PILIBSS
Object

Library Managser
for Intel S086/8308

by Dave Hirschman

DO]

SC U

Plib86:
Table of Contents

Table of Contents

Library Manager Concepts

Using Plib86

Creating/Merging Libraries

Library Search . . .
Updating a library .
Module Extraction . .

Cross reference listing

Plib86 Commands
Input Format
Identifiers . . .

Disk File Names .
Initiating Plib86

Command Format .

Object Files
Building a Library .

L] * L]

. [[*

. L) * L) .

-

Extracting a Library Module

Generating Reports .

Controlling the Library Index

Appendix A - Error Messages . . .

PSA Object Library Manager

L] * L[] L]

|
1
H

NN DR
] [
B Ww N+

WWWWWwwww
[
LHSSOUONNWNH -

www
1
o

=4
|
=

P1ib86: PSA Object Library Manager i
Introduction

Plib86 (tm) is a Phoenix Software
Associates Ltd. software system that can
manipulate libraries of object files. It
supplements the PSA linkage editor
Plink86 (tm), and is intended for use on
the Intel Corporation (1) 80686 (or 8@88)
processor (tm) under.the MS-DOS (2) or
CP/M-86 (3) cperating systems.

Plib86 handles object files and
libraries conforming to the format
generated by the Microsoft compilers for
the Intel 80686. This is actually the
standard Intel format with an enhanced
library index. A list of compilers that
produce object code compatible with this
format is given later.

The first section of this manual
provides an explanation of the “object
library" concept and the capabilities of
Plib8e6. User's unfamiliar with library
managers would do well to start here.
Also, the Plink86 user's guide contains a
chapter discussing object files and
linkage editors that may be helpful.

The next section of this manual
describes how to use Plib86 to handle
several common object library situations.
At the same time it provides an informal
explanation of what the commands do.
Those readers experienced with linkage
editors and library managers may wish to
skip directly to this portion of the
manual: it provides enough information
to handle most applications.

P1ib86: PSA Object Library Manager = ii
Introduction

The final portion of the manual is
an exhaustive list of the commands and
features offered by Plib86. This should
be examined when it becomes necessary to
go beyond the examples given in the
previous section. Side issues such as
error codes are generally referred to
appendices.

Trademark Acknowledgements:

(1) INTEL is a trademark of Intel
Corperation

(2) MS-DOS is a trademark of Microsoft,
Inc.

(3) CP/M-86 is a trademark of Digital
Research.

Plib86: PSA Object Library Manager 1-3
Library Manager Concepts

Plib86 also prcvides a powerful
cross-reference function. It optionally
generates a report listing each public
symbol, the module which defines it, and
a list of other mocdules that refer to it.
This may be used to cross-reference a
single library or several libraries
together, or, in combination with the
library search feature described above,
to generate a cross-reference of a
program that will be created by the
linkage editor.

Pl1ib86: PSA Object Library Manager 1-4
Library Manager Concepts

Plib86: PSA Object Library Manager 2-1
Using Plib86

Creating/Merging Libraries

To create a new library use the
BUILD command and the FILE command. For
example, executing P1ib86 and entering

BUILD DB.LIB
FILE BTREE, SORT, REPGEN,
FIRSTLIB.LIB;

in response to the prompt would create a
library named DB.LIB containing the files
listed after the FILE command. These
files could be single object modules or
complete libraries. Everything is merged
into a single library.

Plib86: PSA Object Library Manager 2-2
Using Plib8é

Normally you can just execute Plib86
and type in commands on as many lines as
desired. Then end the last line with a
semi-colon to begin processing. Each
statement begins with a key word like
BUILD or FILE and is followed by
. arguments, possibly separated by commas.
Input is free format, and blank lines are
ignored. Also, key words may be
abbreviated by leaving off characters at
the end. For example, you can use BU and
FI instead of BUILD and FILE. An error
message will be given if the abbreviation
could be confused with another command.

Another way to use Plib8 is to give
the commands as it is executed. For
example, the above library could have
been created by entering (on one line):

'PLIB86 BU DB FI BTREE, SORT,
REPGEN, FIRSTLIB.LIB

Note that the output file type
defaults to LIB automatically.

Library Search

Suppose you want to create a library
consisting of several modules plus those
portions of another library that are
referenced by thg modules. Use the
LIBRARY command:

BU DB FI BTREE, SORT, REPGEN
LIB FIRSTLIB.LIB

The portions of FIRSTLIB not
referenced by the three other files are
not put into the DB library.

Plib86: PSA Object Library Manager 2-3
Using Plib8é

Updating a library

To update a library it is necessary
to copy the old library to the output
file while omitting the module to be
updated, and also include the new module.
For example to replace module COSINE in
library MATHLIB, rename the current
MATHLIB.LIB to MATHLIB.OLD and enter

BU MATHLIB FI COSINE,
MATHLIB.OLD EXC COSINE

The EXCLUDE statement applies to the
previous file name given and causes the
COSINE module in the MATHLIB to be
ignored.

Module Extraction

The EXTRACT statement causes a
single object module file to be created.
It may not be used at the same time as
BUILD. The first object module found in
the input files is extracted, so the
particular module to be selected from a
library must be specified. The object
file extracted may be given any file
name. The module name remains the same.
For example, typing

EXT OLDCOS FI MATHLIB.LIB
INCLUDE COSINE

creates file OLDCOS.OBJ containing object
module COSINE. The INCLUDE statement is
the counterpart of EXCLUDE: it applies
to the previous input file and causes
only those mocdules named to be considered
for processing. There wouldn't be any
point to INCLUDing more than-one module
in this case since only the first one
found is extracted.

Plib86: PSA Object Library Manager 2-4
Using Plib86

Cross reference listing

To create a cross~reference listing
use the LIST command with the same input
file commands like those given in
previous examples. For example,

LIST = DB S FI BTREE, SORT, REPGEN,
FIRSTLIB.LIB

Creates a cross reference report named
DB.LST . describing the modules in all of
the files listed. The "S" selects the
cross-reference report. For a
description of other reports available
see the LIST command description. The
"=" specifies that the report is to be
put into a disk file. If omitted the
report appears on the consocle.

P1ib86: PSA Object Library Manager 3-1
Plib86 Commands

Input Format

This portion of the manual describes some
basic input elements. Later sections
show how these are combined to create
full statements.

Identifiers

An identifier is the name of some
object, such as a module or symbol. An
identifier is a sequence of no more than
64 characters containing no spaces, and
containing none of the following:

“=;<>/,\!"#&*+-:@ DEL

Lower case letters, when used, are
automatically translated into upper case.
The first character of an identifier may
not be a digit 0 - 9.

The above restrictions on valid
identifier characters may be avoided by
using the escape character *"'. The
character immediately following the
escape character is treated as a normal

identifier character.

The following are examples of valid
identifiers:

Programl
SORT3
ABC"@ (the “@° is escaped)

The following are not valid
identifiers:

34ABC - begins with a number
NIM A - contains a space

Plib86: PSA Object Library Manager 3-2
Plib86 Commands

PROG%¥l - starts a comment with *%°

The above identifiers could all be
made valid with the escape character:

“34ABC
NIM® A
PROG"%1

To include the escape character in
an identifier enter two escape characters

A SEY
.

Identifiers appearing in object
files are tfuncated to 58 characters for
for purposes of compariscn with other
identifiers in the program. Identifiers
may be truncated again fer inclusion in
reports (see the LIST command).

Disk File Names

- n-—— s - -—-—

Plib86 adapts itself to the file
name format used by the cperating system
it is executing under. The first
character not allowed to 2e in a file
name terminates the name. The escape
character may be used tc put any
character into a file nare.

In this manual, MS-DOS fcrmat file names
are used for purposes of discussion.
These file names are of the form
[device:]name[.type], with optional
portions in brackets. Herze are some
examples:

MATHLIB.LIB
B:CHESS.OBJ
SCANNER

Plib86: PSA Object Library Manager 3-3
Plib&6 Commands

When the "device:" is not given,
Plib86 assumes that the currently
logged-in disk is to be used.

Initiating Plib86

Plib86 may be used 1nteract1vely, or
input may be given as it is executed:

Plib86 <statements> <cr>

where <cr> means to press the RETURN key.
This means that Plib86 may used in .BAT
files.

To use P1ib86 in the interactive
mode, enter

Plib86<cr>

on the console. Plib86 will read
statements from the console, prompting
with "=>", All input is stored
uninspected until a carriage return is
typed. The standard line editing
features supplied by the operating system
are available.

A disk file containing all or only
part of a command may be inserted into
the input at any point by preceding the
disk file name with an "@". The default
file type is ".LNK". These disk files
can contain further "@" specifications,
up to three levels deep. The most common
use of this feature is to prepare a file
containing a complete command; then,

Plib86 @<file name> <cr>

creates the library. Sometimes these
".LNK" files may be prepared once for a

Plib86: PSA Object Library Manager 3-4
Plib86 Commands

given library and used over and over
again, greatly simplifying the whole
process.

Plib86 reads an entire command,
checking for syntax only, before any file
processing is done.

Plib86: PSA Object Library Manager 3-5
Plib86 Commands

Command Forﬁat

All Plib86 input is free format.
Blank lines are ignored, and a command
may extend to any number of lines. _
Comments may be included with input from
any source by using a percent sign "§".
When this is encountered, all remaining
characters on the same line are ignored.

Input is a list of statements:
{statement> <statement> ... <statement)>

Each statement begins with a key
word, and many are followed by arguments
separated by commas. For example, in

FILE A,B,C

FILE is the key word, and A, B, and
C are the arguments. Key words may be
abbreviated by omitting trailing
Characters, as long as the abbreviation
is unique among the entire group of key
words. For instance, the previous
Statement could have been entered as

FI a,B,C

If a syntax error is found, the
current input line is echoed with two
question marks inserted after the point
at which the error was detected. This is
followed by an error message (see
Appendix). The command must then be
re-entered.

If some other error occurs, Plib8é
terminates with an error message also
iisted in the appendix.

Plib86: PSA Object Library Manager 3-6
Plib86 Commands

Object Files

Pl1ib86 must be told what object
files and libraries to use for input and
what modules to select from them. The
FILE command is typically used, and
normally causes all modules with the
given files to be processed:

FILE COSINE, SIN, ARCTAN

The LIBRARY and SEARCE commands are
similar, but are used only on libraries
and select only those modules that define
a public symbol that is needed by some
other module that has already been
Processed. . This is called a "library
search" and is a process carried out by
most linkage editors. It insures that
only those library modules that are
actually needed are incluésd in the
program,

LIBRARY MATHLIB
SEARCH FORTRAN

The LIBRARY command czuses the given
libraries to be searched crre. When the
SEARCH command is used the libraries may
be searched multiple times as long as
undefined symbols remain. <This won't be
needed unless two or more libraries are
being searched that each refer to symbols
defined in the others.

If Plib86 can't find a requested
object file it will look cn drive A to
find it, and will then ask the operator
to enter the drive id. Diskettes may be
changed at this time if necessary. Of
course, the operatcr must irsure that any
diskettes removed do not co-:ain open
files like the BUILD or EXTEZACT file.

Plib86: PSA Object Library Manager 3-7
P1ib86 Commands

Also, if Plib86 runs out of memory a work
file is opened on the default disk, which
then may not be removed.

Under MSDOS 2.0 operating systems
P1lib86 will accept a path name as part of
an object file name. Also, if an object
file can't be found Plib86 will look for
a string named "OBJ" in the environment
and append its value to the front of the
file name, after stripping any drive id.
For example, suppose that the operator
enters

SET OBJ = \OBJECT

and then runs Plib86. Let us suppose
that one of the commands to Plib86 is

FILE B:TEST.OBJ

and that TEST.OBJ doesn't in fact exist
on drive B. Plib86 would strip the B:
from the name and then try
\OBJECT\TEST.OBJ to obtain the requested
file.

If an object file (not a library) is
being processed the module it contains is
given the same module name as the name of
the file it came from. This is done
because some compilers don't supply a
unique module name. This default may be
changed by using the AS statement. It
supplies the module name for the most
recent FILE given. For example,

FILE MATH1 AS COSINE

would name the module in MATH1 COSINE
instead of MATHl.

P1ib86: PSA Object Library Manager 3-8
Plib86 Commands

If you are processing libraries
built with Microsoft's library manager
you will get several checksum errors.
These arise because the Microsoft library
manager renames the modules as Plib86
does but does not re-compute the checksum
field at the end of the module name
record. The messages should no longer
appear once the library has been re-built
by Plib8sé.

The modules selected from a library
may be further restricted by using the
INCLUDE and EXCLUDE statements. These
are followed by a list of module names:

FILE MATHLIB INCLUDE SIN, COSINE
LIB MATHLIB, DB EXCLUDE BTREE

The INCLUDE statement causes only
those modules listed to be considered for
processing, and this selection precedes a
library search. EXCLUDE is the opposite.
The modules listed are not processed.
INCLUDE and EXCLUDE apply to the FILE,
LIBRARY or SEARCH file immediately
preceding. 1In the second example above,
for instance, the EXCLUDE BTREE applies
only to the DB library, not MATHLIB.

Plib86: PSA Object Library Manager 3-9
Plib86 Commands

Building a Library

The BUILD command is used to create
a library out of the modules selected
from the input files. It is followed by
the name of the file to create. The file
type defaults to .LIB:

BUILD DB.LIB
BUILD D:MATHLIB

After all modules are output the library
index is created.

One must be careful that the output
file does not bhave the same name as any
of the input files. For instance,
entering

BUILD MATHLIB
FI COSINE, ARCTAN, MATHLIB

won't work because MATHLIB will be erased
before it is read.

The BUILD command may not be used
simultaneously with the EXTRACT command
(described next). If no output is
requested from Plib86 (i.e there is no
BUILD, EXTRACT or LIST command) then
Plib86 will simply read the input modules
and report any errors it finds.

Plib86: PSA Object Library Manager 3-10
Pl1ib86 Commands

Extracting a Library Module

The EXTRACT command is used to
extract a single object module from a
library file and place it into a separate
disk file. It is followed by the name of
the file to create:

EXTRACT COSINE.OBJ
EXTRACT ARCTAN

If the file type is omitted OBJ is
assumed.

The EXTRACT command extracts the
first module found in the input files.
Therefore it is usually necessary to use
the INCLUDE statement to specify which
library module should be extracted. For
instance,

EXTRACT COSINE FI MATHLIB
extracts the very first module in
MATHLIB, even if it is not the COSINE
module. To get the correct one enter

EXTRACT COSINE FI MATHLIB INC COSINE

Plib86: PSA Object Library Manager 3-11
Plib86 Commands

‘Generating Reports

The LIST command is used to generate
reports about the object files being
processed. It may optionally be followed
by a file name, causing the reports to be
directed to that disk file or device.

The file name must be preceded by an
equal sign. Then a character is entered
for each report desired, separated by
commas. There are currently two reports
available:

M - A list of all modules processed
in alphabetical order.

S - A list of all public and
external symbols in alphabetical
order. Each is followed by the
name of the module defining the
symbol in parenthesis (this will
be blank for external symbols).
Following this is an
alphabetical list of all modules
that access the symbol (i.e.
this is a cross-reference
report).

Here are some examples:
LIST M

LIST = DB.LST M, S
LIST = XREF.LST S

Plib86:- PSA Object Library Manager 3-12
Plib86 Commands

The report generator can be re-configured
for different size paper. It assumes 8¢
columns and 66 rows per page as a
default. The number of columns may be
changed with the WIDTH command, and the
number of rows with the HEIGHT command.
Here are some examples:

WIDTH 132
HEIGHT 88

Plib86: ©DPSA Object Library Manager 3-13
_Plib86 Commands

Controlling the Library Index

Normally all public symbols from all
modules are inserted into the library
index. If a duplicate symbol is found
library creation continues but a warning
message is given and the index entry for
that symbol will select the first module
defining the symbol. :

Sometimes it is useful to exclude
certain symbols from the library index.
This may be accomplished by using the
NOINDEX command. For example,

NOINDEX SYM1l, SYM2, SYM3

excludes SYM1l, SYM2, and SYM3 from the
index.

Suppose you wish to create a library
that contains several versions of the
Same module, for instance a device driver
for some kind of hardware. 1If you try to
pPlace all of the modules into the library
you will get duplicate symbol warnings, -
and at link time the linkage editor
wouldn't be able to select the desired
module.

This can be made to work by using
NOINDEX on the module entry points. This
exlcudes all of these symbols from the
library index. To get the linkage editor
to select the correct modules insert an
ut-used but unique dummy symbol into each
module. At linkage edit time one of
these dummy symbols would be accessed in
order to create a need for the desired
module. The linkage editor would then
select it when the library is searched.

P1ib86: PSA Object Library Manager 3-14
Plib86 Commands

Using Plink86, for instance, one
could use a statement like

DEFINE FOO=DRIVERL

to select the module containing driver 1.
An alternative is to rely on the fact
that the name of each module is actually
in the library index as well, followed by
an exclamation point. For example, if
the library contains a mocdule named
DRIVER1 then there will be a dummy index
entry named DRIVER1l!. These symbols can
be used instead of creating a dummy
module entry point as discussed above.

Plib86: PSA Object Library Manager A-1
Appendix A - -Error Messages

Most ¢of the common error conditions
detected by Plib86 result in a console
message that should be self-explanatory.
For the more uncommon or obscure errors a
number is printed on the console that may
be looked up below.

Ccmmand Syntax Errors

The following errors are caused by
mistakes made in the input given to
Plib86. The input line causing the
problem will be displayed on the
terminal, with a couple of gquestion marks
inserted at the point where the error was
detected. Re-run Plib86 after correcting
the problem.

1 - "@" files are nested too deeply.
Only three levels of "@" files may
be active at any given time. Do
you have a loop in your "@" file
references?

2 - Disk error encountered while
reading "@" file. Try re-building
the file.

S - The item given for input at this
point is too large. The maximum
size allowed is 64 characters.

6 - Invalid digit in number (i.e. not @
thru 9).

13 - Invalid file name. The input
stream should contain a valid file
name for the particular operating
system being used.

Plib86: PSA Object Library Manager A-2
Appendix A - Error Messages

11

12

14

15

16

17

18

Expecting a statement. A key word
which begins a statement should be
present here.

The INCLUDE and EXCLUDE statements
may not be used simultaneously on
the same input file.

Expecting identifier. A section,’
module, segment, or symbol name
must be entered at this point.

Expecting "="

Expecting a value. An expression
or l6-bit quantity must appear at -
this point.

No files were given to process!
You must use the FILE statement and
specify at least one input file.

The BUILD and EXTRACT commands may
not be used simultaneously. You
must run Plib86 twice with one
command in each.

Plib86: PSA Object Library Manager A-3
Appendix A - Error Messages

" Work File Errors

When Plib86 runs out of memory it opens a
work file on disk named Plib86.WRK to
hold the description of the library.
These error codes indicate a problem with
processing the work file,

3¢ - The work file can't be created.
Probably there is no space in the
disk directory.

31 - An I/0 error occurred while writing
the work file.

32 - An 1/0 error occurred while reading
the work file.

33 - An I/0 error occurred while
pPositioning the work file.

34 - There are too many module
. description objects in this library
(about 56,8060 symbols, modules, and
SO0 on may be defined). This
library is too large for Plib86 to
handle.

P1ib86: PSA Object Library Manager A-4
Appendix A - Error Messages

Input Object File Errors

The following errors have to do with the
object files that are given to Plib86 to
process. Usually they occur when a file
has been corrupted somehow. Try
re-compiling to get a new copy of the
object file. 1If it is a library supplied
by the compiler manufacturer that is
causing the problem, try to get a fresh
copy of it. ’

41 - Premature end of input object file.
The end of the indicated file was
reached unexpectedly. Possibly,
the file was truncated by copying
it with a program that assumes a
CNTL-Z (lAH) 1is end of file.

42 - Fatal read error in object input
file.

43 - Fatal file position error in object
input file. This can occur when a
library file is truncated.

Plib86: PSx Object Library Manager A-5
Appendix A - Error Messages

Cutput File Errors

The following errors are caused by a
problem in creating the output code file
or memory map file (when written to
disk). Often, they are caused by a full
disk or disk directory, a disk that is
write-protected, or some kind of hardware
problem with the disk.

45 - Can't create output disk file.
Possicly the disk directory is
full, or the disk is write
protected.

46 - Output file too large. The given
modules won't fit into the library.
You will have to break up the
library into one or more smaller
ones.’

47 - Fatal Zisk write error in output
file. Possibly the disk is full or
wWrite protected, or some kind of
hardware error has occurred.

48 - Fatal cisk read error in output
file. Probably, an irrecoverable
hardwaze error has occurred.

49 - Can't close output file. Probably
the disk is write protected, or a
hardware error has occurred.

S8 - Can't create the LIST output file.
Possibly the disk directory is
full, or the disk is write
protected.

Plib86: PSA Object Library Manager A-6
Appendix A - Error Messages

51

52

54

Miscellaneous Errors

- There are too many symbols to be

placed into the library index. You
will have to break up the library
into one or more smaller ones.

No modules were selected (by
library search, INCLUDE, or
EXCLUDE) to be placed in the output
file (BUILD or EXTRACT).

There isn't enough memory ‘in the
computer to run Plib86. You must

"have a really tiny memory - better

buy more!

P1ib86: PSA Object Libta:y Manager A-7
Appendix A - Error Messages

Plib86 Bugs

These errors indicate a bug in Plib86 has
occurred through no fault of your own.
They are listed here for completeness in
the manual, althoungh it is unlikely that
you can do anything to correct them. Try
running P1ib86 again. 1If the error
persists, please gather the relevant
information and contact the software
distributor from whom you obtained
Plib8gé.

2¢1 - Expandable ézray bug.

205 - Seek errors while writing output
file (attempt to seek past end of
file).

219 - Bad object block (GetBlock).

221

‘Invalid object key (Q).

222 - Invalid object key (QM).

	001
	002
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07

