
LA-1725

THE MANIAC

LA -1725

G 1°t:; '. 'OCT ?" ",':

THE MANIAC

-i-

PREFACE

The construction program on the MANIAC was started in the summer

of 1949 and the computer was completely tested in March, 1952. The

group of engineers is under the direction of J. Richardson and consisted,

at various times, of W. Orvedahl, E. Klein, H. Demuth, T. Gardiner,

H. Parsons, R. Merwin, and J. Breese. In addition, V. Gafke and

J. Caulfield provided considerable assistance. Since its completion,

solutions to many numerical problems have been computed.

There are several phases to the solution o~ a problem by an elec­

tronic computer. First, there is the formulation of the problem itself

by the mathematician or theoretical physicist. Second, this is followed

by the detailed preparation of the problem by the programmer for the

specific computer. Finally, there is the actual running of the problem

on the computer. The present work is primarily an attempt to discuss in

some detail the last two stages.

The volume consists of six chapters. Chapter I, Introduction, de­

scribes some of the general features of the computer and defines the

field of activity associated with it. The treatment is intentionally

brief. The remaining chapters are devoted to an elaboration of the

salient points.

Chapter II, Coding and Flow Diagrams, is the "raison d'etre tt of the

opus. Beginning with some elementary problems, it gradually takes the

reader through a coding preparation of some complex exercises. The

elements of a flow diagram are discussed.

Chapter III, Binary Arithmetic, discusses the various arithmetic

operations in ter.ms of the binary system. By the time the reader finishes

this part , it is hoped he will regard the binary system as the "natural"

one for arithmetic.

Chapter IV, The Computer, is concerned with a simplified discussion

of the various components. The objective here is that some knowledge of

the engineering side of a computer is very useful to personnel running

problems on it. Aiding in the detection of malfunctions and in the locali­

zation of them, the programmer helps the engineer in maintaining high per­

formance of the computer.

-ii-

Chapter V, Descriptive Coding and Subroutines, describes the

methods of descriptive coding the the use of the computer itself to

aid the programmer in the preparation of problem codes. The discus­

sion of subroutines finds a natural place here.

Chapter VI, Operating Procedures 7 essentially summarizes some of

the material of the earlier sections and describes systematically the

steps involved in automatic computations.l processes, including "which

buttons on the computer to press when".

Finally, an Appendix is included. It contains some optional and,

we hope, useful material.

Los Alamos, New Mexico

December 15, 1951.

John B. Jackson

N. Metropolis

Acknowledgements: To Mary Boswell, whose patience was excelled only

by Job, for typing (and re-typing) the manuscript; to Jean Cornell

for converting our sketches into neat drawings and figures; and to

all members of the MANIAC group who deluged us with criticisms, es­

pecially Mark Wells.

Los Alamos, New Mexico

December 15, 1951.

Revised: July 16, 1954

J. B. J.

N. M.

-1-

I. INTRODUCTION

We shall give first a brief description of the general features

and characteristics of the computer which has been constructed here.

(i) It is a general purpose computer in contradistinction to a

special purpose type. Its design engenders adequate flexibility to

handle a wide variety of mathematical problems. The special purpose

type may be much simpler in design and more direct in its application

to a particular type of problem, but it has its obvious limitations.

We do not discuss it further.

(ii) It is a digital, rather than an analogue, computer. Compu­

ters have been built which use various analogy devices that correspond

to a continuous variable representation. In such analogy computers,

numerical information is expressed as measurements of some physical

quantity. ·Among other reasons, it may be mentioned that accuracy re­

quirements argue for the digital type.

(iii) It is electronic (vacuum tubes) in character, as opposed to

electro-mechanical (relays). Although both methods are sufficiently

reliable, the former is many times faster. For the· maJority of prob­

lems, where the number of operations involved is at least in the hun­

dred thousand range, the difference in speed is quite serious.

The fqur basic arithmetical operations performed are addition,

8ubtraction, multiplication and division. In principle, one might

conceive of a simple computer that does only subtraction, and effects

the others by repeated application of that ~Jndamental operation.

This is not very practical. On the other hand, one might have argued

for including other operations in the basic list; e.g., square rooting,

as indeed the ENIAC has included. It appears, however, that the fre­

quency of occurrence of any of these does not warrant the added compli­

cation in equipment, especially since these more complicated operations

can be effected by rather simple iterative procedures based on the four

~ntal operations.

Besides these four arithmetical processes, there are included a

fev operations whiCh are of a purely logical character, but first,

-2-

Some Remarks on Arithmetic

The bandling of numerical quantities is done in a digital fashion.

The binary system is used for the representation of numbers rather than

the conventional decimal system. Everyone knows that in the latter sys­

tem a number is expressed as a sum of powers of ten with individual co­

factors 0 to 9; e.g.,

41.23 = ~.lol + 1-100 + g-lO-l + 1.10-2

In a stmilar fashion a number may be expressed in the binary system by

powers of two with co-factors either £ or !; e.g.,

101.01 = 1.22 + 0-21 + 1.20 + 0.2-1 + 1.2-2

As in the decimal system, the binary point separates the terms with

positive exponents from those with negative exponents. The standard

capacity for handling numbers in the present computer is 39 numerical

bigits preceded by a sign bigit. (The word bigit is defined as binar,y

digit.) There is sufficient flexibility to permit rather easy treat­

ment of those cases requiring higher precision.

For the various arithmetical operations in the computer, it is

assumed that the binary point lies immediately to the left of the first

numerical bigit, so that all numbers lie in the range

-1 <. x <: 1.

It may appear at first that this restriction places a considerable

additional burden on the preparation of a problem for the computer.

Actually, however, it is quite a simple matter to scale numbers to the

appropriate size beforehand, such that the result of any operation does

not exceed the allowed range. In those instances where it is not pos­

sible to provide approprfate scaling factors in advance, one does have

recourse to procedures which adjust the sizes of numbers--the so-called

floating point routines.

As mentioned above, the first bigit on the left is used to indicate

the Sign of a number. One possible convention that might be used would

be to say that bigit £ in that location indicates a positive quantity

and that a 1 is to be interpreted as a negative sign. However, it is

more convenient to do something different in the case of negative numbers.

In the computer, a negative number x is represented by its complement

c with respect to 2, namely

Since

c will be in the range

c = 2 - IxL
Ixl<l,

1< c <2

so that the "sign" bigit will be ! in every case of complementation.

For positive numbers it will always be Q. For example, suppose

x = -.101ll0l0l ...•. 011j

then c = 1.010001010 .•..• 101

is its representation in the computer. One observes that a very simple

method for obtaining the complement of a number with respect 2, is to

"reflect" the number, that is, to replace Q with! and conversely,

then to add 1 in the extreme right place. Electronically, inter­

changing Q and! is easily done. As discussed in detail in later

sections, a "flip-flop", or "toggle", is an electronic device which

has two stable states; it is essentially a twin triode (a standard

type of vacuum tube); either one side is in a conducting state (and

its tube elements have one set of definite voltages) with the other side

non-conducting (cut-off, and its corresponding elements have another set

of voltages) or the opposite situation obtains. It is a symmetrical

situation. Normally one examines the voltage level at some particular

point of the circuit, say the grid voltage of one of the triodes, and

assigns one voltage to the bigit Q and the other to 1. To obtain the

complement of a number in a series of such f1'ip-flops, one would merely

examine the opposite symmetrical point of the circuit of each flip-flop;

since, if a given flip-flop is in a state corresponding to a !, the

other side of the flip-flop would have a voltage level at the corres­

ponding point identified as a Q. Additional circuitry is required to

insert a ! in the extreme right~hand position.

The notion of complement numbers is a very useful one. Subtrac­

tion of two numbers can be replaced by addition. This is convenient

since the same electronic circuitry designed to effect addition suf­

fices for the subtraction process. Instead of performing d = (a-b)

by direct subtraction techniques, one may add to ~ the complement of b.

That this yields the correct difference can be seen from the following:

-3-

Assume a, b > O.

a + (2-b) 2 + (a-b) = 10. + (a-b)

in binary form. If a >b, and since both a and b have absolute magni­

tudes less than unity, the difference (a-b) is positive and less than
I unity. The co-factor 1 of 2 does not appear in the computer, the

capacity of the computer has been exceeded and that bigit is lost.

The 0 co-factor of 2
0 does of course appear, and indicates that the

difference (a-b) is positive. In the event a< b, our answer would be:

I <: d = 2 - (b-a) < 2,

which is precisel! the desired form for a negative difference, namely

the camplemant with respect to 2. Here the co-factor of 20 is appro­

priately a!. ,The cases where ~ and/or ~ are negative are left as

exercises for the curious students.

Principal Components

Although the computer functions as an entity, it is convenient to

speak of its various components. These are:

(i)
(ii)

(iii)

(iv)

Arithmetic Unit

arithmetic unit

memory

input-output

control

The arithmetic unit performs the operations of addition, subtrac­

tion, multiplication and division in binary fashion. It is also con­

cerned with such auxiliary operations as shifting of a number to the

-4-

left or right. Finally, it is associated with certain logical operations.

In appearance the arithmetic unit is similar to the one in Princeton.

A parallepiped structure of channel aluminum has six panels on each of

its two long sides. The outer panels in each case are reserved for con­

trol chassis, the middle four are used for the arithmetic unit proper.

Three horizontal rows of arithmetical chassis are located on one of the

two prinCipal sides. Each chassis contains two registers. The various

registers are designated Rl, R2, .•• R6, starting with the lowest. A

register is the residence, or temporary storage, of one of the numerical

-5-

factors in an arithmetical operation. In each such operation three

factors occur, so that at first it might be supposed that three regis­

ters would suffice. However, the requirement of shifting in multipli­

cation and division necessitates two more. These considerations account

for the first five registers; the last, R6, is used exclusively in asso­

ciation with the control and does not participate in any of the basic

arithmetical operations, although physically it is located within the

arithmetic unit. Rl is the associated register for shifting a number

in R2, a principal register. Physically, the pair forms a chassis.

Similarly, R3 is associated with the principal register, R4. R5 is a

non-shifting register with respect to arithmetic operations.

Before discussing the four basic arithmetical operations, we

digress to consider the manner in which a number in one of the two

principal registers is shifted. To begin with, a register is an ensemble

of 40 "flip-flops", or "toggles", and as mentioned earlier, each flip­

flop has two stable states. One of these states represents the binary

digit Q and the other the binary digit!. The set of flip-flops may

then be used to represent a 39-bigit number and its sign.

There exists a variety of methods for electronically transferring

information contained in one set of toggles to another. For example,

suppose that a given toggle contains a I and it is desired to transfer

this information to a second toggle. By means of an interconnecting

"gate" tube, it is possible (as a result of a voltage change on the

gate tube) to set the receiving toggle to a !, irrespective of its pre­

vious state. Another scheme is to have first set the receiving toggle,

say to Q, as a separate operation. When the appropriate voltage change

is applied to the gate tube, the receiving toggle is set to a !, other­

wise it remains appropria.tely unchanged. This method is actually the

simpler of the two and is the one used. In common parlance we say

the receiving flip-flops are "cleared" to Q1s and !IS a.re "gated in".

Clearly, Q's and !IS could ~e interchanged in the preceding statement

and provide an alternative scheme.

A flip-flop may be symbolically represented as a rectangle in the

form of two squares; the shading of one square may be said to corres­

pond to a Q, the shading of the other to a 1. A gate tube is indicated

by a circle.

There is a set of gates which connects the flip-flop! of R2 to the

corresponding ones of Rl. These may be shown diagrammatically.

o o o o
Before After

Rl has been previously cleared to Q's. The information in R2 is 101.

When an appropriate voltage change is applied to the gate tubes, the

first flip-flop of Rl will change its state to represent a !, the

second remains unchanged, and the third behaves like the first. Rl

will then have received the information 101.

There is a second set of gates which connects the flip-flops of

Rl with the flip-flops of R2 displaced one to the left.

o o o o
R2

RI

o o

Before After

-6-

R2 is cleared to O's. When these gates are opened, the information

in RI is transferred to R2 displaced once to the left. Thus, by

these sequences of operations, a number originally in R2 is shifted

one place to the left.

Finally, there is a set of "diagonally-right" gates to provide

for a shift to the right. Repeated application of the sequence of

operations results in a shift by ~ places. It perhaps should be men­

tioned that these three sets of gates are unilateral in action and

represent all of the interconnections between RI and R2.

The four basic arithmetical operations are done in terms of simple

additions, with shifts where required. Subtraction of a number a is

performed by the addition of its complement. Multiplication is done by

the detection of the successive bigits of the multiplier, beginning

with the rightmost bigit. If the bigit is a !, an addition of the mul­

tiplicand to the partial product is performed followed by a shift of

the partial product one place to the right. A 2 multiplier bigit merely

shifts the partial product to the right by one, and the next multiplier

bigit is examined. For division, the so-called "non-restoring" scheme

is used. The complement of the divisor is added to the partial remain­

der if the signs of the divisor and partial remainder agree; if the

signs disagree, the divisor is added directly. A 0 is indicated for

the corresponding quotient bigit in the first case, and a ! for the

latter. Strictly speaking, -! and not 0 is the appropriate bigit.

But -! is indeed very inconvenient to represent in the computer. As

von Neumann first pointed out, the pseudo-quotient obtained in this

way is very simply related to the true quotient. We shall go into

details later.

The adder proper is physically located on the side opposite the

registers, and consists of two rows of chassis. One of the two inputs

is directly from the register R2. The second input is from R5. Here,

however, a choice is made between the number itself or its complement,

corresponding to the operation of addition or subtraction. The output

of the adder is transferred by means of a set of gates to RI. R2 is

then cleared and the sum transferred from RI to R2. Symbolically,

-7-

(Step 3)

(Step I)
Selector

Augend (or Complement)

ADDER

To recapitulate, the addition process (or subtraction) involves

adding to the number in R2 the number (or its complement) in R5. The

sum appears finally in R2. The fact that the sum replaces one of the

terms is very convenient for the multiplication and division processes,

where the sum is the partial product or the partial remainder, respec­

tively. The multiplicand or the divisor resides accordingly in R5.

In the multiplication process the multiplier factor is in R4 and

the multiplicand is in R5. R2 is cleared initially. The 39th flip­

flop of R4 is examined. If it is a~, an addition is ordered and the

first partial product is formed in R2. (In this first step, the trivial

sum of the multiplicand and Q's is done.) The multiplier is now shifted

one place to the right, thus placing the next digit to "be examined in

the end flip-flop of R4. Simultaneously, the partial product in R2 is

also shifted one place to the right. In the event that the first

digit is a Q, the addition of course is not done but the shifting in

both R2 and R4 does take place. It will be noted that the multiplier

factor is gradually disappearing in R4. It is convenient, therefore,

-8.

to insert the bigits of the partial product that would otherwise be

lost as a result of the right shift in R2, into the leftmost flip-flop

of R4. Thus the right half of the complete product appears finally in

R4 and the significant portion in R2.

For division, the dividend is in R2 and the divisor in R5. A com­

parison of signs is made and a direct addition is made for unlike signs;

for like signs the complement of the divisor is sent to the adder.

Accordingly, a 2 or a ! is introduced into the 39th flip-flop of R4.

Both R2 and R4 are shifted one place to the left. The sign of the

partial remainder is again compared with that of the divisor and the

process repeated 39 times. The quotient appears in R4, and the re­

mainder in R2.

The following short table summarizes the above:

Addition a + b = Sum
Location R2 R5 R2

Subtraction a - b = Difference

R2 R5 R2

Multiplication a X b = Product Left + Product Right

R5 R4 R2 R4

Division a+b= Quotient + Remainder

R2 R5 R4 R2

Memory

Thus far we have talked of the various arithmetical operations

without indicating how the numbers get to the several registers ini­

tially, or where the intermediate results are stored. Nor have we

said anything about the location of the sequence of orders associated

with a problem. The component of the computer associated with this

-9-

activity is described as the memory. Clearly, some of its desired

funct ions are:

(i) to receive and store information from the outside--sequences

of instructions as well as initial sets of numbers,

(ii) to transfer numbers upon instruction to the arithmetic unit,

(iii) to receive and retain intermediate results of a calculation

until needed at some later stage of the calculation,

(iv) to send instructions as needed to the control,

(v) to transfer the final results to the output mechanism for

external consumption.

We distinguish two levels of' memory; internal and. externA.l ~ The

internal memory is more intimately related to the arithmetic unit and

control. It communicates directly with these two units and provides

individual numbers and instructions as needed.

Physically, the internal memory is an ensemble of 40 cathode-ray

tubes that act in concert, each tube simultaneously providing one

bigit of a 4o-bigit number upon instruction. The access time, or

total time required to transfer a number from the internal memory to

the arithmetic unit, is less than ten micro-seconds. The capacity of

the internal memory is 1024 forty-bigit numbers; these may be arbi­

trarily divided between numbers and instructions.

The location or reference in the internal memory of a particular

number or instruction is called its address. In our syste'm of instruc­

tions there is, associated with each instruction, a single address that

refers to a particular number to be called up and operated upon in the

arithmetic unit. An instruction consists therefore of a particular

operation specified by a group of bigits, together with an address

specified by another set of bigi ts . It turns out that le.ss than 20

bigits are required for each complete instruction, so that it is con­

venient to place two instructions in one memory location. We shall

amplify these rema~ks in the discussion of the control.

Normally, 40 bigits are used for the representation of a true

number. For those cases where sufficient accuracy is obtained from

20 bigits, including sign, there is sufficient flexibility to store

-10-

conveniently two 20-bigit numbers in one memory location; separation

taking place when needed in the arithmetic unit by shifting.

-11-

The external memory is a magnetic drum. It communicates only with

the internal memory; therefore, when numbers stored on the magnetic

drum are to be used in computation, they are first sent into the elec­

trostatic memory and operated upon from there. The drum has a capacity

of 10,000 forty-bigit numbers. Numbers are transferred between the

external and internal memory in groups of fifty; hence the addressing

of numbers on the drum is by groups of fifty rather than as single num­

bers. Any group of fifty numbers is stored serially along the circum­

ference of the drum. Such a group of storage is called a drum track, and

there are 200 such tracks on the drum. The access time for the drum is

85 milliseconds per block of fifty words.

Input-Output

The set of coded symbols corresponding to the sequence of instruc­

tions, together with the set of initial numbers and parameter~ is first

punched on paper tape with the use of a modified rlexovr! ter. A

second tape is then prepared, being punched independently of the first

but simultaneously compared with the first; this is merely a checking

procedure. The information is then transferred from the verified tape

to the internal memory by means of the input device.

The initial set of numbers on the tape is in coded-decimal form;

that is, each decimal character is represented by a tetrad of binary

dig! ts • For example, the aggregate 1234567890 together vi th accompany­

ing space symbols would appear on the tape as:

o
00

00000000000
0000

00 00 o 0 000
Space I 2 34 5 6 1 8 9 0 Space

Guide Holes

The punehed holes correspond to the big1t ! and unpunched pOSitions

to O. A sequence of such tetrads of binary digits is obviously not

the true binary representation of the corresponding decimal number;

e.g. ,

decimal number 24

coded decimal 0010 0100

true binary 11000

Consequently, it is first necessary to convert the initial set of

coded-decimal numbers into true binaries. But this is a quite simple

algorithm which the computer can be directed to perform before enter­

ing upon the problem proper. The initial set which must thus be con­

verted is usually quite small compared to the number of numbers the

computer handles in the course of the problp-m; 60 th~t th~ t;~ in­

vested for the conversion is relatively negligible. The same remark

applies for the conversion from true binary to coded-decimal repre­

sentation for the output process; it being still desirable to view

answers in decimal notation.

When the desired results are properly converted into coded-decimal

notation, they may be directed to the output. The output will simul­

taneously print the results and punch them on teletype tape. This tape

is desirable in the event that the answers are to be reintroduced into

the computer.

It should be remarked that beginning with the second. problem of

any given type it will not again be necessary to manual punch the

sequence of instructions. The original tape will be adequate. It is

only necessary to punch the new initial numbers and parameters. This

portion is usually a small fraction of the total. Finally, it should

be noted that the casual observer need never be aware of the fact that

internally the computer uses the binary representation for numbers.

Control

The control may be likened to a central ne rvous system. Its parts

spread out phYSically over the whole computer. It interconnects the

various other components and transfers information from one to the

other, as well as directs the operations associated with them

indiVidually.

-12-

Among its various activities, it must:

(i) direct the input component to read information from the tele­

type tape and transfer it to the internal memory,

(ii) conversely, direct the memory to transfer information to the

output tape and printer,

(iii) effect the basic arithmetic operations,

(iv) be able to start at some point in a sequence of orders, ex­

tract the first order (from the internal memory), interpret and provide

pulses and voltage changes to the components concerned so as to execute

the particular order, and when finished proceed to the next order.

These activities are specified by a variety of orders.

In the present control scheme, a one-address system is used; that

is, associated with each order is an address referring to some memory

location which contains the number upon which the particular order

operates. For example, there are eight orders that transfer a number

from the memory to R2. The eight possibilities arise from the three

choices:

(1) Clear or do not clear R2 before adding number into it.

(2) Complement or do not complement the number being added to R2.

(3) Add the number or its magnitude.

These are the addition and subtraction orders. There are two mul­

tiplication orders; one rounds off the product to 39 bigits, the other

provides a precise 78 bigit product. There is one division order, one

order transferring a number from the memory to R4. There are six
orders associated with transfers to the memory, a right and left shift,

print, read, and stop orders. Finally, there are a few logical orders

that involve an interruption of the present sequence of orders and a

transfer of control to some other sequence.

Eight bigits are used to designate an order. Twelve more are con­

veniently available, of which ten are actually used at present,for the

address. Thus each order is 20 bigits, and two orders are equivalent

in storage to one true number. Word is used to describe a 4o-bigit

aggregate; this may be either an order pair or a true number. A coder

-13-

is ·provided ~th the set of symbols that correspond to the various

orders. These code symbols are various pairs of the six letters,

A,B, ••• F.

Let us now attempt a summary by describing the various steps in

machine operation. Assume a tape has been prepared with instructions

and initial set of numbers. First the tape is fed into the input.

The tetrads are read into R5 in. serial fashion. Ten tetrads, corres­

ponding to either a true number or to two orders fill R5. A signal

is automatically provided that causes the contents of R5 to be trans­

ferred to the first memory location; the second set of ten tetrads is

~c~d into P.5, etc. Whe~ the complete tape has been reed into the

-14-

memory, the computer 1s ready to do business. The operator presses

a "start" button. The contents of the first memory location or first

word go to R6; these are the first two orders. The first one is ex­

amined and executed, then the second. The next word goes to R6 and

the sequence continues. Flexibility exists which enables the sequence

to be interrupted at some point and the control transferred to some

other point in the sequence. For example, it may be desired to re­

peat a sequence a fixed number of times before proceeding further, as

in some iteration scheme. This is conveniently handled by the logical

orders. In fact, it .1s possible to have the number of repetitions be

dependent on the fulfillment of some condition in the problem, so

that the number of repetitions varies from case to case. Finally,

the desired numerical quantities can be reconverted from binary to

binary-decimal fom, and printed.

Problem Preparation and Operating Techniques

We conclude the present introductory chapter with a brief commen­

tary on the various steps leading up to the execution of a problem by

the computer. The first step concerns the formulation of the problem

itself. One method would be Simply the writing down of the various

equations and the various steps to be taken, te~ther with the neces­

sary explanatory remarks. This approach, although feasible, may often

become quite complicated and untractable. Instead we follow von Neumann

who proposed the idea of a flow-diagram. This is a very elegant,

logical and mathematical description of the problem to be computed.

It makes use of a set of conventionalized symbols to describe the

course of the control at every stage of the problem. Represented in

-15-

a very concise way are~ (i) the purely mathematical operations, (ii) var­

ious logical steps and decisions together with a precise indication of

the nature of the corresponding criteria, (iii) the contents of the rele­

vant part of the memory at points where the question might naturally

arise.

The flow-diagram of a problem is prepared by the mathematician or

physicist. The symbols are few in number, their meanings simple enough

so that they are easily mastered. A flow-diagram may be drawn without

a specific computer in mind. In practice, however, one usually does

plan on the use of a specific computer and takes advantage of this fact

in his planning of a problem. A quite superficial knowledge of the

particular computer suffices. The important characteristics are:

(1) the capacity of the inner memory, (ii) the nature of the external

memory, (iii) the extent of the vocabulary, both arithmetical and

logical.

The next step in the preparation is the coding. This process

consists conveniently of two parts. In the·first, the coder prepares a

sequence of instructions using a set of readily interpretable symbols

that indicate the general nature of the operations. For example, say

at some point in the sequence a number is in register R2 and it is in­

tended to add to it another number at the moment residing somewhere in

the memory. A possible notation, and the one used here, is:

m-+Ah

where m indicates that a number in the memory is to be sent to R2. For

historical reaso~8, the letter A has been used as a symbol for R2; the

original intent being that R2 1s the accumulator register. h indicates

that R2 is not to clear 1 ts contents before receiving from the memory

but to hold them for a true addition process. It is observed that the

specific binary symbols which the computer can interpret are not used

yet, nor is the specific location of the number in the memory given.

There is, however, some point to this preliminary step in the coding.

In the first place, there are likely to be several improvements or

modifications made before one is satisfied with the sequence of in­

structions finally adopted for a given problem. This form 1s much

easier to follow, both from the point of making a sample hand. calcu­

lation (for checking purposes) as well as in trouble-shooting (in the

event this is necessary) after the problem has reached the computer.

The second step in the coding is a straightforward translitera­

tion from the coder's notation to teletype symbols. This is routine.

A gf ven large problem may often be divided into So set of smaller

problems. Some members of this set may occur frequently enough so

that it becomes worthwhile to have these portions coded in quite general

terms and, in a sense, treated as individual orders but on a somewhat

broader basis. For example, integration by Simpson's Rule, or the in­

version ot an (n x n) matrix. These SUb-routines, as they are conven­

tionally called, would form a library of general orders. A problem a.t

hand would then first be decomposed into the sub-routines available

from the library, and the remainder coded from the basic individual

orders. Obviously some preparations a.re required for each individual

use of a sub-routine; in the case of the inversion of a matrix, the

location of the particular. elements for the problem at hand must be

specified. Nevertheless, there is a great reduction 1n effort, espe­

cially 1n checking.

-16-

-17-

.
II. CODING AND FLOW DIAGRAMS

Introduction

The computer can perform a set of basic operations, both arithmetical

and logical. It may be desirable to keep the set small as added electronic

equipment (which is roughly proportional to the number of opera.tions) in­

creases the physical complexity of the computer and complicates maintenance.

A modest number of thirty-six operations have been chosen to comprise this

set. The choice, however, is fluid in that the set may be modified as the

need for change is shown.

We say that the computer has a language of its own, ~or it is able

to interpret and execute the given set of orders. We speak of' the orders

as the vocabulary of the computer. Coding is the translation of' the language

of the mathematician into,the language of the computer.

The four fundamental arithmetic operations (addition, subtraction,

multiplication and division) are a part of the vocabulary. All of' the

arithmetic operations of the vocabulary, of which there are about twenty,

involve the four fundamental operations.

The first step in the preparation of any problem for the computer

is to arrange the work so that the only arithmetic operations involved are

addition, subtraction, multiplication and division. In other words, the

problem must be reduced to a form in which it can be solved by numerical

procedures.

The usual mathematical formulation of the problems with which we shall

be concerned is a differential equation, or a coupled set of such equa­

tions, together with a group of boundary (or initial) conditions. There

are other types of problems, but they occur less frequently.

The differential equations are of such complexity that analytical

methods are not known for obtaining their solutions. The only recourse

is to numerical procedures; therefore these problems are ideally suited

for the computer.

The first step in the solution of the problem is to replace the dif­

ferential equations by a set of finite difference equations. We do not

discuss here the stability or convergence of' such methods, but only mention

them as necessary considerations in writing the difference equations. In

-19-

suCh a process of translation, derivatives are replaced by difference

quotients, integrals by sums, transcendental functions by algebraic

functions, etc. The problem is now tractable in terms of the vocabulary

of the computer as it involves only the fundamental operations.

The next step toward a solution is the preparation of the flow

diagram. The flow diagram represents the path to be followed by the

computer in the solution of the problem.

of lines oriented with direction arrows.

It represents this by sequences

At points of the diagram where

computation is to be performed, the lines are interrupted and boxes are

inserted that indicate the "local" computation that is to be performed.

The diagram represents the purely mathematical operations, the logical

steps and decisions, and the relevant memory storage that is required.

Five kinds of boxes represent the desired information:

(i) The operation box

(ii) The alternative box

(iii) The substitution box

(iv) The assertion box

(v) The storage box

These are discussed in detail later.

When the flow diagram is completed, the solution is at the coding

level; but before discussing the coding we first discuss some background

matters. Each of the thirty-six operations of the vocabulary is referred

to as an order. Each order has associated with it a number that specifies

the location in the memory of the number upon which the order is to

operate; e.g., in the multiply order the associated number specifies the

location in the memory of the multiplicand factor. This number location

is called an address. The memory contains 1024 words. The addresses of

these words consist of the decimal numbers 0 through 1023. Binary-wise,

it requires ten bigi ts to express an address as 1023 == llllllllll.
Eight bigits are used for each order; hence eighteen bigits are necessary

for each order wl.th its address. It is convenient, however, to allow

twenty bigits for their expression as twenty bigits comprise half of a

word. Each order with its associated address is called an instruction.

Two instructions are stored per word, giving the memory in principle a

capacity of 2048 instructions. However, memory storage is also necessary

for true numbers, so that in general there will be some combination of

instructions and numbers stored.

The computer uses a one-address system. Each instruction may r~fer

to at most one memory location. Some instructions involve only the

arithmetic unit and do not refer to the memory. In these instances the

address portion has a different function which is described later.

-19-

To illustrate the one-address system consider a simple example of

summing two numbers, ~ and ~, which are residing in the memory: The sum

s = (a+b) is to be stored in the memory. Three instructions are required:

(i)
(ii)

(iii)

An instruction to

An instruction to

form the sum s =
An instruction to

bring ~

bring ~

(a+b)

store s -

into the arithmetic unit

into the arithmetic unit and to

in the memory

If a is in the arithmetic unit as a result of some previous operation,

only the latter two instructions are needed. If a three-address system

were used, the above sequence could be expressed with one order which

specified all three addresses: the location of ~, the location of ~, and

the location at which s is to be stored. We defer any discussion of the

merits of the one-address system versus those of the multiple address type.

The process of coding involves writing down a sequence of instructions

to perform the operations indicated on the flow diagram with the desired

set of numbers.

The coding in all but the simplest of problems is not a linear se­

quence. (That is, the control does not follow a unique path; at various

points in a problem several courses may be available.) Certain portions

of the coded sequence may be performed several times, whereas other sections

are omitted temporarily. The logical orders that have been included in the

vocabulary provide for such procedures. Furthermore, the coding is not a

static sequence in that it usually does not remain fixed throughout the

course of the problem. There are certain orders that allow portions of

the coding to be altered so that subsequent tr~versals through the sequence

give rise to a variety of patterns.

It is these dynamic and non-linear characteristics of the coding

which provide the desired flexibility for scientific computation but

which, on the other hand, give rise to complications in coding.

-20-

~e remainder of this chapter presents a step-by-step approach to

coding, beginning with very simple examples and systematically progressing

to examples of increasing complexity.

Before coding any actual examples we first discuss the vocabulary as

shown in Table I. It contains a list of the explici t orders with a de­

scription of each. It will be noted that there are two types of symbols.

The first column gives the abbreviated logical symbol for each order,

while the second column gives the actual code for the computer.

Orders I through 8 are the addition and subtraction orders. All of

these involve R2 (the accumulator register) and a memory location that is

specified in the instruction. The first four of these orders clear R2

(set it to Q's) and then add (subtract) the specified word to the Q's
in R2. The remaining four orders actually add (subtract) the content's

of the specified memory location to the m.nnber residing in R2. In a

sense, the first four orders are communication orders (they do, however, also

allow the magnitude or complement of a number to be inserted) while the

latter four are true add or subtract orders.

Consider the example of forming the sum (difference) of two numbers,

! and £, and storing the sum s = (a + b), (difference s = a - b) in

the memory. Assume that a and b are residing in the memory, say at ad­

dresses! and g, respectively; and the sum (difference) is to be stored

in 1. The instructions are:

1. m~Ac 1 a to R2

m~Ah
2. (m-+Ah-) 2

3. A---4m 3

s =
(s =

s to 3

a +.b to R2
a - b)

Each order has immediately following it the memory address to which

the instruction refers. In a column to the right of the instruction is

shown the action that takes place due to each instruction.

If the sum of more than two numbers is formed it is not necessary to

send each sum of two numbers into the memory and repeat the three orders.

A sum of several numbers may be formed in R2 which requires one additional

order for each new number added to the sum; only the final sum is sent to

the memory.

In orders 2, 4, 6, and 8 where subtraction is desired this is done by

taking the complement of the number with respect to 2 and then performing

-2l-

TABLE I

(m is the word at address m in the memory)
(The word at its original position is never cleared)

Abbreviation Code

1. m---.Ac

2. m---+Ac-

3. m~cM

4. m~Ac-M

5. m-...Ah

6. m--'Ah-

1. m-taAhM

8. m--+Ah-M

9. m---.Q

10.

11.

12.

13·
14.

15·

16.

x

X,

. .

T

T'
c

c·

AA

AB

AE

AF

BA

BB

BE

BF

EB

DA

DB

DD

CA

CB

CC

CD

EC

DC

Replace the number in R2 by!.

Replace the number in R2 by the complement (the

negative) of !!.
Replace the number in R2 by the absolute value

of m.
Replace the number in R2 by the cOmplement of

the absolute value of m.

Add m to the number in R2.

Add to the number in R2 the Complement of !.

Add to the number in R2 the absolute value of m.

Add to the number in R2 the complement of the

absolute value of m.

Replace the number in R4 by!!.

Clear R2 and multiply!! by the number in R4. The

39 most significant bigits of the product appear

in R2. The 2-39 bigi t position of R2 is set to !.
R4 is set to O·s.

Clear R2 and multiply !! by the number in R4. The

left-hand 39 bigits appear in R2, the right-hand

39 bigits in R4. The sign bigit of R4 is set to Q •
Divide the number in R2 by!. The quotient appears

in R4, two times the remainder appears in R2.

Transfer the control to the left-hand order of m.

Transfer the control to the right-hand order of !_
If the number in R2 is ~ 0, transfer the control

as in T, otherwise continue to next order in sequence.

If the number in R2 is ~ 0, transfer the control

as in T',otherwise continue to next order in sequence.

Replace !! by the number in R4.

Replace !! by the number in R2.

19. S--+m FA

20 • S---Jom' FB

21. H6---+m FC

22. BS~m' FD

23. Rn EE

24. Ln DE

25. a~Ac EF

26. a--+Ah DF

21. DS ED

28. F1exo Print EA

29. Read FF

30. FE

31. Punch CF

32 • Sync Print CE

-22-

TABLE I (Cont.)

Replace the address (bigits 8-19) of the 1eft­

hand order of ~ by the 12 bigits 8-19 in R2.

Replace the address (bigits 28-39) of the right­

hand order of ~ by the 12 bigits 28-39 in R2.

Replace the left-hand 20 bigits (bigits 0-19) of

~ by the 20 bigits 0-19 in R2.

Replace the right-hand 20 bigits (bigits 20-39)

of ~ by the 20 bigits 20-39 in R2.

Right shift R2 and R4 n places where n is

specified in the address bigits of the order.

This replaces the contents Ao' Al ••• ~39 of R2

and Go' Gl ••• G
39

of R4 by AO ••• AO' Al •••

••• A3B-n' A39-n, and A39-n+l , A39-n+2 ••• A39,

Go' Gl •.• G39-n •

Left shift R2 and. R4 D places where n 1s speci-

fied in the address bigits of the order. This re­

places the contents AO' Al. ••• A39 of R2 and Go'

Gl ••• a
39

of R4 by An' An+l ••• A
39

, 0 ···0 and

a , a 1 .•• G39, A , Al. ••• A 2' A 1· n n+ 0 n- n-

Replace the number in R2 by the 12 address bigits

of this order (into positions 0-11 of R2).

Add to the number in R2 the 12 address bigits of

this order (into positions 0-11 of R2).

Set the Sign bigit of the number in R2 to O.

Print ~ on the page printer (slow speed).

Replace ~ by the next word to come under the read­

ing bead of the paper tape reader.

(NOT PRESDTLY USED)

Punch ~ on paper tape.

To be used in a subroutine which s1multaneousl.y

prints ~i' ~i+l' ~i+2 and !i+3; ! is to be com­
municated to the routine (high speed).

33. m~D

35. Q-+t

36. t--+Q

37. stop

BD

BC

AD

AC

OFF

TABLE I (Concl.)

Read 50 successive words from the memory

starting with the vord at the address speci­

fied by bigits 8-19 of the instruction. Write

these 50 vords into the drum on the track

specified by bigits 20-27. Then transfer the

control to the left-hand instruction of the

word at the address specified by the bigits

28-39.
Read the 50 vorda from the track of the d.rmn

specified by bigits 20-27 of the instruction.

Write these vords into 50 successive memory

locations starting with the address specified

by bigits 8-19- Then transfer the control to

the left-hand instruction of the vord at the

address specified by bigits 28-39.

Wri te the number in R4 onto the magneti c tape.

Replace the number in R4 by the first vord to

come under the reading head of the magnetic

tape reader.

stop computation. (Pressing start next order

button will allow machine to continue in nor­

mal sequence.)

NOTE: An address of 800 refers to the quotient register (R4) when

using orders 1 through 8; i.e., AA800 says replace the number

in R2 by the number in R4.

-23-

a normal addition. The complement scheme is described in detail in the

chapter on binary arithmetic. When an address 100000000000 which cor­

responds to 2048 decimally is used with any of the orders 1 through 8,

-24-

it has the effect of treating R4 (the quotient register) as a memoryposi­

tiOD with the address 2048. The number residing in R4 can then be added

into R2 as described by anyone of the orders 1 through 8.
Order 9 transmits a number from.the memory to R4 (the quotient regis­

ter). R4 does not have add facilities; hence a number being transmitted

to R4 replaces the number that is in R4.

Orders 10 and 11 are the two multiplication orders. Before either

of these orders may be given, the multiplier must be in R4 (either as

the result of some previous operation or by a preceding m~Q order).

The 39 most significant bigi ts of the product appear in R2. Order 10

gives only the 39 most significant bigits of the product rounded off.

Order 11 gives a full 78 bigit product; the rightmost 39 bigits appear

in R4. The multiply order supplies the multiplicand.

Order 12 is the divide order. It is assumed that the dividend is in

place in R2; the divide order itself provides the 'divisor. The quotient

is located in R4, and tylO times the remainder appears in .R2.

Order 13 is a transfer order. This interrupts a sequence and causes

the computer to continue with another sequence beginning with the in­

struction'specified by the address part of the transfer instruction. As

an example of a transfer instruction, suppose that a sequence of in­

structions is being performed and in the 25th step of the sequence a

transfer is encountered:

25 T 125

124

125

-25-

The transfer instruction has the address 125, so that the sequence

of code from 26 to 124 is omi ttedo The computer would execute Instruction

125 and continue sequentially from there.

Since an instruction word. consists of two instructions and the flexi­

bility of being able to transfer into either instruction of a word. is de­

sired, it is necessary to have two transfer orders to accomplish this.

This accounts for Order 14, the T' order, as well as Order 13. Hence, in

the above example, 25 may have read ~ or T' 125, depending on whether

the transfer was desired to the left or right instruction of Instruction

Word 125.
The two conditional transfer orders, 15 and 16, either execute the

transfer as in the T orders discussed immediately above, or the orders

require no action, in which case the computer continues along the original

sequence. The conditional transfer is effective or not, depending on the

sign of the number, N, in R2 at the time the order is to be performed:

if N ~ 0, the transfer does occur, and a new sequence of instructions is

started at the location specified by the address part of the instruction;

if N<O, the computer continues with the original sequence of instructions.

Orders 17 and 18 are the two orders that send information from the

arithmetic unit to the memory. Order 17 transmits from R4 to the memory,

and 18 transmits from R2 to the memory. When any register or memory lo­

cation sends information to any other register or memory location, the in­

formation is still available at its original position.

Orders 19 through 22 are the sUbstitution orders. These orders make

alterations in instructions. By means of 19 and 20, any instruction may

have its address changed. The new address is first formed in R2 and then

inserted into the desired instruction by means of a SUbstitution order.

The use of the SUbstitution orders is explained in detail in Problem 2.

The two half word substitution orders (Numbers 21 and 22) may alter whole

instructions rather than just the address. These two orders may also be

used in storing half precision numbers. The details of their use will be

covered by later examples.

Orders 23 and 24 are the right and left shift orders. They give a

means of dividing or multiplying by powers of 2 by shifting a number

right or left in R2; e.g., if' a number a = 0.00001111 is residing in R2

and it is desired to multiply this number by 24, this can be effected

by a left shift of 4 places, which displaces the number 4 units to the

left.

a = O.OOOO1lll

a x 24 = O.l1ll0000

-26-

A right shift effects division by powers of 2 by displacing the number

to the right. In a left shift· R4 may be considered an extension of R2

to the leftj hence a number shifting left out of R2 fills into R4 begin­

ning in the least significant end of R4. In a right shift R4 may be

considered an extension of R2 to the right and a number shifting right

,out of R2 fills into R4 beginning in the most significant end of R4.

Since R2 and R4 are so interconnected for shifting operations, these

operations may be used for separating a multiplex of numbers occupying

one word. Either a left or right shift of 40 places will transfer

completely a number from R2' to R4.

Orders 25 and 26, a~Ac and a~Ah, treat their associated ad­

dresses as true numbers. The addresses of these instructions are sent

into R2 (either a clearing or an adding action) into bigit positions 0

through 11. Many times in the type of problem in which we will be in­

terested there are small numerical constants of three sign1fican~ decimal

digits or less. Rather than use an entire memory location to store such

constants, they can often be expressed in the address position of an

a~A instruction. As an example consider that a quantity

ax2 + bx

has been formed and is in R2. It is desired to add a constant term k

where ~ = .583. This may be expressed in the a~Ah order as

• •

•

• •

• a:x.2 + bx in R2

(iii) a~Ah 583 ax2 + bx + (.583 = k) to R2

where .583 is expressed by its binary equivalent. Eleven bigits give

the same precision as 3.3 decimal digits, so any three-decimal digit

~raction may be expressed in the address position of an a--+A order.

The explanation of the remainder of the orders as given in Table I

is adequate; hence lfe return to the task at hand, the coding of typical

problem-examples o

The coding of a problem may be divided into tvo parts:

(i) The logical coding

(ii) The computer (numerical) coding

-27-

Each of these parts involves several steps. At the present level of our

knowledge and skill, it seems convenient to have both a logical and a

numerical. symbol for each order. The logical symbols are used in part (i),

while the numerical symbols are used in part (ii).

The logical. symbol attempts to be a descriptive abbreviatbn of the

action of that instruction; the associated memory location is preJiminarily

specified by a combination of a letter and a number; the letter identifies

some group storage and the number identifies a member of that group; e.g.,

~Ac B.4 is interpreted as: Bring from the ~ry to the ~ccumulator

(R2), ,£learing the accumUlator first, the number at memory location B.4.
One reason for not assigning specific numerical memory locations at the

outset of a problem is that the extent and disposition of the memory re­

quirements are not immediately obvious 0 A set of logical symbols is. more

meaningful. to the coder than an abstract code; it expedites the actual cod­

ing and facilitates checking.

The abstract coding is merely a transliteration from the logical

code to the numerical code.· The numerical code is shown in the second

column from the left in Table I. Each order is represented by a com­

bination of two of the letters, A,B,C,D,E,F, where each letter expresses

a tetrad (4) of bigits. These are:

A

B

C

1010

1011

1100

D

E

F

1101

1110

1111

When the coding has been written in numerical form, the teletype tape

(which is the present means of putting the coded sequence into the memory

unit) is prepared. The actual coding examples are treated in the follow­

ing pages.

Problem 1

We propose to form the rational function y with constant co­

efficients where
2 ax + bx + c y = ex + f

Assume that ~, .!, ~, !:., ~, and f are in the memory at known addresses.

As previously mentioned, the memory locations are denoted by capital

letters rather than using true number addresses; e.g., the notation

A.l: a implies that the quantity.!: is stored in the memory at address

A.l. The storage of the problem is:

A.l:a
A.2:b
A.3::£

A.4:e
A.5:f
A.6:x

and when y is formed it is to be stored in A.1.

As a preparatory step in coding the problem, we form y by a

sequence of arithmetic operations in which each step involves only one

operation. Such a sequence is:

1. e·x

2. ex + f

3. a·x

4. ax + b

5. (ax + b)x

6. ax2 + bx + c

1. ax2 + bx + c y = ex + f

Since the computer can accomplish only one arithmetic operation at

a time, the above sequence is precisely the procedure that one must go

through in coding the problem, insofar as the arithmetic is concerned.

-28-

We now proceed with the coding. In the prelininary logical code,

each instruction is treated as a word rather than the actual case of

two instructions per word. The left-hand column is the code abbrevia­

tion, and the next column indicates the operations that have taken place

in the arithmetic unit, while the last column is conveniently used for

memory storage. During the course of the problem, a storage location

in the memory is needed to store an intermediate value of the computa­

tion. This position is denoted as B.l.

-29-

The sequence is:

1. m--+Q A.6 x to R4

2. X A.4 e·x in R2

3. m~Ah A.5 ex + f in R2

4. A---+m B.l ex + f to B.I

5. m-4Q A.I a to R4

6. X A.6 a·x in R2

1. m~Ah A.2 ax + b in R2

8. L40 ax + b to R4

9. X A.6 (ax + b)x in R2

10. m~Ah A.3 ax2 + bx + c in R2

2
11. . B.I ax +bx+ c

in R4 . Y = ex + :f

12. ~m A.1 y to A.1
Note that the denominator was formed before the numerator. If the reverse

had been the case, the numerator when f"ormed would have been stored in,

say, B.I. When the denominator was formed it, too, would have been stored

in, say, B.2. The n1lIlleratorwould then be brought in and the division per­

formed. Coding in this fashion, however, would have required two addition­

al instructions and one word more storage in all making the coding two

words longer than it is at present.

Instruction 8 In the above sequence, which is L40, is a means of"

communication from R2 to R4. L40 shifts the entire word including the

Sign from R2 to R4. If" this were not available , it would be necessary

to send the word from R2 to the memory and then from the memory to R4,

thus requiring one additional instruction.

Recall that each instruction word in the memory actually contains

two instructions. The next step of the coding is to arrange the sequence

of instructions into 'WOrds. If we assume that the routine starts at

address 1 in the memory, the sequence then occupies memory locations

1 through 6 (since it contains 12 instructions, 6 words are required).

At this time, the constants of the problem are gi ven true memory ad­

dresses. Since there are six such quantities (where each quantity com­

prises one word), memory locations 1 through 12 are allotted for these.

When 1.. is formed it will be stored at address 13. One temporary loca­

tion is needed which is deSignated as 14.

The sequence becomes:

1. m~Q 12 X 10

2. m ·----;.Ah 11 A~m 14

3. m~Q 1 X 12

4. m~Ah 8 L 40

5. X 12 m~Ah 9
6. • 14 Q~m 13

1. a

8. b

9. c

10. e

11. f

I? x

13.

14.

Memory locations 13 and 14 are used for quantities formed within the

routine; hence they must be empty or their contents must be irrelevant

at the time the sequence is to be executed by the computer.

When the coding is in final form such that the input teletype tape

is to be prepared, one has the instructions reduced to numerical form

and has available the true numerics for all of the involved quantities.

Assume, for example, that

a = .015329 e = .83291

b = .12391 f = .69136

c = .011326 x = .32915
The final coding is:

1. EB012DAOIO 8. 0.123910000

2. BAOIIDC014 9. 0.011326000

3. EB001DA012 10. 0.832910000

4. BAoo8DE040 11. 0.691360000

5. DAOl2BA009 12 .. 0.329150000

6. DD014EC013 13. 0.000000000

1. 0.01532900 14. 0.000000000

-30-

-31-

Problem 2

We modify the preceding problem with a slight logical twist.

Assume that the calculation of the rational function Z is a part of

some larger problem and that! has been computed as part of a pre-

vious routine and stored in some memor,y location other than the one

assigned to it (A.6 in the preceding example). Indeed, there may be a

series of such x values. Further, when 1. is computed it 1s to be stored,

not in A.7, but at some other memor,y location where it will be used in

subsequent parts of the calculation. In other words, we ask what modi­

fications must be made to the sequence of instructions in Problem I in

order to render it more flexible and assimilable in a larger problem.

One possibility is to reserve memor,y location A.6, not for storing

x itself as was done earlier, but instead to store the address at which

! may be found. A.6 does not contain .!, but it does tell us where in

the memory! is located. Similarly, we may use A.1, not to store Z it­
self, but to contain the address at which l is to be stored when formed.

Suppose then, as a preceding part of some problem, ~ has been com­

puted and stored in, say, memory location M.l; and we wish to use the

routine outlined in Problem 1 to calculate the rational function given

there with the stipulation that 1. should be stored in N.l.

It is necessary to place the address M.I in location A.6 and ad­

dress N.£ in location A.7. Thus, in the course of the calculation,

when! is required, A.6 is consulted, giving the information where .!

is actually located. Finally, A.7 provides the information where ~ is

to be stored, namely in N.l. Thus, this rational function routine may

be used several times in the course of a large problem; each time, how­

ever, it is necessary to provide the corresponding address for the lo­

cations.! and 1...
Making these changes in this routine leads to the simplest illus­

tration of using the substitution order. Without attempting to justify

the utility of it at this point, we proceed with the simple example.

Instructions 1 through 6 of the following code sequence are

the additional instructions required for the substitutions. The function

of these first instructions is to provide appropriate addresses to sub­

sequent instructions that involve.! and l. Recall that x resides at

-32-

location M.l, and the numerical value of M.l is at A.6. The preliminary

instructions thus involve taking the numerical quantity M.l from location

A.6 in the memory to the arithmetic unit. From there it may be inserted

into the address part of the instruction that ~irst involves x. This

is accomplished by the substitution order. Repeated application of this

order introduces this same address into all the other instructions that

require it. In the example observe that Instruction 8 of the code is the

first instruction referring to ! and requiring the particular address

where x resides. Two instructions, here taken to be 1 and 2, are re­

quired to provide Instruction 8 with the appropriate address. These are:

(i) An instruction to transfer the contents of A.6, namely the

address of !, to the arithmetic lli~it;

(ii) A substitution order which has the effect of transferring

this address of x into Instruction 8.
Inasmuch as this address is also required for Instructions 11 and 15,

two more substitution orders, Instructions 3 and 4, are needed for them.

Finally, the address referring to the location of l is needed for In­

struction 18; two more instructions, 5 and 6, accomplish this, thus ac­

counting for the six preparatory instructions.

At the start of the problem, Instructions 8, 11, 15, and 18 have

blank addresses. After the control bas proceeded through Instruction 6,
all of the instructions have the proper addresses.

The storage is as before, with the changes as noted above,

A.l: a

A.2: b

A.3: c

A.4: e

A.5: f

A.6: M.I

A.7: N.l

B.l:

M.l: x

N.l:

-33-

The coding is:

1. m~Ac A.6 M.l to R2

2. S~m 8 M.l to (8-19)8

3. S~m 11 M.1 to (8-19)11

4. S~m 15 M.1 to (8-19)15

5. m~Ac A.1 N.1 to R2

6. S~m 18 N.1 to (8-19)18

7. m----"Q A.4 e to R4

8. X [] e·x in R2

9. m~Ah A.5 ex + f in R2

10. A~m B.l ex + f to B.l

11. m---JQ [] x to R4

12. X A.l a·x in R2

13. m---+Ah A.2 ax + b in R2

14. L40 ax + b to R4

15. X [] 2 + bx in R2 ax

16. m--+Ah A.3 ax2 + bx + c in R2

2 + bx + c 11. B.l ax in R4 • Y = ex + f

18. Q---+m [] 1. to N.l

In coding the problem into word form, the instructions into which

addresses are being substituted may be either the left-hand or the right­

hand instruction of a word. In Table I, Orders 19 and 20 account for

this. They read:

"19. S----+m Replace the address (bigits 8-19) of the left-hand

order of !! by the 12 bigi ts 8-19 in R2.

20. S~m' Replace the address (bigits 28-39) of the right-hand

order of ! by the 12 bigi ts 28-39 in R2. If

Since it is desirable to substitute into either a left-hand or right­

hand instruction from an address which has been brought into R2, the fol­

lowing custom in storing addresses is adopted: Consider an address x as

an integer which may assume values from .Q to 1023. Rather than storing

~, store

where (x)o is called the memory position mark x. Since ~ is an integer,

when (x) 0 is brought into R2 the addresses are so positioned that either

S~m or S~m' may be used as required.

-34-

The instructions are now paired into words. There are 18 instructions

or 9 words which, if the coding starts at word !, give instruction-words

from address! through 9. The numerics then start with address 10 and go

through address 17.
1. m~Ac

2. S --7m

3. m-4Ac

4. m~Q

5. m~Ah

6. m~Q

7. m-4Ah

8. X

9. •
10. a

11. b

12. c

13. e

14. f

15. (M.l)
0

16. (N.l)
0

17.

15
6

16
13
14

[]
11

[]
17

S~m'

S~m

S-~m'

X

A~m

X

L40
m-4Ah

Q~m

4

8

9
[]
17
10

12

[]

The storage has been changed to include the appropriate values

(M.l) and (N.l) • o 0
In the final coding, Instructions 4', 6, 8, and 9' may initially

be given any address as this address is irrelevant (the correct addresses

are supplied during the course of the computation). For uniformity, the

plan of initially setting these addresses to 0 is adopted.

Problem 3
The numbers aI' a2, a

3
•• 0 an and the numbers bl , b2, b

3
••• bn

are stored in the memory. It is desired to form the following product

sum
n kaibi = ~bl + a 2b2 + ••• + anbn

The storage of the ~. s and E. I S is arranged so that

A.l:a
l

, A.2:a
2

••• A.i:a
i

••• A.n:a
n

and

That is, the ~IS are stored consecutively in one section of the memory

and the E.1s are stored consecutively in another section. The sum, when

it is formed, is to be stored in the memory at address C.l.

If n = 1, the coding is trivial; it is:

1. m~Q A.l al to R4

2. X B.l alb 1 in R2

3. A ~m e.l al bl to C.l

-35-

The problem may be extended to n = 2 by adding the following instructions:

4. m~Q A.2 a
2

to R4

5. X B.2 a
2

b
2

in R2

6. m~Ah e.l a
l

b
l

+ 8
2

b
2

in R2

7. A~m C.l albl + a2b2 to C.l

One method of extending the coding to the general case of ~ elements

in the sum is to have the first three instructions followed by (n - 1) re­

petitions of Instructions 4 through 7 with the appropriate A.i and B.i

being used in place of the A.2 and B.2. This method becomes very costly

with respect to available memory space as ~ becomes large, since each in­

crease of ~ by! increases the code by four instructions.

The coding for the general case ~ is:

1. m~Q A.l al to R4

2. X B.l alb 1 in R2

3. A~m e.l

4. m~Q A.2 8 2 to R4

5. X B.2 a2b
2 in R2

6. m-4Ah C.l albl + a2b2 in R2

7. A~m e.l

8. m ---;-Q

9. x
10. m~Ah

li. A ·---;om

•

•

4i-4. m -?oQ

4i-3. X

4i-2. m ----+Ah

A.3

B.3

e.l

e.l

A.i

a
3

to R4

a
3
b

3
in R2

albl + a2b2 + a
3
b3

a
i

to R4

aibi in R2

in R2

albl + a2b2 + a
3
b

3

albl + a2b2 + ••• + aibi in R2

-36-

to e.l

4i-l. A---»m

B.i

e.l

e.l albl + a2b2 + ••• +aibitoe.l

•

•

•

4n-4. m~Q A.n

4n-3. X B.n

4n-2. m~Ah e.l

4n-l. A-~m e.l

4n. STOP

a to R4 n
ab in R2 n n
albl + a2b2 + ••• +

n
a b = . a.b. in R2 nn .: __ 1.1.

1.=0 .n
.. aib. to e.l

1=1 1.

By using this method, 4n instructions are needed. If n is large,

say 50-100, then 200 to 400 instructions or 100 to 200 words of coding

are needed.

Note, however, that the only changes in the coding for each! are

the changes in the addresses of the instructions (m~Q A.i) and (X B.1),
and as i is increased by ! the addresses of these two instructions are also

increased by!.

If by some means the computer can be directed to go repeatedly through

the coding and at each traversal to increase by ! the addresses of the in­

structions (m ~Q A. i) and (X B. i) ,the length of the total coding can be

shortened greatly. By means of the transfer orders a section of the coding

can be traversed as many times as is desired; and at each passage through

the coding the instructions (m~Q A.i) and (X B.i) are brought into the

arithmetic unit and ! is added (in the correct address position) to each

of them. It is, of course, necessary to have available in the memory the

-37-

appropriate! to increase the addresses. It may be either 1 x 2-19,

1 x 2-39 or, in fact, both may be needed. At present we store 1 x 2-m

in C.2, and fix upon ~ later in the coding. The sequence is:

1. m~Q A.l al to R4
2. X B.l albl in R2

3. A~m C.l a
l
b1 to C.l

4. m~Q A.2 a2 to R4

5. X B.2 a
2
b

2 in R2

6. m~Ah C.l albl + a2b2 in R2

7. A~m C.l albl + a2b2 to C.l

8. m~Ac 4 (m~Q A.2) to R2

9. m~Ah C.2 (m-+Q A.2 + 1) in R2

10. A~m 4 (m-----+Q A.3) to 4
11. ~Ac 5 (X B.2) to R2

12. m~Ah C.2 (X B.2 + 1) in R2

13. A~m 5 (X B.3) to 5
14. T 4

The first seven instructions are the same as before. Instructions

8, 9~ and 10 bring Instruction 4 into the arithmetic unit, add 1 to its

address, and again store the instruction in 4, its correct location.

Instructions 11, 12, and 13 do the same to Instruction 5. Instruction 14

transfers the control back to Instruction 4 to traverse that section of

coding again (the necessary addresses have been increased by!).

The above sequence is not yet complete as it does not provide a

means of stopping the cyclic process when!!. is reached. By changing

the transfer order to a conditional transfer order and adding the follow­

ing instructions, we introduce a means of knowing when the cyclic process

is finished. The number of traversals through the cyclic process is kept

track of by keeping a count in, say, location C.3, and for each passage

the count is increased by one and also examined to determine whether the

desired value has been reached. It is this examination which is performed

by the conditional transfer order. To initiate the count we store 2 x 2-m•

Since the first two terms of the product sum albl + a2b2 are formed be­

fore the counting process is initiated, these two terms are included in

the count by starting the count at 2. When the count reaches n, instead

of transferring back to Instruction 4 the control goes along the other

branch of the conditional transfer instruction, and in this case terminates

wi th a stop order.

The additional coding is added, starting at Instruction 14.

14. m~Ac C.3 2 x 2-m to R2

15. m~Ah C.2 (2+1) x 2-m = 3 x 2-m in R2

6 -m 1. A ---"m C. 3 3 x 2 to c. 3
~ 4 n x 2 is needed; it is stored in C. •

11. m---+Ac c.4
18. m~Ah- C.3

19. C 4

20. STOP

n x 2-m to R2

n x 2 -m - 3 x 2 -m in R2

-38-

Note that the count in C.3 is increased just before it is subtracted
-m -m from n x 2 • When the count becomes equal to n x 2 , the subtraction

gives 0 (which is interpreted as positive) and the conditional transfer

sends the control back to Instruction 4 to finish the nth term of the pro-

duct sum. The next time through the sequence the count is increased to

n + 1; the subtraction now gives a negative difference; and the conditional

transfer is not effective. The control then proceeds to Instruction 20 and

stops as is desired.

The coding is 20 instructions, which is 10 words. We start the se­

quence at address !j hence it occupies words 1 through 10. Four words

of storage are needed during the course of the problem; for these ad­

dresses 11 through 14 are assigned. Let us set n to 100 and store the

ai's in 16 tprough 115 and the bi's in 116 through 215.

The sequence is:

1. m~Q 16 X 116

2. A~m 11 m~Q 17

3. X 117 m--+Ab 11

4. A-+m 11 m~Ac 2

5. m~Ah 12 A~m 2

6. m~Ac 3 m~Ah 15

1. A~m 3 m~Ac 13

8. m--..Ah 12 A--4m 13

9. m--+Ac 14 m-+Ah- 13

10. C' 2 STOP

11.

12. 1 x 2-39

13. 2 x 2-39

14. n x 2-39 = 100 x 2-39

15. 1 x 2-19

115. alOO
116. b

l
111. b

2

•
215. b lOO

In words 12 and 15, 1 x 2-39 and 1 x 2-19 are stored. These are

both needed as the two instructions that have their addresses increased

are in opposite sides of thei~ respective words.

The code sequence is reduced from 200 words to 15 words by being

able to use the same section of code repeatedly and altering addresses

of the instructions as the control proceeds through the code.

-39-

The use of sUbstitution orders in this problem was purposely avoided.

As we shall presently see, the change in addresses could have been accom­

plished more efficiently by their use. However, our purpose is not neces­

sarily to illustrate the shortest method for coding a sequence but to

illustrate many methods so that a broad foundation may be laid for subse­

quent work.

We adopt the nomenclature set forth by von Neumann and call any such

repetitive process (whether it be the above, or a solution of a partial

differential equation by successive approximations, or numerical integra­

tion of a function by some stepwise method, or other iterative procedures)

a simple induction.

We have now reached the point where any further examples have a

great enough complexity to demand a systematic approach. This leads to

the discussion of the flow diagram.

-40-

Flow Diagram

The flow diagram, as the name implies, indicates the course of the

control through a coded sequence of instructions. As previously men­

tioned, the flow diagram represents in a concise way

(i) The purely mathematical operations

(ii) The various logical steps and decisions together with a pre­

cise indication of the corresponding criteria

(iii) The contents of the relevant parts of the memory where the

que'stion might naturally arise

To facilitate the interpretation of such diagrams and to avoid

ambiguities, it is convenient to have a set of conventionalized symbols

associated with these flow diagrams.

The direction of motion of the control through the flow diagram is

indicated by lines oriented with arrows as in Figure 1. A simple in­

duction is denoted by a closed loop as in Figure 2 and is called an

induction loop.
.. -

• •

l J
,

• " -
Figure 1. Figure 2.

Any non-looped segment of the flow diagram is described as a linear

section, while a looped segment is said to be non-linear.

By themselves the above lines are incomplete as they do not show

the arithmetic or logical processes that are involved. The arithmetical

operations are described in the operation boxes. Figure. 3 shows the

symbolization of the operation box.

Description of .. ~~-~-
- _~---4 Arith. Oper. -

Figure 3.'

The operation box has one entrance and one exit for the control. The

contents of the box indicate the arithmetic operations and transfers

of information among the various storage locations that are to take

place when the control reaches that stage. Individually, an operation

box may be treated as a linear portion of the flow diagram, although

it may be an element of an induction loop. Each operation box of a

flow diagram is identified by an Arabic numeral.

The induction loop as shown in Figure 3 is not complete, as it

shows neither a point of entrance nor a point of exit.

To show the former, two or more paths of a flow diagram merge into

a common continuation.as sho1in by the heavy l~nes of Figure 4. These

mergers are not unique to an induction loop for they are also useful

where several linear sequences have a common continuation.

Figure 4.

In order to effect an exit from an induction loop, use is made of

a second type of box called the alternative box (conditional transfer

bOX). The alternative box has one entrance, but two exits which are

labeled the positive (uon-negative) and the negative exits. This box

specifies the criterion by which the control follows either one exit or

the other. The decision is usually based upon some mathematical ex­

pression that is first formed in the Accumulator. In the coding, the

conditional transfer instruction is given immediately after the dis­

criminating quantity has been formed in the Accumulator. If the quan­

tity is positive or 2, the control proceeds along the so-called posi­

tive branch, whereas if the quantity is negative, the negative branch

-41-

is followed. By convention, the positive branch corresponds to an

interruption of the sequence and a transfer of the control to the in­

struction pair specified by the address part of the conditional transfer.

On the negative branch the control proceeds sequentially without inter­

ruption. The alternative box may be associated with a linear sequence

of a flow diagram as well as with an induction loop; i.e., a linear

sequence may divide into two sequences, the choice of which may be

made by an alternative box. Figure 5 illustrates an alternative box

(emphasized by heavy lines) used in a linear sequence, and also in

association with an induction loop. The alternative box is identified

by an Arabic numeral, as is the operati on box.

3

in

Figure 5

Since an alternative box is the means of exit from an induction

loop, it is the alternative box that indicates when the loop has been

traversed the appropriate number of times. The quantity upon which the

conditional transfer instruction is to act should then remain positive

until the loop has been traversed the correct number of times and then

this quantity is to become negative. (It may happen, at times, that it

is more advantageous for the negative branch to return through the loop,

with the positive branch providing the exit.) As an example:

-42-

If we are doing an iterative process to approximate some function-­

say a trigonometric function, square root of a number, or some other such

scheme--then we know that the error in the approximation to the function

is less than the difference between any two successive approximations.

We then decide upon the accuracy, say 0, for the approximation to the

function. If we denote an approximate by Si' then the desired accuracy

is obtained when lSi - Si+ll < o. Therefore, in such a process, if the

conditional transfer acts upon the quantity lSi - 8i +l l - 0, this quan­

tity will be positive until the desired condition obtains.

An induction loop may involve a process in which the loop is to

be traversed a fixed number of times. For these processes a simple

counting procedure is used to determine the termination of the induction.

In the initial step of the induction the count is set to some starting

value (usually Q or !). At each traversal of the loop the count, which

may be called!" is increased by!. An upper limit to the count, which

is called!, is chosen, such that the quantity I-i first becomes

negative when the loop has been traversed the correct number of times,

hence satisfying the required conditions.

In a linear sequence the alternative box often indicates a single

quantity which is the result of previous computation where the course

to be followed depends upon this quantity being positive or negative.

Figure 6 indicates several alternative boxes with their contents.

Figure 6.

By means of an alternative box an induction loop may be traversed

as many times as desired and then the control is advanced to the next

stage of a calculation. Each time the induction loop is traversed the

control essentially repeats a fixed sequence of orders. At each tra­

versal, though, the control operates on a different set of numbers and

either sends the results to fixed memory positions each time, or else

sends the results to locations dependent upon the set of numbers being

operated upon. The operation boxes in an induction loop should contain

relationships that are valid in general for any traversal through the

loop; e.g., consider the iterative process for the square root of a

number u where u < 1 (we defer any mathematical discussion until later).

The first approximation Z is chosen equal to !, and the successive
o

ones given by
Z = 1

0

Zl 2-l (Z + u/Z) o 0

Z2 = 2-l (Zl + u/Zl)
•

Zi+l = 2-l (Zi + U/Zi)

•

The successive iterates are to be done in an induction loop where

is an initial step apart from the loon. In the first traversal of

the loop

is computed. The next traversal computes

=

Z
o

-44-

the third traversal Z3' and so on. How, then, with one set of equations

in an operation box is the desired notation indicated for each traversal?

This is done in the following manner:

The contents of the operation box do not represent any specific tra­

versal of the loop; hence an index is adopted that represents the general

traversal; eog., for the square root the operation box would contain

Zi+l = 2-
l

(Zi + u/Zi)·

This index is the variable of induction that describes the inductive pro­

cess, for if

lim
i -. (J)

Z = 1 o

Zi+l _. 2-
l

(Zi + u/Zi)

Zi+l =-V;;-

(i = 0,1,2 •••)

then the process in question is completely described. Although the

operation box does give the general expression, a means is needed for

ascribing the appropriate value to the variable of induction for each

traversal. This is done by the substitution box. Its function is to

bring into agreement the notation of all quantities in which the vari­

able of induction occurs with the notation that corresponds to a speci­

fic traversal of the loop. In other words, the Rubstitution box makes

the notation agree with the set of numbers upon which the succeeding

boxes act during the forthcoming traversal. of the loop.

A substitution is indicated as a~i. It is interpreted as

meaning that during the forthcoming interval and until a new substitu­

tion is made, everywhere that .! occurs it is to be replaced by!:. This

first case is obvious enough. However, the substitutions are not re­

stricted to constants replacing the variable of induction. In fact,

the substitution often contains some function of !; e.g., the substitu­

tion of i+l ~ i is used frequently. In the instance where the variable

i occurs in both members of the substitution, it may conveniently be

interpreted in the foliowing way: For the i's that occur to the left

of the arrow the substitution from the preceding interval remains valid.

The quantities on the left of the arrow will then not contain! anywhere

in their expression and the substitution is made as described above;

e.g., suppose that a substitution a~i has been indicated. After a

sequence of boxes a new substitution i+l~i is then indicated. First

substitute ~ (the value of the immediately preceding substitution) for

the i that occurs to the left of the arrow. The sUbstitution now reads

a+l ~ i an:l we then proceed as in the above simple case. The next time

the control returns to this substitution box it would be interpreted as

(a+l) + I = a + 2 ~ i.

Note that SUbstitution boxes do not involve any arithmetic operations

or transfers of numbers. They merely make changes in notation (trans­

formations) such that the flow diagram indicates each stage of the compu­

tation in a precise manner. The substitution box is identified by a

lower case Latin letter.

We continue with the square root example and illustrate the use of

substitution boxes. The flow diagram for the process is:

20= I to A.I

(i)

(ii)

b
2 3

1"-liP-,.e.-t2 i+1 =2-
1
(2j + t.) to A.I

----- I
IZj-Zj+ll-cS
-----"+

Figure 1.

Operation box 1 initiates the induction by setting Z = 1
- 0

and storing it in A.I

Substitution box b indicates that everywhere in the following

boxes up to the next substitution box wherever the variable of

induction i occurs it is to be replaced by Q.
(iii) As a result of box~, operation box 2 indicates that

Z = 2-I (Z + u/z)
1 0 0

and Zl is stored in A.I. The alternative box, box 3, indi­

cates that the conditional transfer is to act upon Izo - zll - o.

-46-

(iv) Box ~ is a sUbstitution box of the second type discussed in the

preceding paragraphs, namely the sUbstitution i+l--+i. In the

interval leading into this box the substitution O--+i was

valid. We replace the ! to the left of the arrow by 2. The

substitution is then l~i. Operation box 2 now indicates

=

and alternative box 3 indicates I Zl - Z21 - o. When substitution

box ~ is again traversed, it will indicate 2~i, and the iter­

ative process is advanced another step.

With the aid of the substitution box we have been able to describe

completely and precisely the desired inductive process.

Throughout the flow diagram many symbols and notations are introduced

(such as the variable of induction) that are relevant only in the flow

diagram and often for only isolated parts of the flow diagram. These

quantities are usually without any physical meaning apart from the

process that they are describing in the flow diagram. These quantities

are called bound variables. The Z 's of the square root routine are such

a variable. In passing from one section of the flow diagram to another

these bound variables may take on new significance in describing some

other process (such as the variable of induction! in the induction lOOp).

The concept of the substitution box is extended to cover substitutions

involving any bound variables.

There is one other box that is an integral part of the flow diagram;

it is the assertion box. Its usefulness stems from the fact that at cer­

tain points of the flow diagram, bound variables may acquire a fixed

value with a fixed meaning; e.g., in the square root diagram when

Z. 1 - Zi < 0, then to sufficient accuracy Z. 1 = -Vu, where u is the
~ H-

number for which the square ro~t is "being extracted. Whenever such con-

ditions are attained one may state this relationship by means of an

assertion box. Hence, if we again consider the flow diagram of the square

root routine and consider the negative branch which terminates the process,

we have:
3

... llli -litll -81- II>

f+
Figure 8.

-1~7-

When the control completes the process and proceeds along the negative

branch, then Z. 1 is the desired -Vu. This fact is stated in the
l.+

assertion box. The assertion box is identified by.a crosshatch (ti).
The discussion of the various boxes is completed by discussing the

storage boxes. There are two kinds of storage with which we are concerned.

In the first place, there will be a set of numbers that originate with

the problem and will remain unchanged throughout the course of the problem.

The storage necessary for this type of quantity is called static storage.

The storage requirement that originates from computation within the prob­

lem is called dynamic storage. We are not concerned here with the static

storage as it is unchanged throughout a problem. However, at certain

points along the flow diagram it is convenient to indicate the contents

of the dynamic storage concerned with the local computation about to be

performed. The storage boxes are connected to the flow lines of the dia­

gram by dotted lines. (These boxes are not an integral part of the flow

diagram.) In Figure 9 the flow diagram for the square rootroutlne. is .. shown

complete with storage boxes.

I A.I IAol?il IAo':~i+d
I r--______ ---=2=, I
I I ,...--___ -.

Zo: I to A.I I 2i+I=2-I(Zi+~)toA.I I ~--.-_"'"

Figure 9.

The examples indicate a complete set of storage boxes indicating all

relevant changes. In actual practice, however, the procedure will be· to

indicate storage boxes only when they are useful and needed for clarity.

The SUbstitutions indicated by the SUbstitution boxes are also valid

for the stora.ge boxes. Consider Figure 9: on either side of the substi­

tution box £, a storage box is indicated. The storage box to the left of

Box b shows that A.I:Z, while the box to the right of Box b shows that
- 0 -

A.I:Z .• If, however, 0 is substituted for the i as is indicated by Box b,
l. _. - -

the two storage boxes agree, as they should at this time. Similarly, the

storage box immediately to the left of Box 2 is brought into agreement

with the storage box to the right of Box 2 each time substitution box c

is traversed.

Let us recapitulate at this time:

(i) The operation box indicates the arithmetic operations and the

transfers of numbers that are to take place. In the arithmetic

operations the relationships are expressed by equality signs;

i.e., y = ax2
+ bx + c, y = f(x,t), or some other such expression.

The quantity that is being formed is always written as the ieft

member of the equation while all of the known values are included

in the right member of the equation. The operation box has an ac­

companying identifying letter or number. Arabic numerals are used

to identify such boxes.

(ii) The alternative box is associated with the conditional transfer.

-~-

The conditional transfer acts upon the quantity or quantities in­

dicated in the box; and the control follows the positive exit or

negative exit, according as the transfer is effective or not. The

address of the conditional transfer instruction must be the address

corresponding to the positive exit of the box; and immediately after

the conditional transfer instruction is the sequence that the nega­

tive branch will follow.

(iii) The substitution box indicates changes that occur in bound variables.

These are changes in notation (or transformations, if you like) and

they do not involve any arithmetic operations or transfers of numbers.

The substitution box is usually concerned with the variable of in­

duction in an inductive process; and by attributing su~cessive values

to the variable of induction wherever it occurs in the general ex­

preSSion of the process, the induction is completely described. The

contents of the substitution box are indicated with an arrow, such

as a~i where this is read as substitute a for i.

(iv) The assertion box states an existing condition. At certain points

of the diagram a bound variable may acquire a fixed value. The asser­

tion box merely states this fact.

(v) The storage box indicates the relevant storage locations of the quan­

tities needed for computation in a sequence of operation boxes.

We have now completed the discussion of the important components of

the flow diagram. There are certain refinements to the flow diagram that

will be introduced as the need for them arises in the forthcoming examples.

Problem 4
We propose to extract the square root of a number ~ by means of

the iterative process

lim
i~oo

Zi+l

Z. 1
~+

= 2-1 (Z. + ujZ.)
~ ~

=Vu

('_. 0 1 2 = " ...)

-49-

Since the computer requires that all numbers be in the ranee -1 ~ x <: 1,

~ is restricted so that 0 ~ u< 1. At each step of the iterative process

the division u/Z
i

must be performed. Since u < Zi must hold for this

to be a legal operation, it must either be shown that this condition does

hold or else the necessary adjustments must be made (by coding) such that

the condition is true.

We propose to show the former as follows:

Zi+l = 2-
1

(Zi + u/zi)

Zi+l -.fi = Zi/2 + U/2Zi - Ju

= (1/2Z.XZ~ - 2Zi~ + u)
I ~

Zi+l - v'U = (1/2Zi(Zi - Ju)2

(Eq. 1)

(Eq. 2)

Ass:ume Zo> 0, then from (Eq. 1) all Zi > O. Since all Zi> 0, the

right member of (Eq. 2) is positive; hence the left member is positive and

Zi+? Vu >u.

If Z > u, which is done by setting Z = 1, then all o 0

Zi> u

and the quotient u/Zi will not exceed the allowed limits of the computer.

In choosing Zo = 1, Zl is formed as

-1 -1
Zl = 2 + 2 u

which is used as the first step of the inductive scheme.

We must ascertain which Zi+l is to terminate the induction. This

could be done by determining the number of iterations necessary to com­

pute the worst case, namely u = 2-39, and then traverse the induction

loop that fixed number of times, irrespective of the size of u. Let us,

however, do something slightly different.

We know u to within an error 6u where

6u = 2-1 .2-39 = 2-40

as this is an error introduced by the physical size of the computer

The error 6Ju in determining v'U is found as

u +6u = C/ii +~)2

u+6u = u+ ~

neglecting second order terms. Hence,

M = 6u
2ft

For our case

For u = 0 we have

6u = ~)2

2-40 = ~.;u)2
. ..20

Eo =6Ju = 2

The error £ varie.s from 2-20 when u = 0 to 2 -41 when u = 1.
u

The iterative process should certainly stop whenever

then

We propose to show that whenever

< -21
Zi - Zi+l-- 2

and the iterative process is complete.

First let us show that

Since all

then

u/Zi~VU

Zi + u/Zi ~ Zi +JU

1/2(Zi + u/Zi)~ 1/2(Zi +VU)

-50-

The left-hand side is by the definition of the iterative process equal

to Z. 1; hence
1.+

Zi+l ~ 1/2 (Zi + Ju)

Zi+l -ym ~ 1/2(Zi -Ju)

From this it follows that

then

Zi+l -Ju ~ Zi - Zi+l­

If the iterative process is terminated when

< -21
Zi - Zi+l -.. 2

r.;; < -21
Zi+l -vu -- 2

and adding these two inequalities gives

Hence, from (Eq_ 2)

we define

then

Since

and

r.. -20
Zi -v' u ~ 2 -

< -40 2Z. t. __ 2 •
1. 1.

VU/Z
i

< 1

2Zi (v'u/Zi)€i ~ 2-
40

e
i
~ 2-4l/./U_

This completes the proof, for if the induction is stopped when

< -21
Zi - Zi+l -- 2

then
. J'; < '" __ 2-41 , Cu Zi+l - VY. = e i -- \:, U /,/LI.

as is desired.

Since the flow diagram has previously been discussed in detail,

we turn directly to the coding which is done with the aid of the flow

diagram.

-51-

I Aol"zd
2

Figure 10.

2i+1 =2-'(Zj + ~.l to A.I t---__

I

-1 storage locations are needed for ~, for the number 2 ,for the
-21 number 2 ,and a temporary ·location for intermediate results. These

are designated as
B.l: u

B.2: 2-1

and the Zls are stored in A.l; hence utilizing the same location for

the successive iterates.

-52-

In the initial coding each box is treated independently. The coding

is:

Box 1.

1. 'm~Ac B.l u to R2

2. R 1 2-1 (u) in R2

3. m~Ah B.2 zl = 2-t (1+U) in R2

4. A~m A.I Zl to A.l

Box 2.

1. m~Ac B.l u to R2

2. . A.I u/Zi in R4

3. Q--+m B.4 u/Zi to B.4

4. m~Ac B.4 u/Z. to R2
l.

5. m~Ah- A.l u/Zi - Z i
in R2

6. R 1 (Z. 1 - Z.) = 2-
l

(u/Z. - Zi) in R2
~+ ~ ~

1. A~m B.4

8. m-+Ah A.l

9. A~m A.l

Box 3.

1. m-+Ac- B.4

2. m~Ah- B.3
Z; - Z. 1 to R2

.. 1+ -21
Z. - Z. 1 - 2 in R2
~ 1+

3. c Box 2,1

4. Stop

In Box 2, observe how Z. 1 is fonned. ·It is known that Z. < 1
1+ 1

and u/Z. < 1, but it does not follow that Z. + u/Z. < 1. Z. 1 could
1 -1 1 1 -1 1+

be formed by first obtaining 2 (u/Z.) and then adding 2 Z. to it.
1 -1 1

This, however, would require additional orders as 2 Zi would have to

be formed and stored before proceeding to 2-1 (u/zi), in order that the

addi tion of the two terms could take place at this time. It is more

efficient to form Zi+l in the following way: since Zi and u/Zi
are both positive, the difference

u/Z i - Zi < 1.

Therefore, the difference is formed and shifted right !to obtain

2-
1 (u/Z. - Z.).

1 1.

Observe that

-53-

2-
1 (u/Z. - Z.).

1 1
(Eq. 3)

If Zi is now added to both members, then

Zi+l = 2-
1

(U/Zi - Zi) + Zi = 2-1 (u/Z. + Z.).
1 1

Equation 3 above expresses the negative of the quantity Zi - Zi+l

desired for the discrimination in Box 3. zi+l - Zl is stored in B.4

so that it will be directly available for Box 3. In fact, if Z. 1 had
1+

not been formed by first forming and saving the quantity Zi+l - Zi'

Zi+l could not have been stored in A.l, as Zi would then still be

needed for Box 3. This would mean that Z. 1 would be sent to B.4 until
1+

the completion of Box 3 at which time it could be sent to A.l. Again,

this would have required additional coding.

In pairing the instructions into words, we start the coding at

Word 1. No connecting instructions are needed. between the boxes.

The total number of instructions is:

Box 1:
Box 2:

4 instructions
9

Box 3:
and a "stop" instruction

3
1

total : 17 instructions

which require 9 words. Five words of storage are needed which account

for Words 10 through 14. The sequence is:

1. m~Ac 10 R 1

2. m~Ah 11 A~m 13

3. m~Ac 10 + 13

4. Q~m 14 m~Ac 14

5. m~Ah- 13 R 1

6. A---.m 14 m--.Ah 13

7. A~m 13 m~Ac- 14

8. m~Ah- 12 C 3

9. Stop

10. u

11. 2 -1

12. 2-21

13.

14.

-54-

The conditional transfer instruction in the right half of Word 8
transfers to the first instruction of Box 2. When the instructions are

paired, the first word of Box 2 becomes the left-hand instruction of Word 3;
hence the conditional transfer instruction is the transfer to the left-hand

instruction of Instruction-pair 3.
Before discussion of Problems 5 and 6, on the conversion of numbers

from one base system to another, some remarks should be made on the form

of input and output data. Although the computer operates with numbers ex­

pressed in the binary base, the human operator is apt to find that he has,

through years of exposure, become firmly bound to the decimal number sys­

tem. It is then certainly to the advantage of the operator to find some

means of communication to and from the machine that can be expressed in

decimSl numbers. Before discussing the problems related to such a scheme,

we first make a few remarks on the input-output problem in general.

Even though we are at present mainly interested in input and out­

put data in the decimal number system we do not wish to exclude input

-55-

and output as true binary numbers. In fact, whenever any data is printed

for subsequent consumption by the computer it should obviously remain in

the binary base; furthermore, it is both convenient and simple to have

instruction words coded in their true binary form. As we have more ex­

perience with the computer and with binary numbers, our dependence upon

the decimal system may wane, and we may find ourselves operating solely

with binary numbers. We first consider the input-output in the binary

system and from that develop the scheme for handling decimal numbers.

It is not practical to have the keyboard of the tape punch or the

type bars of the printer operate in true binary notation, for this would

mean that forty characters would have to be printed or punched per word;

and even though one needs to recognize only Q's and !'s, it is difficult

to examine words forty characters long. Let us arrange the bigits into

groups of, say, three or four bigits and specify a character to identify

each unique combination. We choose groups of three or four since these

correspond to eight and sixteen unique characters, respectively, which

are ea.ch fairly close in number to the usual ten characters in the deci­

mal system. Such choices shorten the word length from forty bigits to

either thirteen or ten characters, accordingly. For the present discus­

sion, we fix upon groups of fours (tetrads) and id,entify each tetrad by

a single character. Since sixteen characters are needed, we are really

operating in the hexadecimal (16) number base. For those tetrads that

have single decimal digit equivalents, the corresponding decimal charac­

ters are used to identify them. The remaining six tetrads are identified

by the letters· A,B •• 0 F. Table II shows the hexadecimal characters

with their binary tetrad equivalents.

TABLE II

a 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E lilO
3 OOll 7 Olll B 1011 F llll

The keyboard of the tape punch and the type bars of the page printer

have sixteen characters. In tape preparation, the conversion from hexa­

decimal to binary is effected directly by the punching equipment. When

one of the sixteen keys of the keyboard is depressed the punch is set up

so that it punches the binary equivalent on the tape (in a tetrad of

bigits). Similarly, when printing is desired a tetrad of bigits actuates

the type bars and the hexadecimal equivalent is printed.

To return to the decimal input-output problem, we have at our dis­

posal the first ten ordinal characters of the hexadecimal notation which

are identical to the ten decimal characters 0,1 ••• 9. To prepare a tape

of decimal information, we depress the keys corresponding to the individual

decimal characters of the desired number. The punch converts the decimal

characters into tetrads of bigits which give a "coded-decimal" representa­

tion of the number. The coded-decimal form of a number is not identical

to the number's true binary equivalent. For example, consider the decimal

number 512. Its coded-decimal representation is 0101 0001 0010 while its

true binary representation is 1000000000. There is a very simple algorithm

by which we can convert the coded-decimal number into its true binary equi­

valent. The output problem involves the converse. We need an algorithm by

wh:ich a true binary number can be converted into its coded-decimal equi­

valent so that the printer may produce the number in its decimal form. We

consider first the input problem--the conversion of a coded-decimal number

into its true binary equiva.lent.

Problem 5
Since a tetrad of bigi ts is used to represent 8- single decimal digit,

and since the standard word length is forty bigits, each word is comprised

of ten tetrad.s. The first tetrad on the left is used to indicate the sign

of a number. This means that the computer is able to store a nine digit

coded-decimal number with its sign. In following the present sign repre­

sentation for binary numbers, the tetrad 0000 designates a positive num­

ber and the tetrad 1111 designates a negative number. Negative coded­

decimal numbers are represented. as signed numbers rather than as complement

numbers as used for negative binary numbers. As examples, a positive and -a

negative coded-decimal number are shown.

+ .765432109: 0000 0111 0110 0101 0100 0011 0010 0001 0000 1001

- .543010678: llll 0101 0100 0011 0000 0001 0000 0110 0111 1000

The conversion of coded-decimal number a' into the true binary number

a may be performed as follows: The absolute value of a' is converted and

then the sign is determined. The absolute value is obtained by neglecting

the sign tetrad of a'. The sign tetrad comprises bigi ts (0 - 3); hence

I a'i = bigits (4-39) of a' o~ latl <1 (Eq. 4)

Recall that each decimal digit treated as an integer is represented by

its true binary equivalent in the coded-decimal notation. The tetrad

represented by the bigits

(4i-4i+3) (i = 1,2 ••• 9)

-')7-

beginning at the left of ~' represents the decimal digit !i. The first
-1 tetrad from the left corresponds to the 10 position, the second tetrad

to the 10-2, and so on. Therefore,

(4i-41+3) = 10-iw. (i = 1,2 ••• 9) (Eq. 5)
~

and furthermore, ~

I all = k IO-ivi; (Eq. 6)

e.g., la', = .0111 0101 0110 1001 0001 0000 0100 0011 1000 = .756910438 =

= ~ IO-ivi =
f:;;l

Since each tetrad is, by itself, in true binary form if considered as an

integer, one method of converting the number is to divide each tetrad by

its appropriate power of 10 (expressed, of course, as a binary number)

and add the results of all such divisions; e.g., .25 is .0010 0101 in

coded-decimal form and to convert this to a true binary we perform the

steps
0010 0101 0010 0101
1010 + (1010)(1010) = 1010 + 1100100 = 0.01,

and 0.01 is the true binary form of the decimal number .25. However,

let us do something slightly different. Multiply and divide the right

member of (Eq. 6) by 109• 2-39• This gives

l.I09- i
Vi •2-39

109• 2-39
(Eq. 7)

The conversion may now be effected by multiplying each tetrad Wi by

109- i • 2-39, adding the products of all such multiplications, and then

dividing the resultant sum by 109• 2-39• Each tetrad Wi has a co-
9 i factor, 10 - , which is ten greater than the cofactor of the immediately

succeeding tetrad. The conversion from the coded decimal number A' to

the binary number ~ is then described by the following inductive pro-

cess.

a = 0
0

a
l = lOa + 2-39w

0 1

a
2 = 10al + 2-39w

2

a. 1 = 10ai + 2-39w
1.+ 1+1

•

a
9 = 10aB + 2-39w

9

a =
a

9
109 • 2-39

The tetrads are isolated with the aid of the left shift order.

First the magnitude of ~I is formed by bringing ~I into R2 (the

Accumulator) and effecting a left shift of 4. The portion of ~' left

in R2 is I !:'I. R4 (the quotient register) is then set to Q. A subse­

quent left shift by 4 now has the effect that !l appears in the ex­

treme right of R4. The first tetrad ~l has thus been separated from

the remaining tetrads, and since !l appears in the extreme right of

R4 it is 2-39w
1

, as desired. !:l is now formed as:

-39 al = 10ao + 2 wI-

~2 is isolated in the same manner as was !l and then ~2 is formed,

and so on, until ~9 is formed. A multiplication by ten at each step

cannot directly be done as this is an illegal operation, since allowed

multiplication factors must be in the range I x I < 1. However, a multi­

plication by ten may be simulated by doing a series of left shifts and

an addition for
3 10a

i
= 2 a

i
+ 2a

i
•

The inductive process may be written as:

a = 0
0

-5B-

ai +1 = 23a + 2a. + 2-39w (i = 0,1 ••• 8)
i l. i+l

a =
a

9
109• 2-39

The wi I s are also formed by an inductive scheme where

wl

w2

= 24a l
0

= 24a l

1

24 1 = a i

a l = 0

(integer part)

(integer part)

(integer part)

4 w9 = 2 a'a (integer part)

lall

a l = 24a l (fractional part)
1 0

a l = 24 1 (fractional part)
2

a l

I 24 ,
a 1+1 = a 1 (fractional part)

a l

9
= 0 = 24a1a (fractional part)

There remains finally the determination of the appropriate sign to

affix to the true binary number a. It is recalled that the extreme left

tetrad is reserved to denote the Sign of ~I. A sufficient method is to

examine the leftmost bigi t of ~'. If this is £, a'?: 0 and a is to be

posi ti ve • If the leftmost bigi t of a 1 is a !, then a 1 <-- 0 and a is

to be formed as a complement.

The only operations that are performed on ~ I, the coded-decimal num­

ber, are a series of left shifts by 4. To simplify the coding and flow

diagram, the number a • is treated as though the binary point is immedi­

ately left of the first bigit position. In other words, the normal sign
o -1 bigit (the 2 position) is treated as a numerical bigit, in fact the 2

bigit position. After the first left shift of ~. by 4, the first signi­

ficant bigit of wl is in the leftmost bigit position. After WI is

isolated by a left shift of 4 places, the first bigit of w2 is in the

leftmost bigit pOSition, and so on with the remaining w·s. The conse­

quence of treating a l in this fashion is discussed in the coding of

the problem.

Since nine tetrads must be operated upon, the induction loop must be

traversed nine times. The method used for determining when to stop in the

induction is essentially to discriminate upon the quantity

I - i (I = a; and i = 1, 2 ••• 9, successively)

When i = 9 (which corresponds to the completion of the 9th traversal of

the induction loop), the discrimination on (I - i) becomes negative for

the first time and the induction process is stopped as desired.

-60-

The storage requirements are as follows: a l (the coded-decimal

number) is initially in the memory at address A.l. When a (the true

binary number) is formed. it is to be stored at A.2. storage is needed

for the numbers 0 and 109.2-39• These are stored in C.l and C.2, re­

spectively. Four intermediate storage locations are needed during the

course of the conversion. These are designated as B.l, B.2, B.3, and

B.4.

We are now ready to draw the flow diagram and do the coding. The

flow diagram is shown in Figure 11.

over

In the flow diagram, Box 1 sets up the initial steps of the inductions

a' and a. It sets

a' 0 = I a'i =
4 2 a' (fractional part)

a = 0 o
8·S is indicated in the description of the induction on the preceding page.

This box also sets the upper limit 1=8 of the induction. Box~, Box 2,

and Box ~ complete the description of the induction. Box 2 forms

a' i +l = 2
4
a' i (fractional part)

with Boxes ~ and ~ ascribing the appropriate values to the variable of

induction i. In Box 3, the conditional transfer box, the quantity upon

which the discrimination is made is more conveniently I-(i+l) rather

than I-i as previously discussed. In discriminating upon I-(i+l),

i assumes the values 0,1 ••• 8. This is then equivalent to the discri­

mination I-i where i = 1,2 ••• 9. Box 4 forms I~J by dividing ~9

by 109.2-39• Finally, Boxes 5, 6, and 7 are concerned with determining

the correct sign for the true binary number a.

The coding is:

Box 1.

1. m~Ac A.l a l to R2

2. L 4 a l = I a'i = 24a' in R2
0

3. A-+m B.l a' to B.l
0

4. a·~Ac 0 a = 0 to R2
0

5. A~m B.2 a to B.2
8·2-ll I = 8_2-11 0

6_ a~Ac to R2

7. A-+m B.3 I to B.3

" G>

CODED DECI MAL to BI NARY CONVERSION

a~ = 24
a'(fractional part) to B.I

t----tI! ao = 0 to B.2
I = 8 to B.3

c

I B.I : ao

B.2 :ao

B.3:!

b
, .. I 1 + I i I .. ., lSI

6
a= -101 toA.2

7
0= 101 to A.2

,
,~

IA.2: 0-]

--1[2'1011 IB.2: Ogl
4 I *

, I 10 I = Og + 2-39 log to B.21 .. : oil -I --.

STORAGE

A.I : a I C.I : 0
A.2: a(when formed) C.2: 109 .2-39

2

",J B.I' 0;
B.2: 0 1
B.3: 1- i

a~+1 =2
40; (fractional part) to B.I

01+1 =23aj +2a i+ 2-39• 24ai (integer part) to B.2
~- i -I to B.3

B.I: -
B.2: -
B.3~ -
8.4: -

I
B.I : a i+1

---.... B.2: 0i+1
B.3:1-i-1

I
0,
~
I

Box 2.

1. m~Ac B.l

2. m~ C.l

L 4

4. A--¥m B.l

B.4

6. m--7Ac B.2

7. L 2

B.2

9. L 1

10. m--+Ah B.4

110 A---+m B.2

12. m--+Ac

Box 3.
1. m-+Ac B.3

2. C 2,1

Box 4.

1. m --+Ac B.2

20 C.2

B.2

Box 50
1. m---+Ac A.I

2. C 7,1

Box 6.

1. m~Ac- B.2

2. A~m A.2

30 Stop

a' . to R2
1

o to 34

2-39 4 I (. t) w. 1 = 2 a . 1nt.p. to R4 1+ J.

a'i+1 = 2
4
a ' i (fract.pt.) in R2

a
i

to R2

2
2 a

i
in R2

2 2 a i + a i in R2

3 2 a
i

+ 2a
i

in R2

a'. 1 to B.1 J.+

2-39w. to B.4
J.+1

3 -39
a i +1 = 2 a i + 2 wi+1 in R2

I-i to R2

I-i-1 in R2

I - (i+1) to R2

a
9

to R2

a 1 to B.2
i+

I - (i+1) to B.3

laJ = a
9
/109.2-39 in R4

fal to B.2

a l to R2

a = -I al to R2

a to A.2

-62-

Box 7.
1. m--'>Ac B.2 a = (al to R2

2. A---)-m A.2 a to A.2

3. T 6,3
In the coding in Box 1 the a ~ Ac order has been used in In­

structions 4 and 6. Recall that this order replaces the number in R2

by the twelve address bigits of the instruction; i.e., R2 is cleared

to O's and the twelve address bigits of the instruction a--+Ac are

added into R2 into positions Q through 11. In Instruction 4, the num­

ber 0 is desired in R2j hence the instruction a--+Ac has 0 as its

address. Instruction 6 forms 1=8. Since the integer 8 cannot be

stored, we store 8.2-m where m is at least 4 so that 8·2-m
<: 1.

The a~Ac may be utilized to form ! and save the word of storage

that would be needed initially to store the 8·2-m• Since I is formed

8 -4 8 -=-5 8-11 in this manner we have the freedom of choosing 1=·2 , ·2 ••• ·2 •

I is chosen as 8.2-11 for this case. In Box 2 where (I-i-1) is formed
-m the 1 that is.subtracted must have the same cofactor 2 as does the !;

hence to do this the instruction a ~Ah is used with the associated

address being _1.2-11 == FFF in hexadecimal notation.

In Box 2, the first five instructions are concerned with forming

2-39wi +l and a l
i +l • Before the left shift of 4 is executed (Instruc-

'tion 3), R4 must be set to Q. This is done because 2-39w
i
+l is needed

by itself and if R4 were not Q the left shift of 4 would place 2-39w
i
+

l
into R4, but whatever number ¥.. that had been in R4 at the time of the

shift would merely be shifted left 4 places and R4 would contain

24y + 2-39wi +l rather than the desired 2-39wi +l • For clarity, we show

in the following example how a left shift of 4 isolates each tetrad.

Suppose the number 0.98 is to be converted into true binary form. In

coded-decimal form it first appears in R2 as the following sequence of

tetrads:
0.98·· • 0000 1001 1000···

(+) (9) (8)

Normally, the leftmost bigit is reserved for the sign bigit. Inasmuch

as no arithmetic operations are to be performed on ali except for shift­

ing to the left, it is convenient to disregard the usual function of the

leftmost position as corresponding to the sign bigit. The aim at this

point is merely to separate successively the various tetrads. The first

left shift of 4 produces in R2

a'o = I a'i = 1001 1000···

The next time a left shift of 4 occurs, R2 contains

a' = 1000···· ••••
1

and R4 has 00····0·········1001. Since 2-39.w.
l.

-64-

is desired, one sees that in R4 the usual binary point convention is re­

storedj namely, after the firstbigit position. Hence the tetrad in R4
can participate in normal arithmetic operations.

If one had adhered strictly to the sign convention for R2, some

needless complications in the coding would have resulted.

Also in Box 2 we see that 2-39w in R4 must be sent to temporary
i+l

storage (Instruction 5) before
3 ai +l = 2 ai + 2ai

is formed in R2 (Instructions 6 through 9). This is necessary as R4
shifts in concert with R2, hence altering its contents.

The final coding is left as an exercise for the student, and the

conversion of a true bihary number into its coded-decimal equivalent is

considered.

Problem 6

When the formal calculation of a problem on the computer is finished

the desired answers are to be converted from true binary form into coded­

decimal notation so that the teletype page printer produces the true deci­

mal representation of the desired numbers.

We develop this conversion scheme in the following way: The true

binary number ~ is to be converted into its coded-decimal equivalent a'.

Since coded-decimal numbers are stored as signed numbers rather than comple­

ment numbers, I a I is first converted to I a'i ' and then the appropriate sign

is prefixed. Since I a I < 1, it has a decimal equivalent which may be wri t-

ten as

lal = lO-lWl + IO-2W2 + ••• + IO-9w9• (Eq.8)

The problem is to determine the w's. If IOlal (multiplication by ten in

binary form) is formed, there is an integer part and a fractional part to

the number. We see from (Eq. 9) that the integer part corresponds to the

decimal digit ~l.

IOla\ (Eq. 9)

of IOlai is nov' multiplied by ten, the integer part If the fractional part

is just !2' etc. The

decimal digits is used:

:following inductive process to produce each of the

a = I at 0

lOa = WI + a l 0

IOal = w2 + a2

•
•

IOai = wi+l + ai +l

loa8 = w9 + a9
where the ~i's are the binary equivalents of the decimal digits. In the

coded-decimal representation, each decimal digit is represented as a tetrad

of bigitsj hence each !i is separated as a tetrad of bigits. This is done

by multiplying by ten in the following way:

4(-1 -3) IOai = 2 2 a i + 2 a
i

•

-66-

The left shift of 4 separates the integer part (wi +l) from the fractional

part (ai +l) by shifting wi+l into the quotient register (R4) as a tetrad

and leaving the fractional part in the accumulator (R2).

The coded-decimal number at is formed by the following inductive

process:

a' o

a'
1

a'
2

a'i+l

•
•

a'
9

a'

Oifa~O

=(F'2-39 if a < 0

= 2
4a' + 2-39w o 1

= 24a' + 2-39w
1 2

4 2-39w = 2 a' + i i+l

4 2-39w = 2 a' + 8 9

= a'
9

Note that each w. is desired as 2-39w., which is precisely the
-~ ~

quantity that appears on the right in R4 as a result of the left shift of

4 places.

As in the previous problem the induction has nine steps; hence the

same index representation is used. The flow diagram is Sh01~ in Figure 120

The required storage is indicated on the flow diagram. The coding is:

Box 1.

1. m---+Ac

2. e

Box 2.

1. m~Ac

2. A--+m

Box 4.
1. m~AcM

2. A~m

3. a--.Ac

4. A~m

A.I

3,1

e.l

Bol

A.l

B.2
8 -11 -2

B.3

a to R2

a' = F x 2-39 to R2 o
at to B.l'

o

-1 2 a to B.2 o
I = 8 to R2

I to B.3

"TJ
G>

(\)

BINARY to CODED DECIMAL CONVERSION

4
0 0 = I 0 I to B. 2

'" .. I~ = 8 to B.3 I ..
I -39

0 0 = F·2 to B.I
e b

I
B.I: 0 0

B.2: 0 0

B.3:1

.... I r---~~--~li+l~i II---~-----------------------------

~
I
I

=#:
- 0 8= 1

I 'I
1 0 =09

5

""" J B.I : o~
B.2: OJ
B.3: 1- i

t 4 -I -3
ai+1 = froe ional port of 2 (2 OJ +2 01) to B.2

2-39 WI = integer part of 24 (2-1 0i + 2-30 j)
I 4 I -39

0itl =2 al+2 ·W1+1 to B.I
1- i -I to B.3

I

B.I=oi+1
_~6 __ ___

1.1 -(i + I) I.. J
... • I

---0 B.2: 0i+1

B.3: I-i-I

A.I : 0

A.2: 0' (when formed)
C.I : F X 2-39

C.2: 0

STORAGE
+

B.I:­
B.2: -

B.3:­
B.4: -

I
0\
-..J
I

Box 5.
1. m--+Ac B.2

2. R2

3. m~Ah B.2

4. m--+Q B.1

5. L4

6. Q---.m B.1

7. R1

8. DS

9. A--+m B.2

10. m~Ac B.3

11. a~Ah -1·2 -11

Box 6.
1. e 4,4

Box 7.
1. m--+Ac B.1

2. A--:;m A.2

3. stop

Box 3.

1. m ---=.Ac e.2

2. A--J>m B.1

3. T 4,1

· -68-

-1 2 ai to R2

2-3a
i in R2

-1 -3 2 a i + 2 ai in R2

a' i to R4

a i +1 = 4(-1 -3) 2 2 a i + 2 ai fract. pt. in R2

, = 24a' + 2-39w in R4 a i+1 i i+1

a'i+1 to B.1

-1
2 si+1 in R2

-1
2 ai +1 to B.2

I-i to R2

I-i-1 in R2

a' to R2

0- to R2

a' to A.2

a' = 0 to B.1 o

In Box 5 ai +1 and a' i +l are formed simultaneously. R4 is utilized

for at i+1 and R2 for si+1. This can be done since

S'1+1 and

·are formed by s left shift of 4 and R2 and R4 shift in concert. As in

/"-

-0;1-

the prev}ous problem (the conversion from coded-decimal form to binary

form) the binary point in R2 is treated as though it were immediately left

of the sign bigit. The reason for this is the same as in the previous ex­

ample--the sign of R2 shifts with the number; hence, when the left shift

of 4 is performed, the sign position should contain the first bigit of the

wi+l that is being isolated. There is, however, the complication intro­

duced of having to shift the number a. to the right in forming the
-~

quantity
-1 -3 2 a

i
+ 2 a

i
•

Recall that in a right shift the sign bigit fills into the bigit positions

vacated by the shift. The quantity a. is a positive fraction; hence, in
-l.

shifting right, Q's should fill into the vacated positions. However, in

using the Sign position as the first significant bigit of ~i' whatever this

first bigit is, either a ! or a Q, it will fill into the vacated positions.

ThiS, then, would give an incorrect result if the first bigit were a 1. To

avoid this difficulty first form 2-1a which means that the sign Pos~tion
no longer contains a significant bigit of a.. Then set the Sign to _0 and

-l.

proceed in a normal fashion. ~n Box 4 where we first set

we have really formed
-1 2 a

o

since a has the normal binary point convention. In all subsequent steps
-1 (2 a i +l is formed by a right shift of ! followed by a drop sign order see

Box 5, Instructions 7 and 8). Instruction 1 of Box 5 brings 2-l ai into
-1 -3 the accumulator and the quantity 2 a i + 2 ai is subsequently formed.

Instruction 4 places a l
• into R4; and Instruction 5, the left shift of 4,
~

t~~n forms a'i+1 in R4 and ai +1 in R2. Instructions 7 and 8 then form

2 a i +1 and prefix the correct positive sign.

Instructions 10 and 11 of Box 5 form (1-1-1) but note that the quantity

is not immediately stored. Since (1-i-1) is in R2, Box 6 consists only of

the conditional transfer instruction. Instead of the conditional transfer

instruction transferring to the first instruction of Box 5, it transfers to

the last instruction of Box 4. The last instruction of Box 4 is the in­

struction that initially sent ! to storage; hence that same instruction is

now used to store (I-i-1). This saves a needless duplication of a storage

order. In the previous conversion problem, the same scheme could have been

-10-

used. Compare the last two instructions of Box 5 and all of Box 6 of

this problem with Instructions 12, 13, and 14 of Box 2 and all instructions

of Box 3 of the previous problem.

In coding the various boxes, they have been coded in the sequence that

corresponds to their correct position in the final coding. This sequence

is Boxes 1, 2, 4, 5, 6, 1, and finally, 3. Box 2 must immediately follow

Box 1 as it corresponds to the negative branch of the transfer. Then con­

tinuing from Box 2, the flow lines go to Boxes 4, 5, 6, and 1. We may in­

sert Box 3 after Box 1 since Box 3 is reached from Box 1 by the satisfied

conditional transfer, and then Instruction 3 of Box 3 sends the control to

Box 4 as is desired.

-71-

Problem 7
We propose to evaluate the integral Laf(x)dx where a <: 1. We

o
assume that f(x) is continuous in the interval 0 ~ x ~ a and that the

value of the integral as' well as the value of any intermediate steps of

the integration lies in the range of the computer. The value of the in­

tegral is approximated by Simpson's method for stepwise integratlon. The

function f(x) is given at the equidistant values xo(=O), Xl' x2 ••• xr(=a).

The values f(Xo) f(x
l

) f(x
2

) ••• f(Xr) are stored in the memory at r+l

consecutive storage locations. If X is taken as the interval between the

various x. IS, then Simpson's Rule may be stated as
J.

where C is the error term. To evaluate an integral by Simpson's Rule r
f(x) must be determined at an odd number of x values (an even number

of ~x intervals).

The integral is evaluated by using the following inductive process:

L_1 = 0

L + 6
3
x f(x

o
) Lo =

-1 6x.

L1 = L + 1tf f(xl)
026x

L2 = L + T f(X2)
1

•
• L. + Sf f(xi) s {: 4 when i is odd
Li

= where
2 when I is i-l even

•
• 6x (
LI =, r + 3 f XI)

I-I '

where L I:::: J::'f(X) (Xo = 0, XI = a) to the desired accuracy.

The inductive scheme that is chosen to describe the integration 1s

perhaps neither the simplest 1n coding nor the shortest 1n' computing time.

It is used principally because an innovation 1s introduced into the flow

diagram.

-12-

. Three decisions must be made in traversing the induction:

(i) If ! = 0 or I, then ~3X f(Xi) is added to the partial summation.

(ii) If i is odd, then ~x f(xi) is added to the partial summation.

(iii) If i is even, then ~x f(xi) is added to the partial summation.

As previously discussed, the conditional transfer instruction

allows the control to make a decision and follow one of two paths, dependent

upon the decision. To make three decisions as outlined above, two alterna­

tive boxes could be used in sequence. However, let us approach the problem

in a slightly different manner.

The first time through the induction it is desired to form ~3X f(x).

As ~3X f(xo) is formed, the next step of the induction is to form ~~ ~(xl)
and as f(xl) is operated on it is known that neA~ 2~; f(x

2
) is to be

formed. In fact, at each passage through the induction it is known what

the forthcoming traversal should form. Let us, then, represent three

operation boxes which for convenience we call Boxes 2, 3, and 4. Box 2

forms ~3x f (xi); Box 3 forms 4~ f (xi); and Box 4 forms 2;X f (Xi) •

Rather than use a sequence of alternative boxes to direct the control to

the correct operation box (Box 2, 3, or 4, according as i = 0 or I,

i = odd, ! = even # 0 nor I), a transfer instruction is used to which is

supplied, at the appropriate time, the various addresses corresponding to

the entrance points of Boxes 2, 3, or 4. To simplify the discussion this

transfer instruction is called &. In the initial traversal of the induction,

~ is to have an address that sends the control to Box 2 where it forms

~3x f(Xo); hence in setting up the initial step of the induction the address

corresponding to Box 2 is supplied to ~. At the time that the control is

operating in Box 2, it is known that the next step of the induction should

form 4~x f(xl) which corresponds to Box 3; hence as part of the operations

performed in Box 2 the address for Box 3 is supplied to ~. Similarly,

when the control traverses Box 3 it is knovffi that the next traversal of the

induction should involve Box 4 which forms 2~ f(X2); hence Box 3 supplies,

among other things, the address of Box 4 to ~. And when in Box 4, the con­

trol should return to Box 2 on the next traversal so ~ is supplied with

the address corresponding to Box 3. The final step of the induction is to

form b; f(X
I

). This is done by a discrimination on i-I, which is negative

until i=I, at which time the last term is formed.

-73-

The position of the flow diagram at which the transfer instruction ~

occurs is represented by an interruption in the flow line with a circle con­

taining the Greek letter ~. The circle has one point of entrance but no

point of exit. See Figure 13. In general, the Greek letter is not restricted

to ~ and any letter could be used. The various points to which the transfer

is to send the control are also represented by circles which contain the same

Greek letter as the transfer circle. These Greek letters are, however, in­

dexed for identification. These circles have no point of entrance but one

point of exit as shown in Figure 14.

(5))

) @ (5) »

e :>

Figure 13. Figure 14.

Such a set of symbols is said to represent a set of variable remote

connections.

The appropriate addresses are supplied to the transfer .1. in various

operation boxes by making use of the substitution instructions. The opera­

tion is denoted as 0 = ~ where we enclose the ~i t S in circles to

show that they are addresses which are concerned with variable remote con­

nections. 0 = ~ is interpreted as meaning that the address repre­

sented by ~i is to be supplied (substituted) into the transfer instruction ~.

The flow diagram includes the use of the variable remote connections. The

flow diagram is shown in Figure 15.
At any step of the integration I i is used to represent the sum of' the

terms in Simpson I s Rule up to that point. When the integration is completed

~I represents the value of the integral to the desired accuracy.

Box 1 of the flow diagram sets ~-l to 2 as an initial step for the

induction. The variable of induction i is set to O. ~ is set to ~l so

that the first traversal of the induction will be through Box 2.

Immediately following Box 2, ~ is set to ~3 so that after going

through Box: 2 the next traversal will correctly include Box 3. In Box 3, ~

is set to ~2 so that the following traversal includes Box 4, and so on until

the induction is completed. At each traversal of the induction only one of

the boxes, 2, 3, or 4, is included.

b

-74-
A.2:0 A.2: i I A.I :L'I I A.I, :):-'1

I I ~* ________________ _
I a I A = AI if i = 0 L_I= 0 to A.I

t----I.-..t 0 to A. 2

CD=@

5

A.I :Li-I
A.2: i
A.3: u j

6

1,.--....., I
~,......-I-........ A = A2 if i # 0 or I, but i even ___ --J

--

A = A3 if i odd

2

Of = 2~ x f(x,)to A.3

3
4~x

O"j = -3- f(x j) to A.3

0=G)

i + I to A.2 '--""1--1

9

Xl
A.I: J f(x)dx f--­

Xo

~NTEGRATION by SIMPSON'S RULE

FIG. 15

-75-

Box 7 discriminates on the quantity i+1-I. This means that the con­

d.itional transfer is effective when i = I-I. At this time LI -1 has

just been formed. The final step of the induction, the formation of ~I
is done in Box 9.

storage is needed to store the numbers corresponding to the addresses

AI' A2 , and A
3

• These addresses are stored as position marks and

B.1: (Al)o

B.2: (A2)0

B.3: (A
3

)0

The following storage is also needed:

B.4: (1) o
B.5: (I)

~xo
B.6: "3

The values of f(Xi) are stored in °1+1 successive locations where C.O

stores f(xo)' C.l: f(x
l

) ••• C.i: f(Xi) ••• C.I: f(~). The value of the·

initial address C.O is needed and it is stored in

B.7: (C.O) o

as a position mark. Any particular value

metic unit by forming its address as

f(x.)
l.

is brought into the arith-

(C.i) = (C.O) + (i) in R2
000

The address C.l is then substituted into the instruction which is to operate

upon the corresponding

The coding is:

Box 1.

1. a--+Ac 0

2. A ____ m A.I

3. A--.m A.2

4. m--.Ac B.l

5. S--..m I,ll

6. m---.Ac B.7
7. m---+Ah A.2

8. S~m 1,10

9. m--+Q B.6

10. X [e.i]
11. T [A]

rex.).
1.

0 to R2

~-l = 0 to A.l

0 to A.2

(A1)o to R2

Al to (8-19)11

(c.o) to R2
0

(C.i) = (c.o) + (i) in R2
0 0 0

C.i to (8-19)10 6x
"3 to R4

6; :f(x
i

) in R2

-76-

Box 2.

1. A----+m A.3 0. = ~X :f'(X
i

) ro A.3
~

Box 5.
1. m--+Ac B.3 ("-3)0 to R2

2. S---..m I,ll A3 to(8-19)ll

Box 6.

1. m.--+Ac A.3 °1 to R2

2. m-.-.Ah A.l L1 = Li -1 + °i in R2

3. A--.m A.l L1 to A.1

Box 7.

1. m~c A.2 (i) to R2
0

2. m---+Ah B.4 (i+1) in R2 0
3. m---..Ah- B.5 (i+l-r) in R2

0

4. C 9,1

Box 8.

1. m-.-.Ac A.2 (1) to R2
0

2. m--4Ah B.4 (i+1) in R2
0

3. A~m A.2 (1+1) to A.2
0

4. T 1,6

Box 3.

L(2) 4&c in R2 1. °1 = T f(x1)
2. A---..m A.3 °1 to A.3

3. m---+Ac B.2 (A2)0 to R2 A2 to (8-19)11
4. S--+m I,ll

5. T 6,1

Box 4.
1. L(I) °i =

2~ T f(x1) in R2
2. A---ilm A.3 °1 to A.3

3. T 5,1

Box 9.
1. m--..Q B.6 6x to R4

3

-77-

2. X e.I 6; f(X r) in R2

3. m~Ah A.l ~I = in R2

6x In Boxes 2, 3, and 4 the quantity ~ f(Xi) is needed. Rather than

code this separately in ~ach box, it is coded immediately preceding the

variable transfer ~. This is coded in Instructions 6 through 10 of Box 1.

The transfer instruction at the end of Box 8 transfers the control into In-

struction 6 of Box 1 for this computation is to be done for all traversals

in the induction. The coding of Boxes 2, 3, and 4 starts with the quantity

6
3
x f(x

i
) in R2.

There are 38 instructions in all. Pairing these into words gives 19

words of instructions.

The word cod1ngis:

1. a~Ac 000 A-iI'm 028

2. A---+m 029 m~Ac 021

3. S---..m 006 m--+Ac 021

4. m~Ah 029 S~m' 005

5. m~Q 026 X [J
6. T' [] A--+m 030

7. m---+Ac 023 S---+m 006

8. m-Ac 030 m~Ah 028

9. A~m 028 m--.Ac 029

10. m~Ah 024 m---.Ah- 025

11. e 018 m~Ac 029

12. m~Ah 024 A---..m 029

13. T' 003 L(2) 002

14. A--+m 030 m Ac 022

15. S--'m 006 T 008

16. [J L(l) 001

17. A---+m 030 T 001

18. m~Q 026 X (e.l)
19. m---.Ah 028 A---+m 028

20. stop

-78-

21. (A.l) 0 = (6)
o

22. (A.2)o = (16) o
23. (A.3)o =

24. (1) o

(13)
o

25. (I) o

26. 6;
27. (C.O) o
28. A.l

29. A.2

30. A.3

The transfer instruction A. must transfer the control at various

phases of the problem into Box 2, Instruction 1; into Box 3, Instruction 1;

and into Box 4, Instruction 1. As the coding was done the transfer was

fixed as a prime transfer since Box 2, Instruction 1, and Box 3, Instruction 1

each were on the right side of their respective words. The first instruction

of Box 4, however, naturally ~alls as the left side of an instruction word.

This meant that the left half of Word 16, the start of Box 4, was left blank

and Box 4 was started as the right-hand instruction. Perhaps by shifting

the arrangement of Boxes 3, 4, and 9 this could have been avoided.

A better method of avoiding this would be to use the half word substitu­

tion instruction. In Words 21, 22, and 23, where the numerical values of

A.i·s are stored, rather than storing just the addresses the following should

be stored:

21. (A.l)o = CB006cBOo6

22. (A.2) 0 = CA016CA016

23. (A.
3

) 0 = CB013CB013
Then by a half word substitution the order as well as the address of the trans­

fer instruction may be altered. Box 4 would now start with the left-hand in­

struction of Word 16 ~hich saves the previously wasted half word.

In the right-hand instruction of Word 18, the address C.I is inserted

in parentheses. C.I is a known address, but for the example no numerical

values were assigned for the C.i storage, nor was the number of intervals

I determined. For this reason the C.I is indicated in parentheses rather

than as a numerical address.

The addresses of the instructions in the word code are written as

three characters. Writing numerical addresses in this fashion tends to

avoid errors in transcribing the word code into the numerical code as

addresses are represented in the numerical code by three characters.

-79-

Problem 8
Although the computer operates with a fixed binary point, at

times it is advantageous to use a floating binary point. The float­

ing point method (hereinafter referred to as FPM) allows each number

to be expressed as a fraction and a characteristic (an exponent).

For example the decimal numb~r
1198.543210

or its equivalent

.1198543210 x 10
4

expressed in floating point notation would be

.1198543210, + 4

-80-

where the +4 is the positive exponent of 10 associated with the number.

Similarly, a binary number

1011.1001

expressed in floating point notation would be

.10111001, + 100

where the +100 is the positive exponent of 2 associated with the number.

The discussion here will pertain only to floating binary point

operation. Although the computer operates with binary numbers, there

are floating point schemes where the characteristic (exponent) may be

expressed to a base other than the base two, such as the more familiar

decimal base. Since the computer operates with binary numbers, it is

inherently easier to use the floating binary point scheme, or at least

a scheme where the base of the characteristic is a power of two, such

as the octal or hexadecimal base. For much of the floating point

operation a choice of expressing the characteristic to a base 16, 32,

or even 128 might simplify floating point procedures.

The need for FPM may arise where the ranges (the maximum and mini­

mum) of the quantities entering into the computation are not known with­

in reasonable limits; or where the range of the quantities is so great

that the scaling of numbers for fixed binary point operation causes un­

due loss of the Significant figures of the numbers. When a problem is

scaled for fixed point operation, the loss of significant figures caused

by the numbers becoming too small is as important a consideration as is

numbers becoming too large.

-81-

The use of the FPM is, in general, discouraged for must compu­

tation as it greatly slows down the effective computer speed. In

most problems, scaling may be accomplished without undue loss of

significant figures. In cases where the scaling is difficult to

accomplish, a scheme of self-adjusting scaling or the use of scaling

checks may be employed as an aid to scaling.

Addition is chosen as the example for FPM. The other operations

are accomplished by a somewhat similar scheme.

To add two numbers that are represented in floating point nota­

tion, the exponents must first be made the same. This may be shown

by the following decimal example:

+

These numbers are

.153, 3

.325, 2

.153 x 10~

.325 x 10
and for the numbers to be summed, the powers of 10 must be the same;

therefore,
3 .153 x 103 .0325 x 10

.1855 x 103

To do the operations in the computer, all numbers must be less

than 1. The smaller exponent must always be made equal to the larger

as this has the effect of making the number whose exponent is in­

creased, smaller, which keeps it less than 1.

The addition operation is accomplished by the computer as follows:

(i) The exponents are compared. If they are not the same, the

smaller exponent is increased. The difference between the

exponents is the amount by which the smaller is increased.

(ii) For each increase of the exponent by 1, the number should be
-1 - -1

multiplied by 2 • A multiplication by 2 corresponds to

the number being shifted right by!.

(iii) After the smaller number has been adjusted, the addition is

done. The exponent of the sum is the same exponent as the

numbers, unless the sum is greater than!. In this case

the sum is shifted right ! and the exponent is increased by!.

For example:

+ a = • 11111101, 100
b = .10110010, 011
s

The exponent of b is ! less than the exponent of ~; there­

fore b is shifted right !, and! is added to its exponent.

Now
a = 0.llllll0l, 100

+ b = 0 .01011001, 100
s = 1.01010110, 100

The sum of the two n~bers is greater than ! so ! is

shifted right ! and the exponent is increased by!.

s = 0.10101011, 101

-82-

In the computer, if the sum of the numbers is greater than !, it

cannot be adjusted simply by a right shift of 1 as indicated above

since the sign bigit propagates in a right shift. To avoid this dif­

ficulty, the addend and augend are each shifted right by ! and their

exponents increased by ! before the addition is done. Then no spillage

can occur in the addition.

Numbers to be operated on by FPM are adjusted into a standard
-1 form where the first significant bigit of the number is in the 2

bigit pOSition. All fractions F are therefore in the range

1/2 ~ F < 1

Floating point numbers have 27 Significant bigits which, with the sign

bigit, occupy bigit pOSitions 0 through 27. Positions 28 through 39

of the word are used for storing the exponent, and a number and its

associated exponent are stored in one word. The 27 bigits of the num­

ber correspond to about 8 decimal digits. The 12 bigits allowed for

the exponent are more than ample; however, 12 are used since the bigits

(28-39) may be conveniently manipulated by the s~m' instruction.

Positive and negative exponents are allowed, and the 12 bigits

(28-39) for expressing the exponent ~ give a range

- 2048 ~n < 2048

Negative exponents are represented as complement numbers. The first

bigit of the exponent is considered its sign bigit. The exponent ~ is
. -11 an integer and it is represented as n·2 •

We propose to form the sum of two numbers !: and ~ with exponents

ct and {j, respectively. The fractions a and b are in standard nota­

tion, that is

1/2~a, b<l

After the addition, the sum ! is adjusted to standard form.

As a first step of the procedure, !: and ~ are each shifted right

by ! and their respective exponents are increased by !. This insures

that the sum. s = a + b < 1.

-83-

The difference in the exponents is determined. It the difference

is greater than 27, the sum. is set to the value of the number with the

larger exponent. A difference of more than 27 ~ans that the smaller

exponent must be increased by at least 28, and the number associated

with the exponent must be shifted right the corresponding number of

places. Since the numbers are represented as a sign bigit and 27 sig­

nif~cant bigits, a number shifted right by 28 places can make no con­

tribution to the sum. If the difference in the exponents 1s less than

28, the smaller 1s adjusted to be equal to the larger. The sum of the

numbers is then formed and put in standard notation. We now examine

the flow diagram shown in Figure 16. The storage of the problem is:

A.I: a (0-27)a(28-39)
A.2: b (0-27»)9(28-39)
A.3: s (0-27) cr (28-39)

Box 1 shifts ~ and ~ right! and increases each of the exponents.

Box 3 discriminates on the difference of the exponents to determine which

exponent is the greater. The problem is arranged so that the number

with the larger exponent must be in location B.I and its exponent must

be in B. 3. If a ~ {j no changes of storage need be made. If a <)9
then the positions of !: and ~ are interchanged and~tl is put into B.3.
This is done in Box 4. Box 5 discriminates on the difference of the ex­

ponents to see if this difference is greater than 27. If the difference

is greater than 27, the sum is set to ~, the number with the larger ex­

ponent. If the difference is less than 28, the sum is
_I Cl_DI

s = a+2 f-Ib

and the exponent is the exponent of!:. A discrimination is made on the

sum s to see if it is in standard form. If it is not, the sum is shifted

0' = 2-10 to B. I

tf = 2-1 b to B.2

(a+ I) 2-11 to B.3

(~+ I) 2- 11 to B.4

-84-

2

1------....... ------; 8-2-1l=(ct-~)2-11 to B.5

B.I: 0'

B.2 : tf
B.3 :(a+1)2-11

R 4 : (~ 4- " ?-II

I B~5: '8· 2': il-

B.3: (j -2- 11

A.3: 5

B.I : 0

B.2: b

3

b

b' to B.I
0' to B.2
+1)2-11 to B.3

,
0-+0

o

o'-+b

B.3: (J; -2- 11 o 1- _____ _

B.5: 8 -2- 11

10

50 = 0 to A.3
9 '-----:--...... =11= --_..&....-_--,

4

6 5 to (O-27)A.3-......&.....---f S = Sj
(T to (28-39)A.3 (J" = (J"j

8 b to A.3

5i+1 = 25 i to A. 3 +
- -I

lSi I -2 ~---"""--""'-~_---J (jj+1 2- 11 =(~ -I)2- 11 to B.3

FLOATING POINT ADDITION

FIG. 16

-1 left until the first significant bigit is in the 2 bigit position.

This is done in Boxes 7 and 8. Box 9 combines the sum and its ex­

ponent and stores them in A.3.
The storage locations B.1, B.2, B.3, B.4, and B.5 are needed to

store inter.mediate values during the computation.

The coding is:

Box 1.

1. m-+Ac

2. R(l)
3. A~m
4. m~Ac

5. R(l)
6. A~

7. ~Ac
8. L(28)

9. a--.Ah

A. A---+m

B. m--.Ac

c. L(28)

D. a~Ah

A.1

B.1

A.2

B.2

A.1

a (0-21) ,d'(28-39) to R2

at = 2-1a in R2

at to B.1

b (0-27) ,(3<28-39) to R2

b' = 2-~ in R2

b' to B.2

a(0-27) ,a(28-39) to R2

a·2-11 in R2

(.a +1)2-11 in R2
-11 (cr+1)2 to B.3

b (0-27),~(28-39) to R2
IJ -11
1-1·2 in R2

(,8+1)2-11 in R2

-85-

E. A~m ({B+1)2-11 to B.4

Box 2.

1. m--+Ac B.3

2. m~- B.4

3. ~m

Box 3.
1. . C

Box 4.
1. m~Q

2. m~Ac

3. ~m
4. A--.m

5. m--.Ac

6. A~m

5,1

B.2

B.1

B.1

B.2

B.4

B.3

(a+1) .2-11 to R2

o = (cr -,8)2-11 in R2

o 1n R2

b t toR4

at to R2

o to B.5

a = b' to B.1

b = a' to B.2

Box 5.
l.. m--+AcM B.5

8 -ll
2. a-tAh -2·2

3. c l.0,1

Box 6.
l.. m~AcM B.5

2. R(8)
3. S~m 6,5
4. m--+Ac

5. R(n)

6. m~Ah
7. A~m

Box 7.
1. m---+AcM

2. a-+Ah

3· c

Box 8.

l.. m-+Ac

2. L(l)

3. A--+m

4. m--+Ac

5. a~Ah

6. A-+JI

7 . T

. Box 9.
1. m--+Ac

2. R(28)
3. S--+m'

4. Stop

Box 10.

l.. m~c

2. A--"'JI

3. T

B.2

[l ol J
B.1

A·3

A·3

B·3
-2 -ll

B.3
7,1

B.1

A.3

1,1

, 0 \2-11 to R2

(lol-28)2-11
1n R2

101·2-ll to R2

10 1.2 -l.9 1n R2

b to R2

2- lo1b in R2

8 = a + 2- loib
o

(811 to R2

18i l - 1/2 in R2

8
i

t:> R2

8 1+1 = 281 in R2

a.2-11 to R2

0.2-39 in R2

a to R2

a to (28-39)A.3

8 = a to A.3 o

-86-

-87-

In the coding of Box 1, the exponent is not cleared out of positions

28 through 39. These positions do not affect the answer. The numbering

of the instructions in Box 1 is done hexadecimally. There are E in­

structions which corresponds to 14 decimally.

In the coding of problems for the computer, the numbering is done

hexadecima1JYj therefore in all furtber examples the numbering will be

hexadecimal.

In Box 9, where ! and !! are combined,! is already residing in

A.3. !! is brought into R2 and shifted right by 28 so that it is in pOSitions

28 through 39 of R2. It is then sent to A.3 by means of a substitution in­

struction, and A.3 correctly contains

5(0-27), 0(28-39)
The floating point addition as set up would not be practical to in­

corporate into a large problem ~here many suCh additions are done. As

coded, 49 instructi ons are used, several of which are lengthy shifts. In

floating point routines, time becomes a determining factor and the routines

must be constructed with that in mind. There are several ways in which the

time involved in the present routine could be shortened. However, we are

interested at this time in demonstrating floating point procedures without

attempting to develop the most satisfactory scheme.

The present problem does not take into account a method of handling

a number that is zero. A way of doing this is not to allow an exact zero,

but to say that zero is to be represented as the fraction 1/2, with an

appropriate negative exponent. The negative exponent needs to be at least

28 amaller than the amallest exponent encountered in the problem concerned.

An addition would treat this number as zero in fOrming the sum. The fraction

part as 1/2 is suggested so that all numbers are represented in the stand­

ardnotation.

The code in final form contains 25 words since there are 49 instructions.

If the code starts at zero, 25 words would occupy addresses 0 through 19,

hexadecimally. B.l, B.2, B.3, B.4, and B.5 are the addresses lA through

lE, and A.l, A.2, and A.3 are addresses IF, 20, 21, respectively.

-88-

The code is:

O. m.-,..Ac OlF R(l) 001

1. A-4-m OlA m--+Ac 020

2. R(l) 001 A~m OlB

3. ~Ac OlF L(28) OlC

4. &.--:»Ah 001 A-:t-m OlC

5. m---:)o-Ac 020 L(28) OlC

6. a--..Ah 001 A~m OlD

1. m---+Ac OlC m~Ah- OlD

8. A~m OlE C OOC

9. m~Q OlB m~Ac OlA

A. Q~m OlA A--+m OlB

B. m~Ac OlD A~m OlC

C. m~AcM OlE ~Ah FE4

D. C 018 m~AcM OlE

E. R(28) 01C ~mt ooF

F. m--+Ac OlB R(o) 000

10. m~Ah OlA A~m 021

11. m~cM 021 a--+Ah COO

12. C 016 m~Ac 021

13. L(l) 001 A--+m 021

14. m---+Ac OlC a--+Ah FFF

15. A~m OlC T 011

16. m~Ac Ole R(28) 01C

.11. S--+mt 021 stop

180 m--+Ac OlA A--+m 021

19. T 011

lA.

lB.

lC.

lD.

lEe

IF. a,~

20. b,~
21. s,a

Instruction 5 of Box 6 becomes the right hand instruction of OOF.

The substitution instruction (Box 6, Instruction 3) that substitutes the

address into Instruction 5 of Box 6 must be an s~ml instruction as

is indicated. Instruction 2 of Box 6 must be changed to R(~8) rather

than R(8) to accommodate the s~m'.

-90-

Problem 9

The standard 40 bigit number (including sign) provides sufficient

accuracy for must computation; however, certain problems may arise

where added precision is necessary. To handle such cases, mul tiple

precision routines must be used. These routines effect the basic

operations with numbers that are 18, 111, or k·39 (k =1, 2 ••• K)

bigits in length. For the present purpose, which is to illustrate

such methods, only double precision (numbers 18 bigits in length) is

considered.

In the treatment of multiple precision numbers, some convention

must be adopted for the sign bigits of the auxi~iary components, the

principal component' having of course the same for.m as the standard

size numbers. A convenient pattern is to set to Q the sign bigits of

all auxiliary components. Hence, for the double precis ion number x ~ 0,

the representation is simply

x = x· + 2-39x"

where x· is the principal component and x" the auxiliary one.

For x < 0, it should be represented as a 18 bigit complement,

the sign bigit of the principal component -·being ! and that of the

auxiliary being Q by our convention. This implies that the two parts

of (2- x) are

2 - x·

1 -

- 2

x"

-39 and

The example chosen is double preciSion division, for it in itself

includes a double precision multiplication and subtraction. The division

is performed by forming first the reciprocal of the divisor to double

precision, followed by a double precision multiplication with the

dividend. We first consider double preciSion addition, SUbtraction and

multiplication.

A double preCision addition

s = x + y

is done by first adding the less significant components XII and y". The

sum may be greater than!. Recall that x" and y" each had a sign bigit

-91-

of Q so that a ! in the sign position of this sum indicates spillage

'rather than a ne gat i ve number. This spillage corresponds to a carry

into the 2-39 position of the more significant part of the sum; there­

fore, we may write

s" = x" + yll (mod 1)

The more significant part of the sum is
Sl

E
o

= x' + y' +E o

= (2 - 39 if carry present
o if no carry present

Finally, the double precision sum is

s = s' + 2-39s 11

In order to for.m a difference of two double precision numbers,

the complement of the number being subtracted is first obtained. An
addition is then performed as indicated above.

In the double precision multiplication, the product

p = xy

is to be formed. For simplicity of discussion, first assume x,Y3- o.
Algebraically, the multiplication is

p = (Xl + 2-39x lf)(y' + 2-39y ll)

= Xlyl + 2-39xlfy' + 2-39x'ylt + 2-78x lly "

Each term on the right bas 78 bigits, so we may write the product

(neglecting roundoff on the ext~me right) as

p = (Xlyl)1 + 2-39(X'y')1I + 2-39~"y')' + 2-39(X'ylt)I

pi = (Xlyl}1

pit = (Xlyl)1I + (Xlfyl)I + (Xlyll)I

P II is f'ormed first. In the partial. summing, carries may be produced that

must be added into the 2-39 position of' pl. The summing is done in two

steps as

with

s = ~x Iyl) II + {xlly'} I] (mod 1)

_ {1 if carry present
Eo - 0 if no carry present

-92':'

p" = [8 + (X'y") I J (mod 1)

E = {l if carry present
1 0 if no carrY present·

This completes the multiplication for· x, y ~ 0 and

pIt = (x Iy I)" + (x"y I) I + (Xlytl)1 _ E - E1 0

P '. = (x'y')' + 2-39(E + E l)
0

p = pi + 2-39p"

In order to treat the double precision multiplication when either

the multiplier or the multiplicand is negative, we refer to the algebraic

derivation of the multiplication. (See chapter on Binary Arithmetic.)

A product ~ is formed as r i
p = (~ + u)(2 + 1 + v)

o i-
where

(
1 if u

~o = 0 if u
is negative
is positive

The product expanded is

p = ~ ~ 2i + ~ + ~ v + u .!J 2i + u + uv
o i~ 0 0 i~

p = ~ v + 240u - ~ + u + uv + 240~ o 0

p(mod 2) = ~ v + 2 - u + u + uv o

If u is negative, ~ = 1 and a term v appears in the product. A
o -

correction of (2-v) is then necessary: For simple precision, if ! is

negative the terms (2-u) and ~ are generated during the multiplication

and precisely compensate each other; hence, no correction term is neces­

sary when! is negative. This compensation is not exact in double pre­

cision, and a small correction is required. Now in a double precision

multiplication

p = xy,

a correction term of

2 - Y

is necessary if ! is negative (indicated by the sign of Xl). All inter-

mediate products involving x· have a correction added, namely the comple­

ment of the multiplicand. The terms involved are

(X'yl)1 and (Xly")1

The term (X'y')" of course does not suffer any correction, and the

corrections as done by the computer are, respectively,

(2-y') and (2_Y")

Combining these two terms appropriately one gets the correction as

done by the computer for a negative multiplier !, namely

2 - y' + 2-39(2_y")

The true correction, however, should be

2 - y = 2 _ y' - 2-39 + 2-39(l_y")

-93-

The most significant part of the correction term is 2-39 too large. It

is adjusted by subtracting 2-39 from (x'y')'. The least significant

part of the correction term is ! too large. It'is adjusted by setting

the sign bigit of (X'y"), to O. (leSs pedagogically, but more concisely,
- 8

it may be said that the computer correction is too large by 2-3 , and

this is compensated by subtracting 2-39 twice.)

A negative multiplier which necessitates the above additional cor­

rections may be detected by examining the sign of (x 'y") , • L:. always

has a sign of 0; therefore, if

(X'y")'< 0, then x<:O

and 2-39 is subtracted from (x·y·)· and the sign of (X'y")' is set to O.

If (X,y"), > 0, then x> 0

and no correction is necessary. If

(X'y")' = 0

and if yU = 0

then ~ may be negative, and examining (x'yU). will not indicate this.

However, in such a case, the correction as done by the computer is the

precise one and no further steps are necessary.

When the multiplicand l is negative, the terms (x'y')· and. (XUy.).

suffer the standard correction by the computer (as a negative

~ultiplicand is indicated by the sign of y'). We have seen above that

the single multiplication process which forms the products (x·y·)· and

(X"y'). generates pairwise the terms

x', (2-x') and x", (2_X")

The first pair compensate precisely; the second pair is really

2-39(x lI+2_XU) = 2(2-39)

As before, this quantity must be subtracted from the collection to

obtain the precise multiple product, and again this is accomplished

by subtracting 2-39 from the more significant part and ! from the

less significant part. If

(x tty') '<: 0 then y' <: 0

and 2-39 is subtracted from (x'y')' and the sign of (xlfy'), is set to O.

If (x"y')' ~ 0 then no correction is needed.

-94-

A double precision product involving all necessary correction terms

is done as follows:

Form (X'y")I. If
E = 2-39

0
(x'y")' < 0

then set sign of (X'ylf), to O.
E

0
(x 'y") ':::' 0 = O.

Form (x"y')'. If

(x"y')' < 0 E1 = 2 -39

then set sign of (x"y') , to O.

(x"y'), :::. 0

Form (x 'y')' and (x'y') It. Then form. the

s :: (x'yrt), +

El =
sum.

(x"y') , •

O.

If

p" is formed as

If

p' is formed as

and

s:::,l

s<l

pIt =

p"~ 1

plt< 1

p' =

E2 :: 2-39 then set sign of ! to 2.
E2 = o.

(x'y') 11 + s.

E'3 = 2-39 then set sign of pIt to O.

E3 :: O.

(x 'y') I - Eo E + E + E - 1 2 3

p = p' + 2-39p lt.

We now return to the division process. The double precision quotient

Q = x/y
is to be formed. As a first step the reciprocal of l is obtained to 78

figures. The reciprocal of y

Z o

Zi+l

Zi+l
lim

i.-,. 00

is found by the iterative scheme

= l/y'
2

= 2Zi - yZi

= l/y.

Such a scheme is error-squaring; therefore if the guess Z is precise
o

to 39 bigits, Zl is precise to 78 bigitso The scheme is shown to be

erro~quaring by the following:

Multiply both sides of the above equation by -y. This gives

2 2
-yZi+l = -2Zi y + Y Zi

Adding! to both members gives

1 - yZi+l =

=

2 2
1 - 2Zi Y + Y Zi

(l-yZi) is the error in the i th approximation. The error (l-yZi+l) is
th the error of the (i+l) approximation whiCh as indicated above is the

square of the error of the ith approximation.

-95-

The reciprocal of Z cannot be determined directly as it is greater
n+2 than 1. Hence, the reciprocal of the scaled quantity 2 y is found where

1/2:E:. 2\r1< 1, hence 1(2n+2Y)-1< 1.

The unsealed quotient is obtained in two steps. First ~ may be multiplied

by 2n, inasmuch as Ixl <: IY); after the division a left shift of two is

then performed.

Zo is precise to 39 figures; consequently Zl is precise to 78 figures.

Zl involves a double precision multiplication in the term

2ny • Z2
o

The subtraction

Eq. (1)

is not a true double precision subtraction as 2Z contains just 39 figures. o
A double precision complement of 22·2nyZ 2 must be taken however. Note

2 0
that a factor 2 is incorporated into the subtrahend in the above subtraction.

-96-

This is necessary because of the 2-2 factor introduced in forming Z in
Eq. (1). Using Zl' the quotient . 0

Ql = Zl · x

is formed by a double precision multiplication. Then

Q = 22Q
1

Since Q is formed by a left shift of g, only 16 bigits are determined

in Q rather than the desired 78.
We now discuss the flow diagram of Figures 17 and 18. Boxes 1 and

2 of the flow diagram adjust ~ and l so that

," 1/2~ly)<1

Box 4 stores l and Z20 into the four appropriate locations to be

used by the double pre~ision multiplication routine. Since two double

precision multiplications are required and since they are at two different

locations on the flow diagram, the multiplication routine is arranged 60

that it can be used from any of several places. Four locations are re­

served for the factors in the multiplication and upon completing the multi­

plication a variable remote connection is set as an exit point from the

routine. Box 4 also sets the exit from the multiplication as~= ~
which corresponds to the first instruction of Box 5.

Box 5 forms Zl and then sends Zl and ~ to the appropriate locations

for the multiplication routine, and the exit is set as ® = ® which

corresponds to the first instruction of Box 6.
Box 6 shifts ~ left by g to give the desired Q.

The multiplication routine is contained in Boxes 1 through 14, num­

bering hexadectmally. The boxes follow the multiplication procedure as

outlined; hence, no further discussion is necessary.

The storage of the problem is:

A.I: Xl

A.2: XU A.4: yU

The number 2-39 is needed, and it is stored in A.5 as

A.5: _2- 39

The addresses d 1 and a 2 need to be stored. They are stored as posi­

tion marks at addresses A.6 and A.1.

A.6: «1'1)0

A.1: (ct2)0

6

Q = 22QI

Q' to B.I

a" to B.2

A.I : x~
A.2:x~
A.3:y~

A.4: Y~'

____ B.I : 0;

B.2 :Q'j

QI; : p"

2

Yntl =2Yn

b
1---oII __ ~

Yntl to A.3

Y~tl to A.4
xn+1 : 2x n
x~+1 to A.I

x~+ I to A.2

2 2
~I : 2262 Yn 20

u
l

: z; to B. I

1--oI __ ~ u": ll; to B.2

Vi: Xl to B.3

v": x" to B.4

5

DOUBLE PRECISION DIVISION

FIG. 17

2-2
~O:-I- to B.5

Yn

I I t B I u : Yn 0 .

u
ll

: Y~ to B.2

-91-

3

4

, 2 I

v :(i!o) toB.3

VII: {i!~)11 to B.4

@:@

(Yn z~)1 = pi

(~2)" = II Yn 0 p

1
I
I
I .. - 2 II B.21 (Yn 20)

B.5: 20

13

(u' V")' to C.3
B.I :Ul

B.2:u"
B.3:v l

B.4: v"

----~~ ~~.-~

1 +
Set exit (a) to (aj)

t--...a.-.~--t (u' v') I to C.I I--~--t

(u'v')" to C.2 '-------II

C

EO: 0 to C.5

(U' V")' 0 5 to C.3

EO: - 2-39 to C.5

8

(u" v')' OS to C.4 5: (u" v')' + (u' v')" to C.2 +-------:-___ t----_-4I--I I EI : EO-2-39 to C.5

C.4: (u"v')'

9

C.2:{u'y')"
C.3 :(U'y")' ·C.5:EI _______ ----.. __ -------1 (u" y')' to C.4

-98-

C.3 t (u' y")'

C~5: EO

14

EI : EO+O to C.5

E
F 10

(5) OS to C.2 .--__ -----,...--__ --1 p": 5+{u'v")' to B.2
E2 : EI + 2-39 to C.5 I

l

C.2:5
C.3 1 (u' v")'
C.5:E2

B.I: p'
B.2: p"

I
I
I

C.I .(u'v')'
C.5:E3
B.2 I p"

(p") OS to 8.2

E3 : E2 + 2-39 to C.5

1----- -

12

a t---------=-I------__ ~--------~ pi: (u' v')' + E 3 to B.I

DOUBLE PRECISION DIVISION

FI G. 18

d

-99-

Ten words of intermediate storage are needed for the computation. This

storage is designated as

B.1 C.1
B.2 C.2
B.3 C.3
B.4 c.4
B.5 C.5

The coding is:

Box 1

1. ~AcM A.3 I Y~ 1 to R2
2. a~Ah -1/2 (Y~ I- 1/2 in R2

3. C 3,1

Box 2

1. m--+Ac AG4 y" n to R2

2. L(l) 2y" in R2 n
3. ~Q A.3 y' to R4

n
4. L(1) 2(y' + 2-39y ") in R4 and R2 n D
5. Q---4m A.3 Y'n+1 to A.3

6. R(1)

7. 00

8. A~m A.4 II

Yn+1 to A.4

9. m~Ac A.2 x"
n

to R2

A .. L(1) 2x" n in R2

B. m--+Q A.1 x' to R4 n
C. L(l) 2(x' + 2-39x") in R4 and R2 n n
D. Q-+m A.1 x' n+1 to A.l

E. R(l)

F. DS

lOG A~m A.2 x" n+l to A.2

11. T 1,1

Box 3

1. a-.Ac 1/4 1/4 to R2

2. + A.3 z = 1/4 • y' in R4
0

3. Q~m B.5 Z to B.5
0

Box 4
1. m~Q

2. Q~m

3. m--7Q

4. Q~m
5. m~Q

6. XI

A.3

B.l

A.4
B.2

B.5

8. Q~m B.4

9. m~Ac A.6

A. T

Box 5
1. m~Ac B.2

2. L(l)

3. m-+Q B.l

4. L(2)

5. Q~m B.l

6. R(l)

1. DS

8. A~m B.2

9. m~Ac- B.l

A. m~Ac A.5

B. m~Ah B.5

c. m~Ah B.5

D. A---+m B.l

E. m~Ac- B.2

F. DS

10. A~m B.2

11. m~Ac A.l

12'. A~m B.3

13. m~Ac A.2

14. A~m B.4

.15. m~Ac

16. T

y' to R4

y" to R4

z to R4
o

Xi to R2

XU to R2

y' to B.l

yrt to B.2

to B.l

in R2

ZI to B.l

zit to B.2
1

Xl to B.3

x" to B.4

-100-

-10l-

Box 6
1. m~c B.2 Q"

1
to R2

2. L(l) 2QII
1 in R2

3. m~Q B.1 Q' 1 in R4

4. L(2) Q' in R4, 2Q" in B2

5. Q-7m, B.l Q' to B.1

6. R(l) Q" in R2

7. DS

B. A~m B.2 Q" to B.2

9. stop

Box 7
1. S~m 12,4 (a.) in R2 ai to (B-19)11,4

]. 0

2. m--+Q B.l u' to R4

3. X' B.3 I (u'v')' in R2, (u·y·)" in R4

4. A--+m C.1 (u'y')' to C.1

5. Q--.m C.2 (U·y·)" to C.2

BoxB
10 m~Q B.1 u' to R4

2. X B.4 (U·yll)., in R2

30 c 9,3

Box 9

1. m~ A.5 Eo = _2-39 to R4

2. DB (u 'ytl) 'DS in R2

3. A--..m C.3 (u'vtl). to C.3

4. Q---+m C.5 Eo to Ca 5

Box A

1. m~Q B.2 U" to R4

2. X B03 (u"y') • in R2

3. C B,3

-102-

BoxB

1. m~Q A·5 -2 -39 to R4
2. DS (unv') IDS inR2

3. A~m c.4 (u"v') I to c.4
4. m-+Ac C.5 Eo to R2

5. m~Ah 800 El = Eo + (contents of R4)
6. A~m C.5 E1 to C.5

Box C

1. m~Ac c.4 (unv') , to R2

2. m~Ah C.2 S = (u"v')' + (u'v l)" in R2

3. A----.m Co 2 S to C.2

BoxD

1. C F,l

BoxE

1. DS (s)ns in R2

20 A~m Co2 S to C.2

3. m~Ac C.5 El to R2

4. m~Ah- A·5 E2 = E + 2-39 in R2
1

5. A--.m C·5 E2 to C.5

BoxF

1. m~Ac C.2 S to R2

2. m~Ah C. 3 pIt = s+ (u 'v") I in R2

3. A--+m Bo2 pIt to B.2

Box 10

1. C 12,1

Box II

1. DS (p")DS in R2

2. A--!)-m B.2 pit to B.2

3. m--+Ac Co 5 E2 to R2

4. m-+Ah- A·5 E3 = E + 2-39 in R2
2

5. A~m C·5 E3 to C.5

-103-

Box 12

1. m~Ac C.l (Xlyl)1 to R2

2. m~Ah C·5 pi = (Xlyl)1 + E3 in R2

3. A~m B.l pi to B.l

4. T [a]

The double precision shift in Box 2 is done by placing twice the

less significant part of the number into R2. Its first significant bigi t

is then in the sign position of R2. The more significant part of the num­

ber is put into R4. A left shift of I now shifts the 78 bigits correctly

as the Sign bigit position of R2 fi~ into 2-39 bigit position of R4.

The quantity in R4 is stored. The quantity in R2 is then shifted right!

and the sign bigit is set to Q. This is done to keep the l~ss significant

part of the number, the part in R2, in correct form.

In Box 5, the complement of 22yz2 iS needed. Recall that the comple­
o

ment of a 78 bigit number is

2 _ 22yZ 2 = 2 _f(22yZ 2), + 2-39(22yZ 2)~
o ~ o. 0 J

= 2 - (22yZ 2), _ 2-39 + 2-39 ~ _ (22yZ 2)"J
o 0

Since the complement is to be added to a standard 39 bigit number, the

less significant part has only to be complemented as indicated and sent

into storage. The more significant part is complemented as indicated

and added to the 2Z and the result is sent to storage.
o

In the multiplication routine (UIV")I and (U"VI)I are formed using

multiplication with round-off. This accounts for the possible contri­
-78 butions from the neglected terms involving the coefficient 2 • This

does not, however, always give a correct round-off.

Note that Box 13 is not coded. It is not necessary to code it if

the conditional transfer of Box 8 goes to Box 9) Instruction 3. Since

{U'V")I is formed as a multiply with round-off, R4 contains Q.. This 0

is set to E and Instruction 4 of Box 9 stores it correctly. Instruction
o

3 of Box 9 stores the (u I v") I • Similarly, Box 1q is not coded and the

conditional transfer of Box A transfers into Instruction 3 of Box B.

Note the last two instructions of Box 4 and Box 5. Box 4 brings

(~l)o into R2 and then transfers to the multiplication routine. Box 5
brings {(f 2)0 into R2 and then transfers to the multiplication routine.

-104-

The first instruction of the multiplication routine then substitutes

the address ct'l or ct
2

as the case may be, into the transfer instruc­

tion at the end of the multiplication routine.

There are, in all, 107 instructions in the code; which is 54 words.

The code is to start at Word OJ therefore Words 0 through 35, hexadecim­

ally, are the code. Words 36 through 3C are A.l through A.7, respectively.

Words 3D through 41 are B.l through B.5, and Words 42 through 46 are C.l

through C.5, respectively.

The coding paired into words is:

o. m~AcM

1. C

2. L(l)

3. L(l)

4. R(l)
5. A~m
6. L(l)

7. L(l)

8. R(l)
9. A~m
A. a~Ac

B. Q---7m

C. Q~m

D. Q~m

E. XI

F. Q~m

10. T

11. L(l)

12. L(2)

13. R(l)
14. A~m

15. m~Ah

16. m~Ah

17. m~Ac-

18. A---+m

19. A~m

lA. A--+m

lB. T

lC. L(l)

038

OOA

001

001

001

039

001

001

001

037
200

041

030
03E

041

040

020

001

002

001

03E

03A
041

03E

03E

03F
040

020

001

S-7Ah

m~Ac

m~Q

Q~m

OS

. ...
m~Q

m~Q

m~Q

A~m

m~Ac

m---:,.Ac

m---+Q

~m

DS

coo
039

038

038

000

037

036

036

000

000

038

038

039

041

03F

0313
03E

03D

030
000

m~Ac- 030
m~Ah 041

A~m 030
OS 000

m~Ac 036

m-4Ac 037

m-4Ac 03C

m~Ac 03E

m~Q 030

-105-

lD. L(2) 002 Q~m 031>
lEe R(l) 001 DS 000

IF. A~m 03E Stop

20. ~m 035 m~Q 031>
21. X' 03F A~m 042

22. ~m 043 m~Q 03D

23. X 040 C 025
24. m~Q 03A DS 000

25. A~m 044 ~m 046
26. m~Q 03E X 03F
27. c· 028 m~Q 03A
28. DS 000 A~m 045
29. m~Ac 046 m~Ah 800
2A. A~m 046 m~Ac 045
2B. m~Ah 043 A---::,.m 043
2C. C 02F DS 000
2D. A---.:;m 043 m-4-Ac 046

2E. m~Ah- 03A A---+m 046
2F. m~Ac 043 m--4-Ah 044

30. A~m 03E C' 033
31. DS 000 A--+m 03E
32. m-4Ac 046 m~Ah- 03A
33. A-4m 046 m~Ac 042

34. m~Ah 046 A--+m 031)

35. T' []
36. A.l x'

31. A.2 x"

38. A.3 yl

39. A.4 y"

3A. A.5 -2 -39 FFF ••• FF

3B. A.6 (a 1)0 0001000010

3C. A.7 (cr 2)0 OOOlBOOOlB

3D. B.l 42. C.l

3E. B.2 43. C.2

3F. B.3 44. C.3
40. B.4 45. c.4
41. B.5 46. C.5

-106-

Problem 10

The problems previously discussed have all been of an analytical

character where the efficiency of solution is dep~ndent upon the speed

and flexibility of the arithmetic unit. We now consider a problem of

a combinatorial nature which falls into a class of problems where the

efficiency of solution depends on the flexibility of the logical con­

trol. The problem is a simple sorting procedure.

A set of N numbers, subject to no degree of monotony whatever, is

to be sorted into a monotonic decreasing sequence. In order to simplify

the discussion, we assume that the number of numbers to be sorted is

N = 2
P

where P is a positive integer.

The sorting is accomplished by repeated meshings of groups of num­

bers. Meshing is the process of combining groups of elements (numbers)

in a prescribed fashion. For the present sorting procedure we are

meshing groups two at a time. Two groups, each monotonic decreasing,

are meshed into a single monotonic decreasing group; e.g., groups sand

~ of length £ and ~ elements, respectively, (where the elements of S

and ~ are in a monotonic decreasing sequence) are meshed into a group

v=e+~
of length b + c elements where v is also a monotonic decreasing sequence.

Since we have restricted the N numbers to be sorted to be

N = 2
P

we may without further loss of generality say that any two groups to be

meshed are to contain the same number of elements.

The procedure is as follows: Consider the original sequence of num­

bers as N groups, where each group contains one element. These N groups

are then meshed two at a time into N/2 groups each containing two elements.

The N/2 groups are meshed two at a time into N/4 groups each containing

four elements. This meshing process is continued until the sorting is

complete (one group of N elements is formed). In each of the meshings

the monotonic decreasing sequence is preserved. Hence, for the various

meshings there are N/2i groups of 21 elements each, where i (=1,2···N/2)
specifies the particular meshing.

The meshing of two groups s and ~ is done as follows. Each

group contains J numbers and the numbers xi belong to s, and y. be-
- J

long to ~. The groups are monotonic decreasing so

xi::::' xi+l and Yj~ Yj+l where i,j (=1,2···J)

The groups s and ~ are to be meshed into a group 11 wi th elements

called v where
'n

v n:;::' v n+l n (=1,2·· ·2J)

The elements xl and Yl are compared. Then

if (1) xl~ Yl , vI = xl

or if (2) xl < Yl , vI = Yl

If (1) holds, then x
2

is compared with Yl • Then

if (3) x2 ~ Yl , v2 = x2
or if (4) x2 < Y

1
, v2 = 11

However, if (2) holds rather than (1) , Xl is compared with Y2 • Then

if (5) >' x l -- Y2, v2 = Xl

or if (6) Xl < Y2, v2 = Y2

The meshing of elements Xi and Y j follows the above:

if (a) Xi ~ Yj , v = Xi (n = i + j - 1) n

or if (b) Xi < Yj , v = Yj n
If (a) holds i and n are increased by ! and the process is repeated.

If (b) holds ~ and ~ are increased by ! and the process is repeated.

The meshing continues until either all of the numbers Xi or all of

the numbers Y j are incorporated into 71 • The remaining elements of

-1.0'(-

the non-exhausted set are then directly included as the last elements

of II •

A meshing of two groups, each containing J elements, needs at most

2J - I comparisons of the elements to complete the meshing.

The number of elements involved in a sorting may often exceed the

capacity of the electrostatic memory; hence, we consider the problem

which requires the magnetic drum. However, we further simplify the dis­

cussion and assume that each drum track contains 64 (=26) words rather

than the actual 50 words.

Once the sorting procedure given here is understood, it is

easily generalized to any number of elements and to any number of

words per drum track; e.g., 50 in our instance.

The ! numbers subject to no degree of monotony whatever are

stored on the drum on M consecutive tracks. The numbers on the drum

are considered as two sets, Xl and YI , where Xl is the first N/2

numbers on the drum and Y
I

is the remainder. Xl and YI each contain

-108-

N/2 groups of one· number. The groups of Xl are meshed with the groups

of YI to form a set VI of N/2 groups of two numbers each. To accomplish

this initial step, the first track (64 numbers) of Xl and the first

track of YI are brought into the memory. The first number of Xl is

meshed with the first number of Y
I

and the two are stored properly

in the electrostatic memory. This is repeated with the second elements

of the sets, and so on. When 64 numbers have been meshed into groups

of two, the 64 numbers are sent to the first drum track of the second

set of M tracks on the drum; when 64 more numbers have been meshed

they are then sent to the drum, and so' on, until the entire set Xl

has been meshed with Yl • Whenever the 64 numbers from either the

set Xl or YI have been exhausted, another track of 64 numbers of the

appropriate set is brought into the memory. The set VI consists of

N/2 groups (each of two elements) where each group is a monotonic de­

creasing sequence.

The set VI is now considered as two sets X
2

and Y2, where X2 is

the first N/2 numbers and Y2 the remaining numbers. X2 and Y2 each

contain N/4 groups (of two elements) and each group has the desired

monotony. The groups of the set X
2

are meshed with the groups of the

set Y2 to form a set V2 of N/4 groups (of four elements) where each

group is a monotonic decreasing sequence.

We then have the following inductive process: Two sets of

numbers X and Y each contain N/2P groups (of 2P-1 elements). The
p p

groups of X are meshed with the groups of Y to form the set V ,
P P P

where V contains N/2P groups (of 2P elements). The set X I is
P ~

-109-

the first N/2 numbers of V ., and Y 1 the remal.nl.ng numbers. XP+l and
p+l p p+ p

Yp+l each contain N/2 groups (of 2 numbers).

For a further discussion and elaboration of the sorting procedure

we draw the flow diagram.

The flow diagram contains three induction loops. They are:

(i) the induction concerned with the mesh cycles

(ii) that concerned with the meshing of a group within the sets

during any mesh cycle

(iii) that concerned with the transfer of elements between the

memory and the drum

Eleven distinct indices (variables of induction) are needed in

the flow diagram to describe the inductions.

The index ~ (=O,1,2···P) describes the induction over the mesh

cycles. It is used in connection with the sets X and Y. It keeps
p p

account of the mesh cycle. E has no relevance other than as an index,

and it need not be stored.

The index ~ (=1,2···N), where N is the total number of elements

being sorted, indicates the current number of elements that have been

meshed during any mesh cycle~. It is also used in a discrimination
th to indicate the completion of the p mesh cycle; therefore, n is a

stored quantity.

The indices !, J, and k describe the induction concerned with the

meshing of the groups within the two sets.

The index ~ (=1,2,22 .•.) indicates the number of elements in

the groups of the two sets X and Y. k and ~ are simply related:
p p

during mesh cycle p the number of elements in the groups within X
p

and Y is k = 2P •
P
The indices i and j indicate the elements x. and y. of the groups

- l. J
within the sets X and Y. The indices i and j are used in discrimina-

p p --
tions with k to indicate the completion of the meshing of any two

groups within the sets; hence, !, j, and k are all stored quantities.

Rather than using i and J as indices which range over i,j (=1,2 ••. k),

.~e let! and.~ be such that i,j (=l,2· •• N/2). That is, ! and ~

range over the total number of elements of X and Y. The dis-
. p . p

crimination of! and ~ cannot then be done directly with the index

-110-

~, since they are not reset to ! at the time they become equal to !;
·in fact, they continue increasing until they ·reach N/2. To accomplish

the desired dis,crimination, an index K (=k, 2k, 3k •• eN/2) is· intro­

duced; and when

1 ~ i, j ~ k

k + l,::::i, j ~2k

and so on, until K = N/2.

then K:· k

then K ='2k

At the completion of each mesh cycle ~, the in~ex ~ is doubled;

i.e., when E. is increased by ! to become ~, then k = 2P is increased

to k = ~l. This index k is used to determine the completion of the
" ,- . .. P

sorting. The sorting is complete when p = P, at which time k = 2 = Nj

hence, a discrimination on k - N becomes positive for the first time

wheJ} k = ~, and the process is terminated •

. The indices ~, ~, and ~ are the indices describing the induction

concerned with the drum and i', j', n' (=1,2·· ·64). The indic·es i' and

jl indicate when the 64 elements Xi or Yj which are in the memory are

meshed. They also keep account of which two elements of the 64 elements

Xi and Yj ~re being meshed. Whenever i' or j' reaches 64, a new trac~

. of elements Xi or· Y j' respectively, is brqught from the drum into the

memory. The index n 'indicates the Dumber of elements x. and Yj that .
1. I

, I

have been meshed and stored in locations in the memory. Whenn' reaches

its maximum value, the 64 elements which have been meshed and stored

in the electrostatic memory are subsequently sent to the drum. The in­

dices i', j', and n' are needed in discriminations and in: addresses;

hence, they are stored numbers. Tqer~ are three indices concerned with

the drum 'Which are, in themselves, addresses. They are Tx, Ty, and Tv.

Tx is the· addres,s of the drum track which contains the 64 elements of

the set X that are to be sent into the memory. Ty is the correspond-. p .
ing drum address forY. The index Tv is the address of the drum track

p
upon which the 64 meshed ,elements are to be stored. Now that we have

d~f1ned the necessary indices, the flow diagrBm.of Figure 19 may be

examined in detail.

-111-

In what follows, decimal and hexadecimal numbers both enter into

the discussion. The hexadecimal numbers usually refer to instructions

and box numbers, hence entering only in the role of "labels" or "names."

The decimal numbers are usually used where the numerical character of

the number is significant. However, at places where there might be

confusion if the number is intended to be decimal it is underlined.

Boxes 1, 2, and 3 set up the necessary indices. Boxes 4, 5, 6, 7,
8, 10, and 11 are the boxes of the meshing of the groups within the sets.

Box 12 is an alternative box that indicates when the N elements have all

been meshed. Boxes A, B, C, D, E, and F are the boxes concerned with the

transfer of numbers between the drum and the memory. Boxes 13, 15, and

16 set up necessary values at the completion of one meshing of the sets

X and Y in order to start the next cycle in the meshing. Box 14 deter-
p p

mines when the entire process is completed.

Box 1 sets the index k = (1) since the first meshing is in groups
o

of one element. It sets the initial drwn addresses for Tx, Ty, and Tv.

It also sets the address ® = @. This is discussed in more detail

when Boxes 15 and 16 are discussed.

Box 2 sets up the indices k, j, n, ii, j', and nl. These indices

are all set to (1). This box also sends the contents of tracks Tx and
o

Ty into the memory.

Box 3 sets up an index K = k.

Box 4 is the alternative box that indicates when all of the elements

Y
j

of a particular group of the set Yp have been meshed. Boxes 5 and 7

indicate when all of the elements x. of a particular group of the set X
1 P

have been meshed. If the elements of the two groups have not been ex-

hausted, the control proceeds to Box 10 to determine which is the larger,

x. or y .•
1 J

If x. ~
1

i and i' are

Y., from Box
J

10 the control proceeds to Box 11, and v = x .•
n 1

increased by (1). If X.<: Y., from Box 10
o 1 J

the control pro-

ceeds to Box 8, and v = y.. j and j' are increased by (1) •
n J 0

If all of the elements of a particular group of the set Yare meshed
p

and stored, and the corresponding elements of the set X are not, the dis­
p

crimination of Box 4 is negative and that of Box 5 is still positive;

hence the control proceeds to Box 11, where the element v = x. is stored.
n 1

Drum tracks

Co to CO+M/2 ;X P
Drum tracksTx : xP (xI' x2' .. ,'. XN/2)

Drum tracksTy: y P (YI 'Y2' YN/2)

0.1; k

-112-

Co+M/2+1 t~ CotM; yP
I
I

a I
,..---~ I

V.h': vn

I
(1)0 to 0.1

Tx= coto 0.2
b

I
I (I)oto 0.5,0.6,0.7, 0.8,O.9,0.A ,

Ty= Co + M/2 to 0.3

Tv = dO to 0.4

@=@j)

K+k to O. B

Vn = Xi to V.nl

I + I to 005
11+ I to 0.8

t-II.....,--..... -f Drum Tx to Xol - X064
"--_..... Drum Ty to V.I -V.64

0.5:; 0.8:;1
0.6: j 0.9: j'
0.7;n O.A:n'

/I

8

to V.n l

(1)0 to 0.9
~-----t __ ----I Ty+1 to 0.3

~~--I

OrumTy+1 to Vol-V.64

,..---------......,0 h

9

(1)0 to 0.8 Tx+ I ~ Tx
Tx + I to 0.2 I--..... ~ I ~ i I I--__ -...Jo. __ ~

Drum Tx+ I to X.I- X.64

(1)0 to O.A
VI to v64 to Tv (Drum)

Tv + I to 0.4

F

A SIMPLE SORTING PROCEDURE

FIG. 19

2

-113-

This condition holds until all of the elements of the particular group

of the set X have been incorporated into the meshed sequence. A
p

similar condition holds for the entry of the control from Box 7 to

Box 8. In this instance, the elements of a particular group of the

set X have all been exhausted and those of the set Y have not. p p
The Alternative Box 12 determines when N elements have been meshed.

The control proceeds to Box 13 when this obtains, and the control pro­

ceeds to Box 4 when the meshing is not complete.

The Alternative Box A determines when 64 elements of Y have been
p

meshed. If they have, Box B sends 64 new elements y. into the memory_
- J

Box C and Box D determine if 64 elements of the set X are exhausted,
p

and if they are, 64 new elements xi are sent to the memory.

Box E determines when 64.elements have been meshed and stored in

the memory. Box F subsequently stores the 64 elements onto the drum.

Box 14 terminates the sorting process when k = N. However, if the

sorting is not complete, Box 15 or Box 16 sets up the new initial drum

addresses for subsequent meshing. Recall that in Box 1 the address

® = ® was set up. This means that upon the first traversal through

Box 14 the control proceeds to Box 15 as is desired. In Box 15 the ad­

dress ® = ~ is set up so that on the next traversal of Box 14 the

control proceeds to Box 16 where the addreSS® = ® is restored, and

so on, until the sorting is complete. Upon the completion of either

Box 15 or Box 16, the control returns to Box 2, where the i, j, n, ii,

jl, and n l indices are reset to (1) in order to repeat the induction
o

process.

The storage needed for the problem is as follows: The quantity

(1) is needed and
o

B.l: (1)
o

The four initial drum track addresses are stored, scaled by 2-27 and

B.2: -27 c -2
o

(c + M/2)2-27
o

d _2-27
o

(d + M/2)2-27
o -27 The quantity 1-2 is needed for altering the drum track addresses and

B.6: 1-2-27

-114-

Three memory addresses are needed. They are base addresses for the

storage of the numbers Xl.' y , and v ; and they are designated (X.O) ,
j n 0

(Y.O) and (V.O) • The storage is o 0

B.1: (X.O)
o

B.8: (Y.O)
o

B.9: (V.O)
o

where the address (X.il) = (X.O) + (i l), and X.i': x .• Similarly,
000 1

Y.j': Yj and V.nl: v. The number (64) is needed for discriminations and n -0

B.A: (64)0

The total number of elements N is needed and

B.B: (N) o
. The drum instructions occupy full words where bigi ts 28-39 specify an

address to which the control transfers upon completion of the drum in­

structions. The addresses for these transfers need to be stored. Four

such addresses are needed and they are

B.e: (Box 12, 1)2-39

B.D: (Box 2, 10)2-39

B.E: (Box 3, 1)2-39

B.F: (Box E, 1)2-39

The addresses ® and@ are needed. They are stored as position marks in

B .10 : (fj 1) 0

B.ll: ({32)0

Eleven words of intermediate storage a:ce needed during the course of the

computation. They are designated as D.l, D.2 ••• D.9, D.A, D.B. The

required electrostatic

tions; the drum storage

The coding is:

Boxl

1. m~Ac B.I

2. A~m D.I

3. m~Ac B.2

4. A~m D.2

5. m~Ac B·3
6. A~m D·3
1. m~Ac B.4

8. A~m D.4

storage for the numbers being meshed is 192 loca­

is 2M tracks.

(1) to R2 o

c • o
2-27 to R2

d • 2-27 to R2
o

to R2

(1) to D.1 o

T = c • x 0
-21 2 to D.2

T = (c + M/2)2-21 to D.3 y 0

-21 T = d • 2 to D 4 v 0 •

-1l5-

Box J. (Cont.)

9. m---;)oAc B.I0 ($J.)o to R2

A. S-4-m J.4,4- {3J. to (8-19)14,4

Box 2

1. m---;)-Ac B.l (1) to R2
0

2. A~m D.5 (1)
0

to D.5

3. A~m D.6 (1) to D.6
0

4. A---=>-m D.1 (1) to D.?
0

5· A~m D.8 (1) to D.B
0

6. A~m D.9 (1)
0

to D.9

1. A~m D.A (1) to D.A
0

8. m---+Ac D.2 T to R2 x
(Box 2,10)2-39

9· m~Ah B.D T + in R2
x

A. HS~m 2,F

B. m~c D.3 T to R2
y

(Box 3,1)2-39 C. m~Ah B.E T + in R2
y

D. HS~m 2,11

E. ~m X.l (xl to x6.!!.) to L1. to x.64
F. [Tx 2,10J

10. D~ Y.l (Yl to Y64) to Y.l to L.6!f:
11. [T 3,1]

y
Box 3

1. m~Ac D.l (k) to R2
0

2. A~m D.B (k) to D.B
0

Box 4
1. m~Ac D.B (K) to R2

0

2. m---WUl- D.6 (K-j) in R2
0

3. C 1,1

Box 5

1. m~Ac D.B (K) to R2
0

2. m~Ah- D~5 (K-i) in R2
0

3. C 11,1

Box 6

1. m--+Ac D.B (K) to R2
0

2. m~Ah D.I (K+k) in R2
0

3. A--.m D.B (K+k) to D.B
0

4. T 4,1

Box 7
1. m--+Ac D.B

2. m~Ah- D.5

3·
Box 8

c

1. m~Ac

2. m-+Ah

3. S~m

4. m~Ac

5. m~Ah

6. A---+m

7. m~Ac

8. m~Ah

9. A~m
A. m--+Ac

B. m---+Ah

c. S~m

D. m~Ac

E. A~m

Box 9
1. m---+Ac

2. m---+Ah

3. A-4m

4. m~Ac

5. m~Ah
6. A~m

Box A

10,1

B.8

D.9
8,D
D.6
B.l

D.6
D.9
B.l

D.9
B.9
D.A

8,E

[Y. j'1
[V.n I]

B.l

D.A

B.l

D.A

1. m~Ac B.A

2. m~Ah- D.9

3·
Box B

c

1. m~Ac

2. m-+Ah

3. A-+m

C,l

D.3
B.6
D.3

(K) to R2
o

(K-i) to R2 o

(Y .0). to R2
o

(Y • j ,) 0 = (Y. 0) 0 + (j') 0 in R2

(j) to R2
o

(j+1) in R2
o

(j') to R2 o
(j'+l) in R2 o

(V.o) to R2 o

Y., to (8-19}8,n
J

(j+l) to D.6
o

(j'+l) to D.9 o

in R2

-116-

(V.n') = (V.O) + (n')
000

V·n' to (8-19)8,E

v = y.
n . J

en) to R2 o
(n+l) in R2

o

(n') to R2
• 0

(n+l) in R2 o

(64) to R2
-0

(64-j') in R2
- 0

T to R2
y

T + 1 in R2 y

v to V.n'
n

(n+l) to D.7
o

(n'+l) to D.A o

T + 1 to D.3
Y:

Box B (Cont.)

4. m~Ah B.F

5. HS~m B,9

6. m~Ac B.l

7. A~m D.9

8. ~m Y.1

9. [Ty + 1 E,l]
Box C

1. m~Ac B.A

2. m~- D.B

C

BoxD
1. m~Ac

2. m~Ah

3. A~m

4. m~Ah

5. HS~m
6. m--+Ac

1. A~m
8. D~m

9. [Tx+ 1

BoxE

E,l

D.2

B.6
D.2

B.F

E,9
B.l

D.B

X.1

E,l]

1. m~Ac B.A

2. m~Ah- D.A

3. c
BoxF

1. m~Ac

2. m~Ah

3. A~m

4. m~Ah-

5. m~Ah

6. HS-+m

1. m-4Ac

8. A~m
9. m~D
A. [T

v

12,1

D.4

B.6
D.4

B.6
B.C

10,A

B.1

D.A

V.1

12,lJ

T + 1 + (Box E,1)2-39 in R2
y

(1) to R2 o

(64)0 to R2
(64-i') in R2

o

T to R2
x

T + 1 in R2 x
T + 1 in D.2 x

Tx + 1 + (Box E,l) 2-39 in R2

(1) to R2
o

(64) to R2
o

(64-n') in R2
o

T to R2 v
T + 1 in R2

v
T + 1 to D.4

v
T in R2

v
T + (Box 12,1)2-39 in R2

v

(1) to R2
o

(1) to D.A o

-117-

-118-

Box 10

1. m~Ac B.7 (X.O) to R2
0

2. m--..+Ah D.B (X.i') = (X.O) + (i') in R2 o 0 0
3. S~m 10,7 X. i' to (B-19)10,7
4. m~Ac B.& (Y.O) to R2

0
5. m~ D·9 (Y.j') = (y.o) + (jl)O in R2
6.

o 0
S--?m 10,B Y . I to (B-19)10,B .J

7. m~Ac [X.i'J xi to R2
B. m~Ah- [Y. j I] xi - y. in R2

J
9. C 11,1
A. T B,l

Box 11

1. m~Ac B.7 (X.O) to R2
0

2. m---+Ah D.B (X.i') = (X.O) + (i') in R2 o 0 0

3. S~m 11,D X.i' to (B-19)II,D
4. m~Ac B·9 (V.O) to R2

0

5· m~Ah D.A (V.n') = (v.o) + (n 1) in R2 o 0 0

6. S--..+m II,E V.n' to (B-19)11,E
7. m~Ac D·5 (i) to R2

0

B. m~Ah B.l (i+l) in R2
0

9. A---:;m D·5 (i+l) to D.5
0

A. m~Ac D.B (i 1) to R2
0

B. m~Ah B.l (i'+l) in R2
0

c. A~m D.B (i'+l) to D.B
0

D. m~Ac [X.i 'J v = x. to R2 n 1

E .• A---:,m [V.n l] v to V.n' n
F. T 9,1

Box 12

1. m~Ac B.B (N) to R2
0

2. m~Ah- D.7 (N-n) in R2
0

3. C 4,1

Box 13

1. m~Ac D.l (k) to R2
0

2. L(I) 1 (2k) in R2
0

3 .• A~m D.l (2k) to D.l
0

Box 14

1. m---+-Ac

2. m~Ah-

3. C

4. T

Box l5
1. m~Ac

2. A~m

3. m~Ac

4. A--+m

5· m~Ac

6. A~m

7. m~Ac

8. S--?m

9. T

Box 16

1. m~Ac

2. A~m

3. m~Ac

4. A~m

5· m~Ac

6. A~m

7. m~Ac

8. S~m

9· T

A. Stop

D.l

B.B

16,A

[~J

B.4

D.2

B·5

D·3

B.2

D.4

B.ll

14,4

2,1

B.2

D.2

B.3

D.3

B.4

D.4

B.I0

14,4

2,1

(k) to R2
o

(k-N) in R2
o

-27 T = d . 2 to R2
x 0

-119-

T to D.2 x
T = (d + Mj2)2-27 to R2

y 0

-27 T = c . 2 v 0

({:J2)o to R2

c • o
2-27 to R2

-27 d ·2 to R2
o

to R2

to R2

T to D.3 y

T to D.4
v

~2 to (8-19)14,4

T = c • 2-27 to D.2
x 0

T = (c + M/2)2-27 to D.3
y 0

-27
T = d • 2 to D 4

v 0 •

)91 to (8-19)14,4

Recall that the magnetic drum instructions each occupy a full word.

The drum instructions are:

"m~D

~m

BD

BC

Read 50 successive words from the memory starting with
the word at the address specified by bigits 8-19 of
the instruction. Write these 50 words into the drum
on the track specified by bigits 20-27. Then transfer
the control to the left-band instruction of the word
at the address specified by the bigits 28-39.

Read tbe 50 words from the track of the drum specified
by bigits 20-27 of the instruction. Write these words
into 50 successive memory locations starting with the
address specified by bigits 8-19. Then transfer the
control to the left-hand instruction of the word at
the address specified by bigits 28-39."

-120-

For the present problem we assume that 64 words are transferred, rather

than the L£. expressed by the instructions.

Instructions E and F of Box 2 comprise a drum instruction. In 'the

final coding these two instructions must be in the same word. Instruc­

tions E and F are interpreted as: Read 64 words from track Tx of the

drum, and write them into the memory at the addresses X.l through x.64;
then transfer the control to Instruction 10 of Box 2. This means that

Instruction 10 of Box 2 must appear on the left side of an instruction

word in the final coding.

Note that Instructiop F of Box 2, the right-hand 20 bigits of the

drum instruction, is formed in R2 by Instructions 8 and 9 and then sent

to F by an IIS---"m instruction. This is necessary since Tx is a variable

address. (In Box 2, Tx may be either c or d.) There is no instruction
o 0

that will modify only bigits 20-27 of a word in the memory, so one method

of altering the drum track address is to modify bigits 20-39 of the drum

instruction by an ~m instruction. This method necessitates storing

the address which is to constitute bigits 28-39, the transfer portion, of

the instruction. Instruction 8 of Box 2 brings the track Tx.2-21 into

H2. Instruction 9 adds to this the address of (Box 2, Instruction 10)2-39•
The half-word substitution is then'effected by Instruction A. In the

final coding this must be an HB--+m' instruction.

Instructions 10 and 11 of Box 2 also comprise a drum instruction

where the right-hand 20 bigits, Instruction 11, are generated as discussed

for the previous drum instruction.

Instructions 8 and 9 of Box B, Instructions 8 and 9 of Box D, and

Instructions 9 and A of Box F are drum instructions. Note in Box Band

Box D, where the coding would normally end with a transfer instruction to

send the control to Box E, Instruction 1, and in Box F, where the coding

would normally end with a transfer to Box l2, Instruction 1, that the

drum instruction performs this function. When possible then, it is use­

ful to incorporate the drum instructions at points where transfers must

normally take place.

The drum instructions in Boxes B, D, and F are similar in treatment

to the previous discussion; hence the only fUrther comment needed is

that the drum instruction in Box F is an m--+D instruction.

-121-

In the pairing of the coding into words one has to ascertain that

Box 2, Instructions E and 10; Box 3, Instruction 1, Box D, Instruction 8;
Box 12, Instruction 1; Box E, Instruction 1; and Box F, Instruction 9,
all are the left-hand instructions of their respective instruction words.

We begin the coding at Word 000. There are, in all, !23 instructions,

which is 76 1/2 code words. The code would normally occupy Words 000

through 04c hexadecimally. However, four "dummy'''- instructions need to be

inserted to obtain the correct positioning of those instructions which

must begin on the left. This adds two words to the code, and it occupies

Words 000 through 04E.

The constant storage begins at 04F. The 11 words of B storage occupy

locations 04F through 05F. The 11 words of intermediate storage occupy

Words 060 through eGA.
The routine and storage occupy 101 words of the memory ooo-oGA.

Numerical ~lues are inserted for the addresses (x.e) , (Y.O) and (V.O) .
000

They are chosen as:

(x.o) :;:: (o6A)
0 0

(Y.O) :;:: (OM)
0 0

(V.O) :;:: (OEA)
0 0

The algebraic addresses are left for the drum tracks as they depend in

part on the total number of numbers being sorted. The quantity (N) o
which is the total number of numbers is also left in algebraic notation.

The coding, with the necessary "dummy" instructions, is:

O. m~Ac

1. m~Ac

2. m~Ac

3. m~Ac

4. m---7Ac

5. m~Ac

6. A-4m

1. A~m
8. A~m
9. m~Ah

A. m--+Ac

B. HS--+m'

04F

050

051
052

05E
04F

065
061

069
05B

062

OOD

A~m

A~m

A~m

A~m

HS~m'

~m

A~m

A~m

m~Ac

~m'

m~Ah

060

061
062

063

044
064
066

068

061
ooc
05C

(D S 000) "dummy"

-122-

C. D--¥m 06B 00000

D. D~m OAB 00000

E. m~Ac 060 A~m 06A

F. m~c 06A m~Ah- 065

10. C 014 m~Ac 06A

11. m~Ah- 064 C 038

12. m--40Ac 06A m---+Ah 060

13· A~m 06A T OOF

14. m~Ac 06A m~Ah- 064

15. C 033 m~Ac 056

16. m~Ah 068 S~m' OlB

17. m~Ac 065 m-+Ah 04F

18. A~m 065 m~Ac 068

19. m~Ah 04F A~m 068

lA. m~Ac 0.57 m~Ah 069

lB. S~m 01C m~Ac 000

1C. A~m 000 m--'7Ac 066

ID. m~Ah 04F A~m 066

lEe m~Ac 069 m~Ah 04F

IF. A---+m 069 m-4Ac 058

20. m---?>Ah- 068 C 026

21. m-+Ac 062 m~Ah 054

22. A~m 062 m~Ah 05D

23. HS~m' 025 m---?Ac 04F

24. A~m 068 (D S 000) "dummy"

25· D---7'm OAB 00000

26. m--7Ac 058 m~Ah- 067

27. C 02C m~Ac 061

28. m~Ah 054 A~m 061

29. m--:)Ah 05D HS~m' 02B

2A. m----+Ac 04F A~m 067

2B. D~m 06B 00000

2C. m~Ac 058 m--4Ah- 069

2D. C 040 m~Ac 063

2E. m~Ah 054 A~m 063

2F. m~Ah- 054 m~Ah 05A

-123-

30. HS~m' 032 m~Ac 04F

31. A~m 069 (D S 000) "dummy"

32. m~D OEB 00000

33· m~Ac 055 m~Ah 067

34. S-4m 036 m~Ac 056

35· m-4Ah 068 S~m' 036

36. m~Ac 000 m~Ah- 000

37. C 038 T' 015

38. m---;)-Ac 055 m~Ah 067

39. S~m 03E m~Ac 057

3A. m----!)oAh 069 S~m' 03E
3B. m-7Ac 064 ~Ah 04F

3C. A~m 064 m~Ac 067

3D. m~Ah 04F A~m 067

3E. m~Ac 000 A~m 000

3F. T' OlC (00000) "dummy"

40. m~Ac 059 m~Ah- 066

41. C OOF m~Ac 060

42. L(1) 001 A~m 060

43. m~Ac 060 m~Ah- 059
44. C 04E T 000

45. m~Ac 052 A~m 061

46. m~Ac 053 A~m 062

47. m---!)oAc 050 A~m 063
48. m---+Ac 05F HS--+m' 044

49. T 005 m~Ac 050
4A. A~m 061 m~Ac 051
4B. A--+m 062 m~Ac 052
4c. A~m 063· m~Ac 05E
4D. HS--+m' 044 T . 005
4E. STOP

4F. (1)
0

50. -27 c ·2
0

51. (c + M/2)2-27
0

52. d .2-27
0

53·

54.

55·

56.

57.

58.

59·

5A.

5B.

(x.O) = (06A)
o 0

(Y .0) = (OM)
o 0

(v.O) = (OEA)
o 0

(64) = (040)
. 0 0

(N)O

12,1 = (040)2-39

2,10 = (OOD)2-39

5C. 3,1 = (00E)2-39

5D. E,l = (02C)2-39

5E. (~ 1) 0 = (cA045) 0

5F. (f3 2) 0 = (CB049) 0

60. D.I
61. D.2

62. D.3
63· D.4
64. D·5
65· D.6
66. D.7
67. D.8

68. D.9
69. D.A
6A. D.B

-124-

The first drum instruction (Box 2, Instructions E and F) would not

normally have been in one word in the paired coding. A "dummy" instruc­

tion, DSOOO, was inserted on the right-ha.nd side of Word OOB in order to

position the drum instruction correctly in Word OOC. The right 20 bigits

of the drum instruction are not indicated as they are supplied from the

problem. In punching a tape, five 0'5 could be punched for right-ha.nd

portion of Word OOC.

-125-

Upon positioning OOC correctly, the next drum instruction, Word OOD,

and the first instruction of Box 3, Word aOE, are in the correct position.

The drum instruction in Box B, Instructions 8 and 9, also needed a

IIdummyll instruction inserted as the right-hand instruction of Word 024

to position the drum instruction correctly into Word 025. Similarly, the

drum instruction in Box F, Instructions 9 and A, needs a "dummyll instruc­

tion inserted in the right-hand side of 031 to position the drum instruc­

tion correctlY into 032. Instructionsl of Boxes 12 and E need to be left­

hand instructions since they are entered by the transfer portion of drum

instructions. Box E is in the correct position as it begins on the left

of Word 02C; however, Box 12 does not naturally begin on the left, hence

a dummy instruction (00000) is inserted into 03F' following the last in­

struction of Box 11. Box 12 then begins on the left of Word 040 as is

desired. The dummy instruction may be inserted as all O's since the in­

struction is never executed by the control as Box 11 ends in a transfer

instruction.

({jl)o and (~2)0 are stored as

05E:

05F:

(Ill) 0

({j2)0

= (cA045)
o

= (CB049)
o

rather than as addresses. This is done since the entrances @ and ~
which are Box 15,1 and Box 16,1 do not both begin on the same side

of their respective words. The addresses ~ and ~ are supplied

to Box 14, Instruction 4 (Word 044') by an HS--?m' instruction; hence

the order as well as the address is modified appropriately.

The sorting procedure as presented is valid only if all of the num­

bers have the same sign (i.e., either all positive or all negative). If

numbers of mixed sign are to be sorted, Box 10 would need to be modified

as numbers of' oppoai ta aign could proocntly cause spillage.

-126-

Problem 11

. We evaluate and tabulate a sequence of values for sin x where the

argument x is not given in any systematic order. The values of x are

punched on paper tape for use in the sine computation. When sin x is

determined for each value· of x, it is stored with its. argument as one

word. The first 20 bigits (0-19) store x and bigits(20-39) store

sin x. The values of x and sin x are then printea and punched by the

.flexowriter.

The method used for evaluating sin x is the Taylor's series ex­

pansion of the function.

sin x = x 3 x5 x7
x - 3! + 5! - 7! + ...

The following induction describes the series:

0'1 = x L
2 1

x

L3 0'3 = -0' • 1 3-2

2 L 0' j+2 -0' x = (j+l) (.j+2) j j+2

= sin x·

= x

~ + = <13
1

~. + 0' j+2 =
J

For the example it is assumed that 0 .:::: x < 1, where x is in radians.

It then follows that sin x < 1.

From the induction process it is seen that the formation of the

term <1 j+2 involves a division by (j+l) (j+2). Since.si is an integer,

the division cannot be done directly. To allow this diviSion, ~ 1s
-n scaled by 2 ,determined by

As the O'j+2 is desired as an unscaled quantity, the numerator is scaled

by the same factor as is the denominator which gives the resultant quo­

tient unscaled. In order to preserve significant figures, <1 j+2 is

formed as follows!

=
-n 2 x

-127-

The induction is terminated when the difference between two suc­

cessive terms is less than a predetermined amount b , where the size of

b is determined by the number of figures desired in the approx~tion

to sin x.

term 0 .•
J

The difference between two successive approximations is the

The discrimination is on the quantity

10j) - ~

The absolute value of o. is used, since o. may be positive or
J J

negative.

The storage needed is as follows: The constants 1.2-n and ~
are stored at B.l and B.2, respectively. The number !, representing

the total number of values of the argument x, is stored at B.3 as

I·2-m, and 1·2-m is stored at B.4 where 2-m is such that I·2-m<: 1.

The values xl' x2' x3 ••• xI are punched onto paper tape as input dat~.

Seven intermediate storage locations are needed. They are designated

as D.l, D.2 ••• D.7.
No explanatory remarks are needed for the flow diagram which is

shown in Figure 20, so we turn directly to the coding.

Box 1

1. m--:J..c

2. A~m

Box 2

1. Read

Box 3

1. m_Ac

2. A~m

3· A---.m

4. R(n)

5· A___.m

6. m---.Ac

1. A-+m

B.4

D.7

D.l

D.l

D.2

D.3

n

D.4

B.l

D·5

to R2

-D 2 x. in R2
l.

x. to D.l
l.

1

Li = Xi to D.2

1 to D.3 °i = Xi

-n
2 Xi to D.4

1·2-n to D.5

-128-

3
I

~i=Xj to 0.2

2 1_ ':2
o-j - xi to D . .J

~~ Read xi to 0.1
'-------I 2-nxj to 0.4

\·2-n to 0.5

d

9

(i+1)2-m to 0.7

0.2:~~
D.3:o-i

0.4:2-nXj

0.5: j·2-n

j+2
D.2:2i

0.3: 0-/+2

0.5: (j +2)2-n

xi to (0-19) 0.6

Sin xi to (20-39) 0.6

7

4

........ I-r-I Print and Punch xi, Sin xi 1---<0---10.6: (0-19)Xj,(20-39)Sin xi I
1....-_......----'

I

L __ , 0.7: i· 2-m I

SINE by TAYLOR'S SERIES EXPANSION

FIG. 20

-129-

Box 4

1. m-->Ac D·5 o 2-n J. to R2

2. m--4Ah B.l (j+l)2-n in R2

3. A~m D·5 (j+l)2-n to D.5

4. m~Ac- D.4 -n
-2 xi to R2

5· D·5 - xi
in R4 A j+l

6. X D·3
.1 xi

in B2 -ai J+l
j xi

1. A~m D.3 -oi j+l to D.3

8. m~Ac D.5 (j+l)2-n to R2

9. m~Ah B.l (j+2)2-n in R2

A. A--+m D·5 (j+2)2-n to D.5

B. ~Ac D.4 -n
2 xi to R2

c. . D·5
xi

in R4 . j+2
0+2 j x x D. X D·3 oJ = -oi j+l j+2 in R2 i

E. A:---+m D·3
j+2 to D.3 o.
l.

F. m~Ah D.2 Lj
+

2
= rj

j+2 in R2 + o.
i i l.

J+2
10. A-+m D.2 Li to D.2

Box 5

1. m~AcM D.3 I (J~ I to R2
2. m----1)-Ah - B.2 I °i 1- b in R2

3. c Box 4,1

Box 6

1.. m~Ac D.l xi to R2

2. H~m D.6 xi to (0-19)D.6

3. IIl-4>Ac D.2 sin xi to R2

4. R(20) 20 -20 2 sin xi in R2

5· HS-+ml D.6 sin xi to (20-39)D.6

Box 1
1. Flexoprint D.6 (O-19)x

i
(20-39)sin xi

to Printer

2. Punch D.6 (O-19)xi (20-39)sin xi

to Punch

Box 8
1. m~c

2. ~Ah-

3. c
Box 9

1. m~Ac

2. m--WUl

3. A__..m

4. T

Box A

1. Stop

D.1

B.3

Box A,l

D.1

B.4

D.1

Box 2,1

i·2-m to R2

(i_I)2-m in R2

i·2-m to R2

(i+l)2-m in R2

(i+l)2-m to D.7

The coding needed in Box 2 is merely the read instruction. The

read instruction does the following:

Read the next word to come under the reading head of the
photo-electric reader and send the wo~ to the memory at
the address specified with the instruction.

-130-

In Box 3, Instruction 4 specifies only a right shift of ~ places. In
-n an actual problem the scaling factor 2 would be determined and the

numerical value of n would be inserted as the address of the R(n) in­

struction. Box 6 stores the xi and s in xi into one word D. 6 by making

use of the HS~m and HS-4m J instructions. Instruction 2 of Box 6

stores the first 20 bigits of xi into bigits 0-19 of D.6. This in­

struction does not alter bigits 20-39 of D.6. Instructions 4 and 5
store the first 20 bigits of sin xi into bigits 20-39 of D.6. Since the

HS-.m' order replaces bigi ts 20-39 of !!! by bigi ts 20-39 of R2, the num­

ber. in R2 must be positioned so that the 20 bigits to be sent to m are

in bigits 20-39 of R2. Instruction 4 shifts sin x right 20 bigits so

that the 20 most significant bigits of sin x are in (20-39)R2. In­

struction 5 is then an HS--+m' D.6 which stores sin x into (20-39)D.6.

Box 7 requires two instructions, one to print D.6 and one to punch D.6

In .this example the H8--+m and HS~m' instructions were used to

store half-precision (20 bigits) numbers, as compared to Problem 10

where they were used in modifying instructions.

-131-

The pairing or the code into words should present no dirriculties.

If the code sequence is started at address 000 the paired coding is:

0. m---"J1Ac 019 A~m 020

1. Read OlA m~Ac OlA

2. A~m alB A--:,m OIC

3· R{n} {n} A---:;m OlD
4. m~c 016 A~m OlE

5· m--+Ac OlE m~Ah 016
6. A~m OlE m~Ac- OlD

7. ~ OlE X OIC .
8. A--+m OIC m~Ac OlE

9- m~Ah 016 A~m QlE

A. m~Ac OlD . OlE .
B. X OIC A--4m OIC
C_ m~Ah OIB A~m OIB
D_ m--7AcM OIC m~Ah- 017

E. C 005 m~Ac OlA

F. HS~m OIF m~Ac 01B

10. R(20} 014 HS--+m' 0lP'

I!. F1exoprintOlF Punch OlF

12. m~Ac 020 m~Ah- 018

13- c' 015 m~Ac 020

14. m---+Ah 019 A---+m 020

15. T 001 Stop
16_ 1-2-n

17, ~
18. I-2-m

19. 1-2-m

lA.

lB.

lC.

ID.

lEe

IF.

20_

-132-

Problem 12

During the course of a lengthy computation it is desirable to

make a periodic record of the contents of the memory. This record

should be in a form that can be read back into the memory. Then, in

the event of a computer malfunction which causes a computational error,

one has only to read the last record of the memory contents back into

the computer and resume the computation. If such a record is not

available, the computation often has to be restarted from the beginning;

and several hours, or even several days, of computational time may be

lost. These periodic records of the memory contents help to keep the

time lost due to computational errors at a minimum.

Such periodic records also increase the flexibility of the com­

puter, for it becomes a simple task to interrupt a problem at any stage

of the computation and start computation on a different problem. To in­

terrupt a problem, one has only to record the memory contents and to

know the instruction with which the control is to resume the computation.

To resume, the record is read back into the memory and the control is

sent to the desired starting instruction.

A magnetic tape unit has been adapted to the computer as an auxili­

ary input-output device for making these periodic records of the memory

contents. A further discussion of the magnetic tape unit and its opera­

tional procedures is given in the chapter on operating procedures.

In this problem we outline two routines which are concerned with

the magnetic tape unit. The first of these routines transfers the con­

tents of the memory except for the routine itself to the magnetic tape.

The second of the routines transfers the contents of the magnetic tape

into the memory at the addresses specified by the routine.

Routine 1: Memory to magnetic tape.

This routine reads successively the words in the memory beginning

with the first word beyond this routine and ending with the last word

(1023) of the memory. As these words are read from the memory they are

written onto the magnetic tape in a serial fashion beginning at a pre­

marked section of the magnetic tape (details are discussed in the chapter

on operating procedures).

A sum is formed of the contents of the memory (excluding this

routine). The sum is: 1023
Sl = .L

l=C o

m.
1

-133-

where c is the address of the first recorded word and m. is the word
o 1

at address i in the memory. This sum is recorded on the magnetic tape

immediately following the word m
l023

' and the sum is also printed.

The sum is f~rmed as a checking procedure for the magnetic tape unit.

When the words on the tape are read back into the memory, the memory

is summed and this sum must agree with the sum made at the time the

contents of the" memory were sent to the tape. If the two do not agree,

an error has occurred and the record sent to the tape has not been

transmitted correctly into the memory.

The inductive procedure should cause no difficulty, so we turn

directly to the flow diagram in Figure 21. Box 1 sets up the initial

values of the induction. Box 2 sends the word m. to the magnetic tape.
1

The partial summation

is also formed. Note in Box 2 the expression

[delay L(40D

This has the following meaning: Each Q~t instruction is preceded by

an L(40) shift instruction. During the traversal of this routine by

the control, the magnetic tape is running continuously, and the L(40)

instruction gives a certain spacing between words on the tape. This

spacing is necessary to insure accurate transmission at some later oc­

casion of the data from the tape back into the memory. Again this is

discussed more thoroughly in the chapter on operating procedures.

Note in Alternative Box 3 how the induction is terminated. The

discrimination is upon

Now when

and

However, when

where M·i(= c , c +1 ••• 1023)
o 0

M·i < 1023

M·i+l < 1024

(M.i+l)2-10 < 1

Moi = 1023

which means that the last word in the memory has been sent to the

magnetic tape

M·i+l = 1024

0.1 : (M.c)iIO

0.2 : 2: C- 1
I
I

8 I M.O =O~ 2:C_I=Oto 0.2
Start . ~ -10 10

(M.c)2 = Co' 2- to 0,1

I
I a

~_~I :-............ : c -1)0 i I

b

D. I :(M.i)2-10

D. 2 : ~ i-I - - - - - - - -"

M.i :mj

"2 _------------"1
[delay L(40)]

mj to tape

~i = ~i.r-ml to 0.2
(M. i + 1)2-lO to 0.1

0.1 :(M.i+I)2:IO~ _____ r
0.2 : ~i

3

'--------___ =f-----+-t[(M. i+ 1) 2-10 j

13FF = i I

4

[delay L(40~

Stopt---------__ ----I SI =~3FFto tape

Print Sj

MEMORY TO MAGNETIC TAPE

FIG. 21

-135-

and

(M.i+l)2-l0 = 1

which appears in the computer as a negative number and the control

proceeds to Box 4. This discrimination really allows the positive

discriminating quaBtity to increase until it exceeds ror the rirst

time the allowed range ror numbers in the computer. The errect to

the computer is a change in the sign bigit or the number upon which

the discrimination is made.

Box 4 sends the summation ~3FF (3FF = 1023) to the tape and

also prints the sum.

The only storage needed in the problem is ror two intermediate
, .

values of the computation. These values are the address M.i and the

partial summation L i. They are stored in D.l and D.2, respectively.

The coding or the problem is:

Box 1

1. a~Ac 0

2. A~m D.2

3. a~Ac
-10 c ·2

0

4. A~m D.l

Box 2

1. R(9) 9

2. S~m 2,5

3· L(40)

4. m~Ac D.2

5· m~Q [M.i]

6. m~Ah 800

7. A~m D.2

8. Q~t

9. m~Ac D.l

A. a~Ah 1.2-10

Box 3.

1. e 1,4

Box 4

1. L(40)

2. m~Q D.2

3. Q~t

4. Flexoprint D.2

5· Stop

L
C

- l = 0 to R2

(M.i)2-19 in R2

L i-I to R2
m

i
to R4

Ii = Li - 1 + mi

(M.i)2-10 to R2

L c -1 = 0 to D.2
to R2

in R2

() -10 M.c 2 to D.l

M.i to (8-19)5

m. to tape
~

(M.i+l)2-10
= (M.i)2-10 + 1.2-10 in R2

Sl to tape

Sl to printer

-136-

() -10 In Box 1 the starting ~dress c 2 is stored as the address
o

portion of an a~Ac instruction. The instruction clears R2 and

b . 2-10 . tit· 0 11 f R2 An A i t ti r~ngs c · ~n 0 pos ~ons - 0 • a~ c ns ruc . on may o
often be utilized in this manner for storing and forming addresses.

Since the address as formed is

it cannot directly be used in conjunction with an S~m instruction,

as the bigits of an address to be substituted must appear in R2 as

(M.i)2-19 or (M.i)2-39

() -10 Instruction 1 of Box 2 shifts M.i 2 right by nine places so that

the bigits in R2 are
-19

(M.i)2

Consequently, the instruction that receives this address must reside

on the left-hand side of the instruction-pair.

Instruction 6 of Box 2 adds mi to the quantity L i-I which is in

R2 as the result of Instruction 4. Instruction 6 reads

m~Ah 800

Recall that any of the add orders (orders 1-8 of the vocabulary, Table I)

treat R4 as a memory location with the address 2048 = 800 hexadecimally.

m--""Ah 800 adds the contents of R4 into R2. Now R4 contains mi as the

result of Instruction 5, so that

Li
is formed in R2 as desired.

Instruction 8 of Box 2 is the Q~t instruction. The instruction

is

AD Wri te the number in R4 onto the magnetic tape. It

The quantity m. to be sent to the tape is in R4 as the result of
~

Instruction 5 of Box 2. The address portion of the Q--+t instruction

has no relevance (the address is usually set to 000 for convenience;

it may, however, be set to any value).

~nstructions 9 and A of Box 2 form (M.i+l)2-l0, in R2. Rather

() -10 than storing M.1+1 2 into D.l, it is left in R2 for the discrimina-

tion of Box 3, Instruction 1. The conditional transfer of Box 3, if

effective, sends the control to Box 1, Instruction 4, where the contents

-137-

() -10 of R2, M.i+l 2 are sent to storage. We saw previously that upon

()
-10 entry into Box 2 from Box 1, the quantity M.i 2 was in R2. Box 2

is also entered from the plus branch of Alternative Box 3, an,d from

() -10 this entry the quantity M.i 2 is correctly in R2.

Box 4, Instructions 1, 2, and 3 send ~ 3FF onto the magnetic

tape. Again, as in Box 2, an instruction L(40) precedes the Q--+t in­

struction.

The routine as outlined is to be coded beginning with Word 000.

The paired coding occupies Words 000 through 009 and the storage needed

is designated as OOA and OOB. The initial address c is then OOC. The
0

paired coding is:

O. a~Ac 000 A-+m OOB

1. a----.Ac 018 A----,m OOA

2. R(9) 009 S--+m 004

3. L(40) 028 m--+Ac OOB

4. m~Q locoJ m~Ah Boo

5· A--+m COB Q~t 000

6. m--+Ac OOA a--+Ah 002

7. C· 001 L(40) 02B
B. m---.Q OOB Q~t 000

9. Flexoprint OOB Stop

A.

B.

The left-hand instruction of Word 001 sets up the initial address c •
W II 0

It is to be (OOC)2- which is (01B)2- ; hence, the address of the in-

struction is 01B.

Routine 2: Magnetic tape to memory.

This routine is to be used in conjunction with Routine 1. It reads

successively the 'words ~ram the magnetic tape (which had been written onto

the tape by utilizing Routine 1) and writes them into the memory at the

addresses that they had originally occupied. Routine 1 sent Words OOC

through 3FF onto the tape; therefore, this routine reads the words from

the tape and writes them into the memory at the addresses OOC through 3FF.

b

-10 D.I ;(M.c)2

D.2: :LC- I
I

I
I a

-138-

. -10 D.I ~(M.I)2 1-____ _

0.2 : 2: j _
1

0.1 : (M.i+niO
0.2:2:1
M ' · .1' mj

2

tape to M.i

2: j = 2:j_1 + mj to 0.2

(M. i+l)ilOto 0.1

1-----

s, (tape) to 0.1
Print ·S,

Print S2 =~3FF

MAGNETIC TAPE TO MEMORY

FIG.22

After the words mi where i (= 12, 13

memory, a sum

1023) are sent to the

c = 12 (dec.) o

-139-

is formed and printed. Also printed is the word immediately following

ml023 on the magnetic tape. The latter is Sl' the sum of the memory

contents (hence the sum of the words on the tape) when the tape record

was made. The sums Sl and S2 are identical, if no errors have been made

by the computer or the magnetic tape. The procedures to be followed if

81 and 82 do not agree are outlined in the chapter on operating procedures.

The flow diagram shown in Figure. 22 is so similar to the flow dia.

gr.am of Routine 1 that we turn directly to the coding without further

comment.

The coding is:

Box 1

1. a---=)Ac

2. A~m D.2

3. a~Ac 'c .2-10
0

4. A~m D.1

Box 2

1. R(9)

2. S~m 2,5

3. S--+m 2,7

4. t--+Q

5. Q~m [M.i]
6. m~Ac D.2

7. m--+Ah [M.i]

8. A~m D.2

9. m--+Ac D.1

A. a--+Ah 1.2-10

Box 3

1. c 1,4

Box 4
1. t~Q

2. Q~m

3· F1exoprint D.1

4. F1exoprint D.2

5· Stop

\" - 0 L c-l -

(M.i)2-10

to R2 r 1 to D.2
-10 c-

c ·2 to R2
o 10

(M.C)2- to D.1

~.i to (8-19)5

M.i to (8-19)7

m.
l.

in R2

to M.i

~i to D.2

(M.i+1)2-10 = (M.i)2-10 + 1.2-10 in R2

S to R4
1

81 to D.1

Sl to Printer

82 to Printer

-140-

In the formation of each successive term of the partial summation

~i' in Box 2, Instructions 6, 7, and 8, the contribution mi is added

from its memory location M.i rather than from R4 where it also exists.

The checking obtained by this summing process is more complete than

if m. were added fromR4.
1

The t--+Q instruction which is Instruction 4 of Box 2 and In-

struction 1 of Box 4 is:

"t-7Q AC Replace the number in R4 by the first word to come
under the reading head of the magnetic tape reader. tI

Again, ·as in the Q~t instruction, the address of the instruction has

no relevance. Note that the L(40) instruction which preceded each Q~t

instruction is not used with the ~Q instructions.

In the paired coding, Instructions 5 and 7 of Box 2 must be left­

hand instructions since the address M.i which is being substituted is

in R2 as

(M.i)2-19

In Box 4, Instructions 3 and 4 print the summations 81 and S2. A

visual check is then made of the numbers rather than allowing the com­

puter to do the comparison. This has the added feature that these two

numbers printed may also be checked against the number Sl which was

printed when the tape record was made.

This routine is coded into Address 000 and occupies Words 000

through 009. D.l and D.2 are designated as OOA and OOB, respectively.

Again, c is OOC. The paired coding is:
0

o. a-+Ac 000 A~m OOB

1. a~Ac 018 A.--+m OOA

2. R(9) 009 S~m 004

3. 8~m 005 t~Q 000

4. Q---+m [000] m~Ac OOB

5· m--+Ah [000] A~m OOB

6. m--+Ac OOA a~Ah 002

1. c· 001 t~Q 000

8. Q--+m OOA Flexoprint OOA

9. Flexoprint ooB Stop

A.

B.

-141-

We have in this problem taken the liberty of incorporating checking

features into the two related routines without either discussing the need

for such checking features or discussing what the procedures are if this

checking indicates an error in the transmission. This checking is such

an integral part of the routines which make use of the magnetic tape unit

that we do not feel that the routines should be presented without includ­

ing them.

~142-

Problem 13

We develo~ a routine for the synchroprinter, the high-speed page

printer that has been adapted to the computer as a part of the output

equipment. The synchroprinter has a maximum operating speed of 36,000

characters per minute. The ordinal numbers 0, 1, 2 ••• 9; the letters

A, B··· F; a decimal point; and a minus sign are the eighteen distinct

characters that may be printed. A line at a time is printed, where a

line consists of 40 characters. Recall that the synchroprint order reads:

IISync Print CE To be used in a subroutine which simultaneously

prints ~i' ~i+1' ~i+2 and ~i+3; i is to be com­
municated to the routine (high speed)."

Inasmuch as four words are printed s~ultaneously, it is not surprising

that a special routine is required. Further discussion of the synchro­

printer is given in the chapters IV and VI on The Computer and Operating

Procedures, respectively.

In order to achieve the high speed of operation, the printer operates

as follows:

To print an aggregate of forty digits (a line) there are eighteen

distinct print cycles. All the Fls of the aggregate are printed simul­

taneously in Cycle 1, all the E's of the aggregate are printed simultane­

ously in Cycle 2, and so on to Cycle 16 which prints all the Q's, to

Cycle 17 for the dectmal points, and to Cycle 18 for the minus signs.

Since there are these eighteen distinct cycles l one has only to supply

the digital information which corresponds to the cycle. That is, during

Cycle 1, only the digital information for the F's is needed, and so on.

This information is obviously binary. For Cycle 1 it is either to print

an F in a particular digit position, or not to print it. The line of

print is 40 digits and a register contains 40 bigits, so a register may

supply the binary data (either print or do not print) to the printer for

each cycle. The register R2 is used for this purpose. During the i th

print cycle i (= 1,2 ••• 18) an appropriate naber which _pecifies the

diS1 t po,i tiona to be printed i8 brought into B2. A 0 in any position ot
- th

the nlDlber in R2 corresponds to the presence ot the character ot the 1

cycle in the respective digit position of the line, whereas a 1 indi­

cates the absence of the corresponding character.

For simplicity of design, the paper feed is vertically down.

Hence, to achieve a conventional listing, the characters must be in­

verted and left, right interchanged, so that the leftmost bigit of R2

corresponds to the rightmost bigit of the print line while 2-39 of R2

corresponds to the leftmost bigit of the print line.

The procedure to print a line corresponding to four 10-digit (10-

tetrad) words is as follows:

The four words are fanned out into an 18 x 40 array which occupies

18 successive memory locations. The rows of the array (the eighteen

locations) correspond to the characters of the printer. The columns

of the array correspond to the digit position within the line of print.

The first row of the array corresponds to the minus sign, the second to

the decimal point, the third to the Q, the fourth to the !, and so on,

through the 18th row which corresponds to the F. Column Qcorresponds

to digit position 39 of the line, column 1 to digit pOSition 38, and so

on, through column 39, which corresponds to digit pOSition Q of the line.

We define an element of the array as aij , where! corresponds to

the row of the array and j corresponds to the column. If

a ij = 0

the i th character is to be printed in column .J. (digit pOSition 39 - j)-

If

a ij = 1

the character is not to be printed. No column of the array may contain

more than one Q; that is, only one character may be printed in any

digit position. However, if a column contains l's only, then no character

is printed in the corresponding digit position.

The elements of the array are initially set to 1. The first tetrad

of the first word is examined and found to have the value !, then a 0

is inserted into the appropriate element a i ,39- The second tetrad is

examined and a 0 is inserted into the corresponding element a i ,38; and

so on, until the forty tetrads of the four words have been examined and

o has been inserted into the appropriate elements of the array.

-144-

The inductive process of fanning the four words Into the array is

described as follows: The elements of the 18 x 40 array are initially

set to 1. The insertion of zeros into elements in the two rows of the

array corresponding to the minus sign and the decimal point is treated

apart from the induction. Hence, we may regard the rows as being

specified by the values of the tetrads with

O~i~F.

The tetrads of the words must be isolated to obtain the values i. They

are isolated as follows: The four words are specified as

~ k (=0,1,2,3).

In each word there are ten tetrads

i n (=0,1,2···9). k,n

The induction for isolating the tetrads of any word ~ is over the in­

dex n and it is
Ck,_l = ~

ck,n = 2
4

Ck ,n_l (fractional part)

i = 24
c (integer part) k,n k,n-l

where o ~ n ~ 9.
After the row i is determined, the column i must be determined so that

the element aij may be set to O. The column ~ is easily seen to be

given by

j = 39 - (10k + n)
th We specify the i row of the array as r i • Then after determining the

appropriate ! and ~ values we have only to perform the operation

r - 2- j
i

to set the element aij to O.

The printing sequence proper, which is carried out after the array

is formed, may now be given. Within the sequence, each of the eighteen

print cycles is determined by a print order. The first print order

actuates the printer and the remaining seventeen print orders act in a

timing capacity to keep the printer and computer in synchronization.

Once the printer has been actuated it proceeds through its eighteen

cycles at a fixed rate independently of the computer. Each of· the

seventeen print orders must be given before the printer is ready to

perform that particular cycle. The order has the effect that the

computer waits for the printer until the cycle is complete and then

proceeds to the next instruction of the sequence. The printer operates

at a speed of roughly 1.5 milliseconds between its print cycles. The

print sequence must have no more than 1.5 milliseconds elapse between

successive print orders.

Immediately preceding each print order, the appropriate word of

the array is brought into R2. Cycle 1 prints the F's so that Word 18

of the array is the first word to be brought into H2. It is followed

by a print order which actuates the printer and executes Cycle 1.

Word 17 of the array is brought in and the succeeding print order exe­

cutes Cycle 2 and prints the E's. This continues until the eighteen

print cycles have been completed.

Even though the eighteen distinct characters may not all appear

in any given printed line, it is necessary that eighteen print orders

corresponding to the eighteen characters be given. Those characters

that do not appear have their respective row in the array containing

all lis so that nothing is printed during the corresponding print cycle.

We now turn to the flow diagram shown in Figure 23. The storage

needed is as follows: The four words mo ' ml , m2, and m3 which are to

be printed are stored in D.I, D.2, D.3, and D.4, respectively. The

eighteen words needed for the array are designated (the addresses are

hexadecimal): E.I: r_

E.2: r.

E.3: r
0

E.4: r
l

E.12:

The following constants are needed

-39 B.I: -2
B.2: 2-7 + 2-19 + 2-39

B.3: 0

-146-

Three initial addresses are stored. They are

B.4: (D.l) o
B.5: (E.3)

o
B.6: (E .12)

o

(D.l) is the base address for the four words to be printed. (E.3) o 0

is the base address to which i is added to form the address of r .•
~

(E.12) is the base address used in the printing sequence. Four Mords
o

of intermediate storage are needed. They are d~signated as D.5, D.6,
D.7, and D.B.

Boxes 1, 2, and 3 of the flow diagram set the eighteen rows of

the array to alII's. Boxes 4 through A form a double induction that

records O's into the appropriate elements a .. of the array. Boxes B,
~J

C, D, and E are the print sequence proper.

Box 1 sets the initial index of r 0 2-7 for storing !'s into the

rows r
i

. Box 2 stores _2- 39 into the rows

r I _i where i (=0,1,2 "·17, decimally)

The discrimination of Box 3 is on

(I - i - 2)2-7

Immediately after

r = o -2 -39

is stored, (i = 17, dec.) i is increased by!; hence the quantity

I - 1 - (i+l)2-7

is correctly negative for the first time as

I = 18'2-7, dec.

Box 4 sets up the initial conditions for the induction over k. It

sends the initial address (D.l) to D.7 where it becomes (D.l+k) as
o 0

k = 0 initially_ It also sends the number

_2- 39 to D.5

where it is to become

-2-
j

j == 39 - (10k + n)

k and n are both initially Q; hence .J. is initially 39, as is desired.

Box 5 sets up the induction over n. The word ~ becomes ck,_I'
-11 -11 6 and N·2 is set to 9-2 • Box forms c

k
and i by shifting ck 1 ,n - ,n-

-147-

2 10.6:(1-i-1l2-7 1
I ~-------------------------~

a 1 rr . = _2-39 to E.l-i
~

3 I
r----., I -I

"'-'~1-1>2-7=17'2-7to 0.6t--1i1---.t 1-Ili~'---...... -t(J-i-2)2-7 to 0.6

s
j-I-+j
n+l~n

f

6

Ck n = 24
Ck n_l(fractlonal part) to O.S , ,

i = 24
Ck n_l(integer partho R4

t-----c:rl!3---I '

rj - 2-j to E.3+ i

B -2-(j-l) to 0.5

C

................ --------1 rI _ i to R2

Print

A SYNCHROPRINTER ROUTINE

FIG.23

.-----.-, I
I

c
_2-39 to 0.5

(0.1)0 to 0.7

O~n

39-(IOk+n)-+- j

0.5:-2- j
0.6 ~(N-n)2-11

----OS'C .. k n-I ,
E.3+i: ri

4

5

d

-148-

left four places. i is in R4 as 2-39i and c k is in R2. The appro­,n
priate element aij is set to Q by the operation

r
i

- 2-
j to E.3+1

Note that

where i (=O,l··.F)

E.l and E. 2 contain r _ and r. of the array, and they do not enter into

this print routine, but they mu~t exist as all !I S • Alternative Box 7
terminates the double induction and sends the control to the print

sequence. The discrimination is on

-2- j

This quantity appears negative to the computer until j = ~l, at which

time -2- j appears as Q in the computer. It is then a positive number

with respect to discrimination and the control is sent to the start of

Box B. Note in Box 6 that ~ is decreased to j - 1 after the operation

r
i

- 2-
j to E.3+1

When j = 0 the last step of the induction is completed and a Q. is stored

in the leftmost bigit of the row r .• ~ is then decreased to j- - 1 = -1
1.

and the quantity
-2- j

becomes positive for the first time.

Boxes B, C, D, and E bring out the rows of the array and print

them, starting with r I , which corresponds to the character F, and de­

creasing to r , which corresponds to character O. Print orders are
o . -

given corresponding to tb~ rows r. and r_, even though these characters

are not printed by the routine. After the print order for r _ has been

given, the discrimination of Box E is negative for the first time and

the routine terminates.

The coding of the routine is:

Box 1

1. a~Ac 11.2-7 11· 2 -7 (= 17 • 2 -7 de c •) to R2
Box 2

1. m~Ah B.6 (1-1)2-7 + (E.I) = 11.2-7 + (E·12)o in R2
0

2. S----+m 2,4 E.I-i to (8-19)2,4

3. m----+Q B.l -2 -39 to R4

Box"2 (Cont.)

4. Q~m [E .I-iJ

5. m~Ah- B.2

Box 3

1. C 2,2

Box 4

2. m~Ac B.4

3. A---+m D.1

Box 5
1. m~Ac

2. S~m

3. a~Ac

4. A~m
5. m~Ac

6. A-+m

Box 6

5,5
9.2-11

D.6

[D.k+lJ
D.B

1. m~Ac D.B

2. m~Q B.3

3. L(4) 4

4. A~m D.B

5. m~Ac B.5

6. m~Ah Boo

1. S~m
B. S---+m

9. m~Ac

A. m~Ah

B. ~m

c. m---+Ac

D. L(l)

Box 1

6,9
6,B

LE.3+1]

D·5
[Ee 3+ i J
D·5

1

D·5

1. C B,l

-149-

-39 r. = -2 to E. I -i
J.

(I-i-2)2-1 + (E. I -i-I) in R2
o

(D.l) to R2 o

(D.k+l) to R2 o

(D.l) to D.7 o

D.k+l to (B-19)5,5
N·2-11= 9.2-11 to R2

. N .2-11 to D.6

Ck,_l to D.B

ck 1 to R2 ,n-
O to R4

~.2-39 in R4; c
k

in R2
,n

(E.3)o to R2

c
k

to D.B ,n

E.3·2-19 + (E.3+i)2-39 in R2

r. to R2
J.

r i - 2- j in R2

-2- j to R2

_2-(j-l) in R2

E.3+i to (B-19)6,9

E.3+i to (8-19)6,B

-j
r

i
- 2 to E.3+i

Box 8

1. m~Ac

2. a~Ah

3· A---+m

Box 9

1. e
Box A

1. m~Ac

2. m-->Ah

3. A~m
4. T

Box B

1. a~Ac

Box e

D.6

-2 -11

D.6

6,1

D.1

B.2

D.1

5,1

11.2-1

() -11 N-n 2 to R2

() -11 N-n-l 2 in R2

(D.k+l) to R2 o
(D.k+2) in R2

o

(N_n_l)2-11 to D.6

(D.k+2) to D.1
o

-150-

1. m~Ah

2. S~m

3. A----.m

B.6

e,4
D.6

[E.I-i]

(1_1)2-7 + (E.I)o = 11.2-1 + (E.12)o in R2

E.l-i to (8-19)C,4

(l-1-1)2-1 + (E.l-i) to D.6
o

4. m~Ac

5. Syncprint

Box D

1. m~Ac

2. m~Ah-

Box E

1. e
2. Stop

D.6

B.2

C,2

r
l

_
i

to R2

'l (I-i-l)2- + (E.I-l) to R2
7 0

(I-i-2)2- + (E.I-i-l) in R2
o

In the induction storing _2- 39 to all r
i

, the register R2 is

needed only in forming (I-i-l)2-1 and in forming the addresses

(E.I-i) • These two operations may be performed simultaneously and
o

the quantities (I-i-1)2-1 and (E.l-i) are left in R2 throughout the
o

induction. Therefore the quantity 11.2-1 (=11.2-1 dec.) need only

be sent to R2 in Box 1, and it is not stored into D.6. During the

traversal of Box 2, R2 contains

(I-i-1)2-7 + (E.I-i)
o

Instruction 5 subtracts the contents of B.2 from R2. B.2 contains

the constant

-1)1-

so that the subtraction gives

(I-i-2)2-7 + (E.I-i-l) o

in R2 as is desired. The quantity _2- 39 that is sent to all addresses

E.I-l is stored from R4. The only instruction needed in Box 3 is the

conditional transfer as the quantity (17-i-2)2-7 upon which the trans­

fer acts is in R2 from Box 2.
39 -j In Box 4, Instruction 1 stores -2- to D.5 where it becomes -2

The quantity _2- 39 exists in R4 as a result of Box 2.

Instruction 2 of Box 6 sends a to R4 and Instruction 3, an L(4),

isolates i in R4 as
2-39i

The quantity i·2-39 is added from R4 into the (E.3) in R2 by making use
o

of the m~Ah 800 instruction where the address 800 refers to R4. In-

structions 7 and 8 must both be S~ml instructions in the final code

since the pertinent address in R2. is

(E. 3+i)2-39

In Box C where the print order is given the scheme used in Box 2 of

having the index and the address in one word as

(I-i-l)2-7 + (E. I-i) o

is utilized. In this instance, however, the word cannot be left in R2

during the induction as the rows r. to be printed must be brought into
1.

R2. Instruction 5 is the print. Since! is initially Q the rows of

the array r I _
i

are correctly brought into R2 beginning with r F •

Box D subtracts

from
(I-i-l)2-7 + (E.I-i)

o

and leaves the result in H2. Box E then needs only the conditional

transfer order. As long as (I-i-2}2-7 is a positive number the transfer

sends the control to Instruction 2 of Box C.

The coding contains ~ instructions, which is 24 1/2 words. We

start the code at Word 000. Upon examination it is revea.1ed that In­

structions 9 and B of Box 6 naturally occur as left-hand instructions

-152-

in the final code. It is necessa.ry for them to be on the right; there­

fore a dummy instruction must be inserted for positioning. This gives

25 words of code which occupy addresses 000 through 018 in the memory.

Thel8 words of the array occupy addresses 019 through 02A. The 6 words

of B storage are then in addresses 02B through 030, and the 8 words of

D storage are in addresses 031 through 038.

The coding is:

000 a~Ac

001 S--?m

002 Q~m

003 e
004 m--)-Ac

005 m~Ac

006 a~Ac

007 m~Ac

008 m~Ac

009 L(4)

OOA m~Ac

OOB S~m'

ooe (DS

OOD m~Ah

OOE m~Ac

OOF A~m

010 m~Ac

011 A--:)m

012 m~Ac

013 A~m

014 a.~Ac

015 S~m

016 m---)oAc

017 m~Ac

018 C

110

002

000

001

02E

037

009

000

038

004

02F

ooe
000)

035

035

035

036

036

031
037

110

016

000

036

015

m~Ah 030

m-+Q 02B

m~Ah- 02e

~m 035

A-4m 037

S~m 007

A~m 036

A~m 038

m~Q 02D

A~m 038

~Ah 800

~m' OOD

m~Ac 000

A~m 000

L(l) 001

C 014

a~Ah FFF

C ooB
m~Ah 02C

T 005

m~Ah 030

A~m 036

SyncprintOOO

m~Ah- 02C

Stop

-153-

019 r -
OlA r.

OIB r
0

OIC r l
OlD r 2
OlE r3
OIF r4
020 r5
021 r6
022 r7
023 r8
024 r9
025 rA
026 rB
027 rC
028 rD
029 r E
02A rF

-39 02B B.l: -2

02C B.2: 2-7 + 2-19 + 2-39

02D B.3: 0

02E B.4: (D.I) = (00031)
o 0

02F E·5: (E.3) = (OOOIB)
o 0

030 B.6: (E.12) = (OOO2A)
o 0

031 D.l

032 D.2

033 D.3

034 D.4

035 D·5

036 D.6

037 D.7

038 D.8

-]:4 -

III. BINARY ARITHMETIC

We begin the study of arithmetic as it reiates to the computer

by discussing (i) the allowed ranges of numbers and (ii) the treat­

ment of negative numbers.

The allowed number range may be approached in two ways. There

is the so-called "floating binary point ll method and the "fixed binary

point" method. We have adopted the latter approach; however, a few

cursory remarks may be made about the former.

The "floating binary point" allows each number to be expressed

as a fraction and a characteristic. That is, the binary number

1011.1101 would be expressed as (0.10111101, +100) where the 100 is

the positive exponent of 2 associated with the number. An argument

in favor of such a scheme is that it alleviates the scaling considera­

tions at the coding stage which one otherwise encounters in working

with a fixed binary point. It is felt, however, that scaling is not

a serious problem and that the time spent in arranging suitable scale

factors is small in comparison to the total time spent in preparing

an interesting problem for the computer. Two definite arguments

against the floating binary point are: (i) It increases the complex­

ity of the computer which in turn increases maintenance difficulties.

(ii) It increases the time necessary to perform each operation. In

many problems that are contemplated the time required for their solu­

tion is a principal factor; hence advantages of speed are important.

In the "fixed binary point" method the binary point in the present

computer is taken between the first and second bigits from the left.

The binary point might have been fixed between any other bigit pair.

This fixed binary point places an upper limit on the size of a number

in the computer.

Since it is necessary to be able to distinguish between positive

and negative numbers, and since their treatment has a direct bearing

on the allowed range of numbers, we digress temporarily and discuss

the IIsignll of a number.

Although there are many possibilities for the representation of

numbers in the computer, we consider the two most common ones:

(i) "signedll numbers and (ii) "complement ff numbers. In the first

scheme the leftmost bigit would indicate the "sign". The sign

bigit would be a Q or ! according as the number is non-negative

or negative. In each instance the sign bigit is followed by the

actual numerical bigits. Clearly, in this case the magnitude of

all numbers would be less than 1.

In the second scheme of "complement" numbers, since

=

we write x as

then take for our representation of x

N

i~ 2i + 1 + x.

For positive !, that is x~ 0, the above equation gives:

(N+l) -x mod 2 = x.

-155-

If also, Ixl<:l, the leftmost bigit contains a Q as in the preceding

scheme. For the ne gat i ve values of ~, ° > x > -1, the integral part

of the number's representation is a sequence of !'s, (N+l) in length,

followed by a fractional part equal to (l-(xj). Since the computer

contains numbers modulo 2, it contains the complete fractional part

and the first integer to the left of the binary point; hence the

lef.tmost bigit contains a!. Therefore, in the complement scheme,

if I xl < 1, the "sign" of a ntnnber may be identified by examining

the leftmost bigit. This is not a true "sign ll and the bigit has

numerical significance. However, for convenience it is called the

sign bigit.

In either the "signed" ntnnber representation or the "complement"

ntnnber representation Ix 1 < 1, and the IIsign" of the ntnnber is de­

termined by the leftmost bigit.

Since the sign of a number is identified by examining the sign

bigit, we are naturally led to treating zero as positive for compu­

tational purposes. Since a 1 in the sign bigit indicates a negative

number and since the sign bigit also has numerical significance,

one may interpret! in the sign bigit followed by all 2's as the

integer -! and operate with it accordingly. The allowed number

range in the computer is then -l~ x < 1.

All numbers are of the form:

i 2 + 1 + x,

where N may be any suitably chosen value 0 For the discussion of

addition and subtraction it suffices to take N=O and to consider

a negative number as represented by its complement with respect to

2. For the multiplication process, N~ 39. The details are con­

sidered presently. Since the computer contains numbers modulo 2,

-156-

we actually see! or (2-lxl) according as ! is positive or negative,

and we refer either to the number or its complement with respect to

2. However, the existence of the (N+l) bigits left of the binary

point is implied.

Shifting

Shifting is one of the more basic operations the computer per­

forms and perhaps should be the first of the arithmetic operations

discussed. The left and right shift provide a means of multiplying by

2
n where -4o~ n ~ 40.

Recall that x is represented as:

N i l 2 + (l.+x).

Performing a left shift of .!! places, 0 ~ n~ 40, gives:

2nx(mod 2N+1.) _ f 21 + 2n + 2nx
:[=n

N .
= ~o 21 + (1.+2

n
x)

which conforms with the adopted complement notation.

-157-

As previously stated, all numbers in the computer must have

a numeric value less than!i therefore, for this "power" shift to

be a legitimate operation

or

In the computer where the left shift takes place modulo 2, the sign

bigit is treated as a numerical bigit, and at each step of the
-1 shift the 2 bigit shifts into the sign bigit. After an n-fold

shift where Ixl <: 2-n, the shifted number still has the proper sign

representation as is indicated by the alg~braic representation.

There are other schemes of left shifting; for example, where

the sign is not affected and numerical bigits are lost from the 2-1

bigit position. For purposes of power shifting this scheme is com­

parable to the scheme adopted. However, when one uses shifting'

facilities to separate a multiplex of numbers stored as a40-bigit

aggregate our scheme allows much more flexibility. This is not

the place for a discussion of non-standard operation; hence we de­

lay the discussion of shifting as it applies to such cases until a

later time.

Performing a right shift of !! places, 0 ~ n ~ 40 , gives:

N .
-n -n ~ J. -n() 2 x = 2 2 + 2 l+x

f-

N
~ i-n -n -n = i=b 2 + 2 + 2 x

=

=

=

~ 21 + (~ 2-1+2-n+2-nX)

N-n .
~o 21 + (1_2-n+2-n+2-nx)

N-n .
~o 21 + (1+2-

n
x)

N - n = NI > 0

Nt L 2i + (l+2-nx)
i=o

which conforms with our complement notation.

N>n

-158-

Phenomenologically, one may say that in a right shift the sign

bigit fills into the bigit positions that are vacated by the shift.

The output to the right of the 2-39 position is still available else­

where, but is of no concern in the present discussion.

For examples of shifting, consider a left shift of 4 and a right

shift of 4 where ~ is in each case a negative number. A negative ~

is used as it provides the more interesting example. The shift ex­

amples are considered modulo 2 as this is the computer representation.

(i) shift x left 4, x = -0.00001011

2-lx I = 1.11110101
4

2 (2-!x P = 11111.01010000
4 2 (2.-(xl)mod 2 = 1.01010000 equivalent to the

signed number -0.10110000

(ii) shift right 4, x = -0.10101011

2-l x l = 1.01010101

2-4(2_ (x P = 1.111101010101 then truncating

gives 2-
4
(2-lx P = 1.11110101 equivalent to the

signed number -0.00001011

In the right shift the resulting number may be in error by at most 1

in the rightmost position because of the truncation. One can reduce

this truncation error by introducing a "round-off" scheme in the

right shift.

Addition and Subtraction

Consider the sum S = (x+y). Not only must I x I, (y J <: 1, but

lsi <: 1. (x+y) is represented in complement notation as

~ i N i N i ko 2 + 1 + x + l 2 + 1 + y = 2 ko 2 + 2 + (x+y)

N+l i N+l .
i~O 2 + (1+x+y) = l 23. +. (1+8).

Hence S is of the same form as x and y. If (x+y) ~ 0, then

N+l i) N 1 Cl2 +(1+8) mod2+ = 8~O.

-159-

If (x+y)<: 0, then the result is:

In either case we have the correct interpretation. Since the result

is viewed modulo 2, we may set N=O in the above equations without

affecting the results. Therefore, in addition and subtraction num­

bers are of the form (2+u), where -1 ~ u < 1.

(2+x) + (2+Y) = 4 + (x+y) 4 + S

and if (x+y)~ 0, then (4+S)mod 2:: S. On the other hand, if

(X+y) < 0, then (4-1 S))mod 2 = 2-1 s J • Therefore, the signs of !

and l do not alter the process and one may, by means of addition,

effect either sums or differences.

Clearly, if it is desired to form the difference (x-y) of two

numbers ! and ~ where their representations are

N .
and I 22 + (l+y),

2=0

we must first represent -~ in this notation which is

f 21 + (l-y).
1=0

This is referred to as the complement of ~ with respect to 2N. For

subtraction it suffices to be able to form the complement of numbers

with respect to 2.

To form the complement (2-y), write

2 _ y = (2_2-n_y) + 2-n

where n is the rightmost bigit position. Since

n . -n 2 - 2 = I 2-
2

,

2=0

(2_2-n_y) is the reflection of each bigit of y; that is, where there

is a ! in l there will be a Q in (2_2-n_y). The complement is com­

pleted by adding 2-n to the difference. For example,

2 - 2-12 = 1.1111 1111 1111

- y =
which reflects each bigit of y:
Adding! into the rightmost bigit

gives the complement 2 - y =

-0.1101 0110 1011
1.0010 1001 0100

1

1.0010 1001 0101

This method of reflecting each bigit and adding! into the

rightmost bigit position is, in essence, the method by which the

computer forms complements.

Example s of addi tioD and. subtraction are:

-160-

(1) x = 0.00101011; y = 0.01000111; form S = x + y

x + y =

x = 0.00101011

y = 0.01000111

S = 0.01110010

(2) x = 0.10101101; y = 0.11010110;

x = 0.10101101

2 - Y = 1.00101010

2 + (x-y) = 2 -Is) = 1.11010111

Multiplication

form S = x - y

We consider the multiplication of ~, a 39-bigit multiplicand and

sign, by!, a 39-bigit multiplier and sign. The product P is a 78-
bigit product and sign. It has previously been stated that (x),

I y I < 1; therefore it follows that I P I <: 1. Here is an advantage of

placing the binary point to the left of the first numerical bigit.

If lxi, \y\:> 1 were allowed, the product P could be greater than

either factor, and P would have its binary point in a position dif­

ferent from either that of ! or l-

To develop a multiplication scheme, consider two numbers ! and

l where lxi, Iyl <: 1. Since ~he complement notation is used, their

product is:

=

-161-

Using the relation N

~2i = 2N+1 _ 1,

One obtains:
P = 1 + x + y + xy + 2N+l _ 1 + 2N+lx _

_ x + 2N+l _ 1 + 2N+l y _ y + 22N+2 _ 2.2N+l + 1.

Collecting terms:
P = 22N+2 + 2N+l(x+y) + xy.

Since
2N 2 2N+l i 2 + = I2 +1

J.=o

rewrite the product as:

N+l () 2N

l
+l

2
'i P = 2 x+y + + (l+xy).

=0

Either (x+y) = 0, or /x+yJ ~ 2-39; hence, if we choose N=39, 2N+l(x+y)

is either 0 or greater than 2. Since the computer contains numbers
-40

modulo 2,2 (x+y)mod 2= 0, and we see P as :

P mod 2 = 2 + xy,

the correct complement notation.

The scheme as outlined is not desirable for the computer as it

considers x mod 240 which implies that the multiplication is a 78-step

process rather than the conventional 39 steps.

One may modify the scheme so that it treats only the fractional

part (but not the sign bigit) of the multiplier~. Here, x has the

representation (~o +x) where ~o = 0 if x ~ 0 and ~o = 1 if

x < 0; i.e., the complement of ~ with respect to .! if ~ is negative.

By a procedure similar to the above, one finds

~
. 40 40

(~+x)(2J.+l +y) = 2 ~ + 2 x + ~oy + xy.
o i= 0

Rewrite the product P as

P = 240~ + 240(x~2-39) + 2 + ~ Y + xy.
o 0

Then, as in the preceding case, consider P mod 2 and

P mod 2 - 2 + ~oy + xy.

If x ~ 0, then ~o.= 0 and

P mod 2 = 2 + xy,
the correct product using complement notation. If x < 0, then

and P mod 2 _ 2 + y + xy.
~ = 1 o

-162-

Clearly, one needs to subtract ~ to gain the desired product. An

additional step is required in this scheme if the multiplier is

negative, namely adding the complement of the multiplicand l to the

product.

The multiplication is accomplished by examining the multiplier

a bigit at a time, beginning with the least significant bigit, and per­

forming the indicated operation. If the multiplier bigit is a!, the

multiplicand is added into the partial product; then the sum and multi­

plier are shifted right one place. If the multiplier bigit is a 2,
the partial product and multiplier are merely shifted right one. The

multiplication involves 40 steps; the first 39 steps either add the

multiplicand to the partial product and shift the sum right one unit,

or merely shift the partial product right one unit according as the

examined bigit of the multiplier is ! or Q. The 40th step adds the

complement of the multiplicand to the partial product or does nothing

according as the sign bigit of the multiplier is ! or 2.
The computer can only perform operations modulo 2; therefore some

way is needed of simulating the multiplicand modulo 240. To find a

suitable method, we examine whether there is a simple relation between

the sign of the partial products, as viewed in the computer, and the

sign of the multiplicand for the scheme discussed immediately above.

We now prove that after the first ! is encountered in the examination

of the successive bigits of the multiplier (prior to that the partial

product is zero), the signs of the multiplicand and the partial product

agree.

Assume the partial product p. is of the form:
N ~

Pi = ~ 2i + (l+b) where lb I < 1;
th f=b

if the (i+l) bigit of the multiplier is a 1
N . N i-

2pi+1 = l21. + (l+b) + 1:02 + (l+y)

N
= 21:0 2i + (2+b+y)

N. b+
Pi+1 = ~21. + (1~).

Nowlb I < 1 and I y I < 1; therefore lb+yl/2 = lb II < 1 and
N .

Pi +1 = l21. + (l+b I). Eq. (1)

-163-

For the case where the (i+l)th big1t of the mult1plier 1s a 0, it is

,easy to see that ~' of Eq. (1) is equal to b/2. The partial product

is originally 2" but after the first! appears in the multiplier, the

partial product ~ is:

IYI < 1

ly/21 < 1

Therefore, by induction all succeeding partial products are of the

form:

Ibl < 1

Inasmuch as the various increments to the partial product all have

the same sign, namely that of the multiplicand, and since it has been

shown that Ib'l < 1 for all possibilities, it 1s clear that the sign

of the partial product agrees with that of the multiplicand (again,

after the first! appears in the multipli~r). Hence, if it is arranged

so that this condition is satisfied in the course of multiplication as
40 done by the computer, then one bas simulated the multiplicand modulo 2

and the above scheme may be adopted.

It turns out, however, that multiplication as done by the

computer may cause the sign bigit to change; consequently it must be

arranged to keep it invariant after the first ! of the multiplier

appears. To see that the Sign bigi t may change if no precautions are

taken, consider the magnitude of the Pi'S:

and

2P i +l = Pi + Y

Pi+Y
Pi +l = -2-

IPi+Y1 ~ IP~ + Iyl <: 2

1Pi+Y1
-- <. 1 2

IPi+11 <: 1.

where Iyl <:. 1

-]64-

Since Po = 0, by induction all IP~ < 1. Although IPil <: 1, 2 IP~

is not necessarily less than one, but 21P~ < 2. At each step 21P~

is formed and then shifted right one unit. This implies that in form­

ing 2p. one does not lose significant bigits of the partial product,
1

but the "sign" bigit may be lost. The 10s6 of the "sign" bigit is the

result of the addition at each step being done modulo 2.

The multiplication of a 39-bigit number by a 39-bigit number gives

a 78-bigit product. When one is interested in single precision opera­

tion, i.e., operation ,"ith 39-bigit numbers, the 78-bigit product is

'rounded-off" to 39 bigits. That is, the 78-bigit product is approxi­

mated by a 39-bigit product. There are several methods for doing

"round-off' that are applicable to our needs. We have chosen for

multiplication the scheme in which all bigits beyond and including the

nth bigit are ignored and the nth bigit is set to a 1. At this point

we do not plan to argue the validity of this round-off scheme. We

may, however, state that the scheme is unbiased, and it has a variance

of 1/3·2
2n

.

The multiplication may be summarized as follows: There are 39

steps in which the multiplier is examined a bigit at a time. At each

examination the multiplicand is added to the partial product or nothing

is done, according as the multiplier bigit is a I or a O. In either

case the result is shifted right one unit and the process is repeated

for 39 steps. When the first! appears in the multiplier, the sign

bigit of the partial product is, on this and all subsequent steps,

set equal to the sign bigit of the multiplicand. The 40th step either

adds in the complement of the multiplicand or does nothing, according

as the sign of the multiplier is a 1 or a O. And at the end of the

40th step the 39th bigit of the pro~uct is set to a 1 if the multipli­

cation is dane with round-off; or nothing is done if the multiplication

is without round-off.

\'le consider t,,,o examples of multiplication. For simplicity we use

three-bigit multipliers and multiplicands. Both examples are with nega­

tive multiplicands as this affords the most interesting cases. The first

-165-

example has a positive multiplier and the product is rounded-off to

three bigits. This round-off to three bigits, of course, tends to

give a more distorted product than would occur in the computer where

the product is rounded-off to 39 bigits. The second example has a

negative multiplier; hence, as a correction, the complement of the

multiplicand is added to the product in the last step. This example

considers multiplication without round-off.

Example 1:

x

xy

xy(ro)

Step (i):

0.111 =

1.001111

= 1.001 =

(i)

(Ii)

(iii)

(iv)

7/8 y = 1.001 = -7/8
= - 49/64

-1/8 (The round-off scheme used is to

set the 2-3 position to a !.
this instance it is a !; hence

no change is made.)

y = 1.001
P = 0.000

o

p = 0.000
o +L = 1.001

2Pl = 1.001
P = 1.1001

1

PI = 1.1001
+L = 1.001
2p2 =Ili 0.1011
P2 1.01011

P2 = 1.01011
+l- = 1.001
2p 3 =[]j 0 • 01111
P3 = 1.001111

x = 0.111 o

= 1.001

In

Initially (p = 0). The rightmost bigit of the multiplier
o

is examined. Since it is a !, l 1s added to Po to give

2Pl' We have a negative multiplicand; hence, from this

step on, the sign of the partial product is set to the

sign of the multiplicand. 2p1 is shifted right one place

-166-

to give PI' and the sign of PI is set to a 1. Xo is

shifted right one place to form Xl' which again has a !
in the rightmost position.

Step (ii): l is added to PI to form 2P2· (Note that in adding (Y+Pl)

2p2 is written as [1]0.1011. The ~ does not exist in the

computer as it adds modulo 2; hence the ~ is shown in

brackets and does not enter into the product.) 2p2 is

shifted right to form P
2

, and the sign b1git is set to a

!. Xl is shifted right to give x2 .

Step (iii): Identical in procedure to Step (ii).

Step (iv): x3 is examined and the rightmost bigit (the original Sign

of the multiplier) is a 2; hence no correction term is

needed. Round-off is indicated; hence the right-hand

three bigits are truncated and the 2-3 blgit is set to

Example 2:

x

xy

a 1. In this instance it is a 1; therefore no action is

required.

1.101 =
0.001111

(1)

(il)

(lil)

(iv)

-3/8 y

15/64

Y = 1.011
P = 0.000 o

p = 0.000
o +Y = 1.011

2P1 = r:orr
P - 1.1011 1 -

p = 1.1011
2pl = 1.1011

2 p = 1.11011
2

P2 = 1.11011
+Y = 1.011
2p 3 =[1] 1.00111
P3 = 1.100111

P = 1.100111
+(2-y) 3 = 0.101

p =[:U 0 • 001111
= 0.001111

1.011 -5/8

x = 1.101 o

Xl = 1.110

X
2

= 1.111

X3 = 1.111

-167-

Steps (i) and (iii): These are identical in procedure to the preced-

Step (ii):

Step (iv):

Division

ing example.

The multiplier bigit is a Q; hence PI is shifted right

one Wlit to form P2.

The rightmost bigit of x3 is a ~ indicating the comple­

ment correction. (2-y) is added to P3 to give the cor-

rect product, P. (If round-off had been indicated, the

right-hand three bigits ·would now be truncated and the

2-3 bigit of the product set to a 1.

The division scheme adopted for the computer is a pseudo-non­

restoring scheme. Before discussing the scheme, we compare a true

non-restoring scheme with the more familiar restoring type of division.

For simplicity of discussion, we assert that ~, the dividend, and

l, the divisor, are positive. Further we assert that for any division

scheme

Ixl «YI < 1

(all numbers in the computer must be less than ~).

In the restoring scheme, the divisor is continually subtracted

from the partial remainder (the dividend on the first step) until the

remainder is less than the divisor. The number of such subtractions

is then recorded in the appropriate position in the quotient. The

partial remainder is then shifted left one unit and the process is

repeated.

In the non-restoring scheme the divisor is subtracted from the

partial remainder (the dividend on the first step) until the partial

remainder becomes negative. The number of such subtractions is then

recorded in the appropriate position in the quotient. The partial re­

mainder is then shifted left one unit, but now the divisor is added

to the partial remainder until the partial remainder again becomes a

positive quantity. The number of such additions is then appropriately

positioned and subtracted from the existing partial quotient.

-168-

These two sequences are then repeated ad infinitum with the sign

of the partial remainder being either positive or negative. The quo­

tient is formed by a succession of additions and subtractions.

If we consider the binary base, a well ordered division may have

only one addition or subtraction for each fixed quotient position.

This may be seen most clearly by referring again to the restoring

scheme. If the dividend is initially less than the divisor, then for

any fixed quotient position there may be at most (m-l) subtractions

(where ~ is the number base) before the partial remainder becomes

smaller than the divisor. In the non-restoring scheme it is not neces­

sary to have more than (m-l) subtractions or additions for a fixed

quotient position, as it suffices to know that the dividend is less

than the divisor. Since (m=2) for the binary case, one addition or

subtraction suffices for each quotient position.

An example of a well-ordered non-restoring division in binary form is:

15/6~ + 3/4 = 5/16

(1x2°f_~1x2-1)_(1x2-2)+1x2-3)_(1x2-~l
0.11/0.001 II}

1.01 (1)
1.011111
0.011.
1.110111
0.0011
0.000011
1.11101
1.111101
0.000011
0.000000

(li)

(iii)

(Iv)

(v)

Collecting terms of the quotient gives:

1 x 20 + 1 x 2-3 1.0010

-1 -2 -4) (lx2 +lx2 +1x2 = -(0.1101)

5/16 = 0.0101

Step (i): The sign of the divisor and dividend (partial remainder)

are the same. The first quotient position is chosen

as the 20 position; hence a 1 is recorded and the divisor

Step (ii):

-169-

is subtracted from the dividend (the subtraction is done

using complement notation).

The partial remainder is now negative; hence its sign dif-
. -1

fers from that of the divisor. -1 is recorded in the 2

quotient position and the (diviSO;) x 2-1 is added to the

partial remainder. In the computer the partial remainder

is shifted left one unit rather than shifting the divisor

right one unit as it is added. In essence the two are

equi valent; however the former is more advantageous with

respect to computer operation.

Step (iii): The partial remainder is still negative, a -1 is inserted

into the 2-2 quotient position, and the (div~sor) x 2-2

Step (iv):

Step (v):

Step (vi):

is added to the part ia1 remainder.

The partial remainder is positive; hence a 1 is recorded

in the 2-3 position of the quotient and the (divisor) x

2 - 3 is subtracted from the partial remainder.

The partial remainder is negative, so -1 is recorded in
-4 - 4

the 2 position of the ~uotient. The (divisor) x 2-

is added to the partial remainder giving a new partial

remainder of 0 which terminates the division.

The indicated additions and subtractions in the quotient

are performed. The result is the desired quotient.

Note that the restriction of treating ~ and l as positive numbers

is not necessary in the non-restoring scheme as the sign of the partial

remainder (x, initially) may be either positive or negative. It is not

needed to know the specific Sign of each factor but only the relation

between the Sign of the divisor and dividend. Hence, in further dis-

cussion no sign restrictions are necessary.

As each step of the quotient involves an addition or a subtraction,

the true non-restoring scheme would necessitate a second register that

had all the complications associated with the adding facilities. There

is, however, a simple relationship between the true non-restoring quo­

tient that is written as a series of l's and -!'s and a pseudo-non­

restoring quotient obtained by replacing the -! by 2 wherever it occurs.

This relation, first shown by von Neumann, may be found as follows:

-170-

Write the true quotient Q in non-restoring form as:

Q :: o -~ -n..
2 A. + 2 "'1 + •.. + 2 "- + r o n n

where Ai may be ±1 and r may be positive or negative. Using the
- n

transformation Ai = 2c
i
-l where ci = 0 if Ai = -1 and ci = 1 if A.i = 1,

one obtains:

Q

(0 -1 -n) (0 -1 -n) 2 2 C +2 cl + ... +2 C - 2 +2 + .•• +2 + r o n n

If we assert that the pseudo-quotient Cis:

o -1 -n
C 2 Co + 2 c1 + .•. + 2 cn'

then, since

(
0 -1 -n) - 2 +2 + .•. +2

2 + Q

__ _~n 2-1 __ (-n) - 2-2 ,
=0

-n 2C + 2 + r .
n

If we form the pseudo-quotient C, multiply it by g (a simple left shift),

and add 2 -n, the result is (2+Q) which is the correct complement nota­

tion with res:pec,~ to 2. In our instance 2-n
= 2-39 (the rightmost bigit

position) .

The 2-39 that 1s introduced is, in effect, round-off of the same

type as that used in multiplication.

The pseudo-non-restoring scheme 1s the one actually used in the

computer.

For an example of division, divide

49/128 -7/8 = -7/16

Divisor Partial Remainder Quotient

x = r 0.0110001 = 49/128, 0
0

y 1.001 = -7/8,

(1) r = 0.0110001
0 1.001 +L =

r l = 1.1000001 o.

(ii)

(iii)

(iv)

(v)

(vi)

step (i):

2r1 = 11.0000010
+(2-y) = 0.111

1.1110010

2r2 = 11.1100100
+(2-y) = 0.111

r3 0.1010100

2r 3 = 0 1.0101000
+y = 1.001

r4 0.0111000

2r4 = 0 0.1110000
+Y = 1.001

Q == 2C + 2

r5 0.0000000

c
-4

0.1100

1.1001

-171-

0.1

0.11

0.110

0.1100

-7/16
The sign of the partial remainder (dividend at this step)

and the sign of the divisor ar~ different; hence the di­

visor (y) is added to the partial remainder (r) and a 0
o

is recorded in the quotient.

Step (i1): The sign of r l and l are the same; hence the complement

of l is added to 2r
1

and a 1 is recorded in the quotient.

Step (iii): The sign of r
2

and l are the same; hence the complement

of l is added to 2r
2

and a ! is recorded in the quotient.

Step (iv): The sign of r3 and l are different; hence l is added to

2r
3

and a Q is recorded in the quotient.

Step (v): The sign of r 4 and l are different; hence l is added to

2r4 and a 2. is recorded in the qu'otient. (r
5

=0) so the

division steps are completed.

Step (Vi): Shift C, the quotient resulting from the first 5 steps,
-4 left one place and add 2 . This gives the true Q.

The computer would not terminate, as we have done, when the re­

mainder is O. It would carry the division out to 40 steps rather

than 5, and then insert a ! into the 2-39 pOSition. Obviously this

does not give an exact answer. In fact, the computer quotient for the

given example would be Q = 1.1000111 ... 111, = -(7/16 + 2-39).

-l'{2-

IV THE COMPUTER

Block Diagram

In this part we discuss in more detail the various components of

the computer and the various interactions between them. We begin with

a simple block diagram of the computer:

CONTROL

The block diagram shows the components with their various intercon­

nections. Some of these connections are for logical (non-arithmetical)

operations and others to transfer numerical data from one component

to another. It is observed that the control is the central agency in

the organization and directs the operation of the other components.

It signals the input to read new information into the internal memory

and receives a signal when the operation is completed. The control

directs the internal memory to provide the next order to be executed;

further, it transfers numbers from the memory to the arithmetic unit,

and conversely. The control directs the transfer of numbers between

the internal and external memory. It supplies the sequence of pulses

and voltage changes to the arithmetic unit to effect the various

mathematical operations. Finally, it instructs the output to punch

a paper tape and print page information from the memory for external

use.

-173-

Arithmetic Unit

We follow the same pattern as in the Introduction and begin with

the arithmetic unit. A schematic cross-section of the arithmetic unit

proper is shown:

.------,
R6-~ ARITHMETIC

GATE
CHASSIS

Q{::-t~~
{

R2 I.~ (
ADDER

A R I L J>:= 6-+---
I

Mg. 1

L-_____ ...J

Scm-tic Cro •• -8ect10D of Art tbaet1c UD1 t.
Circl •• with the -U arrova in41cate gate tube.,
or electronic CIV1 tcheo • AlDO ohovn U'O tho 1Dtor­
connection. tor the addition proce •••

The six registers, Rl, R2, •.• R6, are mounted in pairs on three horizon­

tal, three-dimensional chassis, a type proposed by Bigelow. It is

sometimes convenient to refer to the pair, RI, R2, by the Single let­

ter A (for accumulator); R3, R4 are designated by Q (for quotient

register). Rl and R3 provide a method for the shifting of numbers in

R2 and R4, respectively, so it is quite natural to think of the two

doublets of registers, A and Q, as Single entities. However, R5 and

R6 are not so interconnected; in fact they perform quite different

functions. Nevertheless, it is compact to have them also juxtaposed.

Opposite the three chassis of registers are three other sets, quite

similar in appearance. The lower two constitute the adder proper; the

topmost is called the arithmetic gate chassis.

We discuss first the registers. Each register is a set of 40

flip-flops. Between the two rows of flip-flops in a chassis are two

other rows of tubes. These are the so-called gate tubes (electronic

-174-

switches) and allow for four different types of switching action. (Each

tube contains two halves which can be used independently; such tubes

are sometimes called double triodes.)

A flip-flop is a relatively simple electronic circuit containing a

tube consisting of two separate parts, such that either one half is con­

ducting current and the other is cut off, or the converse. These two

modes of operation correspond to two stable configurations, and one state

is said to represent a "0", the other a "1". A flip-flop is schematically

drawn as a rectangle of two squares, one being shaded to indicate con­

duction. We adopt the following convention:

o

A small neon is connected to each flip-f'lop; "off" corresponds to a a
and "on" to a 1.

As mentioned in the Introduction there are two alternative methods

for transferring information from one set of flip-flops to another.

Consider two sets of flip-flops, A and B. There exist circuits--gating

schemes--whereby it is possible to transfer information from A--+B in­

dependent of the previous states of the individual flip-flops of B.

The alternative procedure would be to first reset all of B to O's and

then cause only those flip-flops of B to be set to 1 whose correspond­

ing flip-flops in A contain 1. Quite clearly, B could be first reset

(or "Cleared") to alII's a.nd then the a's from A could be transferred

to the corresponding flip-flops of B. The latter method with both

schemes of "clearing" and gating is used in the computer.

We indicate diagrammatically how a number 0011···0 in, say, R2

is shifted to the right by one binary place. Rl initially contains an

arbitrary number fran some previous operation. (See Figure below.)

As a result of the four steps, the number originally in R2 has been

shifted to the right by one binary place. It is observed that the left­

most flip-flop of Rl, the flip-flop of the sign bigit, has an additional

gate leading to the "sign" flip-flop of R2, as is of course required

R2

RI

R2

RI

RI

-175-

0 0 I I • ••• 0 number to be

~ ~ ~ ~ ~ shifted right • ••• by one place

I 0 0 • ••• I

FU ~ ~ ~ ~ arbitrary
number

Initial State

0 0 I I • • • • 0

~ ~ ~ ~ ~

o~ I~ ~ I ~- ---I ~ CL CL· • •• CL Clear Bus

Step 1. Clear RI to ZEROS by voltage pulse on Clear Bus.
Symbol = CoRI

o o
Step 2. Flip -flops of R2 containing "1" cause corresponding

flip-flops of RI to set to II," when voltage pulse I.
applied to gate tubes.

-....----------------------Clear Bus

R2 • • • •

RI • •••

S te p 3. Crea r R 2 to II III Symbbl eel R2

.,~,.

-.LIO-

o o o
R2

RI
o o o

Step 4. Flip-flops of R I containing "0" cause
correspondi ng fli p - flops of R 2 to set to II 0 II •

to propagate the sign bigit. With the aid of a third set of gate

tubes connected diagonally to the left, shifting to the left by one

binary place is essentially the same sequence as in the above, except

that in Step 4 the third set of gates would be pulsed.

It is convenient to label the sequence of toggles in a register

by 0,1, ..• 39 starting from the left, so that there is a one-to-one

correspondence between a flip-flop and the magnitude of the exponent

of that binary place; e.g., OR2 designates the sign flip-flop of R2,

(O-7)R1 refers to the first eight flip-flops of RI.

The chassis with R3 and R4 has a similar set of gate connections.

In fact, whenever a shift occurs in A the same process occurs in Q;

both multiplication and division processes make use of the simultan­

eous shifting. Furthermore, it is desirable in some instances not to

lose the information which would otherwise disappear by truncation at

the ends of A. In order to retain the information, flip-flop ORI is

connected to 39R4, and the information being truncated at the left of

A is introduced at the right in Q. The information being truncated

at the left of Q is lost. Symbolically,

empyrean

Q

A

Fig. 2

•••••••••••
•••••••••••

•• • • •• • • • • •
•••••••••••

Nature of left shift operation, showing
interconnection of A and Q.

-177-

The sign flip-flop of A, OR2, is treated the same as the others of R2j

i.e., the original sign of a number in R2 gets shifted, along with the

numerical part. This type of shift operation facilitates the separa­

tion of multiple stored numbers.

In the right shift operations, Q again acts as a reservoir for

the bigits spilling out of A. Here the bigits are introduced at the

left in Q, beginning with the "sign" flip-flop, OR4. Diagrannnatically,

• ••••••••••
Q • ••••••••••

• • •• •• • • • ••
A • ••••••••••

Fig. 3 Nature of right shift operation

Thus we can imagine that for the left shifts, Q is the continuation of

-1'(0-

A on the left, and for the right shifts, Q is the extension of A on

the right. For the right shift operation, it is of course necessary

that the original sign bigit of R2 propagate. For example, a right

shift by five binary places of the complement number, say 1001 •.• in R2,

results in 111111001 •••••

The Addition Process

A schematic drawing of the addition process is given in Figure 4.

MEMORY

5 J------~i:ZI ADDER

3
4

Fig. 4 Schematic cross-section of the arithmetic unit
that participates in the addition process. As
usual, circles indicate gate tubes. The small
arrows represent symbolically the signals that
stimulate the gating action. The clearing ac­
tions associated with each gating action are

not shown.

-179-

The 40 stages of the various registers are represented by simple squares.

As before, circles represent "gates". The two inputs to the adder are

-from R2 and R5. R2 is statica.lly connected to the adder, so that its

contents are always sent there, irrespective of whether or not an addi­

tion operation is being pursued. The number to be added to that in R2

comes initially from some memory location into R5. The pulse, indicated

by 2 in Figure 4, gates this number into the adder. There the sum is

formed. During this process, in preparation for receiving the sum, RI

is cleared. Finally gating action 4 transfers the sum from RI~R2. This

latter gating action involves a displa.cement of the bigits to the right by

one. In order to keep the position of the binary point unchanged, gating

action 3 effects a shift of one to the left. An alternative scheme would

be to have gating action 3 bring the sum into RI without any shift. Then

transfer to R2 with a right shift; return to Rl directly; but then go

back to R2 with a left shift. This doubling back costs two extra clear­

ing and gating actions. In place of this we have introduced another set

of gates, in which the sum is brought into Rl displaced once to the left;

then a single transfer to R2 completes the process. It should be men­

tbned that it is necessary to have an extra flip-flop, eRl, beyond ORl,

which connects to OR2, the sign flip-flop of R2.

We have seen earlier that the subtraction d=(a-b) may be performed

by adding to ~ the complement of £. We have also indicated that the

complement information is quite naturally available in a set of flip­

flops. Indeed, if a set of gates is connected to the adder from the

side of the toggles opposite that normally used in addition, we can per­

form subtraction. Gating action 5, of Figure 4, transfers the comple­

ment of the number in R5 to the adder; the result (here, the difference)

again appears finally in R2. Thus the addition and subtraction processes

differ only in the choice of gating action 2 or 5, respectively. When­

ever the "complement" gate 5 is used it must, of course, be accompanied

by the insertion of a 1 into the 39th stage of the adder in order to

obtain the true complement of the number in R5. This insertion is

effected by stimulating a carry input into the 39th stage of the adder.

-180-

Multiplication

Inasmuch as multiplication is a series of additions, the nature

of the addition process dictates in large part the role of the various

registers in the multiplication process. When the multiply order is

given, it is assumed that the multiplier factor is already residing

in R4 as a result of a preceding instruction or of an earlier arith­

metical operation. The address associated with this order refers to

the memory location containing the multiplicand. The operation begins

with the transfer of the multiplicand from the memory to R5; simulta­

neously R2 is cleared in preParation for the successive partial pro­

ducts. We distinguish two types of multiplication:

(i) no round-off, in which the full 78 bigits and sign are

available, the Significant portion appears in R2, and the right half

appears in R4j

(Ii) round-off, in which the first 39 bigits rounded-off are in

R2. The remaining portion of the product is truncated.

In both types of multiplication the first step is the examination

of the bigit in 39R4, the rightmost bigit of the multiplier. If it is

a !, an addition of the multiplicand and the partial product (at" first,"

Q) is performed. R2 and R4 are then shifted to the right by one place.

In the event that the bigit is a Q, R2 and R4 shift without an addi­

tion. The succeeding bigit of the multiplier is now examined in R4
and an addition is performed if the bigit is 1. Because of the pre­

ceding right shift of the partial product in R2, the direct addition

of the multiplicand to it is appropriately placed. Note that the

bigits being shifted out of R2 are no longer involved in the partial

product sum. In the case of "nro" (no round-off) they are introduced

into R4 at the left, where room is being made available by the right

shifting of the multiplier. In "ro" multiplication, R4 is empty at

the end of the process. The final step in the process involves the

"multiplicand correction" (as discussed in the section on binary

arithmetic) in the event the multiplier is negative, and the round-

off procedure if the latter is indicated~

The successive additions that occur in forming the partial pro­

ducts differ in one respect from the single addition process associated

-181-

with the addition orders. In the latter case it will be recalled

that the gate connection from the adder to Rl was such that the out­

put of the adder was displaced one to the left, so that in the sub­

sequent right-diagonal transfer from Rl ~ H2 the binary point is

unchanged. In the multiplication process, a right shift of one is

precisely what is needed of the partial sum; hence the gating from
th the adder to R1 is direct; i.e., the i stage of the adder is con-

th nected to the i stage of HI, and the subsequent transfer from

Rl~ R2 introduces the desired right shift by one.

In the control panel immediately to the left of the adder chassis

is a six stage binary counter called the operations counter. At the

beginning of the multiplication process, this counter is set to 23,

and each cycle of the multiplication adds!. It is arranged so that

the iterative routine is interrupted after the counter reaches 63j i.e.,

the counter is filled with l's. The full counter then terminates the

routine, stimulates the multiplicand correction in the event of a nega­

tive multiplier, and finally initiates the round-off procedure if in­

dicated. The sign bigit of the multiplier is at this time residing in

39R4 and is detected there.

We conclude the discussion of the multiplication by an example

wi th "nro". The particular problem is

in binary form:

in complement form:

(13) (11) = 143
lb x 15 25b

(-0.1101) x (-0.1011) = (0.10001111)

(1.0011) x (1.0101) = (0.10001111)

The first row of the sketch shows the initial configuration. In

Step 1 we have included Rl and R3 to show their respective gate

connections to R2 and R4. There is no connection from the adder to

eRl; it is set to correspond to OR5. In the subsequent steps only

the principals, R2 and R4, are shown. In the example we assume that

the arithmetic unit has only 5 stages instead of the actual 40.

-182-

o 123 4 0 I 234

R21 0 I 0 101 0 I 0 I· R411 I 0 II 10 II I

Step I

R211 II II I 0 I 0 I R411 II II I 0 II I Step 2

Step 3

R211 II loll II I R411 II II II II I Step 4

R21 0 II I 0 10 I 0 I R41 0 II II II II I Step 5

At the end ot Stop 4 tho itoro.t:lvCt proeed11Jle 1s co1lPleted, and the

lip ot tho oultiplier io by nov at the extreme right nip-flop. Step 5

i8 a true addition of the cocplement of the multiplicand, inasmuch as

the multiplier io negative. SimultQneously R4 is shifted to the right

by one 80 that the right half of the final product is properly posi­

tioned. For reasons of' unif'ormity OR4 is always set to Q in this step,

irrespective of the true sign of' the product.

If' the multiplication were rounded-off', the rightmost f'lip-f'lop of'

R2 would always be set to ! and R4 would contain all Q's.

-183-

Division

We now discuss the various steps of the division process. It

will be recalled that we use a so-called "pseudo-non-restoring"

type of d1 vision rather than the usual "restoring" form. It is

assumed that the dividend is already 1n place in A as a result of a

previous instruction or operation. The first step 1s to transfer the

divisor from some memory location, specified by the address part of

the divide instruction, to R5. The signs of the divisor and dividend

are then compared. If they agree the complement of the divisor is

added to the dividend; and accordingly a ! is set into 39R4, the regis­

ter which eventually contains the whole of the quotient. On the other

hand, if the signs of the two terms differ, the divisor is added di­

rectly to the dividend, and 39R4 is left undisturbed. Inasmuch as R4

vas cleared to Q's at the start, if 39R4 is left undisturbed this cor­

responds to the insertion of a Q. Q is then shifted one to the left.

By virtue of the gate connections used here, in particular the fact

that the transfer from R1~ R2 is diagonally left, the partial remain­

der appears in R2 already shifted to the left by one. The signs of

the partial remainder and the divisor are again compared and 39R4

again set appropriately. This process is done 40 times. In this

manner the pseudo-quotient is obtained. We have seen that the pseudo­

quotient is simply related to the true quotient • Finally, the round­

off is performed.

Inasmuch as the desired shift of the partial remainder is to the

left, it is necessary to have an extra flip-flop precede 0R2 in order

not to lose the sign of the partial remainder. It is designated as

eR2 • Further, along with the preparatory step of securing the di visor,

it is necessary to set eR2 to agree with 0R2. At the completion of

the operation, Q contains the rounded-off quotient and A has twice the

remainder.

As an illustrative example, we consider a four-bigit division:

0.1001/-0.1101 = (~)J{~) = 0.1001/1.0011
Binary Computer

At the start of the process, R2 contains the dividend, R5 the divisor,

and R4 is cleared to 0' s • eR2 is made the same as OR2, in this case

O. The first sign comparison of eR2 and OR5 shows disagreement;

hence the contents of R5 are sent to the adder directly, and a 0 is

partial rernainder (quotient) (unchanged)

e 0 I 2 3 4

R2[OlO"ITfOJo[I] R4[O]01olo101 RS[1101o111 11

Step I

e 0 I 234
R2101011loillO] R4Io]olo[j-@] Step 2

R21 I II (] I 0 II [0] R4[OJCfl I I 0 I 0 I Step 3

R2[0 10 II II [T[OJ R41 0 II I 0 II 101 Step 4

Initio I
State

-185-

set in the rightmost flip-flop of R4 and transferred, via R3, one place

to the left. In the second sign comparison, the signs agree and the com­

plement of the contents of R5 is sent to the adder directly and a ! ap­

pears in R4, etc. At Step 5, R4 contains 10100. (The last stage is

always Q at the completion of intermediate steps.) The round-off pro­

cedure corresponds to setting the rightmost flip-flop to !, a.nd the

quotient is 1.0101 (= -0.1011). Twice the remainder resides in R2 be­

cause of the shift occurring in each addition process.

Memory

The memory (internal and external) component of the computer pro­

vides the storage facility for numbers and instructions. The interna.l

memory is electrostatic storage and the external memory is magnetic drum

storage. In what follows reference to "memory" refers to the internal

memory and reference to "drum lt implies externa.l memory.

The memory consists of 40 cathode ray tubes (crt), commercially

available two inch tubes, type 2BP1. Each tube is mounted in a separate

metal conta.iner, together with some associated electronic circuitry.

The units have been designed so that they may be easily connected into

the computer, or easily removed in case of malfunction and replaced by

tested spares. The ensemble is located immediately above the arithmetic

unit.

Each unit of the memory communicates with one, and only one, stage

of the arithmetic unit; that is to say, the 40 units of the memory are

connected in parallel with the 40 stages of the arithmetic component.

Each unit has a capacity of 1024 bigits. These are arranged in a

32 x 32 square array. If the various positions are numbered from 0-1023,

clearly it requires 10 bigits (210 = 1024) to specify a location or, as it

is commonly called, an address. Once an address is specified, all units

switch to the corresponding position in their square arrays, and communi­

cate simultaneously to the arithmetic unit the corresponding bigits.

Data sent to the memory, either initially as input material or

during the course of computation, must be continuously regenerated in

order to be retained effectively. Indeed, the cathode ray tubes are con­

tinually regenerating the contained information unless interupted to go

through an action cycle when the arithmetic unit asks for a new order pair

or number, or else when the memory is to receive new information. After

the interruption the memory returns to regeneration.

-136-

Without entering into a discussion of the theory of storage

tubes, let us make a few simplified remarks on "writing" am "reading"

of information in crt.

(i) Writing: the prescription for inserting a £ at some loca­

tion is to turn the beam on for a few microseconds. To write a !,
the beam is turned on for a few microseconds exactly as in writing a

£; but then the beam is displaced a few spot diameters and kept on a

few microseconds longer in the new position. In either case, the

procedure is independent of what conditions existed beforehand; in

other words, there is nothing required that corresponds to erasing.

(ii) Reading: the beam is turned on for a few microseconds in

the undisplaced position. If a 2 is residing there, there will be a

small negative pulse on the pickup screen on the outside face of the

tube. On the other hand, if a I were there the pulse on the pickup

screen would be positive. These pulses are amplified and used to

set flip-flops accordingly. We discuss this presently; however, it

might be mentioned here that, in the event of a 2, the associated

negative pulse turns the beam off before it is displaced; hence the

o at that spot is not destroyed and is available for repeated consul­

tations. The positive pulse does not turn the beam off until the

beam is displaced; hence the ! is inta.ct also.

A very much simplified logical diagram of the memory system is

shown in Figure 5.

from---.a...I

Information

toRS toRS

Fig. 5 Memory System. Abbreviations: D.A.
R.C.
C.C.

deflection adder
regeneration counter
control counter

-187-

Only one of the 40 cathode ray tubes with its associated amplifier

and flip-flop is shown. The deflection adder is a device that,converts

a lO-bigit number into a pair of voltages which are applied to the de­

fIe cting plates of the crt. There are three inputs (Via gate tubes)

into the deflection adder. Normally, the regeneration counter is

sending its systematic addresses to it. When an action cycle is called

for, the deflection adder receives an address either from the control

counter or from R6 in preparation for activity at the location speci­

fied by them.

In a regeneration cycle, an address from the regeneration counter

is sent to the deflection adder and there converted into a deflection

voltage on the crt. The electron beam is then turned on to read the

information at that spot. An amplified positive pulse from the pickup

plate, corresponding to a !, will set the flip-flop and all~w the beam

to stay on in its slightly displaced position; thus a ! is rewritten

in that spot. If the pulse is negative, the flip-flop is not set; the

beam is turned off before it gets displaced; and a 0 is rewritten. In

the meantime, the regeneration counter is advanced by one; the flip-flop

is then reset; and the cycle is repeated for the succeeding spot. In

this way, the complete pattern is continuously regenerated.

At some point in this process let us assume that an action cycle

is demanded and that this action is to read a number from the memory to

the arithmetic unit, into either R5 or R6. There is an interlock (not

shown in the diagram) whicn allows the regeneration process to complete

the present cycle; but in the next cycle, instead of gating an address

to the deflection adder from the regeneration counter, the address is

either taken from R6 or from the control counter, according as an order

is being executed ora new order pair is being asked for. Reading pro­

ceeds and the flip-flop is either set to the! state or left undisturbed.

The information, in addition to being sent back into the crt, is also

gated into R5 or R6 as desired, by means of the gates shown in the

diagram.

If the action cycle calls for writing into the memory, either from

R2 or R5, the corresponding gates are opened and again the flip-flop

is set or left undisturbed according as the bigit is ! or Q. Here, too,

the flip-flop controls the length of time the beam is on, hence whether

-183-

it is to "write" a 1 or O.

There exists a variety of possible paths of communication between

the various registers of the arithmetic unit and the memory. Obviously,

R6 must be able to receive order pairs from the memory; it suffices that

this connection is unilateral. R2 must be able to send to and receive

fr0m the memory; similarly, R4. Finally R5 needs to receive from the

memory (for example, in multiplication). The scheme adopted is shown

in Figures 6 and 7.
In the first are shown the

gate connections from the memory.

R6 connection is straightforward

and requires no additional com­

ments. A number from the memory

is gated into R2 by first being

gated into R5, from there to the

adder, then to Rl, and. finally to

B2j the last having been previous-

ly cleared or not as desired. R4

communicates vith the memory via R5.

Fig. 6
Gate connection to the arith­
metic uni t from the memory.

The connections to the ID!!mory are shawn in F1gure 7. R2 and R5

communicate directly nth the memo17j R4 reaehea the memory via R;.

There exists a certain amount of flexibility in the gate connections

from R2 and R5 to the memory. It is possible to send a compoeite word

to the memory, one part baing from R2 and the remainder from R5. This

arrangement is usoful in the substitution order where it is desired to

change the address part of an order

residing in the memory by an addreoo

at the moment in R2. This 1s exe­

cuted by first bringing all of the

vord from the memory into R5, trutD

sending all but the old address

part backj, the ney addreoo being

supplied from R2, where tho appro­

priate set of 12 gates is oponed.

Use is also made of this floxibl11-

ty of composition in the half-vord

substItution.

Fig. 7
Gate connections to the mem­
ory from the arithmetic unit.

-189-

The external memory is a magnetic drum system built for the computer

by Engineering Research Associates, Inc., of St. Paul, Minnesota. The

drum prorer is a precision cylinder whose surface carries a magnetizable

iron oxide. The cylinder is 8 1/2 inches in diameter and 15 inches in

length. The drum cylinder is completely enclosed in a housing on which

are mounted 202 magnetic heads for reading and writing information on

the drum. When in operation with the computer, the drum is continuously

rotating at 3450~. The drum is mounted with the associated electronic

gear in a 7 foot cabinet which is approximately 5 feet wide and 30 inches

deep.

The drum has a capacity of 10,000 forty-bigit words. However, these

words are not singly addressed and the communication between the drum

and the memory is in blocks of fifty words. The addressing is done by

200 drum tracks where each contains fifty words arranged serially around

the periphery of the cylinder. A separate magnetic head is associated

with each drum track. There are 202 magnetic heads in all; two of these

are for indexing purposes and the rest are concerned with the 200 storage

tracks.

Due to peculiarities in the ERA logical design of the drum, the

track addresses range from 0-255 with certain addresses being omitted.

Table III shows the correspondence between the ordinal numbers and the

actual track addresses. There are, however, routines in existence which

allow one to address the drum tracks sequentially as addresses 0-C7

(0-199, decimally) in the process of coding. Since the communication

with the drum is by tracks where any block of 50 words comes from a single

track (one magnetic head), we observe that the drum is a serial storage

system in contrast to the parallel storage of the memory.

It requires between four and five revolutions of the drum to read

or write a track of words. The drum speed of 3450 rpm gives a drum period

of 17 milliseconds, so that it requires between 68 to 85 milliseconds

~or 50 words to be read from, or written onto, the drum. This is, on

the average, 78.5 milliseconds per 50 words.

The drum instructions each require a full word for their expression.

The drum orders are:

o 0

1 1

2 2

3 3
4 4

5 5
6 6

7 7
8 8

9 9
A A
B B

C C

D D

E E
F F

10 10

II 11

12 12

13 13
14 14

15 15
16 16

17 11

18 18

19 20

lA 21

lB 22

1C 23

lD 24

lE 25

IF 26

20 27

21 28

"22 29

23 2A

24 2B

25 2C

26 2D

27 2E

28 2F

29 30

2A 31

2B 32

2C 33

2D 34

2E 35
2F 36
30 31

31 38

32 40

33 41
34 42

35 43
36 44

31 45

38 46

39 41
3A 48
3B 49
3C 4A

3D 4B

3E 4c

3F 4D

40 4E
41 4F

42 50
43 51
44 52
45 54

46 56

47 ·58
1£ 5A
49 5C
4A 5E

4B 60

4c 61
4D 62

4E 63

4F 64

50 65

51 66

52 67

53 68

54 69
55 6A
56 6B
57 6c

58 6D
59 6E

5A 6F

5B 10

5C 11

5D 12

5E 14
5F 16

60 18

61 7A

62 1c
63 7E

Table III

64 80

65 81

66 82

61 83
68 84

69 85
6A 86

6B 81
6c 88

6n 89

6E 8A

6F 8B

10 8c

71 8n
12 BE

13 8F

14 90

15 91
16 92

11 94
18 95

79 98
1A 99

1B 9C
1c 9D

1D AO

1E Al

1F A2.

80 A3

81 A4

82 A5
83 A6

84 A1

85 A8

86 A9
87 AA

88 AB

89 AC

8A AD

8B AE

Bc AF

8n BO

8E B1

8F B2

90 B4

91 B5

92 B8

93 B9
94 Be

95 BD

96 co
97 Cl

98 C2

99 C3
9A c4

9B C5
9C c6

9D C1

9E c8

9F C9
AO CA

Al CB

A2. cc
A3 CD

A4 CE

A5 CF

A6 Do
A1 D1

A8 D2

A9 D3
AA D4
AB DB

AC D9
AD DA

AE DB

AF EO

BO El

Bl E2

B2 E3

B3 E4

B4 E5

B5 E6

B6 E1

B1 E8

B8 E9

B9 EA

BA EB

BB EC

BC ED

BD EE

BE EF

BF FO

CO Fl

Cl F2

C2 F3
C3 F4
c4 F8

C5 F9
c6 FA

en FB
I

1....1

'8
I

BD

D--+m Be

-191-

Read 50 successive words from the memory starting with
the word at address specified by bigits 8-19 'of the
instruction. Write these 50 words into the drum on
the track specified by bigits 20-27. Then transfer
the control to the left-hand instruction of the word
at the address specified by the bigits 28-39.

Read the 50 words from the track of the drum specified
by bigits 20-27 of the instruction. Write these words
into 50 successive memory locations starting with the
address specified by bigits 8-19. Then transfer the
control to the left-hand instruction of the word at
the address specified by bigits 28-39."

An example of a drum instruction in hexadecimal notation is

BD 137 29 2BF.

This is interpreted as: Read 50 words from the memory beginning with the

word at address 137. Write these 50 words into the drum at track 29.

Upon completion of the instruction the control transfers to the left­

hand instruction of the word at address 2BF in the memory.

During a drum instruction R4 serves as a transition register between

the parallel storage of the memory and the serial storage of the drum.

That is, in transmitting to the drum each word is brought into R4 from

the memory (parallel) and then shifted out of R4 to the drum (serial).

In transmitting from the drum each word shifts into R4 (serial) and then

is stored from R4 into the memory (parallel).

In order to transmit 50 words between the memory and the drum there

must be a register or a counter which specifies the appropriate memory

addresses. The control counter is used for this purpose. This means

then that the control counter contains, at the completion of the trans­

mission of the 50 words, the address of the 50th memory word concerned

with the instruction. This, in general, is not the address of the next

instruction word to be brought into R6; hence the drum instruction ends

in a transfer which sets the control counter to the desired address for

the next instruction word of the code sequence.

In the use of auxiliary eqUipment such as the drum, it is desirable

to incorporate some sort of checking feature. The checking of the drum

1s by summing procedures similar to those used in loading. That is,

when 50 words are transmitted from the memory to the drum, a sum of the

words is formed and stored in an appropriate location. Upon transmitting

this track of information back into the memory , a sum 1s again formed

-192-

and checked against the previously formed sum. It was initially in-

tended that this summing be done entirely by programmed routine; however,

it was observed that summing could be done electronically on the D~m

instruction with practically no additional equipment; hence this feature

was incorporated as follows: If in the D~m instruction one writes the

initial memory address ~ as m + 800, the sum of the 50 words is accumu­

lated in R2. R2 is not cleared to zero prior to the start of the sum-

ming; hence the sum is added into the contents of H2. At the completion

of the instruction, the sum is left in R2 and may be checked with further

programming. One still needs the summing routine for the m~D instruction.

Input-Output

The input component exists in two forms.

paper tape reader and the magnetic tape unit.

is initially via the photo-electric reader.

There is the photo-electric

All input to the computer

For input by the photo-electric reader, information on the paper tape

is punched transversely in groups of four bigits, called tetrads. Usually

a decimal digit or a logical character is represented by a single tetrad.

For each separate decimal digit, the true binary representation is used

where a punched hole corresponds to a 1 and a blank to a O. Clearly, the

true binary representation of a sequence of decimal digits is not given

by the sequence of tetrads (cf. page 56). However, the conversion to

the true binary number is quite simple and is done by the computer

through a conversion routine before the actual computation starts.

We distinguish two methods of reading information from the paper

tape into the memory. There is, first, an initial loading process which

begins by setting the control counter to the desired initial address.

The first word (10 tetrads) from the paper tape is transmitted by the

reader into R5. The space symbol which terminates each word initiates

the transfer of the word from R5 to the memory location specified by the

control counter. The control counter is advanced one, the second word

is read and transmitted to the second memory location, etc. The end

of the loading process is indicated by the presence of two consecutive

space symbols. The control counter resets to the initial address, the

first order pair may then be brought into R6, and the problem started.

-193-

R5 has been made into a shifting register by making use of a short

term memory facility afforded by a simple resistance-capacity circuit

connected between each stage of R5. The speed of the photo-electric

reader is sufficiently slow compared to electronic speeds that it is

possible to scan the transverse series of holes of a tetrad and still

have time to shift R5 four times per tetrad. In this way the parallel

information in tetradic form is converted into a strictly serial pattern.

The use of R5 in association with the reader affords two desirable

features. First, the functioning of the memory is divorced from that

of the arithmetic unit so that, in the event of some malfunction, iso­

lation of the difficulty is greatly facilitated. Second, since each

word passes through R5 en route to the memory, it may be added into R2

so that during the loading process R2 acts as an accumulator of partial

sums. At the completion of the loading the number residing in R2 is the

sum of the contents of the tape, and it may be compared with a known

correct value. This provides a useful preliminary check of the reader

and associated electronics.

The second method of reading from the paper tape is, of course,

the single read instruction which transfers a word (the next one in

the series) from the tape to the memory location specified by the ad­

dress part of that instruction. The use of this instruction in a

small induction loop makes it possible to read whole blocks of words

from the tape to the memory.

The magnetic tape unit serves as an input and output device. The

magnetic tape drive is a standard audio-broadcast unit that was pur­

chased from the Ampex Electric Corporation, San Carlos, California.

The tape drive with our own associated electronic gear is mounted in

a console cabinet of approximate dimensions 3 feet high by 2 feet wide

by 2 feet deep. The unit is used as a single channel serial system

where the magnetic tape reels contain 1200 feet of 1/4 inch wide Scotch

Sound Recording Tape.

The reels of magnetic tape are, in general, premarked into sections

which will accommodate 1024 forty-bigit words. There are fifteen such

sections on a 1200 foot reel. The markings dividing these sections are

short lengths made transparent by removing the magnetizable material

from the tape.

-194-

Since the unit is used only as an input-output device, there is no

automatic addressing of the fifteen marked sections, and there are only

manual searching facilities.

The manual searching is afforded by a photo-cell hooked into the

tape drive mechanism and a fast forward and reverse for driving the tape.

The fast forward and reverse allows one to advance or reverse the tape

at a speed of roughly four seconds per block of 1024 words. The photo­

cell actuates a brake whenever a transparent length of tape passes in

front of it. With this, one can then advance or reverse a tape as many

blocks as desired.

The operating speed of the tape is 15 inches per second. The pack­

ing density of the tape is 12.6 zeros per inch, or 51.1 ones per inch,

which is an average of 64.8 bigits per inch. The time required to record

a memory load onto the tape is 40.9 seconds, if the information is all

zeros, or 51 seconds if the information is all ones. This gives an

average record time of 45.9 seconds per memory load.

The magnetic tape unit has no completely automatic load feature as

does the reader; hence all information from the magnetic tape is ·read

into the computer by a programmed routine.

tape to R4, is:

The tape order, reading from

"t~Q AC Replace the number in R4 by the first word to come under
the reading head of the magnetic tape reader. 11

To insure accurate reading of data from the tape to the computer, a

timing feature must be incorporated in the writing process, i.e., in the

computer to tape routine. This feature is a time delay between the trans­

mission of successive words from the computer to the tape, and it is ac­

complished by an L(4o) instruction given prior to each Q--+t instruction.

This delay in recording on the magnetic tape gives adequate spacing be­

tween words to insure proper transmittal by the tape "call" routine

which does not include the L(4o) delay.

As in the drum, a checking feature has been incorporated into the

magnetic tape routines by summing. In the computer to tape routine, the

words sent to the tape are summed. The sum is printed and re corded on

the tape as the last word of the record. Upon "calling" the information

back into the computer via the tape to computer routine, the contents of

the tape are summed except for the last word. The sum is then compared

with the last word of the record; the last word being the sum formed

when the record was made.

-195-

output from the computer may be accomplished by four mechanisms.

There is the magnetic tape already discussed, the Synchroprinter, a high­

speed page printer; the Flexoprinter, a slow-speed page printer; and the

Flexopunch, a slow-speed tape punch. No further comments are needed for

the magnetic tape unit; hence we turn to the printers and punch.

The Synchroprinter is a high-speed page printer that was purchased

from the ANelex Corporation, Concord, New Hampshire. The Synchroprinter

and i~s associated electronic gear are mounted in a cabinet of approxi­

mate dimensions 5 feet 6 inches high by 1 foot 10 inches wide by 1 foot

1 inches deep. The printer has a maximum operating speed of fifteen

lines per second which is 36,000 characters per minute.

The characters that may be printed are the ordinal numbers 0,1,2 •••

8,9; the letters A,B ••• F; a decimal pOint; and a minus sign. The

printer achieves its speed by printing a line at a time where a line con­

sists of 40 characters; these may be four 10-digit numbers or any other

aggregate. The printer operates on the following principle: There are

40 type wheels, each containing the 18 available characters. The 40
wheels are rigidly mounted on a metal cylinder. All of the O's, l's,

2's, etc., of the 40 wheels are aligned. This cylinder rotates at a

constant speed whether the printer is being actuated or not. Dun. ng any

one revolution of the cylinder a line may be printed. In printing an

aggregate of 40 characters all of the O's of the aggregate are printed

simultaneously, then the l's, the 2'6, and so on, until after one revolu­

tion of the type cylinder the 40 characters of the line are printed.

There are two apparent methods of operating such a printer.

The first is to supply the correct digital information to all 40

type wh~els simultaneously and then allow each wheel to print at the

proper time. As is known, a 4o-bigit register may represent only 10

coded-decimal or hexadecimal Charactersj hence to represent 40 such

characters, four standard registers would be needed. Although this

method is very simple from a coding viewpoint the electronic gear in­

volved makes such a scheme prohibitive.

The second method and the one adopted for the printer involves

very little. additional. electronic equipment. Inasmuch as the O· s of

a line are printed simultaneously and then the las, the 2's, and so on,

-196-

only the a's digital information needs to be supplied to the appropriate

type wheels when the O's are to be printed, and similarly for the re­

maining digits. During the Q print cycle the information that needs

to be supplied to eaCh type wheel is binar,y, i.e., either print or do

not print. Since a register contains 40 bigits, and since a line for

the printer is 40 characters, a register may supply the necessary binary

information to the print wheels. The register R2 is used for this

purpose.

To print an aggregate of 40 digits, the 40 digits are first repre­

sented by an 18-row, 4o-column matrix (i.e., 18 consecutive memory

locations) where the rows represent the 18 characters present on a

print wheel, and the columns correspond to the digit position in the

aggregate. For electronic convenience a 0 in any element corresponds

to the presence of a digit and a ! corresponds to the absence of that

digit. As an example, consider a 4-row, 6-column matrix where the

number 302132 is represented. It is:
0: 1 0 1 1 1 1

1: 111011

2: 1 1 0 1 1 0

3: 0 1 1 1 0 1

where rows correspond to the digits 0 -73 in order from top to bottom,

and the leftmost column corresponds to the most significant digit posi­

tion. To represent an 18 x 40 array or matrix in the computer 18 words

of storage are required. .After such an array has been formed a 1ine

may be printed. Row 0 is brought into R2 for the Q print cycle, row 1

for the! print cycle, row 2 for the ~ print cycleJ and so on.

A timing problem is involved, as only about 1.5 milliseco~ds exist

between adjoining print cycles once the printer is actuated. The print

order itself acts as a timing element. To print a line 18 print orders

are given as part of a subroutine. The first of the 18 actuates the

printer and the rest act in a timing capacity. It is necessary that the

time elapsing between successive print orders be less than 1.5 milli­

seconds, and for safety it is recommended that the time be kept somewhat

1ess. When each print order is gi yen the appropriate row of the matrix

must be in R2.

Although the described scheme comp1icates the print subroutine it

is felt that the reliability obtained by inc1ud1ng no new electronic

gear certainly justifies the added complications of the coding.

-197-

The matrix is formed in the computer so that the first row cor­

responds to the minus sign, the second row to the decimal pOint, the

third row to digit 0, the fourth row to digit 1 ••• the 17th row to

the letter E, and the 18th row to the letter F. The type is arranged

on the print cylinder so that the sequence of printing the characters

is F, E, D, c··· 3, 2, 1, 0, ., -. This means that the words corres­

ponding to the rows of the matrix must be brought into R2 beginning

wi th row 18 (the letter F) and ending with row 1 (the minus sign).

The paper feed for the printer operates from top to bottom past

the print cylinder. The first line printed then appears at the bottom

of a column of lines. In order to have the first line printed appear

at the top of a column of lines (as it customarily does) the type

characters on the wheels have been inverted. If the mirror image of

a 4o-digit aggregate is then printed it comes out of the printer in­

verted, but upon turning the copy upright one has a conventional list­

ing which for a column of lines would read from top to bottom and from

left to right. To print a mirror image of the aggregate the order of

the colunmsof the array is reversed; i.e., the rightmost column cor­

responds to the most,significant digit and the leftmost column to the

least significant digit. The 4 x 6 matrix of the previous example for

the number 302132 should be formed as

The print order is:

111101

110111

011011

101110

Sync Print CE To be used in a subroutine which prints simul-

taneously ~i' ~i+l' ~i+2' ~i+3; ! must be
supplied to the routine.

The address bigits of the print instruction have no relevance with

respect to the instruction.

An example of a Synchroprint routine is g~ven as Problem 13 of

Chapter II. There is, in addition to the high-speed printer, a modi­

fied Teletype page printer that has an operating speed of 396 charac­

ters (36 10-digit words and spaces) per minute. The printer is

-198-

modified to 16 cha.racters; the ordinal numbers 0,1,2 ••• 9, and the

letters A,B,C F. This printer is actuated by the print order

"Flexoprint EA Print!!! on the page printer (slow speed)."

The reason for retaining this printer in a.ddition to the Synchro­

printer is that one may print directly any word in the memory. To

print a word via the Synchroprinter involves a routine,whlle the Tele­

type printer needs only an instruction. Whenever any volume of print­

ing is desired, however, the faster Synchroprinter is used.

The Flexowriter punch allows one to punch information from the

computer onto paper tape for subsequent use. The punch is a modified

Flexowriter punch for five hole paper tape. Its speed of operation is

869 characters (79 la-digit words and accompanying spa.ces) per minute.

The punch order is:

"Punch CF Punch!!! on paper tape."

Due to the very slow speed of the punch, the magnetic tape is used

whenever practicable for output needed in a. form to be used as subse­

quent input.

Control

The control is the agency which directs the various activities of

the computer. Some'parts of the control relate specifically to the

detail operation of the various components, such as the memory control

concerned with the regeneration of stored information. To some extent

these have been discussed under the respective headings in previous

sections. Here we propose to consider some of the more general fea­

tures of the control.

The instructions for the computer are of the one-address type;

i.e., an order is associated with a single address referring to some

memory location that contains a number upon which the specific order

1s to operate. This system of instructions is much simpler in struc­

ture than some proposed schemes for other computers. There have been

proposals for four-address instructions; the first two addresses speci­

fying the two factors o~ an operation (say in multiplication, the mul­

tiplicand and multiplier), the third referring to the destination for

the result, and the last to the location in the memory of the next in­

struction. We do not cite the various advantages for the several pro­

posals except to remark that simplicity is a rather compelling argument.

-199-

The normal word length in the memory is 40 big1ts. An instruction

1s 20 bigits, so that instructions are stored in pairs. Of the 20

bigits, 8 are used for specifying the order, and 12 remain for the

address. Actually 10 suffice vith our present memory capacity of

.1024 (= 210), so that 2 bigits are available for future expansion or

for some other purpose.

The 8 bigits describing an order are initially punched onto a

paper tape as tvo tetrads. In principle any of the 16 possibilities

0,1,2 ••• 9, A,B ••• F might be used for each tetrad. Thus a maximum of

256 possibilities is available. Our present feeling is that the num­

ber of useful orders will not exceed 36; thus only letters in pairs

are used to designate an order. This is useful in coding.

Let us begin at some point in the cycle of activity and describe

the sequence of events that ,leads back to the same point; after that

we indicate ~ththe aid of aome logical diagrams how some of these

things are accomplished.

Assume tba t a pair of orders bas Just been brought into R6. The

order part of the left-hand instruction must be interpreted and the

corresponding sequence of pulses and voltage changes provided. At the

same time the address part is sent to the deflection adder of the mem­

ory in preparation for communication with the memory. When this in­

struction is completed, the control then examines the instruction re­

siding in the right half of R6 and takes the necessary measures to

execute it. In the meantime, the control counter is advanced by one

so that when the right hand instruction is completed the next order

pair can be brought to R6, and thus complete the cycle.

It is convenient to subdivide this part of the control into three

sections: The first is concerned with the interpretation of the eight

bigits as a specific order, and is called the order matrix. The sec­

'ond, called the operations control, provides a set of pulses forexe-

cuting a given order. The third, the instruction control, deals with

the "red tape" associated with doing the left half of an order pair,

then the right half, and then seeking a new order pair.

The Order Matrix: Inasmuch as it has been decided to use only

letters (and not include decimal digits) to specify orders, each tet­

rad of a pair begins with a! (letters correspo~d to the digits 10-15).
Therefore, of the eight digits, only six are used to discriminate among

-200-

the various orders. To simplify the discussion, assume we are concerned

with only two bigits. (The case for six is an obvious extension.) These

two bigits are in two flip-flops of R6; and imagine further that in each

flip-flop two wires tap in at symmetrical points of the flip-flop as

shown diagrammatically 1n

Figure 8. If! has a Q, A

has a definite voltage V,

and B has another definite

voltage VI; if ! has a!,

the voltages are inter­

changed, that on A is V'

and on B it is V. The

voltages on C and D depend

on the contents of II in

precisely the same way.

1]I

A B c D

Fig. 8 A two stage order matrix.

Consider next a two level Iland_gate ll with the following properties:

If, and only if, the input voltages are both V, a signal is given to

the output. We now construct four such lIand-gates II with inputs from

the set A,B,C,D; the specific connections are shown in the diagram.

Clearly, if the contents of I and II are 0,0 the above condition is

satisfied for only the topmost gate and a pulse is given out along

the 2 output. Similarly, if the contents are 0,1 a pulse goes out

along the! output, etc. To envisage the actual order matrix, ima­

gine that there are 6 flip-flops with various connections to 36 fland_

gates ll of level six; i.e., six conditions must be satisfied to stimu­

late an output. Thus from a series of bigits we actuate a unique

line corresponding to that particular set.

The Operations Control: The operations control is essentially a

pulse generator producing a sequence of seven pulses. Four of these

pulses are of fixed length; the remaining three may be variable. The

necessity for pulses of variable duration stems from the fact that

the time required for certain operations is somewhat indeterminate.

For example, if an action cycle is required of the memory at some

moment, it is necessary to wait until the memory completes its present

regeneration cycle before going into action. Inasmuch as the waiting

period is somewhat arbitrary, the time from the instant the action

cycle is requested to completion is slightly indefinite. The comple-

-201-

tion of the operation terminates the ~ulse and the operations control

then generates the next pulse.

Some of the more complex orders require more than just one sequence

of such pulses; hence one of the provisions made is to permit the opera­

tions control to go through its paces the required number of cycles. On

the other hand, some of the simpler orders do not need the full comple­

ment of seven pulses and, in the interest of speed, provision is made to

terminate the sequence at some earlier point.
We now consider a very much simplified example of an order, by way

of illustrating how an actuated line from the output of the order matrix

and Ghe signals from the operations control combine to execute the given

order. Say the order is a shift to the left by one place of a number

in R2. A series of "and-gates" of level two are connected to the out­

put line from the order matrix that corresponds to this order. Tne

output line is thus a common static input to all of these gates. The

second inputs are the various timed pulses from the operations control.

These connections are shown in Figure 9.

.. ..

start Signal From
lnstructions Control

Clear R' to zeros r--'
\.c-------- tit I I

Gate "ones" vertically I 1
from R2'" RI i ~ I

~-----------t2~1
Clear R2 to .. zeros" -tQ~ I I Operations

t3 I Control
Gate "ones" diagonally I I 'I,)
left from RI~R2 ~

Finish signal to Instructions
t4 -! y II

Control; also prevent +<>1 I 1
subsequent pulses t I

5 I I
L+-J

t
Fig. 9 Gate connections for a simplified order.

When the first signal tl is produced, condi tiona at gate I are

satisfied and an output signal is produced and 18 sent to the

clear bus of Bl. Its effect is to set all the :flip-flops ot Bl

to the 0 state. After a short delay, pulse t2 1s produced and

directed to gate II. This output sets those flip-flops of Rl to

! to match the corresponding flip-flops of R2 or, simply said,

1 's are gated into Rl from R2 vertically. The subsequent steps
are obvious.

-202-

The Instruction Control: It includes the following functions:

(i) Communication with the memory to obtain the next order pair.

Signals must be given to clear R6, to send the address fram the control

counter to the deflection adder, and to transfer the order pair from

the memory to R6.
(ii) Transfer of the order part of the left instruction to the

order matrix and of the address to the deflection adder of the memory;

upon completion to examine the instruction in the right half of R6.
(iii) Sending a start signal to the operations control.

(iv) In the event that the left order is a transfer order, the

sequence is interrupted, the new order pair is brought into R6, and

a new sequence of instructions is started. There is also provision to

skip the left order for those cases where the transfer is to begin a

new sequence of instructions with the right half of an order pair.

(v) Finally, it must advance the control counter by one after

each order pair, and also receive the finish signal from the opera­

tions control ..

In order to make convenient gate connections between the various

functions of the control, a collection of vertical bus wires is acces­

sible in the control panel immediately to the left of the registers.

A cross-sectional layout of the arrangement is shown in Figure 11. The

notation is as follows:

clear RJ (J=l,2, ••• 6) to! (i=O,l);

th
n timed signal (n:l,2, ••• 6);

~
eft diagonally;

gate ! from RJ ~ RJ I either right " ;
straight;

Hold

Finish

Set Trans FF

Set Rt Trans FF

Cycle Input

Start Toggle 0

allows variation in length of t2 and/or t3;

finish signal from operations control to

instruction control;

-203-

sets a flip-flop in instruction control to

indicate transfer to new sequence of instruc­

tions;

sets a flip-flop in instruction control to

indicate transfer to new sequence beginning

with right half;

input to operations control to repeat sequence

of timed signals;

a special timed signal which permits cycling

operations control twice in a given order.

Yert1eal. Buee of Or4er Gates

• • ct

CRl C R4 tl
0 0

• • •
CIRl C1R4 t2

• • •
CR2 C R5 t3

0 0

• • • • • • • • •
0-1 C1R2 8-19 20-21 CIR5 28-39 0-1 t4 8-19

B2 R2 R2 B2 R5 R5

• • •
C R3

0 MR5S0
t5

• • •
Hold Set Trans· FF t6

• • •
Finish Set Rt Trans FF Start Toggle "0 II

Figure II

•
RlR2~

•
RlR2R

0

•
R2RlSl

• • Adder •
20-27 lUS 28-39

R5
0

R5
•

.Adder
RlL

0

•
Write

•
Cycle Input

• R3R4Ll

• R3R4R
0

•
R4R3S~

• • No. R4R5S1

• R5R4s
0

• MR5S
0

• Finish

..

• Comp.

I
r\)

~
I

v. DESCRIPTIVE CODING AND SUBROUTINES

Recall from Chapter II that the steps in the preparation of a

code of a problem are:

1. The logical coding is first prepared. In this coding the logical

rather than the computer symbols are used. Each box of the flow

diagram is treated independently and the instructions within the

box are numbered consecutively beginning with!. Indexed Latin

letters are used to indicate the addresses of the necessary stor­

age of the problem.

-205-

2. The computer code is then prepared. In this coding the instructions

are paired into words and these instruction words are sequenced and

numbered (addressed) according to their subsequent residence in the

memory. The computer symbols for the orders are written in place of

the logical symbols. Numerical addresses are assigned to the storage,

and the addresses of instructions referring to storage are modified

accordingly.

3. The computer code is checked so that any errors may be corrected be­

fore the code is punched onto paper tape for subsequent input to the

computer.

As one examines these steps in detail, the question quite naturally

arises as to whether the computer might be instructed to carry out part

of the coding process. The question can be answered in the affirmative,

and the purpose here is to describe a method for coding in which "the com­

puter is instructed to carry out all of Step 2 of the coding procedure.

The method is by no means unique. The motivation for its choice is

found in the desire to use the computer as an aid in constructing a usable

code which is tailored in the manner described in Chapter II, and to re­

lieve the person preparing the code of much of the routine work involved,

and possibly to reduce the number of errors.

The method in general is as follows: A logical code using a pre-

scribed set of symbols and following a prescribed set of rules is pre­

pared. These symbols identify the various kinds of storage of the problem

(e.g., numerical constants or logical quantities) and the addresses of the

various instructions of the problem. This logical code is checked for

errors and after any needed corrections are inserted, a punched tape of

-206-

this logical code is prepared. This tape is then used as input data by

a routine designed to assemble a computer code from this material.

The assembly routine reads the individual instructions from the

logical code tape and pairs these instructions properly into instruc­

tion ~ords; assigns addresses to these instruction words; and stores

them into the proper location. The absolute (numerical) addresses of

the storage of the problem are assigned by the assembly routine, and the

instructions referring to this storage have their addresses translated

accordingly. The addresses of instructions that do not refer to stor­

age (i.e., instructions that refer to other instructions) are also

translated into their absolute value. When this computer code is com­

pletely assembled it is punched onto paper tape or written onto magnetic

tape by the assembly routine; a printed copy is also produced.

This method of coding has been given the name descriptive coding

since many of the identifying symbols used in the logical coding are

descriptive in nature. l

We now turn to the discussion of the descriptive coding, and we

establish the necessary rules and define the symbols needed to carry

out such a coding. The assembly routine is not discussed in detail

since its complexities are beyond the scope of a manual of this type.

In the preparation of any code which is to be modified and assembled

through an assembly routine, the flexibility of the coding (i.e., the

freedom of choice of symbols and the amount and different kinds of in­

formation which can be specified in a descriptive instruction) is de­

pendent upon the number of bigits that are allowed to express each

instruction. Clearly the more bigits allowed, the greater is the

flexibility.

It was found that the normal instruction length of twenty bigits

was adequate to achieve a code by means of such an assembly routine,

which was comparable to a tailored code both in number of words of code

. and subsequent running time of the problem. The first two tetrads of the

twenty bigits specify the order using the standard vocabulary symbols;

the remaining three tetrads are for the address. There are two advan­

tages in having the descriptive instructions conform as much as possible

1 The method was developed by Eugene H. Herbst, John B. Jackson, and

Mark B. Weils, of the Los Alamos Electronic Computer Group.

to the familiar logical instructions. First, by remaining within the

framework Of the logical coding, a relatively small number of new

symbols and new rules for coding need to be introduced. Second, the

work in preparing the descriptive code is no greater than the usual

logical code and the labor of the tape preparation for the descriptive

code is comparable to that involved in the preparation of the tape for

a tailored computer code.

The descriptive coding is prepared from a flow diagram. No modi­

fications of the flow diagram are necessary and it is as discussed in

Chapter II.

-207-

In the descriptive coding (as in the usual logical coding) each box

of the flow diagram is coded as though it were independent of the remain­

der of the diagram. The only interdependence of boxes of coding is

through transfer and sUbstitution instructions. These are discussed

presently. The instructions written for each operation box are numbered

consecutively,startiruz with !., and the numbering is done hexadecimally,

as shown in Example 1.

Example 1

-".~I y=al"+ bx +c to 0.01

Storage chart:

The coding is·:

Box 1

1. m~Q

2. X

3. m--+Ah

4. L(40)

5. X

6. m---+Ah

7. A---::"m

Figure 1

B.Ol: x C.Ol: a
C.02: b
C.03: c

C.Ol a to R4

B.Ol ax in R2

C.02 ax + b in R2

028 ax + b in R4

B.Ol ax2 + bx in R2

C.03 2 y = ax + bx + c

D.Ol

2

z = y2+y to 0002 1 t----tI._

D.Ol: y
D.02: z

in R2

y to D.Ol

Box 2

1. m~Q D.OI y to R4

2. X D.OI 2 in R2 y

3. m--+Ah D.OI 2 in R2 z = y + y

4. A--+m D.02 z to D.02

The addresses that can occur in instructions must be classified

and a set of symbols may be used to represent each class so that the

assembly routine may interpret and modify the various addresses cor­

rectly. Addresses of instructions fall into four general classes.

They are:

(i) Addresses that refer to numerical storage.

(ii) Addresses that do not playa normal. address role, as in

R(n), L(n), a--+Ac, and a~Ah instructions.

(iii) Address that refer to instructions wi thin the same operation

box.

-208-

(iv) Addresses that refer to instructions in other operation boxes.

Each class may be divided into as many SUbclasses as is deemed necessary.

Let us examine each class of addresses.

Recall that there are two kinds of storage requirements for a prob­

lem, static storage and dynamic storage. The static storage is that

storage which originates with the problem and remains unmodified through­

out the course of the computation. The dynamic storage is that storage

which originates from computation within the problem.

For simplicity of addressing, the static storage has been assigned

the four symbols:

B.i i (= 1, 2 ••• FF)
7.1
e.i
A.i

255 words may be stored on each set of addresses. The sets have the

following significance. !! storage is that static storage which ori­

ginates with the problem as !!inary numbers; hence, any constants which

are given in a problem as binary numbers are referred to by B.! ad­

dresses, and are listed sequentially as B.i storage. 1. storage is

very similar to & storage in that the numbers to be stored in 7.i

storage are also given in binary form. The 1. storage has significance

-209-

with respect to subroutines, and it is discussed more appropriately

in the section on subroutines. The letter .£ designates static storage

that is to originate with the problem as decimal numbers and is to be

.£onverted to binary numbers by the assembly routine. The letter A

designates the static storage that contains ~dresses (numbers corres­

ponding to addresses) which are to be used by substitution instructions

in modifying other instructions during the course of the computation.

The symbol D.t i (= 1, 2· •• FF)

is used for ~am.ic storage and 255 words of D storage are allo

We now examine more closely the storage requirements of Example 1.

We may assume that the number ~ is given as a binary number; therefore

it is placed in ~ storage and indicated as

B.Ol: x

The constants, .!' ~, and~, are assumed to be numbers which are origin­

ally given as decimal numbers and which are to be converted to binary

numbers by the computer during the pro.cess of preparing the code through

the assembly routine. ~,£, and c are listed in .£ stor~e as

C.Ol: a
C.02: b
C.03: c

The dynamic storage consists of storage for the quantities Z and !
which are for.med during the computation; hence two dynamic storage

locations are needed, and

D.Ol: y
D.02: z

The second class of addresses, those that do not playa normal

address role, have the proper numerical address inserted in the descrip­

tive code; e.g., Box I, Instruction 4, reads

4. L(4o) 028

where 028 is the correct hexadecimal address for a left shift of forty

places. As a further illustration consider the use of an a--+Ac in­

struction to bring 2-1 into R2. The instruction reads

a-+Ac 400

400 -1 where corresponds to 2 when brought intqR2. If for any reason

it is desirable to insert an instruction which contains an absolute ad­

dress, such an address should be used in the descriptive coding (except

-210-

in transfer and substitution instructions) and the assembly routine will

not alter it; e.g., the instruction Q~A (m~A 800) has its special

address 800 inserted in the descriptive coding.

The third class of addresses, thooe addresses of instructions that

refer to other instructions Enclosed within the same operation box, are

designated by the symbol!. Such an address

E.i i (= 1, 2 ••• FF)

may range over 255 instructions of an operation box. This is a partial

restriction on the number of instructions in an operation box. Although

an operation box may have more than 255 instructions, no instruction may

refer to any instruction beyond number 255 of the same operation box.

The E.i address is used primarily in SUbstitution instructions. Such an

address has special use with other instructions. In fact, we shall see

in the discussion of subroutine·s that the E. i address is used in transfer

instructions. The following example illustrates the use of E.i addresses.

Example 2

The flow diagram of Example 2 shows only that portion of an induction

loop in which the sequence of quantities zi (i = 0,1···1-1) are formed

and stored in the memory at addresses D.20+1 hence

o to 0.01
Xo to 0.02

A.Ol: AAD20AAD20

........,.3>--P--4·>-t Zi: aXr+ b to 0.20 + i
1--__ ...

Figure 2

B.Ol: 0
B.02: (1) o B.03: x o

i+ I to 0.01 ~--------

C.Ol: a
C.02: b

D.Ol: i
D.02: Xi

• • •
D.20: z
D.21: z~
· · •

-211-

The coding is:

Box 1.

1. m~Q B.Ol o to R4
2. Q----+m D.Ol O~i to D.Ol

3. m---+Q B.03 Xo to R4
4. Q~m D.02 xo--+xi to D.02

Box 2.

1. m--4Ac· A.01 AAD20AAD20 to R2

2. m~Ah D.Ol AAD2O+1AAD2O+i in R2

3· S--4m E.07 D.20+i to address of
T"a+.,." ... +.i,," 7 --- -- ------ ,

4. m~Q D.02 xi to R4
5. X C.Ol axi in R2

6. m~Ah C.02 zi = axi + b in R2

7. A--+m [D.20+~ z1 to D.20+1

Box 3.

1. m--+Ac D,.Ol (i) to R2
0

2. m~Ah B.02 (i+l) in R2
0

3. A---+m D.Ol (1+1) ~ (i) to D.Ol o 0

4. T 02,1

In the storage required, the numbers 0, (I) , and x are originally
o 0

stored as binary numbers; hence !! storage is used. The numbers !: and ~

are decimal numbers to be convert--d into binary numbers by the assembly

routine; consequently they are stored in C storage. (i) and Xi are
- 0

stored in dynamic, ~ storage. We assume after the initial traversal

that Xi is sent to D.02 from a portion of the routine not shown. The

choice of D.20 as the starting address for the zi is arbitrary, and

any block of I locations would suffice for that Q storage.

The ! storage is used to store the initial address D.20 from which

all' addresses D.20+i are formed (Instructions 1 and 2, Box 2). Bote

that D.20 is stored in A.Ol as

A. 01: AAD20AAD20.

It is stored as an instruction-word where the two instructions are

identical. This is true in general: that all A storage is stored

as instruction-words where the two instructions of the word are

identical and the address of the instructions is the desired de­

scriptive address g The choice of the order that appears in the in­

struction word depends on the use of the particular word of A storage.

The choice of the order AA in this instance is significant in that

the assembly routine deletes the AA from each instruction at the time

the D.20 is assigned its absolute value. For example, suppose that

the absolute address corresponding to D.20 is 154. The! storage

before and after modification by the assembly routine is:

A. 01: AAD20AAD20 A. 01: 0015400154

The order AA is the only order that is deleted from! storage when

the storage is modified.

In the coding of Example 2, the first two instructions of Box 2

form (D.20+i) in R2. Instruction 3 reads o
S--+m E.07

Hence, the address of Instruction 7 is replaced by the number in R2

which is D.20+i. Note that the order S~m is used rather than S~ml.

This is always the case, not only for S~m but also for T, C, and

HS~m. All transfer and substitution instructions whose addresses

refer to other instructions are coded as the unprimed order; that is,

the order that refers to a left-hand instruction of an instruction­

word. The assembly routine then modifies tlie order if a modification

is necessary.

The fourth class, those addresses of instructions that refer to

instructions in other operation boxes, are addresses of transfer in­

structions and substitution instructions. Transfer instructions and

substitution instructions are the only instructions whose addresses

may refer to instructions of other operation boxes than the one con­

taining the instruction.

Transfer instructions act in two ways as connecting links between

operation boxes. These are the fixed connection and the variable re­

mote connection. We treat the fixed connections first.

A transfer instruction that is a fixed connection has as its ad­

dress the operation box'_number and the instruction number of that box

-212-

into which the transfer is to send the control. The first two of

the three address tetrads are used for the operation box number. The

remaining tetrad is used to specify the instruction number within the

box. As an illustration, Instruction 4, Box 2, of Example 2, reads

4. T 02,1

which is a transfer of the control to Box 2, Instruction 1.

Recall that on a flow diagram the flow lines enter at the begin­

ning of a box. If the coding strictly followed the flow diagram, a

transfer instruction would always be to the first instruction of an

operation box. However, it has been shown in previous codings that

it is often possible to save an instruction or two by transferring

the control into one of the first few instructions of a box or one

of the last ,few instructions of the preceding box (cf. Page 72,

Problem 6, Box 6, Instruction 1).

A transfer can refer to anyone of the first seven instructions

of the operation box to which the transfer is effected, or it can re­

fer to anyone of the last seven instructions of the preceding box.

-213-

The operation box number specified in the address of a transfer in­

struction is the box of the flow diagram which is entered by the flow

line indicating the transfer. A number !, g, ••• 1 in the third ad­

dress tetrad indicates a transfer into the corresponding instruction

of the box. A number F(=-l), E(=-2), D(=-3) ••• 9(=-7) indicates a

transfer into the corresponding instruction of the preceding box; e.g.,

CA20,3(T 20,3) reads: Transfer the control to Operation Box 20,
Instruction 3.

CA25,E (T 25,E) reads: Transfer the control to Operation Box 25,
Instruction -2, which is the next to last
instruction of the preceding box. The
preceding box is not necessarily Box 24.

The address of a condi tiona! transfer instruction, where the (+)

exit is a fixed connection, is formed in the same manner as the address

of a transfer instruction.

Example 3 illustrates transfer instructions acting as fixed

connectors.

Example 3

--........ y=ax+c to 0.01
I

IDo02' X I - y to 0.01
I

I
_ ' - y=ex+f to 0.01 a

Figure 3
C.Ol: a D.Ol: y
C.02: c D.02: x
C.03: e
c.o4: f

We assume that ! is formed in a part of the routine not shown

and is stored in D.02. The coding 18:

Box 1.

1. a-+Q

2. X

3· a-+Ah

4. A---+.

Box 2.

1. m~Ac

2. C

Box 3.

1. m~c-

2. A~m

Box 4.
1. Stop

Box 5.
1. m-+Q

2. X

3. m--+Ah

4. T

C.01

D.02

C.02

D.Ol

D.Ol

04,1

D.01

D.01

C.03

D.02

c.o4
02,F

a to R4
ax in B2

)" == ax + e in B2

., to B2

-'1 to R2

e to R4
ex in R2

l' = ex + t ill B2

7 to D.01

-7 to D.Ol

-214-

-215-

The conditional transfer instruction of Box 2 reads C 04,1 which

is a conditional transfer to Box 4, Instruction 1. The transfer in­

struction of Box 5 reads T 02,F which is a transfer to Box 2, Instruc­

tion -1. This is a transfer to the last instruction of the preceding

box, in this case Box 1.

Substitution instructions may also have an address consisting of an

operation box number and an instruction number. However, the substitution

instructions can modify anyone of the first fifteen instructions of any

operation box other than the box containing the substitution instruction.

Note that this treatment differs from the transfer instructions.

Recall on a flow diagram that a set of variable remote connections

is indicated by a Greek letter in a circle as an exit, and the same Greek

letter with identifying subscripts in a circle at each entrance point.

See Figure 4.

Figure 4

~----'
(0--.1---."

~------'
In the preparation of a logical code, the transfer instruction indica­

ting the exit ~ written as

T [p]
is used to identify the particular remote exit. It is the location

in the memory where the transfer order of the exit resides and not to be

interpreted as the address part of the transfer instruction.

The addresses corresponding to the entrances@,~., and e are

provided to the exit [p] from the appropriate positions of the flow dia­

gram (cf. Chapter II, Problem 1, pp. 53 ff). The various ~are supplied

to T [P]by substitution instructions, S--+m,

In the descriptive coding each set of variable remote connections

is represented by a symbol

F.i i(= 01,02 •••)

where the i is distinct for each set. (Greek letters do not exist

in the vocabulary. We use them in the discussion and in flow diagrams

for simplicity of notation.) These instructions concerned with such

a set (both the transfer instruction which is the exit and the various

substitution instructions which supply addresses to the transfer in­

structions) have as their address the symbol F.i corresponding to

the part icular set. Example 4 illustrates this.

E1ample 4
I

(9 :: cg

Figure 5
Since e and @ are addresses they are to be stored in ~ storage

as instruction words. However, for this example we do not discuss the

~ storage in detail, and we merely indicate

A.Ol: (A1)0

A.02: ()..)
2 0

We designate the set of variable remote connections by F.Ol. The

coding is:

Box 1

1. m~Ac A.OI

-216-

2. ~m

L(O)

F.OI A to address of F.OI
1

3· 000

4. T F.OI

Box 2

1. ~Ac A.02

2. ~m F.-el A2 to address of F.Ol

3· T 01,4

Instructions 2 and 4 of Box 1, and Instruction 3 of Box 2, are those

instructions concerned with the s'et of variable remote connections F .01;

hence they have as their address F.Ol. Note that Instruction 3 of Box 1

is L(O). This insertion is necessary as no substitution instruction may

modify the instruction immediately following. The L(O) serves as a

"dummy-do-nothing" instruction which separates by one the substitution

instruction and the instruction that it is to modify.

The <S) and ~ are indicated on the flow diagram as entrances

into operation boxes; therefore the addresses corresponding to <S)
and e are usually the addresses of the first instruction of their

indica.ted opera.tion box. The address portion of the words in ! stor­

age corresponding to ~ and e are treated in the same manner as

the address of a fixed connection transfer. Therefore, if ~ cor­

responds to Box 5, Instruction 1, the address portion of ~ in!

storage would be

A • 01 : ••• 05, 1 ••• 05, 1

TOt: ~Ai \', 'I' l"-], or the v-i:l.:1~ i~"ult: l;:w.utc (;Oiiilc(;t :lou iiiu.iit "t:i:ai.Jof.;i'

the control at different stages of the problem to the various ~
associated with the remote connection. The addresses corresponding

to the @ are usually distinct. When the computer code is formed

by the assembly routine, there is no assurance that the instructions

-217-

to which the @ refer will allJ occupy the same side of their respective

instruction words. In order that the T[A] shall have the flexibility

that enables it to transfer the control to either side of an instruction

word, the transfer order as well as the address must be modified. To

accomplish thiS, each ~ is stored as a transfer instruction, and

the assembly routine modifies the order if necessary when the absolute

address corresponding to ~ is assigned. A half'-word substitution

instruction, HS--+m, is then used rather than 8--+m, as indicated in

Exa.mple 4, to supply to the exit T[A] the appropriate T ~~. Example 5
illustrates three sets of variable remote connections and the proper

~ storage associated with them.

BxaQ1e 5
Tbe neeess&r,J storage 18:

A.01: CAO 3lCAO 31 D.Ol: x

A.02: CAOJt.1CAOJt.1

A.03: CA051CA051
A.Olt.: CA061CA061

A.05: CC091Coo91

A.06: CCOAl.cqOAl

I 3

0=6) ®=@
2 4

@=6) ® = ~

5 ·9

0® ® • I
6 A

0 @ ® • I

Figure 6.

We assume that x is formed in another part of the routine and

stored in D.Ol. We designate by F .01 the set of variable remote con­

nections @, by F .02 the set ® ' and by F .03 the- set CD .
The coding 1s:

Box 1.

1. m~Ac

2. ~m

3. L{O)

4. T

Box 2.

1. m-"Ac

2. ~m

3. T

Box ~.

1. m~Ac

2. ~m

3. L{O)

4. T

A.Ol

F.Ol

000

F.Ol

A.02

F.Ol.

01,4

A.03

F.02

000

F.02

(CA03,1) to R2 o

(CAo4,1) to R2
o

(CA051) to R2 o

CA03,1 to F.OI

CA04,1 to F.OI

CA05,1 to F.02

-218-

-219-

Box 4.

1. m---+Ac A.04 (cA06,1) to R2
0

CA06,1 2. ~m F.02 to F.02

3. T 03,4

Box !2.
1. m~Ac A.05 (CC09,1) to R2

0

2. ~m F.03 CC09,1 to F.03

Box 1.
1. m---)oAc D.Ol x to R2

20 c F.03

Box 8.
1. Stop

Box 6.

1. m---+Ac A.06 (ceOA,l) to R2
0

2. T 07,F

Instructions 2 and 4 of Box 1, and Instruction 2 of Box 2,

are those concerned with the set of variable remote connections o == F .01; therefore, those instructions have the address F .01. Simi­

larly, Instructions 2 and 4 of Box 3, and Instruction 2 of Box 4, have

the address F.02; and Instruction 2 of Box 5, and Instruction 2 of Box 1,

have the address F. 03.

Instruction 2 of Box 1 is a conditional transfer instruction; hence

those instruction words in A storage which are to be abbstituted into it

are themselves conditional transfer instructions as shown 1n A.05 and A.o6.
Note the use of the ~m instructions in the substitutions con­

cerned with the variable remote connections.

The sequence in which the operation boxes are coded is 1, 2, 3, 4,
5, 1, 8, 6, which is the order in which the computer code is to be se­

quenced. It is always true that the sequencing of the operation

boxes in the descriptive coding must correspond to the sequencing neces­

sary in the computer code regardless of the numbering of the boxes on

the flow diagram. The number assigned to each box on the flow diagr.am

is, however, the number to be used in the address of instructions refer­

ring to the box.

In Box 6 of Example 5, Instruction 2 is a transfer to 01,F which 1s

a transfer of the control into the last instruction of the box immediately

-220-

preceding Box 7. In thio case, the transfer is to Box 5, Instruction 2,

since Box 5 is the box in the coded sequence uhich immediately precedes

Box 7.
The assembly routine treats the variable remote connections as

tollows: The! storage concerned is altered to its absolute address

and the transfer order contained is modified, if necessary. Whenever

the assembly routine encounters a substitution instruction with an ad­

dress F.i, the absolute address of the associated transfer instruction

(the transfer instruction vith the s~ F.! address) is determined and

that address is inserted into the substitution instruction.

It is often useful. to be able to store numbers from. R2 into D stor­

age by using Bubstitution instructions. TO do this, the substitution

instruction is given the appropriate D.i address; however, the substi­

tution order muot be written 0.0 the desired priDed or unpr1Jled order.

For example, consider that bigits (20-39) of R2 are to be sent to bigits

(20-39) of D.05. The descriptive instruction effecting this would be

HS---7m l 005 which is FDD05
Similarly, to store bigits (8-19) of R2 into bigits (8-19) of D.OA, the

instruction reads

S~m D.OA which is FADOA
In a substitution instruction with a D address the assembly ~outine

never modifies the order part of the instruction.

Since the SUbstitution instructions may have box numbers as addresses

and since substitution instructions may refer to ~ storage, it is necessary

to restrict the total number of operation and alternative boxes of any

one problem to CF boxes, which decimally is 207 boxes in all.

There are occasions when it is necessary to know in advance whether

an instruction is to occupy the left or right-hand instruction of a word

in the computer code. In fact, it may be necessary to pOSition certain

instructions on a fixed side of an instruction word; e.g., at the comple­

tion of a drum instruction, the control is transferred to the left-hand

instruction of the word specified by bigits (28-39) of the drum instruc­

tion; hence, the instruction to which the transfer is desired must be

in the left-hand side of its respective instruction word. Further, the

drum instruction itself must occupy a full word in the computer code so

that this instruction must always begin on the left. In order that in­

structions, where necessary, can be positioned with the desired parity

(i.e., left or right) a symbol is provided in the descriptive code so

tha.t the computer code of any operation box can be started on the left

of an instruction word. As soon as the first instruction of a box is

fixed on the left, the parity of all instructions within the box is

known innnedlately. By inserting a "dummy-do-nothing" L(O) as a first

instruction, one may change the parity of all succeeding instructions.

The descriptive code tape is composed of the descriptive coding

and the static storage (i.e., !, ~, I, and £ stora~) of the problem.

All of the descriptive coding and any identifying symbols for the tape

which refer to the descriptive coding are punched as five character

words. The £, ~, and I storage and any corresponding identifying sym­

bols are punched as ten character words.

The sequencing of the data on the code tape is as follows:

-221-

In order that the assembly routine can assign the absolute addresses

to the various instructions and the storage, the initial absolute address

for the code must be spec1fied. It is the first word that is punched

on the tape, and it is a five-character word. For example, if the

assembled code is to begin at address 25E, the first word of the tape

would be

0025E

A descriptive code may be assembled into an absolute code starting at

any initial address with the restriction that the code with !, £, ~,

and I storage must not exceed address 37C (892 decimally).

Innnediately following the initial address on the tape is the de­

scriptive coding. The sequencing of the boxes of descriptive code as

punched on the tape specifies the linear sequencing of the assembled

code. Preceding the instructions of each box, the box number is

punched onto the tape as a five-character word where the word consists

of three zeros followed by the box number. For example, consider a

descriptive coding of two operation boxes where the assembled code is

to begin at address 052. The descriptive coding and the corresponding

code tape is:

-222-

Box 1

1. m--+Ac D.Ol

2. m~Ah D.02

3· A~m D.03

Box 2

1. m~Q B.Ol

2. X D.03

3. A~m D.o4

., .. ., .. ., ., ., ..
u u u u u u u u
10 10 a a a a 10 10
~ 0. ~ ~ ~ ~ 0. Q.
(f) (f) (f) (f) (f) (f) (f) (f)

0-+00052 00001 AADOI BAD02 DCD03 00002 EBBel DAD03 DCD04

o 0 0 0 0 0 ° 0 000 000 000 000 000 000
OOOGOOOOOGO

o 0 0 000 8 0 0 000 0
0° 0 ceo 0 goo 0 0 0 8 °88 ° 0°0 8 ° 0

I ; Code of Box I : Box 2 Code of Box 2

Figure 7

All of the instructions of the boxes with the corresponding box num­

bers are punched onto the tape in this fashion. Recall that the boxes

of code are not necessarily sequential according to box number, but

sequential according to linear ordering in the assembled code. The

box number that precedes each box of instructions corresponds to the

box number as shown on the flow diagram.

Immediately following the last instruction of the descriptive

coding, the box numbers only of the associated subroutines are punched

on the tape in the order corresponding to the linear sequencing of

the subroutines in the assembled code. As before, these box numbers

are five-character words. We defer any further discussion of this un­

til the section on subroutines, at which point the reasons for listing

the subroutine box numbers are discussed.

The fi ve-character word

CO COO

follows the subroutine box numbers on the tape. If no subroutines are

associated with the descriptive code, the word COCCO follows the last

instruction of the descriptive coding. The word COCOO indicates the

£ompletion of the descriptive coding.

The ! storage punched as !!.!!:.-character words follows the word

OOCOO on the tape. For example, consider a descriptive coding where

the ! storage is

A.Ol:

A.02:

A.03:

CA041CA04l

CC227CC227

AAD05AAOO5
The section of tbe descriptive tape corresponding to this would be:

t t 8 ., t t 8
000 8 0 ~ ~
IE tJi {/; {/; {/; iJ) iR

Code-.oocoo CA041 CA041 CC227 CC227 AAD05 AAD05 OOEOO

00000 0 0 , o 00 00 00 00 000 000 0
OOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOO
0000000000000000

o 0 0 0 oog oog 000 0 000 0 0 \

End of :
Code I

A Storage : End of
I! Storage

Figure 8.

Following the! storage on the tape is the five-character word

OOEOO

which indicates the end of the! storage. If there is no ! storage

the word OOEOO immediately follows the word OOCOO on the tape.

The numerical storage of the 'problem is punched onto the tape

following the word OOEOO. This storage is punched as ten-character

words. Each group of storage is punched in order of ascending ad­

dresses and is terminated by two adjacent spaces on the tape. The

.£ storage is the first group of storage punched on the tape. The

last word of .£ storage is followed by two adjacent spaces. The B

storage is then punched on the tape and it is followed by two spaces.

Next is the 1. storage on the tape. The 1. .storage terminates the

descriptive code tape and at least five spaces must follow the last

word of 1. storage on the tape.

At one stage in the evolution of the descriptive coding a word

Booooooooo was used in lieu of the two adjacent spaces separating the

groups of numerical storage on the descriptive tape. . Hence, between

the .£ and. ~ storage, between the ~ and 1. storage, and following 1.
storage, was the word 8000000000. The present assemb~ routine al­

lows the use of this word Booooooooo in the aforementioned manner;

therefore, this is an optional method of separating and identifying

the groups of storage.

-223-

In the event that a storage group is not used in a descriptive

coding, the spaces signifying the end of the groups of storage are

treated as follows:

The omission of I storage effects no changes and the last group

of storage on the tape, whether it is £, ~ or I, is followed by at

least five adjacent spaces.

If there is no £ storage, the word OOEOO is followed by two spaces

and then the ~ storage.

If there iw no ~ storage, one additional space symbol must be used

in conjunction with the two adjacent space symbols signifying the end

of the £ storage (whether or not any £ storage is actually present).

In other words, if ~ storage is omitted three adjacent spaces are used

to signify the end of £ storage and the absence of ~ storage.

In the alternative method where the word 8000000000 indicates the

end of each group of storage, even though a group of storage is not

present its terminating word is included on the tape to indicate the

end of, or absence of, a particular group. Example 6 illustrates a

three box code, and its descriptive code tape.

Example 6
-x The example forms an approximation to e for 0 < x < 1 from the

expression

-x e = lim
n~oo [

1 _ ~] n

1+ ~
2n

where for this example we choose n = 32, and

[~: ~] 32
-x e

The flow diagram is:

2
y~ b- 2-9x to 0.01

t--Ia-t

z = b+2-9 x to 0.02 Q= f to 0.01

3

e-X = Q 32 to 0.02 t--__ ----f

Figure 9.
C.Ol: x 1
B 01 b = 2-. :

D.Ol:
D.02:

-224-

The coding is:

Boxl

1. m~Ac

2. R(9)
3. A~m
4. m~Ah

5. A---.,.m

6. ~Ac

7. m~Ah-

8. ~m

Box 2

1. m~Ac

2.

3. A---+m

Box 3
1. m--+Q

2. X

3. A--+m

4. m--3)Q

5. X

6. A-4m

7. m~Q
8. X

9. A~m

A. m~Q

B. X

C. ~m

D. m~Q

E. X

F. A~m

10. Stop

C.Ol

009

D.Ol

B.Ol

D.02

B.Ol

D.Ol

D.Ol

D.Ol

D.02

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

D.Ol

Do02

z = b + 2 -9x in R2

b to R2

y = b - 2-9x in R2

y to R2

Q = y/z in R2

Q to R4
Q2 in R2

Q16 to R4
-x 32 e = Q in R2

-22,-

z to p.02

y to D.Ol

Q to D.Ol

2 Q to D.Ol

4 Q to D.Ol

Ql6 to D.Ol

e-X to D.02

The code is to be assembled starting at address 297. The descrip­

tive code tape is shown in Figure 10. x in C.Ol is set to 0.5 tor the

tape.

-226-

Note: Tape IS continuous, but has been broken for illustrative purpose.

g 8
0

~ ~o 8 ~ ~ ~ ~ ~
~ ~ ~ ~ R R ~ ~ ~ ~
00 00 00 00 00 00 00 00 00 00

O~ 00297 00001 AACO I EE009 DCDO I BABOI DCD02 A ABOI B8DO I DCDOI
o 0 000 000 0 o 000 00 0 000 000 000 000 000 000

00 8 0 00 000 000 0 000
0 00 00 0 00 a 0 0 0 gog 0 0 0 0 oog 0 880 0 0 0 0

Code of Box I

8 8 8 ~ ~ ~ ~ ~ 8 ~
o 0 coo 0 0 coo
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

00 00 00 00 00 00 00 00 00 00
00002 AADOI 00002 DCDOI 00003 E8DOI DADOI DCDOI E8DQI DADOI

o 0 000 0 0 000
000 000 000 000 000 000 000 000 I

00
a 000 000 0 0 0 a 000 0 0 0 0

a 00 0 a 00 0 00 0
o 0 000 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 I

I
Box 2 I

I
Code of 80x 2

I I
I Box 3 I
I I

Code of Box 3

cu cu cu cu cu cu cu cu cu cu
(,) (,) (.) (,) (.) (,) (,) (,) (,) (,)
o 0 coo 0 0 0 0 0
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

00 00 ~ 00 00 00 00 00 00 00
DCDOI EBDOI DADOI DCDOI EBDOI DADOI DCDOi EBDOI DADOI DCD02

o a 0 0 0 0 0 0 0 0
000 000 000 000 000 000 000 000 000 000
00
000 0 0 0 0 000 0 0 0 a 000 0 0 0 0 000

00 0 00 0 00 0 0
00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0

Code of Box 3

cu cu cu cu cu cu
g g g gg g::===
~ a. ~ a.~ a. en 00 00 00 00 en

OFOOO OOCOO OOEOO 0500000000 4000000000
000 o 0 0

00
0000000000000 0 00000000000000000000000000000000
o 0 0 0 a o 0 a 0

Storage 111
I I

End of C
Storage

FIG.IO

B Storage

-227-

Since there are no subroutines associated with the code, the word oocao
fo1lows the last instruction of Box 3; and since there is no ! storage

the word OOEOO fo1lows OOCOO. No 1 storage is contained in the coding;

hence the five spaces follow the ~ storage.

As previously mentioned, there is a symbol which indicates to the

assembly routine that the first instruction of a box is to be on the

left side of an instruction pair. It is included in the word that

specifies the box number and is the character ~ for the middle tetrad;

e.g., suppose that in the code of Example 6, Box 2 is to begin as a

The

box number would be

00402

When the code is processed by the assembly routine and a box number word

with a ~ in the middle tetrad is encountered, the following occurs: If

the last instruction of the previous box was assembled as a right-hand

instruction, the first instruction of the box concerned naturally be­

comes a left-hand instruction of its instruction-word, and the assembly

routine proceeds accordingly. If the last instruction of the preceding

box was assembled as a left-hand instruction, the assembly routine com­

pletes the word by inserting a IIdummy-do-nothing" instruction of L(O)

into the right-hand instruction position. The first instruction of the

box concerned is then assembled as a left-hand instruction of the suc­

ceeding word. If the flow diagram indicates a transfer of the control

to a box that must begin as a left-hand instruction, one cannot use

the flexibility and convenience afforded by a transfer into one of the

last seven instructions of the preceding box. This restriction arises

because of the Ifdummy" L(O) instruction that may be inserted.

Another symbol may be incorporated in the word specifying the box

number. This is a character 8 as the first tetrad of the word. This

symbol causes the assembly routine to interrupt the assembly process and

to stop the computer. The need for such a symbol is covered in the dis­

cussion of methods of alteration of the descriptive code in the chapter

on Operating Procedures.

A frequent occasion where it is necessary to have a box begin with

a left-hand instruction is in the use of drum instructions which we

now examine in detail.

The drum instruction, since it is a full word, necessitates special

treatment both in the descriptive code and by the assembly routine. As

previously mentioned, the drum instruction must be coded in the descrip­

tive coding so that it naturally starts l1ith the left-hand instruction

of an instruction word in the assembled code. The drum instruction is,

however, coded as two descriptive instructions. The first instruction

is the drum order, and the descriptive address for the associated

block of fifty words in the memory. The second instruction specifies

the associated drum track in the order position and the address position

contains the descriptive address for the transf'e.r of' the control upon

completion of the drum instruction.

The descriptive address for the associated fifty words in the mem­

ory may refer to tmyof the storage; hence it may be an A.i, C.i, B.i,

H, or D.i address; the address may be an E.i if it is desired to have

the drum communicate with a block of fifty words contained in the same

box as the drum instruction; the address may be inserted as an absolute

address if desired~ or the address may be supplied to the drum. by a

substitution instruction in conjunction with addresses in ! storage.

The associated drum track address is either inserted into the

descriptive coding as a pseudo-absolute address or is supplied from a

coded routine. The pseudo-absolute addresses range from .QQ. to £I., cor­

responding to the two hundred tracks of the drum (0-199, decimally).

Unfortunately, the drum tracks are not addressed sequentially from 00

through C7, but range from. 00 through FF (0-255, decimally) hence the

expression "pseudo-absolute n is used for inserted drum addresses. The

assembly routine modifies the pseudo-absolute address to the actual

value in the range 00 through FF. The address to which the control is

to transfer upon completion of a drum instl~ction is treated in the

same manner as are the addresses of transfer instructions. The ad­

dress may specify a box number and one of the first seven instructions

of the box or one of the last seven instructions of the preceding box.

The address may also be specified. by an E.i address if the transfer

is within the operation box containing the drum instruction. The

transfer, however, is automatically to the left-hand instruction of

a word; hence that instruction must be positioned appropriately.

We now give three examples (7, 8, and 9) illustrating the treat­

ment of the drum instruction.

-229-

Example 7
Three operation boxes are given. There are two drum instructions.

One sends fifty words from D storage to the drum. The second reads

fifty words from the drum into the just vacated D storage of the

memory.

The flow diagram is:

.-, 2

I r­
L ...J

t-----~ -----I X1-X5Q to O.track 54

+ : o. track~ to 0.01-0.32
t 7 ' __ .1__ Inn I - n ~? : Y. - y _ _ I

---L __ J I D:;~Ck'~:~: - ;:~ I
r--, 3
I 1----___ --4Q=aYI+bY2+0.34

B.Ol: a
B.02: b
B.03: I

L __ -,

Figure 11.

D.Ol - D.32: xl - x50 D.33: i
D.34:

The coding is:

'Box 1

1. m~Ac

2. m----=.Ah-

3. c
Box 2

1. m~D

2. 54

3. D--7m

4. CO

Box 3
1. m~Q

2. X

3. A~m
4. ~Q

5. X

6. m~Ah

7. A~m

B.03

D.33

07,1

D.Ol

E.03

D.Ol

03,1

D.Ol

B.Ol

D.34

D.02

B.02

D.34

D.34

I to R2

I - i in R2

Y2 to R4
bY2 to R2

Q = aYl + bY2 in R2

Xl - x50 to D.track 54

Q to D.34

-230-

Instructions 1, 2, 3, and 4 of Box 2 are the two drum instructions;

hence Instructions 1 and 3 must be left-hand instructions in their re­

spective instruction-words in the assembled code. This is done by ar­

ranging Box 2 so that it begins with a left-hand instruction; i.e., on

the descriptive code tape 00402 is punched for the box number word. In­

struction 2 specifies that Track 2!t is the pseudo-track number. This

is modified to Track §2 (the absolute address) by the assembly routine.

The transfer indicated by the address of Instruction 2 is to E.03; hence

the control is to transfer to Instruction 3 of Box 2. The instruction

to which the transfer is effected must be on the left side in the

assembled code and since Instruction 1, Box 2, begins on the left of a

Word, Instruction 3 does also. Instruction 4 of Box 2 specifies the

pseudo-track number CO which the assembly routine modifies to ~ the

corresponding absolute track address. The address specifies a transfer

to Box 3, Instruction 1. Box 3 must then be coded so that it begins

with a left-hand instruction. In this example we see that this is

taken care of, since Bqx 2 ends with a right-hand instruction. If

Box 3 did not naturally begin with a left-hand instruction, it would

have to be so arranged by punching the box number for Box 3 as 00403.

Example 8

In this example fifty words of code in the memory are to be re­

placed by fifty words from the drum where the fifty memory words are

contained in the same box as the drum instruction. The quantity!,

that eventually becomes the drum track number, is formed in a part of

the routine not coded, and is stored in D.Ol as

D.Ol: i·2-27

The drum instruction upon completion is to transfer to the first in­

struction of the fifty words which have been called into the memory.

The coding is:

Box 1

1. m~Ac D.Ol i -27 ·2 to R2

2. A~m D.02 i.2-27 to D.02

3. m~Ac E07 D--4-m E09 OOE09 to R2

4. S~m' D.02 E09 to (28-39)002

-231-

5· m---=>Ac D.02 i(20-27~09(28-39) to R2

6. H~m E08 i(20-27) E09(2B-39) to E07

7. l)--4m E09

B. [00 E09]

9.

A.

B.

c.
The descriptive tape has the box number 00401. Instructions 1, 2,

3, and 4 form the drum track address. Instruction 2 send.s i.2-27 to D.02.

Instructions 3 and 4 then combine the address part (the address specify­

ing the transfer) of the instruction with the track address in D.02.

Note that Instruction 4 is written as S~m' D.02. It is written as

the primed instruction since the substitution is into the right-hand

side of a word of Q storage. (Note that this differs from the case

where a substitution is made int~ instructions, cr. page 212) Since

Instruction 1 of the box is on the left, the drum instruction (Instruc­

tion 7) and the instruction to which the transfer is effected (Instruc­

tion 9) are left-hand instructions as desired.

Example 9

In this example, fifty words of code on the drum are to replace

fifty words of code in the memory, where both the words in the memory

and those on the drum correspond to one or more complete boxes of code.

Again, only the box containing the drum instruction is coded. We

assume the words to be replaced in the memory begin with Box 2C, In­

struction 1, and the drum track concerned has the pseudo-track number

Al. The address corresponding to Box 2C, Instruction 1, is stored in

! storage in a transfer or substitution instruction word and is

A. 01: CA2CICA2Cl

The coding is:

Box ·1

1. m~Ac A.Ol CA2ClCA2Cl to R2

2. S~m E.03 2C,1 to (8-19) ID8t~.3

3. D~m [2C,:IJ

4. Al 54,1

-232-

Instruction 1 brings the address for the drum instruction into R2.

This address was stored in A.Ol as part of a transfer instruction so

that it could be stored as a box number and instruction number. In­

struction 2 is an S~m E.03 which supplies the address 2C,1 to In­

struction 3, the drum instruction. Recall that a substitution instruc­

tion is not supposed to substitute into an immediately following

instruction. However, in this instance, we know that the drum instruc-

tion begins as the left-hand instruction of a word; hence, the substitu­

tion instruction cannot be in the same instruction word as the drum

instruction a.nd the substitution as indicated is permissible. The

address written in the drum instruction is irreleva.nt; hence, any ad­

dress may be placed there. Instruction 4 contains the pseudo-track

address Al and the address of Box 54, Instruction 1, to which the con­

trol is to transfer upon completion of the drum instruction. Box 1

must begin with a left-hand inst~~ction to position the drum instruc­

tion correctly; therefore, the Box 1 code word is

00401

Box 2C as it originally is coded must begin with a left-hand instruction;

hence the Box 2C code word is

0042C
The control is to transfer to Box 54, Instruction I, upon completion of

the drum instruction; hence Box 54 must begin with a. left-hand instruc­

tion and its code word is

00454
The assembly routine modifies the pseudo-track number Al to the corres­

ponding absolute track address, CB.

For a further discussion of the drum one should consult the chapter

on The Computer.
It is desirable to have a printed copy of the assembled code so

that one may know the absolute addresses of the storage and the in­

structions in order to "debug" the assembled code for subsequent run­

ning. It is important that this printed copy is in a form that is

easily read and understood. To produce such a copy a printing routine

using the Synchroprinter has been included in the assembly routine. It

provides the following data:

The first line of the printed listing contains five 3-character

numbers which are the absolute addresses corresponding to

A.OO C.OO B.OO 7.00 D.OO

-233-

respectively. If any group of storage is not contained in the coding,

the address for that group is the same as the initial address of the

succeeding group. Consider that an assembled code has the following

absolute initial addresses

A.OO = 201
C.OO = 205
B.OO = 221

7.00 = 23B
D.OO = 2D5

The first line of the listing would be

201 205 221 23B 2D5

Following the first line is the listing of the code proper. One has

the option of a listing of five or six columns. The five-column list­

ing contains, in order of columns from left to right on the page,

1. the box number

2. the descriptive instruction number

3. the absolute instruction-word number (address) as assigned by

the assembly routine

4. the instruction with its absolute address as assigned by the

assembly routine

5. the descriptive address of the instruction as coded in the

descriptive coding

The six-collxmD listing contains the five columns as listed above

and a sixth column that is:

6. the contents of the ~ or .£ storage specified in the address of

the instruction.

Following the listing of the code is a listing of ~, .£, ~ and I storage,

respectively. The £, ~, and I storage listing is a four-column listing

where the columns are:

1. classification of storage

2. the descriptive address of the storage

3. the absolute location address as assigned by the assembly

routine

4. the numerical quantity as stored at the address concerned

Example 10 illustrates the 5-column page listing.

-234-

ExamJ21e 10

Consider the descriptive code of Example 1 and assume that it has

been assembled in the memorJ beginning at a4dress 000. rrbe listing

given of the assembled routine is:

005 005 008 009 009

01 01 000 EB006 COl
02 DA009 BOI
03 001 BA007 CO2
04 DE028
05 002 DA009 EOl
06 BAo08 e03
07 003 DeOOA DOl

02 01 EBOOA DOl
02 004 DAOOA DOl
03 BAOOA DOl
04 005 DeOOB D02

C 01 006 a
C 02 007 b
C 03 008 c

B 01 009 x

The code contains no ~ or I storagej hence the first line corres­

ponds to

C.OO C.OO B.OO D.OO D.OO

In lines 2 through 11, inclusive, the numbering in the first and second

columns corresponds to the numbering on the descriptive coding. The

third column contains absolute location addressesj hence each address

corresponds to an instruction-pair in column 4j i.e., word 000 is

000: EB006DA009

The descriptive addresses as given in column 5 are the same as those

in the instructions in the descriptive coding.

If we set
a = 4040000000

b = 2190000000

x = 4000000000

a 6-column listing of the first three instructions would be

01 01
02
03

000

001

EBo06
DA009
BA007

COl
BOI
C02

4040000000
4000000000
2190000000

The contents of Cal and C02 as listed would be the converted. number

(the binary equivalent of the decimal input) in the Q storage.

If the coding had contained ~ storage, for example

A.Ol: CA02,l CA02,l,

the lIsting of it would be

A 01 006 CB003CB003 02,1

-235-

where the first four columns are as before, and the~fifth column gives

the relative address.

The method of descriptive coding is easily genera.lized to incor­

porate the use of subroutines; hence it is appropriate that subroutines

are discussed in conjunction with the descriptive coding.

As a person gains in experience in coding it becomes apparent to

him that from one problem to another there are certain basic sequences

of instructions that are very similar. For example, two different

problems might, at some phase of their computation, involve taking the

square root of some number or group of numbers. The two sequences of

instructions for the square root would generally conta.in identical or­

ders, while the corresponding addresses would be different. Routines

such as the conversion routlne as discussed in Chapter II would be an

int.egral part of most pro[)lerns, and from problem to problem these

routines would differ only in the addresses of their instruction se­

quences, while the order patterns would be the same. In fact, it is

true that most of the routines coded in Chapter II would occur as

parts of larger problems.

Since these routines or sections of code that repeatedly a.ppear

in problems can be coded in a way such that the addresses of the in­

structions can easily be modified to any desired addresses, it becomes

possi"ble to incorporate such routines directly into the code of any

problems without having to rewrite their instructions. We call any

section of code a subroutine if it is coded in a way that it can be

incorporated into any problem without having. to rewrite the coding.

Consequently, a library of subroutines, or more precisely a library of

punched tapes of subroutines, has been compiled. These punched tapes

may be incorporated directly into any desired problem. There is a

card indexing system for the library where each subroutine has a card

on file which gives complete information about the particular routine.

We defer further discussion of this and return to the coding of sub­

routines.

-236-

We have already discussed how any problem code, including all of

its necessary storage, may be assembled from a descriptive code tape

into any absolute addresses in the memory, excluding addresses 37C
to 3FF. Further, we have seen how one can, by altering only the

initial word on the tape, form different instruction sequences in the

memory, where the order patterns are the same but the corresponding

addresses differ. This is precisely the kind of thing tha.t is desired

for subroutines. Each subroutine is coded descriptively as though it

Were a problem complete with storage. In fact, each subroutine does

constitute a complete problem, in the sense that it starts with cer­

tain initial conditions and leads to a clearly defined conclusion.

The descriptive coding of a subroutine differs in several ways from

the coding of a normal problem, and we now discuss these differences.

In the coding of a subroutine the boxes of code must be numbered con­

secutively starting with 1, where the numbering corresponds to the

linear sequencing of the boxes on the descriptive code tape. For ease

of use it is desirable to code a subroutine as one box whenever

practicable.

Only one set of variable remote connections is allowed, and this

set pertains to the exit from the subroutine. The details of this are

discussed presently.

All of the static storage necessary in the subroutine is included

on the descriptive code tape of the subroutine with the condition that

neither A nor C storage is allowed. Any storage that would normally

correspond to £ storage is converted and stored in the subroutine as

~ or 1 storage. Storage that would normally correspond to ~ storage

must have special treatment, in that the storage must exist as instruc­

tions in the descriptive code. This is illustrated by later examples.

There are, in general, two kinds of dynamic storage associated

with a subroutine. These are the dynamic storage that originates from

within the code of the subroutine and. the dynamic storage that originates

in the problem apart from the subroutine, but is pertinent in the subrou­

tine. Although this latter storage is static with respect to the sub­

routine, it is, however, dynamic storage in the overall problem and is

treated as such in the subroutine. For example, in a square root sub­

routine, the dynamic storage originating from within the routine is the

-237-

storage arising from intermediate values in the iterative process and

the storage for the successive iterates. ~e dynamic storage arisi~g

apart from the routine is the storage for the number whose square root

is desired. This number comes from the problem and is present at the

time of entry into the square root subroutine.

All storage is addressed as in a problem. That is, the addresses

of each group of B.i, ~, and D.i storage are consecutive addresses

beginning with i = 01.

We now have the situation that a subroutine coded by the descriptive

method with the above mentioned restrictions can be coded as an indepen­

dent problem into any desired addresses in the memory. The next step

is to have the assembly routine specify the desired addresses.

In the flow diagram of a problem, boxes should be included for the

subroutines of the problem although they do not need to indicate in de­

tail the computation of the subroutine. These boxes need to be assigned

numbers on the flow diagram where the only restriction is that a sub­

routine that contains several boxes must be assigned a corresponding

group of consecutive numbers. The numbers assigned on the flow diagram

to the boxes of subroutines will not, in general, be the same as those

indicated on the subroutines' descriptive code tapes. Note that this

differs from the treatment of the problem proper.

Recall that on the descriptive code tape the box numbers corres­

ponding to the subroutines are first punched following the main prob­

lem code and prior to the code word 22£22. These box numbers corres­

pond to the box numbers as assigned by the particular flow diagram.

They will replace the box numbers as given originally on the subroutine

tapes.

We now describe the method by which the assembly routine integrates

the subroutines into the problem. The descriptive tapes corresponding

to the subroutines are arranged in the order in which they are to appear

in the computer. It is recommended that a single tape containing all

of the desired, properly analyzed subroutines be prepared from the

separate tapes. After the descriptive tape of the problem, including

storage, is initially processed by the assembly routine, the computer

stops so that the subroutines may be inserted. The subroutine tape is

placed in the reader and the assembly process is continued. The code

of each subroutine is assembled in order following the code of the prob­

lem. The storage associated with each subroutine is treated as follows:

The static storage associated with each subroutine is included on

its descriptive tape. The storage of each subroutine is not directly

added to the storage of the problem as this, in general, would lead

to duplication of storage. For example, the number Q might be already

stored in ~ storage in the problem, and in the ~ storage of several of

the subroutines. The Q need only be stored once, however, and the

other storage of Q's is needless duplication. To circumvent this, as

each word of ~ storage of a subroutine is incorporated into the storage

of the problem, it is compared with all existing £ and ~ storage in the

problem; and if it is identical to any existing £ or ~ storage it is

not stored. However, all of the descriptive addresses of the subroutine

that referred to the discarded word of storage are modified to refer to

the already existing word. If the subroutine word of ~ storage is not

identical with any existing £ or ~ storage in the problem, the word of

storage of the subroutine is added to the existing ~ storage of the

problem and the addresses of the pertinent instructions are accordingly

modified. We see then that after the assembly process is completed

there is no duplication of storage due to the ~ storage of subroutines.

This, however, leads us to the meaninful purpose of I storage.

The I storage existing in a problem is not compared with the B

storage of the incorporated subroutines. Any I storage existing in

subroutines is directly added to the existing I storage of the problem.

The need for such a group of storage becomes apparent as one works

with subroutines, and it is illustrated in a subroutine example.

This completes the discussion of how the subroutines are incor­

porated into a problem and all that remains is to discuss the means of

entry into and exit from these subroutines.

These connecting links of a subroutine are analagous to those of

some of the orders of the vocabulary, so we first discuss the more

familiar order in the vocabulary.

Consider, for the discussion, that a multiplication is to be per­

formed. The multiplication order supplies the multiplicand, but the

multiplier must be already in R4. This latter fact is accomplished by

coding that precedes the multiplicatbn order. The sequencing by the

control counter brings the multiplication instruction into R6, the

control register, so that it can be performed. The address associated

-239-

with the multiply order specifies the location of the multiplicand.

Upon the completion of the multiplication, the product resides in R2.

The exit from the multiplication is provided by the address which is

in the control counter, the next instruction in the code sequence.

We naturally expect the entry into and exit from a subroutine to be

more complex than for a simple multiplication since a subroutine is

a sequence of instructions rather th~ a single instruction. How­

ever, as in the multiplication order, the number or numbers that are

to be operated upon by the subroutine must be in locations specified

by the subroutine prior to entry into the routine. (In the multi­

plication, the multiplier is in R4, the multiplicand is at the address

of the instruction.) These connecting addresses are certain dynamic

storage locations, D.i, and the precise D.i addresses are specified

on the library index card of the subroutine. The necessary numbers

are sent to the appropriate D.i addresses by code prior to entry of

the subroutine. After the necessary numbers are stored, the actual

entry into the subroutine is initiated.

The entry into a subroutine from any location in a problem is

treated as a fixed connection. The box numbers of a subroutine are

indicated on the flow diagram; hence one need only indicate a trans­

fer to the starting box and instruction of the subroutine in question.

When the subroutine is performed, a number or set of numbers is

formed as the results (the product in the multiplication is in R2).

These numbers are then stored in other D.i addresses specified by the

subroutine. These D.i addresses are shown on the subroutine index

card.

Prior to entry into the subroutine, the desired exit is estab­

lished. At each point of entry it is known where the control is to

proceed upon exit. This exit is established by a set of variable

remote connections. The variable transfer is contained in the subroutine

and follows the last pertinent instruction of the subroutine. Recall

that associated with each set of variable remote connections is an F.i

symbol used in addressing, and the variable transfer associated with

the set has this F.i address. In the coding of a subroutine this

variable exit is always coded as a transfer (T or C) with the address

FOO. The assembly routine then adjusts the !QQ to the proper F.i

-240-

address. The F. i address for' the subroutines follow in sequence the

F.i addresses of the problem proper. There are two methods by which

substitution instructions may refer to the variable exit of a subroutine,

and these methods are illustrated by the examples.

rrhe fixed connection transfer which indicates the entry into the

routine and the variable connection transfer (the address of which is

established prior to entry) play the role in a subroutine that the

control counter plays in the performance of a single instruction of an

instruction sequence.

Upon exit from the subroutine (the return of the control to the

problem proper) the results from the computation are in the specified

D.i ~ldresBes from which they luay be used in the succeeding code. (In

the multiplication the product is in R2 for subsequent use.)

~le see that from the way subroutines are used in a problem there is

a close analogy to the use of the standard vocabulary of the computer.

It is natural then,from the coding viewpoint, to consider the subroutines

as a generalization of the computer vocabulary. The subroutine library

index cards constitute the vocabulary of subroutines.

Two srunples are now given in order to illustrate some actual sub­

routines. Accompanying the subroutines are duplicates of their library

index cards.

Subroutine S-251.l: Random Number Generation

The generation of' the random numbers is accomplished by an iterative

scheme which is called liThe Middle Squaring Process". The process

generates su~cessive iterates from a given initial number. The present

routine starts wlth a 38-bigit number and generates 38 bigit iterates.

The formation of the (i+l)st iterate from the ith iterate is

=

That is, the 38 bigit xi when

and x. I is comprised of bigits

2 squared gives a 76 bigit product, x. ,
? ~

~+ -l
corresponds to the 2 position

\Ie illustrate the subroutine in

(20-57) of x.-, where the 20th bigit
l.

of xi +1 • All iterates are positive.

conjunction with two boxes, corres-

ponding to the code of the problem, that represent the point of' entrance

and the point of exit.

The flow diagram is:

10.01 "Xi I I 0.01: Xi I I 0.02: xI I
I I

I I I 2 I

10=®1

I I

IXI 0.02 1

I

:.® ®
I I • '. to '. ----

r-----------------, -,

I I 0.0,1 :XI I 23 10.01 ,: XII I
®: i·IXI+1 =(20-57)XI

2
to om I ·li+l-i Ii. I ®

I I
I 5251.1 RANDOM NUMBER GENERATION I
I L __________________ .-J

Figure 12

The section of the flow diagram enclosed in the dotted lines

would not normally be drawn in complete detail with a. problem, but

would be drawn as

10.0 1< Xi I
I
I
I

23
5251.1

t----'-___ -~ Random Number
Generation

Figure 13

I 0.01,: Xi I
I
I
I

The complete diagram is included now for clarity of coding. Boxes 1

and 2 are coded in two ways to illustrate two alternative methods of

entering a subroutine. Box 23 is the subroutine itself. The neces­

sary static storage for the problem (Boxes 1, 2) is:

A.Ol: CA02,1 CA02,l

No £, ~, or 1 storage is needed for the problem. Two Q addresses,

D.OI and D.02, are used. D.Ol contains xi which was stored in D.OI

-241-

-242-

at a portion of the problem prior to Box 1 and not shown on the flow

diagram. We assume for the coding that three sets of variable remote

connections exist in the problem proper (they are not shown on the

flow diagram). The set of variable remote connections concerned with

the subroutine is the fourth set and has the address F.o4 associated

with it. The coding of Box 1 and Box 2 is:

Boxl

1. m~Ac A.Ol CA021CA021 to R2

2. HS~m F.o4

3. T 23,2

Box 2

1. m~Ac D.OI

2. A~m D.02

In Box I the address for the exit of the subroutine is brought

into R2. This address is then substituted into the variable trans-

fer F.o4, the exit of the subroutine. Recall that the exit of the

subroutine is originally coded with the address FOO; however, the

assembly routine modifies it to its correct ~ address, which in this

case is F.o4 (F.Ol, F.02, and F.03 exist in the problem proper). The

fixed connection transfer is to the second instruction of the subroutine

(CA23,2) rather than the first instruction. The reason for this is

discussed after the code for the subroutine is illustrated.

The second wa~ in which Boxes 1 and 2 may be coded is as follows:

Box 1

1. m--7Ac

2. T

Box 2

A.Ol

23,1

1. m~Ac D .. Ol

2. A~m D.02

CA02,1 CA02,1 to R2

In Box 1, the address for the exit of the subroutine is brought

into R2 and then, without effecting the substitution, the transfer to

the subroutine into its first instruction is made. Without further

comment let us examine the code of the subroutine prope~.

Subroutine Box I

1. HS~m FOO

2. m--)Q

3. X'

4. A~m
5. L(l)

6. m~Ac

7. R(22)

B. m~Ac

9. L(l)

A. DS

B. A~m

c. T

DOl

DOl

DOl

001

DOl

016

Boo
001

000

DOl

FOO

Xi to R4

xi
2 in R2 and R4

x.2 in R2 and R4
l.

(lB-57)x. 2 in R4
l.

(lB-57) x 2 in R2
i

(19-57) x 2 in R2
i 2

xi+l = (20-57)xi in R2

(O-39)x 2 to DOl
1

xi +l to DOl

We observe that the first instruction is a. half-word substitution

to FOOj tha.t is, to the exit transfer. This accounts for the two methods

of coding Box 1. In the first coding of Box 1, the substitution instruc­

tion wa.s performed prior to entry into the subroutinej hence the entry

transfer was to the second instruction. In the second coding of Box 1,

the instruction word comprising the exit from the subroutine is brought

into R2 and then, without making the substitution, the transfer to the

subroutine is effected. The exit word, however, still resides in R2

and the initial instruction of the subroutine accomplishes the sub­

stitution to establish the desired exit.
2 Instructions 2 and 3 form Xi as a 7B-bigit number. Bigits

(20-57) a.re to be isolated by shifting. Recall that a double preCision

p~oduct has a Q in the sign position of R4. Instructions 4, 5, and 6
eliminate this Q so that the subsequent right shift of 22 in Instruc­

tion 7 combines the sections of xi
2 into R4 as (lB-57)x 2. Instruc-

. i
tions 9 and A then complete the process by forming

xi+l = c::J Xi
2

Although the subroutine is indicated as Box 23 on the flow diagram,

it is coded as Box 1 in its descriptive code. And, as previously men­

tioned, the assembly routine makes the necessa.ry adjustments of the box

numbers of the subroutines.

As in this subroutine, all subroutines are coded so that the first

instruction is

HS---+m FOO

-244-

There are , subsequently, t,.,o methods of entry into the routine. If the

exit to the subroutine is set up prior to entry into the routine, the

fixed connection transfer to the subroutine bypasses the first instruc­

tion and enters into the second (the subroutine index card should be

consulted for exceptj_ons to this rUle). Or if the instruction word for

the exit to the routine is brought into R2immediately prior to entry

into the routine, the transfer into the routine is ~o the first instruc­

tion of the routine (again consult library index card for exceptions).

We include a copy of the library index card for the subroutine ex­

ample, in order to illustrate the kinds of information listed. For com­

plete details, the description of the subroutine library filing system

should. be consulted.

The card reads as follows:

S 251.1 RANDOM NUMBER GENERATION (Middle Squaring)

This routine forms a sequence of 38-bigit pseudo-random num­
bers by a middle squaring process. The tested base number is sent
to D.Ol. The hexadecimal number lOBBBFA4DE gives 118,627 iterates
and then degenerates to Q.
1. Number of operation boxes: 1
2. (a) Number of code words: 6 (dec.); 6 (hex.)

(b) Number of code words plus Band 1 storage: 6 (dec.); 6 (hex.)
3. D storage needed: D.Ol
4. Prior to entry the operand must be sent to D.Ol
5. (a) D.Ol and R2 contain new random number upon exit

(b) Input number is destroyed
6. Entry: Box 1, Instruction 1

Exit: CA
1. Legal spillage: Instructions 5 and 9

We see that the card first gives a brief description of the routine.

Then, in order, it gives:

1. The number of operation boxes, so that the necessary box numbers may

be assigned on the flo'f diagram.

2. (a) The number of code words, so that the words of code in the sub­

routines may be included in estimates of problem code length.

(b) The number of code words plus B and 1 storage, so that total

word length estimates of problem may be made.

3. D storage needed. This is important, since the D storage shown here

nlust be empty or irrelevant upon entry into routine (except for that

D storage which has numbers pertinent to routine)-.

4. Numbers required for routine, and D storage to which they must be

sent prior to entry into routine.

5. (a) D storage in which results are located upon exit from routine.

(b) Limitations of routine.

6. (a) Instruction into which entry is made. If exit is set up prior

to entry into routine, the instruction into which entry is made

is one beyond that listed.

(b) Specifies whether exit is CA or CC, so that corresponding orders

may be stored 8S the exit words in A storage.

1. Legal spillage indicates which instructions in the routine allow num­

bers to exceed the range -1 ~ n < 1. This information is useful in

"debugging" procedures and is discussed elsewhere.

Subroutine 116.1: Integer Conversion from Binary to Decimal

This routine is used to convert a binary integer, N, scaled as

N'2-39, into its decimal equivalent. The allowable range of N as an

integer is 0 ~ N < 109•
The conversion is effected by subtracting the binary equivalents

of the successive powers of ten (i.e., 108, 101 •.• 101) from N the

appropriate number of times and recording the number of subtractions

of each power of ten as a decimal digit in its proper position. The

inductive process is:

•
N - a 108- i

Ni +l = i i 0

N9 = NS - a8lO = 0

The ai's are in the range

o ~ai ~ 9
and each a. is chosen so that

1.

but

The converted number is then

ao108 + a1107 +

8-i
Ni - a i ·10 ~ 0

N - (a.+l)108- i < 0
i 1.

••• +

.. "I.L' -""i-V-

Each decimal digit is represented as a tetrad; hence the actual

formation of the nine decimal digit integer is described as

w = 0

w
o

= 2\'1 + 2-39
.1 0

: 4 -39
wi +1 = 2 wi + 2

•
•
~9 = 24Ya + 2-39aa
W = w9 = decimal number

0.01 : Ni '2-39 0.03: (i)0

The flow diagram is:

10.01 t N'2-39I
I
I

e

0.02: Wi 7. i : 108- 1 • 2-39

Wo =0 to 0.02
~~ ~~ o to 0.03 '---_-J

8-1 -39
(Nj-(Oj+1)10)2 to 0.01

-39
0j+ I = OJ + 1·2 to 0.04

8-1
NI+ 1 = Ni - 01 ·10 to 0.01

4

d
4 -39

Wjt I = 2 Wi + 2 0 I to 0.02 1--__ ° j --+- 0 i

(i + 1)0 to 0.03

7
4 -39

W= 2 Wl +2 01 to 0.02

5116.1 INTEGER CONVERSION

Figure 14.

The Decessar.y stor,age is:

B.Ol: (1) 7.01: 108 .2-39 D.Ol:
0

B.02: 1.2-39 7.02: 107 .2-39 D.02:

• D.03: B.03: I = (8) .
101 .2-39

0 7.08: D.o4:

The flow diagram is dra.wn as a double induction loop. The primary

induction is over the index i and forms

8-i = Ni - ailO

Wi+i =
4 -39 2 Wi + 2 a.i

and

-247-

The secondary induction is over the index.J.; and although the induction

index is on j, the end result of the induction is the formation of a
i

•

Note in the storage of the subroutine that the various powers of '

ten, 108- i .2-39 are stored in 1 storage. This means that these numbers

will be added to the 1 storage of any problem containing the routine,

and they will be in eight consecutive locations. It is necessary that
8-i the addresses be consecutive, since the appropriate 10 are located

. by an index

i (=0 ••• 7)

In order that the address 7.i may be formed, a base address 7.01 needs

to be stored. This would normally be stored in ! storage; since no !
storage is allowed in subroutines, the base address is stored in the

body of the code.

Although the flow diagram contains seven operation boxes, it is

coded as one, as it is desirable to keep the number of boxes of a sub-

routine to a minimum.

The coding is:

Subroutine Box 1

(box 1) 1. HS~m FOO

2. a.~Ac 000

3. A~m D.02

4. A~m D.03

(box 2) 5. m~Ac E.23

60 m--Hili Do 03

0 to R2

w = 0
0

(7.01)
0

(7.01+i)

to R2

in R2
0

Wo~ Wi to D.02

O--+(i) to D.03
o

7. ~m

8. a~Ac

9. A~
(box 3) A. m~Q

B. m-">Ac

c. m~Ah-

D. C

(box 4) E. m--4Ah

F. A---4>ID

10. m~Ac

11. L(4)

12. m~Ah

13. A~m

14. m~Ac

15. m-.Ah

16. A~
(l)OX 5)17. m~Ah-

18. C

19. T

(box 6)1A.
lB.

lC.

A~m

m~Ac

m~Ah

ID. T

(box 7)lE. m~Ac

IF. L(4)

20. m~Ah

22. T

24. m~Ac

E.OA

000

D.o4
[7. 01+1J

D.01

800

E.lA

800

D.01

D.02

004

D.04

B.03

E.lE

E.05

D.01

D.04

B.02

E.09

D.02

004

D.Ol

Faa

-248-

7.01+1 to (8-19)A

a = 0 to R2
o

a~ a j to D.04

108-1 .2-39 to R4

(N -a .108-1)2-39 to R2
1 j 8

(N
1
-(a

j
+1)10 -1)2-39 in R2

8-1 Ni +1 = N1-ai 10 in R2

Wi to R2

24w. in R2
~

N1+1 to D.Ol

w.] = 24 w. + a.· 2 - 39 1n B2
~+. ~ ~

(i) to R2
o

(i+1) in R2
o

(i+1-I) in R2 o

(i+l) to Do03 o

(N
i

- (a
j
+l)108-i)2-39

to D.Ol

in R2

W to D.02

7.01) itA storage"
7.01

In the coding the box numbers as indicated on the flow diagram are

indica.ted with the code for ease of discussion.

In (box 1) the first instruction is the H~m FOO which is in

all subroutines. Instruction 5, the first instruction of (box 2) is

m~Ac E23. Instructions E23 and E2J1- each contain AA701 and it is

-249-

desired that m--+Ac E23 bring E23 and E24 into R2 as

AA701 AA70l.

To accomplish this, E23 and E24 must be assembled as one word and not

as parts of two words. E23 has the same parity as the first instruc-

tion of the subroutine; hence the subroutine is coded to begin as a

left-hand instruction in the assembled code. This positions E23 and E24

in the same word. The descriptive code tape of the subroutine begins with

the word
00401

to accomplish this positioning.

Since the coding is done as one box, the transfer instructions which

are fixed connectors contain E.i addresses rather than box number addresses.

For example, Instruction Q, which represents the conditional transfer from

(box 3) to (box 6) on the flow diagram, is coded as C E.lA. Instruction

ElA then corresponds to the first instruction of (box 6).
The index card for the subroutine is:

S 116.1 INTEGER CONVERSION

This routine converts any binary integer N, scaled as N.2-39,
to its decimal equivalent w by a scheme of subtracting powers of
ten. N must be in the range 0 !S N <: 109.

1. Number of operation boxes: 1
2. (a) Number of words of code: 19 (dec.); 13 (hex.)

(b) Number of words of code and Band 7 storage: 30(dec.)jIE(hex.)
3. D storage: D.Ol D.04
4. Prior to entry D.Ol must contain N.2-39
5. (a) w is in D.02 and R2 upon exit

(b) N·2-39 is destroyed
6. (a) Entry: Box 1, Instruction 1

(b) Exit: CA
7. Legal spillage: none

B.Ol: 0000100001 7.01: oo05F5E100 = 108.2-39
B. 02: 0000000001 7 • 02: 0000989680
Bo03: 0000800008 7.03: 00OOOF4240

7.04: ooooo186AO
7.05: 0000002710
7.06: 0OOOoo03E8
7 • 07: 0000000064 • 1 39
7 .08: OOooOOOOOA = 10 • 2-

Since the subroutine library is dynamic and continually growing and

being improved, no attempt will be made here to catalogue the existing

subroutines. However, in any problem being prepared for computation, the

subroutine library should be consulted at the time the flow diagram. is

drawn in order that any desired subroutines might be incorporated into

the problem.

-250-

The composition of a subroutine descriptive code tape differs

slightly from that of a regular problem. The first word (five charac­

ter) on a subrwtine tape is always a Box 1 code word

00001 or 00401,

the latter if the subroutine must start as a left-hand instruction.

The first instruction after this code word is always the substitution

FCFOO

This is followed by the descriptive code of the first box and all sub­

sequent boxes punched as five-character words, as with a tape of a

problem. Immediately following the last instruction of the routine is

the code word

OOEOO

The code word OOCOO is omitted, since no A storage is allowed in a

subroutine. Following the word OOEOO, the ~ storage is punched on

the tape. (Recall that no £ storage is allowed.) The ~ storage is

terminated by two adjacent spaces, and the I storage 1s punched following

these two apaces. The last word of the tape (whether it 1s the end of

I storage, the end of ~ storage if no I storage is included, or the

code word OOEOO if neither! nor I storage is needed) is followed by

two adjacent spaces. If no ~ storage is needed and if I storage is

present, the two adjacent spaces indicating the end of the ~ storage

are neverthelesa included immediately following the code word OOEOO.

Example 11 illustrates sections of three subroutine tapes containing

the storage and the appropriate spaces.

Example 11

Each tape begins with the last instruction of the subroutine which

for our example is the exit transfer, T FOO.

The first subroutine has both ~ and I storage, namely

B.Ol: 45FOOOOOOO 1.01: 3925364532
~ ~ ~ ~~ ~~
o 0 0 00 00
c c c 00 00
~ ~ ~ ~~ ~~
~ ~ ~ ~~ ~~

Code --CAFOO OOE 00 45FOOOOOOO 3925364532

000 0 0 0 0 00 0 00
0000000000000000000000000000000000000

000 0 000 0 000 o 0 0 0 0 00 00 o 00 00 00 00

~ Ex i t I End of : B Storage It: 7 Storage : End of
I : Code I I I I Tape

End of
B Storage

Figure 15.

The second subroutine has only I storage:

7.01: F439B7CD32

eu eu eu eu eu eu
o 0 00 00
o 0 00 00
Q. Q. Q. a. Q. CL

(/) (/) (/) (/) (/) (/)

Code~CAFOO OOEOO F43987CD32

a a 00 00
000 0 a 00 00

00000000000000000000000000

o 0 0 00 000
00 0 0 0 00 00

a 0 0000 00

E X ,• t I End of II t I 7 S I End of
'Code I forage f Tape
I I I I

End of
8 Storage

Figure 16.

There is no storage for the third subroutine.

~ eu eueu
o g 00
Q. Q. 00
(/) (/) tJ; tJi

Code CAFOO OOEOO

o 0
000 0

0000000000000

I

o 0
00 0 o

I Ex; t
I

I End of I End of
, I
I Code I Tape

Figure 17.

-251-

-252-

VI. OPERATING PROCEDURES

In this chapter on opera.ting procedures ",e present the discussion

in four sections. First, the functions of the indicator lights a.nd

switches of the control panel are discussed so that one has at his dis­

posal the necessary mechanics for operating the computer. The second

and main section is the prepa.ration and debugging of a problem. The

discussion of the preparation begins with the descriptive code of the

problem being complete. The code is carried through its assembly and

then the debugging procedures are discussed. The third section re­

turns to the discussion of the computer and it brings out in some de­

tail the role of the various registers. The fourth section contains

some miscellaneous information such as the "audio-monitor"; the "mem­

ory monitors"; the magnetic tape and Synchroprinter procedures, etc.

In order to give one a better mental picture of the ensuing dis­

cussion, Figures 1, 2, and 3 have been included. Figure 1 shows a

floor layout of the computer a.nd its auxiliary equipment. The figure

is not drawn to scale but it serves to show all of the auxiliary equip­

Inent and its position relative to the computing unit. Figures 2 and

3 give a schematic view of the front and back of the computer. These

figures show the position of the various registers, the control system,

and the electrostatic memory. Now, keeping these three figures in mind,

we turn to the operating panel.

The operating panel has been kept in a simplified form for ease of

operation. The panel consists of ten displa.y lights and ten switches

for setting the counter (shown as the control counter in Figure 1); the

memory clear switch (sho~~ in Figure 2); two lights for the function

gates (mounted atop the switch box shown in Figure 1); and six opera.ting

sHitches (mounted_ on the switch box shown in Figure 1) designated in

order fro~ left to right as:

1. the load switch

2. the "red" breah"'Point switch

3. the "greenft breakpoint switch

4. the perform order switch

5. the manual--3.utomatic switch

6. the start next order svlitch

CIRCUIT I POWER
BREAKERS CONTROL

PANEL

©--VARIAC

HIGH

VOLTAGE

POWER
SUPPLY

t--

I--

COMPUTER

o c::::J~ItCh Box
AMPEX

RECORDER
' ~ntrol Counter

CONTROL TABLE

FLOOR LAYOUT of COMPUTER and AUXILIARY

FIG. I

READER

EQUIPMENT

MAGNETIC DRUM

FAST

PRINTER

PUNCH and·

SLOW PRINTER

• r\)
VI
W
I

"TJ

G>

N

...
o ..
c:
o
~

Arithmetic Unit

Control

FRONT

Memory storage Units

o

R6
I-- -- --- --- --- --- --- ---
I-- -- --- --- --- --- --- --- ----

R5

R4-- -- -- -- -- -- -- -- -- -- --- -- -- -- -- --- --
t--- -- -- -- -- -- -- -- -- -- -- --- -- -- -- ---

R3

R2
t-- -- -- -- -- -- -- --- ---- --- --- ---- --- --- -

t--- -- -- -- -- -- -- --- -- -- -- -- -- --- -- --
RI

...
o
~
c:
o
~

Memory Clear
Switch

Memory Unit

Control

I
N

'" Jia
I

"'TI
G) .
()J

Control

~
0 -·c
0
~

REAR

I
Memory Storage Units

Arithmetic Gates

Complement Gates (Located behind other chassis)

Adder

Adder

I~

Arithmetic Unit
Control

I
N
\J1
\.It •

-256-

The display neons for the various registers have not been brought

out to· the panel but are physically located with their register. They

are readily visible from the operating panel table. In line with this,

the monitor tubes for visible memory display are mounted in the memory

rack rather than on the operating panel (See Figures 2 and 3).

The control counter display lights and selector switches are laid

out on a panel as shown in Figure 4.

Counter Lights

@@ ~OOO ~O@ Oc~~tter
Switch

, I I I I I I I ©
I Push Button e €> e ~®® ~®@) ~ ~..J ~

0 0 0 0 0 0 0 0 0 0
Selector Switches - Toggle

Figure 4.

The control counter is the mechanism used to sequence the instruction­

words. The control counter normally contains the address of the forth­

coming instruction word to be brought into the R6 (control) register.

Since the control counter handles addresses, it counts from 000 to

~, which requires a ten-stage counter. Inasmuch as the counter is

the sequencing mechanism, we easily see how transfer instructions are

accomplished, namely that the address of the transfer instruction is

sent to the control counter. (The right-left selection 1s done through

the function gates, which are discussed presently.) If the computer is

stopped, the operator may manually effect a transfer of the control to

any address by using the selector switches. The control counter (hence

the control) is set to any desired address by setting the selector

switches to the address and then depressing the "set counter ll switch.

The control counter lights indicate the address to which the counter is

set.

In addition to being the control sequencing mechanism, the control

counter is used in conjunction with the magnetic drum instructions. It

indicates in sequence the fifty memory addresses associated with the

instruction. The counter is also used in the loading process; here

the counter indicates the address of the memory to which the next

-251-

word from the reader is sent. We discuss the loading process presently.

Prior to using the computer, the operator usually clears (sets to

all zeros) the memory of any previous code or data. The memory is

cleared to zeros by depressing the "memory clear" switch located 9n

the front section of the computer in the upper right-hand corner of

the arithmetic unit frame. This switch is separated from the operating

panel so that it will not be pushed inadvertently during the course of

a computation. Its location is shown in Figure 2.

The two function gate lights are mounted on a panel immediately

above the six operating switches. These are display lights for the

function gates, a set of gates which allows, in turn, each instruction

of the word in R6 to be connected into the control circuitry in order

to be performed. The function gate lights indicate which instruction

in R6 is connected into the control circuitry. When the left-hand

light is on, the left-hand instruction in R6 is connected into the

control circuitr,y and, Similarly, the right-hand light corresponds to

the right-hand instruction. In general, if the computer is stopped

and an instruction pair is in R6, the instruction corresponding to

the function gate light setting has already been performed by the con­

trol. The function gate lights are shown in Figure 5.
In a transfer instruction, the control selects the left or right

side by opening the corresponding function gates. There is no switch

for setting the gates manually, but as we shall see this is not necessary.

/ Function Gafe LIghts

apr.
Red off Green

Break Pomts

Figure 5.

Perform Manual start
Order AukJmaficNexf

Order

We now turn to the six operating switches shown in Figure 5 and

discuss first the "load" switch and the loading process. Prior to

loading a tape into the memory, one first clears the memory to zeros

by depressing the memory clear switch and then sets the tape in the

photo-electric reader. When a tape of data is punched for use in

the computer, the first word of the data should be preceded by five

-258-

or six inches of blank tape (zeros). These zeros act as a leader for

the tape. To place the tape in the reader, the lid of the reader is

raised. Then the tape is inserted so that the leader is over the drive

cylinder, yet no pertinent characters are beyond the reading holes.

The tape must be placed in the reader so that the space holes (fifth

holes) on the tape are nearest the hinged side of the lid. A sample

tape is attached to the reader to avoid mistakes of this type. After

the tape is inserted, the lid of the reader is closed. One should

make certain that the lid latches vhen it is closed to assure proper

operation.

After the tape is inserted, the control counter is set to the de­

sired initial address for loading. In loading, although it is only

necessary to set the selector switches of the counter, it is recom­

mended that the set counter switch be depressed so that one can check

the counter setting by the display lights as well as the selector

switches. When the desired address is set into the counter, the load

switch is set to the "up" position and the loading commences. The

words from the tape are transmitted into successive memory pOSitions

beginning at the address set into the control counter.

After the tape has been loaded into the memory, the load switch

must be set to the "down" position. The computer will not operate if

the load switch is not reset. The loading is terminated when two ad­

jacent spaces on the tape being loaded are encountered by the reader;

hence, any tape that is to be loaded into the memory must end with at

least two adjacent spaces.

As the tape is loading into the memory, each word on the tape is

transmitted into the R5 register, and from there into the memory. This

fact allows a method of cheCking that the photoelectric reader circuitry

is transmitting the information correctly from the tape. During the load­

ing, a sum of the words from the tape is formed in R2. The first time

-259-

that a tape is loaded, the sum as shown in R2 should be recorded. It

can be verified by immediately reloading the tape. Once a correct sum

of the tape has been recorded, the sum given by all subsequent loadings

must agree with the known correct sum. If it doea not agree, there is

a computer malfunction. The correct sum should be re.corded on the box

in which the tape is permanently stored. Remember, however, that a cor­

rect sum in R2 at the completion of the loading does not guarantee

that the information is correct in the memory; it only says that the

reader and its associated eqUipment operated properly. The contents

of the memory are checked by a summing routine that must be incorporated

in all problems. It is discussed later.

It 1s now worth noting several things that occur when the load

switch is set to the "up" position; namely, the R6, R5, and R2 regis­

ters first clear to zeros. The R6 register remains zeros throughout

the loading. At the completion of the loading, R2 contains the sum of

the tape, R5 contains the last word loaded fram the tape, and R6 is

zeros. Note that the loading process does not affect the contents of

the R4 register. At the completion of the loading, the control counter

automatically resets to the original address.

The "manual-automatic" switch, the "start-next-order" switch, and

the "perform-order" swl tch are those directly concerned with the run­

ning of the computer •. We now discuss them.

The manual-automatic switch allows the computer to be operated so

that it either stops upon the completion of each instruction or per­

forms an entire instruction sequence without stopping. If the manual­

automatic switch is in the "manual" pOSition when the control performs

an instruction, 'the computer stops upon the completion of the instruc­

tion. If the manual-automatic switch is in the "automatic" position

when the control performs an instruction, upon the completion of the

instruction the control proceeds to the next instruction in the se­

quence to perform it, and so on, through the entire code sequence.

The start-next-order switch is normally used to start the computer.

Recall that if the computer is not running the function gate light

indicates which side of the instruction pair is connected into the con­

trol circuitry. Depressing the start-next-order switch causes the

next instruction in sequence to be performed. That is, if the start­

next-order switch is depressed when the left-hand function-gate light

is on, the function gates are set for the right-hand instruction in

R6j the function gate lights change and the right-hand instruction

-260-

in R6 is performed by the control. If the start-next-order switch is

depressed when the right-hand function-gate light is on, the control

brings the instruction word located at the address specified in the

control counter into R6. The function gates and lights have mean­

while switched to the left-hand side of R6 and then the left-hand in­

struction of the new word in R6 is performed by the control. The con­

trol counter is advanced by one.

The perform-order switch is somewhat similar to the start-next­

order switch in that it causes the control to execute an instruction

contained in R6. However, depressing the perform-order switch causes

that instruction (indicated by the lighted function gate) connected

into the control circuitry to be performed rather than causing the next

instruction in sequence to be performed. The perform-order switch takes

on added significance in connection with the breakpoint switches and is

discussed further with them.

Returning to the manual-automatic switch, we see that the "msnual­

automatic" settings ap:t;ly to either the start-next-order or perform­

order switches. If on "manual", the start-next-order switch allows one

to proceed through the code sequence an instruction at a time, while

the perform-order switch allows one to repeat an instruction as many

times as is desired. If" on "automatic", depressing either the start­

next-order switch or the perform-order switch allows the control to

proceed automatically through the code sequence. The latter, however,

causes the control to perform the instruction previously connected into

the control circuitry before proceeding through the instruction sequence.

The breakpoint switches allow one to insert conditional stops into

a code by setting either the first or fifth bigit of an order to zero.

Since all orders are composed of letter pairs (AA, BA, DD, etc.) the

first and fifth big1ts are normally one. Setting the first bigit of

an order to zero corresponds to the insertion of a red breakpoint and

setting the fifth bigit to zero, a green breakpoint. The conditional

stop arises from having a breakpoint switch in the "up" or "down" posi­

tion. If either the red or green breakpoint switch is in the "up" (on)

pOSition and the control brings into R6 an instruction which contains

-261-

the corresponding breakpoint, the control stops the computer before the

the instruction is performed. The breakpointed instruction is, however,

connected into the control circuitry as indicated by the function-gate

light setting. If either of the switches is in the "down" (off) posi­

tion when the control brings into R6 an instruction with a breakpoint

corresponding to the "down" switch, the control performs the instruction

as though it contained no breakpoint.

The perform-order switch is used in-conjunction with the breakpoints

because depressing the perform-order switch causes the instruction con­

nected into the control circuitry to be performed even thOugh this in­

struction may contain breakpoints. If the control stops on a break­

pointed instruction, it stops before the instruction is executed; hence

the perform-order switch is the natural vay of resuming operation. If

the control is stopped at an instruction with a breakpoint and the start­

next-order switch is depressed, the instruction containing the breakpoint -

is skipped (not performed) as the start-next-order switch executes the

next instruction in sequence rather than the one already connected into

the control circuitry.

With a knowledge of the operating switches at our disposal we now

turn our attention to the code assembly and "debugging".

Recall that the absolute code is prepared in the computer by the

assembly routine from the descriptive code tapes. These tapes are the

problem and constant tape, and the subroutines tape or tapes. The

assembly routine is an example of the category of codings called "helper­

routines'·. A helper-routine is a routine, not incorporated directly as

a part of the problem, which is used as an aid in the preparation, the

running or the analyses of a problem on the computer. A library of

helper-routines has been compiled much in the fashion of the subroutine

library. Rather than give an elaborate discussion of these routines

we refer the reader to the helper-routine library file, and we mention

them only as their need arises in the ensuing discussion.

The first step in the assembly of a code is the loading of the

code assembly helper-routine. (This routine is appropriately named

"The Coder".) The tape and necessary explanations for the assembly

routine are obtained from the library. The code is transmi tted into

the memory beginning at the desired address (specified by the explanatory

-262-

remarks) via the load process which is: the memory is cleared to zeros

by depressing the memory-clear switch; the tape is set into the reader;

the control counter selector switches are set to the desired starting

address; and then the load switch is set to the "up" (load) position.

After the assembly tape is loaded, the load switch is set to the "down"

(off) position and the sum in R2 is checked against the sum as recorded

on the assembly code tape box.

After the assembly routine is loaded and the sum is checked, the

processing of the descriptive code tape begins. The descriptive code

tape is placed in the photo-electric reader so that it is in position

to be read into the computer by the assembly routine. The computer is

started in operation by first setting the desired starting address into

the control counter; second, setting the manual-~utomatic switch to

the "automatic" position; and third, depressing the start-next-order

switch to activate the control. The desired starting address is often

contained in the control counter, since after loading the counter con­

tains tne initial load address.

After loading, to start the computer the right function-gate light

must be on. Depressing the start-next-order switch then brings in to

R6 the instruction word specified by the address in the control counter,

and the control proceeds executing the instructions in sequence. If

the left function-gate light is on, at the completion of the loading

one may switch the function gates by depressing the start-next-order

switch. R6 is cleared to zeros by the loading; hence the switching of

the function gates does not cause any action as .there is no instruction

in R6.
The first group of instructions of the assembly code comprises a

summing routine which forms a sum of the memory contents and checks this

sum against the sum as left in R2 from the loading process. (Any prob­

lem which is to be run on the computer should contain such a summing

routine.) If the sums do not agree, the computer stops at a programmed

stop, since disagreement of the sums implies a caDputer malfunction.

If the sums agree, the control proceeds automatically and the data from

the descriptive tape is read and processed through the assembly routine.

At the completion of the reading of the descriptive code tape, the con­

trol comes to a coded stop in order that the subroutines tape may be in­

serted into the reader. After this tape is inserted, depressing the

-263-

start-next-order switch causes the assembly of the absolute code to be

carried to completion. During the processing of the code, a code list­

ing (see Chapter V, pp. 232 ff.) is carried out. upon the completion

of the assembly, the absolute code may either be recorded onto magnetic

tape or punched onto paper tape for.subsequent use. The choice of the

medium for recording the absolute code is made by selecting the appro­

priate assembly routine code tape, as there is one code which contains

as a subroutine a magnetic tape recording, and another which contains

a tape punch subroutine. However, in either situation the particular

auxiliary equipment should be readied prior to the start of the assembly

process.

After the assembly of the absolute code is completed with either

the record on magnetic tape or a punched paper tape (for what follows

we assume that the absolute code is on magnetic tape), "debugging" of

the assembled code begins.

As a person gains experience in coding, he Boon realizes that des'­

pite the great care exercised in the formulation and coding of a prob­

lem, errors are apt to occur. Before a problem can be run any existing

errors must be detected and corrected. The Rrocess of eliminating errors

from the mathematical for.mulation and the coding of a problem is called

"debugging". As a person becomes familiar with coding and the computer,

he will naturally develop his own "debuggingU babi ts • The purpose here

then, rather than to specify a rigid set of rules, is to discuss a

general procedure that will assist a person in developing desirable

debugging patterns.

In a problem of any complexity, the hunting for and detection ot

errors completely apart from the computer is a very difficult, if not

impossible, task. In order to make the task of error hunting a tractable

one, the computer is utilized.

Clearly, one approach for using the computer in debugging is to

rtm the problem as though it contained no errors (this is often done

with small problems). If there are no errors, this indeed is the fast­

est approach to debugging. However, if' errors are present, the answers

indicated upon the completion of the problem, if the control was even

able to proceed to the end, would be incorrect; and one would have no

idea where or why the errors occurred, so that such running time (which

Ddght be rather lengthy) would not be particularly useful in localizing

any errors.

-264-

Another approach would be to perform each instruction in the code

sequence on manual operation and to record the result of each operation

so that it could be verified by hand methods. Such an approach would

certainly find all existing errors, but the amount of computer time in­

volved in such a debugging method is much greater than it need be.

The recommended approach combines the two extremes. The code

of the problem is divided into several sections and the control performs

each of these sections automatically, stopping upon the completion of

each one. The division of the code of a problem into these sections is

accomplished by inserting conditional stops into the code by means of

breakpoints. These stops are inserted at locations in the code where

the results of pertinent computation are available. Enough of these

stops should be inserted so that sufficient data of the problem are

recorded to allow one to perform a hand check if necessary. The con­

trol then performs automatically one of the short sections of code and

stops at the deSignated instruction. The pertinent data from the pre­

ceding computation are recorded, and then the computer is restarted and

the control performs the next code section, and so on, until all of

the desired data are accumulated. This occurs when the control has

proceeded through all of the code sequence at least once, or when it

is observed that some of the data are in error. In either case, the

problem is removed from the computer and the data are studied and

verified.

If the accumulated data indicate the existence of errors, any

particular error may be isolated to one of the short code sections by

making a hand check of the results and observing in which section the

error first appears. Once an error has been isolated to a section of

code, that section of code is checked visually to see if the cause of

the error may be easily located. If it cannot, that section of the

code in which the error occurs is further subdivided and the problem

is returned to the computer where the offending section 1s examined in

greater detail in order to pin down the error. As soon as the error

is located, it is corrected and then further debugging may proceed. This

process is continued until all errors are removed from the coding, at

which time the problem is ready to be run. We now discuss these matters

in more detail.

-265-

After the absolute code is assembled and placed on magnetic tape,

the problem is removed from the computer in preparation for debugging.

This preparation involves a visual check of the code listing to detect

any obvious errors, either from the coding or from the assembly pro­

cess. After the listing is checked, the code is divided into sections

for breakpoints. The breakpoints are to be inserted into orders of

instructions where pertinent data are available in the arithmetic unit.

The actual insertion of the breakpoints into the desired instructions

in the assembled code may be accomplished by a Breakpoint Insertion

helper-routine. One needs to specify to this helper-routine the ad­

dress of the instruction receiving the breakpoint and whether the

breakpoint to be inserted is "red" or "green". The details for accom­

plishing this are discussed in the helper-routine file.

There is an alternative method for inserting breakpoints which is

perhaps more deSirable than the one Just outlined. This alternative

is to decide upon the disposition of the breakpoints during the prepa­

ration of the descriptive code and to punch the orders on the des­

criptive code tape with the breakpoints inserted. The assembly routine

accepts and modifies properly instructions whose orders conta.in break­

points. As an example, an instruction ~AcB.Ol, if it were to

contain a "red" breakpoint would be punched as 2ABOl rather than AABOl.

Similarly, ~ DOl. with a "green" breakpoint would be punched as D5DOl

rather than DDDOl.

If the breakpoints are included during the descriptive coding,

they exist on the magnetic tape record of the absolute code. If they

are inserted by the Breakpoint Insertion routine, the absolute code

from the magnetic tape must be called into the computer; the breakpoints

are then inserted by the Insertion helper-routine, and a subsequent re­

cord of the code with breakpOints is made onto the magnetic tape. Tbe

calling from and recording onto magnetic tape is accomplished by

Magnetic Tape helper-routines, two of which were illustrated in Prob­

lem 12 of Chapter II. As soon as the breakpoints are inserted, one

begins the debugging proper.

The mo~t effective way of observing the data at the various break­

points is to have the desired data printed. To do thiS, one again calls

on a helper-routine. The particular routine used here is in a class ot

interpretive helper-routines and is the so-called Breakpoint Monitor

helper-routine.

-266-

~ ... iJ;lterpreti ve routine is any routine. which interprets and

ca~l3es to be performed any desired.ins~~ction sequence whic~ is

_~~_iding .. i~ ~he memory. Such routines act in a sense as a generalized

control.

During the process of interpreting and performing an instruction

sequence, an interpretive routine may perform many other functions, the

extent of which is limited only by the capacity of the memory of the

computer and the ingenuity of the person preparing such routines.

For the Breakpoint Monitor routine the desired interpretation is

a very simple one, namely whether an instruction contains a breakpoint.

For an order containing a breakpoint, the interpretive routine first

causes the instruction to be performed and then the following data are

printed as four words:

Word 1: The address at which the instruction containing
the breakpoint resides, and the instruction itself.

Word 2: The contents of the R4 register

Word 3: The contents of the R2 register.

Word 4: The contents of the memory at the address specified
in the instruction.

Words 2 and 3 give the contents after the instruction is performed

and Word 4 gives the contents before the instruction is performed.

Note, then, that the breakpoints are inserted into instructions which

when performed give the desired data in the arithmetic unit. R2 or

R4 contain the result from any arithmetic operation while the appro­

priate memory location contains one of the two operators entering into

the operation.

There are many other interpretative routines similar to the

Breakpoint Monitor (it was chosen only as a convenient example) and one

should check the library file to ascertain which of these routines is

best suited for his specific purpose.

Sometimes breakpoints are used to check that the control reaches

a certain instruction in the problem and for this the numbers printed

from the various registers may be unimportant for debugging; hence only

the first word printed 1n the listing would have relevance.

In the Breakpoint Monitor routine, 8S in similar routines, one

has the option o~ having the data printed as either decimal numbers

-261-

or as hexadecimal numbers. The first word, i.e., the address and the

instruction, is always printed as a hexadecimal number, since it would

appear as nonsense as a decimal number.

To utilize the Breakpoint Monitor routine, one inserts the desired

breakpoints into the absolute code. The absolute code and the Break­

point Monitor routine are then loaded into the memory. Note that,

since both routines are in the memory, the Breakpoint Monitor routine

must be loaded into a set of addresses which are not relevant to the

code being debugged. Breakpoint Monitor routines are coded beginning

at a variety of addresses so that this is usually possible vi thout un­

due red tape. If, however, one has an assembled code to be debugged

which fills the memory, he has recourse to a generalized monitoring

routine which utilizes the magnetic drum. It is not, however, dis­

cussed here.

The first step of the monitoring process is to specify the ini­

tial address of the code to the monitor routine (for details see the

helper-routine library file). The control counter is set to the initial

address of the monitor routine and then the computer is started. The

data for the debugging is printed by the Synchroprinter, four words

(discussed above) to a line.

As soon as one has collected a sufficient amount of data, the

problem is removed from the computer and examined at leisure away

from the computer.

It may happen that the breakpoints are not reached in the expected

sequence, or even that the first one is not reached. We defer the dis­

cussion of the procedure to be followed when this happens.

So now, assuming that the breakpoints were reached, we have the

data which is now examined to determine whether or not the numbers

listed are the desired numbers. First, a cursory examination is made

for any obvious errors. For example, a number known to be always

positive may have been computed and printed as a negative number. Or

perhaps the orders of magnitude of the numbers of the computaton are

known and a visual check suffices to determine this.

-268-

If the cursory check does not indicate any troubles, a hand compu­

tation is made using the same data as for the listing. The hand check

may often use shortcuts in that some of the numbers computed are

~pwn; e.g., the values for sin x, ~~ etc. may be found in tables.
," The comparison should agree except for truncation and round-off dif-

ferences. Sometimes approximate values suffice for checking purposes.

If no errors have occurred, the debugging of the portion of the code

for which the data was obtained is complete. If an error is detected

fram the cursory examination one must set about isolating it to one

of the sections of code between breakpoints. At first, one attempts

to isolate the error by a visual check of the numbers leading to the

error, and if this fails a hand check of the results in the region of

suspect will isolate it.

Once an error is isolated to a particular section of code, the

'instructions in that section are examined in detail to see if the

cause of the error may be observed. If it is found, that trouble is

over. If it is not observed, one may divide the section of code by

further breakpoints, so that the section may be monitored in greater

detail upOn returning to the computer. However, at this point, if

the section of instructions is fairly short, as it should be, rather

than doing further breakpoint monitoring one has recourse to another

helper-routine for debugging, called the Auto-Monitor routine. It is

discussed presently.

If the first error detected does not alter subsequent results too

drastically, the programmer continues his checking process for other

errors so that be'fore returning to the ,computer as many errors as

practicable are detected and corrected~

Since the absolute code of the problem exists only on magnetic tape

one makes the actual corrections at the next session with the computer.

However, prior to this a permanent written record is made of each error

'as it is detected. This record should contain at least the following:

1. The addresses of the incorrect words.

2. Toe incorrect words as they appear on the magnetic tape.

3. The number of the particular magnetic record on which
they appear incorrectly (as will be seen later each re­
cord of an absolute code is on a numbered section of a
spool of magnetic tape).

4. The correct words as they are to be inserted. And if any
additional words are added, the addresses at which they
are added.

\
Then after one has returned to the computer and made the correction.

and recorded the corrected absolute code onto magnetic tape, the fol­

lowing information is added to the record.

5. The date on which the correction is made.

-269-

6. The number of the magnetic tape section on which the cor­
ted code resides.

In addition to the six items mentioned, any comments which the program-

mer feels are pertinent to the corrections should also be included.

There are, in general, two kinds of corrections that need to be

made. The first is the easy kind which can be corrected by changing

only those words in error without having ·to add additional coding.

This kind of correction causes relatively few headaches. The second

kind are those corrections where the number of words necessary to make

the correction exceeds the number of words in error. In short, additional

coding must be added. So we have found one of the ticklish parts of the

debugging, and unfortunately many of the errors encountered are of this

kind. For clarity we give an example of such a correction and indicate

how it is carried out.

at

The

An error is found in the sequence of code words beginning, say,

address 050.

050.

051.

052.
sequence is

The faulty coding is

m~Q

X

211
213

212
274

supposed to form xyz and store it at

214: xyz

where x, y, and z reside in locations 211, 212, and 213, respectively.

Now as the result of Instruction 50 I, the product xy is in R2. Instruc­

tion 51 is incorrectly a multiply instruction because the multiplier

xy has not yet been placed in R4. Since all of the instructions in

the sequence are needed, there is clearly no place to insert the neces­

sary L(40) instruction to send the number xy from R2 to R4, or if it is

not desirable to use L(40), two instructions A~m 215, m~Q 275 are

needed where 275 is an available location at this time.

In order to make the correction one must have available somewhere

in the memory 1 1/2 consecutive words. Assume that such space is avail­

able beginning. at address 319. The corrections to be inserted are:

050. m----)-Q 211 T 319

051. x 213 A~m 214

052.

379. X 272 L(40) 028

31A. T 051

The right-hand side of Word 50 is changed to a transfer to 319. The

first instruction of 379 performs the multiplication formerly done in

50'. 319' then shifts xy from the R2 register to the R4 register, so

that it is in proper position as a multiplier. The next instruction

then sends the control back to 051 where the multiplication by z is

now correctly performed.

An alternative scheme of inserting the correction is to revert

-210-

to the descriptive coding and actually recode in descriptive coding

the operation box in which the error occurs. A corrected tape for

this box is then punched. By making use of an §.OOXX symbol (a trivial

change) incorporated in the "box number" code word on the descriptive

tape, the assembly process may be stopped prior to the assembly of

the code of any box and the code for new boxes or corrected boxes

may be in5erted. The entire problem is then reassembled by the

assembly routine with the desired insertions of now or corrected boxes.

At first glance the recoding of a box and the reassembly of the entire

problem may seem rather a drastic way of eliminating an error; however,

experience has shown that one of the most fruitful sources of errors

in coding arises from the insertion of corrections for previous errors,

and this recoding and reassembly virtually does away with such errors.

One has only to examine and work with a highly complex problem to under­

stand this. It should be mentioned that the reassembly process is

quite easy and rapid.

When one returns to the computer to insert the corrections, he re­

assembles the code if the latter scheme is adopted. If the former is

adopted, he has previously punched small tapes containing the desired

corrections. Then after the absolute code is read into the memory,

these corrections are loaded into the desired locations. Each se­

quential group of corrections consists of one tape; hence several such

tapes are often needed. Several groups of corrections may, however, all

-271-

be placed on one tape with double spaces on the tape separating the

various groups. For example, the correction of the example discussed

above would consist of two groups. The first consists of Word 050

which is
EB27lCA379

followed with a double space. Immediately following the double space

the words beginning at 379 would be punched. They are:

DA272DE028
CA05l00000

which is also followed by a double space. The correction tape is then

loaded into the desired locations, namely addresses 050 and 379. When

all of the corrections have been inserted, the problem is again recorded

on magnetic tape so that an absolute code containing the corrections is

available on tape. Note that all of these magnetic records discussed

are distinct. That is, one should not destroy previous records of the

problem when making a new one, and certainly not the immediately pre­

ceding record.

We are now ready to resume debugging, with the corrected code. We

do this by first returning to our original breakpoint monitor scheme

and printing the data for all of the breakpoints that had previously

been listed. This is done to make certain that none of the changes

and insertions in the code has molested any part of the code which

was previously correct. In addition, the data pertaining to the cor­

rections are printed. We have left from the previous debugging se8sion

those errors which were not found while off of the machine. It the

method of inserting more breakpoints is used one has only to let the

data be printed. However as previously mentioned, it is often advisable

to resort to an Auto-Monitor helper-routine.

The Auto-Monitor routine is an interpretive routine which allows

the results of each instruction to be printed. The data printed for

each instruction are identical to those for the Breakpoint Monitor

routine. When one comes to the section of code in which the error

exists, he switches to the Auto-Monitor routine and lists the results

of the computation for all of the instructions in that section. To

switch from the Breakpoint Monitor to the Auto-Monitor routine one

-272

loads the Auto-Monitor routine into the memory and specifies to it the

desired starting address for monitoring. One should consult the

library file for specific operating instructions. upon the completion

of the desired auto-monitoring, one may revert to the Breakpoint Monitor

routine.

The Auto-Monitor routine is recommended to track down the error of

the kind previously mentioned in which no breakpoints were ever reached

or else reached in the wrong sequence, by the Breakpoint Monitor routine.

One begins auto-monitoring at the start of the problem (or at the point

of "no return"). This soon leads to the source of the trouble.

It is worth noting here that, since the Auto-Monitor and Breakpoint

Monitor routines have a similar function, they may actually be incorporated

as one routine where one need only make minor adjustments in order to

switch from one to the other.

There are other helper-routines which one has as an aid to debugging

other than the monitoring routines. We mention only a few of them in

passing.

There is a Scaling Check routine which examines the results of all

operations to see that numbers do not exceed the allowable range of

-1 ~x < 1.

There are various address and instruction search routines which scan

the code and pick out all instructions containing any specified address,

or pick out all instructions containing any specified order, or pick out

any specified instruction.

Routines exist for comparing the contents of any magnetic tape re­

cord either against any other, or the contents of the memory, or the con­

tents of the magnetiC drum.

There are address altering routines which modify the addresses of

any section of code in any manner desired.

Graph plotting routines are available for plotting data to see if

they look reasonable.

There are routines which allow all operations on the computer to

be done in duplicate in the event that one suspects a computer malfunction

as the source of an error. Normally our standard test routines disclose

the garden variety of computer errors, but on rare occasions an in­

frequent intemi ttent may depend on particular numbers. In this in­

stance there is some point to using these "duplicatingtl routines.

-273-

Many routines which cannot be used directly in debugging may still

be of service. These are routines that can compute various functions

and tabulate the results so that they can be compared with results in

the problem being debugged.

The scope of helper-routines is too great to enumerate in detail

here. However, it is suggested that, prior to the debugging of any

code, the programmer should become familiar with helper-routines and

their function as an aid to debugging.

We have thus completed the debugging of the absolute code. It should

be mentioned, however, that the preceding discussion has not attempted

to cover debugging in any detail, since such a disQussion is not within

the scope of a manual of this type, and apart from a general approach

each code to be debugged presents new situations. Skill in debugging

comes only through actual experience and a meticulous care on the part

of the programmer at all stages of the problem preparation and the de­

bugging. The next step then is naturally enough the actual running of

the problem with the debugged code.

The procedure that one goes through in starting the problem should

be somewhat familiar by noW'. The debugged code is called into the

memory from the magnetic tape where it resides. After the code is in

the memory, the control counter is set to the desired starting address,

and the problem is started by depressing the "start-next-order" switch.

When at all possible, the code of a problem should be set up so

that shortly after the computation begins, a few intermediate computa­

tion results, where the correct results are known, would be printed.

In this way there is some assurance that the computer is starting its

computation correctly.

Since many of the problems contemplated require anywhere from

several hours to several days of computation time, it is necessary that

intermediate records of the problem (code and numbers) be made so

that in the event of computer malfunction it is not necessary to start

the problem from the beginning. One has only to return to the last

correct record of the problem and resume from there. Also in lengthy

computations the code should be constructed so that intermediate re­

sults of the problem are periodically printed, so that they may be

examined in order to see if they are reasonable. This is a check on

the formulation of the problem as well as on the computer.

The periodic records of the problem are made on magnetic tape.

The entire contents of the memory are recorded onto the magnetic tape;

hence in order to start a problem from any record one has only to call

the magnetic tape section into the memory and then set the control

counter to the address of the instruction immediately following the

last instruction of the code performed before the record was made.

This instruction is, of course, known for each record; and, in fact,

it usually does not vary from one to another. Experience has shown

that a magnetic record of the memory contents should be made about

every 20-25 minutes to insure a maximum of effective computation time.

-214-

It is desirable that some intermediate results be printed shortly after

a record is made. Then, in the event that a problem has to be restarted

there will soon after be some printed results which may be checked against

those printed when the record was made. This insures that the computa­

tion is starting correctly.

The routines which perform these magnetic recordin~exist as sub­

routines as well as helper-routines, so that if desired they may be

directly incorporated as an integral part of a problem. A variety of

print routines exist that are easily included in a problem to print

the intermediate and final results. As suggested above, one of the

reasons that the periodic magnetic tape records of the problem are

made is in anticipation of ~y computer malfunction. A computer mal­

function might manifest itself in anyone of several ways. For example,

a set of intermediate results that are printed might be in error. Such

errors may be detected by inspection, by taking differences of the re­

sults, by the plotting of graphs, by programmed integral checks, etc.

In addition to such manifestations, a malfunction may occur by a non­

sense instruction being brought into R6, the control register, and the

computer stops. Or yet another type of malfunction might manifest

itself in that the control becomes stuck in an instruction loop. That

is, the control is being cycled through a fixed section of the code

rather than following the correct path. If the loop through which the

-275-

control is cycling bas relatively few instructions, it can actually be

observed on anyone of the "memory monitor scopes 11 • These art! discussed

later. If the cycle is relatively long, it may not be detected for some

ttme, namely when one tries to print results.

In the event that a computer malfunction is detected, the following·

procedure is recommended:

If the trouble occurs very shortly after operation has begun, the

first suspect for the error would be that it was a human error. That

is, either in loading the code and any data that might be needed, or in

making any alterations of data, or in the setting of addresses into the

control counter, the operator may have made some sort of an error. Hence,

one should try to restart the computation without making any other checks.

It similar trouble seems to repeat, one then follows the same procedure

as for malfunctions that appear after the computation has been underway

for some time. It is:

If a malfunction appears that is evidently not from a human source,

the problem being computed is removed fram the computer and the basic

computer test problems are run to see if they detect the malfunction.

Every operator of the computer should become intimately familiar with

these test problems so that he can run them and interpret properly any

results which might indicate a malfunction.

We discuss these test problems only briefly here. There is a so­

called "Inversion Test" which checks that the memory is operating properly.

A "Vocabulary Test n is a general test of all of the orders to see if any

of them are failing. This test will detect any consistent errore. For

the more aggravating intermittent variety there are specific tests that

attempt to test more exhaustively each kind of order with a wide variety

of numbers. In any test in which a malfunction occurs, data are printed

that indicate the nature of the malfunction. As soon as a malfunction is

detected by a test routine, the engineering staff should be called to fix

the trouble. In the event that the test problems do not indicate any er­

rors but the troubles still persist in the problem, the engineers should

be called. If the trouble 1s manifested by incorrect results which can

be duplicated, and if the test problems do not indicate computer trouble,

one should begin to suspect that there 1s some incorrect infor.mation OD

the magnetic tape dump from which the problem was started, or an even

more disastrous thing--one should begin to suspect that perhaps the

code is not in reality debugged.

-216-

In computer malfunctions, the operator should be able to assist the

engineers in localizing the source of trouble. To do this one certainly

must completely understand the function of the various registers and the

control counter. Such an understanding also helps one operate the com­

puter more effectively at all times. We now discuss these matters where

part of what follows is review and part is presented for the first time.

We discuss the registers first starting with R6, the control register.

During the loading process, R6 contains zeros. During the operation of

the computer, R6 contains the instruction-word that is being acted upon

by the control. One may, in general, determine the address in the mem­

ory of any instruction-word contained in R6 by examining the control

counter. The control counter contains the address of the next word to

be brought into R6. This is one address greater than the word in R6 un­

less either the control has just executed a transfer instruction or the

counter has been set manually. Whenever a "nonsense It word in R6 stops

the computer, the address less one in the control counter always indicates

the location of this nonsense word in the memory, and it should be so

checked.

The R5 register has many fUnctions,which we discuss in turn. During

the loading process, words pass through R5 en route to the memory, and at

the completion of any loading, R5 should contain the word on the tape

immediately preceding the double space. Any word which is brought into

the arithmetic unit passes through R5. Hence, at the completion of any

such operation, R5 contains the word from the location specified by the

address of the instruction. Orders 1-12, as shown in Table I, page 21,

are of this kind. The following orders also affect R5. After a Q--.m

instruction, R5 should contain the same word as R4. After an a -.:;Ac

or a~Ah instruction, R5 should contain in positions (0-11) the number

which is equivalent to the address portion of the a~A instruction.

upon the completion of a read instruction, the word also resides in R5

as well as in the memory. Now upon completion of Instructions 19-22, of

Table I, the substitution instructions, R5 contains the word into which

the substitution is being made, as it appears before the substitution is

effected. Note that an A--7m instruction does not involve R5.

-277-

We discuss the registers R4 and R3 together since R3 is an auxiliary

register for R4 (R4~ Q). Neither is affected by the loading process.

When a number enters R4 via an m~Q instruction, R4 contains the number

from t~e location specified by the address. The contents of R3, however,

are irrelevant and may be anything depending upon past instructions.

However, if a number enters R4 from. any other source (viz., X, -:-, L(n) ,

or R(n) instructions), R3 contains the same intor.mation as R4 displaced

one position left or right except perhaps for the Sign position and the

2-39 position. In the X and R(n) operations the number in R3 is dis­

placed to the left of the one in R4, while in~ and L(n) operations the

number in R3 is displaced to the right.

The magnetic tape instructions and the magnetic drum instructions

use R4 and R3, and consequently upon completion of t~m or ~m, R4

contains the last reference word. R5 will also contain the same word.

R5 contains the last reference word of m~t and m~D as well. On the

instructions where R4 contains the last reference word, R3 contains the

same word displaced once to the right except for sign.

R2 and Rl also work in conjunction; however, any time a word is in

R2 from any instruction, the same word, except perhaps for Sign position

and 2-39 position, is in Rl displaced either one unit right or left.

Upon the completion of loading, R2 contains the sum of the contents

of the tape. Upon the completion of a n.-,.m instruction with address

.... 800, R2 contains the sum of the fifty words read from the drum. to the

memory.

Upon the completion of any of the add orders, 8--+Ac, a~Ah, X,

R(n); Rl contains the same number as the R2 register displaced once to

the left. Upon the completion of -. , L(n); Rl contains R2 displaced

once to the right.

upon the completion of a syncprint order (not considering the sub­

routine in which it is contained) R2 contains all~. In this instance,

and. only 1n this instance, Rl may have completely foreign numbers to

those of R2.

If a computer malfunction is suspected, the contents of' the various

registers should be closely observed, and if there 1s any deviation from

the above-mentioned situations the discrepancies should be recorded, as

they may aid in the detection of the malfunction.

-218-

As previously mentioned, the control counter is the mechanism used

for the sequencing of instructions. The control counter always contains

the address of the next word .to be brought into R6, the control register.

The control counter may be manually set to any desired address. While

the computer is running, the control counter advances sequentially ex­

cept when transfer or satisfied conditional transfer instructions are

executed. These instructions set the control counter to the same address

as that contained in the instruction. The control counter has several

special functions which are:

In loading, the control counter is the sequencing mechanism. The

control counter is first set to the desired initial address. Then the

contents of the tape being loaded are sent to the memory into sequential

addresses beginning with the initial one. Upon the completion of the

loading, the control counter resets to the initial address.

In the drum instruction, the control counter indicates the fifty

sequential memory addresses concerned with the instruction. At the out­

set of the instruction the counter is set to the memory address contained

in the instruction. When the fiftieth word is transmitted, the counter

contains the corresponding memory address. Since this is not, in general,

the desired address for the next instruction, the drum instruction ends

by setting the control counter to the address contained in bigits (28-39)

of the drum instruction.

As with the registers, when a computer malfunction is suspected, the

control counter should be observed to ascertain that its behavior cor­

responds to that given above.

We complete the chapter now with brief discussions of the "audio­

monitor", the memory monitors, the magnetic tape, the Synchroprinter, the

computer "turn-off" and emergency procedures, and a brief comment on the

method of time scheduling for the computer.

The "audio-monitor" is an amplifier and a loud-speaker that taps in­

to the cirCUitry of the function gates. The frequency with which the

function gates change (i.e., flip from left to right as successive in­

structions are performed) while the computer is running on automatic

operation is in the audio-range. The amplifier merely amplifies and

transmits these frequencies to the loud-speaker and hence into audible

noise. The use for such a piece of equipment lies in the fact that in

-279-

many problems that are run 011 the computer the code patterns established

by the various induction loops of the problem give rise to distinctive

and easily detectable noise patterns. A person familiar with the noise

patterns of a problem can often tell when there has been a computer mal­

function if the malfunction manifests itself by the control altering its

path through the code sequence. This circumstance causes a change in

the noise pattern of the problem. A volume control switch allows one

to control the audio-monitor and, if desired, the volume may be

turned down.

The memory monitors consist of four three-inch cathode ray tubes.

These tubes allow one to observe the contents of any of the forty memory

tubes. The monitor tubes are mounted at each end of both banks of mem­

ory tubes as shown in Figures 2 and 3. There are six selector art tche"s,

four mounted directly under the central storage units of the front stor­

age bank and two similarly mounted on the back side of the computer.

The selector switches are eleven place Switches, allowing an "offll posi­

tion and the display of any of ten memory tubes by a monitor tube.

Since there are four switches on the front, tvo connected to each of

the front monitors, one can observe any of the forty memory units. The

two left-hand switches select units (0-19) while the two right-hand

switches select (20-39). However, each monitor tube may display only

one unit at a time and care should be exercised that the two selector

switches connected to a single monitor tube are not both set to a unit

as this causes erroneous information to be stored into the memory

uni ts concerned. The tllO selector sui tches on the rear bank may only

monitor that bank, the odd-numbered memory units as shown in Figure 3.
The left-hand switch can monitor 21, 23, 25 •.• 39, and the right-hand

switch can monitor 1, 3, 5 19.
The memory raster, as one vieus the monitor tube, is as shown in

Figure 6. A bright spot at any position of the raster corresponds to

" a !, while a faint spot corresponds to a O.

As a problem is running, the code patterns due to induction loops

often cause certain portions of the code to be performed more frequently

than others. The memory locations concerned are then consulted more

frequently, and these regions of higher consultation show a brighter

intensity on the monitor tube than neighboring regions. One may then

280

3CO 380 340 300 2CO 280 240 200 ICO 180 140 100 CO 80 40 0
3EO 3AO 360 320 2EO 2AO 260 220 lEO lAO 160 120 EO AO 60 20

I I I I I I I I I I I I 0
I I I I I I I I

I I I I I I I I I I I I I 2
I I I I I I I I I I 3

I I I I I I I I I I I I I I I 4
I I I I I I I I I I I I I I I I I 5

I I I I I I I I I I 6
I I I I I I I I I I 7

I I I I I I I I I I I I I I I I a
I I I I I I I I I I I I I I I 9

I I I I I I I I I I I I I A
I I I I I I I I I I I I B

I I I I I I I I I I I C
I I I I I I I I I I I 0

I I I I I I I I I I I I E
I I I I I I I I I I I I I F

I I I I I I I I I I 10
I I I I I I I I I I I II

I I I I I I I 12
I I I I I I I 13

I I I I I I I I I I I I I 14
I I I I I I I I I I I I I 15

I I I I I I 16
I I I I I I I I . 17

I I I I I 18
I I I I I I 19

I I I I I I I I I I I I IA
I I I I I I I I I I I IB

I I I I I I I I I I I IC

I I I I I I I I I I I 10

I I I I I I I I IE
I I I I I I I I IF

3FF 3BF 37F 33F 2FF 2BF 27F 23F IFF IBF 17F 13F FF BF 7F 3F
30F 39F 35F 31F 20F 29F 25F 21F IOF 19F 15F IIF OF 9F 5F IF

MEMORY RASTER

FIG. 6

be able to determine, by observing a monitor tube, when certain sections

of the code are being traversed. As with the "audio-monitor" and its noise

patterns, the memory monitor often displays distinctive code patterns. If

the computer malfunctions in a way that the display pattern is altered,

this is often observable.

The magnetic tape unit has previously been discussed in Chapter II,

Problem 12, and in Chapter IV; so that what is said here will pertain

mostly to the operation of the unit.

Recall that the unit is a single channel serial system where the

magnetic tape reels contain 1200 feet of 1/4 inch wide Scotch Sound Re­

cording Tape. These reels of tape are, in general, pre-marked into sec­

tions, each of which will accommodate 1024 forty-bigit words. There

are fifteen such sections to a reel and the markings dividing these sec­

tions are short lengths made transparent by removing the magnetizable

material from the tape. A photo-cell in circuit with a fast forward and

reverse mechanism affords the only searching facilities (manual). The

tape may be advanced or reversed at a speed of roughly four seconds per

block of 1024 words, and the photo-cell actuates a brake whenever a trans­

parent section of tape,indicating a separation of the 1024 word blocks,

pas se s through it.

In order to use the magnetic tape, one first threads the desired

reel of tape onto the tape drive mechanism. Second, the tape is advanced

to the start of the desired 1024 word block. Third., the tape unit

switches are set so that the unit can then be operated by the control of

the computer through the magnetic tape routines (cf. Chapter II, Problem 12)

We now discuss these steps in detail.

The tape drive as it appears atop the console cabinet is shown in

Figure 7. The different parts are clearly marked and need no explanation;

hence with the aid of this diagram we turn to the tape threading procedure.

To thread tape

1. Remove the caps from both tape reel spindles.

2. Place the reel of tape on the left spindle. It is called the rewind
reel. The tape feeds from this reel in the direction indicated by
the diagram.

3. Set the forward-reverse-normal switch, hereafter called the setting
switch, to the no~ position.

4. Open the head housing door.

5. Unwind a length of tape and thread it as indicated in Figure 7.

"'T1
G)

~

Photo- cell
Stopping
Mechanism

Amber Light

Red Light

Rewind Reel

Manual Start
Switch

Setting Switch

Take-up Reel
(Not to be Removed)

Take-up Arm

Head Housing

• rv
Cl?
rv
I

-283-

6. Wind several turns around the take -up reel. Wind the take -up reel
until the take-up arm is in the position shown.

7. Replace the caps on the spindles. (Do not remove or replace caps
while the tape unit is running.)

8. Close the head housing door. The tape is now ready to be advanced
to the first transparent section, the starting position for the
first block of information.

In order to have the tape in correct position to record or replay

a block of storage, all that is necessary is that the transparent sec­

tion of the tape identifying the start of the block must be visible in

the region of tape between the two reels.

To advance or back up tape to start of desired tape section

1. Turn the setting switch to the desired direction of motion of the
tape.

2. Open the head housing door; the tape advances in the desired
direction. When a transparent section passes by the photo-cell,
the tape stops. The braking is not instantaneous, and the trans­
parent section may travel as much as 15 feet during the stopping
process.

3. Turn setting switch to the opposite direction of the previous motion.

4. Depress the manual start 'button. This starts the tape moving in the
direction shown by the setting switch. The transparent section of
the tape again actuates the braking action when it passes through
the photo-cell. This time the overshoot is less.

5. Re~eat steps 3 and 4 until the transparent section lies in the region
between the two reels. This is the desired starting position.

6. Turn the setting switch to the normal position and close the head
housing door.

7. The tape is now ready to operate - either record or play back.

If it is desired to back up or advance the tape more than one block of

words, at the end of step 2 press the manual start button without changing

the setting switch. Repeat this until the desired block of information is

reached. The procedure is then the same as previously noted starting at

step 3.
To record or replay

1. The transparent section identifying the desired block must be in the
region between the two reels.

2. The head housing door must be closed.

3. The setting switch must be in the normal position.

4. The take-up arm must be in the position indicated in Figure 7.
5. The red indicator light must be off.

6. When steps 1 through 5 are completed the tape is ready to be operated
automatically upon instruction from the computer.

-284-

The indicator lights have the following significance:

i. The amber light indicates that the power is on. If this light

is "off", call an engineer for assistance.

ii. The red light is "on 11 in any of the following circumstances.

a. The head housing door is open

b. The setting switch is in the reverse or forward position.

c. The take-up arm is not in correct position.

d. It is "on ll while the tape is running during a recording or

a play back.

If, in setting the tape to record or replay, the red light remains

t~on" after steps 1 through 4 have been completed correctly, call an en­

gineer for assistance.

The Synchroprinter has previously been discussed in Chapter II,

Problem 13, and in Chapter IV; so that, as with the magnetic tape, the

.remarks here pertain to operating procedures.

Recall that the Synchroprinter prints a line at a time; each line

may contain 40 characters. The maximum speed of operation is 15 lines

per second, or 36,000 characters per minute. This print order must be

used in a routine (cf. Chapter II, Problem 13) which does the following:

The four words to be printed are fanned into an array of eighteen words

in the memory. During a print cycle, eighteen print orders are given.

The first print order activates the printer and the remaining seventeen

act in a timing capacity synchronizing the printer and the computer.

Prior to each print order of the cycle, the appropriate word of the ar­

ray is brought into R2.

In the discussion of the operation of the printer, we assume that

the printer routine has been properly incorporated into the problem and

discuss only the mechanics ~oncerned with the printer unit.

Five switches are located on the front of the printer cabinet.

These are:

i. the motor switch

i1. the filament switch

iii. the plate switch

i v • the thyratron switch

v. the paper advance switch

-285-

The filament switch and the plate switch are always to be in the

"on" position. If this is not the case, one should not attempt to

operate the printer, and an engineer should be called for assistance.

When the printer is to be used, the positions of the motor switch

and thyratron switch should be checked. If they are in the lion" position

the printer is ready to operate. If they are in the "off" position, the

following is done: (The order is important.) First, the motor switch is

turned to the "on" position and. then the thyratron switch is turned to

the "on" position.

The thyratron switch controls a bank of 40 thyratron tubes that are

used for triggering the 40 print hammers. A thyratron tube is a gas dis­

charge tube rather than a vacuum tube, and it permits the high current

necessary for triggering the print hammers. Once a thyratron has been

discharged, its plate voltage must be cut off in order to reset it to

the non-conducting state. The triggering of the print hammer momentarily

causes the plate voltage to be cut off so that the thyratron 1s reset.

However, the circuitry is such that the triggering of any print hammer

twice in a print cycle will cause its associated thyratron to stay in the

discharge state, making any further triggering impossible. Attached to

each thyratron is a neon bulb which is lighted whenever the thyratron is

in the discharge state. These neons are visible through a glass panel

immediately below the thyratron switch. Whenever a thyratron remains in

its discharge state, as indicated by its lighted neon, it may be reset by

turning the thyratron switch floft''' momentarily and then turning it "on"

again. If, in the "turn_on" procedure for the printer, some of the thyra­

trons discharge, as indicated by their associated neon being lighted, the

above procedure is carried out for resetting them.

A thyratron should never be left in the discharge state, and as

soon as such a condition is known the above reset procedure should be

carried out.

During operation, the only times that a thyratron can be left in the

discharge condition are:

i. when more than, or less than, the required 18 print orders are
given in a print cycle

11. when a print hammer has been triggered more than once per print
cycle

iii. when there has been some computer malfunction effecting the printer

-286-

(i) and (ii) may be caused by an improperly coded print routine.

If the computer is stopped during a print cycle, and if a print order

is in R6, connected into the control circuitry} the computer cannot be

restarted without danger of leaving same of the thyratrons in the dis­

charged state. Restarting resumes the print orders, and with the control

in the middle of the routine less than eighteen print orders will be exe­

cuted by the control. If· the computer is stopped during a print cycle,

and if an order other than the print order is in R6, one should again

check the thyratron neons, as there is danger that some thyratrons may be

in the discharge state.

If any thyrstrons are in the discharge state and an attempt is made

to use the printer, the print hammers associated with the discharged

thyratrons cannot be triggered; hence no characters will be printed in

the corresponding columns.

The "paper advance switch" allows one to manually advance the paper

S9 that printed-material may be removed from the printer. Depressing

the' switch causes the paper to advance and it will continue to do so as

long as the switch is held i~ the depressed state. Note that for manually

advancing the paper, one should always use the paper advance switch, since

advancing the paper by merely pulling it causes the printer ribbon to be­

come misaligned.

The "turn-on" and "turn-off" procedures for the computer naturally

seem to be more in the domain of the engineers rather than that of the

programmers; however, the turn-off procedure has been simplified to the

extent that the programmers can do it.

In order to turn off the computer, one must set certain of the

switches located on the Memory High Voltage Power Supply shown in

Figure 8, the Switch Gear Panel shown in Figures 9 and 10, and the

Magnetic Drum Control Panel shown in Figure 11. The relative position

of these panels with respect to the computer proper is shown in Figure 1.

The "turn-offl' procedure in its proper sequence is the following:

On the High Voltage Power SUpply (Figure 8)

Depress "off" button. (Leave filament switch in lion" position,

however.)

e

<D

HIGH VOLTAGE POWER SUPPLY

o
FILAMENTS

ON
Q

a
VOLTAGE
ADJUST

o
READY

o 0

o 0

o
HIGH VOLTAGE

ON OFF
<0 <0

o
RESET

HIGH VOLTAGE POWER SUPPLY

FIG. 8

-281-

e

Overload Relays

I

-...

r~~~~
~~~~ 
~~~~ 
~~~~ 
~~~~ 

-288-

.-___ - Compensation
@@@@ ,V Ammeters

@)@@@
.@@@@h-t-l.-

@@@@
@@@@
~~-

Voltage
Regu lator

00 W r--.j~ I <dQ ...-,wl_ ~..7-Generator
o ~ ~ Q ~ Voltmeters
o 0

° ° 0000000 0 -~ 1- switchgear
o 0 .:r -

o

o

@
Positive Field

O --+~--t-" Rheostat

o
o

@ ____ :D
~----"

Voltage
Regulator

~egative Field
___ ---.J Rheostat

POWER SUPPLY CONTROL
PANELS

FIG. 9

OPOSITIVE'O

HIGH

-289-

GENERATOR VOLTMETER PANEL- POWER SUPPLY

0 OA

9
EMERGENCY 0

BAT GND ~ SWITCHGEAR
@ OB OFF

0 Oc 0
POS GEN BAT PHASE FILAMENT TIMER BATGEN

(g 0

0 0 0 0 0
NEG GEN BAT BAT SERIES

@
FILAMENTS STANDBY DC

0 @ (Q) (Q) ©
START STOP DC OFF DC ON

SWITCHGEAR PANEL- POWER SUPPLY

FIG. 10

I

00000

00000

0 o 0

<:

o 0

o

o o

o 0 o 0 0
a

~ [QJ [Q]
o

o

0

Q

.. 290-

o o

o o

0 0 0 0 0

0 0

@ ©
,,\ I /

--<>1----- "'"-

/ "

s9
/ I "

o 0 000
Reduced Chassis Regulator D.C.
Filament Fi lament Fi lament Control

e e e e
t t

o o

DRUM CONTROL PANEL

FIG. II

-291-

On the Switch Gear Panel (Figures 9 and 10)

1. Turn DC "off" by depres~ing DC off switch located between the DC (red)
and standby (green) lights.

2. Set batt·ery-generator switch into I1down" position.

3. Set battery-series switch into "down" position.

4. Turn off generators by depressing the stop (red) switches for the
positive and nega~ive generators. These switches are each located
immediately above its corresponding positive or negative x'ield
Rheostat.

5. Turn the filament variac down (turn the wheel counter clockwise as
far as it will go). The variac 1s located between the memory high
voltage power supply and the overload relay of the power supply con­
trol panels as shown in Figure 1.

6. Depress the stop switch located between the filament (whj.te) and
standby (green) lights.

7. Turn the Emergency switch to the "off" position.

On the Magnetic Drum Control Panel (Figure 11)

1. Set the "chassis filament" switch to "off" position.

2·. Set the "regulator filament" switch to "off" position.

Note: Do not set any drum switches other than the two indicated
by 1. and 2.

In the event of an emergency, such as smoke or flame emitting from

the computer, the emergency "turn-off" procedure is:

Emergency Turn Ofr

1. Set the emergency switch on the switch gear panel to .the "off"
position.

2. Immediately call an engineer.

In the discussion of "debugging" procedures, the emphasis was placed

on using the computer effectivelYjwhen a reasonable amount of data has

been obtained from the monitoring or as soon as an error has been detected

during the monitoring, the problem whould be removed from the computer

and the data studied away from the computer. This procedure naturally

leads to the following questions: What is the length of time that one

should spend with the computer per debugging session? And, how should

the time on the computer be scheduled so that debugging sessions are co­

ordinated in a way which utilizes the computer efficiently? At the pre­

sent stage of the art there seems to be no clear cut answer to either of

these questions. Our present attempt to answer them stems for experience

gained during the past several years of operation.

-292-

It seems that a person will accomplish more in several short sessions

than in a long session of the same total time, if the time between the

short sessions allows him to study and digest the results. As a conse­

quence, thirty minutes is the maximum time for any debugging period; how­

ever, shorter periods are recommended. Instead of' arranging a schedule

according to the clock, a programmer decides on each occasion when to

terminate his debugging session.

Since a debugging session may range anywhere fram about five to

thirty minutes, and since the exact length of the period is left to the

discretion of the programmer, this has brought about the following ar­

rangement: Debugging periods on the computer are scheduled sequentially

during the normal working hours. This is the time when most programmers

are available. A debugging schedule is compiled; however, no specific

time is allotted to any person. The list only serves to indicate the

order in which the debugging periods are scheduled and, as mentioned

above, the length of each period is determined by the programmer while

he is debugging. It is the responsibility of those on the schedule to

be available when their debugging period occurs.

As soon as the debugging periods are over, the running of problems

is scheduled. Debugging time is not normally scheduled beyond the com­

pletion of the regular work day which is 5:00 PM. This means, then,

that most of the problem running time is allotted in the hours between

5:00 PM and 8:00 AM the following day. Problem running time can, of

course, be scheduled for fixed periods; hence there is no need, as in

debugging, for all on the list to be available prior to their scheduled

time.

-293-

APPENDIX I

SCALING OF NUMBERS

Numbers handled by the computer must be in the range

(xl < 1

The numbers that occur in the course of a numerical computation are

usually not so contained. As a result it is necessary in going to

automatic computation to change some, if not all, of the fUndamental

set of units. The process of making these linear transformations is

called scaling. Consider the following very simple example:

Suppose one were interested in the distance in centimeters of free

fall for times lasting to 100 seconds; i.e.,

(1)

S = 1/2 g t 2 (2)

where S is the distance, ~ = 980 cm/sec2 is the gravitational ac­

celeration, and t the time. In order to restrict the range of these

quantities so that they satisfy Condition (1), one makes the follow­

ing transformations

y = -10 2 g

For convenience, one uses powers of two. Qui te clearly -r , yare

contained in the proper range. Using (3) one finds
. S = 1/2(210y) (27 '!")2

=
Hence, if the transformation

a =

is made, one obtains

1/2 224)' -r 2

a = 1/2 y-r2

where all the quantities as seen by the computer are now well contained.

The three transformations are not, of course, independent since

only the dimensions of length and time are involved. An alternate way

of expressing the above is to say that time is measured in units of

27sec. and length is units of 224cm. In reviewing a scaled number in

a register, one may very easily unscale the number by imagining that

the binary point is shifted appropriately from its normal position

(between Q and! stages). In the above example, the unscaled time

-294-

is found by considering the binary point moved I places to the right.

One chooses the minimum amount of change in units in order to

have the maximum accuracy. Sometimes the variations in the quantities

are so violent that it is necessary to make successive transformations

in order to maintain sufficient accuracy. Nevertheless, this is

usually much faster than appealing to floating point routines.

-295-

APPENDIX II.

VERTICAL BUSES

The vertical buses of the order gates, as discussed in Chapter IV,

pages 202-204, Figure 11, have been modified and are shown below as

Figures 1, 2, 3, and 4. Figure 11, of Chapter IV, illustrated the

original arrangement of the vertical buses on the front and back section

of the arithmetic unit control. As a result of several modifications

across time, we now require the four figures, one for the front side of

the control (Figure 1) and three for the back side (Figures 2, 3, and 4).
The motivation was to simplify the control system. It was found de­

sirable to incorporate a few new buses and, in order to do thiS, a more

efficient distribution of buses was necessary. That is, although all of

the buses as shown in Figure 11, of Chapter IV, are necessary, they

were not all needed on both the front and back control section; e.g.,

CQa4, CORl, RlR2Ll, etc., were not used for any order gates on the front

section; and, similarly, (0-1)R2, (8-l9)R2, (20-21)R2, etc., were not

necessary on the back section.

•
CC CoUnt

•
CIRI

•
COR2

• • •
0-7 CIR2 8-19
R2 R2

•
Address
800;-30v

•
Hold

•
Finish

Order

•
t2'

•
CIRL.

•
CORS

• • •
20-27 CIRS 28-39

R2 R2

•
m-+R5

•
Set CC
to AB

•
Right

Transfer

VERTICAL ORDER BUSES

FRONT

•
tl

•
t2

•
t3

•
0-7

• •
t4 8-19

R5

•
t C

-"

•
t6

•
Address
800= Ov

R5

•
20-27

R5

. Fiaure 1.

•
t3'

•
RTh2RO

•

•
Cycle

Operations
Control

•
Adder
RILO

•
Write

•
Load
-50v

•
28-39
R5

•
Set Op Ctr

to 23

•
Op Ctr
Count

•

• •
Nwnber RLR5Sl

•
R5R4so

•
m-+R5

•
Finish

Order

•
Complement

•
Add

Delay

I
f\)
\0
0\
I

•
CORI

•
CIRI

•
COR2

• •
Start CIR2
Toggle

non

•
COR)

•
Hold

•
Finish

•
COR4

•
clR4

•
COR,

• •
Set Op CIR,

Cntr to 23

•
m-+R,

•
Cycle

Operations
Control

•
t2'

VERTICAL ORDER BUSES

•
tl

•
t2

•
t3

• •
tL Set cc

to AB

• t,

•
t6

•
Add

Delay

REAR

•
RIR2L1

•
~lR2RO

•
R2RISl

• • •
Op Cntr Adder Op Cntr
Count RISO 62= Ov

•
Adder
RILO

•
Address
800: Ov

0

Cycle
Input

Figure 2.

•
Number

•
R3R4LI

•
R3R4RO

•
R4R3Sl

•

•
CC Count

•
Address
800=-30v

•
Complement

I
r\)
\0
-.;J
I

•
CORl

•
CIRl

•
COR2

•
Adjress

R5 Gate

•
C1R2

•
COR)

•
Hold

•
Finish

•
coR4

•
cIR4

•
3et Op

Cntr to 2)

•
m ... R5

•
CORS

•
CIR5

•
Add

Delay

•
Cycle

Operations
Control

VERTICAL ORDER BUSES
LOWER SECTION

REAR

•
tl

•
t3

•
t21

•
t5

•
t2

•
Set CC
to AB

•
t4

•
t6

Figure 3.

.-
R2RlSl

•
Adder
RISO

•
Adder
RILO

•

•
RlR2Ll

•
RlR2RO

•
Address
800=-)Ov

•
Op Cntr
Count

•
RLR3sl

•

•
CC Count

•
Address
800= ()y

•
R3R4Ll

•
R3RLRO

•
Complement

•
Number

I
ro
'&
I

•
Clear
Drum

Address

•

•

•
AB-.R5
Gate

•

•
m-+R5

• R5R4S0

•
R4R5Sl

• •
Complement Set Op

Cntr to 23

• •
Number Load:

-50v

• •

• •
Op Ctr
Count

. Adder
RILO

HORIZONTAL ORDER BUSES
REAR

•
Cycle

Operations
Control

•

•
RlR2RO

•

•
CIR6

•
t6

• t$

•
t4

Figure 4.

•
Address
8oo~ Ov

•
t2'

•
CIR5

•
COR5

•
ClRh

•
Finish

•
Set CC
to AB

•
Hold

•
Address
800=-30v

•
CIR2

•
COR2

•
ClRl

•
Control
Counter
Count

•

•

•

•

•

•

•

I
ro
~
I

APPENDIX III

SINGULAR ARITHMETIC OPERATIONS

In a division operation involving numerator ~ and denominator l
there are certain combinations that violate the condition Ix] < Iy),
but nevertheless give rise to interesting and often useful results.

-3CO-

We call such division operations singular operations. Some of the im­

portant results are:

i. -1 :S x < 1, y = 0 then

Q = !-4>2 - x _ 2-39
o

ii. a special case of (i) is x = Y = 0 then

Q = 5--»2 - 2-39 = 1.1111 ••• 11

iii. x=y>O then

Q = !~-(l -39) 1.0000 ••• 01 - 2 = x

iv. x = y <0 then

x -39 ••• 11 Q = -~1 - 2 = 0.1111 , x

v. x = -y> 0 then

x 2-39 = O.llll ••• 11 Q = -~1 --x

vi. -x = y > 0 then

Q = -l~-(1 -39) = 1.0000 ... 01 - 2 Y

Recall from the discussion of binary arithmetic in Chapter III that

the allowed number range 1s -1 ~ x < 1. This implies that -1 (a !. in the

sign position followed by all Q's) admits valid operations. In the ad­

dition process this is obviously the case. In division, if the numerator

x = -1, the quotient is meaningless except for the cases (i and iV) where

the donominator y = 0 and y = -1.

However, in division, if the denominator y = -1, one obtains the nor.m­

ally expected quotient; e.g.,

vii. x> 0, y = -1

Q = !-=).2
-1 - x - 2 -39

viii. x < 0, y ::: -1

x
Q = -1

ix. the special case tor x ::: 0, y ::: -1

Q::: Q 2 - 2-39 = l.llll ••• 11
-1

-301-

For the multiplication operation ~l is admissable as one and only

one of the factors, and

x. x::: -1, y ~ 0

p ::: xy~2 - Y

xi. x::: -1, y < 0

P ::: XY---+ Iy 1
The treatment of -1 is symmetric with respect to the multiplier and

multiplicand. If

xii. x::: y ::: -1

p ::: xy 1 + 2-39 ::: 1.0000 ••• 01

We see that the multiplication p::: Xl where x::: 1 ::: -1 does not

give the correct product and hence is an exception to the rule admit­

ting -1 as a legitimate number.

Returning to the division operation, there is one other fact

worth noting; namely, if a division is exact with tewer than 39 quotient

bigits, and if x,y > 0, and if

x -x Q ::: - and QI:::-y -y .

are formed, then

Q = QI + 2-38

Stmilarly, if x,y >0, and if

Q = ~ and Q' y

are formed, then

/Q I = /Q'I - 2-
38

x = --y

INDEX

A-storage (Descriptive coding)
210 ff., 211 ff.
Examples of, 210, 217
Subroutines, 236

Absolute addressing (Descriptive
coding) 206, 209-210

Accumulator (R2 register) 15, 113
Action cycle, 185, 181
Adder (Arithmetic unit) 1, 113
ADDITION

General, 1, 1 ff.
Arithmetic, 158-160
Logical diagram, 178
Logical discussion, 118-119
Orders, 20

Address, 10, 18
Alternative box (Flow diagram)

41 ff., 48
Ampex Electric Corporation, 193
Analogue computer (Computer) 1
ANelex Corporation, 195
ARITHMETIC

General, 2, 154-156
Addition, 158-160
Division, 161-111
Multiplication, 160-161
Shifting, 156-158'
Subtraction, 158-160

Arithmetic gate chaSSiS, 113
ARITHMETIC UNIT

General, 4-9, 113-185
Adder, 1, 8, 113
Arithmetic gate chassis, 113
Control, 13, 198-204
Gate connections from

memory, 188
Registers

Rl-R2 (Accumulator), 5-1, 8,
9, 113, 211

R3-R4 (Quotient register), 5,
8, 9, 113, 211

R5, 5, 8, 9, 113, 216
R6, 5, 8, 9, 173, 216

Assertion box (Flow diagram) 46-48
Assembly routine (ttThe Coder")

206, 261
Audio-monitor, 278-219
Auto-Monitor routine (Helper­

routine) 211 ft.

-302-

B-storage (Descriptive coding)
208
Examples of, 209-210
Subroutines, 236, 238

Bigit, 2
Binary arithmetic (see Arithmetic)
Binary numbers, 2, 154 ff.
Bit (see Bigit)
Bound variable, 46
Breakpoint, 260 ff.

Insertion routine, 265
Monitor routine, 266 ff.
Switches, 252, 260 ff.

C-storage (Descriptive coding)
208-209
Examples of, 209
Subroutines, 236

Cathode ray tube, 185
Characteristic, 80
Checking procedures

Magnetic tape, 133, 141, 194
Magnetic drum, 191-192
Reader, loading, 193

Clear, 5, 174
Code addreSSing, hexadecimal, 88-89
Code listing (Descriptive coding)

233 tf.
Code sequence, 29-30
Code tape (Descriptive coding) 221 ff.
Coded-decimal numbers, 11 ff. 56 ff.
"Coder" (see Assembly routine)
Coding, 15, 11, 19

Logical, 21, 205
Computer 27, 30

Complement number, 3
Computer, 112-205

Analogue, 1
Block diagram of, 112
Digital, 1

Conditional transfer, 21, 25
Conditional transfer box (see Alter­

native box)
CONTROL

General, 12 ff., 112 ff.
Arithmetic unit control, 198-204
Logical discussion of, 198-204
Memory control, 185 ff.

Control counter, 256 ff., 278
Setter switches, 252, 256
Display lights, 252, 256

Conversion of numbers
Binary to hexadecimal, 56
Binary to coded-decimal, 65 ff.
Coded-decimal to binary, 56 ff.
Hexadecimal to binary, 55

D-storage (Descriptive coding)
208, 209
Example of, 209
Subroutines, 236-237

Debugging, 263 ff.
Deflection adder (Memory control)

186-187
DESCRIPTIVE CODING, 205-250

Absolute addressing, 206, 209-210
E-addresses, 210-211
F-addresses, 215 ff.
Fixing parity of Instructions, 227
Storage

A-storage, 210 ff., 217 ft., 236
B-storage, 208 ff., 236, 238
C-storage, 208 ff., 236
D-storage, 208 ff., 236-237
7-storage, 208 ff., 236 ff.

Subroutines, 16, 235 ff.
Tape composition, 221 ff., 250-251
Treatment of

Drum instructions, 228-232
Substitution instructions, 210-

212, 215-220
Transfer instructions, fixed

connectors, 212-215
Transfer instructions, variable

connectors, 212, 215-220
Digital computer, 1
DIVISION

General, 1, 7, 9
Arithmetic of, 167-171
Examples of, 168-169, 170-171,

183-185
Logical discussion of, 183-185
Order, 21, 29

Double precision operation
General, 90
Addition, 90-91
Division, 90-105
MUltiplication, 91-94
Shifting, 103
Subtraction, 90-91, 95

Drum (see Magnetic Drum)
Drum track, 189
Dummy instruction, 77,' 78

•
-303-

E-addresses (Descriptive coding) 210
Examples of, 210-211

Engineering Research Associates, 189
Errors in Code (Debugging)

Correction of, 269 ff.
Detection of, 263 ff.
Record of, 268

Error-squaring, 95
Exponential calculation routine,

224 ff.
External memory (see Magnetic Drum)

F-addresses (Descriptive coding)
215 ff.
Example of, 217 ff.
Subroutines, 239-240

Filament variac, 291
Finite difference equation, 17
Fixed binary point, 154 ff.
Fixed connection transfer (Descrip­

tive coding) 212 ff.
Example of, 214
Subroutines, 247 ff.

F1exowriter punch (Input-output) 198
Flip-flop, 3, 174
Floating binary point (see Floating

point method)
Floating point method, 80-89, 154
FLOW DIAGRAM

General, 15, 18
Alternative box, 41 ff., 48
Assertion box, 46-48
Flow line, 40
Operation box, 40 ff., 48
Storage box, 47-48
Substitution box, 44 ff., 48

Function gates, 257, 259-260
Indicator lights, 257

Gate, 5-7
Gate tubes, 173-174
Gating, 174-176
General purpose computer, 1

Half-word substitution orders, 22,
25, 78, 115, 120

Head housing (Magnetic tape) 281
Helper-routines, 261 ff.
Hexadecimal numbers, 55
High voltage power supply, 286-287

Induction, 39-40
INPUT-OUTPUT

General, 11, 172
F1exowriter Punch, 198

INPUT-OUTPUT (Cont.)
Logical discussion, 192-198
Magnetic tape, 132-141, 193-194,

281-284
Photo-electric reader, 192-193
Synchroprinter, 142-153, 195-191,

284-286
Teletype page printer, 191-198

Instruction, 18
Instruction control, 202-203
Integer conversion routine, bi-

nary to coded decimal, 254 ff.
Integration by Simpson's rule, 11 ff.
Internal memory (see Memory)
Interpretive routine, 266

Load process, 192-193, 258-259
Load switch, 252, 258-259
Logical coding, 21
Logical symbol, 21

Magnetic drum
General, 11, 112
Addressing of, 189-190
Capacity of, 189
Characteristics of, 189
Checking procedures, 191-192
Logical discussion, 189-192

Magnetic drum control panel, 286,
290-291

Magnetic drum orders, 11, 23, 101 ff.,
115, 120
Treatment in descriptive coding,

228-232
Magnetic head, 189
Magnetic tape (Input-output)

Characteristics of, 194
Logical discussion of, 193-195
Operation of, 281-284

Head housing, 281
Manual start switch, 282
Photo-cell brake, 282
Rewind reel, 282
Setting switch, 281
Take-up arm, 282
Take-up reel, 282
Tape drive, 281
Tape reel spindle, 281

Routines for, 132-141
Searching facilities for, 194

Malfunction, computer, 132, 214 ft.
Manual-automatic switch 252, 259,

260

MEMORY, electrostatic
General, 9 ff.

-304-

Gate connections to, 188
Logical discussion of, 185-192

Memory clear switch, 252, 251
Memory monitor, 219
Memory position mark, 33
Memory raster, 219-280
Meshing, 106 ff.
Monotonic decreasing sequence, 106
MULTIPLICATION

General, 1, 1, 8-19
Arithmetic of, 160-161
Corrections from negative multi-

plier, 161-162
Examples of, 165-161
Logical discussion of, 180-182
Orders of, 21, 24

Negative numbers, 2, 3, 154 ff.,159
Numbers

Binary, 2, 154 ff.
Coded-decimal, 11 ff., 56 ff.
Complement, 2, 3, 154 ff., 159
Hexadecimal, 55
Negative, 2, 3, 154 ff., 159
Signed, 154 ff.

Number range, 2, 155-156

One address system, 13, 19, 198
OPERATING PANEL, 252 ff.

Breakpoint switches, 252, 260 ff.
Control counter display lights

and setter, 252, 256
Function gate lights, 251
Load switch, 252, 258-259
Manual-automatic switch, 252,

259-260
Memory clear switch, 252, 251
Perform-order switch, 252, 260-

261
Start-next-order switch, 252,

259 ff.
Operating techniques, 14
Operation box (Flov diagram) 40 ff.,

48
Operations control, 200-202
Operations counter, 181
Order, 13, 18, 199
Order matrix, 199, 201
Output (see Input-output)

Parallel operation of memory,
185

Periodic problem record, 274
Perform-order switch (operating

panel) 252, 260-261
Photo-cell brake (Magnetic tape)

282
Photo-electric reader (Input­

output) 192-193
Position mark (see Memory posi­

tion mark)
Print order, 22
Printers (Input-output)

Synchroprinter, fast, 142-153,
195-191, 284-286

Teletype printer, slow, 197-198
Problem preparation, 14, 261 ff.
Pseudo-drum track address (Des­

criptive coding) 228
Pseudo-non-restoring division

(see Division)
Punch (see F1exowriter punch)

Quotient register, 5, 8, 9, 173,
217

Random number generation sub-
routine, 240 ff.

Read order, 22
Reading, memory, 186
Reciprocal by iteration, 94-95
Record, magnetic tape, 132
Regeneration, 185
Regeneration cycle (memory con­

trol) 186
Regeneration counter (memory

control) 186
Register (Arithmetic unit) Rl-R2,

accumula~or, 5 ff., 173, 277

R3-R4, quotient register, 5, 8,
9, 173, 277

R5, 5, 8, 9, 173, 276
R6, 5, 8, 9, 173, 276

Remainder, division, 185
Rewind reel (Magnetic tape) 282
Round-off

Multiplication, 164-166
Example of, 165-166

Division, 170

-305-

Seven (7) storage (Descriptive
coding) 208-209
Examples of, 246-247
Subroutines, 236-238

SHIFTING
General, 5 ff.
Arithmetic of, 156-158
Double precision, 99, 103
Logical discussion of, 174-178
Orders of, 22, 25 ff.

Sign of a number, 154 ff.
Stmpson's rule (see Integration)
Sin x calculation routine, 126-131
Sorting routine, 106-125
Square-root calculation routine, 1,

49-54
Start-next-order switch (Operating

panel) 252, 259 ff.
Storage

Dynamic, 47
Static, 47
(see Descriptive coding)

Storage box (Flow diagram) 47-48
SUBROUTINE (Descriptive coding) 16,

235 ff.
ASSigning box numbers to, 237
A-storage of, 236
B-storage of, 236, 238
C-storage of, 236
Code tape of, 250-2;1
D-storage of, 236-237
Entry into, 238 ff.
Exit from, 238 ff.

Substitution box (Flow diagram)
44 ff., 48

Substitution orders, 22, 25, 31, 34,
75-76, 77, 86,
Treatment in descriptive coding)

210-212, 215-220
Subtraction (addition) 1, 3-4, 7 ff.

Arithmetic of, 158-160
Logical discussion of, 179

Summing routine, 262
Switch gear panel, 286, 288, 289, 291
Synchroprinter (Input-output)

Actuation of, 144
Array, 143
Characteristics of, 195
Logical discussion of, 195-197
Malfunctions of operating pro-

cedures, 195-196, 284-286
Paper feed, 143, 284, 286
Print cycle, 142
Routine, 142-153
Thyratrons and associated switch,

284-286
Switch gear panel, 286, 288-289, 291

Take-up arm (Magnetic tape) 282
Take-up reel (Magnetic tape) 282
Tape drive (Magnetic tape) 281
Tape leader, 258
Tape reel spindle (Magnetic tape)

281
Tape symbols, 11
Taylor series expansion of sin x,

126
Teletype page printer (Input-output)

197-198
Tetrad, 27, 192
Thyratron (Synchroprinter) 285
Toggle (see Flip-flop)
Transfer orders, 21, 24-25, 36 ff.,

68, 69
Transfer orders, descriptive coding

Fixed connection, 212-215
Variable connection, 215-220

Variable of induction, 43 ft.
Variable remote connections, 72-73,

96 ff.
In Descriptive coding, 215-220
In Subroutines, 236

Vocabulary, 17, 20 ff.
Table, 21-23
Illustrations of orders in routines
m~Ac, 33
m-7'Ac-, 52
m~AcM, 66
m~Ah, 29, 30
m -:)0 Ah-, 52
m~Ah 800, 136
m -7 Q, 29, 30

X 29, 30
X' 100

29, 30
T 36 ff., 77
T' 77
c 54
c· 38

Q~m, 29, 30
A-7m, 29, 30
S --7 m, 33, 34
S~m', 33, 34
HS ~ m, 78, 115, 129, 131
HS ~ m I, 78, 115, 121, 129, 131
R(n), 52, 86
L(n), 29, 60, 85
a ~Ac, 60, 77, 88, 148, 152
a -;> Ah, 13, 85, 86, 88
DS, 68
F1exoprint, 129, 131

-306-

Illustrations of orders in routines
(cont.)
Read, 127, 131
Punch, 129, 131
Syncprint, 150, 152
m-7D, 117, 123
D~m, 115, 122
Q~ t, 135, 137
t-7Q,

Word, 13
Wri tlng, In memory, 186

/ /' ,~:) U C.,~

