely assembled it is punched onto paper tape or written onto magnetic 

tape by the assembly routine; a printed copy is also produced. 

This method of coding has been given the name descriptive coding 

since many of the identifying symbols used in the logical coding are 

descriptive in nature. l 

We now turn to the discussion of the descriptive coding, and we 

establish the necessary rules and define the symbols needed to carry 

out such a coding. The assembly routine is not discussed in detail 

since its complexities are beyond the scope of a manual of this type. 

In the preparation of any code which is to be modified and assembled 

through an assembly routine, the flexibility of the coding (i.e., the 

freedom of choice of symbols and the amount and different kinds of in­

formation which can be specified in a descriptive instruction) is de­

pendent upon the number of bigits that are allowed to express each 

instruction. Clearly the more bigits allowed, the greater is the 

flexibility. 

It was found that the normal instruction length of twenty bigits 

was adequate to achieve a code by means of such an assembly routine, 

which was comparable to a tailored code both in number of words of code 

. and subsequent running time of the problem. The first two tetrads of the 

twenty bigits specify the order using the standard vocabulary symbols; 

the remaining three tetrads are for the address. There are two advan­

tages in having the descriptive instructions conform as much as possible 

1 The method was developed by Eugene H. Herbst, John B. Jackson, and 

Mark B. Weils, of the Los Alamos Electronic Computer Group. 



to the familiar logical instructions. First, by remaining within the 

framework Of the logical coding, a relatively small number of new 

symbols and new rules for coding need to be introduced. Second, the 

work in preparing the descriptive code is no greater than the usual 

logical code and the labor of the tape preparation for the descriptive 

code is comparable to that involved in the preparation of the tape for 

a tailored computer code. 

The descriptive coding is prepared from a flow diagram. No modi­

fications of the flow diagram are necessary and it is as discussed in 

Chapter II. 
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In the descriptive coding (as in the usual logical coding) each box 

of the flow diagram is coded as though it were independent of the remain­

der of the diagram. The only interdependence of boxes of coding is 

through transfer and sUbstitution instructions. These are discussed 

presently. The instructions written for each operation box are numbered 

consecutively,startiruz with !., and the numbering is done hexadecimally, 

as shown in Example 1. 

Example 1 

-".~I y=al"+ bx +c to 0.01 

Storage chart: 

The coding is·: 

Box 1 

1. m~Q 

2. X 

3. m--+Ah 

4. L(40) 

5. X 

6. m---+Ah 

7. A---::"m 

Figure 1 

B.Ol: x C.Ol: a 
C.02: b 
C.03: c 

C.Ol a to R4 

B.Ol ax in R2 

C.02 ax + b in R2 

028 ax + b in R4 

B.Ol ax2 + bx in R2 

C.03 2 y = ax + bx + c 

D.Ol 

2 

z = y2+y to 0002 1 t----tI._ 

D.Ol: y 
D.02: z 

in R2 

y to D.Ol 



Box 2 

1. m~Q D.OI y to R4 

2. X D.OI 2 in R2 y 

3. m--+Ah D.OI 2 in R2 z = y + y 

4. A--+m D.02 z to D.02 

The addresses that can occur in instructions must be classified 

and a set of symbols may be used to represent each class so that the 

assembly routine may interpret and modify the various addresses cor­

rectly. Addresses of instructions fall into four general classes. 

They are: 

(i) Addresses that refer to numerical storage. 

(ii) Addresses that do not playa normal. address role, as in 

R(n), L(n), a--+Ac, and a~Ah instructions. 

(iii) Address that refer to instructions wi thin the same operation 

box. 
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(iv) Addresses that refer to instructions in other operation boxes. 

Each class may be divided into as many SUbclasses as is deemed necessary. 

Let us examine each class of addresses. 

Recall that there are two kinds of storage requirements for a prob­

lem, static storage and dynamic storage. The static storage is that 

storage which originates with the problem and remains unmodified through­

out the course of the computation. The dynamic storage is that storage 

which originates from computation within the problem. 

For simplicity of addressing, the static storage has been assigned 

the four symbols: 

B.i i (= 1, 2 ••• FF) 
7.1 
e.i 
A.i 

255 words may be stored on each set of addresses. The sets have the 

following significance. !! storage is that static storage which ori­

ginates with the problem as !!inary numbers; hence, any constants which 

are given in a problem as binary numbers are referred to by B.! ad­

dresses, and are listed sequentially as B.i storage. 1. storage is 

very similar to & storage in that the numbers to be stored in 7.i 

storage are also given in binary form. The 1. storage has significance 
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with respect to subroutines, and it is discussed more appropriately 

in the section on subroutines. The letter .£ designates static storage 

that is to originate with the problem as decimal numbers and is to be 

.£onverted to binary numbers by the assembly routine. The letter A 

designates the static storage that contains ~dresses (numbers corres­

ponding to addresses) which are to be used by substitution instructions 

in modifying other instructions during the course of the computation. 

The symbol D.t i (= 1, 2· •• FF) 

is used for ~am.ic storage and 255 words of D storage are allo ..... 

We now examine more closely the storage requirements of Example 1. 

We may assume that the number ~ is given as a binary number; therefore 

it is placed in ~ storage and indicated as 

B.Ol: x 

The constants, .!' ~, and~, are assumed to be numbers which are origin­

ally given as decimal numbers and which are to be converted to binary 

numbers by the computer during the pro.cess of preparing the code through 

the assembly routine. ~,£, and c are listed in .£ stor~e as 

C.Ol: a 
C.02: b 
C.03: c 

The dynamic storage consists of storage for the quantities Z and ! 
which are for.med during the computation; hence two dynamic storage 

locations are needed, and 

D.Ol: y 
D.02: z 

The second class of addresses, those that do not playa normal 

address role, have the proper numerical address inserted in the descrip­

tive code; e.g., Box I, Instruction 4, reads 

4. L(4o) 028 

where 028 is the correct hexadecimal address for a left shift of forty 

places. As a further illustration consider the use of an a--+Ac in­

struction to bring 2-1 into R2. The instruction reads 

a-+Ac 400 

400 -1 where corresponds to 2 when brought intqR2. If for any reason 

it is desirable to insert an instruction which contains an absolute ad­

dress, such an address should be used in the descriptive coding (except 
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in transfer and substitution instructions) and the assembly routine will 

not alter it; e.g., the instruction Q~A (m~A 800) has its special 

address 800 inserted in the descriptive coding. 

The third class of addresses, thooe addresses of instructions that 

refer to other instructions Enclosed within the same operation box, are 

designated by the symbol!. Such an address 

E.i i (= 1, 2 ••• FF) 

may range over 255 instructions of an operation box. This is a partial 

restriction on the number of instructions in an operation box. Although 

an operation box may have more than 255 instructions, no instruction may 

refer to any instruction beyond number 255 of the same operation box. 

The E.i address is used primarily in SUbstitution instructions. Such an 

address has special use with other instructions. In fact, we shall see 

in the discussion of subroutine·s that the E. i address is used in transfer 

instructions. The following example illustrates the use of E.i addresses. 

Example 2 

The flow diagram of Example 2 shows only that portion of an induction 

loop in which the sequence of quantities zi (i = 0,1···1-1) are formed 

and stored in the memory at addresses D.20+1 hence 

o to 0.01 
Xo to 0.02 

A.Ol: AAD20AAD20 

........,.3>--P--4·>-t Zi: aXr+ b to 0.20 + i 
1--__ ... 

Figure 2 

B.Ol: 0 
B.02: (1) o B.03: x o 

i+ I to 0.01 ~--------

C.Ol: a 
C.02: b 

D.Ol: i 
D.02: Xi 

• • • 
D.20: z 
D.21: z~ 
· · • 
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The coding is: 

Box 1. 

1. m~Q B.Ol o to R4 
2. Q----+m D.Ol O~i to D.Ol 

3. m---+Q B.03 Xo to R4 
4. Q~m D.02 xo--+xi to D.02 

Box 2. 

1. m--4Ac· A.01 AAD20AAD20 to R2 

2. m~Ah D.Ol AAD2O+1AAD2O+i in R2 

3· S--4m E.07 D.20+i to address of 
T"a+.,." ... +.i,," 7 --- -- ------ , 

4. m~Q D.02 xi to R4 
5. X C.Ol axi in R2 

6. m~Ah C.02 zi = axi + b in R2 

7. A--+m [D.20+~ z1 to D.20+1 

Box 3. 

1. m--+Ac D,.Ol (i) to R2 
0 

2. m~Ah B.02 (i+l) in R2 
0 

3. A---+m D.Ol (1+1) ~ (i) to D.Ol o 0 

4. T 02,1 

In the storage required, the numbers 0, (I) , and x are originally 
o 0 

stored as binary numbers; hence !! storage is used. The numbers !: and ~ 

are decimal numbers to be convert--d into binary numbers by the assembly 

routine; consequently they are stored in C storage. (i) and Xi are 
- 0 

stored in dynamic, ~ storage. We assume after the initial traversal 

that Xi is sent to D.02 from a portion of the routine not shown. The 

choice of D.20 as the starting address for the zi is arbitrary, and 

any block of I locations would suffice for that Q storage. 

The ! storage is used to store the initial address D.20 from which 

all' addresses D.20+i are formed (Instructions 1 and 2, Box 2). Bote 

that D.20 is stored in A.Ol as 

A. 01: AAD20AAD20. 



It is stored as an instruction-word where the two instructions are 

identical. This is true in general: that all A storage is stored 

as instruction-words where the two instructions of the word are 

identical and the address of the instructions is the desired de­

scriptive address g The choice of the order that appears in the in­

struction word depends on the use of the particular word of A storage. 

The choice of the order AA in this instance is significant in that 

the assembly routine deletes the AA from each instruction at the time 

the D.20 is assigned its absolute value. For example, suppose that 

the absolute address corresponding to D.20 is 154. The! storage 

before and after modification by the assembly routine is: 

A. 01: AAD20AAD20 A. 01: 0015400154 

The order AA is the only order that is deleted from! storage when 

the storage is modified. 

In the coding of Example 2, the first two instructions of Box 2 

form (D.20+i) in R2. Instruction 3 reads o 
S--+m E.07 

Hence, the address of Instruction 7 is replaced by the number in R2 

which is D.20+i. Note that the order S~m is used rather than S~ml. 

This is always the case, not only for S~m but also for T, C, and 

HS~m. All transfer and substitution instructions whose addresses 

refer to other instructions are coded as the unprimed order; that is, 

the order that refers to a left-hand instruction of an instruction­

word. The assembly routine then modifies tlie order if a modification 

is necessary. 

The fourth class, those addresses of instructions that refer to 

instructions in other operation boxes, are addresses of transfer in­

structions and substitution instructions. Transfer instructions and 

substitution instructions are the only instructions whose addresses 

may refer to instructions of other operation boxes than the one con­

taining the instruction. 

Transfer instructions act in two ways as connecting links between 

operation boxes. These are the fixed connection and the variable re­

mote connection. We treat the fixed connections first. 

A transfer instruction that is a fixed connection has as its ad­

dress the operation box'_number and the instruction number of that box 
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into which the transfer is to send the control. The first two of 

the three address tetrads are used for the operation box number. The 

remaining tetrad is used to specify the instruction number within the 

box. As an illustration, Instruction 4, Box 2, of Example 2, reads 

4. T 02,1 

which is a transfer of the control to Box 2, Instruction 1. 

Recall that on a flow diagram the flow lines enter at the begin­

ning of a box. If the coding strictly followed the flow diagram, a 

transfer instruction would always be to the first instruction of an 

operation box. However, it has been shown in previous codings that 

it is often possible to save an instruction or two by transferring 

the control into one of the first few instructions of a box or one 

of the last ,few instructions of the preceding box (cf. Page 72, 

Problem 6, Box 6, Instruction 1). 

A transfer can refer to anyone of the first seven instructions 

of the operation box to which the transfer is effected, or it can re­

fer to anyone of the last seven instructions of the preceding box. 
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The operation box number specified in the address of a transfer in­

struction is the box of the flow diagram which is entered by the flow 

line indicating the transfer. A number !, g, ••• 1 in the third ad­

dress tetrad indicates a transfer into the corresponding instruction 

of the box. A number F(=-l), E(=-2), D(=-3) ••• 9(=-7) indicates a 

transfer into the corresponding instruction of the preceding box; e.g., 

CA20,3(T 20,3) reads: Transfer the control to Operation Box 20, 
Instruction 3. 

CA25,E (T 25,E) reads: Transfer the control to Operation Box 25, 
Instruction -2, which is the next to last 
instruction of the preceding box. The 
preceding box is not necessarily Box 24. 

The address of a condi tiona! transfer instruction, where the (+) 

exit is a fixed connection, is formed in the same manner as the address 

of a transfer instruction. 

Example 3 illustrates transfer instructions acting as fixed 

connectors. 



Example 3 

--........ y=ax+c to 0.01 
I 

IDo02' X I - y to 0.01 
I 

I 
_ ...... ' - y=ex+f to 0.01 a 

Figure 3 
C.Ol: a D.Ol: y 
C.02: c D.02: x 
C.03: e 
c.o4: f 

We assume that ! is formed in a part of the routine not shown 

and is stored in D.02. The coding 18: 

Box 1. 

1. a-+Q 

2. X 

3· a-+Ah 

4. A---+. 

Box 2. 

1. m~Ac 

2. C 

Box 3. 

1. m~c-

2. A~m 

Box 4. 
1. Stop 

Box 5. 
1. m-+Q 

2. X 

3. m--+Ah 

4. T 

C.01 

D.02 

C.02 

D.Ol 

D.Ol 

04,1 

D.01 

D.01 

C.03 

D.02 

c.o4 
02,F 

a to R4 
ax in B2 

)" == ax + e in B2 

., to B2 

-'1 to R2 

e to R4 
ex in R2 

l' = ex + t ill B2 

7 to D.01 

-7 to D.Ol 
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The conditional transfer instruction of Box 2 reads C 04,1 which 

is a conditional transfer to Box 4, Instruction 1. The transfer in­

struction of Box 5 reads T 02,F which is a transfer to Box 2, Instruc­

tion -1. This is a transfer to the last instruction of the preceding 

box, in this case Box 1. 

Substitution instructions may also have an address consisting of an 

operation box number and an instruction number. However, the substitution 

instructions can modify anyone of the first fifteen instructions of any 

operation box other than the box containing the substitution instruction. 

Note that this treatment differs from the transfer instructions. 

Recall on a flow diagram that a set of variable remote connections 

is indicated by a Greek letter in a circle as an exit, and the same Greek 

letter with identifying subscripts in a circle at each entrance point. 

See Figure 4. 

Figure 4 

~----' 
(0--.1---." 

~------' 
In the preparation of a logical code, the transfer instruction indica­

ting the exit ~ written as 

T [p] 
is used to identify the particular remote exit. It is the location 

in the memory where the transfer order of the exit resides and not to be 

interpreted as the address part of the transfer instruction. 

The addresses corresponding to the entrances@,~., and e are 

provided to the exit [p] from the appropriate positions of the flow dia­

gram (cf. Chapter II, Problem 1, pp. 53 ff). The various ~are supplied 

to T [P]by substitution instructions, S--+m, 

In the descriptive coding each set of variable remote connections 

is represented by a symbol 

F.i i(= 01,02 ••• ) 

where the i is distinct for each set. (Greek letters do not exist 



in the vocabulary. We use them in the discussion and in flow diagrams 

for simplicity of notation.) These instructions concerned with such 

a set (both the transfer instruction which is the exit and the various 

substitution instructions which supply addresses to the transfer in­

structions) have as their address the symbol F.i corresponding to 

the part icular set. Example 4 illustrates this. 

E1ample 4 
I 

(9 :: cg 

Figure 5 
Since e and @ are addresses they are to be stored in ~ storage 

as instruction words. However, for this example we do not discuss the 

~ storage in detail, and we merely indicate 

A.Ol: (A1)0 

A.02: ()..) 
2 0 

We designate the set of variable remote connections by F.Ol. The 

coding is: 

Box 1 

1. m~Ac A.OI 
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2. ~m 

L(O) 

F.OI A to address of F.OI 
1 

3· 000 

4. T F.OI 

Box 2 

1. ~Ac A.02 

2. ~m F.-el A2 to address of F.Ol 

3· T 01,4 

Instructions 2 and 4 of Box 1, and Instruction 3 of Box 2, are those 

instructions concerned with the s'et of variable remote connections F .01; 

hence they have as their address F.Ol. Note that Instruction 3 of Box 1 

is L(O). This insertion is necessary as no substitution instruction may 

modify the instruction immediately following. The L(O) serves as a 

"dummy-do-nothing" instruction which separates by one the substitution 

instruction and the instruction that it is to modify. 



The <S) and ~ are indicated on the flow diagram as entrances 

into operation boxes; therefore the addresses corresponding to <S) 
and e are usually the addresses of the first instruction of their 

indica.ted opera.tion box. The address portion of the words in ! stor­

age corresponding to ~ and e are treated in the same manner as 

the address of a fixed connection transfer. Therefore, if ~ cor­

responds to Box 5, Instruction 1, the address portion of ~ in! 

storage would be 

A • 01 : ••• 05, 1 ••• 05, 1 

TOt: ~Ai \', 'I' l"-], or the v-i:l.:1~ i~"ult: l;:w.utc (;Oiiilc(;t :lou iiiu.iit "t:i:ai.Jof.;i' 

the control at different stages of the problem to the various ~ 
associated with the remote connection. The addresses corresponding 

to the @ are usually distinct. When the computer code is formed 

by the assembly routine, there is no assurance that the instructions 
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to which the @ refer will allJ occupy the same side of their respective 

instruction words. In order that the T[A] shall have the flexibility 

that enables it to transfer the control to either side of an instruction 

word, the transfer order as well as the address must be modified. To 

accomplish thiS, each ~ is stored as a transfer instruction, and 

the assembly routine modifies the order if necessary when the absolute 

address corresponding to ~ is assigned. A half'-word substitution 

instruction, HS--+m, is then used rather than 8--+m, as indicated in 

Exa.mple 4, to supply to the exit T[A] the appropriate T ~~. Example 5 
illustrates three sets of variable remote connections and the proper 

~ storage associated with them. 

BxaQ1e 5 
Tbe neeess&r,J storage 18: 

A.01: CAO 3lCAO 31 D.Ol: x 

A.02: CAOJt.1CAOJt.1 

A.03: CA051CA051 
A.Olt.: CA061CA061 

A.05: CC091Coo91 

A.06: CCOAl.cqOAl 



I 3 

0=6) ®=@ 
2 4 

@=6) ® = ~ 

5 ·9 

0® ® • I 
6 A 

0 @ ® • I 

Figure 6. 

We assume that x is formed in another part of the routine and 

stored in D.Ol. We designate by F .01 the set of variable remote con­

nections @, by F .02 the set ® ' and by F .03 the- set CD . 
The coding 1s: 

Box 1. 

1. m~Ac 

2. ~m 

3. L{O) 

4. T 

Box 2. 

1. m-"Ac 

2. ~m 

3. T 

Box ~. 

1. m~Ac 

2. ~m 

3. L{O) 

4. T 

A.Ol 

F.Ol 

000 

F.Ol 

A.02 

F.Ol. 

01,4 

A.03 

F.02 

000 

F.02 

(CA03,1) to R2 o 

(CAo4,1) to R2 
o 

(CA051) to R2 o 

CA03,1 to F.OI 

CA04,1 to F.OI 

CA05,1 to F.02 

-218-



-219-

Box 4. 

1. m---+Ac A.04 (cA06,1) to R2 
0 

CA06,1 2. ~m F.02 to F.02 

3. T 03,4 

Box !2. 
1. m~Ac A.05 (CC09,1) to R2 

0 

2. ~m F.03 CC09,1 to F.03 

Box 1. 
1. m---)oAc D.Ol x to R2 

20 c F.03 

Box 8. 
1. Stop 

Box 6. 

1. m---+Ac A.06 (ceOA,l) to R2 
0 

2. T 07,F 

Instructions 2 and 4 of Box 1, and Instruction 2 of Box 2, 

are those concerned with the set of variable remote connections o == F .01; therefore, those instructions have the address F .01. Simi­

larly, Instructions 2 and 4 of Box 3, and Instruction 2 of Box 4, have 

the address F.02; and Instruction 2 of Box 5, and Instruction 2 of Box 1, 

have the address F. 03. 

Instruction 2 of Box 1 is a conditional transfer instruction; hence 

those instruction words in A storage which are to be abbstituted into it 

are themselves conditional transfer instructions as shown 1n A.05 and A.o6. 
Note the use of the ~m instructions in the substitutions con­

cerned with the variable remote connections. 

The sequence in which the operation boxes are coded is 1, 2, 3, 4, 
5, 1, 8, 6, which is the order in which the computer code is to be se­

quenced. It is always true that the sequencing of the operation 

boxes in the descriptive coding must correspond to the sequencing neces­

sary in the computer code regardless of the numbering of the boxes on 

the flow diagram. The number assigned to each box on the flow diagr.am 

is, however, the number to be used in the address of instructions refer­

ring to the box. 

In Box 6 of Example 5, Instruction 2 is a transfer to 01,F which 1s 

a transfer of the control into the last instruction of the box immediately 
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preceding Box 7. In thio case, the transfer is to Box 5, Instruction 2, 

since Box 5 is the box in the coded sequence uhich immediately precedes 

Box 7. 
The assembly routine treats the variable remote connections as 

tollows: The! storage concerned is altered to its absolute address 

and the transfer order contained is modified, if necessary. Whenever 

the assembly routine encounters a substitution instruction with an ad­

dress F.i, the absolute address of the associated transfer instruction 

(the transfer instruction vith the s~ F.! address) is determined and 

that address is inserted into the substitution instruction. 

It is often useful. to be able to store numbers from. R2 into D stor­

age by using Bubstitution instructions. TO do this, the substitution 

instruction is given the appropriate D.i address; however, the substi­

tution order muot be written 0.0 the desired priDed or unpr1Jled order. 

For example, consider that bigits (20-39) of R2 are to be sent to bigits 

(20-39) of D.05. The descriptive instruction effecting this would be 

HS---7m l 005 which is FDD05 
Similarly, to store bigits (8-19) of R2 into bigits (8-19) of D.OA, the 

instruction reads 

S~m D.OA which is FADOA 
In a substitution instruction with a D address the assembly ~outine 

never modifies the order part of the instruction. 

Since the SUbstitution instructions may have box numbers as addresses 

and since substitution instructions may refer to ~ storage, it is necessary 

to restrict the total number of operation and alternative boxes of any 

one problem to CF boxes, which decimally is 207 boxes in all. 

There are occasions when it is necessary to know in advance whether 

an instruction is to occupy the left or right-hand instruction of a word 

in the computer code. In fact, it may be necessary to pOSition certain 

instructions on a fixed side of an instruction word; e.g., at the comple­

tion of a drum instruction, the control is transferred to the left-hand 

instruction of the word specified by bigits (28-39) of the drum instruc­

tion; hence, the instruction to which the transfer is desired must be 

in the left-hand side of its respective instruction word. Further, the 

drum instruction itself must occupy a full word in the computer code so 



that this instruction must always begin on the left. In order that in­

structions, where necessary, can be positioned with the desired parity 

(i.e., left or right) a symbol is provided in the descriptive code so 

tha.t the computer code of any operation box can be started on the left 

of an instruction word. As soon as the first instruction of a box is 

fixed on the left, the parity of all instructions within the box is 

known innnedlately. By inserting a "dummy-do-nothing" L(O) as a first 

instruction, one may change the parity of all succeeding instructions. 

The descriptive code tape is composed of the descriptive coding 

and the static storage (i.e., !, ~, I, and £ stora~) of the problem. 

All of the descriptive coding and any identifying symbols for the tape 

which refer to the descriptive coding are punched as five character 

words. The £, ~, and I storage and any corresponding identifying sym­

bols are punched as ten character words. 

The sequencing of the data on the code tape is as follows: 
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In order that the assembly routine can assign the absolute addresses 

to the various instructions and the storage, the initial absolute address 

for the code must be spec1fied. It is the first word that is punched 

on the tape, and it is a five-character word. For example, if the 

assembled code is to begin at address 25E, the first word of the tape 

would be 

0025E 

A descriptive code may be assembled into an absolute code starting at 

any initial address with the restriction that the code with !, £, ~, 

and I storage must not exceed address 37C (892 decimally). 

Innnediately following the initial address on the tape is the de­

scriptive coding. The sequencing of the boxes of descriptive code as 

punched on the tape specifies the linear sequencing of the assembled 

code. Preceding the instructions of each box, the box number is 

punched onto the tape as a five-character word where the word consists 

of three zeros followed by the box number. For example, consider a 

descriptive coding of two operation boxes where the assembled code is 

to begin at address 052. The descriptive coding and the corresponding 

code tape is: 
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Box 1 

1. m--+Ac D.Ol 

2. m~Ah D.02 

3· A~m D.03 

Box 2 

1. m~Q B.Ol 

2. X D.03 

3. A~m D.o4 

., .. ., .. ., ., ., .. 
u u u u u u u u 
10 10 a a a a 10 10 
~ 0. ~ ~ ~ ~ 0. Q. 
(f) (f) (f) (f) (f) (f) (f) (f) 

0-+00052 00001 AADOI BAD02 DCD03 00002 EBBel DAD03 DCD04 

o 0 0 0 0 0 ° 0 000 000 000 000 000 000 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOOOOOGO 

o 0 0 000 8 0 0 000 0 
0° 0 ceo 0 goo 0 0 0 8 °88 ° 0°0 8 ° 0 

I ; Code of Box I : Box 2 Code of Box 2 

Figure 7 

All of the instructions of the boxes with the corresponding box num­

bers are punched onto the tape in this fashion. Recall that the boxes 

of code are not necessarily sequential according to box number, but 

sequential according to linear ordering in the assembled code. The 

box number that precedes each box of instructions corresponds to the 

box number as shown on the flow diagram. 

Immediately following the last instruction of the descriptive 

coding, the box numbers only of the associated subroutines are punched 

on the tape in the order corresponding to the linear sequencing of 

the subroutines in the assembled code. As before, these box numbers 

are five-character words. We defer any further discussion of this un­

til the section on subroutines, at which point the reasons for listing 

the subroutine box numbers are discussed. 

The fi ve-character word 

CO COO 

follows the subroutine box numbers on the tape. If no subroutines are 

associated with the descriptive code, the word COCCO follows the last 

instruction of the descriptive coding. The word COCOO indicates the 

£ompletion of the descriptive coding. 



The ! storage punched as !!.!!:.-character words follows the word 

OOCOO on the tape. For example, consider a descriptive coding where 

the ! storage is 

A.Ol: 

A.02: 

A.03: 

CA041CA04l 

CC227CC227 

AAD05AAOO5 
The section of tbe descriptive tape corresponding to this would be: 

t t 8 ., t t 8 
000 8 0 ~ ~ 
IE tJi {/; {/; {/; iJ) iR 

Code-.oocoo CA041 CA041 CC227 CC227 AAD05 AAD05 OOEOO 

00000 0 0 , o 00 00 00 00 000 000 0 
OOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOO 
0000000000000000 

o 0 0 0 oog oog 000 0 000 0 0 \ 

End of : 
Code I 

A Storage : End of 
I! Storage 

Figure 8. 

Following the! storage on the tape is the five-character word 

OOEOO 

which indicates the end of the! storage. If there is no ! storage 

the word OOEOO immediately follows the word OOCOO on the tape. 

The numerical storage of the 'problem is punched onto the tape 

following the word OOEOO. This storage is punched as ten-character 

words. Each group of storage is punched in order of ascending ad­

dresses and is terminated by two adjacent spaces on the tape. The 

.£ storage is the first group of storage punched on the tape. The 

last word of .£ storage is followed by two adjacent spaces. The B 

storage is then punched on the tape and it is followed by two spaces. 

Next is the 1. storage on the tape. The 1. .storage terminates the 

descriptive code tape and at least five spaces must follow the last 

word of 1. storage on the tape. 

At one stage in the evolution of the descriptive coding a word 

Booooooooo was used in lieu of the two adjacent spaces separating the 

groups of numerical storage on the descriptive tape. . Hence, between 

the .£ and. ~ storage, between the ~ and 1. storage, and following 1. 
storage, was the word 8000000000. The present assemb~ routine al­

lows the use of this word Booooooooo in the aforementioned manner; 

therefore, this is an optional method of separating and identifying 

the groups of storage. 
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In the event that a storage group is not used in a descriptive 

coding, the spaces signifying the end of the groups of storage are 

treated as follows: 

The omission of I storage effects no changes and the last group 

of storage on the tape, whether it is £, ~ or I, is followed by at 

least five adjacent spaces. 

If there is no £ storage, the word OOEOO is followed by two spaces 

and then the ~ storage. 

If there iw no ~ storage, one additional space symbol must be used 

in conjunction with the two adjacent space symbols signifying the end 

of the £ storage (whether or not any £ storage is actually present). 

In other words, if ~ storage is omitted three adjacent spaces are used 

to signify the end of £ storage and the absence of ~ storage. 

In the alternative method where the word 8000000000 indicates the 

end of each group of storage, even though a group of storage is not 

present its terminating word is included on the tape to indicate the 

end of, or absence of, a particular group. Example 6 illustrates a 

three box code, and its descriptive code tape. 

Example 6 
-x The example forms an approximation to e for 0 < x < 1 from the 

expression 

-x e = lim 
n~oo [

1 _ ~] n 

1+ ~ 
2n 

where for this example we choose n = 32, and 

[~: ~] 32 
-x e 

The flow diagram is: 

2 
y~ b- 2-9x to 0.01 

t--Ia-t 

z = b+2-9 x to 0.02 Q= f to 0.01 

3 

e-X = Q 32 to 0.02 t--__ ----f 

Figure 9. 
C.Ol: x 1 
B 01 b = 2-. : 

D.Ol: 
D.02: 
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The coding is: 

Boxl 

1. m~Ac 

2. R(9) 
3. A~m 
4. m~Ah 

5. A---.,.m 

6. ~Ac 

7. m~Ah-

8. ~m 

Box 2 

1. m~Ac 

2. 

3. A---+m 

Box 3 
1. m--+Q 

2. X 

3. A--+m 

4. m--3)Q 

5. X 

6. A-4m 

7. m~Q 
8. X 

9. A~m 

A. m~Q 

B. X 

C. ~m 

D. m~Q 

E. X 

F. A~m 

10. Stop 

C.Ol 

009 

D.Ol 

B.Ol 

D.02 

B.Ol 

D.Ol 

D.Ol 

D.Ol 

D.02 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

D.Ol 

Do02 

z = b + 2 -9x in R2 

b to R2 

y = b - 2-9x in R2 

y to R2 

Q = y/z in R2 

Q to R4 
Q2 in R2 

Q16 to R4 
-x 32 e = Q in R2 

-22,-

z to p.02 

y to D.Ol 

Q to D.Ol 

2 Q to D.Ol 

4 Q to D.Ol 

Ql6 to D.Ol 

e-X to D.02 

The code is to be assembled starting at address 297. The descrip­

tive code tape is shown in Figure 10. x in C.Ol is set to 0.5 tor the 

tape. 
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Note: Tape IS continuous, but has been broken for illustrative purpose. 

g 8
0 

~ ~o 8 ~ ~ ~ ~ ~ 
~ ~ ~ ~ R R ~ ~ ~ ~ 
00 00 00 00 00 00 00 00 00 00 

O~ 00297 00001 AACO I EE009 DCDO I BABOI DCD02 A ABOI B8DO I DCDOI 
o 0 000 000 0 o 000 00 0 000 000 000 000 000 000 

000000000000000000000000000000000000000000000000000000000000 8 0 00 000 000 0 000 
0 00 00 0 00 a 0 0 0 gog 0 0 0 0 oog 0 880 0 0 0 0 

Code of Box I 

8 8 8 ~ ~ ~ ~ ~ 8 ~ 
o 0 coo 0 0 coo 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

00 00 00 00 00 00 00 00 00 00 
00002 AADOI 00002 DCDOI 00003 E8DOI DADOI DCDOI E8DQI DADOI 

o 0 000 0 0 000 
000 000 000 000 000 000 000 000 I 

000000000000000000000000000000000000000000000000000000000000 
a 000 000 0 0 0 a 000 0 0 0 0 

a 00 0 a 00 0 00 0 
o 0 000 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 I 

I 
Box 2 I 

I 
Code of 80x 2 

I I 
I Box 3 I 
I I 

Code of Box 3 

cu cu cu cu cu cu cu cu cu cu 
(,) (,) (.) (,) (.) (,) (,) (,) (,) (,) 
o 0 coo 0 0 0 0 0 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

00 00 ~ 00 00 00 00 00 00 00 
DCDOI EBDOI DADOI DCDOI EBDOI DADOI DCDOi EBDOI DADOI DCD02 

o a 0 0 0 0 0 0 0 0 
000 000 000 000 000 000 000 000 000 000 
000000000000000000000000000000000000000000000000000000000000 
000 0 0 0 0 000 0 0 0 a 000 0 0 0 0 000 

00 0 00 0 00 0 0 
00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 

Code of Box 3 

cu cu cu cu cu cu 
g g g gg g::=== 
~ a. ~ a.~ a. en 00 00 00 00 en 

OFOOO OOCOO OOEOO 0500000000 4000000000 
000 o 0 0 

00 
0000000000000 0 00000000000000000000000000000000 
o 0 0 0 a o 0 a 0 

Storage 111 
I I 

End of C 
Storage 

FIG.IO 

B Storage 
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Since there are no subroutines associated with the code, the word oocao 
fo1lows the last instruction of Box 3; and since there is no ! storage 

the word OOEOO fo1lows OOCOO. No 1 storage is contained in the coding; 

hence the five spaces follow the ~ storage. 

As previously mentioned, there is a symbol which indicates to the 

assembly routine that the first instruction of a box is to be on the 

left side of an instruction pair. It is included in the word that 

specifies the box number and is the character ~ for the middle tetrad; 

e.g., suppose that in the code of Example 6, Box 2 is to begin as a 

The 

box number would be 

00402 

When the code is processed by the assembly routine and a box number word 

with a ~ in the middle tetrad is encountered, the following occurs: If 

the last instruction of the previous box was assembled as a right-hand 

instruction, the first instruction of the box concerned naturally be­

comes a left-hand instruction of its instruction-word, and the assembly 

routine proceeds accordingly. If the last instruction of the preceding 

box was assembled as a left-hand instruction, the assembly routine com­

pletes the word by inserting a IIdummy-do-nothing" instruction of L(O) 

into the right-hand instruction position. The first instruction of the 

box concerned is then assembled as a left-hand instruction of the suc­

ceeding word. If the flow diagram indicates a transfer of the control 

to a box that must begin as a left-hand instruction, one cannot use 

the flexibility and convenience afforded by a transfer into one of the 

last seven instructions of the preceding box. This restriction arises 

because of the Ifdummy" L(O) instruction that may be inserted. 

Another symbol may be incorporated in the word specifying the box 

number. This is a character 8 as the first tetrad of the word. This 

symbol causes the assembly routine to interrupt the assembly process and 

to stop the computer. The need for such a symbol is covered in the dis­

cussion of methods of alteration of the descriptive code in the chapter 

on Operating Procedures. 

A frequent occasion where it is necessary to have a box begin with 

a left-hand instruction is in the use of drum instructions which we 

now examine in detail. 



The drum instruction, since it is a full word, necessitates special 

treatment both in the descriptive code and by the assembly routine. As 

previously mentioned, the drum instruction must be coded in the descrip­

tive coding so that it naturally starts l1ith the left-hand instruction 

of an instruction word in the assembled code. The drum instruction is, 

however, coded as two descriptive instructions. The first instruction 

is the drum order, and the descriptive address for the associated 

block of fifty words in the memory. The second instruction specifies 

the associated drum track in the order position and the address position 

contains the descriptive address for the transf'e.r of' the control upon 

completion of the drum instruction. 

The descriptive address for the associated fifty words in the mem­

ory may refer to tmyof the storage; hence it may be an A.i, C.i, B.i, 

H, or D.i address; the address may be an E.i if it is desired to have 

the drum communicate with a block of fifty words contained in the same 

box as the drum instruction; the address may be inserted as an absolute 

address if desired~ or the address may be supplied to the drum. by a 

substitution instruction in conjunction with addresses in ! storage. 

The associated drum track address is either inserted into the 

descriptive coding as a pseudo-absolute address or is supplied from a 

coded routine. The pseudo-absolute addresses range from .QQ. to £I., cor­

responding to the two hundred tracks of the drum (0-199, decimally). 

Unfortunately, the drum tracks are not addressed sequentially from 00 

through C7, but range from. 00 through FF (0-255, decimally) hence the 

expression "pseudo-absolute n is used for inserted drum addresses. The 

assembly routine modifies the pseudo-absolute address to the actual 

value in the range 00 through FF. The address to which the control is 

to transfer upon completion of a drum instl~ction is treated in the 

same manner as are the addresses of transfer instructions. The ad­

dress may specify a box number and one of the first seven instructions 

of the box or one of the last seven instructions of the preceding box. 

The address may also be specified. by an E.i address if the transfer 

is within the operation box containing the drum instruction. The 

transfer, however, is automatically to the left-hand instruction of 

a word; hence that instruction must be positioned appropriately. 

We now give three examples (7, 8, and 9) illustrating the treat­

ment of the drum instruction. 
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Example 7 
Three operation boxes are given. There are two drum instructions. 

One sends fifty words from D storage to the drum. The second reads 

fifty words from the drum into the just vacated D storage of the 

memory. 

The flow diagram is: 

.-, 2 

I r­
L ...J 

t-----~ ..... -----I X1-X5Q to O.track 54 

+ : o. track~ to 0.01-0.32 
t 7 ' __ .1__ Inn I - n ~? : Y. - y _ _ I 

---L __ J I D:;~Ck'~:~: - ;:~ I 
r--, 3 
I 1----___ --4Q=aYI+bY2+0.34 

B.Ol: a 
B.02: b 
B.03: I 

L __ -, 

Figure 11. 

D.Ol - D.32: xl - x50 D.33: i 
D.34: 

The coding is: 

'Box 1 

1. m~Ac 

2. m----=.Ah-

3. c 
Box 2 

1. m~D 

2. 54 

3. D--7m 

4. CO 

Box 3 
1. m~Q 

2. X 

3. A~m 
4. ~Q 

5. X 

6. m~Ah 

7. A~m 

B.03 

D.33 

07,1 

D.Ol 

E.03 

D.Ol 

03,1 

D.Ol 

B.Ol 

D.34 

D.02 

B.02 

D.34 

D.34 

I to R2 

I - i in R2 

Y2 to R4 
bY2 to R2 

Q = aYl + bY2 in R2 

Xl - x50 to D.track 54 

Q to D.34 
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Instructions 1, 2, 3, and 4 of Box 2 are the two drum instructions; 

hence Instructions 1 and 3 must be left-hand instructions in their re­

spective instruction-words in the assembled code. This is done by ar­

ranging Box 2 so that it begins with a left-hand instruction; i.e., on 

the descriptive code tape 00402 is punched for the box number word. In­

struction 2 specifies that Track 2!t is the pseudo-track number. This 

is modified to Track §2 (the absolute address) by the assembly routine. 

The transfer indicated by the address of Instruction 2 is to E.03; hence 

the control is to transfer to Instruction 3 of Box 2. The instruction 

to which the transfer is effected must be on the left side in the 

assembled code and since Instruction 1, Box 2, begins on the left of a 

Word, Instruction 3 does also. Instruction 4 of Box 2 specifies the 

pseudo-track number CO which the assembly routine modifies to ~ the 

corresponding absolute track address. The address specifies a transfer 

to Box 3, Instruction 1. Box 3 must then be coded so that it begins 

with a left-hand instruction. In this example we see that this is 

taken care of, since Bqx 2 ends with a right-hand instruction. If 

Box 3 did not naturally begin with a left-hand instruction, it would 

have to be so arranged by punching the box number for Box 3 as 00403. 

Example 8 

In this example fifty words of code in the memory are to be re­

placed by fifty words from the drum where the fifty memory words are 

contained in the same box as the drum instruction. The quantity!, 

that eventually becomes the drum track number, is formed in a part of 

the routine not coded, and is stored in D.Ol as 

D.Ol: i·2-27 

The drum instruction upon completion is to transfer to the first in­

struction of the fifty words which have been called into the memory. 

The coding is: 

Box 1 

1. m~Ac D.Ol i -27 ·2 to R2 

2. A~m D.02 i.2-27 to D.02 

3. m~Ac E07 D--4-m E09 OOE09 to R2 

4. S~m' D.02 E09 to (28-39)002 
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5· m---=>Ac D.02 i(20-27~09(28-39) to R2 

6. H~m E08 i(20-27) E09(2B-39) to E07 

7. l)--4m E09 

B. [00 E09] 

9. 

A. 

B. 

c. 
The descriptive tape has the box number 00401. Instructions 1, 2, 

3, and 4 form the drum track address. Instruction 2 send.s i.2-27 to D.02. 

Instructions 3 and 4 then combine the address part (the address specify­

ing the transfer) of the instruction with the track address in D.02. 

Note that Instruction 4 is written as S~m' D.02. It is written as 

the primed instruction since the substitution is into the right-hand 

side of a word of Q storage. (Note that this differs from the case 

where a substitution is made int~ instructions, cr. page 212) Since 

Instruction 1 of the box is on the left, the drum instruction (Instruc­

tion 7) and the instruction to which the transfer is effected (Instruc­

tion 9) are left-hand instructions as desired. 

Example 9 

In this example, fifty words of code on the drum are to replace 

fifty words of code in the memory, where both the words in the memory 

and those on the drum correspond to one or more complete boxes of code. 

Again, only the box containing the drum instruction is coded. We 

assume the words to be replaced in the memory begin with Box 2C, In­

struction 1, and the drum track concerned has the pseudo-track number 

Al. The address corresponding to Box 2C, Instruction 1, is stored in 

! storage in a transfer or substitution instruction word and is 

A. 01: CA2CICA2Cl 

The coding is: 

Box ·1 

1. m~Ac A.Ol CA2ClCA2Cl to R2 

2. S~m E.03 2C,1 to (8-19) ID8t~.3 

3. D~m [ 2C,:IJ 

4. Al 54,1 



-232-

Instruction 1 brings the address for the drum instruction into R2. 

This address was stored in A.Ol as part of a transfer instruction so 

that it could be stored as a box number and instruction number. In­

struction 2 is an S~m E.03 which supplies the address 2C,1 to In­

struction 3, the drum instruction. Recall that a substitution instruc­

tion is not supposed to substitute into an immediately following 

instruction. However, in this instance, we know that the drum instruc-

tion begins as the left-hand instruction of a word; hence, the substitu­

tion instruction cannot be in the same instruction word as the drum 

instruction a.nd the substitution as indicated is permissible. The 

address written in the drum instruction is irreleva.nt; hence, any ad­

dress may be placed there. Instruction 4 contains the pseudo-track 

address Al and the address of Box 54, Instruction 1, to which the con­

trol is to transfer upon completion of the drum instruction. Box 1 

must begin with a left-hand inst~~ction to position the drum instruc­

tion correctly; therefore, the Box 1 code word is 

00401 

Box 2C as it originally is coded must begin with a left-hand instruction; 

hence the Box 2C code word is 

0042C 
The control is to transfer to Box 54, Instruction I, upon completion of 

the drum instruction; hence Box 54 must begin with a. left-hand instruc­

tion and its code word is 

00454 
The assembly routine modifies the pseudo-track number Al to the corres­

ponding absolute track address, CB. 

For a further discussion of the drum one should consult the chapter 

on The Computer. 
It is desirable to have a printed copy of the assembled code so 

that one may know the absolute addresses of the storage and the in­

structions in order to "debug" the assembled code for subsequent run­

ning. It is important that this printed copy is in a form that is 

easily read and understood. To produce such a copy a printing routine 

using the Synchroprinter has been included in the assembly routine. It 

provides the following data: 



The first line of the printed listing contains five 3-character 

numbers which are the absolute addresses corresponding to 

A.OO C.OO B.OO 7.00 D.OO 
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respectively. If any group of storage is not contained in the coding, 

the address for that group is the same as the initial address of the 

succeeding group. Consider that an assembled code has the following 

absolute initial addresses 

A.OO = 201 
C.OO = 205 
B.OO = 221 

7.00 = 23B 
D.OO = 2D5 

The first line of the listing would be 

201 205 221 23B 2D5 

Following the first line is the listing of the code proper. One has 

the option of a listing of five or six columns. The five-column list­

ing contains, in order of columns from left to right on the page, 

1. the box number 

2. the descriptive instruction number 

3. the absolute instruction-word number (address) as assigned by 

the assembly routine 

4. the instruction with its absolute address as assigned by the 

assembly routine 

5. the descriptive address of the instruction as coded in the 

descriptive coding 

The six-collxmD listing contains the five columns as listed above 

and a sixth column that is: 

6. the contents of the ~ or .£ storage specified in the address of 

the instruction. 

Following the listing of the code is a listing of ~, .£, ~ and I storage, 

respectively. The £, ~, and I storage listing is a four-column listing 

where the columns are: 

1. classification of storage 

2. the descriptive address of the storage 

3. the absolute location address as assigned by the assembly 

routine 

4. the numerical quantity as stored at the address concerned 

Example 10 illustrates the 5-column page listing. 
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ExamJ21e 10 

Consider the descriptive code of Example 1 and assume that it has 

been assembled in the memorJ beginning at a4dress 000. rrbe listing 

given of the assembled routine is: 

005 005 008 009 009 

01 01 000 EB006 COl 
02 DA009 BOI 
03 001 BA007 CO2 
04 DE028 
05 002 DA009 EOl 
06 BAo08 e03 
07 003 DeOOA DOl 

02 01 EBOOA DOl 
02 004 DAOOA DOl 
03 BAOOA DOl 
04 005 DeOOB D02 

C 01 006 a 
C 02 007 b 
C 03 008 c 

B 01 009 x 

The code contains no ~ or I storagej hence the first line corres­

ponds to 

C.OO C.OO B.OO D.OO D.OO 

In lines 2 through 11, inclusive, the numbering in the first and second 

columns corresponds to the numbering on the descriptive coding. The 

third column contains absolute location addressesj hence each address 

corresponds to an instruction-pair in column 4j i.e., word 000 is 

000: EB006DA009 

The descriptive addresses as given in column 5 are the same as those 

in the instructions in the descriptive coding. 

If we set 
a = 4040000000 

b = 2190000000 

x = 4000000000 

a 6-column listing of the first three instructions would be 

01 01 
02 
03 

000 

001 

EBo06 
DA009 
BA007 

COl 
BOI 
C02 

4040000000 
4000000000 
2190000000 



The contents of Cal and C02 as listed would be the converted. number 

(the binary equivalent of the decimal input) in the Q storage. 

If the coding had contained ~ storage, for example 

A.Ol: CA02,l CA02,l, 

the lIsting of it would be 

A 01 006 CB003CB003 02,1 
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where the first four columns are as before, and the~fifth column gives 

the relative address. 

The method of descriptive coding is easily genera.lized to incor­

porate the use of subroutines; hence it is appropriate that subroutines 

are discussed in conjunction with the descriptive coding. 

As a person gains in experience in coding it becomes apparent to 

him that from one problem to another there are certain basic sequences 

of instructions that are very similar. For example, two different 

problems might, at some phase of their computation, involve taking the 

square root of some number or group of numbers. The two sequences of 

instructions for the square root would generally conta.in identical or­

ders, while the corresponding addresses would be different. Routines 

such as the conversion routlne as discussed in Chapter II would be an 

int.egral part of most pro[)lerns, and from problem to problem these 

routines would differ only in the addresses of their instruction se­

quences, while the order patterns would be the same. In fact, it is 

true that most of the routines coded in Chapter II would occur as 

parts of larger problems. 

Since these routines or sections of code that repeatedly a.ppear 

in problems can be coded in a way such that the addresses of the in­

structions can easily be modified to any desired addresses, it becomes 

possi"ble to incorporate such routines directly into the code of any 

problems without having to rewrite their instructions. We call any 

section of code a subroutine if it is coded in a way that it can be 

incorporated into any problem without having. to rewrite the coding. 

Consequently, a library of subroutines, or more precisely a library of 

punched tapes of subroutines, has been compiled. These punched tapes 

may be incorporated directly into any desired problem. There is a 

card indexing system for the library where each subroutine has a card 

on file which gives complete information about the particular routine. 

We defer further discussion of this and return to the coding of sub­

routines. 
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We have already discussed how any problem code, including all of 

its necessary storage, may be assembled from a descriptive code tape 

into any absolute addresses in the memory, excluding addresses 37C 
to 3FF. Further, we have seen how one can, by altering only the 

initial word on the tape, form different instruction sequences in the 

memory, where the order patterns are the same but the corresponding 

addresses differ. This is precisely the kind of thing tha.t is desired 

for subroutines. Each subroutine is coded descriptively as though it 

Were a problem complete with storage. In fact, each subroutine does 

constitute a complete problem, in the sense that it starts with cer­

tain initial conditions and leads to a clearly defined conclusion. 

The descriptive coding of a subroutine differs in several ways from 

the coding of a normal problem, and we now discuss these differences. 

In the coding of a subroutine the boxes of code must be numbered con­

secutively starting with 1, where the numbering corresponds to the 

linear sequencing of the boxes on the descriptive code tape. For ease 

of use it is desirable to code a subroutine as one box whenever 

practicable. 

Only one set of variable remote connections is allowed, and this 

set pertains to the exit from the subroutine. The details of this are 

discussed presently. 

All of the static storage necessary in the subroutine is included 

on the descriptive code tape of the subroutine with the condition that 

neither A nor C storage is allowed. Any storage that would normally 

correspond to £ storage is converted and stored in the subroutine as 

~ or 1 storage. Storage that would normally correspond to ~ storage 

must have special treatment, in that the storage must exist as instruc­

tions in the descriptive code. This is illustrated by later examples. 

There are, in general, two kinds of dynamic storage associated 

with a subroutine. These are the dynamic storage that originates from 

within the code of the subroutine and. the dynamic storage that originates 

in the problem apart from the subroutine, but is pertinent in the subrou­

tine. Although this latter storage is static with respect to the sub­

routine, it is, however, dynamic storage in the overall problem and is 

treated as such in the subroutine. For example, in a square root sub­

routine, the dynamic storage originating from within the routine is the 
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storage arising from intermediate values in the iterative process and 

the storage for the successive iterates. ~e dynamic storage arisi~g 

apart from the routine is the storage for the number whose square root 

is desired. This number comes from the problem and is present at the 

time of entry into the square root subroutine. 

All storage is addressed as in a problem. That is, the addresses 

of each group of B.i, ~, and D.i storage are consecutive addresses 

beginning with i = 01. 

We now have the situation that a subroutine coded by the descriptive 

method with the above mentioned restrictions can be coded as an indepen­

dent problem into any desired addresses in the memory. The next step 

is to have the assembly routine specify the desired addresses. 

In the flow diagram of a problem, boxes should be included for the 

subroutines of the problem although they do not need to indicate in de­

tail the computation of the subroutine. These boxes need to be assigned 

numbers on the flow diagram where the only restriction is that a sub­

routine that contains several boxes must be assigned a corresponding 

group of consecutive numbers. The numbers assigned on the flow diagram 

to the boxes of subroutines will not, in general, be the same as those 

indicated on the subroutines' descriptive code tapes. Note that this 

differs from the treatment of the problem proper. 

Recall that on the descriptive code tape the box numbers corres­

ponding to the subroutines are first punched following the main prob­

lem code and prior to the code word 22£22. These box numbers corres­

pond to the box numbers as assigned by the particular flow diagram. 

They will replace the box numbers as given originally on the subroutine 

tapes. 

We now describe the method by which the assembly routine integrates 

the subroutines into the problem. The descriptive tapes corresponding 

to the subroutines are arranged in the order in which they are to appear 

in the computer. It is recommended that a single tape containing all 

of the desired, properly analyzed subroutines be prepared from the 

separate tapes. After the descriptive tape of the problem, including 

storage, is initially processed by the assembly routine, the computer 

stops so that the subroutines may be inserted. The subroutine tape is 

placed in the reader and the assembly process is continued. The code 

of each subroutine is assembled in order following the code of the prob­

lem. The storage associated with each subroutine is treated as follows: 



The static storage associated with each subroutine is included on 

its descriptive tape. The storage of each subroutine is not directly 

added to the storage of the problem as this, in general, would lead 

to duplication of storage. For example, the number Q might be already 

stored in ~ storage in the problem, and in the ~ storage of several of 

the subroutines. The Q need only be stored once, however, and the 

other storage of Q's is needless duplication. To circumvent this, as 

each word of ~ storage of a subroutine is incorporated into the storage 

of the problem, it is compared with all existing £ and ~ storage in the 

problem; and if it is identical to any existing £ or ~ storage it is 

not stored. However, all of the descriptive addresses of the subroutine 

that referred to the discarded word of storage are modified to refer to 

the already existing word. If the subroutine word of ~ storage is not 

identical with any existing £ or ~ storage in the problem, the word of 

storage of the subroutine is added to the existing ~ storage of the 

problem and the addresses of the pertinent instructions are accordingly 

modified. We see then that after the assembly process is completed 

there is no duplication of storage due to the ~ storage of subroutines. 

This, however, leads us to the meaninful purpose of I storage. 

The I storage existing in a problem is not compared with the B 

storage of the incorporated subroutines. Any I storage existing in 

subroutines is directly added to the existing I storage of the problem. 

The need for such a group of storage becomes apparent as one works 

with subroutines, and it is illustrated in a subroutine example. 

This completes the discussion of how the subroutines are incor­

porated into a problem and all that remains is to discuss the means of 

entry into and exit from these subroutines. 

These connecting links of a subroutine are analagous to those of 

some of the orders of the vocabulary, so we first discuss the more 

familiar order in the vocabulary. 

Consider, for the discussion, that a multiplication is to be per­

formed. The multiplication order supplies the multiplicand, but the 

multiplier must be already in R4. This latter fact is accomplished by 

coding that precedes the multiplicatbn order. The sequencing by the 

control counter brings the multiplication instruction into R6, the 

control register, so that it can be performed. The address associated 
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with the multiply order specifies the location of the multiplicand. 

Upon the completion of the multiplication, the product resides in R2. 

The exit from the multiplication is provided by the address which is 

in the control counter, the next instruction in the code sequence. 

We naturally expect the entry into and exit from a subroutine to be 

more complex than for a simple multiplication since a subroutine is 

a sequence of instructions rather th~ a single instruction. How­

ever, as in the multiplication order, the number or numbers that are 

to be operated upon by the subroutine must be in locations specified 

by the subroutine prior to entry into the routine. (In the multi­

plication, the multiplier is in R4, the multiplicand is at the address 

of the instruction.) These connecting addresses are certain dynamic 

storage locations, D.i, and the precise D.i addresses are specified 

on the library index card of the subroutine. The necessary numbers 

are sent to the appropriate D.i addresses by code prior to entry of 

the subroutine. After the necessary numbers are stored, the actual 

entry into the subroutine is initiated. 

The entry into a subroutine from any location in a problem is 

treated as a fixed connection. The box numbers of a subroutine are 

indicated on the flow diagram; hence one need only indicate a trans­

fer to the starting box and instruction of the subroutine in question. 

When the subroutine is performed, a number or set of numbers is 

formed as the results (the product in the multiplication is in R2). 

These numbers are then stored in other D.i addresses specified by the 

subroutine. These D.i addresses are shown on the subroutine index 

card. 

Prior to entry into the subroutine, the desired exit is estab­

lished. At each point of entry it is known where the control is to 

proceed upon exit. This exit is established by a set of variable 

remote connections. The variable transfer is contained in the subroutine 

and follows the last pertinent instruction of the subroutine. Recall 

that associated with each set of variable remote connections is an F.i 

symbol used in addressing, and the variable transfer associated with 

the set has this F.i address. In the coding of a subroutine this 

variable exit is always coded as a transfer (T or C) with the address 

FOO. The assembly routine then adjusts the !QQ to the proper F.i 
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address. The F. i address for' the subroutines follow in sequence the 

F.i addresses of the problem proper. There are two methods by which 

substitution instructions may refer to the variable exit of a subroutine, 

and these methods are illustrated by the examples. 

rrhe fixed connection transfer which indicates the entry into the 

routine and the variable connection transfer (the address of which is 

established prior to entry) play the role in a subroutine that the 

control counter plays in the performance of a single instruction of an 

instruction sequence. 

Upon exit from the subroutine (the return of the control to the 

problem proper) the results from the computation are in the specified 

D.i ~ldresBes from which they luay be used in the succeeding code. (In 

the multiplication the product is in R2 for subsequent use.) 

~le see that from the way subroutines are used in a problem there is 

a close analogy to the use of the standard vocabulary of the computer. 

It is natural then,from the coding viewpoint, to consider the subroutines 

as a generalization of the computer vocabulary. The subroutine library 

index cards constitute the vocabulary of subroutines. 

Two srunples are now given in order to illustrate some actual sub­

routines. Accompanying the subroutines are duplicates of their library 

index cards. 

Subroutine S-251.l: Random Number Generation 

The generation of' the random numbers is accomplished by an iterative 

scheme which is called liThe Middle Squaring Process". The process 

generates su~cessive iterates from a given initial number. The present 

routine starts wlth a 38-bigit number and generates 38 bigit iterates. 

The formation of the (i+l)st iterate from the ith iterate is 

= 

That is, the 38 bigit xi when 

and x. I is comprised of bigits 

2 squared gives a 76 bigit product, x. , 
? ~ 

~+ -l 
corresponds to the 2 position 

\Ie illustrate the subroutine in 

(20-57) of x.-, where the 20th bigit 
l. 

of xi +1 • All iterates are positive. 

conjunction with two boxes, corres-

ponding to the code of the problem, that represent the point of' entrance 

and the point of exit. 



The flow diagram is: 

10.01 "Xi I I 0.01: Xi I I 0.02: xI I 
I I 

I I I 2 I 

10=®1 

I I 

IXI 0.02 1 

I 

:.® ® 
I I • '. to '. ----

r-----------------, -, 

I I 0.0,1 :XI I 23 10.01 ,: XII I 
®: i·IXI+1 =(20-57)XI

2 
to om I ·li+l-i Ii. I ® 

I I 
I 5251.1 RANDOM NUMBER GENERATION I 
I L __________________ .-J 

Figure 12 

The section of the flow diagram enclosed in the dotted lines 

would not normally be drawn in complete detail with a. problem, but 

would be drawn as 

10.0 1< Xi I 
I 
I 
I 

23 
5251.1 

t----'-___ -~ Random Number 
Generation 

Figure 13 

I 0.01,: Xi I 
I 
I 
I 

The complete diagram is included now for clarity of coding. Boxes 1 

and 2 are coded in two ways to illustrate two alternative methods of 

entering a subroutine. Box 23 is the subroutine itself. The neces­

sary static storage for the problem (Boxes 1, 2) is: 

A.Ol: CA02,1 CA02,l 

No £, ~, or 1 storage is needed for the problem. Two Q addresses, 

D.OI and D.02, are used. D.Ol contains xi which was stored in D.OI 
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at a portion of the problem prior to Box 1 and not shown on the flow 

diagram. We assume for the coding that three sets of variable remote 

connections exist in the problem proper (they are not shown on the 

flow diagram). The set of variable remote connections concerned with 

the subroutine is the fourth set and has the address F.o4 associated 

with it. The coding of Box 1 and Box 2 is: 

Boxl 

1. m~Ac A.Ol CA021CA021 to R2 

2. HS~m F.o4 

3. T 23,2 

Box 2 

1. m~Ac D.OI 

2. A~m D.02 

In Box I the address for the exit of the subroutine is brought 

into R2. This address is then substituted into the variable trans-

fer F.o4, the exit of the subroutine. Recall that the exit of the 

subroutine is originally coded with the address FOO; however, the 

assembly routine modifies it to its correct ~ address, which in this 

case is F.o4 (F.Ol, F.02, and F.03 exist in the problem proper). The 

fixed connection transfer is to the second instruction of the subroutine 

(CA23,2) rather than the first instruction. The reason for this is 

discussed after the code for the subroutine is illustrated. 

The second wa~ in which Boxes 1 and 2 may be coded is as follows: 

Box 1 

1. m--7Ac 

2. T 

Box 2 

A.Ol 

23,1 

1. m~Ac D .. Ol 

2. A~m D.02 

CA02,1 CA02,1 to R2 

In Box 1, the address for the exit of the subroutine is brought 

into R2 and then, without effecting the substitution, the transfer to 

the subroutine into its first instruction is made. Without further 

comment let us examine the code of the subroutine prope~. 



Subroutine Box I 

1. HS~m FOO 

2. m--)Q 

3. X' 

4. A~m 
5. L(l) 

6. m~Ac 

7. R(22) 

B. m~Ac 

9. L(l) 

A. DS 

B. A~m 

c. T 

DOl 

DOl 

DOl 

001 

DOl 

016 

Boo 
001 

000 

DOl 

FOO 

Xi to R4 

xi
2 in R2 and R4 

x.2 in R2 and R4 
l. 

(lB-57)x. 2 in R4 
l. 

(lB-57) x 2 in R2 
i 

(19-57) x 2 in R2 
i 2 

xi+l = (20-57)xi in R2 

(O-39)x 2 to DOl 
1 

xi +l to DOl 

We observe that the first instruction is a. half-word substitution 

to FOOj tha.t is, to the exit transfer. This accounts for the two methods 

of coding Box 1. In the first coding of Box 1, the substitution instruc­

tion wa.s performed prior to entry into the subroutinej hence the entry 

transfer was to the second instruction. In the second coding of Box 1, 

the instruction word comprising the exit from the subroutine is brought 

into R2 and then, without making the substitution, the transfer to the 

subroutine is effected. The exit word, however, still resides in R2 

and the initial instruction of the subroutine accomplishes the sub­

stitution to establish the desired exit. 
2 Instructions 2 and 3 form Xi as a 7B-bigit number. Bigits 

(20-57) a.re to be isolated by shifting. Recall that a double preCision 

p~oduct has a Q in the sign position of R4. Instructions 4, 5, and 6 
eliminate this Q so that the subsequent right shift of 22 in Instruc­

tion 7 combines the sections of xi
2 into R4 as (lB-57)x 2. Instruc-

. i 
tions 9 and A then complete the process by forming 

xi+l = c::J Xi 
2 

Although the subroutine is indicated as Box 23 on the flow diagram, 

it is coded as Box 1 in its descriptive code. And, as previously men­

tioned, the assembly routine makes the necessa.ry adjustments of the box 

numbers of the subroutines. 

As in this subroutine, all subroutines are coded so that the first 

instruction is 

HS---+m FOO 
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There are , subsequently, t,.,o methods of entry into the routine. If the 

exit to the subroutine is set up prior to entry into the routine, the 

fixed connection transfer to the subroutine bypasses the first instruc­

tion and enters into the second (the subroutine index card should be 

consulted for exceptj_ons to this rUle). Or if the instruction word for 

the exit to the routine is brought into R2immediately prior to entry 

into the routine, the transfer into the routine is ~o the first instruc­

tion of the routine (again consult library index card for exceptions). 

We include a copy of the library index card for the subroutine ex­

ample, in order to illustrate the kinds of information listed. For com­

plete details, the description of the subroutine library filing system 

should. be consulted. 

The card reads as follows: 

S 251.1 RANDOM NUMBER GENERATION (Middle Squaring) 

This routine forms a sequence of 38-bigit pseudo-random num­
bers by a middle squaring process. The tested base number is sent 
to D.Ol. The hexadecimal number lOBBBFA4DE gives 118,627 iterates 
and then degenerates to Q. 
1. Number of operation boxes: 1 
2. (a) Number of code words: 6 (dec.); 6 (hex.) 

(b) Number of code words plus Band 1 storage: 6 (dec.); 6 (hex.) 
3. D storage needed: D.Ol 
4. Prior to entry the operand must be sent to D.Ol 
5. (a) D.Ol and R2 contain new random number upon exit 

(b) Input number is destroyed 
6. Entry: Box 1, Instruction 1 

Exit: CA 
1. Legal spillage: Instructions 5 and 9 

We see that the card first gives a brief description of the routine. 

Then, in order, it gives: 

1. The number of operation boxes, so that the necessary box numbers may 

be assigned on the flo'f diagram. 

2. (a) The number of code words, so that the words of code in the sub­

routines may be included in estimates of problem code length. 

(b) The number of code words plus B and 1 storage, so that total 

word length estimates of problem may be made. 

3. D storage needed. This is important, since the D storage shown here 

nlust be empty or irrelevant upon entry into routine (except for that 

D storage which has numbers pertinent to routine )-. 



4. Numbers required for routine, and D storage to which they must be 

sent prior to entry into routine. 

5. (a) D storage in which results are located upon exit from routine. 

(b) Limitations of routine. 

6. (a) Instruction into which entry is made. If exit is set up prior 

to entry into routine, the instruction into which entry is made 

is one beyond that listed. 

(b) Specifies whether exit is CA or CC, so that corresponding orders 

may be stored 8S the exit words in A storage. 

1. Legal spillage indicates which instructions in the routine allow num­

bers to exceed the range -1 ~ n < 1. This information is useful in 

"debugging" procedures and is discussed elsewhere. 

Subroutine 116.1: Integer Conversion from Binary to Decimal 

This routine is used to convert a binary integer, N, scaled as 

N'2-39, into its decimal equivalent. The allowable range of N as an 

integer is 0 ~ N < 109• 
The conversion is effected by subtracting the binary equivalents 

of the successive powers of ten (i.e., 108, 101 •.• 101) from N the 

appropriate number of times and recording the number of subtractions 

of each power of ten as a decimal digit in its proper position. The 

inductive process is: 

• 
N - a 108- i 

Ni +l = i i 0 

N9 = NS - a8lO = 0 

The ai's are in the range 

o ~ai ~ 9 
and each a. is chosen so that 

1. 

but 

The converted number is then 

ao108 + a1107 + 

8-i 
Ni - a i ·10 ~ 0 

N - (a.+l)108- i < 0 
i 1. 

••• + 
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Each decimal digit is represented as a tetrad; hence the actual 

formation of the nine decimal digit integer is described as 

w = 0 

w
o 

= 2\'1 + 2-39 
.1 0 

: 4 -39 
wi +1 = 2 wi + 2 

• 
• 
~9 = 24Ya + 2-39aa 
W = w9 = decimal number 

-------------------------
0.01 : Ni '2-39 0.03: (i )0 

The flow diagram is: 

10.01 t N'2-39I 
I 
I 

e 

0.02: Wi 7. i : 108- 1 • 2-39 

Wo =0 to 0.02 
~~ ~~ o to 0.03 '---_-J 

8-1 -39 
(Nj-(Oj+1 )10 )2 to 0.01 

-39 
0j+ I = OJ + 1·2 to 0.04 

8-1 
NI+ 1 = Ni - 01 ·10 to 0.01 

4 

d 
4 -39 

Wjt I = 2 Wi + 2 0 I to 0.02 1--__ ..... ° j --+- 0 i 

( i + 1)0 to 0.03 

7 
4 -39 

W= 2 Wl +2 01 to 0.02 

5116.1 INTEGER CONVERSION 

Figure 14. 



The Decessar.y stor,age is: 

B.Ol: (1) 7.01: 108 .2-39 D.Ol: 
0 

B.02: 1.2-39 7.02: 107 .2-39 D.02: 

• D.03: B.03: I = (8) . 
101 .2-39 

0 7.08: D.o4: 

The flow diagram is dra.wn as a double induction loop. The primary 

induction is over the index i and forms 

8-i = Ni - ailO 

Wi+i = 
4 -39 2 Wi + 2 a.i 

and 
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The secondary induction is over the index.J.; and although the induction 

index is on j, the end result of the induction is the formation of a
i

• 

Note in the storage of the subroutine that the various powers of ' 

ten, 108- i .2-39 are stored in 1 storage. This means that these numbers 

will be added to the 1 storage of any problem containing the routine, 

and they will be in eight consecutive locations. It is necessary that 
8-i the addresses be consecutive, since the appropriate 10 are located 

. by an index 

i (=0 ••• 7) 

In order that the address 7.i may be formed, a base address 7.01 needs 

to be stored. This would normally be stored in ! storage; since no ! 
storage is allowed in subroutines, the base address is stored in the 

body of the code. 

Although the flow diagram contains seven operation boxes, it is 

coded as one, as it is desirable to keep the number of boxes of a sub-

routine to a minimum. 

The coding is: 

Subroutine Box 1 

(box 1) 1. HS~m FOO 

2. a.~Ac 000 

3. A~m D.02 

4. A~m D.03 

(box 2) 5. m~Ac E.23 

60 m--Hili Do 03 

0 to R2 

w = 0 
0 

(7.01) 
0 

(7.01+i) 

to R2 

in R2 
0 

Wo~ Wi to D.02 

O--+(i) to D.03 
o 



7. ~m 

8. a~Ac 

9. A~ 
(box 3) A. m~Q 

B. m-">Ac 

c. m~Ah-

D. C 

(box 4) E. m--4Ah 

F. A---4>ID 

10. m~Ac 

11. L(4) 

12. m~Ah 

13. A~m 

14. m~Ac 

15. m-.Ah 

16. A~ 
(l)OX 5)17. m~Ah-

18. C 

19. T 

(box 6)1A. 
lB. 

lC. 

A~m 

m~Ac 

m~Ah 

ID. T 

(box 7)lE. m~Ac 

IF. L(4) 

20. m~Ah 

22. T 

24. m~Ac 

E.OA 

000 

D.o4 
[7. 01+1J 

D.01 

800 

E.lA 

800 

D.01 

D.02 

004 

D.04 

B.03 

E.lE 

E.05 

D.01 

D.04 

B.02 

E.09 

D.02 

004 

D.Ol 

Faa 
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7.01+1 to (8-19)A 

a = 0 to R2 
o 

a~ a j to D.04 

108-1 .2-39 to R4 

(N -a .108-1)2-39 to R2 
1 j 8 

(N
1
-(a

j
+1)10 -1)2-39 in R2 

8-1 Ni +1 = N1-ai 10 in R2 

Wi to R2 

24w. in R2 
~ 

N1+1 to D.Ol 

w.] = 24 w. + a.· 2 - 39 1n B2 
~+. ~ ~ 

(i) to R2 
o 

(i+1) in R2 
o 

(i+1-I) in R2 o 

(i+l) to Do03 o 

(N
i 

- (a
j
+l)108-i)2-39 

to D.Ol 

in R2 

W to D.02 

7.01 ) itA storage" 
7.01 

In the coding the box numbers as indicated on the flow diagram are 

indica.ted with the code for ease of discussion. 

In (box 1) the first instruction is the H~m FOO which is in 

all subroutines. Instruction 5, the first instruction of (box 2) is 

m~Ac E23. Instructions E23 and E2J1- each contain AA701 and it is 
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desired that m--+Ac E23 bring E23 and E24 into R2 as 

AA701 AA70l. 

To accomplish this, E23 and E24 must be assembled as one word and not 

as parts of two words. E23 has the same parity as the first instruc-

tion of the subroutine; hence the subroutine is coded to begin as a 

left-hand instruction in the assembled code. This positions E23 and E24 

in the same word. The descriptive code tape of the subroutine begins with 

the word 
00401 

to accomplish this positioning. 

Since the coding is done as one box, the transfer instructions which 

are fixed connectors contain E.i addresses rather than box number addresses. 

For example, Instruction Q, which represents the conditional transfer from 

(box 3) to (box 6) on the flow diagram, is coded as C E.lA. Instruction 

ElA then corresponds to the first instruction of (box 6). 
The index card for the subroutine is: 

S 116.1 INTEGER CONVERSION 

This routine converts any binary integer N, scaled as N.2-39, 
to its decimal equivalent w by a scheme of subtracting powers of 
ten. N must be in the range 0 !S N <: 109. 

1. Number of operation boxes: 1 
2. (a) Number of words of code: 19 (dec.); 13 (hex.) 

(b) Number of words of code and Band 7 storage: 30(dec.)jIE(hex.) 
3. D storage: D.Ol D.04 
4. Prior to entry D.Ol must contain N.2-39 
5. (a) w is in D.02 and R2 upon exit 

(b) N·2-39 is destroyed 
6. (a) Entry: Box 1, Instruction 1 

(b) Exit: CA 
7. Legal spillage: none 

B.Ol: 0000100001 7.01: oo05F5E100 = 108.2-39 
B. 02: 0000000001 7 • 02: 0000989680 
Bo03: 0000800008 7.03: 00OOOF4240 

7.04: ooooo186AO 
7.05: 0000002710 
7.06: 0OOOoo03E8 
7 • 07: 0000000064 • 1 39 
7 .08: OOooOOOOOA = 10 • 2-

Since the subroutine library is dynamic and continually growing and 

being improved, no attempt will be made here to catalogue the existing 

subroutines. However, in any problem being prepared for computation, the 

subroutine library should be consulted at the time the flow diagram. is 

drawn in order that any desired subroutines might be incorporated into 

the problem. 
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The composition of a subroutine descriptive code tape differs 

slightly from that of a regular problem. The first word (five charac­

ter) on a subrwtine tape is always a Box 1 code word 

00001 or 00401, 

the latter if the subroutine must start as a left-hand instruction. 

The first instruction after this code word is always the substitution 

FCFOO 

This is followed by the descriptive code of the first box and all sub­

sequent boxes punched as five-character words, as with a tape of a 

problem. Immediately following the last instruction of the routine is 

the code word 

OOEOO 

The code word OOCOO is omitted, since no A storage is allowed in a 

subroutine. Following the word OOEOO, the ~ storage is punched on 

the tape. (Recall that no £ storage is allowed.) The ~ storage is 

terminated by two adjacent spaces, and the I storage 1s punched following 

these two apaces. The last word of the tape (whether it 1s the end of 

I storage, the end of ~ storage if no I storage is included, or the 

code word OOEOO if neither! nor I storage is needed) is followed by 

two adjacent spaces. If no ~ storage is needed and if I storage is 

present, the two adjacent spaces indicating the end of the ~ storage 

are neverthelesa included immediately following the code word OOEOO. 

Example 11 illustrates sections of three subroutine tapes containing 

the storage and the appropriate spaces. 

Example 11 

Each tape begins with the last instruction of the subroutine which 

for our example is the exit transfer, T FOO. 

The first subroutine has both ~ and I storage, namely 

B.Ol: 45FOOOOOOO 1.01: 3925364532 
~ ~ ~ ~~ ~~ 
o 0 0 00 00 
c c c 00 00 
~ ~ ~ ~~ ~~ 
~ ~ ~ ~~ ~~ 

Code --CAFOO OOE 00 45FOOOOOOO 3925364532 

000 0 0 0 0 00 0 00 
0000000000000000000000000000000000000 

000 0 000 0 000 o 0 0 0 0 00 00 o 00 00 00 00 

~ Ex i t I End of : B Storage It: 7 Storage : End of 
I : Code I I I I Tape 

End of 
B Storage 

Figure 15. 



The second subroutine has only I storage: 

7.01: F439B7CD32 

eu eu eu eu eu eu 
o 0 00 00 
o 0 00 00 
Q. Q. Q. a. Q. CL 

(/) (/) (/) (/) (/) (/) 

Code~CAFOO OOEOO F43987CD32 

a a 00 00 
000 0 a 00 00 

00000000000000000000000000 

o 0 0 00 000 
00 0 0 0 00 00 

a 0 0000 00 

E X ,• t I End of II t I 7 S I End of 
'Code I forage f Tape 
I I I I 

End of 
8 Storage 

Figure 16. 

There is no storage for the third subroutine. 

~ eu eueu 
o g 00 
Q. Q. 00 
(/) (/) tJ; tJi 

Code .... CAFOO OOEOO 

o 0 
000 0 

0000000000000 

I 

o 0 
00 0 o 

I Ex; t 
I 

I End of I End of 
, I 
I Code I Tape 

Figure 17. 
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VI. OPERATING PROCEDURES 

In this chapter on opera.ting procedures ",e present the discussion 

in four sections. First, the functions of the indicator lights a.nd 

switches of the control panel are discussed so that one has at his dis­

posal the necessary mechanics for operating the computer. The second 

and main section is the prepa.ration and debugging of a problem. The 

discussion of the preparation begins with the descriptive code of the 

problem being complete. The code is carried through its assembly and 

then the debugging procedures are discussed. The third section re­

turns to the discussion of the computer and it brings out in some de­

tail the role of the various registers. The fourth section contains 

some miscellaneous information such as the "audio-monitor"; the "mem­

ory monitors"; the magnetic tape and Synchroprinter procedures, etc. 

In order to give one a better mental picture of the ensuing dis­

cussion, Figures 1, 2, and 3 have been included. Figure 1 shows a 

floor layout of the computer a.nd its auxiliary equipment. The figure 

is not drawn to scale but it serves to show all of the auxiliary equip­

Inent and its position relative to the computing unit. Figures 2 and 

3 give a schematic view of the front and back of the computer. These 

figures show the position of the various registers, the control system, 

and the electrostatic memory. Now, keeping these three figures in mind, 

we turn to the operating panel. 

The operating panel has been kept in a simplified form for ease of 

operation. The panel consists of ten displa.y lights and ten switches 

for setting the counter (shown as the control counter in Figure 1); the 

memory clear switch (sho~~ in Figure 2); two lights for the function 

gates (mounted atop the switch box shown in Figure 1); and six opera.ting 

sHitches (mounted_ on the switch box shown in Figure 1) designated in 

order fro~ left to right as: 

1. the load switch 

2. the "red" breah"'Point switch 

3. the "greenft breakpoint switch 

4. the perform order switch 

5. the manual--3.utomatic switch 

6. the start next order svlitch 
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The display neons for the various registers have not been brought 

out to· the panel but are physically located with their register. They 

are readily visible from the operating panel table. In line with this, 

the monitor tubes for visible memory display are mounted in the memory 

rack rather than on the operating panel (See Figures 2 and 3). 

The control counter display lights and selector switches are laid 

out on a panel as shown in Figure 4. 

Counter Lights 

@@ ~OOO ~O@ Oc~~tter 
Switch 

, I I I I I I I © 
I Push Button e €> e ~®® ~®@) ~ ~..J ~ 

0 0 0 0 0 0 0 0 0 0 
Selector Switches - Toggle 

Figure 4. 

The control counter is the mechanism used to sequence the instruction­

words. The control counter normally contains the address of the forth­

coming instruction word to be brought into the R6 (control) register. 

Since the control counter handles addresses, it counts from 000 to 

~, which requires a ten-stage counter. Inasmuch as the counter is 

the sequencing mechanism, we easily see how transfer instructions are 

accomplished, namely that the address of the transfer instruction is 

sent to the control counter. (The right-left selection 1s done through 

the function gates, which are discussed presently.) If the computer is 

stopped, the operator may manually effect a transfer of the control to 

any address by using the selector switches. The control counter (hence 

the control) is set to any desired address by setting the selector 

switches to the address and then depressing the "set counter ll switch. 

The control counter lights indicate the address to which the counter is 

set. 

In addition to being the control sequencing mechanism, the control 

counter is used in conjunction with the magnetic drum instructions. It 

indicates in sequence the fifty memory addresses associated with the 



instruction. The counter is also used in the loading process; here 

the counter indicates the address of the memory to which the next 
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word from the reader is sent. We discuss the loading process presently. 

Prior to using the computer, the operator usually clears (sets to 

all zeros) the memory of any previous code or data. The memory is 

cleared to zeros by depressing the "memory clear" switch located 9n 

the front section of the computer in the upper right-hand corner of 

the arithmetic unit frame. This switch is separated from the operating 

panel so that it will not be pushed inadvertently during the course of 

a computation. Its location is shown in Figure 2. 

The two function gate lights are mounted on a panel immediately 

above the six operating switches. These are display lights for the 

function gates, a set of gates which allows, in turn, each instruction 

of the word in R6 to be connected into the control circuitry in order 

to be performed. The function gate lights indicate which instruction 

in R6 is connected into the control circuitry. When the left-hand 

light is on, the left-hand instruction in R6 is connected into the 

control circuitr,y and, Similarly, the right-hand light corresponds to 

the right-hand instruction. In general, if the computer is stopped 

and an instruction pair is in R6, the instruction corresponding to 

the function gate light setting has already been performed by the con­

trol. The function gate lights are shown in Figure 5. 
In a transfer instruction, the control selects the left or right 

side by opening the corresponding function gates. There is no switch 

for setting the gates manually, but as we shall see this is not necessary. 

/ Function Gafe LIghts 

apr. 
Red off Green 

Break Pomts 

Figure 5. 

Perform Manual start 
Order AukJmaficNexf 

Order 



We now turn to the six operating switches shown in Figure 5 and 

discuss first the "load" switch and the loading process. Prior to 

loading a tape into the memory, one first clears the memory to zeros 

by depressing the memory clear switch and then sets the tape in the 

photo-electric reader. When a tape of data is punched for use in 

the computer, the first word of the data should be preceded by five 
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or six inches of blank tape (zeros). These zeros act as a leader for 

the tape. To place the tape in the reader, the lid of the reader is 

raised. Then the tape is inserted so that the leader is over the drive 

cylinder, yet no pertinent characters are beyond the reading holes. 

The tape must be placed in the reader so that the space holes (fifth 

holes) on the tape are nearest the hinged side of the lid. A sample 

tape is attached to the reader to avoid mistakes of this type. After 

the tape is inserted, the lid of the reader is closed. One should 

make certain that the lid latches vhen it is closed to assure proper 

operation. 

After the tape is inserted, the control counter is set to the de­

sired initial address for loading. In loading, although it is only 

necessary to set the selector switches of the counter, it is recom­

mended that the set counter switch be depressed so that one can check 

the counter setting by the display lights as well as the selector 

switches. When the desired address is set into the counter, the load 

switch is set to the "up" position and the loading commences. The 

words from the tape are transmitted into successive memory pOSitions 

beginning at the address set into the control counter. 

After the tape has been loaded into the memory, the load switch 

must be set to the "down" position. The computer will not operate if 

the load switch is not reset. The loading is terminated when two ad­

jacent spaces on the tape being loaded are encountered by the reader; 

hence, any tape that is to be loaded into the memory must end with at 

least two adjacent spaces. 

As the tape is loading into the memory, each word on the tape is 

transmitted into the R5 register, and from there into the memory. This 

fact allows a method of cheCking that the photoelectric reader circuitry 

is transmitting the information correctly from the tape. During the load­

ing, a sum of the words from the tape is formed in R2. The first time 
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that a tape is loaded, the sum as shown in R2 should be recorded. It 

can be verified by immediately reloading the tape. Once a correct sum 

of the tape has been recorded, the sum given by all subsequent loadings 

must agree with the known correct sum. If it doea not agree, there is 

a computer malfunction. The correct sum should be re.corded on the box 

in which the tape is permanently stored. Remember, however, that a cor­

rect sum in R2 at the completion of the loading does not guarantee 

that the information is correct in the memory; it only says that the 

reader and its associated eqUipment operated properly. The contents 

of the memory are checked by a summing routine that must be incorporated 

in all problems. It is discussed later. 

It 1s now worth noting several things that occur when the load 

switch is set to the "up" position; namely, the R6, R5, and R2 regis­

ters first clear to zeros. The R6 register remains zeros throughout 

the loading. At the completion of the loading, R2 contains the sum of 

the tape, R5 contains the last word loaded fram the tape, and R6 is 

zeros. Note that the loading process does not affect the contents of 

the R4 register. At the completion of the loading, the control counter 

automatically resets to the original address. 

The "manual-automatic" switch, the "start-next-order" switch, and 

the "perform-order" swl tch are those directly concerned with the run­

ning of the computer •. We now discuss them. 

The manual-automatic switch allows the computer to be operated so 

that it either stops upon the completion of each instruction or per­

forms an entire instruction sequence without stopping. If the manual­

automatic switch is in the "manual" pOSition when the control performs 

an instruction, 'the computer stops upon the completion of the instruc­

tion. If the manual-automatic switch is in the "automatic" position 

when the control performs an instruction, upon the completion of the 

instruction the control proceeds to the next instruction in the se­

quence to perform it, and so on, through the entire code sequence. 

The start-next-order switch is normally used to start the computer. 

Recall that if the computer is not running the function gate light 

indicates which side of the instruction pair is connected into the con­

trol circuitry. Depressing the start-next-order switch causes the 

next instruction in sequence to be performed. That is, if the start­

next-order switch is depressed when the left-hand function-gate light 



is on, the function gates are set for the right-hand instruction in 

R6j the function gate lights change and the right-hand instruction 
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in R6 is performed by the control. If the start-next-order switch is 

depressed when the right-hand function-gate light is on, the control 

brings the instruction word located at the address specified in the 

control counter into R6. The function gates and lights have mean­

while switched to the left-hand side of R6 and then the left-hand in­

struction of the new word in R6 is performed by the control. The con­

trol counter is advanced by one. 

The perform-order switch is somewhat similar to the start-next­

order switch in that it causes the control to execute an instruction 

contained in R6. However, depressing the perform-order switch causes 

that instruction (indicated by the lighted function gate) connected 

into the control circuitry to be performed rather than causing the next 

instruction in sequence to be performed. The perform-order switch takes 

on added significance in connection with the breakpoint switches and is 

discussed further with them. 

Returning to the manual-automatic switch, we see that the "msnual­

automatic" settings ap:t;ly to either the start-next-order or perform­

order switches. If on "manual", the start-next-order switch allows one 

to proceed through the code sequence an instruction at a time, while 

the perform-order switch allows one to repeat an instruction as many 

times as is desired. If" on "automatic", depressing either the start­

next-order switch or the perform-order switch allows the control to 

proceed automatically through the code sequence. The latter, however, 

causes the control to perform the instruction previously connected into 

the control circuitry before proceeding through the instruction sequence. 

The breakpoint switches allow one to insert conditional stops into 

a code by setting either the first or fifth bigit of an order to zero. 

Since all orders are composed of letter pairs (AA, BA, DD, etc.) the 

first and fifth big1ts are normally one. Setting the first bigit of 

an order to zero corresponds to the insertion of a red breakpoint and 

setting the fifth bigit to zero, a green breakpoint. The conditional 

stop arises from having a breakpoint switch in the "up" or "down" posi­

tion. If either the red or green breakpoint switch is in the "up" (on) 

pOSition and the control brings into R6 an instruction which contains 
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the corresponding breakpoint, the control stops the computer before the 

the instruction is performed. The breakpointed instruction is, however, 

connected into the control circuitry as indicated by the function-gate 

light setting. If either of the switches is in the "down" (off) posi­

tion when the control brings into R6 an instruction with a breakpoint 

corresponding to the "down" switch, the control performs the instruction 

as though it contained no breakpoint. 

The perform-order switch is used in-conjunction with the breakpoints 

because depressing the perform-order switch causes the instruction con­

nected into the control circuitry to be performed even thOugh this in­

struction may contain breakpoints. If the control stops on a break­

pointed instruction, it stops before the instruction is executed; hence 

the perform-order switch is the natural vay of resuming operation. If 

the control is stopped at an instruction with a breakpoint and the start­

next-order switch is depressed, the instruction containing the breakpoint -

is skipped (not performed) as the start-next-order switch executes the 

next instruction in sequence rather than the one already connected into 

the control circuitry. 

With a knowledge of the operating switches at our disposal we now 

turn our attention to the code assembly and "debugging". 

Recall that the absolute code is prepared in the computer by the 

assembly routine from the descriptive code tapes. These tapes are the 

problem and constant tape, and the subroutines tape or tapes. The 

assembly routine is an example of the category of codings called "helper­

routines'·. A helper-routine is a routine, not incorporated directly as 

a part of the problem, which is used as an aid in the preparation, the 

running or the analyses of a problem on the computer. A library of 

helper-routines has been compiled much in the fashion of the subroutine 

library. Rather than give an elaborate discussion of these routines 

we refer the reader to the helper-routine library file, and we mention 

them only as their need arises in the ensuing discussion. 

The first step in the assembly of a code is the loading of the 

code assembly helper-routine. (This routine is appropriately named 

"The Coder".) The tape and necessary explanations for the assembly 

routine are obtained from the library. The code is transmi tted into 

the memory beginning at the desired address (specified by the explanatory 
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remarks) via the load process which is: the memory is cleared to zeros 

by depressing the memory-clear switch; the tape is set into the reader; 

the control counter selector switches are set to the desired starting 

address; and then the load switch is set to the "up" (load) position. 

After the assembly tape is loaded, the load switch is set to the "down" 

(off) position and the sum in R2 is checked against the sum as recorded 

on the assembly code tape box. 

After the assembly routine is loaded and the sum is checked, the 

processing of the descriptive code tape begins. The descriptive code 

tape is placed in the photo-electric reader so that it is in position 

to be read into the computer by the assembly routine. The computer is 

started in operation by first setting the desired starting address into 

the control counter; second, setting the manual-~utomatic switch to 

the "automatic" position; and third, depressing the start-next-order 

switch to activate the control. The desired starting address is often 

contained in the control counter, since after loading the counter con­

tains tne initial load address. 

After loading, to start the computer the right function-gate light 

must be on. Depressing the start-next-order switch then brings in to 

R6 the instruction word specified by the address in the control counter, 

and the control proceeds executing the instructions in sequence. If 

the left function-gate light is on, at the completion of the loading 

one may switch the function gates by depressing the start-next-order 

switch. R6 is cleared to zeros by the loading; hence the switching of 

the function gates does not cause any action as .there is no instruction 

in R6. 
The first group of instructions of the assembly code comprises a 

summing routine which forms a sum of the memory contents and checks this 

sum against the sum as left in R2 from the loading process. (Any prob­

lem which is to be run on the computer should contain such a summing 

routine.) If the sums do not agree, the computer stops at a programmed 

stop, since disagreement of the sums implies a caDputer malfunction. 

If the sums agree, the control proceeds automatically and the data from 

the descriptive tape is read and processed through the assembly routine. 

At the completion of the reading of the descriptive code tape, the con­

trol comes to a coded stop in order that the subroutines tape may be in­

serted into the reader. After this tape is inserted, depressing the 



-263-

start-next-order switch causes the assembly of the absolute code to be 

carried to completion. During the processing of the code, a code list­

ing (see Chapter V, pp. 232 ff.) is carried out. upon the completion 

of the assembly, the absolute code may either be recorded onto magnetic 

tape or punched onto paper tape for.subsequent use. The choice of the 

medium for recording the absolute code is made by selecting the appro­

priate assembly routine code tape, as there is one code which contains 

as a subroutine a magnetic tape recording, and another which contains 

a tape punch subroutine. However, in either situation the particular 

auxiliary equipment should be readied prior to the start of the assembly 

process. 

After the assembly of the absolute code is completed with either 

the record on magnetic tape or a punched paper tape (for what follows 

we assume that the absolute code is on magnetic tape), "debugging" of 

the assembled code begins. 

As a person gains experience in coding, he Boon realizes that des'­

pite the great care exercised in the formulation and coding of a prob­

lem, errors are apt to occur. Before a problem can be run any existing 

errors must be detected and corrected. The Rrocess of eliminating errors 

from the mathematical for.mulation and the coding of a problem is called 

"debugging". As a person becomes familiar with coding and the computer, 

he will naturally develop his own "debuggingU babi ts • The purpose here 

then, rather than to specify a rigid set of rules, is to discuss a 

general procedure that will assist a person in developing desirable 

debugging patterns. 

In a problem of any complexity, the hunting for and detection ot 

errors completely apart from the computer is a very difficult, if not 

impossible, task. In order to make the task of error hunting a tractable 

one, the computer is utilized. 

Clearly, one approach for using the computer in debugging is to 

rtm the problem as though it contained no errors (this is often done 

with small problems). If there are no errors, this indeed is the fast­

est approach to debugging. However, if' errors are present, the answers 

indicated upon the completion of the problem, if the control was even 

able to proceed to the end, would be incorrect; and one would have no 

idea where or why the errors occurred, so that such running time (which 

Ddght be rather lengthy) would not be particularly useful in localizing 

any errors. 
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Another approach would be to perform each instruction in the code 

sequence on manual operation and to record the result of each operation 

so that it could be verified by hand methods. Such an approach would 

certainly find all existing errors, but the amount of computer time in­

volved in such a debugging method is much greater than it need be. 

The recommended approach combines the two extremes. The code 

of the problem is divided into several sections and the control performs 

each of these sections automatically, stopping upon the completion of 

each one. The division of the code of a problem into these sections is 

accomplished by inserting conditional stops into the code by means of 

breakpoints. These stops are inserted at locations in the code where 

the results of pertinent computation are available. Enough of these 

stops should be inserted so that sufficient data of the problem are 

recorded to allow one to perform a hand check if necessary. The con­

trol then performs automatically one of the short sections of code and 

stops at the deSignated instruction. The pertinent data from the pre­

ceding computation are recorded, and then the computer is restarted and 

the control performs the next code section, and so on, until all of 

the desired data are accumulated. This occurs when the control has 

proceeded through all of the code sequence at least once, or when it 

is observed that some of the data are in error. In either case, the 

problem is removed from the computer and the data are studied and 

verified. 

If the accumulated data indicate the existence of errors, any 

particular error may be isolated to one of the short code sections by 

making a hand check of the results and observing in which section the 

error first appears. Once an error has been isolated to a section of 

code, that section of code is checked visually to see if the cause of 

the error may be easily located. If it cannot, that section of the 

code in which the error occurs is further subdivided and the problem 

is returned to the computer where the offending section 1s examined in 

greater detail in order to pin down the error. As soon as the error 

is located, it is corrected and then further debugging may proceed. This 

process is continued until all errors are removed from the coding, at 

which time the problem is ready to be run. We now discuss these matters 

in more detail. 
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After the absolute code is assembled and placed on magnetic tape, 

the problem is removed from the computer in preparation for debugging. 

This preparation involves a visual check of the code listing to detect 

any obvious errors, either from the coding or from the assembly pro­

cess. After the listing is checked, the code is divided into sections 

for breakpoints. The breakpoints are to be inserted into orders of 

instructions where pertinent data are available in the arithmetic unit. 

The actual insertion of the breakpoints into the desired instructions 

in the assembled code may be accomplished by a Breakpoint Insertion 

helper-routine. One needs to specify to this helper-routine the ad­

dress of the instruction receiving the breakpoint and whether the 

breakpoint to be inserted is "red" or "green". The details for accom­

plishing this are discussed in the helper-routine file. 

There is an alternative method for inserting breakpoints which is 

perhaps more deSirable than the one Just outlined. This alternative 

is to decide upon the disposition of the breakpoints during the prepa­

ration of the descriptive code and to punch the orders on the des­

criptive code tape with the breakpoints inserted. The assembly routine 

accepts and modifies properly instructions whose orders conta.in break­

points. As an example, an instruction ~AcB.Ol, if it were to 

contain a "red" breakpoint would be punched as 2ABOl rather than AABOl. 

Similarly, ~ DOl. with a "green" breakpoint would be punched as D5DOl 

rather than DDDOl. 

If the breakpoints are included during the descriptive coding, 

they exist on the magnetic tape record of the absolute code. If they 

are inserted by the Breakpoint Insertion routine, the absolute code 

from the magnetic tape must be called into the computer; the breakpoints 

are then inserted by the Insertion helper-routine, and a subsequent re­

cord of the code with breakpOints is made onto the magnetic tape. Tbe 

calling from and recording onto magnetic tape is accomplished by 

Magnetic Tape helper-routines, two of which were illustrated in Prob­

lem 12 of Chapter II. As soon as the breakpoints are inserted, one 

begins the debugging proper. 

The mo~t effective way of observing the data at the various break­

points is to have the desired data printed. To do thiS, one again calls 

on a helper-routine. The particular routine used here is in a class ot 



interpretive helper-routines and is the so-called Breakpoint Monitor 

helper-routine. 
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~ ... iJ;lterpreti ve routine is any routine. which interprets and 

ca~l3es to be performed any desired.ins~~ction sequence whic~ is 

_~~_iding .. i~ ~he memory. Such routines act in a sense as a generalized 

control. 

During the process of interpreting and performing an instruction 

sequence, an interpretive routine may perform many other functions, the 

extent of which is limited only by the capacity of the memory of the 

computer and the ingenuity of the person preparing such routines. 

For the Breakpoint Monitor routine the desired interpretation is 

a very simple one, namely whether an instruction contains a breakpoint. 

For an order containing a breakpoint, the interpretive routine first 

causes the instruction to be performed and then the following data are 

printed as four words: 

Word 1: The address at which the instruction containing 
the breakpoint resides, and the instruction itself. 

Word 2: The contents of the R4 register 

Word 3: The contents of the R2 register. 

Word 4: The contents of the memory at the address specified 
in the instruction. 

Words 2 and 3 give the contents after the instruction is performed 

and Word 4 gives the contents before the instruction is performed. 

Note, then, that the breakpoints are inserted into instructions which 

when performed give the desired data in the arithmetic unit. R2 or 

R4 contain the result from any arithmetic operation while the appro­

priate memory location contains one of the two operators entering into 

the operation. 

There are many other interpretative routines similar to the 

Breakpoint Monitor (it was chosen only as a convenient example) and one 

should check the library file to ascertain which of these routines is 

best suited for his specific purpose. 

Sometimes breakpoints are used to check that the control reaches 

a certain instruction in the problem and for this the numbers printed 

from the various registers may be unimportant for debugging; hence only 

the first word printed 1n the listing would have relevance. 



In the Breakpoint Monitor routine, 8S in similar routines, one 

has the option o~ having the data printed as either decimal numbers 
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or as hexadecimal numbers. The first word, i.e., the address and the 

instruction, is always printed as a hexadecimal number, since it would 

appear as nonsense as a decimal number. 

To utilize the Breakpoint Monitor routine, one inserts the desired 

breakpoints into the absolute code. The absolute code and the Break­

point Monitor routine are then loaded into the memory. Note that, 

since both routines are in the memory, the Breakpoint Monitor routine 

must be loaded into a set of addresses which are not relevant to the 

code being debugged. Breakpoint Monitor routines are coded beginning 

at a variety of addresses so that this is usually possible vi thout un­

due red tape. If, however, one has an assembled code to be debugged 

which fills the memory, he has recourse to a generalized monitoring 

routine which utilizes the magnetic drum. It is not, however, dis­

cussed here. 

The first step of the monitoring process is to specify the ini­

tial address of the code to the monitor routine (for details see the 

helper-routine library file). The control counter is set to the initial 

address of the monitor routine and then the computer is started. The 

data for the debugging is printed by the Synchroprinter, four words 

(discussed above) to a line. 

As soon as one has collected a sufficient amount of data, the 

problem is removed from the computer and examined at leisure away 

from the computer. 

It may happen that the breakpoints are not reached in the expected 

sequence, or even that the first one is not reached. We defer the dis­

cussion of the procedure to be followed when this happens. 

So now, assuming that the breakpoints were reached, we have the 

data which is now examined to determine whether or not the numbers 

listed are the desired numbers. First, a cursory examination is made 

for any obvious errors. For example, a number known to be always 

positive may have been computed and printed as a negative number. Or 

perhaps the orders of magnitude of the numbers of the computaton are 

known and a visual check suffices to determine this. 
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If the cursory check does not indicate any troubles, a hand compu­

tation is made using the same data as for the listing. The hand check 

may often use shortcuts in that some of the numbers computed are 

~pwn; e.g., the values for sin x, ~~ etc. may be found in tables. 
," The comparison should agree except for truncation and round-off dif-

ferences. Sometimes approximate values suffice for checking purposes. 

If no errors have occurred, the debugging of the portion of the code 

for which the data was obtained is complete. If an error is detected 

fram the cursory examination one must set about isolating it to one 

of the sections of code between breakpoints. At first, one attempts 

to isolate the error by a visual check of the numbers leading to the 

error, and if this fails a hand check of the results in the region of 

suspect will isolate it. 

Once an error is isolated to a particular section of code, the 

'instructions in that section are examined in detail to see if the 

cause of the error may be observed. If it is found, that trouble is 

over. If it is not observed, one may divide the section of code by 

further breakpoints, so that the section may be monitored in greater 

detail upOn returning to the computer. However, at this point, if 

the section of instructions is fairly short, as it should be, rather 

than doing further breakpoint monitoring one has recourse to another 

helper-routine for debugging, called the Auto-Monitor routine. It is 

discussed presently. 

If the first error detected does not alter subsequent results too 

drastically, the programmer continues his checking process for other 

errors so that be'fore returning to the ,computer as many errors as 

practicable are detected and corrected~ 

Since the absolute code of the problem exists only on magnetic tape 

one makes the actual corrections at the next session with the computer. 

However, prior to this a permanent written record is made of each error 

'as it is detected. This record should contain at least the following: 

1. The addresses of the incorrect words. 

2. Toe incorrect words as they appear on the magnetic tape. 

3. The number of the particular magnetic record on which 
they appear incorrectly (as will be seen later each re­
cord of an absolute code is on a numbered section of a 
spool of magnetic tape). 

4. The correct words as they are to be inserted. And if any 
additional words are added, the addresses at which they 
are added. 
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Then after one has returned to the computer and made the correction. 

and recorded the corrected absolute code onto magnetic tape, the fol­

lowing information is added to the record. 

5. The date on which the correction is made. 
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6. The number of the magnetic tape section on which the cor­
ted code resides. 

In addition to the six items mentioned, any comments which the program-

mer feels are pertinent to the corrections should also be included. 

There are, in general, two kinds of corrections that need to be 

made. The first is the easy kind which can be corrected by changing 

only those words in error without having ·to add additional coding. 

This kind of correction causes relatively few headaches. The second 

kind are those corrections where the number of words necessary to make 

the correction exceeds the number of words in error. In short, additional 

coding must be added. So we have found one of the ticklish parts of the 

debugging, and unfortunately many of the errors encountered are of this 

kind. For clarity we give an example of such a correction and indicate 

how it is carried out. 

at 

The 

An error is found in the sequence of code words beginning, say, 

address 050. 

050. 

051. 

052. 
sequence is 

The faulty coding is 

m~Q 

X 

211 
213 

212 
274 

supposed to form xyz and store it at 

214: xyz 

where x, y, and z reside in locations 211, 212, and 213, respectively. 

Now as the result of Instruction 50 I, the product xy is in R2. Instruc­

tion 51 is incorrectly a multiply instruction because the multiplier 

xy has not yet been placed in R4. Since all of the instructions in 

the sequence are needed, there is clearly no place to insert the neces­

sary L(40) instruction to send the number xy from R2 to R4, or if it is 

not desirable to use L(40), two instructions A~m 215, m~Q 275 are 

needed where 275 is an available location at this time. 

In order to make the correction one must have available somewhere 

in the memory 1 1/2 consecutive words. Assume that such space is avail­

able beginning. at address 319. The corrections to be inserted are: 



050. m----)-Q 211 T 319 

051. x 213 A~m 214 

052. 

379. X 272 L(40) 028 

31A. T 051 

The right-hand side of Word 50 is changed to a transfer to 319. The 

first instruction of 379 performs the multiplication formerly done in 

50'. 319' then shifts xy from the R2 register to the R4 register, so 

that it is in proper position as a multiplier. The next instruction 

then sends the control back to 051 where the multiplication by z is 

now correctly performed. 

An alternative scheme of inserting the correction is to revert 
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to the descriptive coding and actually recode in descriptive coding 

the operation box in which the error occurs. A corrected tape for 

this box is then punched. By making use of an §.OOXX symbol (a trivial 

change) incorporated in the "box number" code word on the descriptive 

tape, the assembly process may be stopped prior to the assembly of 

the code of any box and the code for new boxes or corrected boxes 

may be in5erted. The entire problem is then reassembled by the 

assembly routine with the desired insertions of now or corrected boxes. 

At first glance the recoding of a box and the reassembly of the entire 

problem may seem rather a drastic way of eliminating an error; however, 

experience has shown that one of the most fruitful sources of errors 

in coding arises from the insertion of corrections for previous errors, 

and this recoding and reassembly virtually does away with such errors. 

One has only to examine and work with a highly complex problem to under­

stand this. It should be mentioned that the reassembly process is 

quite easy and rapid. 

When one returns to the computer to insert the corrections, he re­

assembles the code if the latter scheme is adopted. If the former is 

adopted, he has previously punched small tapes containing the desired 

corrections. Then after the absolute code is read into the memory, 

these corrections are loaded into the desired locations. Each se­

quential group of corrections consists of one tape; hence several such 

tapes are often needed. Several groups of corrections may, however, all 
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be placed on one tape with double spaces on the tape separating the 

various groups. For example, the correction of the example discussed 

above would consist of two groups. The first consists of Word 050 

which is 
EB27lCA379 

followed with a double space. Immediately following the double space 

the words beginning at 379 would be punched. They are: 

DA272DE028 
CA05l00000 

which is also followed by a double space. The correction tape is then 

loaded into the desired locations, namely addresses 050 and 379. When 

all of the corrections have been inserted, the problem is again recorded 

on magnetic tape so that an absolute code containing the corrections is 

available on tape. Note that all of these magnetic records discussed 

are distinct. That is, one should not destroy previous records of the 

problem when making a new one, and certainly not the immediately pre­

ceding record. 

We are now ready to resume debugging, with the corrected code. We 

do this by first returning to our original breakpoint monitor scheme 

and printing the data for all of the breakpoints that had previously 

been listed. This is done to make certain that none of the changes 

and insertions in the code has molested any part of the code which 

was previously correct. In addition, the data pertaining to the cor­

rections are printed. We have left from the previous debugging se8sion 

those errors which were not found while off of the machine. It the 

method of inserting more breakpoints is used one has only to let the 

data be printed. However as previously mentioned, it is often advisable 

to resort to an Auto-Monitor helper-routine. 

The Auto-Monitor routine is an interpretive routine which allows 

the results of each instruction to be printed. The data printed for 

each instruction are identical to those for the Breakpoint Monitor 

routine. When one comes to the section of code in which the error 

exists, he switches to the Auto-Monitor routine and lists the results 

of the computation for all of the instructions in that section. To 

switch from the Breakpoint Monitor to the Auto-Monitor routine one 
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loads the Auto-Monitor routine into the memory and specifies to it the 

desired starting address for monitoring. One should consult the 

library file for specific operating instructions. upon the completion 

of the desired auto-monitoring, one may revert to the Breakpoint Monitor 

routine. 

The Auto-Monitor routine is recommended to track down the error of 

the kind previously mentioned in which no breakpoints were ever reached 

or else reached in the wrong sequence, by the Breakpoint Monitor routine. 

One begins auto-monitoring at the start of the problem (or at the point 

of "no return"). This soon leads to the source of the trouble. 

It is worth noting here that, since the Auto-Monitor and Breakpoint 

Monitor routines have a similar function, they may actually be incorporated 

as one routine where one need only make minor adjustments in order to 

switch from one to the other. 

There are other helper-routines which one has as an aid to debugging 

other than the monitoring routines. We mention only a few of them in 

passing. 

There is a Scaling Check routine which examines the results of all 

operations to see that numbers do not exceed the allowable range of 

-1 ~x < 1. 

There are various address and instruction search routines which scan 

the code and pick out all instructions containing any specified address, 

or pick out all instructions containing any specified order, or pick out 

any specified instruction. 

Routines exist for comparing the contents of any magnetic tape re­

cord either against any other, or the contents of the memory, or the con­

tents of the magnetiC drum. 

There are address altering routines which modify the addresses of 

any section of code in any manner desired. 

Graph plotting routines are available for plotting data to see if 

they look reasonable. 

There are routines which allow all operations on the computer to 

be done in duplicate in the event that one suspects a computer malfunction 

as the source of an error. Normally our standard test routines disclose 



the garden variety of computer errors, but on rare occasions an in­

frequent intemi ttent may depend on particular numbers. In this in­

stance there is some point to using these "duplicatingtl routines. 
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Many routines which cannot be used directly in debugging may still 

be of service. These are routines that can compute various functions 

and tabulate the results so that they can be compared with results in 

the problem being debugged. 

The scope of helper-routines is too great to enumerate in detail 

here. However, it is suggested that, prior to the debugging of any 

code, the programmer should become familiar with helper-routines and 

their function as an aid to debugging. 

We have thus completed the debugging of the absolute code. It should 

be mentioned, however, that the preceding discussion has not attempted 

to cover debugging in any detail, since such a disQussion is not within 

the scope of a manual of this type, and apart from a general approach 

each code to be debugged presents new situations. Skill in debugging 

comes only through actual experience and a meticulous care on the part 

of the programmer at all stages of the problem preparation and the de­

bugging. The next step then is naturally enough the actual running of 

the problem with the debugged code. 

The procedure that one goes through in starting the problem should 

be somewhat familiar by noW'. The debugged code is called into the 

memory from the magnetic tape where it resides. After the code is in 

the memory, the control counter is set to the desired starting address, 

and the problem is started by depressing the "start-next-order" switch. 

When at all possible, the code of a problem should be set up so 

that shortly after the computation begins, a few intermediate computa­

tion results, where the correct results are known, would be printed. 

In this way there is some assurance that the computer is starting its 

computation correctly. 

Since many of the problems contemplated require anywhere from 

several hours to several days of computation time, it is necessary that 

intermediate records of the problem (code and numbers) be made so 

that in the event of computer malfunction it is not necessary to start 

the problem from the beginning. One has only to return to the last 

correct record of the problem and resume from there. Also in lengthy 



computations the code should be constructed so that intermediate re­

sults of the problem are periodically printed, so that they may be 

examined in order to see if they are reasonable. This is a check on 

the formulation of the problem as well as on the computer. 

The periodic records of the problem are made on magnetic tape. 

The entire contents of the memory are recorded onto the magnetic tape; 

hence in order to start a problem from any record one has only to call 

the magnetic tape section into the memory and then set the control 

counter to the address of the instruction immediately following the 

last instruction of the code performed before the record was made. 

This instruction is, of course, known for each record; and, in fact, 

it usually does not vary from one to another. Experience has shown 

that a magnetic record of the memory contents should be made about 

every 20-25 minutes to insure a maximum of effective computation time. 
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It is desirable that some intermediate results be printed shortly after 

a record is made. Then, in the event that a problem has to be restarted 

there will soon after be some printed results which may be checked against 

those printed when the record was made. This insures that the computa­

tion is starting correctly. 

The routines which perform these magnetic recordin~exist as sub­

routines as well as helper-routines, so that if desired they may be 

directly incorporated as an integral part of a problem. A variety of 

print routines exist that are easily included in a problem to print 

the intermediate and final results. As suggested above, one of the 

reasons that the periodic magnetic tape records of the problem are 

made is in anticipation of ~y computer malfunction. A computer mal­

function might manifest itself in anyone of several ways. For example, 

a set of intermediate results that are printed might be in error. Such 

errors may be detected by inspection, by taking differences of the re­

sults, by the plotting of graphs, by programmed integral checks, etc. 

In addition to such manifestations, a malfunction may occur by a non­

sense instruction being brought into R6, the control register, and the 

computer stops. Or yet another type of malfunction might manifest 

itself in that the control becomes stuck in an instruction loop. That 

is, the control is being cycled through a fixed section of the code 

rather than following the correct path. If the loop through which the 
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control is cycling bas relatively few instructions, it can actually be 

observed on anyone of the "memory monitor scopes 11 • These art! discussed 

later. If the cycle is relatively long, it may not be detected for some 

ttme, namely when one tries to print results. 

In the event that a computer malfunction is detected, the following· 

procedure is recommended: 

If the trouble occurs very shortly after operation has begun, the 

first suspect for the error would be that it was a human error. That 

is, either in loading the code and any data that might be needed, or in 

making any alterations of data, or in the setting of addresses into the 

control counter, the operator may have made some sort of an error. Hence, 

one should try to restart the computation without making any other checks. 

It similar trouble seems to repeat, one then follows the same procedure 

as for malfunctions that appear after the computation has been underway 

for some time. It is: 

If a malfunction appears that is evidently not from a human source, 

the problem being computed is removed fram the computer and the basic 

computer test problems are run to see if they detect the malfunction. 

Every operator of the computer should become intimately familiar with 

these test problems so that he can run them and interpret properly any 

results which might indicate a malfunction. 

We discuss these test problems only briefly here. There is a so­

called "Inversion Test" which checks that the memory is operating properly. 

A "Vocabulary Test n is a general test of all of the orders to see if any 

of them are failing. This test will detect any consistent errore. For 

the more aggravating intermittent variety there are specific tests that 

attempt to test more exhaustively each kind of order with a wide variety 

of numbers. In any test in which a malfunction occurs, data are printed 

that indicate the nature of the malfunction. As soon as a malfunction is 

detected by a test routine, the engineering staff should be called to fix 

the trouble. In the event that the test problems do not indicate any er­

rors but the troubles still persist in the problem, the engineers should 

be called. If the trouble 1s manifested by incorrect results which can 

be duplicated, and if the test problems do not indicate computer trouble, 

one should begin to suspect that there 1s some incorrect infor.mation OD 



the magnetic tape dump from which the problem was started, or an even 

more disastrous thing--one should begin to suspect that perhaps the 

code is not in reality debugged. 
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In computer malfunctions, the operator should be able to assist the 

engineers in localizing the source of trouble. To do this one certainly 

must completely understand the function of the various registers and the 

control counter. Such an understanding also helps one operate the com­

puter more effectively at all times. We now discuss these matters where 

part of what follows is review and part is presented for the first time. 

We discuss the registers first starting with R6, the control register. 

During the loading process, R6 contains zeros. During the operation of 

the computer, R6 contains the instruction-word that is being acted upon 

by the control. One may, in general, determine the address in the mem­

ory of any instruction-word contained in R6 by examining the control 

counter. The control counter contains the address of the next word to 

be brought into R6. This is one address greater than the word in R6 un­

less either the control has just executed a transfer instruction or the 

counter has been set manually. Whenever a "nonsense It word in R6 stops 

the computer, the address less one in the control counter always indicates 

the location of this nonsense word in the memory, and it should be so 

checked. 

The R5 register has many fUnctions,which we discuss in turn. During 

the loading process, words pass through R5 en route to the memory, and at 

the completion of any loading, R5 should contain the word on the tape 

immediately preceding the double space. Any word which is brought into 

the arithmetic unit passes through R5. Hence, at the completion of any 

such operation, R5 contains the word from the location specified by the 

address of the instruction. Orders 1-12, as shown in Table I, page 21, 

are of this kind. The following orders also affect R5. After a Q--.m 

instruction, R5 should contain the same word as R4. After an a -.:;Ac 

or a~Ah instruction, R5 should contain in positions (0-11) the number 

which is equivalent to the address portion of the a~A instruction. 

upon the completion of a read instruction, the word also resides in R5 

as well as in the memory. Now upon completion of Instructions 19-22, of 

Table I, the substitution instructions, R5 contains the word into which 

the substitution is being made, as it appears before the substitution is 

effected. Note that an A--7m instruction does not involve R5. 
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We discuss the registers R4 and R3 together since R3 is an auxiliary 

register for R4 (R4~ Q). Neither is affected by the loading process. 

When a number enters R4 via an m~Q instruction, R4 contains the number 

from t~e location specified by the address. The contents of R3, however, 

are irrelevant and may be anything depending upon past instructions. 

However, if a number enters R4 from. any other source (viz., X, -:-, L( n) , 

or R(n) instructions), R3 contains the same intor.mation as R4 displaced 

one position left or right except perhaps for the Sign position and the 

2-39 position. In the X and R(n) operations the number in R3 is dis­

placed to the left of the one in R4, while in~ and L(n) operations the 

number in R3 is displaced to the right. 

The magnetic tape instructions and the magnetic drum instructions 

use R4 and R3, and consequently upon completion of t~m or ~m, R4 

contains the last reference word. R5 will also contain the same word. 

R5 contains the last reference word of m~t and m~D as well. On the 

instructions where R4 contains the last reference word, R3 contains the 

same word displaced once to the right except for sign. 

R2 and Rl also work in conjunction; however, any time a word is in 

R2 from any instruction, the same word, except perhaps for Sign position 

and 2-39 position, is in Rl displaced either one unit right or left. 

Upon the completion of loading, R2 contains the sum of the contents 

of the tape. Upon the completion of a n.-,.m instruction with address 

.... 800, R2 contains the sum of the fifty words read from the drum. to the 

memory. 

Upon the completion of any of the add orders, 8--+Ac, a~Ah, X, 

R(n); Rl contains the same number as the R2 register displaced once to 

the left. Upon the completion of -. , L(n); Rl contains R2 displaced 

once to the right. 

upon the completion of a syncprint order (not considering the sub­

routine in which it is contained) R2 contains all~. In this instance, 

and. only 1n this instance, Rl may have completely foreign numbers to 

those of R2. 

If a computer malfunction is suspected, the contents of' the various 

registers should be closely observed, and if there 1s any deviation from 

the above-mentioned situations the discrepancies should be recorded, as 

they may aid in the detection of the malfunction. 
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As previously mentioned, the control counter is the mechanism used 

for the sequencing of instructions. The control counter always contains 

the address of the next word .to be brought into R6, the control register. 

The control counter may be manually set to any desired address. While 

the computer is running, the control counter advances sequentially ex­

cept when transfer or satisfied conditional transfer instructions are 

executed. These instructions set the control counter to the same address 

as that contained in the instruction. The control counter has several 

special functions which are: 

In loading, the control counter is the sequencing mechanism. The 

control counter is first set to the desired initial address. Then the 

contents of the tape being loaded are sent to the memory into sequential 

addresses beginning with the initial one. Upon the completion of the 

loading, the control counter resets to the initial address. 

In the drum instruction, the control counter indicates the fifty 

sequential memory addresses concerned with the instruction. At the out­

set of the instruction the counter is set to the memory address contained 

in the instruction. When the fiftieth word is transmitted, the counter 

contains the corresponding memory address. Since this is not, in general, 

the desired address for the next instruction, the drum instruction ends 

by setting the control counter to the address contained in bigits (28-39) 

of the drum instruction. 

As with the registers, when a computer malfunction is suspected, the 

control counter should be observed to ascertain that its behavior cor­

responds to that given above. 

We complete the chapter now with brief discussions of the "audio­

monitor", the memory monitors, the magnetic tape, the Synchroprinter, the 

computer "turn-off" and emergency procedures, and a brief comment on the 

method of time scheduling for the computer. 

The "audio-monitor" is an amplifier and a loud-speaker that taps in­

to the cirCUitry of the function gates. The frequency with which the 

function gates change (i.e., flip from left to right as successive in­

structions are performed) while the computer is running on automatic 

operation is in the audio-range. The amplifier merely amplifies and 

transmits these frequencies to the loud-speaker and hence into audible 

noise. The use for such a piece of equipment lies in the fact that in 
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many problems that are run 011 the computer the code patterns established 

by the various induction loops of the problem give rise to distinctive 

and easily detectable noise patterns. A person familiar with the noise 

patterns of a problem can often tell when there has been a computer mal­

function if the malfunction manifests itself by the control altering its 

path through the code sequence. This circumstance causes a change in 

the noise pattern of the problem. A volume control switch allows one 

to control the audio-monitor and, if desired, the volume may be 

turned down. 

The memory monitors consist of four three-inch cathode ray tubes. 

These tubes allow one to observe the contents of any of the forty memory 

tubes. The monitor tubes are mounted at each end of both banks of mem­

ory tubes as shown in Figures 2 and 3. There are six selector art tche"s, 

four mounted directly under the central storage units of the front stor­

age bank and two similarly mounted on the back side of the computer. 

The selector switches are eleven place Switches, allowing an "offll posi­

tion and the display of any of ten memory tubes by a monitor tube. 

Since there are four switches on the front, tvo connected to each of 

the front monitors, one can observe any of the forty memory units. The 

two left-hand switches select units (0-19) while the two right-hand 

switches select (20-39). However, each monitor tube may display only 

one unit at a time and care should be exercised that the two selector 

switches connected to a single monitor tube are not both set to a unit 

as this causes erroneous information to be stored into the memory 

uni ts concerned. The tllO selector sui tches on the rear bank may only 

monitor that bank, the odd-numbered memory units as shown in Figure 3. 
The left-hand switch can monitor 21, 23, 25 •.• 39, and the right-hand 

switch can monitor 1, 3, 5 19. 
The memory raster, as one vieus the monitor tube, is as shown in 

Figure 6. A bright spot at any position of the raster corresponds to 

" a !, while a faint spot corresponds to a O. 

As a problem is running, the code patterns due to induction loops 

often cause certain portions of the code to be performed more frequently 

than others. The memory locations concerned are then consulted more 

frequently, and these regions of higher consultation show a brighter 

intensity on the monitor tube than neighboring regions. One may then 



280 

3CO 380 340 300 2CO 280 240 200 ICO 180 140 100 CO 80 40 0 
3EO 3AO 360 320 2EO 2AO 260 220 lEO lAO 160 120 EO AO 60 20 

I I I I I I I I I I I I 0 
I I I I I I I I 

I I I I I I I I I I I I I 2 
I I I I I I I I I I 3 

I I I I I I I I I I I I I I I 4 
I I I I I I I I I I I I I I I I I 5 

I I I I I I I I I I 6 
I I I I I I I I I I 7 

I I I I I I I I I I I I I I I I a 
I I I I I I I I I I I I I I I 9 

I I I I I I I I I I I I I A 
I I I I I I I I I I I I B 

I I I I I I I I I I I C 
I I I I I I I I I I I 0 

I I I I I I I I I I I I E 
I I I I I I I I I I I I I F 

I I I I I I I I I I 10 
I I I I I I I I I I I II 

I I I I I I I 12 
I I I I I I I 13 

I I I I I I I I I I I I I 14 
I I I I I I I I I I I I I 15 

I I I I I I 16 
I I I I I I I I . 17 

I I I I I 18 
I I I I I I 19 

I I I I I I I I I I I I IA 
I I I I I I I I I I I IB 

I I I I I I I I I I I IC 

I I I I I I I I I I I 10 

I I I I I I I I IE 
I I I I I I I I IF 

3FF 3BF 37F 33F 2FF 2BF 27F 23F IFF IBF 17F 13F FF BF 7F 3F 
30F 39F 35F 31F 20F 29F 25F 21F IOF 19F 15F IIF OF 9F 5F IF 

MEMORY RASTER 

FIG. 6 



be able to determine, by observing a monitor tube, when certain sections 

of the code are being traversed. As with the "audio-monitor" and its noise 

patterns, the memory monitor often displays distinctive code patterns. If 

the computer malfunctions in a way that the display pattern is altered, 

this is often observable. 

The magnetic tape unit has previously been discussed in Chapter II, 

Problem 12, and in Chapter IV; so that what is said here will pertain 

mostly to the operation of the unit. 

Recall that the unit is a single channel serial system where the 

magnetic tape reels contain 1200 feet of 1/4 inch wide Scotch Sound Re­

cording Tape. These reels of tape are, in general, pre-marked into sec­

tions, each of which will accommodate 1024 forty-bigit words. There 

are fifteen such sections to a reel and the markings dividing these sec­

tions are short lengths made transparent by removing the magnetizable 

material from the tape. A photo-cell in circuit with a fast forward and 

reverse mechanism affords the only searching facilities (manual). The 

tape may be advanced or reversed at a speed of roughly four seconds per 

block of 1024 words, and the photo-cell actuates a brake whenever a trans­

parent section of tape,indicating a separation of the 1024 word blocks, 

pas se s through it. 

In order to use the magnetic tape, one first threads the desired 

reel of tape onto the tape drive mechanism. Second, the tape is advanced 

to the start of the desired 1024 word block. Third., the tape unit 

switches are set so that the unit can then be operated by the control of 

the computer through the magnetic tape routines (cf. Chapter II, Problem 12) 

We now discuss these steps in detail. 

The tape drive as it appears atop the console cabinet is shown in 

Figure 7. The different parts are clearly marked and need no explanation; 

hence with the aid of this diagram we turn to the tape threading procedure. 

To thread tape 

1. Remove the caps from both tape reel spindles. 

2. Place the reel of tape on the left spindle. It is called the rewind 
reel. The tape feeds from this reel in the direction indicated by 
the diagram. 

3. Set the forward-reverse-normal switch, hereafter called the setting 
switch, to the no~ position. 

4. Open the head housing door. 

5. Unwind a length of tape and thread it as indicated in Figure 7. 
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6. Wind several turns around the take -up reel. Wind the take -up reel 
until the take-up arm is in the position shown. 

7. Replace the caps on the spindles. (Do not remove or replace caps 
while the tape unit is running.) 

8. Close the head housing door. The tape is now ready to be advanced 
to the first transparent section, the starting position for the 
first block of information. 

In order to have the tape in correct position to record or replay 

a block of storage, all that is necessary is that the transparent sec­

tion of the tape identifying the start of the block must be visible in 

the region of tape between the two reels. 

To advance or back up tape to start of desired tape section 

1. Turn the setting switch to the desired direction of motion of the 
tape. 

2. Open the head housing door; the tape advances in the desired 
direction. When a transparent section passes by the photo-cell, 
the tape stops. The braking is not instantaneous, and the trans­
parent section may travel as much as 15 feet during the stopping 
process. 

3. Turn setting switch to the opposite direction of the previous motion. 

4. Depress the manual start 'button. This starts the tape moving in the 
direction shown by the setting switch. The transparent section of 
the tape again actuates the braking action when it passes through 
the photo-cell. This time the overshoot is less. 

5. Re~eat steps 3 and 4 until the transparent section lies in the region 
between the two reels. This is the desired starting position. 

6. Turn the setting switch to the normal position and close the head 
housing door. 

7. The tape is now ready to operate - either record or play back. 

If it is desired to back up or advance the tape more than one block of 

words, at the end of step 2 press the manual start button without changing 

the setting switch. Repeat this until the desired block of information is 

reached. The procedure is then the same as previously noted starting at 

step 3. 
To record or replay 

1. The transparent section identifying the desired block must be in the 
region between the two reels. 

2. The head housing door must be closed. 

3. The setting switch must be in the normal position. 

4. The take-up arm must be in the position indicated in Figure 7. 
5. The red indicator light must be off. 

6. When steps 1 through 5 are completed the tape is ready to be operated 
automatically upon instruction from the computer. 
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The indicator lights have the following significance: 

i. The amber light indicates that the power is on. If this light 

is "off", call an engineer for assistance. 

ii. The red light is "on 11 in any of the following circumstances. 

a. The head housing door is open 

b. The setting switch is in the reverse or forward position. 

c. The take-up arm is not in correct position. 

d. It is "on ll while the tape is running during a recording or 

a play back. 

If, in setting the tape to record or replay, the red light remains 

t~on" after steps 1 through 4 have been completed correctly, call an en­

gineer for assistance. 

The Synchroprinter has previously been discussed in Chapter II, 

Problem 13, and in Chapter IV; so that, as with the magnetic tape, the 

.remarks here pertain to operating procedures. 

Recall that the Synchroprinter prints a line at a time; each line 

may contain 40 characters. The maximum speed of operation is 15 lines 

per second, or 36,000 characters per minute. This print order must be 

used in a routine (cf. Chapter II, Problem 13) which does the following: 

The four words to be printed are fanned into an array of eighteen words 

in the memory. During a print cycle, eighteen print orders are given. 

The first print order activates the printer and the remaining seventeen 

act in a timing capacity synchronizing the printer and the computer. 

Prior to each print order of the cycle, the appropriate word of the ar­

ray is brought into R2. 

In the discussion of the operation of the printer, we assume that 

the printer routine has been properly incorporated into the problem and 

discuss only the mechanics ~oncerned with the printer unit. 

Five switches are located on the front of the printer cabinet. 

These are: 

i. the motor switch 

i1. the filament switch 

iii. the plate switch 

i v • the thyratron switch 

v. the paper advance switch 
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The filament switch and the plate switch are always to be in the 

"on" position. If this is not the case, one should not attempt to 

operate the printer, and an engineer should be called for assistance. 

When the printer is to be used, the positions of the motor switch 

and thyratron switch should be checked. If they are in the lion" position 

the printer is ready to operate. If they are in the "off" position, the 

following is done: (The order is important.) First, the motor switch is 

turned to the "on" position and. then the thyratron switch is turned to 

the "on" position. 

The thyratron switch controls a bank of 40 thyratron tubes that are 

used for triggering the 40 print hammers. A thyratron tube is a gas dis­

charge tube rather than a vacuum tube, and it permits the high current 

necessary for triggering the print hammers. Once a thyratron has been 

discharged, its plate voltage must be cut off in order to reset it to 

the non-conducting state. The triggering of the print hammer momentarily 

causes the plate voltage to be cut off so that the thyratron 1s reset. 

However, the circuitry is such that the triggering of any print hammer 

twice in a print cycle will cause its associated thyratron to stay in the 

discharge state, making any further triggering impossible. Attached to 

each thyratron is a neon bulb which is lighted whenever the thyratron is 

in the discharge state. These neons are visible through a glass panel 

immediately below the thyratron switch. Whenever a thyratron remains in 

its discharge state, as indicated by its lighted neon, it may be reset by 

turning the thyratron switch floft''' momentarily and then turning it "on" 

again. If, in the "turn_on" procedure for the printer, some of the thyra­

trons discharge, as indicated by their associated neon being lighted, the 

above procedure is carried out for resetting them. 

A thyratron should never be left in the discharge state, and as 

soon as such a condition is known the above reset procedure should be 

carried out. 

During operation, the only times that a thyratron can be left in the 

discharge condition are: 

i. when more than, or less than, the required 18 print orders are 
given in a print cycle 

11. when a print hammer has been triggered more than once per print 
cycle 

iii. when there has been some computer malfunction effecting the printer 
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(i) and (ii) may be caused by an improperly coded print routine. 

If the computer is stopped during a print cycle, and if a print order 

is in R6, connected into the control circuitry} the computer cannot be 

restarted without danger of leaving same of the thyratrons in the dis­

charged state. Restarting resumes the print orders, and with the control 

in the middle of the routine less than eighteen print orders will be exe­

cuted by the control. If· the computer is stopped during a print cycle, 

and if an order other than the print order is in R6, one should again 

check the thyratron neons, as there is danger that some thyratrons may be 

in the discharge state. 

If any thyrstrons are in the discharge state and an attempt is made 

to use the printer, the print hammers associated with the discharged 

thyratrons cannot be triggered; hence no characters will be printed in 

the corresponding columns. 

The "paper advance switch" allows one to manually advance the paper 

S9 that printed-material may be removed from the printer. Depressing 

the' switch causes the paper to advance and it will continue to do so as 

long as the switch is held i~ the depressed state. Note that for manually 

advancing the paper, one should always use the paper advance switch, since 

advancing the paper by merely pulling it causes the printer ribbon to be­

come misaligned. 

The "turn-on" and "turn-off" procedures for the computer naturally 

seem to be more in the domain of the engineers rather than that of the 

programmers; however, the turn-off procedure has been simplified to the 

extent that the programmers can do it. 

In order to turn off the computer, one must set certain of the 

switches located on the Memory High Voltage Power Supply shown in 

Figure 8, the Switch Gear Panel shown in Figures 9 and 10, and the 

Magnetic Drum Control Panel shown in Figure 11. The relative position 

of these panels with respect to the computer proper is shown in Figure 1. 

The "turn-offl' procedure in its proper sequence is the following: 

On the High Voltage Power SUpply (Figure 8) 

Depress "off" button. (Leave filament switch in lion" position, 

however. ) 
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On the Switch Gear Panel (Figures 9 and 10) 

1. Turn DC "off" by depres~ing DC off switch located between the DC (red) 
and standby (green) lights. 

2. Set batt·ery-generator switch into I1down" position. 

3. Set battery-series switch into "down" position. 

4. Turn off generators by depressing the stop (red) switches for the 
positive and nega~ive generators. These switches are each located 
immediately above its corresponding positive or negative x'ield 
Rheostat. 

5. Turn the filament variac down (turn the wheel counter clockwise as 
far as it will go). The variac 1s located between the memory high 
voltage power supply and the overload relay of the power supply con­
trol panels as shown in Figure 1. 

6. Depress the stop switch located between the filament (whj.te) and 
standby (green) lights. 

7. Turn the Emergency switch to the "off" position. 

On the Magnetic Drum Control Panel (Figure 11) 

1. Set the "chassis filament" switch to "off" position. 

2·. Set the "regulator filament" switch to "off" position. 

Note: Do not set any drum switches other than the two indicated 
by 1. and 2. 

In the event of an emergency, such as smoke or flame emitting from 

the computer, the emergency "turn-off" procedure is: 

Emergency Turn Ofr 

1. Set the emergency switch on the switch gear panel to .the "off" 
position. 

2. Immediately call an engineer. 

In the discussion of "debugging" procedures, the emphasis was placed 

on using the computer effectivelYjwhen a reasonable amount of data has 

been obtained from the monitoring or as soon as an error has been detected 

during the monitoring, the problem whould be removed from the computer 

and the data studied away from the computer. This procedure naturally 

leads to the following questions: What is the length of time that one 

should spend with the computer per debugging session? And, how should 

the time on the computer be scheduled so that debugging sessions are co­

ordinated in a way which utilizes the computer efficiently? At the pre­

sent stage of the art there seems to be no clear cut answer to either of 

these questions. Our present attempt to answer them stems for experience 

gained during the past several years of operation. 
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It seems that a person will accomplish more in several short sessions 

than in a long session of the same total time, if the time between the 

short sessions allows him to study and digest the results. As a conse­

quence, thirty minutes is the maximum time for any debugging period; how­

ever, shorter periods are recommended. Instead of' arranging a schedule 

according to the clock, a programmer decides on each occasion when to 

terminate his debugging session. 

Since a debugging session may range anywhere fram about five to 

thirty minutes, and since the exact length of the period is left to the 

discretion of the programmer, this has brought about the following ar­

rangement: Debugging periods on the computer are scheduled sequentially 

during the normal working hours. This is the time when most programmers 

are available. A debugging schedule is compiled; however, no specific 

time is allotted to any person. The list only serves to indicate the 

order in which the debugging periods are scheduled and, as mentioned 

above, the length of each period is determined by the programmer while 

he is debugging. It is the responsibility of those on the schedule to 

be available when their debugging period occurs. 

As soon as the debugging periods are over, the running of problems 

is scheduled. Debugging time is not normally scheduled beyond the com­

pletion of the regular work day which is 5:00 PM. This means, then, 

that most of the problem running time is allotted in the hours between 

5:00 PM and 8:00 AM the following day. Problem running time can, of 

course, be scheduled for fixed periods; hence there is no need, as in 

debugging, for all on the list to be available prior to their scheduled 

time. 
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APPENDIX I 

SCALING OF NUMBERS 

Numbers handled by the computer must be in the range 

(xl < 1 

The numbers that occur in the course of a numerical computation are 

usually not so contained. As a result it is necessary in going to 

automatic computation to change some, if not all, of the fUndamental 

set of units. The process of making these linear transformations is 

called scaling. Consider the following very simple example: 

Suppose one were interested in the distance in centimeters of free 

fall for times lasting to 100 seconds; i.e., 

(1) 

S = 1/2 g t 2 (2) 

where S is the distance, ~ = 980 cm/sec2 is the gravitational ac­

celeration, and t the time. In order to restrict the range of these 

quantities so that they satisfy Condition (1), one makes the follow­

ing transformations 

y = -10 2 g 

For convenience, one uses powers of two. Qui te clearly -r , yare 

contained in the proper range. Using (3) one finds 
. S = 1/2(210y) (27 '!" )2 

= 
Hence, if the transformation 

a = 

is made, one obtains 

1/2 224)' -r 2 

a = 1/2 y-r2 

where all the quantities as seen by the computer are now well contained. 

The three transformations are not, of course, independent since 

only the dimensions of length and time are involved. An alternate way 

of expressing the above is to say that time is measured in units of 

27sec. and length is units of 224cm. In reviewing a scaled number in 

a register, one may very easily unscale the number by imagining that 



the binary point is shifted appropriately from its normal position 

(between Q and! stages). In the above example, the unscaled time 
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is found by considering the binary point moved I places to the right. 

One chooses the minimum amount of change in units in order to 

have the maximum accuracy. Sometimes the variations in the quantities 

are so violent that it is necessary to make successive transformations 

in order to maintain sufficient accuracy. Nevertheless, this is 

usually much faster than appealing to floating point routines. 
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APPENDIX II. 

VERTICAL BUSES 

The vertical buses of the order gates, as discussed in Chapter IV, 

pages 202-204, Figure 11, have been modified and are shown below as 

Figures 1, 2, 3, and 4. Figure 11, of Chapter IV, illustrated the 

original arrangement of the vertical buses on the front and back section 

of the arithmetic unit control. As a result of several modifications 

across time, we now require the four figures, one for the front side of 

the control (Figure 1) and three for the back side (Figures 2, 3, and 4). 
The motivation was to simplify the control system. It was found de­

sirable to incorporate a few new buses and, in order to do thiS, a more 

efficient distribution of buses was necessary. That is, although all of 

the buses as shown in Figure 11, of Chapter IV, are necessary, they 

were not all needed on both the front and back control section; e.g., 

CQa4, CORl, RlR2Ll, etc., were not used for any order gates on the front 

section; and, similarly, (0-1)R2, (8-l9)R2, (20-21)R2, etc., were not 

necessary on the back section. 
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APPENDIX III 

SINGULAR ARITHMETIC OPERATIONS 

In a division operation involving numerator ~ and denominator l 
there are certain combinations that violate the condition Ix] < Iy), 
but nevertheless give rise to interesting and often useful results. 
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We call such division operations singular operations. Some of the im­

portant results are: 

i. -1 :S x < 1, y = 0 then 

Q = !-4>2 - x _ 2-39 
o 

ii. a special case of (i) is x = Y = 0 then 

Q = 5--»2 - 2-39 = 1.1111 ••• 11 

iii. x=y>O then 

Q = !~-(l -39) 1.0000 ••• 01 - 2 = x 

iv. x = y <0 then 

x -39 ••• 11 Q = -~1 - 2 = 0.1111 , x 

v. x = -y> 0 then 

x 2-39 = O.llll ••• 11 Q = -~1 --x 

vi. -x = y > 0 then 

Q = -l~-(1 -39) = 1.0000 ... 01 - 2 Y 

Recall from the discussion of binary arithmetic in Chapter III that 

the allowed number range 1s -1 ~ x < 1. This implies that -1 (a !. in the 

sign position followed by all Q's) admits valid operations. In the ad­

dition process this is obviously the case. In division, if the numerator 

x = -1, the quotient is meaningless except for the cases (i and iV) where 

the donominator y = 0 and y = -1. 

However, in division, if the denominator y = -1, one obtains the nor.m­

ally expected quotient; e.g., 

vii. x> 0, y = -1 

Q = !-=).2 
-1 - x - 2 -39 



viii. x < 0, y ::: -1 

x 
Q = -1 

ix. the special case tor x ::: 0, y ::: -1 

Q::: Q 2 - 2-39 = l.llll ••• 11 
-1 
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For the multiplication operation ~l is admissable as one and only 

one of the factors, and 

x. x::: -1, y ~ 0 

p ::: xy~2 - Y 

xi. x::: -1, y < 0 

P ::: XY---+ Iy 1 
The treatment of -1 is symmetric with respect to the multiplier and 

multiplicand. If 

xii. x::: y ::: -1 

p ::: xy 1 + 2-39 ::: 1.0000 ••• 01 

We see that the multiplication p::: Xl where x::: 1 ::: -1 does not 

give the correct product and hence is an exception to the rule admit­

ting -1 as a legitimate number. 

Returning to the division operation, there is one other fact 

worth noting; namely, if a division is exact with tewer than 39 quotient 

bigits, and if x,y > 0, and if 

x -x Q ::: - and QI:::-y -y . 

are formed, then 

Q = QI + 2-38 

Stmilarly, if x,y >0, and if 

Q = ~ and Q' y 

are formed, then 

/Q I = /Q'I - 2-
38 

x = --y 
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Subroutines, 16, 235 ff. 
Tape composition, 221 ff., 250-251 
Treatment of 

Drum instructions, 228-232 
Substitution instructions, 210-

212, 215-220 
Transfer instructions, fixed 

connectors, 212-215 
Transfer instructions, variable 

connectors, 212, 215-220 
Digital computer, 1 
DIVISION 

General, 1, 7, 9 
Arithmetic of, 167-171 
Examples of, 168-169, 170-171, 

183-185 
Logical discussion of, 183-185 
Order, 21, 29 

Double precision operation 
General, 90 
Addition, 90-91 
Division, 90-105 
MUltiplication, 91-94 
Shifting, 103 
Subtraction, 90-91, 95 

Drum (see Magnetic Drum) 
Drum track, 189 
Dummy instruction, 77,' 78 

• 
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E-addresses (Descriptive coding) 210 
Examples of, 210-211 

Engineering Research Associates, 189 
Errors in Code (Debugging) 

Correction of, 269 ff. 
Detection of, 263 ff. 
Record of, 268 

Error-squaring, 95 
Exponential calculation routine, 

224 ff. 
External memory (see Magnetic Drum) 

F-addresses (Descriptive coding) 
215 ff. 
Example of, 217 ff. 
Subroutines, 239-240 

Filament variac, 291 
Finite difference equation, 17 
Fixed binary point, 154 ff. 
Fixed connection transfer (Descrip­

tive coding) 212 ff. 
Example of, 214 
Subroutines, 247 ff. 

F1exowriter punch (Input-output) 198 
Flip-flop, 3, 174 
Floating binary point (see Floating 

point method) 
Floating point method, 80-89, 154 
FLOW DIAGRAM 

General, 15, 18 
Alternative box, 41 ff., 48 
Assertion box, 46-48 
Flow line, 40 
Operation box, 40 ff., 48 
Storage box, 47-48 
Substitution box, 44 ff., 48 

Function gates, 257, 259-260 
Indicator lights, 257 

Gate, 5-7 
Gate tubes, 173-174 
Gating, 174-176 
General purpose computer, 1 

Half-word substitution orders, 22, 
25, 78, 115, 120 

Head housing (Magnetic tape) 281 
Helper-routines, 261 ff. 
Hexadecimal numbers, 55 
High voltage power supply, 286-287 

Induction, 39-40 
INPUT-OUTPUT 

General, 11, 172 
F1exowriter Punch, 198 



INPUT-OUTPUT (Cont.) 
Logical discussion, 192-198 
Magnetic tape, 132-141, 193-194, 

281-284 
Photo-electric reader, 192-193 
Synchroprinter, 142-153, 195-191, 

284-286 
Teletype page printer, 191-198 

Instruction, 18 
Instruction control, 202-203 
Integer conversion routine, bi-

nary to coded decimal, 254 ff. 
Integration by Simpson's rule, 11 ff. 
Internal memory (see Memory) 
Interpretive routine, 266 

Load process, 192-193, 258-259 
Load switch, 252, 258-259 
Logical coding, 21 
Logical symbol, 21 

Magnetic drum 
General, 11, 112 
Addressing of, 189-190 
Capacity of, 189 
Characteristics of, 189 
Checking procedures, 191-192 
Logical discussion, 189-192 

Magnetic drum control panel, 286, 
290-291 

Magnetic drum orders, 11, 23, 101 ff., 
115, 120 
Treatment in descriptive coding, 

228-232 
Magnetic head, 189 
Magnetic tape (Input-output) 

Characteristics of, 194 
Logical discussion of, 193-195 
Operation of, 281-284 

Head housing, 281 
Manual start switch, 282 
Photo-cell brake, 282 
Rewind reel, 282 
Setting switch, 281 
Take-up arm, 282 
Take-up reel, 282 
Tape drive, 281 
Tape reel spindle, 281 

Routines for, 132-141 
Searching facilities for, 194 

Malfunction, computer, 132, 214 ft. 
Manual-automatic switch 252, 259, 

260 

MEMORY, electrostatic 
General, 9 ff. 
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Gate connections to, 188 
Logical discussion of, 185-192 

Memory clear switch, 252, 251 
Memory monitor, 219 
Memory position mark, 33 
Memory raster, 219-280 
Meshing, 106 ff. 
Monotonic decreasing sequence, 106 
MULTIPLICATION 

General, 1, 1, 8-19 
Arithmetic of, 160-161 
Corrections from negative multi-

plier, 161-162 
Examples of, 165-161 
Logical discussion of, 180-182 
Orders of, 21, 24 

Negative numbers, 2, 3, 154 ff.,159 
Numbers 

Binary, 2, 154 ff. 
Coded-decimal, 11 ff., 56 ff. 
Complement, 2, 3, 154 ff., 159 
Hexadecimal, 55 
Negative, 2, 3, 154 ff., 159 
Signed, 154 ff. 

Number range, 2, 155-156 

One address system, 13, 19, 198 
OPERATING PANEL, 252 ff. 

Breakpoint switches, 252, 260 ff. 
Control counter display lights 

and setter, 252, 256 
Function gate lights, 251 
Load switch, 252, 258-259 
Manual-automatic switch, 252, 

259-260 
Memory clear switch, 252, 251 
Perform-order switch, 252, 260-

261 
Start-next-order switch, 252, 

259 ff. 
Operating techniques, 14 
Operation box (Flov diagram) 40 ff., 

48 
Operations control, 200-202 
Operations counter, 181 
Order, 13, 18, 199 
Order matrix, 199, 201 
Output (see Input-output) 



Parallel operation of memory, 
185 

Periodic problem record, 274 
Perform-order switch (operating 

panel) 252, 260-261 
Photo-cell brake (Magnetic tape) 

282 
Photo-electric reader (Input­

output) 192-193 
Position mark (see Memory posi­

tion mark) 
Print order, 22 
Printers (Input-output) 

Synchroprinter, fast, 142-153, 
195-191, 284-286 

Teletype printer, slow, 197-198 
Problem preparation, 14, 261 ff. 
Pseudo-drum track address (Des­

criptive coding) 228 
Pseudo-non-restoring division 

(see Division) 
Punch (see F1exowriter punch) 

Quotient register, 5, 8, 9, 173, 
217 

Random number generation sub-
routine, 240 ff. 

Read order, 22 
Reading, memory, 186 
Reciprocal by iteration, 94-95 
Record, magnetic tape, 132 
Regeneration, 185 
Regeneration cycle (memory con­

trol) 186 
Regeneration counter (memory 

control) 186 
Register (Arithmetic unit) Rl-R2, 

accumula~or, 5 ff., 173, 277 

R3-R4, quotient register, 5, 8, 
9, 173, 277 

R5, 5, 8, 9, 173, 276 
R6, 5, 8, 9, 173, 276 

Remainder, division, 185 
Rewind reel (Magnetic tape) 282 
Round-off 

Multiplication, 164-166 
Example of, 165-166 

Division, 170 
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Seven (7) storage (Descriptive 
coding) 208-209 
Examples of, 246-247 
Subroutines, 236-238 

SHIFTING 
General, 5 ff. 
Arithmetic of, 156-158 
Double precision, 99, 103 
Logical discussion of, 174-178 
Orders of, 22, 25 ff. 

Sign of a number, 154 ff. 
Stmpson's rule (see Integration) 
Sin x calculation routine, 126-131 
Sorting routine, 106-125 
Square-root calculation routine, 1, 

49-54 
Start-next-order switch (Operating 

panel) 252, 259 ff. 
Storage 

Dynamic, 47 
Static, 47 
(see Descriptive coding) 

Storage box (Flow diagram) 47-48 
SUBROUTINE (Descriptive coding) 16, 

235 ff. 
ASSigning box numbers to, 237 
A-storage of, 236 
B-storage of, 236, 238 
C-storage of, 236 
Code tape of, 250-2;1 
D-storage of, 236-237 
Entry into, 238 ff. 
Exit from, 238 ff. 

Substitution box (Flow diagram) 
44 ff., 48 

Substitution orders, 22, 25, 31, 34, 
75-76, 77, 86, 
Treatment in descriptive coding) 

210-212, 215-220 
Subtraction (addition) 1, 3-4, 7 ff. 

Arithmetic of, 158-160 
Logical discussion of, 179 

Summing routine, 262 
Switch gear panel, 286, 288, 289, 291 
Synchroprinter (Input-output) 

Actuation of, 144 
Array, 143 
Characteristics of, 195 
Logical discussion of, 195-197 
Malfunctions of operating pro-

cedures, 195-196, 284-286 
Paper feed, 143, 284, 286 
Print cycle, 142 
Routine, 142-153 
Thyratrons and associated switch, 

284-286 
Switch gear panel, 286, 288-289, 291 



Take-up arm (Magnetic tape) 282 
Take-up reel (Magnetic tape) 282 
Tape drive (Magnetic tape) 281 
Tape leader, 258 
Tape reel spindle (Magnetic tape) 

281 
Tape symbols, 11 
Taylor series expansion of sin x, 

126 
Teletype page printer (Input-output) 

197-198 
Tetrad, 27, 192 
Thyratron (Synchroprinter) 285 
Toggle (see Flip-flop) 
Transfer orders, 21, 24-25, 36 ff., 

68, 69 
Transfer orders, descriptive coding 

Fixed connection, 212-215 
Variable connection, 215-220 

Variable of induction, 43 ft. 
Variable remote connections, 72-73, 

96 ff. 
In Descriptive coding, 215-220 
In Subroutines, 236 

Vocabulary, 17, 20 ff. 
Table, 21-23 
Illustrations of orders in routines 
m~Ac, 33 
m-7'Ac-, 52 
m~AcM, 66 
m~Ah, 29, 30 
m -:)0 Ah-, 52 
m~Ah 800, 136 
m -7 Q, 29, 30 

X 29, 30 
X' 100 

29, 30 
T 36 ff., 77 
T' 77 
c 54 
c· 38 

Q~m, 29, 30 
A-7m, 29, 30 
S --7 m, 33, 34 
S~m', 33, 34 
HS ~ m, 78, 115, 129, 131 
HS ~ m I, 78, 115, 121, 129, 131 
R(n), 52, 86 
L(n), 29, 60, 85 
a ~Ac, 60, 77, 88, 148, 152 
a -;> Ah, 13, 85, 86, 88 
DS, 68 
F1exoprint, 129, 131 

-306-

Illustrations of orders in routines 
(cont. ) 
Read, 127, 131 
Punch, 129, 131 
Syncprint, 150, 152 
m-7D, 117, 123 
D~m, 115, 122 
Q~ t, 135, 137 
t-7Q, 

Word, 13 
Wri tlng, In memory, 186 
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