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PREFACE

The L-304 computer is the result of a number of years of extensive research
and cngineering effort to produce a high-speed, modularized digital computer ex-
pressly meeting the rigorous functional and environmental requirements imposed on
tactical military data systems. As such, the L-304 incorporates in its design sig-
nificant organizational features in a combination heretofore not available in general-
purpose computers. These features and the reasons for their inclusion in the L.-304

design are covered in this document.

A brief L.-304 description is contained in Appendix F for the unacquainted

reader.
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SECTION 1

INTRODUCTION

The Litton L-304 general-purpose computer was developed through the cumu-
lative efforts of DSD's engineering and technical staff to solve the typical problems
encountered in developing large (or small) real-time automated command and control
systems. The resultant features provided by the L.-304 greatly exceed those of the
so-called "conventional" computer, especially in the areas which enhance convenience
of program and system development. The purpose of this document is to acquaint the
reader with the many beneficial design features of the 1.-304 Computer, to relate them
to the characteristics of more conventional computers, and finally to demonstrate the

1.-304's strength in a large system application,

The text is presented in three sections: Basic Concepts, Computer Features
discussion, and a typical Airborne Tactical Data System environment discussion.
Section 2 (Basic Concepts) discusses the evolution of desirable computer features
and how they enhance successful system development. Understanding and appreci-
ating the power of multiprogramming and multiprocessing are discussion objec-
tives in this section. Section 3 (Computer Features discussion) explores the
design features of the L.-304, relating these features to those of conventional
computers, where appropriate, to provide a common base for discussion.

Section 4 (A Typical ATDS Environment discussion) relates the L-304 directly
to a typical large tactical problem implementation (ATDS) and provides practical
examples of the L.-304's inherent advantages over other, more conventional

computers.

In order to appreciate the content of this document, it is first nece ssary to
have a basic understanding of the terminology used. Afew of the more important
terms are:

o Multiprocessing

o Multiprogramming

o Program Levels

o Interrupts

o Event Dependent

o Time Dependent



Briefly, ''multiprocessing'' is a term used to describe a computing system
consisting of two or more processors that share a common memory. This allows
direct, simultaneous access and computation by several processors on a common

set of data.

"Multiprogramming'' is a term used to describe a nonserial operation of dis-
crete events, i, e,, several functions that can, at any time, be in various stages of
completion, This allows an optimum sharing of real time (on a priority basis) and
is considerably more efficient than ''serial programming'' where each function must

be completed before the next can begin.

"Program levels' is a term uniquely associated with the L-304. It will suf-
fice to say, at this point, that a program level represents the beginning of a discrete
set of calculations such as a subroutine or series of subroutines. One can arrange
the levels in any priority sequence desired (much as a queueing table) and, with the
program-controlled "enable and disable'' capability, can accomplish the essence of

multiprogramming techniques.

"Interrupt' is true to its dictionary meaning, i.e., disturbing the normal
course of events. The normal course of events within a computer is a progressive
execution of instructions. An interrupt can occur at any instant (normally due to
input/output transmission requests or timing alarm). This, assuming no higher
priorities are active, causes control to pass to a preselected series of instructions

(input/output channel dependent) which dictate performance of a preestablishedaction.

"Event dependent'' is a term used to describe a sequence-dependent event

problem, i.e., Event A must be performed before Event B, Event B before C, etc.

"Time dependent'' is used to describe a problem that requires performance
of specific tests at predesignated intervals., Most real-time problems are a mix of

both event- and time-dependent functions.

The remainder of this discussion demonstrates that the specific program-
ming and hardware techniques chosen to be implemented by Litton succeed in prin-
cipal and in practice in meeting the goals of programming simplicity as well as the
modularity prerequisite to system expansion or program modification. This can best
be done by first showing in detail how the hardware of the L-304 merely implements
in logic several of the more repetitive and time-consuming tasks inherent in the pro-
gramming of real-time systems and then illustrating how the software makes use of

this logic to assure minimum effort for growth and program modifications.
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SECTION 2

BASIC CONCEPTS

MULTIPROGRAMMING

Many of the design features of the L.-304 were incorporated to facilitate the
use of multiprogramming techniques. Therefore, in the development of this discus-
sion, Litton reviewed the literature to determine the history and extent of the use of

multiprogramming.

Historical Evolution

The first reference to the actual use of multiprogramming is found in the

1961 Proceediﬁgs of the Eastern Joint Computer Conference. Of the two papers on
this technique, the one of greater significance provides a deéscriptionof the RCA 4100
computer developed for the BMEWS (474L) system. This paper, entitled "The Logic
Design of the FC-4100 Data Processing System, '' describes the implementation of
multiprogramming in this early RCA computer. Moreover, multiprogramming sys-
tems have since been described at virtually every major computer conference held
since that date. Multiprogramming systems are currently incorporated in the IBM
system/360 series, the CDC 6600, the GE 634, and the SDS Sigma 7, as well as, in
Europe, the Bull Gamma 60 and the Ferranti Atlas.

Development of Multiprogram Logic

Until the mid-1950's, computer programs were serial in nature in the most
complete s.ense. Each action had to await the completion of the preceding action.
Even input/output operations required one or more program steps for each word,
character, or even bit transferred to or from a peripheral device. Programs were
generally required to enter tight timing loops in order to synchronize the data trans-

fer to the rate acceptable by the ancillary device.

By 1957, the first elements of logic that interleaved operation with program
interrupt had already become commonplace in the new generation of transistorized

computers, The specific features implemented at that time were:

a. A buffered input/output channel operating in an interleaved fashion with

program execution.

b. A real-time clock capable of being set and interrogated by the computer.



While this system had the advantage of permitting program and input/output
functions to operate in an interleaved manner, each input/output operation was still
required to be executed serially and much program time was still lost in periodic
testing for completed data transfers and in periodic interrogations of the real-time
clock. The next step was to cause an interruption to the running program upon the
completion of the input/output operation. This was accomplished by transferring
program control to a predetermined memory location in which the starting address
of an interrupt source analysis program was generally stored. This analytical pro-
gram determined why the interruption took place and whether or not to proceed with

the previous program or enter a new program.

As long as input/output operations proceeded serially, the task of controlling
the system was fairly simple. Then, computers with multiple or time-shared input/
output channels were introduced. These machines allowed many input/output units to
operate simultaneously and allowed each to transfer data in an interleaved manner
with the program. This increased the complexity of control of both the multiple data
transfers and the multiple interrupts. At first, the multiple input/output transfers
were controlled by independent unit controllers such as magnetic tape controllers,
printer controllers, card read-punch controllers, etc. Each contained a set of con-
trol registers which kept track of its set of data transfers. Later, as the ratio of
computer-to-peripheral-speed increased and as more simultaneous operations could
be done in the central processor, the control of peripherals was moved back into‘the
data processor with the majority of systems storing the input/output control words

in memory.

The first solution to the interrupt control problem made maximum use of soft--
ware and minimum use of hardware (probably because the repetitive operations had
not as yet been clearly identified and defined). It consisted of the interrupt source
analysis program which was still a Singlé program that was entered automatically
as a result of the completion of any input/output transfer and which scanned all the
possible input/output channels to determine which was causing the interrupt. To en-
sure that the interrupt source analysis program would run to completion, it generally,

as its first step, inhibited all other interrupts,

Of course, during the execution of this time (and memory) consuming inter-
rupt source analysis program, other devices sometimes completed their transfers
and, as soon as the interrupt inhibit was removed, caused the computer to once
again enter the interrupt source analysis program. This interrupt causes the addi-
tional problem (only lightly alluded to until now) that there is now a queue of partially

completed programs, each waiting to be executed.
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Determination and control of the order in which these programs were to be
exccuted then became the function of another program — the priority determination
routine. This program generally worked from a set of tables which listed, in pre-
determined order, the relative priorities of the various input/output control and
processing routines, The difficulty of the programmed maintenance of a rapidly
changing queue without some hardware aid became evident quite early in the develop-
ment of this concept. An early attempt at a partial solution to this problem appeared
in the NCR-304 which provided for separate transfer points for each type of input/
output interruption which could occur such as completed transfer, parity error, bro-
ken tape, no response from unit, etc. A fixed priority for each type of interruption

was established so that the most critical events could always be processed first,

A later attempt at solution was in the Burroughs B-5000 which incorporated
logic push-down pop-up lists which, among other things, reduced the complexity of
maintaining priority queues. Since that time, many other computers have also in-
corporated hardware aids for interrupt control. A partial list would include the
IBM 360-92, CDC 6600, SDS Sigma 7 and the GE 635.

Another aspect of interrupt control which has not as yet been discussed isthat
of saving the status of the program being interrupted. Specifically, this consists of
saving the contents of index registers, accumulator(s), any control flags, any base
address or memory extension registers, and the register which has the address of
the current or next instruction to be executed. Although time-consuming, this pro-
cess is normally not complex, provided that the proper interrupt lockout instructions

and register access instructions are included in the computer logic.

In the foregoing discussion, it has been implied that the interrupt systems
have developed through the years to operate on a priority basis rather than on a time
slot or sequence basis. The evolution of real-time and even batch processing pro-
gramming systems has shown this to be the case. An analysis of the requirements
for successful time-slot processing should quickly show why such a scheme is partic-

ularly inapplicable to a large scale military data system.

In any system, as long as events proceed in an orderly and predictable man-
ner and the time duration can be predicted within a reasonable tolerance, the time-
slot system will work well. However, if variation in event sequence or timing is a
possibility or if actions can crowd in on one another (such as all console operators
requesting new coordinate computations simultaneously with detection of a test error

s

in the radar preprocessor interface unit and receipt of an '"initiate communication"

pulse, the time-slot approach quickly falls out of synchronism. Thereafter, some



kind of priority sequencing must be established. A complex resynchronizing routine
must be executed or events must be delayed, possibly to the point where the system

is no longer operating in acceptable real time.

A priority system, on the other hand, when properly implemented frees the
programmer from having to maintain a series of complex time relationships (re-
quired of the time-slot system) while at the same time assuring the system that the
highest priority programs will always be executed before less important or less

timely programs.

L-304 Implementation of Multiprogram Logic

The 1L.-304 computer has implemented in logic those repetitive and well-
defined functions of a priority interrupt system which had once been performed by
program but which are more and more being assigned to hardware. Transferring
these functions from programming logic to hardware logic removes from the pro-
grammer the burden of designing, coding, and debugging the bookkeeping portion of
interrupt analysis and priority control routines. The basic principle behind the exe-
cution of these routines is not changed by the method of implementation. For exam-
ple, the status and mask (program activity) registers of the L.-304 are merely a
hardware implementation of the priority determination routine and the queue. The
key words of the input/output control have taken the place of the registers formerly
found in the independent input/output controllers. The termination word has taken
the place of the interrupt source analysis routine by directly causing an entry into
. the specific program level required rather than having to scan the possible inter-

rupting units to determine which should be serviced.

Figure 2-1 illustrates the fundamental sameness of these operations per-
formed on an L-304 and on a computer in which these bookkeeping functions must be
programmed. It can be seen that the steps are logically identical but that, in a com-
puter where these operations have not been incorporated in the hardware, the num-
ber of instructions and the execution time required become quite extensive. In the
I.-304 and in several of the other scientific and commercial computers previously
mentioned, portions or all of these functions have been built into the hardware.
Therefore, the processing time spent in interrupt source analysis, priority deter-
mination, and input/output control is reduced to a minimum. There is also a con-

siderable reduction in program complexity and, consequently, in memory used.

There is no feature in the L.-304 that has not been previously used in some
other computer. Thus, no new, untried technology is proposed. However, no other

computer has the particular combination of desirable features required for efficient

2-4



SOFTWARE IMPLEMENTED COMPUTER

IF ALL SOFTWAR
200-500 PROGRAM STEPS
TIME TO EXECUTE:

PATH  YES 500 u SEC-2MS
PATH NO 200, SEC-IMS

—) EXECUTE PROGRAM

~

COMPLETION OF AN
1/0O OPERATION

~

ENTER THE |NTERRUPT
SOURCE ANALYSIS ROUTINE

INHIBIT INTERRUPTS

~

SCAN FOR WHICH UNIT IS
CAUSING THIS INTERRUPT

RIORITY?

PROGRAM BE
REMOVED

—) EXECUTE ROUTINE

NO

L-304
ALL HARDWARE LOGIC
NO PROGRAM STEPS
TIME TO EXECUTE:

PATH  YES 9, SEC
PATH NO 3uSEC

~

COMPLETION OF AN
1/O OPERATION

-~

INTERRUPTS AUTOMATICALLY
INHIBITED

~

ACCESS THE TERMINATION
WORD AND DETERMINE

THE CURRENT

PLACE INTERRUPTED
ROUTINE IN QUEUE

-

INITIALIZE ENTRANCE TO
NEW ROUTINE, |.E. INDEX
REGISTER, ACCUMULATORS,
FLAGS, CONTROL COUNTER

REMOVE
INTERRUPT
INHIBIT

PROGRAM BE
INTERRUPTED

INITIALIZE ENTRANCE
TO NEW ROUTINE

REMOVE

INTERRUPT
NHIBIT

Figure 2-1.

Control Functions

Hardware versus Software Implementation of




real-time data processing. It is this synthesis (based on Litton's experience with
other tactical data processing systems) that is unique and that will serve to permit

the rapid, economical programming of the data processing function.

MULTIPROCESSING

The use of multiprocessing techniques represents an equally dramatic pro-
gression of system development over the past several years. However, in the case
of multiprocessing, the result of this development is more easily discernible. When
considering the rapid task completion and mission survivability inherent to a multi-
processor configuration, its effectiveness is an obvious conclusion. As stated in

ESD-TDR-64-168 dated January 1965, by D.R. Isreal of the Mitre Corporation:

", ,.the modular concept has extended to the central processor itself,
and the truly modern machine design includes the capability of em-
ploying several processors operating in parallel and sharing the avail-
able memory and in-out modules. This permits what has been termed
'multiprocessing' with several processors operating together on a sin-
gle job (it is to be distinguished from 'multiprogramming' in which one

machine works on several different tasks). '

Historical Evolution

A multiprocessor configuration does not impose any significant design alter-
_ ations on the processors comprising the configuration. For this reason, it is unnec-
essary to precisely trace the development of this concept; it will suffice to state a

few general comments applicable to the document.

Multiprocessing, as indicated by D. R. Isreal, permits several machines to
operate on a single job. This implies separate computers having the capability of
information exchange. However, to realize the extremely high effective operating
speeds typical of multiprocessor systems, the information exchange medium must
be carefully considered. The multiprocessor arrangement can achieve maximum
effectiveness only as a result of software design which assures the fact of ""several
processors operating together on a single job.'" Limiting the software to anything
less than a direct memory exéhange medium defeats the intent of the multiprocessor

system.

Perhaps the most widely known attempt at multiprocessing in a military sys-
‘tem is the Naval Tactical Data System. The NTDS employs a parallel operation of
two or three computers, depending on the anticipated environment and ship size. (A

one-computer level is employed occasionally on smaller ships.) The system subtasks
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are assigned to the different computers: one computer has tracking; another, inter-

cept control; and the third, display functions, for example.

However, the NTDS does not employ a common memory between the proces-
sors; the computers exchange information via input/output channels. This requires
a time-consuming data encode and decode program in each computer. Another seri-
ous drawback is the machine time wasted for this input/output information exchange
which could be devoted to meaningful input/output communication and program

operation.

All major computer manufacturers have since realized this limitation and
have configured subsequent multiprocessor systems in a noninterference,common
memory arrangement. Thus, the higher effective operating speed is attained as well

as the much enhanced system maintainability and survivability.

L-304 Implementation of Multiprocessing

As indicated in the previous discussion, a multiprocessor configuration does
not generally impose modifications upon the basic computer design. The success of
the arrangement is keyed to the software and the surrounding equipment. In recog-
nition of these key inputs, a suggested Litton multiprocessor arrangement has
been ''designed" accordingly (and is discussed in Section 4, Typical ATDS Envi-
ronment). This configuration yields system performance in terms of capability,
speed and flexibility that is sufficient to not only meet all present requirements

of the system, but also to provide a capacity for future system expansion.
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SECTION 3

COMPUTER FEATURES

COMPARISON OF COMPUTER FEATURES

The design features of the L-304, how they compare with features of other
computers, and why they are preferable for airborne tactical applications are
discussed in this section. The L-304 is specifically compared with two other éom—
puters — the Navy AN/USQ-20B and the IBM System 4 PI, Model EP (the Model EP
is the largest of a group of 4 PI models). The AN/USQ-20B was selected because
of the general familiarity among Naval personnel with the AN/USQ-20A used in the
NTDS,* as well as its widespread reputation as a good computer (Litton agrees with
this contention). The System 4 PI, Model EP was selected because of prevalent
familiarity among all computer users with the System 360 computer family and the
fact that the System 4 PI, Model EP is functionally near equivalent to selected 360
models. The System 4 PI is presented, rather than the 360 itself, since it is a

militarized processor.

The validity of the comparative analysis illustrated in Table III-1 is keyed to
Litton's experience with the selected machines. Specifically, the USQ-20B was
Government-furnished equipment that was incorporated in the Litton-developed Beach
Relay Facility; and the Litton programming section has employed the System 360
extensively in developing the airborne tactical programs. (Approximately 28,000
instructions were programmed on the 360 to support airborne programs developed

prior to L-304 availability.)

Features Comparable to Other Computers

In the Table III-1 comparison of the three computers (frequently referenced
in this section), the first five items are essentially self-explanatory. These are
L.-304 features equivalent to the indicated USQ-20B and System 4 PI features. How-
ever, Items 2, 4, and 5 indicate some further capability and merit additional

comments,

*The AN/USQ-20B and AN/USQ-20A are equivalent for all practical purposes; the
primary difference speed.



AN/USQ-208

SYSTEM 4 PI, MODEL EP

L-304

30-BIT WORD LENGTH CAPABLE OF HALF-~
WORD ACCESS.

32-BIT WORD LENGTH CAPABLE OF HALF-
WORD OR MULTIPLE-WORD ACCESS.

32-8IT WORD LENGTH CAPABLE OF HALF-WORD
ACCESS.

2. 2 ACCUMULATORS AND 7 INDEX REGISTERS. | 2. 16 REGISTERS EMPLOYABLE AS ACCUMU- 2. 8REGISTERS PER LEVEL EMPLOYABLE AS ACCUMU-
3. 62-INSTRUCTION REPERTOIRE. LATORS OR INDEX REGISTERS. LATORS OR INDEX REGISTERS.
¢, UPTO 16 INPUT/OUTPUT CHANNELS., 3. 75-1N5;|:u:nog REPE:;TSCI)RE (NOT 3. 65-INSTRUCTION REPERTOIRE.
INCLUDING FLOATING POINT).
5. 7-DAY INTERNAL REAL-TIME CLOCK. 4. UPTO 64 INPUT/OUTPUT CHANNELS,
4. UPTO 262 INPUT/OUTPUT CHANNELS. 5. MANY REAL-TIME CLOCKS (EACH CAPABLE OF PRO-
5. 15.5-HOUR INTERNAL REAL-TIME CLOCK GRAM INTERRUPTION).
(CAPABLE OF PROGRAM INTERRUPTION).
6. DIRECT MEMORY ACCESSING TO OVER 6. PROGRAM-CONTROLLED MEMORY, EXPANDABLE
4 MILLION WORDS. TO 131K WORDS,
7. COMMON MEMORY ACCESS BETWEEN 7. COMMON MEMORY ACCESS BETWEEN PROCESSORS.
PROCESSORS. 8. EXPANDED INSTRUCTION REPERTOIRE INCLUDING
8. IMPROVED INSTRUCTION REPERTOIRE SUCH IMPROVEMENTS AS:
INCLUDING: A MOVE
A. MOVE 8. EXECUTE
8. EXECUTE C. TEST AND SET BIT
C. BINARY-TO-DECIMAL OR DECIMAL- D. GATED COMPARISON
TO-BINARY CONVERSION
E. EXCHANGE
F. INPUT/OUTPUT TRANSFER DIRECTLY FROM
PROCESS REGISTERS
G. THOROUGH LITERAL ADDRESSING CAPABILITY TO
MEMORY
9. AUTOMATIC PROGRAM QUEUEING AND TRIGGERING .
10. TOTAL OF 64 PROGRAM LEVELS, EACH WITH OWN
PROCESS REGISTERS AND MEMORY BANK SELECTION
(SAVED AUTOMATICALLY WITH EACH LEVEL CHANGE).
11.  INPUT/OUTPUT TRANSMISSION VIA 8-BIT CHARACTERS
OR 32-8IT WORDS.
Table III-1. Comparison ot Computer Features 1601-2




Dual-Purpose Registers

As shown in Items 2 and 4, the L-304 has a total of 512 dual-purpose regis-
ters, 8 per program level, with up to 64 levels. These are referenced as process
registers because they are available for use either as accumulators or index regis-
ters. In the AN/USQ-20B, index registers are modified only by special instructions;
consequently, convenience of index manipulation is somewhat restricted and the index
value must often be transferred to an accumulator to accomplish the manipulation.

The dual-purpose feature of the L.-304's registers saves considerable instructions.

Fifteen of the sixteen general-purpose registers in the System 4 PI also have
this dual capability. Register 0 is available only as an accumulator because a zero
entry in the instruction implies no operand modification. In the L.-304, the instruc-
tion addressing mode is specified in a distinct field; it is not inherent to the index

register designation field.

Input/ Output Channels

The L-304 programmer may directly access up to 64 input/output devices.
Eight primary channels are available, each with eight bidirectional subchannels.
Multiplexing units are necessary on each primary channel if more than one subchan-
nel is desired. These multiplexing units need not remember subchannel selection;

all input/output transfers are coded directly to the subchannel.

As each service request is sensed in the L-304 input/output control section
(IOC), a control word (key word) uniquely associated with that subchannel is accessed.
The key word, which is stored in memory, indicates the transfer mode and data mem-
ory location as well as the transfer count for that subchannel. The completion of the
 discrete data transfer on that subchannel includes updating the key word and replac-
ing it in memory. The programmer is unaware of the actual data transfer until the
transfer is terminated. At that instant, the program operation is interrupted and the
Program Activity Register adjusted (see Program Level Access discussion to follow).
The program level specified in the input/output termination word (also uniquely asso-
ciated with that subchannel) specifies the program level to be activated. This con-
trol word contains the termination cause for subsequent program inspection and con-
tains two, program-established program level designation fields, one for a normal
termination (transfer count decrements to zero) and one for an ""abnormal'' termina-

tion (device error or intentional interrupt).

The previous paragraph, although an L-304 operation description, nearly de-

tails the input/output operation of the AN/USQ-20B as well. The primary difference



is, in the AN/USQ-20B, a data transfer termination results in the passing of com-
puter control to a fixed memory location unique to each input/output channel. This
location is usually preset by the programmer with a transfer instruction to an input.
output servicing program. In the L-304 computer, control is transferred directly
(no intermediate steps necessary) to the program level indicated in the input/output

termination word.

The input/output termination operation of the System 4 PI is considerably less
flexible than the L-304 for the real-time system application. It is readily apparent
that, in a typical commercial, multiuser, diverse tasking environment, full computer
and input/output control is best left to an omniscient supervisor program. Anything
short of this would lead to wasted machine time and thoroughly disgruntled users.
However, in a real-time system, fast, precise input/output control is mandatory for

maximum system effectiveness.

An input/output termination, in the 4 PI, results in the input/output control
section interrupting the CPU to an input/output servicing routine. Unfortunately,
this interruption is not unique to a subchannel; thus, all input/output terminations,
of any sort, must filter through one servicing routine. In a typical ATDS, a
minimum of 300 to 400 input/output terminations (excluding clock interrupts)
must be processed each second. The source determination and routing decisions
required by the 4 PI for this routine (which are unnecessary in the L.-304) are
not trivial, as was brought out in Section 2. A comparison of the event sequences
of both the System 4 PI and L-304 machines is provided in Appendix C of this

volume.
Real-Time Clock

Tactical functions often are operated on a prespecified time base. This base
may be arbitrarily selected or may be the result of input/output operations. In
either case, it is necessary to activate a subroutine within a minimum tolerance of
relative time. In order to satisfy this requirement, a ''clock-watching' process is
necessary, i.e., some procedure must be established to assure that, at selected
intervals, a real-time clock is interrogated and subsequent decisions regarding pro-
gram routing are made. Traditionally, this requires either a clock monitor sub-
routine or the performance of clock checks at regular intervals in all programs.
Also, various counters representing the desired time bases must be incremented
(or decremented) and, if appropriate, the counters be reset and computer control be

transferred to some other program ''whose time it is to run.' (See Appendix E.)
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The facility for many real-time clocks, each capable of program interruption,
frees the programmer from tedious and time-consuming clock watching duties.* A
total of 64 real-time clocks are available in the L-304 since its IOC section merely
references a program-established transfer mode to determine if a channel is being
employed as a clock input device. If the key word transfer mode (discussed under
"Input/Output Channels''} for the subchannel currently requesting computer service
equals 1, the IOC merely decrements the key word block length count. When the
count decrements to zero, the normal input/output termination sequence is performed.

This feature is discussed to some detail in Section 4.

Advanced L-304 Features

Items 6 through 8 of Table III-1 indicate those features of the L-304 and Sys-
tem 4 PI not provided by the AN/USQ-20B. Similarly, Items 9 through 11 indicate
features unique to the L-304. All of these features, with the exception of Items 6
and 7, were previously available as software techniques. That is, Items 8, 9, 10,
and 11 represent features which can be accomplished by programmed instructions.
All of these processes are performed by the L-304 with no additional programming

required.

Items 7, 9, and 10 are elaborated upon in Section 4. Item 8is self-explanatory

with the‘following comments provided for amplification.

The System 4 PI computer has optional floating-point-arithmetic logic. How-
ever it is not included here since this discussion is concerned primarily with mili-

tary system applications.

The L.-304 assembler was developed on both the System 360 (prior to L.-304
availability) and the L.-304. Appendix B of this volume contains a comparative sum-
mary of'the instructions required in both computers for this application. Briefly
stated: Appendix B indicates that the expanded repertoire of the L.-304 made it pos-
sible to implement the same problem on the L.-304 while requiring 17 percent fewer

instructions than were required with the 360,

The thorough literal addressing capability of the 1.-304 provides a considerable
time savings. In a typical ATDS program approximately 40 percent of all instruc-
tions (including transfers) might employ the literal addressing mode. Since this
mode allows one less memory access per instruction (the operand is located in the
instruction's A-field) than the direct mode, for example, total program operating

time would be considerably abbreviated.

" A single clock capable of program interruption alleviates this problem but still re-
quires a control routine to maintain the time base counters and determine program
routing.
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Memory Accessing

Item 6 lists the L-304 feature of program-controlled memory access which,
in a modular fashion, enables memory growth to a maximum configuration of 131,072
32-bit word locations. At any single instruction execution, the L-304 is actively con-
nected to four memory modules, equivalent to the capacity of the AN/USQ-20B. How-
ever, in the L-304, the programmer employs a unique instruction to modify the mem-
ory bank assignment register, reconfiguring the module selection to access additional
locations. This memory selection is unique to each program level, a program on one
level being unaffected by module selection of a program on a different level. Also,
the selection is automatically saved, in memory, when leaving a level and restored
when returning to that level. Appendix G contains a brief description of the memory

module selection feature (with reference to expansion to 16 modules).

The L—304's total accessibility to 16 (8192-word) modules falls far short of
the System 4 PI memory capacity.* However, the LL-304's modular selection scheme
allows dynamic system modification in the event of memory failure, a capability which
is unavailable in either of the other computers. The L-304 instruction repertoire
uniquely includes two memory adjustment instructions which allow the programmer to
dynamically adjust the memory bank selection and isolate the failed module from the
system. Assuming a spare memory module is included in the system,’ the L-304
tactical program could easily substitute the spare module for the failed one, reload
only the substitute module from magnetic tape if necessary, and continue the com-

plete tactical operation.

Input/Output Data Transfer

The L.-304 IOC section enables the user to carry out data transfer either with
full 32-bit words or 8-bit characters. When using the character mode, the data word
packing and unpacking is performed with no program intervention necessary. In an
ATDS environment, significant time savings are realized with this feature when real-
time data extraction is desired. Since no unpacking is required, as would be in the
AN/USQ-20B, all data areas can be directly output to the 9-channel (8-bit characters

plus parity bit) magnetic tape unit with no intermediate formatting.

“The business data processing environment which the System 360 is accustomed to,
generally imposes far greater memory capacity demands than most tactical systems.



In the System 4 PI, all data transfer occurs in 8-bit characters. Although
data packing and unpacking into 32-bit words is inherent to the scheme, additional
logic would be required in the majority of military system input/output interface
units to encode or decode the data into these characters. Also, the input/output

servicing time is quadrupled because four input/output service requests are necessary

ste ste
R

for each single request to the L-304.

PROGRAM ACTIVITY REGISTER OPERATION

Perhaps the most interesting and least understood features of the L-304 are
automatic program queueing and triggering. Subsequent paragraphs elaborate on the
use of the queueing and triggering mechanisms in the 1.-304. This subsection at-
tempts to briefly explain these procedures to the unacquainted observer. A firm
understanding of these is desirable in order to fully grasp and appreciate the forth-

coming discussions.

Program Level Access

The Program Activity Register, depicted in Figure 3-1, occupies four mem-
ory locations and has two memory bits for each program level — an enable bit and a
status bit. The enable bit is a program mask (only modified by instructions) control-
ling level activation and the status bit (set by either instruction or I/O termination)
indicates current level activity. Whenever a particular instruction is executed or
whenever an I/ O-initiated store cycle into the program activity register is detected,
a search of the PAR is performed to determine the highest priority active program
level. This search consists of a logical comparison of the bits in the enable section

with the bits in the status section.

The L-304 automatically ""searches' the PAR by accessing each PAR memory
word in turn (the enable and status bits for Levels 60-77 are in the most significant

word, Levels 40-57 in the second word, and so on) and logically ANDing the enable

“In the 360 commercial applications, the primary input/output media are magnetic
tape units and discs each of which store data bytes (8-~bit character).

B3

This time is not always subtracted from instruction execution time since the Sys-
tem 4 PI input/output section can be independent from the CPU. In any event, in a
full multiplex operation with several input/output devices, the IOC must ensure rapid
response to all requests or risk data loss.
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bits with the status bits. If a logical ""1'' is detected after the AND operation, that

level is activated. If a '"1" does not exist, the next word is accessed and the opera-
tion is repeated on that word. The search continues until a ""1" is detected or until
all 64 levels have been checked. Level 0 is activated if no other level satisfies the

activation criteria.

The search is always performed from the most significant enable and status
bits to the least significant. This results in the current highest priority program
level assuming computer control. The total operation takes only 2.5 to 10 micro-

seconds, depending on the number of memory words that must be accessed.

For example, assume the following PAR configuration (in this example assume

only six program levels):

Program Activity Register
543210 ~=—Level Number —e= 543210
01011 000 oo
Enable (Mask) Status (Activity)
Section ‘ Section

With this configuration, program Level 1 would be active because this level is the

highest with a logic ''l"" common to both its enable bit and status bit.

If the program operating on Level 1 wished to activate Level 4, it would merely

set the status bit for Level 4:

543210 543210

010111 oo o010

Level 4 would be activated because it is the highest priority "active' level. If
Level 1's program had set the Lievel 0 status bit, a search would be performed that

would result in control returning to Level 1 because Level 0 is a lower priority level.

Similarly, if an I/ O interrupt resulted in Level 2's status bit being set,

543210 543210

010111 0001 0

Level 2 would be activated.
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However, if the interrupt results in a selection for Level 3,

543210 543210

010111 oo(Mo 1o

Level 1 remains active because Level 3 does not have a logic '""1'" in both its

enable bit and status bit.

Program Triggering

The procedure for program level activation, once the PAR search is completed,
is similar to the I/O servicing routine triggering sequence in the USQ-20B. Fig-

ure 3-2 illustrates this similarity.

As the figure indicates, the L-304 process of activating a program level is
very similar to the USQ-20B process of activating a subroutine after an external in-
terrupt or I/O transfer termination. When an external interrupt or I/O data transfer
termination is sensed in the USQ-20B, control is directed to a fixed memory location
uniquely associated with the interrupting I/O channel. This location is generally pre-

set with a transfer instruction to an I/O servicing routine.

In the L-304, when a program level is to be activated, the computer's instruc-
tion location register is set with the contents of a fixed memory cell associated with
that program level and the computer begins executing instructions at that location on
the new program level. When a level is exited, the instruction location register con-
tents are stored in the unique location for that level. This enables the program to re-

sume operation where it left off when the level is reentered.
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SECTION 4

TYPICAL ATDS ENVIRONMENT

GENERAL

The L-304 computer system in a typical airborne tactical data system
could utilize the many L-304 advanced design features to enhance system opera-
tion. These features have been discussed in Section 3. The purpose of this sec-
tion is to elaborate upon this discussion with examples of a typical ATDS program

design.

MULTIPROCESSOR CONFIGURATION

An ATDS multiprocessor configuration, as presented in Figure 4-1, might
consist of: (1) two processors, (2) five 8K word memory modules, each accessible
from both processors, and (3) a control I/O interface unit which houses interproces-
sor communication logic and real-time clock, magnetic tape unit, IFPM panel, and

computer control panel interface logic.

This multiprocessor configuration would allow for over 160 percent system
functional operation expansion, based on a worst-case system load, as well as

greatly increasing total system reliability in several forms.

System Expansion Capability

In earlier tactical systems, the operating capacities ofthe systems were gen-
erally exceeded with little effort expended toward improvements on the original de-
sign. Since functional improvements are inevitable, a design which allows more than
100 percent additional real time entirely for system modification and expansion is
clearly preferable over one which does not. The three- and four-computer configu-
rations now used within other tactical systems are examples of unanticipated expan-
sion. The time-consuming communicationnecessary ina multicomputer configuration
{all via I/O) results in the requirement for three separate computers to do the job of

two having common memory access,

Considering only a typical AEW mission, the total maximum system load

can easily be handled in a single 1.-304. These percentages indicate that a
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second processor would be totally available for expanded functional responsibili-
ties. The additional responsibilities may easily encompass an improved version
of the tactical program, as well as additional assignments such as ECM or ASW

processing.

System Reliability Enhancement

In a typical "ATDS'", each processor would have the ability to communicate
with each memory module (up to 10 modules) and with all of the I/O interface
assemblies. This communication capability allows both processors to perform
dynamic system corrective action in the event that failures occur that require
system degrading. A small amount of logic in each I/O unit is uniquely associated
with each processor. If the failure occurs in this area, the I/O unit will maintain
a meaningful data transfer path when connected to the other processor. In a typ-
ical tactical program design, if either processor detects an error in an I/O inter-
face assembly (periodic, program-controlled data-transfer tests are performed on
each converter), the failed assembly will be automatically (no operator action neces-
sary) switched over to operate from the other processor. This relocation will be
performed in such a manner that the operator and functional programs will not be
aware of the switch. (Note: This is not a degraded operation.) However, if the
failure occurs in the logic common to both processors, it will be detected in both
processors, the I/O will be idled if necessary, and the operator will be notified of

the error.

Processor Verification

Perhaps even more valuable is the processor verification feature provided
by the multiprocessor configuration. Since it is possible to maintain full system
operation in a single processor and to shift the tactical load between the prdcessors,
one processor can assume the responsibilities of the other (failed) processor as well
as maintaining its own. Also, the good processor can disable the bad processor to
prevent unanticipated harmful actions in the bad processor. More specifically, in
the retrofit system, when a processor detects a General Machine Test error in the
other processor (the GMT runs once per scan in each processor and the result is
verified by the other processor reSpective'ely), it will assume the full system opera-

tion and will disable the other processor.

“This powerful capability must be treated carefully but is nevertheless valuable.
Software traps are set up such that a failed computer cannot disable a functioning
computer.
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In future expanded operations where one processor is performing tactical op-
erations and the other ECM, for example, if a processor fails, the system opcrator
will be able to select what operation or even what subfunction mixhe wishes to main-
tain. The good processor will automatically assume those responsibilities regard-

less of its prior function.

PROGRAM PRIORITY STRUCTURE

In a conventional computer, the function of program sequencingandtriggering
falls upon an executive routine. This '""master caller" traditionally performsa series
of decisions, often employing a queueing file, to determine the order of programs it
is to run in the normal sequence of events (see Appendix D). A clock-watching rou-
tine usually is included in this category also, its function beingto monitor the system
real-time clock and to provide the master caller (or do the calling itself) with sup-

plementary information as to the order of events (see Appendix E).

This effect is precisely what is provided via the L-304 Program Activity Reg-
ister with the exception that the queueing file interrogation is performed automatically.
After a System Initialization routine has preestablished the Program Activity Regis-
ter the dynamic sequencing of events will continue without necessity for program

control,

An ATDS Program Priority Structure

A typical priority structure for an ATDS Retrofit Program including the
program level number, program name, and procedure by which that level/program
would be accessed. The access media column containing another level number in-
dicates the program at that other level is directly setting the PAR status bit for this
program level. Activations caused by clock terminations indicate that a prespecified
number has been counted down to zero by continucus cone-kilocycle clock pulses on the
associated I/ O channel (see Section 3). The I/O terminations occur when a data trans-

fer is complete or an external interrupt is received into the L-304.

Program Sequencing

It has alrcady been pointed out that the program priority determination and
triggering in a conventional computer is accomplished with a ""master caller'" sub-
routine and some scheme of periodically monitoring the real-time clock. This ap-
proach gencrally allows for a fixed sequence of processing functions and a higher
priority, immediate-service set of I/O control routines. The servicing priority of

the latter routines is always determined by the most recent interrupt to the computer.



In future expanded operations where one processor is performing tactical op-
erations and the other ECM, for example, if a processor fails, the system operator
will be able to select what operation or even what subfunction mixhe wishes to main-
tain. The good processor will automatically assume those responsibilities regard-

less of its prior function,

PROGRAM PRIORITY STRUCTURE

In a conventional computer, the function of program sequencingandtriggering
falls upon an executive routine. This '"master caller' traditionally performs a series
of decisions, often employinga queueing file, to determine the order of programs it
is to run in the normal sequence of events (sée Appendix D), A clock-watching rou-
tine usually is included in this category also, its function beingtomonitor the system
real-time clock and to provide the master caller (or do the calling itself) with sup-

plementary information as to the order of events (see Appendix E).

This effect is precisely what is provided via the L.-304 Program Activity Reg-
ister with the exception that the queueing file interrogation is performed automatically.
After a System Initialization routine has preestablished the Program Activity Regis-
ter the dynamic sequencing of events will continue without necessity for program

control,.

ATDS Program Priority Structure

Table IV-3 depicts the priority structure for the ATDS Retrofit Program in-
cluding the program level number, program name, and procedure by which that level/
program is accessed. The access media column containing another level number in-
dicates the program at that other level is directly setting the PAR status bit for this
program level. Activations caused by clock terminations indicate that a prespecified
number has been counted down to zero by continuous one-kilocycle clock pulses on the
associated I/ O channel (see Section 3). The I/O terminations occur when a data trans-

fer is complete or an external interrupt is received into the L-304.

Program Sequencing

It has already been pointed out that the program priority determination and
triggering in a conventional computer is accomplished with a '""master caller' sub-
routine and some scheme of periodically monitoring the real-time clock. This ap-
proach generally allows for a fixed sequence of processing functions and a higher
priority, immediate-service set of I/O control routines. The servicing priority of

the latter routines is always determined by the most recent interrupt to the computer.
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LEVEL ACCESS
NUMBER PROGRAM MEDIA
77 PROCESSOR RESET COMPUTER RESET
75 TRACER PAR STORE CYCLE
74 MEMORY CHECK LEVEL 7
62 IFPM AND SYSTEM CONTROL LEVEL 61
61 IFPM AND SYSTEM CONTROL CLOCK, LEVEL 27, OR I/O
56 SPARE CLOCK CHANNEL CONTROL CLOCK
55 MISCELLANEOUS 1/0 ERRORS /O
53 CD BUFFER TERMINATION I/0
52 ADD TRACK TO SYSTEM LEVELS 27, 21, 15, 13
51 LINK=-11 1/O ERROR OR OUTPUT INTERRUPT I/O OR LEVEL 47
47 LINK=-11 BUFFER TERMINATION 1/O OR LEVEL 25
45 DISPLAY BUFFER TERMINATION /O OR CLOCK
44 DISPLAY NIXIE CONTROL 1/O OR LEVEL 27
43 LINK=4 INPUT PROCESSOR /0
41 LINK=-4 OUTPUT PROCESSOR 1/0
37 ERROR CONTROL /0
36 INITIATION CONTROL CLOCK OR I/O
35 DISPLAY EQUATIONS LEVEL 34
34 CRITICAL LOOP EQUATIONS LEVEL 33
33 /O CONTROL CLOCK OR I/O
27 DISPLAY INPUT PROCESSOR LEVEL 45
25 LINK=11 OUTPUT PROCESSOR LEVELS 51, 47
23 CD INPUT PROCESSOR LEVEL 27
21 GENERAL BOOKKEEPING (INCLUDING DISPLAY
OUTPUT FILE UPDATING) LEVEL 27
17 INTERCEPTION CALCULATIONS LEVELS 11, 5
15 CORRELATION AND TRACKING LEVEL 23
13 LINK=-11 INPUT PROCESSOR CLOCK
11 INTERCEPTION EXECUTIVE LEVEL 15
7 GENERAL MACHINE TEST LEVEL 61
5 INTERCEPTION TEWA EXECUTIVE

Table IV-3. ATDS Program Priority Structure
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The L-304 allows for the same orderly sequence of processing functions while
not requiring any "master caller' routine. The program operation time saved, which
is traditionally wasted in the '"master caller's' intricate decision paths,* can be con-
siderable (5 to 10 percent). In the L.-304, this time becomes available for more
meaningful functional operation. Also program efficiency and modularity is en-
hanced since all programs are no longer dependent on some master program and,
similarly, never have to determine if it is time to return control to the '"master cal-
ler." The same I/Oservicing procedure ofthe conventional computer is permissible in
the L -304 with the added feature of realistic priority determination among these I/O
controllers. The last I/O interrupt need not be the first processed; if it is a lower

priority than a previous interrupt, it will await its turn.

Program Priority Modification

The priority arrangement in Table IV-3, which takes into consideration run-
ning time, relative priorities, and the required system response time of each pro-
gram, is by no means inflexible. An alteration can easily be incorporated; only a
program assembly is necessary. All tactical programs have been coded irrespective
of their associated program level. A permanent priority adjustment would entail only
the changing of a few cards in the common data communications pool (compool) and

reassembling the tactical program,

Futhermore, immediate dynamic adjustment of the system operating sequence
is facilitated in the L-304. It is readily appreciated that, in a conventional computer,
the dynamic adjustment concept would require additional decision paths in the '"master
caller' routine. For example, flags are necessary to indicate and remember a sys-
tem failure which dictates a change in the normal program sequencing. After de-
termining that it is program X's turn to operate, the '""master caller' must then in-
spect the flag for that program to ascertain if any sytem failures had occurred such
that program X should not be called at this time. This decision logic involves sev-

eral instructions and is exercised frequently.

The program activity register concept greatly facilitates in-flight program
flow modification to suit the current system environment. The following two exam-

ples of dynamic priority adjustment are provided to illustrate this point.

“These paths may not be lengthy, but frequent operation equals significant time delay.
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Figure 4-2., Program Activity Register Usage

Failure Downgrade

A typical system failure downgrade procedure within the L.-304 is shown in
the left half of Figure 4-2. In a typical system, various I/O unit failures may dic-
tate a system downgrade. Specifically, a particular test failure in the AN/USC-2
' Data Terminal 1/0 interface unit indicates the interceptor reply data is likely to be
garbled. Hence, it is desirable to avoid processing that information, When the test
failure occurs, the IFPM and System Control Program will reset the PAR enable bit
for the p“rogram level assigned to AN/USC-2 input processing. As long as the enable
bit is reset, the AN/USC-2 program will never be accessed. The L-304 required
one instruction, in this instance, to accomplish the same effect as a conventional

computer with several instructions, repeatedly executed.

Overload Degrade

The right half of Figure 4-2 depicts a hypothetical priority modification based
on a system overload. It is presented as further evidence of the ease with which dy-

namic priority adjustment is accomplished in the 1.-304.



The postulated situation consists of elevating the automatic weapon assign-
ment function to a higher operating priority when the system load becomes sufficiently
high that insufficient operating time is allotted to this program. This capability,
although not included in the present program design, requires the inclusion of only
a few instructions in the IFPM and System Control Program to note a system over-
load condition. These infrequently executed instructions would verify the consistency

of the environment and alter the program priority structure accordingly.

This priority restructure ha§ the effect of allocating more time for the automa-
tic weapon assignment operation. As is evident from Figure 4-2, the rearrangement
is complete with the execution of only four instructions. From that point on, the auto-
matic weapon assignment program, which is unaware of the modification, will operate
on a new program level of higher priority; thus, more real time is made available to
this function. The same sequence of four instructions will reconfigure the system to

its original priority arrangement when the system load returns to normal.

REAL-TIME CLOCK

The ideal real-time system design should be one in which a minimum of time
is spent making decisions on program sequencing as related to real-time control.
This is the sole function of a clock-watching sequence. A séheme which automates
this approach, thereby making this time (traditionally spent in the ""who's next loop')

available for useful processing is clearly preferable.

This concept is precisely what is provided in the L-304. Each of the listed
programs would employ its own real-time clock and would be activated automatic-
ally when the associated clock-channel block length decrements to zero. Thus,
each function would operate independently, on its own time base, irrespective of
other functions. Once again, program efficiency and modularity have been

increased.
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Figure 4-3. Multilevel Usage

MULTILEVEL USAGE

The L-304's program level concept allows the system designer to modularize
the functional areas of the tactical program to increase program efficiency. In a
typical system, the tactical program might be subdivided even further; the compon-
ents within a functional area would be assigned to unique program levels wherever

it is operationally expedient.

Figure 4-3 illustrates this point by depicting the level assignments of three
components of a Correlation and Association Program. This program is naturally

grouped into three distinct phases:

(1) Input data transfer reinitiation is performed on a high priority program
level. This includes no data processing; only an IFPM test, if selected,

and reinitiation of the data transfer.

(2) The computer-detector input data is preprocessed several times per
radar scan. This preprocessing consists of ground stabilizing the
radar and IFF reports and inserting them in the list processing link-

ages used in the correlation process.



{3) The main correlation program operates four times each radar scan.
Immediately following its operation, the central track store is updated

with the newly correlated radar information.

These phases of the correlation function are divided over three program levels
to increase program efficiency. Each phase operates on a unique time base, indepen-
dent of the other phases. Also, the operating time of these components varies from
very short to extremely long. Employing three levels provides a quick response time,
when necessary, relative operating priority with the other tactical functions, and the
use of distinct processor registers for each independent subfunction. The same total
effect is obtainable in other computers at the expense of extra instructions and de-

creased program modularity.

Processor Register Preservation

Multilevel allocation is also useful when considering the traditional process
register storing and restoring necessary when independent subroutines are accessed.
In a conventional computer, the first step of an I/O servicing routine, for example,
is to save the present contents of the process registers (so as not to affect the oper-
ation of the interrupted program). Similarly, when leaving the routine, the registers
are restored (see Appendix C). This operation requires several instructions and

extra memory space (a set of locations for each I/O servicing routine).

In the 1.-304, the same number of memory locations is necessary because the
process registers are actually memory locations. However, the sequence of storing
and restoring the registers is performed automatically, thus saving considerable
time. A recent study (see Appendix A) indicated that the sequence of register pres-
ervation in the USQ-20B required 30 times the computer operating time of the L -304.
With 17 I/O channels and frequent I/O transfer terminations (several hundred

per second), the time saved by the L-304 would be very significant.

The discussion thus far has been confined to the procedures inherent to real-
time I/O servicing. Actually, the same procedure is necessary when any subroutine
is accessed from multiple sources. Figure 4-4 illustrates a typical use of the

L.-304 automatic process register storage feature. The example selected

is not an I/O servicing routine, but rather is a subroutine which controls the process
of locating available positions for new system tracks in the central track store. As
is evident from the example, by employing a unique program level for this subroutine,
a considerable time savings is realized. The effect is identical to a conventional
scheme but the 1.-304 performs the selected task with only two additional instructions

while 18 instructions are necessary in the conventional computer.
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SECTION 5

SUMMARY

The intent of the foregoing sections has been to point out the applicability of
the L.-304's design features to real time military systems. If some of the fcatures
appear unconventional, it is only because they are uniquely organized. These features
represent the culmination of a computer development characterized by the ever-
increasing inclusion in computer hardware of those well defined and repetitive pro-
cesses formerly accomplished partly by hardware and partly by software. The ob-
jectives of this unique synthesis of features are the minimization of programming
effort and minimization of tactical real time requirements. Ultimately, thesc fea-
tures allow the system designer to enhance his design by utilizing the inherent power

and efficiency of the L-304 computer.

Litton believes that these features make the L-304 computer superior to any
other computer for military real-time computer systems, and, in general, for almost

any application.
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APPENDIX A

COMPARISON OF REGISTER PRESERVATION REQUIREMENTS

In the L-304, 256 32-bit words arc available for usc as process registers,
In a conventional computer, approximately the same amount of storage is required
for bookkceping associated with storing and restoring registers. A breakdown for

the USQ-20B computer is as follows:

Words

Register storage (7 index registers, 2 arithmetic 102
registers) assuming 17 I/O channels (as in ATDS)
and 6 words of storage for registers per channel:
6x 17 = 102
General subroutine to store and restore registers 20
(store all registers on entry, restore all registers
on exit)
Linkage to '"register store'' and '""restore' sub- 128
routines (assuming equivalent of 64 L. -304 levels),
2 transfer and links per function

250

Based on this comparison, the 1.-304 uses 6 extra storage locations for reg-
ister handling. The L-304 real-time advantage for register processing is about 30
to 1 for each I/O interrupt; that is, 6 microscconds for the L-304 versus 176 micro-

scconds for the USQ-20B (22 instructions at 8 microscconds per instruction).

"Two transfer and link instructions and 20 instructions to store and restore the
registers.
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APPENDIX B

COMPARISON OF L-304 ASSEMBLER ON L-304 AND ON IBM 360

NATURE OF PROGRAM

The L -304 assembler is a two-pass assembler with a floating field operand.
- It utilizes several alphabetized tables containing a compool {(a communications pool),
internal symbols, external symbols, and subroutine entry points. Data may be de-
fined symbolically, as a decimal number, octal number, hexidecimal number, or as

any combination of these, The programs compared perform identical functions.

The 360 program was written under 8KBOS and the L-304 program was writ-

ten using L -304 assembly language and was assembled by the 360 assembler.

INSTRUCTION AND WORKING STORAGE COMPARISON

Module 1L.-304 360
First Pass 737 2093
Second Pass | 1177 2058
Operand Interpreter 1285 1040
Compool Storage 549 0
TOTAL 3548 32-bit words 5191 32-bit words

DISCUSSION

The 360 version is divided into three separate modules (assembly decks); the
L -304 program consists of twenty modules. The reason for the larger number of
modules in the L-304 (in addition to the resulting update and debugging economies)
is the comparative ease of linkage between modules. The relative difficulty of link-
age in the 360 (caused by the base registers) causes common routines to be included
in more than one module. If the length of these routines is subtracted from the 360

program, the storage comparison would look as follows:



Module L-304 360

First Pass 737 1842
Second Pass 1177 1991
Operand Interpreter 1285 | 981
Compool Storage _549 0
TOTAL 3548 32 -bit words 4804 32-bit words

The removal of the duplicate routines increases the complexity of using them
and restricts the modularity of the program (causes both passes to be in core at all
times). Much storage is saved by the 1.-304 addressing capabilities and ease of es-

tablishing and using a common data pool.

The prog‘ram evolution in this instance should be mentioned. The original
assembler was written for the IBM 7094; this program was then moved to the IBM 360,
The move included program improvements because it was the second coding. Then,
the same basic program was again moved to the L. -304; additional improvements, al-

though fewer in number, were inherent to this move.

Input and output control sections have not been included in the foregoing totals
because so much of this area is performed by the BOS Supervisor in the 360. It was
felt that including the total Supervisor in the I/O control figures would constitute an

unfair evaluation.

CONCLUSIONS

The results of this comparison are extremely interesting when considering
the nature of the program. One would perhaps expect the L-304to require fewer in-
structions in a tactical system program because the L-304 was specificallydesigned
to meet that type of requirement. Likewise, one would expect the 360 to excel in its
design environment of primarily commercial applications. Considering this fact,
Littonwould have been pleased had the L-304 equaled the number of instructions re-
quired for the 360 on this assembly program, a type of program typically considered
to be the 360's forte.

This is not the case. The L-304improved upon the 360 requirements by more
than 48 percent! Even when the duplicate subroutines in the 360 are eliminated, the
L-304 excels by 35 percent. This is true even though the totals in the latter
case do not include the extra instructions required in the 360 program to overcome

the increased prdgram complexity indicated.



APPENDIX C

COMPARISON OF 1/0 SERVICING REQUIREMENTS

SEQUENCE OF EVENTS UPON RECEPTION OF AN I/O INTERRUPT

System 4PI, Model EP L-304

l. Transfer control to a processing 1. Transfer control directly to a
subroutine regardless of the I/O processing subroutine, depending
channel (and inhibit further on the I/O channel.
interrupts).

2., Save process register contents. 2. Automatic

3. Construct a new Program Status 3. Status of interrupted program
Word for subsequent interrupts. already saved and is not effected

by subsequent interrupts.

4. Determine the interrupt source. 4. Inherent to Number 1.
5. Release interrupt lockout. 5. Unnecessary
6. Decide if an I/O servicing routine 6. Inherent to Number 1.

is to be called.

7. Do processing (in I/O servicing 7. Do processing.
routine).
8. Restore process registers. 8. Automatic
9. Return to interrupted program. 9. Return to interrupted program.
DISCUSSION

I1/0 servicing procedures are similar regardless of the computer under con-
sideration. The process of immediately transferring computer control to a subrou-
tine which can perform required actions has become a standard computer component.
The design of L.-304, however, goes beyond this standard component to accomplish
automatically that which previously required programmed bookkeeping. Specifically,
by employing unique program levels for I/O servicing, the process registers in use
at the time of the interrupt are automatically '"saved'" and, when returning to the in-
terrupted routine, ''restored.' Additionally, the 1.-304 allows the system designer,

if he so desires, to establish priorities among the 1/0 servicing subroutines. This



feature, not easily obtainable in a conventional computer's last-entered/first-
processed operation, provides added system capability in the event highly critical

I/0O reinitiation times exist.



APPENDIX D

COMPARISON OF FUNCTIONAL PROCESSING REQUIREMENTS

SEQUENCE OF EVENTS FOR NORMAL FUNCTIONAL PROCESSING (OTHER THAN
DIRECT 1I/0 SERVICING)

Conventional Computer L-304
(All control begins with
"master caller' subroutine)

1. Calling subroutine determines 1. Automatic*
next subroutine to be called (calls
various subroutines in a predeter-
mined fashion) and transfers con-

trol to that subroutine.

2. Called subroutine is normally 2. '"Automatically' called subroutine
completed and control returns to relinquishes control to next highest
the ""master caller." priority subroutine.

3. '"Master caller' determines next 3. Automatic

subroutine to be called and calls it.

4. Repeat of Step 2. 4. Repeat of Step 2.
5. Repeat of Step 3, and so on. 5. Repeat of Step 3.
6. Whole cycle is repeated. 6. Dynamic sequencing continues auto-

matically ad infinitum.

DISCUSSION

Once the program activity register in the L-304 is initially established, the
priority determination and sequencing of programs proceevds automatically. Thus,
the L.-304 allows the system designer to eliminate the '""master caller' subroutine.
It is readily apparent that a system could be designed to operate on one program
level within the L-304, thus creating the need for the traditional '""master caller."
However, with multilevel program organization, the features inherent to the L-304
can be employed to accomplish the very same operation automatically (no program

control necessary) while increasing program efficiency and modularity.

.

"‘Requires initial (one time) setup of queueing file (program activity registers).
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APPENDIX E

COMPARISON OF REAL-TIME CONTROL REQUIREMENTS

SEQUENCE OF EVENTS FOR REAL-TIME CONTROL

Cohventional Computer L-304

1. Inspect clock periodicaily, i.e., 1. Automatic with clock interrupt.
design program with clock-
inspection sequence throughout
coding (or pass through clock-

watching sequence periodically).

2. Update all clock counters; check 2. Automatic (can have many indepen-
for appropriate action. dent clocks).

3. Take appropriate action and clear 3. Take appropriate action and reset
related clock counter if required. related clock counter.

4., Return control to inspection point 4. Automatic.

if action had been taken.

DISCUSSION

The feature of many real-time clocks, each capable of program interruption,
saves many programmed instructions, As indicated in the above sequence the L-304
accomplishes automatically that which required many instructions in a conventional
computer. It also represents an improvement over more recent computer's capa-
bility of a single interruptable clock. In the above sequence only step number one

can be eliminated with a single clock.
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APPENDIX F

1.-304 COMPUTER DESCRIPTION

GENERAL MACHINE DESCRIPTION

The Litton Li-304 is a highly reliable, fully microelectronic, high-speed general-
purpose computer designed specifically for operation in airborne, shipborne, and
ground-mobile environments. Its small size and high reliability are achieved by the
excl‘usive use of integrated circuits and multilaminate intercircuit wiring compatible

with its random-access, coincident-current microferrite core memory.

Maximum flexibility and expandability have been achieved by designing the L.-304
computer logic to permit memory expansion (8192-word increments) from 8192 to 131,
072 32-bit words without logic modification. Expansion from single to multiprocessor

operation is economical from the standpoint of cost and size. Table F-I presentscom-

st

parisons of the power requirements and approximate " volumes and weights of repre-

sentative processor configurations.

The basic characteristics of the L-304 computer are:

(1) Parallel binary operation

(2) 32-bit instruction word

(3) 16- or 32-bit data word, including sign

(4) 2.2-microsecond memory read/write cycle

(5) Two's complement arithmetic

(6) Memory expandable in 8192-word modules, 32 bits per word
(7) 65 basic instructions

(8) 3 addressing modes

(9) 64 program levels

(10) 8 multipurpose process registers per program 1eve1>(512 total, usable as

index registers or accumulators)

(11) Up to 64 input/output (I/O) channels each with program-initiated but inde-

pendently operating data transfers of up to 32 bits in parallel

"Minor variations in volume and weight will result from characteristics of specific
installations.



MEMORY
PROCESSOR (32-BIT WORDS) POWER (WATTS) VOLUME (CUBIC FEET) WEIGHT (POUNDS)
SINGLE 8, 192 300 0.94 67
SINGLE 16, 384 390 1.32 87
SINGLE 32,768 490 2.19 148
DUAL 32,768 780 2.44 164
DUAL 65, 536 980 4.19 272
DUAL 131,072 1180 7.69 390
Table F-I. Comparison of Power Requirements, Volume, and Weight of
Representative L-304 Configurations
(12) High I/O transfer rates, up to 432, 000 32-bit words per second on one
channel or 227, 000, 32-bit words per second when several channels are
operating simultaneously
(13) Automatic priority and high-speed multiprogram switching
(14) Coincident current, random access memory using wide temperature cores
The L-304 computing system is divided into four modular parts: the central
processor, micromemory, input/output, and power supply. These are shown inblock

diagram form on Figure F-1.

As indicated in this diagram, the number of flip-flop registers is minimized

and multiple use is made of each of the registers in the computer. This organization

reduces size, weight, and power consumption, and lowers cost by decreasing the num-

ber of components.

THE CENTRAL PROCESSOR

The central processor contains five functional sections.

Arithmetic, Instruction Control, Memory Control, Program Level Control, and Input/

Output Control Sections.

These include the
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The Arithmetic Section

The arithmetic section contains a parallel, full adder of 16 bits. This adder
is used in the execution of most instructions. Carry bypass and look-ahead logic is
used for a fast add time of less than 210 nanoseconds. Several logic controlled input
sources to the adder are provided and selective output from the adder yields logic

functions, sums, differences, decrements, increments, and zero detection.

The Instruction Control Section

The instruction control section contains a 32-bit instruction holding register
and the timing control state counters. Instruction operation and mode decoding gates
provide control of all processor operations. This section also contains the computer

clock and control state counters.

The Memory Control Section

The memory control section is that part of the processor which controls mem-
ory address extension. It contains a memory address extension register which al-
lows direct memory accesses to up to 16 modules (131, 072 full words or 262, 144 half

words).

The Program Level Control Section

The program level control section determines which of up to 64 different pro-
grams are active on a priority demand basis. A program level register selects the
active set of eight process registers and one of 64 program location registers from
fixed memory locations to be used by the instruction control section. A programac-

. tivity register of 128 bits is also stored in a fixed memory location. This registeris
used to reflect computer status with 64 active bits and 64 enable bits for programmed

control of interrupts.

The Input/Output Control (I0C)

The input/output control (IOC) is that part of the processor that controls the
transfer of data between the processor's memory and the transmitting or receiving
1/O device. It controls the servicing of I/O requests for data transmission on a pri-
ority demand scheme. It provides for communication and all synchronization between
the processor and each interface unit. Much of the processor's control unit andarith-

metic unit are time-shared by the IOC in the execution of its functions.



MEMORY

The memory section for the L-304 computer consists of basic modules of 8192
words of 32 bits each, organized for coincident-current operation, as shown in Fig-
ure F-2. Access time for the 8192-word memory is 800 nanoseconds and the total
read/write cycle time is 2.2 microseconds. In addition tothe use of wide-temperature,
low-noise elements in the stack, current compensation is used in the drive circuits

to provide stable operation over the full temperature range of operation.

The memory drawer is in two sections. The stack section contains the core
stack, steering diode matrix, and sense amplifiers and the logic and driver section

has the memory logic, current drivers, and switches.

The arithmetic and control module and the memory modules are designed so
that the total memory for any system can be directly expanded to 131,072 words. Add-
ing memory modules is accomplished by increasing chassis height and adding the nec-
essary signal harness. The address register and the output register for the memory
are located in the memory drawer to allow for memory extension and multiple com-
puter operation. Up to two computers or computer-like devices can communicate

with each memory module via two independent buses.

POWER SUPPLY

Power is provided by a number (as required by the system size) of microelec-
tronic power supplies. Each module is six cubic inches in volume and supplies regu-
lated voltage up to 8 amperes of current. These units were developed under a Navy
contract and operate from either 400-cycle, 115-vac power or from +28 vdc prime
power as specified in MIL-STD-704. The power supply efficiency is 70 percent when
operating from an ac source and 80 percent when operating from +28 vdc. Eachpower
supply is self-contained and provides full protection against prime power voltage vari-
ation. In addition, overvoltage and overcurrent protection of the power supply output

is provided. Any fault condition automatically shuts off the power supply.
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INPUT/OUTPUT SECTION

Extensive, versatile input/output (I/O) capabilities are provided in the L-304
which allow communication with up to 64 I/O devices. A block diagram showing the
input/output interface is contained in Figure F-3. Once a transfer of data is initi-
ated, transmission between the computer memory and the I/O device is accomplished

independently of the current program.

Information Transfer

In the L-304, simultaneous information communication with up to 64 I/O de-
vices is permissible on a multiplexed or time-shared basis. This type of communi-
cation is achieved by an automatic multiplexing feature in which peripheral device
requests for information transfers are scanned within the computer and serviced on
an assigned priority basis. The computer servicing of a scanned request requires
an automatic program interruption of two memory cycles in duration. The program
is permitted to resume execution after the I/O servicing is completed provided no
I/O device service requests are present at the time. In this type of operation, the

maximum transfer rate is 227, 000 words (32 bits) or characters (8 bits) per second.

A second type of I/O operation occurs when the program has been interrupted
to service a device that requires continual servicing for a given period. This opera-
tion is defined as the burst mode. The computer continually services the device re-
que‘st for information transfer as long as the request is present and remains the
highest priority. This type of operation results in a maximum transfer rate of 435,000

words or characters per second.

Input/Output System Organization

The L-304 input/output system consists of three parts: the input/output con-
trol (IOC) section of the L.-304 processor, the input/output interface (I/O interface),

and interface units with their associated input/output devices (I/O devices).

The L-304 processor has provision for communicating with up to 64 input/
output devices under program control. The I/O devices must be connected to the
I/0 interface via an interface unit that will respond to the control and meet the re-
quirements of the IOC. The design of each interface unit is special-purpose to meet
the system control requirements and characteristics of the I/O devices it will con-
trol. These units may be designed to control one or several devices on a time-shared

basis.
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The processor, under control of the IOC, is designed to directly communicate
with up to cight terminals. The términals are designated as I/O stations. Each I/O
station may in turn allow communication with eight other terminals which are desig-
nated I/O substations. An interface unit may be connected at a station or substation
depending upon the special design of the unit which is tailored to the system require-
ments. Addressing or recognition of I/O stations is performed by the IOC, whereas
addressing or identification of the I/O substations is performed by the interface units

via the three address lines of the I/O interface.

Communication between the computer input/output section and each channel is
handled via three subchannels: (1) a data subchannel, (2) a control subchannel, and
(3) 2 request subchannel. Data and command information occurs on the two-way data
subchannel connecting the computer input/output section to each of the eight possible
1/0 stations. A common control subchannel between the input/output control and the
1/0 stations provides lines for: station code select, enable, indicator, and stop.
Input/output stations request operations via a request subchannel to the IOC on sep-

arate request lines.

1/O Control Words

Data transfers are controlled by words stored in the computer memory. Two
32-bit words (a key word and a terminate word) are set up by the program for each
I/0O substation (up to a total of 64 devices). Each set of control words contains the
following information: (1) the starting address of the transfer data; (2) the number
of words (32-bit format) or characters (8-bit format) to be transmitted: (3) the mode
of transmission: (4) a set of termination bits, which indicate the reason for the ter-
mination; (5) the number of the program level to be activated if a normal termination
occurs; and (6) the number of the program level to be activated if an abnormal termi-

nation occurs. Figure F-3 contains these I/O control word formats.



COMPUTER ORGANIZATION

A significant feature of the L-304 is the availability of 64 program interrupt
levels. Each level may contain an independent program or an integrated portion of a
larger program. KEach level has eight process registers and time-shares the arith-
metic section and memory output register with the other 63 levels. Each level has
an assigned priority, but only operates if the level is the highest priority "active"
level. An interrupt level may be designated "'active' either by instruction or by in-
terrupts from the input/output section. Interrupts may thus be processed imme-
diately, without program provision for temporary storage of the process register

contents.

Control over which programs are running or waiting to run is maintained in
the activity and mask registers. The activity register contains 64 bits, where each
position represents a program level. The mask register is also 64 bits in length and
may be used to inhibit a program from running. Thus, the program running at any
given time is fhe highest priority program with coincident one bits in both the activity
and mask registers. When a given program is running, the set of process registers

accessed is that which corresponds to the active program level.

Special Registers

There are eight addressable 16-bit process registers for each of the 64 pro-
gram interrupt levels (512 total). These registers are contained in Locations 0000-
0777g of the core memory. Figure F-4 is a graphic representation of the location
occupied by each level and the registers within each level. The eight process regis-
ters are multipurpose registers which may be used as accumulators, or as index reg-

isters. Each instruction will designate the registers it will use.

The Program Location (PL) register is used to contain the interrupt start ad-
dress for its program level. That is, when processing is transferred to a given pro-
gram level, the PL register designates the memory address of the first instruction
to be executed. The memory extension register is used in conjunction with this ad-
dress to get the needed memory module. It contains the numbers of those memory

modules to be used during execution of a program assigned to a given program level.
(See Figure F-4.)

Data Word Formats

Although the L-304 memory word consists of 32 bits, the computér treats this
word as two consecutive 16-bit locations in memory; the first, even-numbered, the

second, odd-numbered.

F-10
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The data word normally contains 16 bits. These bits are numbered from 0
(least significant) through 15, beginning from the right, as shown in Figure F-5. The
number system is binary, 2's complement. A number in the normal data word con-
sists of 15 bits and a sign. For convenience, it can be stated as five octal digits and
a sign. A binary 0 indicates a positive number and a binary 1 denotes a negative num-

ber (in 2's complement form).

Some instructions involve double-length operands, i.e., 32 bits of data, in-
cluding sign. In these instances, registers or memory words are considered as pairs
with the most significant 16 bits of the pair always the even-numbered, and the least
significant always the odd-numbered register or memory word. The sign of a double-
length number appears as the most significant bit in both registers or words of the

pair.

INSTRUCTIONS

The L-304 computer utilizes a single address instruction that provides several
operand address options. A total of 65 unique instructions are provided. These in-
structions include all of the normal general-purpose commands along with some very
useful and powerful commands that simplify programming and save execution time

and memory space. Table F-II is a list of the L.-304 instructions.

INSTRUCTION WORD FORMAT

The L-304 computer uses a 32-bit instruction word. The format of the instruc-

tion word is shown in Figure F-6,

E Ficld

This single bit is used for instruction operation options. Onthose instructions
which could cause an arithmetic overflow, it provides the programmer the option to
skip the next instruction in sequence if an overflow does not occur. If the E bit is a

zero, the next instruction in sequence is executed and overflow is ignored.

On five special instructions, the E bit is used to modify the operation called
for by the operation field, F, in a related manner. This is described in the descrip-

tion of each of these instructions.

F Field

This six-bit field is the instruction operation code. In subsequentdescriptions

this code is represented by a two digit octal number.



NORMAL DATA WORD

15

14

13112

10

9

8

716151413} 2

\— SIGN

DOUBLE-LENGTH DATA WORD

31

30

15

\— SIGN

\—' SIGN

Figure F-5.

Data Word Formats
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31 30 25 24 2221 1918 615 1213 10
~— OFERATION __ ~a—————— OPERAND ADDRESS FIEID ~———8=
L INDEX FIELD
ADDRESS MODE
ACCUMULATOR

Figure F-6. L-304 Instruction-Word Format

H Field

The H field is a three-bit binary number that selects one of eight process reg-
isters which is to be used as the accumulator by the instruction.” Process registers

are addressed by H=0, 1, 2, ..., 7 on all program levels.

M Field

The M field is a three-bit code that provides up to eight instruction address

options as follows:

M = 0, Direct Address
M =1, Direct Address with indexing
M = 2, Literal
M = 3, Literal with indexing
M = 4, Indirect
M = 5, Indexed, Indirect
M = 6, Indirect, Indexed
M = 7, Relative
S Field

The S field is a three-bit field that selects one of the eight process registers
to be used as an index register on Modes M = 1, 3, 5 and 6 and one of 7 process reg-
isters if M = 7 (S = 0, M = 7 implies no indexing). The S field addresses the same
set of process registers as the H field on a given program level. A different set of

eight process registers is provided for each of the 64 program levels.



FUNCTION MNEMONIC SYMBOLIC EXECUTION TIME
CODE CODE INSTRUCTION OPERATION (*SEC) T

A. DATA TRANSMISSION INSTRUCTIONS

1. 04 LDR LOAD RH Y = (A)—=RH 6.6

2. 05 STR STORE RH Y = RH) — (A) 6.6

3. 06 LDD LOAD DOUBLE Y=(A A+1)—=RH 6.4

4,17 DC LOAD TWO'S COMPLEMENT (Y) 7—=RH 7.2

5. 16 LDA LOAD ABSOLUTE 1(Y)] —=RH 7.2

6. 07 STD STORE DOUBLE Y=@RH RH+ 1) —= (A, A+ 1) 6.4

7. 7 MV MOVE AND INSERT (Frpy) —= (Frs) 7.4+0.8n*
8. 70 MvVZ MOVE AND ZERO (Fry) —(Frs), 0—(Fgs) 6.6+0.8n*
9. 02 EXC EXCHANGE (A) —=RH, (RH) —(A) 8.8

(A+1, A)—=RH+ 1, RH;

10. 03 EXD EXCHANGE DOUBLE {(RH 20 RH) (A T, A) 9.4

B. ARITHMETIC INSTRUCTIONS

1. 10 ADD ADD Y = (A) + RH —=RH 7.2

12. 1 SUB SUBTRACT (RH) - Y —=RH 7.2

13. 12 RAD REPLACE-ADD Y = (A} + (RH) —= (A) 7.4

14. 13 RUB REPLACE SUBTRACT Y = (A) - (RH) — (A) 7.4

15. 14 ADA ADD ABSOLUTE (RH) + 1Y | —=RH 7.2

16. 15 SBA SUBTRACT ABSOLUTE (RH) -1Y] —=RH 7.2

7. 30 MPY MULTIPLY (RH) xY —*=RH, RH + 1 18.8 + 0.8 n**

(RH, RH + 1) =Y —=RH + 1;

18. 31 DIV DIVIDE REMAINDER —=RH 33.2

C. LOGIC INSTRUCTIONS

19. 20 EOR EXCLUSIVE OR (RH) ¥ Y —=RH 7.2
20. 21 IOR INCLUSIVE OR (RH) Y Y —=RH 7.2
21. 22 AND LOGICAL AND (RH) AY ~—=RH 7.2
22. 24 RER REPLACE EXCLUSIVE OR (A) = Y ¥ (RH) —=(A) 7.4
23. 25 RIR REPLACE INCLUSIVE OR (A) =Y Y RH) —=(A) 7.4
24. 26 RAN REPLACE LOGICAL AND (A) =Y A RH) —(A) 7.4

D. SHIFT INSTRUCTIONS
25. 44 SLL SHIFT LONG LEFT 7.6+ 0.8%**
26. 57 SRA LONG SHIFT RIGHT, ALGEBRAIC 7.6+0.8%**
27. 56 SRL SHIFT LONG RIGHT, LOGICAL 7.6+ 0.8%**
28. 45 NLL NORMALIZE LONG LEFT 10.6 + 0.8***
29. 46 SNC SHIFT AND COUNT 8.4+0.8%**
30. 47 RFT REFLECT 7.6+0.8%**

*n = NUMBER OF SHIFTS REQUIRED TO ALIGN THE FIELD
**n = NUMBER OF "1" BITS IN MULTIPLIER
***n = NUMBER OF PLACES SHIFTED

Table F-II. Instruction Repertoire (Sheet 1 of 2)
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EUNCTION  MNEMONIC SYMBOLIC EXECUTIVE TIME
CODE CODE INSTRUCTION OPERATION ( seQ)t
E. TRANSFER INSTRUCTIONS
3. 32 ITX (E BIT - 1) MODIFY RH BY TWO; TRANSFER 7.2

DTX (E BIT - 0) IFRHF0
32. 33 IOX (E BIT - 1) MODIFY RH BY ONE; TRANSFER 7.2
DOX (E BIT - 0) IFRH#ZO

33. 4 XFR TRANSFER UNCONDITIONAL 4.4
34, 35 XLK ~ TRANSFER UNCOND. AND STORE LINK 6.4
35. 36 XSW TRANSFER ON CONSOLE X SWITCH 4.4
3. 40 XEZ TRANSFER IF RH = 0 6.4
37. 4l VNZ TRANSFER IF RH# 0 6.4
38, 42 XNG TRANSFER IF RH IS NEGATIVE 6.4
39. 43 XPS TRANSFER IF RH IS POSITIVE 6.4
F. JUMP INSTRUCTIONS

40. 37 w JUMP THREE WAY 7.4
41, 50 ciL COMPARE, JUMP IF LESS 7.2
42, 51 CJE COMPARE, JUMP IF EQUAL 7.2
43. 52 cJu COMPARE, JUMP IF UNEQUAL 7.2
4. 53 CJG COMPARE, JUMP IF GREATER 7.2
45. 54 GCl GATED COMPARISON, JUMP IF INSIDE 9.4
46, 55 GCO GATED COMPARISON, JUMP IF OUTSIDE 9.4
47. 64 Wz TEST LOWER BIT, JUMP IF 0 5.2
48, 65 Tz TEST UPPER BIT, JUMP IF 0 5.2
49. 66 TLF TEST LOWER BIT, JUMP IF 1 5.2
50. 67 TUF TEST UPPER BIT, JUMP IF | 5.2
G. MISCELLANEOUS INSTRUCTIONS

51, 77 NOP NO OPERATION 2.2
52. 01 EXE EXECUTE 2.2
53, 60 SBL SET LOWER BIT 5.2
54. 61 SBU SET UPPER BIT 5.2
55. 62 RBL RESET LOWER BIT 5.2
56. 63  RBU RESET UPPER BIT 5.2
57. 72 s1Z STORE ALL ZEROS 5.2
58, 00 HLT HALT 2.2
H. INPUT/OUTPUT INSTRUCTIONS

59. 27 MBA MEMORY BANK ASSIGNMENT 4.4
60. 75 FiP INPUT TO REGISTER 7.2
61. 76  FOP OUTPUT FROM REGISTER 7.2
62, 74 EDC EXTERNAL DEVICE COMMAND 7.6
63. 23 M8D MEMORY BANK DESIGNATOR 4.4

*ASSUMING NO MEMORY OVERLAP. IF MEMORY OVERLAP OCCURS, SUBTRACT 0.6 MICROSECOND FROM THESE TIMES,

Table F-II. Instruction Repertoire (Sheet 2 of 2)
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D Field

The D field is a two-bit field that selects one of four registers whose content
is used for address extension. The selected register contains four binary bits which
are appended to the most significant end of the instruction's A field. This effectively
yields a 17-bit operand address 131, 072 32-bit words to be addressed. The set of
four four-bit registers'is called the Memory Extension Register. A different mem-

ory extension register is provided for each of the 64 program levels.

A Field

The A field is a 13-bit address field. The 13-bit address will select one of
8192 32-bit words within a memory module. A memory module is selected by the

four-bit field of the Memory Extension Register.

On some instructions the A field (with the D and W fields) is used as a logic

operation (mask) or it is used to specify the number of bits to be shifted.

W Field

This one-bit field specifies left or right half of the 32-bit operand which will
be used as a 16-bit operand. If W is a one the right half of the word is used. If W is
a zero, the left half is used. The A and W fields together represent a 14-bit half-

word address.



HARDWARE CHARACTERISTICS

The overall design of the L.-304 computer takes full advantage of the latest
microintegrated-circuit technology, multilayer laminate interconnection techniques,
and unique packaging and heat removal techniques. The circuit characteristics unique
to monolithic integrated circuits and the circuit characteristics unique to the Litton
multilayer board construction are utilized to improve the characteristics of the final
product, the L-304. Figure F-7 represents a typical multilayer board assembly.
Continuous heat conducting metal cooling paths are built into the multilayer boards to
achieve the goal of low temperature rise of components. Similarly, low-impedance
power transmission lines (0.1 ohm dc to 100 megacycles) and ground planes are inte-
grated into the multilayer boards along with electrostatic shielding techniques to
achieve minimum noise while providing a source of high-frequency current transients
necessary for high-speed operation without resorting to ''brute force'' discrete local

filtering.

Circuitry

The circuitry used in the L-304 consists of semiconductor integrated circuits,
in the form of NAND (an inverted logical AND) gates, interconnected by multilayer
laminated boards. The Litton integrated NAND circuits (LINCs) are of two types: an
eight-input NAND gate, and a dual, four-input NAND gate. Both LINCsmeasure 0.250
by 0.175 by 0. 065 inch, excluding leads, and 0. 325 by 0. 375 by 0. 065 inch including

leads.

Significant features of a LINC include:

(1) A high degree of noise immunity is provided when compared with other
microelectronic circuits. This is especially important when many LINCs

are used together in a system the size of an L-304 computer.

(2) A large amount of gating current is available as needed at the output of
each LINC for either direction of logic swing, thereby permitting very-

high-speed operation.

(3) Standby power between switching operations is quite low, since, in the
high output-voltage state, the LINC is ''looking' into a back-biased emitter;
and in the low output-voltage state, the load current is limited to the base

current of the multiemitter input' transistor of the following LINC.
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The micromemory is optimally designed around a wide-temperature coincident-
current, 22-mil outer diameter lithium -ferrite core stack to provide minimum size
and complexity and to improve reliability. The drivers use thin-film substrates, with
remaining memory circuits being monolithic integrated semiconductor circuits. To
increase operating margins even beyond those available with wide-temperature ferrite
the stack temperature is sensed, and the power supply for the current drivers is var-
ied linearly with temperature. The temperature tracking of the power supply has the

advantage of minimizing power dissipation at elevated temperatures.

Packaging

The 1.-304 computer reflects the extensive developmental effort which Litton
has conducted in the field of microelectronic packaging and interconnection techniques.
The design meets the requirements of MIL-E-5400G, Class II equipment. Some of
the prime considerations governing the packaging of the computer electronics include

those outlined below.

(1) Compliance with the environmental specifications
(2) Accessibility and ease of maintenance

(3) Relative positioning of electronic modules in order to minimize intercon-

nection complexity and to achieve maximum thermal efficiency
(4) Low weight and volume in relation to total computing power
(5) Ease of manufacture

(6) Lowest cost consistent with expected performance

Automated fabrication techniques are used to significantly reduce construction
cost, and system adaptability and expandability are easily achieved. The L-304 com-
puter is designed to accommodate varying quantities and combinations of modules as
system requirements change. Increased memory capacity or conversion from a sin-

gle to a multicomputer is accomplished by adding modules.

Each of the modular subassemblies is designed internally for specific func-
tional performance. Except for thickness, they appear similar externally (see Fig-
ure F-8). The thicknesses are approximately 0.7 inch for integrated circuit drawer
modules, 1.5 inches for power supply drawer modules, and 3. 25 inches for the mem-
ory module. The computer frame housing is of riveted sheet metal construction, re-
inforced with wrought extrusion in areas of high stress. The top, bottom, and side
walls (the entry and exit plenums) are rigid box sections on four peripheral sides.
These are further stiffened by perpendicular cross bracing which supports and guides

the three decks of electronic drawers.

F-20
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A connector panel located at the rear of the drawers supports the receptacle
connectors and harness for both internal and external communications. This panel is
made an integral part of the structure. Harness. and connectors form a removable

assembly.

RELIABILITY

The predicted MTBF of a single L-304 with 8192 words of memory and asso-
ciated power supplies is 3660 hours. This MTBF is based on an extremely conserva-
tive application of failure rate data. The assumptions and criteria which were

employed may be summarized as follows:

(1) Applicable failure rates used were derived from recognized or acceptable
military sources such as the MIL-HDBK-217, dated 8 August 1962; Bureau of Naval
Weapons Failure Rate Data Handbook (FARADA), etc. However, where failure rates
obtained from these sources were determined to be obsolete due to the current ad-
vancement of the state of the art on component parts, such failure rates were adjusted

to consistent values.

(2) Other applicable failure rates that cannot be found directly from the sources
in Item 1, were derived from the failure rates of similar items reported from the field

and from reliable vendor reports.

(3) Failure rates for most parts are derived at a temperature of 600C, which
~exceeds safely the expected temperature that the equipment will be subjected to in ac-

tual application.

(4) The prediction method is based on the assumption that a part failure rate

is a reflection of system failure, which is typical of a series-connected system.

MAINTAINABILITY AND AVAILABILITY

At organizational level of maintenance, the predicted mean time to repair
{(MTTR) of the 8K memory computer is 0. 162 hour or 9. 72 minutes, resulting in an
availability of 99. 994 percent. The low maintenance task times are obtained with the
aid of the computer's built-in maintainability design features. A standard 3/16 Allen
wrench is all that is needed in getting access to the defective item to effect its re-
placement. No special tools are necessary in this level of maintenance. A testmes-
sage entered into the computer's memory is, however, a prerequisite to the isolation

of a fault.



APPENDIX G

CONVENIENCE OF L-304 MEMORY MODULE ACCESS

Understanding the 1.-304 process for accessing up to 16 8K memory modules
is relatively simple assuming one has a previous acquaintance with the L.-304 level
concept. At any instant, a maximum of four 8K memory modules may be active.
This allows all programs to be assembled and executed between 0 and 32K thus re-

quiring only a 16-bit instruction address field.

There are essentially two methods to manipulate which four of the 16 mem-
ories are active at any one time; one is by direct command, the other is by a level
change. The ''direct command' approach requires one command to change the mem-
ory configuration; the level change approach, once it is established, automatically
provides a new (if desired) memory configuration with each change to a new level.
When loading a program, the memory module designation must agree with its assem-
bled location, i.e., a program assembled between 8K and 16K must be loaded and
executed within the 8K and 16K memory slot (see Figure G-1) regardless of module
number designation. Once a memory module is loaded and properly designatea, the
contained program cannot be relocated without reloading (as is the case in any other
computer). A simple analogy to illustrate the versatility of loading and executing a

program is shown in Figure G-1.

Note that any combination of four can be set in the readout windows with the
pseudo-thumbwheel selection shown in Figure G-1. (In actuality, these selections
are made by the operator at load time via a control routine.) However, no two may
have the same number when loading programs (each module can only be loaded once
for a given exercise). Assume a program were loaded with the "0,2,12,5" MER
setting shown in Figure G-1. This simply causes those particular 8K modules to be
loaded consecutively with a program assembled between 0 and 32K. The modules
would be referenced in terms of those indicated address locations during execution,
therefore their memory slot assignment, when loading, must be consistent with the

assignment when executing.

“Areas reserved for data storage can deviate from this rule. This added versatility
will not be discussed at this time.



MEMORY SLOTS

0 - 8K 8 - 16K 16 - 24K | 24 ~ 32K

MEMORY MODULE NUMBER

0 2 12 5 READOUT

THUMBWHEELS

Figure G-1. Memory Extension Register (MER) Analogy

Assume one desired to load another 32K program (or another portion of the

same program). The setting could be changed to say:

15 1 7 10

and cause these modules to be filled. Memory would now appear as follows:

(0 - 8K) [8 - 16K] (8 - 16K)
X X X

[o] [ [2] [5]

[T r5— I'e_ 1 ( ) - lst 32K Loaded
[24 - 32K] [ ]- 2nd 32K Loaded
X - Module Loaded
[e [o] [1o] [i1
(16 ~ 24K) [o - 8k]
X X

[ Gl L [




If during execution one desired to communicate between any two programs,
it would simply require resetting the numbers in the window toany combination needed.
This is conveniently accomplished in an actual program by preassigning desired mod-
ule combinations to program levels, then communicating by changing levels (by set-
ting another level's status bit) which automatically‘ activates the associated modules
(each level has an assigned set of modules). If, for instance, the program inmodule
number 15 desired to communicate with the program in module number 0, it could
simply set a status bit for a level which included module 0 in its MER. The called
program would be executed, it would clear its own status bit causing control to re-

turn to the calling program.

In a dual processor configuration the module assignments for each level in

one processor likewise have no effect on the other processor's selections.

As can be determined by this discussion, the modes of versatility with re-
spect to module selection and configuration control are quite adequate to provide any
communications necessary to execute a program, regardless of size, within the 16-

module configuration.
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