USACSCS-TF-4-1

SOFTWARE SUPPORT MANUAL

TACPOL REFERENCE MANUAL

PROGRAMMING SUPPORT ’SYSTEM (PSS-B)
(TACFIRE)

(LITTON DATA SYSTEMS)
DAAB07-68-C-0154

PREPARED FOR U.S. ARMY COMPUTER SYSTEMS COMMAND FORT BELVOIR, VIRGINIA

1R lanunan 1079

N\

USACSCS-TF-4-1

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted. The policy for imiitary use
reproduction is established for the Army in AR 380-5, for the Navy and Marine Corps in OPNAVIST 5510.18, and tor the An Force in Au
toree Requlation 2051,

LIST OF EFFECTIVE PAGES

Insert latest changed pages; dispose ot superieded pages in accordance with applicable regulations.

NOTE: On a changed page, the portion of the text affected by the latest change is indicated by a vertical line, or other change symbol, in the
outer margin of the page. Changes to illustrations are indicated by miniature pointing hands. Changes to wiring diagrams are indicated by
shaded areas.

Total number of pages in tius manual is 83 consisting ot the following

Page *Change Page *Change Page *Change
No No. No. No. No. No.

4-1 —4-7 . ..o

S.1—-5-2. .o

14-1-14-2 e

-
'
—
|
—
—
l
w
QOO0 OO0 OODOOOTSCOODOOCCO

*Zero in this column indicates an original page.

A/(B blank)

USACSCS-TF-4-1

TABLE OF CONTENTS
Section Page Section Page
LIST OF ILLUSTRATIONS ii 4-5 Group Declarations 4-4
LIST OF TABLES ii ‘ 4.6 Table Declarations 4-4
4-7 Cell Declarations 4-5
CHAPTER 1 TACPOL LANGUAGE
FOR COMMAND AND III VALUE DECLARATIONS 4.7
CONTROL SYSTEMS 4-8 General 4-7
I INTRODUCTION 1-1 CHAPTER 5 ASSIGN STATEMENTS
1-1 General 1-1 5-1 General 5-1
I TACPOL LANGUAGE IN THE TACFIRE 3-2 Rules of Assignment 51
SYSTEM 1-1 CHAPTER 6 OPERATORS AND
1-5 General 1-1 EXPRESSIONS
CHAPTER 2 ELEMENTS OF THE 61 Operators 6-1
TACPOL LANGUAGE : 6-2 Expressxons 6-6
I TACPOL LANGUAGE 21 CHAPTER 7 BLOCKS \
2.1 General 2.1 7-1 Blo?k Structure 7-1
2-2 Language Format 2-1 7-2 Begin Block 7-2
23 Character Set 21 7-3 DO Block 72
2-5 Comments 2.2 7-4 PROC Block 7.2
7-5 CODE Block 7-3
I CONCEPTS AND ORGANIZATION
CHAPTER 8 CONTROL STATEMENTS
2-6 General 2-2
2-7 Program Structure 23 8-1 IF Statement 8-1
2-8 Language Structure 23 8-2 MULL Statement 8-2
8-3 DO Statement 8-2
CHAPTER 3 DATA TYPES
, CHAPTER 9 PROCEDURES
I NUMERIC AND STRING DATA 3-1
; I INTRODUCTION 9-1
3-1 General 3-1
32 Numeric Data 31 9-1 General . 9-1
33 String Data 3.1 9-2 Proper Procedures 9-1
3-4 Attributes of Data Types 32 I FUNCTION AND INTRINSIC PROCEDURES 9-2
3-5 Literal Notation 32 9.3 Function Procedures 9-2
I ALLOCATION OF QUANTITIES 9-4 Intrinsic Procedures 9-2
3-6 General 32 CHAPTER 10 NAMES
" 3-7 Aligned Quantities 32 10-1 General 10-1
3-8 Packed Quantities 33 »
CHAPTER 11 ARGUMENTS AND
CHAPTER 4 DECLARATIONS PARAMETERS
I SCALAR AND ARRAY DECLARATIONS 4-1 11-1 Introduction 11-1
4-1 Scalar Declarations 4-1 11-2 Quantity Arguments and Parameters 11-1
4-2 Array Declarations 4-2 11-3 Value Arguments and Parameters 11-1
4-3 Array Allocations 4-3 11-4 Procedure Arguments and Parameters 11-2
H GROUP, TABLE AND CELL 4-3 11-5 Point Arguments and Parameters 11-3
DECLARATIONS 43 'CHAPTER 12 CONDITION DECLARATION

4-4 General 4-3 12-1 Condition 12-1

USACSCS-TF-4-1

"TABLE OF CONTENTS (Continued)

Section Page Section Page
12-2 USAGE 12-1 14-3 File Declarations 14-1
CHAPTER 13 INPUT/OUTPUT 14-4 Special Notes On Files and File
Declarations 14-2
I FUNCTION OF INPUT/OUTPUT 13-1
13-1 General 13-1 APPENDIX A INTRINSIC PROCEDURES
13-2 Files , 13-1
I INPUT/OUTPUT PROCESSING Al General . Al
STATEMENTS 132 A-2 Short Numeric Procedures A-1
. A-3 Long Numeric Procedures A-3
13-3 Processing Statements 132 A4 Character String Procedures A4
13-4 OPEN Statements 132 A5 Bit String Procedures A4
13-5 CLOSE Statements 13-2 A-6 Structure Procedures A
:;g ‘I;i??ESé:t:ment: igg A-7 Point Procedures A-S
- atements e A_8 R d f t . N
13.8 REWRITE Statements 133 edefinition Attribute Procedures A-6
13-9 DELETE Statements 13-3 APPENDIX B PARTICLES AND WORD
13-10 SPACE Statements 134 OPERATORS
13-11 REWIND Statements 134
13-12 UNWIND Statements 134 B-1 General B-I
13-13 ON Statements 134
13-14 WAIT Statements 13-5 APPENDIX C TABLE OF INTEGER
13-15 LOAD Statements 13-5 PRECISION C-1
13-16 Permissible File Processing Operations 13-5
CHAPTER 14 COMPOOL AND FILE APPENDIX D SAMPLE COMPILER
DECLARATIONS OUTPUTS
14-1 General 14-1 '
14-2 TACPOL Interface with the Compool 14-1 D-1 General D-1
LIST OF ILLUSTRATIONS
Number Title Page Number Title Page
4-1 Two Dimensional Array 4-3 4-4 Table Layout 4-6
4-2 Three Dimensional Array 4-3 4-5 Cell Layout 4-7
4-3 Group Layout 4-4 FO-1 TACPOL Coding Form FO-1
LIST OF TABLES
Number Title Page Number Title Page
2-1 TACPOL Reserved Word List 2-3 6-7 Long Numeric Operator Priorities 6-7
31 Allocation of Aligned Quantities 3-3 6-8 Bit String Operator Priorities 6-8
32 Allocation of Packed Quantities 34 13-1 Permissible File Processing
6-1 Arithmetic Operators 6-1 Operations 13-5
6-2 Relational Operators 6-1 C-1 Table Of Integer Precision C-1
6-3 String Operators 6-2 D-1 TACPOL Source Listing D-1
64 Logical Operator 64 D-2 Attribute and Reference List D-2
6-5 Results of Logical Operations 6-6 D-3 Machine Language Output D-3
6-6 Short Numeric Operator Priorities 6-6 D4 Cross Reference and Set Used Listing D-5

ii

USACSCS-TF-4-1

CHAPTER 1 _
TACPOL LANGUAGE FOR COMMAND AND CONTROL SYSTEMS

Section |. INTRODUCTION

1-1. General

The purpose of this document is to provide
TACFIRE personnel with an introduction to the
Tactical ~ Procedure Oriented Language
(TACPOL), which is specifically designed for use

in developing the TACFIRE software. TACPOL

is a modified subset of the PL/I language and
incorporates:

a. A Communication Pool (Compool) capabil-
ity

b. An
capability

1-2. The features and capabilities of the TACPOL
language will be useful in developing and main-
taining the TACFIRE software:

embedded assembler language

a. Application programs

b. Operating system

c¢. Compiler

d. Other programming aids

e. Maintenance and diagnostic programs
/- System exerciser and training evaluator

1-3. This document is intended to present suffi-

- cient information about TACPOL to enable one

to begin writing TACPOL programs. Chapter 2
provides an introduction to the basic components
and special terminology of the TACPOL lan-
guage. Chapters 3 through 6 discuss data, expres-
sions, and data declarations, and assignment
statements. Chapter 7 discusses blocks, and chap-
ter 8 discusses control statements. Procedures,
data scope, arguments and parameters are dis-
cussed in chapters 9 through 11. Chapter 12
discusses condition declarations. Input/output is
discussed in chapter 13, while files and Compool
data are discussed in chapter 14.

1-4. There are four appendices included in the
document. Appendix A provides a brief descrip-
tion of the intrinsic procedures which are part of
the TACPOL language. Appendix B lists, and
provides a brief explanation of, the particles (key
words) which are a part of the TACPOL lan-
guage. Appendix C is a table of integer precision
and its use is described in chapter 3. Appendix D
contains samples of compiler outputs such as a
TACPOL source listing, an attribute and refer-
ence list, a machine language listing and a cross
reference set-used listing.

Section Il. TACPOL LANGUAGE IN THE TACFIRE SYSTEM

1-5. General

The heart of the TACFIRE system is the com-
puter which is programmed to monitor and direct
the functions of the TACFIRE system. These
programs are written in the procedure oriented
TACPOL language.

1-6. TACPOL is designed so that programs may
be written for the TACFIRE computer with a
minimum of programming effort, but other points
were also considered in the design of the lan-

guage. In higher level languages, such as
TACPOL, it is easily possible for the programmer
to lose sight of the true size of his program since
one line of TACPOL code may generate numer-
ous machine instructions. Therefore, since the size
of programs in the TACFIRE system is impor-
tant, TACPOL has been designed to restrict the
use of those source language elements which
could easily generate large volumes of machine
language code. While the restrictions of any high
level language provide some inconvenience to the

11

USACSCS-TF-4-1

programmer, these ‘restrictions’ actually provide
three distinct advantages. The first is that the
programmer, while still procedure oriented (that
is, thinking primarily about the problem for
which he is writing a program, rather than the
mechanics of the program itself), does not have to
be concerned with implicitly generating large vol-
umes of machine language code, a common con-
cern in other procedure oriented languages. Sec-
ondly, the programmer is provided with a greater

facility to implement the most efficient method of
performing his required tasks according to his
needs and desires. There are also few dcfault
provisions. Most attributes must be explicitly de-
clared. This results in fewer errors because miss-
ing specifications are flagged at compile time,
whereas default provisions often provide work-
able but erroneous code when the compiler as-
sumes the programmer’s intent.

USACSCS-TF-4-1

CHAPTER 2
ELEMENTS OF THE TACPOL LANGUAGE

Section |. TACPOL LANGUAGE

2-1. General

This chapter presents a description of the basic
concepts and special terminology of the TACPOL
language.

2-2. Language Format

There is no fixed length format for input of
TACPOL source statements. TACPOL statements
may be written in free form in columns 1-80. The
default option are card columns 2-72. The com-
piler recognizes the termination of a statement by
the semicolon which must appear at the end of
each statement e.g. A = Z;. Therefore, there
may be several statements on one card, one state-
ment to a card, or one statement extending over
several cards. Because TACPOL may be written
in free form and because of the nature of the
language itself, the TACPOL program listing may
serve as the program documentation. Thus, it is
most advantageous to comment extensively and
to format the source statements clearly and con-
sistently. In addition, since a programmer defined
name may be any length, highly descriptive
names (often literally the name intended, such as
ROUNDSAVAILABLE) may be chosen which
will help make the meaning of the program more
apparent. Figure FO-1 illustrates a TACPOL cod-
ing form.

2-3. Character Set

There are 50 characters in the TACPOL lan-

guage. These include: the English letter alphabet

of 26 characters; the ten Arabic numerals 0-9 and
special characters in the following chart.

NAME CHARACTER
plus sign +
minus sign -
asterisk *
virgule /

left parenthesis (

right parenthesis)

equal sign =
point or period

comma ,

semicolon ;

colon

single quotation mark
(apostrophe) !
dollar sign $

space (blank) no character

other mark " any character other
than the above
which may only be
used in character
strings and com-

ments

2-4. The colon may also be represented by two
periods in sequence (..) and a semicolon may be
represented by a comma followed by a period (,.).
The representation ** denotes expouentiation
(X**2 means X°). Imbedded blanks are not per-
mitted in any such character combinations. The
following rules apply to the use of blanks (or
spaces) in TACPOL.:

a. No embedded blanks are permitted within
any symbol except character strings or comment
strings.

b. Blanks are permitted in character strings;
however, they will be counted as part of the
string. ‘

c. Blanks are not permitted within bit strings.

d. A blank is required to separate any two
adjacent symbols, when the first symbol begins

2-1

W OFUe I T i oo §

with a letter and the second symbol begins with a
letter or digit.

e. Otherwise blanks may arbitrafily appear.

/- Whenever one blank is required or permit-
ted to appear, any number of blanks are arbitrar-
ily permitted to appear.

g Whenever one blank is required or permit-
ted to appear, comments are permitted to appear.

2-5. Comments

Comments are permitted wherever blanks are
allowed or required in a program. They may be
punched into the same cards as statements, in-
serted between statements, or appear in the mid-
dle of statements without affecting the program.
The character pair /* indicates the beginning of a
comment and the same characters reversed */
indicate its end. No blanks or other characters
can separate thesc two characters: the virgule and

the asterisk must be immediately adjacent. The
comment itself may contain any characters ac-
ceptable to the hardware except the */ combina-
tion which would be interpreted as terminating
the comment. Examples are shown below.

/* COMMENTS SUCH AS THIS */
/* MAY BE SPREAD OVER */

/* SEVERAL CARDS HOWEVER IT
Lok

/* IS RECOMMENDED THAT /**/

/* PAIRS BE PUT ON EACH CARD
*/
TO AVOID UNINTENTIONAL
ERRORS --
FOR EXAMPLE IF THIS LAST

CARD
IS REMOVED */

Section 1. CONCEPTS AND ORGANIZATION

2-6. General

The purpose of this section is to familiarize the
reader with the terminology and concepts of the
TACPOL language.

a. Values. The basic unit of information in
TACPOL is the value. There are four types of
values: short numeric, long numeric, character
string, and bit string. Short numeric and long
numeric values are binary representations of
riumbers or numeric data. Short numeric values
are represented in 31 bits or less, and long nu-
meric values are represented in 62 bits or less, not
including the sign. A character string value is a
binary representation of a group of ASCII coded
characters. A bit string value is a sequence of bits.

b. Literals. A literal is an explicit (‘literal’)
representation of a value.

c. Quantities. Values are assigned to and held
in quantities. A quantity can yield (produce a
copy of) the value it is currently holding. There-
fore a quantity is a unit of storage for values.

There are four types of quantities corresponding
to the four types of values: short numeric, long
numeric, character string, and bit string. A quan-
tity of a given type may be assigned, hold, or
yield only values which are of the same type as
the quantity itself. For example, a character string

2-2

quantity may be assigned, hold, or yield only
character string values. Furthermore, the type of
a quantity and the type of a value are explicitly
defined and no automatic conversions are per-
formed to ensure that the types match during
assignment. Attempts to store character string
values, for example, in a bit string quantity will
result in an error at compilation time. There are
ways of redefining attributes from one type to
another. See Redefinition Attribute Procedures in
Appendix A.

d. Symbols. Symbols are the elementary con-
stituents of TACPOL. A symbol is a single char-
acter or set of characters which have the effect of
a single character. Operators, particles and identi-
fiers are comprised of symbols.

e. Operators. Operators are symbols which
specify operations to be performed on values. The
arithmetic operators consist of the multiply and
divide operators * and /, the addition and sub-
traction operators + and -, the exponentiation
operator **, and the arithmetic operators for long
operations (*), and (**). The relational operators
are EQ (or =), NE (or1 =), GT (or >), GE (or >
=), LT (or <) and LE (or < =). The logical
operators are AND (or &), OR (or I) and NOT (or
7). The string operators are CAT (orn) and
SUBSTR (or §).

[- Particles. Particles are symbols which are the
‘key words’ of the TACPOL language. The parti-
cles are listed and briefly defined in Appendix B.
Examples of particles are: GOTO, DO, IF, CALL,
READ, and WRITE.

g. Identifiers. ldentifiers are symbols which
scrve as names for programmer defined quanti-
tics. An identifier can be from one to any number
of characters in length. However, if more than
cight characters are used for an identifier, the
compiler will use only the first five and the last
three characters for the identifier. Care must be
exercised not to produce a compiler error for
duplicate identifiers.

EXAMPLE: UNDERRATE

UNDERSTATE

If both names in the example were to be
used as identifiers, the first five and last three
characters would be obtained by the compiler.
Both would produce UNDERJRATE and a dupli-
cate identifier would be detected by the compiler.

Rules of identifiers:

(1) The first character of an identifier must
be a letter.

(2) Identifiers may not contain imbedded
blanks.

(3) No identifier may be identical to any of
the reserved words shown in table 2-1.
h. Declarations, Attributes and Names. Decla-
rations, attributes and names are defined in the
following paragraphs.

(1) Declarations associate names with and/
or define characteristics of quantities, sets of
quantities, values, procedures and conditions.

(2) Attributes describe the characteristics of
the data to be used. These are numeric (BIN
FIXED), character (CHAR), bit (BIT) and value
(INIT).

(3) Names are used to identify procedures,
points and quantities within the program to which
reference is made in TACPOL statements. All
names must be defined by some means within a
program.

i. Sequence of Execution, Transfer of Control,
and Invocation. The order in which the statements
of a program are written specifies the sequence of
execution of those statements. When a statement
specifies that control is to ‘jump’ to some point in
the sequence of execution other than the state-

USACSCS-TF-4-1

mcnt immediately following in line, then control
is said to be ‘transferred’, and the point to which
it is transferred must be denoted by a name (a
‘point name’). A procedure is said to invoke (call
forth) another procedure by transferring control
to the first instruction of the second procedure.
This invoked procedure will later return control to
the invoking procedure at the conclusion of the
opcration of the invoked procedure.

Table 2-1. TACPOL Reserved Word List

ABS DO LETTER REP
ACOS B LN | _RETURN..
ALIGNED ELSE--- LOAD REWIND
AND ~“END. . - LOG REWRITE
ASIN - “ENDFILE LONG ROUND
ATAN ENTRY-— | LT s
B 17 EXP ER MAX SCALE
BACK FILE MIN SHORT
BEGIN FIXED MOVE SIGN

TBIN ForL NE SIN
BIT FROM NOKEY SPACE
BOOL GE NOPART SQRT
BY GOTO... NOT SUBSTR
CALE— | GT OLD SWITCH
CAT P ON THEN .
CELL 1" IGNORE OPEN" TO
CHAR INIT OR ¢ TRUNC
CHECK INPUT OUTPUT UNWIND
CLEAR INTO PACKED UPDATE
CLOSE KEEP PASS VALUE
CODE KEY PROC -~ WAIT
CoS L T QTRN WHILE
DCL LABEL READ WRITE
DELETE LE REM ZDIV
DIGIT

20083-1

2-7. Program Structure

A TACPOL program system has certain constit-
uents. Values from quantities and literal values
are combined to form expressions. Particles and
expressions are combined to form larger expres-
sions and statements. Statements are combined to
form procedures and blocks. Procedures, blocks
and other statements may be contained in an-
other procedure or block. A procedure which is
not contained in any other procedure is a pro-
gram. One or more programs form a programmed
system.

2-8. Language Structure

The elements described above are used to con-
struct programs in TACPOL. The language is
divided into two major categories:

USACSCS-TF-4-1

a. Declarations. Used to associate names with
quantities, values and procedures, to define char-
acteristics for quantities, values, procedures and
conditions, and to determine their scope of defi-

nition. In TACPOL the scope of definition is

where a name is known and usable.” All program
declarations are made prior to the execution of
program statements.

(1) Data declarations
(a) Simple scalar
(b) Simple array
(c) Group
(d) Table
(e) Cell
(f) Value
(2) Procedure declarations
(a) Proper procedures
(b) Function procedures
(3) C ondition declarations
(4) File declarations

b. Statements. Used to specify the execution of
the operations permitted in TACPOL.

(1) Process statements
(a) Assignment

24

(b) CALL
(¢) GOTO
(d) IF

(e) DO

(f) Null

(2) Input/output statements

(a) OPEN
(b) CLOSE
(c) READ

(d) WRITE
(e) REWRITE
(f) DELETE
(g) SPACE

(h) REWIND
(i) UNWIND
(j) WAIT

(k) LOAD

(1) ON

(3) Blocks

(a) BEGIN
(b) CODE

USACSCS-TF-4 -1

CHAPTER 3
DATA TYPES

Section |. NUMERIC AND STRING DATA

3-1. General

There are two general types of data in
TACPOL: numeric and string. Numeric data are
fixed point representations of numbers. String
data are sets of alphanumeric and special charac-
ters or patterns of binary digits.

3-2. Numeric Data

A numeric quantity is one which holds a num-
ber. In TACPOL, fixed point decimal numbers
are converted and manipulated as their binary
fixed point equivalents. For example, the decimal
number 6.5 will be represented in fixed point
binary as 110.1. If the number 6.5 were used as a
literal in an expression, TACPOL would reserve a
specific number of bits for the number and as-
sume a binary point. The total number of bits
reserved excluding the sign is called the precision.
The scale factor represents the number of binary
places the binary point is shifted from its as-
sumed position immediately to the right of the
rightmost bit. A positive scale factor represents a
binary point shift to the left and a negative scale
factor represents a binary point shift to the right.
Thus, the mixed decimal number 13.25 can be
represented in fixed point binary as
1101.0100000, which has a precision of 11 and a
scale factor of +7.

a. Values in which the binary point falls out-
side the precision can also be represented. For
example:

(1) 0.00111 appears as 111 when the preci-
sion is 3. The scale factor represented (in this
case) is 5.

(2) 11100 appears as 111 when the preci-
sion is 3, and the scale factor represented (in this
case) is -2.

b. When declaring numeric quantities it is
desirable to know what the range of the binary
values of the quantity will be. To determine the
precision and scale factor of the fixed point bi-

nary equivalent of any fixed point decimal such
as 1,300.333:

(1) Multiply 3.322 by the number of deci-
mal digits to the right of the decimal point (which
is 3 in the example) and round the product
(9.966) to the next integer (10) resulting in the
scale factor 10.

(2) From the table of integer precision (re-
fer to Appendix C table C-1) find the number of
bits required to contain the number to the lefi of
the decimal point (1300 in the example); add the
number of bits required from table C-1 (11) to
the scale factor (10), resulting in the precision 21!
bits, which is required to contain the entire num-
ber.

c. Short Numeric Data. Short numeric quanti-
ties are those with a precision of 1 to 31 bits
(inclusive) and a scale factor between -127 and
+127.* The: maximum decimal number which
may be represented in short numeric form is
2,147,483,647. .

d. Long Numeric Data. Long numeric quanti-
ties are those with a precision of 32 to 62 (inclu-
sive) and a scale factor between -127 and -
+127.**

3-3. String Data

A string is an ordered sequence of characters or
bits that is treated as a single value. The length of
the string is the number of characters or bits it
contains.

a. Character String Data. A character string
can include any digit, letter, or special character

*In the TACPOL implementation a precision of 8 will be
assigned when a precision of 1 to 7 is specified; a precision
of 15 will be assigned when a precision of 8 to 15 is speci-
fied and a precision of 31 will be assigned when a precision
of 16 to 31 is specified. When a precision of 1 to 7 is speci-
fied, the field is treated as an eight bit unsigned quantity.

**In the TACPOL implementation a precision of 62 will be
assigned when a precision of 32 to 62 is specified.

31

USACSCS-TF-4-1

acceptable to the hardware. Any blanks or com-
ments included in the character string are consid-
ered an integral part of the string and such char-
acters are included in the count of the length. The
maximum length character string allowed is 512.

b. Bit String Data. Bit strings can include only
ZEROS and ONES. No blanks or comments are
allowed in bit strings. The maximum length bit
string permitted is 32.

3-4. Attributes of Data Types .

When a quantity is declared, an attribute must
be assigned which describes the characteristics of
the data. Therefore, short numeric, long numeric,
character and bit data types each have an attri-
bute which describes the data the quantity is to
hold.

a. The attribute which describes short numeric
data is BIN FIXED. The BIN (binary) attribute
specifies that binary representation of decimal
values is intended. The FIXED attribute specifies
that the variable is to represent fixed point data
items.

b. The attribute which describes long numeric
data is also BIN FIXED. Lo~g numeric merely
specifying a numeric quantity which will occupy
from 32 to 62 bits.

c. The attribute CHAR is used to describe a
quantity that is to hold character string data. A
quantity thus defined can only be used in charac-
ter string operations.

d. The attribute BIT is used to describe a
quantity that is to hold bit string data. A quantity
thus defined can only be used in bit string opera-
tions. '

3-5. Literal Notation

There are many instances when the explicit
notation of a value has to be used in coding a
problem. The explicit notation is known as a
literal. Each of the data types can be expressed as

. a literal in one of the available declarations and

in many of the available statements.

a. Short Numeric Literal. To express a short
numeric literal the value is written as a decimal
number. The literal may be an integer, a fraction
or a mixed number (part integer, part fraction). A
decimal point must always be followed by a num-
ber. Examples of short numeric literals:

4753
325
56.7

b. Long Numeric Literal. A long numeric lit-
eral is written in the same manner as a short
numeric literal except that the letter L must fol-
low the literal. Examples of long numeric literals:

6576213L

.00868L
45.775L

¢. Character String Literal. A character string
literal is expressed by writing out the desired
characters with the string enclosed in single
quotes. Any allowable character may appear
within the string. A maximum of 512 characters
may appear in a single character string. Examples
of character string literals:

’ABCDE’
'FFA 45’
/**(;

d. Bit String Literal. A bit string literal is
expressed as a series of binary digits (ONEs and
ZEROs), enclosed in single quotes and followed
by the letter B. A maximum of 32 binary bits can

appear in a bit string. Examples of bit string
literals: :

’10001'B
'I'B
000000000000000G000000000000001 1B

Section Il. ALLOCATION OF QUANTITIES

3-6. General

The allocation of quantities is a function of the
quantity type, its size, and whether it is aligned or
packed.

3-7. Aligned Quantities
A quantity is said to be aligned when it is

3-2

allocated storage such that the time required to
access that quantity is minimized. In TACPOL,
simple scalars and arrays are normally aligned.
An override is available for arrays to change the
allocation to packed. Table 3-1, on the following
page, illustrates the allocation of aligned quanti-
ties by quantity type (short numeric, long nu-
meric, character and bit).

3-8. Packed

A quantity is said to be packed when it is
allocated storage such that the use of internal
storage is minimized. In TACPOL, groups, tables

Quantities

USACSCS-TF-4-1

and cells are normally packed. An override is
available to change each of these allocations to

Table 3-1. Allocation of Aligned Quantities

aligned. Table 3-2, on the following page, illus-
trates the allocation of packed quantitics by
quantity type.

Precision Aligned Size Remainder

or to of Filled Access
Type Length Next Allocation Justified With Class
A. SIMPLE SCALARS
Short 1-31 Fullword Fullword Right Sign bits Fullword
Long 32-62 Fullword 2 Fullwords Right Sign bits Doubleword
Bit 1-32 Fullword Fullword Left Zero bits Fullword
Char 1-512 Fullword n Fullwords Left Char. blanks Muluword
B. GROUP SCALARS, TABLE SCALARS
Short 1-7 Quarterword Quarterword Right Sign bits Haltword
Short 8-15 Halfword Halfword Right Sign bits Halfword
Short 16 - 31 Fullword Fullword Right Sign bits Fullword
Long 32-62 Fullword 2 Fullwords Right Sign bits Doublewnrd
Bit 1-16 Halfword Halfword Left Zero bits Halfword
Bit 17-32 Fullword Fullword Left Zero bits Fullword
Char 1-2 Halfword Halfword Left Char. blanks Halfword
Char 3-512 Fullword n Fullwords* Left Char. blanks Multiword
C. SIMPLE ARRAYS, GROUP ARRAYS, TABLE ARRAYS
Short 1-7 Quarterword Quarterword Right Sign bits Quarterword
Short 8-15 Halfword Halfword Right Sign bits Halfword
Short 16 - 31 Fullword Fullword Right Sign bits Fullword
Long 32-62 Fullword 2 Fullwords Right Sign bits Doubleword
Bit 1-16 Halfword Halfword Left Zero bits Halfword
Bit 17-32 Fullword Fullword Left Zero bits Fullword
Char 1-2 Halfword Halfword Left Char. blanks Halfword
Char 3-4 Fullword Fullword Left Char. blanks Fullword
Char 5-512 Fullword n Fullwords* Left - Char. blanks Multiword
NOTES:
* n = (number of characters +3)/4

20083-2

33

USACSCS-TF-4-1

Table 3-2. Allocation of Packed Quantities

Precision Aligned Size Remainder
or to of Filled Access
Type Length Next Allocation Justified Witli Class
A. GROUP SCALARS, TABLLE SCALARS
Short 1-7 Quarterword Quarterword Right Sign bits" Quarterword
Short 8-15 Haltword Halfword Right Sign bits Halfword
Short 16 - 31 Fullword Fullword Right Sign bits Fullword
Long 32-62 " Fullword 2 Fullwords Right Sign bits Doubleword
Bit 1-32 Bit* n Bits ! Left Zero bits Packed Bit
Char 1-512 Byte n Bytes | Left Char. blanks Multiword
b. SIMPLE ARRAYS, GROUP ARRAYS, TABLE ARRAYS
Short 1-7 Quarterword Quarterword Right Sign bits Quarterword
Short 8- 15 Haltword Halfword Right Sign bits Halfword
Short 16 - 31 Fullword Fullword Right Sign bits Fullword
Long 32-62 Fullword 2 Fullwords Right Sign bits Doubleword
Bit 1-16 Bit** n Bits | Left Zero bits Packed Bit
Bit 17-32 Fullword Fullword Left Zero bits Fullword
Char 1-512 Byte n Bytes | Left Char. blanks Multiword
NOTLS:
* If the next ficld would cross a fullword boundary, that field is aligned
to the fullword boundary.
** It an element in the array would cross a fullword boundary, that element
is aligned to the start of the next fullword.
1 =
n = length.
20083-3

USACSCS-TF-4-1

CHAPTER 4
DECLARATIONS

Section 1. SCALAR AND ARRAY DECLARATIONS

4-1. Scalar Declarations

Scalar declarations define a name, or a list of
names, and assigns a literal type to the name(s).
The literal types assigned are short numeric, long
numeric, character or bit.

a. Short Numeric Scalars. Short numeric sca-
lars define a quantity whose binary representation
of a decimal value will occupy 31 bits or less.

EXAMPLE: DCL NUMBI BIN FIXED
(31,2);

(1) All declarations (except the condition
declaration) start with the particle DCL (declare).
Following the particle is an identifier (name)
selected by the programmer which identifies the
quantity. Following the identifier is the attribute
for short numeric quantities, BIN FIXED. The
attribute is followed by the precision and scaling
specification enclosed in parentheses. The first
number states the total number of bits the quan-
tity is to occupy. The second number specifies the
number of fractional bits. The numbers are sepa-
rated from one another by a comma. In the above
example, the quantity NUMBI is defined as a
short numeric quantity, 31 bits in length of which
2 bits are for fractional representation. Note that
according to the rules of blanks, a space must
‘always be used to separate the particle DCL, the
quantity name, and the attributes BIN and
FIXED. A blank space may or may not be used
following the attribute for the precision and scal-
ing specification.

(2) All declarations and all statements in
TACPOL are terminated by a semi-colon. Two
default options are available for short numeric
scalars. If the precision and scaling specification is
omitted from the declaration it will be assumed
31,0. The quantity is assumed to be 31 bits in
length with no fractional bits (see the example
below).

DCL NUMB?2 BIN FIXED;

(3) The other default option available is to

include the precision specification and omit the
scaling specification as in the example below.

DCL NUMB3 BIN FIXED (15);

The precision specification in the above example
specifies a quantity 15 bits in length. Since the
scaling specification has been omitted it is as-
sumed to be ZERO, therefore no fractional bits
are assigned the quantity. All other attributes
must be specifically stated.

b. Long Numeric Scalars. A long numeric sca-
lar is essentially the same as a short numeric
scalar with the exception that the precision speci-
fication will be not less than 32 and not greater

than 62.
an 'EXAMPLE: DCL FOX BIN FIXED
(47,8);

(1) In the above example the quantity FOX
is defined to be 47 bits in length of which eight
bits are for a fractional portion. The particle and
the attribute are the same as for short numeric.
The only default option available is the scaling
specification. If it is omitted it is assumed that no
fractional bits will be assigned to the quantity.

EXAMPLE: DCL BEAR BIN FIXED
(52);

(2) In the above example all the bits speci-
fied by the precision specification are integer bits.

c. Character Scalars. A character scalar will
have the CHAR (character) attribute and a length
specifier.

EXAMPLE: DCL C CHAR (51);

The declaration specifies that the quantity with
the identifier C is to be a character string quantity
51 characters in length. A character string is
assigned from left to right. If a character string
value longer than the declared length of the
quantity is assigned to the quantity, the excess
characters are truncated on the right. If shorter,
the value on the right is padded with blank

4-1

USACSCS-TF-4-1

spaces. The maximum length character string
quantity allowed is 512 characters.

d. Bit Scalars. Bit scalars have the BIT attri-
bute and a length specifier.

EXAMPLE: DCL B BIT (15);

The quantity with the identifier B is specified as a
bit string quantity 15 bits in length. Like charac-
ter strings, bit strings arc assigned to quantitics
from left to right. If a string is long that the
length declared for the quantity, the rightmost
bits are truncated; if shorter, padding on the right
is with ZERO bits. The maximum length of a bit
string quantity allowed is 32 bits.

e. Scalar Lists. It is possible to code a scalar
declaration with more than one identifier appear-
ing in the declaration.

EXAMPLE: DCL (FOX, BEAR, RAB-
BIT) CHAR (4);

In the above example three identifiers appear in
the declaration. This is an identifier list and must
appear enclosed in parentheses. All three identi-
fiers are assigned the same attribute, character,
and the same length (four characters). As many
names as necessary may appear in the list. A
scalar declaration containing lists of identifiers
may be used for short numeric, long numeric,
character and bit operations. All names within the
lists will have the same attributes. Each identifier
in the list is separated from the following identi-
fier by a comma.

4-2. Array Declarations

An array declaration is used to assign a name
to a quantity when the quantity is a block of
storage. The declaration gives the block storage
area dimension. As such, one dimensional, two
dimensional and three dimensional arrays can be
declared. The declaration specifies the name, stor-
age area length and the length of the data.

a. One Dimensional Array. A one dimensional
array is declared as in the example below:

EXAMPLE: DCL BROWN (5) BIN FIXED
(24,12);

The particle DCL is followed by an identifier
selected by the coder. In the example above the
array name is BROWN. Following the identifier
is a subscript, enclosed in parentheses, which
contains the number of quantities within the ar-
ray. Following the subscript is an attribute. In the
above example the short numeric attribute is
used. Long numeric, character and bit attributes

4-2

can also be used. Thus, the above declaration

. declares the one dimensional array named

BROWN, containing five quantities, each quan-
tity is short numeric, 21 bits in length, 12 of the
bits are fractional. When a quantity has been
defined that has dimension, the name of the
quantity can be subscripted. Later on in a pro-
gram, when array BROWN is referenced by
TACPOL statements, individual quantitics within
the array can be specified such as BROWN(I),
BROWN(2), BROWN(3), etc. There is no limit to
the number of quantities which can be included
in an array except that of the computer storage
physically available to hold the information.

b. Two Dimensional Array. A two dimensional
array is a set of one dimensional arrays. A two
dimensional array is coded similar to a one di-
mensional array with the addition of a second
dimension in the subscript that follows the array
name.

EXAMPLE: DCL BLACK(6,3) BIT(32);

In the above example an array named BLACK
has been declared with an attribute of BIT. Each
quantity within BLACK can hold a bit string of
32 bits. The subscript indicated there are six
quantities of BLACK in the first dimension and
three quantities of BLACK in the second dimen-
sion. The total number of quantities in the array
is 18. To obtain this number multiply the number
of the first dimension by the number of the sec-
ond dimension. Figure 4-1 illustrates how the
array BLACK would be apportioned in internal
memory. Note that dimension two is cycled
through completely before dimension one is step-
ped by one. Later on in a program, when array
BLACK is referenced by TACPOL statements,
individual quantities within the array may be
specified by following the array name with a
subscript containing the desired quantity, i.e.
BLACK(1,1), BLACK(2,3), BLACK(3.3), etc.

c. Three Dimensional Array. Another dimen-
sion may be added to an array declaration to
form a three dimensional array.

EXAMPLE: DCL BLUE(4,3,2) BIN
FIXED(31,0);

In the above example the declared array, BLUE,
is a three dimensional array because three values
appear within the subscript. BLUE will contain
room for 24 short numeric quantities (dimension
one times dimension two times dimension three).
Three dimensions are the maximum allowable
within an array declaration. Figure 4-2 illustrates

how the array BLUE would be allocated in intcr-
nai memory. For threc dimensional arrays, di-
mension three is cycled through completely before
dimension two is stepped by one and dimension
two is cycled through completely before dimen-
sion one is stepped by one. Later on in a pro-
gram, when array BLUE is referenced by
TACPOL statements, specific quantities within
the array may be referenced through the array
name followed by an appropriate subscript; i.e.
BLUE(1,2,1), BLUE(3,3,2), BLUE(4,1,2), etc.

DIMENSION 1

(‘ DIMENSION 2

W OW oW W NN NN NN e
wWow NN
—

44-49-006

Figure 4-1. Two Dimensional Array

4-3. Array Allocations

When arrays are allocated they are established
according to the rules of aligned quantities (see
chapter 3). The coder may change the normal
aligned allocation for arrays to a packed alloca-
tion by using the packed option in the array
declaration. :

USACSCS-TF-4-1

EXAMPLE: DCL GREEN(5,5) CHAR(4)
PACKED;

In the above example, the allocation of the two
dimensional array GREEN is changed from the
normal aligned allocation to a packed allocation
because the PACKED option has been specificd
in the declaration. When used, the particle
PACKED must follow the attribute in the decla-
ration.

--——— -— DIMENSION 1
~~———— DIMENSION 2
l»‘———— DIMENSION 3
111
112 '
121
122
31

=W
-

w
w
-

44-49-004
Figure 4-2. Three Dimensional Array

Section Il. GROUP, TABLE AND CELL DECLARATIONS

4-4. General

Collections of quantities may be declared by
group, table or cell declarations. Quantities may
be grouped and declared under a single operation

in a group declaration. Identical structures, with
dimension, may be declared in a table declara-
tion. Cell declarations are used to declare differ-
ent quantities which occupy the same storage

43

USACSCS-TF-4-1

areas to conserve storage. Group, table and cell
declarations are made using two or more levels.
The levels serve to define the name of the group,
table or cell and then to define the specific quanti-
ties within the group, table or cell.

4-5. Group Declarations

Group declarations make it possible to define a
group of names under the heading of a single
name. The declaration contains two levels. The
first level is the definition of the group name. The
second level contains a list of names (identifiers)
all of which will belong to the group.

a. Group Definition. In the example below, the
first level is specified by the number one and the
group name, OBB, is declared. The second level is
specified by the number 2 and on this level all
quantities of the group are declared. Since level
two is considered to consist of a list of quantities,
the list must be enclosed in parentheses. The list
may contain all scalars, all arrays or a mixture of
both (the example shows two scalars, one one
dimensional array and one two dimensional ar-
ray). Attributes may also be mixed within the list
(the example shows three BIT attributes and one
short numeric). The scalars and/or arrays de-
clared in the list are separated from one another
by a comma. The group declaration is terminated
by closing level 2 (right parenthesis) followed by
a semi-colon.

EXAMPLE: DCL 1 OBB,

2(P23 BIT(32),
LLI BIN FIXED,
Z15(5) BIT(32),
724(4, 2) BIT(32));

In the group declaration five declarations have
actually been made. The group name OBB has
been declared, the two scalars P23 and LL1, and
the two arrays, Z15 and Z24. Figure 4-3 illus-
trates how the group will be allocated in internal
memory. Note that storage is assigned in the
order in which the declarations have been made.
Later on in a program, when TACPOL statements
make references to the declared quantities, the
entire group can be referenced by using the group
name, the scalars can be referenced by using the
scalar names and the arrays can be referenced by
using the array names with appropriate sub-
scripts. When using the group name a single
subscript may follow the name to denote an indi-
vidual quantity, i.e. OBB(2), OBB(6), etc. The
scalar names may not be subscripted (they do not
have dimension).

4-4

AR

P23

Z15(1)

2152
21508

215(4)

Z15(5)) l
224(1,1)

224(1,2)

2242,D

2242,2)

Z243,1)

2243,2)

224(4,1)

2244,2)

44-49-003
Figure 4-3. Group Layout

b. Group Allocation. Group declarations nor-
mally have an allocation of packed. All level 2
quantities assume the allocation of the level 1
identifier. Thus, all the quantities within the pre-
vious example have an allocation of packed even
though arrays are normally aligned (See Chapter
3). It is possible to change the allocation for a
group declaration by using the ALIGNED option.

DCL 1 METAL ALIGNED,
2 (STEEL CHAR (6),
IRON CHAR (2),
TIN (10) BIT (32));

By using the available ALIGNED option in the
above example all level 2 quantities are now
assigned an allocation of aligned. The option
must be specified on level 1 immediately follow-
ing the group name. The option may never be

sgeciﬁed with any level 2 declaration. The limit of
the quantities that can be included in a group

declaration is the computer storage physically
available to hold the information.

4-6. Table Declarations

EXAMPLE:

Table declarations are similar to group declara-
tions when it comes to coding but table declara-
tions use a repeat factor which gives the table
dimension.

a. Levels. Table declarations contain two lev-
els; the first level declaring the table with the
repeat factor and the second containing a list of
names, all of which will belong to the table. The
list of names may contain scalars, arrays, or both.

EXAMPLE: DCL 1 EMPL(3),

2 (ARGU BIN FIXED,
STAT BIN FIXED.
PI2(4) CHAR(4));

On the first level, specified by the number 1, table
EMPL is declared along with a repeat factor. The
repeat factor stipulates how many times the sca-
lars and/or arrays within the table declaration are
to be repeated. In the example the two scalars
will each be repeated three times and the -array
will also be repeated three times. Figure. 4-4
illustrates how this table will be allocated in
internal memory. Note that the table will be
comprised of three parts referred to as EMPL(1),
EMPL(2) and EMPL(3). Each part is identical in
makeup consisting of the scalar ARGU
(ARGU(1), ARGU(2) and ARGU(3)), the scalar
STAT (STAT(1), STAT(2) and STAT(3)) and the
array P12. When an array appears in a table
declaration the repeat factor adds a dimension to
the array with the repeat factor becoming dimen-
sion one. Thus, when an array appears in a table
declaration a one dimensional array becomes a
two dimensional array (as in this example), a two
dimensional array becomes a three dimensional
array and a three dimensional array becomes a
four dimensional array. Later on in a program,
when TACPOL statements reference the declared
quantities, the entire table can be referenced by
the table name, a part of the table can be refer-
enced by subscripting the table name, or individ-
ual scalars and arrays can be referenced by their
names with appropriate subscripts. Note that at-
tributes can be mixed within the declaration

(short numeric and character are illustrated) and

that the coding of the table declaration follows
the same rules as for group declarations.

b. Table Allocation. A table normally has an
allocation of packed. All level 2 quantities assume
the allocation of the table. ARGU, STAT, and
P12 in the previous example all have an allocation
of packed. This allocation can be changed by
using the ALIGNED option which is available to
table declarations.

EXAMPLE: DCL 1 TABLESOF (2) ALIGNED,
2 (LOGS (10) BIN FIXED,
SINES (10) BIN FIXED,
COSINES (10) BIN FIXED,
TANGENTS (20) BIN
FIXED);

USACSCS-TF-4-1

In the above example the ALIGNED option ap-
pears on level 1 immediately following the repeat
factor. All level 2 quantities now assume the
allocation specified on level 1. An option may
never be specified with any level 2 declaration.
The limit of the quantities that can be included in
a table declaration is the computer storage physi-
cally available to hold the information.

4-7. Cell Declarations

Cell declarations contain lists of quantities, in
scalar, array, group or table form, which are
allocated common storage. In effect, cell declara-
tions are used to overlay areas of storage to
conserve space. This common memory storage
factor is unique to the cell declaration.

a. Levels. A cell declaration consists of 2 or 3
levels. The first level specifies the cell name and
the cell declaration. The second level specifies an
array, scalar, table or group declaration. The third
level specifies the quantities of a table or group if
level two is a table or group declaration.

EXAMPLE: DCL | MEMBR CELL,
- 2 (ARMM@4),

3 (GEL BIT(32),
EETO CHAR(4),
WARN(3), BIN FIXED(31,10)),
DISCO,

3 (LIGN BIN FIXED(62,8),
PANEL(2,4) BIT(32)));

In the above example, the first level (specified by
the number one) declares a cell by the name of
MEMBR. The particle CELL must always imme-
diately follow the cell name. Level two (specified
by the number two) starts a list of names so a
parentheses must be opened. In the above exam-
ple the table ARMM is declared on level 2. A
table can consist of scalars and/or arrays; so on
level three the constituents of the table are listed.
The number 3 specifies the third level and a
parentheses is opened to start the list. The table
consists of the scalars GEL and EETO and the
array WARN. Following the definition of WARN
the third level is closed by a right parenthesis
which puts the declaration back on level 2. The
group DISCO is now declared on the second level.
Following this declaration are the constituents of
the group which are declared on level three. Since
level three was closed, the number three must
appear again denoting the start of level three and
the parentheses must be opened. The scalar
LIGN and the array PANEL are declared on this

4-5

USACSCS-TF-4-1

ARCU(L)

STAT(D

Pl2cl, b
EMPc S
Pl

Pl1201,3

Pl201,4)

ARGU(2)

STAT(2)

P12(2, 1)
EMP(2)

P122,2)

Pl2(2,3)

Pl2(2,%

ARGU(3)

STAT(3)

P12(3,1D
EMP(3

P12(3,2)

P12(3,3)

P1l23,4

44-49-002

Figure 4-4. Table Layout

level as being part of group DISCO. When the
declaration is concluded, both levels three and
two must be closed by right parentheses. The
effect of the cell declaration is to overlay all level
two quantities. Thus, the table ARMM and the
group DISCO share the same starting internal
memory address. An illustration of the overlay is
presented in figure 4-5. Table ARMM occupies
more space than group DISCO so only part of
internal memory is actually overlayed. Later on in
a program, when TACPOL statements reference
the declared quantities, the table MEMBR, or any
part of MEMBR, the scalars GEL and ETOO,
and the array WARN may be referenced by
name and an appropriate subscript. The group
DISCO, or any part of DISCO, and the array
PANEL may be referenced by name and appro-

priate subscript, and the scalar LIGN may be
referenced by name. The cell name is never refer-
enced by name in any statement. The cell name is
used by the compiler as a definition of a common
storage area. A ccll declaration need not contain
three levels.

The effect of the above example is to overlay a
single word of internal memory with three scalars
of different attributes. All the scalars are level two
declarations and, as such, are overlayed. WATER
can be used for arithmetic operations, COFFEE
for character string operations and TEA for bit
string manipulations.

EXAMPLE: DCL | LIQUID CELL,

2 (COFFEE BIN FIXED,
TEA CHAR (4).
MILK BIT(32));
b. Cell Allocation. Cells normally have an allo-
cation of packed. All level 2 and level 3 declara-
tions assume the allocation of level 1. The alloca-

tion may be changed by using the ALIGNED
option (see Chapter 3).

EXAMPLE: DCL 1| LIVE CELL ALIGNED,
2 (REAL.
3 (ACTUAL (7. 5) BIN
FIXED (62,0)).
SUBSIST (5),
3 (DWELL BIN FIXED
(31,0),
RESIDE (8) BIN FIXED
GL0)):
In the above example the group REAL and the
table SUBSIST are overlayed. The quantities
within the group and the table are aligned be-
cause the ALIGNED option appears on level 1
immediately following the particle CELL. The
option may not appear next to any level 2 or level
3 declarations. The limit of the quantities that can
be included in a cell declaration is the computer

storage physically available to hold the informa-
tion.

USACSCS-TF-4-1

GEL(D) . AN \\ N \ .
a N >LIGN
EETO(L) N o N 1
N N N
ARMM(1) < WARN(1, 1) AN SO - N PANEL(1, 1)
WARNCL, D) | \\\ RN PANEL(1,2)
~ N
([WARN(1,3 AN NN \ PANEL(1,3)
. . - DISCO
GEL(2) AN N, OVERLAY NI PANEL(1,4)
EETO(2) N \ N N PANEL(2, 1)
y N RN
ARMM(2) WARNC2, D) |\ NN N PANEL(2,2)
WARN(2, 2) RN PANEL(2,3)
N N
WARN(2,3) N PANEL(2,4))
GELLD)
EETO3)
ARMM(3) WARN(3, 1)
WARN(3,2)
WARN(3, 3)
GEL)
EETO(4)
ARNIM(4 WARN(4, 1)
WARN(4, 2)
([WARN4,3)
44-49-001

Figure 4-5. Cell Layout

Section Ill. VALUE DECI.ARAfIONS

4-8. General

Scalar quantities may be assigned values at the
same time as they are declared. When this occurs,
the declaration is called a value declaration.

4-9. The value declaration requires the attribute
INIT following the type attribute.

EXAMPLE: DCL APT2 BIN FIXED (15,
1) INIT (100.5);

Following the attribute INIT is the value, in
correct literal form, enclosed in parentheses. In
the above example, APT2 is not only declared as
short numeric, but the value 100.5 is assigned to
APT2. One very important rule of value declara-
tion must always be followed. Once a name has

been declared in a value declaration, the value
assigned that name may never be changed.

a. Other examples of value declarations are:
(1) Long numeric:

DCL LNUM BIN FIXED (45, 5) INT
(45007.125L);

(2) Character:

DCL CSTR CHAR (6) INIT ('X-
Y473B’),

(3) BIT:
DCL BSTR BIT (7) INIT (*1110001’B);

b. Value declaration may not appear as part of
group, table or cell declarations.

4-7/(4-8 blank)

USACSCS-TF-4-1

CHAPTER 5
ASSIGN STATEMENTS

5-1. General

Assign statements are used to assign values to
identifiers which have been previously defined as
a quantity other than a value quantity. The equal
sign identifies an assign statement.

a. In the example below, Al must have been
defined previously as a short numeric quantity. In
the assignment statement Al is assigned the value
of 50.

EXAMPLE: Al = 50;

b. In the example below, AA and BB both
must have been previously defined as the same
quantity types. In the assign statement AA is
assigned the value of BB.

EXAMPLE: AA = BB;

c. In the example below, GET4 must have
been previously defined as a character quantity
type. GET4 is assigned the character value
AXEL. A value may be assigned to more than
one quantity in an assign statement.

EXAMPLE: GET4 = 'AXEL’;

d. In the example below AA, BB and CC are
each assigned the value 200. The names are sepa-
rated from one another by commas and they
must have been previously defined as the same
quantity types.

EXAMPLE: AA, BB, CC = 200;
5-2. Rules of Assignment

a. Short or Long Numeric Quantities. Short and
long numeric values are right justified within
quantities. Low order bits lost due to conforming
to the quantity allocation of an identifier are
truncated.

(1) In the example below, only one bit has
been reserved for a fractional value. In the assign
statement more than one fractional bit is specified
in the value. The fractional bits that cannot fit
into the allocated space of the quantity will be
truncated and the value will actually become
203.5 when the assignment is made. A quantity
which receives a value other than the desired
value is said to contain an undefined value.

DCL ALP BIN
FIXED (10,1);

ALP = 203.56;

(2) In the example below, the largest value
that can be accommodated in 15 bits is +32,767.
The assignment calls for the value of 40960 to be
assigned to TEMP. Since the value is right justi-
fied the most significant bit of the value will be
lost through truncation. The actual value of
TEMP will be 8192. The value is said to be
undefined.

- EXAMPLE:

EXAMPLE:

DCL TEMP BIN
FIXED (15,0);

TEMP = 40960;

(3) In the example below, no fractional bits
have been reserved for P2A. The assignment calls
for a mixed number. The integer will be right
justified and the entire fraction will be lost
through truncation.

EXAMPLE DCL P2A BIN

FIXED (35,0);
P2A = 17295.763L;

(4) When values smaller than the allocation
given a quantity are assigned, ZEROS are ap-
pended to the high and low order bit positions. In
the example below, FLIP can hold a value much
larger than the assigned value of 20.5. Leading
ZEROS will be appended to the integer portion
of the value and trailing ZEROS will be added to
the fractional part. In binary FLIP would be
assigned the value 00010100.10000.

EXAMPLE: DCL FLIP BIN
FIXED (12,4);

FLIP = 20.5;

b. Character Quantities. Character strings are
left justified within quantities. If the value as-
signed a character quantity is shorter than the
declared length, space characters are appended to
the right.

(1) In the example below, ALPHA can
equal as much as seven characters. Only three
characters have been assigned in the statement.

5-1

USACSCS-TF-4-1

As a result ALPHA will be equal to BCD fol-

lowed by the ASCII code for four blanks (AL-
PHA = BCDbbbb where b is an ASCII blank).

EXAMPLE: DCL ALPHA CHAR (7);
ALPHA = 'BCD’;

(2) If the value assigned a character quan-
tity is greater than the declared length, characters
will be truncated from the right. In the example
below, BETIC can be equated to a maximum of
six characters. Method would be equated to
BETIC and the characters ICAL would be trun-
cated.

EXAMPLE: DCL BETIC CHAR (6);
BETIC = 'METHODI-
CAL’;

c¢. Bit Quantities. Bit strings are left justified
with quantities. If the value assigned a bit quan-
tity is shorter than the declared length, ZERO bits
are appended to the right.

(1) In the example below, NUME is de-
clared as eight bits in length and a five bit string
is assigned. ZERO bits will be appended to the
right to fill in the remaining bit positions. NUME
has the following value after the assngnmem is
made: 10011000.

EXAMPLE: DCL NUME Bit (8);
NUME = ’'10011’B;

(2) If a value assigned a bit quantity is
greater than the declared length of the quantity,
bits are truncated from the right. In the example

5-2

below, RIC can be equated to a maximum ol five
bits in a string. The assignment calls for ten bits.
The string 11011 is assigned to RIC and the lcast
significant five bits, 11001, are truncated.

EXAMPLE: DCL RIC BIT (5);
RIC = "110111i001'B;
d. Value Declarations. in Assignment State-
ments. A quantity that has been declared in a

value declaration may never appear on the left
side of an assign statement.

(1) The statement below, is in error and will
so be indicated by the compiler. QUAN has had
a value assigned through a value declaration. As
such, the value will always remain with QUAN

‘and cannot be changed through an assign state-

ment.

EXAMPLE: DCL QUAN BIT (4) INIT

(’1000’B);
QUAN = 0101'B;

(2) The.quantity declared in a value decla-
ration can appear on the right side of an assign
statement. In the example below, DRAM is as-
signed the value of VALU. A blank character is

appended to the right of DRAM since DRAM is
one character longer than VALU.

EXAMPLE: DCL VALU CHAR (3)
INIT (1z7,x1)
DCL DRAM CHAR (4);

DRAM = VALU;

USACSCS-TF-4-1

CHAPTER 6
OPERATORS AND EXPRESSIONS

6-1. Operators

There are four types of operators in TACPOL:
arithmetic, relational. string and logical. An oper-
ator that precedes an operand is a prefix operator,
ic.. -A or +A. An operator that appears between

operands is an infix operator, i.c., A+ B or A-B.

a. Arithmetic Operators. The arithmetic opera-
tors are addition, subtraction, multiplication, divi-
sion and exponentiation. The symbols for these
operators are shown in table 6-1.

Table 6-1. Arithmetic Operators

SYMBOL

OPERATION
+ addition
subtraction
* multiplication
division
** exponentiation

20083-4

When exponentiation is specified as the operator,
it must be followed by an unsigned decimal num-
ber. Exponentiation only by positive integers is
permitted.

EXAMPLE: DCL DD BIN FIXED;

DCL YY BIN FIXED;
DD = 20;
YY = DD**3;

In the above example. YY will contain 20° or
8000 as a result of exponentiation. Note that
exponentiation must be described in consecutive
characters without any imbedded blanks. The
operators for addition and subtraction may be
prefix or infix operators.

b. Relational Operators. The relational opera-
tors indicate a comparison of two values of the
same type. That is, an arithmetic value may only
be compared to another arithmetic value, a char-
acter string value may only be compared to an-

other character string value and a bit string value
may only be compared to another bit string value.
The symbols for these operators are shown in

table 6-2.
Table 6-2. Relational Operators

SYMBOL OPERATION
EQor= equal

NEor—y = not equal

LT or < _ less than

LEor < = less than or equal
GTor > greater than

GEor > = greater than or equal

20083-5

(1) The comparison of arithmetic values
means a comparison of signed arithmetic values.
To compensate for the fact that arithmetic values
have different scale factors, the value having the
smaller scale factor will have its binary point
aligned with the value having the larger scale
factor.

EXAMPLE:

DCL BBA BIN FIXED
o,n;

DCL DDA BIN FIXED
(9,3);

BBA = 15.5;

DDA = 10.125;

In the example BBA and DDA will each have the
following binary values:

BBA = 00001111.1
DDA = 001010.001

BBA has the smaller scale factor and will be
aligned with the scale factor of DDA. This in-
volves shifting the value of BBA two binary posi-
tions to the left. The shifting for alignment of
scale factors is an automatic feature of the
TACPOL language. The comparison of the two
aligned values is then made as follows:

6-1

USACSCS-TF-4-1

BBA = 001111.100
DDA = 001010.001

Note the possibility of some significant bits being
lost on the left if a large shift is involved in the
operation. A short numeric operand may only be
compared with another long numeric operand.

(2) When a comparison is made between
character string values, the comparison is made,
character-by-character, going from left to right.

EXAMPLE: DCL EGO CHAR(4);
DCL ERGO CHAR (5);
EGO = 'SELF’;
ERGO = "HENCE’;

In the example, if EGO and ERGO are com-
pared, the first character of EGO (S) is compared
with the first character of ERGO (H), the second
character of EGO (E) is compared with the sec-
ond character of ERGO (E), etc. Note the differ-
ence in length of the character string values given
in the example. When this situation occurs, the
shorter value is automatically extended on the
right with character designations for a blank to
the size of the larger value. The actual compari-
son made between EGO and ERGO is illustrated
below.

EGO = SELFb (b =
blank)
ERGO = HENCE

(3) When a comparison is made between bit
string values, the comparison is made, bit-by-bit,
going from left to right.

EXAMPLE: DCL NTT BIT(6);

DCL PTT BIT(8);

NTT = '111001'B;

PTT = '10100111"B;
If NTT and PTT are compared, the first bit of
NTT (1) will be compared with the first bit of
PTT (1), the second bit of NTT (1) will be com-
pared with the second bit of PTT (0), etc. When
bit strings differ in length, as illustrated in the
example, the shorter bit string value is automati-
cally extended on the right with binary ZEROS to
the size of the larger value. The actual compari-

son that would be made between NTT and PTT
is illustrated below.

NTT = 11100100
PTT = 10100111

62

The result of any comparison operation is a bit
string value, one bit in length, where the value of
the bit will be ONE if the comparison is true or
the value of the bit will be ZERO if the compari-
son is false.

c. String Operators. The string operators per-
form catenation or substring operations upon
character strings and bit strings. The symbols for
these operators are shown in table 6-3.

Table 6-3. String Operators

SYMBOL OPERATION
CATor 11 catenation
SUBSTR or § substring
20083-6

(1) Catenation is the joining, or chaining, of
strings into a single string. A bit string may only
be catenated with another bit string and a charac-
ter string may only be catenated with another
character string.

EXAMPLE: DCL (EBC,FAB) BIT(4);

DCL RECV BIT(8);

EBC = '1001’B;

FAB = /1100'B;

RECV = EBC CAT FAB;

In the example, the bit string specified by EBC is
joined with the bit string specified by FAB and
the result is left justified in RECV. RECV, as a
result of the catenation, contains 10011100. If
catenation produces a result less than the number
of bits assigned the receiver, ZEROS are ap-
pended to the right of the result.

EXAMPLE: DCL (BLUE,RED)
BIT(3); -
DCL GREEN BIT(8);
BLUE = ‘011'B;
RED =‘101'B;
GREEN = BLUE CAT
RED;

When BLUE is catenated with RED the result is
011101. However, GREEN is eight bits in length.
The result is left justified in GREEN with two
ZEROS appended to the extra bit positions yield-
ing a final result of 01110100. If catenation pro-

duces a result greater than the number of bits
assigned the receiver, bits are truncated from the
right most bit positions.

EXAMPLE: DCL DOCU BIT(4);
DCL PAMP BIT(5);
DCL BASK BIT(6);
DOCU = "1001’B;
PAMP = '11101’B;
BASK = DOCU CAT
PAMP;

When DOCU is catenated with PAMP the result,
in nine bits, is 100111101. However, BASK is
only six bits in length. The last three bits of the
catenation will be truncated so the result will fit
the assigned length of BASK. BASK will contain
100111. If the result of catenation of bit strings
yields a length greater than 32 bits, bits will be
truncated from the right of the result. No bit
string may be longer than 32 bits in length. The
catenation of character strings follows the same
principles as the catenation of bit strings. The
result is left justified within the receiver. If the
result is less than the length of the receiver,
character blanks are appended to the extra char-
acter positions.

EXAMPLE: DCL (ETA,ZETA)

CHAR(2);
DCL RHO CHAR(6);
- ETA = 'AB;
ZETA = 'CD’;
RHO = ETA CAT ZETA;

The result, left justified within RHO, is ABCDbb
where bb are character blanks. If the result of
character string catenation exceeds the character
length of the receiver, the right most characters
are truncated. Also, if the result of character
string catenation exceeds 512 characters, charac-
ters will be truncated from the right of the result.
No character string may exceed 512 characters in
length. :

(2) A substring operation designates a por-
tion of a character string or a portion of a bit
string. The operator may appear on the left of an
assignment statement, the operator may appear
on the right of an assignment statement, or the
operator may appear on the left and the right of
an assignment statement. The specification of a
substring operation contains several parts.

USACSCS-TF-4-1

EXAMPLE: SUBSTR(ALPHA,2,3)

The substring operator is SUBSTR or the symbol
$. Following the operator is an identifier, a first
element and an element count, all enclosed in
parentheses. The identifier (ALPHA in the exam-
ple) must have been previously defined with an
attribute of either CHAR or BIT. The identifier is
separated from the first element by a comma. The
first element specifies the left most character in a
character string or the left most bit in a bit string
which is to be used in the operation. The first
element may be any character or any bit within a
string and the value of the first element must lie
between one and the length of the designated
quantity (ALPHA). When determining the char-

~acter position or bit position within a string, the

left most character or bit is one, the next is two,
etc. The first element defines a starting point
within a string. The element count specifies the
number of contiguous characters or bits, starting
from the first element, for the operation. The sum
of the first element and the element count must
not exceed the declared length plus one of the
designated quantity (ALPHA). Thus, in the exam-
ple, the substring operation specifies the second
character or bit of ALPHA to be the first element
and, starting from the first element, three contigu-
ous characters or bits are to be used. The actual
character or bit positions of ALPHA entering into
the operation are 2, 3 and 4.

EXAMPLE: $(ALPHA, 2)

In the above example the element count is miss-
ing. Should the element count not be present for
the operation it is understood to be one. The
identifier and the first element must always be
present.

(a) Substring operation on the right of an
assign statement

EXAMPLE: DCL LY CHAR(4);

DCL LA CHARC(6);
LA = 'ABCDEF’;
LY = SUBSTR(LA,3,2);

In the above example, LY is to be set to a portion
of LA. The operation states, starting at character
C (first element specifies the third character of LA
as the left most character) obtain two contiguous
characters (element count is two) and assign them
to LY. The characters obtained will be C and D.
Since the operation does not specify where in LY
to place the characters, the characters will be left
justified within the receiver (LY) and blanks will

6-3

USACSCS-TF-4-1

be appended to the extra character positions. At
- the conclusion of the operation LY will be made
cqual to CDbb (where bb arc character blanks).
In this type of substring operation blank fill will
always be used when necessary.

(b) Substring operation on the left of an
assign statement

EXAMPLE: DCL PRE CHAR(6);

DCL PRO CHAR(8);
PRE = 'ZYXWVU’;
PRO = 'AAAAAAAA’;
$(PRO,2,4) = PRE;

In the above example, a portion of PRO is to be
set to a portion of PRE. The portion of PRO to
be set is specified by the substring operation,
character positions 2, 3, 4 and 5 (first element
specifies character position two, element count is
four). However, the operation does not indicate
the character positions in PRE to be used. In this
case, the starting character position of PRE will
be the left most character (Z) and four contiguous
characters will be used; Z, Y, X and W. This type
of operation specifically states where to place the
characters in the receiver (PRO). The operation
becomes a true insert and there is no blank fill to
the left or to the right of the inserted characters.
At the conclusion of the operation PRO is as-
signed the value of AAZYXWAA. Note that
character positions 1, 2, 7 and 8 or PRO are not
disturbed. »

(c) Substring operation on the left and on
the right of an assignment statement

EXAMPLE: DCL GRAPE CHARC(8);

DCL APPLE CHAR(6)
INIT

('123456");

GRAPE =

"ABCDEFGH’;

$(GRAPE, 1,3) =
$(APPLE,3,3);

In the above example, the substring operator
appears on both sides of an assign statement. The
statement explicitly states where the portion of a
character string is to come from (third, fourth and
fifth characters of APPLE) and where that por-
tion is to be placed (first, second and third char-
acter positions of GRAPE). This operation is a
“true insert, there is never a blank fill in the

6-4

receiver. At the conclusion of the operation the
value of GRAPE will be 345 DEFGH characters
3, 4 and 5 of APPLE (first element is 3, the
clement count is 3) have been placed in character
positions one, two and three of GRAPE (first
element is 1, the element count is 3). Substring
operations for bit strings follow the same princi-
ples as the substring operations for character
strings. The only difference is when extra bit
positions have to be filled they are ZERO filled.

EXAMPLE: DCL (FOG, LOG) BIT(8);
FOG = ’11100111"B;

LOG =
SUBSTR(FOG,2,5);

In the example, bit positions 2, 3, 4, 5 and 6 of
FOG are left justified within LOG. (The first
element specifies the second bit position of the
string and the element count is five.) LOG has
been defined as eight bits in length. Three ZE-
ROS will be appended to the extra bit positions
of LOG. At the conclusion of the operation the
value assigned to LOG will be 11001000.

d. Logical operators. The logical operators are
the boolean operators AND, OR and NOT. The
symbols for these operators are shown in table
6-4.

Table 6-4. Logical Operator

SYMBOL OPERATION
AND or & Logical AND
OR or) - Logical Inclusive OR
NOT or —7 - Logical NOT
20083-7

The NOT operator is always a prefix operator
while the AND and OR ‘are always infix opera-
tors. The logical operators may only be used with
bit strings. ‘

(1) The AND operation, as with all logical
operations, is performed on a bit by bit basis
from left to right. An AND operation performed
between two bit strings yields a result for each bit
position of the strings. For each bit position, a
ONE and a ONE yields a result of ONE. All
other combinations yield a ZERO. '

EXAMPLE: DCL (AA,DD,HH)
BIT(6);
AA = ’111000'B;
DD = '001110’B;

HH = AA AND DD;

As a result of the above operation HH will have a
value of 001000. Only in the third bit position of
the two strings is there a ONE and a ONE combi-
nation which yields a ONE. The ONE-ZERO,
ZERO-ONE and ZERO-ZERO combination all
yield ZERO results. There is never a carry from
one bit position to another in logical operations. It
is possible to perform a logical operation between
two bit strings of unequal length.

EXAMPLE: .DCL FIX BIT(5);

DCL (COMB,POS)
BIT(7);

FIX = ’10011"B;
POS = '0111111'B;
COMB = FIX AND POS;

In this example POS is two bits longer than FIX.
During the AND operation ZEROS are appended
to the shorter of the two values to make them
equal in length. After the ZEROS are appended
the AND operation is completed. As a result of
the above operation COMB will have a value of
0001100.

If the receiving quantity is longer than the result
of a logical operation, the result is left justified
within the receiving quantity and ZEROS are
appended to the extra bit positions.

EXAMPLE: DCL(TRA,NGY) BIT(6);
DCL GIV BIT(10);
TRA = '101010’B;
NGY '011011B;
GIV = TRA AND NGY;

In this example the AND is performed between
TRA and NGY with the result left justified
within GIV. The six bit result of the operation is
001010. GIV is 10 bits in length, so four ZEROS
are appended to the right of the six bit answer to
provide a ten bit result of 0010100000.

(2) The principles of the OR operation are
the same as for the AND operation. The differ-
ence in the operators is the result they yield. A
logical inclusive OR yields a result of ZERO for a
ZERO-ZERO combination. All other combina-

USACSCS-TF-4-1

tions yield a result of one. Otherwise, all the rules
of operation are the same.

EXAMPLE: DCL MIKE BIT(4);
DCL LARRY BIT(7);
DCL SAM BIT(9);
MIKE = '1100’B;
LARRY = '1010110’B;

SAM = MIKE OR
" LARRY;

In this example MIKE, four bits in length, is
appended with three ZEROS to be of equal
length with LARRY which is seven bits in length.
The logical inclusive OR between the two values
yields a seven bit result of 1110110 which is left
justified within SAM. SAM is nine bits in length
so two ZEROS are appended to the right of the
seven bit answer which yields a nine bit result of
111011000.

(3) The NOT operator performs a ONE’s
complement of a bit string. This changes all ONE
bits to ZERO bits and all ZERO bits to ONE bits.

EXAMPLE: DCL (OPE,COM) BIT(6):
OPE = '110110’B;
COM = NOT OPE;

As a result of the NOT operation in the example,
COM will have a value of 001001 which is the
ONE’s complement of OPE. If the receiving
quantity is longer than the result of a NOT opera-
tion zeros are appended to the extra bit positions.

EXAMPLE: DCL KVAL BIT(5);
DCL PVAL BIT(8);
KVAL = /00110’B;
PVAL = NOT KVAL;

In the example, the NOT operation is performed
on the value of KVAL producing a result of
11001. This result is left justified within PVAL
and three ZEROS are appended to the extra bit
positions. The NOT is always performed before
the ZEROS are appended. Table 6-5 illustrates
the result of bit by bit operations for all logical
operators.

e. Rules of Operators

(1) Short and long numeric quantities may
use only arithmetic and relational operators.

(2) Character quantities may use only rela-
tional and string operators.

6-5

USACSCS-TF-4-1

Table 6-5. Results of Logical Operations

Operation R”i’lti
A A
Contents of: NOT NOT AND OR
A B A B B B
1 1 0 0 1 i
1 0 0 1 0 1
0 1 1 0 0 1
0 0 1 1 0 0
20083-8

(3) Bit quantities may use only relational,
string and logical operators.

6-2. Expressions

There are four types of expressions in
TACPOL: short numeric, long numeric, bit string,
and character string. The type of data in expres-
sions may not be mixed except in special cases for
long numeric expressions.

a. Short Numeric Expressions. If the quantity
receiving the result of the expression has been
declared as short numeric, then all quantities
within the expression must be short numeric. The
expressions are evaluated from left to right ac-
cording to the priorities of the operators. Operator
priorities are illustrated in table 6-6.

EXAMPLE: DD = AA+BB*CC/DD;
Table 6-6. Short Numeric Operator Priorities
PRIORITY | SYMBOLS OPERATIONS
1 +and - Prefix addition and subtraction
2 ** Exponentiation
3 * and / Multiplication and division
4 +and - Infix addition and subtraction

20083-9

In the above example, the evaluation of the ex-
pression is left to right according to the priority of
the operator. Thus, BB is multiplied by CC, the
result is divided by DD, and AA is then added to
provide the final result. Multiplication and divi-
sion have higher priorities than addition. The
order of priority may be changed by enclosing
any part of the expression in parentheses. This

6-6

raises that portion of the expression to the highest -
priority.
EXAMPLE: DD =
DD;

In this example, AA is first added to BB, the
result is multiplied by CC and finally the division
by DD is made. The inclusion of parentheses
changes the evaluation of the expression and the
result of this expression would be different from
the result of the expression in the previous exam-
ple. During the evaluation of expressions, the
scale factors of the values are automatically ad-
justed to the scale factor of the value containing
the largest fractional part. The result of expres-
sion evaluation is then automatically adjusted to
the scale factor of the receiving quantity.

EXAMPLE: DCL FIN BIN
FIXED (31,2);

DCL APT BIN
- FIXED (31,5);

DCL LIBR BIN
FIXED (31,1);

FIN = 12.5;

APT = 37.125;
LIBR = FIN +APT;

In this example, FIN and APT have initial values
(shown in binary) as follows:

FIN = 000000000000000000000000001100.10
APT = 000000000000000000000100101.00100

(AA+BB)*CC/

APT has the larger fractional part so FIN is
adjusted to the scale factor of APT before the
addition is applied. This means moving the value
of FIN three binary positions to the left. The
three most significant bits of FIN are lost (exclu-
sive of the sign bit) and three ZEROS are ap-
pended to the right. The addition occurs with the
adjusted values as illustrated below.

FIN = 000000000000000000000001100.10000
APT = 000000000000000000000100101.00100

The intermediate result of the above operation
is:

000000000000000000000110001.10100
(49.625,)

The intermediate result is now automatically ad-
justed to the scale factor of the receiving quantity,

LIBR. The intermediate result is moved four bi-
nary positions to the right. The four least signifi-
cant bits of the intermediate result are lost, and
likenesses of the sign bit are appended to the left.
The value of LIBR as a result of the operation is:

0000000000000000000000000110001.1
(49.5,)

b. Long Numeric Expressions. The basic rule
for long numeric expressions is, if the quantity
receiving the result of the expression has been
declared as long numeric, then at least one of the
quantities within the expression must be long
numeric. However, there are two exceptions to
this rule due to two special operators for long
numeric expressions.

Long numeric expressions are evaluated in the

same manner as short expressions with the same
automatic adjustment for scale factors. The order
of priority is illustrated in table 6-7.

Table 6-7. Long Numeric Operator Priorities

PRIORITY | SYMBOLS - OPERATIONS

1 +and - Prefix addition and subtraction
2 ** gr (**) Exponentiation

3 *or (*) and / | Multiplication and division

4 +and - Infix addition and subtraction

20083-10
Under normal circumstances, when a long nu-
meric quantity is to receive the result of exponen-
tiation, the quantity in the expression must be
long numeric. However, there is a special long
numeric operator which allows a long numeric
quantity to receive the result of exponentiation
when the quantity in the expression is short nu-
meric. This is accomplished by enclosing the ex-
ponentiation operator in parentheses as illustrated
in the example below.

EXAMPLE: DCL FAVT BIN

FIXED (31,0);

DCL RSLT BIN

FIXED (62,0);

FAVT = 20;

RSLT = FAVT(**)4;
If the exponentiation operator in the above exam-
ple were not enclosed in parentheses the compiler

would output an error condition because FAVT
was declared short numeric and RSLT was de-

USACSCS-TF-4-1

clared long numeric. A similar situation exists
with the multiplication operator. Normally, when
a long numeric quantity is to receive the results of
multiplication, one of the quantities within the
expression must be long numeric. However, there
is a special long numeric operator which allows a
long numeric quantity to receive the results of
multiplication between short numeric quantities.
Enclosing the multiplication operator within pa-
rentheses allows this to occur as illustrated in the
following example.

EXAMPLE: DC L DECIM BIN

FIXED (31);

DCL OCT BIN
FIXED (31);

DCL HEXA BIN
FIXED (62);

DECIM = 37;
OCT = 112;
HEXA = DECIM(*)OCT;

If the multlphcatnon operator in the above exam-
ple were not enclosed in parentheses the compiler
would detect the expression as being in error.

¢. Exponent and Scale Factor for Long Nu-
meric and Short Numeric Literals. A short or long
numeric literal may contain an exponent and a
scale factor. The exponent is used for raising or
lowering the literal by a power of ten. The scale
factor is used to scale the literal after the expo-
nent has been applied.

EXAMPLE: DCL MICRO BIN

FIXED (31,0);
MICRO = 8E 2S 1;

In the example the literal is 8. The E stands for
exponent and is followed by an optionally signed
number. If a sign (plus or minus) does not follow
the E, a blank space must be left between the E
and the number. The blank means +. The op-

- tionally signed number is the power of 10 which,

in the example, would be 10°. The S stands for
scale factor and is followed by an optionally

* signed number. If the sign (plus or minus) does

not follow S, a blank space must be left between
the S and the number. The blank means +. The
result of the above example is 800 (8 raised by
10?) scaled one binary bit position to the left for a
final result of 1600. MICRO is assigned the value
1600. The literal in the example could also have
been coded as follows:

MICRO = 8E+2S+1;

6-7

USACSCS-TF-4-1

The use of a negative exponent lowers a number
by a power of 10.

EXAMPLE: DCL LIK BIN FIXED;

LIK = 800E-2S+1;

The example uses an exponent of 10°. As a result,
800 lowered by 107 is 8 scaled one binary position
to the left for a final result of 16. LIK is assigned
the value 16. The use of a negative scale factor
scales the result to the right.

EXAMPLE: DCL
FIXED;

MIMAT = 8E+2S-2;

Raising 8 by 107 yields a result of 800. This result
is scaled two binary positions to the right for a
final of 200. MIMAT is assigned the value 200.

MIMAT BIN

d. Bit String Expressions. A bit string expres-
sion yields a bit string result. The expression is
evaluated from left to right according to the
priorities of the operators. Operator priorities are
illustrated in table 6-8.

EXAMPLE: BYTE = NOT TMM OR
GRGE AND HRY;
Table 6-8. Bit String Operator Priorities .

PRIORITY SYMBOLS OPERATIONS

1 NOT or — Logical NOT

2 AND or & Logical AND

3 ORor | Logical Inclusive OR

4 caTor || | catenation

20083-11

Following the order of priority evaluation in the
example, the first operation performed is the
NOT on quantity TMM; then a logical AND is

6-8

performed between quantities GRGE and HRY
and finally, a logical inclusive OR is performed
between the result of the NOT operation and the
result of the AND operation. The order of prior-
ity may be changed by enclosing part of the
expression in parentheses. This is illustrated in the
following cxample.

EXAMPLE: QUO = NOT (STATUS

CAT VADIS);

Catenation has a lower priority than the NOT
operator. However, the catenation operation in
the example is enclosed in parentheses so the
quantities STATUS and QUO are catenated be-
fore the NOT operation is performed.

e. Character String Expressions. A character
string expression yields a character string result.
The expression is evaluated from left to right
without any priority considerations of the opera-
tors. Only relational and string operators may
appear within the expression.

f- Repeat Factor for Bit String and Character
String Literals. A repeat factor may be used for
bit string and character string literals. The effect is
to catenate the literal to itself the number of
times specified by the repeat factor.

EXAMPLE: DCL SPEC CHAR (16);.
SPEC = (4) 'KMPC;

The repeat factor precedes the literal and is an
unsigned decimal number enclosed in parenthe-
ses. The example illustrates the use of the repeat
factor for a character string. The literal KMPC is
to be repeated four times assigning a value to
SPEC of KMPCKMPCKMPCKMPC. The same
function can be applied to bit string literals.

EXAMPLE: DCL FUNCT BIT (9);
FUNCT = (3) '101'B;

As a result of the operation in the example,
FUNCT will be assigned a value of 101101101.

USACSCS-TF-4-1

CHAPTER 7
BLOCKS

7-1. Block Structure

A TACPOL program is organized into blocks.
A block consists of a collection of statements.
Within the blocks, value names, quantities, point
names, and procedure names are defined. The
purpose of the block structure is to define the
scope of names. To attain a clearer understanding
of the block concept, consider blocks as boxes.
These boxes can be nested (contained) one within
another. For example:

Box | A
Box 2 B
Box 3 C

The names defined in any one box are automati-
cally ‘known’ throughout that box and all boxes
contained within that box. In the example, A is
defined in Box 1 and is thus known in Box 1 and
the boxes it contains - Boxes 2 and 3. Similarly, B,
which is defined in Box 2 is known in both Boxes
2 and 3. Finally, C is defined and known only in
Box 3. The ‘scope’ of a name is the area of a
program within which it is known. Thus, the
scope of name A extends throughout Boxes 1, 2
and 3, where it is known. Likewise the scope of B
extends throughout Boxes 2 and 3, and the scope
of C extends throughout Box 3. All names used in
a TACPOL program must be defined. Therefore,
in selecting the proper definition for a name the
program is searched starting with the innermost
block designating the name and working out-

wards. If the name is defined within the smallest

block that encloses that designation, this defini-
tion is selected as valid. Otherwise, the search is
reapplied to the next outer-most block. Each suc-
cessively larger block is searched until the defini-
tion is found. If the definition is not found, then
the name is considered undefined and in error.
The objective in using blocks in a program is to

define the scope of a name. The scope of a name
extends throughout the block in which it is de-
fined and every contained block, except any con-
tained block where it is redefined. Consider the
following example:

A: statement

Block 1 B: statement
Block 2 o A: statement
Block 3 C: statement

The name B is defined and may be designated in
block 2 and its contained block, 3. The name C is
defined and may be designated only in block 3.
The name A is defined first in block 1 and may
be designated in blocks 1 and 2. Block 3 is indeed
contained in block 1; however, because A is rede-
fined in block 3, the scope of the outer A does not
extend into block 3. When the block structure is
searched starting from block 3, the inner defini-
tion of A will be found first. Thus any designation
of A within block 3 will use this inner definition
from block 3. When name A is referred to outside
of block 3, specifically in either block 1 or 2, the
block structure again is searched. For example, if
A is designated in block 2 then this block is
searched for the definition of A, where it is not
found. The search is continued in the next con-
taining block, 1, where the definition is found.
Thus, any designation of A within block 2 will
use this outer definition. Likewise, designations of
A in block 1 will also use the outer definition.
Thus, the programmer is free to devise any block
structure for his program that is convenient to the
solution of his problem. He may use the same
name, if appropriate, for different entities defined
in his program, as long as they are defined in
different blocks. There are four types of blocks:
BEGIN, DO, PROC, and CODE.

7-1

USACSCS-TF-4-1

7-2. Begin Block

A BEGIN block consists of statements bounded
by BEGIN and END.

BEGIN;,
statement-1 ;
statement-2;
statement-3;

END:

The BEGIN block may also contain declarations.
A declaration must always precede its use in a
STATEMENT. Because the BEGIN block is
treated like a statement, it may appear anywhere
a statement may appear. For example:

IF (A = B) THEN
BEGIN;
statement-1;

statement-2:
statement-3;

END:

ELSE
BEGIN:
statement-4

statement-5

statement-6

END:

7-3. DO Block

A DO block consists only of statements
bounded by DO and END. No declaration may
appear in a DO block.

DO1=1BY 1TO10:

statement-1 ;
statement-2;
statement-3;

END:;

The DO block, like the BEGIN block, is treated
like a statement.

7-4. PROC Block

A PROC block consists of the procedure . state-
ments from (but not including) the procedure
name to (and including) the END.

A: PROC;

statement-1;
statement-2;
statement-3;

END;

Unlike BEGIN and DO blocks, the PROC block
is treated like a declaration. The procedure name
in the example A, is known in the block immedi-
ately containing the procedure. Consider the
nested procedure blocks:

A: PROC:;

B: | PROC;
statement-a;
statement-b;

statement-c;

END:/* B * /

statement-1;
statement-2;

statement-3;

END; /* A * |/

Procedure blocks may contain declarations in ad-
dition to statements. Like BEGIN blocks, any
declaration must precede its use in a statement.
Therefore a nested procedure must appear among
such declarations (in a PROC or BEGIN block) as
procedure B appears preceding the statements in
A, as shown above.

7-5. CODE Block

A block whose first constituent is the particle
CODE specifies a text not written in the TACPOL
language. Following the code block specification
is a list of AN/GYK-12 Machine Language in-
structions. Thus, machine language code may be
imbedded within a TACPOL language program.

a. A CODE block consists of the CODE block
specification, AN/GYK-12 Machine Language
instructions and an END statement which desig-
nates the end of the CODE block. (See chart
below.)

USACSCS-TF-4-1

CODE:

MOL statement-1
MOL statement-2
MOL statement-3
MOL statement-4
MOL statement-5
MOL statement-0

END;

CODE blocks may be nested within TACPOL
blocks. However, names defined in TACPOL
blocks are not normally known to CODE blocks.
Therefore, the use of names in a code biock that

were defined in declarations would be undefined
in the CODE block.

EXAMPLE: CODE USES

PONN, GGUY);

(LPRA,

b. There is a method of getting around the
problem of undefined names in a CODE block. A
modified CODE block containing a list of names,
previously defined in TACPOL blocks, makes the
names in the list known in the CODE block.

In the above example, the names in the list have
been previously defined in outer or parallel
blocks. The particle USES must follow the speci-
fier CODE when a list of names is used in the
CODE block heading.

7-3/(7-4 blank)

USACSCS-TF-4-1

CHAPTER 8
CONTROL STATEMENTS

8-1. IF Statement

+ A logical diagram of the IF statement would
look like this:

A logical diagram of the IF statement would
look like this:

(statement)

--THEN-
[Fem e = —— ————
(bit expression)
--ELSE--
(statement)

An example of such an IF statement to produce a
positive difference between A and B would be:

IF (A LT B) THEN C=B-A; ELSE C=A-

B;
The two paths diverge for the execution of one
statement (or block of statements) and merge
- again into a single path of execution. Either the
THEN clause or the ELSE clause is executed, and
the other is skipped. No matter which alternative
is chosen as a result of the test, execution contin-
ues with the next sequential statement that ap-
pears in the program immediately following the
ELSE clause, provided no transfer of control
statement was executed in the selected clause. If
the result of the bit expression in the IF clause is
all ZEROS, this is treated as a FALSE condition
and the ELSE clause will be executed. If the
evaluation of the bit expression contains at least
one bit then this is treated as a TRUE condition
and the THEN clause will be executed. A varia-
tion of this type of IF statement is represented by
the following diagram: '

(statement)

- — — c— — — G —

ELSE
GOTO (point name)

An example of such an IF statement would be: l

IF (A = B) THEN A = -B; ELSE GOTO
EQUAL,;

In this example an alternative (the ELSE clause)
causes a transfer of control to some other point in
the program. Sequential execution does not con-
tinue. Another kind of IF statement is represented
by a third diagram:

(statement)

oot < 'v
(bit expression) Mem — — — — — — — —

A statement representing the above kind of IF
statement could be as follows:

IF (A NE B) THEN A=A-1;

In the type of IF statement illustrated above, the
alternatives are ‘execute the THEN clause’ or ‘do
not execute the THEN clause.’ In either case, the
next sequential statement is executed. If the ex-
pression tested is not true, control continues
through the logical flow of execution. If the ex-
pression is true, the THEN clause is executed, and
execution continues with the logical flow. Al-
though the ELSE clause if sometimes omitted, as
in this case, the THEN clause must appear in
every IF statement. The statement in the THEN
clause may be any statement and the statement in
the ELSE clause may be any statement. For

example: (statement)

----- THEN -~ — — — ——
IF<
————— ELSE IF —— —

|

|

!

(vit expression) —! |

| I

-+ (statement) | l

-—— — ~THEN— — |

_] |

| I

1

: -= = ——ELSE~~- |
(statement)

I A __I

IF (A=B) THEN C=0:

ELSE IF (A GT B) THEN'C=+1 2ELSE C=-1;

USACSCS-TF-4-1

In this example, C is assigned the value 0 i A is
cqual to B; otherwise, ift A is greater than B, C s
assigned the value +1: otherwise (if A is less
than B), C is assigned the value -1. The program-
mer may, of course, include further complexities
as required. It should be noted that BEGIN and
DO blocks (described earlier in chaptér 7) qualify

as statements and may appear in THEN and

ELSE clauses.
8-2. NULL Statement

The NULL statement, as its name implies, is an
empty statement: the only portion of a statement
that appears is the terminating semicolon. Such a
statement gives no direction to the computer; it
may appear anywhere any other statement may
appear, and is most often used in an IF statement
in the THEN clause, or where the ELSE clause is
specified and no action for the THEN clause is
desired.

8-3. DO Statement

The DO statement is used to define and specify
control for a block of statements to be used in a
loop. Looping consists of a series of statements
executed and repeated one or more times before
control continues to the statement following the
block. Every DO statement must have an associ-
ated END statement to define the end of the DO
block. '

a. The DO statement itself consists of the DO
particle followed by the DO quantity identifier
and an = sign. The initial value of the DO
quantity appears next, followed by the BY clause
and the TO clause. The initial value of the DO
quantity and the numeric specifications in the BY
clause and TO clause may be signed literals or
any other short numeric expressions. The TO
clause may be omitted; however, if it is, execution
could continue indefinitely. Consider the follow-
ing example:

DO COUNTER =1
BY 1 TO 10;

statement-1;
statement-2;
statement-3;
END;

statement-4;

Statements 1, 2 and 3 constitute the DO block
and are delimited by DO and END. The DO
statement specifies that these statements are to be

8-2

exccuted, as a block, ten times before control s
transferred to statement-4. ‘The quantity COUN
TER is used to control the number of times the
block is executed. When the DO statement is

- executed for the first time, COUNTER is assigned

the value 1. Statements 1, 2 and 3 are then
executed. When the END statement is reached,
COUNTER is incremented by one, and control is
transferred back to the beginning of the block
where COUNTER is tested to see that it is no
larger than 10. This looping continues until the
value of COUNTER exceeds 10, at which point
control passes on to statement-4. The above ex-
ample is equivalent to the following:

BEGIN;

DCL COUNTER BIN
FIXED (15),

COUNTER=1;

IF (COUNTER GT 10)
THEN GO TO NEXT;

statement- 1

LOOP:

statement-2
statement-3

COUNTER =
COUNTER +1;
GOTO LOOP;

END;

NEXT: statement-4

An increment other than 1 can be stipulated. For
example:

DO COUNTER=1 BY 2
TO 10;

This DO statement causes the initial value of
COUNTER to be set to one. Each time the DO
statement is executed, the value is incremented by
two. Thus, the statements of the DO block would
be executed five times, the final time with
COUNTER equal to 9.

b. The maximum value allowed for the DO
quantity (COUNTER) in any DO statement is
32,767. The DO quantity may also be used in an
expression within the DO block. For example, the

~ following DO block could be used to compute the

sum (in cubic inches) of the volumes of each of a
series of circular ponds. Assume that every pond

“is 12 inches deep and that the diameters range

from 18 inches to 10 feet, using six inch incre-
ments from size to size.

‘"VOL = 0;PI =
2.1415926;

DO1 = 9BY 3 TO 60;
DO I = 9BY 3 TO 60;

VOL = VOL + 12**
(PI*T**2);

END;

The initial value assigned to I is nine, which
represents the radius of the smallest pond. Each
increment of three makes I equal to the radius of
the next larger size. The volume is computed for
each size, and the result is summed in the quan-
tity VOL.

c. The DO statement may be written without
the TO phrase. In this case, looping will continue
until some GOTO statement within the loop
transfers control out of the loop. For example:

-VOL = 0O;PI =
3.1415926;

DOI = 9 BY 3;

IF/91 GT 60)
THEN GOTO X;

VOL = VOL + 12 +
(PI*1%**2);

END;
X: statement;

d. The DO statement may also be written
without both the BY and TO phrases. In this case,
the loop will be executed just once. An example
of using short numeric expressions to define initial
incremental and final values for the DO variable
is:

DO I = (A+B/C) BY
(A+1)

TO (A*B*C);

e. Care must be taken in the use of control
expressions so that the final value is exceeded (or
surpassed) from the initial value by successive
increments (or decrements). The expressions are
evaluated only once at the initial entry to the DO
block. The value of I may not be changed by
statements written within the DO loop. There is a
method of loop control which allows looping to
continue as long as a certain condition exists. This
method involves the WHILE clause as follows:

DO I=1 BY | WHILE (A
LT B);

USACSCS-TF-4-1

The values of A and B are compared each time
control reaches the DO statement. The computer
continues executing the statements in the DO
block until the value of A becomes cqual to or
greater than the value of A or B. Only bit expres-
sions arc allowed in the WHILE clause. In addi-
tion, care must be taken to insure that the condi-
tions of thc WHILE clause are rcasonably attain-
able or the loops will be unending. It is advisable
to never use the WHILE clause without a specific
counter (TO clause) also defined for the loop. The
counter ensures against excessive execution in case
the WHILE condition proves to be unattainable.
Note also that while any expressions in the TO or
BY clause are evaluated only once on entry to the
DO block, the comparison indicated in the
WHILE clause is made each time the block is
executed. Combining the preceding features there
is the following form of DO statement:

DO I=1BY 1 TO 10 WHILE (A LT B);

This control expression causes repeated execution
of the group either until the tenth execution is
completed or until A no longer is less than B. As
soon as either condition is satisfied, execution
ceases, no matter what the status of the other.
DO blocks may be nested. Consider this example:

DOI=1BY 1 TO 10;
statement-1
statement-2
statement-3
DO J=1BY 1 TO 10;
statement-1A
statement-2A
statement-3A
END;
statement-4
statement-5
statement-6
END;

/- The statements of the outer DO block (the
other DO through END and statements | through
6) are executed ten times. The statements of the
inner DO block (the inner DO through END and
statements la through 3a are executed 100 times,
ten times for each execution of the outer DO
group. When the first DO statement is executed
the first time, counter I is assigned the value 1.

83

USACSCS-TF-4-1

Then statements | through 3 are executed. When
control reaches the second DO statement, counter
J is assigned the value 1, and the inner loop is
executed until the value of J exceeds 10. Control
then passes on to the first DO statement. The
counter I is incremented by 1, and execution
proceeds through statements 1 through 3. When
the second DO statement is reached for the sec-
ond time, J is reset to 1, and the inner DO block
again is executed ten times before control passes
to statement 4 for its second execution. The
process is repeated until the outer DO block has
been executed ten times. The inner DO block

8-4

goes through its entire looping process immedi-

ately following each execution of statement 3.
The example shows nesting only to the second
level. Whatever the number of nested blocks,
each contained block will be executed to comple-
tion for every single execution of its containing
block. Control may not be passed to a statement
within a DO block from outside of the DO block.
Control may, however, be transferred out of a
DO loop terminating execution of the DO block.
For example, a GOTO statement might appear
within a THEN or ELSE clause of an IF state-
ment in the loop.

USACSCS-TF-4-1

CHAPTER 9
- PROCEDURES

Section |

9-1. General

A program is a procedure that is not contained
in any other procedure. A program consists of this
single procedure block and possibly several nested
procedure blocks. At execution time, the program
is invoked automatically. During execution of the
program, control can go from one procedure to
another and return.

9-2. Proper Procedures

There are several different types of procedures.
Proper procedures are procedures which are in-
voked by a CALL statement. Function procedures
are invoked in an assignment statement (see
Chapter 5). Function procedures have a RE-
TURN statement and the name of a function
procedure may be used to make the value in the
expression in the RETURN statement available
to the assignment statement which invokes the
function procedure. Proper procedures do not
have this capability and do not have RETURN
statements. Explicit procedures are procedures
(proper or function) which are coded by the user,
whereas intrinsic procedures are available to all
programs through the TACPOL compiler. This
chapter discusses proper procedures but the con-
cepts presented here for proper procedures also
hold true for the other types of procedures. A
proper procedure is headed by a PROC (proce-
dure) statement and ended by an END statement,
as follows (the dots represent the statement in the
procedure.

EASTER: PROC;

END;

Each procedure must have a name such as EAS-
TER in the example. (The format for definition

INTRODUCTION

of a procedure name NAME: should not be con-
fused with the similar format for definition of
point names.) Control does not pass automatically
from one procedure to the next. Each procedure,
except the first, must be invoked, or called sepa-
rately from some other procedure. This usually
occurs with the execution of a CALL statement,
for example:

CALL EASTER;

Execution of this statement in another procedure
would transfer control to the first executable
statement of the procedure named EASTER. The
different procedures contained within a program
may be entirely separate from one another, or
some may be nested. Consider the example:

Box format:
WHOLE: | PROC;
FIRST:

WHOLE: PROC;

FIRST: PROC;
CALL UPDATE;
statement-1

PROC;

statement-2
statement-3
statement-4

END;
statement-5

UPDATE: | PROC;

statement-6
END;/*FIRST*/

UPDATE: PROC; END;
statement-a END;
statement-b

statement-c
ENDy/*UPDATE*/
CALL FIRST,;
END;/*WHOLE*/
WHOLE is a program which contains the two
procedure blocks. FIRST and UPDATE. Follow-
ing the rules of scope, the name WHOLE is
known throughout the program. The procedure
names, FIRST and UPDATE, are known

throughout their procedures as well as known to
each other.

9-1

USACSCS-TF-4-1

a. CALL Statement. The CALL statement de-
fines:
(1) the point of invocation, which is the
CALL statement itself;

(2) the invoking procedure, within which the
CALL statement is contained, and

(3) the invoked procedure, which is the pro-
cedure referred to in the CALL statement.

Thus, in the example, the point ov invocation of
FIRST is the statement CALL FIRST: , the in-
voking procedure is WHOLE and the invoked
procedure is FIRST. Any procedure invoked by
WHOLE might in turn invoke other procedures.
For example, procedure FIRST invokes procedure
UPDATE in the example. But control eventually
returns to the statement in the invoking procedure
WHOLE that immediately follows the point of
invocation; in this case the END statement for
the procedure WHOLE. More than one procedure
may be contained within a single procedure either
as separate procedures or as nested procedures.
(See diagram on next page.) Consider procedures
PROCIA, PROCIAX, and PROCIB all contained
in PROCI1. PROCIAX is contained in PROCIA.
In this situation PROCI can invoke either
PROCIA or PROCI1B; PROCIA or PROCIB can
invoke one another but only PROCIA can invoke
PROCI1AX. In addition PROCIAX could invoke
PROCIB.

PROCI!:| PROC:;
PROCI1A: | PROC;
PROCIJAX:
END;
PROCIB: | PROC;
END;
END:

9-2

b. GOTO Statement. A GOTO statement may
be used in any block to transfer control to a point
within the block itself or to a point in any con-
taining block. However a GOTO statement may
not be used to transfer control to a point in a
different block on the same level or a separate
block contained within the block executing the
GOTO. A GOTO statement in PROC1A may not
transfer control to a point in PROCIB or in
PROCIAX. However a GOTO statement in PRO-
CIAX may transfer control to a point in any
procedure (including itself) except in PROCIB.
This follows from the rules of scope. Control
returns to an invoking procedure when the END
statement of an invoked procedure is reached.
Often there are reasons why a programmer wants
control to return before the END statement
would normally be reached. The example below
illustrates such a situation where the GOTO state-
ment is used to transfer control to a point preced-
ing the END statement.

PROGRAM: PROC;
statement-1
statement-2

TEST: IF (DISTANCE=0) THEN GOTO
STOP; ,

statement-3

statement-4

GOTO TEST;
STOP: END;

The execution of the procedure PROGRAM will
end when the IF condition is satisfied, which will
occur when DISTANCE = 0. The statement
GOTO STOP; will then be executed, control
transferred to the END statement following the
point name STOP, and control passed through the
END statement back to the procedure which in-
voked PROGRAM. The END statement must
physically be the last statement in the procedure.
A procedure can be terminated only when its
END statement is executed, or when a GOTO
statement transfers control to a containing block.

USACSCS-TF-4-1

Section 1. FUNCTION AND INTRINSIC PROCEDURES

9-3. Function Proiedures

The proper procedure, as discussed in the previ-
ous section, is invoked by a CALL statement, and
terminated by an END statement. A function
procedure, on the other hand, is invoked by the
appearance of its name in an expression. In addi-
tion the value of the function is made available to
the invoking expression through the function
name of the function procedure itself by the
RETURN statement. The proper procedure does
not have a RETURN statement and the name of
a proper procedure may not be used as a quantity
for data. The function is terminated by the END
statement. An example of a function procedure is:

A: PROC BIN FIXED (15, 0);
RETURN 6 + 3);
END;

Z = A+ 13;

A is the name of the function procedure as well
as being the quantity through which the returned
value of the function will be made available to
the expression in the assignment statement which
invoked the function. BIN FIXED (15,0) is the

type specification of A. When the function A is
invoked by the expression in the assignment state-
ment, the value (9) of the expression which ap-
pears in the RETURN statement will be made
available to the expression in the assignment
statement by means of the function name A. This
value (9) will then be added to 13, and assigned
to Z.

9-4. Intrinsic Procedures

Explicit procedures are procedures (proper or
function) which are written by the programmer
who intends to use them. An intrinsic procedure,
however, is a proper or function procedure which
is available to all programs through the TACPOL
compiler. Intrinsic procedures may be invoked by
a CALL statement or by an expression. For
example,

A = SIN(X) + .5;

SIN is a short numeric intrinsic procedure (see
Appendix I). This assignment statement invokes
the intrinsic procedure SIN. SIN computes the
trigonometric sine of the value of the expression
X. The result will then be passed back, added to
.5, and assigned to the quantity A. The intrinsic
procedures available to the TACPOL user are
presented in Appendix A along with a brief de-
scription of the purpose of each.

9-3/(9-4 blank)

USACSCS-TF-4-1

CHAPTER 10
NAMES

10-1. General

All names must be declared. Specifically, data
names are declared in data declarations:

DCL A BIN FIXED (7,2);

Procedure names are declared by their appear-
ance in procedure declarations:

A: PROC;

Point names are declared by their appearance
preceding statements in the text:

A: statement;

10-2. In data declarations common attributes can
be specified for more than one name by enclosing
the names in parentheses and specifying the com-
mon attributes following the closing parentheses.
When more than one name is used in this manner
in a scalar declaration, the group of names is
referred to as an identifier list. For example:

DCL (A,B) BIN FIXED (15,0);

The BIN FIXED (15,0) attributes are specified
for the identifier list containing A and B. Identi-
fier lists cannot be used in value declarations, and
may only be used in scalar declarations.

a. When a single procedure that has no con-
tained blocks, an identifier cannot be declared
more than one time. However, the same identifier
can be declared more than once in separate
blocks. This redefining process is known as redec-
laration. As previously discussed, a name is
known through the procedure in which it is de-

clared and throughout all the contained proce-
dures where the same identifier is not redeclared.
When a name is redeclared the scope directed by
its original declaration is discontinued and a new
scope is set up by the redeclaration. The new
scope is effective throughout the procedure in
which the name is redeclared and throughout all
contained procedures (in which it is not again
redeclared). Care should be taken not to inadver-
tently redeclare names of intrinsic procedures, file
names or other Compool data (see Chapter 14).
For example, if MOVE (an intrinsic structure
procedure, see Appendix A) were used uninten-
tionally as a point name, MOVE would no longer
be accessible as an intrinsic procedure in that
block or in any blocks contained within that
block. Note the example on the following page.
Examine the example below, which consists of a
program FIRST, containing the single procedure
SECOND, and the related chart below.

1 FIRST: PROC;

2 DCL (M,N) BIN FIXED (15,0);

3 DCL ALPHA BIN FIXED (6,2);

4 SECOND: PROC;

5 DCL M CHAR (5);

6 DCL TITLE CHAR (8)
7 END;

8 CALL SECOND;

9 A=3;

10 END

10-1

USACSCS-TF-4-1

b. The chart below defines the use and scope
of each name that appears in the previous exam-

ple.
LINE
NUMBER NAME USE SCOPE

1 FIRST procedure | entire program
name

2 M short FIRST, but not
numeric | SECOND because
quantity | M is redeclared

in SECOND

2 N short all of FIRST
numeric
quantity

3 ALPHA | short all of FIRST
numeric
quantity

LINE
NUMBER NAME USE SCOPE
4 SECOND | procedure | all of FIRST
name
5 M character | SECOND
string
quantity
6 TITLE character | SECOND
| string
quantity
9 A short assumed declared
numeric - | in COMPOOL;
quantity | hence all of
FIRST and any

other programs
in which it is not
redeclared.

10-2

USACSCS-TF-4-1

CHAPTER 11
ARGUMENTS AND PARAMETERS

11-1. Introduction

It is often desirable to provide values or quanti-
ties to a procedure, when the procedure is in-
voked. This is accomplished by the use of argu-
ments and parameters. Arguments and parame-
ters are the tools used to establish communiation
between the invoking statement and the invoked
procedure. The parameter is a name used in the
invoked procedure to represent an argument. The
argument is a name or expression provided to the
parameter by an invoking statement. The point of
invocation is a CALL statement in the case of
proper procedures, or an expression in the case of
function procedures.

a. Correspondence is established between the
arguments and parameters as follows: The argu-
ment list appearing in the invoking statement or
expression must have the same number of argu-
ments as there are identifiers in the parameter list
of the invoked procedure. Communication is ob-
tained by the exact correspondence of the mem-
bers of these two lists, as the members are paired
in order.

b. Each identifier in the parameter list must be
defined in a parameter declaration. Parameter
declarations must appear immediately after the
procedure declaration. There are four types of
parameters and corresponding arguments; quan-
tity, value, procedure, and point.

11-2. Quantity Arguments and Parameters

For each quantity parameter there must be a
declaration defining its attributes following the
procedure head. The quantity parameter declara-
tion may be any legal, data declaration (except a
value declaration), such as:

DCL QPARAM BIN FIXED (15, 1);

QPARAM is the identifier of the quantity param-
eter. It is understood that the set of quantities
thereby defined will not have an identity of its
own, but will assume the identity of the set of
quantities designated by the corresponding argu-
ment, established at the point of invocation. In
other words, a quantity argument denotes the
location of data in storage. It is this data which is

provided to the quantity parameter. Consider the
following cxamplc:

EXAMPLE: PROC:
DCL X(10, 10) BIN FIXED:;

CALL DIAG (X);
[¥X(1, 1), X(2,2)....X(10, 10)
=] */

END; /*EXAMPLE*/

DIAG: PROC (A);
DCL A (10, 10) BIN FIXED:
DOI=BY 1 TO 10:;
ALD =1,
END;/*DIAG*/
Within the containing procedure EXAMPLE, the
CALL statements invoke DIAG, a procedure
which sets all diagonal elements of the parameter
array A to 1. The quantity A in the procedure
DIAG is contained in the parameter list of the
procedure DIAG. The quantity X is contained in
the argument list of the first CALL statement
which invokes the procedure DIAG. When the
CALL statement invokes the procedure DIAG,
the test dimensional array X (defined in the in-
voking procedure EXAMPLE) will be made avail-
able to the procedure DIAG through the
parameter A.

11-3. Value Arguments And Parameters

For each value parameter there must be a
declaration defining its attributes following the
procedure head. The value parameter declaration
consists of only simple scalar definitions in the
following format:

DCL VPARAM BIN FIXED (15, 1) VALUE;

VPARAM is the identifier of the value parameter.
The parameter attributes must correspond to the
attributes of the argument by type (BIN FIXED)
but not necessarily by size or scale (15, 1). As
previously discussed, a quantity parameter re-
quires that the information at the location ad-
dressed by the corresponding argument by used.
In contrast, a value parameter declaration re-
quires thtat the value of the corresponding argu-

USACSCS-TF-4-1

ment (some expression) be used. The effect of this
is that any changes to a quantity parameter in the
invoked procedure will also affect the quantity in
the invoking procedure. However the value pa-
rameter specifies that a ‘snapshop’ of the value of
the quantity is to be taken when the procedure is
invoked. Therefore any changes to a value pa-
rameter in the invoked procedure do not affect
the value in the invoking procedure. In summary
the value parameter causes the specified quantity
to be redefined and the quantity parameter causes
the current definition to be used in the invoked
procedure. Consider the following example:

EXAMPLE:

PROC:
DCL A BIN FIXED (15.7);
SIGN: PROC (X) BIN FIXED (31, 0);
DCL X BIN FIXED (31, 0) VALUE;

IF (X GT O) THEN X=+1;
ELSE IF (X LT O) THEN X =-1;
[* Note that setting X does not change the
value of the */
[/* argument in the invoking procedure */
RETURN (X):
END: /*SIGN*/

A =48, 25,
A = SIGN(A); /*first invocation, where A =SIGN(48.25)
=.] */
A =48.25;
A = SIGN(2*A+3.5); /*second invocation, where */
/* A =SIGN (2*48.25+3.5) */
/* =SIGN (100) */
/* =+] */

A = 48.25;
A = SIGN(-2*SIGN(A);
[*third invocation, where A= SIGN(-2*SIGN(-48.25)) */

/* = SIGN(-2* -1) */

/™ = SIGN(+2) */

/* =] */
END/*EXAMPLE*/

Within the containing procedure EXAMPLE, ex-
pressions in various assignment statements invoke

SIGN, a procedure which determines the sign of

the value of its argument. During the first invoca-
tion of SIGN, the value of the expression -48.25
(where A = -48.25) is passed and assigned to X
in the SIGN procedure. In this case, X is less than
0 and so is assigned -1. Therefore, as stated in the
procedure comment, the SIGN of the expression
is -1. During the second invocation of SIGN, the
value of the more complex expression, 2*A+3.5

(where A = 48.25) is passed and assigned to X in
SIGN. X is equal to 100, is greater than 0, and
thus is assigned + 1. Therefore, the SIGN of the
expression, 2*A+3.5 , is + 1. During the final
invocation of SIGN, the value of an even more
complex expression, -2*SIGN(A) (where A =
-48.25) is passed and assigned to X in SIGN. In
this more intricate case, the inner-most portion of
the expression, SIGN(A), is evaluated. The result
of this evaluation is -1. Then the SIGN of the
entire expression, -2*(-1), is evaluated and the
resultis +1.

11-4. Procedure Arguments And
Parameters

For each procedure parameter there must be a
declaration defining its attributes, following the
procedure head. The procedure parameter decla-
ration has the following format:

DCL PPARAM ENTRY;

PPARAM is the identifier of the procedure pa-
rameter. The procedure parameter may only des-
ignate an argument that refers to a parameterless
procedure name, defined within the program.
Consider the following example:

EXAMPLE: PROC;
DCL (A, B, C) BIN FIXED;

ADD: PROC:
C=A+B;
END: /* ADD*/

SUB: PROC;
C=A-B;

END;/ *SUB*/
COMPUTE: PROC(ARITH),

DCL ARITH ENTRY;
B=A;
CALL ARITH;
END; /*COMPUTE*/
A=5; :
CALL COMPUTE (ADD);
[*C=A+B=A+A
=5+5=10 */
CALL COMPUTE (SUB);
[*C=A-B=A-A
=5-5=0 */

END; /*EXAMPLE*/

Within the containing procedure EXAMPLE, the
CALL statements invoke COMPUTE, which in
turn invokes the procedure ARITH. ADD and
SUB are the procedure arguments provided to the
procedure parameter ARITH at invocation. The
quantity A is initially assigned 5. During the first
invocation of COMPUTE, the parameter ARITH
is replaced by the address of argument ADD.
Thus in effect, CALL ARITH invoked ADD,
where A+B is computed and assigned to C (see
first comment). Control passes out of ADD. and
then out of COMPUTE to the next statement.
During the second invocation, the parameter
ARITH is replaced by the address of argument
SUB. In this case, CALL ARITH invokes SUB,
where A-B is computed and assigned to C.

11-5. Point Arguments And Parameters

For each point parameter there must be a dec-
laration defining its attributes, following the pro-
cedure head. The point parameter declaration has
the following format:

DCL PNPARAM LABEL;

PNPARAM is the identifier of the point parame-
ter. The point parameter may only designate an
argument that refers to a point name. Consider
the following example:

EXAMPLE: PROC;
DCL A BIN FIXED;

A =-5;
CALL TEST (A, L1, L3, L2);
Li: A=A *0;

CALL TEST (A, L3, L2, L1);
L2: CALL TEST (A +1, L2, L1, L3);
L3: END;/*EXAMPLE*/

USACSCS-TF-4-1

TEST: PROC (X, JLT, JEQ, JGT):
"DCL X BIN FIXED VALUE:
DCL (JLT, JEQ, JGT) LABI:L:
IF (X LTO) THEN GOTO JLT:
ELSE IF (X GT O) THEN
GOTO JGT;
ELSE GOTO JEQ;
END; /*TEST*/

Within the procedure EXAMPLE, the CALL
statements invoke TEST, a procedure which tests
a value as to whether it is less than, greater than,
or equal to 0. X is a value parameter which
receives the value of its corresponding argument

expression. JLT, JEQ, JGT are the point parame-

ters which represent the point arguments L1, L2,
and L3. During the first invocation of TEST, the
value of the expression A (equal to -5) is passed
and assigned to X. The addresses of the points
L1, L3 and L2 are provided to JLT, JEQ and
JGT respectively. Since X is equal to -5, the
statement, GOTO JLT, passes control through
JLT to its corresponding argument, point name
L1. During the second invocation of TEST, the
value of the expression A (now equal to 0) is
passed and assigned to X. The address of the
points L3, L2, and L1 are provided to JLT, JEQ
and JGT respectively. Since X is now 0, the
statement GOTO JEQ, passes control through
JEQ to its corresponding argument, point name
L2. During the final invocation of TEST, the
value of the expression A + 1 (now equal + 1) is
passed and assigned to X. The address of the
points L2, L1, and L3 are provided to JLT, JEQ
and JGT respectively. Since X is now equal to I,
the statement GOTO JGT, passes control through
JGT to its corresponding argument, point name
L3. Here the program EXAMPLE terminates.

11-3/(11-4 blank)

USACSCS-TF-4-1

CHAPTER 12
CONDITION DECLARATION

12-1. Condition

The condition declaration is available to the
TACPOL user as a debugging aid. It specifies
whether or not a snap procedure is to be called
whenever a particular condition arises during exe-
cution of the block in which the declaration is
contained. A snap procedure is a trace of the
block in which the condition was detected.

a. The condition declaration is specified by the
particular CHECK or IGNORE. The CHECK
particle specifies that the snap procedure is to be
invoked. The IGNORE particle specifies that the
snap procedure is not to be invoked. The IG-
NORE particle is used to negate a condition
which is invoked by the CHECK particle. The
conditions which can be checked by a condition
declaration are ZERO divide (ZDIV), fixed over-
flow (FOFL) and the USAGE particle which en-
compasses the checking of many conditions.

EXAMPLE: CHECK ZDIV;

b. Should a ZERO divide occur within the
block in which the above condition declaration
appears, a snap procedure is invoked.

EXAMPLE: IGNORE ZDIV;

¢. Should a ZERO divide occur within the
block in which the above condition declaration
appears, a snap procedure is not invoked. The
same coding techniques apply to FOFL.

12-2. USAGE
The USAGE particle requires a check name list.

The list contains the names of quantities, proce-
dures or points (in any kind of mixture) which
have been defined within the program. A snap
procedure is invoked whenever any of the follow-
ing operations is performed:

a. A value is assigned by means of an assign-

' ment statement to a quantity identified by a

simple, group or table scalar or array name con-
tained in the associated name list.

b. A proper procedure is invoked by means of
a CALL statement, where the proper procedure
name is contained in the associated name list.

c. A function procedure is invoked by means
of an expression evaluation, where the function
procedure name is contained in the associated
name list.

d. The sequence of execution is changed by
means of a GOTO statement to a point identified
by a point name contained in the associated name
list.

EXAMPLE: CHECK USAGE (TTY,
BNT,

APO, SICC);

If any of the names in the list are accessed or
changed as specified by the rules of the USAGE
particle, then the snap procedure would be in-
voked. The snap procedure can be cancelled for
one or more names in the list by a subsequent
IGNORE declaration.

EXAMPLE: IGNORE USAGE (BNT,

SICC);

12-1/(12-2 blank)

USACSCS-TF-4-1

CHAPTER 13
INPUT/OUTPUT

Section |. FUNCTION OF INPUT/OUTPUT

13-1. General

The basic function of input and output is data
transmission: getting the data to be processed and
returning the results of the processing. A pro-
grammer normally need write only the operation
(e.g., READ, WRITE), the file name (see below),
and a data name, that specifies where the data is
to be stored or where the data to be written can
be found.

13-2. Files

Data on an external medium is collected in a
file. Files are defined by file declarations in the
Compool. A file name can be declared in a pro-
gram as a temporary device to avoid syntax er-
rors. See Chapter 14 for actual syntax. A file
name is declared for each file, and the file name
is given file attributes that describe the data in
the file and the manner in which it will be han-
dled. : '

a. A file consists of one or more records, where
a record is a set of quantities accessed in a single
input/output operation. Files of quantities consist
~of storage allocated external to the primary mem-
ory of the computer. A file is either a partitioned
file or a nonpartitioned file. A partitioned file
consists of one or more partitions, each of which
is a set of records within the file that may be
accessed independently of records in other parti-
tions of that file, as though they constituted a
separate file. A partition of a file is accessed by
means of a character string key, which specifies
the partition currently to be accessed. Each parti-
tion within a file must have an unique key. Non-
partitioned files consist of no partitions and can-
not be accessed by partition keys. The term parti-
tion can be substituted for file in the following
text.

b. Two types of files are available in TACPOL.
They are the serial file and the direct file.

(1) A serial file consists of records organized
on the basis of their successive physical locations
within the file. The records appear sequentially
within the space allocated for the file and they
are read or written sequentially. Serial files can
exist on either a sequential or direct access storage
device.

(2) A direct file contains records organized
on the basis of a character string value (a ‘key’)
associated with each record. This value has a limit
of eight characters and is stored with the record.
Records can be accessed directly by this value
without regard to the actual position of the file.
Direct files can exist only on a direct storage
device.

c. A file may be accessed in one of three
modes at any given time: INPUT, OUTPUT, or
UPDATE. A file accessed for INPUT must be an
existing file which is to be read but not written. A
file accessed for OUTPUT must be a file which is
to be written but not read. A file accessed for
UPDATE must be a direct file and may be read
or written. A file processing operation may trans-
mit values to or from a file either before continu-
ing execution of the program requesting such
transmissions. or concurrently with the continued
execution of the program. Normally the values
will be transmitted before continuing execution of
the program. However, by specification of a RE-
TURN attribute for certain operations, the trans-
mission occurs concurrently. If the transmission
occurs concurrently, values involved in the trans-
mission cannot be accessed by the program until
the transmission is completed. A concurrent trans-
mission is certain to be completed only at the
point at which a ‘wait’ operation is executed for
the file. For a transmission which is to be com-
pleted before continued execution of the program
(RETURN attribute not specified), a ‘wait’ opera-
tion is understood to be executed immediately
following the operation requesting the transmis-
sion. '

13-1

USACSCS-TF-4-1

Section Il. INPUT/OUTPUT PROCESSING STATEMENTS

13-3. Processing Statements

The following file processing statements com-
prise the input/output operations in TACPOL.

13-4. OPEN Statements

OPEN statements are used to connect files to
user programs so that file is available for process-
ing. No data transfers take place as a result of
this statement but the necessary linkage between
the file and the user program is established. An
OPEN statement consists of the following parts,
some of which are optional in use:

a. OPEN. The particle which identifies an
OPEN statement.

b. File Designation. The name of the file which
is to be opened, mandatory.

¢. Mode. Input, Output or Update, mandatory.

d. Origination. Either not used which specifies
a new file or OLD which specifies the file has
been previously created.

e. Disposition. Either KEEP which specifies
that the file is to be kept after it is closed or,
PASS which specifies that the file is to be kept
and is to remain immediately available after be-
ing closed. If either of these two particles are not
used (the particle being omitted from the state-
ment) then the file is not kept after it is closed.

(1) In the example below, file SERIN is
opened for input, it is an already existing file
(required for the input mode) and it will be kept
after the file is closed.

EXAMPLE: OPEN SERIN INPUT

OLD KEEP;

(2) In the example below, file DIRIN is
opened for output, it is a new file (the particle
OLD is absent from the statement) and the file
will not be kept after the file is closed (the parti-
cles KEEP or PASS are absent from the state-
ment. Only one file may be opened per OPEN
statement. If several files are to be opened for
program use each file requires a separate OPEN
statement.

EXAMPLE: OPEN DIRIN OUTPUT;
13-5. CLOSE Statements
A CLOSE statement serves to disconnect a file

13-2

from a usér program making that file unavailable
for processing. No operation can be performed on
a closed file except to open it. The CLOSE state-
ment consists of the particle CLOSE followed by
the file designation (name).

EXAMPLE: CLOSE XYZ;

Only one file can be closed by a CLOSE state-
ment. To close more than one file successive
CLOSE statements must be used.

13-6. READ Statements

READ statements transmit values of a record
in a designated file to a designated set of quanti-
ties. If the file is a serial file, it is repositioned
after transmission so the next record to be ac-
cessed is the next record in the file. If the file is a
direct file, the value yielded by the character
string expression is the value of the key of the
record to be read. Only files which have been
opened for input or update can be read. The
READ statement consists of the following parts,
some of which are optional in use:

a. READ. Specifies the statement is a READ
statement.

b. File Designation. The name of the file that
is to be read.

c. Key Option. A character string expression
which specifies the record to be read. The key
option is used for direct files only.

d. INTO. A statement particle which is always
present.

e. Quantity Designation. Specifies the quantity
in memory into which the data will be transmit-
ted.

f- Return Option. If the RETURN option is
present it specifies concurrent operations. If the
RETURN option is absent, noncurrent transmis-
sion is specified.

(1) In the example below serial file DESTIN
is read (the key option is absent which specifies a
direct file) into quantity TABI. The RETURN
option is specified for concurrent operations.

EXAMPLE: READ DESTIN INTO

TABI RETURN;

(2) The example below illustrates a read
function for a direct file. Record ABC of file
STREAM is read into quantity CELL. Noncon-
current operation is specified by the absence of
the RETURN option. For direct files the particle
KEY must immediately precede the character
string expression which denotes the record to be
rcad. The example shows the character string
cxpression in literal character format. Any expres-
sion may be used which yields a character string
value for the record key.

EXAMPLE: READ STREAM KEY
‘ABC’ INTO CELL;

" 13-7. WRITE Statements

WRITE statements transmit values from a des-
ignated set of quantities to a new record added to
the designated file. If the designated file is a serial
file, it is repositioned after the transmission so
that the next record to be accessed is the next
record to be accessed. If the designated file is a
direct file, the value yielded by the character
string expression is the value of the key of the
record to be written. Only files opened for output
or update can be written. The WRITE statement
consists of the following parts, some of which are
optional in use:

a. WRITE. Specifies the statement is a
WRITE statement.

b. File Designation. The name of the file that
is to be written.

c. Key Option. A character string expression
which specifies the record to be written. The key
option is used for direct files only.

d. FROM. A statement particle which is pre-
sent in most WRITE statements.

e. Quantity Designation. Specifies the quantity
in memory from which the data will be transmit-
ted.

f- Return Option. If present, specifies concur-
rent operations. If not present, specifies noncon-
current operations.

g ENDFILE. In a special write statement
causes the terminal boundary of the file to be
placed at the current position of the file. To use
the ENDFILE particle the file must be a serial file
which has been opened for output only.

(1) In the example below, the serial file
ZETA (the key option is absent which specifies a
direct file) is written into from quantity DELTA.

USACSCS-TF-4-1

The RETURN optibn is specified for concurrent
operations.

EXAMPLE: WRITE ZETA FROM

DELTA RETURN;

(2) The example below illustrates a writc
function for a direct file. Record ZZZ of file
GAMMA is written from quantity IOTA. Non-
concurrent operations are specified by the absence
of the RETURN option. The particle KEY must
precede the character string expression. Any cx-
pression may be used for the record key which
yields a character string value.

EXAMPLE: WRITE GAMMA KEY
‘227’ FROM IOTA;

(3) The special WRITE statement below
places the terminal boundary of file LAMDA at
the current position of the file.

EXAMPLE: WRITE LAMDA END-
FILE;

13-8. REWRITE Statements

REWRITE statements transmit values from a
designated set of quantities to an already existing
record in a designated file. Only files which are
direct files that have been opened for update can
be used in a REWRITE statement. REWRITE
statements are coded exactly as WRITE state-
ments are coded for direct files. The ENDFILE
option is not available. The example below illus-
trates the rewriting of the already existing file
SAM. Record MAX within the file is rewritten
from quantity GEORGE. The RETURN option
specifies concurrent operation. For nonconcurrent
operation the RETURN option is not specified.

EXAMPLE: REWRITE SAM KEY
‘MAX’ FROM GEORGE
" RETURN;

13-9. DELETE Statements

DELETE statements cause already existing rec-
ords in designated files to be removed from the
files. The designated files must be direct files that
have been opened for update. The DELETE
statement consists of the following parts:

a. DELETE. Specifies the DELETE statement.

b. File Designation. The name of the file that
contains the record to be deleted.

c. Record Key. The particle KEY followed by a
character string expression which specifies the
record to be deleted.

13-3

USACSC-TF-4-1

Theexample below illustrates the deletion of
record KILO from file FOXTROT. No options
are available for this statement. :

EXAMPLE: DELETE FOXTROT KEY
‘KILO’;

13-10. SPACE Statements

The SPACE statement causes the designated
file to be repositioned so that the next record to
be accessed is either one record forward or one
record backward from the current record position.
The SPACE statement consists of the following
parts:

a. SPACE. Specifies the SPACE statement.
b. File Designation. Specifies the file that is to
be spaced. ‘

c. Direction. If the particle BACK is present
the designated file is positioned one record back-
ward. If the particle BACK is absent the desig-
nated file is positioned one record forward.

(1) The example below spaces file ALLREC
backward one record.

EXAMPLE: SPACE ALLREC BACK;

(2) The example below spaces file ALLREC
forward one record.

EXAMPLE: SPACE ALLREC;

(3) If spacing of more than one record for-
ward or backward is desired, it requires the use of
more than one SPACE statement for the file.

13-11. REWIND Statements

The REWIND statement causes the designated
file to be repositioned to the initial boundary of
the file. The statement requires the particle RE-
- WIND and a file designation.

EXAMPLE: REWIND EBCDIC;

13-12. UNWIND Statements

The UNWIND statement causes the designated
file to be repositioned to the terminal boundary
of the file. The statement requires the particle
UNWIND and a file designation.

EXAMPLE: UNWIND ASCII;
13-13. ON Statements

ON statements, like IF statements, specify the
conditional execution of a constituent statement.
The conditions to be met to execute the constitu-
ent statement are specified by particles END-
FILE, NOKEY or NOPART.

134

a. ENDFILE. 1If the particle ENDFILE is
present, the file is examined to determine whether
or not an attempt was made to reposition or to
transmit a record from the file at a point beyond
a boundary of that file. If the ENDFILE particle
is used the file to be examined must be a serial
file which was opened for input.

b. NOKEY. If the particle NOKEY is present,
the file is examined to determine whether or not
an attempt was made to read, rewrite or delete a
record in the file when no record with the speci-
fied key exists; or, to write a record with a speci-
fied key which already exists. If the NOKEY
particle is used the file to be examined must be a
direct file.

c. NOPART. If the particle NOPART is pre-
sent, the file is examined to determine whether or
not an attempt was made to open an old partition
in a file when that partition no longer exists. If
the NOPART particle is used the file must be a
partitioned file. The ON statement consists of the
following parts:

(1) ON. Specifies the ON statement.

(2) File Designation. Specifies the file which
is to be examined.

- (3) File Condition. Specifies ENDFILE, NO-
KEY or NOPART.

(4) THEN. A particle which precedes the
simple constituent statement.

(5) Statement. The statement to be executed
if the stated condition in the examined file exists
(GOTO, DO, BEGIN, etc.).

(6) ELSE. An arbitrarily used particle. If
present, specifies the execution of an alternative
statement if the ON condition is not satisfied.

(7) Statement. The statement to be executed
if the ELSE alternative is used.

(a) In the example below, file TANGENT
is examined for the ENDFILE condition. If the
condition exists, the statement following the
THEN particle is executed. If the condition does
not exist the next statement in sequence is exe-
cuted.

EXAMPLE: ON TANGENT END-
FILE THEN GOTO

PART2;

(b) In the example below, file COSINE is
examined for the NOKEY condition. If the condi-
tion exists, the statement following the THEN

particle is executed. If the condition does not
exist, the statement following the ELSE particle is
executed.

EXAMPLE: ON COSINE NOKEY

THEN SPACE COSINE;
ELSE GOTO PARTS3;
13-14. WAIT Statements

A WAIT statement causes a wait operation to
be performed for the designated file. The contin-
ued execution of the program is delayed until all
operations requested pertaining to the designated
file have been completed. The statement requires
the particle WAIT followed by a file designation.

EXAMPLE: WAIT GRP;
13-15. LOAD Statements

The LOAD statement causes the designated
program to be made available for execution
(loaded into memory). If an attempt is made to

USACSCS-TF-4-1

invoke a program which has not been previously
loaded into memory, a load operation is per-
formed before the program is executed. The
statement requires the particle LOAD followed by
a program name (procedure name).

EXAMPLE: LOAD JOE;

13-16. Permissible File Processing
Operations

As a summary, table 13-1 on the following
page lists the permissible file processing opera-
tions in TACPOL. The table is organized by
origination (NEW or OLD), OPEN mode (IN-
PUT, OUTPUT or UPDATE) and virtual organi-
zation (SERIAL or DIRECT). Missing from the
list of operations are the WAIT statement and the
LOAD statement. The WAIT statement is permis-
sible for all files therefore it was not necessary to
list the operation. The LOAD operation is not
pertinent to files and is not included.

Table 13-1. Permissible File Processing Operations

2
L: Q -
L= =1 P —
= B} (e Q]
= .'9:). ot Q E k= 'g Aé %
1 2 2 2 3 3 S 3 g = Z <
Virtual o = = 3 @ o) = c o
N . | Al | & = o =] o
Origination | Open Mode | Organization =B =
New Output Serial X X X X
New Output Direct X x3
New Update Direct X X X x4
old Input Serial x| x| x| x2 x6
old Input Direct x5 x6
old Output Serial X | x x| x| x x6
. ou Output Direct X x3 | x¢6
oud Update Direct X | x x| x x4 x6
NOTES: 1. Direct Files treated as Serial Files are included opposite SERIAL.
2. Arising from a READ or SPACE.
3. Arising from a WRITE.
4. Arising from a READ, WRITE, REWRITE or DELETE.
5. Arising from a READ.
6. Arising from a partition OPEN.
Each permissibie operation for a given file is noted by an “X.”
20083-12

13-5/(13-6 blank)

USACSCS-TF-4-1

CHAPTER 14
COMPOOL AND FILE DECLARATIONS

14-1. General

The name Compool (‘Communication POOL’)
refers to a collection of names or quantities and
programs that are commonly used by many dif-
ferent programs in a system. Placing these names
in a central pool saves having to redeclare them
each time that they are used in a new program.
Procedures, declarations, data declarations, and
file declarations may be included in the Compool.
However, file declarations may not appear outside
the Compool.

14-2. TACPOL Interface with the Compool

A Compool Generator will be used to generate
the Compool tables to be made available to the
TACPOL Compiler. Input to the Compool Gener-
ator consists of TACPOL like declarations and
the output consists of binary and symbolic data.
The TACPOL Compiler will refer to the Compool
to define quantities and names which are not
defined in a given program. Therefore the Com-
pool is like a block in which all programs are
contained.

14-3. File Declarations

As has been mentioned in earlier chapters, files,
with the exception previously noted, can be de-
clared only in the Compool. Before a file can be
used by a program it must have been defined by
input to the Compool Generator. The format for
this input is a source language declaration as
shown on the following page.

|DCL identifier FILE| |PARTS (partitions) | |file type |
] 2 3

|RECORDS (No. of records) record type (No. of words) |
4

|LABELLED|

5
|BUFFERED (No. of buffers) | |media| |classification |
7 8 9

| BLOCKED (No. of words) |
6

| AUTH (authorization list and access) |
10

a. This part of the declaration (1) specifies the
file name.

EXAMPLE:

DCL OPTIM FILE

b. The use of this part of the declaration (2) is
not mandatory. It is only used if the file being
declared is to be a partitioned file. The number of
partitions in the file is specified by a number
enclosed in parentheses.

EXAMPLE: PARTS (5)

c. The file type (3) is either SERIAL or DI-
RECT.

d. The number of records (4) in each file or
partition is specified by a number enclosed in
parentheses. The record type is either FIXED,
VARIABLE or FREE. The maximum number of
words in a record is specified by a number en-
closed in parentheses.

EXAMPLE: RECORDS (4)

FIXED (32)

The particle LABELLED (5) is not manda-
tory. When used, it specifies the file is to be
processed with standard header and trailer labels.

e. The use of this part (6) of the declaration is
not mandatory. If used it specifies that logical
records are grouped into physical blocks for ac-
tual 170 processing. The number of words in the
block must be declared by specifying a number
enclosed in parentheses.

EXAMPLE: BLOCKED (144)

J- The use of this part (7) of the declaration is
not mandatory. If used it specifies the number of
buffers to be allocated for 1/0 processing. The
number is enclosed in parentheses.

EXAMPLE: BUFFERED (3)

g The media (8) specifies the type of device
that the file will be allocated to. One of the
following may appear: TAPE, PRINTER,
READER, PUNCH, DISPLAY, PLOTTER,
CONSOLE, DASD, TERMINAL. In the case of
TAPE, PRINTER and TERMINAL it is possible
for a system to have more than one of these
devices. To specify which device in a group is
desired a number, enclosed in parentheses, fol-
lows the device name.

EXAMPLE: TERMINAL (3)

141

USACSCS-TF-4-1

h. The classification (9) information is used to
control the security of the file’s contents. One of
the following four classifications is assigned cach
file: UNCL (unclassified), CONF (confidential),
SECR (secret), TOPS (top secret).

i. The authorization (10) specifies the pro-
gram(s) which are authorized to open a file and
the access which they are allowed. If more than
one program is granted authorization in the dec-
laration, the names of the programs appear in a
list, separated from each other by commas, and
enclosed in parentheses. The access to the file will
be one of the following: INPUT, OUTPUT, UP-
DATE.

EXAMPLE: AUTH (PPP,QQQ)

OUTPUT;

(1) An example of a file declaration, not
using all the options available, is illustrated be-
low:

EXAMPLE: DCL HIPT FILE

DIRECT RECORDS

(10) VARIABLE

(200) TAPE (2)

UNCL AUTH TPYO
INPUT;

(2) The declaration specifies the nonparti-
tioned direct file HIPT with a maximum of 10
variable length records, a maximum of 200 words
per record, which is allocated to tape 2. The file is

14-2

unclassificd and program TPYO has authorization
for the file for input.

14-4. Special Notes On Files and File
Declarations :

The partitions of a partitioned file are not
specified by name in the file declaration. The
names of the partitions are specified in an OPEN
statement, following the file name and enclosed
in parentheses, when a partitioned file is opened.

EXAMPLE: OPEN KKLO ("ABC’)
INPUT OLD KEEP;

a. A character expression, following the file
name, indicates a partition of a file in an open
statement. ’

b. Each partition in a file must have an unique
key. Each partition in a file contains the same
attributes as the file itself.

c. Record type can be either FIXED, VARIA-
BLE or FREE. Even though FREE is accepted as
a record type in a TACPOL statement, it is cur-
rently not implemented and has no meaning.
Therefore, FIXED or VARIABLE only should be
used for record types.

d. A device type available for file declarations
is DASD. This stands for Direct Access Storage
Device and means the drum or RAM (Random
Access Memory) in the system. If the system has
no drums for auxiliary storage then DASD should
not be used.

APPENDIX A
INTRINSIC PROCEDURES

USACSCS-TF-4-1

A-1. General

Certain proper and (unction procedures are
understood to be defined in a text in which all

TACPOL programs (and any Compool) are em- -

bedded. These procedures are described under
seven headings: short numeric procedures, long
numeric procedures, character string procedures,
bit string procedures, structure procedures, point
procedures, and conversion procedures.

A-2. Short Numeric Procedures

Short numeric procedures are all function pro-
cedures which yield short numeric values. In the
following trigonometric short numeric procedures
SIN and COS, X is in units of X and Y coordi-
nates or Binary angular measurement units
(BAMS) such that one complete revolution about
360 degrees is equal to one BAM with zero
BAMS at true north and :0.5 BAMS at 180
degrees (negative values to the left of north and
positive values to the right). The result of the
ASIN, ACOS and ATAN routines will be in these
same units.

SIN (X) This procedure computes
the sine function of a short
numeric value. The value
argument X must be pro-
vided in units of angular
measurement, such that
0<X<1, with any scaling.
The function SIN (X) will
then be provided such that
-1<SIN(X)<+ 1, with the
~scaling of X.

COS (X)
the cosine function of a
short numeric value. The
value argument X must be
provided in units of angu-
lar measurement, such that
<X<I1, with any scaling.
The function COS (X) will
then be provided such that
-1<COS(X)<+ 1, with the
scaling of X.

ASIN (X) This procedure computes

This procedure computes

ACOS (X)

ATAN (X)

LN (X)

LOG (X)

the arcsine function ol a
short numeric value. The
value argument X must be
provided such that
-I<X<+1, with any scal-
ing. The function ASIN
(X) will then be provided
in units of angular mea-
surement, such that
-0.25< ASIN(X)< +0.25,
with the scaling of X.

This procedure computes
the arccosine function of a
short numeric value argu-
ment X must be provided
such that -1<X<+ 1, with
any scaling. The function
ACOS (X) will then be
provided in units of angu-
lar measurement, such that
0<ACOS(X)<0.5, with the
scaling of X.

This procedure computes
the arctangent of a short
numeric value. The value
argument X must be pro-
vided such that -1<ATAN
(X)<+1, with any scaling.
The function ATAN (X)
will then be provided in
units of angular measure-
ment, such that with'
-0.125s ATAN(X)< +0.125,
the scaling of X.

This procedure computes
the natural logarithm of a
short numeric value. The
value argument X must be
provided such that 0<X,
with any scaling. The
function LN (X) will then
be provided, with the scal-
ing of X. X must be such
that 2Z<ILN(X)l <2*.

This procedure computes
the common logarithm of

A-1

USACSCS-TF-4-1

EXP (X)

SQRT (X)

REM (X)Y)

MAX (X, Y)

a short numeric value. The

- value argument X must be
provided such that 0<X,

with any scaling. The
function LOG (X) will
then be provided, with the
scaling of X. X must be

suchthat 22<ILOG(X)I2*.

This procedure computes
the exponential function of
a short numeric value. The
value argument X must be
provided such that 2%<IX|
2, with any scaling. The
function EXP (X) will then
be provided with the scal-
ing of X.

This procedure computes
the square root of a short
numeric value. The value
argument X must be pro-
vided such that 0<X, with
any scaling. The function
SQRT (X) will then be
provided, with the scaling
of X.

This procedure computes
the remainder of the divi-
sion of two short numeric
values.

- The value arguments X

and Y may be provided
with any scaling. The
function REM (X, Y) will
then be provided with
scaling as follows:*
S = S

This procedure computes
the larger of two short nu-
meric values. The value ar-
guments X and Y may be
provided with any scaling.
The function MAX (X, Y)
will then be provided with
scaling as follows:

S = max (s, §)

If r requires greater than
31 significant bits of preci-

*The notation uses s to represent the scale factor (s) of

the result (r).

A-2

MIN (X, Y)

ABS (X)

SIGN (X)

SCALE (X, N)

sion, the function is unde-
fined.

This procedure computes
the smaller of two short
numeric values. The value
arguments X and Y may
be provided with any scal-
ing. The function MIN (X,
Y) will then be provided
with scaling as follows:

$ = max (s, §,)

If r requires greater than
31 significant bits of preci-
sion, the function is unde-
fined.

This procedure computes
the absolute value of a
short numeric value. The
value argument X may be
provided with any scaling.
The function ABS (X) will
then be provided with the
scaling of X.

This procedure computes a
numeric representation of
the sign of a short numeric
value.- If X<O0, then the
function is -1, if X = 0,
then the function is -1; if
X = 0, then the function
is 0; if X>0, then the func-
tion is +1. The value ar-
gument X may be pro-
vided with any scaling.
The function SIGN (X)
will then be provided with
scaling as follows:

s =0

This procedure rescales a
short numeric value. The
scale factor of the value of
the first argument s
changed to the number
designated by the second
argument. This results in
no execute-time opera-
tions, only in compile-time
considerations.

The value argument X
may be provided with any
scaling. The value argu-

TRUNC (X, N),
TRUNC (X)

ment N must be provided
from an optionally signed

.number whose magnitude

is greater than 0, but not
greater than 127. The
function SCALE (X, N)
will then be provided with

scaling as follows:

Sr—l’l

where
n is the value of N

This procedure changes
tne low-order precision of
a short numeric value.
Low-order bits are trun-
cated (or added, zero-val-
ued) to the value of the
first argument, and the
scale factor of the first ar-
gument changed, such that
the value of the first argu-
ment retains the
magnitude but with a dif-
ferent low-order precision.
The new scale factor is the
number designated by the
second argument. This re-
sults in binary shift opera-
tions. If no second argu-
ment occurs, the value of
Nis 0.

The value argument X
may be provided with any

“scaling. The value argu-

ment Y must be provided
from an optionally signed
number whose magnitude
is greater than 0, but not
greater than 127. The
function TRUNC (X, N)
will then be provided with
scaling as follows:

$ =n

~where

n is the value of N

If r requires greater than
31 significant bits of preci-
sion, the function is unde-
fined.

same’

ROUND (X, N),
ROUND (X)

USACSCS-TF-4-1

This procedure is exactly
equivalent to TRUNC ex-
cept that one-valued bit is
added to the magnitude of
the value of the argument
(before any truncation) to
the left-most low-oider bit
to be truncated, and that
the scaling is as follows:

S =n
If r requires greater than

31 significant bits of preci-

sion, the function is unde-
fined.

A-3. Long Numeric Procedures

The long numeric procedures are all function
procedures which yield long numeric values.

REM (X, Y)

MAX (X, Y)

MIN (X, Y)

ABS (X)
SHORT (X, N),

This procedure is entirely
analogous to the short nu-
meric function procedure
of the same name, cxcept
that X and/or Y must be
long numeric values.

This procedure is entircly
analogous to the short nu-
meric function procedure
of the same name, except
that X and/or Y must be
long numeric values, and
that the function is unde-
fined only if r requires
greater than 62 bits of pre-
cision.

This procedure is entirely
analogous to the short nu-
meric function procedure
of the same name, except
that X and/or Y must be
long numeric values, and
that the function is unde-
fined only if r requires
greater than 62 bits of pre-
cision.

This procedure is entirely

analogous to the Log Nu-
meric Value X.

Short numeric function
procedure of the same
name, except that X must
be a long numeric value.

A-3

USACSCS-TF-4-1

SIGN (X)

SCALE (X, N)

TRUNC (X, N)
TRUNC (X)

ROUND (X, N)
ROUND (X)

This procedure is entirely
analogous to the short nu-
meric function procedure
of the same name, except
that X must be a long nu-
meric value.

This procedure is entirely
analogous to the short nu-

-meric function procedure

of the same name, except
that X must be a long nu-
meric value.

This =~ procedure
entirely analogous to the
short numeric function

procedure of the same
name, except that X must
be a long numeric value,
and that the function is
undefined only if r re-
quires greater than 62 bits
of precision.

This procedure is
entirely analogous to the
short numeric function

procedure of the same
name, except that X must
be a long numeric value,
and that the function is
undefined only if r re-
quires greater than 62 bits
of precision.

A-4. Character String Procedures

Character string procedures are all function
procedures which yield character string values.

REP (X, N)

A-4

This procedure catenates
one or more copies of a
character string value. The
second argument desig-
nates the number of copies
of the first argument that
are to be catenated. The
value argument X may be
any length. The value ar-
gument N must be greater
than 0. The function REP
(X, N) will then be pro-
vided with a length equal
to the product of N and
the length of X. If the
length of the function
would then be greater than

512 characters, sufficient
characters are truncated
from the right end of the
function such that the
length of the function is
512.

A-5. Bit String Procedures

The bit string procedures are all function proce-
dures which yield bit string values.

REP (X, N)

BOOL (X, Y, N)

This procedure catenates
one or more copies of a bit
string value. The second
argument designates the
number of copies of the
first argument that are to
be catenated.

The value argument X
may be any length. The
value N must be greater
than 0. The function REP
(X, N) will then be pro-
vided with a length equal
to the product of N and
the length of X. If the
length of the function
would then be greater than
32 bits, sufficient bits are
truncated from the right
end of the function such
that the length of the
function is 32.

This procedure computes a
Boolean result of the com-
bination of two bit string
values according to a truth
table. The values of the
first and second arguments
are combined according to
the truth table designated
by the third argument.
The third argument con-
sists of four bits. The first
bit denotes the value de-
rived by the combination
of two zero-valued bits;
the second bit denotes that
for a zero-valued bit and a
one-valued bit; the third
denotes that for a one-val-
ued bit and a zero-valued
bit; and the fourth denotes
that for two one-valued

LETTER (X)

DIGIT (X)

bits. The combination is
determined for each suc-
cessive pair of bits, one

~ from each of the first two

argument values, from
right to left, starting with
the left-most bit in each. If
the lengths of the two ar-
guments are not identical,
sufficient zero-valued bits
are appended before the
combination onto the right
end of the shorter value
such that its length is iden-
tical to that of the longer.
The value arguments X
and Y may be provided
with any length. The value
argument N must be pro-
vided as a bit string literal
of length 4. The function
BOOL (X, Y, N) will then
be provided with a length
equal to the length of the
longer of X and Y.

This procedure determines
whether or not the left-
most character in a charac-
ter string value is a letter
(A through Z). The value
argument X may be pro-
vided as a character string
of any length. The func-
tion LETTER (X) will then
be provided as a bit string
of length 1, zero-valued if
the left-most character of
X is not a letter, one-val-

~ued if it is.

This procedure determines
whether or not the left-
most character in a charac-
ter string is a digit (0
through 9). The value ar-
gument may be provided
as a character string of any
length. The function
DIGIT (X) will then be
provided as a bit string of
length 1, zero-valued if the
left-most character of X is
not a digit, one-valued if it
is.

USACSCS-TF-4-1

A-6. Structure Procedures

Structure procedures manipulate the values of
sets of quantities as single entities.

MOVE (X, Y)

CLEAR (X)

This proper procedure as-
signs the values of the sct
of quantities designated by
the first argument to the
set of quantitics desig-
nated by the second argu-
ment, as though both ar-
guments designated bit
string quantities whose
lengths are the shorter of
the two sets of quantities.
X and Y must be quantity
arguments.

This proper procedure as-
signs a bit string value of
indefinite length composed
entirely of zero-valued bits
to the set of quantities des-
ignated by the argument,
as though the argument
designated a bit string
quantity whose length is
the length of the set of
quantities. X is a quantity
argument.

A-7. Point Procedures

Point procedures transfer the sequence of exe-
cution according to specific rules.

~ SWITCH (X)

1y

P,,...
P.)

This proper procedure
transfers the sequence of
execution to the point
designated by the point
arugment P, where i is the
largest integer not greater
than the value of the short
numeric argument X. If i is
zero, the effect of the invo-
cation of this procedure is
exactly that of the execu-
tion of a null statement.
The value argument X
may be provided with any
precision and scaling, but
the value of the argument
must not be less than 0 nor
greater than n, where n is
the number of point argu-
ments in the argument list.

A5

USACSUS-1 F-a-1

A-8. Redefinition Attribute Procedures
The redefinition attribute procedures are listed

below.

SHORT (X, N),
SHORT (X)

SHORT (X, N),
SHORT (X)

A-6

Long Numeric Value X.
This function procedure
redefines the value of the

long numeric argument X
to a short numeric func-

tion value. The low-order
N bits of precision of X
are retained as the preci-
sion of the function. The
scale factor of X is the

scale factor of the

function.

X must be a value argu-
ment of any precision and
scaling. N must be a value
argument which is a num-
ber greater than 0 and not
greater than 31. If the ar-
gument N is not provided,
N is understood to be 31.
If X requires greater than
N significant bits of preci-
sion, the function is unde-
fined.

Character String Value
X. This function procedure
redefines the value of the
character string argument
X to a short numeric func-
tion value. The high-order
N bits of X are retained as
the precision of the func-
tion. If the length in bits
of X is not N, sufficient
bits are added (zero-val-
ued) or truncated from the
right such that its length in
bits is N. The scale factor
of the function is 0.

X must be a value argu-
ment of any length. N
must be a value argument
which is a number greater
than 0 and not greater
than 31. If the argument
N is not provided, N is un-
derstood to be 8.

SHORT (X, N),
SHORT (X)

LONG (X, N),
LONG (X)

LONG (X, N),
LONG (X)

Bit String Value X.
This function procedure
redefines the value of the
bit string argument X to a
short numeric function
value. The high-order N
bits of X are retained as
the precision of the func-
tion. If the length of X is
not . N, sufficient bits are
added (zero-valued) or
truncated from the right
such that its length is N.
The - scale factor of the
function is 0.

X must be a value argu-
ment of any length. N
must be a value argument
which is a number greater
than 0 and not greater
than 31. If the argument
N is not provided, N is un-
derstood to be 1.

This function procedure
redefines the value of the
short numeric argument X
to a long numeric function
value. The low-order N
bits of precision of X are
retained as the precision of
the function. The scale
factor of X is the scale fac-
tor to the function.

X must be a value argu-
ment of any precision and
scaling. N must be a value
argument which is a num-
ber greater than 0 and not
greater than 31.

If the argument N is not
provided, N is understood
to be 31. If X requires
greater than N significant
bits of precision, the func-

,tion is undefined.

Character String Value
X. This function procedure
redefines the value of the
character string argument
X to a long numeric func-
tion value. The high-order
N bits of X are retained as

LONG (X, N),
LONG (X)

CHAR (X, N),
CHAR (X)

the precision of the func-
tion. If the length in bits

“of X is not N, sufficient

bits are added (zero-val-
ued) or truncated from the
right such that its length in
bits is N. The scale factor
of the function is 0.

X must be a value argu-
ment of any length. N
must be a value argument
which is a number greater
than 0 and not greater
than 62. If the argument
N is not provided, N is un-
derstood to be 8.

Bit String Value X. This
function procedure rede-
fines the value of the bit
string argument X to a
long numeric function
value. The high-order N
bits of X are retained as
the precision of the func-
tion. If the length of X is
not N, sufficient bits are
added (zero-valued) or
truncated from the right
such that its length is N.
The scale factor of the
function is 0. X must be a
value argument of any
length. N must be a value
argument which is a num-
ber greater than 0 and not
greater than 32. If the ar-
gument N is not provided,
N is understood to be 1.

Short Numeric Value X.
This function procedure
redefines the magnitude of
the value of the short nu-
meric argument X to a
character string function
value. The low-order N
bits of precision of X are
retained, and sufficient bits
added (zero-valued) to the
right such that N is an
even multiple of 8. This
multiple is the length of
the function. X must be a
value argument of any

CHAR (X, N),
CHAR (X)

CHAR (X, N),
CHAR (X)

USACSCS-TF-4-1

precision and scaling. N
must be a valuc argument
which is a number grouter
than 0 and not preater
than 31. If the argument
N is not provided, N is up-
derstood to be 8.

Long Numeric Value X.
This function procedure
redefines the magnituce of
the value of the long nu-
meric argument X to &
character string function
value. The low-order N
bits of precision of X are
retained, and sufficient bits
added (zero-value) to the
right such that N is an
even multiple of 8. This
multiple is the length of
the function.

X must be a value argu-
ment of any precision and
scaling. N must be a value
argument which is a num-
ber greater than 0 and not
greater than 62. If the ar-
gument N is not provided,
N is understood to be 8.

Bit String Value X.
This function procedure
redefines the value of the
bit string argument X to a
character string function
value. The high-order N
bits of X are retained as
the length in bits of the
function. If the length of
X is not N, sufficient biis
are added (zero-valued) or
truncated from the right
such that its length is N. If
N is not then an even mul-
tiple of 8, sufficient bits
are added (zero-valued)
such that N is an even
multiple of 8. This multi-
ple is the length of the
function.

X must be a value argu-
ment of any length. N
must be a value argument

A7

USACSCS-TF-4-1

A-8

BIT (X, N),
BIT (X)

BIT (X, N),
BIT (X)

which iis a number greater
than 0 and not greater
than 32. If the argument
N is not provided, N is un-
derstood to be 8.

Short Numeric Value X.
This function procedure
redefines the magnitude of
the value of the short nu-
meric argument X to a bit
string function value. The
low-order N bits of preci-
sion of X are retained as
the length of the function.
X must be a value argu-

‘ment of any precision and

scaling. N must be a value
argument which is a num-
ber greater than 0 and not
greater than 31. If the ar-
gument N is not provided,
N is understood to be 1.

Long Numeric Value X.
This function procedure
redefines the magnitude of
the value of the long nu-
meric argument X to a bit
string function value. The
low-order N bits of preci-
sion of X are retained as
the length of the function.

BIT (X, N),
BIT (X)

X must be a value argu-
ment of any precision and
scaling. N must be a value
argument which is a num-
ber greater than 0 and not
greater than 32. If the ar-
gument N is not provided,
N is understood to be 1.

Character String Value X.
This function procedure
redefines the value of the
character string argument
X to a bit string function
value. The high-order N
bits of X are retained as
the length of the function.
If the length in bits of X is
not N, sufficient bits are
added (zero-valued) or
truncated from the right
such that its length in bits
is N.

X must be a value argu-
ment of any length. N
must be a value argument
which is a number greater
than 0 and not greater
than 32. If the argument
N is not provided, N is un-
derstood to be 8.

APPENDIX B

PARTICLES AND WORD OPERATORS

USACSCS-TF-4-1

B-1. General

Listed in this appendix are the particles, and
operators constructed as words, comprising the
TACPOL language. Word operators are reserved
words which may not be utilized as programmer
defined names. These operators are identified
with an asterisk to the left of the word.

ALIGNED

AND

AUTH

BACK

BEGIN

BIN

BIT

attribute - specifies that
storage for a declared set
of quantity is to be allo-
cated so as to minimize the
time required for access.

logical operator - indicates
a logical ‘and’ of the bit
string values immediately
preceding and following
the particle.

file specification - specifies
the programs (by name)
which may access the file
to perform read, write or
both read and write opera-
tions.

bit string specifier - desig-
nate a bit string.

space statement specifica-
tion - specifies that the
designated serial file is to
be spaced backward.

block delimiter - indicates
the start of a BEGIN
block.

attribute - specifies that
values of the declared
quantities are to be ‘bi-
nary’ representations of
decimal numbers (must be
used with FIXED: BIN
FIXED).

attribute - specifies that
the quantities in a declara-
tion are ‘bit’ string quanti-
ties.

BLOCKED
BUFFERED

BY

CALL

CAT

CELL

CHAR

CHECK

CLOSE

CODE

file specification - specifies
records to be grouped into
physical blocks for actual
170 operations.

file specification - specifies
the number of buffers to
be allocated for 1/0
processing.

DO specifier - identifies
the value immediately fol-
lowing the particle as the
step value (increment) of
the control quantity in the

DO statement.
statement - specifies that

the proper procedure
whose name appears im-
mediately following the
particle is to be invoked.

string operator - specifics
that the string values im-
mediately preceding and
following the operator are
to be ‘catenated’.

attribute - identifies a dec-
laration as a CELL decla-
ration.

attribute - specifies that
the quantities in a declara-
tion are ‘character’ string
quantities.

statement - specifies the
condition declaration
which turns specified con-
ditions on (ZDIV, FOFL,
USAGE).

statement - disassociates a
file from the program.

block delimiter - identifies
the block following the
particle as being state-
ments in a non-TACPOL
language (currently assem-
bly language).

B-1

USACSCS-TF-4-1

COMPOOL

CONF

CONSOLE

DASD

DCL

DELETE

DIRECT

DISPLAY

DO

*ELSE

B-2

attribute - used in a proce-
dure head to designate
that procedure as being in
the common pool.

file attribute - specifies
that the data on the desig-
nated file is to be classified
confidential.

file attribute - specifies
that the designated file is
to use the console.

file attribute - Direct Stor-
age Access Device. Speci-
fies that the designated file
is to use the DASD as the
storage medium. DASD is
a drum.

statement - identifies the
text following the particle
and ending with a semico-
lon as being a ‘declara-
tion’.

statement - specifies that
the existing record in the
file is to be removed.

file attribute - specifies
that the records on the file
are to be organized to be
accessible by a key value;
i.e., specific records may be
accessed regardless of their
position relative to other
records in the file.

file attribute - specifies
that the designated file is
to use the display system.

statement - specifies the
text following the DO par-
ticle and delimited by the
associated END particle as
being the body of the DO
statement, to be executed
a number of times as indi-
cated by the control varia-
ble and the DO specifiers.

literal specification - speci-
fies the precision of the
number. (none)

ELSE clause specifier -
identifies the start of the

*ELSE

END

ENDFILE

ENDFILE

ENTRY

FILE

FIXED

FIXED

FOFL

ELSE clause in an IF
statement.

ELSE clause specifier -
identifies the start of the
ELSE clause in an ON

" statement.

block dclimiter - indicates
the ‘and’ of any block for
which there is an associ-
ated particle indicating the
start of that block. (See
BEGIN, DO, PROC))

I/O specification - in a
WRITE statement, causes
the terminal boundary or
the file to be placed at the
current position of the file.
The file must be a serial file
opened for output.

I/O specification - in an
ON statement, the file is
examined to determine
whether or not an attempt
was made to reposition or
to transmit a record from
a serial file, opened for in-
put, at a point beyond the
boundary of the file.

attribute - specifies that
the names listed in the
declaration are names of
proper procedures which
are parameters to the pro-
cedure in which the decla-
ration appears.

[70 statement specifier -
used in an input/output
statement or declaration as
part of the text.

attribute - specifies the
quantities in a declaration
are ‘fixed’ point (must be
used. with BIN: BIN
FIXED).

file specification - specifies
a file of fixed length.

condition - specifies that
whenever a ‘fixed point
overflow’ occurs as the re-
sult of an arithmetic oper-
ation, the ‘snap’ procedure

FREE

FROM

FROM

GE

GOTO

GT

IF

IGNORE

INIT

is to be implicitly invoked
or not invoked (see
SNAP).

attribute - a record type
attribute for file declara-
tions not implemented.
REWRITE statement spec-
ificr - specifies the set of
quantities from which the
record is to be rewritten.

WRITEstatement specifier -
specifies the set of quan-
tities from which the rec-
ord is to be written.

relational operator - speci-
fies that a determination is
to be made as to whether
the value preceding the
particle is greater than or
equal to the value follow-

‘ing the particle.

statement - specifies con-
trol is to be transferred to
the indicated point.

relational operator - speci-
fies that a determination is
to be made as to whether
the value preceding the
particle is greater than the
value following the parti-
cle.

statement - specifies condi-
tional execution of the
statement in the THEN
clause or ELSE clause as
controlled by the outcome
(‘true’ or ‘false’) of the bit
expression of the IF
clause.

statement - specifies the
condition declaration
which turns specified con-
ditions off (ZDIV, FOFL,
USAGE).

attribute - defines the
value following the parti-
cle as the value to be as-
signed to the quantity in
the declaration. (‘initial-
ize’).

INPUT

INTO

KEEP

KEY

LABEL

LABELLED

LE

LOAD

LT

USACSCS-TF-4-1

file attribute - used in an
OPEN statement to specify
that the file being opened
is to be used for input
only.

READ statement spectfier
- specifies the set of guan-
tities into which the record
is to be read.

1/0 specification - specifies
that the file is to be kept
after being closed.

input/output specification -
specifies the character ex-
pression to be used as the
key value record to be ac-
cessed from the file.

literal specification - speci-
fies that the literal is to be
treated as a long numeric
literal.

attribute - specifies that
the names listed in a dec-
laration are point names
which are parameters to
the procedure that con-
tains the declaration.

file specification - specifies
a file with standard header
and trailer labels.

relational operator - speci-
fies that a determination is
to be made as to whether
the value preceding the
particle is less than or
equal to the value follow-
ing the particle.

statement - specifies that
the designated programs
are to be loaded into the

- computer and prepared for

execution.

relational operator - speci-
fies that a determination is
to be made as to whether
the value preceding the
particle is less than the
value following the parti-
cle.

B-3

USACSCS-TF-4-1

NE

NOKEY

NOPART

*NOT

OLD

ON

OPEN

OR

B-4

relational operator - speci-
fies that a determination is
to be made as to whether
the values preceding and
following the particle are
not equal.

170 specification - in an
ON statement, the file is
examined to determine
whether or not an attempt
was made to read, rewrite
or delete a record in a di-
rect file when no record
with the specified key ex-
ists. :

170 specification - in an
ON statement, a file is ex-
amined to determine
whether or not an attempt
was made to open an old
partition in the file and the
partition no longer exists.

logical operator - indicates
a logical ‘not’ of the bit
string values immediately
preceding and following
the particle.

170 specification - specifies
that the file in the 170 op-
eration has been created
before being opened.

statement - a file statement
which specifies the condi-
tional execution of a con-
stituent statement based
upon the results of speci-
fied file conditions (END-
FILE, NOKEY or NO-
PART).

statement - specifies that
the named files or file set
members are to be opened
for use. The process of
opening a file involves as-
sociating a file with the
program by name and
specifying certain attri-
butes for the file.

logical operator - indicates

a logical ‘or’ of the bit
string values immediately

OUTPUT

PACKED

PARTS

PASS

PLOTTER

PRINTER

PROC

PUNCH

READ

READER

RECORDS

RETURN

REWIND

preccding -and following
the particle.

file attribute - used in an
OPEN statement to specily
that the file being opened
is to be used for output
only.

attribute - specifies that
storage for a declared set

of quantities is to be allo-
cated so as to minimize the
total storage required.

file specification - specifies
a file which is to be a par-
titioned file.

170 specification - specifies
that the file is to be kept
and is to remain immedi-
ately available after being
closed. -

file attribute - specifies
that the designated file is
to use the plotter.

file attribute - specifies
that the designated file is
to use the line printer.

block delimiter - indicates
the start of a ‘procedure’
block.

file attribute - specifies
that the designated file is
to use the card punch.

statement - specifies that a
record is to be read into
the specified set of quanti-
ties from the specified file.

file attribute - specifies
that the designated file is
to use the card reader.

file specification - specifies
the number of records in a
file in a file declaration.

statement - indicates that
the value following the
particle is to be ‘passed
back to’ the invoking func-
tion procedure.

statement - specifies that
the designated serial file is

REWRITE

SECR

SERIAL

SPACE

*SUBSTR

TAPE

TERMINAL

*THEN

TO

TOPS

to be rewound so that it is
in its starting position.

statement - specifies that
the specified set of quanti-
ties is to be written onto a
file as a record replacing
an existing record on that
file.

literal specification - speci-
fies the scale factor to be
used for the literal.

file atiribute - specifies
that the data on the desig-
nated file is to be classified
secret.

file attribute - specifies
that the data on the file is
to be organized in a serial
fashion, i.e., accessed se-
quentially one record fol-
lowing another, etc.

statement - causes the des-
ignated serial file to be

spaced a specified number

of records forward or
backward.

string operator - designates
a substring of a string
quantity (specified by the
text enclosed in parenthe-
sis following the operator).

file attribute - specifies
that the designated file is
to use magnetic tape.

file attribute - specifies
that the designated file is
to use a data terminal.

THEN clause specifier -
identifies the start of the
THEN clause in an IF
statement.

DO specifier - identifies
the value immediately fol-
lowing the particle as the
maximum allowable value
of the control quantity in a
DO statement.

file attribute - specifies
that the data on the desig-

UNCL

UPDATE

UNWIND

USAGE

USES

VALUE

VARIABLE

WAIT

WHILE

USACSCS-TF-4-1

nated file is to be classified
top secret.

file attribute - specifies
that the data on the desig-
nated file is to be unclassi-
fied.

file attribute - used in an
OPEN statement to specify
that the file being opened
is to be used for input
and/or output.

statement - specifies that
the designated serial file is
to be positioned at its end.

condition - in the CONDI-
TION declaration specifies
that any use of the names
listed following the parti-
cle is to cause the snap
(trace) procedure to be in-
voked or not invoked. (See
CHECK and IGNORE))

attribute - in a CODE
block, specifies the names
in the list that follows will
be known to the assembly
language code within the
block.

attribute - specifies thai
the names listed in the
declaration are parameter
quantities which are im-
plicitly assigned the values
of the corresponding ex-
pression arguments on in-
vocation of the procedure
containing the declaration.

file specification - specifies
a file of variable length.

statement - causes all pro-
gram execution to wait un-
til all file processing opera-
tions on the designated file
are completed.

DO specifier - identifies a
bit expression which fol-
lows the particle in a DO
statement. The DO state-
ment is executed until the
bit expression is no longer
‘true’.

B-5

USACSCS-TF-4-1

WRITE

B-6

statement - specifies that a
record is to be written
from the specified set of
quantities onto the speci-
fied file.

ZD1V

condition - specifies that
whenever an attempt is
made to ‘divide by zero’
the ‘snap’ procedure is to
be implicitly invoked or
not invoked (see SNAP).

USACSCS3-TF-4-1

APPENDIX C
TABLE OF INTEGER PRECISION

Table C-1. Table of Integer Precision

Then the Number
of Bits Required
If the Decimal Integer to Contain the

is Greater Than And Less Than or Equal To Decimal Integer is
0 1 i
1 3 2
3 7 3
7 15 4
15 31 5
31 63 6
63 127 7
127 255 8
255 511 9
511 1023 10
1023 204 7 il
2047 409 5 12
4 095 8191 13
8191 163 83 14
16 383 32767 15
32767 655 35 16
65 535 131071 17
131071 262143 18
262 143 524 287 19
524 287 104 857 5 20
1048 575 2097151 21
2097 151 4194303 22
4194 303 838 860 7 23
8 388 607 167772 15 24
16 777 215 335 544 31 25
33554431 67 108 863 26
67 108 863 134 217727 27
134 217 727 268 435 455 28
268 435 455 536 870911 29
536 870911 107 374 1823 30
1073 741823 214 748 364 7 31
2147 483 647 461 068 601 832629 9903 62

20083-13

C-1/{C-2 blank/
n/)

APPENDIX D
SAMPLE COMPILER OUTPUTS

USACSCS-TF-4-1

D-1.

This appendix contains samples of compiler
outputs such as TACPOL Source Listing (table

General

TACPCL SOURCE LISTING

MESSP:

NEXT:

D-1), Attribute and Reference List (table D-2),

Table D-1. TACPOL Source Listing

PAGE 1

PRCC;
JEDFCLALATIVES FOR KEWQUIRED DATA STRUCTURES%/
DCL 1 IMNPM CELL,
2 (COORD (15}, /*DESIGN OF INPUT MESSAGE TABLE*/
3 (PESIG CHAR (4), .
YCOOKD BIN FIXtD (15),
YCOURD BIN FIXED (15)),
© NUMEFIC (1),
2 (NDESIGN BIN FIXED (31)))s /*OVERLAY OF DESIG*/
DCL COUET BIN FIXFDS /*ERROR MESSAGE COUNTER®/
PCL 1 ERRM (15), /*ERROR MESSAGFE AREA®/
2 (FRKDES CHAR (4), ‘
ERKXCC BIN FIXED (1514,
FRRY(CD BIN FIXED (15)1):
DCL ACHAR CHAR (4) INIT (*AA *); /% SOURCE DEDIONATOR%/
0CL t CHAR CHAR (&) INIi (*BB *);: /*CONSTANTS®/
CCL "ChAK CH AR a) LMLt LeCC)
OO TWPEX BEY 100 (1) /*INDEX
/7 STAPT DYNAMIC TVATEM NTSx%/
COUNT = N3 /% INITHEALIZE EREQT - 00 T ko /
INDEX = 13 /*INITIALIZE ERRUR TNDFx%/
Ge I=1 RY 1 TO 15; /*BEGIN LOOP%/
IF (DESIGEI) = ACHAR}) THEN GOTCO NEXT; /¢DESIGNATOR =S AAwm/
IF (PFSIG(I) = HCHAR) THEN GOTE NEXT3 /%DFSIGNATOR =S RB#/
IF (DESTulL) = CCHAR) THEN GOY(NEXTs /#*DFSIGNATOR =S CCx*/
COUNY = CCUNT+1: J¥STAFT ERRGR PRIOCESSING®*/
ERRDES (INDEX) DESIG(L); /#TRANSFER MESSAGE IN FRROR*/

ERKXCT (INDEX)
ERRYCD(INDEX)
DESIGhMEL)y XCOORD(ID,

XCCOKD(ID;
YCOORDLILY 3
YCOGRDIT) =

0o e

ns

[NDEY = INDEX+]s
END3 /*DC LOOP*/
END 3

/*PROCEDURE*/

/*TERO INPUT MESSAGE*/
/%SET INDFX FOF NEXT ENTRY*/

Machine Language Output (table D-3), and Cross
Reference and Set Used Listing (table D-4).

HLRONQO20
HLROOO0 30
HLPOOOQ4D
HLRNONOS)
HLROOOED
HLROOOTO
HLROGOBD
HLROOOSD
HLPONLOD
HLROOC110
HLROG129
HLROO130
HLRNN1 40
HLROC1S50
HLRON169
HLROOLTO
HLRNO189

JHLREO0190

HLRDO23N
HLP 00240
HLROD250
HLRON260
HLRNO27C
HLROO?280
HLRON2G0
HLF 00300
HLROO3LN
HLRD0329
HLRON330
HLR0OO0340
HLROG350
HLFO0O36N

20083-14

D-1

USACSCS-TF-4-1 . :

Table D-2. Attribute and Reference List

ALHAT, LITEPAL VALUE CHAFACTER SIRINGE &)
CEFINGD AT 15 PEFERENCES AT 23

ALPHEAST GREUP SCALAR SHORT NUMERICC 7, ¢) IN GROUP CTUP
VEFIMEL IN CUMPOOL NU RPEFLRENCES .

ALHHELIRE GRELE SCALAK SHOFRT NUMEFIC(T, Q) IN GKCUP QTCP
i DEFINLD TN COMPUOL NC PEFERENCES

ACPHEKEL GROUP SCALAR SHUET NUMER IC(T, u) IN GRUUP Q1CP
UEFIMEL IM COMPOLL NC REFERENCES

aLPHP GrCUE SCALAR SHUET NUMERICC T, 0) - IN GRCUF GQTCP
DEFItLD It COMPOCL NOC FLUFERENCES

ACPHSLTE GRUGLP SCALAR SEOET HNUMEFICUL T, vl IN CrCUP @TLP
: OEFINLE T COMPCUL NC PEFERENCES

ALPHSLOW GRULUP SCALAR SHUFT NUMERICUE 7, C) IN GROUP QT0P
GEFINLC M COMPOLL MO FFFEREMCES

ALPESY S GFCUF SCALAP SHCPT NUMEFIC(7,) IN GRUUP QTCP
GEFINED TN COMPULIL NO KREFEKINMNCES

ACPHXMTL LRCLP SCALAR SHCOPT NUMEFILC 7, 9) IN CGRCUP QTOP
DERINEDR INM COMPUGCL NO KEFERENCES

ALPHXNTZ GRUUFP SCALAR SHUFT NUPERTCL T, L} IN GROUP QTOP
JEFIM TN COMPOGL NC RETERENCGES

ALPHXNTE GRCEP SCALAR SHERT NUMEFIC(T) IN GROUP QTP
ODEFINED. It CCHPGUL RO REFEFENCES :

ACPREXMI4 GRLLE SCALAR SHUEY NUMEEIC(T, 0) IN GRFOUP QTCP
FEFILEG 1A COMPLil NG PEFERENCES

sueL il LRLUE SCALAY. SHUFT NUMEPIC(7, n)y LN GREOUP (TCP
CEEIDED TN CLMPOCL NG FEFERENCES :

AL [WAR
LECRrEn I COrPUrL NC FEFERENCES
20083-15

1/13/71

AODE UP M b
wouGt 20 2 F
QuGz 271 1 C
0004 20 0 7
guo6 26 1 17
G006 2¢ 0O 7
000A 66 1 7
¢90C

J00C &0 1 t
Juit 9 0t
0010 32 2 ¢
Qule 33 2 ¢
Oulae 60 L 7
oule 0OC U 7
utly 2v 1 1
0Cla 20 2 &
AU 1(20 2 ¢
00lL 12 1 ¢
3020 7L 2 2
0C22

Q22 L0 1 7
0024 0OC 3 7
yuel2e 20 11
Qu2g 20 2 &
3024 20 2 ¢
Joe 12 L&
oGt 7L 2 2
[TV

LUl 6L L 7

)

n

rO N

N o

DI OQOCPMNODON

<

[

M N VIS

MESSP

D AW

OUBE
gcoc
oCco
oceo
aec2
2(03
L0
0co0o
ve3C
203t
CC3E
0C40
2C4l
COTA
003C
0001
0C0TA
0o7C
ocel
co7C
aceo

o 7C
J2COF
oeee
aCT6
STC
Mos
[IQA S
FFFC
CORE
JesC
2062
200
(e de
[
20CE
FricC
oeB2
20CC
J0L4
aCeo
007C

F P

T

K

STMT

3
4
5
&
7
B
9

11
12
13
14
15
le
17
18
19
2C
21
22
23
26
25
7’6

-
<

28
29
20
31
22
23
24
35
26
37
i
29
40
41

4z

43
“h
45
46
47
48
49
50
S1
&2

EER I R

NAME

ap{o0l
gnuoon2
apCo03
900924
9p000S
00Cs
300007
[0C 008
$09209
900010
9Do011
900012
quLNL2

sDUOL 4

9PC031

gpPCC22

9P7333

GPERATION

cMp
SEIFT
SHIFT
LDF
EQU
EQU
EQU
EQU
[39Y]
EQU
EQU
[V}
EQU
EQuU
EQu
EwyU
EQU
MIE
LUF
SCF
EwU
LI
SDH
BSS
DCHKR
[CHK
DCHK
DCHK
DCHK
LDH
SBF
XEF
XFF
LLH
MPF
LDt
LUF
LDF
Lt
XtQ
B8SS
LDH
V¥ PF
LODf
L UF
LUk
CLF
XEu
ess
LLH

Table D-3. Machine Language Output

COMPOOL MSGPROC

OPERAND COMMENTS

MSGPRCC

SET REG 15 FOR ILLEGAL OP PROCESSING
9bADOP-%,15
00000
00000
000C0
00002
00v03
00000
00000
00060

000¢e2
00062
00064

00065
20122
gNOCNBeRT 02"
=000:01,07
9DCCL34R' 02,07

00124 .
=000J1,07 .
9DPCUL4+R2 02,07
o
9pCC14,00015,S8F,9P0G30

DCHKE = BY IS POSITIVFE LITRUM
FCR DCTHKK AND DCHKS o CP IS °*SBE* FOR TO POSITIVE
AND IS 'ADF* FUR TO NEGATIVE
(TG NOT L ITNUM)

9DOCL4+P 20,14

=0C01S,14

$+¢2,14
GPCO30-%,1%

ALCCL4+R*C2,C7
=400004,07

REQT7*,C1

9NC0I3-00004+D*02?,08

SLOCl6-%,06

R¢Q€*,08
9P 24-%
0
GDON14+R 2, 0T

=+ C00C6,07
ROQTE,C1

ILNNO3-CrOJ4+D* 2% 4,08
9L0GLIT7-%,06
RYQET, 08
9pPC025-%
0
9DCC14+R* 02,07

PAGE 2
SEQUENCE

1 3
1 4

D W N 1ot N et bt e ot pot s put Dot (et pat (el et pud et s
TR RN

N
>
N D dOANDWNE YINDWN -

20083-16

D-3/(D-4 blank}

SYMBOL

QUAULP
91,0001
YUIVZ
DI IVISROC)
GLNO L4
FJ0005
RIVIVIGRe] 3
g7
909008
QYOI
U010
gpYall
90001¢
90013
YLIC 14
YN
GLOGLG
9LOoUu17
gLCOl8
My
RESLIN
GMBL UP
9MBYTE
aMal
YPUU1LS
GPCLLS
YPON2%
gpPIL2e
9pPou30
SPUU3l
9P 52
GPL 33
9PV 34
YR THREE

FEE

usLpe
N E
NUME
usiD
UL TH
3UTH
NOMNE
SET

SET

NUME
USEL
SET

SCT

tUThH
BCTH
N L
LSt
ust
USEL
ol TH
NOME
uUsSLD
USEC
NOML
USED
USED
USED
usto
LSLe
ustpl
NUNE
NOMNE
NORL
NGNE

VALUE

Q090
ocon
Qo0
0000
00G2
0Ces
[alale}
G400
oC3C
03¢t
0C3E
V0&a0
0C41
QCTA
CCTC
vopc
LeDC
JO0DE
aCLD
oceo
2008
QCBC
oC92
NC8E
2C84
8B4
o0u4
V084
208A
ococ
J022
0C3n
nC3E
O00CTE

USACSCS-TF-4-1

Table D-4. Cross Reference and Set Usec Listing

CKCSS REFERENCE AND SEV-USED LISTING

CRCSS-FEFLRENCE

cCoo

(039
cesl
OCES

¥0091
%0020

0¢73
*0CP3
%0087
#0022
£0:025

n04aQ
cC48
cese

¥9119

¢l151
GQ7S

cles
2042
QUS0
¢neg
0025
0102

ceay
*(MQ3
X0 0H

#*(CCe]

el 63
N2

0129

¢105

0305%

*0097
J03e

®7139

21906

0067

0044 0052 0062 eC8s *0101

0150 0152 ¢153

20083-17

D-5/(D-6 blank)

. ’ USACSCS-TF-4-1

DATA PROCESSING PAGE OF
TACPOL KEY PUNCH TRANSMITTAL
DATE
PROGRAM

PROGRAMMER: EXT:

1421314 (5/617.1219110121112113/14{15}16]17{18]19720121;22123{24}125)26]27]2¢ 29}30:31 32133 34&35'36 37§32139(30(31{4214a3554313% 46&47:22 49 150151 152153158551 56[575E)59 60[6l 62]63{b4]65]/6b6/67]|b6Lj69{76!71 72173174[75]76 177, 78|79} 80

07

a8

o

',w'»\

112f3fajsi6ei718 9]10]11j12(13(14(15{16117[18]19120}21]22}23(24{25]26]27120]29}30131)32}33}34{35]36}27!3¢e)39}a0fa1}azla3}aajasiacjsriarlanlsnisifsa]s3isaiss se}sriscisoleolsljsz]eilsdalesfec]or]ecteoirefnjrairsfzafrslsefsrlissfio]co

Figare FO-I. TACPOL Coding Form . 43-39-005

FO-1/(FO-2 blank)

