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PREFACE

The construction program on the MANTAC was started in the summer
of 1949 and the computer was completely tested in March, 1952. The
group of engineers is under the direction of J. Richardson and consisted,
at various times, of W. Orvedahl, E. Klein, H. Demuth, T. Gardiner,

H. Parsons, R. Merwin, and J. Breese. In addition, V. Gafke and
J. Caulfield provided considerable assistence. Since its completion,
solutions to many numerical problems have been computed.

There are several phases to the solution of a problem by an elec-
tronic computer. First, there is the formulation of the problem itself
by the mathematician or theoretical physicist. Second, this is followed
by the detalled preparation of the problem by the programmer for the
specific computer. Finally, there is the actual running of the problem
on the computer. The present work is primarily an attempt to discuss in
some detail the last two stages.

The volume consists of six chapters. Chapter I, Introduction, de-
scribes some of the general features of the computer and defines the
field of activity associated with it. The treatment is intentionally
brief. The remaining chapters are devoted to an elaboration of the
salient points.

Chapter II, Coding and Flow Diagrams, is the "raison d'etre" of the
opus. Beginning with some elementary problems, it gradually takes the
reader through a coding preparation of some complex exercises. The
elements of a flow diagram are discussed.

Chapter III, Binary Arithmetic, discusses the various arithmetic
operations in terms of the binary system. By the time the reader finishes
this part, it is hoped he will regard the binary system as the "natural"
one for arithmetic.

Chapter IV, The Computer, is concerned with a simplified discussion
of the various components. The objective here is that some knowledge of
the engineering side of a computer is very useful to personnel running
problems on it. Aiding in the detection of malfunctions and in the locali-
zstion of them, the programmer helps the engineer in maintaining high per-

formance of the computer.
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Chapter V, Descriptive Coding and Subroutines, describes the
methods of descriptive coding the the use of the computer itself to
aid the programmer in the preparation of problem codes. The discus-
sion of subroutines finds a natural place here.

Chapter VI, Operating Procedures, essentially summarizes some of
the material of the earlier sections and describes systematically the
steps involved in automatic computational processes, including "which
buttons on the computer to press when".

Finally, an Appendix is included. It contains some optional and,
we hope, useful material.

John B. Jackson
N. Metropolis
Los Alamos, New Mexico
December 15, 1951.
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all members of the MANIAC group who deluged us with criticisms, es-
pecially Mark Wells.
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I. INTRODUCTION

We shall give first a brief description of the general features
and characteristics of the computer which has been constructed here.

(1) It is a general purpose computer in contradistinction to a

speclal purpose type. 1Its design engenders adequate flexibility to
handle a wide variety of mathematical problems. The special purpose
type may be much simpler 1n design and more direct in its application
to a particular type of problem, but it has 1ts obvious limitations.
We do not discuss it further.

(11) It is a digital, rather than an analogue, computer. Compu-
ters have been bullt which use various analogy devices that correspond
to a continuous variable representation. In such analogy computers,
numerical information is expressed as measurements of some physical
quantity. -Among other reasons, it may be mentioned that accuracy re-
quirements argue for the digital type.

(111) It is electronic (vacuum tubes) in character, as opposed to
electro-mechanical (relays). Although both methods are sufficiently
reliable, the former is many times faster. For the majority of prob-
lems, where the number of operations involved is at least in the hun-
dred thousand range, the difference in speed is quite serious.

The fqQur basic arithmetical operations performed are additionm,
subtraction, multiplication and division. In principle, one might
conceive of a simple computer that does only subtraction, and effects
the others by repeated application of that fundamental operation.

This is not very practical. On the other hand, one might have argued
for including other operations in the basic list; e.g., square rooting,
as indeed the ENIAC has included. It appears, however, that the fre-
quency of occurrence of any of these does not warrant the added compli-
cation in equipment, especially since these more complicated operations
caﬁ be effected by rather simple iterative procedures based on the four
fundamental operations.

Besides these four arithmetical processes, there are included a
few operations which are of a purely logical character, but first,



Some Remarks on Arithmetic

The handling of numerical quantities is done in a digital fashion.
The binary system is used for the representation of numbers rather than
the conventional decimal system. Everyone knows that in the latter sys-
tem a number is expressed as a sum of powers of ten with individual co-
factors O to 9; e.g.,

1 -2

+ 7-10% + 2:107 + 3710

47.23 = 410 3
In a similar fashion a number may be expressed in the binary system by
powers of two with co-factors either O or 1; e.g.,

1 0 1 +

101.01 = 1-2° + 0.2t 4+ 1.2% 4+ 0-27 -2

12

Ag in the decimal system, the binary point separates the terms with
positive exponents from those with negative exponents. The standard
capacity for handling numbers in the present computer is 39 numerical
bigits preceded by a sign bigit. (The word bigit is defined as binary
digit.) There is sufficient flexibility to permit rather easy treat-
ment of those cases requiring higher precision.

For the various arithmetical operations in the computer, it is
assumed that the binary point lies immediately to the left of the first
numerical bigit, so that all numbers lie in the range

-l( x< 1.

It may appear at first that this restriction places a considerable
additional burden on the preparation of a problem for the computer.
Actually, however, it is quite a simple matter to scale numbers to the
appropriate size beforehand, such that the result of any operation does
not exceed the allowed range. In those instances where it is not pos-
sible to provide appropriate scaling factors in advance, one does have
recourse to procedures which adjust the sizes of numbers--the so-called
floating point routines,

As mentioned above, the first bigit on the left is used to indicate
the sign of a number. One possible convention that might be used would
be to say that bigit O in that location indicates a positive quantity
and that a 1 is to be interpreted as a negative sign. Héwever, it 1is

more convenient to do something different in the case of negative numbers.



In the computer, a negative number x is represented by its complement

¢ with respect to 2, namely

c = 2 -x}
Since jxl<1,
¢ will be in the range l<c<?2

so that the "sign" bigit will be 1 in every case of complementation.
For positive numbers it will always be O. For example, suppose

' x = =-.101110101.....011;
then e = 1.010001010.....101
is its representation in the computer. One observes that a very simple
method for obtalning the complement of a number with respect 2, is to
"reflect” the number, that is, to replace O with 1l and conversely,
then to add 1 in the extreme right place. Electronically, inter-
changing O and 1 is easily done. As discussed in detail in later
sections, a "flip-flop", or "toggle", is an electronic device which
has two stable states; it is essentdially a twin triode (a standard
type of vacuum tube); either one side is in a conducting state (and
its tube elements have one set of definite voltages) with the other side
non-conducting (cut-off, and its corresponding elements have another set
of voltages) or the opposite situation obtains. It is a symmetrical
situation. Normally one examines the voltage level at scme particular
point of the circuit, say the grid voltage of one of the triodes, and
assigns one voltage to the bigit O and the other to 1. To obtain the
complement of a number in a series of such flip-flops, one would merely
examine the opposite symmetrical point of the circuit of each flip-flop;
since, if a given flip-flop is in a state corresponding to a 1, the
other side of the flip-flop would have a voltage level at the corres-
ponding point identified as a O. Additional circuitry is required to
insert a 1 in the extreme right-hand position.

The notion of complement numbers is a very useful one. Subtrac-
tion of two numbers can be replaced by addition. This is convenient
since the same electronic circuitry designed to effect addition suf-
fices for the subtraction process. Instead of performing d = (a-b)
by direct subtraction techniques, one may add to a the complement of b.
That this yilelds the correct difference can be seen from the following:



Assume a, b > 0.

a+ (2-v) = 2+ (a-b) = 10. + (a-b)
in binary form. If a > Db, and since both a and b have absolute magni-
tudes less than unity, the difference (a-b) is positive and less than
unity. The co-factor 1 of 2l does not appear in the computer, the
capacity of the computer has been exceeded and that bigit is lost.
The O co-factor of 2° does of course appear, and indicates that the
difference (a-b) is positive. In the event a < b, our answer would be:

1<d = 2 - (b-a)<zg,

which is precisely the desired form for a negative difference, namely
the complement with respect to 2. Here the co-factor of 2° is appro-
priately a 1. The cases where a and/or b are negative are left as

exercises for the curious students.

Principal Components

Although the computer functions as an entity, it is convenlent to

speak of 1ts various components. These are:

(i) arithmetic unit
(ii) memoxry
(1i1) input-output
(iv) control

Arithmetic Unit

The arithmetic unit performs the operations of addition, subtrac-

tion, multiplication and division in binary fashion. It is also con-

cerned with such auxiliary operations as shifting of a number to the

i P

left or right. Finally, it is associated with certain logical operations.
In appearance the arithmetic unit is similar to the one in Princeton.

A parallepiped structure of channel aluminum has six panels on each of
its two long sides. The outer panels in each case are reserved for con-
trol chassis, the middle four are used for the arithmetic unit proper.
Three horizontal rows of arithmetical chassis are located on one of the
two principal sides. ZEach chassis contains two registers. The various
registers are designated Rl, R2,...R6, starting with the lowest. A

register is the residence, or temporary storage, of one of the numerical
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factors in an arithmetical operation; In each such operation three
factors occur, so that at first it might be supposed that three regis-
ters would suffice. However, the requirement of shifting in multipli-
cation and division necessitates two more. These considerations account
for the first five registers; the last, R6, is used exclusively in asso-
ciation with the control and does not participate in any of the basic
arithmetical operations, although physically it is located within the
arithmetic unit. Rl is the associated register for shifting a number
in R2, a principal register. Physically, the pair forms a chassis.
Similarly, R3 is associated with the principal register, Ri. R5 is a
non-shifting register with respect to arithmetic operations.

Before discussing the four basic arithmetical operations, we
digress to consider the manner in which & number in one of the two _
principal registers is shifted. To begin with, a register is an ensemble
of 40 "flip-flops", or "toggles", and as mentioned earlier, each flip-
flop has two stable states. One of these states represents the binary
digit O and the other the binary digit 1. The set of flip-flops may
then be used to represent a 39-bigit number and its sign.

There exists a variety of methods for electronically transferring
information contained in one set of toggles to another. For example,
suppose that a given toggle contains a 1 and it is desired to transfer
this information to a second toggle. By means of an interconnecting
"gate" tube, it is possible (as a result of a voltage change on the
gate tube) to set the receiving toggle to a 1, irrespective of its pre-
vious state. Another scheme is to have first set the receiving toggle,
say to O, as a separate operation. When the appropriate voltage change
is applied to the gate tube, the receiving toggle is set to a 1, other-
wise it remains appropriately unchanged. This method is actually the
simplexr of the two and is the one used. In common parlance we say
the receiving flip-flops are "cleared" to O's and 1's are '"gated in".
Clearly, O's and 1's could be interchanged in the preceding statement

and provide an alternative scheme.



A flip-flop may be symbolically represented as a rectangle in the
form of two squaresj the shading of one square may be said to corres-
pond to a O, the shading of the other to a 1. A gate tube is indicated
by a circle.

There is a set of gates which connects the flip-flops of R2 to the

corresponding ones of Rl. These may be shown diagrammatically.

| 0 | | 0] |
) i i
Ri
0 0 o) I 0 |
Before After

Rl has been previously cleared to O's. The information in R2 is 10l.
When an appropriate voltage change is applied to the gate tubes, the
first flip-flop of Rl will change its state to represent a 1, the
second remains unchanged, and the third behaves like the first. Rl
will then have received the information 101. _

There 1s a second set of gates which connects the flip-flops of
Rl with the flip-flops of R2 displaced one to the left.

R
l o | { (o) |

Before Affer
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R2 is cleared to O's. When these gates are opened, the information
in Rl is transferred to R2 displaced once to the left. Thus, by
these sequences of operations, a number originally in R2 is shifted
one place to the left.

Finally, there is a set of '"diagonally-right" gates to provide
for a shift to the right. Repeated application of the sequence of
operations results in a shift by n places. It perhaps should be men-
tioned that these three sets of gates are unilateral in action and
represent all of the interconnections between R1 and R2.

The four basic arithmetical operations are done in terms of simple
additions, with shifts where required. Subtraction of a number a is
performed by the addition of its complement. Multiplication is done by
the detection of the successive bigits of the multiplier, beginning
with the rightmost bigit. If the bigit is a 1, an addition of the mul-
tiplicand to the partial product is performed followed by a shift of
the partial product one place to the right. A O multiplier bigit merely
shifts the partial product to the right by one, and the next multiplier
bigit is examined. For division, the so-called "non-restoring" scheme
is used. The complement of the divisor is added to the partial remain-
der if the signs of the divisor and partial remainder agree; if the
signs disagree, the divisor is added directly. A O is indicated for
the corresponding quotient bigit in the first case, and a 1 for the
latter. Strietly speaking, -1 and not O is the appropriate bigit.

But -1 is indeed very inconvenient to represent in the computer. As
von Neumann first pointed out, the pseudo-quotient obtained in this
way is very simply related to the true quotient. We shall go into
details later.

The adder proper is physically located on the side opposite the
registers, and consists of two rows of chassis. One of the two inputs
is directly from the register R2. The second input 1s from R5. Here,
however, a choice is made between the number itself or its complement,
corresponding to the operation of addition or subtraction. The output
of the adder is transferred by means of a set of gates to Rl. R2 is
then cleared and the sum transferred from R1 to R2. Symbolically,



(Step!)
Selector
(U~ Augend (or Complement)

ADDER

(Step 3O

[R1] Output

To recapitulate, the addition process (or subtraction) involves
adding to the number in R2 the number (or its complement) in R5. The
sum appears finally in R2, The fact that the sum replaces one of the
terms is very convenient for the multiplication and division processes,
vwhere the sum is the partial product or the partial remainder, respec- |
tively. The multiplicand or the divisor resides accordingly in R5.

In the multiplication process the multiplier factor is in R4 and
the multiplicand is in R5. R2 is cleared initially. The 39th flip-
flop of R4 is examined. If it is a 1l, an addition is ordered and the
first partial product is formed in R2. (In this first step, the trivial
sum of the multiplicand and QO's is done.) The multiplier is now shifted
one place to the right, thus placing the next digit to be examined in
the end flip-flop of R4. Simultaneously, the partial product in R2 is
also shifted one place to the right. In the event that the first
digit is a O, the addition of course is not done but the shifting in
both R2 and R4 does take place. It will be noted that the multiplier
factor is gradually disappearing in R4, It is convenient, therefore,
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to insert the bigits of the partial product thatrwould otherwise be
lost as a result of the right shift in R2, into the leftmost flip-flop
of R4. Thus the right half of the complete product appears finally in
RY and the significant portion in R2.

For division, the dividend is in R2 and the divisor in R5. A com-
parison of signs 1s made and a direct addition is made for unlike signs;
for like signs the complement of the divisor is sent to the adder.
Accordingly, a O or a 1 is introduced into the 39th flip-flop of Rk4.
Both R2 and R4t are shifted one place to the left. The sign of the
partial remainder is again compared with that of the divisor and the
process repeated 39 times. The quotient appears 1niRh, and the re-
mainder in R2.

The following short table summarizes the above:

Addition a+b = Sum

‘ * Location R2 RS R2

Subtraction a —b = Difference
R2 RS R2

Multiplication a X b = Product Left + Product Right
R5 R4 R2 R4

Division a +b = Quotient + Remainder

’ R2 R5 R4 R2

Memory

Thus far we have talked of the various arithmetical operations
without indicating how the numbers get to the several registers ini-
tially, or where the intermediate results are stored. Nor have we
sald anything about the location of the sequence of orders associated
with a problem. The component of the computer assoclated with this



activity is described as the memory. 'Clearly, some of its desired
functions are:

(i) to receive and store information from the outside-}sequences

of instructions as well as initial sets of numbers,

(ii) to transfer numbers upon instruction to the arithmetic unit,

(iii) to receive and retain intermediate results of a calculation
until needed at some later stage of the calculation,

(iv) to send instructions as needed to the control,

(v) to transfer the final results to the output mechanism for

external consumption.

We distinguish two levels of memory, internal and external. The
internal memory is more intimately related to the arithmetic unit and
control. It communicates directly with these two units and provides
individual numbers and instructions as needed.

Physically, the internal memory is an ensemble of 40 cathode-ray
tubes that act in concert, each tube simultaneously providing one
bigit of a UO-bigit number upon instruction. The access time, or
total time required to transfer a number from the internal memory to
the arithmetic unit, is less than ten micro-seconds. The capacity of
the intefnal memory is 1024 forty-bigit numbers; these may be arbi-
trarily divided between numbers and instructions.

The 1ocaﬁion or reference in the internal ﬁemory of a particular
number or instruction is called its address. In our system of instruc-
tions there is, associated with each instruction, a single address that
refers to a particular number to be called up and operated upon in the
arithmetic unit. An instruction consists therefore of a particular
operation specified by a group of bigits, together with an address
specified by another set of bigits. It turns out that less than 20
bigits are required for each complete instruction, so that it is cbn-
venient to place two instructions in one memory location. We shall
amplifyy these remarks in the discussion of the control.

Normally, 40 bigits are uséd for the representation of a true
number. For those cases where sufficient accuracy is obtained from

20 bigits, including sign, there is sufficient flexibility to store
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conveniently two 20-bigit numbers in one memory location; separation
taking place when needed in the arithmetic unit by shifting.

The external memory is a magnetic drum. It communicates only with
the internal memory; therefore, when numbers stored on the magnetic
drum are to be used in computation, they are first sent into the elec-
trostatic memory and operated upon from there. The drum has a capacity
of 10,000 forty-bigit numbers. Numbers are transferred between the
ekternal and internal memory in groups of fifty; hence the addressing
of numbers on the drum is by groups of fifty rathef than as single num-
bers. Any group of fifty numbers is stored serially along the circum-
ference of the drum. Such a group of storage is called a drum track, and
there are 200 such tracks on the drum. The access time for the drum is
85 milliseconds per block of fifty words.

Input-Output

The set of coded symbols corresponding to the sequence of instruc-
tions, together with the set of initial numbers and parameters, is first
punched on paper tape with the use of a modified PFlexowriter. A
second tape is then prepared, being punched independently of the first
but simultaneously compared with the first; this is merely a checking
procedure. The information is then transferred from the verified tape
to the internal memory by means of the input device.

The initial set of numbers on the tape is in coded-decimal form;
that 1s, each decimal character is represented by a tetrad of binary
digits. For example, the aggregate 1234567890 together with accompany-
ing space symbols would appear on the tape as:

(o] 0] i
00 Guide Holes
0O0000000O0OO
0000
00 o0
O O O O O
56 7 89 O Space

Space | 2 3 4

The punched holes correspond to the bigit 1 and unpunched positions
to 0. A sequence of such tetrads of binary digits is obviously not



the true binary representation of the corresponding decimal number;
e.g.,

decimal number 24

coded decimal 0010 0100

true binary 11000
Consequently, it is first necessary to convert the lnitial set of
coded-decimal numbers into true binaries. But this is a quitelsimple
algorithm which the computer can be directed to perform before enter-
ing upon the problem proper. The initial set which must thus be con-
verted is usually quite small compared to the number of numbers the
camputer handles in the course of the problem; so fh&t the time in-
vested for the conversion is relatively negligible. The same remark
applies for the conversion from true binary to coded-decimal repre-
sentation for the output process; it being still desirable to view
answers in decimal notation.

When the desired results are properly converted into coded-decimal
notation, they may be directed to the output. The oﬁtput will simul-
taneously print the results and punch them on teletype tape. This tape
is desirable in the event that the answers are'to be reintroduced into
the computer.

It should be remarked that beginning with the second problem of
any given type it will not again be necessary to manual punch the
sequence of instructions. The original tape will be adequate. It is
only necessary to punch the new initial numbers and parameters. This
portion is usually a small fraction of the total. Finally, it should
be noted that the casual observer need never be aware of the fact that

internally the computer uses the binary representation for numbers.

Control

The control may be likened to a central nervous system. Its parts
spread out physically over the whole computer. It interconnects the
various other components and transfers information from one to the
other, as well as directs the operations associated with them
individually.



Among its various activities, it must:

(i) direct the input component to read information from the tele-
type tape and transfer it to the internal memory,

(ii) conversely, direct the memory to transfer information to the
output tape and printer,

(iii) effect the basic arithmetic operations,

(iv) be able to start at some point in a sequence of orders, ex-
tract the first order (from the internal memory), interpret and provide
pulses and voltage changes to the components concerned so as to execute
the particular order, and when finished proceed to the next order.

These activities are specified by a variety of orders.

In the present control scheme, a one-address system is used; that
is, associated with each order is an address referring to some memory
location which contains the number upon which the particular order
operates. For example, there are eight orders that transfer a number
from the memory to R2. The eight possibilities arise from the three
choices{

(1) Clear or do not clear R2 before adding number into it.

(2) Complement or do not complement the number being added to R2.

(3) Add the mumber or its magnitude. |

These are the addition and subtraction orders. There are two mul-
tiplication orders; one rounds off the product to 39 bigits, the other
provides a precise 78 bigit product. There is one division order, one
order transferring a number from the memory to R4t. There are six
orders associated with transfers to the memory, a right and left shift,
print, read, and stop orders. Finally, there are a few logical orders
that involve an interruption of the present sequence of orders and a
transfer of control to some other sequence.

Eight bigits are used to designate an order. _Twelve more are con-
veniently available, of which ten are actually used at present, for the
address. Thus each order is 20 bigits, and two orders are equivalent
in storage to one true number. Word is used to describe a 4o-vigit

aggregate; this may be either an order pair or a true number, A coder
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is provided with the set of symbols that correspond to the various
orders. These code symbols are various pairs of the six letters,
A,B,...F.

Let us now attempt a summary by describing the various steps in
machine operation. Assume a tape has been prepared with instructions
and initial set of numbers. First the tape is fed into the input.
The tetrads are reed into RS in serial fashion. Ten tetrads, corres-
ponding to either a true number or to two orders fill R5. A signal
is automatically provided that causes the contents of R5 to be trans-
ferred to the first memory locatlon; the second set of ten tetrads is

A 4nt+
A Aid

n
ia &

=
v/

roo o etc, When the complete tope has heen read into the
memory, the computer is ready to do business. The operator presses

a "start"” button. The contents of the first memory location or first
word go to R6; these are the first two orders. The first one is ex-
amined and executed, then the second. The next word goes to R6 and
the sequence continues. Flexibility exists which enables the sequence
to be interrupted at some point and the control transferred to some
other point in the sequence. For example, it may be desired to re-
peat a sequence a fixed number of times before proceeding further, as
in some iteration scheme. This is convéniently handled by the logical
orders. In fact, it is possible to have the number of repetitions be
dependent on the fulfillment of some condition in the problem, so
that the number of repetitions variés from case to case. Finally,

the desired numerical quantities can be reconverted from binary to

binary-decimal form, and printed.

Problem Preparation and Operating Techniques

We conclude the present introductory chapter with a brief commen-
tary on the various steps leading up to the execution of a problem by
the computer. The first step concerns the formulation of the problem
itself. One method would be simply the writing down of the various
equations and the various steps to be taken, tegether with the neces-
sary explanatory remarka. This approach, although feasible, may often
become quite complicated and untractable. Instead we follow von Neumann



-15-

who proposed the idea of a flow-diagram. This is a very elegant,

logical and mathematical description of the problem to be computed.

It makes use of a set of conventionalized symbols to describe the

course of the control at every stage of the problem. Represented in

8 very concise way are: (1) the purely mathematical operations, (ii) var-
ious logical steps and decisions together with a precise indication of
the nature of the corresponding criteria, (iii) the contents of the rele-
vant part of the memory at points where the question might naturally
arise.

The flow-diagram of a problem is prepared by the mathematician or
physicist. The symbols are few in number, their meanlings simple enough
so that they are easily mastered. A flow-diagram may be drawn without
a specific computer in mind. In practice, however, one usually does
plan on the use of a specific computer and takes advantage of this fact
in his planning of a problem. A quite superficial knowledge of the
particular computer suffices. The important characteristics are:

(1) the capacity of the inner memory, (ii) the nature of the external
memory, (iii) the extent of the vocabulary, both arithmetical and
logical.

The next step in the preparation 1s the coding. This process
consists conveniently of two parts. In the first, the coder prepares a
sequence of instructions using a set of readlily interpretable symbols
that indicate the general nature of the operations. For example, say
at some point in the sequence & number is in register R2 and it is in-
tended to add to it another number at the moment residing somewhere in
the memory. A possible notation, and the one used here, is:

m -> Ah

wvhere m indicates that a number in the memory is to be sent to R2. For
historical reasons, the letter A has been used as a symbol for R2; the
original intent being that R2 is the accumulator register. h indicates
that R2 is not to clear its contents before receiving from the memory
but to hold them for a true addition process. It is observed that the
specific binary symbols which the computer can interpret are not used
yet, nor is the specific location of the number in the memory given.
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There is, however, some point to this preliminary step in the coding.
In the first place, there are likely to be several improvements or
modifications made before one is satisfied with the sequence of in-
structions finally adopted for a given problem. This form i1s much
easier to follow, both from the point of making a sample hand calcu-
lation (for checking purposes) as well as in trouble-shooting (in the
event this 1s necessary) after the problem has reached the computer.

The second step in the coding is a straightforward translitera-
tion from the coder's notation to teletype symbols. This is routine.

A given large problem msy often be divided into a set of smaller
problems. Some members of this set may occur frequently enough so
that it becomes worthwhile to have these portions coded in quite general
terms and, in a sense, treated as individual orders but on a somewhat
_broader basis. For example, integration by Simpson's Rule, or the in-
version of an (n x n) matrix. These sub-routines, as they are conven-
tionally called, would form a library of general orders. A problem at
hand would then first be decomposed into the sub-routines available
from the library, and the remainder coded from the basic individual
orders. Obviously some preparations are required for each individual
use of a sub-routine; in the case of the inversion of a matrix, the
location of the particular elements for the problem at hand must be
specified. Nevertheless, there 1s a great reduction in effort, espe~
cially in checking.
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II. CODING AND FLOW DIAGRAMS

Introduction

The computer can perform a set of basic operations, both arithmetical
and logical. It may be desirable to keep the set small as added electronic
equipment (which is roughly proportional to the number of operations) in-
creases the physical complexity of the computer and complicates maintenance.

A modest number of thirty-six operations have been chosen to comprise this
set, The choice, however, is fluid in that the set may be modified as the
need for change is shown.

We say that the computer has a language of its own, for it is able
to interpret and execute the given set of orders. We speak of the orders
as the vocabulary of the computer. Coding is the translation of the language
of the mathematician into the language of the computer.

The four fundamental arithmetic operations (addition, subtraction,
multiplication and division) are a part of the vocabulary. All of the
arithmetic operations of the vocabulary, of which there are about twenty,
involve the four fundamental operations.

The first step in the preparation of any problem for the computer
is to arrange the work so that the only arithmetic operations involved are
addition, subtraction, multiplication and division., In other words, the
problem must be reduced to a form in which it can be solved by numerical
procedures., '

The usual mathematical formulation of the problems with which we shall
be concerned is a differential equation, or a coupled set of such equa-
tions, together with a group of boundary (or initial) conditions. There
are other types of problems, but they occur less frequently.

The differential equations are of such complexity that analytical
methods are not known for obtaining their solutions. The only recourse
is to numerical procedures; therefore these problems are ideally suited
for the computer.

The first step in the solution of the problem is to replace the dif-
ferential equations by a set of finite difference equations. We do not
discuss here the stability or convergence of such methods, but only mention
them as necessary considerations in writing the difference equations. In
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such a process of translation, derivatives are replaced by difference
quotients, integrals by sums, transcendental functions by algebraic
functions, etc. The problem is now tractable in terms of the vocabulary
of the computer as it involves only the fundamental operations.

The next step toward a solution is the preparation of the flow
diagram, The flow diagram represents the path to be followed by the
computer in the solution of the problem. It represents this by sequences
of lines oriented with direction arrows. At points of the diagram where
computation is to be performed, the lines are interrupted and boxes are
inserted that indicate the "local" computation that is to be performed.
The diagram represents the purely mathematical operations, the logical
steps and decisions, and the relevant memory storage that is required.
Five kinds of boxes represent the desired information:

(i) The operation box
(i1) The alternative box
(iii) The substitution box
(iv) The assertion box
(v) The storage box
These are discussed in detail later.

When the flow diagram is completed, the solution is at the coding
level; but before discussing the coding we first discuss some background
matters. Each of the thirty-six operations of the vocabulary is referred
to as an order. Each order has associated with it a number that specifies
the location in the memory of the number upon which the order is to
operate; e.g.,‘in the multiply order the associated number specifies the
location in the memory of the multiplicand factor. This number location
is called an address. The memory contains 1024 words. The addresses of
these words consist of the decimal numbers O through 1023. Binary-wise,
it requires ten bigits to express an address as 1023 = 1111111111.

Eight bigits are used for each order; hence eighteen bigits are necessary
for each order with its address. It is convenient, however, to allow
twenty bigits for their expression as twenty bigits comprise half of a
word. Each order with its associated address is called an instruction.
Two instructions are stored per word, giving the memory in principle a
capacity of 2048 instructions. However, memory storage is also necessary
for true numbers, so that in general there will be some combination of

instructions and numbers stored.
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The computer uses a one-address system. Each instruction may refer
to at most one memory location. Some instructions involve only the
arithmetic unit and do not refer to the memory. In these instances the
address portion has a different function which is described later.

To illustrate the one-address system consider a simple example of
summing two numbers, a and b, which are residing in the memory: The sum
s = (a+b) is to be stored in the memory. Three instructions are required:

(1) An instruction to bring a into the arithmetic unit

(ii) An instruction to bring b into the arithmetic unit and to

form the sum s = (a+b) _
(ii1) An instruction to store s in the meémory

If a is in the arithmetic unit as a result of some previous operation,
only the latter two instructions are needed. If a three-address system
were used, the above sequence could be expressed with one order which
specified all three addresses: the location of a, the location of b, and
the location at which s is to be stored. We defer any discussion of the
merits of the one-address system versus those of the multiple address type.

The process of coding involves writing down a sequence of instructions
to perform the operations indicated on the flow diagram with the desired
set of numbers.

The coding in all but the simplest of problems is not a linear se-
quence. (That is, the control does not follow a unique path; at various
points in a problem several courses may be available.) Certain portions
of the coded sequence may be performed several times, whereas other sections
are omitted temporarily. The logical orders that have been included in the
vocabulary provide for such procedures. Furthermore, the coding is not a
static sequence in that it usually does not remain fixed throughout the
course of the problem. There are certain orders that allow portions of
the coding to be altered so that subsequent traversals through the sequence
give rise to a variety of patterns.

It is these dynamic and non-linear characteristics of the coding
which provide the desired flexibility for scientific computation but

which, on the other hand, give rise to complications in coding.



~20-~

The remainder of this chapter presents a step-by-step approach to
coding, beginning with very simple examples and systematically progressing
to examples of increasing complexity.

Before coding any actual examples we first discuss the vocabulary as
shown in Table I, It contains a list of the explicit orders with a de-
scription of each. It will be noted that there are two types of symbols,
The first column gives the abbreviated logical symbol for each order,
while the second column gives the actual code for the computer.

Orders 1 through 8 are the addition and subtraction orders. All of
these involve R2 (the accumulator register) and a memory location that is
specified in the instruction. The first four of these orders clear R2
(set it to 0's) and then add (subtract) the specified word to the O's
in R2. The remaining four orders actually add (subtract) the contents
of the specified memory location to the number residing in R2, 1In a
sense, the first four orders are communication orders (they do, however,also
allow the magnitude or complement of a number to be inserted) while the
latter four are true add or subtract orders.

Consider the example of forming the sum (difference) of two numbers,
a and b, and storing the sum s = (a + b), (difference s = a- b) in
the memory. Assume that a and b are residing in the memory, say at ad-
dresses 1 and 2, respectively; and the sum (difference) is to be stored

in 3. The instructions are:

’ l,. m—Ac 1 a to R2
m—sAh s = a+b
2. (m‘—"Ah-) 2 (S - a - b) ’tO R2
3. A—m 3 s to3

Each order has immediately following it the memory address to which
the instruction refers. In a column to the right of the instruction is
shown the action that takes place due to each instruction.

If the sum of more than two numbers is formed it is not necessary to
send each sum of two numbers into the memory and repeat the three orders.
A sum of several numbers may be formed in R2 which requires one additional
order for each new number added to the sum; only the final sum is sent to
the memory.

In orders 2, 4, 6, and 8 where subtraction is desired this is done by
taking the complement of the number with respect to 2 and then performing
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2.

o =N oW

10.

13.
14,
15.

16.

17.
18.

-Abbreviation Code
m—>AcC AA
m-—»Ac- AB
m——AcM AE
m-—>Ac-M AF
m—>Ah BA
m—»Ah- BB
m —AhM BE
m—>Ah-M BF
m—Q

X DA
X DB
—_ DD

T CA
T CB

C (6]
c! CD
Q-—>m EC
A—>m DC
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TABLE I

(g is the word at address m in the memory)
(The word at its original position is never cleared)

Replace the number in R2 by m.

Replace the number in R2 by the complement (the
negative) of m.

Replace the number in R2 by the absolute value
of m.

Replace the number in R2 by the complement of
the absolute value of m.

Add m to the number in R2.

Add to the number in R2 the complement of m.
Add to the number in R2 the absolute value of m.
Add to the number in R2 the complement of the
absolute value of m.

Replace the number in R4 by m.

Clear R2 and multiply m by the number in Ri. The
39 most signifiéant bigits of the product appear
in R2. The 2739 bigit position of R2 is set to 1.
Rk is set to O's.

Clear R2 and multiply m by the number in Ri. The
left-hand 39 bigits appear in R2, the right-hand
39 bigits in R4. The sign bigit of Rk is set to O.
Divide the number in R2 by m. The quotient appears

in R4, two times the remainder appears in R2.

Transfer the control to the left-hand order of m.
Transfer the control to the right-hand order of m.
If the number in R2 is = 0, transfer the control

as in T, otherwise continue to next order in sequence.

If the number in R2 is = 0, transfer the control

as in T’', otherwise continue to next order in sequence.

Replace m by the number in Rb.
Replace m by the number in R2.
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20.

2l.

22.

23.

2k,

25.

26.

27.

28 L]
29.

S~—m'

HS—m

HS—>n'

a—Ac

DS
Flexo Print
Read

Punch
Sync Print

FA

FC

DF

<

8 3 H
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TABLE I (Cont.)

Replace the address (bigits 8-19) of the left-
hand order of m by the 12 bigits 8-19 in R2.
Replace the address (bigits 28-39) of the right-
hand order of m by the 12 bigits 28-39 in R2.
Replace the left-hand 20 bigits (bigits 0-19) of
m by the 20 bigits 0-19 in R2.

Replace the right-hand 20 bigits (bigits 20-39)
of m by the 20 bigits 20-39 in R2.

Right shift R2 and R4 n places where n is
specified in the address bigits of the order.
This replaces the contents A’o’ A of R2

Lt );.39

Of Rb by A =+s A, Ay oo

LI Y x

an LI
dao, al o

39
et hag pr Magpr 88 Aag ni3s Magopo

00, 01 aee 639-no

left shift R2 and Rb n places where n is speci-
fied in the address bigits of the order. This re-
places the contents A o’ 7\1 7\39 of R2 and 0,

39 of R4 by A’n’ A’n+l cee A QO ¢« 0 and

s (@ hl

39’

[+ eee (@

1

%0’ %p41

39’

n-2° Mno1°

39, Xo’ co e
Replace the number in R2 by the 12 address bigits
of this order (into positions 0-11 of R2).

Add to the number in R2 the 12 address bigits of
this order (into positions 0-11 of R2).

Set the sign bigit of the number in R2 to O.

Print m on the page printer (slow speed).

Replace m by the next word to come under the read-
ing head of the paper tape reader.

(NOT PRESENTLY USED)

Punch m on paper tape.

To be used in a subroutine which simultaneously
prints Ei’ and m i is to be com-

Bi+1? Bigo 2i+3°
municated to the routine (high speed).



33.

3.

35.
36.

37.

NOTE:

t—Q

Stop

BC

AC

OFF
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TABLE I (Concl.)

Read 50 successive words from the memory
starting with the word at the address speci-
fied by bigits 8-19 of the instruction. Write
these 50 words into the drum on the track
specified by bigits 20-27. Then transfer the
control to the left-hand instruction of the
woxrd at the address specified by the bigits
28-39.

Read the 50 words from the track of the drum
specified by bigits 20-27 of the instruction.
Write these words into 50 successive memory
locations starting with the address specified
by bigits 8-19. Then transfer the control to
the left-hand instruction of the word at the
address specified by bigits 28-39.

Write the number in R4 onto the magnetic tape.
Replace the number in R4 by the first word to
come under the reading head of the magnetic
tape reader.

Stop computation. (Pressing start next order

button will allow machine to continue in nor-
mal sequence,)

An address of 800 refers to the quotient register (R4) when

using orders 1 through 8; i.e., AAB00 says replace the number
in R2 by the number in RL.
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a normal addition;\ The complement scheme is described in detail in the
chapter on binary arithmetic. When an address 100000000000 which cor-
responde to 2048 decimally is used with any of the orders 1 through 8,

it has the effect of treating R4 (the quotient register) as a memory posi-
tion with the address 2048. The number residing in R4 can then be added
into R2 as described by any one of the orders 1 through 8.

Order 9 transmits a number from the memory to R4 (the quotient regis-
ter). R4 does not have add facilities; hence a number being transmitted
to R4 replaces the number that is in Rh.

Orders 10 and 11 are the two multiplication orders. Before either
of these orders may be given, the multiplier must be in R4 (either as
the result of some previous operation or by a preceding m—>Q order).
The 39 most significant bigits of the product appear in R2. Order 10
gives only the 39 most significant bigits of the product rounded off.
Order 11 gives a full 78 bigit product; the rightmost 39 bigits appear
in R4. The multiply order supplies the multiplicand.

Order 12 is the divide order. It is assumed that the dividend is in
place in R2; the divide order itself provides the divisor. The quotient
is located in RM, and two times the remainder appears in R2.

Order 13 is a transfer order. This interrupts a sequence and causes
the computer to continue with another sequence beginning with the in-
struction specified by the address part of the transfer instruction. As
an example of a transfer instruction, suppose that a sequence of in-
structions is being performed and in the 25th step of the sequence a

transfer is encountered:

125



The transfer instruction has the address 125, so that the sequence
of code from 26 to 124 is omitted. The computer would execute Instruction
125 and continue sequentially from there.

Since an instruction word consists of two instructions and the flexi-
bility of being able to transfer into either instruction of a word is de=-
sired, it is necessary to have two transfer orders to accomplish this,
This accounts for Order 1lu4, the T' order, as well as Order 13, Hence, in
the above example, 25 may have read T 125 or T' 125, depending on whether
the transfer was desired to the left or right instruction of Instruction
Word 125,

The two conditional transfer orders, 15 and 16, either execute the
transfer as in the T orders discussed immediately above, or the orders
require no action, in which case the computer continues along the original
sequence, The conditional transfer is effective or not, depending on the
sign of the number, N, in R2 at the time the order is to be performed:
if N = O, the transfer does occur, and a new sequence of instructions is
started at the location specified by the address part of the instruction;
if N <0, the computer continues with the original sequence of instructions,

Orders 17 and 18 are the two orders that send information from the
arithmetic unit to the memory. Order 17 transmits from R4 to the memory,
and 18 transmits from R2 to the memory. When any register or memory lo-
cation sends information to any other register or memory location, the in-
formation is still available at its original position.

Orders 19 through 22 are the substitution orders. These orders make
alterations in instructions. By means of 19 and 20, any instruction may
have its address changed. The new address is first formed in R2 and then
inserted into the desired inétruction by means of a substitution order.
The use of the substitution orders is explained in detail in Problem 2.
The two half word substitution orders (Numbers 21 and 22) may alter whole
instructions rather than just the address. These two orders may also be
used in storing half precision numbers. The details of their use will be
covered by later examples.

Orders 23 and 24 are the right and left shift orders. They give a
means of dividing or multiplying by powers of 2 by shifting a number
right or left in R2; e.g., if a number a = 0,0000111ll1 is residing in R2
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and it is desired to multiply this number by 2h, this can be effected
by a left shift of U places, which displaces the number 4 units to the

a 0.,00001111

ax 2h 0.11110000

A right shift effects division by powers of 2 by displacing the number
to the right. In a left shift R4 may be considered an extension of R2
to the left; hence a number shifting left out of R2 fills into R4 begine
ning in the least significant end of Rit. In a right shift R4 may be
considered an extension of R2 to the righﬁ and a number shifting right
out of R2 fills into R4 beginning in the most significant end of Rl.
Since R2 and R4 are so interconnected for shifting operations, these

operations may be used for separating a multiplex of numbers occupying
one word, Either a left or right shift of 40 places will transfer
completely a number from R2 to Rh.

Orders 25 and 26, a—>Ac and a—>Ah, treat their associated ad-
dresses as true numbers, The addresses of these instructions are sent
into R2 (either a clearing or an adding action) into bigit positions O
through 11. Many times in the type of problem in which we will be in-
terested there are sﬁall numerical constants of three significant decimal
digits or less. Rather than use an entire memory location to store such
constants, they can often be expressed in the address position of an
a—>A instruction. As an example consider that a quantity

ax2 + bx
has been formed and is in R2, It is desired to add a constant term k
where k = .583. This may be expressed in the a—>Ah order as

. ax2 + bx in R2
(i11) a—Ah 583  ax® + bx + (.583 = k) to R2

vhere .583 is expressed by its binary equivalent. Eleven bigits give
the same precision as 3.3 decimal digits, so any three-decimal digit
fraction may be expressed in the address position of an a—A order.
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The explanation of the remainder of the orders as given in Table I
is adequate; hence we return to the task at hand, the coding of typical
problem-examples,

The coding of a problem may be divided into two parts:

(1) The logical coding

(i1) The computer (numerical) coding
Each of these parts involves several steps. At the present level of our
knowledge and skill, it seems convenient to have both a logical and a
numerical symbol for each order. The logical symbols are used in part (i),
while the numericel symbols are used in part (ii).

The logical symbol attempts to be a descriptive abbreviatbn of the
action of that instruction; the associated memory location is preliminarily
specified by a combination of a letter and a number; the letter identifies
some group storage and the number identifies a member of that group; e.g.,
m—Ac B.4 1is interpreted as: Bring from the memory to the Accumulator
(R2), clearing the accumulator first, the number at memory location B.k.
One reason for not assigning specific numerical memory locations at the
outset of a problem is that the extent and disposition of the memory re-
quirements are not immediately obvious. A set of logical symbols is more
meaningful to the codexr than an abstract code; it expedites the actual cod-
ing and facilitates checking.

The abstract coding is merely a transliteration from the logieal
code to the numerical code. The numerical code is shown in the second
column from the left in Table I. Each order is represented by a com-
bination of two of the letters, A,B,C,D,E,F, where each letter expresses
a tetrad (4) of bigits. These are:

A 1010 D 1101
B 1011 E 1110
c 1100 F 1111

When the coding has been written in numerical form, the teletype tape
(vhich is the present means of putting the coded sequence into the memory
unit) is prepared. The actual coding examples are treated in the follow-

ing pages.



Problem 1
We propose to form the rational function y with constant co-

efficients where 5
ax + bx + ¢
ex + f

y:

Assume that x, &, b, ¢, e, and £ are in the memory at known addresses.
As previously mentioned, the memory locations are denoted by capital
letters rather than using true number addresses; e.g., the notation
A.l: & implies that the quantity a is stored in the memory at address
A.l1, The storage of the problem is:

A.l:a A.b:e
A.2:B A.5:F
A.3:c A.6:x

and vhen y is formed it is to be stored in A.T.
As a preparatory step in coding the problem, we form y by a
sequence of arithmetic operations in which each step involves only one

operation. Such a sequence is:

l. e<x
2., ex+ T
3. a°x
b, ax+ b

5. (ax + b)x

6. ax2 +bx+ ¢

ax2 4+ bx + ¢

ex + T

Te ¥ =

Since the computer can accomplish only one arithmetic operation at
a time, the above sequence is precisely the procedure that one must go
through in coding the problem, insofar as the arithmetic is concermed.

We now proceed with the coding. In the preliminary logical code,
each instruction is treated as a word rather than the actual case of
two instructions per word. The left-hand column is the code abbrevia-
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tion, and the next column indicates the operations that have taken place

in the arithmetic unit, while the last column is conveniently used for
mémory storage. During the course of the problem, a storage location
in the memory is needed to store an intermediate value of the computa-
tion. This position is denoted as B.l.
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The sequence is:

1. m—Q A.6 x to Rk
2. X A e*x in R2
3., m—Ah A.5 ex + £ in R2
k, A-—-n B.1 ex + £ to B.l
5. m—Q Al a to R4
6. ). A.6 a*x in R2
T m—Ah A.2 ax +b in R2
8. Lk ax + b to Rk
9. X A.6 (ax + b)x in R2
10. m—ah  A.3 ax® + bx + ¢ in R2
1. B.1 ¥y ax” E DXL in Rb
- 1l2, Q—mnm AT y to A.T

Note that the denominator was formed before the numerator. If the reverse
had been the case, the numerator when formed would have been stored in,
say, B.l. When the denominator was formed it, too, would have been stored
in, say, B.2. The numerator would then be brought in and the division per-
formed, Coding in this fashion, however, would have required two addition-
al instructions and one word more storage in all making the coding two
words longer than it is at present.

Instruction 8 in the above sequence, which is L4O, is a means of
communication from R2 to R, LUO shifts the entire word including the
sign from R2 to Rk, If this were not available, it would be necessary
to send the word from R2 to the memory and then from the memory to R4,
thus requiring one additional instruction.

Recall that each instruction word in the memory actually contains
two instructions. The next step of the coding is to arrange the sequence
of instructions into words. If we assume that the routine starts at
address 1 in the memory, the sequence then occupies memory locations
1 through 6 (since it contains 12 instructions, 6 words are required).

At this time, the constants of the problem are given true memory ad-
dresses, Since there are six such quantities (where each quantity com-
prises one word), memory locations 7 through 12 are allotted for these.
When y is formed it will be stored at address 13. One temporary loca-
tion is needed which is designated as 1k.



The sequence becomes:

1. m—Q 12 X 10
2, m—Ah 11 A—mn 1k
3. m—>Q T X 12
4, m—Ah 8 L 4o
Se X 12 m—>Ah 9
6. + 1k Q—mn 13
Te a
8. b
9. c

1o0. e

11. f

12, x

13. -

1k, -

Memory locations 13 and 14 are used for quantities formed within the
routine; hence they must be empty or their contents must be irrelevant
at the time the sequence is to be executed by the computer.

When the coding is in final form such that the input teletype tape
is to be prepared, one has the instructions reduced to numerical form
and has available the true numerics for all of the involved quantities.

Assume, for example, that

a = .075329 e = .83291
b = .12391 = .69736
c = .017326 X = .32915
The final coding is:
1. EBO012DA010 8. 0.123910000
2. BAO11DCO1lL 9. 0.017326000
3. EBOO7DAO12 10. 0.832910000
4k, BAOOSDEOLO 11. 0.697360000
5. DAO12BA009 12. 0.329150000
6. DDOL4EC013 13. 0.000000000

T. 0.07532900 14, 0.000000000
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Problem 2

We modify the preceding problem with a slight logical twist.
Assume that the calculation of the rational function y is a part of
some larger problem and that x has been computed as part of a pre-
vious routine and stored in some memory location other than the one
assigned to it (A.6 in the preceding example), Indeed, there may be a
series of such x values., Further, when y is computed it is to be stored,
not in A.7, but at some other memory location where it will be used in
subsequent parts of the calculation. In other words, we ask what modi-
fications must be made to the sequence of instructions in Problem 1 in
order to render it more flexible and assimilable in a larger problem.

One possibility is to reserve memory location A.6, not for storing
X itself as was done earlier, but instead to store the address at which
X may be found. A.6 does not contain X, but it does tell us where in
the memory x is located. Similarly, we may use A.7, not to store y it-
self, but to contain the address at which y is to be stored when formed.

Suppose then, as a preceding part of some problem, x has been com-
puted and stored in, say, memory location M.,l; and we wish to use the
routine outlined in Problem 1 to calculate the rational function given
there with the stipulation that y should be stored in N.1.

It is necessary to place the address M.l in location A.6 and ad-
dress N.I in location A.7. Thus, in the course of the calculation,
when x is required, A.6 is consulted, giving the information where X
is actually located. Finally, A.7 provides the information where y is
to be stored, namely in N.l. Thus, this rational function routine may
be used several times in the course of a large problem; each time, how-
ever, it is necessary to provide the corresponding address for the lo-
cations x and y.

Making these changes in this routine leads to the simplest illus-
tration of using the substitution order. Without attempting to Jjustify
the utility of it at this point, we proceed with the simple example.

Instructions 1 through 6 of the following code sequence are
the additional instructions required for the substitutions. The function
of these first instructions is to provide appropriate addresses to sub=-

sequent instructions that involve x and y. Recall that x resides at
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location M.l, and the numerical value of M.l is at A.6. The preliminary
instructions thus involve taking the numerical quantity M.l from location
A.6 in the memory to the arithmetic unit. From there it may be inserted
into the address part of the instruction that first involves x. This

is accomplished by the substitution order. Repeated application of this
order introduces this same address into all the other instructions that
require it. In the example observe that Instruction 8 of the code is the
first instruction referring to x and requiring the particular address
where x resides. Two instructions, here taken to be 1 and 2, are re-
quired to provide Instruction 8 with the appropriate address. These are:

(i) An instruction to transfer the contents of A.6, namely the

address of x, to the arithmetic unit;

(ii) A substitution order which has the effect of transferring

this address of x into Instruction 8.
Inasmuch as this address is also required for Instructions 11 and 15,
two more substitution orders, Instructions 3 and 4, are needed for them.
Finally, the address referring to the location of y is needed for In-
struction 18; two more instructions, 5 and 6, accomplish this, thus ac-
counting for the six preparatory instructions.

At the start of the problem, Instructions 8, 11, 15, and 18 have
blank addresses. After the control has proceeded through Instruction 6,
all of the instructions have the proper addresses.

The storage is as before, with the changes as noted above,

A.l: a
A.2: D
A.3:
Ab4: e
A.5: T
A.6: M1
A.7: N.1
B.1:
M.1l: x
N.1:

[p)



The coding is:

1. m—Ac A.6 M.1 to R2

2. S—nm 8 M.1 to (8-19)8
3. S—m 11 M.1 to (8-19)11
4, S—m 15 M.l to (8-19)15
5. m—Ac A.7 N.1 to R2

6. S—m 18 N.1 to (8-19)18
7. m—Q Ak e to R4

8. X [ ] e.x in R2

9. m—Ah A.5 ex +f in R2

10, A—m B.1l ex + £ to B.l
1., m—Q [ ] x to R4

12, X A.l a*x in R2

13, m—Ah A.2 ax + b in R2

1k, 14O ax + b to R4

15. X [ ] ax® + bx 1in R2

16, m—Ah A.3 ax® + bx + ¢ in R2

2

7.« B.1l y ax :xbf ; € in Rk

18, Q—mn [ ] ¥y to N.1l

In coding the problem into word form, the instructions into which
addresses are being substituted may be either the left-hand or the right-
hand instruction of a word. In Table I, Orders 19 and 20 account for
this., They read:

"19, S—m Replace the address (bigits 8-19) of the left-hand
order of m by the 12 bigits 8-19 in R2.

20. S—m' Replace the address (bigits 28-39) of the right-hand
order of m by the 12 bigits 28-39 in R2."

Since it is desirable to substitute into either a left-hand or right-
Hand instruction from en address which has been brought into R2, the fol-
lowing custom in storing addresses is adopted: Consider an address x as
an integer which may assume values from O to 1023. Rather than storing
% store (x), = 2%+ 27¥%,
where (x)o is called the memory position mark x. Since x is an integer,
when (x)o is brought into R2 the addresses are so positioned that either

S—>m or S-—m' may be used as required.



The instructions are now paired into words.

-34-

There are 18 instructions

or 9 words which, if the coding starts at word 1, give instruction-words
from address 1 through 9. The numerics then start with address 10 and go
through address 17.

1.
2.

3.
L,

9.
10.
11.
12.
13.
1k,
15.
16.
i7.

m—Ac 15
S —m 6
m—sAc 16
m—Q 13
m—Ah 1k
m—>»Q [ ]
m—Ah 11
x [ ]
+ 17
a
b
<
e
£
(M.1)
(N.1),

S—n'
S—m
S—m!
X
A—n
X
Lo
m—>Ah

Q—nm

L]
17
10

12

L]

The storage has been changed to include the appropriate values
(M.1)_ end (N.1)_.

In the final coding, Instructions 4', 6, 8, and 9' may initially

be given any address as this address is irrelevant (the correct addresses
are supplied during the course of the computation). For uniformity, the
plan of initially setting these addresses to O is adopted.



Problem 3

The numbers 815 8y a3 3

are stored in the memory. It is desired to form the following product

ceo By and the numbers bl, b2, b, *°° bn

sum
n

1};1&1})1 = albl + a.‘,ab2 + ece + anbn
The storage of the a's and b's is arranged so that
A.l:al, A.2:a2 oo A.i:ai s A.n:an

and

B.1l:b., B.2:b, *** B.i:b, <+ B.n:b
1 n

2 i
That is, the a's are stored consecutively in one section of the memory
and the b's are stored consecutively in another section. The sum, when
it is formed, is to be stored in the memory at address C.l.

If n =1, the coding is trivial; it is:

1. m—Q Al a, to R4+
2. X B.1 albl in R2

3. A—nm C.l to C.1

8,0y
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The problem may be extended to n = 2 by adding the followlng instructions:

4y, m—Q A.2 a, to R4

5 X B.2 a2b2 in R2

6. m~—Ah C.l albl + a2b2 in R2

T. A—mnm C.1l a.b. + a b, to C.l

171 22

One method of extending the coding to the general case of n elements
in the sum is to have the first three instructions followed by (n - 1) re-

petitions of Instructions 4 through 7 with the appropriate A.i and B.i

being used in place of the A.2 and B.2. This method becomes very costly

with respect to available memory space as n becomes large, since each in-

crease of n by 1 increases the code by four instructions.
The coding for the general case n is:

1, m—Q A.l a; to Rh4

2. X B.1l albl in R2

3. A~m C.1l albl to C.1

by, m—Q A.2 a, to R4

5 X B.2 a2b2 in R2 ,

6., m—Ah C.l a.lbl + a2b2 in R2

T A—m C.l a.b. + a b. to C.1l

171 22



hi-k.
bi-3.
hi-2,
hi-l.

h’n-h'
h'n"3o
II»n-Q .
hn-1.
in,

m—Q

m—Ah

A—m

m—Q
X

m— Ah

A-—m

STOP
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A.3 a3 to R4
B. a.b in R2
3 3°3
c.1l albl + a.2b2 + a3b3 .in R2
c.1l albl + 32b2 + ajb3 to C.1
A.i a; to Rb4
B.1i a.b in R2
ii
C.1l albl + a2b2 4+ ese + aibi in R2
C.l a.lbl + 8.2b2 4 see +aibit0C.l
A a_ to RL
n
B.n ab in R2
nn n
c.1l albl + a.2b2 + **c + anbn = gj_aibi in R2
o i=o
C.1 ; aib. to C.1l
i=1 -1

By using this method, 4n instructions are needed. If n is large,
say 50-100, then 200 to U400 instructions or 100 to 200 words of coding
are needed.

Note, however, that the only changes in the coding for each i are
the changes in the addresses of the instructions (m—Q A.i) and (X B.i),

and as i is increased by 1l the addresses of these two instructions are also

increased by 1.

If by some means the computer can be directed to go repeatedly through

the coding and at each traversal to increase by 1 the addresses of the in-
structions (m—Q A.i) and (X B.i), the length of the total coding can be

shortened greatly.

By means of the transfer orders a section of the coding

can be traversed as many times as is desired; and at each passage through

the coding the instructions (m—Q A.i) and (X B.i) are brought into the
arithmetic unit and 1 is added (in the correct address position) to each

of them.

It is, of course, necessary to have available in the memory the



appropriate 1 to increase the addresses. It may be either 1 x 2'19,

1x 2% or, in fact, both may be needed., At present we store 1 x 2

in C.2, and fix upon m later in the coding. The sequence is:

1. m—Q Al a, to R4

2. X B.1 albl in R2

3. A—mnm C.l aibl to C.1

h, m—Qq A.2 a, to RU4

5. X B.2 ab, in R2

6. m—>Ah C.l a,b, + ajb, in R2

T. A—>n c.1 albl + a2b2 to C.1
8. m—Ac L (m—Q A.2) to R2

9. m—Ah C.2 (m—Q A.2 +1) in R2
10. A—n N (m—Q A.3) to k&
1l. m—Ac 5 (X B.2) to R2
l2. m—Ah C,2 (X B.2+ 1) inR2
13. A—m 5 (X B.3) to>5
1k, T L

The first seven instructions are the same as before., Instructions
8, 9, and 10 bring Instruction 4 into the arithmetic unit, add 1 to its
address, and again store the instruction in 4, its correct location.
Instructions 11, 12, and 13 do the same to Instruction 5. Instruction 1k
transfers the control back to Instruction 4 to traverse that section of
coding again (the necessary addresses have been increased by 1).

The above sequence is not yet complete as it does not provide a
means of stopping the cyclic process when n is reached. By changing
the transfer order to a conditional transfer order and adding the follow=-
ing instructions, we introduce a means of knowing when the cyclic process
is finished. The number of traversals through the cyclic process is kept
track of by keeping a count in, say, location C.3, and for each passage
the count is increased by one and also examined to determine whether the
desired value has been reached. It is this examination which is performed
by the conditional transfer order. To initiate the count we store 2 x 2",
Since the first two terms of the product sum albl + 32b2 are formed be-
fore the counting process is initiated, these two terms are included in
the count by starting the count at 2. When the count reaches n, instead
of transferring back to Instruction U4 the control goes along the other
branch of the conditional transfer instruction, eand in this case terminates

with a stop order.
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The additional coding is added, starting at Instruction 1k.

1%, m—Ac C.3 2x2™ toRe

15. m—sAh C.2 (2+1) x 2™ = 3 x2™ inR2

16. A—m  C.3 3x2™® tocC.3
n x 2™ is needed; it is stored in C.lk.

17. m—Ac C.4 nx2™ toRe

18. m—sAh- C.3 nx2®.3x2™ inRe

19. ¢ 4

20, STOP

Note that the count in C.3 is increased just before it is subtracted
from n x 2”7, When the count becomes equal to n x 2™, the subtraction
gives O (vhich is interpreted as positive) and the conditional transfer
sends the control back to Instruction 4 to finish the nth term of the pro-
duct sum. The next time through the sequence the count 1s increased to
n + 1; the subtraction now gives a negative difference; and the conditional
transfer is not effective. The control then proceeds to Instruction 20 and
stops as is desired. |

The coding is 20 instructions, which is 10 words. We start the se-
quence at address 1l; hence it occupies words 1 through 10, Four words
of storage are needed during the course of the problem; for these ad-
dresses 11 through 14 are assigned. Let us set n to 100 and store the

a;'s in 16 through 115 and the b, 's in 116 through 215.

The sequence is:

l. m-—Q 16 X 116
2. A-—n 11 m—Q 17
3. X 117 m—Ah 11
L, A—omn ‘ 11 m—> Ac 2
5. n——Ah 12 A—n 2
6. m—Ac 3 m—Ah 15
7. A—mn 3 m—Ac 13
8. m—Ah 12 A—sm 13
9. m—sAc 14 m—s>Ah- 13

10. ct 2 STOP

11. -

12, 1x2°3

13. 2 x 2%
. nx23 - 100 x 273
15. 1 x 2~19



16.

8
17. a2
115, 8400
116. b
1
117. b2
215. b100

In words 12 and 15, 1 x 2739 ana 1 x 2717 are stored. These are
both needed as the two instructions that have their addresses increased
are in opposite sides of their respective words.

The code sequence is reduced from 200 words to 15 words by being
able to use the same section of code repeatedly and altering addresses
6f the instructions‘as the control proceeds through the code.

The use of substitution orders in this problem was purposely avoided.
As we shall presently see, the change in addresses could have been accom-
plished more efficiently by thelr use. However, our purpose is not neces-
sarily to illustrate the shortest method for coding a sequence but to
illustrate many methods so that a broad foundation may be laid for subse-
quent work.

We adopt the nomenclature set forth by von Neumann and call any such
repetitive process (whether it be the above, or a solution of a partial
differential equation by successive approximations, or numerical integra-
tion of a function by some stepwise method, or other iterative procedures)
a simple induction.

We have now reached the point where any further examples have a
great enough complexity to demand a systematic approach. This leads to
the discussion of the flow diagram.
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Flow Disgram

The flow diagram, as the name implies, indicates the course of the
control through a coded sequence of instructions. As previously men-
tioned, the flow diagram represents in a concise way

(i) The purely mathematical operations

(1i) The various logical steps and decisions together with a pre-
cise indication of the corresponding criteria
(iii) The contents of the relevant parts of the memory where the
question might naturally arise

To facilitate the interpretation of such diagrams and to avoid
ambiguities, it is convenient to have a set of conventionalized symbols
assoclated with these flow diagrams.

The direction of motion of the control through the flow diagram is
indicated by lines oriented with arrows as in Figure 1., A simple in-

duction is denoted by a closed loop as in Figure 2 and is called an
induction loop.

. L

Figure 1. Figure 2.

Any non-looped segment of the flow diagram is described as a linear
section, while a looped segment is said to be non-linear.

By themselves the above lines are incomplete as they do not show
the arithmetic or logical processes that are involved. The arithmetical
operations are described in the operation boxes. Figure 3 shows the
symbolization of the operation box.

|

Description of
—® ] Arith. Oper. ’

Figure 3.



The operation box has one entrance and one exit for the control. The

contents of the box indicate the arithmetic operations and transfers
of information among the various storage locations that are to take
place when the control reaches that stage. Individually, an operation
box may be treated as a linear portion of the flow diagram, although
it may be an element of an induction loop. Each operation box of a
flow diagram is identified by an Arabic numeral.

The induction loop as shown in Figure 3 is not complete, as it
shows neither a point of entrance nor a point of exit.

To show the former, two or more paths of a flow diagram merge into
a common continuation.as shown by the heavy lines of Figure 4. These
mergers are not unique to an induction loop for they are also useful

where several linear sequences have a common continuation.

'

Figure k4.

In order to effect an exit from an induction loop, use is made of
a second type of box called the alternative box (conditional transfer

box). The alternative box has one entrance, but two exits which are

labeled the positive (non-negative) and the negative exits. This box
specifies the criterion by which the control follows either one exit or
the other, The decision is usually based upon some mathematical ex-
pression that is first formed in the Accumulator. 1In the coding, the
conditional transfer instruction is given immediately after the dis-
criminating quantity has been formed in the Accumulator. If the quan-
tity is positive or O, the control proceeds along the so-called posi-
tive branch, whereas if the quantiiy is negative, the negative branch
is followed. By convention, the pasitive branch corresponds to an

interruption of the sequence and a transfer of the control to the in-

“hi-

struction pair specified by the address part of the conditional transfer,

On the negative branch the control proceeds sequentially without inter-

ruption. The alternative box may be associated with a linear sequence
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of a flow diagram as well as with an induction loop; i.e., a linear
sequence may divide into two sequences, the choice of which may be
made by an alternative box. Figure 5 illustrates an alternative box
(emphasized by heavy lines) used in a linear sequence, and also in
association with an induction loop. The alternative box is identified
by an Arabic numeral, as is the operation box.

3
=9
1 2 + ' | 2 . — out
in
i 4
TN +
Bt
-
Figure 5

Since an alternative box is the means of exit from an induction
loop, it is the alternative box that indicates when the loop has been
traversed the appropriate number of times. The quantity upon which the
conditional transfer instruction is to act should then remain positive
until the loop has been traversed the correct number of times and then
this quantity is to become negative. (It may happen, at times, that it
is more advantageous for the negative branch to return through the loop,
with the positive branch providing the exit.) As an example:

If we are doing an iterative process to spproximate some function-«
say a trigonometric function, square root of a number, or some other such
scheme-~then we know that the error in the approximation to the function
is less than the difference between any two successive approximations.

We tben decide upon the accuracy, say 0, for the approximation to the
function. If we denote an approximate by Si’ then the desired accuracy
is obtained when Si - Si+1
conditional transfer acts upon the quantity Si - Si+1 - 0, this quan-
tity will be positive until the desired condition obtains.

An induction loop may involve a process in which the loop is to

< J. Therefore, in such a process, if the

be traversed a fixed number of times. For these processes a simple

counting procedure is used to determine the termination of the induction.
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In the initial step of the induction the count is set to some starting
value (usually O or 1). At each traversal of the loop the count, which
may be called i, is increased by 1. An upper limit to the count, which
is called I, is chosen, such that the quantity I-i first becomes
negative when the loop has been traversed the correct number of times,
hence satisfying the required conditions.

In a linear sequence the alternative box often indicates a single
quantity which is the result of previous computation where the course
to be followed depends upon this quantity being positive or negative.
Figure 6 indicates several alternative boxes with their contents.

- 4=
. |si-sie1 -8 1-1
ol v [ + +
—
<}
Figure 6.

By means of an alternative box an induction loop may be traversed
as many times as desired and then the control is advanced to the next
stage of a calculation. Each time the induction loop is traversed the
control essentially repeats a fixed sequence of orders. At each tra-
versal, though, the control operates on a different set of numbers and
either sends the results to fixed memory positions each time, or else
sends the results to locations dependent upon the set of numbers being
operated upon. The operation boxes in an induction loop should contain
relatiOnships that are valid in general for any traversal through the
loop; e.g., consider the iterative process for the square root of a
number u where u< 1 (we defer any mathematical discussion until later).
The first approximation Zo is chosen equal to 1, and the successive

ones given by

Z =1
o
-1
z, = 27(z  + u/Zo)
-1
Z, = 27°(z; + u/Zl)

-1
Z;g = 2 (zi + u/Zi)
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The successive iterates are to be done in an induction loop where Zo
is an initial step apart from the loon. In the first traversal of
the loop

-1,.
Z, = 2 (zO + u/ZO)
is computed. The next traversal computes
-1
Z, = 2 (zl + u/Zl)

the third traversal Zq, and so on, How, then, with one set of equations
in an operation box is the desired notation indicated for each traversal?
This is done in the following manner:

The contents of the operation box do not represent any specific tra-
versal of the loop; hence an index is adopted that represents the general

traversal; e.g., for the square root the operation box would contain

i+l

This index is the variable of induction that describes the inductive pro-

-1
Z = 2 (zi + u/Zi).

cess, for if

z = 1
o
Z = 2’1(2 + u/z,) (i = 0,1,2.+¢)
i+l i i ’=s
lim Zi+l =“\/Gf

i-m®
then the process in question is completely described. Although the
operation box does give the general expression, a means is needed for
ascribing the appropriate value to the variable of induction for each

traversal, This is done by the substitution box, Its function is to

bring into agreement the notation of all quantities in which the vari-
able of induction occurs with the notation that correspcnds to a speci-
fic traversal of the loop. In other words, the substitution box makes
the notation agree with the set of numbers upon which the succeeding
boxes act during the forthcoming traversal of the loop.

A substitution is indicated as a —si. It is interpreted as
meaning that during the forthcoming interval and until a new substitu-
tion 1s made, everyvhere that i occurs it is to be replaced by a. This
first case is obvious enough. However, the substitutions are not re-
stricted to constants replacing the variable of induction. In fact,
the substitution often contains some function of i; e.g., the substitu-
tion of i+l—» i 1is used frequently. In the instance where the variable

1 occurs in both members of the substitution, it may conveniently be



interpreted in the following way: For the i's that occur to the left
of the arrow the substitution from the preceding interval remains valid.
The quantities on the left of the arrow will then not contain i anywhere
in their expression and the substitution is made as described above;
e.g., suppose that a substitution a—i has been indicated. After a
sequence of boxes a new substitution 1i+l-—1i is then indicated. First
substitute a (the value of the immediately preceding substitution) for
the i that occurs to the left of the arrow. The substitution now reads
a+tl—>1 and we then proceed as in the above simple case. The next time
the control returns to this substitution box it would be interpreted as
(e+l) +1 = a+ 2-—i.

Note that substitution boxes do not involve any arithmetic operations
or transfers of numbers. They merely make changes in notation (trans-
formations) such that the flow diagram indicates each stage of the compu-
tation in a precise manner. The substitution box 1s identified by a
lower case Latin letter.

We continue with the square root example and illustrate the use of
substitution boxes. The flow diagram for the process is:

| 2 3

b
Zo=Ito Al |01 Zi4 =27(2 +4)10 Al —[Zi-Zi4| |

c 1
§i+l-*-i

Figure 7.

(i) oOperation box 1l initiates the induction by setting ZO =1
and storing it in A.1l
(ii) substitution box b indicates that everywhere in the following
boxes up to the next substitution box wherever the variable of
induction i occurs it is to be replaced by O.

(iii) As a result of box b, operation box 2 indicates that
-1
z, = 2 (Zo+u/Z0)
and Z, is stored in A.l. The alternative box, box 3, indi-

1
cates that the conditional transfer is to act upon |zo -7 I- o.

1
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(iv) Box ¢ is a substitution box of the second type discussed in the
preceding paragraphs, namely the substitution i+l—i. In the
interval leading into this box the substitution O0—1i was
valid. We replace the i to the left of the arrow by 0. The

substitution is then 1—i. Operation box 2 now indicates

Z2 = 2

and alternative box 3 indicates IZl - Z2| - 0. When substitution

'l(Zl + u/Zl)

box ¢ is again traversed, it will indicate 2-—1i, and the iter-

ative process is advanced another step.

With the aid of the substitution box we have been able to describe
completely and precisely the desired inductive process.

Throughout the flow diagram many symbols and notations are introduced
(such as the variable of induction) that are relevant only in the flow
diagram and often for only isolated parts of the flow diagram. These
quantities are usually without any physical meaning apart from the
process that they are describing in the flow diagram., These quantities
are called bound variables. The Z's of the square root routine are such
a variable. In passing from one section of the flow diagram to another
these bound variables may take on new significance in describing some
other process (such as the variable of induction i in the induction loop).
The concept of the substitution box is extended to cover substitutions
involving any bound variables.,

There is one other box that is an integral part of the flow diagram;
it is the assertion box. Its usefulness stems from the fact that at cer-

tain points of the flow diagram, bound variables may acquire a fixed
value with a fixed meaning; e.g., in the square root diagram when

Zi+l - Zi 1 =\V/;; where u is the
number for which the square root is being extracted. Whenever such con-

< 0, then to sufficient accuracy Z,
i+

ditions are attained one may state this relationship by means of an
assertion box. Hence, if we again consider the flow diagram of the square
root routine and consider the negative branch which terminates the process,

we have:

3 i
- |2 -2y | -8 Vu =2y [

?4_

Figure 8,
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When the control completes the process and proceeds along the negative
branch, then Z; 1 is the desired'\/G. This fact is stated in the
assertion box. The assertion box is identified by a crosshatch (ﬁj).

The discussion of the various boxes is completed by discussing the
storage boxes. There are two kinds of storage with which we are concernmed.,
In the first place, there will be a set of numbers that originate with
the problem and will remain unchanged throughout the course of the problem,
The storage necessary for this type of quantity is called static storage.
The storage requirement that originates from computation within the prob-
lem is called dynamic storage. We are not concerned here with the static
storage as it 1s unchanged throughout a problem, However, at certain
points along the flow diagram it is convenient to indicate the contents
of the dynamic storage concerned with the local computation about to be
performed. The storage boxes are connected to the flow lines of the dia-
gram by dotted lines. (These boxes are not an integral part of the flow
diagram.) In Figure 9 the flow diagram for the square root routine. is shown
complete with storage boxes.

AL Zg Al Z; A.l:Z, A
I ' 2 | |
| | : b : : 3_ 3# :
Z5 | to Al 0 ' Z-,+|=2"(Zi+ %)TOAJ -l IZrZH.l‘-S -'P-\/J'=Zi+|'—|—>-
C +
i+ =i -
Figure 9.

The examples indicate a complete set of storage boxes indicating all
relevant changes. In actual practice, however, the procedure will be to
indicate storage boxes only when they are useful and needed for clarity.
The substitutions indicated by the substitution boxes are also valid
for the storage boxes. Consider Figure 9: on either side of the substi-
tution box b, a storage box is indicated. The storage box to the left of
Box b shows that A.l:Zo, while the box to the right of Box b shows that
A.l:Zi. If, however, O is substituted for the i as is indicated by Box b,
the two storage boxes agree, as they should at this time. Similarly, the
storage box immediately to the left of Box 2 is brought into agreement
with the storage box to the right of Box 2 each time substitution box ¢

is traversed,
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Let us recapitulate at this time:
(1) The operation box indicates the arithmetic operations and the

transfers of numbers that are to take place. In the arithmetic
operations the relationships are expressed by equality signs;
ie. y= ax® + bx + ¢, ¥y = £(x,t), or some other such expression.
The quantity that is being formed is always written as the left
member of the equation while all of the known values are included
in the right member of the equation. The operation box has an ac-
companying identifying letter or number. Arabic numerals are used

to identify such boxes.

(i1) The alternative box is associated with the conditional transfer.

The conditional transfer acts upon the quantity or quantities in-
dicated in the box; and the control follows the positive exit or
negative exit, according as the transfer is effective or not. ‘The
address of the conditional transfer instruction must be the address
corresponding to the positive exit of the box; and immediately after
the conditional transfer instruction is the sequence that the nega-
tive branch will follow.

(i1i) The substitution box indicates changes that occur in bound variables.

These are changes in notation (or transformations, if you like) and
they do not involve any arithmetic operations or transfers of numbers.
The substitution box is usually concerned with the variable of in-
duction in an inductive process; and by attributing surncessive values
to the variable of induction wherever it occurs in the general ex-
pression of the process, the induction is completely described. The
contents of the substitution box are indicated with an arrow, such

as a—>»i where this is read as substitute a forii.

(iv) The assertion box states an existing condition. At certain points

of the diagram a bound variable may acquire a fixed value., The asser=

tion box merely states this fact.

(v) The storage box indicates the relevant storage locations of the quan-

tities needed for computation in a sequence of operation boxes.

We have now completed the discussion of the important components of

the flow diagram. There are certain refinements to the flow diagram that

will be introduced as the need for them arises in the forthcoming examples.
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Problem k4
We propose to extract the square root of a number u by means of
the iterative process

Zi+l

lim Z;.q Va
i—o00

2"l(zi + u/zi)' (i = 0,1,2 +«¢)

Since the computer requires that all numbers be in the range -1 <x<1,
u is restricted so that O Su< 1. At each step of the iterative process
the division u/Z1 must be performed. Since u <Z; must hold for this
to be a legal operation, it must either be shown that this condition. does
hold or else the necessary adjustments must be made (by coding) such that
the condition is true.

We propose to show the former as follows:

Zi+l

Zi - A = zi/z + u/az:L -Ju

2‘1(zi + u/fz,) (Eq. 1)

1]

2
(1/2zi)(zi - 2Z\/u + u)

2
Zi1 -\ (1/221?(21 - Ju) (Eq. 2)
Assume Z_ > 0, then from (BEq. 1) al1 Z;> 0. Since all Z,> O, the

right member of (Eq. 2) is positive; hence the left member is positive and

Z; 1> Vu > u.
It Zo:>'u, which is done by setting ZO = 1, then all

Zi:> u

and the quotient ’u/Zi will not exceed the allowed limits of the computer.

In choosing Z0 =1, 2

1 is formed as

-1 -1
Zl = 2 +2u

which is used as the first step of the inductive scheme.

We must ascertain which Zi+l is to terminate the induction. This

could be done by determining the number of iterations necessary to com-

pute the worst case, namely u = 2-39

» and then traverse the induction
loop that fixed number of times, irrespective of the size of u. Let us,

however, do something slightly different.



We know u to within an error Au where
Du = 27 o W

as this is an error introduced by the physical size of the computer
The error VAL in determining Vi is found as

a +A)°
u+QAu = u+ 26N

neglecting second order terms. Hence,

Au
A\/ﬁ=§]ﬁ-

u +Du

1]

For our case

€20/ = 2"/, u#o

For u =0 we have

Au = B&)2
e, =B/ = 27

when u=0 to 2')'Ll when u= 1.

The iterative process should certainly stop whenever
A< '
Zig ~VBS ar

We propose to show that whenever
-21

The error €u varies from p=20

- <
2y =22
then
- <
Z i \A._l ~ eu
and the iterative process is complete.
First let us show that

Zi+l "\/‘_15 1/2(2'1 "\/a)°

Since all -

Zi 2\/‘& >u
then
u/Zis\/ﬁ
z, + w/z, < 2, + /a0
1/2(z; + u/z,)< 1/2(2; /)
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The left-hand side is by the definition of the iterative process equal

to Zi+l; hence

Zin S 1/2(zi +/1)
2, ~VES1/2(2; -/R)

From this it follows that
- < -

) Vu T25 - 2400

If the iterative process is terminated when

) < .21
2y =230 =%

~Jis<e2#

then

2141
and adding these two inequalities gives

z; ~/Jus 2™20,

Hence, from (Eq. 2)

2 < .-ko
(Zi -/I) 2zi(zi+l -Ju) =2
we define '
€, = 2,,, -/
then
27.€ < 2"1*0.
ii
Since
\/ﬁ/zi< 1
27, (fifz, )€ < 2™*0
i 17317
and
< =41
€ =<2 [/Aa.
This completes the proof, for if the induction is stopped when
=21
- <
23 =232
then
-41
- = <éE =
Ziqg "V = €, € = 27/A

as 1is desired. v
Since the flow diagram has previously been discussed in detail,
we turn directly to the coding which is done with the aid of the flow

«diagram.
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Al: ZH‘I

| |

222" +27 to Al | Zip =272 + %) to Al
|

>
I
3
]
+
W

+

G =2

el
Zi—Zj4| 2

T

Figure 10,

Storage locations are needed for u, for the number 2‘1, for the
number 2-21, and a temporary location for intermediate results., These

are designated as 21
B.l: u B.3: 27

B.2: 27t B.k:
and the Z's are stored in A.l; hence utilizing the same location for
the successive iterates.

In the initial coding each box is treated independently. The coding

is:
Box 1,
l. m-—sAc B.l u to R2
2, R 1 2'1(u) ~in R2
3. m-—Ah B.2 2 = 2~1(14u) in R2
L, A—m  A.L Z,  to Al
Box 2.
l. m—Ac B.l u to R2
2. = Al u/zi in Rb
3. Q—sm  B.4 u/zi to B.k
4, m—sAc B.k u/zi to R2

5. m—sAh- A,1l u/Zi - Z, in R2



-1 .
6. R 1 (Zi+l - zi) =2 (u/zi - zi) in R2
- )
T. A-—mnm B.4 N Zi+l -ii to B.k
8. m—Ah A.l Zi =2 (u/zi - zi)+ z, =2 (u/zi + zi) in R2
9. A—n Al Z,,, toA.l
Box 3.

1. m—Ac- B.h Z., - 2. . to R2

i i+l 21
2. m—Ah- B.3 Zy =20 =2 in R2
3. C Box 2,1
4k, Stop

In Box 2, observe how Zi+l is formed. It is known that Zi<: 1
and u/z, < 1, but it does not follow that Z. + u/Zi<< 1. 2, , could
be formed by first obtaining e'l(u/zi) and then adding e'lzi to it.
This, however, would require additional orders as 2-12i would have to
be formed and stored before proceeding to 2"1(u/Zi), in order that the
addition of the two terms could take place at this time. It is more

efficient to form Zi+ in the following way: since Zi and u/Zi

1
are both positive, the difference

u/zi -2, < 1.
Therefore, the difference is formed and shifted right 1 to obtain
-1
Observe that
-1
Zi,q =%y = 2 (u/Zi - zi). (Eq. 3)
If Z; is now added to both members, then

-1
Ziq = 2 (u/zi - Z;) + Z;

I

-1
2 (u/Zi + Zi)'

Equation 3 above expresses the negative of the quantity Zi - Zi+l

desired for the discrimination in Box 3. Zi+l - Zl is stored in B.h4

so that it will be directly available for Box 3. In fact, if Zi+l had
i)

Zi+l could not have been stored in A.l, as Zi would then still be

needed for Box 3. This would mean that Zi+l would be sent to B.4 until

the completion of Box 3 at which time it could be sent to A.l. Again,
this would have required additional coding.

not been formed by first forming and saving the quantity Zi+l -2
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In pairing the instructions into words, we start the coding at
Word 1. No connecting instructions are needed between the boxes.
The total number of instructions is:
Box 1l: U4 instructions
Box 2: 9

Box 3: 3
and a "stop" instruction : 1
total : 17 instructions
which require 9 words. Five words of storage are needed which account

for Words 10 through 1k, The sequence is:

l. m—Ac 10 R 1
2., m—Ah 11 A—mn 13
3. m-—Ac 10 + 13
4y, Q—om 14 m—Ac 1k
5. m-—Ah- 13 R 1
6. A—m 14 m—Ah 13
T A—mn 13 : m—sAc- 1k
8. m—sAh- 12 c 3
9. Stop
10. u
., 2
12, 22
13.
1L,

The conditional transfer instruction in the right half of Word 8
transfers to the first instruction of Box 2. When the instructions are
paired, the first word of Box 2 becomes the left~hand instruction of Word 3;
hence the conditional transfer instruction is the transfer to the left-hand
instruction of Instruction-pair 3.

Before discussion of Problems 5 and 6, on the conversion of numbers
from one base system to another, some remarks should be made on the form
of input and output data. Although the computer operates with numbers ex-
pressed in the binary base, the human operator is apt to find that he has,
through years of exposure, become firmly bound to the decimal number sys-
tem. It is then certainly to the advantage of the operator to find some
means of communlcation to and from the machine that can be expressed in
decimal numbers. Before discussing the problems related to such a scheme,

we first meke a few remarks on the input-output problem in general.



BEven though we are at present mainly interested in input and out-
put data in the decimal number system we do not wish to exclude input
and output as true binary numbers. In fact, whenever any data is printed
for subsequent consumption by the computer it should obviously remain in
the binary base; furthermore, it is both convenient and simple to have
instruction words coded in their true binary form. As we have more ex-
perience with the computer and with binary numbers, our dependence upon
the decimal system may wane, and we may find ourselves operating solely
with binary numbers. We first consider the input-output in the binary
system and from that develop the scheme for handling decimal numbers.

It is not practical to have the keyboard of the tape punch or the
type bars of the printer operate in true binary notation, for this would
mean that forty characters would have to be printed or punched per word;
and even though one needs to recognize only O's and 1l's, it is difficult
to examine words forty characters long. Let us arrange the bigits into
groups of, say, three or four bigits and specify a character to identify
each unique combination. We choose groups of three or four since these
correspond to eight and sixteen unique characters, respectively, which
are each fairly close in number to the usual ten characters in the deci-
mal system. Such choices shorten the word length from forty bigits to
either thirteen or ten characters, accordingly. For the present discus-
sion, we fix upon groups of fours {(tetrads) and identify each tetrad by
a single character. Since sixteen characters are needed, we are really
operating in the hexadecimal (16) number base. For those tetrads that
have single decimal digit equivalents, the corresponding decimal charac-
ters are used to identify them. The remaining six tetrads are identified
by the letters - A,B «¢o F, Table II shows the hexadecimal characters
with their binary tetrad equivalents.

TABIE II
0 0000 L 0100 8 1000 c 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 001l 7 0111 B 1011 F 1111

The keyboard of the tape punch and the type bars of the page printer
have sixteen characters. In tape preparation, the conversion from hexa-
decimal to binary is effected directly by the punching equipment. When
one of the sixteen keys of the keyboard is depressed the punch is set up
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so that it punches the binary equivalent on the tape (in a tetrad of
bigits). Similarly, when printing is desired a tetrad of bigits actuates
the type bars and the hexadecimal equivalent is printed.

To return to the decimal input-output problem, we have at our dis-
posal the first ten ordinal characters of the hexadecimal notation which
are identical to the ten decimal characters 0,1 «++ 9. To prepare a tape
of decimal information, we depress the keys corresponding to the individual
decimal characters of the desired number. The punch converts the decimal
characters into tetrads of bigits which give a "coded-decimal" representa-
tion of the number. The coded-decimal form of a number is not identical
to the number's true binary equivalent. For example, consider the decimal
number 512, Its coded-~-decimal representation is 0101 0001 0010 while its
true binary representation is 1000000000. There is a very simple algorithm
by which we can convert the coded-decimal number into its true binary equi-
valent. The output problem involves the converse. We need an algorithm by
which a true binary number can be converted into its coded-decimal equi-
valent so that the printer may produce the number in its decimal form. We
consider first the input problem--the conversion of a coded-decimal number

into its true binary equivalent.

Problem 5

Since a tetrad of bigits is used to represent a single decimal digit,
and since the sténdard word length is forty bigits, each word is comprised
of ten tetrads. The first tetrad on the left is used to indicate the sign
of a number, This means that the computer is able to store a nine digit
coded-decimal number with its sign. In following the present sign repre-
sentation for binary numbers, the tetrad 0000 designates a positive num-
ber and the tetrad 1111 designates a negative number. Negative coded-
decimal numbers are represented as signed numbers rather than as complement
numbers as used for negative binary numbers. As examples, a positive and a
negative coded-decimal number are shown.
+ 765432109 0000 0111 0110 0101 0100 0011 0010 0001 0000 1001
- .543010678: 1111 0101 0100 0011 0000 0001 0000 0110 0111 1000

The conversion of coded-decimal number a' into the true binary number
a may be performed as follows: The absolute value of a' is converted and
then the sign is determined. The absolute value is obtained by neglecting
the sign tetrad of a'. The sign tetrad couwprises bigits (0—3); hence

|a'| = Dbigits (4—39) of a! o<l|at|<1 (Eq. 1)



Recall that each decimal digit treated as an integer is represented by
its true binary equivalent in the coded-decimal notation. The tetrad
represented by the bigits

(41— Nki+3) (1 =1,2 <=+ 9)
beginning at the left of a' represents the decimal digit LA The first
tetrad from the left corresponds to the 10—1 position, the second tetrad

to the 10~2, and so on. Therefore,

(bi—Ui+3) = 107w, (1 =1,2 ***9) (Eq. 5)
and furthermore, .

Ia'l = gf; lO-iwi; (Eq. 6)
€uge, |a'| = .0111 0101 0110 1001l 00Ol 0000 0100 0011l 1000 = 756910438 =

- j%léo‘iwi = 7/10%5/10246/103¢9/10%1/10%+0/10% 1 /107+3/10%48/10°.
1=

Since each tetrad is, by itself, in true binary form if considered as an
integer, one method of converting the number is to divide each tetrad by
its appropriate power of 10 (expressed, of course, as a binary number)
and add the results of all such divisions; e.g., .25 is .0010 010l in
coded-decimal form and to convert this to a true blnary we perform the

steps
0010 0101 0010 = 0101
1010 * (1010)(1010) - + = 0.01,

1010 ° 1100100

and 0,01 1is the true binary form of the decimal number .25, However,
let us do something slightly different. Multiply and divide the right
member of (Eq. 6) by 107, 2739, Tmis gives

£§£109‘iwi-2'39

Ia'l = 109, 239 (Eq. 7)

The conversion may now be effected by multiplying each tetrad LA by
109-1. 2'39, adding the products of all such multiplications, and then
dividing the resultant sum by 10%. 2739, Each tetrad vy
109'i, wvhich is ten greater than the cofactor of the immedistely
succeeding tetrad. The conversion from the coded decimal number a' to
the binary number g 1is then described by the following inductive pro-

cess.

has a co-
factor,



a = 0
o
_ -39
al = lan + 2 Wi
- -39
a2 = lOa.l + 2 w2

]

108, + 273%

i+l i+l
- -39
a9 = 10a8 + 2 w9
a
9
a = e
109. 2-39

The tetrads are isolated with the aid of the left shift order,
First the magnitude of a' 1s formed by bringing a' into R2 (the
Accumulator) and effecting a left shift of 4. The portion of a' left
in R2 isI g'l. R4t (the quotient register) is then set to 0. A subse-
quent left shift by 4 now has the effect that W, appears in the ex-
treme right of R, The first tetrad w,
the remaining tetrads, and since ¥, appears in the extreme right of

R4 it is 2'39wl, as desired. a

has thus been separated from

1s now formed as:

-1
= -39
&, = lan + 2 Wy
¥, is isolated in the same manner as was Loy and then 2, is formed,
and so on, until a, is formed. A multiplication by ten at each step

_9

cannot directly be done as this is an illegal operation, since allowed
multiplication factors must be in the range lxI <<1l. However, a multi-
plication by ten may be simulated by doing a series of left shifts and
an addition for

_ »3
10a = 2 ai + 2ai.

The inductive process may be written as:

-58-

a = 0
(o]
_ 3 -39 _ cee
B0 = 278y + 28, +2 7w, (i =0,1 8)
a
a = 9

109 . 2- 39



_59_

The wi's are also formed by an inductive scheme where

a!l = Ia"I
o
h 1 s 1] )4. 1
W, = 2%’ (integer part) aly = 2a'] (fractional part)
v, = 2ua'l (integer part) a'2 = 2ka'l (fractional part)
v = 2“&' (integer part) a' = Qha' (fractional part)
i+l i i+l i
)+ ] 1} h 1]
vy = 2'a'g (integer part) aly = 0 = 27alg (fractional part)

There remains finally the determination of the appropriate sign to
affix to the true binary number a. It is recalled that the extreme left
tetrad is reserved to denote the sign of a'. A sufficient method is to
examine the leftmost bigit of g'. If this i8 0, a'>=0 eand & 1is to be
positive. If the leftmost bigit of a' is a 1, then a'«<" 0 and a is
to be formed as a complement.

The only operations that are performed on a', the coded-decimal num-
ber, are a series of left shifts by 4. To simplify the coding and flow
diagram, the number a' is treated as though the binary point is immedi-
ately left of the first bigit position. In other words, the normal sign
bigit (the 2° position) is treated as a numerical bigit, in fact the o1
bigit position. After the first left shift of a' by 4, the first signi-
ficant bigit of w, 1is in the leftmost biglt position. After w, is

1 1
isolated by a left shift of 4 places, the first bigit of w,. is in the

leftmost bigit position, and so on with the remaining w's.2 The conse-
quence of treating a' in this fashion is discussed in the coding of
the problem.

Since nine tetrads must be operated upon, the induction loop must be
traversed nine times. The method used for determining when to stop in the
induction is essentially to discriminate upon the quantity

I-1 (I = 8 and i = 1, 2 «++ 9, successively)
When i =9 (which corresponds to the completion of the 9th traversal of
the induction loop), the discrimination on (I - i) becomes negative for

the first time and the induction process is stopped as desired.
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The storage requirements are as follows: a' (the coded-decimal
number) is initially in the memory at address A.l. When a (the true
binary number) is formed it is to be stored at A.2. Storage is needed
for the numbers O and 109-2-39. These are stored in C.1 and C.2, re-
spectively., Four intermediate storage locations are needed during the
course of the conversion. These are designated as B.l, B.2, B.3, and
B.L,

We are now ready to draw the flow diagram and do the coding. The
flow diagram is shown in Figure 11.

In the flow diagram, Box 1 sets up the initial steps of the inductions
over a' and a. It sets

a!

o
a, =
as is indicated in the description of the induction on the preceding page.
This box also sets the upper limit I=8 of the induction. Box b, Box 2,

and Box ¢ complete the description of the induction. Box 2 forms

|a1 = Eha' (fractional part)
0

L
1 —_ 1 3
a'; 1 = 2a'y (fractionsl part)
-39 — 2‘" ® .
2%, ., = 2a'y (integer part)
- -39,
a1 = lOai + 2 Wil

with Boxes b and ¢ ascribing the appropriate values to the variable of
induction i. 1In Box 3, the conditional transfer box, the quantity upon
which the discrimination is made is more conveniently I-(i+l) rather
than I-i as previously discussed. In discriminating upon I-(i+l),

i assumes the values 0,1 «.. 8. This is then equivalent to the discri-
mination I-i where i = 1,2 *** 9. Box 4 forms |a| by dividing L2
by 109-2-39. Finally, Boxes 5, 6, and T are concerned with determining
the correct sign for the true binary nuwaber a.

The coding is:

Box 1.
l. m—sAc AL a' to R2
2. L b 8l =|a'| - 2% inme
3. A—m B.1l a'o to B.l
k, a-—Ac 0 a8 = 0 to R2
5. A-—mn B.2 a, to B.2
-11 =11
6. a—Ac 8°2 I=28-2 to R2

Te A—n B.3 I to B.3



I 'E)l:l.

GCODED DEGCIMAL to BINARY CONVERSION

a=lalto A.2

B.l:d,
| B.2:a,
: B.3:1
L= 2%a'(fractional part) to B.I ,
a°= O to B.2 > : &
1=8 to B.3
~ c b
& 1+ > < 0—>|
& '
a=-laltoA.2 SN |B-1r gy
5 3 :
(-{J. 8.2’0'
a B.3:1—i
m? 2

,+,-2 a, (fractional port) to B.I

8 04 -230 +2q,+ 2% 2%,; (integer part) to B.2
I-i-l| to B.3
---{B.2+ 1al B.2" ag
I # T E ¥ ' B.l* ajy
lal=ag+2%10° toB.2 | eLwgojfay, . = p-—-- B.2: ajy,
L_3 B.3:I-i-l
< - I"(l‘l’l) -t J/
STORAGE
]
A.l:a C.1: 0 — P
A.2 : a(when formed) c.2:10°-27%°

oowm 0
pON -
||I



Box 2.

l, m—Ac

5« Q—m

6., m—>Ac

8. m“éAh

m—>Ah
A—am

m—Ac
a—sAh

A—>m

Box 3.
l. m—-»AC
2. C

Box 4.

l. m—Ac

Box 6.
l., m—Ac-
2. A—m
3. Stop

B.l

c.1l

B.l
B.b

B.2

B.2

B.k
B.2
B.3
-1e2

B-3

B.3
2,1

B.2

C.2
B.2

A.l
7,1

B.2
A.2

a'., to R2
i
0 to RY4
-39 _ y ¢ (s ,
27w, =2a i(mt.pt.) to R4
L
1 — 2
a'y = 2a i(fract.pt.) in R2
1
a s+l to B.l
2-39w. to B.U4
i+l
a., to R2
i
2 .
2 ai in R2
2 .
2a, + a, in R2
i i
233 + 2a. in R2
i i
- 3 -39 .
ai+l =2 ai + 2 Wi+l in R2
ai+l to B.2
I-i to R2
I-i-1l in R2

I - (i+1) +to R2

a to R2

a' to R2

a8 =

-la| to R2

I - (i+l) to B.3

a9/1o9-2‘39 in R4

|a| to

a to

B.2

A.2

-62-



Box T.
1. m—Ac B.2 a = |a] to R2
2. A—n A.2 a to A.2
3. T 6,3

In the coding in Box 1 the a-——>Ac order has been used in In-
structions 4 and 6. Recall that this order replaces the number in R2
by the twelve address bigits of the instruction; i.e., R2 is cleared
to O's and the twelve address bigits of the instruction a—Ac are
added into R2 into positions O through 11l. In Instruction 4, the num-
ber O is desired in R2; hence the instruction a-——Ac has 0 as its
address. Instruction 6 forms I=8. Since the integer 8 cannot be
stored, we store 8:27" where m is at least U4 so that 82 < 1,
The a—>Ac may be utilized to form I and save the word of storage
that would be needed initially to store the 8.27™, since I is formed
in this manner we have the freedom of choosing I=8°2'n, ge2™? .. 8'2-11.
I is chosen as 8.2~ for this case. In Box 2 where (I-i-1) is formed
the 1 that is.subtracted must have the same cofactor Z-m as does the I;
hence to do this the instruction a-—»>Ah is used with the associated
address being -1.2711 = FFF in hexadecimsl notation.

In Box 2, the first five instructions are concerned with forming'

2-39

W, and a', .. Before the left shift of 4 is executed (Instruc-
. i+l i+l -39
tion 3), R4 must be set to O. This is done because 2 Vil is needed
by itself and if R4 were not O the left shift of 4 would place 2'39w

1+l
into R4, but whatever number y that had been in R4 at the time of the

shift would merely be shifted left 4 places and R4 would contain
L -39 . -39

2y + 2 LA rather than the desired 2 LA
in the following example how a left shift of 4 isolates each tetrad.

Suppose the number 0.98 is to be converted into true binary form. In

For clarity, we show

coded-decimal form it first appears in R2 as the following sequence of

tetrads:
0,984« 0000 1001 1000s-«-

(+) (9 (8)
Normally, the leftmost bigit is reserved for the sign bigit. Inasmuch

as no arithmetic operations are to be performed on a', except for shift-

i
ing to the left, it is convenient to disregard the usual function of the
leftmost position as corresponding to the sign bigit. The aim at this

point is merely to separate successively the various tetrads, The first
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left shift of U4 produces in R2

a'y =|af = 1001 1000:-
The next time a left shift of 4 occurs, R2 contains
' - L ] L N N ]
a 1 = 1000
and Rh has 00""00--0.....1001. Since 2-39“,1

is desired, one sees that in R4 the usual binary point convention is re-
stored; hamely, after the first bigit position. Hence the tetrad in Rk
can participate in normal arithmetic operations.

If one had adhered strictly to the sign convention for R2, some
needless complications in the coding would have resulted.

Also in Box 2 we see that 2-39wi+l in R4t must be sent to temporary
storage (Instruction 5) before

_ »3
a1+l = 2 ai + aai

is formed in R2 (Instructions 6 through 9). This is necessary as Rb
shifts in concert with R2, hence altering its contents.

The Tinal coding is left as an exercise for the student, and the
conversion of a true bihary number into its coded-decimal equivalent is
considered.



Problem 6

When the formal calculation of a problem on the computer is finished
the desired answers are to be converted from true binary form into coded-
decimal notation so that the teletype page printer produces the true deci-
mal representation of the deslred numbers, _

We develop this conversion scheme in the following way: The true
binary number a is to be converted into its coded-decimal equivalent a'.
Since coded-decimal numbers are stored as signed numbers rather than comple-
ment numbers,l a| is first converted to |a'|, and then the appropriate sign
is prefixed. Since |a|‘<:l, it has a decimal equivalent which may be writ-
ten as

2

2| = 1o'lwl #2075, 4 ee t 10'9w9. (Eq. 8)

The problem is to determine the w's. If 10|a| (multiplication by ten in
binary form) is formed, there is an integer part and a fractional part to
the number. We see from (Eq. 9) that the integer part corresponds to the

decimal digit LA

0la| = Wy + 10-1w2 4+ e & 10°8w9. (Eq. 9)

If the fractional part of lOla| is now multiplied by ten, the integer paxt
is just Eé’ ete, The following inductive process to produce each of the
decimal digits is used:

5 = |2
lan = wl + al
lOal = w? + a2
08, = W0+,
l0aqa = w. + a

8 9 9

where the gi's are the binary equivalents of the decimal digits. In the
coded-decimal representation, each decimal digit is represented as a tetrad
of bigits; hence each w, 1s separated as a tetrad of bigits. This is done

i
by multiplying by ten in the following way:

y, -1 -3
10a; = 2 (2 a; + 2 ai).
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The left shift of LI separates the integer part (Wi+l) from the fractional
part (ai +l) by shifting w, , into the quotient register (R4) as a tetrad
and leaving the fractional part in the accumulator (R2).

The coded-decimal number a' is formed by the following inductive

process: {O if =0
a' =
° ‘po P ira<o
b -39
1 — '
aly = 2a o + 2 wl
i -39,
l - 1
a o = 2'a 1 + 2 w2
- 1 "'39
@lgp1 T BRIy F2 TV,
' Y -39
] —_ ]
a 9 = 2a 8 + 2 w9
a' = a
9
Note that each LA is desired as 2-39wi, which is precisely the

quantity that appears on the right in Rk as & result of the left shift of
4 places.

As in the previous problem the induction has nine steps; hence the
same index representation is used. The flow diagram is shown in Figure 12.
The required storage is indicated on the flow diagram, The coding is:
Box 1.

l. m—Ac A.l a to R2

2. ¢ 3,1
Box 2.

1. m—Ac C.l a' =Fx 239 to R2

2. A—n B.1l ,a'o to B.1l'
Box U4,

1. m—>»AcM A.l 2'lao =|a| to R2

2. A—>m  B.2 o~t a_ to B.2

3. a-—sAc gea~t I=8 toRe
bk, A-»m  B.3 I to B.3
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BINARY to CODED DECIMAL GCONVERSION

B.l: o
: -
—f.-Cl°=OfO B.l | 4 .I-
|+ a,=lalto B.2 :
i
@ al 2 I1=8t0B.3 -
_1._0L=F-2'3gto B.|
c b
——— |+ —~| &
.
—*a' to A.2[™
5
A2:d a;4, = fractional part of 2*(2"'a;+27%, ) t0 B.2
| : 23w, = integer part of 24(27'q; +23q;)
A aly =2*a;+2>%w,,, to B.I
= 4 I-i-1 to B.3 |
\ - : < 8|=it <t— B.l: a;
a =ag 1 Qi
-6 . ---{B.2:q,,,
- I-(i+1) B.3:I-i—|
+
»STORAGE
A.l:a C.l:Fx2™ B.l: — B.3:—

A.2:a'(when formed) c.2:0 B.2: — B.4: —

-Lg-
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Box 5.
1., m—Ac B.2 e‘lai to R2
2. R2 2-38.1 in R2
3. m—sAh B.2 2‘1ai + 2‘3ai in R2
5 L a = 2"(2"1a + 273, ) fract. pt. in R2
* i+l i i ¢
) -39
1 — t
a'yq = 28’1+2 Vil in R4
1
6. Q-——n B.1l 8l to B.1
=1
7. R1 2 8.1 in R2
8. DS
-1
9. A—n B.2 2 84,1 to B.2
10. m—»Ac B.3 I-i to R2
11, a—Ah -1le2° I-i-1 in R2
Box 6.
Box T.
l., m-—Ac B.1l a' to R2
2. A—n A2 a' to A.2
3. Stop ’
Box 3.
l. m—Ac c.2 O to R2
2. A—"m Bol a'o = 0 tO Bol
3. T 4,1
In Box 5 &, , 441 @re formed simultaneously. Rk is utilized
' .
for a 1+1 and R2 for a'i+l‘ This can be done since
L -39
t — 1
ai+l = 2ai+2 w:l+l and
a, . = 2*2ta, +273a, .) fractionsl part
i+l i i+l
are formed by a left shift of 4 and R2 and R4 shift in concert. As in
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the prevjous problem (the conversion from coded-decimal form to binary
form) the binary point in R2 is treated as though it were immediately left
of the sign bigit. The reason for this is the same as in the previous ex-
am@le--the sign of R2 shifts with the number; hence, when the left shift
of 4 is performed, the sign position should contain the first bigit of the
LAY that is being isolated. There is, however, the complication intro-
duced of having to shift the number Ei to the right in forming the

quantity

1 3

a, + 2 ay.
- Recall that in a right shift the sign bigit fills into the bigit positions
vacated by the shift. The quantity gi
shifting right, O's should fill into the vacated positions. However, in
using the sign position as the first significant bigit of ays whatever this
first bigit is, either a 1 or a 0, it will fill into the vacated positionms.
This, then, would give an incorreét result if the first bigit were a 1. To
avoid this difficulty first form 2-1a which means that the sign position

no longer contains a significant bigit of 2. Then set the sign to O and

0"

is a positive fraction; hence, in

proceed in a normal fashion. In Box U4 where we first set

% = |9
we have really formed
=, - |

since a has the normal binary point convention. In all subsequent steps
2 lai+1 -1
Box 5, Instructions 7 and 8). Instruction 1 of Box 5 brings 2 a; into
the accumulator and the quantity 2-lai + 2-331 is subsequently formed.
Instruction U4 places a'i into Rl4; and Instruction 5, the left shift of b,
then forms a'i+1 in R4 and ai+l in R2, Instructions 7 and 8 then form
2-lai+l and prefix the correct positive sign.

Instructions 10 and 11 of Box 5 form (I-i-1) but note that the quantity
is not immediately stored. Since (I-i-1) is in R2, Box 6 consists only of

the conditional transfer instruction. Instead of the conditional transfer

is formed by a right shift of 1 followed by a drop sign order (see

Instruction transferring to the first instruction of Box 5, it transfers to
the last instruction of Box 4. The last instruction of Box 4 is the in-
struction that initially sent I to storage; hence that same instruction is
now used to store (I-i-1). This saves a needless duplication of a storage

order. In the previous conversion problem, the same scheme could have been
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used. Compare the last two instructions of Box 5 and all of Box 6 of
fhis problem with Instructions 12, 13, and 14 of Box 2 and all instructions
of Box 3 of the previous problem.

In coding the various boxes, they have been coded in the sequence that
corresponds to their correct position in the final coding. This sequence
is Boxes 1, 2, 4, 5, 6, T, and finally, 3. Box 2 must immediately follow
Box 1 as it corresponds to the negative branch of the transfer. Then con-
tinuing from Box 2, the flow lines go to Boxes 4, 5, 6, and 7. We may in-
sert Box 3 after Box 7 since Box 3 is reached from Box 1 by the satisfied
conditional transfer, and then Instruction 3 of Box 3 sends the control to

Box 4 as is desired.
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Problem 7

We propose to evaluate the integral hl;af(x)dx where a<l. We
assume that f(x) is continuous in the interval 0 <x<a and that the
value of the integral as well as the value of any intermediate steps of
the integration lies in the range of the computer. The value of the in-
tegral is approximated by Simpson's method for stepwise integration. The

function f(x) is given at the equidistant values xo(=0), x coe xI(=a).

1’ %2
The values f(xo) f(xl) f(xg) cee f(xI) are stored in the memory at I+l
consecutive storage locations. If x 1is taken as the interval between the

various xi's, then Simpson's Rule may be stated as

JPe(dax + €, <B2p(e )bt 1420 (xphsbie (0w oo sy o (),

where Cr is the error term. To evaluate an integral by Simpson's Rule
£(x) must be determined at an odd number of X values (an even number
of Ax intervals).

The integral is evaluated by using the following inductive process:

L, =

}Z = z: f(x )
Zi=zo 5 ot
Ze= Zl+——ﬂx)

Eax = 4 when i is odd
Zi-l 3 f(xi) vhere §{= 2 when i is even

™
e
1

D i

where E:I::~J£af(x) (xo =0, x; = a) to the desired accuracy.

The inductive scheme that is chosen to describe the integration is
perhaps neither the simplest in coding nor the shortest in computing time.
It is used principally because an innovation is introduced into the flow
diagram,
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" Three decisions must be made in traversing the induction:

(1) If i=0or I, then [%f f(x,) is added to the partial summation,

o

(11) If i is odd, then 3

f(xi) is added to the partial summation.

(14i) If i 4is even, then 2hx f(xi) is added to the partial summation.

3

As previously discussed, the conditional transfer instruction

allows the control to make a decision and follow one of two paths, dependent
upon the decision. To make three decisions as outlined above, two alterna-
tive boxes could be used in sequence. However, let us approach the problem
in a slightly different manner.

The first time through the induction it is desired to form K;;-f(x ).
As Z%T f(x ) is formed the next step of the 1nduction is to form ﬁé— f(x
and as f(x ) is operated on it is known that next f(x ) is to be
formed. In fact, at each passage through the induction it is known what
the forthcoming traversal should form. ILet us, then, represent three
operation boxes which for convenience we call Boxes 2, 3, and 4. Box 2
forms é%% f(xi); Box 3 forms E%E f(xi); and Box 4 forms 2§x f(x )
Rather than use a sequence of alternative boxes to direct the control to
the correct operation box (Box 2, 3, or 4, according as i=0orI,
i =044, i = even # O nor I), a transfer instruction is used to which is
supplied, at the appropriate time, the various addresses corresponding to
the entrance points of Boxes 2, 3, or 4. To simplify the discussion this
transfer instruction is called A. In the initial traversal of the induction,
A 1is to have an address that sends the control to Box 2 where it forms
A}chx ); hence in setting up the initial step of the induction the address
corresponding to Box 2 is supplied to A. At the time that the control is
operating in Box 2, it is known that the next step of the induction should
form +0x

3
performed 1n Box 2 the address for Box 3 is supplied to A. Similarly,

f(x ) which corresponds to Box 3; hence as part of the operations

when the control traverses Box 3 it is known that the next traversal of the
induction should involve Box b4 which forms 22X f(xg); hence Box 3 supplies,

3
among other things, the address of Box 4 to A. And when in Box 4, the con-

trol should return to Box 2 on the next traversal so A 1is supplied with
the address corresponding to Box 3. The final step of the induction is to
form 4§§ f(xl). This is done by a discrimination on i-I, which is negative

3
until i=I, at which time the last term is formed.



The position of the flow diagram at which the transfer instruction A
occurs 1s represented by an interruption in the flow line with a circle con-
taining the Greek letter A. The circle has one point of entrance but no
point of exit. See Figure 13. In general, the Greek letter is not restricted
to A and any letter could be used. The various points to which the transfer

is to send the control are also represented by cirecles which contain the same
’ Greek letter as the transfer circle. These Greek letters are, however, in-
dexed for identification. These circles have no point of entrance but one

point of exit as shown in Figure 1k.

_____;»____*::)

R

Figure 13. Figure 1k,

Such a set of symbols is said to represent a set of variable remote

connections.
The appropriate addresses are supplied to the transfer A 1n various
operation boxes by making use of the substitution instructions. The opera-
tion is denoted as(::) = where we enclose the Ai‘s in circles to
show that they are addresses which are concerned with variable remote con-
nections.(::) = (:;) is Interpreted as meaning that the address repre-~
sented by hi

The flow diagram includes the use of the variable remote connections. The

is to be supplied (substituted) into the transfer instruction A.

flow diagram is shown in Figure 15.

At any step of the integration is used to represent the sum of the -

terms in Simpson's Rule up to that poini. When the integration 1s completed
E:I represents the value of the integral to the desired accuracy. )

Box 1 of the flow diagram sets 2:-1 to O as an initial step for the
induction. The variable of induction i 1is set to 0. A 1is set to hl
that the first traversal of the induction will be through Box 2,

Immediately following Box 2, A 1is set to h3 so that after going
through Box 2 the next traversal will correctly include Box 3. In Box 3, A
is set to he so that the following traversal includes Box 4, and so on until
the induction is completed. At each traversal of the induction only one of

the boxes, 2, 3, or U4, is included.

SO



Al:X, Al “Th-
A2:0 A.2:i
| i [
=01foAl| | a L [x=x if i=0
0 to A2 peLlelO—~i A= Ny if i#00rI,but i even
®:® A=)\, if i odd
( - 2
5 oi = & 10 1o A3
OCiClaly
a-i = Z%X f(Xi)fO A.3 +®
) Y 3
o 4A" f(x,) to A3
Al :zi-l - —4—@
e
A. 3 g; Y
b 6
i+l 2 =2t o to Al
LS _7 +
Hi+ltoA2[<i+I-1I
+
—— A.|‘zi A":zl
9 | #
A I X1
DX DIN —%f(xl) to Al =1+ xo./'f(x)dx=21

X1
A.l: S f(x)dx
Xo

end

INTEGRATION by SIMPSON'S RULE

FI1G. 15



_75-

Box 7 discriminates on the quantity i+l-I. This means that the con-
ditional transfer is effective when 1 = I-1, At this time E:I-l has
Just been formed. The final step of the induction, the formation of
is done in Box 9.

Storage 1is needed to store the numbers corresponding to the addresses

A X2 , and A These addresses are stored as position marks and
B.1: (A
B.2: (A

B.3: (A

1’ 3°
' l)o
2)0
3)0
The following storage is also needed:

B.k: (l)O
B.5: (I)o

AT
B.6: 3

The values of f(xi) are stored in 'I+l successive locations where C.0
stores f(xo), C.1: f(xl) see C.i: f(xi) cee C.I: f(xI). The value of the
initial address C.0 is needed and it is stored in

B.T: (C.O)0

as a position mark. Any particular value f(xi) is brought into the arith-
metic unit by forming its address as
(C.i)o = (c.o)o+ (1)o in R2

The address C.1 is then substituted into the instruction which is to operate
upon the corresponding f(xi).

The coding is:

Box 1.
l. a—Ac 0] 0 to R2
30 A—")m Ac2 O 'tO Aog
4, m—sAc B.1 (xl)o to R2
5. S—nm 1,11 N, to (8-19)11
6. m—Ac B.T (c.o)O to R2
7. m—sAh A.2 (C.i)o = (c.o)o + (1)o in R2
8. 5—m 1,10 Ax C.i to (8-19)10
9. m—sQ  B,6 3 to Rh4
10. X [c.1] %’5 £(x;) in R2

1, T [(a]



Box 2.

l. A—nm

Box 5.
l. m—Ac

2. S—m

Box 6.

1. m—Ac

2. m—»Ah

Box 8.
l. m-—Ac
2 [ m‘—“Ah

3 . A'_>m

Box 3.
1. L(2)
2, A—n
3. m—Ac

Box 4.
1. L(1)

2. A—n

A3

B.3
1,11

A.3

Al
Al

A.2
B.4
B.5
9,1

A2
B.L
A.2
1,6

A3
B.2
1,11
6,1

A.3
5,1

i

(» to R2

3)0
x3 to(8-19)11

Gi to R2

Zi = Zi—1+°i in R2
Zi to A.l

(1)o to R2
(1+1)o in R2
(1+:L-I)0 in R2

(1)o to R2
(i+1)o in R2
(i+l)o to A.2

LAx .
oy = 3 f(xi) in R2
gy to A.3
(xz)0 to R2 ka to (8-19)11
_ anx
o = 3 f(Xi) in R2
o; to A3
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Box 9.

1. m—Q B.6 A—é’ﬁ to Rk
2, X c.I A_3>5 £(x;) in R2
3. m—Ah A.l 21 = Zl_l +A—3’i £(X;) in R2

In Boxes 2, 3, and 4 the quantity Z%% f(xi) is needed. Rather than
code this separately in each box, it is coded immediately preceding the
variable transfer A. This is coded in Instructions 6 through 10 of Box 1.
The transfer instruction at the end of Box 8 transfers the control into In-
struction 6 of Box 1 for this computation is to be done for all traversals
in the induction. The coding of Boxes 2, 3, and 4 starts with the quantity

A?x f(xi) in R2.
There are 38 instructions in all. Pairing these into words gives 19
words of instructions.

The word coding is:

l. a—Ac 000 A—om 028
2. A—sm 029 m—sAc 021
3. S—nm 006 m—>AC 027
4., m—Ah 029 S—>m' 005
5. m—Q 026 X [ ]
6. T [ ] A—sm 030
T. m—Ac 023 S—sm 006
8. m—Ac 030 m —»Ah 028
9., A-—n 028 m —sAc 029
10. m—Ah 024 m—Ah- 025
11. c 018 m—sAc 029
12, m—sAh 024 A—n 029
13. T! 003 L(2) 002
14, A—mn 030 m —Ac 022
15. S—m 006 T 008
16. [ ] L(1) 001
17. A—sn 030 T 007
18, m—Q 026 X (c.1)
19. m—Ah 028 A—>m 028

20. Stop
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21. (xl)o = (6)o
22. (A), = (16),
23. (h3)° = (13),
2k, (1)O
25. (1),
Dx
26. -§'
27. (c.o)0
28. A.l
29. A.2
30. A.3

The transfer instruction A must transfer the control at various
phases of the p;oblem into Box 2, Instruction 1; into Box 3, Instruction 1;
and into Box 4, Instruction 1. As the coding was done the transfer was
fixed as a prime transfer since Box 2, Instruction 1, and Box 3, Instruction 1
each were on the right side of their respective words. The first instruction
of Box U4, however, naturally falls as the left side of an instruction word.
This meant that the left half of Word 16, the start of Box U4, was left blank
and Box 4 was started as the right-hand instruction. Perhaps by shifting
the arrangement of Boxes 3, 4, and 9 this could have been avoided.

A better method of avoiding this would be to use the half word substitu-
tion instruction. In Words 21, 22, and 23, where the numerical values of
\,'s are stored, rather than storing just the addresses the following should

i
be stored:

21. (xl)0 = CBOO6CBO06
22, (x2)O = CAO16CA016
23. (x3)0 = CBO13CBOl13

Then by a half word substitution the order as well as the address of the trans-
fer instruction may be altered. Box L4 would now start with the left-hand in-
struction of Word 16 which saves the previously wasted half word.

In the right-hand instruction of Word 18, the address C.I 1is inserted
in parentheses. C.I 1is a known address, but for the example no numerical
values were assigned for the C.i storage, nor was the number of intervals
I determined. For this reason the C.I 1is indicated in parentheses rather
than as a numerical address.



The addresses of the instructions in the word code are written as
three characters. Writing numerical addresses in this fashion tends to
avoid errors in transcribing the word code into the numerical code as

addresses are represented in the numerical code by three characters,

-79-
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Problem 8

Although the computer operates'with a fixed binary point, at
times it is advantageous to use a floating binary point. The float-
ing point method (hereinafter referred to as FPM) allows each number
to be expressed as a fraction and a characteristic (an exponent).
For example the decimal number

7798.543210

or its equivalent |
7798543210 x 10“
expressed in floating point notation would be

7798543210, + 4
where the +U4 is the positive exponent of 10 associated with the number.
Similarly, a binary number

1011.1001

expressed in floating point notation would be

.10111001, + 100
where the +100 is the positive exponent of 2 associated with the number.

The discussion here will pertain only to floating binary point
operation. Although the computer operates with binary numbers, there
are floating point schemes where the characteristic (exponent) may be
expressed to a base other than the base two, such as the more familiar
decimal base. Since the computer operates with binary numbers, it is
inherently easier to use the floating binary point scheme, or at least
a scheme where the base of the characteristic is a power of two, such
as the octal or hexadecimal base. For much of the floating point
operation a choice of expressing the characteristic to a base 16, 32,
or even 128 might simplify floating point procedures.

The need for FPM may arise where the ranges (the maximum and mini-
mum) of the quantities entering into the computation are not known with-
in reasonable limits; or where the range of the quantities is so great
that the scaling of numbérs for fixed binary point operation causes un-
due loss of the significant figures of the numbers. When a problem is
scaled for fixed point operation, the loss of significant figures caused
by the numbers becoming too small is as important a consideration as is

numbers becoming too large.
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The use of the FPM is, in general, discouraged for must compu-
tation as it greatly slows down the effective computer speed. In
most problems, scaling may be accomplished without undue loss of
significant figures. In cases where the scaling is difficult to
accomplish, a scheme of self-adjusting scaling or the use of scaling
checks may be employed as an aid to scaling.

Addition is chosen as the example for FPM. The other operations
are accomplished by a somewhat similar scheme.

To add two numbers that are represented in floating point nota-
tion, the exponents must first be made the same. This may be shown
by the following decimal example:

. 753, 3
325, 2

These numbers are

153 x log
.325 x 10

and for the numbers to be summed, the powers of 10 must be the same;
therefore,

753 x 103

.0325 x 10
.7855 x 10
To do the operations in the computer, all numbers must be less
than 1. The smaller exponent must always be made equal to the larger
as this has the effect of making the number whose exponent is in-
creased, smaller, which keeps it less than 1.
The addition operation is accomplished by the computer as follows:
(1) The exponents are compared. If they are not the same, the
smaller exponent is increased. The difference between the
exponents is the amount by which the smaller is increased.
(ii) For each increase of the exponent by 1, the number should be
multiplied by o7l 4 multiplication by o1 corresponds to
the number being shifted right by 1.
(iii) After the smaller number has been adjusted, the addition is
done. The exponent of the sum is the same exponent as the
numbers, unless the sum is greater than 1. In this case

the sum is shifted right 1 and the exponent is increased by 1.
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For example:

.11111101, 100

+ .10110010, 011

W H

a
b
s
The exponent of b i1s 1 less than the exponent of a; there-

fore b is shifted right 1, and 1 is added to its exponent.

Now
a
*y

0.11111101, 100
0.01011001, 100
1.01010110, 100

The sum of the two numbers is greater than 1 so s is
shifted right 1 and the exponent is increased by 1l.
s = 0.10101011, 101
In the gomputer,'if the sum of the numbers is greater than 1, it

cannot be adjusted simply by a right shift of 1 as indicated above
since the sign bigit propagates in a right shift. To avoid this dif-
ficulty, the addend and augend are each shifted right by 1 and their
exponents increased by 1 before the addition is done. Then no spillage

ngw n

can occur in the addition.

Numbers to be operated on by FPM are adjusted into a standard
form where the first significant bigit of the number is in the 2'l
bigit position. All fractions F are therefore in the range

1/2<F<1

Floating point numbers have 27 significant bigits which, with the sign
bigit, occupy bigit positions O through 27. Positions 28 through 39
of the word are used for storing the exponent, and a number and its
associated ekponent are stored in one word. The 27 bigits of the num-
ber correspond to about 8 decimal digits. The 12 bigits allowed for
the exponent are more than ample; however, 12 are used since the bigits
(28-39) may be conveniently manipulated by the s—am' instruction.

Positive and negative exponents are allowed, and the 12 bigits

(28-39) for expressing the exponent n give a range

- 2048 <n <2048
Negative exponents are represented as complement numbers. The first
bigit of the exponent is considered its sign bigit. Thé exponent n is

an integer and it is represented as n-2-ll.
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We propose to form the sum of two numbers & and b with exponents
d and 3, respectively. The fractions a and b are in standard nota-
tion, that is

1/2<a, b<l
After the addition, the sum 8 is adjusted to standard form.

As a first step of the procedure, a and b are each shifted right
by 1 and their respective exponents are increased by 1. This insures
that the sum s =a + b < 1.

The difference in the exponents is determined. If the difference
is greater than 27, the sum is set to the value of the number with the
larger exponent., A difference of more than 27 means that the smaller
exponent must be increased by at least 28, and the number associated
with the exponent must be shifted right the corresponding number of
places. Since the numbers are represented as a sign bigit and 27 sig-
nificant bigits, a number shifted right by 28 places can make no con-
tribution to the sum. If the difference in the exponents is less than
28, the smaller is adjusted to be equal to the larger. The sum of the
numbers is then formed and put in standard notation. We now examine
the flow diagram shown in Figure 16. The storage of the problem is:

' A.l: a (0-27)a(28-39)
A.2: b (0-27) B(28-39)
A.3: s (0-27) 0 (28-39)

Box 1 shifts a and b right 1 and increases each of the exponents.
Box 3 discriminates on the difference of the exponents to determine which
exponent is the greater. The problem is arranged so that the number
with the larger exponent must be in location B.l and its exponent must
be in B.3. If @ = Bno changes of storage need be made. If ¢ < fB
then the positions of a and b are interchanged and Bﬂ is put into B.3.
This is done in Box 4. Box 5 discriminates on the difference of the ex-
ponents to see if this difference is greater than 27. If the difference
is greater than 27, the sum is set to a, the number with the larger ex-
ponent. If the difference is less than 28, the sum is

8 = a+2'|d'Blb

and the exponent is the exponent of a. A discrimination is made on the
sum 5 to see if it is in standard form. If it is not, the sum is shifted
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6

a’=2"a to B.I 2
/7 _ -l - -
b'=2"bto B2 > §-27'=(a-B12" t0 B.5
(e+1)2! to B.3 _
-1 B.l: a
(B+n2™" to B4 B2: 1 ]
B.3:(a+)27! 3
Ra:(R+n2" .+ e
B.5: §-2°1! ‘ y 82
b
ad—a
b b b’ to B.lI
i a’ to B.2
g+ % o -2V=(B+1)2""1t0 B3
Y,
Y g
d—>b
— »
@ Bl:a B3g2"|
B.2:b B5:8-27!l
B3:og 27!l 9
R3S Sc=ato A3 l€H{(181-28) 27"
9 : 4 —
S t0(0-27)A3| o ': S=S; +
|o to (28-39)A.3 o =0 -1381
8 S=a+2 b to A3
SH‘I =23i to A.3 ++ 7 ’ c
) ) = SIEpy 01 |
oy 2'2(0—112" 10 8.3 ISj1-2 +—10~i |
Y .
i+il—>1 ! 2

FLOATING POINT ADDITION
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left until the first significant bigit is in the 2'1 bigit position.

This is done in Boxes 7 and 8. Box 9 combines the sum and its ex-
ponent and stores them in A.3.

The storage locations B.l, B.2, B.3, B.4, and B.5 are needed to
store intermediate values during the computation.

The coding is:

Box 1.

1. m—Ac A.l a (0-27) ,a(28-39) to R2

2. R(1) a'=2Ya inR2

3. A—sm B.1 | a' to B.l

k. m—>Ac  A.2 b(0-27) ,B(28-39)  to R2

5. R(1) bt = 27b in R2

6. A—>nm B.2 b* to B.2

7. m—sAc  A.l a(0-27) ,a(28-39)  to R2

8. 1L(28) a2l inRo

9. a—sAn 271 (e+1)2 1L in Ro |

A. A—n B.3 (¢I+1)2-nto B.3
B. m—sAc  A.2 b(0-27) ,B(28-39)  to R2

c. L(28) B2 inre

D. a—>An 271t (B+1)2™ in Re

E. A—n B.4 (,8+1)2'll to B.k
Box 2.

1. m—sAc B.3 (¢r+l)°2"ll to R2

2. m—sAh- B.k 3= (c-B2* inre

3. A—m B.5 d to B.5

Box 3.

.. ¢ 5,1 0 in R2

Box 4.

1. m—>Q B.2 b' to Rk

2. m—>Ac  B.l a' to R2

3. @—mnm B.1l a =5>b'" to B.l
b, A—sm B.2 b=a' toB.2
5. m—Ac B.b ao-a-ll:(B‘.l)Q'll to R2

6. A—n B.3 oo-e'll to B.3



Box 5.
l.
2.

Box 6.
1.
2.

.

-40\\.114’-’(.0

Box 7.
1.
2.

3.

Box 8.
1.

m~—»AcM
a—h

m-—>AcM
R(8)
S—m
m—Ac
R(n)
m—>Ah
A—n

m—>AcM
a—»Ah
C

m—yAc
L(1)

mn—>Ac
a~—>Ah

A—n

[131)

B.s
-28-2"
10,1

11

B.5

6,5
B.2

B.l
A.3

A.3

A.3

B.3
-2

B.3
7,1

B.3

A.3

B.l
A.3
1,1

|3241tom
(]3]-28)2** in R2

]2 to Re
P2 1nre

|6| to (8-19)5
P to R2
e'lalb in R2
g8 = a+2-la]b in R2
8, to A.3
|Bil to R2
By] - 1/2 in R2
si to R2
si+l = 251 in R2
n 8141 to A.3
o, 2 to R2
i 211
6,., = (0,-1)2""" in R2
i+l i -11
o 2 to B.3

i+l

0.2 to R2
62737 inRo

o to (28-39)A.3
a to R2

-86-
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In the coding of Box 1, the exponent is not cleared out of positions
28 through 39. These positions do not affect the answer. The numbering
of the instructions in Box 1 is done hexadecimally. There are E in-
structions which corresponds to 14 decimally.

In the coding of problems for the computer, the numbering is done
hexadecimally; therefore in all further examples the numbering will be
hexadecimal.

In Box 9, where s and ¢ are combined, s is already residing in
A.3. g 1is brought into R2 and shifted'right by 28 so that it is in positions
28 through 39 of R2. It is then sent to A.3 by means of a substitution in-
struction, and A.3 correctly contains

s(0-27), o(28-39)

The floating point addition as set up would not be practical to in-
corporate into & large problem where many such additions are done. As
coded, 49 instructions are used, several of which are lengthy shifts. In
floating point routines, time becomes a determining factor and the routines
must be constructed with that in mind., There are several ways in which the -
time involved in the present routine could be shortened. However, we are
interested at this time in demonstrating floating point procedures without
attempting to develop the most satisfactory scheme,

The present problem does not take into account a method of handling
a number that is zero. A way of doing this 1s not to allow an exact zero,
but to say that zero is to be represented as the fraction 1/2, with an
appropriate negative exponent. The negative exponent needs to be at least
28 smaller than the smallest exponent encountered in the problem concerned.
An addition would treat this number as zero in forming the sum. The fraction
part as 1/2 is suggested so that all numbers are represented in the stand-
ard notation.

The code in final form contains 25 words since there are 49 instructions.
If the code starts at zero, 25 words would occupy addresses O through 19,
hexadecimally. B.l, B.2, B.3, B.4, and B.5 are the addresses 1A through
1E, and A.l, A.2, and A.3 are addresses 1F, 20, 21, respectively.



The code is:

0.
1.
2.
3.
L,
5.
6.
7

1k,
15.
16.
17.
18,

20.
21.

m—-Ac
A—m
R(1)
m—>Ac
a—Ah
m—>Ac
a—>Ah
m—Ac
A—>m
m—>Q
Q—n
m—>Ac

m-—>AcM

R(28)
m-—sAc
m—>Ah
n—>AcM

L(1)
m—>Ac
A—>n
m—>-Ac
S—mn'

m—»Ac

a,ad
b)

OlF
0lA
001
OlF
001
020
001
oic
OlE
O01B
0lA
0lb
OlE
018
01iC

01B

01A
o2l
016
001
0lC
oic
01C
021

OlA

ol1

R(1)
m-—sAc

A—>m

L(28)

L(28)
A~—mnm
m—>Ah-

mn-->Ac
A—>m
A—>m
a—>Ah
m— AcM

R(3)

A—mn
a—» Ah
mn—>Ac
A—n

a—»Ah

R(28)
Stop
A—m

001
020
01B
01C
01C
01C
01D
01D
0oc
0l1A
01B
01C
FEU

OOF
000
021
co0
021
021

o1l
0l1C

021

-88-
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Instruction 5 of Box 6 becomes the right hand instruction of OOF.
The substitution instruction (Box 6, Instruction 3) that substitutes the
address into Instruction 5 of Box 6 must be an s—»m' instruction as
is indicated. Instruction 2 of Box 6 must be changed to R(28) rather
than R(8) to accommodate the s—sm',



Problem 9 ‘

The standard 40 bigit number (including sign) provides sufficient
accuracy for must computation; however, certain problems may arise
where added precision is necessary. To handle such cases, multiple
precision routines must be used. These routines effect the basic
operations with numbers that are 78, 117, or k-39 (k =1, 2 ««+ K)
bigits in length. For the present purpose, which is to illustrate
such methods, only double precision (numbers 78 bigits in length) is
considered.

 In the treatment of multiple precision numbers, some convention
must be adopted for the sign bigits of the auxiliary components, the
principal component having of course the same form as the standard
size numbers. A convenient pattern is to set to O the sign bigits of
all auxiliary components. Hence, for the double precision number x == 0O,
the representation is simply

x = x'+ 2

where x' is the principal component and x'" the auxiliary one.

For x < 0, it should be represented as a 78 bigit complement,
the sign bigit of the principal componentAbeing 1l and that of the
auxiliary being O by our convention. This implies that the two parts
of (2- x ) are '

2. x* -239  ama
1- x"

The example chosen is double precision division, for it in itself
includes a double precision multiplication and subtraction. The division
is performed by forming first the reciprocal of the divisor to double
precision, followed by a double precision multiplication with.the
dividend. We first consider double precision addition, subtraction and
multiplication.

A double precision addition

8§ = X+Y
is done by first adding the less significant components x" and y". The
sum may be greater than 1. Recall that x" and y" each had a sign bigit
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of O so that a 1 in the sign position of this sum indicates spillage
rather than a negative number. This spillage corresponds to a carry
into the 2'39 position of the more significant part of the sum; there-

fore, we may write

s" = x"+ y" (mod 1)
The more significant part of the sum is
] - ] t
s' = x"+y +eo
2739 i¢ car t
€ Ty presen

o _\o if no carry present
Finally, the double precision sum is

s = s'+ 2 3%

In order to form a difference of two double precision numbers,
the complement of the number being subtracted is first obtained. An
addition is then performed as indicated above.

In the double precision multiplication, the product

| P = xy
is to be formed. For simplicity of discussion, first assume x,y= O.
Algebraically, the multiplication is

(x' + 27%") (y+ + 27F%")

P

xlyl + 2'39xuy. + 2'39x,yn + 2&78xuyn

Each term on the right has 78 bigits, so we may write the product
(neglecting roundoff on the extreme right) as

(x'y')" + 2-39(x'y')" + 2-396("}")' + 2-39(x'y")'

p =
p' = (xlyl)l
p" = (x'y*)" + (x"y') + (x'y")

p" is formed first. In the partial summing, carries may be produced that
must be added into the 2-39 position of p'. The summing is dome in two
steps as

8 = [(x'y")"+ (x"y")] (mod 1)

_f1 1if carry present

vith €0 " \0 if no carry present
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" [s + (x'.y")'] (mod 1)

e {1 if carry present
1 0 1if no carry present:

This completes the multiplication for. x,y =0 and

"

P' o= (x4 (X)) (x'Y) - e - €
p' = (x'y')r + 273 €, * €)
P = P! + 2-391)"

In order to treat the double precision multiplication when either
the multiplier or the multiplicand is negative, we refer to the algebraic
derivation of the multiplication. (See chapter on Binary Arithmetic.)

A product uv is formed as
P = (go+u)(jL 2lri1av)

£ = 1l if u is negative
o \O0 if u is positive

where

The product expanded is

Pp = § ii 2i + & +Ev+u. ol 4w+ uv
o o o
i= i=
p = §ov + 2h0u -u+u+ouv+ 2h0§°
p(mod 2) = EV+H2-u+u+u

If u is negative, §o = 1 and a term v appears in the product. A
correction of (2-v) is then necessary. For simple precision, if v is
negative the terms (2-u) and u are generated during the multiplication
and precisely compensate each other; hence, no correction term is neces-
sary when v is negative. This compensation is not exact in double pre-
cision, and a small correction is required. Now in a double precision
multiplication

P =Xy,
a correction term of
2 -y
is necessary if x is negative (indicated by the sign of x'). All inter-
mediate products involving x' have a correction added, namely the comple-
ment of the multiplicand. Thé terms involved are
(x'y')' and (x'y")!
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The term (x'y')" of course does not suffer any correction, and the
corrections as done by the computer are, respectively,

' (2-y') and (2-y")

Combining these two terms appropriately one gets the correction as
done by the computer for a negative multiplief X, namely

2 -y + 27 P(2-y")

The true correction, however, should be

2.y = 2-y -2394 2730y
The most significant part of the correction term is 2-39 too large. It
is adjusted by subtracting 2'39 from (x'y')'. The least significant
part of the correction term is 1 too large. It is adjusted by setting
the sign bigit of (x'y")' to 0. (Less pedagogically, but more concisely,
it may be said that the computer correction is too large by 2'38, and
this is compensated by subtracting 2739 twice.)

A negative multiplier which necessitates the above additional cor-
rections may be detected by examining the sign of (x'y")'. y" always
has a sign of O; therefore, if

(x'y")'< 0, then x <O
and 2737 1s subtracted fram (x'y')" and the sign of (x'y")' is set to O.

If (x'y")'> 0, then x>0
and no correction is necessary. If

| (x'y")* =0
and if y' =0

then x' may be negative, and examining (x'y")' will not indicate this.
However, in such a case, the correction as done by the computer is the
precise one and no further steps are necessary.

When the multiplicand y is negative, the terms (x'y')' and (x"y')'
suffer the standard correction by the computer (as a negative
multiplicand is indicated by the sign of y'). We have seen above that
the single multiplication process which forms the products (x'y')' and
(x"y')' generates pairwise the terms

x', (2-x') and x", (2-x"

The first pair compensate precisely; the second pair is really
2739 (x"2-x") = 2(2739)
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As before, this quantity must be subtracted from the collection to
obtain the precise multiple product, and again this is accomplished
by subtracting 2'39 from the more significant part and 1 from the
less significant part. If

(x"y*)'< 0O then y'< O
and 2737 15 subtracted from (x'y')' and the sign of (x"y')' is set to O.
If (x"y*)'>=0 then no correction is needed.
A double precision product involving all necessary correction terms
is done as follows: '
Form (x'y")'. If

(x'y")' <o € = -39
then set sign of (x'y")' to O.
(xlyu)lao eo = 0.
Form (x"y')'. If
(x"y')'<o0 & = 27¥
then set sign of (x"y')' to O.
(x"y')'BO 51 = 0.

Form (x'y')* and (x'y')". Then form the sum

s = (x'y")' + (x"y')'.

If
s=>1 €, = 2739 then set sign of s to O.
s<l €, = 0.
p" is formed as
P o= (x'y')" + s,
If A
P> 1 € - 2739 then set sign of p" to O.
p"< 1 €3 = O ' |
p' is formed as
P' = (X'¥')' - e, - €+ €+ €5

and
P = p'+ 2-399".
We now return to the division process. The double precision quotient
Q= x/y
is to be formed. As a first step the reciprocal of y is obtained to 78
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figures. The reciprocal of y 1is found by the iterative scheme

z,6 = 1fy’

T 2z, - vz
e P = M
Such a scheme is error-squaring; therefore if the guess Zo is precise
to 39 bigits, Zl is precise to 78 bigits. The scheme is shown to be
error-squaring by the following:
Multiply both sides of the above equation by -y. This gives

22
Vo T Y YL

Adding 1 to both members gives

_ 52
1-Vayy = 1-22y+y72

(1 - yz,)°
(l-yzi) is the error in the 1™ approximation. The error (1‘y21+1) is
the error of the (i+l) approximation which as indicated above 1is the
square of the error of the :I.th approximegtion.

The reciprocal of y cannot be determined directly as it is greater

than 1. Hence, the reciprocal of the scaled quantity 2n+2y is found where

th

1/2 < 2‘1y|< 1, hence |(2n+2y)-l|< 1.
The unscaled quotient is obtained in two steps. First x may be multiplied
by 2n, inasmuch as |[x| < [¥]; after the division a left shift of two is
then performed. The first guess Zo is formed as

zZ, = 272 JoBy s Eq.(1)

Zo is precise to 39 figures; consequently Zl is precise to T8 figures.
Zl involves a double precision multiplication in the term
n_ . .2
2y * 2 o
The subtraction

2 .n 2
22 - 2.
) 2yZo

is not a true double precision subtraction as 22 contains just 39 figures.
A double precision complement of 2 -2 yZ must be taken however. Note

that a factor 22 is incorporated into the subtrahend in the above subtraction.



-96-

This is necessary because of the 2-2 factor introduced in forming Z_ in
, o]
Eq. (1). Using Z,, the quotient

9 = ;- x

is formed by & double precision multiplication. Then

Q = 2%
Since Q is formed by a left shift of 2, only 76 bigits are determined
in Q rather than the desired 78.

We now discuss the flow diagram of Figures 17 and 18. Boxes 1 and
2 of the flow diagram adjust x and y so that

1/2<|y|<l

Box 4 stores Yy and 22 into the four appropriate locations to be
used by the double prepision multiplication routine. Since two double
precision multiplications are required and since they are at two different
locations on the flow diagram, the multiplication routine is arranged so
that it can be used from any of several places. Four locations are re-
served for the factors in the multiplication and upon completing the multi-
plication a variable remote connection is set as an exit point from the
routine. Box 4 also sets the exit from the multiplication as(:>== <:D
which corresponds to the first instruction of Box 5.

Box 5 forms Zl and then sends Zl and x to the appropriate locations
for the multiplication routine, and the exit is set as (:) = 659 which
corresponds to the first instruction of Box 6.

Box 6 shifts Q, left by 2 to give the desired Q.

The multiplication routine is contained in Boxes 7 through 14, num-
bering hexadecimally. The boxes follow the multiplication procedure as
outlined; hence, no further discussion is necessary.

The storage of the problem is:

Al: x! A.3: ¥y
A.2: x" Al y"
The number 2732 is needed, and it is stored in A.5 as
A5: 2739
The addresses d‘l and 0'2 need to be stored. They are stored as posi-

tion marks at addresses A.6 and A.T.
A.6: (“l)o

AT (o)
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3
-2
z =i,- toB.5
0 Yn
Y
u'=yr" to B.I
u'=yf to B.2

Va2
v'=(25) 10 B.3

u_ ,52\n
= (20) to B.4

<

A.l:xp
A.2=x‘,l, [ __.
A3:y, }
. n
A.4: Yn |
4t a | l
Y=Y ) -
§o)-[L Pl IS
v
F N R
Ynt1 %2y
y;ﬂ’l to A3
b yiy to A4
-
nt+l n + "n+l=2xn
X;-,.H to A.l
X;-'H.l toA.2
6
Q= 220|
Q' to B.I
Q" toB.2
___|Baq
- B.2:Q)
QI - ]
F % =222 72
Q) = p" 1 2252¥n 29

u'=z; to B. 1

. o |u=Zlt0B.2
vi=x' to B.3

DOUBLE PRECISION DIVISION

v'=x"to B.4

O®

FIG. 17

————

B.1:(y, 25)’
——{B.2: (y,23)"

B.5: Zp




13
g'lz:?." (u'v") toC.3 -98-
B3:v' €y=0 toC5 >
B.4: v"
I Set exit (@) to(q;) o ")'8 (u'v") DS toC.3
(:)—'———b—u'v"toc.l (VY =t 39 —>— .
EU'V.))" to C 2 eo = "'2 fO C.5 ] C.3‘(u v )
. B C.5= Go
C LI RN Y A
S=(U" V')' +(UIVI)" toC.2 | ‘ ‘_ (U v ) 0?3;0 c4 ' - (U" vn)l
T : €, =€O-2 toC5 F
C.2=(U'V')“ C.4‘(U"V')I * 14
C3:uv) CS5:¢ < (u"v) to C.4
€ =€5t010C5
D c
s 719 %
+ E F 10 d
S DS t '2 1] ol L]
(5) °_3g p'= S+(uVv") toB2 P p' TP >¢
62: €| +2 fo C.5 l p—
|
C.Z:SI el + ”
2;2:‘;’2“ ) (p") DS to B.2
- -39
€3 =€, +2°710C.5
< _J
— C.ls(u'v")
z‘lz: 'p" C.5:63 _____
. ]p B.Z‘p"
| 2
@ ' < p'=(u'v')'+ €5 to B.I
DOUBLE

PRECISION DIVISION

FI1G.



Ten words of intermediate storage are needed for the computation. This

storage 1s designated as

The coding is:

Box 1
1.
24
3.

Box 2
1.
2.
3.
b,
5
6.
Te
8.
9.
A,
B.
C.
D.
E.
F.

10.

Box 3
1.
2.
3.

m—s>AcM

a—>Ah
C

m—>Ac
L(1)
m—Q
L(1)
Q-—m
R(1)

A-——on

m—>Ac
L(1)

a—Ac

Q—n

Ao3

-1/2

3,1

Ak
A.3
A.3
AL
A2
Al
A.l

A.2

1/h

A3

B.5

|75 to ®2
ly;)l- 1/2 in R2

yl'; to R2
2y" in R2
y' to Rk
7 -39
2(yr‘1 +2 y"n) in R4 and R2
y'n+l to A.3
"
Yne1 to Ak
n
xn to R2
2x1'; in R2
x' to R4
7 -39
2(xx'1 + 2 xx';) in R4t and R2
' 1
xn+l to A.l
x" to A.2
n+l
1/4 to R2

Z, = 1/4 ¢+ y* in Rh
ZO to B.5
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Box 4

1.
2.

3e
L,

5e

6.
7-

9.
A.

Box 5

=

ow >

E.

10.

12
13.
1k,
15.
16.

n—sQ
Q—mn
n—sQ
Q—mnm
n—Q

X'

A—m

Q—m
m—>Ac

m—>Ac
L(1)
mn—>Q
L(2)
Q—>m
R(1)
DS
A—m
m—>Ac-
m—>Ac
n—>Ah
m—>Ah
A—m
mn—>Ac-
DS
A—m
m—>Ac
A—sn
m—>Ac
A—m
m—>Ac
T

A.3
B.l
Ak
B.2
B.5

B.5

B'3

B.k
A.6

B)
B.2
B.1

B.1

B.2
B.1
A.5
B.5

B.5
B.1

B.2

B.2
Al
B.3
A.2
B.4
AT

(B

~(2%922)" 4o R2
—(22yZ§)' =239 4nRo

y' to R4

y' to B.l
y" to Rk

y" to B.2
Z to R4

(zg)' in R2, (zﬁ)" in R4

(zi)' to B.3

(zi)" to B.4

(a'l)o to R2

(yzi)" to R2
2(y22)" 1in R2
(yzs)' to R4
22(yZ§)' in RY, 23(yZ§)" in R2
(22y2§)' to B.1
(afyzg)" in R2
(2‘yzg)" in R2
(2%22)" to B.2

Z - (22yZ2)' -2 in e
2. = 22 - (PyP) - 2P 1n R
1 o o/ ~ n
Z' to B.,1l
22n
2 - (2 yZo) to R2
Z“l = 1 - (22yZ§)" in R2

1
Z 1 to B.2
x' to R2
x' to B.3
x" to R2
x" to B.h
((12)o to R2
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Box 6

1l, m—Ac

2. L(1)
3. m—>»Q

k., L(2)

5. Q—>m -

6. R(1)

8 . A ~31
9 . S‘top

Box T
1. S—m
2. m—Q
3. X!
L, A—mnm

5. Q—m

Box 8
1. m—Q
2. X
3. C

Box 9
l, m—Q
2. Ds
3. A—nm

h, Q—m

Box A
l. m—Q
2. X
3. c

B.2

B.1l

B.1l

B.2

12,4
B.1

B.3.

c.l
c.2

B.1l
B.4
9,3

Ao5

C.3

005

B.2
B.3
B,3

Q{ to R2
11

2Ql in R2
1

Q in R4

Q' in R4, 2Q" in R2
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Q' to B.l
Q" in R2
Q" to B.2
(ai)o in R2 @, to (8-19)11,4
u' to R4
(utv')' in R2, (u'v')" in R4
(u'v')' +to C.1
(u'v')"  to C.2
u' to R4
(utv")' in R2
€, = 2739 o R4
(u'v")'DS in R2
(utv")' to C.3
€ to 005

o

u" to Rk
(u"v')! in R2



Box B

1.
2.
3.
L,

5.

Box C
1.
2.
3.

Box D

1.

Box E
1.
2.
3.
k,
5a

Box F
1.
2.
3

n—Q

A—nm

m—>Ac

m—>Ah

A—mnm

m—Ac
m—>Ah

A—enm

A—>m
m—>»Ac
m—>Ah-

A—»nm

m—>Ac
m—sAh

A—>mnm

Box 10

1.

Box 11

1.
2.
3.
k,
5e

A—>n
m—>Ac
m—»Ah-
A—>m

AI5

C.h
Cd5

800

Cos '

Cult
C.2
C.2

C.2
C.5
A5
.5

C.2
C.3
B.2

12,1

B.2
C.5
A.5
c.5

2739 5 R4
(u"v')'DS in R2

(u"v')' to C.b

€, to R2
€ = €.+ (contents of RY)
el to C.5
(u"v')' to R2
s = (u"v')' + (utv')" in R2
S to C.2
(s)ps in R2
S to C.2
€ to R2
! -39
€, = €, + 2 in R2
62 to C.5
S to R2
p" = S+ (u'v")' in R2
p" to B.2
(p")Ds in R2
p" to B.2
€ to R2
2 -39
e3 = €, + 2 in R2 |
€ to C.5
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Box 12
1. m—Ac c.1 (x'y*')* to R2
2. m—>Ah C.5 p' = (x'y')' + 63 in R2
3. A—n B.l p' to B.1l
b, T [«]

The double precision shift in Box 2 is done by placing twice the
less significant part of the number into R2. Its first significant bigit
is then in the sign position of R2. The more significant part of the num-
ber is put into R4. A left shift of 1 now shifts the 78 bigits correctly
as the sign bigit position of R2 fills into 2'39 bigit position of Rk.
The quantity in R4 is stored. The quantity in R2 is then shifted right 1
and the sign bigit is set to 0. This is done to keep the less significant
part of the number, the part in R2, in correct form.

218 needed. Recall that the comple-

In Box 5, the complement of 22yzo

ment of a 78 bigit number is
2 -{(22yz°2)' + 2‘39(22yz02)}
2 - PPy - 2P+ 2P - (B2 2))

2 2
2 - 2%z,

Since the complement is to be added to a standard 39 bigit number, the
less significant part has only to be complemented as indicated and sent
into storage. The more significant part is complemented as indicated
and added to the 2Z0 and the result is sent to storage.

In the multiplication routine (u'v")' and (u"v')' are formed using
multiplication with round-off. This accounts for the possible contri-
butions from the neglected terms involving the coefficient 2'78. This
does not, however, always give a correct round-off.

Note that Box 13 is not coded. It is not necessary to code it if
the conditional transfer of Box 8 goes to Box 9, Imstruction 3. Since
(u'v")* is formed as a multiply with round-off, RlW contains O. This O
is set to eo and Instruction 4 of Box 9 stores it correctly. Instruction
3 of Box 9 stores the (u'v")'. Similarly, Box 14 is not coded and the
conditional transfer of Box A transfers into Instruction 3 of Box B.

Note the last two instructions of Box 4 and Box 5. Box U brings
( d})o into R2 and then transfers to the multiplication routine. Box 5
brings (@ 2)0 into R2 and then transfers to the multiplication routine.
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The first instruction of the multiplication routine then substitutes
the address 1 2
tion at the end of the multiplication routine.

There are, in all, 107 instructions in the code; which is 54 words.
The code is to start at Word O; therefore Words O through 35, hexadecim-
ally, are the code. Words 36 through 3C are A.l through A.7, respectively.
Words 3D through U4l are B.l through B.5, and Words 42 through 46 are C.1

through C.5, respectively.

or ¢, as the case may be, into the transfer instruc-

The coding paired into words is:

0. m—>AcM 038 a—>Ah Co0
1. c 00A m—>Ac 039
2. L(1) 001 n—>Q 038
3. L(1) 001 Q—>m 038
4k, R(1) 001 DS 000
5. A—sm 039 m—-sAc 037
6. L(1) 001 n—sQ 036
7. L(1) 001 Q—>m 036
8. R(1) 001 DS 000
9. A—nm 037 T 000
A. a—Ac 200 + 038
B, Q—m okl m—>Q 038
C. Q—m 03D m—Q 039
D, Q—m 0O3E n—s>Q okl
E. Xt okl A—>nm 03F
F. Q—n 0oko m—>Ac 03B
10. T 020 m—>Ac O3E
1. L(1) 001 m—sQ 03D
12, L(2) 002 Q@—mn 03D
13. R(1) 001 DS 000
14, A—m 03E m—>Ac- 03D
15. m—>Ah 03A m—>Ah okl
16, m—Ah okl A—5n 03D
17. m—>Ac- 03E DS 000
18. A—sm 03E , m—>Ac 036
19. A—m O3F m—>Ac 037
1A, A—>m ok4o m—>Ac 03C
1B. T 020 m—>Ac 03E

1Cc. L(1) 001 n—Q 03D



20.

22,

27.

ha,

L(2)
R(1)

m—>Ac
A—nm

m—>Ah

A—n
m—>Ah-
m—>Ac

A—>nm

m—>Ac
A—m
m—>Ah
T [

Al
A2
A.3
Ak
A5
A.6
AT
B.1
B.2
B.3
B.b4
B.5

002
001
O3E
035
O3F
o043
(0)1To)
03A
okl
O3E
028

oké
o046
oLk3

043
03A
043

Q—m 03D
DS 000
Stop
n—>Q 03D
A—m oh2
n—Q 03D
c 025
DS 000
Q@—mn o46
X 03F
n—>Q 03A
A—sm oLks5
m—>Ah 800
m—>Ac oLs
A—>m ok43
Ds 000
m—>Ac 046
A—>nm o046
m—>Ah olk
ct 033
A—n O3E
n—>Ah-  03A
m—>Ac ok2
A—n 03D
m see F'F
0001000010
0001B0OO01B

k2,
43,
4,
45,
L6,

c.1
c.2
c.3
Colt
C.5

-105-
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Problem 10

The problems previously discussed have all been of an analytical
character where the efficiency of solution is dependent upon the speed
and flexibility of the arithmetic unit. We now consider a problem of
a combinatorial nature which falls into a class of problems where the
efficiency of solution depends on the fléxibility of the logical con-
trol. The problem is a simple sorting procedure.

A set of N numbers, subject to no degree of monotony whatever, is
to be sorted into a monotonic decreasing sequence. In order to simplify
the discussion, we assume that the number of numbers to be sorted is

N = 2P
where P is a positive integer.

The sorting is accomplished by repeated meshings of groups of num-
bers. Meshing is the process of combining groups of elements (numbers)
in a prescribed fashion. For the present sorting procedure we are
meshing groups two at a time. Two groups, each monotonic decreasing,
are meshed into a single monotonic decreasing group; e.g., groups £ and
m of length b and ¢ elements, respectively, (where the elements of &
and 7) are in a monotonic decreasing sequence) are meshed into a group

v=§+7
of length b + c elements where ¥ is also a monotonic decreasing sequence.
Since we have restricted the N numbers to be sorted to be
| N =2F |
we may without further loss of generality say that any two groups to be
meshed are to contain the same number of elements,

The procedure is as follows: Consider the original sequence of num-
bers as N groups, where each group contains one element. These N groups
are then meshed two at a time into N/2 groups each containing two elements.
The N/2 groups are meshed two at a time into N/h groups each containing
four elements. This meshing procesé is continued until the sorting is
complete (one group of N elements is formed). In each of the meshings
the monotonic decreasing sequence is preserved. Hence, for the various
meshings there are N/2i groups of ol clements each, where i (=1,2---N/2)

specifies the particular meshing.
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The meshing of two groups § and 7 is done as follows. Each
group contains J numbers and the numbers Xy belong to £, and yj be-
long to 7) . The groups are monotonic decreasing so

X, > x, . and V5= Vi where i,j (=1,2¢+++J)

The groups § and 7) are to be meshed into a group v with elements
called Yn where

Vo= Vo n (=1,2+++2J)
The elements Xy and y, are compared. Then
ir (1) x,=> Yo V=X
or if (2) X<y, V=¥
If (1) holds, then X, is compared with y,. Then

if (3) =x =V V=X

or if (4) <V Vo =¥

However, if (2) holds rather than (1), x, is compared with Y,+ Then
> v =
if (5) x2v, v,=x

or if (6) X<V Vo=V,

The meshing of elements x, and y 3 follows the above:

i

it (a) X = e

(n=1i+3-1)

or if (b) X< Vg VY, =Ty
If (a) holds i and n are increased by 1 and the process is repeated.
If (b) holds J and n are increased by 1 and the process is repeated.
The meshing continues until either all of the numbers x; or all of
the numbers yj are incorporated into ¥ . The remaining elements of
the non-exhausted set are then directly included as the last elements
of v .

A meshing of two groups, each containing J elements, needs at most
2J - 1 comparisons of the elements to éomplete the meshing.

The number of elements involved in a sorting may often exceed the
capacity of the electrostatic memory; hence, we consider the problem
which requires the magnetic drum. However, we further simplify the dis-
cussion and assume that each drum track contains 6k (=26) words rather

than the actual 50 words.
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Once the sorting procedure given here is understood, it is
easily generalized to any number of elements and to any number of
words per drum track; e.g., 50 in our instance.

The N numbers subject to no degree of monotony whatever are
stored on the drum on M consecutive tracks. The numbers on the drum

are considered as two sets, Xl and Yl, where Xl is the first N/2

numbers on the drum and Yl is the remainder. Xl and Yl each contain

N/2 groups of one number. The groups of Xl are meshed with the groups
of Yl to form a set Vl of N/2 groups of two numbers each. To accomplish

this initial step, the first track (64 numbers) of X, and the first

track of Yl are brought into the memory. The first number of Xl is

meshed with the first number of Yl and the two are stored properly

in the electrostatic memory. This is repeated with the second elements
of the sets, and so on. When 64 numbers have been meshed into groups
of two, the 64 numbers are sent to the first drum track of the second
set of M tracks on the drum; when 64 more numbers have been meshed

they are then sent to the drum, and so on, until the entire set Xl
has been meshed with Yl. Whenever the 64 numbers from either the
set Xl or Yl have been exhausted, another track of 64 numbers of the

appropriate set is brought into the memory. The set Vl consists of

N/2 groups (each of two elements) where each group is a monotonic de-
creasing sequence.

The set Vl is now considered as two sets X2 and Y2, where X2 is

the first N/2 numbers and Y2 the remaining numbers. X2

contain N/4 groups (of two elements) and each group has the desired

and Y2 each

monotony. The groups of the set X, are meshed with the groups of the

2

set Y, to form a set V, of N/4 groups (of four elements) where each

group is a monotonic dicreasing sequence.

We then have the following inductive process: Two sets of
numbers XP and Yp each contain N/2P groups (of oP-1 elements). The
groups of XP are meshed with the groups of Y_ to form the set Vp,

where Vp contains N/2P groups (of 2P elements). The set Xp+l is
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the first N/2 numbers of Vp,and Y 1 the remaining numbers. Xp+l and
Yp+l each contain N/2p+l groups (of 2F numbers).

For a further discussion and elaboration of the sorting procedure
we draw the flow diagram.

The flow diagram contains three induction loops. They are:

(1) the induction concerned with the mesh cycles

(ii) that concerned with the meshing of a group within the sets
during any mesh cycle

(iii) that concerned with the transfer of elements between the
memory and the drum

Eleven distinct indices (variables of induction) are needed in
the flow diagram to describe the inductions.

The index p (=0,1,2-:P) describes the induction over the mesh
cycles. It is used in connection with the sets Xp and Yp. It keeps
account of the mesh cycle. p has no relevance other than as an index,
and it need not be stored.

The index n (=1,2--'N), where N is the total number of elements
being sorted, indicates the current number of elements that have been
meshed during any mesh cycle p. It is also used in a discrimination
to indicate the completion of the pth mesh cycle; therefore, n is a
stored quantity. -

The indices i, j, and k describe the induction concerned with the
meshing of the groups within the two sets.

The index k (=l,2,22-~- ) indicates the number of elements in
the groups of the two sets Xp and Yp. k and p are simply related:
during mesh cycle p the number of elements in the groups within Xp
and Y is k= 2P,

The indices i and j indicate the elements X; and yj of the groups
within the sets Xp and Yp. The indices i and j are used in discrimina-
tions with k to indicate the completion of the meshing of any two
groups within the sets; hence, i, Jj, and k are all stored quantities.

Rather then using i and j as indices which range over i,J (=l,2---k),
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ve let i and j be such that i,j (=1,2-++N/2). That is, i and j
range over the total number of elements of Xp and YP. The dis-
crimination of i and J cannot then be done directly with the 1ndex .
5, since they are not reset to 1 at the time they become equal to k;
'in fact, they continue increasing until they reach N/2. To accomplish
the desired discrimination, an index K (=k, 2k, 3k.-.N/2) is intro-
duced; end when .
1<i, <k then K = k

k+1<i, jJ<2k then K ="2k
and so on, until K = N/2.

At the completion of each mesh cycle g, the index k is doubled,
i.e., when p is increased by 1 to become p+l, then k = 2p is increased
to k = 2Pf1. This index k is used to determine the completion of the
sorting. The sorting is complete when p = P, at which time k = o N;
hence, a dlscrimlnation on k - N becomes positive for the first time
when k = 2P, and the process is terminated.

- The indices il, gi,'and n' are the indices describing the induction
concerned with the drum and i', j', n' (=1,2-+-64). The indices i' and
j' indicate when the 64 elements x

i
meshed. They also keep account of which two elements of the 64 elements

or yj vwhich are in the memory are

Xg and yJ are being meshed. Whenever i' or j' reaches 64, a new track

'of elements x; or y .y respectively, is brought fram the drum into the
memory. The index n indicates the number of elements X, and yj that
have been meshed and stored in locations in the memory. When n' reaches
its maximum value, the 64 elements which have been meshed and stored

in the electrostatic memory are subsequently sent to the drum. The in-
dices i', j', and n' are needed in discriminations and in, addresses;
hence, they are stored numbers. There are three indices concerned with
the drum which are, in themselves, addresses. They are Tx, Ty, and Tv.
Tx is the address of the drum track which contains the 64 elements of
the set Xp that are to be sent into the memory. Ty 1s the corresbond-
ing drum address for‘Yp., The ;ndex Iv is the address of the drum track
upon which the 64 meshed elements are to be stored. Now that we have
defined the necessary indices, the flow diagram of Figure.19 may be
.examined in detail. '
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In what follows, decimal and hexadecimal numbers both enfer into
the discussion. The hexadecimal numbers usually refer to instructions
and box numbers, hence entering only in the role of "labels" or "names."
The decimal numbers are usually used where the numerical charécter of
the number is significant. However, at places where there might be

confusion if the number is intended to be decimal it is underlined.

Boxes 1, 2, and 3 set up the necessary indices. Boxes 4, 5, 6, 7,
8, 10, and 11 are the boxes of the meshing of the groups within the sets.
Box 12 is an alternative box that indicates when the N elements have all
been meshed., Boxes A, B, C, D, E, and F are the boxes concerned with the
transfer of numbers between the drum and the memory. Boxes 13, 15, and
16 set up necessary values at the completion of one meshing of the sets
Xp and YP in order to start the next cycle in the meshing. Box 14 deter-
mines when the entire process is completed.

Box 1 sets the index k = (l)o since the first meshing is in groups
of one element. It sets the initial drum addresses for Tx, Ty, and Tv.
It also sets the address = @ . This is discussed in more detail
when Boxes 15 and 16 are discussed.

Box 2 sets up the indices k, j, n, i', j', and n'. These indices
are all set to (l)o. This box also sends the contents of tracks Tx and
Ty into the memory.

Box 3 sets up an index XK = k.

Box U4 is the alternative box that indicates when all of the elements
yj of a particular group of the set Yp have been meshed. Boxes 5 and T
indicate when all of the elements x5 of a particular group of the set Xp
have been meshed, If the elements of the two groups have not been ex-
hausted, the control proceeds to Box 10 to determine which is the larger,
x, or yj. .

It xigz yj, from Box 10 the control proceeds to Box 11, and v, o= X
i and i' are increased Dby (l)o. If xi<: yj, from Box 10 the control pro-
ceeds to Box 8, and vn = yj. J and j' are increased by (l)o.

If all of the elements of a particular group of the setYP are meshed
and stored, and the corresponding elements of the set XP are not, the dis-
crimination of Box 4 is negative and that of Box 5 is still positive;

hence the control proceeds to Box 11, where the element v, = xi is stored.
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This condition holds until all of the elements of the particular group
of the set XP have been incorporated into the meshed sequence. A
similar condition holds for the entry of the control from Box‘7 to
Box 8. In this instance, the elements of a particular group of the
set X? have all been exhausted and those of the set YP have not.

The Alternative Box 12 determines when N elements have been meshed.
The control proceeds to Box 13 when this obtains, and the control pro-
ceeds to Box U4 when the meshing is not complete.

The Alternative Box A determines when §& elements of Yp have been
meshed. If they have, Box B sends é& new elements yj into the memory.

Box C and Box D determine if é& elements of the set Xp are exhausted,
and if they are, éﬁ new elements x; are sent to the memory.

Box E determines when éi.elements have been meshed and stored in

the memory. Box F subsequently stores the QE elements onto the drum.

Box 14 terminates the sorting process when k = N. However, if the
sorting is not complete, Box 15 or Box 16 sets up the new initial drum
addresses for subsequent meshing. Recall that in Box 1 the address
<:) = QZ) was set up. This means that upon the first traversal through
Box 14 the control proceeds to Box 15 as is desired. In Box 15 the ad-
dress (:) = qza is set up so that on the next traversal of Box 14 the
control proceeds to Box 16 where the address<:) ==QE) is restored, and
so on, until the sorting is complete. Upon the completion of either
Box 15 or Box 16, the control returns to Box 2, where the i, j, n, it,
j', and n' indices are reset to (l)0 in order to repeat the induction
process,

The storage needed for the problem is as follows: The quantity
(l)o is needed and

B.1: (1)O

27

The four initial drum track addresses are stored, scaled by 2 ' and

B.2: co‘2-27
B.3: (o  + M/2)2"2T
B.b: 2%
B.5: (d0 + M/e)a‘27
The quantity 1'{—_".27 is needed for altering the drum track addresses and
B.6: 1-2727
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They are base addresses for the

storage of the numbers Xi5 ¥, and vn; and. they are designated (X.O)O,

(Y.O)O and (V.O)o. The storage is

B.9:

B.T: (x.o)o
B.8: (Y.O)0

(v.o)o

where the address (x.i')o = (x.o)0 + (i')o, and X.i': x,. Similarly,
Y. j': ¥ and V.n': v+ The number (QE)O is needed for discriminations and

B.A:

(64),

The total number of elements N is needed and

B.B:

(W)

o

.The drum instructions occupy full words where bigits_gg-égispecify an
address to which the control transfers upon completion of the drum in-

structions.

such addresses are needed and they are

The addresses @ and@ are

B.C:
B.D:
B.E:
B.F:

(Box 12, 1)2°39
(Box 2, 10)2~39
(Box 3, 1)2739

(Box E, 1)2-39

The addresses for these transfers need to be stored. Four

needed. They are stored as position marks in

B.10: (ﬁ?l)o
B.11: (/32)0

Eleven words of intermediate storage are needed during the course of the

computation.

They are designated as D.1, D.2 ««+ D.9, D.A, D.B. The

required electrostatic storage for the numbers being meshed is 192 loca-

tions; the drum storage is 2M tracks.

The coding is:

Box 1
1. m—Ac
2. A—n
3. m—Ac
y, A-—-n
5. m—>Ac
6. A—m
T. m—>Ac
8. A—n

B.1
D.1
B.2
D.2
B.3
D.3
B.4
D.4

(1)o to R2
c o~27 to R2

(co + 141/2)2.27 to R2

a: 22T 4o R

(1),

T
X

T
y

T

v

to D.1
¢, 2721 5 D.2

(c, + M/2)2727 to0 D.3

d - 22T 45 Dy



Box 1 (Cont.)

9. m—>Ac
A, S5—n
Box 2
1. m—Ac
2. A—m
3. A—m
L, A—>m
5. A—n
6. A—>m
T. A—nm
8. m—>Ac
9. m~—>»Ah
A, HS—m
B. m—lc
C. m—»Ah
D. HS—sm
E. D--n
F. Tx
10. D—om
1. [T
Box 3 v
1. m-—c
2. A-->m
Box 4
l., m—Ac
2. m—4Ah-
3. c
Box 5
1. m—Ac
2. m—»Ah-
3. c
Box 6

l. m—Ac
2 . m-—*Ah

3 . A—‘)m

B.10
14, 4

B.1l
D.5
D.6
D.7
D.8
D.9
D.A
D.2
B.D

2,F
D.3
B.E
2,11
X.1
2,10]]
Y.1
3,1 ]

D.1
D.B

D.B
D.6
7,1

D.B
D5
11,1

D.B
D.1l
D.B
4,1

(ﬁ%l) to R2

(l)0 to R2

T to R2
x

B, to (8-19)1k4,4

(1) toD.5
(1) to D.6
(1) to D.7
(1) toD.8
(1) to D.9
(1) toD.A

0O 0 0o 0o o o

T + (Box 2,10)2737 in R2
X

T to R2
y

Ty + (Box 3,1)2'39 in R2

(k)° to R2

(K)0 to R2
(K-,j)o in R2

(K)° to R2
(K-i)o in R2

(K)o to R2
(K'+k)O in R2

(xl to xég) to X.1 to X.6L4

(yl to yég) to Y,1 to Y,6k4

(k)o to D.B

(K*k)o to D.B



Box 7
1.
2.
3.

Box 8

=

3

Q 0 > O @ TJ O\ Fw n

m—>Ac
m—>Ah-
C

m—>Ac
m—>Ah
S—>nm
m—>Ac
m—>Ah
A—>m
m—>Ac
m—>Ah
A->om
m—>Ac
m—>Ah
S—m
m—>Ac
A—m

m—>Ac
m—>Ah
A—m

m—>Ac

D.B
D.5
10,1

B.8
D.9
8,D
D.6
B.1
D.6
D.9
B.1
D.9
B.9
D.A
8,E
[x.s']
(v.nf]

D.7
B.1l
D.T
D.A
B.1l
D.A

B.A
D.9
c,1

D.3
B.6
D.3

-116-

(K)o to R2
(K-i)o to R2

(Y.o)0 to R2

(Y.j')o = (Y.O)o + (,j')0 in R2

: Yj, to (8-19)8,D
(3), toR2
(j+l)o in R2

(J+l)o to D.6
(J')o to R2
(3'+1)° in R2

(3'+1), to D.9
(V.O)o to R2
(Von') = (V.0)_+ (n')_ in R2

° ° v~g' to (8-19)8,E

v.o=Yy

n .%J
vn to V.n'

(n)o to R2
(n+1)O in R2
(n+1)0 to D.T
(n') to R2
(nkl?o in R2
(n'+1)  to D.A

(é&)o to R2
(é&-d')o in R2

Ty to R2

Ty + 1 in R2
T +1 to D.3
Y



Box B (Cont.)

k, m—>Ah
5. HS—m
6. m—Ac
7. A—m
8. D—m
9. [Ty +1
Box C
l. m—Ac
2. m—Ah-
3. c
Box D
l. m—Ac
2. m—>Ah
3. A—m
k., m—sAh
5. HS-—>mn
6. m—Ac
7. A—n
8. D—n
9. [T+ 1
Box E
l. m—»Ac
2. m—Ah-
3. C
Box F
l. m—Ac
2. m—»Ah
3. A—m
k., m—sAh-
5. m-—>Ah
6. HS—m
7. m—Ac
8. A—nm
9. m—3D
A, [T,

B.F
B,9
B.1
D.9
Y.1
E,1]

B.A
D.8
E,1

D.2
B.6
D.2

B.F

E,9
B.1l
D.8
X.1

E,1]

B.A
D.A
12,1

D.4
B.6
D.k
B.6
B.C
10,A
B.1l
D.A
V.l
12,1]
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T, + 1+ (Box E,1)2"37 in R2

(l)o to R2
(1) to D.9

(o]
(y:j to yj+6_l+) to Y.1 to Y.64

(6_h)° to R2
(@-1')o in R2

Tx to R2
Tx + 1 in R2
T +1 in D.2
b'q

-39 ’
T + 1+ (BoxE,1)2 in R2

(1)o to R2

(614)o to R2
(6h-n')0 in R2

Tv to R2

T +1 in R2

v

T +1 to D.h
v

T in R2

Y -39

T, + (Box 12,1)2 in R2

(1)0 to R2

(1)o to D.A
(vn to Vn+6h) to T



Box 10
l. m—sAc
2. m—>Ah
3. S—nm
k., m—sAc
5. m—>Ah
6. S—m
T. m-—sAc
8. m—>Ah-
9. c
A, T
Box 11
1. m—>Ac
2, m—Ah
3. S—>n
b, m—sAc
5. m—>Ah
6. S—m
T. m—>Ac
8. m-—>Ah
9. A-—n
A, m—Ac
B. m—>Ah
C. A—n
D. m-—Ac
E. A—>n
F. T
Box 12
l. m—Ac
2. m—>Ah-
3. c
Box 13
1. m—Ac
2. L(1)
3. A—nm

B.7
D.8
10,7
B.&
D.9
10,8

(x.17]

[¥.5]
11,1
8,1

B.7
D.8
11,D
B.9
D.A
11,E
D.5
B.1
D.5
D.8
B.1
D.8

[x.1']

[V.n']

9,1
B.B
D.7
4,1

D.1

D.1
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(x.o)0 to R2
(X.i')o = (x.o)o + (i')o in R2

X.i' +to (8-19)10,7
(Y.O)O to R2
(Y.j')o = (Y.O)o + (j')o in R2

Y.j' to (8-19)10,8
xi to R2
xi-yj in R2

(x.o)o to R2
(x.i')0 = (x.o)o + (1')o in R2

X.i' to (8-19)11,D
(v.o)0 to R2
(V.n') = (v.0)  + (n'), inR2

V.n' to (8-19)11,E
(1)o to R2
(i+l)0 in R2

(i+1)O to D.5
(1')0 to R2
(1'+1)0 in R2

(1'+1)  to D.8

v_ to V.n'!
n

(2k)o to D.1
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Box 14
1. m—Ac D.1 (k) to R2
2. m—>»Ah- B.B (k-I?I)o in R2
3. C 16,A
b, T (B8]
Box 15
1. m—Ac B.4 T, =4d - 22T 6 mo
2. A—m D.2 T to D.2
3. m—>Ac  B.5 Ty = (dO + M/2)2'27 tﬁ R2
4, A—m D.3 T to D.3
5. m—>Ac B.2 T, =c.° 27T 4o mo Y
6. A—n D.h Tv to D.b
7. m—Ac B.11 (132)0 to R2
8. S—sm 1,4 Bs to (8-19)14,4
9. T 2,1
Box 16
1. m—>Ac  B.2 c," 2727 to Re
2. A—n D.2 T =c.22 45D.2
3. m—>Ac  B.3 (c, + M/2)22T o R2 0
4. A—sm  D.3 T = (c_ + M/2)272T 0 D.3
5. m—>Ac B.4 do'2-27 to R2 Y
6. A—>m D.h4 T, =4 22T oDy
T. m—>Ac  B.10 (B;), to R2
8. S—m 1,4 ;31 to (8-19)1k,k4
9. T 2,1
A. Stop

Recall that the magnetic drum instructions each occupy a full word.

The drum instructions are:

"m—->D BD Read 50 successive words from the memory starting with
the word at the address specified by bigits 8-19 of
the instruction. Write these 50 words into the drum
on the track specified by bigits 20-27. Then transfer
the control to the left-hand instruction of the word
at the address specified by the bigits 28-39.

D—>n BC Read the 50 words from the track of the drum specified
by bigits 20-27 of the instruction. Write these words
into 50 successive memory locations starting with the
address specified by bigits 8-19. Then transfer the
control to the left-hand instruction of the word at
the address specified by bigits 28-39."
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For the present problem we assume that ég words are transferred, rather
than the 50 expressed by the instructionms. v

Instructions E and F of Box 2 comprise a drum instruction. In ‘the
final coding these two instructions must be in the same word. Inmstruc-
tions E and F are ihterpreted as: Read QE words from track Tx of the
drum, and write them into the memory at the addresses X.l through X.6k4;
then transfer the control to Instruction 10 of Box 2. This means that

Instruction 10 of Box 2 must appear on the left side of an instruction
word in the final coding.

Note that Imstruction F of Box 2, the right-hand 20 bigits of the
drum instruction, is formed in R2 by Instructions 8 and 9 and then sent
to F by an HS—»m instruction. This is necessary since Tx is a variable
address. (In Box 2, Tx may be either c, or do') There is no instruction
~ that will modify only bigits 20-27 of a word in the memory, so one method
of altering the drum track address is to modify bigits 20-39 of the drum
instruction by an HS—>m instruction. This method necessitates storing
the address which is to constitute bigits 28-39, the transfer portion, of
the instruction. Instruction 8 of Box 2 brings the track Tx-2-27 into
R2. 1Instruction 9 adds to this the address of (Box 2, Imstruction 10)2-39.
The half-word substitution is then'effected by Instruction A, 1In the
final coding this must be an HS—m' instruction.

Instructions 10 and 11 of Box 2 also comprise a drum instruction
where the right-hand 20 bigits, Instruction 11, are generated as discussed
for the previous drum instruction.

Instructions 8 and 9 of Box B, Instructions 8 and 9 of Box D, and
Instructions 9 and A of Box F are drum instructions. Note in Box B and
Box D, where the coding would normally end with a transfer instruction to
send the control to Box E, Instruction 1, and in Box F, where the coding
would normally end with a transfer to Box 12, Instruction 1, that the
drum instruction performs this function. When possible then, it is use-
ful to incorporate the drum instructions at points where transfers must
normally take place.

The drum instructions in Boxes B, D, and F are similar in treatment
to the previous discussion; hence the only further comment needed is

that the drum instruction in Box F is an m—sD instruction.
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In the pairing of the coding into words one has to ascertain that
Box 2, Instructions E and 10; Box 3, Instruction 1, Box D, Instruction 8;
Box 12, Instruction 1; Box E, Instruction 1; and Box F, Instruction 9,
all are the left-hand instructions of their respective instruction words.

We begin the coding at Word 000. There are, in all, 153 instructions,
which is 76 1/2 code words. The code would normally occupy Words 000
through O4C hexadecimally. However, four "dummy™ instructions need to be
inserted to obtain the correct positioning of those instructions which
must begin on the left. This adds two words to the code, and it occupies
Words 000 through OLE.

The constant storage begins at O4F. The 17 words of B storage occupy
locations O4F through OSF. The 11 words of intermediate storage occupy
Words 060 through O6A.

The routine and storage occupy 107 words of the memory 000-06A.
Numerical values are inserted for the addresses (X.O)o, (Y.O)0 and (V’O)o'

They are chosen as:

(x.o)o = (o6A)0
(1(.0)o = (OAA)O
(v.o)o = (OEA)O

The algebreic addresses are left for the drum tracks as they depend in
part on the total number of numbers being sorted. The quantity (N)o
which is the total number of numbers is also left in algebraic notation.

The coding, with the necessary "dummy" instructions, is:

0. m—Ac O4F A—sm 060
1. m—Ac 050 A—>m 061
2. m—Ac 051 A—>m 062
3. m—>Ac 052 A—nm 063
4, m—sAc 05E HS—>m' ok
5. m—Ac O4F A —>nm o6k
6. A—m 065 A—m 066
T. A—m 067 A—m 068
8. A—m 069 m—>Ac 061
9. m—Ah 05B HS—>m' ooc
A, m—sAc 062 m—>Ah 0sC
B. HS—>m' 00D (D s 000) "dqummy"



12.
13.
1k,
15.
16.
17.
18.
19.
1A.
1B.
1ic.
1D.
1E.
1F.
20.
21.
22,
23.
2k,
25.
26.
27.
28.
29.

2B.
2c.
2D,
2E.
oF.

D—nm
D—sm

m—Ac

m—>Ac¢

m—>Ah
m—>Ah
m—>Ac
D—m

m—>Ac

m—>Ah

mn—>Ah-

06B
OAB
060
06A
o1k
064

06A
06A

033

065
065
O4F
057
01C
000
OLF
069
069

062
062
025
068
OAB
058
02C
o5k
05D
O4F
06B
058
oko
054
054

00000

00000
A—m
m—>Ah-

m—sAc

m—s-Ah

m—sAh-
m—Ac
S—n'
m—sAh
m—sAc
A—sm
m—>Ah
m—>Ac
m—Ac
A—sm
m—>Ah
m—>Ac
c

m—Ah
m—sAh
m—>Ac

(D s 000)

00000
m—->Ah-
m—>Ac
A—m
HS—m*
A—m
00000

m—Ah-
m—>Ac
A—sm

m—>Ah

064
065
06A
038
060
OOF
064
056
01B
O4F
068
068
069
000
066
066
OUF
058
026
054
05D
OkF

"dumny"

067
061
061
02B
067

069
063
063
05A

~122-



30.
31.
32.
33.
3h.
35.
36.
37.
38.
39.

3B.

o
43,
Lh,
45,
46.
b1,

49.
LA.
L4B.
1o
LD.
LE.
LF,

50.
51.
52.

FEWEES

m—>Ac

m—>Ah

m—>Ac

m—>Ac
S—>m

m—>Ah
m—>Ac

A—sn

m—>Ac
T|

m—>Ac

L(1)

m—>Ac

m—>Ac
m—>Ac
m—>Ac

m—Ac

A—n
A—m
A—>m
BES—>m'
STOP

(1)

o
c -2-27
o

032
069
OEB
055
036
068
000
038
055
O3E
069
064
064
O4F
000
0l1C
059
OOF
001
060
OLE
052
053
050
O5F
005
061
062

063.

Olshy

(c, + M/2)2"2T

a -2‘27
(o]

m—sAc
(D 8 000)

00000

m—>Ah
m—Ac
S—mnm'
m—>Ah-
Tl
m—>Ah
m—>Ac
S—n'
m—>Ah
m—>Ac
A—m
A—>nm
(00000)
m—>Ah-
m—>Ac
A—->nm

m—>Ah-~

A—m

A—m

HS—>m!
m—>Ac
m—>Ac
m—>Ac

m—>Ac

OLF
"d. ]: "

067
056
036
000
015
067
057
O3E
O4F
067
067
000
"dummy
066
060
060
059
000
061
062
063
okl
050
051
052
O5E
005

-123-
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53. (do + M/e)e‘27

sh. 1.2727

55. (X.o)0 = (06A)o
56. (Y.O)O = (04a)
57. (v.0) = (OEA)
58. (61_+)0 = (ouo)o

59. (W),

sa. 12,1 = (oko)2~37

5B. 2,10 = (oon)2'39

5C. 3,1 = (00E)2’39
5D. E,l = (020)2'39
SE. (B,), = (Caoks5)
5F. (32)0 = (CBOLL9)O
60. D.1l

61. D.2

62. D.3

63. D.k4

64. D.5

65. D.6

66. D.T

67. D.8

63. D.9

69. D.A

GA. D.B

The first drum instruction (Box 2, Instructions E and F) would not
normally have been in one word in the paired coding. A "dummy" instruc-
tion, DS000, was inserted on the right-hand side of Word OOB in order to
position the drum instruction correctly in Word OOC. The right 20 bigits
of the drum instruction are noﬁ indicated as they are supplied from the
problem. In punching a tape, five O's could be punched for right-hand
portion of Word 00C. |
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Upon positioning OOC correctly, the next drum instruction, Word OOD,
and the first instruction of Box 3, Word OCE, are in the correct position.

The drum instruction in Box B, Instructions 8 and 9, also needed a
"qummy" instruction inserted as the right-hand instruction of Word 02k
to position the drum instruction correctly into Word 025. Similarly, the
drum instruction in Box F, Instructions 9 and A, needs a "dummy" instruc-
tion inserted in the right-hand side of 031 to position the drum instruc-
tion correctly into 032. Instructiomsl of Boxes 12 and E need to be left-
hand instructions since they are entered by the transfer portion of drum
instructions. Box E is in the correct position as it begins on the left
of Word 02C; however, Box 12 does not naturally begin on the left, hence
a dummy instruction (00000) is inserted into O3F' following the last in-
struction of Box 1l. Box 12 then begins on the left of Word O4O as is
desired. The dummy instruction may be inserted as all O's since the in-

struction is never executed by the control as Box 11 ends in a transfer

instruction.
(B,), and (B,)  are stored as
OSE: (ﬁl)0 = (CAOhﬁ)o
o5F: (B,), = (CBOKY)

rather than as addresses. This is done since the entrances @ and@
which are Box 15,1 and Box 16,1 do not both begin on the same side
of their respective words. The addresses Q?) and Qza are supplied
to Box 14, Instruction 4 (Word O44') by an HS—>m' instruction; hence
the order as well as the address is modified appropriately.
The sorting procedure as presented is valid only if all of the num-
bers have the same sign (i.e., either all positive or all negative). If

numbers of mixed sign are to be sorted, Box 10 would need to be modified

as numbers of opposite oign could presently cause spillage.
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Problem 11

-We evaluate and tabulate a sequence of values for sin x where the
argument x is not given in any systematic order. The values of x are
punched on paper tape for use in the sine computation. When sin x is
determined for each velue of x, it is stored with its argument as one
word. The first 20 bigits (0-19) store x and bigits (20-39) store
sin x. The values of x and sin x are then printed and punched by the
.flexowriter.

The method used for evaluating sin x is the Taylor's series ex-

pansion of the function.

3 >

+

e

sinx = x -

w‘N

\ﬂ'N

-~

The following induction describes the series:

o‘l = X Zl = X
2
3 - L] i— -
03 cl 33 2:3 N + 03
. 2
- X -
Y2 T 7% GG Za+a B Zj* %y+2
lim X = sin X.
J—es00 J

For the example it is assumed that O < x< 1, where x is in radians.
It then follows that sin x < 1. '

From the induction process it is seen that the formation of the
term 050 involves a division by (j+1)(j+2).» Since j is an integer,
the division cannot be done directly. To allow this division, j is
scaled by 27", determined by

27 < 1
As the °j+2 is desired as an unscaled quantity, the numerator is scaled
by the same factor as is the denominator which gives the resultant quo-
tient unscaled. In order to preserve significant figures, °J+2 is

formed as follows:
~
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2% 2%

J o7 B(541) 2 (g+2)

o. = =0

The induction is terminated when the difference between two suc-
cessive terms is less than a predetermined amount B , where the size of
8 is determined by the number of figures desired in the approximation
to sin x. The difference between two successive approximations is the
term oj. The discrimination is on the quantity

|°jl -

The absolute value of oj is used, since Uj may be positive or
negative.

The storage needed is as follows: The constants l~2'n and 8
are stored at B.l and B.2, respectively. The number I, representing
the total number of values of the argument x, is stored at B.3 as
127", and 1-27" is stored at B.4 where 27" is such that I-2"< 1.
The values xl, x2, x3 e Xp are punched onto paper tape as input data.
Seven intermediate storage locations are needed. They are designated
as D.1, D.2 +++ D.T.

No explanatory remarks are needed for the flow diagram which is

shown in Figure 20, so we turn directly to the coding.

Box 1
1. m—sAc B.k 1.27® to R
2. A—sm  D.7 1.2 to D.7
Box 2
1. Read D.1 x; toD.l
Box 3
1. m—sAc D.1 xg to R2 1
2. A—sn D.2 E:i = Xy to D.2
1
. A—sn D.3 Oi = xi to D.3

3

4. R(n) n 277x, in R2

5. A—sn D.4 2 x; to D.4
6. m—sAc B.1l 1-2 to R2

7

« A—>m D.5 1-2 to D.5
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3
@ 2'i=xi toD.2

! o 2 ai' = x; to D.3
2M%; to D.4

1-27M10 D.7 I =i Read x; to D.!

1-2"t0 D.5

D.2:3] D42
D3:o! DS5:j-2"

4

R -Nn -N
jte__j . 20 2T
% AN+ ZN+2)

to D.3.
+ +2 o)

Eij =2g+a'ij+2 to D.2
A (j+2)2°" to D.5

j¥2
! D.2:3]
_____ 03=a'-j+2
c R
42— | D.5:(j+2)2"
Y.
+ .
~——— |} | -
d Ia.| I 8 Y
- j
i+ —= | —p— #“;— D.2: Zj
+ sin x =3}
B i
- e __]D.t=x
(i+1)2™ to D.7 # 6 LD-2:Sin x

Xj t0(0-19) D.6
Sin x{ t0(20-39) D.6

(i-n2™™ —@— Print and Punch x;, Sin x; —4—1—'—— D.6:(0-19)x;,(20-39)Sin x;

@ L|{p7:i-27m

SINE by TAYLOR’S SERIES EXPANSION
FIG. 20




10.

Box 5

1.
2.

3.

Box 6

1.
2.
3.
L,
5.

Box 7

l.

2.

m-—sAc

A—>n

m—>Ac-

A—sm
n—>Ac
m—>Ah
A—sm

m—a>»Ac

m—>Ah

A—m

m—>AcM
m—>Ah-
C

m—>Ac
HS—m
m—>Ac
R(20)
HS—>m'

D.5
B.1
D.5
D.L

D.5

D.3

D.3
D.5
B.1
D.5
D.4

D.5

D.3

D.3

D.2

D.2

D.3
B.2

Box 4,1

D.1
D.6
D.2
20

D.6

Flexoprint D.6

Punch

D.6

to D.5

-0; —= to D.3

(##2)2® to D.5

-n
2 Xg to R2
X
i .
45 in R4
o'j+2 -o"j _.).(_ - _x_. in R2
i ij¥l g2
?+2 to D.3
i
L -] J .
Z = Z + 0']'.J.+2 in R2
i i
jt2
E: to D.2
i
[ogl to R2
[y ] - Sy in R2
xi to R2
X, to (0-19)D.6
sin x to R2
20 *
2 sin X, in R2

sin x; to (20-39)D.6

(O-l9)xi(20-39)sin x
to Printer

(O-l9)xi(20-39)sin Xy
to Punch

i

<

G-
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Box 8
1. m—dc D.7 1.2 to R2
2. m—sAh- B.3 (i-1)2™ in R
3. C Box A,1
Box 9
1. m—Ac D.7 i2™ to R2
2. m—hh B.k4 (1+1)2™ in R2
3. A—sm  D.7 (141)2™ to D.T
' T Box 2,1
Box A '
- 1l. Stop

The coding needed in Box 2 is merely the read instruction. The
read instruction does the following:

Read the next word to come under the reading head of the
photo-electric reader and send the word to the memory at
the address specified with the instruction.

In Box 3, Instruction 4 specifies only a right shift of n places. In
an actual problem the scaling factor 2™ would be determined and the
numerical value of n would be inserted as the address of the R(n) in-
struction. Box 6 stores the x; end sin x, into one word D.6 by making
use of the HS—>m and HS—sm' instructions. Instruction 2 of Box 6
stores the first 20 bigits of Xy into bigits 0-19 of D.6. This in-
struction does not alter bigits 20-39 of D.6. Instructions L4 and 5
store the first 20 bigits of sin Xy into bigits 20-39 of D.6. Since the
HS—m' order replaces bigits 20-39 of m by bigits 20-39 of R2, the num-
ber in R2 must be positioned so that the 20 bigits to be sent to m are
in bigits 20-39 of R2. Instruction 4 shifts sin x right 20 bigits so
that the 20 most significant bigits of sin x are in (20-39)R2. In-
struction 5 is then an HS—sm' D.6 which stores sin x into (20-39)D.6.
Box 7 requires two instructions, one to print D.6 and one to punch D.6

In this example the HS—»m and HS—em' instructions were used to
store half-precision (20 bigits) numbers, as compared to Problem 10
-Qﬁéfe.théy vere used in modifying instructions.
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The pairing of the code into words should present no difficulties.

If the code sequence is started at address 000 the paired coding is:

O.
1.
2

© PN AW Fw

W

17,

-n

~m

-m

m—sAc 019
Read 0l1A
A—sm 01B
R(n) (n)
m-—fc 016
m—Ac OlE
Aom OlE
- O1E
A—>sm 0l1cC
m—»Ah 016
m—syAc 01D
X 01cC
m—>Ah 01B
m—AcM 0O1C
C 005
HS —>m O1F
R(20) 01k
FlexoprintOlF
‘m—>Ac 020
ct 015
m—>Ah 019
T 001
1.2

o

I-2

1-2

A—>m

-m—yAc

A—mnm
A—om
A—>m
m—>Ah

m—>yAc-

m—>Ac
A—sn

A—sn
A—m
m—>Ah-
m—Ac
m—>Ac
HS—m'
Punch
m-—>Ah-
m——>Ac
A—m
Stop

020
01A
0lc
01D
01E
016
01D
olc
OlE
e1E
OlE
o1C
01B
017
OlA
01B
OiF
OlF
018
020
020
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Problem 12

During the course of a lengthy computation it is desirable to
make a periodic record of the contents of the memory. This record
should be in a form that can be read back into the memory. Then, in
the event of a computer malfunction which causes a computational error,
one has only to read the last record of the memory contents back into
the computer and resume the computation. If such a record is not
avallable, the computation often has to be restarted from the beginning;
and several hours, or even several days, of computational time may be
lost. These periodic records of the memory contents help to keep the
time lost due to computational errors at a minimum.

Such periodic records also increase the flexibility of the com-
puter, for it becomes a simple task to interrupt a problem at any stage
of the computation and start computation on a different problem. To in-
terrupt a problem, one has only to record the memory contents and to
know the instruction with which the control is to resume the computation.
To resume, the record is read back into the memory and the control is
sent to the desired starting instruction.

A magnetic tape unit has been adapted to the computer as an auxili-
ary input-output device for making these periodic records of the memory
contents. A further discussion of the magnetic tape unit and its opera-
tional procedures is giveh in the chapter on operating procedures.

In this problem we Qutline two routines which are concerned with
the magnetic tape unit. The first of these routines transfers the con-
tents of the memory except for the routine itself to the magnetic tape.
The second of the routines transfers the contents of the magnetic tape
into the memory at the addresses specified by the routine.

Routine 1: Memory to magnetic tape.

This routine reads successively the words in the memory beginning
with the first word beyond this routine and ending with the last word
(1023) of the memory. As these words are read from the memory they are
written onto the magnetic tape in a serial fashion beginning at a pre-
marked section of the magnetic tape (details are discussed in the chapter
on operating procedures).

A sum is formed of the contents of the memory (excluding this

routine). The sum is: 1023
S

m,
1 i&e i
o)
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where co is the address of the first recorded word and mi is the wdrd
at address i in the memory. This sum is recorded on the magnetic tape
immediately following the word m

1023
The sum is formed as a checking procedure for the magnetic tape unit.

, and the sum is also printed.

When the words on the tape are read back into the memory, the memory
is summed and this sum must agree with the sum made at the time the
contents of the memory were sent to the tape. If the two do not agree,
an error has occurred and the record sent to the tape has not been
transmitted correctly into the memory.

The inductive procedure should cause no difficulty, so we turn
directly to the flow diagram in Figure 21. Box 1 sets up the initial

values of the induction. Box 2 sends the word m, to the magnetic tape.

}:izi Ty

i-1
is also formed. Note in Box 2 the expression
[delay L(%0)]

This has the following meaning: Each Q—t instruction is preccded by

The partial summation

an L(40) shift instruction. During the traversal of this routine by
the control, the magnetic tape is running continuously, and the L(40)
instruction gives a certain spacing between words on the tape. This
spacing is necessary to insure accurate transmission at some later oc-
casion of the data from the tape back into the memory. Again this is
discussed more thoroughly in the chapter on operating procedures.

Note in Alternative Box 3 how the induction is terminated. The

discrimination is upon

(M-i+1)2‘l° where M-i(= c > C Ll - 1023)
Now when
M-i < 1023

M-i+l < 1024
and '
M-1+41)2710 < 1

However, when
M-i = 1023
which means that the last word in the memory has been sent to the
magnetic tape ’
M-i+l = 1024
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D.1 :(M.c)2'©
|
3 ' :
3. =0toD.2 l a
M.o=0 |y ¢! SR U gyt
(M.c)2™= Co* 2710 to DI
|
r— > ~
D.1:(M.2"°
D.2=2i_| --------
2
b [delay L(40)]
=i m; to tape
2 =Zi_|-!-mi to D.2
(M.i4+ 120 D.1
8 D.I:(M.i+nzof _____ '
D.2 =2i
3
——— - i+ 210
£ |
3FF = i
s
[delay L(40]]
@ - S, =2 zpfo tape
Print S;

MEMORY TO MAGNETIC TAPE

FIG. 21
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and
(M.i+1)2'l° = 1

which appears in the computer as a negative number and the control
proceeds to Box 4. This discrimination really allows the positive
discriminating quantity to increase until it exceeds for the first
time the allowed range for numbers in the computer. The effect to
the computer is a change in the sign bigit of the number upon which
the discrimination is made.

Box 4 sends the summation Z3FF (3FF = 1023) to the tape and
also prints the sum.

The only storage needed in the problem is for two intermediate
values of the computation. These values are the address M.i and the
partial summation zi‘ They are stored in D.l1l and D.2, respectively.

The coding of the problem is:

Box 1
. A 0 =
1 a—s3Ac Zc-l 0 to R2
2. A—m D.2 E: =0 to D.2
-10 -10 -10 c-1

3. a—Ac c -2 (M.c)2 =c 2 to R2

b. A—sm  D.1 M.c)271% o D2
Box 2

-19

1. R(9) 9 (M.i)2 in R2

2. S—m 2,5 M.i to (8-19)5

3. L(40)

b, m—Ac D.2 Z .1 toR2

5. m—Q [M.i] m, to R4

6. m—sAh 800 2:1 = 2:1-1 +m, inR2

T. A—m D.2 Zi to D.2

8. Q—t m. to tape

-10 +

9. m—>Ac D.1 (M.i)2 to R2

A. a—san 1.2710 Me1+1)270 = .1)271° + 1270 inme
Box 3.

1. c 1,h4
Box 4

1. L(%0)

. . S, = to R4

2. m—Q D.2 1 21023 0

3. Q—t S, to tape

k. Flexoprint D.2 S; to printer

5. Stop



-136-

In Box 1 the starting address (00)2-10 is stored as the address
portion of an a—Ac instruction. The instruction clears R2 and
brings co_2-10 into positions 0-11 of R2. An a——Ac instruction may
often be utilized in this manner for storing and forming addresses.

Since the address as formed is

(M.i)a-.lo

it cannot directly be used in conjunction with an S—»m instruction,

as the bigits of an address to be substituted must appear in R2 as

M.1)27Y or (M.1)2737
Instruction 1 of Box 2 shifts (M.i)z‘10 right by nine places so that
the bigits in R2 are
(M.1)2
Consequently, the instruction that receives this address must reside
on the left-hand side of the instruction-pair.
Instruction 6 of Box 2 adds m,i to the quantity'E: 1.1 which is in
R2 as the result of Instruction 4. Instruction 6 reads
m—>Ah 800
Recall that any of the add orders (orders 1-8 of the vocabulary, Table I)
treat R4 as a memory location with the address 2048 = 800 hexadecimally.
m—Ah 800 adds the contents of R4 into R2. Now R4 contains m, as the
result of Imnstruction 5, so that
L, tLlgm
is formed in R2 as desired.
Instruction 8 of Box 2 is the Q—>t instruction. The instruction

is

"Q—t AD Write the number in R4 onto the magnetic tape.”

The quantity mi to be sent to the tape is in R4 as the result of
Instruction 5 of Box 2. The address portion of the Q—»t instruction
has no relevance (the address is usually set to 000 for convenience;
it may, however, be set to any value).

instructions 9 and A of Box 2 form (M.1+1)2'l°, in R2. Rather
than storing (M.i+l)2'lo into D.1, it is left in R2 for the discrimina-
tion of Box 3, Instruction 1. The conditional transfer of Box 3, if

effective, sends the control to Box 1, Instruction 4, where the contents
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of R2, (M.:L+l)2-lO are sent to storage. We saw previously that upon
entry into Box 2 from Box 1, the quantity (M.i)2-lo was in R2. Box 2
is also entered from the plus branch of Alternative Box 3, and from
this entry the quantity (M.i)2'lo is correctly in R2.

Box U4, Instructions 1, 2, and 3 send E: 3FF onto the magnetic'
tape. Again, as in Box 2, an instruction L(40) precedes the @ —t in-
struction.

The routine as outlined is to be coded beginning with Word 0O0O0.
The paired coding occupies Words 000 through 009 and the storage needed
is designated as OOA and O0B. The initial address s is then O0C. The
paired coding is:

0. a—Ac 000 A—nm 0O0OB
1. a—Ac 018 A—m 00A
2. R(9) 009 S—m 00k
3. L(40) 028 m—Ac  OOB
b, m—sQ (000] m—Ah 800
5. A—nm 00B Q-—t 000
6. m—Ac 00A a—Ah 002
7. c! 001 L(ko0) 028
8. m—Q OOB Q—>t 000
9. Flexoprint OOB Stop

A,

B.

The left-hand instruction of Word 00l sets up the initial address Cye
It is to be (000)2-10 which is (018)2'11; hence, the address of the in-
struction is 018.

Routine 2: Magnetic tape to memory.

This routine is to be used in conjunetion with Routine 1. It reads
successively the words from the magnetic tape (which had been written onto
the tape by utilizing Routine 1) and writes them into the memory at the
addresses that they had originally occupied. Routine 1 sent Words 0OC
through 3FF onto the tape; therefore, this routine reads the words from
the tape and writes them into the memory at the addresses 00C through 3FF.
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D.1:(M.c)2
DZ:ZC|
| 1
EC_|=0 to D.2 I a i
> -0 -0 _L’_ c—>l
(M.c)27= C,-2 ™to D.I
Y
r’ —» ~N
Dl M2
D.2: EH )
2
b tape to M.i
(4 l—=i Zi=2i_,-l-ci)-mi to D.2
M.i+1)2 1o DI
A D.l :(M. |+I)2
DZEi -
M.i:
_ TS o
- (M.i+1)2%°
v 1
3FF =1
D.2=23FF I ——
4
Prinf -S|
-

Print SzzstF

MAGNETIC TAPE TO MEMORY

FI1G. 22
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After the words m, where i (= 12, 13 .-+ 1023) are sent to the

memory, a sum 1023
S, = m c, = 12 (dec.)

i=
o

is formed and printed. Also printed is the word immediately following

on the magnetic tape. The latter is S., the sum of the memory

11023 1’

contents (hence the sum of the words on the tape) when the tape record

was made. The sums Sl and 82 are identical, if no errors have been made

by the computer or the magnetic tape. The procedures to be followed if

Sl and 82 do not agree are outlined in the chapter on operating procedures.
The flow diagram shown in Figure 22 is so similar to the flow dia-

gram of Routine 1 that we turn directly to the coding without further

comment .
The coding is:

Box 1

1. a—sAc > ey = 0 toR

2. A—sn D.2 ey toD.2

3. a—>Ac -co-a‘lo (M.c')2'10= co-z'lo to R2

Y, A—>m D.1 (M.c)z‘lo to D.1
Box 2

..]_9

1. R(9) (M.1)2 in R2

2, S——n 2,5 M.i to (8-19)5
3. S—sm 2,7 M.i to (8-19)7
b, t—Q m, to R4

5. Q-—m [M.i] m, to M.i

6. m—Ac D.2 Zi-l to R2

7. m—sAh [M.1] 2, = 24 +m ink

8. A—sm D.2 Z to D.2

-10 1

9., m—sAc D.1 (M.i)2

A. a—sah 1.2710 M-141)2710 = Me1)2710 4 12710 ip mo
Box 3

1. c 1,k

Box L4

1. t—Q Sl to R4

2 Q—nm Sl to D.1

3. Flexoprint D.1 Sl to Printer
4. Flexoprint D.2 S,, to Printer
5

2
Stop
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In the formation of each successive term of the partial summation
E:i’ in Box 2, Instructions 6, 7, and 8, the contribution m, is added
from its memory location M.i rather than from R4t where it also exists.
The checking obtained by this summing process is more complete than
if m, were added from Rk,

The t—»>Q instruction which is Instruction 4 of Box 2 and In-

struction 1 of Box 4 is:

"t—»>Q AC Replace the number in R4 by the first word to come
under the reading head of the magnetic tape reader.'

Again, as in the Q—t instruction, the address of the instruction has
no relevance. Note that the L(40) instruction which preceded each Q—t
instruction is not used with the t—>Q instructions.

In the paired coding, Instructions 5 and 7 of Box 2 must be left-
hand instructions since the address M.i which is being substituted is
in R2 as

(M.1)2719

In Box 4, Instructions 3 and 4 print the summations §, and Sz. A
visual check is then made of the numbers rather than allowing the com-
puter to do the comparison. This has the added feature that these two
numbers printed may also be checked against the number Sl which was
printed when the tape record was made.

This routine is coded into Address 000 and occupies Words 000
through 009. D.l and D.2 are designated as OOA and OOB, respectively.
Again, <, is 00C. The paired coding is:

0. a—Ac 000 - A—n 0O0B
1. a—sAc 018 A—>m O0A
2. R(9) 009 S—m 00k
3. S—m 005 t—Q 000
L., Q—n [ 000] m—>Ac  OOB
5. m—»Ah  [000] A—sm 0OB
6. m—Ac 00A a—»Ah 002
7. ¢! 001 t—Q . 000
8. Q—m 00A Flexoprint OOA
9. Flexoprint OOB Stop

A.

B.
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We have in this problem taken the liberty of incorporating checking
features into the two related routines without either discussing the need
for such checking features or discussing what the procedures are if this
checking indicates an error in the transmission. This checking is such
an integral part of the routines which make use of the magnetic tape unit

that we do not feel that the routines should be presented without includ-
ing them.
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~ Problem 13

We develop a routine for the synchroprinter, the high-speed page
printer that has been adapted to the computer as a part of the output
equipment. The synchroprinter has a maximum operating speed of 36,000
characters per minute. The ordinal numbers O, 1, 2 -+« 9; the letters
A, B **« F; a decimal point; and a minus sign are the eighteen distinct
characters that may be printed. A line at a time is printed, where a
line consists of 40 characters. Recall that the synchroprint order reads:
"Sync Print CE To be used in a subroutine which simultaneously

prints m,, m and m i is to be com-

1+1° 442 —i+3;
municated to the routine (high speed).”

Inasmuch as four words are printed simultaneously, it is not surprising

that a special routine is required. Further discussion of the synchro-

printer is given in the chapters IV and VI on The Computer and Operating

Procedures, respectively.

In order to achieve the high speed of operation, the printer operates
as follows:

To print an aggregate of forty digits (a line) there are eighteen
distinct print cycles. All the F's of the aggregate are printed simul-
taneously in Cycle 1, all the E's of the aggregate are printed simultane-
ously in Cycle 2, and so on to Cycle 16 which prints all the 0's, to
Cycle 17 for the decimal points, and to Cycle 18 for the minus signs.
Since there are these eighteen distinct cycles, one has only to supply
the digital information which corresponds to the cycle. That is, during
Cycle 1, only the digital information for the F's is needed, and so on.
This information is obviously binary. For Cycle 1 it is either to print
an F in a particular digit position, or not to print it. The line of
print is 4O digits and a register contains 4O bigits, so a register may
supply the binary data (either print or do not print) to the printer for

each cycle. The register R2 is used for this purpose. During the ith

print cycle i (= 1,2 -« 18) an appropriate number which specifies the

digit positions to be printed is brought into R2. A O in any position of

the number in R2 corresponds to the presence of the character of the 1th
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cycle in the respective digit position of the line, whereas a 1 indi-
cates the absence of the corresponding character.

For simplicity of design, the paper feed is vertically down.
Hence, to achieve a conventional listing, the characters must be in-
verted and left,right interchanged, so that the leftmost bigit of R2
corresponds to the rightmost bigit of the print line while 2_39 of R2
corresponds to the leftmost bigit of the print line.

The procedure to print a line corresponding to four 10-digit (10-
tetrad) words is as follows:

The four words are fanned out into an 18 x 40 array which occupies
18 successive memory locations. The rows of the array (the eighteen
locations) correspond to the characters of the printer. The columns
of the array correspond to the digit position within the line of print.
The first row of the arréy corresponds to the minus sign, the second to
the decimal point, the third to the O, the fourth to the 1, and so on,
through the 18th row which corresponds to the F. Column O corresponds
to digit position 39 of the line, column 1 to digit positioh 38, and so
on; through column 39, which corresponds to digit position O of the line.

We define an element of the array as aij’ where i corresponds to
the row of the array and j corresponds to the column. If

aiJ = 0
the ith character is to be printed in column j (digit position 39 - j).
If

aij = 1

the character is not to be printed. No column of the array may contain
more than one O; that is, only one character may be printed in any
digit position. However, if a column contains l's only, then no character
is printed in the corresponding digit position.

The elements of the array are initially set to 1. The first tetrad
of the first word is examined and found to have the value i, then a O
1,39° The second tetrad is

examined and & O is inserted into the corresponding element a

is inserted into the appropriate element a

so on, until the forty tetrads of the four words have been examined and

O has been inserted into the appropriate elements of the array.
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The inductive process of fanning the four words into the array is
described as follows: The elements of the 18 x 40 array are initially
set to 1. The insertion of zeros into elements in the two rows of the
array corresponding to the minus sign and the decimal point is treated
apart from the induction. Hence, we may regard the rows as being
specified by the values of the tetrads with

0<ix<F.
The tetrads of the words must be isolated to obtain the values i. They

are isolated as follows: The four words are specified as
mk k (=O)l)2)3)-

In each word there are ten tetrads

1k,n n (=0,1,2-++9).

The induction for isolating the tetrads of any word m is over the in-
dex n and it is
k,-1 T T

L
n T 2 Ck,n-1 (fractional part)

ik,n =2 Ck,n-1 (integer part)
vhere 0<nx9,
After the row i is determined, the column j must be determined so that
the element aij may be set to O. The column j is easily seen to be
given by

J = 39 - (10k + n)
We specify the 1th row of the array as ri. Then after determining the
appropriate 1 and j values we have only to perform the operation

ry - 2™
to set the element a to 0.

The printing seqignce proper,which is carried out after the array
is formed, may now be given. Within the sequence, each of the eighteen
print cycles is determined by a print order. The first print order
actuates the printer and the remaining seventeen print orders act in a
timing capacity to keep the printer and computer in synchronization.

Once the printer has been actuated it proceeds through its eighteen
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cycles at a fixed rate independently of the computer. ZEach of the
seventeen print orders must be given before the printer is ready to
perform that particular cycle. The order has the effect that the
computer waits for the printer until the cycle is complete and then
proceeds to the next instruction of the sequence. The printer operates
at a speed of roughly 1.5 milliseconds between its print cycles. The
print sequence must have no more than 1.5 milliseconds elapse between
successive print orders. .

Immediately preceding each print order, the appropriate word of
the array is brought into R2. Cycle 1 prints the F's so that Word 18
of the array is the first word to be brought into R2. It is followed
by a print order which actuates the printer and executes Cycle 1.

Word 17 of the array is brought in and the succeeding print order exe-
cutes Cycle 2 and prints the E's. This continues until the eighteen
print cycles have been completed.

Even though the eighteen distinct characters may not all appear
in any given printed 1line, it is necessary that eighteen print orders
corresponding to the eighteen characters be given. Those characters
that do not appear have their respective row in the array containing
all 1's so that nothing is printed during the corresponding print cycle.

We now turn to the flow diagram shown in Figure 23. The storage

needed is as follows: The four words m, My, , and m_ which are to

m
2 3

be printed are stored in D.l, D.2, D.3, and D.4, respectively. The

eighteen words needed for the array are designated (the addresses are

hexadecimal):

E.l: r_
E.2: .
E.3: ro
E.h: ry
E.12: rF
The following constants are needed
B.1: -2737

B.o: 270 4 2719 4 o739
B.3: O
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Three initial addresses are stored. They are
B.4: (D.l)o
B.5: (E.3)o
B.6: (E.l2)o

(D.l)O is the base address for the four words to be printed. (E.3)o
is the base address to which i is added to form the address of T;.
(E.le)o is the base address used in the printing sequence. Four words
of intermediate storage are needed. They are designated as D.5, D.6,
D.7, and D.8.

Boxes 1, 2, and 3 of the flow diagram set the eighteen rows of
the array to all 1l's. Boxes 4k through A form a double induction that
records O's into the appropriate elements aij of the array. Boxes B,
C, D, and E are the print sequence proper.

T

Box 1 sets the initial index of I-2

_2-39

for storing l's into the
into the rows
where i (=0,1,2 +++ 17, decimally)

Trows ri. Box 2 stores

ro .
The discrimination of Box 3Ii; on ‘
(I -1 - 2).2‘7
Immediately after
r, o= 239
is stored, (i = 17, dec.) i is increased by 1l; hence the quantity
I-1- (i+1)2”" '
is correctly negative for the first time as
I = 18'2-7, dec. .
Box 4 sets up the initial conditions for the induction over k. It
sends the initial address (D.l)o to D.7 where it becomes (D.1+k)O as

k = O initially. It also sends the number

273 toD.5
where it is to become
27 j =39 - (10k + n)
k and n are both initially O; hence j is initially 39, as is desired.

Box 5 sets up the induction over n. The word o, becomes c )
11 11 ~ k,-1

and N-2 is set to 92 . Box 6 forms ¢ and i by shifting c
k,n = k,n-1
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_2-(j-|)

Y+

(1-027"%=172"10 D.6

1.

O— 1

D.6:1-i-127 2 E.itr
|
' a r_; = -239 toE.I-i 3|
] -
—&—0->| & (1-i-2)2T o D.6  [B—{(L-i-2)27 |l
y+
b
itl—i <}
4
D.s : _z(lok -39) c _
-2394p.5
D.I+k:my (D.1)y toD.7
|
- 5
Ck,_'=mk to Doe
N-2-1l =9.2-ll 15 D6
1 .
] —1—] 9 39-(iI0k+n)— j
A—(N-n-1)2"" to D.6 n+l—>n —b—m'"’ 2=l
-
4 & D.5:—2") )
Cy o 2 Cy ~i(fractional part) to D.8 D.6:(N-n)2"
7 k,n4 k- P 0 ———0.8:C; .,
- i=2 Ck,n_,(integer part)to R4 E3+i "'i
rj—27) to E.3+i
B —271) 45 p.5
c D
r-; to R2 7
L (I—-i-2)2"" 10 D.6
Print
i * E
i+1—i + (1-i-2)2" '.— .

A SYNCHROPRINTER ROUTINE

FIG.23
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left four places. i is in R4 as 273% and ¢ is in R2. The appro-

k,n

priate element a is set to O by the operation

i
r; - 2™ to E.3+1
Note that

E:3+ i 1, wvhere i (=0,1¢++F)

E.l and E.2 contain r_ and r. of the array, and they do not enter into
this print routine, but they must exist as all 1's. Alternative Box 7
terminates the double induction and sends the control to the print
sequence. The discrimination is on
-g'j

This quantity appears negative to the computer until J = -1, at which
time -2"3 appears as O in the computer. It is then a positive number
with respect to discrimination and the control is sent to the start of
Box B. Note in Box 6 that J is decreased to j - 1 after the operation

ri - 2-J tO E.3+1
When j = O the last step of the induction is completed and a O is stored
in the leftmost bigit of the row r J is then decreased to j~ - 1 = -1

and the quantity

ic

_2"3
becomes positive for the first time.

Boxes B, C, D, and E bring out the rows of the array and print
them, starting with T which corresponds to the character F, and de-
creasing to ro, which corresponds to character 0. Print orders are
given corresponding to tbhe rows r. and r_, even though these characters
are not printed by the routine. After the print order for r_ has been
given, the discrimination of Box E is negative for the first time and
the routine terminates.

The coding of the routine is:

Box 1
l. a-—»Ac 11'2_7 11.2'7(=:17.2‘7 dec.) to R2

Box 2 ]
1. m—>Ah B.6 (1-1)277 + (.1), = 1n-2"7 + (£.12) in R
2. S—m 2,4 E.I-i to (8-19)2,k4

3. m—Q B.1l -2'39 to R4
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Box 2 (Cont.)

4, Q—sm [E.I-i] r, = 2737 toE.I-1
5. m—sAh- B.2 (1-i-2)27 7 + (E. I-i-1)_ in R2
Box 3 |
1. c 2,2
Box 4 )
1. @—sm D.5 273 o D.5
2. m—>Ac B.h (D.l)o to R2
3. A—sn D.7 (D.1)o to D.7
Box 5
1. m—sAc D.7 (D.k.+1)o to R2
2. S—m 5,5 D.k+1 to (8-19)5,5
3. a-—Ac 9-2'll ye2 il 9-2’ll to R2
4k, A—m D.6 w2t 4o D.6
5. m—»Ac [D.k+1] ¢, .1 Ty to Re
6. A—m D.8 ¢ _1 toD.8
Box 6
1. m—>»Ac D.8 ck,n-l to R2
2. m—Q B.3 O to R4k
3. L(k4) b 1.2739 in RY; ¢, o in R2
b, A—>m  D.8 . ’ ce,n to D
5. m—Ac B.5 (E.3)o to R2
6. m—sAh 800 E.3-2717 & (E.3+1)273° in Re
7. S—n 6,9 E.3# to (8-19)6,9
8. S—sm 6,B ' E.3#  to (8-19)6,B
9. m—Ac [}:.3+1] r, to R2
A. m—Ah D.5 - r - 279 in Re
B. A—mn [E.3+1] . r, - 279 to E.341
C. m—Ac D.5 -27J to R2
D. L(1) 1 2 R
E. A—nm D.5 : -2'(3‘1) to D.5
Box T

%
(@]
“bd
—~
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Box 8
1. m—Ac D.6 (v-n)2™t to Ro
5. a—shAn -27M (¥-n-1)2"*' in R2
3. A—snm D.6 (N--n-l)z'11 to D.6
Box 9
1. o 6,1
Box A
1. m—Ac D.T (D.k+1)o to R2
2. m—Ah B.2 (D.k+2)o in R2 _
3. A—sm  D.T7 (D.k+2)o to D.7
L, T 5,1
Box B
1. a—hAc 11.277 11-277(= 17277 gec.) to R2
Box C
1. m—>Ah B.6 (1-1)27 + (B.1), = 11:277 + (B.12) in R2
2. S—m G,k E.I-1 to (8-19)C,k
3. A—sm  D.6 (1-1-1)2‘7 + (E.I-1)  to D.6
h, m—sAc [E.I-i] ryy to R2 °
5. Synmcprint
Box D
1. m—sAc D.6 (1-1-1)277 + (E.I-1) to Re
2. m—>Ah- B.2 (1-1-2)2"7 + (E.I-i-g)o in R2
Box E
1. c c,2
2. Stop

In the induction storing -2 -39 to all T the register R2 is
needed only in forming (I-1—l)2 and in forming the addresses
(E. I-1) These two operations may be performed simultaneously and
the quantlties (1- i-l)2 and (E.I- i) are left in R2 throughout the
induction. Therefore the quantity ll 2 -7 (=172 - dec.) need only
be sent to R2 in Box 1, and it is not stored into D.6. During the
traversal of Box 2, R2 contains

(1-1-1)2'7 + (E.I-i)o

Instruction 5 subtracts the contents of B.2 from R2. B.2 contains

the constant

214279 4 27



so that the subtraction gives
(1-1-2)2‘7 + (E.I—i-l)o

in R2 as is desired. The quantity -2'39 that is sent to all addresses
E.I-1 is stored from R4. The only instruction needed in Box 3 is the
conditional transfer as the quantity (17-3‘.--2)2_7 upon which the trans-
fer acts is in R2 from Box 2. )

In Box 4, Instruction 1 stores 2739 to D.5 where it becomes -2 "
The quantity -2-39 exists in R4 as a result of Box 2.

Instruction 2 of Box 6 sends O to R4 and Instruction 3, an L(4),
isolates i in Rk as

273%

The quantity 12737 is added from Rk into the (E.3)O in R2 by making use
of the m—sAh 800 instruction where the address 800 refers to R4t. In-
structions 7 and 8 must both be S—»m' instructions in the final code

since the pertinent address in R2 is
(E.3+1)277

In Box C where the print order is given the scheme used in Box 2 of

having the index and the address in one word as
(1-i-1)277 + (B.1-1)_

is utilized. In this instance, however, the word cannot be left in R2
during the induction as the rows r. to be printed must be brought into
R2. Instruction 5 is the print. Since i is initially O the rows of

are correctly brought into R2 beginning with r_.

the array r F

I-i

Box D subtracts
2'7 + 2'19 + 273

from

(1-i-1)277 4 (E.I-i)o

and leaves the result in R2. Box E then needs only the conditional
transfer order. As long as(1_1_2)2'7 is a positive number the transfer

sends the control to Instruction 2 of Box C.
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The coding contains 49 instructions, which is 24 1/2 words. We
start the code at Word 000.

Upon examination it is revealed that In-

structions 9 and B of Box 6 naturally occur as left-hand instructions

in the final code.

It is necessary for them to be on the right; there-
fore a dummy instruction must be inserted for positioning.

This gives

25 words of code which occupy addresses 000 through 018 in the memory.
The 18 words of the array occupy addresses 019 through 02A. The 6 words
of B storage are then in addresses 02B through 030, and the 8 words of
D storage are in addresses 031 through 038.

The coding is:

000
001
002
003
00k
005
006
007
008
009
OOA
00B
0oC
00D
OCE
OOF
010
011
012
013
01k
015
016
017
018

a—>Ac
S—nm
Q——>m
C
m—>Ac
m—>Ac
a—Ac
m—ic
m—>Ac
L(k4)
m—>Ac
S—n'
(Ds
m—>Ah
m—>Ac
A—m
m—>Ac
A—om
m—>Ac
A—>n
a—>Ac
S—n
m—>»Ac

m—>Ac

110
002
000
001
02E
037
009
000
038
0ok
O2F
00C
000)
035
035
035
036
036
037
037
110
016
000
036
015

m—>Ah 030
n—Q 02B
m—>Ah- 02C
@—m 035
A—5>m 037
S—>m oloy4
A—>m 036
A—m 038
m—Q 02D
A—>m 038
m—>Ah 800
S—>m' 00D
m—>Ac 000
A—m 000
L(1) 001

o 01k
a—>Ah  FFF

C 008
m—>Ah  02C

T 005
m—Ah 030
A—>n 036
Syncprint000
m—»Ah- 02C
Stop
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019 r_
OlA r.
01B ro
01C rl
01D r2
0Ol1E r3
Ol1F T,
020 r5
021 r,
022 r7
023 r8
o2k r9
025 T,
026 ry
027 rC
028 Ty
029 1y
02A Tp
02B B.1: -2737
0eC B.2: 27042719 4 273
02D B.3: b
O02E B.h: (D.l)o N (00031)o
02F BR.5: (E.3)o = (000113)0
030 B.6: (E.lz)0 = (ooozA)o
031 D.1
032 D.2
033 D.3
o34 D.h4
D.5
D.6
D.7
D.8






IITI. BINARY ARITHMETIC

We begin the study of arithmetic as it relates to the computer
by discussing (i) the allowed ranges of numbers and (ii) the treat-
ment of negative numbers.

The allowed number range may be approached in two ways. There
is the so-called "floating binary point" method and the "fixed binary
point" method. We have adopted the latter approach; however, a few
cursory remdrks may be made about the former.

The "floating binary point" allows each number to be expressed
as a fraction and a characteristic., That is, the binary number
1011.1101 would be expressed as (0.10111101, +100) where the 100 is
the positive exponent of 2 associated with the number. An argument
in favor of such a scheme is that it alleviates the scaling considera-
tions at the coding stage which one otherwise encounters in working
with a fixed binary point. It is felt, however, that scaling is not
a serious problem and that the time spent in arranging suitable scale
factors is small in comparison to the total time spent in preparing
an interesting problem for the computer. Two definite arguments
against the floating binary point are: (i) It increases the complex-
ity of the computer which in turn increases maintenance difficulties.
(i1) It increases the time necessary to perform each operation. In
many problems that are contemplated the time required for their solu-
tion is a principal factor; hence advantages of speed are important.

In the "fixed binary point" method the binary point in the present
computer is taken between the first and second bigits from the left.
The binary point might have been fixed between any other bigit pair.
This fixed binary point places an upper limit on the size of a numbef
in the computer.

Since it is necessary to be able to distinguish between positive
and negative numbers, and since their treatment has a direct bearing
on the allowed range of numbers, we digress temporarily and discuss
the "sign" of a number,

Although there are many possibilities for the representation of
numbers in the computer, we consider the two most common ones:

"

(1) "signed" numbers and (ii) "complement" numbers. In the first
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scheme the leftmost bigit would indicate the "sign". The sign
bigit would be a O or 1 according as the number is non-negative
or negative. In each instance the sign bigit is followed by the
actual numerical bigits. Clearly, in this case the magnitude of
all numbers would be less than 1.

In the second scheme of "complement” numbers, since

N

;z; 21 - 2N+l -1,

2" + 1+ x - 2N+1;

we write X as

Y
]

i=o
then take for our representation of x

N
x(mod 2N+l) = 2; ol 414 x.
is

For positive x, that is x> O, the above equation gives:

x(mod 2

If also, |x|<1, the leftmost bigit contains a Q as in the preceding
scheme, For the negative values of x, 0 > x> -1, the integral part
of the number's representation is a sequence of 1l's, (N+1) in length,
followed by a fractional part equal to (1-|x]). Since the computer
contains numbers modulo 2, it contains the complete fractional part
and the first integer to the left of the binary point; hence the
leftmost bigit contains a 1. Therefore, in the complement scheme,
if {x] < 1, the "sign" of a number may be identified by examining
the leftmost bigit. This is not a true "sign" and the bigit has
numerical significance, However, for convenience it is called the
sign bigit.

In either the "signed" number representation or the "complement"
number representation |x] <1, and the "sign" of the number is de-
termined by the leftmost bigit.

Since the sign of a number is identified by examining the sign
bigit, we are naturally led to treating zero as positive for compu-

tational purposes. Since a 1 in the sign bigit indicates a negative
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number and since the sign bigit also has numerical significance,
one may interpret 1 in the sign bigit followed by all O's as the
integer -1 and operate with it accordingly. The allowed number
range in the computer is then -1< x< 1,

1§2:i'-i-l+x,
=0

wvhere N may be any suitebly chosen value. For the discussion of
addition and subtraction it suffices to take N=O and to consider
a negative number as represented by its complement with respect to
2, For the multiplication process, N= 39. The details are con-

sidered presently. Since the computer contains numbers modulo 2,

“All numbers are of the form:
N+1
)

x(mod 2

we actually see x or (2-|x|) according as x is positive or negative,
and we refer either to the number or ité complement with respect to
2. However, the existence of the (N+l1) bigits left of the binary
point is implied. ‘

Shifting

Shifting is one of the more basic operations the computer per-
forms and perhaps should be the first of the arithmetic operations
discussed. The left and right shift provide a means of multiplying by
o where -40<n<ho,

Recall that x is represented as:

x(mod 2N+l)

N
120 ot 4 (1+x).

Performing a left shift of n places, 0 < n< L0, gives:

Py = 2B ;i; 2l 4 2%(14x)

2% (mod oL )

I
o

N .
;{ ot + (2+2%)
=0

which conforms with the adopted complement notation.
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As previously stated, all numbers in the computer must have
a numeric value less than 1; therefore, for this "power" shift to
be a legitimate operation
x| < 1,

or [x] < 2™
In the computer where the left shift takes place modulo 2, the sign
bigit is treated as a numerical bigit, and at each step of the
shift the 2'l bigit shifts into the sign bigit. After an n-fold
shift where |x|<: 2-n’ the shifted number still has the proper sign
representation as is indicated by the algebraic representation.
There are other schemes of left shifting; for example, where
the sign is not affected and numerical bigits are lost from the 2'1
bigit position. For purposes of power shifting this scheme is com=-
parabie to the scheme adopted. However, when one uses shifting
facilities to separate a multiplex of numbers stored as a 40-bigit
aggregate our scheme allows much more flexibility. This is not
the place for a discussion of non-standard operation; hence we de-
lay the discussion of shifting as it applies to such cases until a
later time.

Performing a right shift of n places, 0 < n<X 40, gives:

N .
2™y = 2B zo ot 4 27 (14x) N>n
i

N i-n -n -n
;z; 2 +2 +2°x

i o -i .-n .-n
2 + (j;l 2742 427 x)
1=0 1=

Nn -0 _-n .-n
= ;2+(1-2 2 e 0y)
1=0

N-n

= xz ol 4+ (1427%%)
=0
N-n = N'>0
N'41 x
2™y (mod 2" ) = 2: ol 4 (1+27%%)
i=o

which conforms with our complement notation.
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Phenomenologically, one may say that in a right shift the sign
bigit £ills into the bigit positions that are vacated by the shift.
The output to the right of the 2-39 position is still available else-
where, but is of no concern in the present discussion.

For examples of shifting, consider a left shift of 4 and a right
shift of L4 where X is in each case a negative number. A negative x
is used as it provides the more interesting example. The shift ex-

amples are considered modulo 2 as this is the computer representation.

(i) shift x left L, x = -0,00001011
2-|x| = 1.11110101
2h(2—{x]) = 11111.01010000

2h(2-[x|)mod 2 = 1,01010000 equivalent to the
signed number ~0.10110000

(ii) shift right 4, x = =-0.10101011
2-|x] = 1.01010101
E-h(Q-[xl) = 1.111101010101 then truncating
gives 2'“(2-(x]) = 1.11110101 equivalent to the
signed number -0,00001011

In the right shift the resulting number may be in error by at most 1
in the rightmost position because of the truncation. One can reduce
this truncation error by introducing a "round-off" scheme in the
right shift.

Addition and Subtraction
Consider the sum S = (x+y). Not only must [x|, |y] <1, but

|s| < 1. (x+y) is represented in complement notation as

1 ¥ 3 ¥ 4
27+ 1+ X + ;Z; 2+ 1+ y 2 ;{ 27 + 2 + (x+y)
=0 = =0

N+l 1 N+l N
Z 27 + (L+x+y) 12 2” + (148).
i=o =0 ‘

Hence S is of the same form as x and y. If (x+y)= 0, then

{zb ol 4 (148) } mod 21 = s> 0.
1=
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If (x+y)< 0, then the result is:

=

e, (1-1s]).
i=o
In elther case we have the correct interpretation. Since the result
is viewed modulo 2, we may set N=0 in the above equations without
affecting the results. Therefore, in addition and subtraction num-
bers are of the form (2+u), where -l1<Su<<l,
(2+x) + (2+y) = b+ (x+y) = L+ 8

and if (x+y)= 0, then (%+S)mod 2= S. On the other hand, if
(X+y) < 0, then (4-{s]|)mod 2= 2-|S|. Therefore, the signs of x
and Y do not alter the process and one may, by means of additionm,
effect either sums or differences.

Clearly, if it is desired to form the difference (x-y) of two

numbers x and y where their representations are

N R N .
jz 2" + (1+x) anmd ZE 2b + (1+y),
i=o i=o

we must first represent -y in this notation which is

N .
E: ot &+ (1-y).

i=o
This is referred to as the complement of y with respect to QN. For
subtraction it suffices to be able to form the complement of nuwmbers
with respect to 2. |
To form the complement (2-y), write

2 -y = (2-27%y) 4+ 27"
where n is the rightmost bigit position. Since

n N
2 -2 - z 2™,
1=0
(2-27%-y) is the reflection of each bigit of y; that is, where there
is a 1 in y there will be a O in (2—2'n-y). The complement is com-

pleted by adding 27" to the difference. For example,

2 -27% - 11111 1111 1un
' -y = -=0.,1101 0110 1011
which reflects each bigit of y: 1.0010 1001 0100
Adding 1 into the rightmost bigit 1

gives the complement 2 -y

1.0010 1001 0101
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This method of reflecting each bigit and adding 1l into the
rightmost bigit position is, in essence, the method by which the
computer forms complements.

Examples of addition and subtraction are:

(1) x = 0.00101011; y = 0.01000111; form S = x4+ y
x = 0.,00101011
y = 0.,01000111
X+y = S = 0.,01110010

(2) x = 0,10101101; y = 0.11010110; form S = x -y
X = 0.,10101101
2 -y = 1.,00101010
2+ (x-y) = 2-|s] = 1.11010111

Multiplication

We consider the multiplication of y, a 39-bigit multiplicand and
sign, by x, a 39-bigit multiplier and sign. The product P is a 18-
bigit product and sign. It has previously been stated that [x],
|y} < 1; therefore it follows that |[P]< 1. Here is an advantage of
placing the binary point to the left of the first numerical bigit.

If |x|, |y|> 1 were allowed, the product P could be greater than
either factor, and P would have its binary point in a position dif-
ferent from either that of x or y.

To develop a multiplication scheme, consider two numbers x and
y where x|, |y] < 1. Since the complement notation is used, their
product is:

P = {iigi + (1)) {ioai + (1+y))
N . N
= (L) (Lay )+ (14%) - i‘Z’oei + (14y)e ﬁo"‘i * i;, 2 o >

N N N N .
1+ x+y+xy+ ;21+x'£21+;02i+yn oty § 2Ly ot
=0 =0 =

s
1}
o
I}
I}
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Using the relation

N
izoai : 2N+l -1,

One obtains:

P = l+x+y+xy+2N+l-l+2N+1x-
- x4 2N+.]. -1+ 2I\H-ly -y 4+ 22N+2 _ 2.2N+l + 1.
Collecting terms:
p = 222 L oMl & xy.
Since
2N+1
22N+2 - Z 21 +1
i=o
rewrite the product as:
2N+1 .

P = 2N+l(x+y) + izél + (l4xy).
=o

Either (x+y) = 0, or [x+y] = 2'39; hence, if we choose N=39, o+l

(x+y)
is either O or greater than 2. Since the computer contains numbers
modulo 2, 2m(x+y)mod 2= 0, and we see P as :
Pmod 2= 2 + xy,

the correct complement notation. »

The scheme as outlined is not desirable for the computer as it
4o which implies that the multiplication is a T78-step
process rather than the conventional 39 steps.

One may modify the scheme so that it treats only the fractional
part (but not the sign bigit) of the multiplier x. Here, x has the
representation (§o+x) where go =0 if x>0 and go =1 if

considers x mod 2

x < 0; i.e., the complement of x with respect to 1 if x is negative.

By a procedure similar to the above, one finds

(§o+x)(§j2i+l+y) = ehogo + 2mx +EY + XY,
i=
Rewrite the product P as

P = zhogo + El'o(xf-e'39) +2+ kY + X,
Then, as in the preceding case, consider P mod 2 and

P mod 2 = 2+goy+xy.
If x>0, then go =0 and

Pmod 2 = 2 + xy,
the correct product using complement notation., If x <O, then ¢ =1

and Pmod 2 = 2 + ¥y + Xy.
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Clearly, one needs to subtract y to gain the desired product. An
additional step is required in this scheme if the multiplier is
negative, namely adding the complement of the multiplicand y to the
product.

The multiplication is accomplished by examining the multiplier
a bigit at a time, beginning with the least significant bigit, and per-
forming the indicated operation. If the multiplier bigit is a 1, the
multiplicand is added into the partial product; then the sum and multi-
plier are shifted right one place. If the multiplier bigit is a O,
the partial product and multiplier are merely shifted right one. The
multiplication involves 40 steps; the first 39 steps either add the
multiplicand to the partial product and shift the sum right one unit,
or merely shift the partial product right one unit according as the
examined bigit of the multiplier is 1 or O. The hoth step adds the
complement of the multiplicand to the partial product or does nothing
according as the sign bigit of the multiplier is 1 or O.

The computer can only perform operations modulo 2; therefore some
way is needed of simulating the multiplicand modulo 2“0. To find a
suitable method, we examine whether there is a simple relation between
the sign of the partial products, as viewed in the computer, and the
sign of the multiplicand for the scheme discussed immediately above.
We now prove that after the first 1 is encountered in the examination
of the successive bigits of the multiplier (prior to that the partisl
product is zero), the signs of the multiplicand and the partial product

agree.

Assume the partial product Py is of the form:
N

p;, = j{;gi + (14b) where [b| <1;
1=
if the (i+1)"" bigit of the multiplier is a 1
N . N
2p, = 2" + (14+b) + Z2i + (1+y)
i+l i& o

¥ 4
2;244amw
=0

N .
- 1 bty
Pig1 ~ z 27 + (1+—57).
Now|b| <1 and |y| <1; therefore |b+y]/2 = lbrl <1 and

N
Piq = ;{ial + (140Y). Eq. (1)
=0

1
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For the case where the (1+l)th bigit of the multiplier is a O, it is
easy to see that b' of Eq. (1) is equal to b/2. The partial product
is originally O, but after the first 1 appears in the multiplier, the
partial product p 1is:

N'
1zai+1+y vl < 1
=0

ygi +1+y/2 ly/2l < 1
=0

Therefore, by induction all succeeding partial products are of the

2p

o)
)

form:

' ,
Py = §21+l+b bl < 1
1=o

Inasmuch as the various increments to the partial product all have
the same sign, namely that of the multiplicand, and since it has been
shown that [b' < 1 for ell possibilities, it is clear that the sign
of the partial product agrees with that of the multiplicand (again,
after the first 1 appears in the multiplier). Hence, if it 1s arranged
s0 that this condition is satisfied in the course of multiplication as
done by the computer, then one has simulated the multiplicand modulo 2
and the above scheme may be adopted.

It turns out, however, that multiplication as dome by the

40

computer may cause the sign bigit to change; consequently it must be
arranged to keep it invariant after the first 1 of the multiplier
appears. To see that the sign bigit may change if no precautions are
taken, consider the magnitude of the pi's:

2pi+l = Pi +Y where yl < 1
_PgHY
Pjvl © 2

IPy+yl S |py + Iyl <2

IPy+¥I

2
and
|Pypy) <= 1
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Since po = 0, by induction al} (pﬂ < 1. Although Py < 1, 2|pﬂ
is not necessarily less than one, but 2|Pﬂ < 2. At each step 2|pﬂ
is formed and then shifted right one unit. This implies that in form-
ing 2pi one does not lose significant bigits of the partiel product,
but the "sign” bigit may be lost. The loss of the "sign” bigit is the
result of the addition at each step being done modulo 2.

The multiplication of a 39-bigit number by a 39-bigit number gives
a 78-bigit product. When one is interested in single precision operé-
tion, i.e., operation with 39-bigit numbers, the 78-bigit product is
'rounded-off” to 39 bigits. That is, the 78-bigit produect is approxi-
mated by a 39-bigit product. There are several methods for doing
"round-off = that are applicable to our needs. We have chosen for
multiplication the scheme in which all bigits beyond and including the
nth bigit are ignored and the nth bigit 1s set to a 1. At this point
we do not plan to argue the validity of this round-off scheme. We
may, however, state that the scheme is unbiased, and it has a varilance
of 1/3-2°8,

The multiplication may be summarized as follows: There are 39
steps in which the multiplier is examined a bigit at a time. At each
examination the multiplicand is added to the partial product or nothing
is done, according as the multiplier bigit is a 1 or a 0. In either
case the result is shifted right one unit and the process is repeated
for 39 steps. When the first 1 appears in the multiplier, the sign
bigit of the partial product is, on this and all subsequent steps,
set equal to the sign bigit of the multiplicand. The hOth step either
adds 1in the complement of the multiplicand or does nothing, according
as the sign of the multiplier is a 1 or & O. And at the end of the
hoth step the 39th bigit of the product is set to a 1 if the multipli-
cation is done with round-off; or nothing is done if the multiplication
is without round-off.

We consider two examples of multiplication. For simplicity we use
three-bigit multipliers and multiplicands. Both examples are with nega-
tive multiplicands as this affords the most interesting cases. The first
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example has a positive multiplier aﬁd the product 1s rounded-off to
three bigits. This round-off to three bigits, of course, tends to
give a more distorted product than would occur in the computer where
the product is rounded-off to 39 bigits. The second example has a
negative multiplier; hence, as a correction, the complement of the
multiplicand is added to the product in the last step. This example
considers multiplication without round-off.

Example 1:
x = 0.111 = 7/8 y = 1.001 = -7/8
xy = 1.001111 = -k9/64
xy(ro) = 1.001 = -7/8 (The round-off scheme used is to
set the 273 position to a 1. In
this instance it is a 1l; hence
no change is made.)
y = 1.001
p. = 0.000 x_ = 0.111
o o]
® o g
+L = .
2p, = I.00I
p] = 1.1001 Xy = 0.011
(11) P, = 1.;001
+y_ = 1.001
2p, =[110.1011
p. = 1.01011 x, = 0.001
2 2
(111) P, = i.Olgll
+y_ = .00
2p3 =[1]0.01111
p3 = 1.001111 x3 = 0.000
(iv) P = p3(ro) = 1.001
Step (1):  Imitially (p° = 0). The rightmost bigit of the multiplier

is examined. Since it is a 1, y is added to P, to give
2pl. We have a negative multiplicand; hence, from this
step on, the sign of the partial product is set to the
sign of the multiplicand. 2pl is shifted right one place



Step (11):

Step (1ii):

Step (iv):

Example 2:

]

to give Py» and the sign of Py is set to a 1. X is
shifted right one place to form Xq5 which again has a 1
in the rightmost position.

y is added to p, to form 2p,. (Note that in adding (y+pl)
2p2 is written as [1]0.1011. The 1 does not exist in the
computer as it adds modulo 2; hence the 1 is shown in
brackets and does not enter into the product.) 2p2 is
shifted right to form p2, and the sign biglit 1s set to a
1. Xy is shifted right to give Xy

Identical in procedure to Step (ii).

x3 is examined and the rightmost bigit (the original sign
of the multiplier) is a 0; hence no correction term is
needed. Round-off is indicated; hence the right-hand
three bigits are truncated and the 2~3 bigit is set to

a 1. In this instance it is a 1; therefore no action is

required.
= 1.101 = -3/8 y = 1.011 = -5/8
= 0.001111 = 15/64 '
y = l . Oll .
p_ = 0.000 x = 1,101
(o] [o]
(1) p, = 0.000
+y_ = 1.011
2p, = 1,011
p; = 1.1011 x, = 1.110
(11) p, = l.on
2p, = 1.1011
P, = 1.11011 X, = 1.111
(1i1) 'p2 = 1.11011
+y~ = 1.011
pg = 1.100111 x, = 1.111
(iv) 100111
101

+
~~
o
!
3
p—
(o]
w
g onon

1.
0.

{1]0.001111
0.001111
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Steps (i) and (iii): These are identical in procedure to the preced-
ing example.

Step (ii): The multiplier bigit is a O; hence Py is shifted right
one unit to form p2.

Step (iv): The rightmost bigit of x3 is a 1 indicating the comple-
ment correction. (2-y) is added to P3 to give the cor-
rect product, P, (If round-off had been indicated, the
right-hand three bigits would now be truncated and the
23 bigit of the product set to a 1.

Division

The division scheme adopted for the computer is a pseudo-non-
restoring scheme. Before discussing the scheme, we compare a true
non-restoring scheme with the more familiar restoring type of division.

For simplicity of discussion, we assert that x, the dividend, and
Yy, the divisor, are positive., Further we assert that for any division
scheme

x| <|y] <1
(all numbers in the computer must be less than 1).

In the restoring scheme, the divisor is continually subtracted
from the partial remainder (the dividend on the first step) until the
remainder is less than the divisor. The number of such subtractions
is then recorded in the appropriate position in the quotient. The
‘partial remainder is then shifted left one unit and the process is
repeated.

In the non-restoring scheme the divisor is subtracted from the
partial remainder (the dividend on the first step) until the partial
remainder becomes negative. The number of such subtractions is then
recorded in the appropriate position in the quotient. The partial re-
mainder is then shifted left one unit, but now the divisor is added
to the partial remainder until the partial remainder again becomes a
positive quantity. The number of such additions is then appropriately
positioned and subtracted from the existing partial guotient.
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These two sequences are then repeated ad infinitum with the sign
of the partial remainder being either positive or negative., The quo-
tient is formed by a succession of additions and subtractions.

If we consider the binary base, a well ordered division may have
only one addition or subtraction for each fixed quotient position.
This may be seen most clearly by referring again to the restoring
scheme, If the dividend is initielly less than the divisor, then for
any fixed quotient position there may be at most (m-l) subtractions
(where m is the number base) before the partial remainder becomes
smaller than the divisor. In the non-restoring scheme it is not neées-
sary to have more than (m-l) subtractions or additions for a fixed
quotient position, as it suffices to know that the dividend is less
than the divisor. Since (m=2) for the binary case, one addition or
subtraction suffices for each quotient position.

An example of a well-ordered non-restoring division in binary form is:

15/6% + 3/4 = 5/16

(1x2°) - (12" ) - (12 B)e1x073) - (1527)

0.11/0.001111
1.01 (1)
1.011111
0.011 (11)
1.110111
0.0011 (1i1)
0.000011
1.11101 (1v)
1.111101
0.000011 (v)
0.000000
Collecting terms of the quotient gives:
1x2°+1x23 = 1.0010
- (e haxe @i ™) = -(0.1101)
5/16 = 0.0101

Step (1): The sign of the divisor and dividend (partial remainder)
are the same. The first quotient position is chosen
as the 2° position; hence a 1 is recorded and the divisor
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is subtracted from the dividend (the subtraction is done
using complement notation).

Step (i1): The partial remainder is now negative; hence its sign dif-
fers from that of the divisor. -1 is recorded in the 27
quotient position and the (divisor) x 271 15 added to the
partial remainder. In the computer the partial remainder
1s shifted left one unit rather than shifting the divisor
right one unit as it is added. 1In essence the two are
eqﬁivalent; however the former is more advantageous with
respect to computer operation.

Step (iii): The partial remainder is still negative, a -1 is inserted
into the 272 quotient position, and the (divisor) x 272
is added to the partial remainder.

Step (iv): The partial remainder is positive; hence & 1 is recorded
in the 273 position of the quotient and the (divisor) x
273 is subtracted from the partial remainder.

Step (v): The partial remainder is negative, so -1 is recorded in

| the 2™* position of the quotient. The (divisor) x 2~
is added to the partial remainder giving a new partial
remainder of O which terminates the division.

Step (vi): The indicated additions and subtractions in the quotient
are performed. The result 1s the desired quotient.

Note that the restriction of treating x and y as positive numbers
is not necessary in the non-restoring scheme as the sign of the partial
remainder (x, initially) may be either positive or negative. It is not
needed to know the specific sign of each factor but only the relation
between the sign of the divisor and dividend. Hence, in further dis-
cussion no sign restrictions are necessary.

As each step of the quotient involves an addition or a subtraction,
the true non-restoring scheme would necessitate a second register that
had all the complications associated with the adding facilities. There
is, however, a simple relationship between the true non-restoring quo-
tient that is written as a series of 1's and -1's and a pseudo-non-
restoring quotient obtained by replacing the -1 by O wherever it occurs.
This relation, first shown by von Neumann, may be found as follows:
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Write the true quotient Q in non-restoring form as:
. o - -
Q = 2% 27 4 v 2w
where A, may be i1 and rn may be positive or negative. Using the

i
transformation A, = zci-l where c,= 0 1f Ay = -1 and ey = 1lif Xi = 1,

i i

one obtains:

Q

(o] -1 -n
2 (2co-l) + 2 (ecl-l) + ...+ 2 (2cn-1) +r

1 -n o ,.-1 -n
Cyt. .42 cn) - (2427 .. 427) + r,

If we assert that the pseudo-quotient C is:

"

[e] -
2(2 c 2

v+ 278,

c = 2% + 2'10 + .
o 1 n

then, since
n

-12 2t - (2™,
=0

2c-2+2% 4,
n

-(2°+2'l+...+2'n)

]

Q
2+ Q

o2c+2 %4 r .
n

If we form the pseudo-quotient C, multiply 1t by 2 (a simple left shift),
and edd 2-n, the result is (2+Q) which is the correct complement nota-
tion with respect to 2. In our instance o™ _ =39 (the rightmost bigit
position). '

The 2°39 that 1s introduced is, in effect, round-off of the same
type as that used in multiplication.

The pseudo-non-restoring scheme is the one actually used in the
computer.

For an example of division, divide

49/128 : -7/8 = -7/16

Divisor Partial Remainder Quotient
y = 1.001 = -7/8, x = r_ = 0.0110001 = 49/128, 0
(1) r_ = 0.0110001
+y = 1.001

1.1000001 0.
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(i11)

(1v)

(v)

(vi)

Step (1):

Step (ii):

Step (iii):

Step (iv):

Step (v):

Step (vi):
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2r, =11.0000010
+(2-y) T = 0.111
r, = I1.I110010 0.1
2r, =11.1100100
+(2-y) © = 0.111
T, = 0.1010100 ' 0.11
2r. =01.0101000
+y3 = 1.001
r, = 0.0111000 0.110
2r) =0 0.1110000
+y = 1.001
T = 0.0000000 0.1100
cC = 0.1100
Q = 2C + 2'h = 1.1001 = -7/16

The sign of the partial remainder (dividend at this step)
and the sign of the divisor are different; hence the di-
visor (y) is added to the partial remainder (ro) and a 0
is recorded in the quotient.

The sign of r. and y are the same; hence the complement

1
of y is added to 2rl and a 1 is recorded in the quotient.

The sign of r, and y are the same; hence the complement

2
of y is added to 2r2

The sign of r3 and y are different; hence y is added to

and a 1 is recorded in the quotient.

2r3 and a O is recorded in the quotient.
The sign of Ty, and y are different; hence Y is added to
2r, and a O is recorded in the quotient. (r5=0) so the
division steps are completed.

Shift C, the quotient resulting from the first S steps,

left one place and add 2'h. This gives the true Q.

The computer would not terminate, as we have done, when the re-

mainder is 9.

It would carry the division out to 4O steps rather

than 5, and then insert a 1 into the 2752 position. Obviously this

does not give an exact answer. In fact, the computer quotient for the
given example would be Q = 1,1000111...111, = -(7/16 + 2-39).
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IV THE COMPUTER

Block Diagram

In this part we discuss in more detail the various components of
the computer and the various interactions between them. We begin with

a simple block diagram of the computer:

[External Memory |

Internal
—
Memory >
N
- >4 Arithmetic
Input | 1 CONTROL [ Unit
Output (=

The block diagram shows the components with their various intercon-
nections. Some of these connections are for logical (non-arithmetical)
operations and others to transfer numerical data from one component
to another. It is observed that the control is the central agency in
the organization and directs the operation of the other components.
It signals the input to read new information into the internal memory
and receives a signal when the operation is completed. The control
directs the internal memory to provide the next order to be executed;
further, it transfers numbers from the memory to the arithmetic unit,
and conversely. The control directs the transfer of numbers between
the internal and external memory. It supplies the sequence of pulses
and voltage changes to the arithmetic unit to effect the various
mathematical operations. Finally, it instructs the output to punch

a paper tape and print page information from the memory for external

use.
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Arithmetic Unit ‘

We follow the same pattern as in the Introduction and begin with
the arithmetic unit. A schematic cross-section of the arithmetic unit
proper is shown:

T
R6—> | | ARITHMETIC
| GATE
RS—> : CHASSIS
/
N
Q |
R3—~ \ | .
Vo ADDER
R2—}= / |
A | :
RI—{—" e &\ )
L _ —

Pig. 1 Schematic Cross-8sction of Arithmetic Unit,
Circles with the small arrovs indicate gate tubes,
or electronic switches. Also shown are the inter-
connections for the addition process.

The six registers, Rl, R2,...R6, are mounted in pairs on three horizon-
tal, three-dimensional chassis, a type proposed by Bigelow. It is
sometimes convenient to refer to the pair, Rl, R2, by the single let-
ter A (for accumulator); R3, R4 are designated by Q (for quotient
register). R1 and R3 provide a method for the shifting of numbers in
R2 and R4, respectively, so it is quite natural to think of the two
doublets of registers, A and Q, as single entities. However, RS and
R6 are not so interconnected; in fact they perform quite different
functions. Nevertheless, it 1s compact to have them also Juxtaposed.

Opposite the three chassis of registers are three other sets, quite
similar in appearance. The lower two constitute the adder proper; the
topmost is called the arithmeﬁic gate chassis.

We discuss first the registers. Each register is a set of 40
flip-flops. Between the two rows of flip-flops in a chassis are two

other rows of tubes. These are the so-called gate tubes (electronic
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switches) and allow for four different types of switching action. (Each
tube contains two halves which can be used independently; such tubes
are sometimes called double triodes.)

A flip-flop is.a relatively simple electronic circuit containing a
tube consisting of two separate parts, such that either one half is con-
ducting current and the other is cut off, or the converse. These two
modes of operation correspond to two stable configurations, and one state
is said to represent a "O", the other a "1". A flip-flop is schematically
drawn as a rectangle of two squares, one being shaded to indicate con-

duction. We adopt the following convention:

o l

A small neon is connected to each flip-flop; "off" corresponds to a O
and "on" to a 1.

As mentioned in the Introduction there are two alternative methods
for transferring information from one set of flip-flops to another.
Consider two sets of flip-flops, A and B. There exist circuits--gating
schemes--whereby it is possible to transfer information from A—B in-
dependent of the previous states of the individual flip-flops of B.

The alternative procedure would be to first reset all of B to O's and
then cause only those flip-flops of B to be set to 1 whose correspond-
ing flip-flops in A contain 1. Quite clearly, B could be first reset
(or "cleared") to all 1's and then the O's from A could be transferred
to the corresponding flip-flops of B. The latter method with both
schemes of "clearing" and gating is used in the computer.

We indicate diagrammatically how a number 0011l-+-0 in, say, R2
is shifted to the right by one binary place. Rl initlially contains an
arbitrary number fram some previous operation. (See Figure below.)

As a result of the four steps, the number originally in R2 has been
shifted to the right by one binary place. It is observed that the left-
most flip-flop of Rl, the flip-flop of the sign bigit, has an additional
gate leading to the "sign" flip-flop of R2, as is of course required
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0 0 1 +eer 0w
| ” shifted rig
R2 :% A % "":% by one place
I © ° | . arbitrary
Rl 7 % % % ceeep number
Initial State

eooco 0

0 I

0]
rRe [ 7 %

N _

® 060 0 :%

RI VA 4 //// coeoe W

0 0! 0 O ecee OLCIetmrBu:a

Step 1. Clear Rl to ZEROS by voltage pulse on Clear Bus.
Symbol= CoRl

0 I
R2 % 7
RI |

0) 0 | | 0

Step 2. Flip-flops of R2 containing "1" cause corresponding
flip-flops of RI to set to “I" when voltage pulse is
applied to gate tubes.

Clear Bus

R2

§+\:

|
R [ 4
0] 0 | 0]

|
Step 3. Clear R2 to "I" Symbvol=C, R2



0] 0 0] | | |
R2 | % A Y %/ a7
RI % %/ . % X7 1%

0] 0] | | | 0

Step 4. Flip—flops of R containing "0" cause
corresponding flip-flops of R2 to set to "O".

to propagate the sign bigit. With the aid of a third set of gate
tubes connected diagonally to the left, shifting to the left by one
binary place is essentially the same sequence as in the above, except
that in Step 4 the third set of gates would be pulsed.

It is convenient to label the sequence of toggles in a register
by 0,1,...39 starting from the left, so that there 1s a one-to-one
correspondence between a flip-flop and the magnitude of the exponent
of that binary place; e.g., OR2 designates the sign flip-flop of R2,
(0-7)R1l refers to the first eight flip-flops of RI.

The chassis with R3 and R4 has a similar set of gate connections.
In fact, whenever a shift occurs in A the same process occurs in Q;
both multiplication and division processes make use of the simultan-
eous shifting. Furthermore, it is desirable in some instances not to
lose the information which would otherwise disappear by truncation at
the ends of A. In order to retain the information, flip-flop ORl is
connected to 39R4, and the information being truncated at the left of
A is introduced at the right in Q. The information being truncated.
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at the left of Q is lost. Symbolically,

empyrean
QLO | gr 3 4 ecoceccesees 37 38 39

vV 6000 0O OGOOGPO

@ ® o0 00000

A ® 0000 O 00 00O

Fig.2 Nature of left shift operation, showing
interconnection of A and Q.

The sign flip-flop of A, OR2, is treated the same as the others of R2;
i.e., the original sign of a number in R2 gets shifted, along with the
numerical part. This type of shift operation facilitates the separa-
tion of multiple stored numbers.

In the right shift operations, Q agaln acts as a reservoir for
the bigits spilling out of A. Here the bigits are introduced at the
left in Q, beginning with the "sign" flip-flop, ORk. Diagrammatically,

empyrean
O | 2 3 4 ececcecccee 373839J
Q 1 990 80 06 000 000
-

Fig. 3 Nature of right shift operation

Thus we can imagine that for the left shifts, Q 1s the continuation of



A on the left, and for the right shifts, Q is
the right. For the right shift operation, it
that the original sign bigit of R2 propagate.
shift by five binary places of the complement
results in 111111001.....

The Addition Process
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the extension of A on

is of course necessary
For example, a right
number, say 100l...in R2,

A schematic drawing of the addition process is given in Figure k4.

MEMORY
I
R5 2
5 = ADDER
R2
4
er

Fig. 4 Schematic cross-section of the arithmetic unit
that participates in the addition process. As

usual, circles indicate gate tubes,

The small

arrows represent symbolically the signals that
stimulate the gating action. The clearing ac-
tions associated with each gating action are

not shown.
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The 40 stages of the various regiéters are represented by simple squares.
As before, circles represent "gates". The two inputs to the adder are
‘from R2 and R5. R2 is statically connected to the adder, so that its
contents are always sent there, irrespective of whether or not an addi-
tion operation is being pursued. The number to be added to that in R2
comes initially from some memory location into R5. The pulse, indicated
by 2 in Figure U4, gates this number into the adder. There the sum is
formed. During this process, in preparation for receiving the sum, Rl

is cleared. Finally gating action 4 transfers the sum from R1—R2. This
latter gating action involves a displacement of the bigits to the right by
one. In order to keep the position of the binary point unchanged, gating
action 3 effects a shift of one to the left. An alternative scheme would
be to have gating action 3 bring the sum into Rl without any shift. Then
transfer to R2 with a right shift; return to Rl directly; but then go
back to R2 with a left shift. This doubling back costs two extra clear-
ing and gating actions. 1In place of this we have introduced another set
of gates, in which the sum is brought into Rl displaced once to the left;
then a single transfer to R2 completes the process. It should be men-
tbned that it is necessary to have an extra flip-flop, eRl, beyond OR1,
which connects to OR2, the sign flip-flop of R2.

We have seen earlier that the subtraction d=(a-b) may be performed
by adding to a the complement of b. We have also indicated that the
complement information is quite naturally available in a set of flip-
flops. Indeed, if a set of gates is connected to the adder from the
side of the toggles opposite that normally used in addition, we can per-
form subtraction. Gating action 5, of Figure L4, transfers the comple-
ment of the number in R5 to the adder; the result (here, the difference)
again appears finally in R2. Thus the addition and subtraction processes
differ only in the choice of gating action 2 or 5, respectively. When-
ever the "complement" gate 5 is used it must, of course, be accompanied
by the insertion of a 1 into the 39th stage of the adder in order to
obtain the true complement of the number in R5. This insertion is

effected by stimulating a carry input into the 29th stage of the adder.
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Multiplication

Inasmuch as multiplication is a series of additions, the nature

of the addition process dictates in large part the role of the various
registers in the multiplication process. When the multiply order is
glven, it is assumed that the multiplier factor is already residing
in R4t as a result of a preceding instruction or of an earlier arith-
metical operation. The address assoclated with this order refers to
the memory location containing the multiplicand. The operation begins
with the transfer of the multiplicand from the memory to R5; simulta-
neously R2 is cleared in prebaration for the successive partial pro-
ducts. We distinguish two types of multiplication:

(1) no round-off, in which the full 78 bigits and sign are
avallable, the significant portion appears in R2, and the right half
appears in Rlb; _

(11) round-off, in which the first 39 bigits rounded-off are in
R2. The remaining portion of the product is truncated.

In both types of multiplication the first step is the examination
of the bigit in 39RL4, the rightmost bigit of the multiplier. If it is
a 1, an addition of the multiplicand and the partial product (at first,
9) is performed. R2 and R4 are then shifted to the right by one place.
In the event that the bigit is a O, R2 and R4 shift without an addi-
tion. The succeeding bigit of the multiplier is now examined in R4
and an addition is performed if the bigit is 1. Because of the pre-
ceding right shift of the partial product in R2, the direct addition
of the multiplicand to it is appropriately placed. Note that the
bigits being shifted out of R2 are no longer involved in the partial
product sum. In the case of "nro" (no round-off) they are introduced
into R4 at the left, where room is being made available by the right
shifting of the multiplier. In "ro" multiplication, R4 is empty at
the end of the process. The final step in the process involves the
"multiplicand correction" (as discussed in the section on binary
arithmetic) in the event the multiplier is negative, and the round-
off procedure if the latter is indicated.

The successive additions that occur in forming the partial pro-

ducts differ in one respect from the single addition process associated
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with the addition orders. In the latter case it will be recalled
that the gate connection from the adder to R1 was such that the out-
put of the adder was displaced one to the left, so that in the sub-
sequent right-diagonal transfer from R1— R2 the binary point is
unchanged. In the multiplication process, a right shift of one 1is
precisely what is needed of the partial sum; hence the gating from
the adder to Rl is direct; i.e., the ith stage of the adder 1is con-
nected to the 1th stage of Rl, and the subsequent transfer from
Rl1— R2 introduces the desired right shift by one.

In the control panel immediately to the left of the adder chassis

is a six stage binary counter called the operations counter. At the

beginning of the multiplication process, this counter is set to 23,
and each cycle of the multiplication adds 1. It is arranged so that
the iterative routine is interrupted after the counter reaches 63; i.e.,
the counter is filled with 1l's. The full counter then terminates the
routine, stimulates the multiplicand correction in the event of a nega-
tive multiplier, and finally initiates the round-off procedure if in-
dicated. The sign bigit of the multiplier is at this time residing in
39RY4 and is detected there.

We conclude the discussion of the multiplication by an example
with "nro". The particular problem is

(1) = (F) - 22

in binary form: (-0.1101) x (-0.1011) = (0.10001111)
in complement form: (1.0011) x (1.0101) = (0.10001111)

The first row of the sketch shows the initial configuration. In
Step 1 we have included Rl and R3 to show their respective gate
connections to R2 and R4. There is no comnection from the adder to
eRl; it is set to correspond to OR5. In the subsequent steps only
the principals, R2 and Rli, are shown. In the example we assume that
the arithmetic unit has only 5 stages instead of the actual 40.



RI

-182-

Ol 23 4 Ol 234 (unchanged) Initial
re[o]o[o]JoJo] Rra[iTo]1]o[1] Rs[iJo]o]1]1] State
re[1]1Jolo]1] R&TTi[o]i]o

//// ) Step

\ /N

i JoJo[1T1] r3[iJolt[o]1]
e0 1234
R2[1]1]1]oJo] ma[i[i[1]o]1 Step 2
R2[T[OTT[T[T] Ra[T]T[T]1]O Step 3
re[TT1To[1[1] mre[TT N1 [0 Step 4
Rz2[o]1]oJoJo] Rra[o[i i1l Step 5

At the ond of Stop 4 the iterative procedure is completed, and the
sign of the rultiplier 18 by nov at the extreme right flip-flop. Step 5
i8 & true addition of the complement of the multiplicand, inasmuch as
the multiplier is negative. Simultaneously R4 1s shifted to the right
by one so that the right half of the final product is properly posi-
tioned. For reasons of uniformity ORL is always set to 0 in this step,
irrespective of the true sign of the product.

If the multiplication were rounded-off, the rightmost flip-flop of
R2 would always be set to 1 and R4 would contain all o 's.
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Division

We now discuss the various steps of the division process. It
will be recalled that we uyse a so-called "pseudo-non-restoring"
type of division rather than the usual "restoring" form. It is
assumed that the dividend is already in place in A as a result of a
previous instruction or operation. The first step is to transfer the
divisor from some memory location, specified by the address part of
the divide instruction, to R5. The signs of the divisor and dividend
are then compared. If they agree the complement of the divisor is
added to the dividend; and accordingly a 1l is set 1hto 39Rk, the regis-
ter which eventually contains the whole of the quotient. On the other
hand, 1f the signs of the two terms differ, the divisor is added di-
rectly to the dividend, and 39R4 is left undisturbed. Inasmuch as R4
was cleared to O's at the start, if 39R4 1s left undisturbed this cor-
responds to the insertion of a O. Q i1s then shifted one to the left.
By virtue of the gate connections used here, in particular the fact
that the transfer from R1— R2 1s diagonally left, the partial remain-
der appears in R2 already shifted to the left by onme. The signs of
the partial remainder and the divisor are again compared and 39R4
again set appropriately. This process is done 40 times. In this
manner the pseudo-quotient is obtained. We have seen that the pseudo-
quotient 1s simply related to the true quotient. Finally, the round-
off 1is performed.

Inasmuch as the desired shift of the partial femainder is to the
left, 1t 1s necessary to have an extra flip-flop precede OR2 in order
not to lose the sign of the partial remainder. It is designated as
eR2, Further, along with the preparatory step of securing the divisor,
it 1is necessary to set eR2 to agree with OR2. At the completion of
the operation, Q contains the rounded-off quotient and A has twice the
remainder.

As an illustrative example, we consider a four-bigit division:

0.1001/-0.1101 = (;2)AT3) = 0.1001/1.0011
Binary Computer
At the start of the process, R2 contains the dividend, R5 the divisor,
and Rt is cleared to O's. eR2 is made the same as OR2, in this case
0. The first sign comparison of eR2 and ORS shows disagreement;
hence the contents of R5 are sent to the adder directly, and a O 1is
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set in the rightmost flip-flop of R4 and transferred, via R3, one place
to the left. In the second sign comparison, the signs agree and the com-
plement of the contents of R5 is sent to the adder directly and a 1 ap-
pears in R4, etc. At Step 5, R4 contains 10100. (The last stage is
always O at the completion of intermediate steps.) The round-off pro-
cedure corresponds to setting the rightmost flip-flop to 1, and the
quotient is 1.0101 (= -0.1011). Twice the remainder resides in R2 be-

cause of the shift occurring in each addition process.

Memo

The memory (internal and external) component of the computer pro-
vides the storage facility for numbers and instructions. The internal
memory is electrostatic storage and the external memory is magnetic drum
storage. In what follows reference to "memory" refers to the internal
memory and reference to "drum" implies external memory.

The memory consists of 40 cathode ray tubes (crt), commercially
available two inch tubes, type 2BPl. Each tube is mounted in a separate
metal container, together with some associated electronic circuitry.

The units have been designed so that they may be easily connected into
the computer, or easily removed in case of melfunction and replaced by
tested spares. The ensemble is located immediately above the arithmetic
unit.

Each unit of the memory communicates with one, and only one, stage
of the arithmetic unit; that is to say, the 4O units of the memory are
connected in parallel with the 40 stages of the arithmetic component.

Each unit has a capacity of 1024 bigits. These are arranged in a
32 x 32 square array. If the various positions are numbered from 0—1023,
clearly it requires 10 bigits (210 = 1024) to specify a location or, as it
is commonly called, an address. Once an address is specified, all units
switch to the corresponding position in their square arrays, and communi-
cate simultaneously to the arithmetic unit the corresponding bigits.

Data sent to the memory, either initially as input material or
during the course of computation, must be continuously regenerated in
order to be retained effectively. Indeed, the cathode ray tubes are con-
tinually regenerating the contained information unless interupted to go

through an action cycle when the arithmetic unit asks for a new order pair

or number, or else vwhen the memory is to receive new information. After

the interruption the memory returns to regeneration.
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Without entering into a discussion of the theory of storage
tubes, let us make a few simplified remarks on "writing" amd "reading"
of information in ert.

(1) Writing: the prescription for inserting a O at some loca-
tion is to turn the beam on for a few microseconds. To write a 1,
the beam is turned on for a few microseconds exactly as in writing a
O; but then the beam is displaced a few spot diameters and kept on a
few microseconds longer in the new position. In either case, the
procedure 1s independent of what conditions existed beforehand; in
other words, there is nothing required that corresponds to erasing.

(11) Reading: the beam is turned on for a few microseconds in
the undisplaced positlon. If a O 1s residing there, there will be a
small negative pulse on the pickup screen on the outside face of the
tube. On the other hand, if a 1 were there the pulse on the pickup
screen would be positive. These pulses are amplified and used to
set flip-flops accordingly. We discuss this presently; however, it
might be mentioned here that,in the event of a O, the associated
negative pulse turns the beam off before it is displaced; hence the
O at that spot i1s not destroyed and is available for repeated consul-
tations. The poslitive pulse does not turn the beam off until the
beam is displaced; hence the 1 1s intact also.

A very much simplified logical diagram of the memory system is
shown in Pigure 5.

Reading gg‘e:ﬁ
Writing Regeneration O-—Regeneration
fromR , ‘ R6
D.A C{ Action
fromR2—=( )
Order Pair

~\ Information

Y C.C

toR6 toRS

. deflection adder
regeneration counter
. control counter

Fig. 5 Memory System. Abbreviations:

Qo
Qa»
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Only one of the 40 cathode ray tubes with its associated amplifier

and flip-flop is shown. The deflection adder is a device that converts
a 10-bigit number into a palr of voltages which are applied to the de-
flecting plates of the crt. There are three inputs (via gate tubes)
into the deflection adder. Normally, the regeneration counter is
sending its systematic addresses to it. When an action cycle is called
for, the deflection adder receives an address either from the control
counter or from R6 in preparation for activity at the location speci-
fied by them.

In a regeneration cycle, an address from the regeneration counter
is sent to the deflection adder and there converted into a deflection
voltage on the crt. The electron beam 1s then turned on to read the
information at that spot. An amplified positive pulse from the pickup
plate, corresponding to a 1, will set the flip-flop and alleow the beam
to stay on in its slightly displaced position; thus a 1 is rewritten
in that spot. If the pulse is negative, the flip-flop is not set; the
beam is turned off before 1t gets displaced; and a O 1s rewritten. In
the meantime, the regeneration counter is advanced by one; the flip-flop
is then reset; and the cycle is repeated for the succeeding spot. In
this way, the complete pattern is continuously regenerated.

At some point in this process let us assume that an action cycle
1s demanded and that this action is to read a number from the memory to
the arithmetic unit, into either R5 or R6. There is an interlock (not
shown in the diagram) which allows the regeneration process to complete
the present cycle; but in the next cycle, instead of gating an address
to the deflection adder from the regeneration counter, the address is
either taken from R6 or from the control counter, according as an order
is being executed or a new order pair is being asked for. Reading pro-
ceeds and the flip-flop is either set to the 1 state or left undisturbed.
The information, in addition to being sent back into the ert, is also
gated into RS or R6 as desired, by means of the gates shown in the
diagram.

If the action cycle calls for vriting into the memory, either from
R2 or R5, the corresponding gates are opened and again the flip-flop
is set or left undisturbed according as the bigit 18 1 or O. Here, too;
the flip-flop controls the length of time the beam 1s on, hence whether
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it is to "write" a 1 or O.

There exists a varlety of possible paths of communication between
the various registers of the arithmetic unit and the memory. Obviously,
R6 must be able to receive order pairs from the memory; it suffices that
this connection is unilateral. R2 must be able to send to and receive
from the memory; similarly, R4. Finally RS needs to receive from the
memory (for example, in multiplication). The scheme adopted is shown
in Figures 6 and 7.

In the first are shown the
gate connections from the memory.
R6 connection is straightforward
and requires no additional com-

MEMORY

ments. A number from the memory
is gated into R2 by first being
gated into R5, from there to the
adder, then to Rl, and finally to

Fig. 6

R2; the last having been previeus- Gate connection to the arith-
1y cleared or not as desired. RL metic unit from the memory.

communicates with the memory via RS.

The connections to the memory are shown in Figure 7. R2 and RS
communicate directly with the memory; R4 reaches the memory via RS.
There exists a certain amount of flexibility in the gate connections
from R2 and RS to the memory. It is possible to send a composite word
to the memory, ons part being fromkR2 and the remainder from R5. This
arrangement is useful in the substitution order where it is desired to
change the address part of an order
residing in the memory by an addreco ' MEMORY
at the moment in R2. This 18 exe-
cuted by first bringing all of the R
vord from the memory into RS, thon
sending all but the old address
part back;, the new address being [%
supplied from R2, wvhere the appro- :
priate set of 12 gates is oponed. RZ]
Use 1s also made of this fioxibili- Fig. T

ty of composition in $he half-vord Gate connections to the mem-
substitution. ory from the arithmetic unit.
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The external memory is a magnetic drum system built for the computer
by Engineering Research Associates, Inc., of St. Paul, Minnesota. The
drum prorer is a precision cylinder whose surface carries a magnetizable
iron oxide. The cylinder is 8 1/2 inches in diameter and 15 inches in
length. The drum cylinder is completely enclosed in a housing on which
are mounted 202 magnetic heads for reading and writing information on
the drum. When in operation with the computer, the drum is continuously
rotating at 3450 rpm. The drum is mounted with the associated electronic
gear in a 7 foot cabinet which is approximately 5 feet wide and 30 inches
deep.

The drum has a capacity of 10,000 forty-bigit words. However, these
words are not singly addressed and the communication between the drum
and the memory is in blocks of fifty words. The addressing is done by
200 drum tracks where each contains fifty words arranged serially around
the periphery of the cylinder. A separate magnetic head is associated
with each drum track. There are 202 magnetic heads in all; two of these
are for indexing purposes and the rest are concerned with the 200 storage
tracks.

Due to peculiarities in the ERA logical design of the drum, the
track addresses range from 0-255 with certain addresses being omitted.
Table III shows the correspondence between the ordinal numbers and the
actual track addresses. There are, however, routines in existence which
allow one to address the drum tracks sequentially as addresses 0-C7
(0-199, decimally) in the process of coding. Since the communication
with the drum is by tracks where any block of 50 words comes from a single
track (one magnetic head), we observe that the drum is a serial storage
system in contrast to the parallel storage of the memory.

It requires between four and five revolutions of the drum to read
or write a track of words. The drum speed of 3450 rpm gives a drum period
of 17 milliseconds, so that it requires between 68 to 85 milliseconds
for 50 words to be read from, or written onto, the drum. This is, on
the average, 78.5 milliseconds per 50 words.

The drum instructions each require a full word for their expression.
The drum orders are:
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1

m—D BD Read 50 successive words from the memory starting with
the word at address specified by bigits 8-19 of the
instruction. Write these 50 words into the drum on
the track specified by bigits 20-27. Then transfer
the control to the left-hand instruction of the word
at the address specified by the bigits 28-39.

D—m BC Read the 50 words from the track of the drum specified
by bigits 20-27 of the instruction. Write these words
into 50 successive memory locations starting with the
address specified by bigits 8-19. Then transfer the
control to the left-hand instruction of the word at
the address specified by bigits 28-39."

An example of a drum instruction in hexadecimal notation is
| BD 137 29 2BF.
This is interpreted as: Read 50 words from the memory beginning with the
word at address 137. Write these 50 words into the drum at track 29.
Upon completion of the instruction the control transfers to the left-
hand instruction of the word at address 2BF in the memory.

During a drum instruction R4 serves as a transition register between
the parallel storage of the memory and the serial storage of the drum.
That is, in transmitting to the drum each word is brought into R4 from
the memory (parallel) and then shifted out of R4 to the drum (serial).

In transmitting from the drum each word shifts into R4 (serial) and then
is stored from R4 into the memory (parallel).

In order to transmit 50’words between the memory and the drum there
must be a register or a counter which specifies the appropriaﬁe memory
addresses. The control counter is used for this purpose. This means
then that the control counter contains, at the completion of the trans-
mission of the 50 words, the address of the 50th memory word concerned
with the instruction. This, in general, is not the address of the next
instruétion word to be brought into R6; hence the drum instruction ends
in a transfer which sets the control counter to the desired address for
the next instruction word of the code sequence.

In the use of auxiliary equipment such as the drum, it is desirable
to incorporate some sort of checking feature. The ghecking of the drum
is by summing procedures similar to those used in loading. That is,
when 50 words are transmitted from the memory to the drum, a sum of the
words is formed and'stored in an appropriate location. Upon transmitting

this track of information back into the memory, a sum is again formed
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and checked against the previously formed sum. It was initially in-
tended that this summing be done entirely by programmed routine; however,
it was observed that summing could be done electronically on the D—>m
instruction with practically no additional equipment; hence this feature
was incorporated as follows: If in the D—m instruction one writes the
initial memory address m as m + 800, the sum of the 50 words is accumu-
lated in R2. R2 is not cleared to zero prior to the start of the sum-
ming; hence the sum is added into the contents of R2. At the completion
of the instruction, the sum is left in R2 and may be checked with further

programming. One still needs the summing routine for the m—>D instruction.

Input-Output

The input component exists in two forms. There is the photo-electric
paper tape reader and the magnetic tape unit. All input to the computer
is initially via the photo-electric reader.

For input by the photo-electric reader, information on the paper tape
is punched transversely in groups of four bigits, called tetrads. Usually
a decimal digit or a logical character is represented by a single tetrad.
For each separate decimal digit, the true binary representation is used
where a punched hole corresponds to a 1 and a blank to a 0. Clearly, the
true binary representation of a sequence of decimal digits is not given
by the sequence of tetrads (cf. page 56 ). However, the conversion to
the true binary number is quite simple and is done by the computer
through a conversion routine before the actual computation starts.

We distinguish two methods of reading information from the paper
tape into the memory. There is, first, an initial loading process which
begins by setting the control counter to the desired initial address.

The first word (10 tetrads) from the paper tape is transmitted by the
reader into R5. The space symbol which terminates each word initiates
the transfer of the word from RS to the memory location specified by the
control counter. The control counter is advanced one, the second word
is read and transmitted to the second memory location, etc. The end

of the loading process is indicated by the presence of two consecutive
space symbols. The control counter resets to the initial address, the
first order pair may then be brought into R6, and the problem started.
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R5 has been made into a shifting register by making use of a short
term memory facility afforded by a simple resistance-capacity circuit
connected between each stage of R5. The speed of the photo-electric
reader is sufficiently slow compared to electronic speeds that it is
possible to scan the transverse series of holes of a tetrad and still
have time to shift R5 four times per tetrad. In this way the parallel
information in tetradic form is converted into a strictly serial pattern.

The use of RS in association with the reader affords two desirable
features. First, the functioning of the memory is divorced from that
of the arithmetic unit so that, in the event of some malfunction, iso-
lation of the difficulty is greatly facilitated. Second, since each
word passes through R5 en route to the memory, it may be added into R2
so that during the loading process R2 acts as an accumulator of partial
sums. At the complefion of the loading the number residing in R2 is the
sum of the contents of the tape, and it may be compared with a known
correct value. This provides a useful preliminary check of the reader
and assoclated electronics.

The second method of reading from the paper tape is, of course,
the single read instruction which transfers a word (the next one in
the series) from the tape to the memory location specified by the ad-
dress part of that instruction. The use of this instruction in a
small induction loop makes it possible to read whole blocks of words
from the tape to the memory.

The magnetic tape unit serves as an input and output device. The
magnetic tape drive is a standard audio-broadcast unit that was pur-
chased from the Ampex Electric Corporation, San Carlos, Californmia.

The tape drive with our own associated electronic gear is mounted in

a console cabinet of approximate dimensions 3 feet high by 2 feet wide
by 2 feet deep. The unit is used as a single channel serial system
where the magnetic tape reels contain 1200 feet of l/h inch wide Scotch
Sound Recording Tape. '

The reels of magnetic tape are, in general, premarked into sections
which will accommodate 1024 forty-bigit words. There are fifteen such
sections on a 1200 foot reel. The markings dividing these sections are
short lengths made transparent by removing the magnetizable material

from the tape.
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Since the unit is used only as an input-output device, there is no
automatic addressing of the fifteen marked sections, and there are only
manual searching facilities.

The manual searching 1s afforded by a photo-cell hooked into the
tape drive mechanism and a fast forward and reverse for driving the tape.
The fast forward and reverse allows one to advance or reverse the tape
at a speed of roughly four seconds per block of 1024 words. The photo-
cell actuates a brake whenever a transparent length of tape passes in
front of it. With this, one can then advance or reverse a tape as many
blocks as desired.

The operating speed of the tape is 15 inches per second. The pack-
ing density of the tape is T2.6 zeros pe¥ inch, or 57.1 ones per inch,
which is an average of 64.8 bigits per inch. The time required to record
a memory load onto the tape is 40.9 éeconds, if the information is all
zeros, or 51 seconds if the information is all ones. This gives an
average record time of 45.9 seconds per memory load.

The magnetic tape unit has no completely autometic load feature‘as
does the reader; hence all information from the magnetic tape is read
into the computer by a programmed routine. The tape order, reading from
tape to R4, 1is:

"t—Q AC Replace the number in R4 by the first word to come under
the reading head of the magnetic tape reader."

To insure accurate reading of data from the tape to the computer, a
timing feature must be incorporated in the writing process, i.e., in the

computer to tape routine. This feature is a time delay between the trans-

mission of successive words from the computer to the tape, and it is ac-
complished by an L(40) instruction given prior to each Q—>t instruction.
This delay in recording on the magnetic tape gives adequate spacing be-
tween words to insure proper transmittal by the tape "call" routine
which does not include the L(40) delay.

As in the drum, a checking feature has been incorporated into the
magnetic tape routines by summing. In the computer to tape routine, the
words sent to the tape are summed. The sum is printed and recorded on
the tape as the last word of the record. Upon "calling" the information
back into the computer via the tape to computer routine, the contents of
the tape are summed except for the last word. The sum is then compared
with the last word of the record; the last word being the sum formed
when the record was made. '
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Output from the computer may be accomplished by four mechanisms.
There is the magnetic tape already discussed, the Synchroprinter, a high-
speed page printer; the Flexoprinter, a slow-speed page printer; and fhe
Flexopunch, & slow-speed tape punch. No further comments are needed for
the magnetic tape unit; hence we turn to the printers and punch.

The Synchroprinter is & high-speed page printer that was purchased
from the ANelex Corporation, Concord, New Hampshire. The Synchroprinter
and its assoclated electronic gear are mounted in a cabinet of appfoii-
mate dimensions 5 feet 6 inches high by 1 foot 10 inches wide by 1 foot
7T inches deep. The printer has a maximum operating speed of fifteen
lines per second which is 36,000 characters per minute.

- The characters that may be printed are the ordinal numbers 0,1,2 -¢-

8;9; the letters A,B *+* F; &a decimal point; and a minus sign. The
printer achieves its speed by printing a line at a time where a line con-
sists of 4O characters; these may be four 10-digit numbers or any other
aggregate. The printer operates on the following principle: There are
4o tyPQIWheels, each containing the 18 available characters. The 4O
vheéls‘ére rigidly mounted on a metal cylinder. All of the O's, 1's,
2's, etc., of the 40 wheels are aligned. This cylinder rotates at a
constant speed whether the printer 1is being actuated or not. Dud ng any
one revolution of the cylinder a line may be printed. In printing an
aggregate of 4O characters all of the O's of the aggregate are printed
simultaneously, then the l's, the 2's, and so on, until after one revolu-
tion of the type cylinder the 4O characters of the line are printed.

There are two apparent methods of operating such a printer.
The first is to supply the correct digital information to all 40
tyﬁe vheels simultaneously and then allow each wheel to print at the
proper time. As is known, a 4O-bigit register may represent only 10
coded-decimal or hexadecimal characters; hence to represent 4O such
characters, four standard registers would be needed. Although this
method is very simple from a coding viéwpoint the electronic gear in-
volved makes such & scheme prohibitive,

The second method and the one adopted for the printer involves
very little additional electronic equipment. Inasmuch as the O's of
& line are printed simultaneously and then the 1l's, the 2's, and so on,
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only the O's digital information needs to be supplied to the appropriate
type wheels when the O's are to be printed, and similarly for the re-
maining digits. During the O print cycle the information that needs

to be supplied to each type wheel is binary, i.e., either print or do
not print. B8ince a register contains 40 bigits, and since a line for
the printer is 40 characters, a register may supply the necessary binary
information to the print wheels. The register R2 is used for this

purpose.

To print an aggregate of 40 digits, the 4O digits are first repre-
sented by an 18-row, 4O-column matrix (i.e., 18 consecutive memory
locations) where the rows represent the 18 characters present on a
print wheel, and the columns correspond to the digit position in the
aggregate. For electronic convenience a 0 in any element corresponds
to the presence of a digit and a 1 corresponds to the absence of that
digit. As an example, consider a l-row, 6-column matrix where the

number 302132 is represented. It is:
O: 101111

1: 111011
2: 110110
3: 011101

where rows correspond to the digits O —3 in order from top to bottom,
and the leftmost column corresponds to the most significant digit posi-
tion. To represent an 18 x 40 array or matrix in the computer 18 words
of storage are required. After such an array has been formed a line
may be printed. Row O is brought into R2 for the O print cycle, row 1
for the 1 print cycle, row 2 for the 2 print cycle, and so on. _

A timing problem is involved, as only about 1.5 milliseconds eiist
between adjolning print cycles once the printer is actuated. The print
order itself acts as a timing element, To print a line 18 print orders
are given as part of a subroutine. The first of the 18 actuates the

printer and the rest act in a timing capacity. It is necessary that the
time elapsing between successive print orders be less than 1.5 milli-
seconds, and for safety it is recommended that the time be kept somewhat
less. When each print order is given the appropriate row of the matrix
must be in R2.

Although the described scheme complicates the print subroutine it
is felt that the reliability obtained by including no new electronic
gear certainly justifies the added complications of the coding.
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The matrix is formed in the computer so that the first row cor-
responds to the minus sign, the second row to the decimal point, the
third row to digit O, the fourth row to digit 1 .. the 17th row to
the letter E, and the 18th row to the letter F., The type is arranged
on the print cylinder so that the sequence of printing the characters
is F, E, Dy C +++ 3, 2, 1, O, *, -. This means that the words corres-
ponding to the rows of the matrix must be brought into R2 beginning
with row 18 (the letter F) and ending with row 1 (the minus sign).

The paper feed for the printer operates from top to bottom past
the print cylinder. The first line printed then appears at the bottom
of a column of lines, - In order to have the first line printed appear
at the top of a column of lines (as it customarily does) the type
characters on the wheels have been inverted. If the mirror image of
a 40-digit aggregate is then printed it comes out of the printer in-
verted, but upon turning the copy upright one has a conventional list-
ing which for a column of lines would read from top to bottom and from
left to right. To print a mirror image of the aggregate the order of
the columms of the array is reversed; i.e., the rightmost column cor-
responds to the most\significant digit and the leftmost column to the
least significant digit. The 4 x 6 matrix of the previous example for
the number 302132 should be formed as

111101
110111
011011
101110
The print order is:
Sync Print CE To be used in a subroutine which prints simul-

taneously m i;must be

B3> 3417 Ba400 Byy3’
supplied to the routine.
The address bigits of the print instruction have no relevance with
respect to the instruction.
An example of a Synchroprint routine is given as Problem 13 of
Chapter II. There is, in addition to the high-speed printer, a modi-
fied Teletype page printer that has an operating speed of 396 charac-

ters (36 10-digit words and spaces) per minute. The printer is
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modified tQ 16 characters; the ordinal numbers 0,1,2 <+« 9, and the
letters A,B,C *++ F. This printer is actuated by the print order
"Flexoprint EA Print m on the page printer (slow speed)."

The reason for retaining this printer in addition to the Synchro-
printer is that one may print directly any yord in the memory. To
print a word via the Synchroprinter involves a routine,while the Tele-
type printer needs only an instruction. Whenever any volume of print-
ing is desired, however, the faster Synchroprinter is ﬁsed.

The Flexowriter punch allows one to punch information from the
computer onto paper tape for subsequent use. The punch is a modified
Flexowriter punch for five hole paper tape. Its speed of operation is
869 characters (79 10-digit words and accompanying spaces) per minute.

The punch order is:

"Punch CF Punch m on paper tape.”
Due to the very slow speed of the punch, the magnetic tape is used
whenever practicable for output needed in a form to be used as subse-

quent input.

Control

The control is the agency which directs the various activities of
the computer. Some parts of the control relate specifically to the
detall operation of the various components, such as the memory control
concerned with the regeneration of stored information. To some extent
these have been discussed under the respective headings in previous
sections. Here we propose to consider some of the more general fea-
tures of the control.

The instructions for the computer are of the one-address type;
i.e., an order is assoclated with a single address referring to some
memory‘location'that contains a number upon which the specific order
is to operate. This system of instructions is much simpler in struc-
ture than some proposed schemes for other computers. There have been
proposals for four-address instructions; the first two addresses specil-
fying the two factors of an operation (say in multiplication, the mul-
tiplicand and multiplier), the third referring to the destination for
the result, and the last to the location in the memory of the next in-
struction. We do not cite the various advantages for the several pro-
posals except to remark that simplicity is a rather compelling argument.
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The normal word length in the memory is 4O bigits. An instruction
is 20 bigits, so that instructions are stored in pairs. Of the 20
bigits, 8 are used for specifying the order, and 12 remain for the
address. Actually 10 suffice with our present memory capacit& of
102k (= 210), so that 2 bigits are avallable for future expansion or
for some other purpose.

The 8 bigits describing an order are initially punched onto a
paper tape as two tetrads. In principle any of fhe 16 possibilities
0,1,2...9, A,B...F might be used for each tetrad. Thus a maximum of
256 possibilities is available. Our present feeling is that the nﬁm-
ber of useful orders will not exceed 36; thus only letters in pairs
are used to designate an order. This 1s useful in coding.

Let us begin at some point in the cycle of activity and describe
the sequence of events that leads back to the same point; after that
we indicate with the aid of some logical diagrams how some of these
things are accomplished.

Assume that a pair of orders has just been brought into R6. The
oxder part of the left-hand instruction must be interpreted and the
corresponding sequence of pulses and voltage changes provided. At the
same time the address part is sent to the deflection adder of the mem-
ory in preparation for communication with the memory. When this in-
struction is completed, the control then examines the instruction re-
siding in the right half of R6 and takes the necessary measures to
execute it. In the meantime, the control counter is advanced by one
8o that whén the right hand instruction is completed the next order
pair can be brought to R6, and thus complete the cycle.

It is convenient to subdivide this part of the control into three
sections: The first is concerned with the interpretation of the eight
bigits as a specific order, and is called the order matrix. The sec-
-ond, called the operations control, provides a set of pulses for exe-
cuting a given order. The third, the instruction control, deals with
the "red tape" associated with doing the left half of an order pair,
then the right half, and then seeking a new order pailr.

The Order Matrix: Inasmuch as it has been decided to use only
.letters (and not include decimal digits) to specify orders, each tet-
rad of a pair begins with a 1 (letters correspond to the digits 10-15).
Therefore, of the eight digits, only six are used to discriminate among
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the various orders. To simplify the discussion, assume we are concerned
with only two bigits. (The case for six is an obvious extension.) These
two bigits are in two flip-flops of R6; and imagine further that in each
flip-flop two wires tap in at symmetrical points of the flip-flop as
shown diagrammatically in ' 1 1

Figure 8. If I has a 0, A
has a definite voltage V,
and B has another definite A B| |C D 0]
voltage V'; if I has a 1,

the voltages are inter- .:K)l—*

changed, that on A is V'

2
and on B it is V. The 44:i::)—’>

voltages on C and D depend »—;i::>;5>
on the contents of II in -
precisely the same way. Fig. 8 A two stage order matrix.

Consider next a two level "and-gate" with the following properties:
If, and only if, the input voltages are both V, a signal is given to

1

the output. We now construct four such "and-gates" with inputs from
the set A,B,C,D; the specific connections are shown in the diagram.
Clearly, if the contents of I and II are 0,0 the above condition 1s
satisfied for only the topmost gate and a pulse is given out along
the 0 output. Similarly, if the contents are 0,1 a pulse goes out
along the 1 output, etc. To envisage the actual order matrix, ima-
gine that there are 6 flip-flops with various connections to 36 "and-
gates”" of level six; i.e., six conditions must be satisfied to stimu-
late an output. Thus from a series of bigits we actuate a unique

line corresponding to that particular set.

The Operations Control: The operations control 1s essentially a
pulse generator producing a sequence of seven pulses. Four of these
pulses are of fixed length; the remaining three may be variable. The
necessity for pulses of variable duration stems from the fact that
the time required for certain operations is somewhat indeterminate.
For example, if an action cycle is required of the memory at some
moment, it is necessary to wait until the memory completes its present
regeneration cycle before going into action. Inasmuch as the waiting
period is somewhat arbitrary, the time from the instant the action
cycle is requested to completion is slightly indefinite. The comple-
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tion of the operation terminates the pulse and the operations control
then generates the next pulse.

Some of the more complex orders require more than just one sequence
of such pulses; hence one of the provisions made is to permit the opera-
tions control to go through its paces the required number of cycles. On
the other hand, some of the simpler orders do not need the full comple-
ment of seven pulses and, in the interest of speed, provision is made to

terminate the sequence at some earlier point.
We now consider a very much simplified example of an order, by way

of illustrating how an actuated line from the output of the order matrix‘
and che signals from the operations control combine to execute the given
order. Say the order is a shift to the left by one place of a number

in R2. A series of "and-gates" of level two are connected to the out-
put line from the order matrix that corresponds to this order. The
output line is thus a common static input to all of these gates. The
second inputs are the various timed pulses from the operations control.

These connections are shown in Figure 9.

Start Signal From

Instructions Control
I Clear R| to “zeros’ i
Output Line ) ey
F“;‘rg;r:igrder Gate "ones" vertically ! |

|
\ hid | from R2-+ Rl . | |
) 1] LL] 2 | l
mr Clear R2 to " zeros l | l Operations
- t3 Control
1N |
|
I
I
|
|

Gate "ones" diagonally

™ Sj'left from R1—-R2 | '
. - t
Finish signal to Instructions 4 |

v Control;also prevent |
(S subsequent pulses ts | ¢
|

Fig. 9 Gate connections for a simplified order.
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When the first signal tl is produced, conditions at gate I are
satisfied and an output signal is produced and is sent to the
clear bus of Rl. Its effect 18 to set all the f£lip-flops of Rl
to the O state. After a short delay, pulse t2 15 produced and
directed to gate II. This output sets those flip-flops of Rl to
1 to match the corresponding flip-flops of R2 or, simply seid,
l's are gated into Rl from R2 vertically. The subsequent steps
are obvious.

The Instruction Control: It includes the following functions:

(1) Communication with the memory to obtain the next order pair.
Signals must be given to clear R6, to send the address from the control
counter to the deflection adder, and to transfer the order pair from
the memory to R6.

(11) Transfer of the order part of the left instruction to the
order matrix and of the address to the deflection adder of the memory;
upon completion to examine the instruction in the right half of R6.

(111) Sending a start signal to the operations control.

(1v) 1In the event that the left order is a transfer order, the
sequence 1is interrupted, the new order pair is brought into R6, and
a new sequence of instructions is started. There 1s also provision to
skip the left order for those cases where the transfer is to begin a
new sequence of instructions with the right half of en order pair.

(v) Pinally, it must advance the control counter by one after
each order pair, and also receive the finish signal from the opera-
tions control.

In order to make convenient gate connections between the various
functions of the control, a collection of vertical bus wires is acces-
sible in the control panel immediately to the left of the registers.

A cross-sectional layout of the arrangement is shown in Figure 11. The

notation is as follows:

C,RJ clear RJ (J=1,2,...6) to i (1=0,1);
t n? timea signal (n=1,2,...6);
Li eft dlagonally;
RJRJ' Ri gate 1 from RJ - RJ' either{right " H
Si straight;
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Hold allovs variation in length of t, and for t3;

Finish finish signal from operations control to
instruction control;

Set Trans FF sets a flip-flop in instruction control to
indicate transfer to new sequence of instruc-
tioné;

Set Rt Trans FF sets a flip-flop in instruction control to

indicate transfer to new sequence beginning
with right half;

Cycle Input input to operations control to repeat sequence
of timed signals;
Start Toggle 0 a special timed signal which permits cyecling

opérations control twice in a given order.
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Yertical Buses of Order Gates

° °
C Rk t1
(o)
[ J o
clah t2
o [ ]
c°R5 t3
° ' ™ ° ° ® e
20=-27 ClR5 28-39 0-7 t4 8-19
R2 R2 RS R5
° [ ]
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. °
Set Trans FF t6

[
Start Toggle "O"

Figure 11
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20-27 RIS~ 28-39

R5
®
Adder

R1L
o]

[
Write

[ ]
Cycle Input

°
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R3RhRo

[
RUR3S,

L °
RhRSSl Comp.
R5§hs°
MR5S

®
Finish
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V. DESCRIPTIVE CODING AND SUBROUTINES

Recall from Chapter II that the steps in the preparation of a
code of a problem are:

1. The logical coding is first prepared. In this coding the logical
rather than the computer symbols are used. Each box of the flow
diagram is treated independently and the instructions within the
box are numbered consecutively beginning with 1. Indexed Latin
letters are used to indicate the addresses of the necessary stor-
age of the problem.

2. The computer code is then prepared. In this coding the instructions
are paired into words and these instruction words are sequenced and
numbered (addressed) according to their subsequent residence in the
memory. The computer symbols for the orders are written in place of
the logical symbols. Numerical addresses are assigned to the storage,
and the addresses of instructions referring to storage are modified
accordingly.

3. The computer code is checked so that any errors may be corrected be-
fore the code is punched onto paper tape for subsequent input to the
computer,

As one examines these steps in detail, the question quite naturally
arises as to whether the computer might be instructed to carry out part
of the coding process. The question can be answered in the affirmative,
and the purpose here is to describe a method for coding in which the com-
puter is instructed to carry out all of Step 2 of the coding procedure.

The method is by no means unique. The motivation for its choice is
found in the desire to use the computer as an aid in constructing a usable
code which is tailored in the manner described in Chapter II, and to re-
lieve the person preparing the code of much of the routine work involved,
and possibly to reduce the number of errors.

The method in general is as follows: A logical code using a pre-
seribed set of symbols and following a prescribed set of rules is pre-
pared. These symbols identify the various kinds of storage of the problem
(e.g., numerical constants or logical quantities) and the addresses of the
various instructions of the problem. This logical code is checked for

errors and after any needed corrections are inserted, a punched tape of
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this logical code is prepared. This tape is then used as input data by
a routine designed to assemble a computer code from this material.

The assembly routine reads the individual instructions from the
logical code tape and pairs these instructions properly into instruc-
tion words; assigns addresses to these instruction words; and stores
them into the proper location. The absolute (numerical) addresses of
the storage of the problem are assigned by the assembly routine, and the
instructions referring to this storage have their addresses translated
accordingly. The addresses of instructions that do not refer to stor-
age (i.e., instructions that refer to other instructions) are also
translated into their absolute value. When this computer code is com-
pletely assembled it is punched onto paper tape or written onto magnetic
tape by the assembly routine; a printed copy is also produced.

This method of coding has been given the name descriptive coding

since many of the identifying symbols used in the logical coding are
descriptive in nature.l

We now turn to the discussion of the descriptive coding, and we
establish the necessary rules and define the symbols needed to carry
out such a coding. The assembly routine is not discussed in detail
since its complexities are beyond the scope of a manual of this type.

In the preparation of any code which is to be modified and assembled
through an assembly routine, the flexibility of the coding (i.e., the
freedom of choice of symbols and the amount and different kinds of in-
formation which can be specified in a descriptive instruction) is de-
pendent upon the number of bigits that are allowed to express each
instruction. Clearly the more bigits allowed, the greater is the
flexibility.

It was found that the normal instruction length of twenty bigits
was adequate to achieve a code by means of such an assembly routine,
which was comparable to a tailored code both in number of words of code

_and subsequent running time of the problem. The first two tetrads of the
twenty bigits specify the order using the standard vocabulary symbols;
the remaining three tetrads are for the address. There are two advan-

tages in having the descriptive instructions conform as much as possible

1 The method was developed by Eugene H. Herbst, John B, Jackson, and
Mark B. Wells, of the Los Alamos Electronic Computer Group.
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to the familiar logical instructions. First, by remaining within the
framework of the logical coding, a relatively small number of new
symbols and new rules for coding need to be introduced. Second, the
work in preparing the descriptive code is no greater than the usual
logical code and the laboxr of the tape preparation for the descriptive
code is comparable to that involved in the preparstion of the tape for
a tailored computer code.

The descriptive coding is prepared from a flow diagram, No modi-
fications of the flow diagram are necessary and it is as discussed in
Chapter II.

In the descriptive coding (as in the usual logical coding) each box
of the flow diagram is coded as though it were independent of the remain-
der of the diagram. The only interdependence of boxes of coding is
through transfer and substitution instructions. These are discussed
presently. The instructions written for each operation box are numbered
consecutively, startine with 1, and the numbering 1s done hexadecimally,
as shown in Example 1.

Example 1 ' 2
—{ y=ax*+ bx +c to D.OI —b— z=y*+y to DO2 [——

Figure 1
Storage chart: B,01: x C.01: a D,01: y
C.02: b D.02: z
C.03: ¢
The coding is:
Box 1
1. m—Q Cc.0l a to Rb
2. X B.01 ax in R2
3. m—-——Ah C.02 ax + b in R2
4, L(40) 028 ax + b in R4
5. X B.OL  ax® + bx in R2
6. m—sAh C.03 y=8ax"+bx+c in R2
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Box 2
1. m—Q D.01 y to R4
2. X D.OL  y° inR2
3. m—>Ah DOl z = y°+7y inR2
4k, A—m D.02 2z to D.02

The addresses that can occur in instructions must be classified
and a set of symbols may be used to represent each class so that the
assembly routine may interpret and modify the various addresses cor-
rectly. Addresses of instructions fall into four general classes.

They are:
(1) Addresses that refer to numerical storage.
(11) Addresses that do not play a normal address role, as in
R(n), L(n), a—>Ac, and a—>Ah instructions.
(11i) Address that refer to instructions within the same operation
box. ‘

(iv) Addresses that refer to instructions in other operation boxes.
Each class may be divided into as many subclasses as is deemed necessary.
Let us examine each class of addresses,

Recall that there are two kinds of storage requirements for a prob-
lem, static storage and dynamic storage., The static storage is that
storage which originates with the problem and remains unmodified through-
out the course of the computation. The dynamlc storage is that storage
which originates from computation within the problem,

For simplicity of addressing, the static storage has been assigned
the four symbols:

' i (=1, 2 «s« FF)

255 words may be stored on each set of addresses. The sets have the
following significance. B storage is that static storage which ori-
ginates with the problem as Binary numbers; hence, any constants which
are given in a problem as binary numbers are referred to by B.i ad-
dresses, and are listed sequentially as B.i storage. 7T storage is
very similar to B storage in that the numbers to be stored in 1.1
storage are also given in binary form. The T storage has significance
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with respect to subroutines, and it is discussed more appropriately
in the section on subroutines. The letter C designates static storage
that is to originate with the problem as decimal numbers and is to be
Converted to binary numbers by the assembly routine. The letter A
designates the static storage that contains Addresses (numbers corres-
ponding to addresses) which are to be used by substitution instructions
in modifying other instructions during the course of the computation.

The symbol D.i i (= 1, 2¢¢+FF)
is used for Dynamic storage and 255 words of D storage are allowed.

We now examine more closely the storage requirements of Example 1.
We may assume that the number x is given as a binary number; therefore
it is placed in B storage and indicated as

B.01l: x

The constants, a, b, and c, are assumed to be numbers which are origin-
ally given as decimal numbers and which are to be converted to binary
- numbers by the computer during the process of preparing the code through
the assembly routine. a, b, and ¢ are listed in C storage as

C.0l: a
C.02: b
C.03: ¢

The dynamic storage consists of storage for the quantities y and z
which are formed during the computation; hence two dynamic storage
locations are needed, and

D.01: y
D.02: z

The second class of addresses, those that do not play a normal
address role, have the proper numerical address inserted in the descrip-
tive code; e.g., Box 1, Instruction U, reads

L, L(k0) o028
where 028 is the correct hexadecimal address for a left shift of forty
places. As a further illustration consider the use of an a—»Ac in- |
struction to bring 2-1 into R2, The instruction reads

a—»Ac 40O
where 400 corresponds to 2'l when brought into R2. If for any reason
it is desirable to insert an instruction which contains an absolute ad-
dress, such an address should be used in the descriptive coding (except
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in transfer and substitution instructions) and the assembly routine will

not alter it; e.g., the instruction Q—>A (m—>A 800) has its special
address 800 inserted in the descriptive coding.
The third class of addresses, those addresses of instructions that

refer to other instructions Enclosed within the same operation box, are

designated by the symbol E.

E.i

Such an address

i (= l, 2 see FF)

may range over 255 instructions of an operation box.

restriction on the number of instructions in an operation box.

This is a partial
Although

an operation box may have more than 255 instructions, no instruction may

refer to any instruction beyond number 255 of the same operation box.

The E.i address is used primarily in substitution instructions.
address has special use with other instructions.

In

Such an
fact, we shall see

in the discussion of subroutines that the E.i address is used in transfer

instructions.

Example 2

The following example illustrates the use of E.i addresses,

The flow diagram of Example?2 shows only that portion of an induction

loop in which the sequence of quantities z, (1 = 0,1e¢I-1) are formed
and stored in the memory at addresses D.20+1 hence

O to D.OI
Xg to D.02

A,0l: AAD20AAD20

D.02: x;
a i 2
O_)i ﬁ_() Zi= CIX,+b fO D.20+i +'°'-
b
i+1—i
h— i+ to D.OI |—4—-----
Figure 2
B.0l: O C.01l: a D.Ol: i
B.02: (l)o C.02: b D.02: x,
B.03: X .
D:20: zo
D.21: z,
D:20+i: z
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The coding is:

Box 1.
1. m—Q B.0O1 0 to Rk
2. Q—m D.O1 0—1i to D.Ol
3. m—Q B.03  x_ to R
4, Q—m D.O2 x;,—x, to D.02
Box 2.

1. m—>Ac A,01 AAD20AAD20 to R2
2. m—Ah D.O1 AAD20+iAAD20+1 in R2
3. S—»m E.O7 D.20+1 to address of

Inetruction 7

k., m—Q D.O2 Xy to Rb
5. X -~ ¢€.01 ax, in R2
6. m—>Ah C.02 z; = ax, + b in R2
7. A—sm [D.20+i] z, to D.20+1
Box 3.
1. m—sAc D.Ol (1)o to R2
2. m—>»Ah B.02 (1+l)o in R2
3. A—m D.0O1l ' (1+1)o———> (1)0 to D.OL

In the storage required, the numbers O, (1)0 » and x are originally
stored as binary numbers; hence B storage is used. The numbers a and b
are decimal numbers to be convertad into binary numbers by the assembly
routine; consequently they are stored in C storage. (:l.)o and x, are
stored in dynamic, D storage. We assume after the initial traversal
that Xy is sent to D.02 from a portion of the routine not shown. The
choice of D.20 as the starting addrgss for the 2z 1 is arbitrary, and
any block of I locations would suffice for that D storage.

The A storage is used to store the initial address D.20 from which
all addresses D.20+i are formed (Instructions 1 and 2, Box 2). Note
that D.20 is stored in A.Ol as ’

A.01l: AAD20AAD20.
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It is stored as an instruction-word where the two instructions are
identical. This is true in general: +that all A storage is stored
as instruction-words where the two instructions of the word are
identical and the address of the instructions is the desired de-
scriptive address. The cholce of the order that appears in the in-

struction word depends on the use of the particular word of A storage.
The choice of the order AA in this instance is significant in that
the assembly routine deletes the AA from each instruction at the time
the D.20 is assigned its absolute value. For example, suppose that
the absolute address corresponding to D.20 is 154. The A storage
before and after modification by the assembly routine is:
A,01: AAD20AAD20 A.01: 0015400154

The order AA is the only order that is deleted from A storage when
the storage is modified. ‘

In the coding of Example 2, the first two instructions of Box 2
form (D.20+i) in R2. Instruction 3 reads

S—mn E.O7

Hence, the address of Instruction 7 is replaced by the number in R2
vhich is D,20+i, Note that the order S—>m is used rather than S—nm',
This is always the case, not only for S—sm but also for T, C, and
HS—>»m, All transfer and substitution instructions whose addresses

refer to other instructions are coded as the unprimed order; that is,

the order that refers to a left-hand instruction of an instruction-
word. The assembly routine then modifies the order if a modification
is necessary.

The fourth class, those addresses of instructions that refer to

instructions in other operation boxes, are addresses of transfer in-

structions and substitution instructions., Transfer instructions and

substitution instructions are the only instructions whose addresses

may refer to instructions of other operation boxes than the one con-

taining the instruction.

Transfer instructions act in two ways as connecting links between
operation boxes. These are the fixed connection and the variable re-~
mote connection. We treat the fixed connections first.

A transfer instruction that is a fixed connection has as its ad-

dress the operation box_number and the instruction number of that box
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inte which the transfer is to send the control. The first two of

the three address tetrads are used for the operation box number. The

remegining tetrad is used to specify the instruction number within the

box. As an illustration, Instruction 4, Box 2, of Example 2, reads
L, T 02,1

which is a transfer of the control to Box 2, Instruction 1.

Recall that on a flow diagram the flow lines enter at the begin-
ning of a box., If the coding strictly followed the flow diagram, a
trensfer instruction would always be to the first instruction of an
operation box. However, it has been shown in previous codings that
it is often possible to save an instruction or two by transferring
the control into one of the first few instructions of a box or one
of the last few instructions of the preceding box (cf. Page 72,
Problem 6, Box 6, Instruction 1).

A transfer can refer to any one of the first seven instructions
of the operation box to which the transfer is effected, or it can re-
fer to any one of the last seven instructions of the preceding box.
The operation box number specified in the address of a transfer in-
struction is the box of the flow diagram which is entered by the flow
line indicating the transfer. A number 1, 2, *¢* 7 in the third ad-
dress tetrad indicates a transfer into the corresponding instruction
of the box. A number F(=-1), E(=-2), D(=-3) <<+ 9(=-7) indicates a
transfer into the corresponding instruction of the preceding box; e.g.,

CA20,3(T 20,3) reads: Transfer the control to Operation Box 20,
Instruction 3.

CA25,E(T 25,E) reads: Transfer the control to Operation Box 25,
Instruction -2, which is the next to last
instruction of the preceding box. The
preceding box is not necessarily Box 2k.

The address of a conditional transfer instruction, where the (+)
exit is a fixed connection, is formed in the same manner as the address
of a transfer instruction.

Example 3 illustrates transfer instructions acting as fixed
connectors.
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Example 3
I
—{—b-y=ax+c to D.OI 5
D.02: x 5 y —»1 -y to D.OI
: +
—1 > y=ex+f to D.OI + a
—y—"y
4
Stop
Figure 3
.01: D.0O1: y
: D.02: x

We assume that x is formed in a part of the routine not shown
and is stored in D.02. The coding is:

Box 1.

1. m—Q C.01 a to R4

2. X b.02 ax 1in R2

3. m—»Ah C.02 y=eax+ ¢ in R2

h, A—>n D.0L y to D.01
Box 2.

l, m—Ac D.O1 y to R2

2. c oh,1
Box 3.

1. m~—4c- D.01 -y to R2

2. A—sm  D,0l <y to D.O1
Box 4,

1. Stop
Box 5.

1. m—Q C.03 e to Rh

2. X D.02 ex in R2

3. m—»Ah C.Ok y=ex+f in R2
L, T 02,F
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The conditional transfer instruction of Box 2 reads C OW,1 which
is a conditional transfer to Box U4, Instruction 1. The transfer in-
struction of Box 5 reads T 02,F which is a transfer to Box 2, Instruc-
tion -1. This is a transfer to the last instruction of the preceding
box, in this case Box 1.

Substitution instructions may also have an address consisting of an
operation box number and an instruction number. However, the substitution
instructions can modify any one of the first fifteen instructions of any
operation box other than the box containing the substitution instruction.
Note that this treatment differs from the transfer instructions.

Recall on a flow diagram that a set of variable remote connections
is indicated by a Greek letter in a circle as an exit, and the same Greek
letter with identifying subscripts in a clrcle at each entrance point.
See Figure k.

e

A

Figure 4
In the preparation of a logical code, the transfer instruction indica-
ting the exit (:) written as
T (o]
is used to identify the particular remote exit. It is the location
in the memory where the transfer order of the exit resides and not to be
interpreted as the address part of the transfer instruction.

The addresses corresponding to the entrances s ., and are
provided to the exit [p] from the appropriate positions of the flow dia-
gram (cf. Chapter II, Problem 7, pp. 53 £f). The various are supplied
to T [D]by substitution instructions, S—m,

In the descriptive coding each set of variable remote connections
is represented by a symbol

F.i i(= 01,02 +¢)
where the 1 is distinct for each set. (Greek letters do not exist
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in the vocabulary. We use them in the discussion and in flow diagrams
for simplicity of notation.) These instructions concerned with such
a set (gggg the transfer instruction which is the exit and the various
substitution instructions which supply addresses to the transfer in-
structions) have as their address the symbol F.i corresponding to
the particular set. Example 4 illustrates this.

Example L |

-+

—+1®

Figure 5
Since@ and@ are addresses they are to be stored in A storage

&s instruction words. However, for this example we do not discuss the

A storage in detail, and we merely indicate

A.01: (A.l)o
A.02: (>.2)°
We designate the set of variable remote connections by F.0l. The
coding is:
Box 1
1. m—Ac A.01 (A), toR2
2. S5—on F.01 A to address of F.Ol
3. L(0) 000 *
b, T F.01
Box 2
1. m—Ac A.02 ("2)0 to R2
2. S—>m F.01 k2 to address of F.Ol
3. T 01,k

Instructions 2 and 4 of Box 1, and Instruction 3 of Box 2, are those
instructions concerned with the set of variable remote connections F.Ol;
hence they have as their address F.0l. Note that Instruction 3 of Box 1

is L(0). This insertion is necessary as no substitution instruction may

modify the instruction immediately following. The L(O) serves as a

"dummy-do-nothing" instruction which separates by one the substitution
instruction and the instruction that it is to modify.
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The @ and @ are indicated on the flow diagram as entrances
into operation boxes; therefore the addresses corresponding to
and @ are usually the addresses of the first instruction of their
indicated operation box. The address portion of the words in A stor-
age corresponding to @ and @ are treated in the same manner as
the address of a fixed connection transfer. Therefore, if @ cor-
responds to Box 5, Instruction 1, the address portion of @ in A
storage would be

A.01l: +++ 05,1 <+ 05,1

The exli, T[}\} , of lhe variavle reimole CONnEction mWust TIransrer
the control at different stages of the problem to the wvarious @
associated with the remote connection. The addresses corresponding
to the @ are usually distinct. When the computer code is formed
by the assembly routine, there is no assurance that the instructions
to which the @ refer will alll occupy the same side of their respective
instruction words. In order that the T[)\.] shall have the flexibility
that enables it to transfer the control to either side of an instruction
word, the transfer order as well as the address must be modified. To
accomplish this, each is stored as a transfer instruction, and
the assembly routine modifies the order if necessary when the absolute
address corresponding to @ is assigned. A half-word substitution
instruction, HS—>m, is then used rather than S—m, as indicated in
Example 4, to supply to the exit T[)\.] the appropriate T[X j] . Example 5
illustrates three sets of variable remote connections and the proper

A storage associated with them.

Example 5
The necessary storage 1s:

A.01: CAO31CAO31 D.0Ol: x
A.02: CAOk1CAOKL
A.03: CAOS1CAO51
A.O: CAO61CAO61
A.05: CCO91CCO91
A.06: CCOA1CCOAl
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Stop

Figure 6.

We assume that x is formed in another part of the routine and
stored in D.0l. We designate by F.Ol the set of variable remote con-

nections (:), by F.02 the set (:) , and by F.03 the.set (:).

The coding is:

Box 1.
1. m-——>Ac A.01
2. HS—m F.01
3. L(0) 000
b, T F.01

Box 2.
1. m—Ac A.02
2. BS—m F.01
3. T 01,4

l. m—Ac A.03
29 Mn F.02

k. T F.02

(CA03,l)o to R2
CAO3,1 to F.01

(CA.ou,l)o to R2
CAO4,1 to F.O1

(CA051)o to R2
CA05,1 to F.02
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Box k.
1. m—Ac A.Ok (CAO6,l)o to R2
2. HS—sm F.O2 CA06,1 to F.02
3. T 03,4
Box 5.
1. m—Ac A.05 (0009,1)o to R2
2. HS—m F.03 CC09,1 to F.03
Box 7.
1. m—Ac D.O1 x to R2
2. o) F.02
Box 8.
1. Stop
Box 6.
1. m—Ac A.06 (CCOA,l)o to R2
2. T 07,F

Instructions 2 and 4 of Box 1, and Instruction 2 of Box 2,
are those concerned with the set of variable remote connections
(:) = F,01; therefore, those instructions have the address F.0l. Simi-
larly, Instructions 2 and 4 of Box 3, and Instruction 2 of Box k4, have
the address F.02; and Instruction 2 of Box 5, and Instruction 2 of Box 7,
have the address F.03.

Instruction 2 of Box 7 is a conditional transfer instruction; hence
those instruction words in A storage which are to be substituted into it
are themselves conditional transfer instructions as shown in A.05 and A.06.

Note the use of the HS—>m instructions in the substitutions con-
cerned with the variable remote connections.

The sequence in which the operation boxes are coded is 1, 2, 3, 4,
5, T, 8, 6, which is the order in which the computer code is to be se-
quenced, It is always true that the sequencing of the operation
boxes in the descriptive coding must correspond to the sequencing neces-
sary in the computer code regardless of the numbering of the boxes on
the flow diagram. The number assigned to each box on the flow diagram
is, however, the number to be used in the address of instructions refer-
ring to the box.

In Box 6 of Example 5, Instruction 2 is a transfer to O7,F which is
a transfer of the control into the last instruction of the box immediately
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preceding Box 7. In this case, the transfer is to Box 5, Instructiom 2,
since Box 5 is the box in the coded sequence vhich immediately precedes
Box 7.

The assembly routine treats the variable remote connections as
follows: The A storage concerned is altered to its absolute address
and the transfer order contained is modified, if necessary. Whenever
the assembly routine encounters & substitution instruction with an ad-
dress F.i, the absolute address of the associated tramsfer instruction
(the transfer instruction with the same F.i address) is determined and
that address is inserted into the substitution instruction.

It is often useful to be able to store numbers from R2 into D stor-
age by using substitution instructions. To do this, the substitution
instruction is given the appropriate D.i address; however, the substi-
tution order must be written as the desired primed or unprimed order.
For example, comsider that bigits (20-39) of R2 are to be sent to bigits
(20-39) of D.05. The descriptive instruction effecting this would be

HS—sm' DO5 which is FDDO5
Similarly, to store bigits (8-19) of R2 into bigits (8-19) of D.OA, the
instruction reads

S—m D.OA which is FADOA
In a substitution instruction with a D address the assembly routine
never modifies the order part of the instruction.

Since the substitution instructions may have box numbers as addresses

and since substitution instructions may refer to D storage, it 1s necessary

to restrict the total number of operation and alternative boxes of any
one problem to CF boxes, which decimally is 207 boxes in all.

There are occasions when it is necessary to know in advance whether
an instruction is to occupy the left or right-hand instruction of a word
in the computer code. In fact, it may be necessary to position certain
instructions on a fixed side of an instruction word; e.g., at the comple-
tion of a drum instruction, the control is transferred to the left-hand
instruction of the word specified by bigits (28-39) of the drum instruc-
tion; hence, the instruction to which the transfer is desired must be
in the left-hand side of its respective instruction word. Further, the

drum instructicn itself must occupy a full word in the computer code so



that this instruction must always begin on the left. In order that in-
structions, where necessary, can be positioned with the desired psarity
(1.e., left or right) a symbol is provided in the descriptive code so
that the computer code of any operation box can be started on the left
of an instruction word. As soon as the first instruction of a box is
fixed on the left, the parity of all instructions within the box is
known immediately. By inserting a “"dummy-do-nothing" L(0O) as a first
instruction, one may change the parity of all succeeding instructions.

The descriptive code tape is composed of the descriptive coding
and the static storage (i.e., A, B, 7, and C storage) of the problem.
All of the descriptive coding and any ldentifying symbols for the tape
which refer to the descriptive coding are punched as five character
words. The C, B, and 7 storage and any corresponding identifying sym-
bols are punched as ten character words.

The sequencing of the data on the code tape is as follows:
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In order that the assembly routine can assign the absolute addresses

to the various instructions and the storage, the initial absolute address

for the code must be specified. It is the first word that is punched
on the tape, and it is a five-character word. For example, if the
assembled code is to begin at address 25E, the first word of the tape
would be
' 0025E

A descriptive code may be assembled into an absolute code starting at
any initial address with the restriction that the code with A, C, B,
and 7 storage must not exceed address 37C (892 decimally).

Immediately following the initial address on the tape is the de-
scriptive coding. The sequencing of the boxes of descriptive code as
punched on the tape specifies the linear sequencing of the assembled
code. Preceding the instructions of each box, the box number is

punched onto the tape as a five-character word where the word consists

of three zeros followed by the box number. For example, consider a

descriptive coding of two operation boxes where the assembled code is
to begin at address 052. The descriptive coding and the corresponding
code tape is:
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Box 1
1. m—Ac D.o1
2. m—Ah D.02
3. A—m D.03
Box 2
1. m—>Q B.O1
2. X D.03
3. A—m D.Ok

Space
Space
Space
Space
Space
Space
Space
Space

0— 00052 0000! AADOI BADO2 DCDO3 00002 EBBO! DADO3 DCDO4

(o] (o]
° ° OOCX) OOCK) © 000
00000000000000000000000000000000000000000000000000000

(o] O OCf)(D 000 o ch) o 000 O

0c> (o] can 0O 00 OO0 8 E§3 00 00O00O0
Starting 1 Box | i Code of Box | | Box 2 i Code of Box 2
Address ! '

Figure 7

All of the instructions of the boxes with the corresponding box num-
bers are punched onto the tape in this fashion. Recall that the boxes
of code are not necessarily sequential according to box number, but
sequential according to linear ordering in the assembled code. The
box number that precedes each box of instructions corresponds to the
box number as shown on the flow diasgram.

Immediately following the last instruction of the descriptive
coding, the box numbers only of the associated subroutines are punched
on the tape in the order corresponding to the linear sequencing of
the subroutines in the assembled code. As before, these box numbers
are five-character words. We defer any further discussion of this un-
t11 the section on subroutines, at which point the reasons for listing
the subroutine box numbérs are discussed,

The five-character word

00C00
follows the subroutine box numbers on the tape, If no subroutines are
assoclated with the descriptive code, the word 00CO0 follows the last
instruction of the descriptive coding. The word OOCOO indicates the
completion of the descriptive coding.



The A storage punched as five-character words follows the word
00CO0 on the tape. For example, consider a descriptive coding where
the A storage is

A.0l: CAOhiCAOLL
A.02: cc22T7CC227
A.,03:  AADOSAADOS
The section of the descriptive tape corresponding to this would be:

3 8 8 o 8 8 8
o S 8 S
& & & &8 & & &

Code —»00C00 CAO4I CAO41 CC227 CC227 AADO5 AADOS OOEOO

o OO (o] Oo (0] 0] (0]
0080 00800800000000 0000000000000000000000000000
o © o 998 989 o % o
End of i A Storage }End of
Code | - | A Storage
' Figure 8.

Following the A storage on the tape is the five-character word
OOEQO
which indicates the end of the A storage. If there 1s no A storage
the word OOEQO immediately follows the word OOCOO on the tape,

The numerical storage of the problem is punched onto the tape
following the word OOEQO. This storage is punched as ten-character
words. Each group of storage 1s punched in order of ascending ad-
dresses and 1is terminated by two adjacent spaces on the tape. The
C storage is the first group of storage punched on the tape. The
last word of C storage is followed by two adjacent spaces. The B
storage is then punched on the tape and it is followed by two spaces.
Next is the 7 storage on the tape. The 7 storage terminates the
descriptive code tape and at least five spaces must follow the last

word of 7 storage on the tape.

At one stage in the evolution of the descriptive coding a word
8000000000 was used in lieu of the two adjacent spaces separating the
groups of numerical storage on the descriptive tape. ' Hence, between
the C and B storage, between the B and T storage, and following T
storage, was the word 8000000000. The present assembly routine al-
lows the use of this word 8000000000 in the aforementioned manner;
therefore, this is an optional method of separating and identifying
the groups of storage.

-223-



22k

In the event that a storage group is not used in a descriptive
coding, the spaces signifying the end of the groups of storage are
treated as follows:

The omission of 7 storage effects no changes and the last group
of storage on the tape, whether it is C, B or 7, is followed by at
least five adjacent spaces.

If there is no C storage, the word QOEQO is followed by two spaces
and then the B storage.

If there is no B storage, one additional space symbol must be used

in conjunction with the two adjacent space symbols signifying the end
of the C storage (whether or not any C storage is actually present).
In other words, if B storage is omitted three adjacent spaces are used

to signify the end of C storage and the absence of B storage.

In the alternative method where the word 8000000000 indicates the
end of each group of storage, even though a group of storage is not
present its terminating word is included on the tape to indicate the
end of, or absence of, a particular group. Example 6 illustrates a
Athree box code, and its descriptive code tape.

Example 6
The example forms an approximation to e™ for 0 <x< 1 from the

expression
X ]n
] - ==
e X - 1lim 2n
n—soo | 1+ 3
2n
where for this example we choose n = 32, and
x |32
X - |1 6E
1+ 7p

The flow diagram is:

._, b-2% fo D.O! e
y=b—-27°x to D.
= + :_Y_
@ z=b+2%x fo D.O2 Q=7 % Dol
+_ 3
e*=Q3% to D.O2
Figure 9.




Box 1
1.
2.
3.
L,
5
6.
T.
8.

Box 2
1.
2.
3.

Box 3

1o.

tive
tape.

The coding is:

n—>Ac C.0l1l
R(9) 009
A—>m D.01
m—Ah B.01
A—om D.02
m—>Ac B.0O1
m—Ah- D,OLl
A—>m D.01
m—>Ac D.01
= D.02
A—nm D.01
n—Q D.Ol1
X D.O1
A—m D.01
n—Q D.0l1
X D,01
A—nm D.01
n—>Q D.01
X D.0O1
A—>nm D.O1
n—>Q D.01
X D.01
A—>mnm D.01
m—>Q D.0O1
X D.01
A—>m D.02
Stop

x to R2
2% in R2
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2% 1n D.OL

z=Db+ 2% in R2

z to D,02
b to R2
y=b-2%% inRe

y to D.O1
y to R2
Q=y/z in R2

Q to D.O1
Q to Rb
Q2 in R2

Q2 to D.O1
Q2 to R4
Qh in R2

Qb' to D.O1
& to BY
Q8 in R2

' Q8 in R2

Q8 to R4
Q16 to Rb

Q® +to p.2
Ql6 to R4
X _.q%® inge

e™* to D.02

The code is to be assembled starting at address 297.

code tape is shown in Figure 10.

The descrip-

x in C.01 is set to 0.5 for the
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Note: Tape 1s continuous, but has been broken for illustrative purpose.

bxd @ ® @ @ @ @ @
s § § § & §&§ &8 & 5 8
3 a Q Qa 8 =% o a Q Q
» ) ) » ) ) ) ) )
0-=> 00297 0000l AACOIl EEOOS DCDOI BABOI DCDO2 AABOI BBDOI DCDOI
(@) (@] O O (o]
(@] © 000 OO0 O 000 OOOO OOOO OOOO oOOO 000
00000000C0D00000000000O0O000000O0O0DO0OO0O00000000000000000000000000O0
O (0]0] 000 000 o] Q00
(e]e] 000 O 00Q
OOO (@) @] oo OO0 OO0 O0O0O0OO0O0 O O 880 O 0OO0O0
] L
Starting | Box | : Code of Box | |
Address | ]
[ [T} O @ L3 [N @ @ @ 4
8 8 8 S 8 S S ] 8 8
) 7] ) & ) & & & ) )
00002 AADOI! DDDO2 DCDOI! OOOO3 EBDOI DADOI DCDO! EBDOI DADOI
(@) (o] (@] (@] O o] (] o] (o] O
000 000 000 000 000 Q00 000 000
0000000000000 00000000000D000O000000000000000000000000000O0D0O0D0C00O0O
(0] 000 Q00 [oNe] O O 000 O O O O
O 00 O 00 o} (e]e) o]
O O 000 O O O e} o0 O OO 00 OO0 Q0 O O 0O O
T | |
Box 2 = Code of Box 2 : Box 3 i Code of Box 3
8 8 8 8 3 3 8 3 8 8
= & & & & &8 & &8 38 2
wn ) W [77) () (%) (7] ) (7] [

DCDOI EBDOI DADOI! DCDO! EBDOI DADOI DCDOI EBDOI DADO! DCDO2

o @) O (@) o) o} @) o O O
0090 000 000 000 000 000 0Q0 000 000 000
000000000000000000000000000000000000000000000000000000000000
000 0 O O O 000 0 o o0 000 o O o O 00

o0 O (e]e] (@) (e]e] O
O 0O OO0 O OO0 000 0OOOOO0ODODOO0OO0O 0OOOOOODODO0
Code of Box 3

Space
Space
Space
Space
Space
Space

1]

p

OF000 00COO0 OOEOO 0500000000 4000000000

o ¢ o o o ) 0/ 000000
0000000000000000000000000000000000000000000000
0 o O o

O (e

O 0]
} End of {End ofAI C Storage :‘[ l B Storage \End of Tape
| Code |Storagel (N I

End of C
Storage

FIG 10
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Since there are no subroutines associated with the code, the word 00COO
follows the last instruction of Box 3; and since there is no A storage
the word OOEOO follows 00COO. No Z'storage is contained in the coding;
hence the five spaces follow the B storage.

As previously mentioned, there is a symbol which indicates to the
assembly routine that the first instruction of a box is to be on the
left side of an instruction pair. It is included in the word that
specifies the box number and is the character 4 for the middle tetrad;
e.g., suppose that in the code of Example 6, Box 2 is to begin as a

left-hand instruection. The word con the desceriptive tspe specifying wns
box number would be

00Lo2
When the code is processed by the assembly routine and a box number word
with a 4 in the middle tetrad is encountered, the following occurs: If
the last instruction of the previous box was assembled as a right-hand
instruction, the first instruction of the box concerned naturally be-
comes & left-hand instruction of its instruction-word, and the assembly
routine proceeds accordingly. If the last instruction of the preceding
box was assembled as a left-hand instruction, the assembly routine com-
pletes the word by inserting a "dummy-do-nothing" instruction of L(0)
into the right-hand instruction position. The first instruction of the
box concerned is then assembled as a left-hand instruction of the suc-
ceeding word. If the flow diagram indicates a transfer of the control

to a box that must begin as a left-hand instruction, one cannot use
the flexibllity and convenience afforded by a transfer into one of the

last seven instructions of the preceding box. This restriction arises
because of the "dummy" L(0) instruction that may be inserted.

Another symbol may be incorporated in the word specifying the box
number. This is a character § as the first tetrad of the word. This
symbol causes the assembly routine to interrupt the assembly process and
to stop the computer. The need for such a symbol is covered in the dis-
cussion of methods of alteration of the descriptive code in the chapter
on Operating Procedures.

A frequent occasion where it is necessary to have a box begin with
a left-hand instruction is in the use of drum instructions which we
now examine in detail.
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The drum instruction, since it is a full word, necessitates special
treatment both in the descriptive code and by the assembly routine. As
previously mentioned, the drum instruction must be coded in the descrip-
tive coding so that it naturally starts with the left-hand Instruction

of an instruction word in the assembled code., The drum instruction is,

however, coded as two descriptive instructions. The first Instruction
is the drum order, and the descriptive address for the assoclated

block of fifty words in the memory. The second instruction specifies
the associated drum track in the order position and the address position
contains the descriptive address for the transfer of the control upon
completion of the drum instruction.

The descriptive address for the assoclated fifty words in the mem-
ory may refer to any of the storage; hence it may be an A.i, C.i, B.d1,
T.i, or D.1 address; the address may be an E.i if it is desired to have
the drum commmnicate with a block of f£ifty words contained in the same
box as the drum instruction; the address may be inserted as an absolute
address if desired; or the address may be supplied to the drum by a
substitution instruction in conjunction with addresses in A storage.

The associated drum track address is either inserted into the
descriptive coding as a pseudo-absolute address or is supplied from a

coded routine. The pseudo-absolute addresses range from 00 to C7, cor-
 responding to the two hundred tracks of the drum (0-199, decimally).
Unfortunately, the drum tracks are not addressed sequentially from 00
through C7, but range from 00 through FF (0-255, decimally} hence the
expression "pseudo-absolute" is used for inserted drum addresses. The
assembly routine modifies the pseudo-absolute address to the actual
value in the range 00 through FF. The address to which the control is
to transfer upon completion of a drum instruction 1s treated in the
same manner as are the addresses of transfer Instructions. The ad-
dress may specify a box number and one of the first seven instructions
of the box or one of the last seven instructions of the preceding box.
The address may also be specified by an E.1 address if the transfer
is within the operation box containing the drum instruction. The
transfer, however, is automatically to the left-hand instruction of
a word; hence that instruction must be positioned appropriately.

We now give three examples (7, 8, and 9) illustrating the treat-
ment of the drum instruction.
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Three operation boxes are given. There are two drum instructions.
One sends fifty words from D storage to the drum. The second reads
fifty words from the dxrum into the Jjust vacated D storage of the

memory.

The filow diagram is:

I , 2
| . |- X,~Xgq to D.track 54
| F——p4I1-i > i 750 ==
b - { D. track CO fo D.OI-D.32
=1L IDOI-D.32: x, - x !
L---3 |Dirack CO:y, - yg,
=" — ) + 3
| - — Q=ay,+ by,+ D.34
Figure 11.
B,01: D01 ~ D.32: x, =
Bi02: b D.33: 1 17 %50

B.03: I D.3k:
The coding is:
Box 1
1. m—Ac B.03 I toR2
2. m—>»Ah- D,33 I -1 in R2

3. ¢ 07,1
Box 2
l. m—D D.01
2. 54 E.03
3¢ D—m D.0l1
4, co 03,1
Box 3
1. m—>Q D.01 y, to R4
2. X B.0l ay, to R2

3. A—>nm D.3k4

b, m—Q D.02 y, to Rl

5. X B.02 by. to R2

6. m—>Ah D.34 Q = ay, + by,
7. A—n D.3k4

in R2

x, - x50 to D.track 54
¥y - Vo to D.01-D.32
a8y, to D.34

Q to D.3k
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Instructions 1, 2, 3, and 4 of Box 2 are the two drum instructions;
hence Instructions 1 and 3 must be left-hand instructions in their re-
spective instruction-words in the assembled code. Thls is done by ar-
ranging Box 2 so that it begins with a left-hand instruction; i.e., on
the descriptive code tape Qg&gg is punched for the box number word. In-
struction 2 specifies that Track 2& is the pseudo-~-track number. This
is modified to Track 69 (the absolute address) by the assembly routine.
The transfer indicated by the address of Instruction 2 is to E.03; hence
the control is to transfer to Instruction 3 of Box 2. The instruction
- to which the transfer is effected must be on the left side in the
 assembled code and since Instruction 1, Box 2, begins on the left’of a
ﬁbrd, Instruction 3 does also. Imstruction 4 of Box 2 specifies the
pseudo~-track number CO which the assembly routine modifies to F1, thév
corresponding absolute track address. The address specifies a transfer
to qu 3, Instruction 1, Box 3 must then be coded so that it begins
with‘a left-hand instruction. In this example we see that this is
taken care of, since Box 2 ends with a right-hand instruction. 1
'Box(3 did not naturally begin with a left-hand instruction, it would
havé’to be so arranged by punching the box number for Box 3 as 99593.
Example 8

In this example fifty words of code in the memory are to be re-
placed‘by fifty words from the drum where the fifty memory words are
contained in the same box as the drum instruction. The quantity i,
that eventually becomes the drum track number, is formed in a part of
the routine not coded, and is stored in D.Ol as |

| D.01: 1.27°7
The drum instruction upon completion is to transfer to the first in-
struction of the fifty words which have been called into the memory.

The coding is:

Box 1
1. m—>Ac D.01  1.272T 5 Ro
2, A—>m  D.02 1.2727T 4o D,02
3. m—>Ac EQT D—m E09 Q0E09 to R2

4, S—sm'  D.02 E09 to (28-39)D02
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5. m—>Ac D.02 i(20-27 E09(28-39) to R2

6. HS—>m  EO8 1(20-27) E09(28-39) to EOT
Te D—nm E09

8. [o0o E09]

The déscriptive tape has the box number 00401, Instructions 1, 2,
3, and 4 form the drum track address. Instruction 2 sends 12727 44 D.02.
Instructions 2 and U4 then combine the address part (the address specify-
ing the transfer) of the instruction with the track address in D,02.
Note that Instruction U is written as S—sm' D.02, It is written as
the primed instruction since the substitution is into the right-hand
side of a word of D storage. (Note that this differs from the case
where a substitution is made inte instructions, cf. page 212) Since
Instruction 1 of the box is on the left, the drum instruction (Instruc-
tion 7) and the instruction to which the transfer is effected (Instruc-
tion 9) are left-hand instructions as desired.
Example 9

In this example, fifty words of code on the drum are to replace
fifty words of code in the memory, where both the words in the memory
and those on the drum correspond to one or more complete boxes of code.
Again, only the box containing the drum instruction is coded. We
assume the words to be replaced in the memory begin with Box 2C, In-
struction 1, and the drum track concerned has the pseudo-track number
Al. The address corresponding to Box 2C, Instruction 1, 1s stored in
A storage in a transfer or substitution instruction word and is

A,01: CA2C1CA2C1
The coding is:

Box 1
1. m—Ac A0 CA2C1CA2CL to R2
2. S—sm E.03 2C,1 to (8-19) Instr.3

3. D—m  [20,]]
b, AL 54,1
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Instruction 1 brings the address for the drum instruction into R2,
This address was stored in A.0l as part of a transfer instruction so
that it could be stored as a box number and instruction number. In-
struction 2 is an S—»m E.03 which supplies the address 2C,1 to In-
struction 3, the drum instruction. Recall that a substitution instruc-
tion is not supposed to substitute into an immediately following
instruction. However, in this instance, we know that the drum instruc-
tion beginsas the left-hand instruction of a word; hence, the substitu-
tion instruction cannot be in the same instruction word as the drum
instruction and the substitution as indicated is permissible. The
address written in the drum instruction is irrelevant; hence, any ad-
dress may be placed there. Instruction 4 contains the pseudo-track
address Al and the address of Box 54, Instruction 1, to which the con-
trol is to transfer upon completion of the drum instruction. Box 1
must begin with a left-hand instruction to position the drum instruc-
tion correctly; therefore, the Box 1 code word is

00401
Box 2C as it originally is coded must begin with a left-hand instruction;
hence the Box 2C code word is
ookac

The control is to transfer to Box 54, Instruction 1, upon completion of

the drum instruction; hence Box 54 must begin with a left-hand instruc-
tion and its code word is

005k
The assembly routine modifies the pseudo-track number Al to the corres-
ponding absolute track address, CB.

For a further discussion of the drum one should consult the chapter
on The Computer.

It is desirable to have a printed copy of the assembled code so
that one may know the absolute addresses of the storage and the in-
structions in order to "debug" the assembled code for subsequent run-
ning, It is important that this printed copy is in a form that is
easily read and understood. To produce such a copy a printing routine
using the Synchroprinter has been included in the assembly routine. It
provides the following data:
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The first line of the printed listing contains five 3-character
numbers which are the absolute addresses corresponding to
A.00 C.00 B.0O 7.00 D.00
respectively. If any group of storage is not contained in the coding,
the address for that group is the same as the initial address of the
succeeding group. Consider that an assembled code has the following
absolute initial addresses

A,00 = 201 7.00 = 23B
C.00 = 205 D.00 = 2D5
B.0O = 221

The first line of the listing would be
201 205 221 23B 2b5
Following the first line is the listing of the code proper. One has
the option of & listing of five or six columns. The five-column list-
ing contains, in order of columns from left to right on the page,
1. the box number
2. the descriptive instruction number
3. the absolute instruction-word number (address) as assigned by
the assembly routine
4, the instruction with its absolute address as assigned by the
assembly routine
5. the descriptive address of the instruction as coded in the
descriptive coding
The six-column listing contains the five columns as listed above
and a sixth column that is:
6. the contents of the B or C storage specifled in the address of
the instruction.
Following the listing of the code is a listing of A, C, B and 7 storage,
respectively. The C, B, and 7 storage listing is a four-column listing
where the columns are:
1. classification of storage
2. the descriptive address of the storage
3. the absolute location address as assigned by the assembly
routine
4, +the numerical quantity as stored at the address concerned

Example 10 illustrates the S5-column page listing.
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Example 10

Consider the descriptive ccde of Example 1 and assume that it has
been assembled in the memory beginning at address 000, The listing
given of the assembled routine is:

005 005 008 009 009
o1 0ol 000 EBOO6 col
02 DACQ9 BOL
03 001 BAQOT cea
ok DEO28 ’
05 002 DACOQ BO1
06 BA0O8 co3
o7 003 DCOOA DO1
02 01 EBOOA DOl
02 00k DAOOA DOl
03 BAOOA DO1
oL 005 DCOOB D02
c 0l 006 a
c 02 007 b
C 03 008 c
B (02} 009 X
The code contains no A or 7 storage; hence the first line corres-
ponds to

C.00 Cc.00 B.00 D.00 D.0O
In lines 2 through 11, inclusive, the numbering in the first and second
columns corresponds to the numbering on the descriptive coding. The
third column contains absolute location addresses; hence each address
corresponds to an instruction-pair in column 4; i.e., word 000 is

000: EBOO6DA009

The descriptive addresses as given in column 5 are the same as those
in the instructions in the descriptive coding.

If we set 4040000000

2190000000
4000000000

a 6-column listing of the first three instructions would be

a
b

X

1

o1 01 000 EB006 col 4040000000
02 ' DAOO9 BO1 4000000000
03 001 BAOOT co2 2190000000

L . L] L] -
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The contents of COl and CO2 as listed would be the converted number
(the binary equivalent of the decimal input) in the C storage.
If the coding had contained A storage, for example
A.01: CAO2,1 CAO2,1,
the listing of it would be
A 01 006 CBOO3CB0O0O3 02,1
where the first four columns are as before, and the fifth column gives
the relative address,

The method of descriptive coding is easily generalized to incor-
porate the use of subroutines; hence it is appropriate that subroutines
are discussed in conjunclion with the descriptive coding.

As a person gains in experience in coding it becomes apparent to
him that from one problem to another there are certain basic sequences
of instructions that are very similar. For example, two different
problems might, at some phase of their computation, involve taking the
square root of some number or group of numbers. The two sequences of
instructions for the square root would generally contain identical or-
ders, while the corresponding addresses would be different. Routines
such as the conversion routine as discussed in Chapter II would be an
integral part of most provlems, and from problem to problem these
routines would differ only in the addresses of thelr instruction se-~
guences, while the order patterns would be the same. In fact, it is
true that most of the routines coded in Chapter II would occur as
parts of larger problems.

Since these routines or sections of code that repeatedly appear
in problems can be coded in a way such that the addresses of the in-
structions can éasily be modified to any desired addresses, it becomes
possible to incorporate such routines directly into the code of any
problems without having to rewrite their instructions. We call any

section of code a subroutine if it is coded in a way that it can be

incorporated into any problem without having to rewrite the coding.

Consequently, a library of subroutines, or more precisely a library of
punched tapes of subroutines, has been compiled. These punched tapes
may be incorporated directly into any desired problem. There is a
card indexing system for the library where each subroutine has a card
on file which gives complete information about the particular routine.
We defer further discussion of this and return to the coding of sub-

routines,
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We have already discussed how any problem code, including all of
its necessary storage, may be assembled from a descriptive code tape
into any absolute addresses in the memory, excluding addresses 37C
to 3FF. Further, we have seen how one can, by altering only the
initial word on the tape, form different instruction sequences in the
memory, where the order patterns are the same but the corresponding
addresses differ, This is precisely the kind of thing that is deéired
for subroutines. Each subroutine is coded descriptively as though it

'wéfe & problem complete with storage. In fact, each subroutine does
constitute a complete problem, in the sense that it starts with cer-
tain initial conditions and leads to a clearly defined conclusion.

The descriptive coding of a subroutine differs in several ways from

the coding of a normal problem, and we now discuss these differences.

In the coding of a subroutine the boxes of code must be numbered éong

secutively starting with 1, where the numbering corresponds to the

linear sequencing of the boxes on the descriptive code tape. For eése
of use it is desirable to code a subroutine as one box whenever
practicable.

Only one set of variable remote connections is allowed, and this

set pertains to the exit from the subroutine. The details of this are

discussed presently.

'VAll of the static storage necessary in the subroutine 1s included
on the descriptive code tape of the subroutine with the condition that
neither A nor C storage is allowed. Any storage that would normally
correspond to C storage is converted and stored in the subroutine as
B or'z storage. Storage that would normally correspond to A storage
must have special treatment, in that the storage must exist as instruc-
tions in the descriptive code. This is illustrated by later examples.

There are, in general, two kinds of dynamic storage associated
with a subroutine. These are the dynamic storage that originates from
within the code of the subroutine and the dynamic storage that originates
in the problem apart from the subroutine, but is pertinent in the subrou-~
tine. Although this latter storage is static with respect to the sub-
routine, it is, however, dynamic storage in the overall problem and is
treated as such in the subroutine., For example, in a square root sub-

routine, the dynamic storage originating from within the routine is the
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storage arising from intermediate values in the iterative process and

the storage for the successive iterates. The dynamic storage arising

apart from the routine is the storage for the number whose square root
is desired. This number comes from the problem and is present at the

time of entry into the square root subroutine,

Al]l storage is addressed as in a problem., That is, the addresses
of each group of B.i, T.i, and D,i storage are consecutive addresses
beginning with 1 = 01, _

We now have the situation that a subroutine coded by the descriptive
method with the above mentioned restrictions can be coded as an indepen-
dent problem into any desired addresses in the memory. The next step
is to have the assembly routine specify the desired addresses.

In the flow diagram of a problem, boxes should be included for the
subroutines of the problem although they do not need to indicate in de-
tail the computation of the subroutine. These boxes need to be assigned
numbers on the flow diagram where the only restriction is that a sub-
routine that contains several boxes must be assigned a corresponding
group of consecutive numbers, The numbers assigned on the flow diagram
to the boxes of subroutines will not, in general, be the same as those
indicated on the subroutines' descriptive code tapes. Note that this
differs from the treatment of the problem proper.

Recall that on the descriptive code tape the box numbers corres-
ponding to the subroutines are first punched following the main prob-
lem code and prior to the code word 00COO. These box numbers corres-
pond to the box numbers as assigned by the particular flow diagram.

- They will replace the box numbers as given originally on the subroutine
tapes.

We now describe the method by which the assembly routine integrates
the subroutines into the problem. The descriptive tapes corresponding
to the subroutines are arranged in the order in which they are to appear
in the computer. It is recommended that a single tape containing all
of the desired, properly analyzed subroutines be prepared from the
separate tapes. After the descriptive tape of the problem, including
storage, is initially processed by the assembly routine, the computer
stops so that the subroutines may be inserted. The subroutine tape is
placed in the reader and the assembly process is continued. The code
of each subroutine is assembled in order following the code of the prob-

lem. The storage associated with each subroutine is treated as follows:
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The static storage associated with each subroutine is included on
its descriptive tape. The storage of each subroutine is not directly
added to the storage of the problem as this, in general, would lead
to duplication of storage. For example, the number O might be already
stored in B storage in the problem, and in the B storage of several of
the subroutines. The O need only be stored once, however, and the
other storage of O's is needless duplication. To circumvent this, as
each word of B storage of a subroutine is incorporated into the storage
of the problem, it is compared with all existing C and B storage in the
problem; and if it is identical to any existing C or B storage it is
not stored. However, all of the descriptive addresses of the subroutine
that referred to the discarded word of storage are modified to refer to
the already existing word. If the subroutine word of B storage is not
identical with any existing C or B storage in the problem, the word of
storage of the subroutine is added to the existing B storage of the
problem and the addresses of the pertinent instructions are accordingly
modified. We see then that after the assembly process is completed
there 1s no duplication of storage due to the B storage of subroutines.
This, however, leads us to the meaninful purpose of 7 storage.

The 7 storage existing in a problem is not compared with the B
storage of the incorporated subroutines. Any 7 storage existing in
subroutines is directly added to the existing 7 storage of the problem.
The need for such a group of storage becomes apparent as one works
with subroutines, and it is illustrated in a subroutine example.

This completes the discussion of how the subroutines are incor-
porated into a problem and all that remains is to discuss the means of
entry into and exit from these subroutines.

These connecting links of a subroutine are analagous to those of
some of the orders of the vocabulary, so we first discuss the more
familiar order in the vocabulary.

Consider, for the discussion, that a multiplication is to be per-
formed, The multiplication order supplies the multiplicand, but the
multiplier must be already in R4t. This latter fact is accomplished by
coding that precedes the multiplicatbn order. The sequencing by the
control counter brings the multiplication instruction into R6, the

control register, so that it can be performed. The address associated
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with the multiply order specifies the location of the multiplicand.
Upon the completion of the multiplication, the product resides in R2.
The exit from the multiplication is provided by the address which is
in the control counter, the next instruction in the code sequence.

We naturally expect the entry into and exit from a subroutine to be
more complex than for a simple multiplication since a subroutine is

a sequence of instructions rather than a single instruction. How-
ever, as in the multiplication order, the number or numbers that are
to be operated upon by the subroutine must be in locations specified
by the subroutine prior to entry into the routine. (In the multi-
plication, the multiplier is in R4, the multiplicand 1s at the address
of the instruction.) These connecting addresses are certain dynamic
storage locations, D.i, and the precise D.1 addresses are specified
on the library index cerd of the subroutine, The necessary numbers
are sent to the appropriate D.i addresses by code prior to entry of
the subroutine, After the necessary numbers are stored, the actual
entry into the subroutine is initiated.

The entry into a subroutine from any location in a problem is
treated as a fixed connection. The box numbers of a subroutine are
indicated on the flow diasgram; hence one need only indicate a trans-
fer to the starting box and instruction of the subroutine in question.

When the subroutine is performed, a number or set of numbers ie
formed as the results (the product in the multiplication is in R2).
These numbers are then stored in other D.1 addresses specified by the
subroutine. These D.i addresses are shown on the subroutine index
card.

Prior to entry into the subroutine, the desired exit is estab-
lished. At each point of entry it is known where the control is to
. proceed upon exit, This exit is established by a set of variable
remote connections. The variable transfer is contained in the subroutine
and follows the last pertinent instruction of the subroutine. Recall
that associated with each set of variable remote connections is an F.i
symbol used in addressing, and the variable transfer associated with
the set has this F.i address. In the coding of a subroutine this
variable exit is always coded as a transfer (T or C) with the address
FOO. The assembly routine then adjusts the FOO to the proper F.i
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address. The F.i address for the subroutines follow in sequence the

F.i addresses of the problem proper. There are two methods by which
substitution iunstructions may refer to the variable exit of a subroutine,
and these methods are illustrated by the examples.

The fixed connection transfer which indicates the entry into the
routine and the variable connection transfer (the address of which is
established prior to entry) play the role in a subroutine that the
control counter plays in the performance of a single instruetion of an
instruction sequence. .

Upon exit from the subroutine (the return of the control to the
problem prover) the results from the computation are in the specified
D.i addresses from which they may be used in the succeeding code. (In
the multiplication the product is in R2 for subsequent use.)

We see that from the way subroutines are used in a problem there is
a close analogy to the use of the standard vocabulary of the computer.
It is natural then,from the coding viewpoint, to consider the subroutines
as a generalization of the computexr vocabulary. The subroutine library
index cards constitute the vocabulary of subroutines,

Two samples are now given in order to illustrate some actual sub-
routines. Accompanying the subroutines are duplicates of their library
index cards.

Subroutine S-251.1l: Random Wumber Generation

The generation of the random numbers is accomplished by an iterative
scheme which is called "The Middle Squaring Process". The process
generates successive iterates from a given initial number. The present
routine starts with a 38-bigit number and generates 38 bigit iterates.
The formation of the (i+l)St iterate from the ith iterate is

Xi41 T (20'57)x12 = []xF

That is, the 38 bigit X5 when squared gives a 76 bigit product, xie,
and Xi+1 is comprise%lof bigits (20-57) of Xi2’ where the 20th bigit
corresponds to the 2 ™ position of Xsq0 All iterates are positive,
We illustrate the subroutine in conjunction with two boxes, corres-
ponding to the code of the problem, that represent the point of entrance

and the point of exit.



The flow diagram is:

— 23

|
|
@:——-L>x,+, =(20-57)x7 to DOl | i+I—i

S251.1 RANDOM NUMBER GENERATION

Figure 12

The section of the flow diagram enclosed in the dotted lines
would not normally be drawn in complete detail with a problem, but
would be drawn as

DO"- Xi Sy,
j [ 3 Dl)ll X;
: S251. 1 f
@ L p- Random Number L p- a
Generation
Figure 13

The complete diagram is included now for clarity of coding. Boxes 1
and 2 are coded in two ways to illustrate two alternative methods of
entering a subroutine. Box 23 is the subroutine itself. The neces-
sary static storage for the problem (Boxes 1, 2) is:

A.0l: CAO2,1 CAO2,1
No C, B, or 7 storage is needed for the problem, Two D addresses,

D.O1 and D,02, are used. D.Ol contains X; which was stored in D.Ol

-241-
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at a portion of tﬁe problem prior to Box 1 and not shown on the flow
diagram. We assume for the coding that three sets of variable remote
connections exist in the problem proper (they are not shown onAthe
flow diagram). The set of variaeble remote connections concerned with
the subroutine is the fourth set and has the address E;Q& associated
~ with it. The coding of Box 1 and Box 2 is:

Box 1
l. m—>Ac A.01 CAQ21CAO21 to R2
2. HS—mn F.O4
3. T 23,2
Box 2
1, m—>Ac D.01
2., A—>n D.02

In Box 1 the address for the exit of the subroutine is brought
into R2. This address is then substituted into the variable trans-
fer gﬁg&, the exit of the subroutine, Recall that the exit of the
subroutine is originally coded with the address FOO; however, the
assembly routine modifies it to its correct F.i address, which in this
case is F.04 (F.0l, F,02, and F.03 exist in the problem proper). The
fixed connection transfer is to the second instruction of the subroutine
(CA23,2) rather than the first instruction. The reason for this is
discussed after the code for the subroutine is illustrated.

The second way in which Boxes 1 and 2 may be coded is as follows:
Box 1

1. m—Ac A.01 CAO2,1 CAO2,1 to R2
2. T 23,1
Box 2
1. n—Ac D.01
2. A—n D.02

In Box 1, the address for the exit of the subroutine is brought
into R2 and then, without effecting the substitution, the transfer to
the subroutine into its first instruction is made. Without further

comment let us examine the code of the subroutine proper.,
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Subroutine Box 1
l, HS—nm FOO
2, m—Q DOl xy to Rk

3. X! DOl xiQ in R2 and Rb

b, A—sm DO1 (0'39)*i2 to DO1
5. L(1) 001

6. m—»Ac  DOL  x,° in R2 and Rl

7. R(22) 016 (18-57)xi2 in Rh

8. m—Ac 800 (18-57) xi2 in R2

9. L(1) 001 (19-5T7) xi2 in R2

A, DS 000 %, = (20-57)x12 in Ro

B, A—nmnm DO1 xi+1 to DO1

C. T FOO

We observe that the first instruction is a half-word substitution
to FOO; that 1s, to the exit transfer. This accounts for the two methods
of coding Box 1. 1In the first coding of Box 1, the substitution instruc-
tion was perforumed prior to entry into the subroutine; hence the entry
transfer was to the second instruction. In the second coding of Box 1,
the instruction word comprising the exit from the subroutine is brought
into R2 and then, without making the substitution, the transfer to the
subroutine is effected. The exit word, however, still resides in R2
and the initial instruction of the subroutine accomplishes the sub=-
stitution to establish the desired exit.

Instructions 2 and 3 form xig as a T8-bigit number. Bigits
(20-57) are to be isolated by shifting. Recall that a double precision
product has a O in the sign position of R4, Instructions k4, 5, and 6
eliminate this O so that the subsequent right shift of 22 in Instruc-

12 into R4 as (18-57)x12. Instruc-
tions 9 and A then complete the process by forming
%4 = [ "12

Although the subroutine is indicated as Box 23 on the flow diagram,

it is coded as Box 1 in its descriptive code. And, as previously men-

tion 7 combines the sections of x

tioned, the assembly routine makes the necessary adjustments of the box
numbers of the subroutines.

As in this subroutine, all subroutines are coded so that the first
instruction is

HS—m FOO
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There are, subsequently, two methods of entry into the routine. If the

exit to the subroutine is set up prior to entry into the routine, the

fixed connection transfer to the subroutine bypasses the first instruc-

tion and enters into the second (the subroutine index card should be

consulted for exceptions to this rule). Or if the instruction word for

the exit to the routine is brought into R2 immediately prior to entry

into the routine, the transfer into the routine is *to the first instruc-

tion of the routine (again consult library index card for exceptions).

We include a copy of the library index card for the subroutine ex-
ample, in order to illustrate the kinds of information listed. For com-
plete details, the description of the subroutine library filing system
should be consulted.

The card reads as follows:

5 251.1 RANDOM NUMBER GENERATION (Middle Squaring)

This routine forms a sequence of 38-bigit pseudo-random num-
bers by a middle sguaring process. The tested base number is sent
to D,0l. The hexadecimal number 10BBBFALDE gives 718,627 iterates
and then degenerates to O.

1. DNumber of operation boxes: 1
2. (a) HNumber of code words: 6 (dec.); 6 (hex.)
(b) Number of code words plus B and 7 storage: 6 (dec.); 6 (hex.)
D storage needed: D.O1
Prior to entry the operand must be sent to D.OL
(a) D.0O1 and R2 contain new random number upon exit
(b) Input number is destroyed
« Entry: Box 1, Instruction 1
Exit: CA
T. Legal spillage: Instructions 5 and 9

(@) &II-F'UJ

We see that the card first gives a brief description of the routine.
Then, in order, it gilves:
1. The number of operation boxes, so that the necessary box numbers may
be assigned on the flow diagram.
2. (a) The number of code words, so that the words of code in the sub-
routines may be included in estimates of problem code length.
(b) The number of code words plus B and 7 storage, so that total
word length estimates of pfoblem may be made,
3. D storage needed. This is important, since the D storage shown here
rust be empty or irrelevant upon entry into routine (except for that

D storage which has numbers pertinent to routine).
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i, Numbers required for routine, and D storage to which they must be

sent prior to entry into routine.

5. (a) D storage in which results are located upon exit from routine.

(b) Limitations of routine.

6. (a) Instruction into which entry is made, If exit is set up prior
to entry into routine, the instruction‘into which entry is made
is one beyond that listed.

(b) Specifies whether exit is CA or CC, so that corresponding orders
may be stored as the exit words in A storage.

T. Legal spillage indicates which instructions in the routine allow num-

bers to exceed the range -1< n< 1l. This information is useful in
"debugging" procedures and is discussed elsewhere.

Subroutine 116,1: Integer Conversion from Binary to Decimal

This routine is used to convert a binary integer, N, scaled as
N~2-39, into its decimal equivalent. The allowable range of N as an
integer is O <N <109.

The conversion is effected by subtracting the binary equivalents
8 107 <+ 10%) from N the
appropriste number of times and recording the number of subtractions

of the successive powers of ten (i.e., 10

of each power of ten as a decimal digit in its proper position. The
inductive process is:

N =N
° 8
N, =N -al0
1 o) o) 7
N2 = Nl - allO
| 8-1
Ni+l = Ni - a.ilOO
The ai's are in the range
0 SEaiEE 9

and each ai is chosen so that 8
=i
- . >
Ni 8y 1 =20
but

8
Ni - (ai+1)10

The converted number is then

'i<: 0

8 7 1
aolo + allo + see + aTlO + 88
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Each decimal digit is represented as a tetrad; hence the actual
formation of the nine decimal digit integer is described as

w.o =0
Yl = Ehwo + 2-39
wi-:-l = Ehwi + 2-39
W o= w9 = decimal number
f di is: -
The flow diagram is DOI  N; .239 D.03: (i),
D.02: W; 7.i 10871 .2739
D.OI:N-273® | X i »
| a W, =0 to D.02 - ' S 70 Do
+ — =
Enter N—=No Oto D.O3 | Oo o D.
g g — Y.
D.OI:(Nj—q;+10" )27 [ [O—]
P
6
8-i, 39 _ jﬂ]
(Ni (0j+|)|0 -)329 to D.OI + [N-(Oj+I)I08'i] 2..39
4 ; Qj41 =a; +1-277 to D.O4 — }
4 v
8-Ii
NH.|=N3—0"|O to D.OI d

WH.|=24 W|+2-390i to D.02 r—‘— oj —>a;
(i+1), to D.O3

e + S

i+ 11— < — (i+1—-1),
'Y
4
ar=N;

Y :
4 - .
w=2"w+2> g to D02

SI16.1 INTEGER CONVERSION

Figure 1k,
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The necessary storage is:

B.0L: (1), 7.01: 105.2°39 D.0L:
B.02: 1e2739 7.02: 107+2"39 D.02:
B,03: I = (8) f ol =39 D.03:

o) T7.08: 10 .2 D.Ok:

The flow diagrem is drawn as a double induction loop. The primary

induction is over the index i and forms

8-1
Ni+l Ni - ailO and

, -39
141 2 Tay

The secondary induction is over the index J; and although the induction

W = Zhwi +

index is on j, the end result of the induction is the formation of =

i.
Note in the storage of the subroutine that the wvarious powers of
ten, 1081.2°39 gre stored in 7 storage. This means that these numbers

will be added to the 7 storage of any problem containing the routine,
and they will be in eight consecutive locations. It is necessary that
the addresses be consecutive, since the appropriate 108'i are located

. by an index
i (=0 e 7)

In order that the address 7.i may be formed, a base address T.0Ol needs
to be stored. This would normally be stored in A storage; since no A
storage is allowed in subroutines, the base address is stored in the
body of the code.

Although the flow diagram contains seven operation boxes, it is
coded as one, as 1t is desirable to keep the number of boxes of a sub-
routine to a minimum,

The coding is:

Subroutine Box 1
(box 1) 1. HS—sm  FOO

2, a—»Ac 000 O to R2
3. A—nm D.02 W, = 0 A to D.02
4y, A—m D.03 . o——>(1)o to D.03

(box 2) 5. m—Ac E.23 (7.01)0 to R2
6. m—ah D.03 (7.01+i)° in R2
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(box 3) A.

C.
Dc
(box 4)

=3

F.
10.

12.
13.
1k,
15.
16.
(box 5)17.
18.
19,
(box 6)1A.
1B.
1C.
1D,
(box T)IE.
1¥,
20,
21.
22.
23.
2k,

S—>m
a—>Ac
A—m
m—>Q
m—>Ac
m—>Ah
C
m—>Ah
A—>nm
m—Ac

L(4)

m—->Ah
A—m
m—Ac
m~—v»Ah
A—m
m-—Ah
C
T
A—sm
m—Ac
m—>Ah
T
m—>Ac
L(k)
m—Ah
A~——>m
T
n—>Ac

m—>Ac

-oh8_

E.OA 7.01+41 to (8-19)A
000 a = 0 to R2
D.OL4 a5—+naj to D.OL4
[r.0149 10812739 4 my
D.OL (N, -a -108‘i)2‘39 to R2
1 8-1,,-39
- 800 (Ni-(aj+l)10 )2 in R2
E.1A
800 N =N, -a 108“i in R2
i+1 1791
D.0O1 N,,; to D.OL
D.02 w, to R2
1y
ook 2%, in R2
D.Ok W, = 2hw. + a.‘2-39 in R2
i+l i i
D.03 (i)o to R2
B.0O1 (i+l)0 in R2
D.03 (1+1)0 to D.03
- B.03 (i+l-I)o in R2
E.1E
E.05
D.OL (Ni - (aj+1)1o8'1)2'39
D.OL a. to R? to D.0O1
B.02 s . = 242739 in o
* J+l
E.09
D.02 w. to R2
Iy
ook 2'w. in R2
_ h 39
D,.01 w 2 WI + aI 2
D,02 w to D.02
FOO
7.01 }"A storage"
7.01

In the coding the box numbers as indicated on the flow diagram are

indicated with the code for ease of discussion,
Tn (box 1) the first instruction is the HS—sm FOO which is in
Tnstruction 5, the first instruction of (box 2) is

all subroutines.

mn—Ac EZz3,

Instructions E23 and E24 each contain AA7O0l and it is
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desired that m—sAc E23 bring E23 and E24 into R2 as

AATOL AATOL.
To accomplish this, E23 and E24 must be assembled as one word and not
as parts of two words. E23 has the same parity as the first instruce
tion of the subroutine; hence the subroutine is coded to begin as a
left-hand instruction in the assembled code. This positions E23 and E24

in the same word. The descriptive code tape of the subroutine begins with

the word
00401

to accomplish this positioning.

Since the coding is done as one box, the transfer instructions which
are fixed connectors contain E.i addresses rather than box number addresses.
For example, Instruction D, which represents the conditional transfer from
(box 3) to (box 6) on the flow diagram, is coded as C E.,1A. Instruction
E1A then corresponds to the first instruction of (box 6).

The index card for the subroutine is:

S 116.1 INTEGER CONVERSION

This routine converts any binary integer N, scaled as N-2'39,
to its decimal equivalent w by a scheme of subtracting powers of
ten. N must be in the range 0 S N < 109.

1. Number of operation boxes: 1
2, (a) Number of words of code: 19 (dec.); 13 (hex.)
(b) Number of words of code and B and T storage: 30(dec.);1E(hex.)
3. D storage: D.0Ol D,O4
Lk, Prior to entry D.Ol must contain N. o392
5. (a) w is in D.02 and R2 upon exit
(v) Ne2-39 is destroyed
6. (a) Entry: Box 1, Instruction 1
(b) Exit: CA
7. Legal spillage: none
B
B
B

.01: 0000100001 7.01: OOOSFSE100 = 108-2‘39

.02: 0000000001 7.02: 0000989680 .

.03: 0000800008 T7.03: OOOOOF4240 ‘
T.04k: 0000018640 ‘
7.05: 0000002710 .
T7.06: 00000003ES8 '
T.07:

0000000064 -39
T.08: OOOOOO000CA = 10 2
Since the subroutine library is dynamic and continually growing and

being improved, no attempt will be made here to catalogue the existing
subroutines. However, in any problem being prepared for computation, the
subroutine library should be consulted at the time the flow diagram is
drawn in order that any desired subroutines might be incorporated into
the problen.
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The composition of a subroutine descriptive code tape differs
slightly from that of a regular problem. The first word (five charac-
ter) on a subroutine tape is always a Box 1 code word

00001 or 00L401,

the latter if the subroutine must start as a left-hand instruction.
The first instruction after this code word is always the substitution

FCF0O
This is followed by the descriptive code of the first box and all sub-
sequent boxes punched as five-character words, as with a tape of a
problem. Immediately following the last instruction of the routine is
the code word

OOE0O
The code word O0COO is omitted, since no A storage is allowed in a
subroutine. Following the word OOEOO, the B storage is punched on
the tape. (Recall that no C storage is allowed.) The B storage is
terminated by two adjacent spaces, and the 7 storage is punched following
these two spaces. The last word of the tape (whether it is the end of
T storage, the end of B storage if no 7 storage is included, or the
code word OOEOO if neither B nor 7 storage is needed) is followed by
two adjacent spaces. If no B storage is needed and if 7 storage is
present, the two adjacent spaces indicating the end of the B storage
are nevertheless included immediately following the code word OOEOO.
Example 11 illustrates sections of three subroutine tapes containing
the storage and the appropriate spaces.
Example 11

Each tape begins with the last instruction of the subroutine which
for our example is the exit transfer, T FO0O.

The first subroutine has both B and 7 storage, namely

B.01: L5F0000000 7.01: 3925364532

[V [ [N T ) [ TI
: & 2 25 g
n n wn nw, cné%

Code»CAFOO OOEOO 45F0000000 3925364532

(o] O [e] 0]
000 o o 00
00°°°°°°°°0°°°°O°O°000000000000000000
©0d 8 99 0 0208900
o) 00 00 00 00
[
Pexit 'End of I B Storage I ! 7 Storage | End of
| | Code ! l
| I | FT I Tape
End of
B Storage

Figure 15.



The second subroutine has only 7 storage:
' 7.01: FL39B7CD32

Space
Space
Space
Space
Space
Space

Code»CAFO0O OOEOO F439B7CD32

o} o} 00 00
000 0 O 00 00
0000000000000 0000000000000
eNe) 0 00 000
00 o 0 0 00 00
0 o 0000 0O
|End of' IEnd of
Exit : Code |T 7 Storage | Tape
End of
B Storage
Figure 16.

There is no storage for the third subroutine.

Space
Space
Space
Space

Code =CAFOO O0OOEO0O

000 00
0000000000000
OOC) o
3 o]
! | |
IExit lEnd of | End of

I | Code : Tape

Figure 17.
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VI, OPERATING PROCEDURES

In this chapter on operating procedures we present the discussion
in four sections. First, the functions of the indicator lights and
switches of the control panel are discussed so that one has at his dis-
posal the necessary mechanics for operating the computer. The second
and main section is the preparation and debugging of a problem. The
discussion of the preparation begins with the descriptive code of the
provlem being complete. The code is carried through its assembly and
then the debugging procedures are discussed. The third section re-
turns to the discussion of the computer and it brings out in some de-
tail the role of the various registers. The fourth section contailns
some miscellaneous information such as the "audio-monitor"; the "mem-
ory monitors"; the magnetic tape and Synchroprinter procedures, etc,

In order to give one a better mental plcture of the ensuing dis-
cussion, TFigures 1, 2, and 3 have been included. Figure 1 shows a
floor layout of the computer and its auxiliary equipment. The figure
is not drawn to scale but it serves to show all of the auxiliary equip-
ment and its position relative to the computing unit. Figures 2 and
3 give a schematic view of the front and back of the computer, These
figures show the position of the various registers, the control system,
and the electrostatic memory. HNow, keeping these three figures in mind,
we turn to the operating panel.

The operating vanel has been kept in a simplified form for ease of
dperation. The pariel consists of ten display lights and ten switches
for setting the counter (shown as the control counter in Figure 1); the
memory clear switch (shown in Figure 2); two lights for the function
gates (mounted atop the switch box shown in Figure 1); and six operating
switches (mounted on the switch box shown in Figure 1) designated in
order from left to right as:

1. the load switch

2. the "red" breakpoint switch
3. the "green" breakpoint switch
4. +the perform order switch

5. the manual-automatic switch

6

. the starﬁ next order switch



CIRCUIT POWER
BREAKERS| CONTROL
PANEL

©.-._-VAR|AC
{VOLTAGE

POWER

SUPPLY

I:I‘S_\litch Box EAST
AMPEX
RECORDER ‘ggntrol Counter ‘ READER PRINTER
CONTROL TABLE PUNCH and -
SLOW PRINTER

-gGe-

EQUIPMENT

FLOOR LAYOUT of COMPUTER and AUXILIARY
FIG. |




2 914

FRONT

Monitor

ol2|a|e|s|w0]iz]a] 16 | 18 | 20| 22|24 | 26 |28 30| 32| 34| 36 38

RN

Memory Storage Units

I

Monitor

Memory Clear

Swifch}

Arithmetic Unit
Control

W

W

Wr

|

I —

R6

RS

R4

R3

R2

RI

Memory Unit
Control

-"ga-




3 :
E Memory Storage Units "zg
39|37 |35 |33 31 [29] 27| 2523 |2t |19 17| 1s [13 |1 ] o] 7] 5] 3]

WA 1) s

¢ 9id

Arithmetic Gates

Complement Gates (Located behind other chassis)
Arithmetic Unit
Control

Control
Adder

Adder

-gge-



-256-

The display neons for the various registers have not been brought
out to the panel but are physically located with their register. They
are readily visible from the operating panel table. In line with this,
the monitor tubes for visible memory display are mounted in the memory
rack rather than on the operating panel (See Figures 2 and 3).

The control counter display lights and selector switches are laid
out on a panel as shown in Figure k.

Counter Lights

Set
Counter

Switch

' Push on1

©
@
©
©

@,_
@
@
©
@
@
o (@©-
o(@®-
o@®-
-®

0] 0] (0]
Selector Switches — Toggle

Figure L.

The control counter is the mechanism used to sequence the instruction-
words. The control counter normally contains the address of the forth-
coming instruction word to be brought into the R6 (control) register.
Since the control counter handles addresses, it counts from 000 to

3FF, which requires a ten-stage counter. Inasmuch as the counter is
the sequencing mechanism, we easily see how transfer instructions are
accomplished, namely that the address of the transfer instruction is
sent to the control counter. (The right-left selection is done through
the function gates, which are discussed presently.) If the computer is
stopped, the operator may manually effect a transfer of the control to
any address by using the selector switches. The control counter (hence

the control) is set to any desired address by setting the selector
switches to the address and then depressing the "set counter" switch.
The control counter lights indicate the address to which the counter is
set.

In addition to being the control sequencing mechanism, the control
counter is used in conjunction with the magnetic drum instructions. It
indicates in sequence the fifty memory addresses associated with the
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instruction. The counter is also used in the loading process; here

the counter indicates the address of the memory to which the next

word from the reader is sent. We discuss the loading process presently.
Prior to using the computer, the operator usually clears (sets to

all zeros) the memory of any previous code or data. The memory is

cleared to zeros by depressing the "memory clear" switch located on

the front section of the computer in the upper right-hand corner of

the arithmetic unit frame. This switch is separated from the operating

panel so that it will not be pushed inadvertently during the course of
a computation. Its location is shown in Figure 2. '

The two function gate lights are mounted on & panel immediately
above the six operating switches. These are display lights for the
function gates, a set of gates which allows, in turn, each instruction
of the word in R6 to be connected into the control eircuitry in order
to be performed. The function gate lights indicate which instruction
in R6 is connected into the control circuitry. When the left-hand
light is on, the left-hand instruction in R6 is connected into the
control circuitry and, similarly, the right-hand light corresponds to
the right-hand instruction. In genersl, if the computer is stopped
and an instruction pair is in R6, the instruction corresponding to
the function gate light setting has already been performed by the con-
trol. The function gate lights are shown in Figure 5.

In a transfer instruction, the control selects the left or right
side by opening the corresponding function gates. There is no switch
for setting the gates manually, but as we shall see this is not necessary.

~

)

/@ ® O @@@/

Perform Monual Snvf
Laad Red ff " Green Order Autbomatic Next
Break  Points Onﬂy

Function Gafe L/ghfs

Figure 5.
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We now turn to the six operating switches shown in Figure 5 and
discuss first the "load" switch and the loading process. Prior to
loading a tape into the memory, one first clears the memory to zeros
by depressing the memory clear switch and then sets the tape in the
photo-electric reader. Wher a tepe of data is punched for use in
the computer, the first word of the data should be preceded by five
or six inches of blank tape (zeros). These zeros act as a leader for
the tape. To place the tape in the reader, the lid of the reader is
raised. Then the tape is inserted so that the leader is over the drive
cylinder, yet no pertinent characters are beyond the reading holes.
The tape must be placed in the reader so that the space holes (fifth

holes) on the tape are nearest the hinged side of the 1id. A sample
tape 1s attached to the reader to avoid mistakes of this type. After
the tape is inserted, the 1id of the reader is closed. One should
make certain that the 1id latches when it is closed to assure proper

operation.

After the tape 1s inserted, the control counter is set to the de-
sired initial address for loading. In loading, although it is only
necessary to set the selector switches of the counter, it is recom-
mended that the set counter switch be depressed so that one can check
the counter setting by the display lights as well as the selector
switches. When the desired address is set into the counter, the load
switch is set to the "up" position and the loading commences. The
words from the tape are transmitted into successive memory positions
beginning at the address set into the control counter.

After the tape has been loaded into the memory, the load switch
must be set to the "down" position. The computer will not operate if
the load switch is not reset. The loading is terminated when two ad-

Jjacent spaces on the tape belng loaded are encountered by the reader;

hence, any tape that is to be loaded into the memory must end with at
least two adjacent spaces.
As the tape is loading into the memory, each word on the tape is

transmitted into the R5 register, and from there into the memory. This
fact allows a method of checking that the photoelectric reader circuitry
is transmitting the information correctly from the tape. During the load-
ing, a sum of the words from the tape is formed in R2. The first time
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that a tape is loaded, the sum as shown in R2 should be recorded. It
can be verified by immediately reloading the tape. Once a correct sum
of the tape has been recorded, the sum given by all subsequent loadings
must agree with the known correct sum. If 1t does not agree, there is
a computer malfunction. The correct sum should be recorded on the box
in which the tape is permanently stored. Remember, however, that a cor-
rect sum in R2 at the completion of the loading does not guasrantee -
that the information is correct in the memory; it only says that the
reader and its assoclated equipment operated properly. The contents

of the memory are checked by a summing routine that must be incorporated
in all problems. It is discussed later.

It is now worth noting several things that occur when the load
switch is set to the "up" position; namely, the R6, RS, and R2 regis-
ters first clear to zeros. The R6 register remains zeros throughout
the loading. At the completion of the loading, R2 contains the sum of
the tape, RS contains the last word loaded from the tape, and R6 is
zeros. Note that the loading process does not affect the contents of
the R4k register. At the completion of the loading, the control counter
automatically resets to the original address.

The "manual-automatic" switch, the "start-next-order" switch, and
the "perform-order" switch are those directly concerned with the run-
ning of the computer. We now discuss them.

The manual-automatic switch allows the computer to be operated so
that it either stops upon the completion of each instruction or per-
forms an entire instruction sequenée without stopping. If the manual-
automatic switch is in the "manual” position when the control performs

an instruction, the computer stops upon the completion of the instruc-
tion. If the manusl-automatic switch is in the "automatic" position
when the control performe an instruction, upon the completion of the

instruction the control proceeds to the next instruction in the se-

quence to perform it, and so on, through the entire code sequence.

The start-next-order switch is normally used to start the computer.
Recall that if the computer is not running the function gate light
indicates which side of the instruction pair is connected into the con-
trol circuitry. Depressing the start-next-order switch causes the
next instruction in sequence to be performed. That is, if the start-
next-order switch is depressed when the left-hand function-gate light
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is on, the function gates are set for the right-hand instruction in
R6; the function gate lights change and the right-hand instruction

in R6 is performed by the control. If the start-next-order switch is
depressed when the right-hand function-gate light is on, the control
brings the instruction word located at the address specified in the
control counter into R6. The function gates and lights have mean-
while switched to the left-hand side of R6 and then the left-hand in-
struction of the new word in R6 is performed by the control. The con-

trol counter is advanced by one.
The perform-order switch is somewhat similar to the start-next-

order switch in that it causes the control to execute an instruction
contained in R6. However, depressing the perform-order switch causes
that instruction (indicated by the lighted function gate) connected

into the control circultry to be performed rather than causing the next

instruction in sequence to be performed. The perform-order switch takes
on added significance in connection with the breakpoint switches and is
discussed further with them.

Returning to the manual-automatic switch, we see that the "msnual-
automatic" settings aprly to either the start-next-order or perform-
order switches. If on "manual’, the start-next-order switch allows one
to proceed through the code sequence an instruction at a time, while
the perform-order switch allows one to repeat an instruction as many
times as is desired. If on "automatic", depressing either the start-
next-order switch or the perform-order switch allows the control to
proceed automatically through the code sequence. The latter, however,
causes the control to perform the instruction previously connected into
the control circuitry before proceeding through the instruction sequence.

The breakpoint switches allow one to insert conditional stops into
a code by setting elthexr the first or fifth bigit of an order to zero.
Since all orders are composed of letter pairs (AA, BA, DD, etc.) the
first and fifth bigits are normally one. Setting the first bigit of
an order to zero corresponds to the insertion of a red breakpoint and
setting the fifth bigit to zero, a green breakpoint. The conditional
stop arises from having a breakpoint switch in the "up" or "down" posi-
tion. If either the red or green breakpoint switch is in the "up" (on)
position and the control brings into R6 an instruction which contains
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the corresponding breakpoint, the control stops the computer before the

the instruction is performed. The breakpointed instruction is, however,

connected into the control circuitry as indicated by the function-gate
light setting. If either of the switches is in the "down" (off) posi-
tion when the control brings into R6 an instruction with a breakpoint
corresponding to the "down" switch, the control performs the instruction

as though it contained no breakpoint.
The perform-order switch is used in conjunction with the breakpoints

because depressing the perform-order switch causes the instruction con-

nected into the control circuitry to be performed even though this in-

struction may contain breakpoints. If the control stops on a breakf

pointed instruction, it stops before the instruction is executed; hence
the perform-order switch is the natural way of resuming operation. If
the control is stopped at an instruction with a breakpoint and the start-
next-order switeh is depressed, the instruction containing the breakpoint
is skipped (not performed) as the start-next-order switch executes the
next instruction in sequence rather than the one already connected into
the control circuitry.

With a knowledge of the operating switches at our disposal we now
turn our attention to the code assembly and "debugging".

Recall that the absolute code is prepared in the computer by the
assembly routine from the descriptive code tapes. These tapes'are}the
problem and constant tape, and the subroutines tape or tapes. The
assembly routine is an example of the category of codings called "helper-
routines". A helper-routine is a routine, not incorporated directly as

a part of the problem, which is used as an aid in the preparation, the

running or the analyses of a problem on the computer. A library of

helper-routines has been compiled much in the fashlion of the subroutine
library. Rather than give an elaborate discussion of these routines
we refer the reader to the helper-routine library file, and we mention
them only as thelr need arises in the ensuing discussion.

The first step in the assembly of a code is the loading of the
code assembly helper-routine. (This routine is appropriately named
"The Coder".) The tape and necessary explanations for the assembly
routine are obtained from the library. The code is transmitted into
the memory beginning at the desired address (specified by the explanatory
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remarks) via the load process which is: the memory is cleared to zeros
by depressing the memory-clear switch; the tape is set into the reader;
the control counter selector switches are set to the desired starting
address; and then the load switch is set to the "up" (load) position.
After the assembly tape is loaded, the load switch is set to the "down"
(off) position and the sum in R2 is checked against the sum as recorded
on the assembly code tape box.

After the assembly routine is loaded and the sum is checked, the
processing of the descriptive code tape begins. The descriptive code
tape 1s placed 1n the photo-electric reader so that it is in position
to be read into the computer by the assembly routine. The computer is
started in operation by first setting the desired starting address into
the control counter; second, setting the manual-automatic switch to
the "automatic" position; and third, depressing the start-next-order
switch to activate the control. The desired starting address 1s often
contained in the control counter, since after loading the counter con-
tains the initial load address.

After loading, to start the computer the right function-gate light
must be on. Depressing the start-next-order switch then brings in to
R6 the instruction word specified by the address in the control counter,
and the control proceeds executing the instructions in sequence. If
the left function-gate light 1s on, at the completion of the loading
one may switch the function gates by depressing the start-next-order
switch. R6 is cleared to zeros by the loading; hence the switching of

the function gates does not cause any action as there is no instruction
in R6.

The first group of instructions of the assembly code comprises a

summing routine which forms a sum of the memory contents and checks this
sum against the sum as left in R2 from the loading process. (Any prob-
lem which is to be run on the computer should contain such a summing
routine.) If the sums do not agree, the compﬁter stops at a programmed
stop, since disagreement of the sums implies a camputer malfunction.
If the sums agree, the control proceeds automatically and the data from
the descriptive tape is read and processed through the assembly routine.
At the completion of the reading of the descriptive code tape, the con-
trol comes to a coded stop in order that the subroutines tape may be in-
serted into the reader. After this tape is inserted, depressing the
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start-next-order switch causes the assembly of the absolute code to be
carried to completion. During the processing of the code, a code list-
ing (see Chapter V, pp. 232 ff.) is carried out. Upon the completion

of the assembly, the absolute code may either be recorded onto magnetic
tape or punched onto paper tepe for subsequent use. The choice of the
medium for recording the absolute code is made by selecting the appro-
priate assembly routine code tape, as there is one code which contains
as a subroutine a magnetic tape recording, and another which contains

a8 tape punch subroutine. However, in either situation the particular
auxiliary equipment should be readied prior to the start of the assembly
process. -

After the assembly of the absolute code is completed with either
the record on magnetic tape or a punched paper tape (for what follows
we assume that the absolute code is on magnetic tape), "debugging" of
the assembled code begins.

As a person gains experience in coding, he soon realizes that des-
pite the great care exercised in the formulation and coding of a prob-
lem, errors are apt to occur. Before a problem can be run any existing
errors must be detected and corrected. The process of eliminating errors
from the mathematical formulation and the coding of a problem is called
"debugging”. As a person becomes familiar with coding and the computer,

he will naturally develop his own "debugging” habits. The purpose here
then, rather than to specify a rigid set of rules, is to discuss a
general procedure that will assist a person in developing desirable
debugging patterns. |

In a problem of any complexity, the hunting for and detection of
errors completely apart from the computer is a very difficult, if not
impossible, task. In order to make the task of error hunting a tractable
one, the computer is utilized.

Clearly, one approach for using the computer in debugging is to
run the problem as though it contained no errors (this is often done
with small problems). If there are no errors, this indeed is the fast-
est approach to debugging. However, if errors are present, the answers
indicated upon the completion of the problem, if the control was even
able to proceed to the end, would be incorrect; and one would have no
idea where or why the errors occurred, so that such running time (which
might be rather lengthy) would not be particularly'useful in localizing

any errors.



-264 -

Another approach would be to perform each instruction in the code
sequence on manual operation and to record the result of each operation
so that it could be verified by hand methods. Such an approach would
certainly find all existing errors, but the amount of computer time in-
volved in such a debugging method is much greater than it need be.

The recommended approach combines the two extremes. The code
of the problem is divided into several sections and the control performs
each of these sections automatically, stopping upon the completion of
each one. The division of the code of & problem into these sections is
accoﬁplished by inserting conditional stops into the code by means of
breakpoints. These stops are inserted at locations in the code where
the results of pertinent computation are available. Enough of these
stops should be inserted so that sufficient data of the problem are
recorded to allow one to perform a hand check if necessary. The con-
trol then performs automatically one of the short sections of code and
stops at the designated instruction. The pertinent data from the pre-
ceding computation are recorded, and then the computer is restarted and
the control performs the next code section, and so dn, until all of
the desired data are accumulated. This occurs when the control has
proceeded through all of the code sequence at least once, or when it
is observed that some of the data are in error. In either case, the
problem 1s removed from the computer and the data are studied and
verified.

If the accumulated data indicate the existence of errors, any
particular error may be isolated to one of the short code sections by
making a hand check of the results and observing in which section the
error first appears. Once an error has been isolated to a section of
code, that section of code is checked viéually to see if the cause of
the error may be easily located. If it cannot, that section of the
code in vwhich the error occurs is further subdivided and the problem
is returned to the computer where the offending section is examined in
greater detail in order to pin down the error. As soon as the error
is located, it is corrected and then further debugging may proceed. This
process is continued until 8all errors are removed from the coding, at
which time the problem is ready to be run. We now discuss these matters
in more detail.
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After the absolute code is assembled and placed on magnétic tape,
the problem is removed from the computer in preparation for debugging.
This preparation involves a visual check of the code listing to detect
any obvious errors, either from the coding or from the assembly pro-
cess, After the listing is checked, the code is divided into sections
for breakpoints. The breakpoints are to be inserted into orders of
instructions where pertinent data are available in the arithmetic unit.
The actual insertion of the breakpoints into the desired instructions
in the assembled code may be accomplished by a Breakpoint Insertion
helper-routine. One needs to specify to this helper-routine the ad-
dress of the instruction receiving the breakpoint and whether the
breakpoint to be inserted is "red" or "green". The details for accom-
plishing this are discussed in the helper-routine file.

There is an alternative method for inserting breakpoints which‘is
perhaps more desirable than the one just outlined. This alternative
ie to decide upon the disposition of the breakpoints during the prepa-
ration of the descriptive code and to punch the orders on the des-
criptive code tape with the breakpoints inserted. The assembly routine
accepts and modifies properly instructions whose orders contain break-
points. As an example, an instruction m—sAc B.0l, if it were to
contain & "red" breakpoint would be punched as 2ABOl rather than AABOl.
Similarly, -~ DOl with a "green" breakpoint would be punched as D5DO1
rather than DDDO1.

If the breakpoints are included during the descriptive coding,
they exist on the magnetic tape record of the absolute code. If they
are inserted by the Breakpoint Insertion routine, the absolute code
from the magnetic tape must be called into the computer; the breakpoints
are then inserted by the Insertion helper-routine, and a subsequent re-
cord of the code with breakpointe is made onto the magnetic tape. The
calling from and recording onto magnetic tape is accomplished by
Magnetic Tape helper-routines, two of which were illustrated in Prob-
lem 12 of Chapter II. As soon as the breakpoints are inserted, one
begins the debugging proper.

The most effective way of observing the data at the various break-
points is to have the desired date printed. To do this, one again calls
on & helper-routine. The particular routine used here is in a class of
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interpretive helper-routines and is the so-called Breakpoint Monitor
helper-routine,

An interpretive routine is any routine which interprets and
causes- to be performed any desired instruction aeqﬁence wvhich is
residing in the memory. Such routines act in a sense as a generalized
control.

During the process of interpreting and performing an instruction
sequence, an interpretive routine may perform many other functions, the
extent of which is limited only by the capacity of the memory of the
computer and the ingenuity of the person preparing such routines.

For the Breakpoint Monitor routine the desired interpretation is
8 very simple one, namely whether an instruction contains a breakpoint.
For an order containing & breakpoint, the interpretive routine first
causes the instruction to be performed and then the following data are
printed as four words:

Word 1: The address at which the instruction containing
' the breakpoint resides, and the instruction itself,

Word 2: The contents of the R4 register
Word 3: The contents of the R2 register.

Word 4: The contents of the memory at the address specified
in the instruction.

Words 2 and 3 give the contents after the instruction is performed
and Word 4 gives the contents before the instruction is performed.
Note, then, that the breakpoints are inserted into instructions which
when performed give the desired data in the arithmetic unit. R2 or
R4 contain the result from any arithmetic operation while the appro-
priate memory location contains one of the two operators entering into
the operation.

There are many other interpretative routines similar to the
Breakpoint Monitor (it was chosen only as a convenient example) and one
should check the library file to ascertain which of these routines is
best suited for his specific purpose.

Sometimes breakpoints are used to check that the control reaches
a certain instruction in the problem and for this the numbers printed

from the various registers may be unimportant for debugging; hence only
the first word printed in the listing would have relevance.
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In the Breakpoint Monitor routine, as in similar routines, one
has the option of having the data printed as either decimal numbers
or as hexadecimal numbers. The first word, i.e., the address and the
instruction, is always printed as a hexadecimal number, since it would
appear as nonsense &s a decimal number.

To utilize the Breakpoint Monitor routine, one inserts the desired
breakpoints into the absolute code. The absolute code and the Break-
point Monitor routine are then loaded into the memory. Note that,
since both routines are in the memory, the Breakpoint Monitor routine
must be loaded into a set of addresses which are not relevant to the
code being debugged. Breakpoint Monitor routines are coded beginning
at a variety of addresses so that this is usually possible without un-
due red tape. If, hovever, one has an assembled code to be debugged
which fills the memory, he has recourse to a generalized monitoring
" routine which utilizes the magnetic drum. It is not, however, dis-
cussed here.

The first step of the monitoring process is to specify the ini-
tial address of the code to the monitor routine (for details see the
helper-routine library file). The control counter is set to the initial
address of the monitor routine and then the computer is started. The
data for the debugging is printed by the Synchroprinter, four words
(discussed above) to a line.

As soon as one has collected a sufficient amount of data, the
problem is removed from the computer and examined at leisure away
from the computer.

It may happen that the breskpoints are not reached in the expected
sequence, or even that the first one is not reached. We defer the dis-
cussion of the procedure to be followed when this happens.

So now, assuming that the breakpoints were reached, we have the
data which is now examined to determine whether or not the numbers
listed are the desired numbers. First, a cursory examination is made
for any obvious errors. For example, a number known to be always
positive may have been computed and printed as a negative number. Or
perhaps the orders of magnitude of the numbers of the computaton are
known and a visual check suffices to determine this.
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If the cursory check does not indicate any troubles, a hand compu-
tation is made using the same data as for the listing. The hand check
may often use shortcuts in that some of the numbers computed are
known; e.g., the values for sin x, ‘%/Q; etc. may be found in tables.
Thé comparison should agree except for truncation and round-off dif-
ferences. Sometimes approximate values suffice for checking purposes.
If no errors have occurred, the debugging of the portion of the code
for which the data was obtained is complete. If an error is detected
from the cursory examination one must set about isolating it to one
of the sections of code between breakpoints. At first, one attempts
to isolate the error by a visual check of the numbers leading to the
error, and if this fails a hand check of the results in the region of.

suspect will isolate it.

R Once an error is isolated to a particular section of code, the

" instructions in that section are examined in detail to see if the
cause of the error may be observed. If it is found, that trouble is
over. If it is not observed, one may divide the section of code by
further breakpoints, so that the section may be monitored in greater
detail upon returning to the computer. However, at this point, if
the section of instructions is fairly short, as it should bé, rather
than doing further breakpoint monitoring one has recourse to another
helper-routine for debugging, called the Auto-Monitor routine. It is
discussed presently.

' If the first error detected does not alter subsequent results too
drastically, the programmer continues his checking process for other
errors éo that before returning to the .computer as many errors as
practicable are detected and corrected:

~ Since the absolute code of the problem exists only on magnetic tepe
one makes the actual corrections at the next session with the computer.
However, prior to this a permanent written record is made of each error
‘as it is detected. This record should contain at least the following:
' 1. The addresses of the incorrect words.
2. The incorrect words as they appear on the magnetic tape.

3. The number of the particular magnetic record on which
they appear incorrectly (as will be seen later each re-
cord of an absolute code is on a numbered section of a
spool of magnetic tape).

4, The correct words as they are to be inserted. And if any
additional words are added, the addresses at which they
are added.



-269-

\
Then after one has returned to the computer and made the corrections

and recorded the corrected absolute code onto magnetic tape, the fol-
lowing information is added to the record.
5. The date on which the correction is made.

6. The number of the magnetic tape section on which the cor-
ted code resides.

In addition to the six items mentioned, any comments which the program-
mer feels are pertinent to the corrections should also be included.
There are, in general, two kinds of corrections that need to be
made. The first is the easy kind which can be corrected by changing
only those words in error without having to add additional coding.
This kind of correction causes relatively few headaches., The second
kind are those corrections where the number of words necessary to make
the correction exceeds the number of words in error. In short, additional
coding must be added. So we have found one of the ticklish parts of the
debugging, and unfortunately many of the errors encountered are of this
kind. For clarity we give an example of such a correction and indicate
how it 1s carried out.
An error is found in the sequence of code words beginning, say,
at address 050. The faulty coding is

050. m—Q 271 X 272
051. X 273 A—m 27Th
052. 77 - T o
The sequence is supposed to form xyz and store it at
2Th: xyz

where x, y, and 2 reside in locatioms 271, 272, and 273, respectively.

Now as the result of Instruction 50', the product xy is in R2. Instruc-
tion 51 is incorrectly a multiply instruction because the multiplier
xy has not yet been placed in R4. Since all of the instructions in
the sequence are needed, there is clearly no place to insert the neces-
sary L(40) instruction to send the number xy from R2 to R4, or if it is
not desirable to use L(40), two instructions A-——m 275, m—>Q 275 are
needed where 275 is an available location at this time.

In order to make the correction one must have available somewhere
in the memory 1 1/2 consecutive words. Assume that such space is avail-
able beginning at address 379. The corrections to be inserted are:
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050. m—Q 271 T 379
051. X 273 A-—m 274
052.

379. X 272 L(%0) 028
37A. T 051

The right-hand side of Word S5O is changed to a transfer to 379. The
first instruction of 379 performs the multiplication formerly done in
50", 379' then shifts xy from the R2 register to the R4 register, so
that it is in proper position as a multiplier. The next instruction
then sends the control back to 051 where the multiplication by z is
now correctly performed.

An alternative scheme of inserting the correction is to revert
to the descriptive coding and actually recode in descriptive coding
the operation box in which the error occurs. A corrected tape for
this box is then punched. By making use of an QQOXX symbol (a trivial
change) incorporated in the "box number" code word on the descriptive
tape, the assembly process may be stopped prior to the assembly of
the code of any box and the code for new boxes or corrected boxes
may be inserted. The entire problem is then reassembled by the
assembly routine with the desired insertions of now or corrected boxes.
At first glance the recoding of a box and the reassembly of the entire
problem may seem rather a drastic way of eliminating an error; however,

experience has shown that one of the most fruitful sources of errors

in coding arises from the insertion of corrections for previous errors,

and this recoding and reassembly virtually does away with such errors.
One has only to examine and work with a highly complex problem to under-
stand this. It should be mentioned that the reassembly process is

quite easy and rapid.

When one returns to the computer to insert the corrections, he re-
assembles the code if the latter scheme is adopted. If the former is
adopted, he has previously punched small tapes containing the desired
corrections. Then after the absolute code is read into the memory,
these corrections are loaded into the desired locations. Each se-
quential group of corrections consists of one tape; hence several such

tapes are often needed. Several groups of corrections may, however, all
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be placed on one tape with double spaces on the tape separating the
various groups. For example, the correction of the example discussed
above would consist of two groups. The first consists of Word 050
which is

EB2T71CA379
followed with a double space. Immediately following the double space
the words beginning at 379 would be punched. They are:

DA2T72DE028

CA05100000
vwhich 1s also followed by a double space. The correction tape is then
loaded into the desired locations, namely addresses 050 and 379. When
all of the corrections have been inserted, the problem is again recorded
on magnetic tape so that an absolute code containing the corrections is
available on tape. Note that all of these magnetic records discussed
are distinct. That is, one should not destroy previous records of the
problem when making a new one, and certainly not the immediately pre-
ceding record. '

We are now ready to resume debugging, with the corrected code. We
do this by first returning to our original breakpoint monitor scheme
and printing the data for all of the breakpoints that had previously
been listed. This is done to make certain that none of the changes
and insertions in the code has molested any part of the code which
was previously correct. In addition, the data pertaining to the cor-
rections are printed. We have left from the previous debugging session
those errors which were not found while off of the machine. If the
method of inserting more breakpoints is used one has only to let the
data be printed. However as previously mentioned, it is often advisable
to resort to an Auto-Monitor helper-routine.

The Auto-Monitor routine is an interpretive routine which allows
the results of each instruction to be printed. The data printed for
each instruction are identical to those for the Breakpoint Monitor
routine. When one comes to the section of code in which the error
exists, he switches to the Auto-Monitor routine and lists the results
of the computation for all of the instructions in that section. To
switch from the Breakpoint Monitor to the Auto-Monitor routine one
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loads the Auto-Monitor routine into the memory and specifies to it the
desired starting address for monitoring. One should consult the

library file for speciflic operating instructions. Upon the completion
of the desired auto-monitoring, one may revert to the Breakpoint Monitor
routine.

The Auto-Monitor routine is recommended to track down the error of
the kind previously mentioned in which no breakpoints were ever reached
or else reached in the wrong sequence, by the Breakpoint Monitor routine.
One begins auto-monitoring at the start of the problem (or at the point
of "no return"). This soon leads to the source of the trouble.

It is worth noting here that, since the Auto-Monitor and Breakpoint
Monitor routines have a similar function, they may actually be incorporated
as one routine where one need only make minor adjustments in order to
switch from one to the other.

There are other helper-routines which one has as an aid to debugging
other than the monitoring routines. We mention only a few of them in
passing.

There is a Scaling Check routine which examines the results of all
operations to see that numbers do not exceed the allowable range of
-l <x<1.

There are various address and instruction search routines which scan
the code and pick out all instructions containing any specified address,
or pick out all instructions containing any specified order, or pick out
any specified instruction. ’

Routines exist for comparing the contents of any magnetic tape re-
cord either against any other, or the contents of the memory, or the con-
tents of the magnetic drum.

There are address altering routines which modify the addresses of
any section of code in any manner desired.

Graph plotting routines are available for plotting data to see if
they look reasonable. .

There are routines which allow all operations on the computer to
be done in duplicate in the event that one suspects a computer mslfunction

as the source of an error. Normally our standard test routines disclose
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the garden variety of computer errors, but on rare occasions an in-
frequent intermittent may depend on particular numbers. In this in-
stance there is some point to using these "duplicating"” routines.

Many routines which cannot be used directly in debugging may still
be of service. These are routines that can compute various functions
and tabulate the results so that they can be compared with results in
the problem being debugged.

The scope of helper-routines is too great to enumerate in detail
here. However, it is suggested that, prior to the debugging of any
code, the programmer should become familiar with helper-routines and
their function as an aid to debugging.

We have thus completed the debugging of the absolute code. It should
be mentioned, however, that the preceding discussion has not attempted
to cover debugging in any detail, since such a diseussion is not within
the scope of a manual of this type, and apart from a general approach
each code to be debugged presents new situations. Skill in debugging
comes only through actual experience and a meticulous care on the part
of the programmer at all stages of the problem preparation and the de-
bugging. The next step then is naturally enough the actual running of
the problem with the debugged code. '

The procedure that one goes through in starting the problem should
be somewhat familiar by now. The debugged code is called into the
memory from the magnetic tape where it resides. After the code 1s in
the memory, the control counter is set to the desired starting address,
and the problem is started by depressing the "start-next-order" switch.

When at all possible, the code of a problem should be set up so
that shortly after the computation begins, a few intermediate computa-
tion results, where the correct results are known, would be printed.

In this way there is some assurance that the computer is starting its
computation correctly.

Since many of the problems contemplated require anywhere from
several hours to several days of computation time, it is necessary that
intermediate records of the problem (code and numbers) be made so
that in the event of computer malfunction it is not necessary to start
the problem from the beginning. One has only to return to the last

correct record of the problem and resume from there. Also in lengthy
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computations the code should be constructed so that intermediate re-
sults of the problem are periodically printed, so that they may be
examined in order to see if they are reasonable. This is a check on
the formulation of the problem as well as on the computer.

The periodic records of the problem are made on magnetic tape.

The entire contents of the memory are recorded onto the magnetic tape;
hence in order to start a problem from any record one has only to call
the magnetic tape section into the memory and then set the control
counter to the address of the instruction immediately following the

last instruction of the code performed before the record was made.

This instruction is, of course, known for each record; and, in fact,

it usually does not vary from one to another. Experience has shown

that a magnetic record of the memory contents should be made about

every 20-25 minutes to insure a maximum of effective computation time.
It is desirable that some intermediate results be printed shortly after
a record is made. Then, in the event that a problem has to be restarted
there will soon after be some printed results which may be checked against
those printed when the record was made. This insures that the computa-
tion is starting correctly.

The routines which perform these magnetic recordingsexist as sub-
routines as well as helper-routines, so that if desired they may be '
directly incorporated as an integral part of a problem. A variety of
print routines exist that are easily included in a problem to print
the intermediate and final results. As suggested above, one of the
reasons that the periodic magnetic tape records of the problem are
made is in anticipation of any computer malfunction. A computer mal-
function might manifest itself in any one of several ways. For example,
a set of intermediate results that are printed might be in error. Such
errors may be detected by inspection, by taking differences of the re-
sults, by the plotting of graphs, by programmed integral checks, etc.
In addition to such manifestations, a malfunction may occur by a non-
sense instruction being brought into R6, the control register, and the
computer stops. Or yet another type of malfunction might manifest
itself in that the control becomes stuck in an instruction loop. That
is, the control is being cycled through a fixed section of the code
rather than following the correct path. If the loop phrough which the
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control is cycling has relatively few instructions, it can actually be
observed on any one of the "memory monitor scopes”. These are discussed
later. If the cycle is relatively long, it may not be detected for some
time, namely when one tries to print results.

In the event that a computer malfunction is detected, the following
procedure is recommended:

If the trouble occurs very shortly after operation has begun, the
first suspect for the error would be that it was a human error. That
is, either in loading the code and any data that might be needed, or in
making any alterations of data, or in the setting of addresses into the
control counter, the operator may have made some sort of an error. Hence,
one should try to restart the computation without making any other checks.
If similar trouble seems to repeat, one then follows the same procedure
as for malfunctions that appear after the computation has been underway
for some time. It is:

If a malfunction appears that is evidently not from a human source,
the problem being computed is removed from the computer and the basic
computer test problems are run to see if they detect the malfunction.
Every operator of the computer should become intimately familiar with
these test problems so that he can run them and interpret properly any
results which might indicate a malfunction.

We discuss these test problems only briefly here. There is a so-
called "Inversion Test" which checks that the memory is operating properly.
A "Vocabulary Test" is a general test of all of the orders to see if any
of them are failing. This test will detect any consistent errors. For
the more aggraveting intermittent variety there are specific tests that
attempt to test more exhaustively each kind of order with a wide variety
of numbers. In any test in which a malfunction occurs, data are printed
that indicate the nature of the malfunction. As soon as a malfunction is
detected by a test routine, the engineering staff should be called to fix
the trouble. In the event that the test problems do not indicate any er-
rors but the troubles still persist in the problem, the engineers should
be called. If the trouble is manifested by incorrect results which can
be duplicated, and if the test problems do not indicate computer trouble,
one should begin to suspect that there is some incorrect information on
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the magnetic tape dump from which the problem was started, or an even
more disastrous thing--one should begin to suspect that perhaps the
code is not in reality debugged.

In computer malfunctions, the operator should be able to assist the
engineers in localizing the source of trouble. To do this one certainly
must completely understand the function of the various registers and the
control counter. Such an understanding also helps one operate the com-
puter more effectively at all times. We now discuss these matters where
part of what follows is review and part is presented for the first time.

We discuss the registers first starting with R6, the control register.
During the loading process, R6 contains zeros. During the operation of
the computer, R6 contains the instruction-word that is being acted upon
by the control. One may, in general, determine the address in the mem-
ory of any instruction-word contained in R6 by examining the control
counter. The control counter contains the address of the next word to
be brought into R6. This is one address greater than the word in R6 un-
less either the control has just executed a transfer instruction or the
counter has been set manually. Whenever & “nonsense" word in R6 stops
the computer, the address less one in the control counter always indicates
the location of this nonsense word in the memory, and it should be so
checked.

The RS register has many functions,which we discuss in turn. During
the loading process, words pass through R5 en route to the memory, and at
the completion of any loading, R5 should contain the word on the tape
immediately preceding the double space. Any word which is hrought into
the arithmetic unit passes through R5. Hence, at the completion of any
such operation, R5 contains the word from the location specified by the
address of the instruction. Oxrders 1-12, as shown in Table I, page 21,
are of this kind. The following orders also affect R5. After a Q—m
instruction, R5 should contain the same word as Ri4. After an a —Ac
or a—>Ah instruction, R5 should contain in positions (0-11) the number
which is equivalent to the address portion of the a— A instruction.

Upon the completion of a read instruction, the word also resides in R5
as well as in the memory. Now upon completion of Imstructions 19-22, of
Table I, the substitution instructions, R5 contains the word into which
the substitution is being made, as it appears before thé substitution is
effected. Note that an A—>m instruction does not involve R5.
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We discuss the registers R4 and R3 together since R3 is an auxiliary
register for Rt (Rib= Q). Neither is affected by the loading process.
When a number enters R4t via an m—>Q instruction, R4k containe the number
from the location specified by the address. The contents of R3, however,
are irrelevant and may be anything depending upon past instructionmns.
However, if a number enters R4 from any other source (viz., X, —, L(n),
or R(n) instructions), R3 contains the same information as R4 displaced
one position left or right except perhaps for the sign position and the
2=39 position. In the X and R(n) operations the number in R3 is dis-
placed to the left of the one in R4, while in —— and L(n) operations the
number in R3 is displaced to the right.

The magnetic tape instructions and the magnetic drum instructions
use R4 and R3, and consequently upon completion of t—>m or D—>m, Rk
contains the last reference word. R5 will also contain the same word.
R5 contains the last reference word of m-——»t and m—D as well. On the
instructions where R4 contains the last reference word, R3 contains the
same word displaced once to the right except for sign.

R2 and Rl also work in conjunction; however, any time a word is in
R2 from any instruction, the same word, except perhaps for sign position
and 2~3° position, is in Rl displaced either one unit right or left.

Upon the completion of loading, R2 contains the sum of the contents
of the tape. Upon the completion of a D—>m instruction with address
m+800, R2 contains the sum of the fifty words read from the drum to the
memory.

Upon the completion of any of the add orders, a—>Ac, a—>Ah, X,
R(n); Rl contains the same number as the R2 register displaced once to
the left. Upon the completion of — , L(n); Rl contains R2 displaced
once to the right.

Upon the completion of & syncprint order (not considering the sub-
routine in which it is contained) R2 contains all ones. In this instance,
and only in this instance, Rl may have completely foreign numbers to
those of R2.

If a computer malfunction is suspected, the contents of the various
registers should be closely observed, and if there is any deviation from
the above-mentioned situations the discrepancies should be recorded, as
they may aid in the detection of the malfunction.
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As previously mentioned, the control counter is the mechanism used
for the sequencing of instructions. The control counter always contains
the address of the next word to be brought into R6, the control register.
The control counter may be manually set to any desired address. While
the computer is running, the control counter advances sequentially ex-
cept when transfer or satisfied conditional transfer instructions are
executed. These instructions set the control counter to the same address
as that contained in the instruction. The control counter has sevéral
speclal functions which are:

In loading, the control counter is the sequencing mechanism. The
control counter is first set to the desired initial address. Then the
contents of the tape being loaded are sent to the memory into sequential
addresses beginning with the initial one. Upon the completion of the
loading, the control counter resets to the initial address.

In the drum instruction, the control counter indicates the fifty
sequential memory addresses concerned with the instruction. At the out-
set of the instruction the counter is set to the memory address contained
in the instruction. When the fiftieth word is transmitted, the counter
contains the corresponding memory address. Since this is not, in general,
the desired address for the next instruction, the drum instruction ends
by setting the control counter to the address contained in bigits (28-39)
of the drum instruction.

. As with the registers, when & computer malfunction is suspected, the
control counter should be observed to ascertain that its behavior cor-
responds to that given above. ,

We complete the chapter now with brief discussions of the "audio-
monitor", the memory monitors, the magnetic tape, the Synchroprinter, the
computer '"turn-off" and emergency procedures, and a brief comment on the
method of time scheduling for the computer. _

The "audio-monitor" is an amplifier and a loud-speaker that taps in-
to the circuitry of the function gates. The frequency with which the
function gates change (i.e., flip from left to right as successive in-
structions are performed) while the computer is running on automstic
operation is in the audio-range. The amplifier merely amplifies and
transmits these frequencies to the loud-speaker and hence into audible
noise. The use for such a piece of equipment lies in the fact that in
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many problems that are run on the computer the code patterms established
by the various induction loops of the problem give rise to distinctive
and easily detectable noise patterns. A person familiar with the noise
~patterns of a problem can often tell when there has been a computer mal-
function if the malfunction manifests itself by the control altering its
path through the code sequence. This circumstance causes & change in
the noise pattern of the problem. A volume control switch allows one
to control the audio-monitor and, if desired, the volume may be

turned down.

The memory monitors consist of four three-inch cathode ray tubes.
These tubes allow one to observe the contents of any of the forty memory
tubes. The monitor tubes are mounted at each end of both banks of mem-
ory tubes as shown in Figures 2 and 3. There are six selector switches,
four mounted directly under the central storage units of the front stor-
age bank and two similarly mounted on the back side of the computer.

The selector switches are eleven place switches, allowing an "off" posi-
tion and the display of any of ten memory tubes by a monitor tube.

Since there are four switches on the front, two connected to each of

the front monitors, one can observe any of the forty memory units. The
two left-hand switches select units (0-19) while the two right-hand
switches select (20-39). However, each monitor tube may display only
one unit at a time and care should be exercised that the two selector

switches connected to a single monitor tube are not both set to a unit

as this causes erroneous information to be stored into the memory

units concerned. The two selector svitches on the rear bank may only
monitor that bank, the odd-numbered memory units as shown in Figdre 3.
The left-hand switch can monitor 21, 23, 25 -++ 39, and the right-hand
switch can monitor 1, 3, 5 +--- 19.

The memory raster, as one views the monitor tube, is as shown in
Figure 6. A bright spot at any position of the raster corresponds to
.a l, while a faint’spot corresponds to a O.

As a problem is running, the code patterns due to induction loops
often cause certain portions of the code to be performed more frequently
than others. The memory locations concerned are then consulted more
frequently, and these regions of higher consultation show a brighter
intensity on the monitor tube than neighboring reglons. One may then
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be able to determine, by observing a monitor tube, when certain sections

of the code are being traversed. As with the "audio-monitor" and its noise
patterns, the memory monitor often displays distinctive code patterns. If
the computer malfunctions in a way that the display pattern is altered,
this is often observable.

The magnetic tape unit has préviously been discussed in Chapter II,
Problem 12, and in Chapter IV; so that what is said here will pertain
mostly to the operation of the unit.

Recall that the unit is a single channel serial system where the
magnetic tape reels contain 1200 feet of l/h inch wide Scotch Sound Re-
cording Tape. These reels of tape are, in general, pre-marked into sec-
tions, each of which will accommodate 1024 forty-bigit words. There
are fifteen such sections to & reel and the markings dividing these sec-
tions are short lengths made transparent by removing the magnetizable
material from the tape. A photo-cell in circuilt with a fast forward and
reverse mechanism affords the only searching facilities (manual). The
tape may be advanced or reversed at a speed of roughly four seconds per
block of 1024 words, and the photo-cell actuates a brake whenever a trans-
parent section of tape,indicating a separation of the 1024 word blocks,
passes through it.

In order to use the magnetic tape, one first threads the desired
reel of tape onto the tape drive mechanism. Second, the tape is advanced
to the start of the desired 1024 word block. Third, the tape unit
switches are set so that the unit can then be operated by the control of
the computer through the magnetic tape routines (ef. Chapter II, Problem 12)
‘We now discuss these steps in detail.

The tape drive as it appears atop the console cabinet is shown in
Figure 7. The different parts are cléarly marked and need no explanation;
hence with the aid of this diagram we turn to the tape threading procedure.
To thread tape
1. Remove the caps from both tape reel spindles.

2. Place the reel of tape on the left spindle. It is called the rewind
reel. The tape feeds from this reel in the direction indicated by
the diagram.

3. Set the forward-reverse-normal switch, hereafter called the setting
switch, to the normal position.

k. Open the head housing door.
5. Unwind a length of tape and thread it as indicated in Figure 7.
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Wind several turns around the take-up reel. Wind the take-up reel
until the take-up arm is in the position shown.

Replace the caps on the spindles. (Do not remove or replace caps
while the tape unit is running.)

Close the head housing door. The tape is now ready to be advanced
to the first transparent section, the starting position for the
first block of information.

In order to have the tape in correct position to record or replay

a block of storage, all that 1s necessary is that the transparent sec-
tion of the tape identifying the start of the block must be visible in
the region of tape between the two reels.

To

advance or back up tape to start of desired tape section

1.

Ir

Turn the setting switch to the desired direction of motion of the
tape.

Open the head housing door; the tape advances in the desired
direction. When a transparent section passes by the photo-cell,
the tape stops. The braking is not instantanecus, and the trans-
parent section may travel as much as 15 feet during the stopping
process.,

Turn setting switch to the opposite direction of the previous motion.

Depress the manual start button. This starts the tape moving in the
direction shown by the setting switch. The transparent section of
the tape again actuates the braking action when it passes through
the photo-cell. This time the overshoot is less.

Repsat steps 3 and 4 until the transparent section lies in the region
between the two reels. This is the desired starting position.

Turn the setting switch to the normal position and close the head
housing door.

The tape is now ready to operate - either record or play back.
it is desired to back up or advance the tape more than one block of

words, at the end of step 2 press the manual start button without changing
the setting switch. Repeat this until the desired block of information is
reached. The procedure is then the same as previously noted starting at

step 3.
To record or replay
1. The transparent section identifying the desired block must be in the
region between the two reels.
. The head housing door must be closed.
3. The setting switch must be in the normal position.
4., The take-up arm must be in the position indicated in Figure 7;
5. The red indicator light must be off.
6. When steps 1 thiough 5 are completed the tape is ready to be operated

automatically upon instruction from the computer.
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The indicator lights have the following significance:

i. The amber light indicates that the power is on. If this light
is "off", call an engineer for assistance. _

ii. The red light is "on" in any of the following circumstances.
a. The head housing door is open
b. The setting switch is in the reverse or forward position.
c. The take-up arm is not in correct position.
d. It is "on" while the tape is running during a recording or

a play back. '

If, in setting the tape to record or replay, the red light remains
"on" after steps 1 through L4 have been completed correctly, call an en-
gineer for assgistance.

The Synchroprinter has previously been discussed in Chapter 1I,
Problem 13, and in Chapter IV; so that, as with the magnetic tape, the
remarks here pertain to operating procedures.

- Recall that the Synchroprinter prints a line at a time; each line
may contain 40 characters. The maximum speed of operation is 15 lines
per second, or 36,000 characters per minute. This print order must be
used in a routine (cf. Chapter II, Problem 13) which does the following:
The four words to be printed are fanned into an array of eighteen words
in the memory. During a print cycle, eighteen print orders are given.
The first print order activates the printer and the remaining seventeen
act in a timing capacity synchronizing the printer and the computer.
Prior to each print order of the cycle, the appropriate word of the ar-
- ray is brought into R2.

In the discussion of the operation of the printer, we assume that
the printer routine has been properly incorporated into the problem and
discuss only the mechanics concerned with the printer unit.

Five switches are located on the front of the printer cabinet.
These are:

i. the motor switch
1i. +the filament switch
iii. +the plate switch
iv. the thyratron switch
v. ‘the paper advance switch
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The filament switch and the plate switch are always to be in the
"on" position. If this is not the case, one should not attempt to

operate the printer, and an engineer should be called for assistance.

" When the printer is to be used, the positions of the motor switch
and thyratron switch should be checked. If they are in the "on" position
the printer is ready to operate. If they are in the "off" position, the
following is done: (The order is important.) First, the motor switch is
turned to the "on" position and then the thyratron switch is turned to

the "on" position.

The thyratron switch controls a bank of 40 thyratron tubes that are
used for triggering the 40 print hammers. A thyratron tube is a gas dis-
charge tube rathér than a vacuum tube, and it permits the high current
necessary for triggering the print hammers. Once a thyratron has been
discharged, its plate voltage must be cut off iﬁ order to reset it to
the non-conducting state. The triggering of the print hammer momentarily
causes the plate voltage to be cut off so that the thyratron is reset.
However, the circuitry is such that the triggering of any print hammer
twice in a print cycle will cause its associated thyratron to stay in the
discharge state, making any further triggering impossible. Attached to
each thyratron is a neon bulb which is lighted whenever the thyratron is
in the discharge state. These neons are visible through a glass panel
immediately below the thyratron switch. Whenever a thyratron remains in

its discharge state, as indicated by its lighted neon, it may be reset by

turning the thyratron switch "off" momentarily and then turning it "on"

again. If, in the "turn-on" procedure for the printer, some of the thyra-
trons discharge, as indicated by their associated neon being lighted, the
above procedure is carried out for resetting them.

A thyratron should never be left in the discharge state, and as
soon as such a condition is known the above reset procedure should be

carried out.
During operation, the only times that a thyratron can be left in the
discharge condition are:

i. when more than, or less than, the required 18 print orders are
given in a print cycle

11. when a print hammer has been triggered more than once per print
cycle

ii1i. when there has been some computer malfunction effecting the printer



-286-

(i) and (ii) may be caused by an improperly coded print routine.
If the computer is stopped during a print cycle, and if a print order

is in R6, connected into the control circuitry, the computer cannot be

restarted without danger of leaving some of the thyratrons in the dis-

charged state. Restarting resumes the print orders, and with the control
in the middle of the routine less than elighteen print orders will be exe-
cuted by the control. If the computer is stopped during a print cycle,

and if an order other than the print order is in R6, one should again

check the thyratron neons, as there 1s danger that some thyratrons may be

in the discharge state.

If any thyratrons are in the discharge state and an attqufris made
to use the printer, the print hammers associated with the discharged

thyratrons cannot be triggered; hence no characters will be printed in

the corresponding columns.
The "paper advance switch" allows one to manually advance the paper

s0 that printed material may be removed from thé printer. Depressing

the switch causes'the paper to advence and it will continue to do so as
long as the switch is held in the depressed state. Note that for manually
advancing the paper, one should always use the paper advance switch, since
advanciﬁg the paper by merely pulling it causes the printer ribbon to be-
come misaligned. ‘

The “"turn-on" and "turn-off" procedures for the computer naturally
seem to be more in the domain of the engineers rather than that of the
programmers; however, the turn-off procedure has been simplified to the
extent that the programmers can do it.

In order to turn off the computer, one must set certain of the
switches located on the Memory High Voltage Power Supply shown in
Figure 8, the Switch Gear Panel shown in Figures 9 and 10, and the
Magnetic Drum Control Panel shown in Figure 11. The relative position
of these panels with respect to the computer proper is shown in Figure 1.

The "turn-off" procedure in its proper sequence is the following:

On the High Voltage Power Supply (Figure 8)
Depress "off" button. (Leave filament switch in "on" position,

however. )
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On the Switch Gear Panel (Figures 9 and 10}

1. Turn DC "off" by depressing DC off switch located between the DC (red)
and standby (green) lights.

2. Set battery-generator switch into "down" position.
3. Set battery-series switch into "down" position.

4. Turn off generators by depressing the stop (red) switches for the
positive and negative generators. These switches are each located
immediately above its corresponding positive or negative rield
Rheostat. ,

5. Turn the filament variac down (turn the wheel counter clockwise as
far as it will go). The variac is located between the memory high
voltage power supply and the overload relay of the power supply con-
trol panels as shown in Figure 1.

6. Depress the stop switch located between the filament (white) and
standby (green) lights.

T. Turn the Emergency switch to the "off" position.

On the Magnetic Drum Control Panel (Figure 11)

1. Set the "chassis filament" switch to "off" position.
2. Set the "regulator filament" switch to "off" position.

Note: Do not set any drum switches other than the two indicated
by 1. and 2.

In the event of an emergency, such as smoke or flame emitting from

the computer, the emergency "turn-off" procedure is:
Emergency Turn Off

1. Set the emergency switch on the switch gear panel to the "off"
position.

2. Immediately call an engineer.

In the discussion of'debugging' procedures, the emphasis was placed
on using the computer effectively;when a reasonable amount of data has
been obtained from the monitoring or as soon as an errdr has been detected
during the monitoring, the problem whould be removed from the computer
and the data studied away from the computer. This procedure naturally
leads to the following guestions: What is the length of time that one
should spend with the computer per debugging session? And, how should
the time on the computer be scheduled so that debugging sessions are co-
ordinated in a way which utilizes the computer efficiently? At the pre-
sent stage of the art there seems to be no clear cut answer to either of
these questioné. Our present attempt to answer them stems for experience

gained during the past several years of operation.
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It seems that a person will accomplish more in several short sessions
than in a long session of the same total time, if the time between the
short sessions allows him to study and digest the results. As a conse-
quence, thirty minutes is the maximum time for any debugging period; how-
ever, shorter periods are recommended. Instead of arranging a schedule
according to the clock, a programmer decides on each occasion when to
terminate his debugging session.

Since a debugging session may range anywhere fram about five to
thirty minutes, and since the exact length of the period is left to the
discfetion of the programmer, this has brought about the following ar-
rangement: Debugging periods on the compuﬁer are scheduled sequentially
during the normal working hours. This is the time when most programmers
are available. A debugging schedule is compiled; however, no specific
time is allotted to any person. The list only serves to indicate the
order in which the debugging periods are scheduled and, as mentioned
above, the length of each period is determined by the programmer while
he is debugging. It is the responsibility of those on the schedule to
be available when their debugging period occurs.

As soon as the debugging periods are over, the running of problems
is scheduled. Debugging time is not normally scheduled beyond the com-
pletion of the regular work day which is 5:00 PM. This means, then,
that most of the problem running time is allotted in the hours between
5:00 PM and 8:00 AM the following day. Problem running time can, of
course, be scheduled for fixed periods; hence there is no need, as in
debugging, for all on the list to be available prior to their scheduled
time.
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APPENDIX I
SCALING OF NUMBERS
Numbers handled by the computer must be in the range
[x] <1 (1)

The numbers that occur in the course of a numerical computation are
usually not so contained. As a result it is necessary in going to
automatic computation to change some, if not all, of the fundamental
set of units. The process of making these linear transformations is
called scaling. Consider the following very simple example:
Suppose one were interested in the distance in centimeters of free
fall for times lasting to 100 seconds; i.e.,

s = 1/ g t° (2)
980 cm/sec® is the gravitational ac-

where S is the distance, g

celeration, and t the time. In order to restrict the range of these
quantities so that they satisfy Condition (1), one makes the follow-
ing transformations
T-e (3)
3
-10
Y = 27g
For convenience, one uses powers of two. Quite clearly 7, y are
contained in the proper range. Using (3) one finds
' 1
s = 1/2(2'% )(277)?

= 12 Pty 2

Hence, if the transformation

o = 27
is mede, one obtains

o = 1/2yT?
wvhere all the quantities as seen by the computer are now well contained.

The three transformations are not, of course, independent since

only the dimensions of length and time are involved. An alternate way
of expressing the above is to say that time is measured in units of
278ec. and length is units of 22hcm. In reviewing a scaled number in

a register, one may very easily unscale the number by imagining that
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the binary point is shifted appropriately from its normal position
(between O and 1 stages). In the above example, the unscaled time
is found by considering the binary point moved 7 places to the right.
One chooses the minimum amount of change in units in order to
have the maximum accuracy. Sometimes the variations in the quantities
are so violent that it i1s necessary to make successive transformations
in order to maintain sufficient accuracy. Nevertheless, this is
usually much faster than appealing to floating point routines.
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APPENDIX II.
VERTICAL BUSES

The vertical buses of the order gates, as discussed in Chapter IV,
pages 202-204, Figure 11, have been modified and are shown below as
Figures 1, 2, 3, and 4. Figure 11, of Chapter IV, illustrated the
original arrangement of the vertical buses on the front and back section
of the arithmetic unit control. As a result of several modifications
across time, we now requlre the four figures, one for the front side of
the control (Figure 1) and three for the back side (Figures 2, 3, and 4).
The motivation was to simplify the control system. It was found de-
sirable to incorporate a few new buses and, in order to do this, a more
efficient distribution of buses was necessary. That is, although all of
the buses as shown in Figure 11, of Chapter IV, are necessary, they
vwere not all needed on both the front and back control section; e.g.,
COR4, CORl, RIR2L;, etc., were not used for any order gates on the front
section; and, similarly, (0-T)R2, (8-19)R2, (20-2T7)R2, etc., were not
necessary on the back section.
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APPENDIX III
SINGULAR ARITHMETIC OPERATIONS

In a division operation involving numerator x and denominator y
there are certain combinations that violate the condition [x] < |y|,
but nevertheless give rise to interesting and often useful results.
We call such division operations singular operations. Some of the im-
portant results are:

i. -1<x<1,y=0 then
Q=%-2-x-27%
0] .
ii. a special case of (i) i8 x=y =0 then

Q= g-—>2 -273¥ .11 v 1

iii. x=y>0 then
e=%2--a-2%) -1.0000 -+ 01
iv. x=y <0 then
Q=21 273% oaam e 11
V. Xx=-y>0 then
e=E-1-2¥-0mm -+
vi. -x=y>0 then

Q= T—-(1- 273%) - 1.0000 ++- 01

Recall from the discussion of binary arithmetic in Chapter III that
the allowed number range is -1 <x < 1. This implies that -1 (a 1l in the
sign position followed by all O 's) admits valid operations. In the ad-
dition process this is obviously the case. 1In division, if the numerator
x = -1, the quotient is meaningless except for the cases (i and iv) where
the donominator y = O and y = -1.

However, in division, if the denominator y = -1, one obtains the norm-
ally expected quotient; e.g.,

vii. x>0, y= -1

_ X o« - o339
Q-_l—>2 x 2
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Viii. x<0, y = -1

_ X _ »=39
Q = 3 x 2
ix. the special case for x =0, y = -1

Q=_% 2-2"39 _3.1111 e 11

For the multiplication operation -1 1s admissable as one and only
one of the factors, and

X. X==1, y=20
P=xy—2 -y

xI. x=-1, y<O
P =

xy—>|y]
The treatment of -1 is symmetric with respect to the multiplier and
multiplicand. If
xil, x=y= <1
p=xy 1+239 21,0000+ 01
We see that the multiplication p = xy where x =y = -1 does not

give the correct product and hence is an exception to the rule admit-

ting -1 as a legitimate number.

Returning to the division operation, there is one other fact
worth noting; namely, if a division is exact with fewer than 39 quotient
bigits, and if x,y >0, and if

and Q'=°—x-,

Q =

<IN

are formed, then

Q=Q'+2-38

Similarly, if x,y > O, and if

=X X
= — and ''= =
< y < -y

are formed, then

Q= ) -2
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277

Random number generation sub-
routine, 240 ff.

Read order, 22

Reading, memory, 186

Reciprocal by iteration, 94-95

Record, magnetic tape, 132

Regeneration, 185

Regeneration cycle (memory con-
trol) 186

Regeneration counter (memory
control) 186

Register (Arithmetic unit) R1-R2,
accumulator, 5 f£f., 173, 277

R3-Rl4, quotient register, 5, 8,
9, 173, 277
R5, 5, 8, 9, 173, 276
R6, 5, 8, 9, 173, 276
Remainder, division, 185
Rewind reel (Magnetic tape) 282
Round -off
Multiplication, 164-166
Example of, 165-166
Division, 170

-305-

Seven (7) storage (Descriptive
coding) 208-209
Examples of, 246-2L4T7
Subroutines, 236-238
SHIFTING
General, 5 ff.
Arithmetic of, 156-158
Double precision, 99, 103
Logical discussion of, 174-1T78
Orders of, 22, 25 ff.
Sign of a number, 154 f£f.
Simpson's rule (see Integration)
Sin x calculation routine, 126-131
Sorting routine, 106-125
Square-root calculation routine, 1,
49-5k4
Start-next-order switch (Operating
panel) 252, 259 ff.
Storage
Dynamic, U7
Statie, 47
(see Descriptive coding)
Storage box (Flow diagram) 47-48
SUBROUTINE (Descriptive coding) 16,
235 ff.
Assigning box numbers to, 237
A-storage of, 236
B-storage of, 236, 238
C-storage of, 236
Code tape of, 250-251
D-storage of, 236-237
Entry into, 238 ff.
" Exit from, 238 ff.
Substitution box (Flow diagram)
Ly ££., 48
Substitution orders, 22, 25, 31, 3h
75-76, 77, 86,
Treatment in descriptive coding)
210-212, 215-220
Subtraction (addition) 1, 3-4, 7 f£f.
Arithmetic of, 158-160
Logical discussion of, 179
Summing routine, 262
Switch gear panel, 286, 288, 289, 291
Synchroprinter (Input-output)
Actuation of, 1uk
Array, 143
Characteristics of, 195
Logical discussion of, 195-197
Malfunctions of operating pro-
cedures, 195-196, 284-286
Paper feed, 143, 284, 286
Print cycle, 142
Routine, 142-153
Thyratrons and associated switch,
284-286
Switch gear panel, 286, 288-289, 291

-



Take-up arm (Magnetic tape) 282

Take-up reel (Magnetic tape) 282

Tape drive (Magnetic tape) 281

Tape leader, 258

Tape reel spindle (Magnetic tape)
281

Tape symbols, 11

Taylgr series expansion of sin x,
12

Teletype page printer (Input-output)
197-198

Tetrad, 27, 192

Thyratron (Synchroprinter) 285

Toggle (see Flip-flop)

Transfer orders, 21, 24-25, 36 ff.,
68, 69

Transfer orders, descriptive coding
Fixed connection, 212-215
Variable connection, 215-220

Variable of induction, 43 ff.
Variable remote connections, 72-73,
96 £f.
In Descriptive coding, 215-220
In Subroutines, 236
Vocabulary, 17, 20 ff.
Table, 21-23

Illustrations of orders in routines

m—>Ac, 33
m—>Ac-, 52
m > AcM, 66
m~>Ah, 29, 30
m ->Ah-, 52
m->Ah 800, 136
m->Q, 29, 30

X 29, 30

X' 100

29, 30

T 36 ££., T7

T 17

C 54

c* 38
Q—>m, 29, 30
A—>m, 29, 30
S->m, 33, 34
S—>m', 33, 34
ES >m, 78, 115, 129, 131
ES—>m', 78, 115, 121, 129, 131
R(n), 52, 86
L(n): 29, 60, 85
a —>Ac, 60, 77, 88, 148, 152
a —Ah, 13, 85, 86, 88
DS, 68
Flexoprint, 129, 131
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Illustrations of orders in routines

(cont.)

Read, 127, 131

Punch, 129, 131

Syncprint, 150, 152

m-—>D, 117, 123

D—>m, 115, 122

QR—>1t, 135, 137

t—>Q,

Word, 13
Writing, in memory, 186
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