
System
- Applications

Litton 1:304
)0. Microelectronic
_ Computer

LITTON L-30~ SYSTEM APPLICATIONS

17 July 1967

Prepared by:

Data Systems Division
Litton Systems, Inc.
8000 Woodley Avenue
Van Nuys, California

MS 2149

PREFACE

Thp L-304 computer is the result of a number of years of extensive research

and engineering effort to produce a high-speed, modularized digital computer px­

pressly meeting the rigorous functional and environmental requirements imposed on

tactical n1ilitary data systems. As such, the L-304 incorporates in its design sig­

nificant organizational feat~res in a combination he retof ore not available in gene r al­

purpose computers. These features and the reasons for their inclusion in the L_304

design are covered in this document.

A brief L- 304 desc ription is contained in Appendix F for the unacquainted

reader.

iii/iv

Spction

2

3

4

5

T ABLE OF CONTENTS

INTRODUCTION

BASIC CONCEPTS

MULTIPROGRAMMING

Historical Evolution

Developm"ent of Multiprogram Logic

L-304 Implementation of Multiprogram Logic

MULTIPROCESSING

Historical Evolution

L-304 Implementation of Multiprocessing

COMPUTER FEATURES

COMPARISON OF COMPUTER FEATURES

Features Comparable to Other Computers

Advanced L-304 Features

PROGRAM ACTIVITY REGISTER OPERA TION

Program Level Access

Program Triggering

TYPICAL ATDS ENVIRONMENT

GENERAL

MULTIPROCESSOR CONFIGURATION

System Expansion Capability

System Reliability Enhancement

Processor Verification

PROGRAM PRIORITY STRUCTURE

Typical ATDS Program Priority Structure

Program Priority Modification

REAL-TIME CLOCK

MULTILEVEL USAGE

Proce s sor Re gister Preservation

SUMMARY

v

1 - 1

2-1

2-1

2-1

2-1

2-4

2-6

2-6

2-7

3-1

3-1

3-1

3-5

3-7

3-7

3-11

4-1

4 -1

4-1

4-1

4-4

4-4

4-5

4-5

4-7

4-9

4-10

4-11

5-1

Appendix

A

B

C

D

E

F

G

TABLE OF CONTENTS (Continued)

COMPARISON OF REGISTER PRESER VATION REQUIREMENTS

COMPARISON OF L-304 ASSEMBLER ON L-304 AND ON
IBM 360

COMPARISON OF I/O SERVICING REQUIREMENTS

COMPARISON OF .FUNCTIONAL PROCESSING REQUIREMENTS

COMPARISON OF REAL-TIME CONTROL REQUIREMENTS

L-304 COMPUTER DESCRIPTION

CONVENIENCE OF L-304 MEMORY MODULE ACCESS

vi

A-I

B-1

C-l

D-l

E-l

F-l

G-l

Figurf"

2-1

3-1

3-2

4-1

4-2

4-3

4-4

Table

III - 1

IV - 1

IV -2

IV-3

LIST OF ILLUSTRATIONS

Hardware versus Software Implementation of Control
Functions

Typical ATDS Program Activity Register Configuration

Program Queueing Comparison

Typical ATDS Multiprocessor Configuration

Program Activity Register Usage

Multilevel Usage

Process Register Usage

LIST OF TABLES

Comparison of Computer Features

Typical ATDS Program Real-Time Estimates Summary

Typical ATDS Load Analysis

Typical ATDS Program Priority Structure

viii viii

2-5

3-H

3-10

4-2

4-H

4-10

4-12

3-2

4-3

4-3

4-6

SECTION 1

INTRODUCTION

The Litton L-304 ,general-purpose computer was developed through the cumu­

lative' ('fforts of DSD1s engineering and technical staff to solve the typical problems

encountered in developing large (or small) real-time automated command and control

systenl.s. The resultant features provided by the L-304 greatly exceed those of the

so-called !!conventional!! computer, especially in the areas which enhance convenience

of program and system development. The purpose of this document is to acquaint the

reader with the many beneficial design features of the L-304 Computer, to relate them

to the characteristics of more conventional computers, and finally to demonstrate the

L-304 1s strength in a large system application.

The text is pre sented in three sections: Basic Concepts, Computer Feature s

discussion, and a typical Airborne Tactical Data System environment discussion.

Section 2 (Basic Concepts) discusses the evolution of desirable computer features

and how they enhance successful system development. Understanding and appreci­

ating the power of multiprogramming and multiprocessing are discussion objec­

tives in this section. Section 3 (Computer Features discussion) explores the

design features of the L- 304, relating these features to those of conventional

computers, where appropriate t to provide a common base for discussion.

Section 4 (A Typical ATDS Environment discussion) relates the L-304 directly

to a typical large tactical problem implementation (ATDS) and provides practical

examples of the L- 304 1 s inherent advantages over other, more conventional

computers.

In order to appreciate the content of this document, it is first nece ssary to

have a basic understanding of the terminology used. Afew of the more important

terms are:

0 Multiproce s sing

0 Multiprogramming

0 Program Levels

0 Interrupts

0 Event Dependent

0 Time Dependent

1 - 1

Briefly, "multiprocessing lf is a term used to describe a computing system

consisting of two or more processors that share a common memory. This allows

direct, siITIultaneous access and computation by several processors on a common

set of data.

"Multiprogramming" is a term used to describe a nonserial operation of dis­

crete events, i. e., several functions that can, at any time, be in various stages of

completion. This allows an optimum sharing of real time (on a priority basis) and

is considerably more efficient than "serial programminglf where each function must

be completed before the next can begin.

If Program levels" is a term uniquely associated with the L-304. It will suf­

fice to say, at this point, that a program level represents the beginning of a discrete

set of calculations such as a subroutine or series of subroutines. One can arrange

the levels in any priority sequence desired (much as a queueing table) and, with the

program-controlled "enable and disable lf capability, can accomplish the essence of

multiprogramming techniques.

"Interrupt" is true to its dictionary meaning, i. e., disturbing the normal

course of events. The normal course of events within a computer is a progressive

execution of instructions. An interrupt can occur at any instant {normally due to

input/output transmission requests or timing alarm}. This, assuming no higher

priorities are active, causes control to pass to a preselected series of instructions

(input/ output channel dependent) which dictate performance of a preestablished action.

If Event dependent" is a term used to describe a sequence-dependent event

problem, i. e., Event A must be performed before Event B, Event B before C, etc.

If Time dependent" is used to describe a problem that requires performance

of specif~c tests at predesignated intervals. Most real-time problems are a mix of

both event- and time- dependent functions.

The remainder of this discussion demonstrates that the specific program­

ming and hardware techniques chosen to be implemented by Litton succeed in prin­

cipal and in practice in meeting the goals of programming simplicity as well as the

modularity prerequisite to system expansion or program modification. This can best

be don~ by first showing in detail how the hardware of the L-304 merely implements

in logic several of the Inore repetitive and time-consuming tasks inherent in the pro­

gramming of real-time systems and then illustrating how the software makes use of

this logic to as sure ITlinimum effort for growth and program modifications.

1-2

SECTION 2

BASIC CONCEPTS

MULTIPROGRAMMING

Many of the design features of the L-304 were incorporated to facilitate the

use of multiprogramming techniques. Therefore, in the development of this discus­

sion, Litton reviewed the literature to determine the history and extent of the use of

multiprogramming.

Historical Evolution

The first reference to the actual use of multiprogramming is found in the

1961 Proceedings of the Eastern Joint Computer Conference. Of the two papers on

this technique, the one of greater significance provides a description of the RCA 4100

computer developed for the BMEWS (4 74L) system. This paper, entitled "The Logic

Design of the FC-4l00 Data Processing System, " describes the implementation of

multiprogramming in this early RCA computer. Moreover, multiprogramming sys­

tems have since been described at virtually every major computer conference held

since that date. Multiprogramming systems are currently incorporated in the IBM

system/360 series, the CDC 6600, the GE 634, and the SDS Sigma 7, as well as, in

Europe, the Bull Gamma 60 and the Ferranti Atlas.

Development of Multiprogram Logic

Until the mid-1950 I s, computer programs were serial in nature in the most

complete sense. Each action had to await the completion of the preceding action.

Even input/ output operations required one or more program steps for each word,

character, or even bit transferred to or froITl a peripheral device. Programs were

generally required to enter tight timing loops in order to synchronize the data trans­

fer to the rate acceptable by the ancillary device.

By 1957, the first elements of logic that interleaved operation with program

interrupt had already become commonplace in the new generation of transistorized

computers. The specific features implemented at that time were:

a. A buffered input/ output channel operating in an interleaved fashion with

program execution.

b. A real-time clock capable of being set and interrogated by the computer.

2-1

While this system had the advantage of permitting program and input/output

functions to operate in an interleaved manner, each input/output operation was still

required to be executed serially and much program time was still lost in periodic

testing for completed data transfers and in periodic interrogations of the real-time

clock. The next step was to cause an interruption to the running program upon the

completion of the input/output operation. This was accomplished by transferring

program control to a predetermined memory location in which the starting address

of an interrupt source analysis program was generally stored. This analytical pro­

gram determined why the inter ruption took place and whether or not to proceed with

the previous program or enter a new program.

As long as input/ output operations proceeded serially, the task of controlling

the system was fairly simple. Then, computers with multiple or time - shared input/

output channels 'were introduced. These machines allowed many input/ output units to

operate simultaneously and allowed each to transfer data in an interleaved manner

with the program. This increased the complexity of control of both the multiple data

transfers and the multiple interrupts. At first, the multiple input/output transfers

were controlled by independent unit controllers such as magnetic tape controllers,

printer controllers, card read-punch controllers, etc. Each contained a set of con­

trol registers which kept track of its set of data transfers. Later, as the ratio of

computer -to -pe ripheral- speed increased and as more simultaneous operations could

be done in the central processor, the control of peripherals was moved back into the

data proces sor with the majority of systems storing the input/ output control words

in memory.

The first solution to the interrupt control problem made maximum use of soft-·

w.are and minimum use of hardware {probably because the repetitive operations had

not as yet been clearly identified and defined}. It consisted of the interrupt source

analysis program which was still a single program that was entered automatically

as a result of the completion of any input/ output transfer and which scanned all the

possible input/output channels to determine which was causing the interrupt. To en­

sure that the interrupt source analysis program would run to completion, it generally,

as its first step, inhibited all other interrupts.

Of course, during the execution of this time (and memory) consuming inter­

rupt source analysis program, other devices sometimes completed their transfers

and, as soon as the interrupt inhibit was removed, caused the computer to once

again enter the interrupt source analysis program. This interrupt causes the addi­

tional problem (only lightly alluded to until now) that there is now a queue of partially

completed programs, each waiting to be executed.

2-2

Determination and control of the order in which these programs were to be

executed then became the function of another program - the priority determination

routine. This program generally worked from a set of tables which listed, in pre­

determined order, the relative priorities of the various input/ output control and

processing routines. The difficulty of the programmed maintenance of a rapidly

changing queue without some hardware aid became evident quite early in the develop­

ment of this concept. An early attempt at a partial solution to this problem appeared

in the NCR-304 which provided for s"eparate transfer points for each type of input/

output interruption which could occur such as completed transfer, parity error, bro­

ken tape, no response from unit, etc. A fixed priority for each type of interruption

was established so that the most critical events could always be processed first.

A later attempt at solution was in the Burroughs B-5000 which incorporated

logic push-down pop-up lists which, among other things, reduced the complexity of

maintaining priority queues. Since that time, many other computers have also in­

corporated hardware aids for interrupt control. A partial list would include the

IBM 360-92, CDC 6600, SDS Sigma 7 and the GE 635.

Another aspect of interrupt control which has not as yet been discus sed is that

of saving the status of the program being interrupted. Specifically, this consists of

saving the contents of index registers, accumulator(s), any control flags, any base

address or memory extension registers, and the register which has the address of

the current or next instruction to be executed. Although time-consuming, this pro­

ces s is normally not complex, provided that the proper interrupt lockout instructions

and register acces s instructions are included in the computer logic.

In the foregoing discussion, it has been implied that the interrupt systems

have developed through the years to operate on a priority basis rather than on a time

slot or sequence basis. The evolution of real-time and even batch processing pro­

gramming systems has shown this to be the case. An analysis of the requirements

for successful tiITIe-slot processing should quickly show why such a scheme is partic­

ularly inapplicable to a large scale military data systeITI.

In any system, as long as events proceed in an orderly and predictable ITIan­

ner and the tiITIe duration can be predicted within a reasonable tolerance, the time­

slot system will work well. However, if variation in event sequence or tiITIing is a

possibility or if actions can crowd in on one another (such as all console operators

requesting new coordinate computations siITIultaneously with detection of a test error

in the radar preprocessor interface unit and receipt of an "initiate comITIunication"

pulse, the time-slot approach quickly falls out of synchronism. Thereafter, SOITIe

2-3

kind of priority sequencing must be established. A complex resynchronizing routine

nll..lst be executed or events must be delayed, possibly to the point where the syst('m

is no longer operating in acceptable real time.

A priority syste:rn, on the other hand, when properly implemented frees the

programmer from having to maintain a series of complex time relationships (re­

quired of the time- slot system) while at the same time assuring the system that the

highest priority prograrps will always be executed before less important or less

timely progratns.

L-304 Itnpletnentation of Multiprogratn Logic

The L-304 cotnputer has impletnented in logic those repetitive and well­

defined functions of a priority interrupt system which had once been performed by

progratn but which are rpore and tnore being as signed to hardware. Transferring

these functions frotn progratntning logic to hardware logic retnoves from the pro­

grammer the burden of designing, coding, and debugging the bookkeeping portion of

interrupt analysis and priority control routines. The basic principle behind the exe­

cution of these routines is not changed by the tnethod of itnplementation. For exam­

ple, the status and mask (program activity) registers of the L-304 are merely a

hardware implementation of the priority deterITlination routine and the queue. The

key words of the input/output control have taken the place of the registers formerly

found in the independent input/ output controllers. The termination word has taken

the place of the interrupt source analysis routine by directly causing an entry into

the specific progratn level required rather than having to scan the possible inter­

rupting units to determine which should be serviced.

Figure 2-1 illustrates the fundamental sameness of these operations per­

formed on an L-304 and on a computer in which these bookkeeping functions must be

programtned. It can be seen that the steps are logically identical but that, in a com­

puter where these operations have not been incorporated in the hardware, the num­

ber of instructions and the execution titne required become quite extensive. In the

L-304 and in several of the other scientific and cotnmercial computers previously

mentioned, portions or all of these functions have been built into the hardware.

Therefore, the processing titne spent in interrupt source analysis, priority deter­

mination, and input/ output control is reduced to a minitnum. There is also a con­

siderable reduction in progratn complexity and, consequently, in memory used.

There is no feature in the L-304 that has not been previously used in some

other computer. Thus, no new, untried technology is proposed. However, no other

computer has the particular cotnbination of desirable features required for efficient

2-4

SOFTWARE IMPLEMENTED COMPUTER
IF ALL SOFTWAR*
200-500 PROGRAM STEPS

TIME TO EXECUTE:
PATH YES 500 fJ SEC-2MS
PATH NO 200 fJ SEC-1MS

EXECUTE PROGRAM

COMPLETION OF AN
I/O OPERATION

ENTER THE INTERRUPT
SOURCE ANALYSIS ROUTINE

I NHI BI T INTERRUPTS

SCAN FOR WHICH UNIT IS
CAUSI NG THIS INTERRUPT

INITIALIZE ENT~NCE TO
NEW ROUTt NE, 1.1=. INDEX

REGISTER, ACCUM~LATORS,
FLAGS, CONTROL COUNTER

Figure 2-1. Hardware versus Software Implementation of
Control Functions .

2-5

L-304
ALL HARDWARE LOGIC
NO PROGRAM STEPS

TIME TO EXECUTE:
PATH YES 9 fJ SEC
PATH NO 3 fJ SEC

EXECUTE ROUTI NE

COMPLETION OF AN
I/O OPERATION

INTERRUPTS AUTOMATICALLY
INHIBITED

ACCESS THE TERMI NA TlON
WORD AND DETERMI NE

AFFE ORITY

INITIALIZE ENTRANCE
TO NEW ROUT! NE

real-time data processing. It is this synthesis (based on Litton's experience with

other tactical data processing systems) that is unique and that will serve to permit

the rapid, economical programming of the data processing function.

MULTIPROCESSING

The use of multiprocessing techniques represents an equally dramatic pro­

gression of system development over the past several years. However, in the case

of multiprocessing, the result of this development is more easily discernible. When

considering the rapid task completion and mis sion survivability inhe rent to a multi­

processor configuration~ its effectiveness is an obvious conclusion. As stated in

ESD-TDR-64-168 dated January 1965, by D. R. Isreal of the Mitre Corporation:

" ... the modular concept has extended to the central proces sor itself,

and the truly modern machine design includes the capability of em­

ploying several processors operating in parallel and sharing the avail­

able memory and in-out modules. This permits what has been termed

'multiprocessing' with several processors operating together on a sin­

gle job (it is to be distinguished from 'multiprogramming' in which one

machine works on several diffe rent tasks). II

Historical Evolution

A multiprocessor configuration does not impose any significant design alter­

ations on the proces sors comprising the configuration. For this reason, it is unnec­

essary to precisely trace the development of this concept; it will suffice to state a

few general comments applicable to the document.

Multiprocessing, as indicated by D. R. Isreal, permits several machines to

operate on a single job. This implies separate computers having the capability of

information exchange. However, to realize the extremely high effective operating

speeds typical of multiprocessor systems, the information exchange medium must

be carefully considered. The multiprocessor arrangement can achieve maximum

effectiveness only as a result of software design which assures the fact of "several

processors operating together on a single job. II Limiting the software to anything

less than a direct memory exchange medium defeats the intent of the multiprocessor

system.

Perhaps the most widely known attempt at multiprocessing in a military sys­

tem is the Naval Tactical Data System. The NTDS employs a parallel operation of

two or three computers, depending on the anticipat~d environment and ship size. (A

one-computer level is employed occasionally on smaller ships.) The system subtasks

2-6

art.' assigned to the different computers: one computer has tracking; another, inter­

cept C ont rol; and the thi rd, di splay functions, for example.

However, the NTDS does not employ a common memory between the proces­

sors; the computers exchange information via input/ output channels. This requires

a time-consuming data encode and decode program in each computer. Another seri­

ous drawback is the machine time wasted for this input/output information exchange

which could be devoted to meaningful input/ output communication and program

operation.

All major computer manufacturers have since realized this limitation and

have configured subsequent multiprocessor systems in a noninterference, common

memory arrangement. Thus, the higher effective operating speed is attained as well

as the much enhanced system maintainability and survivability.

L- 304 Implementation of Multiproces sing

As indicated in the previous discussion, a multiprocessor configuration does

not generally impose modifications upon the basic computer design. The success of

the arrangement is keyed to the software and the surrounding equipment. In recog­

nition of these key inputs, a suggested Litton multiprocessor arrangement has

been "designed" accordingly (and is discussed in Section 4, Typical ATDS Envi­

ronment). This configuration yields system performance in terms of capability,

speed and flexibility that is sufficient to not only meet all present requirements

of the system, but also to provide a capac ity for future system expansion.

2-7/2-8

SECTION 3

COMPUTER FEATURES

COMPARISON OF COMPUTER FEATURES

The design features of the L-304, how they compare with features of other

computers, and why they are preferable for airborne tactical applications are

discus sed in this section. The L- 304 is specifically compared with two other com­

puters - the Navy AN/ USQ-20B and the IBM System 4 PI, Model EP (the Model EP

is the largest of a group of 4 PI models). The AN/USQ-20B was selected because

of the general familiarity among Naval personnel with the AN/USQ-20A used in the
.'.

NTDS,'" as well as its widespread reputation as a good computer (Litton agrees with

this contention). The System 4 PI, Model EP was selected because of prevalent

familiarity among all computer users with the System 360 computer family and the

fact that the System 4 PI, Model EP is functionally near equivalent to selected 360

models. The System 4 PI is presented, rather than the 360 itself, since it is a

militarized processor.

The validity of the comparative analysis illustrated in Table III-l is keyed to

Litton's experience with the selected machines. Specifically, the USQ-20B was

Government-furnished equipment that was incorporated in the Litton-developed Beach

Relay Facility; and the Litton programming section has employed the System 360

extensively in developing the airborne tactical programs. (Approximately 28,000

instructions were programmed on the 360 to support airborne programs developed

prior to L- 304 availability.)

Features Comparable to Other Computers

In the Table III-I comparison of the three computers (frequently referenced

in this section), the first five items are essentially self-explanatory. These are

L-304 features equivalent to the indicated USQ-20B and System 4 PI features. How­

ever, Items 2, 4, and 5 indicate some further capability and merit additional

comments.

::CThe AN/USQ-20B and AN/USQ-20A are equivalent for all practical purposes; the
primary difference speed.

3-1

Vol
I

N

AN/USQ-20B SYSTEM 4 PI, MODEL EP

1. JO-BIT WORD LENGTH CAPABLE OF HALF- 1. 32-BIT WORD LENGTH CAPA8LE OF HALF-

WORD ACCESS. WORD OR MULTIPlE-WORD ACCESS.

2. 2 ACCUMULATORS AND 7 INDEX REGISTERS. 2. 16 REGISTERS EMPlOYABLE AS ACCUMU-

3. 62-INSTRUCTION REPERTOIRE. LATORS OR INDEX REGISTERS.

4. UP TO 16 INPUT/OUTPUT CHANNElS. 3. 7S-INSTRUCTION REPERTOIRE (NOT

INCLUDING flOATING POINT).
5. 7-DAY INTERNAL REAL-TIME CLOCK.

4. UP TO 262 INPUT/OUTPUT CHANNELS.

S. IS.S-HOUR INTERNAL REAL-TIME CLOCK

(CAPABLE OF PROGRAM INTERRUPTION).

6. DIRECT MEMORY ACCESSING TO OVER

4 MILLION WORDS.

7. 'COMMON MEMORY ACCESS BETWEEN

PROCESSORS.

8. IMPROVED INSTRUCTION REPERTOIRE

INCLUDING:

A. MOVE

B. EXECUTE

C. BINARY-TO-DECIMAL OR DECIMAL-

TO-BINARY CONVERSION

Table III-I. Comparison of Computer Features

L-304

1. 32-8IT WORD LENGTH CAPA8LE OF HALF-WORD

ACCESS.

2. 8 REGISTERS PER LEVEL EMPlOYA8LE AS ACCUMU-

LATORS OR INDEX REGISTERS.

3. 65-1 NSTRUCTION REPERTOIRE.

4. UP TO 64 INPUT/OUTPUT CHANNELS.

S. MANY REAL-TIME CLOCKS (EACH CAPABLE OF PRO-

GRAM INTERRUPTION).

6. PROGRAM-CONTROLLED MEMORY, EXPANDABLE

TO J31K WORDS.

7. COMMON MEMORY ACCESS BETWEEN PROCESSORS.

8. EXPANDED INSTRUCTION REPERTOIRE INCLUDING

SUCH IMPROVEMENTS AS:

A. MOVE

B. EXECUTE

C. TES T AND SET BI T

D. GATED COMPARISON

E. EXCHANGE

F. INPUT/OUTPUT TRANSFER DIRECtlY FROM

PROCESS REGISTERS

G. THOROUGH LITERAL ADDRESSING CAPABILITY TO

MEMORY

9. AUTOMATIC PROGRAM QUEUEING AND TRIGGERING.

10. TOTAL OF 64 PROGRAM LEVELS, EACH WITH OWN

PROCESS REGISTERS AND MEMORY BANK SELECTION

(SAVED AUTOMATICALLY WITH EACH LEVEL CHANGE).

11. INPUT/OUTPUT TRANSMISSION VIA 8-BIT CHARACTERS

OR 32-BIT WORDS.

1601-2

Dual-Purpose Registers

As shown in Items 2 and 4, the L-304 has a total of 512 dual-purpose regis­

ters, 8 per program level, with up to 64 levels. These are referenced as process

1'(' gisters because they are available for use either as accumulators or index regis­

te rs. In the AN/ USQ- 20B, index registers are modified only by special instructions;

consequently, convenience of index manipulation is somewhat re stricted and the index

value must often be transferred to an accumulator to accomplish the manipulation.

The dual-purpose feature of the L-30'4's registers saves considerable instructions.

Fifteen of the sixteen general-purpose registers in the System 4 PI also have

this dual capability. Register 0 is available only as an accumulator because a zero

entry in the instruction implies no operand modification. In the L-304, the instruc­

tion addre s sing mode is specified in a distinct field; it is not inherent to the index

register designation field.

Input/ Output Channels

The L-304 programmer may directly access up to 64 input/ output devices.

Eight primary channels are available, each with eight bidirectional subchannels.

Multiplexing units are neces sary on each primary channel if more than one subchan­

nel is de sired. The se multiplexing units need not remember subchannel se lection;

all input/ output transfers are coded directly to the subchannel.

As each service request is sensed in the L-304 input/ output control section

(IOC), a control word {key word} uniquely associated with that subchannel is accessed.

The key word, which is stored in memory, indicates the transfer mode and data mem­

ory location as well as the transfer count for that subchannel. The completion of the

disc rete data transfer on that subchannel include s updating the key word and replac­

ing it in memory. The programmer is unaware of the actual data transfer until the

transfer is terminated. At that instant, the program operation is interrupted and the

Program Activity Register adjusted (see Program Level Access discussion to follow).

The program level specified in the input/ output termination word (also uniquely asso­

ciated with that subchannel) specifies the program level to be activated. This con­

trol word contains the termination cause for subsequent program inspection and con­

tains two, program-'established program level designation fields, one for a normal

termination (transfer count decrements to zero) and one for an "abnormal" termina­

tion (device error or intentional interrupt).

The previous paragraph, although an L- 304 operation description, nearly de­

tails the input/ output operation of the AN/USQ-20B as well. The primary difference

3-3

is, in the AN/USQ-20B, a data transfer termination results in the passing of com­

puter control to a fixed memory location unique to each input/ output channel. This

location is usually preset by the programmer with a transfer instruction to an input

output servicing program. In the L- 304 computer, control is transferred directly

{no inte rmediate steps neces sary} to the program level indicated in the input/ output

termination word.

The input/ output termination operation of the System 4 PI is considerably less

flexible than the L- 304 for the real-time system application. It is readily apparent

that, in a typical commercial, multiuser, diverse tasking environment, full computer

and input/ output control is best left to an omniscient supervisor program. Anything

short of this would lead to wasted machine time and thoroughly disgruntled users.

However, in a real-time system, fast, precise input/ output control is mandatory for

maximum system effectiveness.

An input/ output termination, in the 4 PI, results in the input/ output control

section interrupting the CPU to an input/ output servicing routine. Unfortunately,

this interruption is not unique to a subchannel; thus, all input/ output terminations,

of any sort, must filter through one servicing routine. In a typical AT DS, a

minimum of 300 to 400 input/output terminations (excluding clock interrupts)

must be processed each second. The source determination and routing decisions

required by the 4 PI for this routine (which are unnecessary in the L- 304) are

not trivial, as was brought out in Section 2. A comparison of the event sequences

of both the System 4 PI and L-304 machines is provided in Appendix C of this

volume.

Real- Time Clock

Tactical functions often are operated on a prespecified time base. This base

may be arbitrarily selected or may be the result of input/output operations. In

either case, it is necessary to activate a subroutine within a minimum tolerance of

relative time. In order to satisfy this requirement, a "clock-watching" process is

necessary, i. e., some procedure must be established to assure that, at selected

intervals, a real-time clock is interrogated and subsequent decisions regarding pro­

gram routing are made. Traditionally, this requires either a clock monitor sub­

routine or the performance of clock checks at regular intervals in all programs.

Also, various counters representing the desired time bases must be incremented

(or decremented) and, if appropriate, the counters be reset and computer control be

transferred to some other program "whose time it is to run." (See Appendix E.)

3-4

The facility for many real-time clocks, each capable of program interruption,
.',

frees the programmer from tedious and time-consuming clock watching duties.'" A

total of 64 real-time clocks are available in the L-304 since its IOC section merely

references a program-established transfer mode to determine if a channel is being

en'1ployed as a clock input device. If the key word transfe r mode (discus sed unde r

"Input/ Output Channels") for the subchannel currently reque sting compute r service

equals 1, the IOC merely decrements the key word block length count. When the

count decrements to zero, the normal input/ output termination sequence is performed.

This feature is discus sed to some detail in Section 4.

Advanced L-304 Features

Items 6 through 8 of Table IIl-l indicate those features of the L-304 and Sys­

tem 4 PI not provided by the AN/USQ-20B. Similarly, Items 9 through 11 indicate

feature s unique to the L- 304. All of the se feature s, with the exception of Items 6

and 7, were previously available as software techniques. That is, Items 8, 9, 10,

and 11 repre sent feature s which can be accomplished by programmed instructions.

All of these processes are performed by the L-304 with no additional programming

required.

Items 7, 9, and 10 are elaborated upon in Section 4. Item 8 is self - explanatory

with the following comments provided for amplification.

The System 4 PI computer has optional floating-point-arithmetic logic. How­

ever it is not included here since this discussion is concerned primarily with mili­

tary system applications.

The L-304 assembler was developed on both the System 360 (prior to L-304

availability) and the L-304. Appendix B of this volume contains a comparative sum­

mary of ' the instructions required in both computers for this application. Briefly

stated: Appendix B indicates that the expanded repertoire of the L-304 made it pos­

sible to implement the same problem on the L-304 while requiring 17 percent fewer

ins tructions than we re required with the 360.

The thorough lite ral addre s sing capability of the L- 304 provide s a cons ide rable

time savings. In a typical ATDS program approximately 40 percent of all instruc­

tions (including transfers) might employ the literal addressing mode. Since this

mode allows one less memory access per instruction (the operand is located in the

instruction's A-field) than the direct mode, for example, total program operating

time would be considerably abbreviated.

','

A single clock capable of program interruption alleviates this problem but still re-
quires a control routine to maintain the time base counters and determine program
routing.

3-5

Men10ry Acce s sing

Item 6 lists the L- 304 feature of program- controlled memory acce s s which,

in a modular fashion, enables memory growth to a maximum configuration of 131,072

32-bit word locations. At any single instruction execution, the L-304 is actively con­

nected to four memory modules, equivalent to the capacity of the ANI USQ-20B. How­

ever, in the L-304, the programmer employs a unique instruction to modify the mem­

ory bank assignment register, reconfiguring the module selection to access additional

locations. This memory selection is unique to each program level, a program on one

level being unaffected by module selection of a program on a different level. Also,

the selection is automatically saved, in memory, when leaving a level and restored

when returning to that level. Appendix G contains a brief description of the memory

module selection feature (with reference to expansion to 16 modules).

The L-304's total accessibility to 16 (Sl92-word) modules falls far short of
,',

the System 4 PI memory capacity. ',' However, the L-304' s modular selection scheme

allows dynamic system modification in the event of memory failure, a capability which

is unavailable in either of the other computers. The L-304 instruction repertoire

uniquely includes two memory adjustment instructions which allow the programmer to

dynamically adjust the memory bank selection and isolate the failed module from the

system. Assuming a spare memory module is included in the system, the L- 304

tactical program could easily substitute the spare module for the failed one, reload

only the substitute module from magnetic tape if necessary, and continue the com­

plete tactical operation.

Input/Output Data Transfer

The L-304 IOC section enables the user to carry out data transfer either with

full 32-bit words or S-bit characters. When using the character mode, the data word

packing and unpacking is performed with no program intervention necessary. In an

ATDS environment, significant time savings are realized with this feature when real­

time data extraction is de s ired. Since no unpacking is required, as would be in the

AN/USQ-20B, all data areas can be directly output to the 9-channel (S-bit characters

plus parity bit) magnetic tape unit with no inte rmediate formatting.

,',
','

The business data proces sing environment which the System 360 is accustomed to,
generally imposes far greater memory capacity demands than most tactical systems.

3-6

."
In the System 4 PI, all data transfer occurs in 8-bit characters:" Although

data packing and unpacking into 32 - bit words is inherent to the scheme, additional

logic would be required in the majority of military system input/ output interface

units to encode or decode the data into these characters. Also, the input/ output

servicing time is quadrupled because four input/ output service requests are necessary
... t t ..

for each single request to the L-304.
... , ... ,

PROGRAM ACTIVITY REGISTER OPERATION

Perhaps the most interesting and least understood features of the L-304 are

automatic program queueing and triggering. Subsequent paragraphs elaborate on the

use of the queueing and triggering mechanisms in the L-304. This subsection at­

tempts to briefly explain these procedures to the unacquainted observer. A firm

understanding of these is desirable in order to fully grasp and appreciate the forth­

coming discus sions.

Program Level Access

The Program Activity Register, depicted in Figure 3-1, occupies four mem­

ory locations and has two memory bits for each program level - an enable bit and a

status bit. The enable bit is a program mask {only modified by instructions} control­

ling level activation and the status bit {set by either instruction or I/O termination}

indicate s current level activity. Whenever a particular instruction is executed or

whenever an I/O-initiated store cycle into the program activity register is detected,

a search of the PAR is performed to determine the highest priority active program

level. This search consists of a logical comparison of the bits in the enable section

with the bits in the status section.

The L-304 automatically II searches" the PAR by accessing each PAR memory

word in turn (the enable and status bits for Levels 60-77 are in the most significant

word, Levels 40- 57 in the second word, and so on) and logically ANDing the enable

.. i ..

"'In the 3 60 comme rcial applications, the primary input/ output media are magnetic
tape units and discs each of which store data bytes (8-bit character) .
.. ' t ...

·· .. ·'This time is not always subtracted from instruction execution time since the Sys-
tem 4 PI input/ output section can be independent from the CPU. In any event, in a
full multiplex operation with several input/ output devices, the IOC must ensure rapid
re span se to all req ue sts or risk data 10 s s.

3-7

W
I

00

MEMORY
LOCATION

1606

1604

1602

1600

31

77

1

57

37

1

17

1

30 29

76 75

56 55

1 1

36 35

1 1

16 15

1

PROG RAM LEVE l ENABLE BITS

28 27 26 25 24 23 22 21 20 19

74 73 72 71 70 67 66 65 64 63

1

54 53 52 51 50 47 46 45 44 43

1 1 1 1 J 1 1

34 33 32 31 30 27 28 25 24 23

1 1 1 1 1

14 13 12 11 10 7 6 5 4 3

1 1 1 1
!

PROGRAM LEVEL STATUS BITS

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

62 61 60 77 76 75 74 73 72 71 70 67 66 65 64 63

1 1

42 41 40 57 56 55 54 53 52 51 50 47 46 45 44 43

1 1

22 21 20 37 36 35 34 33 32 31 30 27 26 25 24 23

1 1

2 1 0 17 16 15 14 13 12 11 10 7 6 5 4 3

1 1 1 1

Figure 3-1. Typical ATDS Program Activity Register Configuration

2 1

62 61

1

42 41

22 21

2 1

0

60

40

20

0

BfT
NUMBER

OCTAL
LEVEL
NUMBER

1601-3

bits with the status bits. If a logical "I" is detected after the AND operation, that

level is activated. If a "1" does not exist, the next word is accessed and the opera­

tion is repeated on that word. The search continues until a "1" is detected or until

all 64 levels have been checked. Level 0 is activated if no other level satisfies the

activation criteria.

The search is always performed from the most significant enable and status

bits to the least significant. This re sults in the current highe st priority program

level as suming computer control. The total operation take s only 2. 5 to lO micro­

seconds, depending on the number of memory words that must be acce s sed.

For example, assume the following PAR configuration (in this example assume

only six program levels):

543 2 1 0

o 1 0 101

Enable (Mask)
Section

Program Activity Register

....-Level Number- 543 2 1 0

o 0 0 000

Status (Activity)
Section

With this configuration, program Levell would be active because this level is the

highe st with a logic" 1" common to both its enable bit and status bit.

If the program operating on Levell wished to activate Level 4, it would merely

set the status bit for Level 4;

543 2 1 0

o 101 1 1

543 2 1 0

000 0 1 0

Level 4 would be activated because it is the highest priority "active" level. If

Levell' s program had set the Level 0 status bit, a search would be pe rforn~ed that

would result in control returning to Level 1 because Level 0 is a lower priority level.

Similarly, if an 110 interrupt resulted in Level 2' s status bit being set,

543 2 1 0

010 1 1 1

Level 2 would be activated.

3-9

543 2 1 0

o 0 001 0

VJ
I

......
o

FIXED
MEMORY
LOCATION

AN/USQ-lOB

I/O TERMINATION ENTRANCE ADDRESS

I/O CHANNel

0 14 15

'liliiii ~ "I11III ~ ... p-

o m n

'liliiii ~ "I11III ~ ... p-

0

ED FIX
ME
LOC

MORY
ATION

~OGAAM ~O o m n GRAM
STARTING STA RTING
POINT PO INT

Figure 3 - 2. Program Queueing Comparison

L-304

PROGRAM ACTIVITY REGISTER

22 62 63

"I11III ~ "'II1II r l
0 m n

'liliiii r 'liliiii r "I11III r
0 m n

However, if the interrupt results in a selection for Level 3,

543 2 1 0 5 4 3 2 o

o 1 0 1 1 1 o 000 o

Levell remains active because Level 3 does not have a logic" I" in both its

enable bit and status bit.

Program Triggering

The procedure for program level activation, once the PAR search is completed,

is sirnilar to the I/O servicing routine triggering sequence in the USQ- 20B. Fig-

ure 3-2 illustrates this similarity.

As the figure indicate s, the L- 304 proce s s of activating a program level is

very similar to the USQ-20B process of activating a subroutine after an external in­

terrupt or 110 transfer termination. When an external interrupt or I/O data transfer

termination is sensed in the USQ-20B, control is directed to a fixed memory location

uniquely associated with the interrupting I/O channel. This location is generally pre­

set with a transfer instruction to an I/O servicing routine.

In the L-304, when a program level is to be activated, the computer l s instruc­

tion location register is set with the contents of a fixed memory cell associated with

that program level and the computer begins executing instructions at that location on

the new program level. When a level is exited, the instruction location registe r con­

tents are stored in the unique location for that level. This enables the program to re­

sume operation where it left off when the level is reentered.

3-11/3-12

SECTION 4

TYPICAL ATDS ENVIRONMENT

GENERAL

The L-304 computer system in a typical airborne tactical data system

could utilize the many L-304 advanced design features to enhance system opera­

tion. These features have been discussed in Section 3. The purpose of this sec­

tion is to elaborate upon this discussion with examples of a typical ATDS program

design.

MULTIPROCESSOR CONFIGURATION

An AT DS multiproc es sor configuration, as pre sented in Figure 4-1, might

consist of: (1) two processors, (2) five 8K word memory modules, each accessible

from both processors, and (3) a control I/O interface unit which houses interproces­

sor comrrlUnication logic and real-time clock, magnetic tape unit, IFPM panel, and

cornputer control panel interface logic.

This multiprocessor configuration would allow for over 160 percent system

functional ope ration expansion, bas ed on a wo r st - c as e sy stem load, as we 11 as

greatly inc reasing total system reliability in several forms.

SystelTI Expansion Capability

In earlier tactical systems, the operating capacities of the systems were gen­

erally exceeded with little effort expended toward improvements on the original de­

sign. Since functional improvements are inevitable, a design which allows more than

100 percent additional real time entirely for system modification and expansion is

clearly preferable over one which does not. The three- and four-computer configu­

rations now used within other tactical systems are examples of unanticipated expan­

sion. The time -consuming communication neces sary in a mUlticompute r configuration

(all via I/O) results in the requirement for three separate computers to do the job of

two having common memory access.

Considering only a typical AEW mission, the total maximum system load

can easily be handled in a single L-304. These percentages indicate that a

4-1

0+>­
I
N

II III IV V

8K MEMORY MODULE 8K MEMORY MODULE 8K MEMORY MODULE 8K MEMORY MODULE 8K MEMORY MODULE

1
§ I § REGISTERS REGISTERS

J"(I l2 I I II ~ LI L3 l4
0 0 0 0 0

I T
I I I I I

I --- _____ ..J

PROCESSOR
A

L _______

,
I NTE RPROCESS OR I"

IAf COMMUNICATION ~
I" ____________ ,.

~ ~ ~ ~
.~~------~,II CONTROL .~~-------,.

~ UNIT ~.
--------~~ .~------~

IFPM
PANEL

COMPUTER
CONTROL

PANEL

REAL
TIME

CLOCK

MAGNETIC
TAPE
UNIT

Figure 4-1. Typical ATDS Multiprocessor Configuration

PROCESSOR
8

1601-5

second processor would be totally available for expanded functional responsibili­

ties. The additional responsibilities may easily encompass an improved version

of the tactical program, as well as additional assignments such as ECM or ASW

proces sing.

System Reliability Enhancement

In a typical "ATDS",. each processor would have the ability to communicate

with each memory module (up to 10 modules) and with all of the I/O interface

assemblies. This communication capability allows both processors to perform

dynamic system corrective action in the event that failures occur that require

system degrading. A small amount of logic in each I/O unit is uniquely associated

with each processor. If the failure occurs in this area, the I/O unit will maintain

a meaningful data transfer path when connected to the other processor. In a typ-

ical tactical program design, if either processor detects an error in an 1/0 inter­

face assembly (periodic, program-controlled data-transfer tests are performed on

each converter), the failed assembly will be automatically (no operator action neces­

sary) switched over to operate from the other processor. This relocation will be

performed in such a manner that the operator and functional programs will not be

aware of the switch. (Note: This is not a degraded operation.) However, if the

failure occurs in the logic common to both processors, it will be detected in both

processors, the I/O will be idled if necessary, and the operator will be notified of

the error.

Froc e s s or Ve rification

Perhaps even ITlore valuable is the processor verification feature provided

by the multiproce s sor configuration. Since it is pos sible to ITlaintain full system

operation in a single processor and to shift the tactical load between the processors,

one processor can aSSUITle the responsibilities of the other (failed) processor as well

as ITlaintaining its own. Also, the good processor can disable the bad processor to

prevent unanticipated harmful actions in the bad processor. More specifically, in

the retrofit systeITl, when a processor detects a General Machine Test error in the

other processor (the GMT runs once per scan in each processor and the result is

verified by the other processor respectively), it will aSSUITle the full systeITl opera­

tion and will disable the other processor. ~:,

-'­','

This powerful capability ITlust be treated carefully but is nevertheless valuable.
Software traps are set up such that a failed compute'r cannot disable a functioning
computer.

4-3

In futur(' expanded op('rations where one processor is perfornling tactical op­

t'ratiolls and the oth('r ECM, for ('xalnple, if a processor fails, the systeln operator

will be able to select what operation or even what subfunction mix he wishe s to main­

tain. Tht:, good processor will autom.atically assume those responsibilities rcgarcl-

1 (' S s of its prior function.

PROGRAM PRIORITY STRUCTURE

In a conventional computer, the function of program sequencing and triggering

falls upon an executive routine. This "master caller" traditionally performs a series

of decisions, often employing a queueing file, to determine the order of progralll s it

is to run in the normal sequence of events (see Appendix D). A clock-watching rou­

tine usually is included in this category also, its function being to monitor the syste111

real-tinle clock and to provide the master caller (or do the calling itself) with sup­

plelnentary infornlation as to the order of events (see Appendix E).

This effect is precisely what is provided via the L -304 Program Activity Reg­

ister with the exception that the queueing file interrogation is performed automatically.

Afte r a System Initialization routine has preestablished the Program Activity Regis­

ter the dynamic sequencing of events will continue without necessity for program

control.

An ATDS Program Priority Structure

A typical priority structure for an ATDS Retrofit Program including the

program level number, program name, and procedure by which that level/program

would be accessed. The access media column containing another level number in­

dicates the program at that other level is directly setting the PAR status bit for this

program level. Activations caused by clock te rITlinations indicate that a pre specified

number 'has been counted down to zero by continuous one~kilocycle clock pulses on the

associated 110 channel (see Section 3). The 110 terITlinations occur when a data tran s­

fer is cOITlplete or an external interrupt is received into the L-304.

Progranl Sequencing

It has already been pointed out that the progralll priority deterlllination and

triggering in a conventional cOITlputer is acconlplished with a "master caller" sub­

routine and some scheme of periodically monitoring the real-time clock. This ap­

proach generally allows for a fixed sequence of processing functions and a higher

priority, inl.lllediate-service set of I/O control routines. The servicing priority of

the latter routines is always deterlllined by the most recent interrupt to the cornputer.

4-4

In future expanded operations where one processor is perfornling tactical op­

pratiolls and the other ECM, for example, if a processor fails, the system operator

will be able to select what operation or even what subfunction mixhe wishes to main­

tain. The good proces sor will automatically as sume those responsibilities rega rd­

le s s of its prior function.

PROGRAM PRIORITY STRUCTURE

In a conventional computer, the function of program sequencing and triggering

falls upon an executive routine. This "ITlaster caller" traditionally performs a series

of decisions, often employing a queueing file, to determine the order of programs it

is to run in the normal sequence of events (see Appendix D). A clock-watching rou­

tine usually is included in this category also, its function being to monitor the systenl

real-tinle clock and to provide the master caller (or do the calling itself) with sup­

plementary inforITlation as to the order of events (see Appendix E).

This effect is precisely what is provided via the L-304 Program Activity Reg­

ister with the exception that the queueing file interrogation is performed automatically.

After a System Initialization routine has preestablished the Program Activity Regis­

ter the dynaITlic sequencing of events will continue without necessity for program

control.

ATDS PrograITl Priority Structure

Table IV -3 depicts the priority structure for the ATDS Retrofit Program in­

cluding the program level number, program name, and procedure by which that level/

prograITl is acce s sed. The acce s s media column containing another level number in­

dicate s the program at that other level is directly setting the PAR status bit for this

prograITl level. Activations caused by clock terminations indicate that a pre specified

number has been counted down to zero by continuous one-kilocycle clock pulses on the

associated I/O channel (see Section 3). The I/O terminations occur when a data trans­

fer is complete or an external interrupt is received into the L-304.

Prograrn Sequencing

It has already been pointed out that the program priority determination and

triggering in a conventional cOITlputer is accomplished with a "master caller" sub­

routine and some scheme of periodically monitoring the real-time clock. This ap­

proach generally allows for a fixed sequence of processing functions and a higher

priority, immediate -service set of 110 control routine s. The s ervicing priority of

the latter routines is always deterITlined by the most recent interrupt to the computer.

4-5

LEVEL ACCESS
NUMBER PROGRAM MEDIA

77 PROCESSOR RESET COMPUTER RESET
75 TRACER PAR STORE CYCLE
74 MEMORY CHECK LEVEL 7
62 IFPM AND SYSTEM CONTROL LEVEL 61
61 IFPM AND SYSTEM CONTROL CLOCK, LEVEL 27, OR I/O
56 SPARE CLOCK CHANNEL CONTROL CLOCK
55 MISCELLANEOUS I/O ERRORS I/O
53 CD BUFFER TERMINATION I/O
52 ADD TRACK TO SYSTEM LEVELS 27, 21, 15, 13
51 lINK-l1 I/O ERROR OR OUTPUT INTERRUPT I/O OR LEVEL 47
47 lINK-l1 BUFFER TERMINATION I/O OR LEVEL 25
45 DISPLAY BUFFER TERMINATION I/O OR CLOCK
44 DISPLA Y NIXIE CONTROL I/O OR LEVEL 27
43 lINK-4 INPUT PROCESSOR I/O
41 L1NK-4 OUTPUT PROCESSOR I/O
37 ERROR CONTROL I/O
36 INITIATION CONTROL CLOCK OR I/o
35 DISPLA Y EQUATIONS LEVEL 34
34 CRITICAL LOOP EQUATIONS LEVEL 33
33 I/O CONTROL CLOCK OR I/o
27 DISPLA Y INPUT PROCESSOR LEVEL 45
25 L1NK-ll OUTPUT PROCESSOR LEVELS 51, 47
23 CD INPUT PROCESSOR LEVEL 27
21 GENERAL BOO KKEEPING (INCLUDING DISPLAY

OUTPUT FILE UPDATING) LEVEL 27
17 INTERCEPTION CALCULATIONS LEVELS 11, 5
15 CORRELATION AND TRACKING LEVEL 23
13 L1NK-11 INPUT PROCESSOR CLOCK
11 INTERCEPTION EXECUTIVE LEVEL 15
7 GENERAL MACHINE TEST LEVEL 61
5 INTERCEPTION TEWA EXECUTIVE

Table IV -3. ATDS Program Priority Structure 1601-8

TIl<.' L-304 allows for the same orderly sequence of processing functions while

not rC'quiring any "n1aster caller" routine. The progran1 operation time saved, which

is traditionally wasted in the "master caller's" intricate decision paths'::: can be con­

siderablE:' (5 to 10 percent). In the L-304, this time becomes available for 1110re

meaningful functional operation. Also program efficiency and modularity is en-

hanced since all prograIT1s are no longer dependent on some IT1aster program and,

sin1ilarly, never have to deterIT1ine if it is tiIT1e to return control to the "master cal­

ler." The same I/O servicing procedure of the conventional computer is permissible in

the L -304 with the added feature of realistic priority determination among these I/O

controllers. The last I/O interrupt need not be the first processed; if it is a lower

priority than a previous interrupt, it will await its turn.

Prograrn Priority Modification

The priority arrangell'lent in Table IV -3, which takes into consideration run­

ning time, relative priorities, and the required system response time of each pro­

grall'l, is by n"o means inflexible. An alteration can easily be incorporated; only a

program assell'lbly is necessary. All tactical programs have been coded irrespective

of their associated prograIT1 level. A permanent priority adjustment would entail only

the changing of a few cards in the common data cOIT1munications pool (compool) and

reas sembling the tactical program.

FutherITlore, iITlITlediate dynaITlic adjustITlent of the system operating sequence

is facilitated in the L-304. It is readily appreciated that, in a conventional cOITlputer,

the dynaITlic adjustment concept would require additional decision paths in the tlITlaster

caller" routine. For exaITlple, flags are necessary to indicate and reITleITlber a sys­

tem failure which dictates a change in the norITlal prograITl sequencing. After de­

termining that it is prograITl X's turn to operate, the "master caller" ITlust then in­

spect the flag for that program to ascertain if any sytem failures had occurred such

that prograITl X should not be called at this time. This decision logic involves sev­

eral instructions and is exercised frequently.

The program activity register concept greatly facilitates in-flight program

flow modification to suit the current system enviromnent. The following two exam­

ples of dynaITlic priority adjustment are provided to illustrate this point.

','

These paths ITlay not be lengthy, but frequent operation equals significant tilne delay.

4-7

fAILURE DOWNGRADE

FAILURE IN USC-2
INTERFACE UNIT?

YES

FAILURE IN INPUT
SEQUENCE AREA
ONLY?

YES

CLEAR PROGRAM ACTIVITY
REGISTER ENABLE BIT fOR
USC-2 INPUT PROCESSOR
LEVel CD

CD REQUIRES ONE INSTRUCTION

NO

Q) TOTAL RESTRUCTURE PROCEDURE REQUIRES 4 INSTRUCTIONS

Figure 4-2. Program Activity Register Usage

Failure Downgrade

SYSTEM OVERLOAD RESTRUCTURE

PROCESSING TIME FOR
AUTOMA TIC WEAPON
ASSIGNMENT PROGRAM
INSUFFICIENT THIS SCAN?

YES

MOVE CONTENTS Of
PROGRAM LOCA nON
REGISTER AND MEMORY
BANK SelECTION REGISTER
fOR AUTOMATIC WEAPON
ASSIGNMENT PROGRAM TO
THE REGISTERS FOR THE
f-IIGHER PRIORITY LEVel

A typical system failure downgrade procedure within the L- 304 is shown in

the left half of Figure 4-2. In a typical system, various I/O unit failures may dic­

tate a system downgrade. Specifically, a particular test failure in the AN/USC-2

Data Terminal I/O interface unit indicates the interceptor reply data is likely to be

garbled. Hence, it is desirable to avoid processing that information. When the test

failure occurs, the IFPM and System Control P;rogram will reset the PAR enable bit

for the p'rogram level assigned to AN/uSC-2 input processing. As long as the enable

bit is reset, the AN/USC-2 program will never be accessed. The L-304 required

one instruction, in this instance, to accomplish the same effect as a conventional

computer with several instructions, repeatedly executed.

Overload Degrade

The right half of Figure 4 -2 depicts a hypothetical priority modification based

on a system overload. It is presented as further evidence of the ease with which dy­

namic priority adjustment is accomplished in the L-304.

4-8

The postulated situation consists of elevating the automatic weapon assign­

I1H'nt function to a higher ope rating priority when the system load becomes sufficiently

high that insufficient ope rating time is allotted to this program. This capabil ity,

although not included in the present program design, requires the inclusion of only

a few instructions in the IFPM and System Control Program to note a system over­

load condition. These infrequently executed instructions would verify the consistency

of the environment and alter the program priority structure accordingly.

This priority re structure has the effect of allocating more time for the automa­

tic weapon assignment operation. As is evident from Figure 4-2, the rearrangement

is complete with the execution of only four instructions. From that point on, the auto­

matic weapon assignment program, which is unaware of the modification, will operate

on a new program level of higher priority; thus, more real time is made available to

this function. The same sequence of four instructions will reconfigure the sy stenl. to

its original priority arrangeITlent when the system load returns to norITlal.

REAL-TIME CLOCK

The ideal real-time system design should be one in which a minimum of time

is spent making decisions on program sequencing as related to real-tim e control.

This is the sole function of a clock-watching sequence. A scheme which automates

this approach, thereby making this time (traditionally spent in the "who's next loop")

available for useful processing is clearly preferable.

This concept is precisely what is provided in the L-304. Each of the listed

programs would employ its own real-time clock and would be activated automatic­

ally when the associated clock-channel block length decrements to zero. Thus,

each function would operate independently, on its own time base, irrespective of

other functions. Onc e again, program efficiency and modularity have been

inc reased.

4-9

INPUT DATA
TRANSFER
TERMINATION

r-----~----_,

IN-FLIGHT
PERFORMANCE
MONITOR TEST
(IF SELECTED)

I

DATA
TRANSFER
RE-INITIATlON

L ______ _

LEVEL 53

ACTIVATION RATE
lMl 53: 1 OR 2/SCAN
LEVEL 23: 16/SCAN
LEVEL 15: 4/SCAN

Figure 4-3. Multilevel Usage

MULTILEVEL USAGE

22.5 DEGREE
AZIMUTH
CHANGE

r----~-----,
RADAR AND IFF DATA
PRE -PROC ESS ING
(ADJUST REPORTS TO
GROUND STABILIZED
REFERENCE)

I
ARRANGE
REPORTS IN
LIST PROCESSING
MECHANISM

I
HAS RADAR
PASSED THROUGH
90 DEGREES?

I NO

(EXIT)

r-----------,
, I
, PERFORM CORRELATION I
I AND ASSOC II. TlON FOR ,

rY_E_.S+-_____ +--,--t PAST RADAR QUADRANT I
'I ,
I I I
I I ' , I UPDATE CENTRAL ,
, TRACK STORE WITH I

L ...J I NEWLY CORRElATED
- - - - - - - - - I RADAR INFORMATION I,

LEVEL 23 I '-- _______1
LEVEL 15

The L-304's program level concept allows the system designer to modularizc

the functional areas of the tactical program to inc rease program efficiency. In a

typical system, the tactical program might be subdivided even further; the compon­

ents within a functional area would be assigned to unique program levels wherever

it is operationally expedient.

Figure 4-3 illustrates this point by depicting the level assignments of three

components of a Correlation and Association Program, This program is naturally

grouped into three distinct phases:

(l) Input data transfer reinitiation is performed on a high priority program

level. This includes no data processing; only an IFPM test, if selected,

and reinitiation of the data transfer.

(2) The computer-detector input data is preprocessed sever-al times per

radar scan. This preprocessing consists of ground stabilizing the

radar and IFF reports and inserting them in the list processing link­

ages used in the correlation process.

4 -10

(3) The main correlation program operates four times each radar scan.

Immediately following its operation, the central track store is updated

with the newly correlated radar information.

These phases of the correlation function are divided over three prograrn levels

to increase program efficiency. Each phase operates on a unique time base, indepen­

dent of the other phases. Also, the operating time of these components varies fro111

very short to extremely long. Employing three levels provides a quick response time,

when neces sary, relative ope rating priority with the other tactical functions, and the

use of distinct processor registers for each independent subfunction. The same total

effect is obtainable in other computers at the expense of extra instructions and de­

creased program modularity.

Processor Register Preservation

Multilevel allocation is also useful when considering the traditional process

register storit:lg and restoring necessary when independent subroutines are accessed.

In a conventional computer, the first step of an I/O servicing routine, for exarnple,

is to save the present contents of the process registers (so as not to affect theoper­

ation of the interrupted program). Similarly, when leaving the routine, the registers

are restored (see Appendix C). This operation requires several instructions and

extra memory space (a set of locations for each I/O servicing routine).

In the L-304, the same number of memory locations is necessary because the

process registers are actually memory locations. However, the sequence of storing

and restoring the registers is performed automatically, thus saving considerable

time. A recent study (see Appendix A) indicated that the sequence of register pres­

ervation in the USQ-20B required 30 times the cornputer operating time of the L-304.

With 17 I/O channels and frequent I/O transfer terminations (several hundred

per second), the time saved by the L- 304 would be ve ry significant.

The discussion thus far has been confined to the procedures inherent to real­

time I/ a servicing. Actually, the same procedure is necessary when any subroutine

is accessed from multiple sources. Figure 4-4 illustrates a typical use of the

L-304 automatic process register storage feature. The example selected

is not an I/O servicing routine, but rather is a subroutine which controls the process

of locating available positions for new system tracks in the central track store. As

is evident from the example, by employing a unique program level for this subroutine,

a considerable time savings is realized. The effect is identical to a conventional

scheme but the L-304 performs the selected task with only two additional instructions

while 18 instructions are neces sary in the conventional compute r.

4-11

CONVENTIONAL COMPUTER <D

TRANSFER TO
AVAILABLE TRACK
STORAGE SUBROUTINE@

DISCRETE
SUBROUTINE r-------,

SAve ACCUMU LA TORS I
AND INDEX REGISTERS I
EMPLOYED HEREIN ®

I

OBTAIN AVAILABLE
TRACK STO~GE
POSITION

RESTORE ACCUMU LA TORS
AND INDEX REGISTERS
SAVED AT SUBROUTINE
ENTRY POINT ®

I
I
I
I
I
I
I
I

RETURN THROUGH I
LINKAGE TO CALLING I
SUBROUTINE ®

L ______ ..J

INSERT TRACK'S
INFORMATION IN
CENTRAL STORAGE

Figure 4-4. Process Register Usage

4-12

L-304 <D

sn PROGRAM/
ACTIVITY REGISTER
STA TUS liT FOR
AVAILABLE TRACK
STORAGE PROGRAM ~
LEVEL t.1J

DISCRETE ~ LEVEL
PROGRAM ..--C~NGE

r~--:---,
I OBTAIN AVAILABLE I

TRACK STORAGE
I POSITION I
I I I
I CLEAR OWN PROGRAM I
I ACTIVITY REGISTER I

STATUS BIT ®
L ___ I ___ ..J

I RETURN TO t-- ORIGINAL
I LEVEL

INSERT TRACK'S
INFORMATION IN
CENTRAL STORE

I
I

<D DESIRED ACTION IS TO OBTAIN
AVAILABLE CENTRAL TRACK STOR~
POSITION FOR NEW SYSTEM TRACK

<D REQUIRES ONE INSTRUCTION
@ REQUIRES SEVERAL INSTRUCTIONS

1601-11

SECTION 5

SUMMARY

The intent of the foregoing sections has been to point out the applicability of

the L-304's design features to real time military systems. If some of the features

appear unconventional, it is only because they are uniquely organized. These features

represent the culmination of a computer development characterized by the ever­

increasing inclusion in computer hardware of those well defined and repetitive pro­

cesses formerly accomplished partly by hardware and partly by software. The ob­

jectives of this unique synthesis of features are the minimization of programming

effort and minimization of tactical real time requirements. Ultimately, these fea­

tures allow the system designer to enhance his design by utilizing the inherent power

and efficiency of the L-304 computer.

Litton believes that these features make the L-304 computer superior to any

othe r compute r for military real-time computer systems, and, in general, for almost

any .ctpplica tion.

5-1/5-2

APPENDIX A

COMPARISON OF REGISTER PRESERVATION REQUIREMENTS

In tll<' L-304, 256 32-bit words arc' available for use as process rl'gistt'rs.

In E\ <: onvt' ntional C Ol"}1 pute r, a pproxi rna tel y the sanle arnount of storage is requi rl' d

for bookk<"t'ping associatcc\ with storing and restoring registers. A breakdown for

the USQ-ZOB cornputer is as follows:

Register storage (7 index registers, 2 arithmetic

n~gisters) assullling 17 I/O channels (as in ATDS)

and 6 words of storage for registers per channel:

6 x 17 = 102

General subroutine to store and restore registers

(store all registers on entry, restore all registers

on exit)

Linkage to II registe r store" and" re store" sub­

routines (assuITling equivalent of 64 L-304 levels),

2 transfe I' and links pe I' function

Words

102

20

128

250

Based on this cOlnparison, the L-304 uses 6 extra storage locations for reg­

ister handling. The L-304 real-tin1e advantage for register processing is about 30

to 1 for each I/O interrupt; that is, 6 rnicros('conds for th(' L-304 versus 176 micro­

f;cconds for the USQ-20B (22 instructions'" at 8 111icroseconds per instruction).

;:-=

Two transfer and Unk instructions and 20 instructions to store and restore the
registers.

A-1/A-2

APPENDIX B

COMPARISON OF L-304 ASSEMBLER ON L-304 AND ON IBM 360

NATURE OF PROGRAM

The L-304 assembler is a two-pass assembler with a floating field operand.

It utilizes several alphabetized tables containing a compool (a communications pool),

internal symbols, external symbols, and subroutine entry points. Data may be de­

fined symbolically, as a decimal number, octal number, hexidecimal number, or as

any combination of these. The programs compared perform identical functions.

The 360 program was written under 8KBOS and the L-304 program was writ­

ten using L-304 assembly language and was assembled by the 360 assembler.

INSTRUCTION AND WORKING STORAGE COMPARISON

"Module L-304 360

First Pass 737 2093

Second Pass 1177 2058

Operand Interpreter 1285 1040

Compool Storage 549 0

TOTAL 3548 32 -bit words 5191 32 - bi t wo r ds

DISCUSSION

The 360 version is divided into three separate modules (assembly decks); the

L -304 program consists of twenty modules. The reason for the larger number of

modules in the L-304 (in addition to the resulting update and debugging economies)

is the comparative ease of linkage between modules. The relative difficulty of link­

age in the 360 (caused by the base registers) causes common routines to be included

in more than one module. If the length of these routines is subtracted from the 360

program, the storage comparison would look as follows:

B-1

Module L-304 360

First Pass 737 1842

Second Pass 1177 1991

Operand Interpreter 1285 981

Cornpool Storage 549 0

TOTAL 3548 32 -bit words 4804 3l-bit words

The removal of the duplicate routines increases the complexity of using them

and restricts the lTIodularity of the program (causes both passes to be in core at all

times). Much storage is saved by theL-304 addressing capabilities and ease of es­

tablishing and using a common data pool.

The program evolution in this instance should be mentioned. The original

assembler was written for the IBM 7094; this program was then moved to the IBM 360.

The move included program improvements because it was the second coding. Then,

the same basic program was again moved to the L -304; additional improvements, al­

though fewer in number, were inherent to this move.

Input and output control sections have not been included in the foregoing totals

because so much of this area is perforn1ed by the BOS Supervisor in the 360. It was

felt that including the total Supervisor in the I/O control figures would constitute an

unfair evaluation.

CONCLUSIONS

The results of this comparison are extremely interesting when considering

the nature of the program. One would perhaps expect the L- 304 to require fewer in­

structions in a tactical system program because the L-304 was specifically designed

to meet that type of requirement. Likewise, one would expect the 360 to excel in its

design environment of primarily commercial applications. Considering this fact,

Litton would have been pleased had the L- 304 equaled the number of instructions re­

quired for the 360 on this assembly program, a type of program typically considered

to be the 360' s forte.

This is not the case. The L-304improved upon the 360 requirements bymore

than 48 percent! Even when the duplicate subroutines in the 360 are eliminated, the

L-304 excels by 35 percent. This is true even though the totals in the latter

case do not include the extra instructions required in the 360 program to overcome

the increased program complexity indicated.

B-2

APPENDIX C

COMPARISON OF I/O SERVICING REQUIREMENTS

SEQUENCE OF EVENTS UPON RECEPTION OF AN I/O INTERRUPT

1.

2.

3.

4.

5.

6.

7.

8.

9.

Sys tern 4PI, Model EP

Transfer control to a processing

subroutine regardless of the I/O

channel (and inhibit further

interrupts).

Save process register contents.

Construct a new Program Status

Word for subsequent interrupts.

Determine the interrupt source.

Release interrupt lockout.

Decide if an 1/ a servicing routine

is to be called.

Do processing (in I/O servicing

routine).

Restore process registers.

Return to interrupted program.

DISCUSSION

1.

2.

3.

4.

5.

6.

7.

8.

9.

L-304

Transfer control directly to a

processing subroutine, depending

on the 1/ a channel.

Automatic

Status of interrupted program

already saved and is not effected

by subsequent interrupts.

Inherent to Number 1.

Unneces sary

Inher ent to Number 1.

Do processing.

Automatic

Return to interrupted program.

I/O servicing procedures are similar regardless of the computer under con­

sideration. The process of immediately transferring computer control to a subrou­

tine which can perform required actions has become a standard computer component.

The design of L-304, however, goes beyond this standard component to accomplish

automatically that which previously required programmed bookkeeping. Specifically,

by employing unique program levels for I/O servicing, the process registers in use

at the time of the interrupt are automatically "saved" and, when returning to the in­

terrupted routine, "restored." Additionally, the L - 304 allows the system designer,

if he so desires, to establish priorities among the I/O servicing subroutines. This

C-l

feature, not easily obtainable in a conventional computer's last-entered/first­

processed operation, provides added system capability in the event highly critical

I/O reinitiation times exist.

C-2

APPENDIX D

COMPARISON OF FUNCTIONAL PROCESSING REQUIREMENTS

SEQUENCE OF EVENTS FOR NORMAL FUNCTIONAL PROCESSING (OTHER THAN
DIRECT I/O SERVICING)

1.

2.

3.

Conventional Computer
(All control begins ~ith

"master caller" subroutine)

Calling subroutine determines

next subroutine to be called (calls

various subroutines in a predeter­

mined fashion) and transfers con­

trol to that subroutine.

Called subroutine is normally

completed and control returns to

the "master caller."

"Master caller" determines next

subroutine to be called and calls it.

4. Repeat of Step 2.

5. Repeat of Step 3, and so on.

6. Whole cycle is repeated.

DISCUSSION

L-304

1. Automa tic ~:~

2. 'I Automatically" called subroutine

relinquishes control to next highest

priority subroutine.

3. Automatic

4. Repeat of Step 2.

5. Repeat of Step 3.

6. Dynamic sequencing continues auto­

matically ad infinitum.

Once the program activity register in the L-304 is initially established, the

priority determination and sequencing of programs proceeds automatically. Thus,

the L-304 allows the system designer to eliminate the "Dlaster caller" subroutine.

It is readily apparent that a system could be designed to operate on one program

level within the L-304, thus creating the need for the traditional "master caller. II

However, with multilevel program organization, the features inherent to the L-304

can be employed to accomplish the very same operation automatically (no program

control necessary) while increasing program efficiency and modularity.

,'­-,-
Requires initial (one time) setup of queueing file (program activity registers).

D-l/D-2

APPENDIX E

COMPARISON OF REAL-TIME CONTROL REQUIREMENTS

SEQUENCE OF EVENTS FOR REAL-TIME CONTROL

1.

Conventional Computer

Inspect clock periodically, i. e. ,

design program with clock­

inspection sequence throughout

coding (or pas s through clock­

watching sequence periodically).

2. Update all clock counters; check

for appropriate action.

3. Take appropriate action and clear

related clock counter if required.

4. Return control to inspection point

if action had been taken.

DISCUSSION

L-304

1. Automatic with clock interrupt.

2. Automatic (can have many indepen­

dent clocks).

3. Take appropriate action and reset

related clock counter.

4. Automatic.

The feature of many real-time clocks, each capable of program interruption,

save s many programmed instructions. As indicated in the above sequence the L-304

accomplishes automatically that which required many instructions in a conventional

cornputer. It also represents an improvement over more recent compute r' s capa­

bility of a single interru;?table clock. In the above sequence only step numbe r one

can be eliminated with a single clock.

E-1/E-2

APPENDIX F

L-304 COMPUTER DESCRIPTION

GENERAL MACHINE DESCRIPTION

The Litton L- 304 is a highly reliable, fully microelectronic, high- speed gene ral­

purpose computer designed specifically for operation in airborne, shipborne, and

ground-mobile environments. Its small size and high reliability are achieved by the

exclusive use of integrated circuits and multilaminate intercircuit wiring compatible

with its random-access, coincident-current microferrite core memory.

Maximum flexibility and expandability have been achieved by designing the L-304

computer logic.to permit memory expansion (8192-word increments) from 8192 to 131,

072 32 - bit words without logic modification. Expansion from single to multiproce s sor

operation is economical from the standpoint of cost and size. Table F-I presents com­

parisons of the power requirements and approximate~:~ volume s and weights of repre­

sentative processor configurations.

.'.

The basic characteristics of the L-304 computer are:

(1) Parallel binary ope ration

(2) 32-bit instruction word

(3) 16 - or 32 - bit data word, including sign

(4) 2.2 -microsecond memory readl write cycle

(5) Two's complement arithmetic

(6) Memory expandable in 8l92-word module s, 32 bits per word

(7) 65 basic instructions

(8) 3 addressing modes

(9) 64 program levels

(10) 8 multipurpose process registers per program level (512 total, usable as

index registers or accumulators)

(11) Up to 64 inputloutput (1/0) channels each with program- initiated but inde­

pendently operating data transfers of up to 32 bits in parallel

"'Minor variations in volume and weight will result from characteristics of specific
installations.

F-l

MEMORY
PROCESSOR (32-BIT WORDS) POWER NVA TTS) VOLUME (CUBIC FEEn WEIGHT (POUNDS)

SINGLE 8, 192 300 0.94

SINGLE 16,384 390 1.32

SINGLE 32,768 490 2. 19

DUAL 32,768 780 2.44

DUAL 65,536 980 4. 19

DUAL 131,072 1180 7.69

Table F-I. Comparison of Power Requirements, Volume, and Weight of
Repre sentative L- 304 Configurations

67

87

148

164

272

390

(12) High I/O transfer rates, up to 432, 000 32 - bit words per second on one

channel or 227 ,000, 32- bit words per second when several channels are

operating siITlultaneously

(13) Automatic priority and high- speed multiprogram switching

(14) Coincident current, random access memory using wide temperature cores

The L-304 computing system is divided into four modular parts: the central

processor, micromemory, input! output, and power supply. These are shown in block

diagram form on Figure F-1.

As indicated in this diagram, the number of flip-flop registers is minimized

and multiple use is made of each of the registers in the computer. This organization

reduces size, weight, and power consumption, and lowers cost by decreasing the num­

ber of components.

THE CENTRAL PROCESSOR

The central processor contains five functional sections. These include the

Arithmetic, Instruction Control, Memory Control, Program Level Control, and Input/

Output Control Sections.

F-2

r -- - ---- -- -- --;;;"O-;;A~~'~ --- - - ------ - ~~;:~::; -- -----,

I
' SHIFT I

MlMOlV CONnOt. SlCTION

I MfMOlY MfMOlV I
, l:;:::ssii:' ::g:~~~ DATA RlTUlN IltGISTlIl I
I I
I I
I I
~-- ~
I--

I
I
I
I
I
I
I
I
I
I

r
I
I
I
I
I
I ,

LINE
IllCElVlllS

INPUT/OUTPUT
CONTIlOl SECTION

---,
I ,
I
I
I
I
I
I

Figure F-l. L-304 Computer Block Diagram

INSTRUCTION
LOCATION
REGISTER

AS

s-MEGACYClE
OSCllLA TOR

INSTRUCTION REGISTER MASK
DECOOE

-,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Arithn1etic Section

The arithmetic section contains a parallel, full add.er of 16 bits. This adder

is used in the execution of most instructions. Carry bypass and look-ahead logic is

used for a fast add time of less than 210 nanoseconds. Several logic controlled input

source s to the adder are provided and selective output from the adder yields logic

functions, sums, differences, decrements, increments, and zero detection.

The Instruction Control Section

The instruction control section contains a 32- bit instruction holding register

and the timing control state counters. Instruction ope ration and mode decoding gate s

provide control of all processor operations. This section also contains the computer

clock and control state counter s.

The Memory Control Section

The memory control section is that part of the processor which controls mem­

ory address extension. It contains a memory address extension register which al­

bws direct memory accesses to up to 16 modules (131,072 full words or 262,144 half

words).

The Program Level Control Section

The program level control section determines which of up to 64 different pro­

grams are active on a priority demand basis. A program level register selects the

active set of eight process registers and one of 64 program location registers from

fixed memory locations to be used by the instruction control section. A program ac-

. tivity register of 128 bits is also stored in a fixed memory location. This register is

used to reflect computer status with 64 active bits and 64 enable bits for programmed

control of interrupts.

The Input/ Output Control (IOC)

The input/ output control (IOC) is that part of the proce s sor that controls the

transfer of data between the processor's memory and the transmitting or receiving

I/O device. It controls the servicing of I/O requests for data transrnission on a pri­

ority demand scheme. It provides for communication and all synchronization between

the processor and each interface unit. Much of the processor's control unit and arith­

metic unit are time - shared by the IOC in the execution of its functions.

F-4

MEMORY

The memory section for the L-304 computer consists of basic modules of8192

words of 32 bits each, organized for coincident-current operation, as shown in Fig­

ure F-2. Access time for the 8192-word memory is 800 nanoseconds and the total

read/write cycle time is 2.2 microseconds. In addition to the use of wide-temperature,

low-noise elements in the stack, current compensation is used in the drive circuits

to provide stable ope ration ove r the full tempe rature range of ope ration.

The memory drawer -is in two sections. The stack section contains the core

stack, steering diode matrix, and sense amplifiers and the logic and driver section

has the memory logic, current drivers, and switches.

The arithmetic and control module and the memory module s are de signed so

that the total memory for any system can be directly expanded to 131,072 words. Add­

ing memory modules is accomplished by increasing chassis height and adding the nec­

essary signal harness. The address register and the output register for the memory

are located in the memory drawer to allow for memory extension and multiple com­

puter operation. Up to two computers or computer-like devices can communicate

with each memory module via two independent buses.

POWER SUPPLY

Power is provided by a number (as required by the system size) of microelec­

tronic pow.er supplie s. Each module is six cubic inche s in volume and supplie s regu­

lated voltage up to 8 amperes of current. These units were developed under a Navy

contract and operate from either 400-cycle, 11S-vac power or from +28 vdc prime

power as specified in MIL-STD-704. The power supply efficiency is 70 percent when

ope rating from an ac source and 80 pe rcent when ope rating from +28 vdc. Each powe r

supply is self-contained and provides full protection against prime power voltage vari­

ation. In addition, overvoltage and overcurrent protection of the power supply output

is provided. Any fault condition automatically shuts off the power supply.

F-5

Figure F- 2. The 8192- Word Memory Block Diagram

F-6

Y - READ CURRENT
SOURCE

x - READ CURRENT
SOURCE

..

INPUT/OUTPUT SECTION

Extensive, versatile input/output (I/O) capabilities are provided in the L-304

which a 110\\: communication with up to 64 I/O devices. A block diagram showing the

input/ output inte rface is contained in Figure F -3. Once a transfe r of data is initi­

ated' transmission between the computer memory and the I/O device is accomplished

independently of the current program.

Inforrnation Transfer

In the L-304, simultaneous information comTIlunication with up to 64 I/O de­

vices is permissible on a multiplexed or time-shared basis. This type of communi­

cation is achieved by an automatic multiplexing feature in which peripheral device

requests for information transfers are s canned within the computer and serviced on

an assigned priority basis. The computer servicing of a scanned request requires

an automatic program interruption of two memory cycles in duration. The program

is permitted to resume execution after the I/O servicing is completed provided no

I/O device service requests are present at the thne. In this type of operation, the

maximum transfer rate is 227, 000 words (32 bits) or characters (8 bits) per second.

A second type of I/O operation occurs when the program has been interrupted

to service a device that requires continual servicing for a given period. This opera­

tion is defined as the burst mode. The computer continually services the device re­

quest for information transfer as long as the request is present and remains the

h ighe s t priori ty. Thi s type of ope ra tion re sul ts in a maximum transfe r ra te of 435,000

words or characters per second.

Input/ Output SysteTIl Organization

The L-304 input/ output system consists of three parts: the input/ output con­

trol (IOC) section of the L-304 processor, the input/ output interface (I/O interface),

and interface units with their associated input/output devices (I/O devices).

The L-304 processor has provision for communicating with up to 64 input/

output devices under program control. The I/O devices must be connected to the

I/O interface via an interface unit that will respond to the control and TIleet the re­

quirements of the IOC. The design of each interface unit is special-purpose to meet

the system control requirements and characteristics of the I/O devices it will con­

trol. These units may be designed to control one or several devices on a time -shared

basis.

F-7

f-rj
I

00

DATA LlNES (32) ta...~
~ ~ ~J IJ ADDRESS LINES (3)

ENABLE LINES (8) ~ ~ ... ,
COMPUTER

II REQUEST LINES (8) .A
I" COMMAND LINES (3) ~ .IIIIIIII

CONTROL LINES (4) ...
l.l CONTROL LINES (4)

,
~

Figure F - 3. L- 304 COll1puter Input/ Output Organization

(32) ~ ,
(3) ~ ,
(1) ~

~ ~ ,
(1) INPUT/OUTPUT , , ,

INPUT/OUTPUT STATION I
(3) ~ t-'

SUBSTATION ,
(4) •

~ (4)' I

~ + • UP TO 8

UP TO 8 STATIONS
INPUT/OUTPUT
SUBSTATIONS

~
PER STATION

(4) ----- : (4) •

(3) ~
(1)' INPUT/OUTPUT 4 INPUT/OUTPUT

STATION SUBSTATION
(1) ~

(3) : ,
(32) ~ ,

The processor, under control of the roc, is designed to directly communicate

with up to eight tern1inals. The t~rminals are designated as rio stations. Each I/O

station may in turn allow communication with eight other terminals which are desig­

nated 1/ a substations. An interface unit may be connected at a station or substation

depending upon the special design of the unit which is tailored to the system require-

1T1ents. Addressing or recognition of 1/ a stations is performed by the roc, whereas

addressing or identification of the r/o substations is performed by the interface units

via the three addres s lines of the 1/ a interface.

Communication between the computer input/ output section and each channel is

handled via three subchannels: (1) a data subchannel, (2) a control subchannel, and

(3) a request subchannel. Data and command information occurs on the two-way data

subchannel connecting the computer input/output section to each of the eight possible

I/O stations. A common control subchannel between the input/output control and the

I/O stations provides lines for: station code select, enable, indicator, and stop.

Input/output stations request operations via a request subchannel to the laC on sep­

arate request lines.

1/ a Control Words

Data transfe rs are controlled by words stored in the computer memory. Two

32-bit words (a key word and a terminate word) are set up by the program for each

I/O substation (up to a total of 64 devices). Each set of control words contains the

following information: (1) the starting address of the transfer data; (2) the number

of words (32-bit format) or characters (8-bit format) to be transITlitted: (3) the mode

of transmission: (4) a set of termination bits, which indicate the reason for the ter­

mination; (5) the number of the program level to be activated if a normal termination

occurs; and (6) the number of the program level to be activated if an abnormal termi­

nation occurs. Figure F - 3 contains these 1/ a control word formats.

F-9

COMPUTER ORGANIZATION

A significant feature of the L-304 is the availability of 64 program interrupt

levels. Each level may contain an independent program or an integrated portion of a

larger program. Each level has eight process registers and time-shares the arith­

metic section and memory output register with the other 63 levels. Each level has

an assigned priority, but only opera~es if the level is the highest priority "active"

level. An interrupt level may be designated "active" either by instruction or by in­

terrupts from the input/output section. Interrupts may thus be processed imme­

diately, without program provision for temporary storage of the proce ss register

contents.

Control over which programs are running or waiting to run is maintained in

the activity and mask registers. The activity register contains 64 bits, where each

position represents a program level. The mask register is also 64 bits in length and

may be used to inhibit a program from running. Thus, the program running at any

given time is the highest priority program with coincident one bits in both the activity

and mask registers. When a given program is running, the set of process registers

accessed is that which corresponds to the active program level.

Special Registers

There are eight addressable 16-bit process registers for each of the 64 pro­

gram interrupt levels (512 total). These registers are contained in Locations 0000-

07778 of the core memory. Figure F -4 is a graphic representation of the location

occupied by each level and the registers within each level. The eight process regis­

ters are multipurpos·e registers which may be used as accumulators, or as index reg­

isters. Each instruction will designate the registers it will use.

The Program Location (PL) register is used to contain the interrupt start ad­

dress for its program level. That is, when processing is transferred to a given pro­

gram level, the PL register designates the memory address of the first instruction

to be executed. The memory extension register is used. in conjunction with this ad­

dress to get the needed memory module. It contains the numbers of those memory

module s to be used during execution of a program assigned to a given program level.

(See Figure F -4 ~)

Data Word Formats

Although the L-304 memory word consists of 32 bits, the computer treats this

word as two consecutive 16-bit locations in memory; the first, even-numbe red, the

second, odd-numbered.

F-IO

......

......

PllOIiIIAM LOCATIO" {
Alii MEMORY MooUL£
REGISTERS

I.PUT/OUTPUT { COIfTROLWORDS

1= IE'IWORD -

T =TEIIM .. TE WORD

xx = I.PUT /OUTPUT
DEVICE ADDRESS

"OGRAM
LEVEL 00-77 8
PIIOCESS
REGISTERS

DO = LDW£ST
PRIORITY

778=~:~T~

1600

1500

1400

1300

1200

1100

1000

0700

0600

0500

0400

0300

0200

0100

0000

LOCATlOIf

1604

1602

1600

L-304 SPECIAL REGISTERS MEMORY MAP

001011 021031041051 06107110111112j 13114115111>11 71201 211221231241251 261271301311321331 34135136 137140141142143144145141>147150151152153154155151>15711>011>*216*41c>51 "11>71701711721731741751761771

PROGRAM ACTIIIITY
REGISTERS

1"01 411 421 .1431 441 451 461 471 501 511 521 ,531 541 551 ,5I>j ,571 1>01 1>11 1>21 1>31 ,641 1>51 "I 671 701 711 721 731 741 751 761 77

001 011 021 031 041 051 OI>l 07/. 101 111 121 131 141 151 11>1 1"1 201 21/ 221 2J1 ~4[251 261 271 301 311 .321 331 341 351 361 37

I(1>01T 6011(1>11 T 1>111(621 T 1>211(631 T 1>311(641 T 1>411 1>51 T 1>511 "I T "II(1>71 T 1>71 I(701 T 7011 711 T 711 1 721 T 721" 731 T 731 I(741 T 741 K 751 T 751 I(761 T 761" .771 T 77

I(401 T 401" ,411 T 411" 421 T 421 I(431 T 43\.1 44IT 4411(451T 4~1(41>1T 4611(~471T 4711(50lT soL" sliT 511" 521T 5211(53/T 5311(541T 5411(5~T 5511(56IT 561 It 57IT 57

" 201 T 2011(,211 T 211" 221 T 22j 1 23ir 231 I(241 T 241 I(251 T 251 I(261 T 261 I(271 T 271 It 301T 3D11C 311 T 311 I(321 T 3211(33\. T 33/1(341 T 3411(3~ T 351 It 361 T 36111: 371 TF7

It 001 Tool" 011 T 01 1 021 T 021" 031 T-.1.03 " 041 T 1041" 051 T 05 I(061 T ~l I(..t071 T 07 1(.1101 T 101 I(111 T 11 I(121 T 121 I(nl T 13 " 14J.T 141 I(151T.15 " 161 T 16111: 171 T 17

_ L.EVEL.70

d2~i~
71

516
LEVEL 72 LEVEL. 73

o 112~i~74sI6
LEVEL 75

1\2 ~~7:16
LEVEL 77 __

o liz 314 516 7 0 7 0 112 314 516 7 0 112 314,516 7 7 0 112 314 516 7 0 7 0 1/2 314 516 7

-L.EVEL60 L.EVEL 61 LEVEL. 62 LEVEL. 63 LEVEL 1>4 L.EVEL 65 LEVEL" L.EVEL67 __

o 112 314 516 7 0 112 314 516 7 0 112 314 516 7 o 112 314,516 7 olllz 314 516 7 O· 112314 511> 7 0 liz 314 516 7 0 liz ,14 516 7

~zU;i~ 50S 16 1 I 2uv,jL.451 51 6 7 0
LEVEL5Z

0111 ~1:~51617 o 11Iz~Et4~ 51617 o I 11 z ~~i~ ~~ 16 I 7 o I 112 ~i~ ~5 16 I 7 01112~i~:~~ 7 0 11231 4 1516.1. 7

f--- LEVEL. 40
1 I 2 ~i~ 41s1 6 112 ~iL.4~25J 6-.1. 7 01 11 ~:1:3 516 I 7 0 112~iL.:"16 7 o 1/ 2 L~i~;~ h 7 0 I 11 2~i~4,6516 7 0 112~~475~ 0111 2 ,1-4 51 6 7 0 7 0

-L.EVEL.3D LEVEL 31 L.EVEL 32 LEVEL. 33 LEVEL3S LEVEL. 36
o 112 314 sI6 70,112,314 516 7 01112314 sI6 7 0 112 ,14.516 7 0 11 2~j\34 51 6 7 0-.1.112 314 sh 7 0 112 314 516 7 0- Ih~~'1~~

~2LEV:I:O 516,7
LEVEL. 21

11 ~:1:Z,16 7 0 d2~:t::sI6 7 0 1I2~iL424s16 7 o 11z~i~2S516 1 I 2uv,jL.42" 16 liz ~i~2~t;; o 112 314 516 7 0 7 0 7 0

7712~i\lO 516. 7 112U;i~1l516 1I~t:~516 112~~1,35161 7
LEVEL 14

o 112~L.41551'J.7 0-.1.11~EIL::5h17 0-.1.112~~~~~ 0 7 0 7 0 0,112,14 51. 7

-LEVEL 00 LEVEL 01 LEVEL 02 LEVEL. 0) LEVEL. 04 ° llzLE
:t40

5
516 7

LEVEL 06 LEVEL 07-
o I1J21314 516 7 0,112,314 51617 o liz 314 516.7 o liz 314,516 7 0112314.1. 5 167 o liz 314,516 7 o 112 1I14 51,.7

00101102103104105106107 10111Jl2113114115116111 Z0121122123124125126121 301311321331341"136137 40141142143144145146147 5015lJ52153154155156151 1>01611621631641651"167 701711721731741151'6177

PROGRAM ACTIVITY REGISTERS
"OGRAM LEVEL. EllAILE IITS

:Jl.L3O..t29 28-,Z7.2,,25 24 2322 21 20 19 18 l1,lE

77,7,,7574, 73 1271 7067.1" 65-.1.64-.1.63 62 61 UI

57,56 55,54,53,52,51 5047 46 45t44,43 4Z 411411

37 36 35.34 33 32 31 30 21 Z6 25 24 23 22 21 20

17 16 15,14 13 12,11 10 7 6 5 4 3 2
WOIIDO

MEMORY MODULE
REGISTER

WORD 0

1.0

PIIOGItAlil LEVEL. STATUS IITS

15 14 13 12 11 10 9 .J8L 7 6 5 4) 2 I 1 0
77 76 15,74 73,72 71 7067" 65, 63 62 6lt6O

57 5655,54 53,52,51,so,47,46,45,44 43,42,41,40

37 36 35-,-34 33~ 32 31 50 27 26 25 24 23 22 21 20

17 16 15 14 13 12 11 10 7 • 5 4 3 2,1,0
WORD 1

PROGRAM LOCATION
REGISTER

WORD 1 :1

LOCATIOI 31 1IO 28 27

o I I MODE I

313029 28 Z7

3130

OPEIIATIOI

INPUT/OUTPUT CONTROL KEY WORD
1615

I cun£1T~SS

INPUT /OUTPUT CONTROl TERMINATE WORD
2221

I EPl IIOT USED

INSTRUCTION FORMAT

2524 22 21 19 18 1615

I M I
INPUT I OUTPUT OPERAND FORMATS

Figure F -4. L-304 Special Registers Memory Map

11>77

1577

1477

U77

1277

1177

1077

0777

0677

0577

0477

0377

0277

0177

0077

o

I

The data word normally contains 16 bits. These bits are numbered from 0

{least significant} through 15, beginning from the right, as shown in Figure F -C). The

nU111ber system is binary, 2' s complement. A number in the normal data word con­

sists of 15 bits and a sign. For convenience, it can be stated as five octal digits and

a sign. A binary 0 indicates a positive number and a binary 1 denotes a ne~ative num­

ber {in 2' s complement form}.

Some instructions involve double-length operands, i. e., 32 bits of data, in­

cluding sign. In these instanc'es, registers or memory words are considered as pairs

with the most significant 16 bits of the pair always the even-numbered, and the least

significant always the odd-numbered register or memory word. The sign of a double­

length number appears as the most significant bit in both registers or words of the

pair.

INSTRUCTIONS

The L-304 computer utilizes a single address instruction that provides several

operand address options. A total of 65 unique instructions are provided. These in­

structions include all of the normal general-purpose commands along with some very

useful and powerful commands that simplify programming and save execution time

and memory space. Table F-II is a list of the L-304 instructions.

INSTRUCTION WORD FORMAT

The L-304 computer uses a 32- bit instruction word. The format of the instruc­

tion word is shown in Figure F-6.

E Field

This single bit is used for instruction operation options. On those instructions

which could cause an arithmetic overflow, it provides the programmer the option to

skip the next instruction in sequence if an overflow does not occur. If the E bit is a

zero, the next instruction in sequence is executed and overflow is ignored.

On five special instructions, the E bit is used to modify the ope ration called

for by the operation field, F, in a related manner. This is described in the descrip­

tion of each of the se instructions.

F Field

Thi s six- bit field is the instruction ope ration code. In subsequent de sc riptions

this code is represented by a two digit octal number.

F-12

NORMAL DATA WORD

115114113112111 110 191817161514131211 1 0 1

L SIGN

DOUBLE-LENGTH DATA WORD

1++1
~SIGN SIGN

Figure F - 5. Data Word Formats

F-13

E F A I w
31 30 25 24 22 21 19 18 1615 1413 10

---- OPERATION ~ L L t · . OPERAND ADDRESS FIElD -CODE
INDEX FIELD

ADDRESS MODE

ACCUMULA TOR

•

Figure F -6. L- 304 Instruction- Word Format

H Field

The H field is a three-bit binary number that selects one of eight process reg­

isters which is to be used as the accumulator by the instruction. Process registers

are addressed by H = 0, 1, 2, ... , 7 on all program levels.

M Field

The M field is a three- bit code that provides up to eight instruction address

options as follows:

M= 0, Direct Addre s s

M = 1, Direct Addre s s with indexing

M = 2, Literal

M= 3, Lite ral with indexing

M= 4, Indirect

M= 5, Indexed, Indirect

M= 6, Indirect, Indexed

M= 7, Relative

S Field

The S field is a three - bit field that selects one of the eight proce s s registe rs

to be used as an index register on Modes M = 1, 3, 5 and 6 and one of 7 process reg­

isters if M = 7 (S = 0, M = 7 implies no indexing). The S field addresses the same

set of process registers as the H field on a given program level. A different set of

eight process registers is provided for each of the 64 program levels.

F-14

FUNCTION MNEMONIC SYMBOLIC EXECUTION TIME
CODE CODE INSTRUCTION OPERATION (I4SEC)t

A. DATA TRANSMISSION INSTRUCTIONS

l. 04 LDR LOAD RH Y = (A)-RH 6.6

2. 05 STR STORE RH Y = (RH)-(A) 6.6

3. 06 LDD LOAD DOUBLE Y=(A,A+l)-RH 6.4

4. 17 LDC LOAD TWO'S COMPLEMENT (Y)"2- RH 7.2

5. 16 LOA LOAD ABSOLUTE I(Y)I-RH 7.2

6. 07 STD STORE DOUBLE Y = (RH, RH + 1) - (A, A + 1) 6.4

7. 71 MVI MOVE AND INSERT (FRH) - (FRS) 7.4+0.8n*

8. 70 MVZ MOVE AND ZERO (FRH) -(FRS)' O-(FRS) 6.6 + 0.8 n*

9. 02 EXC EXCHANGE (A)-RH, (RH) -(A) 8.8

10. 03 EXD EXCHANGE DOUBLE {<A + 1, A) -RH + 1, RHi
(RH + 1, RH) ---(A + 1, A) 9.4

B. ARITHMETIC INSTRUCTIONS

11. 10 ADD ADD Y = (A) + RH-RH 7.2

12. 11 SUB SUBTRACT (RH) - Y-RH 7.2

13. 12 RAD REPLACE-ADD Y = (A) + (RH) -(A) 7.4

14. 13 RUB REPLACE SUBTRACT Y = (A) - (RH) -(A) 7.4

15. 14 ADA ADD ABSOLUTE (RH) + IYI-RH 7.2

16. 15 SBA SUBTRACT ABSOLUTE (RH) -IYI-RH 7.2

17. 30 MPY MULTIPLY (RH) xY-RH, RH + 1 18.8 + 0.8 n**

18. 31 DIV DIVIDE (RH, RH + 1)+Y-RH + Ii 33.2 REMAINDER -RH

C. LOGIC INSTRUCTIONS

19. 20 EOR EXCLUSI VE OR (RH) ¥Y-RH 7.2

20. 21 lOR I NCLUSI VE OR (RH) V Y -RH 7.2

21. 22 AND LOGICAL AND (RH) AY-RH 7.2

22. 24 RER REPLACE EXCLUSIVE OR (A) = y Y. (RH) -(A) 7.4

23. 25 RIR REPLACE I NCLUSIVE OR (A) = Y V (RH) -(A) 7.4

24. 26 RAN REPLACE LOGICAL AND (A) = Y A (RH) -(A) 7.4

D. SHI FT I NSTRUCTI ONS

25. 44 SLL SHIFT LONG LEFT 7.6 + 0.8***

26. 57 SRA LONG SHI FT RI GHT, ALGEBRAIC 7.6 + 0.8***

27. 56 SRL SHIFT LONG RIGHT, LOGICAL 7.6 + 0.8***

28. 45 NLl NORMALIZE LONG LEFT 10.6 + 0.8***

29. 46 SNC SHIFT AND COUNT 8.4 + 0.8***

30. 47 RFT REFLECT 7.6 + 0.8***

*n -= NUMBER OF SHIFTS REQUIRED TO ALIGN THE FIELD

**n = NUMBER OF "1" BITS IN MULTIPLIER

***n = NUMBER OF PLACES SHIFTED

Table F -II. Instruction Repertoire (Sheet 1 of 2)

F-15

FUNCTION MNEMONIC SYMBOLIC EXECUTIVE TIME
CODE CODE INSTRUCTION OPERATION (SEC)t

E. TRANSFER INSTRUCTIONS

31. 32 ITX(EBIT··I) MODIFY RH BY TWO; TRANSFER 7.2
DTX (E BIT - 0) IF RH,. 0

32. 33 IOX(EBIT-I) MODIFY RH BY ONE; TRANSFER 7.2
DOX (E BIT - 0) IF RH,. 0

33. 34 XFR TRANSFER UNCONDITIONAL 4.4
34. 35 XLK TRANSFER UNCOND. AND STORE LINK 6.4
35. 36 XSW TRANSFER ON CONSOLE X SWITCH 4.4
36. 40 XEZ TRANSFER IF RH = 0 6,4
37. 41 VNZ TRANSFER IF RH,. 0 6.4
38. 42 XNG TRANSFER IF RH IS NEGATIVE 6.4
39. 43 XPS TRANSFER IF RH IS POSITIVE 6.4

F. JUMP INSTRUCTIONS

40. 37 JTW JUMP THREE WAY 7.4
41. 50 CJL COMPARE, JUMP IF LESS 7.2
42. 51 CJE COMPARE, JUMP IF EQUAL 7.2
43. 52 CJU COMPARE, JUMP IF UNEQUAL 7.2
44. 53 CJG COMPARE, JUMP IF GREATER 7.2

45. 54 GCI GATED COMPARISON, JUMP IF INSIDE 9.4

46. 55 GCO GATED COMPARISON, JUMP IF OUTSIDE 9.4

47. 64 TLZ TEST LOWER BIT, JUMP IF 0 5.2
48. 65 TUZ TEST UPPER BIT, JUMP IF 0 5.2
49. 66 TLF TEST LOWER BIT, JUMP IF I 5.2

50. 67 TUF TEST UPPER BIT, JUMP IF I 5.2

G. MISCELLANEOUS INSTRUCTIONS

51. n NOP NO OPERATION 2.2

52. 01 EXE EXECUTE 2.2

53. 60 SBL SET LOWER BIT 5.2

54. 61 SBU SET UPPER BIT 5.2

55. 62 RBl RESET LOWER BIT 5.2

56. 63 RBU RESET UPPER BIT 5.2

57. 72 STZ STORE All ZEROS 5.2

58. 00 HLT HALT 2.2

H. INPUT/OUTPUT INSTRUCTIONS

59. 27 MBA MEMORY BANK ASSIGNMENT 4.4

60. 75 FIP INPUT TO REGISTER 7.2

61. 76 FOP OUTPUT FROM REGISTER 7.2

62. 74 EDC EXTERNAL DEVICE COMMAND 7.6

63. 23 MBD MEMORY BANK DESIGNATOR 4.4

tASSUMING NO MEMORY OVERLAP. IF MEMORY OVERLAP OCCURS, SUBTRACT 0.6 MICROSECOND FROM THESE TIMES.

Table F-II. Instruction Repertoire (Sheet 2 of 2)

F-16

D Field

The D field is a two-bit field that selects one of four registers whose content

is used for address extension. The selected register contains four binary bits which

are appended to the most significant end of the instruction's A field. This effectively

yields a 17-bit operand address 131,072 32-bit words to be addressed. The set of

four four-bit registers is called the Memory Extension Register. A different mem­

ory extension register is provided for each of the 64 program levels.

A Field

The A field is a 13-bit address field. The 13-bit address will select one of

8192 32 - bit words within a memory module. A me mory module is sele cted by the

four - bit field of the Memory Extension Register.

On some instructions the A field (with the D and W fields) is used as a logic

operation (mask) or it is used to specify the number of bits to be shifted.

W Field

This one-bit field specifies left or right half of the 32-bit operand which will

be used as a 16 - bit operand. If W is a one the right half of the word is used. If W is

a zero, the left half is used. The A and W fields together represent a 14-bit half­

word address.

F-17

HARDWARE CHARACTERISTICS

The overall design of the L-304 computer takes full advantage of the latest

microintegrated-circuit technology, multilayer laminate interconnection techniques,

and unique packaging and heat removal techniques. The circuit characteristics unique

to monolithic integrated circuits and the circuit characteristics unique to the Litton

multilayer board construction are utilized to improve the characteristics of the final

product, the L-304. Figure F-7 represents a typical multilayer board assembly.

Continuous heat conducting metal cooling paths are built into the multilayer boards to

achieve the goal of low temperature rise of components. Similarly, low-impedance

power transmission lines (0. I ohm dc to 100 megacycles) and ground planes are inte­

grated into the multilayer boards along with electrostatic shielding techniques to

achieve minimum noise while providing a source of high-frequency current transients

necessary for high-speed operation without resorting to "brute force" discrete local

filtering.

Circuitry

The circuitry used in the L-304 consists of semiconductor integrated circuits,

in the form of NAND (an inverted logical AND) gates, interconnected by multilayer

laminated boards. The Litton integrated NAND circuits (LINCs) are of two types: an

eight-input NAND gate, and a dual, four -input NAND gate. Both LINCs measure 0.250

by O. 175 by 0.065 inch, excluding leads, and 0.325 by 0.375 by 0.065 inch including

leads.

Significant features of a LINC include:

(1) A high degree of noise immunity is provided when compared with other

microelectronic circuits. This is especially important when many LINCs

are used together in a system the size of an L-304 computer.

(2) A large amount of gating current is available as needed at the output of

each LINC for either direction of logic swing, thereby permitting very­

high-speed operation.

(3) Standby power between switching operations is quite low, since, in the

high output-voltage state, the LINC is "looking" into a back-biased emitter;

and in the low output-voltage state, the load current is limited to the base

current of the multiemitter input transistor of the following LINC.

F-18

Figure F-7. A& C Drawer Module Assembly

F-19

The micromemory is optimally designed around a wide-temperature coincident­

current, 22 -mil outer diameter lithium -ferrite core stack to provide minimum size

and complexity and to improve reliability. The drivers use thin-film substrates, with

remaining memory circuits being monolithic integrated semiconductor circuits. To

increase operating margins even beyond those available with wide -temperature ferrite

the stack temperature is sensed, and the power supply for the current drivers is var­

ied linearly with temperature. The temperature tracking of the power supply has the

advantage of minimizing power dis sipation at elevated temperatures.

Packaging

The L-304 computer reflects the extensive developmental effort which Litton

has conducted in the field of microelectronic packaging and interconnection techniques.

The design meets the requirements of MIL-E-5400G, Class II equipment. Some of

the prime considerations governing the packaging of the computer electronics include

thos e outlined below.

(1) Compliance with the environmental specifications

(2) Accessibility and ease of maintenance

(3) Relative positioning of electronic modules in order to minimize intercon­

nection complexity and to achieve maximum thermal efficiency

(4) Low weight and volume in relation to total computing power

(5) Ease of manufacture

(6) Lowest cost consistent with expected performance

Automated fabrication techniques are used to significantly reduce construction

cost, and system adaptability and expandability are easily achieved. The L- 304 com­

puter is designed to accommodate varying quantities and combinations of modules as

system requirements change. Increased memory capacity or conversion from a sin­

gle to a multicomputer is accomplished by adding modules.

Each of the modular subassemblies is designed internally for specific func­

tional performance. Except for thickness, they appear similar externally (see Fig­

ure F-8). The thicknesses are approximately 0.7 inch for integrated circuit drawer

modules, 1.5 inches for power supply drq.wer modules, and 3.25 inches for the mem­

ory module. The computer frame housing is of riveted sheet metal construction, re­

inforced with wrought extrusion in areas of high stress. The top, bottom, and side

walls (the entry and exit plenums) are rigid box sections on four peripheral sides.

These are further stiffened by perpendicular cross bracing which supports and guides

the three decks of electronic drawers.

F-20

Figure F -8. Typical L- 304 Configuration

F-2l

A connector panel located at the rear of the drawers supports the receptacle

connectors and harness for both internal and external communications. This panel is

made an integral part of the structure. Harness and connectors form a removable

assembly.

RELIABILITY

The predicted MTBF of a single L-304 with 8192 words of memory and asso­

ciated power supplie s is 3660 hours. This MTBF is based on an extremely conserva­

tive application of failure rate data. The assumptions and criteria which were

employed may be summarized as follows:

(1) Applicable failure rates used were derived from recognized or acceptable

military sources such as the MIL-HDBK-2l7, dated 8 August 1962; Bureau of Naval

Weapons Failure Rate Data Handbook (FARADA), etc. However, where failure rates

obtained from these sources were deter:mined to be obsolete due to the current ad­

vancement of the state of the art on component parts, such failure rates were adjusted

to consistent values.

(2) Other applicable failure rates that cannot be found directly from the sources

in Item 1, were derived fro:m the failure rates of similar ite:ms reported from the field

and from reliable vendor reports.

(3) Failure rates for :most parts are derived at a te:mperature of 60o C, which

exceeds safely the expected te:mperature that the equipment will be subjected to in ac­

tual application.

(4) The prediction :method is based on the assu:mption that a part failure rate

is a reflection of system failure, which is typical of a series -connected system.

MAINTAINABILITY AND AVAILABILITY

At organizational level of maintenance, the predicted mean time to repair

(MTTR) of the 8K :memory co:mputer is O. 162 hour or 9.72 :minutes, resulting in an

availability of 99.994 percent. The low :maintenance task times are obtained with the

aid of the computer's built-in maintainability design features. A standard 3/l6Allen

wrench is all that is needed in getting access to the defective item to effect its re­

placement. No special tools are nece s sary in this level of mainte nance. A te s t me s­

sage entered into the computer's memory is, however, a prerequisite to the isolation

of a fault.

F-22

APPENDIX G

CONVE·NIENCE OF L-304 MEMORY MODULE ACCESS

Understanding the L-304 process for accessing up to 16 8K memory modules

is relatively simple assuming one has a previous acquaintance with the L-304 level

concept. At any instant, a maximum of four 8K memory modules may be active.

This allows all programs to be assembled and executed between 0 and 32K thus re­

quiring only a l6-bit instruction address field.

There are essentially two methods to manipulate which four of the 16 mem­

ories are active at anyone time; one is by direct command, the other is by a level

change. The "direct command" approach requires one command to change the mem­

ory configuration; the level change approach, once it is established, automatically

provides a new (if desired) memory configuration with each change to a new level.

When loading a program, the memory module designation must agree with its assem­

bled loca tion, i. e. , a program as sembled between 8K and 16K must be loaded and

execu ted wi thin the 8K and 16K memory slot (see Figure G-l) regardle s s of module

number designation. Once a memory module is loaded and properly designated, the

contained program cannot be relocated without reloading (as is the case in any other

computer). A simple analogy to illustrate the versatility of loading and executing a

program is shown in Figure G-l.

Note that any combination of four can be set in the readout windows with the

pseudo-thumbwheel selection shown in Figure G-l. (In actuality, these selections

are made by the operator at load time via a control routine.) However, no two may

have the same number when loading programs (each module can only be loaded once

for a given exercise). Assume a program were loaded with the "0,2,12,5" MER

setting shown in Figure G-l. This simply causes those particular 8K modules to be

loaded consecutively with a program assembled between 0 and 32K. The modules

would be referenced in terms of those indicated address locations during execution,

therefore their memory slot assignment, when loading, must be consistent with the
'"

assignment when executing. '"

"'Areas reserved for data storage can deviate from this rule. This added versatility
will not be discussed at this time.

G-l

MEMOR Y SLOTS

o .. 8K 8 - 16K 16 24K 24 ... 32K

MEMORY MODULE NUMBER

0 2 1Z ') READOUT

I I I I

THUMB WHEELS

Figure G-l. Meznory Extension Register (MER) Analogy

Assume one desired to load another 32K program (or another portion of the

same program). The setting could be changed to say:

and cause these modules to be filled. Memory would now appear as follows:

(0 - 8K) [8 - 16K] (8 - 16K)

Em Em Em [ill
(24 - 32K) [16 24K]

[Gj ~ [flj Em () - 1 st 3ZK Loaded

[Z4 - 32K]
[] - 2nd 32K Loaded

~ [Gj ~ ~
X - Module Loaded

(16 ... 24K) [0 - 8K]

~ ~ ~ 53
G-2

If during execution one desired to communicate between any two programs,

it would simply require resetting the numbers in the window to any combination needed.

This is conveniently accomplished in an actual program by preassigning de sired mod­

ule combinations to program levels, then communicating by changing levels (by set­

ting another level's status bit) which automatically activates the associated modules

(each level has an assigned set of modules). If, for instance, the program inmodule

number 15 desired to communicate with the program in module number 0, it could

simply set a status bit for a level which included module ° in its MER. The called

program would be executed, it would clear its own status bit causing control to re­

turn to the calling program.

In a dual processor configuration the module assignments for each level In

one processor likewise have no effect on the other processor's selections.

As can be determined by this discussion, the modes of versatility with re­

spect to module selection and configuration control are quite adequate to provide any

communications necessary to execute a program, regardless of size, within the 16-

module configuration.

G-3/G-4

/{J

rn DATA SYSTEMS DIVISION, LITTON SYSTEMS, INC., 8000 WOODLEY AVENUE, VAN NUYS, CALIF.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	G-01
	G-02
	G-03
	xBack

