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CHAPTER 1 

TACPOL LANGUAGE FOR COMMAND AND CONTROL SYSTEMS 

Section I. INTRODUCTION 

1-1. General 

The purpose of this document is to provide 
T ACFIRE personnel with an introduction to the 
Tactical Procedure Oriented Language 
(TACPOL), which is specifically designed for use 
in developing the TACFIRE software. TACPOL 
is a modified subset of the PL/I language and 
incorporates: 

a. A Communication Pool (Compool) capabil­
ity 

b. An embedded assembler language 
capability 

1-2. The features and capabilities of the TACPOL 
language will be useful in developing and main­
taining the TACFIRE software: 

a. Application programs 

b. Operating system 

c. Compiler 

d. Other programming aids 

e. Maintenance and diagnostic programs 

f. System exerciser and training evaluator 

1-3. This document is intended to present suffi­
cient information about TACPOL to enable one 
to begin writing TACPOL programs. Chapter 2 
provides an introduction to the basic components 
and special terminology of the TACPOL lan­
guage. Chapters 3 through 6 discuss data, expres­
sions, and data declarations, and assignment 
statements. Chapter 7 discusses blocks, and chap­
ter 8 discusses control statements. Procedures, 
data scope, arguments and parameters are dis­
cussed in chapters 9 through 11. Chapter 12 
discusses condition declarations. Input/output is 
discussed in chapter 13, while files and Compool 
data are discussed in chapter 14. 

1-4. There are four appendices included in the 
document. Appendix A provides a brief descrip­
tion of the intrinsic procedures which are part of 
the TACPOL language. Appendix B lists, and 
provides a brief explanation of, the particles (key 
words) which are a part of the TACPOL lan­
guage. Appendix C is a table of integer precision 
and its use is described in chapter 3. Appendix D 
contains samples of compiler outputs such as a 
TACPOL source listing, an attribute and refer­
ence list, a machine language listing and a cross 
reference set-used listing. . 

Section II. TACPOL LANGUAGE IN THE TACFIRE SYSTEM 

1-5. General 

The heart of the TACFIRE system is the com­
puter which is programmed to monitor and direct 
the functions of the TACFIRE. system. These 
programs are written in the procedure oriented 
TACPOL language. 

1-6. TACPOL is designed so that programs may 
be written for the TACFIRE computer with a 
minimum of programming effort, but other points 
were also considered in the design of the lan-

guage. In higher level languages, such as 
TACPOL, it is easily possible for the programmer 
to lose sight of the true size of his program since 
one line of TACPOL code may generate numer­
ous machine instructions. Therefore, since the size 
of programs in the TACFIRE system is impor­
tant, TACPOL has been designed to restrict the 
use of those source language elements which 
could easily generate large volumes of machine 
language code. While the restrictions of any high 
level language provi~e sO!fle inconvenience to the 

1-1 
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programmer, these 'restrictions' actually provIde 
three distinct advantages. The first is that the 
programmer, while still procedure oriented (that 
is, thinking primarily about the problem for 
which he is writing a program, rather than the 
mechanics of the program itself), does not have to 
be concerned with implicitly generating large vol­
umes of machine language code, a common con­
cern in other procedure oriented languages. Sec­
ondly. the programmer is provided with a greater 

·2 

facility to implement the most efficient method or 
performing his required tasks according to his 
needs and desires. There arc also few default 
provisions. Most attributes must be explicitly de­
clared. This results in fewer errors because miss­
ing specifications are flagged at compile time, 
whereas default provisions often provide work­
able but erroneous code when the compiler as­
sumes the programmer's intent. 
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CHAPTER 2 

ELEMENTS OF THE TACPOL LANGUAGE 

Section I. TACPOL LANGUAGE 

2-1. General 

This chapter presents a description of the basic 
concepts and special terminology of the TACPOL 
language. 

2-2. Language Format 

There is no fixed length format for input of 
TACPOL source statements. TACPOL statements 
may be written in free form in columns 1-80. The 
default option are card columns 2-72. The com­
piler recognizes the termination of a statement by 
the semicolon which must appear at the end of 
each statement e.g. A = Z;. Therefore, there 
may be several statements on one card, one state­
ment to a card, or one statement extending over 
several cards. Because TACPOL may be written 
in free form and because of the nature of the 
language itself, the TACPOL program listing may 
serve as the program documentation. Thus, it is 
most advantageous to comment extensively and 
to format the source statements clearly and con­
sistently. In addition, since a programmer defined 
name may be any length, highly descriptive 
names (often literally the name intended, such as 
ROUNDSA V AILABLE) may be chosen which 
will help make the meaning of the program more 
apparent. Figure FO-} illustrates a TACPOL cod­
ing form. 

2-3. Character Set 

There are 50 characters in the TACPOL lan­
guage. These include: the English letter alphabet 
of 26 characters; the ten Arabic numerals 0-9 and 
special characters in the following chart. 

NAME 

plus sign 

minus sign 

asterisk 

virgule 

CHARACTER 

+ 

* 
I 

left parenthesis ( 

right parenthesis ) 

equal sign = 

point or period 

comma 

semicolon 

colon 

single quotation mark 
(apostrophe) 

dollar sign 

space (blank) 

other mark 

$ 

no character 

any character other 
than the above 
which may only be 
used in character 
strings and com­
ments 

2-4. The colon may also be represented by two 
periods in sequence ( .. ) and a semicolon may be 
represented by a comma followed by a period (,.). 
The representation ** denotes exponentiation 
(X**2 means )(2). Imbedded blanks are not per­
mitted in any such character combinations. The 
following rules apply to the use of blanks (or 
spaces) in TACPOL: 

a. No embedded blanks are permitted within 
any symbol except character strings or comment 
strings. 

h. Blanks are permitted in character strings; 
however, they will be counted as part of the 
string. 

c. Blanks are not permitted within bit strings. 

d. A blank is required to separate any two 
adjacent symbols, when the first symbol begins 

2-1 



with a letter and the second symbol begins with a 
letter or digit. 

e. Otherwise blanks may arbitrarily appear. 

f Whenever one blank is required or permit­
ted to appear, any number of blanks are arbitrar­
ily permitted to appear. 

g. Whenever one blank is required or permit­
ted to appear, comments are permitted to appear. 

2-5. Comments 

Comments are permitted wherever blanks are 
allowed or required in a program. They may be 
punched into the same cards as statements, in­
serted bctween statements, or appear in the mid­
dle of statements without affecting the program. 
The character pair /* indicates the beginning of a 
comment and the same characters reversed * / 
indicate its end. No blanks or other characters 
can separate these two characters: the virgule and 

the asterisk must be immediately adjacent. The 
comment itself may contain any characters ac­
ceptable to the hardware except the * / combina­
tion which would be interpreted as terminating 
the comment. Examples are shown below. 

/* COMMENTS SUCH AS THIS * / 

/* MAY BE SPREAD OVER * / 

/* SEVERAL CARDS, HOWEVER IT 
*/ 

/* IS RECOMMENDED THAT /**/ 

/* PAIRS BE PUT ON EACH CARD 
*/ 

TO AVOID UNINTENTIONAL 
ERRORS --

FOR EXAMPLE IF THIS LAST 
CARD 
IS REMOVED * / 

Section II. CONCEPTS AND ORGANIZATION 

2-6. General 

The purpose of this section is to familiarize the 
reader with the terminology and concepts of the 
TACPOL language. 

a. Values. The basic unit of information in 
TACPOL is the value. There are four types of 
values: short numeric, long riumeric, character 
string, and bit string. Short numeric and long 
numeric values are binary representations of 
numbers or numeric data. Short numeric values 
are represented in 31 bits or less, and long nu­
meric values are represented in 62 bits or less, not 
including the sign. A character string value is a 
binary representation of a group of ASCII coded 
characters. A bit string value is a sequence of bits. 

b. Literals. A literal is an explicit ('literal') 
representation of a value. 

c. Quantities. Values are assigned to and held 
in quantities. A quantity can yield (produce a 
copy of) the value it is currently holding. There­
fore a quantity is a unit of storage for values. 
There are four types of quantities corresponding 
to the four types of values: short numeric, long 
numeric, character string, and bit string. A quan­
tity of a given type may be assigned, hold, or 
yield only values which are of the same type as 
the quantity itself. For example, a character string 
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quantity may be assigned,hold, or yield only 
character string values. Furthermore, the typc of 
a quantity and the type of a value are explicitly 
defined and no automatic conversions are pcr­
formed to ensure that the types match during 
assignment. Attempts to store character string 
values, for example, in a bit string quantity will 
result in an error at compilation time. There arc 
ways of redefining attributes from one type to 
another. See Redefinition Attribute Procedures in 
Appendix A. 

d. Symbols. Symbols are the elementary con­
stituents of TACPOL. A symbol is a single char­
acter or set of characters which have the effect of 
a single character. Operators, particles and identi­
fiers are comprised of symbols. 

e. Operators. Operators are symbols which 
specify operations to be performed on values. The 
arithmetic operators consist of the multiply and 
divide operators * and /, the addition and sub­
traction operators + and -, the exponentiation 
operator **, and the arithmetic operators for long 
operations (*), and (**). The relational operators 
are EQ (or =), NE (on =), GT (or », GE (or> 
=), LT (or <) and LE (or < =). The logical 
operators are AND (or &), OR (or I) and NOT (or 
1). The string operators are CAT (or II) and 
SUBSTR (or $). 



.l Particles. Particles are symbols which arc the 
'key words' of the TACPOL language. The parti­
cles are listed and briefly defined in Appendix B. 
EX<l;mples of particles are: GOTO, DO, IF, CALL, 
READ. and WRITE. 

g. IdentUiers. Identilkrs are symbols which 
serve as names for programmer defined quanti­
ties. An identifier can he from one to any numher 
of characters in length. However, if more than 
eight characters are used for an identifier. the 
compiler will use only' the first five and the last 
three characters for the identifier. Care must be 
exercised not to produce a compiler error for 
duplicate identifiers. . 

EXAMPLE: UNDERRATE 

UNDERSTATE 

If hoth names in the example were to be 
used as identifiers, the first five and last three 
characters would be obtained by the compiler. 
Both would produce UNDE¥A TE and a dupli­
cate identifier would be detected by the compiler. 

Rules of identifiers: 

( I) The first character of an identifier must 
be a letter. 

(2) Identifiers may not contain imbedded 
blanks. 

(3) No identifier may be identical to any of 
the reserved words shown in table 2-1. 

h. Declarations, Attributes and Names. Decla­
rations, attributes and names are defined in the 
following paragraphs. 

(1) Declarations associate names with and! 
or define characteristics of quantities, sets of 
quantities, values, procedures and conditions. 

(2) Attributes describe the characteristics of 
the data to be used. These are numeric (BIN 
FIXED), character (CHAR), bit (BIT) and value 
(lNIT). 

(3) Names are used to identify procedures, 
points and quantities within the program to which 
reference is made in TACPOL statements. All 
names must be defined by some means within a 
program. 

i. Sequence of Execution, Transfer of Control, 
and Invocation. The order in which the statements 
of a program are written specifies the sequence of 
execution of those statements. When a statement 
specifies that control is to 'jump' to some point in 
the sequence of execution other than the state~ 
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ment immediately following in line. then control 
is said to be 'transferred', and the point to which 
it is transferred must be denoted by a name (a 
'point name'). A procedure is said to invoke (call 
forth) another procedure by transferring control 
to the first instruction of the second procedure. 
This invoked procedure will later return mntrol to 
the invoking procedure at the conclusion of the 
operation of the invoked procedure. 

Table 2-1. TACPOI. Re.verved Word l.i.vt 

ABS DO-- " ..... " ... LETTER REP 
ACOS //E' LN ~}iEJjJ_f{N . 
ALIGNED £1,,5£ ...... - LOAD REWIND 
AND ./fND LOG REWRITE 
ASIN tNDFlLE LONG ROUND 
ATAN ) E!'lTRY·-·~ LT S 
B I' i:xp t=.=Q MAX SCALE 
BACK l'ILE MIN SHORT 

_~.~9IN FIXED MOVE SIGN 
BIN FOFL NE SIN 
BIT FROM NOKEY SPACE 
BOOL GE NO PART SQRT 
BY GOTO NOT SUBSTR 
~--- GT OLD SWITCH 

CAT I"-~~~~RE ON ~---' 
CELL OPEN 
CHAR INIT OR , TRUNC 
CHECK INPUT OUTPUT UNWIND 
CLEAR INTO PACKED UPDATE 
CLOSE KEEP PASS VALUE 
CODE KEY PROC .-' WAIT 
COS L hTRN WHILE 
DCL LABEL READ WRITE 
DELETE LE REM ZDlV 
DIGIT 

20083-\ 

2·7. Program Structure 

A TACPOL program system has certain constit­
uents. Values from quantities and literal values 
are combined to form expressions. Particles and 
expressions are combined to form larger expres­
sions and statements. Statements :;tre combined to 
form procedures and blocks. Procedures, blocks 
and other statements may be contained in an­
other procedure or block. A procedure which is 
not contained in any other procedure is a pro­
gram. One or more programs form a programmed 
system. 

2·8. Language Structure 

The elements described above are used to con­
struct programs in TACPOL. The language is 
divided into two major categories: 

2-3 
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a. Declarations. Used to associate names with 
quantities, values and procedures, to define char­
acteristics for quantities, values, procedures and 
conditions, and to determine their scope of defi­
nition. In T ACPOL the scope of definition is 
where a name is known and usable. All program 
declarations are made prior to the execution of 
program statements. 

( I) Data declarations 

(a) Simple scalar 

(b) Simple array 

(c) Group 

(d) Table 

(e) Cell 

(() Value 

(2) Procedure declarations 

(a) Proper procedures 

(b) Function procedures 

(3) Condition declarations 

(4) File declarations 

b. Statements. Used to specify the execution of 
the operations permitted in TACPOL. 

( I) Process statements 

(a) Assignment 

2·4 

(b) CALL 

(c) GOTO 

(d) IF 

(e) DO 

(j) Null 

(2) Input! output statements 

(a) OPEN 

(b) CLOSE 

(c) READ 

(d) WRITE 

(e) REWRITE 

(f) DELETE 

(g) SPACE 

(h) REWIND 

(i) UNWIND 

OJ WAIT 

(k) LOAD 

(I) ON 

(3) Blocks 

(a) BEGIN 

(b) CODE 
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CHAPTER 3 

DATA TYPES 

Section I. NUMERIC AND STRING DATA 

3,- 1. General 

There are two general types of data in 
TACPOL: numeric and string. Numeric data are 
fixed point representations of numbers. String 
data are sets of alphanumeric and special charac­
ters or patterns of binary digits. 

3-2. Numeric Dnta 

A numeric quantity is one which holds a num­
ber. In TACPOL, fixed point decimal numbers 
are converted and manipulated as their binary 
fixed point equivalents. For example, the decimal 
number 6.5 will be represented in fixed point 
binary as 110.1. If the number 6.5 were used as a 
literal in an expression, TACPOL would reserve a 
specific number of bits for the number and as­
sume a binary point. The total number of bits 
reserved excluding the sign is called the precision. 
The scale factor represents the number of binary 
places the binary point is shifted from its as­
sumed position immediately to the right of the 
rightmost bit. A positive scale factor represents a 
binary point shift to the left and a negative scale 
factor represents a binary point shift to the right. 
Thus, the mixed decimal number 13.25 can be 
represented in fixed point binary as 
110 1.0 100000, which has a precision of 11 and a 
scale factor of + 7. 

a. Values in which the binary point falls out­
side the precision can also be represented. For 
example: 

(1) 0.00 III appears as 111 when the preci­
sion is 3. The scale factor -represented (in this 
case) is 5. 

(2) 11100 appears as 111 when the preci­
sion is 3, and the scale factor represented (in this 
case) is -2. 

h. When declaring numeric quantities it is 
desirable to know what the range of the binary 
values of the quantity will be. To determine the 
precision and scale factor of the fixed point bi-

nary equivalent of any fixed point decimal such 
as 1,300.333: 

(1) Multiply 3.322 by the number of deci­
mal digits to the right of the decimal point (which 
is 3 in the example) and round the prod uet 
(9.966) to the next integer (10) resulting in the 
scale factor 10 . 

(2) From the table of integer precision (re­
fer to Appendix C table C-l) find the number of 
bits required to contain the number to the left of 
the decimal point (1300 in the example); add the 
number of bits required from table C-I (II) to 
the scale factor (10), resulting in the precision 21 
bits, which is required to contain the entire num­
ber. 

c. Short Numeric Data. Short numeric quanti­
ties are those with a precision of I to 3 I bits 
(inclusive) and a scale factor between -127 and 
+ 127.* The- maximum decimal number which 
may be represented in short numeric form is 
2,147,483,647. 

d. Long Numeric Data. Long numeric quanti­
ties are those with a precision of 32 to 62 (inclu­
sive) and a scale factor between -127 and 
+ 127.** 

3-3. String Data 

A string is an ordered sequence of characters or 
bits that is treated as a single value. The length of 
the string is the number of characters or bits it 
contains. 

a. Character String Data. A character string 
can include any digit, letter, or special character 

*In the TACPOL implementation a precision of 8 will be 
assigned when a precision of 1 to 7 is specified; tz precision 
of 15 will be assigned when a precision of 8 to 15 is speci­
fied and a precision of 31 will be assigned when a precision 
of 16 to 31 is specified. When a precision of 1 to 7 is speci­
fied, the field is treated as an eight bit unsigned quantity. 

**In the TACPOL implementation a precision of 62 will be 
assigned when a precision of 32 to 62 is specified. 

3-1 
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acceptable to the hardware. Any blanks or com­
ments included in the character string are consid­
ered an integral part of the string and such char­
acters are included in the count of the length. The 
maximum length character string allowed is 512. 

h. Bit String Data. Bit strings can include only 
ZEROS and ONES. No blanks or comments are 
allowed in bit strings. The maximum length bit 
string permitted is 32. . 

3-4. Attributes of Data Types. 

When a quantity is declared, an attribute must 
be assigned which describes the characteristics of 
the data. Therefore, short numeric, long numeric, 
character and bit data types each have an attri­
bute which describes the data the quantity is to 
hold. 

a. The attribute which describes short numeric 
data is BIN FIXED. The BIN (binary) attribute 
specifies that binary representation of decimal 
values is intended. The FIXED attribute specifies 
that the variable is to represent fixed point data 
items. 

h. The attribute which describes long numeric 
data is also BIN FIXED. Lo~g numeric merely 
specifying a numeric quantity which will occupy 
from 32 to 62 bits. 

c. The attribute CHAR is used to describe a 
quantity that is to hold character string data. A 
quantity thus defined can only be used in charac­
ter string operations. 

d. The attribute BIT is used to describe a 
quantity that is to hold bit string data. A quantity 
thus defined can only be used in bit string opera-
tions. . 

3-5. Literal Notation 

There are many instances when the explicit 
notation of a value has to be used in coding a 
problem. The explicit notation is known as a 
literal. Each of the data types can be expressed as 

a literal in one of the available declarations and 
in many of the available s~atements. 

a. Short Numeric LiteraL To express a short 
numeric literal the value is written as a decimal 
number. The literal may be an integer. a fraction 
or a mixed number (part integer, part fraction). A 
decimal point must always be followed by a num­
ber. Examples of short numeric literals: 

4753 
.325 
56.7 

h. Long Numeric Literal. A long numeric lit­
eral is written in the same manner as a short 
numeric literal except that the letter L must fol­
low the literal. Examples of long numeric literals: 

6576213L 

.00868L 

45.775L 

c. Character String Literal. A character string 
literal is expressed by writing out the desired 
characters with the string enclosed in single 
quotes. Any allowable character may appear 
within the string. A maximum of 512 characters 
may appear in a single character string. Examples 
of character string literals: 

'ABCDE' 

'FFA 45' 

'**(' 

d. Bit String Literal .. A bit string literal is 
expressed as a series of binary digits (ONEs and 
ZEROs), enclosed in single quotes and followed 
by the letter B. A maximum of 32 binary bits can 
appear in a bit string. Examples of bit string 
literals: 

'IOOOI'B 
'I 'B 

'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOII'B 
* .... ·.·, .. t .... ,., 

Sect.ion II. ALLOCATION OF QUANTITIES 

3-6. General 

The allocation of quantities is a function of the 
quantity type, its size, and whether it is aligned or 
packed .. 

3-7. Aligned Quantities 

A quantity is said to be aligned when it IS 

3-2 

allocated storage such that the time required to 
access that quantity is minimized. In TACPOL, 
simple scalars and arrays are normally aligned. 
An override is available for arrays to change the 
allocation to packed. Table 3-1, on the following 
page, illustrates the allocation of aligned quanti­
ties by quantity type (short numeric, long nu­
meric, character and bit). 
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3-8. Packed Quantities 

A quantity is said to be packed when it is 
allocated storage such that the use of internal 
storage is minimized. In TACPOL, groups, tables 

and cells are normally packed. An override is 
available to change each of these allocations to 
aligned. Table 3-2, on the following page. illus­
trates the allocation of packed quantities hy 
quantity type. 

Table 3-1. Allocation of Aligned Quantities 

Precision Aligned Size Remainder 
or to of Filled Access 

Type Length Next Allocation Justified With Class 

A. SIMPLE SCALARS 

Short I - 31 Fullword Full word Right Sign bits Fullword 

Long 32 - 62 Fullword 2 Fullwords Right Sign bits Doubleword 

Bit 1 - 32 Fullword Full word Left Zero bits Full word 

Olar 1- 512 Fullword n Fullwords Left Char. hlanks Mulhword 

B. GROUP SCALARS, TABLE SCALARS 

Short 1 - 7 Quarterword Quarterword Right Sign bils Halfword 

Short 8 - 15 Iialfword Half\Yord Right Sign bits Halfword 

Short 16 - 31 Full word Fullword Right Sign bits Fullword 

Long 32 - 62 Full word 2 Fullwords Right Sign bits Doublc,,-,m\ 

Bit I - 16 Halfword Halfword Left Zero bits Halfword 

Bit 17 - 32 Full word Full word Left Zero bits Full word 

Char 1 - 2 Halfword Halfword Left Char. blanks Halfword 

Char 3 - 512 Fullword n Fullwords* Left Char. blanks Multiword 

C. SIMPLE ARRA YS, GROUP ARRA YS, TABLE ARRAYS 
--

Short I - 7 Quarterword Quarterword Right Sign bits Quartenvord 

Short 8 - 15 Halfword Halfword Right Sign bits Halfword 

Short 16 - 31 Full word Full word Right Sign bits Fullword 

Long 32·62 Fullword 2 Fullwords Right Sign bits Doubleword 

Bit I - 16 Halfword Halfword Left Zero bits Halfword 

Bit 17 - 32 Fullword Fullword Left Zero bits Full word 

Char I - 2 Halfword Halfword Left Char. blanks Halfword 

Char 3-4 Full word Fullword 

i 
Left Char. blanks Full word 

Char 5 - 512 Full word n FuUwords* Left Char. blanks Multiword 

NOTES: 

* n = (number of characters +3)/4 

20083-2 
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Table 1-2. Allocation of Packed Quantitie.v 

Precision AIi~lled Size Remainder 
lH tll of Filled Access 

lypl' LL'Il~th Next AliocatHHI Jllstified With ( 'lass 

A. (;ROlJI' SCALARS, TABU SCALARS 

Short 1-7 Quartcrword Quarterword Right Sign bits Quarterword 

Short R - 15 Halfword Halfword Right Sign bits Halfword 

Short 16 - 31 Fullword Fullword Right Sign bits FuUword 

Long 32-62 Fullword 2 Fullwords Right Sign bits Doubleword 

Bit I - 32 Bit* n Bits I Left Zero bits Packed Bit 

Char I - 512 Byte n Bytes I Left Char. blanks Multiword 

h. SIMPLE ARRAYS, GROUP ARRAYS, TABLE ARRAYS 

Short I - 7 Quarterword Quartcrword Right Sign bits Quartcrword 

Short 8 - 15 Halfword Halfword Right Sign bits Halfword 

Shnrt 16 - 31 Fullword Fullword Right Sign bits Fullword 

Long 32-62 Fullword 2 Fullwords Right Sign bits Doubleword 

Bit I - 16 Bit** n Bits I Left Zero bits Packed Bit 

Bit 17 - 32 Fullword Fullword Left Zero bits Fullword 

Char I - 512 Byte n Bytes 1 Left Char. blanks Multiword 

NOnS: 

* I I' the nc'(t field would cross a fu!l word boundary, that field is aligned 
to the full word boundary. 

** If an clement in the array would cross a fullword boundary, that element 
is aligned to the start of the next full word. 

I n = length. 

20083-3 
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CHAPTER 4 

DECLARATIONS 

Section I. SCALAR AND ARRAY DECLARATIONS 

4-1. Scalar Declarations 

Scalar declarations define a name, or a list of 
names, and assigns a literal type to the name(s). 
The literal types assigned are short numeric, long 
numeric, character or bit. 

a. Short Numeric Scalars. Short numeric sca­
lars define a quantity whose binary representation 
of a decimal value will occupy 3 I bits or less. 

EXAMPLE: DCL NUMBI BIN FIXED 
(31,2); 

(I) All declarations (except the condition 
declaration) start with the particle DCL (declare). 
Following the particle is an identifier (name) 
selected by the programmer which identifies the 
quantity. Following the identifier is the attribute 
for short numeric quantities, BIN FIXED. The 
attribute is followed by the precision and scaling 
specification enclosed in parentheses. The first 
number states the total number of bits the quan­
tity is to occupy. The second number specifies the 
number of fractional bits. The numbers are sepa­
rated from one another by a comma. In the above 
example, the quantity NUMB 1 is defined as a 
short numeric quantity, 31 bits in length of which 
2 bits are for fractional representation. Note that 
according to the rules of blanks, a space must 
always be used to separate the particle DCL, the 
quantity name, and the attributes BIN and 
FIXED. A blank space mayor may not be used 
following the attribute for the precision and scal­
ing specification. 

(2) All declarations and all statements in 
TACPOL are terminated by a semi-colon. Two 
default options are available for short numeric 
scalars. If the precision and scaling specification is 
omitted from the declaration it will be assumed 
31,0. The quantity is assumed to be 31 bits in 
length with no fractional bits (see the example 
below). 

DCL NUMB2 BIN FIXED; 

(3) The other default option available is to 
include the precision specification and omit the 
scaling specification as in the example below. 

DCL NUMB3 BIN FIXED (15); 

The precision specification in the above example 
specifies a quantity 15 bits in length. Since the 
scaling specification has been omitted it is as­
sumed to be ZERO, therefore no fractional bits 
are assigned the quantity. All other attributes 
must be specifically stated. 

h. Long Numeric Scalars. A long numeric sca­
lar is essentially the same as a short numeric 
scalar with the exception that the precision speci­
fication will be not less than 32 and not greater 
than 62. 

EXAMPLE: DCL FOX BIN FIXED 
(47,8); 

(I) In the above example the quantity FOX 
is defined to be 47 bits in length of which eight 
bits are for a fractional portion. The particle and 
the attribute are the same as for short numeric. 
The only default option available is the scaling 
specification. If it is omitted it is assumed that no 
fractional bits will be assigned to the quantity. 

EXAMPLE: DCL BEAR BIN FIXED 
(52); 

(2) In the above example all the bits speci­
fied by the precision specification are integer bits. 

c. Character Scalars. A character scalar will 
have the CHAR (character) attribute and a length 
specifier. 

EXAMPLE: DCL C CHAR (51); 

The declaration specifies that the quantity with 
the identifier C is to be a character string quantity 
51 characters in length. A character string is 
assigned from left to right. If a character string 
value longer than. the declared length of the 
quantity is assigned to the quantity, the excess 
characters are truncated on the right. If shorter, 
the value on the right is padded with blank 

4-1 
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spaces. The maximum length character string 
quantity allowed is 512 characters. 

d. Bit Scalars. Bit scalars have the llIT attri­
bute and a length specifier. 

EXAMPLE: DCL B BIT (15); 

The quantity with the identifier B is specified as a 
bit string quantity 15 bits in length. Like charac­
ter strings, hit strings are assigned to quantities 
from left to right. If a string is long that the 
length declared for the quantity, the rightmost 
bits are truncated; if shorter, padding on the right 
is with ZERO bits. The maximum length of a bit 
string quantity allowed is 32 bits .. 

e. Scalar Lists. It is possible to code a scalar 
declaration with more than one identifier appear­
ing in the declaration. 

EXAMPLE: DCL (FOX, BEAR, RAB­
BIT) CHAR (4); 

In the above example three identifiers appear in 
the declaration. This is an identifier list and must 
appear enclosed in parentheses. All three identi­
fiers are assigned the same attribute, character, 
and the same length (four characters). As many 
names as necessary may appear in the list. A 
scalar declaration containing lists of identifiers 
may be used for short numeric, long numeric, 
character and bit operations. All names within the 
lists will have the same attributes. Each identifier 
in the list is separated from the following identi­
fier by a comma. 
4-2. Array Declarations 

An array declaration is used to assign a name 
to a quantity when the quantity is a block of 
storage. The declaration gives the block storage 
area dimension. As such, one dimensional, two 
dimensional and three dimensional arrays can be 
declared. The declaration specifies the name, stor­
age area length and the length of the data. 

a. One Dimensional Array. A one dimensional 
array is declared as in the example below: 

EXAMPLE: DCL BROWN (5) BIN FIXED 
(24,12); 

The particle DCL is followed by an identifier 
selected by the coder. In the example above the 
array name is BROWN. Following the identifier 
is a subscript, enclosed in parentheses, which 
contains the number of quantities within the ar­
ray. Following the subscript is an attribute. In the 
above example the short numeric attribute is 
used. Long numeric, character and bit attributes 
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can also be used. Thus, the above declaration 
declares the one dimensional array named 
BROWN, containing five quantities, each quan­
tity is short numeric, 21 bits in length. 12 of the 
bits are fractional. When a quantity has been 
defined that has dimension, the name of the 
quantity can be subscripted. Later on in a pro­
gram, when array BROWN is referenced by 
TACPOL statements, individual quantities within 
the array can be specified such as BROWN( I ), 
BROWN(2), BROWN(3), etc. There is no limit to 
the number of quantities which can be included 
in an array except that of the computer storage 
physically available to hold the information. 

h. Two Dimensional Array. A two dimensional 
array is a set of one dimensional arrays. A two 
dimensional array is coded similar to a one di­
mensional array with the addition of a second 
dimension in the subscript that follows the array 
name. 

EXAMPLE: DCL BLACK(6,3) BIT(32); 

In the above example an array named BLACK 
has been declared with an attribute of BIT. Each 
quantity within BLACK can hold a bit string of 
32 bits. The subscript indicated there are six 
quantities of BLACK in the first dimension and 
three quantities of BLACK in the second dimen­
sion. The total number of quantities in the array 
is 18. To obtain this number multiply the number 
of the first dimension by the number of the sec­
ond dimension. Figure 4-1 illustrates how the 
array BLACK would be apportioned in internal 
memory. Note that dimension two is eycled 
through completely before dimension one is step­
ped by one. Later on in a program, when array 
BLACK is referenced by TACPOL statements, 
individual quantities within the array may be 
specified by following the array name with a 
subscript containing the desired quantity, i.e. 
BLACK( I, I), BLACK(2,3), BLACK(3,3), etc. 

c. Three Dimensional Array. Another dimen­
sion may be added to an array declaration to 
form a three dimensional array. 

EXAMPLE: DCL BLUE(4,3,2) BIN 
FIXED(31,O); 

In the above example the declared array. BLUE, 
is a three dimensional array because three values 
appear within the subscript. BLUE will contain 
room for 24 short numeric quantities (dimension 
one times dimension two times dimension three). 
Three dimensions are the maximum allowable 
within an array declaration. Figure 4-2 illustrates 



how the array BLUE would be allocated in inter­
nal memory. For three dimensional arrays, di­
mension three is cydedthrough completely before 
dimension two is stepped by one and dimension 
two is cycled through completely before dimen­
sion one is stepped by one. Later on in a pro­
gram, when array BLUE is referenced by 
T ACPOL statements, specific quantities within 
the array may be referenced through the array 
name followed by an appropriate subscript; i.e. 
BLUE(l,2,1), BLUE(3,3,2), BLUE(4,1,2), etc. 

r--- DIMENSION 1 

l~- DIMENSION 2 , ----------------------~----
1 1 

1 2 

1 3 

2 1 
f--__ ...... t~'__-------------,-~ ~ 

2 2 

~------------------------------
? 3 

3 1 

3 2 

3 3 

4 1 

4 2 

4 3 

5 1 

5 2 

5 3 

6 1 

6 2 

6 3 
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Figure 4-1. Two Dimensional Array 

4-3. Array Allocations 

When arrays are allocated they are established 
according to the rules of aligned quantities (see 
chapter 3). The coder may change the normal 
aligned allocation for arrays to a packed alloca­
tion by using the packed option in the array 
declaration. 
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EXAMPLE: DCL GREEN(5,5) CHAR(4) 
PACKED; 

In the above example, the allocation of the two 
dimensional array GREEN is changed from the 
normal aligned allocation to a packed allocation 
because the PACKED option has been specified 
in the declaration. When used, the particle 
PACKED must follow the attribute in the decla­
ration. 

1 1 1 

112 
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122 

1 3 1 

132 

211 

212 

221 

222 

231 

232 

311 

3 1 2 

321 

322 

3 3 1 

332 

411 

4 1 2 

421 

422 

4 3 1 

4 3 2 

r-----------

f-------------------------- ---- ----_._. 

f--------------------------.---

1--------------------------.-------

f--------------------------------_.-. 

f---------------------------

~--------------------

~---------------------.--. - -------

t----------------------

1----------------------------_.-
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Figure 4-1. Three Dimensional Array 

Section II. GROUP, TABLE AND CELL DECLARATIONS 

4-4. General 

Collections of quantIties may be declared by 
group, table or cell declarations. Quantities may 
be grouped and declared under a single operation 

in a group declaration. Identical structures, with 
dimension, may be declared in a table declara­
tion. Cell declarations are used to declare differ­
ent quantities which occupy the same storage 

4-3 
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areas to conserVe storage. Group, table and cell 
declarations are made using two or more levels. 
The levels serve to define the name of the group, 
table or cell and then to define the specific quanti­
ties within the group. table or cell. 

4·5. Group Declarations 

Group declarations make it possible to define a 
group of names under the heading of a single 
name. The declaration contains two levels. The 
first level is the definition of the group name. The 
second level contains a list of names (identifiers) 
all of which will belong to the group. 

a. Group Definition. In the example below, the 
first level is specified by the number one and the 
group name, OBB, is declared. The second level is 
specified by the number 2 and on this level all 
quantities of the group are declared. Since level 
two is considered to consist of a list of quantities, 
the list must be enclosed in parentheses. The list 
may contain all scalars, all arrays or a mixture of 
both (the example shows two scalars, one one 
dimensional array and one two dimensional ar­
ray). Attributes may also be mixed within the list 
(the example shows three BIT attributes and one 
short numeric). The scalars and/or arrays de­
clared in the list are separated from one another 
bya comma. The group declaration is terminated 
by closing level 2 (right parenthesis) followed by 
a semi-colon. 

EXAMPLE: OCL I OBB, 
2(P23 BIT(32), 

LLI BIN FIXED, 
ZIS(S) BIT(32), 

Z24(4, 2) BIT(32»; 

In the group declaration five declarations have 
actually been made. The group name OBB has 
been declared, the two scalars P23 and LL I, and 
the two arrays, Z 15 and Z24. Figure 4-3 illus­
trates how the group will be allocated in internal 
memory. Note that storage is assigned in the 
order in which the declarations have been made. 
Later on in a program, when TACPOL statements 
make references to the declared quantities, the 
entire group can be referenced by using the group 
name, the scalars can be referenced by using the 
scalar names and the arrays can be. referenced by 
using the array names with appropriate sub­
scripts. When using the group name a single 
subscript may follow the name to denote an indi­
vidual quantity, i.e. OBB(2), OBB(6), etc. The 
scalar names may not be subscripted (they do not 
have dimension). 
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P23 
r-------------~ __ ----------·-·_ 

LLI 
I----~------------------.---... - ...... . 

Zl5!ll 

ZIS!}1 

21';\.\' 
-,-~-~--- .-

l15(4) -------------------_._._ •... _ ... -. 
Z15(51 

I--------------~-~--------.----
Z24<1,1) 

Z24<1,2) 

Z24(2,1> 

Z24(2,2) 

~----------~-------------
Z24( 3, 1) 

Z24< 3, 2) 

Z24(4,1) 

Z24(4,2) 
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Fipl'e 4-3. Group Layout 

h. Group Allocation. Group declarations nor­
mally have an allocation of packed. All level 2 
quantities assume the allocation of the level I 
identifier. Thus, all the quantities within the pre­
vious example have an allocation of packed even 
though arrays are normally aligned (See Chapter 
3). It is possible to change the allocation for a 
group declaration by using the ALIGNED option. 

EXAMPLE: DCL I METAL ALIGNED. 
2 (STEEL CHAR (6). 

IRON CHAR (2), 
TIN (10) BIT (32»; 

By using the available ALIGNED option in the 
ab~ve example all level 2. quantities are now 
aSSIgned an allocation of aligned. The option 
!Dust be specified on level I immediately follow­
mg ~he gr?up name. The option may never be 
speCIfied WIth any level 2 declaration. The limit of 
the quantities that can be included in a group 
declaration is the computer storage physically 
available to hold the information. 
4-6. Table Declarations 

Table declarations are similar to group declara­
tions when it comes to coding but table declara­
tions use a repeat factor which gives the table 
dimension. 

a. Levels. Table declarations contain two lev­
els; the first level declaring the table with the 
repeat factor and the second containing a list of 
names, all of which will belong to the table. The 
list of names may contain scalars, arrays, or both. 



EXAMPLE: OCL, 1· EMPL(3), 

2 (ARGU BIN FIXED, 
STAT BIN FIXED, 
PI2(4) CHAR(4»; 

On the first level, specified by the number 1, table 
EMPL is declared along with a repeat factor. The 
repeat factor stipulates how many times the sca­
lars and/or arrays within the table declaration are 
to be repeated. In the example the two scalars 
will each be repeated three times and the· array 
will also be repeated three times. Figure. 4-4 
illustrates how this table will be allocated in 
internal· memory. Note that the table will be 
comprised of three parts referred to as EMPL( I), 
EMPL(2) and EMPL(3). Each part is identical in 
makeup consisting of. the scalar ARGU 
(ARGU(l), ARGU(2) and ARGU(3», the scalar 
STAT (STAT(l), STAT(2) and STAT(3» and the 
array P12. When an array appears in a table 
declaration the repeat factor adds a dimension to 
the array with the repeat factor becoming dimen­
sion one. Thus, when an array appears in a table 
declaration a one dimensional array becomes a 
two dimensional array (as in this example),a two 
dimensional array becomes a three dimensional 
array and a. three dimensional array becomes a 
four dimensional array. Later on in a program, 
when TACPOL statements reference the declared 
quantities, the entire table can be referenced by 
the table name, a part of the table can be refer­
enced by subscripting· the table name, or individ­
ual scalars and arrays can be referenced by their 
names with appropriate subscripts. Note that at­
tributes can be mixed within the declaration 
(short numeric and character are illustrated) and 
that the coding of the table declaration follows 
the same rules as for group declarations. 

b.Table Allocation. A table normally has an 
allocation of packed. All level 2 quantities assume 
the allocation of the table. ARGU, STAT, and 
PI2 in the previous example all have an allocation 
of packed. This allocation can be changed by 
using the ALIGNED option which is available to 
table declarations. 

EXAMPLE: DCL I TABLESOF (2) ALIGNED, 
2 (LOGS (10) BIN FIXED, 

SINES (10) BIN FIXED, 
COSINES (10) BIN FIXED, 
TANGENTS (20) BIN 
FIXED); 
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In the a»o.ve example the ALIGNED option ap­
pears on level·l immediately following the repeat 
factor. All level 2 quantities now assume the 
allocation specified on level 1. An option may 
never be specified with any level 2 declaration. 
The limit of the quantities that can be included in 
a table declaration is the computer storage physi­
cally available to hold the information. 

4·7. Cell Declarations 

Cell declarations contain lists of quantities, in 
scalar, array, group or table form, which are 
allocated common storage. In effect, cell declara­
tions are used to overlay areas of storage to 
conserve space. This common memory storage 
factor is unique to the cell declaration. 

a. Levels. A cell declaration consists of 2 or 3 
levels. The first level specifies the cell name and 
the cell declaration~ The second level specifies an 
array, scalar, table or group declaration. The third 
level specifies the quantities of a table or group if 
level two is a table or group declaration. 

EXAMPLE: DCL I MEMBR CELL, 
2 (ARMM(4), 
3 (GEL BIT(32), 

EETO CHAR(4), 
WARN(3), BIN FIXED(31, I 0)), 
DISCO, 

3 (LIGN BIN FIXED(62,8), . 
PANEL(2,4) BIT(32))); 

In the above example, the first level (specified by 
the number one) declares a cell by the name of 
MEMBR. The particle CELL must always imme­
diately follow.the cell name. Level two (specified 
by the number two) starts a list of names so a 
parentheses must be opened. In the above exam­
ple the table ARMM is declared on level 2. A 
table can consist of scalars and/or arrays; so on 
level three the constituents of the table are listed. 
The number 3 specifies the third level and a 
parentheses is opened to start the list. The table 
consists of the scalars GEL and EETO and the 
array WARN. Fol!owing the definition of WARN 
the third level is closed by a right parenthesis 
which puts the. declaration back on level 2. The 
group DISCO is now declared on the second level. 
Following this declaration are the constituents of 
the group which are declared on level three. Since 
level three was clo~ed, the number three must 
appear again denoting the start of level three and 
the parentheses must be opened. The scalar 
LIGN and the array PANEL are declared on this 
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Figure 4·4. Table LaJ'out 

level as being pari of group DISCO. When the 
declaration is concluded, both levels three and 
two must be closed by right parentheses. The 
effect of the cell declaration is to overlay all level 
two quantities. Thus, the table ARMM and the 
group DISCO share the same starting internal 
memory address. An illustration of the overlay is 
presented in figure 4-5. Table ARMM occupies 
more space than group DISCO so only part ~f 
internal memory is actually overlayed. Later on lfi 
a program, when TACPOL statements reference 
the declared quantities, the table MEMBR, or any 
part of MEMBR, the scalars GEL and ETOO, 
and the array WARN maybe referenced by 
name and an appropriate subscript. The group 
DISCO, or any part of DISCO, and the array 
PANEL may be ref~renced by name and appro-

priate subscript, and the. scalar LIGN maybe 
referenced by name. The cell name is never refer­
enced by name in any statement. The cell name is 
used by the compiler as a definition of a common 
storage area. A cell declaration need not contain 
three levels. 

The effect of the above example is to overlay a 
single word of internal memory with three scalars 
of different attributes. All the scalars are level two 
declarations and, as such, are overlayed. WATER 
can be used for arithmetic operations, COFFEE 
for character string operations and TEA for bit 
string manipulations. 

EXAMPLE: OCL I LIQUID CELL, 

2 (COFFEE BIN FIXED, 
TEA CHAR (4), 

MILK BIT(32»; 

b. Cell A llocation. Cells normally have art allo­
cation of packed. All level 2 and level 3 declara­
tions assume the allocation of level I. The alloca­
tion may be changed by using the ALIGNED 
option (see Chapter 3). 
EXAMPLE: DCL I LIVE CELL ALIGNED, 

2 (REAL. 
3 (ACTUAL (7,5) BIN 

FlXED(62,0», 

SUBSIST (5), 

3 (DWELL BIN FIXED 
(31,0), 

RESIDE (8) BIN FIXED 
(31,0))); 

In the above example the group REAL and the 
table SUBSIST are overlayed. The quantities 
within the group and the table are aligned be­
cause the ALIGNED option appears on level I 
immediately following the particle CELL. The 
option may not appear next to any level 2 or level 
3 declarations. The limit of the quantities that can 
be included in a cell declaration is the computer 
storage physically available to hold the informa­
tion. 



USACSCS-T F-4-1 

r 
GE li 1) ~'" ~~ "" ~ ~ "" '" ~ "" 
EElOll) "" "''',, ~ ~,,~'" """'~ j 
WARNll,l) ~, '" "" """, , ' ~ .. '. " 

, ' '" , '. ", "", PANEl( 1, 1) 
" •• n' 1 

WARN( 1, 2) I', "'" ~,~', " 
" " 

.. ,"-
". '" '" PANEU1,2) 

WARN( 1, 3' I~' ' "" '" ' 
" "', ~ ''-, , " 

PANELll,3) 

GEU2) , ~" OV'ER~~ , 
" , 

"', " 
, 

" 
, PANEU1,4) 

DISCO 

EETO(2) 1", ,~, ~''', ' ~" ~ PANEl(2, II 

WARN( 2, II 1"', ~,~, "" '", 
" " " " 

, PANELl2,21 ... ,," 1 
WARN(2,2) I'~ ", ~ ~ '" "" ,,'~ PANELl2,3) 

WARN(2,3) I~ ~ ~ ~,~ "'" ", ",', 'PANE l( 2,4) 

[ 
GEU3) 

EETOl3' ... ,," 1 WARNl3,1' 

WARNl3,2) 

WARNl3,3' 

GEU41 

EETOl4) 

ARMM(4' l WARNl4, II 

WARN(4,2) 

~ WARN(4,3) 

44-49 -001 

Figure 4-5. Cell Layout 

Section III. VALUE DECLARATIONS 

4-8. General 

Scalar quantities may be assigned values at the 
same time as they are declared. When this occurs, 
the declaration is called a value declaration. 

4-9. The value declaration requires the attribute 
IN IT following the type attribute. 

EXAMPLE: DCl APT2 BIN FIXED (15, 
I) INIT (100.5); 

Following the attribute INIT is the value, in 
correct literal form, enclosed in parentheses. In 
the above example, APT2 is not only declared as 
shon numeric, but the value 100.5 is assigned to 
APT2. One very important rule of value declara­
tion must always be followed. Once a name has 

been declared in a value declaration, the value 
assigned that name may never be changed. 

a. Other examples of value declarations are: 

( I) long numeric: 

DCl lNUM BIN FIXED (45, 5) INT 
(45007.125l); 

(2) Character: 

DCL CSTR CHAR (6) INIT ('X­
Y473B'), 

(3) BIT: 

DCl BSTR BIT (7) INIT (, 111000 1 'B); 

b. Value declaration may not appear as part of 
group, table or cell declarations. 

4-7/(4-8 blank) 
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CHAPTER 5 

ASSIGN STATEMENTS 

5·1. General 

Assign statements are used to assign values to 
identifiers which have been previously defined as 
a quantity other than a value quantity. The equal 
sign identifies an assign statement. 

a. In the example below, Al must have been 
defined previously as a short numeric quantity. In 
the assignment statement A I is assigned the value 
of 50. 

EXAMPLE: Al = 50; 

b. In the example below, AA and BB both 
must have been previously defined as the same 
quantity types. In the assign statement AA is 
assigned the value of BB. 

EXAMPLE: AA = BB; 

c. In the example below, GET4 must have 
been previously defined as a character quantity 
type. GET4 is assigned the character value 
AXEL. A value may be assigned to more than 
one quantity in an assign statement. 

EXAMPLE: GET4 = 'AXEL'; 

d. In the example below AA, BB and CC are 
each assigned the value 200. The names are sepa­
rated from one another by commas and they 
must have been previously defined as the same 
quantity types. 

EXAMPLE: AA, BB, CC = 200; 

5·2. Rules of Assignment 

a. Short or Long Numeric Quantities. Short and 
long numeric values are right justified within 
quantities. Low order bits lost due to conforming 
to the quantity allocation of an identifier are 
truncated. 

(I) In the example below, only one bit has 
been reserved for a fractional value. In the assign 
statement more than one fractional bit is specified 
in the value. The fractional bits that cannot fit 
into the allocated space of the quantity will be 
truncated and the value will actually become 
203.5 when the assignment is made. A quantity 
which receives a value other than the desired 
value is said to contain an undefined value. 

EXAMPLE: DCl ALP BIN 
FIXED (10, I); 

ALP = 203.56; 

(2) In the example below, the largest value 
that can be accommodated in IS bits is +32,767. 
The assignment calls for the value of 40960 to be 
assigned to TEMP. Since the value is right justi­
fied the most significant bit of the value will be 
lost through truncation. The actual value of 
TEMP will be 8192. The value is said to be 
undefined. 

EXAMPLE: DClTEMPBIN 
FIXED (15,0); 

TEMP = 40960; 

(3) In the example below, no fractional bits 
have been reserved for P2A. The assignment calls 
fora mixed number. The integer will be right 
justified and the entire fraction will be lost 
through truncation. . 

EXAMPLE DCl P2A BIN 
FIXED (35,0); 

P2A = 17~95.763l; 

(4) When values smaller than the allocation 
given a quantity are assigned, ZEROS are ap­
pended to the high and low order bit positions. In 
the example below, FLIP can hold a value much 
larger than the assigned value of 20.5. leading 
ZEROS will be appended to the integer portion 
of the value and trailing ZEROS will be added to 
the fractional part. In binary FLIP would be 
assigned the value 00010100.10000. 

EXAMPLE: DCl FLIP BIN 
FIXED (12,4); 

FLIP == 20.5; 

b. Character Quantities. Character strings are 
left justified within quantities. If the value as­
signed a character quantity is shorter than the 
declared length, space characters are appended to 
the right. 

(I) In the example below, ALPHA can 
equal as much as seven characters. Only three 
characters have been assigned in the statement. 

5-1 
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As a result ALPHA will be equal to BCD fol­
lowed by the ASCII code for four blanks (AL­
PHA = BCDbbbb where b is an ASCII blank). 

EXAMPLE: DCl ALPHA CHAR (7); 

ALPHA = 'BCD'; 

(2) If the value assigned a character quan­
tity is greater than the declared length, characters 
will be truncated from the right. In the example 
below, BETIC can be equated to a maximum of 
six characters. Method would be equated to 
BETIC and the characters ICAlwould be trun­
cated. 

EXAMPLE: DCl BETIC CHAR (6); 

BETIC = 'METHODI­
CAl'; 

c. Bit Quantities. Bit strings are left justified 
with quantities. If the value assigned a bit quan­
tity is shorter than the declared length, ZERO bits 
are appended to the right. 

(l) In the example below, NUME is de­
clared as eight bits in length and a five bit string 
is assigned. ZERO bits will be appended to the 
right to fill in the remaining bit positions. NUME 
has the following value after the assignment is 
made: 10011000. 

EXAMPLE: DCl NUME Bit (8); 

NUME = '10011'B; 

(2) If a value assigned a bit quantity is 
greater than the declared length of the quantity, 
bits are truncated from the right. In the example 
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below, RIC can be equated to a maximum 01 live 
bits in a string. The assignment calls for ten bits. 
The string 110 II is assigned to RIC and the least 
significant five bits, 1100 I. are truncated. 

EXAMPLE: DCl RIC BIT (5); 

RIC = '110111 1001'B; 

d. Value Declarations in Assignment State­
ments. A quantity that has been declared in a 
value declaration may never appear on the left 
side of an assign statement. 

(I) The statement below, is in error and will 
so be indicated by the compiler. QUAN has had 
a value assigned through a value declaration. As 
such, the value will always remain with QUAN 
and cannot be changed through an assign state­
ment. 

EXAMPLE: DClQUAN BIT (4) INIT 
(' 1000'B); 

QUAN= 'OIOI'B; 

(2) Thee quantity declared in a value decla­
ration can appear on the right side of an assign 
statement. In the example below, DRAM is as­
signed the value of VALU. A blank character is 
appended to the right of DRAM since DRAM is 
one character longer than VALU. 

EXAMPLE: DCl VALU CHAR (3) 
INIT (1 ZyX 1) 

DCL DRAM CHAR (4); 

DRAM = VALU; 



USACSCS-TF-4-1 

CHAPTER 6 

OPERATORS AND EXPRESSIONS 

6- 1. Operators 

There are four types of operators in TACPOl: 
arithmetic. relational. string and logical. An oper­
atllf that precedes an operand is a prefix operator. 
i.e .. -A or + A. An operator that appears between 

. llperands is an infix operator. i.e .. A + B or A-B. 

a. Arithmetil: Operators. The arithmetic opera­
tors are addition. subtraction. multiplication. divi­
sion and exponentiation. The symbols for these 
operators are shown in table 6-1. 

Table 6-'. Arithmetic Operators 

SYMBOL OPERATION 

+ addition 

subtraction 

• multiplication 

division 

_. 
exponentiation 

20083-4 

When exponentiation is specified as the operator. 
it must be followed by an unsigned decimal num­
ber.Exponentiation only by positive integers is 
permitted. 

EXAMPLE: DCl DO BIN FIXED; 

DCl YY BIN FIXED; 

DO = 20: 

YY = 00**3: 

In the above example. YY will contain 2()l or 
8000 as a result of exponentiation. Note that 
exponentiation must be described in consecutive 
characters without any imbedded blanks. The 
operators for addition and subtraction may be 
prefix or infix operators. 

b. Relational Operators. The relational opera­
tors indicate a comparison of two values of the 
same type. That is, an arithmetic value may only 
be compared to another arithmetic value, a char­
acter string value may only be compared to an-

other character string value and a bit string value 
may only be compared to another bit string value. 
The symbols for these operators are shown in 
table 6-2. 

Table 6-1. RelatiOllal Operators 

SYMBOL OPERATION 

EQor= equal 

NEor""7 ;;, not equal 

LTor < less than 

LEor<= less than or equal 

GTor> greater than 

GE or> = greater than or equal 

20083·5 

(I) The comparison of arithmetic values 
means a comparison of signed arithmetic values. 
To compensate for the fact that arithmetic values 
have different scale factors, the value having the 
smaller scale factor will have its binary point 
aligned with the value having the larger scale 
factor. 

EXAMPLE: DCl BBA BIN FIXED 
(9, I); 

DCl DDA BIN FIXED 
(9,3); 

BBA = 15.5; 

DDA = 10.125; 

In the exampleBBA and DDA will each have the 
following binary values: 

BBA = 00001111.1 

DDA = 001010.001 

BBA has the smaller scale factor and will be 
aligned with the scale factor of DDA. This in­
volves shifting the value of BBA two binary posi­
tions to the left. The shifting for alignment of 
scale factors is an automatic feature of the 
TACPOl language. The comparison of the two 
aligned values is then made as follows: 

6-1 
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BBA == 001111.100 

DDA == 001010.001 

Note the possibility of some significant bits being 
lost on the left if a large shift is involved in the 
operation. A short numeric operand may only be 
compared with another long numeric operand. 

(2) When a comparison is made between 
character string values, the comparison is made, 
character~by-character, going from left to right. 

EXAMPLE: DCl EGO CHAR(4); 

DCl ERGO CHAR (5); 

EGO == 'SELF'; 

ERGO == 'HENCE'; 

In the example, if EGO and ERGO are com­
pared, the first character of EGO (S) is compared 
with the first character of ERGO (H), the second 
character of EGO (E) is compared with the sec­
ond character of ERGO (E), etc. Note the differ­
ence in length of the character string values given 
in the example. When this situation occurs, the 
shorter value is automatically extended on the 
right with character designations for a blank to 
the size of the larger value. The actual compari~ 
son made between EGO and ERGO is illustrated 
below. 

EGO == SElFb (b == 
blank) 

ERGO == HENCE 
(3) When a comparison is made between bit 

string values, the comparison is made, bit-by-bit, 
going from left to right. 

'EXAMPLE: DCl NIT BIT(6); 

DCL PIT BIT(8); 

NIT == ' 111001 'B; 

PIT == ' 10 100 111 'B; 

If NTT and PIT are compared, the first bit· of 
NIT (1) will be compared with the first bit of 
PIT (I), the second bit of NIT (1) will be com­
pared with the second bit of PIT (0), etc. When 
bit strings differ in length, as illustrated in the 
example, the shorter bit string value is automati­
cally extended on the right with binary ZEROS to 
the size of the larger value. The actual compari­
son that would be made .between NIT and PIT 
is illustrated .below. 
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NIT == 11100100 

PIT == 10100111 

The result of any comparison operation is a bit 
string value, one bit in length, where the value of 
the bit will be ONE if the comparison is true or 
the value of the bit will be. ZERO if the compari­
son is false. 

c. String Operators. The string operators per­
form catenation or substring operations upon 
character strings and bit strings. The symbols for 
these operators are shown in table 6-3. '. 

Table 6-3. StringOperaton 

SYMBOL OPERATION 

CAT or 11 catenation 

SUBSTR or $ substring 
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( 1) Catenation is the joining, or chaining, of 
strings into a single string. A bit string may only 
be catenated with another bit . string and a charac­
ter string may only be catenated with another 
character string. 

EXAMPLE: DCl (EBC,FAB) BIT(4); 

DCL RECV BIT(8); 

EBC == '1001'B; 

FAB == ' 1100'B; 

RECV == EBC CAT FAB; 

In the example, the bit string specified by EBC is 
joined with the bit string specified by F AB and 
the result is left justified inRECV. RECV, as a 
result of the catenation, contains 100 11100. If 
catenation produces a result less than the number 
of bits assigned the receiver, ZEROS are ap­
pended to the right of the result. 

EXAMPLE: DCL (BLUE,RED) 

BIT(3); 

DeL GREEN BIT(8); 

BLUE"'; '011 'B; 

RED = '101 'B; 

GREEN == BLUE CAT 
RED; 

When BLUE is catenated with RED the result is 
011101. However, GREEN is eight bits in length. 
The result is left justified jn GREEN with two 
ZEROS appended to the extra bit positions yield­
ing a final result of 0 1110 100. If catenation pro-



duces a result greater than the number of bits 
assigned the receiver. bits are truncated from the 
right most bit positions. 

EXAMPLE: DCL DOCU BIT(4); 

DCL PAMP BIT(5); 

DCL BASK BIT(6); 

DOCU = ' 100 I 'B; 

PAMP = ' 1110 I 'B; 

BASK = DOCU CA T 
PAMP; 

When DOCU is catenated with PAMP the result, 
in nine bits, is 10011110 I. However, BASK is 
only six bits in length. The last three bits of the 
catenation will be truncated so the result will fit 
the assigned length of BASK. BASK will contain 
100 Ill. If the result of catenation of bit strings 
yields a length greater than 32 bits, bits will be 
truncated from the right of the result. No bit 
string may be longer than 32 bits in length. The 
catenation of character strings follows the same 
principles as the catenation of bit strings. The 
result is left justified within the receiver. If the 
result is less than the length of the receiver, 
character blanks are appended to the extra char­
acter positions. 

EXAMPLE: DCL (ET A,ZETA) 
CHAR(2); 

DCL RHO CHAR(6); 

ETA = 'AB'; 

ZETA = 'CD'; 

RHO = ETA CAT ZETA; 

The result, left justified within RHO, is ABCDbb 
where bb are character blanks. If the result of 
character string catenation exceeds the character 
length of the receiver, the right most characters 
are truncated. Also, if the result of character 
string catenation exceeds 512 characters, charac­
ters will be truncated from the right of the result. 
No character string may exceed 512 characters in 
length. 

(2) A substring operation designates a por­
tion of a character string or a portion of a bit 
string. The operator may appear on the left of an 
assignment statement, the operator may appear 
on the right of an assignment statement, or the 
operator may appear on the left and the right of 
an assignment statement. The specification of a 
substring operation contains several parts. 

USACSCS-T F-4-1 

EXAMPLE: SUBSTR(ALPHA,2,3) 

The substring operator is SUBSTR or the symbol 
$. Following the operator is an identifier, a first 
element and an element count, all enclosed in 
parentheses. The identifier (ALPHA in the exam­
ple) must have been previously defined with an 
attribute of either CHAR or BIT. The identifier is 
separated from the first element by a comma. The 
first element specifies the left most character in a 
character string or the left most bit in a bit string 
which is to be used in the operation. The first 
element may be any character or any bit within a 
string and the value of the first element must lie 
between one and the length of the designated 
quantity (ALPHA). When determining the char-

. acter position or bit position within a string, the 
left most character or bit is one, the next is two, 
etc. The first element defines a starting point 
within a string. The element count specifies the 
number of contiguous characters or bits, starting 
from the first element, for the operation. The sum 
of the first element and the element count must 
not exceed the declared length plus one of the 
designated quantity (ALPHA). Thus, in the exam­
ple, the substring operation specifies the second 
character or bit of ALPHA to be the first element 
and, starting from the first element, three contigu­
ous characters or bits are to be used. The actual 
character or bit positions of ALPHA entering into 
the operation are 2, 3 and 4. 

EXAMPLE: $(ALPHA,2) 

In the above example the element count is miss­
ing. Should the element count not be present for 
the operation it is understood to be one. The 
identifier and the first element must always be 
present. 

(a) Substring operation on the right of an 
assign stater.nent 

EXAMPLE: DCL LY CHAR(4); 
DCL LA CHAR(6); 

LA = 'ABCDEF'; 

L Y = SUBSTR(LA,3,2); 

In the above example, L Y is to be set to a portion 
of LA. The operation states, starting at character 
C (first element specifies the third character of LA 
as the left most character) obtain two contiguous 
characters (element count is two) and assign them 
to L Y. The characters obtained will be C and D. 
Since the operation does not specify where in L Y 
to place the characters, the characters will be left 
justified within the receiver (L Y) and blanks will 

6-3 



USACSCS-TF·4·1 

be appended to the extra character positions. At 
the conclusion of the operation L Y will be made 
equal to CObb (whcre bb arc character blanks). 
In this type of substring operation blank fill will 
always be used when necessary. 

(b) Substring operation on the left of an 
assign stater,nent 

EXAMPLE: DCL PRE CHAR(6); 

DCl PRO CHAR(8); 

PRE = 'ZYXWVU'; 

PRO = 'AAAAAAAA'; 

$(PRO,2,4) = PRE; 

In the above example, a portion of PRO is to be 
set to a portion of PRE. The portion of PRO to 
be set is specified by the substring operation, 
character positions 2, 3, 4 and 5 (first element 
specifies character position two, element count is 
four). However, the operation does not indicate 
the character positions in PRE to be used. In this 
case, the starting character position of PRE will 
be the left most character (Z) and four contiguous 
characters will be used; Z, Y, X and W. This type 
of operation specifically states where to place the 
characters in the receiver (PRO). The operation 
becomes a true insert and there is no blank fill to 
the left or to the right of the inserted characters. 
At the conclusion of the operation PRO is as­
signed the value of AAZYXW AA. Note that 
character positions I, 2, 7 and 8 or PRO are not 
disturbed. 

(c) Substring operation on the left and on 
the right of an assignr,nent stater,nent 

EXAMPLE: DCl GRAPE CHAR(8); 

DCl APPLE CHAR(6) 
INIT 
('123456'); 

GRAPE = 

'ABCDEFGH'; 

$(GRAPE,I,3) = 
$(APPlE,3,3); 

In the above example, the substring operator 
appears on both sides of an assign statement. The 
statement explicitly states where the portion ofa 
character string is to come from (third, fourth and 
fifth characters of APPLE) and where that por­
tion is to be placed (first, second and third char­
acter positions of GRAPE). This operation is a 
true insert, there is never a blank fill in the 
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receiver. At the conclusion of the operation the 
value of GRAPE will be 345 DEFGHcharacters 
3, 4 and 5 of APPLE (first element is 3, the 
element count is 3) have been placed in character 
positions one, tWQ and three of GRAPE (nrst 
element is I, the element count is 3). Substring 
operations for bit strings follow the same princi­
ples as the substring operations for character 
strings. The only difference is when extra bit 
positions have to be filled they are ZERO filled. 

EXAMPLE: DCl (FOG, lOG) BIT(8); 

FOG = '11100111'B; 

lOG = 
SUBSTR(FOG,2,5); 

In the example, bit positions 2, 3, 4, 5 and 6 of 
FOG are left justified within LOG. (The first 
element specifies the second bit position of the 
string and the element count is five.) LOG has 
been defined as eight bits in length. Three ZE­
ROS will. be appended to the extra bit positions 
of lOG. At the conclusion of the operation the 
value assigned to lOG will be 11001000. 

d. Logical operators. The logical operators are 
the boolean operators AND, OR and NOT. The 
symbols for these operators are shown in table 
6-4. 

Table 6·4. Logical Operator 

SYMBOL OPERATION 

ANDor& Logical AND 

OR or I Logical Inclusive OR 

NOT or -, Logical NOT 
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The NOT operator is always' a prefix operator 
while the AND and OR' are always infix opera­
tors. The logical operators may only be used with 
bit strings. 

( I) The AND operation,. as with all logical . 
operations, is performed on a bit by bit basis 
from left to right. An AND operation performed 
between two bit strings yields a result for each bit 
position of the strings .. For each bit position, a 
ONE and a ONE yields a result of ONE. All 
other combinations yield a ZERO, ' 



EXAMPLE: DCL (AA,DD.HH) 
BIT(6); 

AA = 'IIIOOO'B; 

DO = 'OOIIIO'B; 

HH = AA AND DO; 

As a result of the above operation HH will have a 
value of 001000. Only in the third bit position of 
the two strings is there a ONE and a ONE combi­
nation which yields a ONE. The ONE-ZERO, 
ZERO-ONE and ZERO-ZERO combination all 
yield ZERO results. There is never a carry from 
one bit position to another in logical operations. It 
is possible to perform a logical operation between 
two bit strings of unequal length. 

EXAMPLE: ,DCL FIX BIT(5); 

DCL (COMB,POS) 
BIT(7); 

FIX = '10011 'B; 

POS = '0111111 'B; 

COMB = FIX AND POS; 

In this example POS is two bits longer than FIX. 
During the AND operation ZEROS are appended 
to the shorter of the two values to make them 
equal in length. After the ZEROS are appended 
the AND operation is completed. As a result of 
the above operation COMB will have a value of 
0001100. 

If the receiving quantity is longer than the result 
of a logical operation, the result is left justified 
within the receiving quantity and ZEROS are 
appended to the extra bit positions. 

EXAMPLE: DCL(TRA,NGY) BIT(6); 

DCL GIV BIT(IO); 

TRA = 'IOIOIO'B; 

NGY '0110 11 'B; 

GIV = TRA AND NGY; 

In this example the AND is performed between 
TRA and NGY with the result left justified 
within GIV. The six bit result of the operation is 
001010. GIV is 10 bits in length, so four ZEROS 
are appended to the right' of the six bit answer to 
provide a ten bit result of 0010 100000. 

(2) The principles of the OR operation are 
the same as for the AND operation. The differ­
ence in the operators is the result they yield. A 
logical inclusive OR yields a result of ZERO for a 
ZERO-ZERO combination. All other combina-
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tions yield a result of one. Otherwise, all the rules 
of operation are the same. 

EXAMPLE: DCL MIKE BIT(4); 

DCL LARRY BIT(7); 

DCL SAM BIT(9); 

MIKE = 'IIOO'B; 

LARRY = 'IOIOIIO'B; 

SAM = MIKE OR 
LARRY; 

In this example MIKE, four bits in length, is 
appended with three ZEROS to be of equal 
length with LARRY which is seven bits in length. 
The logical inclusive OR between the two values 
yields a seven bit result of 1110 110 which is left 
justified within SAM. SAM is nine bits in length 
so two ZEROS are appended to the right of the 
seven bit answer which yields a nine bit result of 
111011000. 

(3) The NOT operator performs a ONE's 
complement of a bit string. This changes all ONE 
bits to ZERO bits and all ZERO bits to ONE bits. 

EXAMPLE: DCL (OPE,COM) BIT(6): 

OPE = 'IIOIIO'B; 

COM = NOT OPE; 

As a result of the NOT operation in the example, 
COM will have a value of 00100 I which is the 
ONE's complement of OPE. If the receiving 
quantity is longer than the result of a NOT opera­
tion zeros are appended to the extra bit positions. 

EXAMPLE: DCL KVAL BIT(5); 

DCL PVAL BIT(8); 

KVAL = 'OOIIO'B; 

PVAL = NOT KVAL; 

In the example, the NOT operation is performed 
on the value of KVAL producing a result of 
) 1001. This result is left justified within PVAL 
and three ZEROS are appended to the extra bit 
positions. The NOT is always performed before 
the ZEROS are appended. Table 6-5 illustrates 
the result of bit by bit operations for all logical 
operators. 

e. Rules of Operators 

(I) Short and long numeric quantities may 
use only arithmetic and relational operators. 

(2) Character quantities may use only rela­
tional and string operators. 
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Table 6-5. Re.vults of Logical Operatiom 

Operation Resul Is 
-~--." 

A A 
Contents of: 

NOT NOT AND OR 

A B A B B B 

I I 0 0 I ! 

I 0 0 I 0 I 

0 I 1 0 0 I 

0 0 1 I 0 0 
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(3) Bit quantIttes may use only relational, 
string and logical operators. 

6-2. Expressions 

There are four types of expressions in 
TACPOL: short numeric, long numeric, bit string, 
and character string. The type of data in expres­
sions may not be mixed except in special cases for 
long numeric expressions. 

a. Short Numeric Expressions. If the quantity 
receiving the result of the expression has been 
declared as short numeric, then all quantities 
within the expression must be short numeric. The 
expressions are evaluated from left to right ac­
cording to the priorities of the operators. Operator 
priorities are illustrated in table 6-6. 

EXAMPLE: DD = AA + BB*CC/DD; 

Table 6-6. Short Numeric Operator Priorities 

PRIORITY SYMBOLS OPERATIONS 

1 + and- Prefix addition and subtraction 

2 ** Exponentiation 

3 * and / Multiplication and division 

4 + and - Infix addition and subtraction 
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In the above example, the evaluation of the ex­
pression is left to right according to the priority of 
the operator. Thus, BB is multiplied by CC, the 
result is divided by DD, and AA is then added to 
provide the final result. Multiplication and divi­
sion have higher priorities than addition. The 
order of priority may be changed by enclosing 
any part of the expression in parentheses. This 
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raises that portion of the expression to the highest 
priority. 

EXAMPLE: DD 
DD; 

= (AA + BB)*('('I 

In this example, AA is first added to BB, the 
result is multiplied by CC and finally the division 
by DD is made. The inclusion of parentheses 
changes the evaluation of the expression and the 
result of this expression would be different from 
the result of the expression in the previous exam­
ple. During the evaluation of expressions, the 
scale factors of the values are automatically ad­
justed to the scale factor of the value containing 
the largest fractional part. The result of expres­
sion evaluation is then automatically adjusted to 
the scale factor of the receiving quantity. 

EXAMPLE: DCL FIN BIN 
FIXED (31,2); 

DCL APT BIN 
. FIXED (31,5); 

DCL LIBR BIN 

FIXED (31, I); 

FIN = 12.5; 

APT = 37.125; 

LIBR = FIN + APT; 

In this example, FIN and APT have initial values 
(shown in binary) as follows: 

FIN = 000000000000000000000000001100.10 

APT = 000000000000000000000 100 101.00 100 

APT has the larger fractional part so FIN is 
adjusted to the scale factor of APT before the 
addition is applied. This means moving the value 
of FIN three binary positions to the left. The 
three most significant bits of FIN are lost (exclu­
sive of the sign bit) and three ZEROS are ap­
pended to the right. The addition occurs with the 
adjusted values as illustrated below. 

FIN = 000000000000000000000001100.10000 
APT = OOOOOOOOOOOOOOOOOOOOOIOOlOlnOIOO 

The intermediate result of the above operation 
is: 

000000000000000000000110001.10100 
(49.62510) 

The intermediate result is now automatically ad­
justed to the scale factor of the receiving quantity, 



LlBR. The intermediate result is moved four bi­
nary positions to the right. The four least signifi­
cant bits of the intermediate result are lost, and 
likenesses of the sign bit are appended to the left. 
The value of LlBR as a result of the operation is: 

0000000000000000000000000110001.1 
(49.510 ) 

b. Long Numeric Expressions. The basic rule 
for long numeric expressions is, if the quantity 
receiving the result of the expression has been 
declared as long numeric, then at least one of the 
quantities within the expression must be long 
numeric. However, there are two exceptions to 
this rule due to two special operators for long 
numeric expressions. 

long numeric expressions are evaluated in the 
same manner as short expressions with the same 
automatic adjustment for scale factors. The order 
of priority is illustrated in table 6-7. 

Table 6-7. Long Numeric Operator Priorities . 
PRIORITY SYMBOLS OPERATIONS 

1 + and . Prefix addition and subtraction 

2 ** 01(**) Exponentiation 

3 * or (*) and I Multiplication and division 

4 +and- Infix addition and subtraction 
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Under normal circumstances, when a long nu­
meric quantity is to receive the result of exponen­
tiation, the quantity in the expression must be 
long numeric. However, there is a special long 
numeric operator . which allows a long numeric 
quantity to receive the result of exponentiation 
when the quantityin the expression is short nu­
meric. This is accomplished by enclosing the ex­
ponentiation operator in parentheses as illustrated 
in the example below. 

EXAMPLE: DCl FA VT BIN 
FIXED (31,0); 

DCl RSlTBIN 
FIXED (62,0); 

FAVT == 20; 

RSlT == FAVT(**)4; 

If the exponentiation operator in the above exam­
ple were not enclosed in parentheses the compiler 
would output an error condition because FA VT 
was declared short numeric and RSl Twas de-

USACSCS-T F-4-1 

c1ared long numeric. A similar situation exists 
with the multiplication operator. Normally, when 
a long numeric quantity is to receive the results of 
multiplication, one of the quantities within the 
expression must be long numeric. However, there 
is a special long numeric operator which allows a 
long numeric quantity to receive the results of 
multiplication between short numeric quantities. 
Enclosing the multiplication operator within pa­
rentheses allows this to occur as illustrated in the 
following example. 

EXAMPLE: DC l DECIM BIN 
FIXED (31); 

DCLOCTBIN 
FIXED (31); 

DCLHEXA BIN 
FIXED (62); 

DECIM == 37; 

OCT == 112; 

HEXA == DECIM(*)OCT; 

If the multiplication operator in the above exam­
ple were not enclosed in parentheses the compiler 
would detect the expression as being in error. 

c. Exponent and Scale Factor for Long Nu­
meric and Short Numer!c Literals. A short or long 
numeric literal may contain an exponent and a 
scale factor. The exponent is used for raising or 
lowering the literal by a power of ten. The scale 
factor is used to scale the literal after the exoo­
nent has been applied. 

EXAMPLE: DCl MICRO BIN 
FIXED (31,0); 

MICRO == 8E 2S 1; 
In the example the literal is 8. The E stands for 
exponent and. is followed by an optionally signed 
number. If a sign (plus or minus) does not follow 
the E, a blank space must be left between the E 
and the number. The blank means +. The op­
tionally signed number is the power of to which, 
in the example, would be 1()2. The S stands for 
scale factor and is followed by an optionally 
signed number. If the sign (plus or minus) does 
not follow S, a blank space must be left between 
the S and the number. The blank means +. The 
result of the above example is 800 (8 raised by 
I ()2) scaled one binary bit position to the left for a 
final result of 1600, MICRO is assigned the value 
1600. The literal in the example could also have 
been coded as follows: 

MICRO == 8E+2S+ I; 

6-7 
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The use of a negative exponent lowers a number 
by a power of 10. 

EXAMPLE: DCl UK BIN FIXED; 

UK = 800E-2S + I; 

The example uses an exponent of IcY. As a result. 
800 lowered by I cY is 8 scaled one binary position 
to the left for a final result of 16. UK is assigned 
the value 16. The use of a negative scale factor 
scales the result to the right. 

EXAMPLE: DCl MIMAT BIN 
FIXED; 

MIMAT = 8E+2S-2; 

Raising 8 by I cY yields a result of 800. This result 
is scaled two binary positions to the right for a 
final of 200. MIMAT is assigned the value 200. 

d. Bit String Expressions. A bit string expres­
sion yields a bit string result. The expression is 
evaluated from left to right according to the 
priorities of the operators. Operator priorities are 
illustrated in table 6-8. 

EXAMPLE: BYTE = NOT TMM OR 
GRGE AND HRY; 

Tuble 6·8. Bit String Operator Priorities 

PRIORITY SYMBOLS OPERATIONS 

I NOT or -, Logical NOT 

2 AND or& Logical AND 

3 OR or I Logical Inclusive OR 

4 CAT or II Catenation 
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Following the order of priority evaluation in the 
example, the first operation performed is the 
NOT on quantity TMM; then a logical AND is 

6·8 

performed between quantities GRGE and HR Y 
and finally, a logical inclusive OR is performed 
between the result of the NOT operation and the 
result of the AND operation. The order of prior­
ity may be changed by enclosing part of the 
expression in parentheses. This is illustrated in the 
following example. 

EXAMPLE: QUO = NOT (STATUS 
CAT VADIS); 

Catenation has a lower priority than the NOT 
operator. However, the catenation operation in 
the example is enclosed in parentheses so the 
quantities STATUS and QUO are catenated be­
fore the NOT operation is performed. 

e. Character String Expressions. A character 
string expression yields a character string result. 
The expression is evaluated from left to right 
without any priority considerations of the opera­
tors. Only relational and string operators may 
appear within the expression. 

f Repeat Factor for Bit String and Character 
String Literals. A repeat factor may be used for 
bit string and character string literals. The effect is 
to catenate the literal to itself the number of 
times specified by the repeat factor. 

EXAMPLE: DCl SPEC CHAR (16);. 

SPEC = (4) 'KMPC'; 

The repeat factor precedes the literal and is an 
unsigned decimal number enclosed in parenthe­
ses. The example illustrates the use of the repeat 
factor for a character string. The literal KMPC is 
to be repeated four times assigning a value to 
SPEC of KMPCKMPCKMPCKMPC. The same 
function can be applied to bit string literals. 

EXAMPLE: DCl FUNCT BIT (9); 

FUNCT = (3) '10 I 'B; 

As a result of the operation in the example, 
FUNCT will be assigned a value of 10 110 110 1. 
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CHAPTER 7 

BLOCKS 

7-1. Block Structure 

A TACPOL program is organized into blocks. 
A block consists of a collection of statements. 
Within the blocks, value names, quantities, point 
names, and procedure names are defined. The 
purpose of the block structure is to define the 
scope of names. To attain a clearer understanding 
of the block concept, consider blocks as boxes. 
These boxes can be nested (contained) one within 
another. For example: 

Box I A 

Box 2 B 

Box 3 I c I 
The names defined in anyone box are automati­
cally 'known' throughout that box and all boxes 
contained within that box. In the example, A is 
defined in Box I and is thus known in Box I and 
the boxes it contains - Boxes 2 and 3. Similarly, B, 
which is defined in Box 2 is known in both Boxes 
2 and 3. Finally, C is defined and known only in 
Box 3. The 'scope' of a name is the area of a 
program within which it is known. Thus, the 
scope of name A extends throughout Boxes I, 2 
and 3, where it is known. Likewise the scope of B 
extends throughout Boxes 2 and 3, and the scope 
of C extends throughout Box 3. All names used in 
a TACPOL program must be defined. Therefore, 
in selecting the proper definition for a name the 
program is searched starting with the innermost 
block designating the name and working out­
wards. If the name is defined within the smallest 
block that encloses that designation, this defini­
tion is selected as valid. Otherwise, the search is 
reapplied to the next outer-most block. Each suc­
cessively larger block is searched until the defini­
tion is found. If the definition is not found, then 
the name is considered undefined and in error. 
The objective in using blocks in a program is to 

define the scope of a name. The scope of a name 
extends throughout the block in which it is de­
fined and every contained block, except any con­
tained block where it is redefined. Consider the 
following example: 

A: statement 

Block I B: statement 

Block 2 A: statement 

Block 3 c: statement 

The name B is defined and may be designated in 
block 2 and its contained block, 3. The name C is 
defined and may be designated only in block 3. 
The name A is defined first in block I and may 
be designated in blocks I and 2. Block 3 is indeed 
contained in block I; however, because A is rede­
fined in block 3, the scope of the outer A does not 
extend into block 3. When the block structure is 
searched starting from block 3, the inner defini­
tion of A will be found first. Thus any designation 
of A within block 3 will use this inner definition 
from block 3. When name A is referred to outside 
of block 3, specifically in either block I or 2, the 
block structure again is searched. For example, if 
A is designated in block 2 then tl}is block is 
searched for the definition of A, where it is not 
found. The search is continued in the next con­
taining block, I, where the definition is found. 
Thus, any designation of A within block 2 will 
use this outer definition. Likewise, designations of 
A in block I wHl also use the outer definition. 
Thus, the programmer is free to devise any block 
structure for his program that is convenient to the 
solution of his problem. He may use the same 
name, if appropriate, for different entities defined 
in his program, as long as they are defined in 
different blocks. There are four types of blocks: 
BEGIN, DO, PROC, and CODE. . .. 

7-1 
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7-2. Begin Block 

A BEG IN block consists of statements bounded 
by BEGIN and END. 

BEGIN: 

statement-I: 

statement-2 : 

statement-3 : 

END: 

The BEGIN block may also contain declarations. 
A declaration must always precede its use in a 
STATEMENT. Because the BEGIN block is 
treated like a statement, it may appear anywhere 
a statement may appear. For example: 

IF (A = B) THEN 

BEGIN: 

statement-I; 

statement-2; 

statement-3 : 

END: 

ELSE 

BEGIN: 

statement-4 

statement-S 

statement-6 

END: 

7-3. DO Block 
A DO block consists only of statements 

bounded by DO and END. No declaration may 
appear in a DO block. 

7-2 

DO I = I BY I TO 10; 

statement-I: 

statement-2; 

statement-3 ; 

END: 

The DO block, like the BEGIN block, is treated 
like a statement. 

7-4. PROe Block 

A PROC block consists of the procedure state­
ments from (but not including) the procedure 
name to (and including) the END. 

A: PROC; 

statement-I; 

statement-2; 

statement-3 ; 

END; 

Unlike BEGIN and DO blocks, the PROC block 
is treated like a declaration. The procedure name 
in the example A, is known in the block immedi­
ately containing the procedure. Consider the 
nested procedure blocks: 

A: PROC 

B: PROC; 

statement-a; 

statement-b; 

statement-c; 

END; /*B * / 

statement-I; 

statement-2; 

statement-3; 

END; /* A * / 



Procedure blocks may contain declarations in ad­
dition to statements. Like BEGIN blocks, any 
declaration must precede its use in a statement. 
Therefore a nested procedure must appear among 
such declarations (in a PROC or BEGIN block) as 
procedure B appears preceding the statements in 
A, as shown above. 

7-5. CODE Block 

A block whose first constituent is the particle 
CODE specifies a text not written in the TACPOL 
language. Following the code block specification 
is a list of AN/GYK-12 Machine Language in­
structions. Thus, machine language code may be 
imbedded within a TACPOL language program. 

a. A CODE block consists of the CODE block 
specification, AN/GYK-12 Machine Language 
instructions and an END statement which desig­
nates the end of the CODE block. (See chart 
below.) 

CODE: 

MOL statement-l 
MOL statement-2 
MOL statl'llwnt-3 
MOL stutcltlcllt-4 
MOL st,ltemcnt-S 
MOL stutement-6 

END' 
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CODE blocks may be nested within TACPOL 
blocks. However, names defined in TACPOL 
blocks are' not normally known to CODE blocks. 
Therefore, the use of names in a code block that 
were defined in declarations would be undefined 
in the CODE block. 

EXAMPLE: CODE USES (LPRA, 
PONN, GGUY); 

b. There is a: method of getting around the 
problem of undefined names in a CODE block. A 
modified CODE block containing a list of names, 
previously defined in TACPOL blocks, makes the 
names in the list known in the CODE block. 

In the above example, the names in the list have 
been previously defined in outer or parallel 
blocks. The particle USES must follow the speci­
fier CODE when a list of names is used in the 
CODE block heading. 

7-3/(7-4 blal)k) 
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CHAPTER 8 

CONTROL STATEMENTS 

8·1. IF Statement 

( A logical diagram of the IF statement would 
look like this: 

A logical diagram of the IF statement would 
look like this: 

(statement) 

/--THEN-) 

(l~ it -e~ ';;';;"ion) \ ----
--ELSE-­
(statement) 

An example of such an IF statement to produce a 
positive difference between A and B would be: 

IF (A LT B) THEN C=B-A; ELSE C=A­
B; 

The two paths diverge for the execution of one 
stat~m.ent (or. block of statements) and merge 
agam mto a smgle path of execution. Either the 
THEN clause or the ELSE clause is executed, and 
the other is skipped. No matter which alternative 
is chosen as a result of the test, execution contin­
ues with the next sequential statement that ap­
pears in the program immediately following the 
ELSE clause, provided no transfer of control 
statement was executed in the selected clause. If 
the result of the bit expression in the IF clause is 
all ZEROS, this is treated as a FALSE conHition 
and the ELSE clause will be executed. If the 
evaluation of the bit expression contains at least 
one bit then this is treated as a TRUE condition 
and the THEN clause will be executed. A varia­
tion of this type of IF statement is represented by 
the following diagram: 

(statement) 

I-THEN - - - - - - - ; 

IF -- - --\ J. 
(bit expression) - - - - - - - - --' 

ELSE 
GOTO (point name) 

An example of such an IF statement would be: . 

IF (A = B) THEN A = -B; ELSE GOTO 
EQUAL; 

In this example an alternative (the ELSE clause) 
causes a transfer of control to some other point in 
the program. Sequential execution does not con­
tinue. Another kind of IF statement is represented 
by a third diagram: 

(statement) 
I-THEN - - - - - - - I 

IF-----\ I 
(bit expression) _________ t 

A statement representing the above kind of IF 
statement could be as follows: 

IF (A NE B) THEN A=A-I; 

In the type of IF statement illustrated above, the 
alternatives are 'execute the THEN clause' or 'do 
not execute the THEN clause.' In either case, the 
next sequential statement is executed. If the ex­
pression tested is not true, control continues 
through the logical flow of execution. If the ex­
pression is true, the THEN clause is executed, and 
execution continues with the logical flow. Al­
though the ELSE clause if sometimes omitted, as 
in this case, the THEN clause must appear in 
every IF statement. The statement in the THEN 
clause may be any statement and the statement in 
the ELSE clause may be any statement. For 
example: 

(statement) <-----HlEN---- --I 
IF I 

I 
-----ELSEIF---l I 

(Ilitcxprcssion) I I 

I I 
(statcmcnt) I I <----THEN-) I : 

~ _J 
I I 
1 -----ELSE-- I 

I (statement) I L ____________ .J 
IF (A=B) THEN (=0; 

ELSE IF (A GT B) THENC;+I :J-:LSE C=-I; 

8-1 
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In this example, C is assigned the value 0 if A is 
equal to R; otherwise, if A is grclttcr than B, C is 
assigned the value + I: otherwise (if A is less 
than B), C is assigned the value -I. The program­
mer may, of course, include further complexities 
as required. It should be noted that BEGIN and 
DO blocks (described earlier in chapter 7) qualify 
as statements and may appear in THEN and 
ELSE clauses. 

8-2. NULL Statement 

The NULL statement, as its naine implies, is an 
empty statement: the only portion of a statement 
that appears is the terminating semicolon. Such a 
statement gives no direction to the computer; it 
may appear anywhere any other statement may 
appear, and is most often used in an IF statement 
in the THEN clause, or where the ELSE clause is 
specified and no action for the THEN clause is 
desired. 

8-3. DO Statement 

The DO statement is used to define and specify 
control for a block of statements to be used in a 
loop. Looping consists of a series of statements 
executed and repeated one or more times . before 
control continues to the statement following the 
block. Every DO statement must have an associ­
ated END statement to define the end of the DO 
block. 

a. The DO statement itself consists of the DO 
particle followed by the DO quantity identifier 
and an = sign. The initial value of the DO 
quantity appears next, followed by the BY clause 
and the TO clause. The initial value of the DO 
quantity and the numeric specifications in the BY 
clause and TO clause may be signed literals or 
any other short numeric expressions. The TO 
clause may be omitted; however, ifit is, execution 
could continue indefinitely. Consider the follow­
ing example: 

DO COUNTER== I 
BY 1 TO 10; 

statement-I; 

statement-2; 

statement-3; 

END; 

statement-4; 

Statements 1, 2 and 3 constitute the DO block 
and are delimited by DO and END. The DO 
statement specifies that these statements are to be 
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executed, as a block. ten tinlCS before control is 
tntllsfcrrcd In slulclllcnl-4. The 4UUlllity ('Ol' N 
'fER is used to control thc number of timcs thc 
block is executed. When the DO statement is 
executed for the first time, COUNTER is assigned 
the value 1. Statements 1 , 2 and 3 are then 
executed. When the END statement is reached, 
COUNTER is incremented by one, and control is 
transferred back to the beginning of the block 
where COUNTER is tested to see that it is no 
larger than 10. This looping continues until the 
value of COUNTER exceeds 10, at which point 
control passes on to statement-4. The above ex­
ample is equivalent to the following: 

LOOP: 

NEXT: 

BEGIN; 

DCLCOUNTER BIN 
FIXED (15); 

COUNTER== 1; 

IF (COUNTER GT 10) 
THEN GO TO NEXT; 

statenlent-I 

statement-2 

statement-3 

COUNTER = 
COUNTER + 1; 
GOTOLOOP; 

END; 

statement-4 

An increment other than 1 can be stipulated. For 
example: 

DO COUNTER == I BY 2 
TO 10; 

This DO statement causes the initial value of 
COUNTER to be set to one. Each time the DO 
statement is executed, the value is incremented by 
two. Thus, the statements of the DO block would 
be executed five times, the final time with 
COUNTER equal to 9. 

h. The maximum value allowed for the DO 
quantity (COUNTER) in any DO statement is 
32,767. The DO quantity may also be used in an 
expression within the DO block. For example, the 
following DO block could be used to compute the 
sum (in cubic inches) of the volumes of each of a 
series of circular ponds. Assume that every pond 

. is 12 inches deep and that the diameters range 
from 18 inches to 10 feet, using six inch incre­
ments from size to size. 



VOL = O;PI = 
2.1415926; 

DO I = 9 BY 3 TO 60; 

DO I = 9 BY 3 TO 60; 

VOL = VOL + 12** 
(PI * I * * 2); 

END; 

The initial value assigned to I is nine, which 
represents the radius of the smallest pond. Each 
increment of three makes I equal to the radius of 
the next larger size. The volume is computed for 
each size, and the result is summed in the quan­
tity VOL. 

c. The DO statement may be written without 
the TO phrase. In this case, looping will continue 
until some GOTO statement within the loop 
transfers control out of the loop. For example: 

. VOL = O;PI = 
3.1415926; 

DO I = 9 BY 3; 

IF(QI GT 60) 
THEN GOTO X; 

VOL = VOL + 12 + 
(PI * I * * 2); 

END; 

x: ~ statement; 

d. The DO statement may also be written 
without both the BY and TO phrases. In this case, 
the loop will be executed just once. An example 
of using short numeric expressions to define initial 
incremental and final values for the DO variable 
is: 

DO I = (A+B/C) BY 
(A+ I) 

TO (A*B*C); 

e. Care must be taken in the use of control 
expressions so that the final value is exceeded (or 
surpassed) from the initial value by successive 
increments (or decrements). The expressions are 
evaluated only once at the initial entry to the DO 
block. The value of I may not be changed by 
statements written within the DO loop. There is a 
method of loop control which allows looping to 
continue as long as a certain condition exists. This 
method involves the WHILE clause as follows: 

DO 1= I BY I WHILE (A 
LTB); 

USACSCS-T F-4-1 

The values of A and B are compared each time 
control reaches the DO statement. The computer 
continues executing the statements in the DO 
block until the value of A becomes equal to or 
greater than the value of A or B. Only bil expres­
sions arc allowed in the WHILE dause. In midi­
lion, care must be taken to insure that the condi­
tions of the WHILE clause arc reasonably attain­
able or the loops will be unending. It is advisable 
to never use the WHILE clause without a specific 
counter (TO clause) also defined for the loop. The 
counter ensures against excessive execution in case 
the WHILE condition proves to be. unattainable. 
Note also that while any expressions in the TO or 
BY clause are evaluated only once on entry to the 
DO block, the comparison indicated in the 
WHILE clause is made each time the block is 
executed. Combining the preceding features there 
is the following form of DO statement: 

DO 1= I BY I TO 10 WHILE (A LT B); 

This control expression causes repeated execution 
of the group either until the tenth execution is 
completed or un:til A no longer is less than B. As 
soon as either condition is satisfied, execution 
ceases, no matter what the status of the other. 
DO blocks may be nested. Consider this example: 

DO 1= 1 BY I TO 10; 

statement-I 

statement-2 

statement-3 

DO J = 1 BY 1 TO 10; 

statement-IA 

statement-2A 

statement-3A 

END; 

statement-4 

statement-5 

statement~6 

END; 

f The statements of the outer DO block (the 
other DO through END and statements I through 
6) are executed ten times. The statements of the 
inner DO block (the inner DO through END and 
statements la through 3a are executed 100 times 
ten times for each execution of the outer DO 
group. When the first DO statement is executed 
the first time, counter I is assigned the value l. 
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Then statements I through 3 are executed. When 
control reaches the second DO statement, counter 
J is assigned the value I, and the inner loop is 
executed until the value of J exceeds 10. Control 
then passes on to the first DO statement. The 
counter I is incremented by I, and execution 
proceeds through statements I through 3. When 
the second DO statement is reached for the sec­
ond time, J is reset to I, and the inner DO block 
again is executed ten times before control passes 
to statement 4 for its second execution. The 
process is repeated until the outer DO block has 
been executed ten times. The inner DO block 

8-4 

goes through its entire looping process immedi­
ately following each execution of statement 3. 
The example shows nesting only to the second 
level. Whatever the number of nested blocks, 
each contained block will be executed to comple­
tion for every single execution of its containing 
block. Control may not be passed to a statement 
within a DO block from outside of the DO block. 
Control may, however, be transferred out of a 
DO loop terminating execution of the DO block. 
For example, a GOTO statement might appear 
within a THEN or ELSE clause of an IF state­
ment in the loop. 
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CHAPTER 9 

PROCEDURES 

Section I. INTRODUCTION 

9-1. General 

A program is a procedure that is not contained 
in any other procedure. A program consists of this 
single procedure block and possibly several nested 
procedure blocks. At execution time, the program 
is invoked automatically. During execution of the 
program, control can go from one procedure to 
another and return. 

9-2. Proper Procedures 

There are several different types of procedures. 
Proper procedures are procedures which are in­
voked by a CALL statement. Function procedures 
are invoked in an assignment statement (see 
Chapter 5). Function procedures have a RE­
TURN statement and the name of a function 
procedure may be used to make the value in the 
expression in the RETURN statement available 
to the assignment statement which invokes the 
function procedure. Proper procedures do not 
have this capability and do not have RETURN 
statements. Explicit procedures are procedures 
(proper or function) which are coded by the user, 
whereas intrinsic procedures are available to all 
programs through the TACPOL compiler. This 
chapter discusses proper procedures but the con­
cepts presented here for proper procedures also 
hold true for the other types of procedures. A 
proper procedure is headed by a PROC (proce­
dure) statement and ended by an END statement, 
as follows (the dots represent the statement in the 
procedure. 

EASTER: PROC; 

END; 

Each procedure must have a name such as EAS­
TER in the example. (The format for definition 

of a procedure name NAME: should not be con­
fused with the similar format for definition of 
point names.) Control does not pass automatically 
from one procedure to the next. Each procedure. 
except the first, must be invoked, or called sepa­
rately from some other procedure. This usually 
occurs with the execution of a CALL statement. 
for example: 

CALL EASTER; 

Execution of this statement in another procedure 
would transfer control to the first executable 
statement of the procedure named EASTER. The 
different procedures contained within a program 
may be entirely separate from one another. or 
some may be nested. Consider the example: 

WHOLE: PROC; Box format: 

FIRST: PROC; WHOLE: 

CALL UPDATE; 
statement·l 

statement·2 

statement·3 

statement4 

statement·5 

statement-6 

END1*FIRST*/ 
UPDATE: PROC; 

statement·a 

statement·b 

statement-c 

END 1 *UPDATE */ 
CALL FIRST; 
ENDJ*WHOLE*/ 

PROC; 
FIRST: 

UPDATE 

END; 

PROC; 

END· 
PROC; 

END; 

WHOLE is a program which contains the two 
procedure blocks. FIRST and UPDATE. Follow­
ing the rules of scope, the name WHOLE is 
known throughout the program. The procedure 
names, FIRST and UPDATE, are known 
throughout their procedures as well as known to 
each other. 

9·' 
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a. CA LL Statement. The CALL statement de­
fines: 

( I) the point of invocation, which is the 
CALL statement itself; 

(2) the invoking procedure, within which the 
CALL statement is contained, and 

(3) the invoked procedure, which is the pro­
cedure referred to in the CALL statement. 

Thus, in the example, the point ov" invocation .of 
FIRST is the statement CALL FIRST: , the m­
voking procedure is WHOLE and t~e invoked 
procedure is FIRST. Any procedure mvoked by 
WHOLE might in turn invoke other procedures. 
For example, procedure FIRST invokes procedure 
UPDATE in the example. But control eventually 
returns to the statement in the invoking procedure 
WHOLE that immediately follows the point of 
invocation; in this case the END statement for 
the procedure WHOLE. More than one proce~ure 
may be contained within a single procedure either 
as separate procedures or as nes~ed procedures. 
(See diagram on next page.) Consider proced.ures 
PROCIA, PROCIAX, and PROClB all contamed 
in PROCI. PROCIAX is contained in PROCIA. 
In this situation PROC I can invoke either 
PROCIA or PROClB; PROCIAor PROClB can 
invoke one another but only PROCIA can invoke 
PROCIAX. In addition PROCIAX could invoke 
PROCIB~. ______________________ -, 

PROC I: PROC; 

PROCIA: PROC; 

PROCIAX: PROC; 

END; 

END: 

PROC IB: PROC; 

END: 

END: 

9-2 

b. GOTO Statement. A GOTO statement may 
be used in any block to transfer control to a point 
within the block itself or to a point in any con­
taining block. However a GOTO statement may 
not be used to transfer control to a point in a 
different block on the same level or a separate 
block contained within the block executing the 
GOTO. A GOTO statement in PROCIA may not 
transfer control to a point in PROC I B or in 
PROCIAX. However a GOTO statement in PRO­
C I AX may transfer control to a point in any 
procedure (including itself) except in PROC I B. 
This follows from the rules of scope. Control 
returns to an invoking procedure when the END 
statement of an invoked ptocedureis reached. 
Often there are reasons why a programmer wants 
control to return before the END statement 
would normally be reached. The example below, 
illustrates such a situation where the GOTO state­
ment is used to transfer control to a point preced­
ing the END statement. 

PROGRAM: PROC; 

statement-l 

statement-2 

TEST: IF (DISTANCE =0) THEN GOTO 
STOP; 

statement-3 

statement-4 

GOTOTEST; 

STOP: END; 

The execution of the procedure PROGRAM will 
end when the IF condition is satisfied, which will 
occur when DISTANCE == O. The statement 
GOTO STOP; will then be executed, control 
transferred to the END statement following the 
point name STOP, and control passed through the 
END statement back to the procedure which in­
voked PROGRAM. The END statement must 
physically be the last statement in the procedure. 
A procedure can be terminated only when its 
END statement is executed, or when a GOTO 
statement transfers control toacontaining block. 
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Section II. FUNCTION AND INTRINSIC PROCEDURES 

9·3. Function Procedures 

The proper procedure, as discussed in the previ­
ous section, is invoked by a CALL statement, and 
terminated by an END statement. A function 
procedure, on the other hand, is invoked by the 
appearance of its name in an expression. In addi­
tion the value of the function is made available to 
the invoking expression through the function 
name of the function procedure itself by the 
RETURN statement. The proper procedure does 
not have a RETURN statement and the name of 
a proper procedure may not be used as a quantity 
for data. The function is terminated by the END 
statement. An example of a function procedure is: 

A: PROC BIN FIXED (15, 0); 

RETURN 6 + 3); 

END; 

Z = A + 13; 

A is the name of the function procedure as well 
as being the quantity through which the returned 
value of the function will be made available to 
the expression in the assignment statement which 
invoked the function. BIN FIXED (15,0) is the 

type specification of A. When the function A is 
invoked by the expression in the assignment statc­
ment, the value (9) of the exprcssion which ap­
pears in the RETU RN s~atc~cnt will ~c madc 
available to the expressIOn 10 the assignment 
statement by means of the function name A. This 
value (9) will then be added to 13, and assigned 
to Z. 

9·4. Intrinsic Pfocedures 

ExpliCit procedures are procedures (proper or 
function) which are written by the programmer 
who intends to use them. An intrinsic procedure, 
however, is a proper or function procedure which 
is available to all programs through the TACP9L 
compiler. Intrinsic procedures may be invoked by 
a CALL statement or by an expression. For 
example, 

A = SIN(X) + .5; 

SIN is a short numeric intrinsic procedure (see 
Appendix I). This assignment statement invokes 
the intrinsic procedure SIN. SIN computes ~he 
trigonometric sine of the value of the expressIOn 
X. The result will then be passed back, added to 
.5, and assigned to the quantity A. The intrinsic 
procedures available. to the TAC:POL us.er are 
presented in Appendix A along With a brIef de­
scription of the purpose of each. 

9·3/(9-4 blanJd 
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CHAPTER 10 

NAMES 

10-1. General 

All names must be declared. Specifically, data 
names are declared in data declarations: 

DCL A BIN FIXED (7,2); 

Procedure names are declared by their appear­
ance in procedure declarations: 

A: PROC; 

Point names are declared by their appearance 
preceding statements in the text: 

A: statement; 

10-2. In data declarations common attributes can 
be specified for more than one name by enclosing 
the names in parentheses and specifying the com­
mon attributes following the closing parentheses. 
When more than one name is used in this manner 
in a scalar declaration, the group of names is 
referred to as an identifier list. For example: 

DCL (A,B) BIN FIXED (15,0); 

The BIN FIXED (15,0) attributes are specified 
for the identifier list containing A and B. Identi-­
fier lists cannot be used in value declarations, and 
may only be used in scalar declarations. 

a. When a single procedure that has no con­
tained blocks, an identifier cannot be declared 
more than one time. However, the same identifier 
can be declared more than once in separate 
blocks. This redefining process is known as redec­
laration .. As previously discussed, a name is 
known through the procedure in which it is de-

clared and throughout all the contained proce­
dures where the same identifier is not redeclared. 
When a name is redeclared the scope directed by 
its original declaration is discontinued and a new 
scope is set up by the redeclaration. The new 
scope is effective throughout the procedure in 
which the name is redeclared and throughout all 
contained procedures (in which it is not again 
redeclared). Care should be taken not to inadver­
tently redeclare names of intrinsic procedures, file 
names or other Compool data (see Chapter 14). 
For example, if MOVE (an intrinsic structure 
procedure, see Appendix A) were used uninten­
tionally as a point name, MOVE would no longer 
be accessible as an intrinsic procedure in that 
block or in any blocks contained within that 
block. Note the example on the following page. 
Examine the example below, which consists of a 
program FIRST, containing the single procedure 
SECOND, and the related chart below. 

1 FIRST: PROC; 
2 DCL (M,N) BIN FIXED (15,0); 
3 DCL ALPHA BIN FIXED (6,2); 
4 SECOND: PROC; 
5 DCL M CHAR (5); 
6 DCL TITLE CHAR (8) 

7 
8 
9 

10 

END; 
CALL SECOND; 
A= 3; 

END 

10-1 
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b. The chart below defines the use and scope 
of each name that appears in the previous exam­
ple. 

LINE 
NUMBER NAME USE SCOPE 

I FIRST procedure entire program 
name 

2 M short FIRST, but not 
numeric SECOND because 
quantity M is redeclared 

in SECOND 

2 N short all of FIRST 
numeric 
quantity 

3 ALPHA short aU of FIRST 
numeric 
quantity 

10-2 

LINE 
NUMBER NAME USE SCOPE 

4 SECOND procedure all of FIRST 
name 

5 M character SECOND 
string 
quantity 

6 TITLE character SECOND 
string 
quantity 

9 A short assumed declared 
numeric in COMPOOL; 
quantity hence all of 

FIRST and any 
other programs 
in which it is not 
redeclared. 
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CHAPTER 11 

ARGUMENTS AND PARAMETERS 

11-1. Introduction 

It is often desirable to provide values or quanti­
ties to a procedure. when the procedure is in­
voked. This is accomplished by the use of argu­
ments and parameters. Arguments and parame­
ters are the tools used to establish communiation 
between the invoking statement and the invoked 
procedure. The parameter is a name used in the 
invoked procedure to represent an argument. The 
argument is a name or expression provided to the 
parameter by an invoking statement. The point of 
invocation is a CALL statement in the case of 
proper procedures, or an expression in the case of 
function procedures. 

a. Correspondence is established between the 
arguments and parameters as follows: The argu­
ment list appearing in the invoking statement or 
expression must have the same number of argu­
ments as there are identifiers in the parameter list 
of the invoked procedure. Communication is ob­
tained by the exact correspondence of the mem­
bers of these two lists, as the members are paired 
in order. 

b. Each identifier in the parameter list must be 
defined in a parameter declaration. Parameter 
declarations must appear immediately after the 
procedure declaration. There are four types of 
parameters and corresponding arguments; quan­
tity, value, procedure, and point. 

11-2. Quantity Arguments and Parameters 

For each quantity parameter there must be a 
declaration defining its attributes following the 
procedure head. The quantity parameter declara­
tion may be any legal,pata declaration (except a 
value declaration), such as: 

DCL QPARAM BIN FIXED (15, 1); 

QPARAM is the identifier of the quantity param­
eter. It is understood that the set of quantities 
thereby defined will not have an identity of its 
own, but will assume the identity of the set of 
quantities designated by the corresponding argu­
ment, established at the point of invocation. In 
other words, a quantity argument denotes the 
location of data in storage. It is this data which is 

provided to the quantity rarameter. COJlsider the 
following example: 

EXAMPLE: PROC: 

DCL X(lO, 10) BIN FIXED; 

CALL DIAG (X); 
/*X(L 1). XC:~, 2), ... X( 10,10) 
= 1 */ 

END; /*EXAMPLE*/ 

DIAG: PROC (A); 
DCL A (10. 10) BIN FIXED; 
DO I = BY 1 TO 10; 

A(I, l) = I; 
END;/*DIAG*/ 

Within the containing procedure EXAMPLE. the 
CALL statements invoke DIAG, a procedure 
which sets all diagonal elements of the parameter 
array A to I. The quantity A in the procedure 
DIAG is contained in the parameter list of the 
procedure DIAG. The quantity X is contained in 
the argument list of the first CALL statement 
which invokes the procedure DIAG. When the 
CALL statement invokes the procedure DIAG. 
the test dimensional array X (defined in the in­
voking procedure EXAMPLE) will be made avail­
able to the procedure DIAG through the 
parameter A. 

11-3. Value Arguments And Parameters 

For each value parameter there must be a 
declaration defining its attributes following the 
procedure head. The value parameter declaration 
consists of only simple scalar definitions in the 
following format: 

DCL VPARAM BIN FIXED (15, 1) VALUE; 

VPARAM is the identifier of the value parameter. 
The parameter attributes must correspond to the 
attributes of the argument by type (BIN FIXED) 
but not necessarily by size or scale (15, I). As 
previously discussed, a quantity parameter re­
quires that the information at the location ad­
dressed by the corresponding argument by used. 
In contrast, a value parameter declaration re­
quires thtat the value of the corresponding argu-

11·1 
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ment (some expression) be used. The effect of this 
is that any changes to a quantity parameter in the 
invoked procedure will also affect the quantity in 
the invoking procedure. However the value pa­
rameter specifies that a 'snapshop' of the value of 
the quantity is to be taken when the procedure is 
invoked. Therefore any changes to a value pa­
rameter in the invoked procedure do not affect 
the value in the invoking procedure. In summary 
the value parameter causes the specified quantity 
to be redefined and the quantity parameter causes 
the current definition to be used in the invoked 
procedure. Consider the following example: 

EXAMPLE: 

PROC; 
DCL A BIN FIXED (15.7); 
SIGN: PROC (X) BIN FIXED (31,0); 

DeL X BIN FIXED (31 , 0) VALUE; 

IF (X GT 0) THEN X= +1; 
ELSE IF (X LT 0) THEN X =.1; 
/* Note that setting X does not change the 
value of the * / 
/* argument in the invoking procedure */ 

RETURN (X); 
END; /*SIGN*/ 

A=48,25; 
A = SIGN(A);/*first invocation. where A = SIGN(48.25) 

=·1 */ 
A= 48.25; 
A = SIGN(2*A+3.5);/*second invocation, where */ 

/* A = SIGN (2*48.25+3.5) */ 
/* = SIGN (100) */ 
/* =+1 */ 

A = 48.25; 
A = SIGN(·2*SIGN(A); 

/*third invocation, where A= SIGN(·2*SIGN(48.25» */ 
/* = SIGN(·2* -I) */ 
/* = SIGN(+2) */ 

/* = I */ 
END;I*EXAMPLE*/ 

Within the containing procedure EXAMPLE, ex­
pressions in various assignment statements invoke 
SIGN, a procedure which determines the sign of . 
the value of its argument. During the first invoca­
tion of SIGN, the value of the expression -48.25 
(where A = -48.25) is passed and assigned to X 
in the SIGN procedure. In this case, X is less than 
o and so is assigned -I. Therefore, as stated in the 
procedure comment, the SIGN of the expression 
is -1. During the second invocation of SIGN, the 
value of the more complex expression, 2* A + 3.5 
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(where A = 48.25) is passed and assigned to X in 
SIGN. X is equal to 100, is greater than 0, and 
thus is assigned + 1. Therefore, the SIGN of the 
expression, 2 * A + 3.5 , is + l. During the final 
invocation of SIGN, the value of an even more 
complex expression, -2*SIGN(A) (where A = 
-48.25) is passed and assigned to X in SIGN. In 
this more intricate case, the inner-most portion of 
the expression, SIGN(A), is evaluated. The result 
of this evaluation is -1. Then the SIGN of the 
entire expression, -2*(-1), is evaluated and the 
result is + 1. 

11-4. Procedure Arguments And 
Parameters 

For each procedure parameter there must be a 
declaration defining its attributes, following the 
procedure head. The procedure parameter decla­
ration has the following format: 

DCL PPARAM ENTRY; 

PPARAM is the identifier of the procedure pa­
rameter. The procedure parameter may only des­
ignate an argument that refers to a parameterless 
procedure name, defined within the program. 
Consider the following example: 

EXAMPLE: PROC; 
DCL (A, B, C) BIN FIXED; 

ADD: PROC; 
C=A+B; 
END; /* ADD*/ 

SUB: PROC; 
C=A-B; 
END; / *SUB*/ 

COMPUTE: PROC(ARITH); 
DCL ARITH ENTRY; 

B=A; 

CALLARITH; 
END; /*COMPUTE*/ 

A=5; 
CALL COMPUTE (ADD); 
/*C=A+B=A+A 

=5+5=10 */ 

CALL COMPUTE (SUB); 
/*C=A-B=A-A 

=5-5=0 */ 
END; /*EXAMPLE*/ 



Within the containing procedure EXAMPLE, the 
CALL statements invoke COMPUTE, which in 
turn invokes the procedure ARITH. ADD and 
SUB are the procedure arguments provided to the 
procedure parameter ARITH at invo~ation. The 
quantity A is initially assigned 5. Durmg the first 
invocation of COMPUTE, the parameter ARITH 
is replaced by the address of a~gument ADD. 
Thus in effect, CALL ARITH mvoked ADD, 
where A+ B is computed and assigned to C (see 
first comment). Control passes out of ADD. and 
then out of COMPUTE to the nextstatement~ 

. During the second invocation, the .parame~et 
ARITH is replaced . by the address. of arg1.lm~l\~ 
SUB. In this case, CALL ARITH mvokes. SUB, 
where A-B is computed and assigned to C. 

11-5. Point Arguments And Parameters 

For each point parameter there mu.st be a dec­
laration defining its attributes, followmg t~e pro­
cedure head. The point parameter declaratIOn has 
the following format: 

DCL PNPARAM LABEL; 

PNPARAM is the identifier of the point parame­
ter. The point parameter may only designate an 
argument that refers to a point name. Consider 
the following example: 

EXAMPLE: PROC; 
DCL A BIN FIXED; 
A = -5; 
CALL TEST (A, Ll, L3, L2); 

Ll: A = A * 0; 
CALL TEST (A, L3, L2, Ll); 

l2: CAll TEST (A + 1, l2, Ll, l3); 
l3·: END; /*EXAMPlE*/ 
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TEST: PROC (X. JLT, JEO. JeT); 
. DCl X BIN FIXED VALUE; 
DCl (JlT, JEO. J(;T) lABEL; 
IF (X LTO) THEN GOTO JLT; 
ELSE IF (X GT 0) THEN 
GOTO JeT; 
ELSE GOTO JEO; 
END; /*TEST*/ 

Within the procedure EXAMPLE, the CALL 
statements invoke TEST, a procedure which tests 
:a value as to whether it is less than, greater than, 
or equal toO: X is a value parameter which 
receives. thevaliJeofits corresponding argument 
expressiQn.)LT,'JEQ, JGT are the point parame­
ters which'represent the point arguments L I, L2, 
and L3. During the first invocation of TEST, the 
value of the expression A (equal to -5) is passed 
and assigned to X. The addresses of the points 
L I, L3 and L2 are provided to JL T, JEQ and 
JGT respectively. Since X is equal to -5, the 
statement, GOTO JL T, passes control through 
JL T to its corresponding argument, point name 
L 1. During the second invocation of TEST, the 
value of the expression A (now equal to 0) is 
passed and assigned to X. The address of the 
points L3, L2, and L I are provided to JL T, JEQ 
and JGT respectively. Since X is now 0, the 
statement GOTO JEQ, passes control through 
JEQ to its corresponding argument, point name 
L2. During the final invocation of TEST, the 
value of the expression A + 1 (now equal + 1) is 
passed and assigned to X. The address of the 
points L2, Ll, and L3 are provided to JL T, JEQ 
and JGT respectively. Since X is now equal to I, 
the statement GOTO JGT, passes control through 
JGT to its corresponding argument, point name 
L3. Here the program EXAMPLE terminates. 

11-3/{11-4 blanJd 
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CHAPTER 12 

CONDITION DECLARATION 

12·1. Condition 

. The condition declaration is available to the 
TACPOL user as a debugging aid. It specifies 
whether or not a snap procedure is to be called 
whenever a particular condition arises during exe­
cution of the block in which the declaration is 
contained. A snap procedure is a trace of the 
block in which the condition was detected. 

a. The condition declaration is specified by the 
particular CHECK or IGNORE. The CHECK 
particle specifies that the snap procedure is to be 
invoked. The IGNORE particle specifies that the 
snap procedure is not to be invoked. The IG­
NORE particle is used to negate a condition 
which is invoked by the CHECK particle. The 
conditions which can be checked by a condition 
declaration are ZERO divide (ZDIV), fixed over­
flow (FOFL) and the USAGE particle which en­
compasses the checking of many conditions. 

EXAMPLE: CHECK ZDIV; 

b. Should a ZERO divide occur within the 
block in which the above condition declaration 
appears, a snap procedure is invoked. 

EXAMPLE: IGNORE ZDIV; 

c. Should a ZERO divide occur within the 
block in which the above condition declaration 
appears, a snap procedure is not invoked. The 
same coding techniques apply to FOFL. 

12·2. USAGE 
The USAGE particle requires a check name list. 

The list contains the names of quantities, proce­
dures or points (in any kind of mixture) which 
have been defined within the program. A snap 
procedure is invoked whenever any of the follow­
ing operations is performed: 

a. A value is assigned by means of an assign­
ment statement to a quantity identified by a 
simple, group or table scalar or array name con­
tained in the associated name list. 

b. A proper procedure is invoked by means of 
a CALL statement, where the proper procedure 
name is contained in the associated name list. 

c. A function procedure is invoked by means 
of an expression evaluation, where the function 
procedure name is contained in the associated 
name list. 

d. The sequence of execution is changed by 
means of a GOTO statement to a point identified 
by a point na~e contained in the associated name 
list. 

EXAMPLE: CHECK USAGE (TTY, 
BNT, 
APO, SICC); 

If any of the names in the list are accessed or 
changed as specified by the rules of the USAGE 
particle, then the snap procedure would be in­
voked. The snap procedure can be cancelled for 
one or more names in the list by a subsequent 
IGNORE declaration. 

EXAMPLE: IGNORE USAGE (BNT, 
SICC); 
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CHAPTER 13 

INPUT /OUTPUT 

Section I. FUNCTION OF INPUT IOUTPUT 

13-1. General 

The basic function of input and output is data 
transmission: getting the data to be processed and 
returning the results of the processing. A pro­
grammer normally need write only the operation 
(e.g., READ, WRITE), the file name (see below), 
and a data name, that specifies where the data is 
to be stored or where the data to be written can 
be found. 

13-2. Files 
Data on an external medium is collected in a 

file. Files are defined by file declarations in the 
Compoo!. A file name can be declared in a pro­
gram as a temporary device to avoid syntax er­
rors. See Chapter 14 for actual syntax. A file 
name is declared for each file, and the file name 
is given file attributes that describe the data in 
the file and the manner in which it will be han­
dled. 

a. A file consists of one or more records, where 
a record is a set of quantities accessed in a single 
input/output operation. Files of quantities consist 
of storage allocated external to the primary mem­
ory of the computer. A file is either a partitioned 

. file or a nonpartitioned file. A partitioned file 
consists of one or more partitions, each of which 
is a set of records within the file that may be 
accessed independently of records in other parti­
tions of that file, as though they constituted a 
separate file. A partition of a file is accessed by 
means of a character string key, which specifies 
the partition currently to be accessed. Each parti­
tion within a file must have an unique key. Non­
partitioned files consist of no partitions and can­
not be accessed by partition keys. The term parti­
tion can be substituted for file in the following 
text. 

b. Two types of files are available in TACPOL. 
They are the serial file and the direct file. 

( I) A serial file consists of records organized 
on the basis of their successive physical locations 
within the file. The records appear sequentially 
within the space allocated for the file and they 
are read or written sequentially. Serial files can 
exist on either a sequential or direct access storage 
device. 

(2) A direct file contains records organized 
on the basis of a character string value (a 'key') 
associated with each record. This value has a limit 
of eight characters and is stored with the record. 
Records can be accessed directly by this value 
without regard to .the actual position of the file. 
Direct files can exist only on a direct storage 
device. 

c. A file may be accessed in one of three 
modes at any given time: INPUT, OUTPUT, or 
UPDATE. A file accessed for INPUT must be an 
existing file which is to be read but not written. A 
file accessed for OUTPUT must be a file which is 
to be written but not read. A file accessed for 
UPDATE must be a direct file and may be read 
or written. A file processing operation may trans­
mit values to or from a file either before continu­
ing execution of the program requesting such 
transmissions. or concurrently with the continued 
execution of the program. Normally the values 
will be transmitted before continuing execution of 
the program. However, by specification of a RE­
TURN attribute for certain operations, the trans­
mission occurs concurrently. If the transmission 
occurs concurrently, values involved in the trans­
mission cannot be accessed by the program until 
the transmission is completed. A concurrent trans­
mission is certain to be completed only at the 
point at which a 'wait' operation is executed for 
the file. For a transmission which is to be com­
pleted before continued execution of the program 
(RETURN attribute not specified), a 'wait' opera­
tion is understood to be executed immediately 
following the operation requesting the transmis­
sion. 

13-1 
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Section II. INPUT/OUTPUT PROCESSING STATEMENTS 

13-3. Processing Statements 

The following file processing statements com­
prise the input/output operations in TACPOL. 

13-4. OPEN Statements 

OPEN statements are used to connect files to 
user programs so that file is available for process­
ing. No data transfers take place as a result of 
this statement but the necessary linkage between 
the file and the user program is established. An 
OPEN statement consists of the following parts, 
some of which are optional in use; 

a. OPEN. The particle which identifies an 
OPEN statement. 

b. File Designation. The name of the file which 
is to be opened, mandatory. 

c. Mode. Input, Output or Update, mandatory. 

d. Origination. Either not used which specifies 
a new file or OLD which specifies the file has 
been previously created. 

e. Disposition. Either KEEP which specifies 
that the file is to be kept after it is closed or, 
PASS which specifies that the file is to be kept 
and is to remain immediately available after be­
ing closed. If either of these two particles are not 
used (the particle being omitted from the state­
ment) then the file is not kept after it is closed. 

(l) In the example below, file SERIN is 
opened for input, it is an already existing file 
(required for the input mode) and it will be kept 
after the file is closed. 

EXAMPLE: OPEN SERIN INPUT 
OLD KEEP; 

(2) In the example below, file DIRIN is 
opened for output, it is a new file (the particle 
OLD is absent from the statement) and the file 
will not be kept after the file is closed (the parti­
cles KEEP or PASS are absent from the state­
ment. Only one file may be opened per OPEN 
statement. If several files are to be opened for 
program use each file requires a separate OPEN 
statement. 

EXAMPLE: OPEN DIRIN OUTPUT; 

13-5. CLOSE Statements 

A CLOSE statement serves to disconnect a file 
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from a user program making that file unavailable 
for processing. No operation can be performed on 
a closed file except to open it. The CLOSE state­
ment consists of the particle CLOSE followed by 
the file designation (name). 

EXAMPLE: CLOSE XYZ; 

Only one file can be closed by a CLOSE state­
ment. To close more than one file successive 
CLOSE statements 'rilUst be used. 

13-6. READ Statements 

READ statements transmit values of a record 
in a designated file to a designated set of quanti­
ties. If the file is a serial file, it is repositioned 
after transmission so the next record to be ac­
cessed is the next record in the file. If the file is a 
direct file, the value yielded by the character 
string expression is the value of the key of the 
record to be read. Only files which have been 
opened for input or update can be read. The 
READ statement consists of the following parts, 
some of which are optional in use: 

a. READ. Specifies the statement is a READ 
statement. 

b. File Designation. The name of the file that 
is to be read. 

c. Key Option. A character string expression 
which specifies the record to be read. The key 
option is used for direct files only. 

d. INTO. A statement particle which is always 
present. 

e. Quantity Designation. Specifies the quantity 
in memory into which the data will be transmit­
ted. 

f Return Option. If the RETURN option is 
present it specifies concurrent operations. If the 
RETURN option is absent, noncurrent transmis­
sion is specified. 

(I) In the example below serial file DESTIN 
is read (the key option is absent which specifies a 
direct file) into quantity TABI. The RETURN 
option is specified for concurrent operations. 

EXAMPLE: READ DESTIN INTO 
TABI RETURN; 



(2) The. example below illustrates a read 
function for a direct file. Record ABC of file 
STREAM is read into quantity CELL. Noncon­
current operation is specified by the absence of 
the RETURN option. For direct files the particle 
KEY must immediately precede the character 
string expression which denotes the record to be 
read. The example shows the character string 
expression in literal character format. Any expres­
sion may be used which yields a character string 
value for the record key. 

EXAMPLE: READ STREAM KEY 
'ABC' INTO CELL; 

13-7. WRITE Statements 

WRITE statements transmit values from a des­
ignated set of quantities to a new record added to 
the designated file. If the designated file is a serial 
file, it is repositioned after the transmission so 
that the next record to be accessed is the next 
record to be accessed. If the designated file is a 
direct file, the value yielded by the character 
string expression is the value of the key of the 
record to be written. Only files opened for output 
or update can be written. The WRITE statement 
consists of the following parts, some of which are 
optional in use: 

a. WRITE. Specifies the statement is a 
WRITE statement. 

h. File Designation. The name of the file that 
is to be written. 

c. Key Option. A character string expression 
which specifies the record to be written. The key 
option is used for direct files only. 

d. FROM. A statement particle which is pre­
sent in most WRITE statements. 

e. Quantity Designation. Specifies the quantity 
in memory from which the data will be transmit­
ted. 

f Return Option. If present, specifies concur­
rent operations. If not present, specifies noncon­
current operations. 

g. ENDFILE. In a special write statement 
causes the terminal boundary of the file to be 
placed at the current position of the file. To use 
the ENDFILE particle the file must be a serial file 
which has been opened for output only. 

(I) In the example below, the serial file 
ZETA (the key option is absent which specifies a 
direct file) is written into from quantity DELTA. 
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The RETURN option is specified for concurrent 
operations. 

EXAMPLE: WRITE ZETA FROM 
DELTA RETURN; 

(2) The example below illustrates a write 
function for a direct file. Record ZZZ of lik 
GAMMA is written from quantity IOTA. Non­
concurrent operations are specified by the absence 
of the RETURN option. The particle KEY must 
precede the character string expression. Any ex­
pression may be used for the record key which 
yields a character string value. 

EXAMPLE: WRITE GAMMA KEY 
'ZZZ' FROM IOTA; 

(3) The special WRITE statement below 
places the terminal boundary of file LAMDA at 
the current position of the file. 

EXAMPLE: WRITE LAMDA END­
FILE; 

13-8. REWRITE Statements 

REWRITE statements transmit values from a 
designated set of quantities to an already existing 
record in a designated file. Only files which are 
direct files that have been opened for update can 
be used in a REWRITE statement. REWRITE 
statements are coded exactly as WRITE state­
ments are coded for direct files. The ENDFILE 
option is not available. The example below illus­
trates the rewriting of the already existing file 
SAM. Record MAX within the file is rewritten 
from quantity GEORGE. The RETURN option 
specifies concurrent operation. For nonconcurrent 
operation the RETURN option is not specified. 

EXAMPLE: REWRITE SAM KEY 
'MAX' FROM GEORGE 

. RETURN; 

13-9. DELETE Statements 

DELETE statements cause already existing rec­
ords in designated files to be removed from the 
files. The designated files must be direct files that 
have been opened for update. The DELETE 
statement consists of the following parts: 

a. DELETE. Specifies the DELETE statement. 

h. File Designation. The name of the file that 
contains the record to be deleted. 

c. Record Key. The particle KEY followed by a 
character string expression which specifies the 
record to be deleted. 

13-3· 
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The example below illustrates the deletion of 
record KILO from file FOXTROT. No options 
are available for this statement. 

EXAMPLE: DELETE FOXTROT KEY 
'KILO'; . 

13-10. SPACE Statements 

The SPACE statement causes the designated 
file to be repositioned so that the next record to 
be accessed is either one record forward or one 
record backward from the current record position. 
The SPACE statement consists of the following 
parts: 

a. SPACE. Specifies the SPACE statement. 

b. File Designation. Specifies the file that is to 
be spaced. 

c. Direction. If the particle BACK is present 
the designated file is positioned one record back­
ward. If the particle BACK is absent the desig­
nated file is positioned one record forward. 

( I) The example below spaces file ALLREC 
backward one record. 

EXAMPLE: SPACE ALLREC BACK; 

(2) The example below spaces file ALLREC 
forward one record. 

EXAMPLE: SPACE ALLREC; 

(3) If spacing of more than one record for­
ward or backward is desired, it requires the use of 
more than one SPACE statement for the file. 

13-11. REWIND Statements 

The REWIND statement causes the designated 
file to be repositioned to the initial boundary of 
the file. The statement requires the particle RE­
WIND and a file designation. 

EXAMPLE: REWIND EBCDIC; 

13-12. UNWIND Statements 

The UNWIND statement causes the designated 
file to be repositioned to the terminal boundary 
of the file. The statement requires the particle 
UNWIND and a file designation. 

. EXAMPLE: UNWIND ASCII; 

13-13. ON Statements 

ON statements, like IF statements, specify the 
conditional execution of a constituent statement. 
The· conditions to be met to execute the constitu­
ent statement are specified by particles END­
FILE, NOKEY or NOPART. 
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a. ENDFILE. If the particle ENDFILE is 
present, the file is examined to determine whether 
or not an attempt was made to reposition or to 
transmit a record from the file at a point beyond 
a boundary of that file. If the ENDFILE particle 
is used the file to be examined must be a serial 
file which was opened for input. 

b. NOKEY. If the particle NOKEY is present, 
the file is examined to determine whether or not 
an attempt was made to read, .rewrite or delete a 
record in the file when no record with the speci­
fied key exists; or, to write a record with a speci­
fied key which illready exists. If the NOKEY 
particle is used the file to be examined must be a 
direct file. 

c. NOPART. If the particle NOPART is pre­
sent, the file is examined to determine whether or 
not an attempt was made to open an old partition 
in a file when that partition no longer exists. If 
the NOPART particle is used the file must be a 
partitioned file. The ON statement consists of the 
following parts: 

( 1) ON. Specifies the ON statement. 

(2) File Designation. Specifies the file which 
is to be examined. 

(3) File Condition. Specifies ENDFILE, NO­
KEY or NOPART. 

(4) THEN. A particle which precedes the 
simple constituent statement. 

(5) Statement. The statement to be executed 
if the stated condition in the examined file exists 
(GOTO, DO, BEGIN, etc.). 

(6) ELSE. An arbitrarily used particle. If 
present, specifies the execution of an alternative 
statement if the ON condition is not satisfied. 

(7) Statement. The statement to be executed 
if the ELSE alternative is used. 

(a) In the example below, file TANGENT 
is examined for the ENDFILE condition. If the 
condition exists, the statement following the 
THEN particle is executed. If the condition does 
not exist the next statement in sequence is exe­
cuted . 

EXAMPLE: ON TANGENT END­
FILE THEN GOTO 
PART2; 

(b) In the example below, file COSINE is 
examined for the NOKEY condition. If the condi­
tion exists, the statement fpllowing the THEN 



particle is executed. If the condition does not 
exist, the statement following the ELSE particle is 
executed. 

EXAMPLE: ON COSINE NOKEY 
THEN SPACE COSINE; 

ELSE GOTO PART3; 

13-14. WAIT Statements 

AWAIT statement causes a wait operation to 
be performed for the designated file. The contin­
ued execution of the program is delayed until all 
operations requested pertaining to the designated 
file have been completed. The statement requires 
the particle WAIT followed by a file designation. 

EXAMPLE: WAIT GRP; 

13-15. LOAD Statements 

The LOAD statement causes the designated 
program to be made available for execution 
(loaded into memory). If an attempt is made to 
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invoke a program which has not been previously 
loaded into memory, a load operation is per­
formed before the program is executed. The 
statement requires the particle LOAD followed by 
a program name (procedure name). 

EXAMPLE: LOAD JOE; 

13-16. Permissible File Processing 
Operations 

As a summary, table 13-1 on the following 
page lists the permissible file processing opera­
tions in TACPOL. The table is organized by 
origination (NEW or OLD), OPEN mode (IN­
PUT, OUTPUT or UPDATE) and virtual organi­
zation (SERIAL or DIRECT). Missing from the 
list of operations are the WAIT statement and the 
LOAD statement. The WAIT statement is permis­
sible for all files therefore it was not necessary to 
list the operation. The LOAD operation is not 
pertinent to files and is not included. 

Table H-I. Permissible File Processing Operations 

~ 
ti: CI.> -~ is >. .... 
= ~ J;! '" CI.> ~ ~ c. W ;0;:: CI.> CI.> = = = 0 0 

~ CI.> CI.> .... .... (,) .~ .~ W Z Z 
Virtual} :::: :::: ~ ..2 '" '" ... ... 

~ ~ ~ ~ = = = c:: 
~ ~ ~ ::> 0 0 0 

Origination Open Mode Organization 

New Output Serial X X X X 

New Output Direct X X3 

New Update Direct X X X X X4 

Old Input Serial X X X X X2 X6 

Old Input Direct X XS X6 

Old Output Serial X X X X X X6 

\ 
Old Output Direct X X3 X6 

Old Update Direct X X X X X4 X6 

NOTES: l. Direct Files treated as Serial Files are included opposite SERIAL. 

2. Arising from a READ or SPACE. 

3. Arising from a WRITE. 

4. Arising from a READ, WRITE, REWRITE or DELETE. 

5. Arising from a READ. 

6. Arising from a partition OPEN. 

Each permissible operation for a given file is noted by an "X." 
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CHAPTER 14 

COMPOOt AND FILE DECLARATIONS 

14-1. General 

The name Compool (,Communication POOL') 
refers to a collection of names or quantities and 
programs that are commonly used by many dif­
ferent programs in a system. Placing these names 
in a central pool .saves having to redeclare them 
each time that they are used in a new program. 
Procedures, declarations, data declarations, and 
file declarations may be included in the Compoo\. 
However, file declarations may not appear outside 
the Compoo!. 

14-2. TACPOL Interface with the Compool 

A Compool Generator will be used to generate 
the Compool tables to be made available to the 
TACPOL Compiler. Input to the Compool Gener­
ator consists of T ACPOL like declarations and 
the output consists of binary and symbolic data. 
The TACPOL Compiler will refer to the Com pool 
to define quantities and names which are not 
defined in a given program. Therefore the Com­
pool is like a block in which all programs are 
contained. 

14-3. File Declarations 

As has been mentioned in earlier chapters, files, 
with the exception previously noted, can be de­
clared only in the Compoo!. Before a file can be 
used by a program it must have been defined by 
input to the Compool Generator. The format for 
this input is a source language declaration as 
shown on the following page. 

IOCL identifier FILEI I PARTS (partitions) I [file type I 
I 2 3 

I RECORDS (No. of records) record type (No. of words) I 
4 

I LABELLED I 
5 

I BLOCKED (No. of words) I 
6 

IBUFFERED (No. of buffers) I I media I I classification I 
9 7 8 

I AUTH (authorization list and access) I 
10 

a. This part of the declaration (1) specifies the 
file name. 

EXAMPLE: DCL OPTIM FILE 

b. The use of this part of the declaration (2) is 
not mandatory. It is only used if the file being 
declared is to be a partitioned file. The number of 
partitions in the file is specified by anum ber 
enclosed in parentheses. 

EXAMPLE: PARTS (5) 

c. The file type (3) is either SERIAL or DI­
RECT. 

d. The number of records (4) in each file or 
partition is specified by a number enclosed in 
parentheses. The record type is either FIXED, 
VARIABLE or FREE. The maximum number of 
words in a record is specified by a number en­
closed in parentheses. 

EXAMPLE: RECORDS (4) 
FIXED (32) 

The particle LABELLED (5) is not manda­
tory. When used, it specifies the file is to be 
processed with standard header and trailer labels. 

e. The use of this part (6) of the declaration is 
not mandatory. If used it specifies that logical 
records are grouped into physical blocks for ac­
tual 110 processing. The number of words in the 
block must be declared by specifying a num her 
enclosed in parentheses. 

EXAMPLE: BLOCKED (144) 

f The use of this part (7) of the declaration is 
not mandatory. If used it specifies the number of 
buffers to be allocated for I/O processing. The 
number is enclosed in parentheses. 

EXAMPLE: BUFFERED (3) 

g. The media (8) specifies the type of device 
that the file will be allocated to. One of the 
following may appear: TAPE, PRINTER, 
READER, PUNCH, DISPLAY, PLOTTER, 
CONSOLE, DASD, TERMINAL. In the case of 
TAPE, PRINTER and TERMINAL it is possible 
for a system to have more than one of these 
devices. To specify which device in a group is 
desired a number, enclosed in parentheses, fol­
lows the device name. 

EXAMPLE: TERMINAL (3) 
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h. The classifkation (9) information is used to 
control the security of the llIe's contents. One of 
the following four classifications is assigned each 
file: UNCL (unclassified), CONF (confidential), 
SECR (secret), TOPS (top secret). 

i. The authorization (10) specifies the pro­
gram(s) which are authorized to open a file and 
the access which they are allowed. If more than 
one program is granted authorization in the ?ec­
laration, the names of the programs appear 10 a 
list, separated from each other by commas, a~d 
enclosed in parentheses. The access to the file wIll 
be one of the following: INPUT,OUTPUT, up­
DATE. 

EXAMPLE: AUTH (PPP,QQQ) 
OUTPUT; 

( I) An example of a file declaration, not 
using all the options available, is illustrated be­
low: 

EXAMPLE: DCL HIPT FILE 
DIRECT RECORDS 

(10) VARIABLE 
(200) TAPE (2) 
UNCL AUTH TPYO 
INPUT; 

(2) The declaration specifies the nonparti­
tioned direct file HIPT with a maximum of 10 
variable length records, a maximum of 200 words 
per record, which is allocated to tape 2. The file is 
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unclassified and program TPYO has <luthoril'.alioll 
for the file for input. 

14-4. Special Notes On Files and File 
Declarations 

The partitions of a partitioned file are not 
specified by name in the file declaration. The 
names of the partitions are specified in an OPEN 
statement, following the file name and enclosed 
in parentheses, when a partitioned file is opened. 

EXAMPLE: OPEN KKLO ('ABC') 
INPUT OLD KEEP; 

a. A character expression, following the file 
name, indicates a partition of a file in an open 
statement. 

b. Each partition in a file must have an unique 
key. Each partition in a file contains the same 
attributes as the file itself. 

c. Record type can be either FIXED, V ARIA­
BLE or FREE. Even though FREE is accepted as 
a record type in a TACPOL statement, it is cur­
rently not implemented and has no meaning. 
Therefore, FIXED or VARIABLE only should be 
used for record types. 

d. A device type available for file declarations 
is DASD. This stands for Direct Access Storage 
Device and means the drum or RAM (Random 
Access Memory) in the system. If the system has 
no drums for auxiliary storage then DASD should 
not be used. 



APPENDIX A 

INTRINSIC PROCEDURES 

A-l. General 

Certain proper and function procedures arc 
understood to be defined in a text in which all 
TACPOL programs (and any Compool) are em- • 
bedded. These procedures are described under 
seven headings: short 0 numeric procedures, long 
onumerjc procedures, character string procedures, 
bit string procedures, structure procedures, point 
procedures, and conversion procedures. 

A-2. Short Numeric Procedures 

Short numeric procedures are all function pro­
cedures which yield short numeric values. In the 
following trigonometric short numeric procedures 
SIN and COS, X is in units of X and Y coordi­
nates or Binary angular measurement units 
(BAMS) such that one complete revolution about 
360 degrees is equal to one BAM with zero 
BAMS at true north and ±0.5 BAMS at 180 
degrees (negative values to the left of north and 
positive values to the right). The result of the 
ASIN, ACOS and ATAN routines will be in these 
same units. 

SIN (X) 

COS (X) 

ASIN (X) 

This procedure computes 
the sine function of a short 
numeric value. The value 
argument X must be pro­
vided in units of angular 
measurement, such that 
(k X < 1, with any scaling. 
The function SIN (X) will 
then be provided such that 
-I <SIN(X)< + 1, with the 

o scaling of X. 

This procedure computes 0 

the cosine function of a 
short numeric value. The 
value argument X must be 
provided in units of angu­
lar measurement, such that 
s X < 1, with any scaling. 
The function COS (X) will 
then be provided such that 
-1<COS(X)<+ I, with the 
scaling of X. 

This procedure computes 

ACOS (X) 

ATAN (X) 

LN (X) 

LOG (X) 
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thc arcsinl' rlillclillll or ;\ 
short IlUI11C ric value. The 
value argument X must he 
provided such that 
-l<X<+ I, with any scal­
ing. The function ASIN 
(X) will then be provided 
in units of angular mea­
surement, such that 
-0.25sASIN(X)s; +0.25, 
with the scaling of X. 

This procedure computes 
the arccosine function of a 
short numeric value argu­
ment X must be provided 
such that -1 <X< + 1, with 
any scaling. The function 
ACOS (X) will then be 
provided in units of angu­
lar measurement, such that 
(kACOS(X)s;0.5, with the 
scaling of X. 

This procedure computes 
the arctangent of a short 
numeric value. The value 
argument X must be pro­
vided such that _01 <AT AN 
(X)< + I, with any scaling. 
The function ATAN (X) 
will then be provided in 
units of angular measure­
ment, such tnat with' 
-0. 125sATAN(X)s; +0.125, 
the scaling of X. 

This procedure computes 
the natural logarithm of a 
short numeric value. The 
value argument X it:tust be 
provided such that O<X, 
with any scaling. The 
function LN (X) will then 
be provided, with the scal­
ing of X. X must be such 
that 2022 <ILN(X)1 <2+9. 

This procedure computes 
the common logarithm of 
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USACSCS· T F·4-1 

EXP (X) 

SQRT (X) 

REM (X,Y) 

MAX (X, Y) 

a short numeric value. The 
value argument X must be 
provided such that O<X. 
'with any scaling. The 
function LOG (X) will 
then be provided, with the 
scaling of X. X must be 
suchthat 2"22<ILOG(X)12 1-9. 

This procedure computes 
the exponential function of 
a short numeric value. The 
value argument X must be 
provided such that 222 <IXI 
2 +9, with any scaling. The 
function EXP (X) will then 
be provided with the scal­
ing of X. 

This procedure computes 
the square root of a short 
numeric value. The value 
argument X must be pro­
vided such that (kX, with 
any scaling. The function 
SQRT (X) will then be 
provided, with the scaling 
of X. 

This procedure computes 
the remainder of the divi­
sion of two short numeric 
values. 

The value arguments X 
and Y may be provided 
with any scaling. The 
function REM (X, Y) will 
then be provided with 
scaling as follows:* 

s,. = s,. 

This procedure computes 
the larger of two short nu­
meric values. The value ar­
guments X and Y may be 
provided with any scaling. 
The function MAX (X, Y) 
will then be provided with 
scaling as follows: 

s,. = max (s,., ~) 

If r requires greater than 
31 significant bits of preci-

"'The notation uses s to represent the scale factor (s) of 
the result (r). 
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MIN (X. Y) 

ABS (X) 

SIGN (X) 

SCALE (X, N) 

sion,the function is unde­
fined. 

This procedure computes 
the smaller of two short 
numeric values. The value 
arguments X and Y may 
be provided with any scal­
ing. The function MIN (X, 
Y) will then be provided 
with scaling as follows: 

s,. = max (s,.,~) 

If r requires greater than 
31 significant bits of preci­
sion, the function is unde­
fined. 

This procedure computes 
the absolute value of a 
short numeric value. The 
value argument X may be 
provided with any scaling. 
The function ABS (X) will 
then be provided with the 
scaling of X. 

This procedure computes a 
numeric representation of 
the sign of a short numeric 
value. If X <0, then the 
function is -I, if X = 0, 
then the function is -I; if 
X = 0, then the function 
is 0; if X>O, then the func­
tion is + I. The value ar­
gument X may be pro­
vided with any scaling. 
The function SIGN (X) 
will then be provided with 
scaling as follows: 

s,.=0 

This procedure rescales a 
short numeric value. The 
scale factor of the value of 
the first argument is 
changed to the num ber 
designated by the second 
argument. This results in 
no execute-time opera­
tions, only in compile-time 
considerations. 
The value argument X 
may be provided with any 
scaling. The value argu-



TRUNC (X, N), 
TRUNC (X) 

ment N must be provided 
from an optionally signed 

. number whose magnitude 
is greater than 0, but not 
greater than 127. The 
function SCALE (X, N) 
will then be provided with 

scaling as follows: 

sr = n 
where 

n is the value of N 

This procedure cha·nges 
me low-order precision of 
a short numeric value. 
Low-order bits are trun­
cated (or added, zero-val­
ued) to the value of the 
first argument, and the 
scale factor of the first ar­
gument changed, such that 
the value of the first argu­
ment retains the same· 
magnitude but with a dif­
ferent low-order precision. 
The new scale factor is the 
number designated by the 
second argument. This re­
sults in binary shift opera­
tions .. If no second argu ... 
ment occurs, the value of 
N is O. 

The value argument X 
may be provided with any 

. scaling. The value argu­
ment Y must be provided 
from an optionally signed 
number whose magnitude 
is greater than 0, but not 
greater than 127. The 
function TRUNC (X, N) 
will then be proyided with 
scaling as follows: 

s,. = n 

. where 

n is the value of N 

If r requires greater than 
31 significant bits of preci­
sion, the function is unde­
fined. 

ROUND (X, N), 
ROUND (X) 
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This procedure is exactly 
equivalent to TRUNe ex­
cept that one-valued bit is 
added to the magnitude of 
the value of the arg'ument 
(before any truncation) to 
the left-most low-o.·der bit 
to be truncated, and that 
the scaling is as follows: 

s,. = n 

If r requires greater than 
31 significant bits of preci­
sion, the function is unde­
fined. 

A-3. Long Numeric Procedures 

The long numeric procedures are all function 
procedures which yield long numeric values. 

REM (X, Y) This procedure is entirely 
analogous to the short nu­
meric function proced ure 
of the same name, except 
that X and/or Y must be 
long numeric values. 

MAX (X, Y) This procedure is entirely 
analogous to the short nu­
meric function procedure 
of the same name, except 
that X and/or Y must be 
long numeric values, and 
that the function is. unde­
fined only if r requires 
greater than 62 bits of pre­
cision. 

MIN (X, Y) 

ABS (X) 

SHORT (X, N), 

This procedure is entirely 
analogous to the short nu­
meric function procedure 
of the same name, except 
that X and/or Y must be 
long numeric values, and 
that the function is unde­
fined only if r requires 
greater than 62 bits of pre­
cision. 

This procedure is entirely 
analogous to the Log Nu­
meric Value X. 

Short numeric function 
procedure of the same 
name, except that X must 
be a long numeric value. 
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SIGN (X) 

SCALE (X. N) 

TRUNC (X. N) 
TRUNC (X) 

This procedure is entirely 
analogous to the short nu­
meric function procedure 
of the same name, except 
that X must be a long nu­
meric value. 

This procedure is entirely 
analogous to the short nu-

. meric function procedure 
of the same name, except 
that X must be a long nu­
meric value. 

This procedure 
entirely analogous to the 
short numeric function 
procedure of the same 
name. except that X must 
be a long numeric value, 
and that the function is 
undefined only if r re­
quires greater than 62 bits 
of precision. 

ROUND (X. N) This procedure is 
ROUND (X) entirely analogous to the 

short numeric function 
procedure of the same 
name, except that X must 
be a long numeric value, 
and that the function is 
undefined only if r re­
quires greater than 62 bits 
of precision. 

A-4. Character String Procedures 

Character string procedures are all function 
procedures which yield character string values. 

REP (X, N) This procedure catenates 
one or more copies of a 
character string value. The 
second argument desig­
nates the number of copies 
of the first argument that 
are to be catenated. The 
value argument X may be 
any length. The value ar­
gument N must be greater 
than O. The function REP 
(X, N) will then be pro­
vided with a length equal 
to the product of Nand 
the length of X. If the 
length of the function 
would then be greater than 
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512 characters, sufficient 
characters are truncated 
from the right end of the 
function such that the 
length of the function is 
512. 

A-S. Bit String Procedures 

The bit string procedures are all function proce­
dures which yield bit string values. 

REP (X, N) This procedure catenates 
one or more copies of a bit 
string value. The second 
argument designates the 
number of copies of the 
first argument that are to 
be catenated. 

The value argument X 
may be any length. The 
value N must be greater 
than O. The function REP 
(X, N) will then be pro­
vided with a length equal 
to the product of Nand 
the length of X. If the 
length of the function 
would then be greater than 
32 bits, sufficient bits are 
truncated from the right 
end of the function such 
that the length of the 
function is 32. 

BOOL (X, Y, N) This procedure computes a 
Boolean result of the com­
bination of two bit string 
values according to a truth 
table. The values of the 
first and second arguments 
are combined according to 
the truth table designated 
by the third argument. 
The third argument con­
sists of four bits. The first 
bit denotes the value de­
rived by the combination 
of two zero-valued bits; 
the second bit denotes that 
for a zero-valued bit and a 
one-valued bit; the third 
denotes that for a one-val­
ued bit and a zero-valued 
bit; and the fourth denotes 
that for two one-valued 



LETTER (X) 

DIGIT (X) 

bits. The combination is 
determined for each suc­
cessive pair of bits, one 
from each of the first two 
argument values, from 
right to left, starting with 
the left-most bit in each. If 
the lengths of the two ar­
guments are not identical, 
sufficient zero-valued bits 
are appended before the 
combination onto the right 
end of the shorter value 
such that its length is iden­
tical to that of the longer. 
The value arguments X 
and Y may be provided 
with any length. The value 
argument N must be pro­
vided as a bit string literal 
of length 4. The function 
BOOL (X, Y, N) will then 
be provided with a length 
equal to the length of the 
longer of X and y. 

This procedure determines 
whether or not the left­
most character in a charac­
ter string value is a letter 
(A through Z). The value 
argument X may be pro­
vided as a character string 
of any length. The func­
tion LETTER (X) will then 
be provided as a bit string 
of length 1, zero-valued if 
the left-most character of 
X is not a letter, one-val­
ued if it is. 

This procedure determines 
whether or not the left­
most character in a charac­
ter string is a digit (0 
through 9). The value ar­
gument may be provided 
as a character string of any 
length. The function 
DIGIT (X) will then be 
provided as a bit string of 
length 1, zero-valued if the 
left-most character of X is 
not a digit, one-valued if it 
is. 
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A·6. Structure Procedures 

Structure procedures manipulate the values of 
sets of quantities as single entities. 

MOVE (X, Y) This proper procedure as­
signs the values of the set 
of quantities designated hy 
the first argument to the 
set of quantities desig­
nated by the second argu­
ment, as though both ar­
guments designated hit 
string quantities whose 
lengths are the shorter of 
the two sets of quantities. 
X and Y must be quantity 
arguments. 

CLEAR (X) This proper procedure as­
signs a bit string value of 
indefinite length composed 
entirely of zero-valued bits 
to the set of quantities des­
ignated by the argument, 
as though the argument 
designated a bit string 
quantity whose length is 
the length of the set of 
quantities. X is a quantity 
argument. 

A·7. Point Procedures 

Point procedures transfer the sequence of exe-
cution according to specific rules. 

SWITCH (X) This proper procedure 
Ph transfers the sequence of 
P2 , ••• , execution to the point 
Pn) designated by the point 

arugment Pi, where i is the 
largest integer not greater 
than the value of the short 
numeric argument X. If i is 
zero, the effect of the invo­
cation of this procedure is 
exactly that of the execu­
tion of a null statement. 
The value argument X 
may be provided with any 
precision and scaling, but 
the value of the argument 
must not be less than 0 nor 
greater than n, where n is 
the number of point argu­
ments in the argument list. 

A·5 



A-S. Redefinition Attribute Procedures 

The redefinition attribute procedures are listed 
below. 

SHORT (X. N), 
SHORT (X) 

SHORT (X. N). 
SHORT (X) 

A-6 

Long Numeric Value X. 
This· function procedure 
redefines the value of the 
long numeric argument X 
to a short numeric func­
tion value. The low-order 
N bits of precision of X 
are retained as the preci­
sion of the function. The 
scale factor of X is the 
scale factor of the 
function. 

X must be a value argu­
ment of any precision and 
scaling. N must be a value 
argument which is a num­
ber greater than 0 and not 
greater than 31. If the ar­
gument N is not provided, 
N is understood to be 3 I. 
If X requires greater than 
N significant bits of preci­
sion, the function is unde­
fined. 

Character String Value 
X. This function procedure 
redefines the value of the 
character string argument 
X to a short numeric func­
tion value. The high-order 
N bits of X are retained as 
the precision of the func­
tion. If ~he length in bits 
of X is not N, sufficient 
bits are added (zero-val­
ued) or truncated from the 
right such that its length in 
bits is N. The scale factor 
of the function is O. 

X must be a value argu­
ment of any length. N 
must be a value argument 
which is a number greater 
than 0 and not greater 
. than 31. If the argument 
N is not provided, N is un­
derstood to be 8. 

SHORT (X, N), 
SHORT (X) 

LONG (X, N), 
LONG (X) 

LONG (X, N), 
LONG (X) 

Bit . String Value X. 
This· function procedure 
redefines the value of the 
bit string argument X to a 
short numeric function 
value. The high-order N 
bits of X are retained as 
the precision of the func­
tion. If the length of X is 
not. N, sufficient bits are 
added (zero-valued) or 
truncated from the right 
such that its length is N. 
The scale factor of the 
function is O. 

X must be a value argu­
ment of any length. N 
must be a value argument 
which is a number greater 
than 0 and not greater 
tha.n 31. If the argument 
N is not provided, N is un­
derstood to be I. 

This function 'procedure 
redefines the value of the 
short numeric argument X 
to a long numeric function 
value. The low-order N 
bits of precision of X are 
retained as the precision of 
the function. The scale 
factor of X is the scale fac­
tor to the function. 

X must be a value argu­
ment of any precision and 
scaling. N must be a value 
argument which is a num­
ber greater than 0 and not 
greater than 31. 

If the argument N is not 
provided, N is understood 
to be 31. If X requires 
greater than N significant 
bits of precision, the func­
tion is undefined. 

Character String Value 
X. This function procedure 
redefines the value of the 
character string argument 
X to a long numeric func­
tion value. The high-order 
N bits of X are retained as 



LONG (X, N), 
LONG (X) 

CHAR (X, N), 
CHAR (X) 

the precIsIon of the func­
tion. If the length in hits 
of X is not N, sufficient 
hits are added (zero-val­
ued) or truncated from the 
right such that its length in 
bits is N. The scale factor 
of the function is O. 

X must be a value argu­
ment· of any length. N 
must he a value argument 
which is a number greater 
than 0 and not greater 
than 62. If the argument 
N is not provided, N is un­
derstood -to be 8. 

Bit String Value X. This 
function procedure rede­
fines the value of the bit 
string argument X to a 
long numeric function 
value. The high-order N 
bits of X are retained as 
the precision of the func­
tion. If the length of X is 
not N, sufficient bits are 
added (zero-valued) or 
truncated from the right 
such that its length is N. 
The scale factor of the 
function is O. X must be a 
value argument of any 
length. N must be a value 
argument which is a num­
ber greater than 0 and not 
greater than 32. If the ar­
gument N is not provided, 
N is understood to be 1. 

Short Numeric Value X. 
This function procedure 
redefines the magnitude of 
the value of the short nu­
meric argument X to a 
character string function 
value. The low-order N 
bits of precision of X are 
retained, and sufficient bits 
added (zero-valued) to the 
right such that N is an 
even multiple of 8. This 
multiple is the length of 
the function. X must be a 
value argument of any 

CHAR (X, N), 
CHAR (X) 

CHAR (X, N), 
CHAR (X) 
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precision and scaling. N 
must be a value argument 
which is a numher gn:ater 
than 0 and not t~rC'!lcr 
than 3 L If the argument 
N is not provided, N is Ui; 

derstood to he 8. 

Long Numeric Value X. 
This function procedure 
redefines the· of 
the value of the long nu­
meric argument X to a 
character string function 
value. The low-order N 
bits of precision of X are 
retained, and sufficient btU; 

added (zero-value) to the 
right such that N is an 
even multiple or 8. This 
multiple is the length of 
the function. 

X must be a value argu­
ment of any precision and 
scaling. N must be a 
argument which is a num­
ber greater than 0 and not 
greater than 62. If the ar­
gument N is not provided, 
N is understood to be 8. 

Bit String Value X. 
This function procedure 
redefines the value of the 
bit string argument X to 
character string function 
value. The high-order N 
bits of X are retained as 
the length in bits of the 
function. If the length of 
X is not N, sufficient bits 
are added (zero-valued) or 
truncated from the right 
such that its length is N. If 
N is not then an even mul­
tiple of 8, sufficient bits 
are added (zero-valued) 
such that N is an even 
multiple of 8. 
pIe is the length 
function. 

X must be a 
ment of 
must be a 

A·7 
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BIT (X. N). 
BIT (X) 

BIT (X. N). 
BIT (X) 

A·a 

which is a number greater 
than 0 and not greater 
than 32. If the argument 
N is Ilotprovided. N is un­
derstood to he 8. 

Short Numeric Value X. 
This function procedure 
redefines the magnitude of 
the value of the short nu­
meric argument X to a bit 
string function value. The 
low-order N bits of preci­
sion of X are retained as 
the length of the function. 
X must be a value argu­
-ment of any precision and 
scaling. N must be a value 
argument which is a num­
ber greater than 0 and not 
greater than 31. If the ar­
gument N is not provided, 
N is understQod to be I. 

Long Numeric Value X. 
This function procedure 
redefines the magnitude of 
the value of the long nu­
meric argument X to a bit 
string function value. The 
low-order N bits of preci­
sion of X are retained as 
the length of the function. 

BIT (X, N), 
BIT (X) 

X must be a value argu­
meot or any precision and 
scaling. N must he a vallll~ 
argument which is a lIum­
her greater than 0 and not 
greater than 32. Ir the ar­
gument N is not provided. 
N is understood to be I. 

Character String Value X. 
This function procedure 
redefines the value of the 
character string argument 
X to a bit string function 
value. The high-order N 
bits of X are retained as 
the length of the function. 
If the length in bits of X is 
not N, sufficient bits are 
added (zero-valued) or 
truncated from the right 
such that its length in bits 
is N. 

X must be a value argu­
ment of any length. N 
must be a value argument 
which is a number greater 
than 0 and not greater 
than 32. If the argument 
N is not provided, N is un­
derstood to be 8. 



APPENDIX B 

PARTICLES AND WORD OPERATORS 

B-1. General 

Listed in this appendix are the particles, and 
operators constructed as words, comprising the 
TACPOL language. Word operators are reserved 
words which may not be utilized as programmer 
defined names. These operators are identified 
with an asterisk to the left of the word. 

ALIGNED 

AND 

AUTH 

B 

BACK 

BEGIN 

BIN 

BIT 

attribute - specifies that 
storage for a declared set 
of quantity is to be allo­
cated so as to minimize the 
time required for access. 

logical operator - indicates 
a logical 'and' of the bit 
string values immediately 
preceding and following 
the particle. 

file specification - specifies 
the programs (by name) 
which may access the file 
to perform read, write or 
both read and write opera­
tions. 

bit string specifier - desig­
nate a bit string. 

space statement specifica­
tion - specifies that the 
designated serial file is to 
be spaced backward. 

block delimiter - indicates 
the start of a BEG IN 
block. 

attribute - specifies that 
values of the declared 
quantities are to be 'bi­
nary' representations of 
decimal numbers (must be 
used with FIXED: BIN 
FIXED). 

attribute - specifies that 
the quantities in a declara­
tion are 'bit' string quanti­
ties. 

BLOCKED 

BUFFERED 

BY 

CALL 

CAT 

CELL 

CHAR 

CHECK 

CLOSE 

CODE 
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file specification - specifics 
records to be grouped into 
physical block~ for :lctual 
110 operations. 

file specification - specifies 
the number of buffers to 
be allocated for I/O 
processing. 

DO specifier - identifies 
the value immediately fol­
lowing the particle as the 
step value (increment) of 
the control quantity in the 
DO statement. 
statement - specifies that 
the proper proced ure 
whose name appears im­
mediately following the 
particle is to be invoked. 

string operator - specifies 
that the string values im­
mediately preceding and 
following the operator arc 
to be 'catenated'. 

attribute -identifies a dec­
laration as a CELL decla­
ration. 
attribute - specifies that 
the quantities in a declara­
tion are 'character' string 
quantities. 

statement - specifies the 
condition declaration 
which turns specified con­
ditions on (ZDIV. FOFL, 
USAGE). 

statement - disassociates a 
file from the program. 

block delimiter - identifies 
the block following 
particle as being state­
ments in a non-TACPOL 
language (currently assem­
bly language). 

S-1 
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COMPOOL 

CONF 

CONSOLE 

DASD 

DCL 

DELETE 

DIRECT 

DISPLAY 

DO 

E 

*ELSE 
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attribute - used in a proce­
dure head to designate 
that procedure as being in 
the common pool. 

file attrihute - specifies 
that the data on thc dcsig­
nated file is to bc c1assif1cd 
confidential. 

file attribute - specifies 
that the designated file is 
to use the console. 

file attribute - Direct Stor­
age Access Device. Speci­
fies that the designated file 
is to use the DASD as the 
storage medium. DASD is 
a drum. 

statement - identifies the 
text following the particle 
and ending with a semico­
lon as being a 'declara­
tion'. 

statement - specifies that 
the existing record in the 
file is to be removed. 

file attribute - specifies 
that the records on the file 
are to be organized to be 
accessible by a key value; 
i.e., specific records may be 
accessed regardless of their 
position relative to other 
records in the file. 

file attribute - specifies 
that the designated file is 
to use the display system. 

statement - specifies the 
text following the DO par­
ticle and delimited by the 
associated END particle as 
being the body of the DO 
statement, to be executed 
a number of times as indi­
cated by the control varia­
ble and the DO specifiers. 

literal specification - speci­
fies the precision of the 
number. (none) 

ELSE clause specifier -
identifies the start of the 

*ELSE 

END 

ENDFILE 

ENDFILE 

ENTRY 

FILE 

FIXED 

FIXED 

FOFL 

ELSE clause In an IF 
statement. 

ELSE clause specifier -
identifies the start of the 
ELSE c1ausc In an ON 
statement. 
hlock dclimitcr - indicates 
the 'and' of any hlock for 
which there is an associ­
ated particle indicating the 
start of that block. (See 
BEGIN, DO, PROC.) 

I/O specification - in a 
WRITE statement, causes 
the terminal boundary or 
the file to be placed at the 
current position of the file. 
The file must be a serial file 
opened for output. 

I/O specification - in an 
ON statement, the file is 
examined to determine 
whether or not an attempt 
was made to reposition or 
to transmit a record from 
a serial file, opened for in­
put, at a po lOt beyond the 
boundary of the file. 

attribute - specifies that 
the names listed In the 
declaration are names of 
proper procedures which 
are parameters to the pro­
cedure in which the decla­
ration appears. 

1/0 statement specifier -
used in an input/output 
statement or declaration as 
part of the text. 

attribute - specifies the 
quantities in a declaration 
are 'fixed' point (must be 
used with BIN: BIN 
FIXED). 

file specification - specifies 
a file of fixed length. 

condition - specifies that 
whenever a 'fixed point 
overflow' occurs as the re­
sult of an arithmetic oper­
ation, the 'snap' procedure 



FREE 

FROM 

FROM 

GE 

GOTO 

GT 

IF 

IGNORE 

INIT 

is to be implicitly invoked 
or not invoked (see 
SNAP). 

attribute - a record type 
attribute for file declara­
tions not implemented. 
REWRITE statement spec­
ificr - specifies the set of 
quantities from which the 
record is to be rewritten. 

WRITE statement specifier­
specifies the set of quan­
tities from which the rec­
ord is to be written. 

relational operator - speci­
fies that a determination is 
to be made as to whether 
the value preceding the 
particle is greater than or 
equ.al to the value follow­
ing the particle. 

statement - specifies con­
trol is to be transferred to 
the indicated point. 

relational operator - speci­
fies that a determination is 
to be made as to whether 
the value preceding the 
particle is greater than the 
value following the parti­
cle. 

statement - specifies condi­
tional execution of the 
statement in the THEN 
clause or ELSE clause as 
controlled by the outcome 
('true' or 'false') of the bit 
expression of the IF 
clause. 
statement - specifies the 
condition declaration 
which turns specified con­
ditions off (ZDIV, FOFL, 
USAGE). 

attribute - defines the 
value following the parti­
cle as the value to be as­
signed to the quantity in 
the declaration. ('initial­
ize'). 

INPUT 

INTO 

KEEP 

KEY 

L 

LABEL 

LABELLED 

LE 

LOAD 

LT 
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file attribute - used in an 
OPEN statement to specify 
that the file being opened 
is to be used· for input 
only. 

READ statement specifier 
- specifics the set or 4uan­
tities into which the record 
is to be read. 

110 specification - specifics 
tbat the file is to be kept 
after being closed. 

input/output specification -
specifies the character ex­
pression to be used as the 
key value record to be ac­
cessed from the file. 

literal specification - speci­
fies that the literal is to be 
treated as a long numeric 
literal. 

attribute . specifies that 
the names listed in a dec­
laration are point names 
which are parameters to 
the procedure that con­
tains the declaration. 

file specification - specifies 
a file with standard header 
and trailer labels. 

relational operator - speci­
fies that a determination is 
to be made as to whether 
the value preceding the 
particle is less than or 
equal to the value follow­
ing the particle. 

statement - specifies that 
the designated programs 
are to be loaded into the 
computer and prepared for 
execution. 

relational operator - speci­
fies that a determination is 
to be made as to whether 
the value preceding the 
particle is less than the 
value following the parti­
cle. 

8-3 
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NE 

NOKEY 

NOPART 

*NOT 

OLD 

ON 

OPEN 

OR 
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relational operator - speci­
fies that a determination is 
to be made as to whether 
the values preceding and 
following the particle are 
not equal. 

I/O specification - in an 
ON statement, the file is 
examined to determine 
whether or not an attempt 
was made to read, rewrite 
or delete a record in a di­
rect file when no record 
with the specified key ex­
ists. 

110 specification - in an 
ON statement, a file is ex­
amined to determine 
whether or not an attempt 
was made to open an old 
partition in the file and the 
partition no longer exists. 

logical operator - indicates 
a logical 'not' of the bit 
string values immediately 
preceding and following 
the particle. 

110 specification - specifies 
that the file in the 110 op­
eration has been created 
before being opened. 

statement - a file statement 
which specifies the condi­
tional execution of a con­
stituent statement based 
upon the results of speci­
fied file conditions (END­
FILE, NOKEY or NO­
PART). 

statement - specifies that 
the named files or file set 
mem bers are to be opened 
for use. The process of 
opening a file involves as­
sociating a file with the 
program by name and 
specifying certain attri­
butes for the file. 

logical operator - indicates 
a logical 'or' of the bit 
string values immediately 

OUTPUT 

PACKED 

PARTS 

PASS 

PLOTTER 

PRINTER 

PROC 

PUNCH 

READ 

READER 

RECORDS 

RETURN 

REWIND 

preceding and following 
the particle. 

file attribute - used in an 
OPEN statement to specify 
that the file being opened 
is to be used for output 
only. 

attribute - specifies that 
storage for a declared set 
of quantities is to be allo­
cated so as to minimize the 
total storage required. 

file specification - specifies 
a file which is to be a par­
titioned file. 

110 specification - specifies 
that the file is to be kept 
and is to remain immedi­
ately available after being 
closed. 

file attribute - specifies 
that the designated file is 
to use the. plotter. 

file attribute - specifies 
that the designated file is 
to use the line printer. 

block delimiter - indicates 
the start of a 'procedure' 
block. 

file attribute - specifies 
that the designated file is 
to use the card punch. 

statement - specifies that a 
record is to be read into 
the specified set of quanti­
ties from the specified file. 

file attribute - specifies 
that the designated file is 
to use the card reader. 

file specification - specifies 
the number of records in a 
file in a file declaration. 

statement - indicates that 
the value following the 
particle is to be 'passed 
back to' the invoking func­
tion procedure. 

statement - specifies that 
the designated serial file is 



REWRITE 

S 

SECR 

SERIAL 

SPACE 

*SUBSTR 

TAPE 

TERMINAL 

*THEN 

TO 

TOPS 

to be rewound so that it is 
in its starting position. 

statement - specifies that 
the specified set of quanti­
ties is to be written onto a 
file as a record replacing 
an existing record on that 
file. 

literal specification - speci­
fies the scale factor to be 
used for the literal. 

file attribute - specifies 
that the data on the desig­
nated file is to be classified 
secret. 

file attribute - specifies 
that the data on the file is 
to be organized in a serial 
fashion, i.e., accessed se­
quentially one record fol­
lowing another, etc. 

statement - causes the des­
ignated serial file to be 
spaced a specified number 
of records forward or 
backward. 

string operator - designates 
a substring of a string 
quantity (specified by the 
text enclosed in parenthe­
~is following the operator). 

file attribute - specifies 
that the designated file is 
to use magnetic tape. 

file attribute - specifies 
that the designated file is 
to use a data terminal. 

THEN clause specifier -
identifies the start of the 
THEN clause in an IF 
statement. 

DO specifier - identifies 
the value immediately fol­
lowing the particle as the 
maximum allowable value 
of the control quantity in a 
DO statement. 

file attribute - specifies 
that the data on the desig-

UNCL 

UPDATE 

UNWIND 

USAGE 

USES 

VALUE 

VARIABLE 

WAIT 

WHILE 
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nated file is to be classified 
top secret. 

file attribute - sped fies 
that the data on the desig­
nated file is to be unclassi­
fied. 

file attribute - used in an 
OPEN statement to specify 
that the file being opened 
is to be used for input 
and/or output. 

statement - specifies that 
the designated serial file is 
to be positioned at its end. 

condition - in the CONDI­
TION declaration specifies 
that any use of the names 
listed following the parti­
cle is to cause the snap 
(trace) procedure to be in·· 
voked or not invoked. (See 
CHECK and IGNORE.) 

attribute - in a CODE 
block, specifies the names 
in the list that follows will 
be known to the assembly 
language code within the 
block. 

attribute - specifies that 
the names listed in the 
declaration are parameter 
quantities which are im­
plicitly assigned the values 
of the corresponding ex­
pression arguments on in­
vocation of the procedure 
containing the declaration. 

file specification - specifies 
a file of variable length. 

statement - causes all pro­
gram execution to wait un­
til all file processing opera­
tions on the designated file 
are completed. 

DO specifier - identifies a 
bit expression which fol­
lows the particle in a DO 
statement. The DO state­
ment is executed until the 
bit expression is no longer 
'true'. 

8·5 
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WRITE 

8-6 

statement - specifies that a 
record is to be written 
from the specified set of 
quantities onto the speci­
fied file. 

ZDIV condition - specifies that 
whenever an attempt is 
made to 'divide by zero' 
the 'snap' procedure is to 
be implicitly invoked or 
not invoked (see SNAP). 



If the Decimal Integer 
is Greater Than 

0 
I 
3 
7 

15 
31 
63 

127 

255 
511 

1023 
2047 

4095 
8191 

16383 
32767 

65535 
131071 
262 143 
524 287 

1048575 
2097 151 
4 194303 
8388607 

16777 215 
33554431 
67108863 

134 217 727 

268435455 
536870911 

1073741823 
2147483647 

APPENDIX C 

TABLE OF INTEGER PRECISION 

Table C-I. Table of Integer Precision 

And Less Than or Equal To 

1 
3 
7 

15 

31 
63 

127 
255 

511 
1023 
2047 
4095 

819 1 
16383 
32767 
65535 

131 071 
262 143 
524 287 

104 857 5 

2097151 
4194303 
8388607 

167772 15 

33554431 
67 108863 

134 217727 
268435455 

536870911 
107374 1823 
2147483647 

461068601832 6299903 
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Then the Number 
of Bits Requjn~d 
to Contain the 

Decimal Integer is 

--
I 
2 
3 
4 

5 
6 
7 
8 

9 
10 
II 
12 

13 
14 
15 
16 

17 
HI 
19 
20 

21 
22 
23 
24 

25 
26 
27 
28 

29 
30 
31 
62 J 
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D-1. General 

APPENDIX D 

SAMPLE COMPILER OUTPUTS 

USACSCS·TF·4-1 

This appendix contains samples of compiler 
outputs such as TACPOL Source Listing (table 

0-1), Attribute and Reference List (table 0-2), 
Machine Language Output (table D-3), and Cross 
Reference and Set Used Listing (table D-4). 

1 
2. 
3 
4 

'1 
it 
U 
1-' 
n 
14 
l~ 
16 
11 
, d 
l':l 
20 
21 
22 
23 
24 
~5 

2t> 
27 
21:f 
2'-1 
30 
31 
32 
33 

Table D-I. TACPOL Source Listing 

TAcrCl SUURCE LISTIN~ PAGE 1 

MESSP: 

NEXT : 

ppec; 
I*OHlAlflTIVlS FeR kfl.,lJlH;n DATA STflUCTiJRf-S*1 
[lCl 1 HIPM CEll, 

i! ICOOPO (l51, '.DESIGN or INPUT MESSAGE TABlF*1 
3 ([,BIG CHAR (4), 

)leUtl/d) BII\; f IXll! 1151, 
veCHlRD BIt-.: FlXELJ U511. 
NIJMH Ie HI. 

3 ([1 E SIGN b I r.. F I)( EO (31 I II i 
PC l l (lUtiT IH ill r i)(f. 0; 
rCL 1 [RR~ (1~1, 

2 (FflkOES tHAI' (41, 
[R~XeC ~[N fl~fO C151, 
fPRVLO BIN fillED C1511; 

I.OVERLAY OF DESIG*I 
I*EPRD~ ~fSSAGE COUNTER.I 
I*ERROR MESSAGE AREA-, 

on l1eHf.'" CHAI' 141 Hill C'AA 't; 1* SQUPCf- OE:>l\.iNATI,IH, 
I'Ll [CHAR CHAR ' .. I It-.li ('BB OJ; I*CONSTA:-.r::.*t 
CLL ftf·Ai .. (.1 \1< (i.' P.ll I'ce 'I; 
[.( L I~!, f l( l' I. :' 1 . ;!) I 1 I; 
I~ C;TA"T :J'fNA"!C 1I\Tf~" """*/ 
C('UNT = n; 1* INn IAUZE FIHO' . ro·! f 1<. I 
INDEX· 1; 1*INITIAlllt ~R~U~ l~DF.*' 
[i(l 1=1 ry 1 TO 11); I.BEGIN LOOP.I 

IF (OESIG(II = ACHA~1 THtN ~OTr NEXT; I*OESIGNATOR =5 AA*I 
If IPFc)IG(II = kCHAP) lHfN (jOT! MXT; I*OfSIGNATOR =5 BB*I 
IF (OESllIC U = CrHAkl THEN GOl(' !'.[XT; I*OFSIGNATOI( =S C(*I 
COUNT = C('UNT+l; ,.sun tRRGP PR:1CESSING*1 
EPR(1[SIINDfXI = O(SIGIII; I*TIlA~SHP ~ESSAGE IN FRPOR*I 
ERI<XCrIlNDE)(1 = XC(UI-OII); 
Hf-VCPIINOfXI = YC('UI'O(lli 
DrSIGt,lll, )«(,0111'011), YCOl,RD( II'" n; l*lERU INPUT MESSAGE*I 
INI'D -= INDI:X+li ,*SU ''''Df)( fnF !'.FXT fNTRY.I. 

fNO; 1*08 LOOP.I 
fND; I*PkOCfDUPf*1 

HlR00020 
HlRO('l(,,30 
HLPO('(l4f) 
!-AlP 00('1'5') 
Hl R 0006 'J 
I-1lP00070 
Hl POOO8'J 
Hl II OO(I<~O 
Hl POfl100 
HlROOlll'l 
HlR001?G 
Hl R00130 
HlIHl"140 
HlRO('150 
HLP (,'llb,) 
Hl P!){'Il1!1 
HlI-l0018"J 

H'LP001QO 

HlR00231) 
HlP00240 
Hl R 002 0;0 
I-'lPO,)?bO 
HlIHIO?7C· 
Hl Rfl07R0 
HlR00290 
I-'lF "0300 
Hl.pn031" 
HlR0032f) 
HlR ~"330 
I-'lI-l0034(,) 
HlR(,,()3'h) 
HlPf)036" 

20083-14 
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Table D-l. Anribute ami Re/erellCe List 

,iL Itf. r. II H P J\L V J\l U E Ct 1M IIC T [I,. SIRING( 4) 
l: t r 1 t'.f [) 1\ 1 l~ PIFF.PUKfS AT ?] 

;, L Pt, t A ~ 1 GR(T'P SLALAP SHJI.'T NU~Ff'IC( 7, 01 IN CROUP CTCP 
tll:F U'['L' It; ClWPIJUl NC PffI.Rt:NlES 

,~ Lt II f 1 K r. () IU:U.· SClll AI< SHOFT NW..,t:P Il ( 7, 01 If\. GFCUP \.11 CP 
Utr1t\LO ltJ C l·r··PIIIl NI' PI FfR H:Cf S 

AL~'I! !'to/.tl lilHJlP ~ LAl /iii, SlIml NU~[-f (e( 7, u) lr-. liRlJUP \.IHP 
1JE:rIHT II- cn~PUt Il NC RFffRFI'IOS 

,,'-PH;.' L ,,( U I SU,LAk SHUFT NU~[FIC( 7, I)) II'; GiJ,CUP QTC'P 
UlFIt lD H, Cl'r·1ror. l. Nl' HHk~NCE S 

ACPHSI Tf; CI{LLI' SU\LM'. s~;p~ T I~U~IH Ie( 7. vi If\; Gt<.LUP IHl'P 
lH.F H.LI.l III CO'PC"1 NC p r r I:h Et-.·c f S 

I\LP~tSLU" GR.UUf' SCj\l M~ SHUT NlH~fPIC' 7, C I IN GPOUP Q111P 
r:u n:[I' It Cl'~'f'lllil t:c Hf'HH:CfS 

ill.YI:SY S l>H":lJf' SC.HAP SII(n'T Nn1[r Ie ( '7, C I IN l;RUUP QH'P 
litFIUU H. C('MPilll L 11;( , HFlkfM.fS 

i~ \.1' 11 X :'1 Tl l,~l'LI' SCiiLIIK. SHCPT NUfJ,[ r: t L ( 7, 01 IN Cl-!tUP QTUP 
llH 11\£ I' H' C m1pLJ( l ND F rn ~H,([ ') 

;~UJ~1~ ~ 12 G i'l'U I' ~ li\l I\P SitU T M'f'f, I L ( 7, L I It-. l;RCJUP (HOP 
JH ad'· ltJ (.IJ~' I' :'1[ i l ~w Fir H~ LI"Cl !) 

.. Lt'H)f.~·T:~ (,\< 1:1 r ~(l\l.f\P S~·f n ~jLl~~U III 7, I~ ) II\, l,Rr'up ("'T r.'F' 
[,tF·If\.[1l 11. (. CA PU(' L r:r PFFH fN([S 

t~C ~)~~X;~; 1 i. l,kU.I' SCM M~, S I-l d· , NlWU ((( 7, 01 If'. (,F('UP Qf(P 
rEf' I t.£ Ii it, CU·,PLl !I Nt' F'[rt-YFNCfS 

1', t. r'l Iii 'J C l>hCUI' SC.\L At'. ~ tiUFT NU ',1[1' Ie ( 7, nl H. GHlUP (,,;T(,I' 

, H 11:1 D It (.U·~I'(' l ~w ~ [f EKlNCE S 

:, Li· e t Ll 
I ~.' H I !1 It, CC'tF'i"'L ~IC HJf~F:MtS 

20083-15 
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Table D-3. Machine Language Output 

1113171 MESSP CDMPOOl KSGPROC PAGE 2 

ADUf UP M ~; S D AW F f' T K SHU MME OPEIIAIIOf>.j OPf:RANO COMMENTS SEQUENCE 

:~ CMP MSGPROC 1 3 
f, St 1FT 1 4 
') + S~ if T SET PUi 15 FOP ILLf:GAL OP PROCESSING .. 

uvu(\ ZU 2 r C Uv8Ec 6 + lDf ~bA(lOP-$.15 .. 
ocoe 7 90('001 H.U 00000 3 1 
OC'OO t\ 91lC'002 E!.iU 00000 4 1 
0(:(10 9 %0003 EQU 00000 OJ 1 
:>""2 1\, 9,1(11)4 E~U 000(12 6 1 
:'t03 11 911aOa? £obiU 00003 1 1 
,,(00 12 9['(lOC'6 EIJU 00000 8 1 
QOO!) 13 900007 EQU 00000 q 1 
Jr 3C 14 'lUG OUt! lOU 00060 10 1 
OUl 15 (1)0<)09 ((JU 000f.Z 11 1 
OC3E 10 900010 [OU 00062 12 1 
~(40 17 'jOOOll fQU 00004 13 1 
:)('41 IH 9iJrOl.? Et.u 00065 14 1 
~'07A 1<J ~llC n 13 f:(JU 00122 18 t 

(h){;,' n 1 C 2 C'{'3C 20 MU 9[)(\C'0A+I'.'02' 21) 1 
0004 20 0 7 0 0001 21 Ulf =Ocr.'Ol,07 21 1 
mJOb 26 7 2 OlJ7A ?7 SDF 9D0013+R' 02', (\7 21 2 

007C 23 '10U014 EIo/U OOIZ .. Z2 1 
O(1(\b 2':' 0 7 0 l'CoO 1 24 lilt- =000,H .07 22 ;> 
OOOA 66 1 7 2. 007C ?~ 50H 9flC,u14+f/' OZ', 07 ?2 3 
(,')UC C't,OO ";1) ~P(lO 31 bSS 0 .22 4 

27 DC HI<.P 9U0014,on015.SBf,9P OG30 22 '5 
? tl ~ L'CHK DCHn - HY IS POSITIVf llTNUM .. 
lY t OLHK fep D::HK~ AM) DCHKS • OP IS 'SflE' fOfl TO PQSITlVf .. 
~o + [)(HK "NO [S 'AOF' I'llR TO NEGATIVE .. 
31 + DC iiI<. ITO NOT llTNUMI .. 

OUllt t,t 1 l ~ OC7C 32 + LUH 9D(,(',14+P '2',14 .. 
Oud_ 09 0 l 0 :,lOOF 33 .. Sflf =00015.14 .. 
0010 32 2 [ (' ,-'CO2 "\ I, t XU h2014 .. 
OUlI 33 l [ C' 0076 3~ + XFf QPC030-$,14 .. 
Ot! 14 bl' 1 7 l ,\( 7C 'I- UH 9r,C'('14+!l'C2' ,('.7 23 I 
OiJ 16 OC U 7 L' '.'lG4 37 ,,"PF =+ (100('4,07 23 2 
U01;; 20 1 1 ',) u(OOE ~!:i l D~ IP07',CI 23 3 
DC 11, 20 2. ~ 2 f!-FC }<') lUF qnCO~1-0C(\04.D·o2·,OA 23 4 

JU IC .?(, 2 t (I L' ( l' f 40 LOt 9L a (l f,- $, Ob 23 5 
OOll 12 l; L' JC'CC 41 c.u R'Of',OA 23 " 'JO.!u 71 2 ~ " C'Pt2 i, c , nl.i QP('1'24- £ 2:3 7 
oen ,Ie 0) '03 4P( C' ~2 BSS 0 24 1 
v,'ll uO 1 7 l onc 44 UJH 'loon14+IJ'02',f,7 24 2 
0('24 DC ;) 7 C l'r ('4 45 ,,"/,F =+ (1('0(4.07 24 3 
0"'26 20 1 1 '.' cOU 41, lIJf "'07',Cl 24 4 
Ou28 20 2 e , 

r~rc 47 1 lJF 9D0n03-(~O~4+D·02·.OH 14~ <; '-

'J02A 20 l I:- 0 ,,(B2 lot! L IJt 9L (1017-" 06 24 6 
JJ2L 12 1 (,.~ :)(1CC 49 CLf J,:'C'i-',0S 24 7 
Q"h 1! 2 L :;0:'(. 70 XEI.I 9PC'025-$. 24 R 
(\:.hl :,( 00 0,1 qrr):}3:~ es<; a 25 1 
u030 6e 7 z P07C ~? llJH 9DO r 14+~ • 02 • • J 7 2<; 2 
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Table D-4. Cron Re/eNlU:ealtd Set Uuc Listilrg 

CkeSS REFERENCE AND SET-USED LISTING 

SY;VILiOL ~u Vi\LUE' U(,SS-~ E.FlfU.NCE 

.(jt.: A UL' P US[[; () 0911 ('('(i6 

':IL, Jrj,"'1 ;~l it [ I) t () f) 
':IlJ JU 0.2 i'~IA·.t:: \:('00 
'JIlL/V U3 USLP 0000 ( 039 (-(47 "055 O()b 7 

9lV)Ul!4 ULTH ('(iC?, OCRl *(\(·<.l3 

" • .IUOO5 10T /, (l(('J OCH5 *('«(J~ 

l.JlJ u U Jt, I'Itm.1:. UOOO 
91);')0',)"7 SET ~J rOI) ~<'('<)l 

9UuQOb SET oll3e to' t' 02 II *('ft 1 
'It)f)OJC', tJt Ir, ~ 'J03t:: 
'1UO'.Jl(' L!:>tU C'C3E OC 73 
YLJ tV' 11 S[.T () (J41) *orp3 
':iiJ 0',)12 SET Of4l *0(87 
'),)0013 [;CTlI 0(7A *0(22 ('l t, ~ *0091 
9UJ( 14 tiL'll CC'7l: *('('25 ~(,12 J03t: c)044 0052 0062 OC88 *0101 
'11, ~~ NUl.l l' 0 L'C 
9L,)016 LSf. l' C ('DC f'1}40 

':IlO017 USl!1 JOUE C'C4B 
'il(-vlB U!>f: [ 0CL0 C-(15 t> 

S' ""0 DL1T~ 0080 *011 Q r 17'.1 *')135 (l1~0 0152 0153 
'll"'lH<, Nm:f 10013 
(j i'lcH uP USltJ Or.BC (-1 s 1 
9~11iY H: USEe oon. ('o(~1 c; 
01'101 Nut: l ')C8E 
':/1'\.)015 USf [) DCB4 (, itA r'l (! ~ ') l O~ 
9PG\.;~4 USlD .)( 84 )047 
'J P i)')2 ~, USE l) :0 (Ill 4 ('lIS 0 
9PJl' Zt> USED Jl'B4 (':I" 8 
9110\)30 l,;SlP OC.8A 0035 
C,fJUu31 USH' 0C'(,C ')102 
(H~00 JI i"IA.[ J022 
QPu 133 NOt.[ 0C3 ') 
,:/pnUj<y Nct. L 0C3E 
'ik r~iFf l NUNf 001[: 20083-17 
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