
USACSCS-TF-4-2

SOFTWARE SUPPORT MANUAL

ASSEMBLY LANGUAGE REFERENCE MANUAL

PROGRAMMING SUPPORT SYSTEM (PSS-B)
(TACFIRE)

(LITTON DATA SYSTEMS)
DAAB07·68·C·0154

PREPARED FOR U.S. ARMY COMPUTER SYSTEMS COMMAND. FORT BELVOIR, VIRGINIA

15 January 1972

USACSCS. TF·4·2

Reproduction for, non·milil .. y use of 1h8 information or illustrations contained in this publication is not permitted. Th8 policy for rmll'ary ",.,
reproduction is established for 'the Army in AR 380-5, for th8 Navy and M.ine Corps in OPNAVIST 5510.18, and for the Air f or"" III All

Force Regulation 205-1. '

LIST OF EFFECTIVE PAGES

Insert latesl changed pages; dispose of superseded pages in accordance with applicable regulations.

NOTE: On a changed page, the portion of the telCt affected by the latest change is indicated by a vertical line. or other change symbol. III th"
ollter margin of the page. Changes to illustrations are indicated by miniature pointing hands. Changes to wiring diagrams are indicatec1 by
shaded areas.

Total number of pages in this manual is

Page

No.

Title

·Change
No.

........ 0
A .•..•••••••••••••••• 0

B Blank •.••••••••• ' •••.• 0
i-ili•.... O
iv Blank ..••••••.••••••• 0
1·1.•••...•••. 0

1-2 Blank ..•••••••••.•••• 0

2-1 - 2-4 ..•. ; ••••.• " •.. 0

3-1 - 3-8 ..••••••.•••••.• 0
4-1 - 4-6 ••••••••••••••.• 0
5-1 - 5-5 •••••••••••••••• 0
5-6 Blank •••.••..•••.•••• 0
6-1 - 6-2 •.••••..•..••••• 0

7-1 - 7-8 •••••.••.•••••.• 0

8-1 - 8-5 ...•••••••••• , ••• 0

8-6 Rlank ••••.•.••••••..• 0
9-1 - 9-4 •••..••.•••.•••• 0

10-1 - 10-2 ••..........•. 0

55 consisting o,f the following:

Page
No.

• Zero in this column indicates an original page.

·Change
No.

Page
No.

'Changl'
No.

A/ts blank}

USACSCS-TF-4-2

TABLE OF CONTENTS

Section Page Section I)age

LIST OF ILLUSTRATIONS iii CHAPTER 4 AN/GYK-12 MACHINE

LIST OF TABLES iii INSTRUCTIONS

CHAPTER 1 INTRODUCTION 4-1 Introduction 4-1

GENERAL I-I 4-2 Machine Instruction Format 4-1

1-1 Purpose 1-1' CHAPTER 5 AN/GYK.12 COMPUTER EXTENDED

1-2 Applicable Documents I-I MNEMONIC INSTRUCTIONS

1-3 Description of the Manual 1-1
5·1 Introduction 5-1

CHAPTER 2 FUNCTIONS OF THE AN/GYK·12 5·2 Extended Mnemonic Code Instructions 5-1
ASSEMBLER

GENERAL 2-1 CHAPTER 6 COMPOOL SYMBOLS

2-1 Introduction 2·1 I GENERAL 6-1

2-2 Communicating with the AN/GYK·12 6-1 Introduction 6-1
Computer 2·1 6-2 Compool 6-1

2-3 Programming in the AN/GYK·12 6-3 Compool Symbol Usage 6-1
Assembler Language 2·1 64 Converting Compool Symbols 6-1

II AN/GYK·12 ASSEMBLER 2·3 CHAPTER 7 AN/GYK·12ASSEMBi..ER
24 AN/GYK-12 Assembler Basic INSTRUCTIONS

Functions 2·3 I GENERAL 7-1
2·5 Features of the AN/GYK.12

7·1 Introduction Assembler 2·3
7-1

2·6 Use of Mnemonic Operation ~odes 2·3 7·2 Symbol Defmition Instruction (EQU) 7-1

2-7 Variety in Data Representation 2·3 II DATA DEFINITION INSTRUCTIONS 7-2
2-8 Macro Capability 2-4 7-3 GEN, BSS, Data Instructions 7-2
2-9 Compool Data Defmition Capability 2-4 74 Generate Data Instruction (GEN) 7-2
2-10 Relocatability 24 7·5 Block Started by Symbol Instruction
2-11 Partitioning and Linking 2-4 (BSS) 7-3
2-12 Program Listings 2-4 7-6 Defme Length of Local Data
2-13 Error Indicators 24 Instruction (DATA) 7-4
2-14 Cross Reference and &t/Used Listings 24

III PROGRAM UNKING INSTRUCTIONS 74
CHAPTER 3 BASIC COMPONENTS OF THE

7·7 ENT, EXT Instructions 74
AN/GYK·12 ASSEMBLER
LAJIlGUAGE IV LISTING CONTROL INSTRUCTIONS 7-5

SOURCE 3·1 7·5 REM, PAGE, OPT Instructions 7-5

3-1 Introduction 3·1 V PROGRAM CONTROL INSTRUCTIONS 7-6
3-2 Assembler Language Source Input 7-6 TITLE, ORG, WC, END Instructions 7-6

Format 3·1 7·7 Miscellaneous Instructions: CMP,
3·3 Assembler Language Source Statements 3-1 CNOI 7-8

II GENERAL ASSEMBLER SOURCE 7·8 Assembly Deck Structure 7-8
INPUT FORMAT 3·2

CHAPtER 8 MACRO LANGUAGE
34 General 3·2
3-5 Symbols 3·3 I GENERAL 8·1

3-6 Terms 3-4 8-1 Introduction 8-1
3·7 Expressions 3·7 8·2 The Macro Instruction S't1\tement 8-1

USACSCS-TF-4-2

TABLE OF CONTENTS (Continued)

Sectiun Page Section I'age

II MACRO DEFINITIONS 8·3 94 Prologue Cards (Types 2,3,4,5,

8-3 Macro Definition and Instruction 6and 7) 9·2

Examples 8 .. 3 CHAPTER 10 ASSEMBLY LISTING

CHAPTER 9 OBJECT CODE OtITPUT 10·1 Introduction 10·1
10·2 Source Card and AN/GYK·12 Machine

Code Listing 10·1
INTRODUCTION 9·1 10·3 Prologue 10-1
9-1 Introduction ' 9·1 10-4 External Symbol Dictionary 10-1
9·2 Program Identifier Card (Type 1) 9·1 10-5 Cross·Reference and Set/Used listing 10·1
9·3 Data Cards (Type 0) 9·1 10-6 Assembly Error Indications 10·1

LIST OF ILLUSTRATIONS

Number Title Page Number Title Page

2-1 Programming in the AN/GYK·12 4-2 Assembler Language Machine Instruction
Assembler Language 2·] Conversion 4·1

2·2 AN/GYK·12 Assembler Coding Form 2·2
5·1 Assembler Language Extended Mnemonic

Conditional Transfer Instruction
3·1 Assembler Language Source input

Conversion 5-1
Format 3·]

5·2 Assembler Language Extended Mnemonic
3·2 Example of an Assembler Input Record 3·3 Shift Instruction Conversion 5-4
4·1 Construction of Assembler Language' 5·3 Assembler Language Extended Mnemonic

Machine Instruction 4·] Format Instruction Conversion 5·5

LIST OF TABLES

Number Title Page Number Title Page
3·1 General Assembler Source Input Format 3·2 5·5 Extended Mnemonics for the Shift
4·1 Addressing Special Symbols 4·2 Half Word Instructions 5-4
4·2 Addressing Mode Combinations (Transfer 5·6 Notation Used in Extended Mnemonic

Instruction Excluded) 4·3 Format Instruction Codes 5-4
4-3 Addressing Mode Combination Examples 4-4 5·7 Extended Mnemonics for Format
4-4 Examples of the Use of Addressing Instructions 5·5

Special Symbols 4·6 6-1 Examples of Compool Symbols 6·1
5·1 Extended Mnemonics for Conditional 6-2 Bit Instruction Examples 6·2

Transfer Instructions 5·1 6·3 Shift and Format Instruction Examples 6·2
5·2 Notation Used in Extended Mnemonic

. Shift Instruction Code, 5·2' 7·1 AN/GYK·12 Assembler Instructions 7·2

5·3 Extended Mnemonics for the Full Word 7·2 Example of the Use of the Generate

Shift Options of the SHIFT Full (GEN) Instruction 7·3

Word Instruction 5·3 8·1 Macro Definition Header Statement 5-4 Extended Mnemonics for the Double Operand Field 8·2 Word Shift Options of the Shift
Full Word Instruction 5·3 9·1 Program Identifier Card Format 9·1

ii

USAC~ TF·4·2

LIST OF TABLES (Continued)

Number Title Page Number Title Page

9-2 Data Card Format 9·1 9·6 Compool Reference Linkage Table Format 9-4
9·3 Symbol Table Format 9·2 9·7 End Card Format 9-4
9·4 Entry Point and External Reference 10·1 Assembly Listing 10-2

Tables Format 9·2 10·2 External Symbol Dictionary Information 10-2
9-5 Compool Reference Table Format 9-3 10·3 Assembly Error Indication 10-2

iiilliv hllInkt

USACSCS-TF-4-2

CHAPTER 1

INTRODUCTION

Section I. GENERAL

1- 1. Purpose

The purpose of this manual is to provide inf or­
mation necessary for programmers to prepare
AN/GYK-12 computer assembly programs. In­
formation about the AN/GYK-12 computer as­
sembler language and the assembler itself is pre­
sented.

1-2. Applicable Documents

The AN/GYK-I.2 Principles of Operation
Manual USACSCS-TF-4-3 provides information
prerequisite to this manual.

1-3. Description of the Manual

Chapter I introduces the manual. The purpose
and applicable documents are given, and a de­
scription of the contents of the manual is pro­
vided. Chapter 2 presents general information'
about the assembler and the asserpbler language.
Information required to construct an input deck
to the assembler is presented. In addition, discus­
sions pertaining to communicating with the AN I
GYK-12 computer~programming in the ANI
GYK-12 assembler language, and the AN/GYK-
12 assem blier itself are included .. Chapter 3 dis­
cusses the different types of assembler language
source statements, the assembler instruction fields,
and the assembler input format. The basic ele­
ments of the operand (symbols, terms, and ex­
pressions) are also discussed. Chapter 4 presents
detailed discussions of the components of the
operand field of rna.chine instructions. The con-

tent and format of the different kinds of machine
instructions is explained. Addressing modes and
indexing are defined and explained. Examples are
provided as useful reference material. Chapter 5
presents complete information about the extended
mnemonics. Each extended mnemonic instruction
is explained in detail and the instruction format
used by the assembler is described. Chapter 6
contains detailed· descriptions of the use of Com­
pool symbols in an assembler language program.
Examples are provided. Chapter 7 discusses the
AN/GYK-12 assembler instructions (pseudo op­
erations). The fourteen instructions are organized
into groupings, defined, and explained in terms of
operand content, format, and usage. Examples
are included. Chapter 8 discusses the AN/GYK-
12 assembler macro language. Examples are pro­
vided to suppor.t the detailed definitions and ex­
planations. Chapter 9 explains the assembler oh­
ject code output. Tables and figures are provided
to show the various object code formats. Chapter
10 describes the content and format of the assem­
bly listing. Included are discussions of the pro­
gram listings, the external symbol dictionary. the
cross reference and set/used listing, the assembly
error indications, and the error and error symbol
counts. Appendix A presents an example of AN I
GYK-12 assembler output. Appendix B is a table
of the EBCDIC character codes. Appendix C is a
table of the ASCII character codes, and Appendix
D consists of a summary table of the AN/GYK-
12 machine function codes.

1·1/(1·2 blank)

USACSCS-TF-4-2

CHAPTER 2

FUNCTIONS OF THE AN/GYK-12 ASSEMBLER

Section I. GENERAL

2-1. Introduction

This chapter presents general information
about: the AN/GYK-12 assembler. The structure
and function of the assembler are discussed and
the various programmer features of the assembler
are outlined.

2-2. Communicating with the AN/GYK-12
Computer

The AN/GYK-12 assembler program instructs
the AN/GYK-12 computer to assemble or trans­
late the symbolic assembler language of the
source program into AN/GYK-12 machine code
instructions to form the object program. The as­
sembly process is illustrated in figure 2-1. The
source program consists of a series of instructions.
There are several types of instructions in an as­
sembler language, and each type is discussed in a
different area in the manual. Machine instructions
are discussed in chapters 3 and 4. The assembler
instructions (pseudo operations) are disc~ssed in
Chapter 7, and the macro instructions are dis­
cussed in chapter 8. The actual machine language
program will be constructed as indicated by the
machine instructions. The assembler instructions
control the assembly process by giving directions
to the assembler. The assembler will not generate
any machine code from these instructions. Macro
instructions are used to conveniently generate a
desired sequence of instructions many times in
one or more programs. A sequence of instructions
may be generated as a macro at will by the
programmer. This process is called defining a
macro. When a macro is referenced by the pro­
grammer and used in Ii program, the process is
referred to as macro expansion. The source pro­
gram is composed of all types of instructions. The
source program is written on a special coding
form to be keypunched. This form is illustrated in
figure 2-2. Any format requirements implied by
the form may not hold, as the assembler provides
a generally variable field format. The keypunched
source program (usually on cards) becomes the

input to the assembly process shown in figure 2- \.
There are two outputs from the assembler pro­
gram. The first is an object program output con­
sisting of actual machine instructions which corre­
spond to the source program instructions pre­
sented to the assembler program as input. The
object program may be punched on cards. output
to magnetic tape, or output to disk. The second
output is a program listing or assembly listing.
This listing shows the original source program
instructions side by side with the object program
instructions produced from them. Other program­
mer aids such as error indicatioH;, a symbol dic­
tionary, and a cross reference listi,lg arc provided.

44-47-001

Figure 1-1. Assembly Process

2-3. Programming in the AN/GYK-12
Assembler Language

Programming in the AN/GYK-12 assembler
language offers a number of important advan­
tages over programming in the actual machine
language of the AN/GYK-12 computer.

a. Mnemonic operation codes are provided.
For instance, the actual operation code for the
add logical full instruction is hexadecimal OA. In
the AN/GYK-12assembler language the pro­
grammer can write the mnemonic operation code
ALF. Most programmers never need to learn the
actual numeric operation codes.

2-'

USACSCS· T F-4·2

IISE •• UII COOIIIG FOIIM

" '--
to I
I. .L -----
Il i I

Ie i I ..
c---- qj a.

" f- ,
2J . ; ; ~ t- I

4J-++++-i+l-++++-+++-++++-H--++++-HH-t+++-HH-t+t-t+-t-++++-t+l-t-tt-t-ttiTtti-t-tt+-ttTI- -T _;_:-.. I I';

O! ! " : ! II I I II i" III I 11111 III " I II
II 11 , I 0 ",. 11 • • .I 0 44-47-009

Fip", 2·2. ANIGYK·12 Auembk, CodiIf, F_

b_ Addresses of data· and instructions can be
written in symbolic form~ and in practice almost
all addresses are so written. The programmer is
thereby relieved of the task of allocating storage.
The use of symbolic addresses reduces the clerical
aspects of programming, and the usual resultant
errors, and makes the program easier to modify.
If the symbols are chosen tei be meaningful, the
program is also. much easier to read and under­
stand than if written with numeric addresses.

c. A macro instruction feature is provided in
the assem bIer language. These instructions are
used to simplify the coding of a program, to
reduce the change of programming errors, and to
provide a standard sequence of instructions for
accomplishing a specific task. Whenever a specific
sequence of code is needed, the programmer in­
serts the macro instruction which corresponds to

??

the sequence of code he desires. This macro in­
struction is recognized by the assembler and a
sequence of instructions is generated to represent
the macro instruction. The generated instructions
are then placed into the code instead of the
macro instruction, and are processed like other
instructions. Both machine instructions and as­
sembler instructions may be used'in a macro
definition. .

d . . Data may 'be introduced into the program
structure, and space reserved for results, by the
use of suitable' assembler instructions. The com.
munication pool (Compool) feature is an addi­
tional data handling feature of the AN/GYK-12
assembler.

e; Manyother assembler instructions direct the
assembler in the performance of its functions.

USACSCS-TF-4-2

Section II. AN/GYK-12 ASSEMBLER

2-4. AN I GYK-12 Assembler Basic
Functions

The AN/GYK-12 assembler is a two pass sys­
tem encompassing various routines, including a
control routine, a macro assembler, and an oper­
and interpreter. The AN/GYK-12 assembler pro­
gram translates symbolic instructions into ma­
chine-language instructions, assigns storage loca­
tions, performs tasks initiated by the programmer
in the form of machine instructions, makes use of
an externally supplied data base· description
(Compool), generates and resolves macro instruc­
tions, provides an assembly listing, and performs
various auxiliary functions necessary to produce
an efficient, executable machine language pro­
gram for the AN/GYK-12 computer. The assem­
bly process is accompliShed in two passes. The
first pass control routines along with the operand
interpreter, and the macro assembler, produce a
communication file. The operand interpreter is
called by pass one . to convert and analyze the
variable field of certain assembler instructions.
The macro assembler is also called by pass one to
define and expand macro instructions. The com­
munication file contains the results of the first
pass analysis and the original input source lan­
guage statements in card image format. The sec­
ond pass uses this communication file as input.
The second pass consists of three major process­
ing routines, and a number of input/output rou­
tines. The second pass outputs a relocatable bi­
nary object deck and a program listing.

a. Pass One Functions. The functions per­
formed by pass one of the AN/GYK-12 assem­
bler are outlined as follows:

(I) Accepts card images of programs in
AN/GYK-12 assembler language format.

(2) Verifies and converts operation codes.

(3) Constructs the symbol table.

(4) Evaluates the operands of certain ma­
chine instructions. Evaluates portions of the as­
sembly instructions.

'(5) Recognizes, macro instructions and has
macro assembler process macro-instruction defi­
nitions or expansions.

(6) nllssilics each instrudioll illin Olll' (II' a
number of classes for action hy pass Iwo.

(7) Writes,the developed information onto a
communication device (tape or disk) along with
the data from the source code input.

b. Pass Two Functions. The functions per­
formed by pass two of the AN/GYK-12 assem­
bler are outlined as follows:

(I) Accepts the communication file data as
input.

(2) Evaluates the several classes of ins truc­
tions.

(3) Evaluates operands of the assembler
instructions and machine instructions not evalu­
ated by the first pass.

(4) Builds the binary object deck, and the
ENTRY and, EXTERN tables.

(5) Outputs the object program.

(6) Produces a program assembly listing
including source and object code listings and error
diagnostics, as well as a symbol dictionary, and
cross reference listing.

2-5. Features of the AN/GYK-12
Assembler

The AN/GYK-12 assembler has a number of
features to aid the programmer in the perform­
ance of his tasks.

2-6. Use of Mnemonic Operation Codes

The assembler utilizes mnemonic operation
codes to provide auxiliary functions that assist the
programmer in checking and documenting pro­
grams, controlling address assignment, defining
data and symbols, generating macro instructions,
and controlling the assembly process itself.

2-7. Variety in Data Representation

Decimal, fixed point decimal, hexadecimal, oc­
tal, binary, EBCDIC character, or ASCII charac­
ter representation of machine language binary
values may be employed by the programmer in
writing source statements. The programmer may
select representations best suited to his purpose.

2-3

USACSCS-TF-4-2

2-8. Macro Capability

The assembler provides an extens~ve macro
capability for the convenience of the programmer.
This capability enables the programmer to ~reate,
define, and use a macro instruction, wherein a
mnemonic symbol, supplied by the programmer,
becomes the operation code of .. the instruction.
There are two types of macro instructions: system
macro instructions, which. provide interface be­
tween the object program an~ the operating sys­
tem; and programmer-created macro instructions
for use in the program at hand, or for incorpora­
tion into the macro library for later use. Macro
instructions are used to simplify the coding of a
program and to provide a standard sequence of
instructions for accomplishing.· a specific task.
Whenever the sequence of code is needed, the
programmer inserts the macro instruction in the
desired place. The assembler program then inserts
thl! sequence of code represented by the macro
instruction following the macro instruction mne-
monic in the source program. .

2-9. Compool Data Def1nltionCapability

An external data definition capability known as
communication pool (Compool) is provided .. This
feature allows the programmer to define symbolic
items for use by different program modules.
Names of tables, subroutines, and,programs may
also be included in the Com pool. Two types of
Compool are provided; the master Compool, and
the subset Compool. Both must be generated by a
separate program called the Compool Generator
and both provide extensive data definition capa­
bility.

2-10. Reloct'!tability

The object programs produced by the assem­
bler can be in a format which enables relocation

2-4

from the originally assigned storage area tu any
other suitable area. .

2-11. Partitioning and Linking

The AN/GYK-12 assembler allows for' parti­
tioning programs into parts called modules. Mod­
ules may be added or deleted when loading the
object program. Because modules do not have to
be loaded contiguously in core, a modularized
program may be loaded and executed even
though there is not a continuous block of core
available that is large enough to accommodate
the entire program. The assembler allows symbols
to be defined in one program and referred to in
another, thus effecting a.link between separately
assembled programs. This permits references to
data and transfer of control between programs.

2-12. Program Listings

A listing of the statements of the source pro­
gram and the resulting object program may be
produced by the assembler for each program that
it assembles: .The programmer can partially con­
trol the content and format of the assembly list­
ing.

2- 13. Error Indica.toi'S

Asa source program is assembled, it is ana­
lyzed for actual and potential errors in the pro­
grammer's use of the assembly language. De­
tected errors and irregularities which are potential
errors are indicated in the program listing.

2-14. Cross Reference and SetlUsed
Listings

The assembler produces a cross reference and
set/used listing incorporating all programmer and
Compool defined symbols.

USACSCS-TF-4·2

CHAPTER 3

BASIC COMPONENTS OF THE AN/GYK-12 ASSEMBLER LANGUAGE

Section I. SOURCE

3-1. Introduction

This chapter discusses the basic components of
the AN/GYK-12 assembler language. The struc­
ture of the assembler input deck is discussed. The
different types of assembler language source in­
structions are introduced. The format of the ma­
chine instructions is presented and each field of
the general format is discussed. In addition, the
various types of symbols, terms, and expressions
are discussed.

3-2. Assembler Language Source Input
Format

The assembler language source input forf!lat is
illustrated in figure 3-1. If it is specified, the first
card of any assembly deck is the option. (OPT)
card. Following the OPT card the TITLE card
may appear. Then the Compool(CMP) card and
then the origin (ORG) or location (LOC) card
should be the cards. appearing just before the
source instructions. Additional origin (ORG) and
location (LOC) cards may appear within the
source statements themselves as required. The
appearance of such a card will cause all of the
code following to be made relocatable or non­
relocatable and to start at the location specified.
A summary of AN/GYK-12 assembler instruc­
tions is illustrated in Chapter 7. These four cards
form the introduction to the assembler language
program. The OPT card instructs the assembler as
to what type of input/output the assembler itself
should provide, and what types of outputs are
desired by the programmer. The TITLE card
identifies the assembly module. The ORG or LOC
cards specify where the assembler is to begin
assembly of the source program (i.e., at what
location should the object code begin), and
whether or not the object module will be relocat­
able from its assembled area at load time. The
ORG card identifies the module as reloctable and
the LOC card identifies the module as not relocat­
able. The Compool (CMP) card identifies the
Com pool to be used with the assembly. Following

these four cards; the OPT, TITLE. eMP. and
ORG or LOC, are the source language instruc­
tions of the program itself. At the conclusion of
the program is the END card which identifies the
end of the assembly module and the entry point
of the module at ioad time.

END BEGIN. 10

* * * SOU.RCE DECK * * *

[ORG 0

CMP A I
OPT',) CARD. CARD. PRINTER I

EXAMP 'TITLE' 'EXAMPLE'

'-

Figure 3-1. Assembler lAnguage Source fllPu, Forma'

3-3. Assembler Language Source
Statements .,

There are four basic types of assembler Jan­
guage source instructions; machine instructions.
assembler instructions (pseudo operations), macro
reference, and macro definition instructions. The
type of instruction is determined by the three to
five letter mnemonic operation code which is part
of the instruction. Machine instructions directly
affect the object program or the actions of the
assembler itself.

a. Machine Instructions. Machine instructions
are those instructions for which there is a direct
equivalent in AN/GYK-12 machine language. All
machine instruction mnemonic codes are made up
of from three to five letters. Machine instructiQns
have five fields: name, operation, operand, com­
ments, and identification/sequence. The construc­
tion of machine instructions corresponds to the

3-1

USACSCS-TF-4-2

general assembler source input format described
in Section It

b. Macro Definition InstrUctions. Each macro
definition is a compound instruction corisisting of
a macro definition header followed by a macro
prototype that can be followed by any number of
macro model instructions. These macro model
instructions may be any AN/GYK-12 assembler
language instructions except another macro defi·
nition. The macro definition instruction is con·

eluded with a macro definition trailer instruction.
The macro model instructions have a format
which is identical to the general assembler source
input format described in Section II. The macro
prototype instruction has a format identical to the
macro reference instruction which will correspond
to the macro definition instruction in which it
appears. Both the macro' definition header and
the macro definition trailer' instructions have spe­
cial formats.

Section II. GENERAL ASSEMBLER SOURCE INPUT FORMAT

3·4. General

The AN/GYK-12 assembler language source
instructions are input to the assembler from
punched cards or punched card images on mag­
netic tape, disk, paper tape or other suitable input
device. The format of each machine instruction
consists of an 80 character record divided into
five fields as shown in table 3-1.

Tuble 1-1. General Assembler Source '''PUI Formtlt

Field Maximum length Starting column

Name 8 1

Operatiun 5 -

Operand

~
-

75
Cumments -

ID-Scq. 8 73

20079-1

a. The format is generally variable field and
free format. The only format requirements are:

(I) The name field must begin in column I.
If column I contains a blank the assembler as­
sumes that a name has not been entered.

(2) The identification/sequence field must
begin in column 73 and end in column 80.

(3) At least one blank must separate each of
the fields.

(4) Each record must not exceed 80 charac-
ters.

An example of an assembler input is shown
in figure 3.,.2.

3-2

b. Name Entry. The n,ame entry contains a
symbol created by the programmer to identify or
flag an instruction. Any legal symbol may be used
as a name. This entry is optional, but if present
must consist of not more than eight alphanumeric
characters and must contain at least one letter.
The first character must be in column 1, and may
be a letter or a number. No blanks or special
characters may appear within the symbol. If col­
umn 1 contains a blank, the assembler assumes
that a name has not been entered.

c. Operation' Entry. The operation entry con­
tains the mnemonic operation code specifying the
machine operation or assembler function desired.
The operation entry may begin in any column
after column 1, if there is a blank in column I, or
following the first blank after the 'name entry, if
column I is not a blank. Valid operation codes
consist of groups of alphabetic characters of from
three to five letters which are recOgnizable by the
assembler. Invalid operation codes will produce
an error diagnostic. '

d. Operand Entry. The contents of the operand
entry describe data to. be acted upon by the
instruction. The operand specifies such things as
values, storage locations, addressing mode, index
register, and accumulator. Depending upon the
instruction, one or more operands may be re­
quired. Opetands are separated by commas with
no intervening blanks. The first blank terminates
the operand.

e. Comments Entry. The comments entry con­
tains descriptive information about program
statements. All valid characters acceptable to the
computer, including blanks, maybe used in writ­
ing the comments entry. This entry cannot extend

USACSCS-TF-4-2

COLUMN 1

XXXXb XXXbXX. XX. XbTHISblShAbVERVbLONGbCOMMENTbDE SIGNEObTObSTRE TCHbOUT. bbbblD. -SEO,

NAtE 1 OPEtND COMtENT

OPERATION

44-'17-003

Figure 3-2. Example of an Assembler Input Record

beyond column 72 and must be separated from
the operand entry at least one blank. If there is
no operand entry the comments entry must be
separated from the operation entry by a blank
followed by a comma, followed by another blank.
The comments entry will not cause the assembler
to generate or modify any executable code result­
ing from the operation or operand entries of the
instruction, in which they appear. If desired entire
cards may be used as comments (refer to the
REM, Remark Assembly Instruction, Chapter 7).

f Identification/ Sequence Entry. The identifi­
cation/sequence entry is used to enter program
identification and/or instruction sequence charac­
ters. Any characters acceptable to the hardware
may be used in the identification/sequence entry.
The characters in this entry will be checked by
the assembler for ascending order according to
the standard collating sequence for the computer.
An identification/sequence entry with a value less
than or equal to that of the preceding entry will
be noted on the assembly listing with an asterisk.
The identification/sequence entry must begin in
column 73 and end in column 80. This entry need
not be separated from the operand or comments
field by a blank (i.e., column 72 need not be
blank).

3-5. Symbols

A symbol is a character or combination of
characters used to represent an address or an
arbirary value. Symbols, through their use in the
name and operand entries, provide the program­
mer with an efficient way to catagorize and refer­
ence a program element. '

a. Defining Symbols. The rules which must be
followed in defining symbols are as follows:

(I) The symbol must not consist of more
than eight characters, at least one of which must
be a letter.

(2) Only alphanumeric (letter and number)
characters may be used. Special characters are not
allowed.

(3) Blanks are not allowed in a symbol.

(4) If the symbol is used in the name entry
the first character of the symbol must be in the
first position of the riame entry area (column I of
the instruction or statement).

(5) The, first character of the symbol may be
a number or a letter.

The following are valid symbols:

READER
23A46
X4F2
LOOP2
R6
N
01234
L
A 100

The following are invalid symbols. for the
reasons noted:

256

RECORDAREA

BCD*34

IN AREA

(no letter)

(more than eight
characters)

(contains a special
character, *)

(contains a blank)

b. Assignment of Symbols. The assembler as­
signs a value to each symbol appearing as a name
entry in a source instruction. The value assigned
represents the address of a storage area, instruc­
tion, or constant; Since the addresses of these
items may change upon program relocation. the
symbols are considered reloctable terms. An ex­
ception to this rule is symbols which are within

USACSCS-TF-4-2

nonrelocatable portions or programs. Symbols
used in the name entry of equate (EQU) state­
ments are assigned' the value designated in the
operand entry of the instruction: Since this valu'~
may he relocatable or absolute, depending upon
the nature or the operand. the symbol is consid­
ered thc same as the value to which it is equated.

c. Previously Defined Symbols. Some instruc­
tions require that a symbol appearing in the oper­
and entry he previously defined. This means that
the symbol, before it is used in the operand entry,
must have appeared as a name entry in a previ­
ous instruction, or as an identifier in the Compoot.

EXAMPLE: DELTA EQU R'8'

LOF =X'FFF',DELTA

Normally. the second subfield of an instruction
contains a number from 0 to 15 which connotes a
Process Register number. The above example il­
lustrates a method in which a symbol can be used
in place or a Process Register number. In such a
case, ror the assembler to know that DELTA
means Process Register 8, DELTA must be de­
fined prior to its use.

d. General Restrictions on Symbols. A symbol
may be defined only once in an assembly. If any
symbol is defined more than once in ali assembly
the assembler will generate an M error (multiple
defined symbol) for the instruction in which the
subsequent duplicate definition appears. If more
than one instruction contains a duplicate name
then the error will appear for each such instruc­
tion except the first.

3-6. Terms

A term is the basic unit of the operand entry.
All terms represent a value. This value may be
assigned. by the assembler (symbols, or location
countcr rererence) or may be inherent in the term
itselr. An arithmetic combination or terms is re­
duced to a single value by the assembler. All
terms are unsigned and no blanks are allowed
within the term. A term with a sign is considered
an expression. Terms are either absolute. relocat-
able, or special. .

a. Absolute Terms. An absolute term represents
a self defining value, analogous to a constant in
mathematics. The value of an absolute term is

":1_.11

inherent in the term itself and is not assigned hy
the assembler. There are eight types of absolute
terms: decimal, hexadecimal, octal. binary,
EBCDIC character, ASCII character, process reg­
ister, and certain symbolic terms. Since the values
represented by absolute terms do not change
upon program relocation, absolute terms arc con­
sidered as self defining terms, i.e., their values arc
defined by the context of the term itself and only
once (at assembly time).

(I) Decimal absolute terms. A decimal abso­
lute term is an unsigned decimal number written
as a sequence of decimal digits with a decimal
point. The decimal point must be placed within or
before the number. An integer does not require a
decimal point. A scale factor must follow a mixed
number or fraction otherwise the fractional por­
tion of the' number is lost. Iii addition a scaling
factor andlor a decimal exponent may be used.
The decimal number can be an integer, a frac­
tion, or a mixed number (i.e., one with integer
and fractional portions). The decimal term is the
only term which may use a scaling factor or a
decimal exponent. High order ZEROS may be
used or omitted for numbers greater than I (e.g.,
00193 or 193 and 001.67 or 1.67).

(a) A negative decimal term is treated as
an expression consisting of a minus sign followed
by a decimal constant., At assembly time the
decimal term is converted into a binary num ber
of a length sufficient to contain the converted
binary number. For example, 37 would be repre­
sented as 100 101, which is six bits in length.
Depending upon the use of, the term, the con­
verted binary number must not exceed 31 bits
(full word) or 63 bits (double word).

(b) To code a decimal integer all that is
needed is the value without any special notation.
For fractions or mixed numbers a scale modifier
(the letter B) must be used to tell the assembler
how many frcational bits to reserve for the value.
The reason for this is that integer values are
always right justified within a computer word.

EXAMPLE: 15 converts to II liz
15.25 converts to 11112

In the above example both numbers converted to
the same binary values. The ,assembler was not
told to reserve fractional bits so the fractiorial
part of the value was lost (truncated).

EXAMPLE: IS converts to 11112
15.25B2 converts to 11110 12

In the above. example a scale modifier is used to
correctly position both the integer and the frac­
tional part of the mixed number and the result in
binary is different from the result obtained when
the scale modifier was not used. To correctly use
the scale modifier the letter B immediately fol­
lows the fractional part with no intervening blank
spaces. Following the letter B is a decimal un­
signed number which indicates the number of
fractional bits to be reserved. In the second exam­
pIe,·· two fractional bits were reserved (.25 trans­
lates to 0 I binary). The entire translation in bi­
nary is 1I1I for the integer IS followed by 0 I for
the fraction. Leading ZEROS would be appended
by the assembler (positive value used in the ex­
amples). It is also possible to raise or lower a
decimal value by powers of 10. This necessitates
the use of the term E (for exponent) followed by
an optionally signed decimal number.

EXAMPLE: 15 converts to III h
1.5E I converts to 11112
150E-1 converts to 11112

In the illustrated example the value 1.5 is fol­
lowed by E I which is 101 or 10. It could also have
been coded E + I. Multiplying 1.5 by 10 results in
the value 15. The number following the term E
can produce any power of 10 (E2 is H),', E3 is 103 ,

etc.). For negative powers of 10 a minus sign
must precede the decimal value (E-I is 10\ E-2 is
102 , etc.). In the illustrated examp'le the number
150 was scaled down by using a negative power
of 10 to obtain the value IS. Both the scale factor
and the decimal exponent can appear together in
the same statement. When this Qccurs, the deci­
mal exponent must appear first.

EXAMPLE: 15.25B2 converts to 11110 12
1.525EIB2 converts to 1I11Oh

In the above example the 1.525 is multiplied by
101 to produce 15.25. This is then translated to
binary with the sacle modifier speciying two frac­
tional bit positions. Any fractional value which
requires more than the number of significant bits
designated by the scale modifier to fit into the
designated binary bit positions of the computer
word will be truncated on the right (least signifi­
cant bits) to fit. Any integer value which is too
large to fit into the designated binary bit positions
of the computer word will be truncated on the
left (most significant bits) to fit. For mixed num­
bers, if both the integer and the fractional values
are too large to fit into the designated binary bit
positions of the computet word truncation will
occur at both ends.

USACSCS·TF-4-2

(2) Hexadecimal absolute terms. A hexadeci­
mal absolute term is written as an unsigned se­
quence of hexadecimal digits. The digits must be
enclosed in single quotation marks preceded by
the letter X, for example, X'3A7' or X'AB7'.
Each hexadecimal digit is assembled as its four
bit binary equivalent. Thus, a hexadecimal term
used to represent an eight bit binary number
would consist of two hexadecimal digits. Limita­
tions on the value of a hexadecimal term depcnd
upon its use. The hexadecimal digits and their
corresponding binary values are as shown in the
following chart.

HEXADECIMAL

o
I
2
3
4
5
6
7
8
9
A
B
C
D
E
F

BINARY VALUE

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
\0\0
\0 II
1\00
I \0 I
1110
1111

A negative hexadecimal num ber is considered an
expression consisting of a minus sign followed by
an unsigned hexadecimal number. Scale factors
and exponents may not be used in hexadecimal
terms.

(3) Octal absolute terms. An octal absolute
term is written· as an unsigned sequence of octal
digits .. The digits must be enclosed in single quo­
tation marks preceded by the letter 0, for example

'743' or '746' (The letter is slashed when
used with numbers to distinguish it from the
number ZERO.) Each octal digit is assembled as
its three bit binary equivalent. Thus, an octal
term used to represent a six bit binary number
would consist of two octal digits. Limitations on
the value of an octal term depend upon its use.
The octal digits and their corresponding binary
values are as follows:

USACSCS·TF-4·2

OCTAL

o
1
2
3
4
5
6
7

BINARY VALUE

000
001
010
011
100
101
110
III

---.--~-------------

A . negative octal number is considered an expres­
sion consisting of a minus sign followed by an
unsigned octal number. Scale factors and expo­
nents may not be used in octal terms.

(4) Binary absolute terms. A binary absolute
term is written as an unsigned binary number
consisting of a sequence of binary digits. Thl~
digits must be enclosed in single quotation marks
and preceded by the letter B, for example,
B'O 10 Ill'. Each binary digit is assembled di­
rectly. Thus, a binary .term used to represent a six
bit mask would consist of six binary digits. Limi­
tations on the value of the binary term gepend
upon its use.

(5) EBCDIC absolute terms. An EBCDIC
absolute term is a sequence of Extended Binary
Coded Decimal Interchange Code f;haracters. The
characters must be enclosed in single quotation
marks and preceded by the letter C, for example,
C'TEST(7)'. All letters, decimal digits, and special
characters may be used in a character term. Be­
cause of the use of single quote marks in the
assembler language, two single quote marks must
be used to represent a single quote mark or an
apostrophe within the character field itself. Exam­
ples of EBCDIC absolute terms are: C'I',
C'ABC', C' " C'13', C"'A'''. Each character is
assembled as its eight bit EBCDIC code equiva­
lent. A chart of the EBCDIC character codes is
provided in Appendix B.

(6) ASCII absolute terms. An ASCII abso­
lute term is a sequence of American Standard
Code for Information Interchange characters. The
characters. must be. enclosed in single quotation
marks and preceded by the letter A. for example,
A' A TEST(7)'. All letters, decimal digits, and spe­
cial characters may be used in a character term ..
Because of the use of quote marks in the assem-

. bier language, two quote marks must be used to
represent a quote mark within the character field
itself. Examples of ASCII absolute terms are: A'I

',A'IABC', A' ',A'13', A'."A"'. Each character
is assembled as its eight bit ASCII code equiva­
lent. A chart of the ASCII character codes is
provided in Appendix C.

(7) Process register absolute terms. A process
register absolute term is used to reference or
indicate a process register, and is written ~s an
unsigned decimal number. The number deSIgna­
tion must be enclosed in single quotation marks
and preceded by the letter R, for example R' 15' .
A process register term is assembled as its three or
four bit binary equivalent and is placed in the
appropriate register containing .field indicated by
its placement in the operand field. If a ~rocess
register term appears as the first entry 10 t.he
operand field it is assembled as the binary eqUIv­
alent of its special register address in the A field.
The hexadecimal addresses generated are as
shown in the following chart.

REGISTER

o
1
2
3
4
5
6
7
8
9

10
II
12
13
14
15

HEXADECIMAL

ADDRESS GENERATED

o
2
4
6
8
A
C
E

10
12
14
16
18
lA
IC
IE

Process register terms may be used to specify
accumulators, index registers, tally registers, and
special registers (as previously shown). Process
register terms always designate the set of registers
for the currently active program level. Limitations
on the value of a process register term depend
upon its use.

(8) Symbolic absolute term. A symbolic abso­
lute term is used to specify a non-relocatable
address. Any symbols defined within an area
governed by a LOC (fixed location counter) card
will be non-relocatable. Symbols used in the
name field of the equate instruction (EQU) are
assigned the value designated in the operand field

of the instruction. A symbolic absolute term is
. one whose equated value is absolute.

EXAMPLE:

LOC X'5000'

ABA GEN FO

ABB GEN FX'FFFFFFFF'

In the above example, ABA and ABB are sym­
bolic absolute terms (addresses). They are non­
relocatable because they are assembled following
a LOC assembler instruction.

b. Relocatable Terms. A relocatable term is a
symbolic term whose value is determined by the
assembler. The value of a relocatable term is the
address of a 16 bit half-word in memory. This
address is subject to alteration when the program
in which the term appears is loaded for execution.
The address will change when the program is
relocated. However, portions of a program may
be designated relocatable or not relocatable, and
terms appearing within a non-relocatable portion
of a program will not be relocated. Symbols used
in the name field of equate instructions (EQU)
are assigned the value designated in the operand
field of the instruction. A relocatable symbolic
term is one whose equated value is relocatable.

c. Special Designators. There area number of
special designators in the AN/GYK~ 12 assembly
language. The equal sign, =, is used to designate
the literal mode of addressing (mode 0). The left
and right parentheses, (), are used to designate
the indirect mode of addressing (mode 3). The
dollar ($) symbol is used to designate the relative
mode of addressing (mode 2), and also represents
the instruction location register. The letter R is
used to indicate an index register, and the letter
D is used to indicate double indexing with the
register specified. The asterisk (*) symbol is used
as a means of referencing the location counter
without affecting the addressing mode.

(1) Literal addressing designator (=). When
the equal sign, =, appears as the first character in
sub field one of an instruction the literal mode of
addressing (mode 0) is indicated.

(2) Indirect addressing designator (().
When the left parenthesis, (, appears as the first
character in sub field one of an instruction the
indirect mode of addressing (mode 3) is indi­
cated. The address is enclosed in parentheses.

EXAMPLE: (PC4A)

USACSCS-TF-4-2

(3) Relative addressing designator ($). The
programmer may refer to the current value of the
instruction location register (lLR) and thereby
designate the relative mode of addressing by
using a $ symbol in the operand field of an
instruction. The relative mode is used when the
programmer wishes to refer to a location relative
to the instruction from which the reference is
being made. The use of the $ symbol will desig­
nate the relative mode of addressing which is
effectively the same as inserting the current value
of the instruction Jocarton register (the address of
the current instruction plus two) into the operand
field in place of the $ symbol.

(4) Location counter designator (*). A Loca­
tion Counter is a software counter used to assign
addresses to instructions during program assem­
bly as distinguished from the hardware instruc­
tion location counter (ILR) which normally con­
tains the instruction location count plus two. The
programmer may refer to the current value of the
location counter without affecting the mode at
any place in the program by using an asterisk (*)
symbol as a term in the operand field. The aster­
isk (*) symbol represents the address of the in­
struction in which it appears. The asterisk (*)
symbol has no effect on the addressing mode and
does not indicat~ relative mode addressing.

(5) Process register indexing designator (R).
If the process register absolute term is used fol­
lowing an arithmetic operator in the operand
field, the indexing mode of the specified address­
ing mode will be designated.

(6) Double indexing designator (D). The
double indexing designator D is used only with
the direct mode of addressing and is used to
'designate the direct. with double indexing mode
of addressing. The use of the double indexing
designator D implies the use of process register I
to contain one of the index values. The other
index value is designated by the number follow­
ing the D in the'instruction. The double indexing
designator is used in place of the R for a normal
indexing mode designator. for example. D'2'. A
double indexing designator may only specify in­
dex registers 2 through 7.

3-7. Expressions

. An expression js an operand entry consisting of
either a single term or an arithmetic combination
of terms. Up to ten terms can be combined with
the following arithmetic operators:

3-7

USACSCs.. TF-4-2

OPERATION

+ Addition
- Subtraction
* Multiplication
/ Division

EXAMPLE

ALPHA + BETA
ALPHA· BETA
ALPHA*BETA
ALPHA/BETA

An expression may not contain two terms or two
operators in succession.

a. Evaluation of Expressjons. A single term
expression, e.g. BETA, S, X5G, takes on the value
of the term involved. A multiterm expression, e.g.
BETA + 10, ENTRY-EXIT, IO+AIB, is reduced
to a single value, as follows:

(I) Each term is given its value.

(2) Arithmetic operations are performed left
to right. Multiplication and division are per­
formed before addition and subtraction, e.g.
A+B*C is evaluated as A+(B*C), not (A+B)*C.
~he computed result is the value of the expres­
sions.

(3) Division yields an integer result; any
fractional portion of the result will be dropped.
For example, the expression 1'12*10 equals zero
but the expression 10* 112 equals 5.

b. A bsolute Expressions. An absolute expres­
sion is a combination of from one to ten terms
which may consist of the following:

(1) All absolute terms.

(2) An even number of relocatable terms
with opposite signs.

(3) An even number of relocatable terms
with opposite signs and any number of absolute
terms. An even number of relocatable terms with
opposite signs cancels the effect of relocation. For
example, in the absolute expression A-B +4, A
and Bare relocatable terms and 4 is an absolute
term. If A equals 50 and B equals 40, the values
after relocation by +20 would be 70-60+4-14.

An expression is called absolute if its value is
unaffected by program relocation. Extreme cau­
tion should be used when generating relocatable
or absolute expressions with more than one sym-
bolic term. .

c. Relocatable Expressions. A relocatable ex­
pression is one whose value would change by n if
the program in which it appears is relocated n 16
bit words away from its originally assigned area
of storage. A relocatable expression may contain
relocatable terms, alone or in combination with
absolute terms under the following conditions:

(I) There must be an odd number of relo­
eatable terms.

(2) If a relocatablc expression contains an
odd number of relocatable terms, the extra odd
term must not be preceded by a minus (-) sign.

(3) No relocatable terril can enter into a
multiply or divide operation.· An expression is
called relocatable if its value at execution time
depends upon program relocation. A relocatable
expression reduces to a single relocatable value.
This value is the value of the odd relocatable
term, adjusted by the values represented by the
absolute terms and/or paired relocatable terms.
For example, in the expression A-B + A, A and B
are relocatable terms. If initially A equals 40 and
B equals 30, the value of the expression is 50.
However, if a relocation factor of 20 is applied,
the value of the expression is 70. The value of the
pair of terms A-B remains constant, and the value
of the expression increases by the relocation fac­
tor as a result of its application to the positive
odd relocatable term. Note that the intent is to
relocate the entire expression by the proper
amount, not just one or some of the terms. For
example, if the expression A + B-C + D-E is to be
relocated by 20, it is the value of the final evalu­
ated expression whiCh should be greater by 20
when the relocation factor of 20 is applied to
each of the relocatable terms in the expression.
Thus, relocation of expression becomes a question
of mathematics and not rules.

USACSCS-TF-4-2

CHAPTER 4

AN/GYK-12 MACHINE INSTRUCTIONS

4·1. Introduction

This chapter discusses the format and construc­
tion of tht entries which make up AN/GYK-12
assembler machine language instructions. Brief
comments on the name entry, operation entry,
comments entry, and identification/sequence en­
try are presented. A detailed discussion of the
operand entry format and the use of Compool
symbols in the assembler language machine in­
structions is presented. The construction of the
operand entries for the standard assembler lan­
guage machine instructions and the extended
mnemonic codes is presented. A discussion of the
addressing modes is also inccluded. A detailed
discussion of the extended mnemonic code in­
structions is presented in Chapter 5. Appendix D
contains a list of the machine instructions accept­
able to the assembler. Detail explanations of the

operation of the machine instructions may he
found in the USACSCS-TF-4-3 AN/GYK-12
Principles of Operation Manual.

4·2. Machine Instruction Format

The assembler language machine instruction
format follows the general assembler source input
format described in Chapter 3. Figure 4-1 illus­
trates the construction of a machine instruction.
Figure 4-2 shows how a sample assembler lan­
guage machine instruction is assembled.

NAME OPERAtiON OPERAND COMMENTS 10/
FIELD FIELD SEQ

44-47-004

Figure 4-1. Coastruction of Assembler LanglMlge Maclrille
Instruction

E F M H S 0 A W

10 I 001000 101 11100 I 0 11 10001 100100000000 101

o 1 6 7 8 9 12 13 15 ,16 19 20 . 30 31,

ADF B+R'3', 12
'-----.---'

44-47-005

Figure 4-2. Assembler Lan1JlMlge Machine Instruction ConPl!nWrt

a. Name Entry Format. The name entry con­
tains a symbol to be used as a name. The name
need not be referenced at any place in the pro­
gram and is optional.

h. Function Code' Entry Format (E and F
fields). The function code entry must have a three
letter mnemonic operation code, or a three to five
letter extended mnemonic operation code.

c. Operand Entry Format. The operand entry
specifies the core memory address of data to be
accessed, the process register to be used as an
accumulator, the process register to be used as an

index register, the process register to be used as a
tally register, the bit of the field to be conside~ed
(in bit manipulation instructions), or the locatIOn
to which control is to be transferred (for transfer
instructions). The extended mnemonic code in­
structions have a different operand entry format
from the assembler language machine instructions
and this format is discussed in Chapter 5. The
machine instruction operand entry has two sub­
fields. Each sub field is separated by a comma and
the first blank terminates the operand entry. If
the first sub field were not used then it would be
replaced by a comma and the second subfield

... ..

USACSCS· TF-4-2

would appear directly following the comma with
no intervening blank(s). Such an instruction
would appear as:

OPERATION OPERAND

ADF ,2

All unused sub fields are considered to be
ZERO.

(I) Operand subjield one. The mode, index,
page, word address, and half word address fields
of the computer instruction word are provided by
this subfield.

(a) Addressing special symbols. Certain
special symbols may be used in sub field one for
specific purposes. These are discussed in detail in
Chapter 3. An explanation is also provided for
reference in table 4-1. If none of the special
symbols is used in subfield one then the direct
mode of addressing (mode 1 or 2) is indicated.

Table 4-1. -Addmsing Special Symbols

Special character Meaning

=

$

()

NOTE:

An equal sign as the first charaeter in the
subfield indicates the literal mode of
addressing (mode 0).

The dollar sign symbol ipdicates the
relative mode of addressing (mode 2).

If the first subfield is enclosed in
paren theses, the indirect mode of
addressing (mode 3) is indicated.

The use of these addressing modes with the transfer
and extended mnemonic instructions requires addi-
tional information. Only the literal mode (mode 0)
may be used with the extended mnemonic instruc-
tion. Refer to the USACSCS-TF4-3
ANfGYK·12 Principles of Operation Manual for
informa tion regarding the transfer instructions.

20079-2

The special symbols are as follows:

(b) The literal mode (mode 0) is indicated
by an equal sign (=) appearing as the first char­
acter of the operand field.

(c) The relative mode (mode 2) is indi­
cated by a dollar sign ($) appearing anywhere
within subfield one. The dollar sign also denotes
the value of the instruction location register
(lLR).

(d) The direct mode with double indexing
(mode 2) is indicated by a double indexing term
appearing anywhere within· subfield one of the
operand.

(e) The indirect mode (mode 3) is indio
cated by a left parenthesis (() appearing as the.
first character in the operand field. The mode is
contained in the M field of the machine instruc­
tion.

Table 4-2 lists the nine possible ad­
dressing mode combinations· with their corrc­
sponding symbolic representations in subfield one.

Examples showing the use of each of
the nine possible addressing mode combinations
are shown in table 4-3.

NOTE

All the instructions in table 4-3 take place
as one smooth operation. There are no
partial results or distinct steps requiring
auxiliary storage, concerning the program­
mer. In these operations, any partial re­
sults or distinct steps indicated in the ex­
planations in the examples are used for
the purpose of illustration only. Examples
of the use of the special symbols are
shown in table 4-4.

(j) Indexing. Indexing is indicated by the
appearance of an index register term in subfield
one. An index register term is indicated by the
special character R followed by the process regis­
ter number (1-7) enclosed in single quotation
marks. If the indexing term is immediately pre­
ceded by any other operation indicator but the
plus sign (+), the expression will not be correctly
evaluated and no error symbol will be placed by
the assembler. (The value of the index register
will always be added when the addressing mode
with indexing is specified.) The S field of the
instruction word will be loaded with the indexing
register specified and normal indexing execution
will take place. If the index register specified is
not within the . limits 1-7, the assembler will gen­
erate an' L (limit) error symbol. The indexing
register term may appear anywhere within sub­
field one except as the first term. If mode 2
(relative) is indicated with the presence of the $
symbol in subfield one and if the S field is ZERO,
no indexing will be used. The only acceptable
indexing value for the relative mode is register
one. Any index register value other than one is

illegal. If the direct mode with double indexing
(no special symbols in the operand and the D.
double indexing term used)1 then mode 2 will also
be selected but the only acceptable registers for
double indexing are registers 2-7. Double index­
ing may not be used with any mode other than
direct addressing (mode 2).

(2) Operand subfield two. The accumulator

USACSCS-TF-4-2

(H field) or the machine instruction is specified hy
this subfield ror all instructions, except move into
upper byte (MIU) and move into lower hyte
(MIL), which use two operand subfields. Any
term or expression may appear in this subfield
with the exception of the double indexing term
(D'N'). The limitation on the value of this sub­
field is 15 for all instructions except MIV and
MIL for which the limitation is 255.

Table 4-2. Addnssin, Mode Combinations (Trilnsfer /nstrllctioru ExcludN)*

Addressing mode
M S Symbolic representation (in ranges from I through 7)

0 0 literal =Y

0 1-7 literal w:jth indexing = Y+R'n'

1 0 direct Y

1 1-7 direct with indexing Y+R'n'

2 0 relative Y -$ or Y+$

2 1 relative with indexing Y-S+R'I' or Y+S+RT

2 2-7 direct with double indexing Y+D'm'(m=2-7)

3 0 indirect (Y)

3 1-7 indirect with'indexing (Y+R'n') or (Y)+R'n' (See notc I)

Note: See Principles or Operation Manual USACSCS-TF4-3

20079-3

4-3

USACSCS-TF-4·2

Tabll 4-3. Add"".., MOIk Combination Examples

Mode with exampl~ Assumptions Operation

LITERAL (MODE=O, S=O) I) The operand in the DAW field Add the contents of the Y field of the
o(the instruction contains 200. instruction, which is 200, to the con-

ADF=Y,10 tents of register. 10, which Is 300.
i 2) Register 10 contains 300. Store the result, 500, into register 10.

Notc: If a symbol is used, the address or value
,

The previous contents of register 10
(EQU) orthe symbol will be placed into the have now been replaced.
A field of the instruction by the assembler. If
the symbol is undefined, an error will be
~cneratcd.

LITERAL WITH INDEXING 1) The operand in the DA W field of Add tht~ contents of the Y field of the
(MODE=O. S=I-7) the instruction contains ISO. instruction,lSO, to the contents of

register 3, SO and obtain the partial
. ADF = 150+R' 3',11 2) Register 3 contains 50. result 200. Now add 200 to the con-

tents of register II, 300, and store the
Notc: If a symbol is used, the address or value 3) Register 11 contains 300. result, 500, into register II. The pre-
(LQU) of the symbol will be plac~d into the vious contents of register 11 have now
A field of the instruction by the assembler. If been replaced.
thc symbol is undefined, an error will be
genl·rated.

DIRECT (MODE=1, S=O) 1) The address of t,he operand, Y, is Add the contents of location 100016.
location 1000\6' which is 200, to the contents of regis-

ter 8, which is 300, and store the
2) The contents of location 100016 is result, 500, into register 8. The pre-

200. vious con ten ts of register 8 have now
been replaced.

ADF Y.8 3) Register 8 contains 300.

DIRECT WITH INDEXING 1) The contents of the DAW field of To obtain the address of the operand
(MODI =1. S=\-7) the instruction is 100016 , add the contents of the DAW field.

which is 100016 to the contents of
ADF Y+R'3', 9 2) Register 3 contains 400 16, register 3, which is 40016, to obtain the

effective address of the operand~
3) The contents of location 1400 16 140016. Now d~ the arithmetic cal-

is 200. culation, add the contents of the
operand (200) to the Contents of

4) Register 9 contains 300. register 9 which is 300, and store the
result, 500, in register 9. The result
has now replaced the original contl'nts
of register 9.

RELATIVE (MODE=2, S=O) 1) The contents of the DAW field of Obtain the address of the operand by
the instruction is 10°16, adding the contents of DAW field of

the instruction, 10016, to the value of
2) The address of the instruction is the instruction location register,

3FE16, therefore the instruction 40016. Now add the operand, 200, at
location register is set to 400 16 , address 50016 to the contents of regis-

ter 5, 300, and replace the contents of
ADF Y+$.5 3) The contents of location 50016 register 5 with 500.

is 200. Note: For the XEX command the

4) The contents of register 5 is 300.
address of the location of the instruc-
tion to be executed is used.

'--_._-_.

20079-4

USACSCS-TF-4·2

Table 4-1. AddresfinR MtNlt' Combi"a';tm Examplef (Oml)

Mode with example Assumptions Operation

RELATIVE WITH INDEXING I) The contents of the DAW field of To obtain the address of the operand.
(MODE=2, S= I) the instruction is 100 16. add the contents of the DAW field,

10016, to the instruction location
2) The address of the instruction is register, 20016, and then add,thal

1 FE 16, therefore the instruction result 30016 to the contents of
location register is set to 20016 , register 1,20016. Then take the

operand, the contents of 50016, which
ADF Y+$+R'I',5 3) The contents of register I is is 200, and add it to the contents of

20016, register 5. The result 500 then
replaces the previous contents of

4) The contents of location 500 16 register 5.
is 200. Note: For the XEX command the

The contents of register 5 is 300.
address of the location of the

5) instruction to be executed is
used.

DIRECT WITH DOUBLE INDEXING 1) The contents of the DAW field of Obtain the address of the operand by
(MODE=2, S=2·1) the instruction is 200 16 , adding the value of the DA W field

which is 20016 to the contents of
2) The contents of location 302 16 register 3, which is 10016. Then add

is 10016, to the result the contents of register I,
which is 2, to obtain the address

ADF Y+D'3'S 3) The con ten ts 0 f regis ter 3 is 30216. Add contents of 30216 to the
10016' c!>ntents of register 5,300. The result,

500, replaces the previous contents of
4) The contents of register 1 is 2. register 5.

5) The contents of register 5 is 300.

INDIRECT (MODE=3, S=O) 1) The contents of the DA W field is Obtain the address of the operand by
the address 20016, taking the contents of the address

specified in the DA W field of the
2) The contents of location 20016 is instruction as a second address (con·

100016, the address of the tents of 20016 are 100016 which is the
operand. effective address), Now obtain the

operand, 200, from the contents of
AD ... (Y),5 3) The contents of 100016 is 200. iOOOl6 and add it to the contents of

register S. Store 'the result, 500, into
4) The contents of register S is 300. register S, replacing its previous

contents.

INDIRECT WITH INDEXING 1) The contents of the DA W field of Obtain a working address by adding
(MODE=3, S=I·1) the instruction is 90016. the contents of the DAW field, 90016,

to the contents of register 3,10016.
2) The contents of register 3 is 10016. Now take the contents of the sum

100016, which is another address,
ADF (Y+R'3'),5 3) The contents of 100016 is the 30016. Take the contents of that

address of tbe operand 30016. address, 200, the operand, and add it
to the contents of register S, replacing

4) The contents of 30016 is 200. its previous con tents.

S) The contents of register S is 300.

20019·5

A."

USACSCS-TF-4-2

Subfield one construction Meaning

=C'ER' Specifies literal mode (MorO) with D-A-W field equal to the binary code equivalent of the
EBCDIC characters E and R

=3+R'2' Specifies literal mode (M=O) with indexing (S=2) and D-A-W field equal to the value of
decimal 3

X'7FOO' Specifies direct mode (M=l) with D-A-W field equal to hexadecimal 7FOO

O'30S00'+R'3' Specifies direct mode (M=l) with inc.!exing (S=3) and D-A-W field equal to octal 30500

$+4 or 4+$. Specifies relative mode (M=2) with D-A-W field equal to decimal 4

A-$+R'l' Specifies relative mode (M=2) with indexing (S=l) and D-A-W field equal to the value of the
symbol A minus the value of the location counter plus two

R'IO'+D'3' Specifies direct mode (M=2) with double-indexing (S=3) and D-A-W field equal to hexadecimal 14

(B) Specifies indirect mode (M=3) with the D-A-W field equal to the value of the symbol B

(C+R'6') Specifies indirect mode (M=3) with indexing (S=6) and the D-A-W field equal to the value of the
symbolC.

NOTE: Only the = and (must appear as the first character of the subfield if they are used. Any term maY follow the = or the (but it
is recommended that the absolute term follow the equal sign. The $, ., and D designators may appear as terms (or within terms)
anywhere in subfield one.

20019-9

USACSCS-TF-4-2

CHAPTER 5

AN/GYK';'12 COMPUTER EXTENDED MNEMONIC INSTRUCTIONS

5-1. Introduction

This Chapter discusses the AN/GYK-12 com­
puter extended mnemonic codes. The format and
construction of these instructions is discussed. In
addition, the instructions themselves are ex­
plained in detail with illustrations. A detailed
discussion of the operand fields of the different
types of instructions is presented.

5-2. Extended Mnemonic Code Instructions
The assembler provides extended mnemonic

codes for the transfer on indicators, shift, and
format instructions. These codes allow the trans­
fer, shift, and format instructions to be specified
mnemonically through the assembler as well as
directly through the use of the XIN, SHF, SHH,
FIF, and FEF machine instructions.

a. Extended Mnemonics for Conditional Trans­
fer Instruction XIN. The extended mnemonic
codes for conditional transfer instructions imply
the transfer on indicators (XIN) instruction func­
tion code and a value for the H field of the
instruction. The allowable codes and the implied
H field values are shown in table 5-1.

Table 5-1. Exteltded Mnemonics for ConditiOlltlI Transfer
Insfnu:tiolfS

Extended code Meaning HField

XLS Transfer on Less 1

XGR Transfer on Greater 4

XEQ TranSfer on Equal 2

XNG Transfer on Not Greater 3

XNL Transfer on Not Less 6

XNE Transfer on Not Equal 5

XCY Transfer on Carry 8

XOF Transfer on Overflow 4

20079-10

b. Extended Mnemonic Conditional Transfer
Instruction Operands. The extended mnemonic
conditional transfer instruction operand entry is
identical to the operand entry for the standard
assembler language instructions. Some examples
of extended mnemonic conditional transfer in­
structions are shown below:

Transfer to address A jf equal indicator is
set

XEQ =A

Transfer to address B if greater indicator is
set

XGR =B

Transfer to address C, modified by index
register 4, if the carry indicator is set.

XCV =C+R'4'

c. Extended Mnemonic Code Instruction Con­
version for XIN. The assembler conversion of the
extended mnemonic code for the Transfer on
Indicators instruction, XIN, is illustrated in figure
5-1. The assembler converts the extended mne­
monic into the recognized machine language in­
struction, XIN, (E and F fields) and th~n sets the
appropriate values into the M, H, Sand D, A. W
fields of the instruction word.

E F M H 5 A W

11 I 1 1 000 1 I 0 0 I 00 0 1 I 00 1 I 0 0 0 0 I 0 0 0 0 0 01 0 1 03T!l

~~ 78 9. ,1.' ""'1'''1 ~ "1--"-"-I .4-;l
XIN • XLS=TAG+R'l'.

4~-47-006

Figrw 5-1. Asumbkr Ltut,.,. EXferu/ed M~_ic
Corulition," Tl'UlfSfer Insfrwc_ CIllfHrSietl

USACSCS·TF-4·2

d. Extended Mnemonics for Shift Instructions.
The extended mnemonic codes fot shift instruc­
tions imply the shift half (SHH) or shift full
(SHF) function code and a value for the T field
(shift options) of the instruction. Since the T field
replaces part of the normal operand (0, A, W)
field, the literal mode (mode 0) must be used with
the extended mnemonic codes. The extended
mnemonic code assembler instructions have spe­
cial operand field formats to allow the program­
mer to easily use the shift instructions. The nota­
tion used for the shift instructions is shown· in
table 5-2.

:

1

I

Table 5·1. Notation Used in Extended Mnemonic S"ift InstrflCtion
Code,

Position'" Letter Meaning

1 S Shift

2 A Algebraic

L Logical

C Circular

N (See note II Normalize

3 R Right

L Left

4 F Full word

D Double word

H Half word

Note I: All shift mnemonics arc four letters except nor-
malize SNF. SND. SNH; shift and count. SCP.
SC'H; and reflect. RFT. Algebraic and logical as
first specifiers are always linear. Circular as a
first specifier is always 10l;lical.

20079·11

e. Extended Mnemonics for Full Word Shift
Instructions. Detailed explanations of the ex­
tended mnemonic codes for the full word shift
instructions are presented in the following para­
graphs. Table 5-3 shows the allowable codes and
the implied T field for the full word shift options
of the shift full (SHF) instruction.

f Extended Mnemonics for·· Double Word
Shift Instructions. Detailed explanations of the
extended mnemonic codes for the double word
shift instructions are presented in the following
paragraphs. Table 5-4 shows the allowable codes

and the implied T field for the double word shift
options of the shift full (SHP) instruction.

g. Extended Mnemonics for Half Word Sh~ft
Instructions. Detailed explanations of the ex­
tended mnemonic codes for the half word shift
instructions are presented. in the following para­
graphs. Table 5-5 shows the al~owable codes a~d
the implied T field for the shift half (SHH) in­

struction.
h. Extended Mnemonic Shift Instruction Oper­

ands. The operand entry for extended mnemonic
shift instructions is specified in the following par­
agraphs. Some examples of the extended mne­
monic shift instructions are shown below:

Shift Right Algebraic (linear) Half

SARH =7,4

Register = 4 Shifts = 7

Shift Circular left Full

SClF = 17,11

Register = II Shifts = 17

Normalize Double Word

SND =32,7,6

Register = 7

Shifts ;.: 32 max. Tally Register = 6

i. Operand Sub fields. Since the extended mne­
monic codes for the shift instructions modify the
rightmost half of the instruction word, the literal
mode of addressing must be specified whenever
these codes are used. The format of these instruc­
tions, as illustrated above, can be different than
for regular machine instructions in that the stan­
dard operand format is ex.tended, at times, to
include an additional subfield. The format for the
operand sub fields is as follows:

(I) Subfield one. Specifies the mode, which
must be literal (denoted by an equal sign). Also
specifies the value of the K (shift) field. The shift
value must be between 0 and 63 with the value 0
specifying no shift is to be made.

(2) Subfield two. Sub field two specifies the
value of the H field (the register to be shifted).
The value must be between 0 and 15.

(3) Subjield three. The third subfield speci­
. fies the value of the tally register (R) field for
shift and count and normalize instructions. The
value must be between 0 and 15.

USACSCS·TF-4-2

TuIM .. f·.f. E:CfenMd M.,ntflllic., jil' ,,,.. Iilli W,ml ·ltif' o",;",u 'If ,,,.. ltiJl IillI Word '''~'rw'HHf
._-_ .. , .. . -_.-"" .- . --

Extended code Meaning T Field (hexadecimal)

SARF Shift algebraic, right, (linear) full word 00

SLARF SlUft logical, right, (linear) full word 04

SCRF Shift circular, right, full word OS

SAL!' Shift algebraic, (linear) full word 02

SlLF Shift logical, left, (IineOlr) full word U6

SCll' Shift circular, left, full word 07

SNF Normalize, full word 12

SCI' Shift and count (linear). full word 16

secI' Shift and count. circular. full word 17

20074·12

Table 5-4. "'eruled M",monin lor ,Ite Double Word SIIiI' Optiolls oJ the ,~ltif' F"II Word In.urw'ioIf

Extended code Meaning T Field (hexadecimal)

SARO . Shift algebraic, right, (linear) double word 08

SlRO Shift logical, right, (linear) double word OC

SCRO Shift circular (logical), right, double word 00

SALD Shift algebraic, left, (linear) double word OA

SHU Shift logkal, left, (\inear) doullie word OE

SCLD Shift circular. left. double word OF

SNO Normalize, double word

RFT Reneel. double word

j. Extended Mnemonic Code Instruction Con­
versions for Shifting. The assembler conversion of
the extended mnemonic code shift' instructions is
illustrated in figure 5-2. The assembler converts
the extended mnemonic into the recognized ma­
chine language instruction and sets the appropri­
ate values into the fields of the instruction word.

k. Extended Mnemonics for Format Instruc­
tions. The extended mnemonic codes for format'
instructions imply the format insert full (FIF),
format insert half (FIH), format extract full
(FEF). and format extract half (FEH) space func-

IA

IF

20079-13

tion co~des and a value for the T field (option
field) of the instruction. Since the T field replaces
part of the normal operand field, the literal mode
(mode 0) must be used with the extended mne­
monic codes. The notation used for the format
instructions is snown in table 5-6. Table 5-7
shows the allowable extended mnemonics and
the implied T fields for the format insert full
and half (FIF and FIH), and format extract full
and half (FEF and FEH) instructions. Detailed
explanations of the extended mnemonic codes
for the format instructions are presented in the
following para~aphs.

5-3

USACSCS-TF-4·2

Tobie 5·5. Extellded MnemtJIIU:s lor tM Shift 11011 Word '"struCtiOlU

Extended code Meaning T Field (hexadecimal)

SARH Shift algebraic, right, (linear) half word 00

SLRH Shift logical, right, (linear) half word 04

SeRB Shift circular (logical), right, half word 05

SALH Shift algebraic, left, (Unear) half word 02·

SLUt Shift logical, left, (linear) halr word 06

seLH Shift circular, left, half word 07

SNH Normalize, half word 12

SeH Shift and count (linear), half word 16

seCiI Shift and count, circular, half word 17

I. Extended Mnemonic Format Instruction Op·
erands. The operand entry for extended mne­
monic shift instructions is specified in the follow­
ing paragraphs. Note that the mask register is
always register 14. Some examples of extended
mnemonic format instructions are shown follow­
ing the explanations of the three operand sub­
fields required in coding the extended mnemonics.

(I) Subfield one. This subfield specifies the
mode, which must be literal (denoted by an equal
sign). It also denotes the value of the shift (K)
field. The shift value must be between 0 and 63
with the value zero (0) specifying no shift is. to be
made.

(2) Sub field two. Subfield two specifies the
value of the II field (the 'from' register). The
value must be between 0 and 15.

(3) Subfield three. Subfield three specifies
the value of the R field (the 'to' register). The
value must be between 0 and 15.

Examples:

FELRF == 8,8,11
Format Extract Full. Right Linear
Shift
Shift Count == 8
Origin (From) Register == 8
Destination (To) Register == II

FILLF ==8,7,12
Format Insert Full, Left Linear Shift
Shift Count == 8

.
20079-14

E F II H so A W

I 1 I 0 1 1 0 0 0 I 0 0 I 0 1 1 0 I 0 0 0 10 0 0 0 Ii 0 0 0 1 0 0:0 0 1 0 1 I 0 I
~78 9 121315~

f t R' T~ Kt

--lll ! -
SHH-.----- SLrH =10,6 I

L _________ ~

Figllre 5· 2. Assembler Lortflllllge Extended MIIemonu:

Shift '"structitJII COfIHrsion

Table 5·6. Notation Used ill ExtelUkd MllemonU: Formal
1",t",ctiOfI Coda

Position· Letter Meaning

1 F Format

2 E Extract

I Insert

3 L Linear

C Circular

4 R Right

L Left

S F Full

H Half

·all format extended mnemonic codes are 5 letters in length.

20079·15

USACSCS·TF-4·2

Table 5· 7. Exte"'" MumDlties for Format '.trllctiDIIs

Extended code Meaning Operation code . T Field

FELRF Format extract; (shift)l;near, right, full word FEF n
HCRF Format extract; (shift)circular, right, full word FE!' I
FELL ... Format extract; (shift)linear. left. full word FE ... 2
FECLF Format extract; (shift) circular .Icft. full word FE ... :l
FELRII I'ormat extract; (shift)linear. right. half word FEH II

FECRH Format extract; (sl1ift)circular. right, half word I'EU I
FELLH Format extract; (shift)linear, left, half word I'EH 2
FECLH Format extract; (shift)circular, left. half word FEH 3
F1LRF Format insert; (shift)linear, right, full word FIF 0
FICRF Format insert; (shift)circular, rig.'1t, full word I'll' I
FILLF Format insert; (shift)linear, left, fuD word FIF 2
F1CLF Format insert; (shift)circular, left, fuD word FIF 3
FlLRH Format insert; (shift)linear, right, half word F1H 0
Flcim Format insert; (shift)circular, righ t, half wo rd FIH I
FlLLH Format insert; (shift)linear, left, half word I'IH 2
FICLH Format illsert; (shift)circular, left, half word I'IH 3

211079·16

Origin (From) Register = 7
Destination (To) Register = 12

E F IJ H S D A \\

m. Extended Mnemonic Code Instruction Con­
versions for Format Instructions. The assembler
conversion of the extended mnemonic code for
format instructions is illustrated in figure 5-3. The
assembler converts the- extended mnemonic into
the recognized machine language instruction and
sets the appropriate values into the fields of the
instruction word.

[oToI...!.~iilillo 1 0 I. 100 iTfOlO.FHo_o'o i_o;o.o_(oo.l~J
o 1 b 7 8 9' 12 13 15 16 lq 20 2~ 26)0)1

TJ~H='T
FIF II FI~lF '8,5, 2 I

L _____ -.l

44-4 7-00~

Fipre 5·J. Aisembler J.tmpage Exteltded MltemOlt;C'
FotrIUIt l.t,.tiOfl COfI"HrsiDlt

5-5/(5-6 blank)

USACSC8-TF-4-2

CHAPTER 6

COMPOOL SYMBOLS

Section I. GENERAL

6-1. Introduction

This chapter defines the term Compool and
discusses the use of sym bois in a Compool and

. the methods of converting Compool symbols to
AN/GYK-12 machine instructions.

6-2. Compoo,1

A Compool is defined as a collection of infor­
mation relating to one or more program modules
that make up a system. ,This collection of infor­
mation takes the form of items, tables, parame­
ters, and programs. Compool sets up a common
data base that may be accessed by all programs
in a system. As a result of Compool, the need for
a repeated data base in each program in a system
is eliminated.

6-3. Compool Symbol Usage

Sym boIs defined in a Compool may be used in
the operand field. The assembler searches the
Compool for the specified symbol, and if found,
utilizes the attributes specified in the Compool for
the symbol to derive the value of the operand.
The programmer may specify that an address is
to be provided for a Compool-defined tab~e or
item; that a mask is to be made up for an Item;
or that a shift value is to be supplied to move an
item from where it normally resides within a
word to a specified bit position. The method used
by the assembler to interpret w~at is t~ be P!O­
vided, depends upon the type of mstructlon ~e~ng
specified, the sub field of the operand contammg
the Compool symbol, and the type of symbol
encountered.

6-4. Converting Compool Symbols

Methods of converting Compool symbols to
AN/GYK-12 machine .instruction operands are
standard operands, and operands for extended
mnemonic instructions as described in the follow­
ing paragraphs.

a. Standard operands. Standard operands are
comprised of subfield one and subfield two.

(I) Su~field one. In sub field one, a Compoot
symbol may specify an address or.a mask. The
method of specifying an address IS, to us~ thl'
Compool symbol itself as a term. 10 specIfy. a
mask, the Compaol item sy~bol is enclosed. In

single quotes. The assembler wlll ~encrate a stnng
of ONE bits for each bit of the Item. For exam­
ple, if an item begins in bit eight and is ~oU! bi~s
in length, the mask will consist of O.NE bIts m bIt
positions eight through eleven, wIth all of. the
other bits (~qual to ZER? If ~ mask o.f an Item
set to a particular value IS deslfed, t~e Item sym­
bol in quotes is followed by a deCImal number
which specifies the value of th~ mask. The asse~­
bier will insert the binary equIValent of the specI­
fied decimal number in the bit positions occupied
by the iten:. Refer to table 6-1 for examples of
Compool sy m bois.

Table 6-1. EXllmples 0/ Cllmpooi Symbols

-
Compool

defined item
Mnemonic and register Remarks

LDr TPOS,lO Assembler provides
'(address of TPOS \

lOF ='TPOS', 1 0 Assembler provides
mask ofTPOS

LDF ='TPOS'6,IO Assembler provides
mask of TPOS set to a
value of six

20079·17

(2) Subfield two. In subfield two, the Com­
pool symbois have special significance only for
the set and test bit instruction. The number of the
bit to be set, reset,or tested may be specified
relative to the least significant bit of an item. The
symbol for the item may be specified ~n subfi~ld
one (also specifying the address of the item). WIth
the relative bit number appearing in subfield two:
or the symbol may appear in subfield two. en-

6-1

USACSCS-TF-4-2

,

closed in single quotes, followed by the relative
hit numher. In either case, therclative bit number
is applied to the least significant bit of the item to
determine the absolute bit number. Refer to table
6-2 for examples of set bit instructions.

b. Operands for Extended Mnemonic Instruc­
tion. Operands for extended mnemonic instruc­
tions are provided for transfer, shift and format
instructions.

(I) Transfer instructions. The Compoo) sym­
bol usage for transfer commands is the same as
specified for the standard operand (refer to para­
graph 6.4a above).

(2) Shift and format instructions. For shift
and format instruction, the number of shifts may
be specified in subfield one by indicating the bit
position to be shifted to and the. item symbol to
be shifted. The item symbol is specified, enclosed
in single quotes, with the bit number to which the
item is to be shifted specified as a decimal num­
ber outside of the quotes. If the item is to be left­
justified to a bit number, thatnuinber appears' to
the left of the symbol; if right-justified, it appears
to the right. The assembler will compute the
number of shifts necessary to align the most­
significant bit (for left alignment), or least signif­
icant bit (for right alignment), on the specified bit
numher. The type of shift will be determined
from the operation mnemonic, but the direction
of the shift will be that direction which requires
the smallest number of shifts. Refer to table 6-3
for examples of shift and format instructions.

Table 6- Z. Bit 'If..trrltiititr EXllmple .•

Set Bit Compool
instr defined item

(rimemonic) and register Remarks

SBT TPOS,2 Set bit two of the item
TPOS I

SBT TPOS, Set bit two of the item
'TPOS'2 TPOS

SBT R'lO', Set thebit in regi~ter 10
'TPOS'2 Which is the same as bit 2

of item TPOS
.

20079-18

Table 6-1. Silift alld Format IIIstrrtetWn Examples

Compool
Shift and format defined item

instructions and register Remarks

FECRF :'TPOS'31.10 Align TPOS on bit 31.
shift from LSB of TPOS
to bit 31

FllLF =O'TPOS',IO Insert bits starting with
bit 0 into bits occupied
by TPOS. after shifting
bit 0 to the MSB of
TPOS

20079-19

USACSCS-TF-4-2

CHAPTER 7

AN/GYK-12 ASSEMBLER INSTRUCTIONS

Section I. GENERAL

7·1. Introduction

This chapter discusses the AN /GYK-12 assem­
bler instructions. Each instruction is categorized,
defined, and explained in terms of operand con­
tent, format, and usage. Unlike the machine in­
structions, assembler instructions are for use dur­
ing assembly only. They are not for execution
during the object program operation and do not
produce any object code. Instructions such as
block start symbol (BSS) and generate data
(GEN) generate no machine instructions but d9-
cause storage areas to be set aside for constants
and other data. Others, such as equate (EQU)
and PAGE are effective only at assembly time
and they generate nothing in the assembled pro­
gram and have no effect on the location counter.
Table 7-1 lists all of the AN /GYK,·12 assembly
instructions within their various categories and
opposite their corresponding purposes.

7·2. Symbol Definition Instruction (EQU)

The instruction in the chart below, assigns the
expression in the operand field to the symbol that
appears in the name field.

Name Operation Operand

A symbol EQU An expression

The expression may be symbolic, numeric, or
mixed. Both the value and relocatability attri­
butes of the expression in the operand are as­
signed to the name field. Evaluation of an expres­
sion that results in a value greater than 16 bits in
magnitude will result in an assembly limit error

(L). If the expression in the operand field is not
detlned previous to the EQU instruction. it is
saved in a file by the assembler. At the comple­
tion of the first pass of the assembler. thcse
undefined EQU instructions are read and further
attempts to resolve the operand field will be
made. As each instruction is resolved, it is re­
moved from the file, and the pass through the file
is continued. If a pass through the tile results in
no instruction being resolved. the file is closed
and all unresolved instructions arc flagged as
undefined. The EQU instruction is a means or
equating symbols to immediate data. register
numbers, and other arbitrary values.

The instructions:

A EQU '1500'

will assign the value of octal 1500 to the sym bolie
tag A.

The instructions:

A EQU R'3'

will equate the address of register three to the
name A. In a program, the assembler will recog­
ni:ze within the expression B + A that the mode is
direct, indexing, is desired, and that the symbol.
A, represents index register three.

The instruction:

A EQU STAG

will cause the address of the symbol, STAG. to be
assigned to the symbol A thus equating the two
symbols. STAG must be defined itself somewhere
within the assembly. Two symbols which are
equated actually represent the same location with
two different names.

7·1

USACSCS-TF-4-2 .

Table 7-1. ANIGYK-ll Assembler /lfs'",ction .• ·

INSTRUCTION CODE NAME MEANING

System Dermition EQU Equate Equate Symbol

Data Definition GEN Generate Generate data

BSS Block start symbol Block started by symbol

DATA Data Define length of local data

Program Linking ENT Entry Identify entry point symbol

EXT External Identify external symbol

Listing Control REM Remark Remark

PAGE lJage Start new par;e

OPT Option Specify assembler.input and outputs

Program Control TITLE Title Identify assembly module

ORG Origin Set location counter to relocatable value
I

LOC Location Set location counter to non-relocatabll'
value

END End End assembly

CMP. Compool Fetch compool

I Miscellaneous CNOI Conditional no operation Align lo~ation

20079-20

Section II. DATA DEFINITION INSTRUCTIONS

7·3. GEN, ISS, Data Instructions
These statements are used to enter data con­

stants into storage and to define and reserve areas
of storage. The statements may be named.so that
other program statements can refer to the fields
generated by them.

7-4. Generate Data Inltructlon (GEN)
The generate data instruction (GEN) is used to

provide constant data in storage. (See chart be­
low.) Each instruction may provide one constant
or a series of constants. All. types of terms and
expressions may be generated, as well as address
constants. The generated constants receive the
same relocatability attributes as the expressions
from which they are defined. .

N arne Operation

A symbol
or blank GEN

Operand

One or more operands in
the format specified be­
low,separated by com­
mas.

Each operand consists of three sub fields. The first
two subfields describe the constant, and the third
provides the constant or constants. The first and
third subfields may be omitted but the second
must be specified. Note that ·more than one con­
stant may be specified in the third subfield for
most types of constants. Each operand so speci­
fied must be of the same type; the descriptive

subfields that precede th.em apply to all of them.
The sub fields of each GEN operand are written
in the following sequence: .

I 2 3

Duplication Factor . Type Constant(s)

Although the constants specified in one operand
must have the same characteristics, each operand
may specify different types of constants. For ex­
ample, a double word generate might specify a
hexadecimal operand, an octal operand, and a
character operand. Some examples of GEN in­
structions are shown in table 7-2.

Table 7-2. Example of the Use of the Generate (GEN)
IlIs'rllelion

Examples of GEN statements:

GEN He'AB' (half word; characters A and B)

GEN

GEN

GEN

GEN

3DX'FAOOABOO' (double word; hex FAOOA800,
three times)

FABeD (full word; symbol ABeD)

FC'THIS IS A
TEST'

HX'FFOO',O,
O'7S',ABCD

(four full words; characters
THIS IS A TEST)

(four half word~; hex FFOO,
decimal 0, octal 75, and
symbol ABCD)

20079-21

a. Operand Subfteld One, Duplication Factor.
The duplication factor may be omitted. If speci­
fied it causes the constant(s) appearing in sub field
three to be generated them·.mber of times speci­
fied along with. the attributes specified in sub field
two. The duplication factor is applied after the
constant is assembled and is the same as if the
entire GEN statement were repeated the stated
number of times. A duplication factor equal to
zero forces the location counter to a double, full,
or half word boundary depending upon the type
specified in sub field two. .

b. Operand Subfteld Two, Type Designation.
The type subfield defines the type of constant
being specified. From the type specified, the as­
sembler determines how it is to interpret the
constant and translate it into the appropriate
AN/GYK-12 machine format. The type of GEN
is specified by a single letter code as follows:

D - Double Word Constant

F - Full Word Constant

H - Half Word Constant

USACSCS-TF-4-2

c. Operand Sub field Three, Constant Entry.
This subfield supplies the constant described hy
the subfields that precede it. The constants may
consist of any allowable term or expression. For
character (EBCDIC ro ASCII) constants, as many
characters as desired may be specified, and space
will be generated for all characters specified. All
other constants must fit within the specified stor­
age area, i.e., half word, full word, or double
word. The total storage requirement of an oper­
and is the product of the length times the number
of constants in the operand. The total storage
requirement of a GEN instruction is this factor
times the duplication factor, if any is present. All
constant types are aligned on the proper bound­
ary by the assembler.

7-5. Block Started by Symbol Instruction
(BSS)

The BSS instruction is used to reserve areas of
storage and to assign names to those areas. (Sec
chart below.)

Name Operation Operand

A symbol
or blank BsS An expression

The size of the storage area that can be reserved
by a BSS instruction is limited only by the maxi­
mUin value of the location counter (65,535). The
BSS instruction causes the location counter to be
incremented by the value of the operand field.
Therefore the storage area defined by the BSS
instruction is effectively placed where the BSS
instruction was itself located in the object pro­
gram. No machine words are generated in re­
sponse to a BSS instruction, however a storage
area of the size specified is set aside. Note also
that the area defined by a BSS is not reset when
the program is loaded and therefore the program
in which the BSS appears must reset the area to
zero or some other value if that is required. Any
symbol which· appears in the operand field of a
BSS instruction must have been previously de­
fined.

The instruction:

TAG ass 16

will reserve an area in line for storage which is
s~x,een half words in length. The area will he
assigned the symbolic tag TAG so that it may he

7-3

USACSCS· TF-4·2

referred to by other instructions in the program.
The address of the first half word in the contigu­
ous area will be assigned to the symbol TAG.

The instruction:

TAGBSS NUMBER

will reserve an area in line for storage which is a
given number of half words in length. The length
of the area in half words, will be equal to the
value assigned to the symbol NUMBER by the
assembler. Note that the symbol NUMBER must
be previously defined before it can be used in a
BSS instruction.

The instruction:

TAG BSS IO*NUMBER+ 12
will reserve an area of length in half words equal
to the value of the expression appearing in the
operand field of the BSS instruction. Note that

the symbol NUMBER must be previously defined
by the assembler.

7·6. DeflnfJ Length of Local· Data
Instruction (DA'fA) .

Thc DATA instruction is used hy the TACPOL
compiler to pass to the assc.mbler the Icngth of
the local data associated with the assemhly niod­
ule. (See chart below). ~

Name Operation Operand

Blank DATA An expression

The size of local data is output by the assembler
on the program identifier (type one) card. Any
symbol which appears in the operand field of a
DATA instruction must have previously defined.

Section III. PROGRAM LINKING INSTRUCTIONS

7·7. ENT, EXT Instructions

These instructions are used for linking pro­
grams by providing entry points for program
modules. These points can be accessed by any
type of assembler language machine instructions
but can be particularly. useful in linking modules
of separate assemblies together. An assembly
module is a group of instructions which are as­
sembled as one entity by the assembly program.
A module begins with a TITLE instruction and
ends with an END instruction (An OPT instruc­
tion may precede the TITLE instruction if it is
included).

a. Identify Entry Point Symbol Instruction
(ENT). The ENT instruction identifies linkage
sym bois that are defined in this assembly module
but may be used by some other module. (See
chart below.) .

Name Operation

Blank ENT

Operand

One or more symbols, sepa­
rated by commas, that also
appear as statement names.

A module may contain a maximum of 100 entry
point symbols. Entry symbols which are not de­
fined (do not appear as statement names) . count
towards this maximum. The symbols in the ENT

operand field may be used as operands by other
assembly modules. More than one entry point
symbol may be included in the operand of an
ENT instruction.

The instruction:

ENT SINE,ARCSINE

defines the two symbols SINE and ARCSINE as
available to other assembly modules. That is, the
addresses of these symbols are available to as­
sembly modules other than one in which theyare
defined. Therefore, they are defined as entry
points.

b. Identify External Symbol Instruction (EXT).
The EXT instruction identifies linkage sym bois
that are to be used by this assembly module. but
are defined in some other models. Each external
symbol must be identified. (See chart below.)

Name Operation

Blank EXT

Operand

One or more symbols, sepa­
rated by commas.

When external symbols are used, they must be
the only terms in the expression containing them.
The reason for this restriction is that the D, A, W
field of the assembler language machine instruc­
tion in which the external symbol appears is used

for chaining the various references to the same
symbol. Any modifications to this field would
result in invalid chaining information.

The instruction:
EXt- START,COMPUTE

USACSCS· TF-4-2

identifies the two symbols, START and COM­
PUTE as being defined in some module other
than this one. Note that more than one external
symbol may be defined with a single EXT instruc­
tion.

Section IV. LISTING CONTROL INSTRUCTIONS

7·5. REM, PAGE, OPT Instructions

The listing control instructions provide infor­
mation regarding the inputs to and outputs from
the assembler.

a. Remark Instruction (REM). The REM in­
struction is used to provide additional annotation
on the assembly listing. (See chart below.)

Name Operation Operand

Blank REM A sequence of characters

The entire operand and comments fields may be
used for comments. The op,!ration. code, REM, is
not printed on the assembly listing. Only the
contents of the operand and comments fields are
printed. An asterisk in column I has the same
effect as the REM instruction.

b. Start New Page Instruction (PAGE). The
page instruction causes the next line of listing to
appear at the top of a new page. (See chart
below.) This instruction provides a convenient
way to separate routines in the assembly module
listings.

N arne Operation Operand

Blank PAGE Blank

c. Specify Input/Output Options Instruction
(OPT). The OPT instruction is used to specify the
location and nature of the input to the assembler
(the source deck) and the output from the assem­
bler (the object desk and the assembly listing).
(See chart below.)

Name Operation

Blank OPT

Operand

One or more operands, in the
format specified below, sepa­
rated by commas.

The option instruction applies to all assembly
modules in any job package. It is an optional
instruction, and its absence implies a statement
with the operand format CARD, CARD, and
PRINTER: such as, OPT CARD, CARD,
PRINTER. The first three sub fields must appear
in the order shown. Operand sub fields four
through eleven may appear in any order. Any of
the first three subfields may be deleted by replac­
ing it with a comma with no preceding or follow­
ing blanks.

The instruction:

OPT CARD,CARD,PRINTER,
XREF,GEN,DATA,
TAGS,RELOC

specifies that the source deck input to the assem­
bler is on cards, the object deck output is on
cards, and the assembly listing will be produced
on the printer. In addition all of the optional
assembler outputs listed in paragraph 7-5c(4) will
be provided.

(1) Operand subfield one. Operand subfleld
one identifies the input device which contains the
source deck. CARD, for card reader, TAPE, for
magnetic tape unit, or RAM, for randonI access
memory device such as disk. may be specified.
Only one of the options may be specified and if
none is specified, CARD .. will be assumed. The
deletion of subfield one is indicated by a comma
with no blanks preceding or following.

(2) Operand subfield two. Operand subfield
two identifies the output device or devices which
ate to be used to ol,itput the binary object records.
These may be any combination of CARD, TAPE.
or RAM. If more than one option for object
output is desired, then the individual options
must be separated by a plus sign, e.g., CARD­
+ TAPE + RAM. Operand sub field two may be
replaced with a comma with no blanks preceding
or following. If none are specified, there will be
no object code output. The CARD, TAPE, and

USACSCS-TF-4~2

RAM options reference the devices as indicated in
paragraph 7-5c(2).

(3) Operand subfield three. Operand subfield
three identifies the output device or devices which
are to be used to output the assembly listing.
These may be any combination of PRINTER,
TAPE, and RAM. As with sub field two if more
than one option is specified, then each individual
option must be separated by a plus sign, e.g.,
PRINTER + TAPE + RAM. If none are specified,
there will be no assembly listing output. Subfield
three may be deleted by inserting a comma, pre­
ceded and followed by no blanks.

(4) Operand subfields four through elev~n.
Operand sub fields four through eleven may 10-

clude any or all of the options from the f?llowing
list in any sequence. If not all the optIons are
used, then there will. be fewer than eleven total
subfields for that particular OPT instruction.

1) XREF A cross reference listing is
provided.

2) GEN All statements generated by
macro instructions are printed.

3) DATA

4) TAGS

5) RELOC

Constants arc printed out ill
full in the listing. Otherwisl'
only the first of a series (~r
duplicated constants IS

printed and only the first full
word of constants which arc
longer than 32 bits, eve.n
those which are not dupli­
cated.

The symbol table is included
in the object deck. (The type
two cards are punched into
the object deck.)

Relocation indicators are in­
cluded in the object deck.
This is necessary if the pro­
gram which was assembled is
going to be relocated when
loaded.

The lack of any of these operand sub fields im­
plies the opposite meaning of the operand sub­
field if it were present.

Section V. PROGRAM CONTROL INSTRUCTIONS

·7':'6. TITLE, ORG, LOC, END Instructions

The program control (TITLE, ORG, LOC,
END) instructions are used to identify the begin­
ning of an assembly module, to· set the location
counter to a value at the start 'of the assembly,
and to identify the end of the assembly module.

a. Identify Assembly Module Instruction (TI­
TLE). The TITLE instruction enables the pro­
grammer to identify the assembly listing and to
name the assembly module being produced. (See
chart below.)

N arne Operation Operand

Name TITLE A sequence of characters, en­
closed in' apostrophes.

It appears as the first instruction of the assembly
module. Only the OPT card, if included, may
precede the TITLE card. The name field of the
TITLE card is used to identify the assembly mod­
ule name which will appear on the object deck. It
may consist of from one to eight alphabetic or

numeric characters in any combination. The name
field of the TITLE card is interpreted only on the
first TITLE instruction appearing in the assembly
module. Name fields of the other TITLE instruc­
tions, if any, are ignored. The name in the name
field on the first TITLE instruction will become
the module name. The operand field of the TI­
TLE card may contain up to 65 characters en­
closed in single apostrophes (which will not be
printed) and will be printed at the top of each
page of the assembly listing. If a single apostro­
phe character is desired in the title printout. two
consecutive apostrophes must appear in the oper­
and of the TITLE card. Although only the first
TITLE instruction is interpreted for its name field,
all TITLE instructions have their operand inter­
preted and the contents used for the heading of
all the pages of assembly listing to follow. Each
TITLE instruction causes the listing to be ad­
vanced to a new page before the new heading is
printed.

The instruction:

PROGI TITLE 'FIRST HEADING'

will cause the assembly module to be named,
PROGI (assuming this to be the first TITLE in­
struction in the module. otherwise the module
name already assigned will remain unchanged).
The heading, FIRST HEADING, will be printed
at the top of the first page of the assembly listing
and each subsequent page until a new TITLE
instruction is encountered.

This instruction:

TITLE 'SECOND HEADING'

will cause a new page to be restored and the new
heading, SECOND HEADING, to be printed at
the top of the new page and on each subsequent
page until another TITLE instruction is encoun­
tered.

b. Set Location Counter to Relocatable Value
Instruction (ORG). The ORG (Origin) instruction
(see chart below) is used to set the software
location counter to a relocatable value.

N arne Operation Operand

Blank ORG An expression

The expression may be symbolic, numeric, or
mixed. However, if a symbolic tag is used, in the
operand field, it must bedefined within the 'cur­
rent assembly or in the CompooL If the ORG
instruction is not present, the assembly will begin
at location zero. The ORG instruction may be
placed anywhere in the program.

The instruction:

ORG X'7FOO'

will set the location counter to the value 7FOO
hexadecimal. and define the assembly module as
relocatable.

The instruction:

ORG *+20

will skip over the next twenty halfwords from the
current value of the software location counter and
start the software location counter from that
point. As with the previous example, the assembly
module in which this ORO instruction appears
will also be relocatable.

c. Set Location Counter to Non-Relocatable
Value Instruction (LOC).The LOC (Location)
instruction (see chart below) is used to set the
software location couriter to an absolute value,
and thus identify the assembly module or area of

USACSCS-TF·4-2

code which follows the instruction as hl~ing ahso­
lute. or non-relocatahle.

Name Operation Operand

Blank LOC An expression

Any symbols in the expression must have been
previously defined. The LOC instruction can be
used anywhere in the program.

The instruction:

LOC '7000'

will set the software location counter to an initial
value of octal 7000 and identify the module or
area following the instruction as non-relocatable.

The instruction:

LOC *-20

will cause the previous twenty halfwords to be
overlaid, and identify the instructions following
as non-relocatable.

d. End Assembly Instruction (END). This in­
struction terminates the assembly of a program
and appears as the last card of the symbolic
program (source deck). The END statement noti­
fies the assembler that all symbolic cards have
been processed. (See chart below.)

Name Operation

Blank END

Operand

One or two operands. in the
format specified below. sepa­
rated by commas.

It may also designate a point in the program to
which control may be transferred after the pro­
gram is loaded, and the program level which is to
be used by the program. The END instruction
must always be the last statement in the source
program.

The content of the operand field is as fol­
lows:

Operand 1 -

Operand 2 -

Assembly module entry
point

Assembly module pro­
gram level

Both operands are optional. If an entry
point is specified (octal, decimal, hexadecimal. or
symbolic), the evaluated value of the operand will

7·7

USACSCS-TF-4·2

appear on the Type 9 card of the object deck. If
operand one is used, the use of operand two is
implied and if operand two is blank, program
level 63 is assumed.

The instruction:

END

merely specified the end of an assembly module ..

The instruction:

END BEGIN,63'

specifies the end of an assembly module whose
entry point is the' label BEGIN, and whose pro­
gram level is to be 63. The specification of level
63 is redundant since level 63 is assumed if oper­
and two is blank. However, its inclusion may
make the program listing easier to understand.

7-7. Miscellaneous Instructions: CMP, CNOI

There are two miscellaneous assembly instruc­
tions which provide added capability for the user.

a. Compoo/ Instruction:CMP. The CMP in­
struction is used to specify the identity of a Com­
pool for use by the assembler during the current
assembly operation. (See chart below.)

Name Operation Operand,

Blank CMP COMPOOL identifier

The Compool identifier consists of from one to
eight alphabetic or numeric 'characters in any
combination. The Compool being specified must
be available to the assembler.

The instruction:

CMP COMPI

instructs the assembler to load the COMPI Com­
pool from the system tape (or other device) and
use it during the affected assembly.

b. Conditional No Operation Instruction: eNOl.
The purpose of the Conditional No Operation
Instruction is to align the software location coun­
ter on a full word (32 bit) or a double word
boundary. (See chart below.)

Name Operation

A symbol CNOI
or blank
(optional)

Operand

Two subfields separated
by a comma, a 0 or 2 in
subfield 1, and a 2 or 4
in subfield 2.

The assembler will insert No Operation (NOt)
machine instructions into the object code as nec­
essary to accomplish this: The CNOI instruction
has two sub fields.

(I) The first subfield may be either 0 or 2
and it indicated the number of 16 bit addrcssc'>
the software location counter is to be advanced
after the full word or double word alignment is
made. The assembler will insert an NOI instruc­
tion only if the value of the sub field is 2.

(2) The second sub field determines whether
the alignment will be on a full or double word. Ir
the value of the second subfield is 2. a full word
alignment will be made. If the. value of. the sub­
field is 4, a double word alIgnment IS made.
Single address posit.ions (16. bit half wo~d~) will
be inserted along With 32 bit words conslstmg of
NOI instructions as necessary.

The instruction:

CNOI 0,4

will cause the software location counter to be
advanced to the next double word boundary in­
serting NOI instructions as required.

The instruction:

CNOI ,2,4

will cause the software location counter to he
advanced to the next double word boundary and
further advanced an additional full word. NOI
instructions will be inserted as necessary.

7-8. Assembly Deck 'Structure

Listed below are the major control cards, in an
order in which they would normally be used.

OPT
TITLE
CMP
ORG (or LOC)

(source program instructions)

END

USACSCS-TF-4·2

CHAPTER 8

MACRO LANGUAGE

Section I. GENERAL

8-1. Introduction

This section discusses the AN /GYK-12 assem­
bler macro language. Detailed explanations along
with illustrations and examples are presented. The
AN/GYK-12 macro language is an extension of
the assembler language. The macro language pro­
vides a convenient way for the programmer to
generate a desired sequence of assembler lan­
guage instructions many times in one or more
programs. The macro definition is written only
once, and a single instruction (a macro instruc­
tion) is written each time a programmer wants to
generate the desired sequence of instructions.

,8-2. The Macro Instruction Statement

A macro instruction is a source program state­
ment. The assembler generates a sequence of
assembler language instructions for each occur­
rence of the same macro instruction. The gener­
ated instructions are then processed like any other
assembler language instructions. Three types of
macro instructions may be written: positional,
keyword, and mixed mode. Positional macro in­
structions permit the programmer to write the
operands of a macro instruction in a fixed order.
Keyword macro instructions permit the program­
mer to write the operands of a macro instruction
in a variable order. Mixed mode macro instruc­
tions permit the programmer to use the features
of both positional and keyword macro instruc­
tions in the same macro instruction.

a. Defining Macro Instructions. The definition
of a macro instruction (macro) consists of a set of
statements which provide the assembler with the
mnemonic operation code and format of the ma­
cro instruction, and the sequence of instructions
the assembler is to generate each time the macro
instruction appears in the source program.

Every macro definition consists of the fol­
lowing:

(I) A macro definition header statement.

(2) A macro instruction prototype statement.
(3) One or more macro model instruction

statements.

(4) A macro definition trailer statement.

All macro definitions must appear in the source
program before they are referenced as macro
instructions.

b. The Macro Library. The same macro defini­
tion may be made available to more than one
source program by placing the macro definition in
the macro library. The macro library is a collec­
tion of macro definitions that can be used by all
the assembler language programs in an installa­
tion. Once a macro definition has been placed in
the macro library, it may be used by writing its
corresponding macro instruction in a source pro­
gram.

c. System Macro Instructions. The macro in­
structions that correspond to macro definitions
prepared are called system macro instructions.
and are in a permanent library called the system
macro library. They may be used by writing their
con:esponding macro instructions in a source pro­
gram, as above. However, this library may not be
modified by the programmer.

d. Variable Symbols. A variable symbol is a
type of symbol that is assigned different values by
either the programmer or the assembler. When
the assembler uses a macro definition to deter­
mine what statements are to replace a macro
instruction, variable symbols in the model state­
ments are replaced with the values assigned to
them. By changing the values assigned to variable
symbols, the programmer can vary parts of the
generated instructions. A variable symbol is writ­
ten as an ampersand followed by from one to
eight letters and/or digits. At least one of the
characters in the. variable symbol must be a letter.

e. Symbolic Parameters. A symbolic parameter
is a type of variable symbol that is assigned

o.

USACSCS·TF-4·2

values by the programmer when he writes a ma­
cro instruction. The progra~mer may vary in­
structions that are generated for each occurrence
of a macro instruction by varying the values
assigned to symbolic parameters. A symbolic pa­
rameter consists of an ampersand followed by
from one to eight letters and/or digits, one of
which must be a letter.

(I) The following are valid symbolic param-
eters (or variable symbols):

(a) &READER.

(b) &A.
(c) &12A7.

(d) &X4AO.

(2) The following are invalid symbolic
paramters (or variable symbols) for the reasons
noted:

(a) CARDAREA (first character not
an ampersand)

(b) &2564 (no letters follow­
ing the amper­
sand)

(c)

(d)

&AREA12345 (more th~n eight
characters follow­
ing the amper­
sand)

&BCD%34 (coritains a
character
than the
ampersand)

special
other

initial

Any symbolic parameters which appear in
a model statement must also appear in the' proto­
type statement of the macro definition.

f Macro Definition Header Statement. The
macro definition header statement (see chart be­
low) must be the first statement used in defining a
macro. The name field of the statement must be
blank, and the opc:ration field must contain
MACRO.

N arne Operation Operand

Blank MACRO T, M, P, or 0

The operand field of the statement may
contain either T, M, P, or 0, or be left blank.
These letters specify the macro library action to
be taken, as shown in table 8-1. Only the first

....

column of the operand is interpreted; therefore.
only one option is allowed. If more than one
option is specified, only the first one applies.

Table B-1. Macro Definition Header Stateme"t Operrmd field

Operand
character Remarks

T Instructs the assembler that the following
macro is temporary and that the macro should
only be used ft:>r this assembly. If no letter i~

I present, a T is assumed,.

M Instructs the assembler that the following macro
is a modification to an existing macro in the
library. The macro defined will replace the
appropriate macro in the library.

p Instructs the assembler that the following macro
is a permanent macro and should be added to
the library, The macro dermed will be added to
the library.

D Instructs the assembler that the macro defined
should be deleted from the macro library, The
macro defined on the prototype statement will
be deleted from the library. (No model state-
ments are required.)

blank Option T is assumed.

20079-22

g. Macro Instruction Prototype Statement. The
macro instruction prototype statement (refer to
diagram) specifies to the assembler the mnemonic
operation code and the format of the macro in­
struction that refers to themacro definition.

Name Operation Operand

Blank A symbol Zero or more symbolic pa­
rameters, separated by com­
mas

The name field of the macroinstruction prototype
statement must be blank. If a symbolic tag is
desired in the actual use of the macro instruction.
a tag can be inserted in the name field by the
programmer using the macro instruction at assem­
bly time. The tag will then appear on the first
statement of the macro expansion. The operation
field will contain any collection of from one to
five letters, A through Z. This is the mnemonic
operation code for this macro. Any time a pro­
grammer uses this mnemonic in his coding, the

· model statements for this macro will be inserted
into the source program in place of the macro
instruction which called for the action. The oper­
and field is used in three different ways to provide
the programmer with the ability to use the three
different classes of macro instructions.

h. Positional Macro Prototype. In the positional
macro, each symbolic tag which may be modified
by the programmer is preceded by an ampersand
(&). These tags are symbolic parameters. Exam­
ples of symbolic parameters are: &TAG,
&TDA Y, etc. The assembler determines where to
put each of the programmer's tags in the macro
expansion by their relative position in the oper­
and.

i. Keyword Macro Prototype. In the keyword
macro, each symbolic tag which may be modified
by the programmer is followed by an equal sign.
Examples: TAG = DAY, NO= =3, TALL =

NOTE

Literal value for NO is specified by dou­
ble equal sign, one for the literal designa­
tion and one for the keyword symbolic tag
designation.

In the keyword macro the assembler usage of the
programmer's tags is based upon a matching of
names and not position in the list. In the preced­
ing example it should be noted. that TALL is
blank after the equal sign and TAG has DAY
after the equal sign. This instructs the assembler
that if TALL is not used by the programmer, a
blank symbol name is assumed. if TAG is not
used by the programmer, the assembler will as­
sume DAY is the sym bolic name.

j. Mixed Macro Prototype. The mixed macro is
a combination of the positional and the keyword
macro instructions. The positional portion of the

USACSCS-TF-4·2

macro operand is always first. The assembler will
process this class of macro operand in the same
manner as previously described for the positional
and keyword macros. The mixed macro may con­
tain both types of symbolic tags. Symbolic tags
.preceding an equal sign will be used as keyword
symbolic tags and matched by name. Symbolic
tags preceded by an ampersand will be positional
symbolic tags and will be matched by position.

k. Macro Model Statements. Macro model
statements arc the macro definition statements
from which the desired references of assembler
language instructions are generated. Zero or more
macro model statements may follow the proto­
type statement. A model statement consists of
from one to four fields; name, operation, oper­
and, and comments. The name field may be
blank or it may contain a symbol or a symbolic
parameter. The operation entry must be present
and. may contain any machine or assembly in­
struction, or a variable symbol. The operand entry
may be blank or it may contain ordinary symbols
or variable symbols. Model statement fields must
follow the same rules for paired single quotes and
blanks as machine and assembly instructions. The
comments field may contain any combination of
characters. No substitution is performed for vari­
able symbols appearing in the comments field.

I. Macro Definition Trailer Statement. The ma­
cro definition trailer statement (see chart below) is
used to signal the assembler that this is the end of
a macro definition. The name field and the oper­
and field are blank, and the only allowable entry
in the operation field is MEND.

Name Operation Operand

Blank MEND Blank

Section II. MACRO DEFINITIONS

8-3. Macro Definition and Instruction
Examples

Several examples of macro definitions and the
macro instructions which reference them follow.
All of the examples cause the following assembler
language expansion: .

SOH

LDH
ADH

LDF

LDH

TAGl,3

TAG2,3

TAG3,3

TAG4,8

TAG5,9

USACSCS-Tf-4-2

a. Nonreference Macro (TemporaT)') d. Keyword Macro (Permanent)

HEADER MACRO P
HEADER MACRO T

PROTOTYPE COMP A=,B=TAG2.
PROTOTYPE COMP C=,O=
MODEL SDH TAGI,3 MODEL SDH &A,3

WH TAG2,3 LDH &B,3 DEFINITION
ADH TAG3,3 DEFINITION

ADH &C.3
WF TAG4,8 LDF &0,8
LOH TAGS,9 . LOH TAGS.9

TRAILER MEND TRAILER MENO
INSTRUCTION COMP INSTRUCTION COMP A=TAGl,

C=TAG3,
0=TAG4

b. Positional Macro (Modify)
e. Mixed Macro (Temporary)

HEADER MACRO M

PROTOTYPE COMP &A'&B,&C, HEADER MACRO T
&D,&E PROTOTYPE COMP &A,&B.

MODEL SDH &A,3 C=TAG6

WH &B,3 MODEL SDH &A,3
DEFINITION

lDH ADH &C,3 TAG2.3

LDF &D,8 DEFINITION ADH &B,3

LOH &E,9 lDF TAG4,8

TRAILER MEND LDH &C,9

INSTRUCTION COMP TAGI, TRAILER· MEND
TAG2, INSTRUCTION COMP TAGI,TAG3.
TAG3, C=TAGS
TAG4,
TAGS

c. Nonreference and Positional Macro (Tempo-
rary) ...

f Special Usage

HEADER MACRO T HEADER MACRO

PROTOTYPE CUMP &A,&B PROTOTYPE COMP &A,&B

MODEL SOH &A,3 MODEL SD&A TAGI,3

IJ)H TAG2,3 ·lD&A TAG2.3
DEFINITION DEFINITION

ADH TAG3,3 AD&A TAG3,3

IJ)F &8,8 LD&B TAG4.8

WH TAGS,9 LD&A TAG5,9

TRAILER MEND TRAILER MEND
INSTRUCTION COMP TAGI, INSTRUCTION COMP H,F

TAG4

QA

g. Deletion of Macro

HEADER
PROTOTYPE
TRAILER

MACRO
COMP
MEND

D

h. Tag Usage in a Macro. Assume the macro
COMP as defined in the first example. Then. the
instruction below would call for the use of the
macro COMP with the tag NAME as shown:

USACS~Tf-4-2

NAME COMP

The following expansion would result. Note that
the tag NAME has been placed in the name field
of the first instruction of the macro expansion.

NAME SOH TAG I, 3

LDH TAG2,3

ADH TAG3,3

LDF TA04,8

LDH TAGS, 9

A..fl/IR.6 blank)

USACSCS-TF·4·2

CHAPTER 9

: OBJECT CODE OUTPUT

Section I. INTRODUCTION

9·1. Introduction

The object code (Le., the machine-language
result of the assembly process) is an output of the
assembler in card-image format. The actual in­
put/output (110) device used for outputting this
code may be a card punch, paper tape punch,
magnetic tape drive, or random-access memory.
The specific 110 devices, that are to receive the
object code, are specified on the Option (OPT)
card. The object deck may be input to the com­
puter by the use of a loader program. The object
code is designed so that programs may be loaded
in their assembled locations or relocated by the
loader to any area of AN/GYK-12 core. The
loader program also will resolve any external
reference addresses at load time. The cards com­
prising assembler output are of nine types: I, 0, 2,
3, 4, 5, 6, 7, and 9 (type 8 is not used). The
following paragraphs describe the~ cards in the
order of their appearance in the object deck,
except for the Type 3 card, which immediately
follows the Type 1.

9·2. Program Identifier Card (Type 1)

The program identifier card is the first card in
the object deck. Its format is shown in the card
format diagram in table 9-1.

Tllble fJ..1. Program Idelftijier Card Format

Columns Content

I I

3-10 Assembly module name

12·15 Assembled load location (hex)

17-20 Length of module (hex)

22·25 Length oflocaJ data (hex)

20079·23

9·3. Data Cards (Type 0)

The data cards contain the AN/GYK-12 in­
structions and data which will he loaded into the
AN/GYK-12 computer. The format of the type 0
cards is shown in the data card format diagram.
table 9-2. Columns 1 and 74 are characters; all
other columns are EBCDIC representations of
binary data. If column 74 is blank, the entire card
is relocatable; if not, the card is not relocatable.
The relocation bits refer to the 32 possible half
words on the card. If the bit in the corresponding
relative position of the half word is equal to zero,
the half word is not to be modified in the event of
relocation. If the bit is equal to one, an offset
value (equal to tile load address minus the assem·
bled module address) is to be added to the corre­
sponding half word. The checksum is the value
which, when added to the number of half words',
the address of the first half word. all of the data
half words, and therelocatability bits taken 16 at
a time, equals zero (disregarding 16-bit overflow).

Table fJ..2. Data Card Format

Columns Content

I 0

2 Number of half words (16 bit) on
card

34 Address of first word

5.(j8 Data

74 Not relocatable indicator

75·78 Relocation bits

79·80 Checksum

20079-24

9·'

USACSCS-TF-4-2

9·4. Prologue Card. (Type. 2, 3, 4, 5, 6,
and 7)

With the exception of column I (which con­
tains a Character 2, 3, 4, 5, 6, or 7) and columns
74-78 (which do not always contain relocatability
information), the prologue cards have the same
format as type 0 cards. Columns 5-76 are all used
for data, which consists of: the internal symbol
(tag) table for type 2 cards; the entry point sym­
bol table for type 3 cards; the external reference
table for type 4 cards; the program-accessed table
for type. 5 cards, the Compool-page-usage table
for type 6 cards; and the Compool-reference link­
age table for type 7 cards. This data is used by
the loader program during the load process. The
addresses on these cards begin at ZERO for each
table. The table entries on the type 2, 3, and 4
cards arc six half-words in length; those on the
type 5 cards are four half-words long; those on

the type 6 cards arc four half-words lung: and
. thosc on the type 7 cards arc one half-word long.

a. Symbol Table Card (Type 2). The symhol
table may be used by a loader program to enable
the use of symbolic references to the name field
identifiers within a program. The symbol table is
also used by the assembler to satisfy symbolic
references within the program. The format of the
symbol table is shown in table 9-3. The Equate
(EQU) indicator is equal to I, if this symbol
results from an EQUstatement. The Register
equate (REG) indicator is equal to one if the
symbol resulted from an EQU statement whose
operand was R'n'. The Relocatability (REL) indi­
cator is equal to I, if the symbol is relocatable:
i.e., if it resides in an area of the program· not
covered by an LOC statement. The Referenced
symbol (REF) indicator is equal to I if the sym­
bol is referenced in the operand of another in­
struction in this assembly. The other bits arc
unused.

Tllble 9-J. Symbol Table Formal

Character

1 2 3 4 5 6
I I I , I I

SymbQI~ame

- -
- 1- -·2 - -Bit 0 - 3

R

E

F

b. Entry Point and External· Reference Tables
(Card Types 3 and 4). The entry point and exter­
nal reference tables allow a loader program to
satisfy references between programs. The entry
table table defines the entry points in a program,
and the external reference table defines references
within a program to entry points in other pro­
grams. The format of these tables is shown in
table 9-4. The address field contains the address

7 8 9 10 11 12
I I

Address Not Indi-
Used cators

(see
below)

- / ------ /
4 5 6 7

R R E

E E Q

L G U

20079-25

of the symbol as evaluated at assembly time. The
address will be equal to zero unless the symbol is
defined within the asseinbly. If at load time the
symbol is encountered in an entry symbol table,
this address will be replaced by the entry address.
The linkage field indicates the address of the last
word which uses the external symbol. The word
itself contains the next linkage, unless it is equal
to zero, in which case it is the last link.

USACSCS· TF-4·2

ENTRY POINT SYMBOL TABLE

Character

2 3 4 5 6 7 8 9 IO II 12

[Symbol Name Address Zero

EXTERNAL REFERENCE SYMBOL TABLE

Character

2· 3 4 5 6

Symbol Name

c. Program-Access Table Card (Type 5). This
table lists the programs which are called or
loaded by the object program. The format of the
program-access table is shown in the following
chart.

o Bit Positions 31

Program Name (First 4 characters)

Program Name (Last 4 characters)

d. Compool Reference Table Card (Type 6).
The Co~pool reference· table contains the page
numbers of Compool references along with the
index into the Compool reference linkage table.
This table, along with the linkage table (type 7
cards), is used to modify the references in the
object program to relocated Compool symbols. If
the Compool reference has not been relocated,

7 8 9 10 11 12

Address Linkage

20079-26

there is no modification required at the time of
object program execution. The format of the relo­
catable Compool reference table is shown in Ta­
ble 9-5. If the allocate indicator is equal to allo­
cate with program, the space for the Compool
reference is allocated at the time of loading the
program. If the allocate indicator is equal to
allocate when LOAD issued, no allocation is
made when the' program is loaded. The Com pool
reference table also contains the operand 'D' field
and the page displacement associated with fixed­
location Compool references made by the object
program. These page references are stored in the
Compool-page table maintained by the operating
system. When a level is assigned to the object
program, either within the object deck or through
a procedure call, the page control and address
registers for that level are configured to enable
the program to access the specified pages.

TGbl, '-5. Compool Re/ertnc, TGbl, FormGI

Bit position 0

b I
Bit position 0 I

15.16 1920 .
Compool Logical Page a Compool Address

Length of Page Linkage Table Index

IS. 16

a = Page control and address register

b = Allocate indicators; 0 = allocate with program. 1 = allocate when
LOAD issued

31

31

20079·27

USACSCS-TF-4·2

e. Compool References Linkage Table Card
(Type 7). The Compool reference linkage table
contains the address (relative to the beginning of
the program) of the reference to Compool.defined
entities. The most significant bit of each link is a
last link indicator, which if equal to one, indicates
the last link in a reference chain. The format of
the relocatable Compool reference linkage table is
shown in table 9-6. When the Compool reference
is loaded, its assigned load location is compared
to its Compoot location. If there is a difference,
this difference is added to all of the references
indicated by the linkage.

Table 9-6. Compool Re/etnce Liltlul,. Tllbk '0",,111

o 1 .IS

Linkage Address

a = Last Hnk indicator (1 = last tink)

20079-28

f. End Card (Type 9). This card indicates the
end of the object deck. It also specifies the point
in the program to which control may be transfer­
red after the program is loaded. The format of
the end card is shown in table 9-7. If the entry
point field is blank, the entry point is the lirst
word of the prol!;ram. .

Tllble 9-7. End Card FOrmlll

Columns Content

1 9

3·10 Assembly module name

12·15 Entry point (hex) or blank

17·18 Program !~~el (decimal)

or blank

20019-29

USACSCS-TF-4-2

CHAPTER 10

ASSEMBLY LISTING

10-1. Introduction

The listing produced by the Assembler consists
of the following parts:

a. A listing of the source cards.

b. A list of the types of errors encountered in
the assembly.

c. A listing of the entry points, external refer­
ences, Compool, page references~ and program
accessed.

d. A cross-reference listing.

e. Error diagnostics.

10-2. Source Card and AN/GYK~12
Machine Code Listing

This portion of the assembly listing contains
the source cards (exactly as input) along with the
machine code and addresses generated (if any).
The content of this portion of the assembly listing
is as specified in table. 10-1.

10-3. Prologue

This portion of the assembly listing contains
the contents of the object deck, except for the
data and tag table cards (types 0 and 2, respec­
tively).

10-4. External Symbol Dictionary

This listing of the type I, 3, 4, and 9 cards
(refer to table 10-2) is provided at the end of
each assembly listing.

10-5. Cross-Reference and Set/Used
Listing

The cross-reference and set/used listing is a
listing of all references to symbols within the
assembly module. Included is the. symbol name,
its value, and overall set/used indicator, the ad­
dresses within the module which reference the
symbol, and a set or used indicator for each
reference. This indicator appears immediately in
front of each reference address and consists of an

asterisk for set and a blank for used. SET is
defined as a reference by an instruction which is
capable of changing the value of a word (or bit)
in core memory. USED is defined as a reference
by an instruction which is not capable of chang­
ing core memory. The overall set/used indicator
may be NONE, SET, USED, or BOTH. NONE
means that the symbol is defined in the module
but not referenced. BOTH means that a symbol is
both set and used in the module. An example of a
cross reference and set/used listing appears in
Appendix A.

10-6. Assembly Error Indications

The assembly error indications are produced by
the assembler as information to the user when­
ever the assembler detects incorrect source input.

a. Soul'Ce Statement Assemb~v Error Messages.
As a source program is assembled, it is analyzed
for actual or potential errors in the use of the
Assembler language. Errors which are detected
are ftagger in the assembly listing by the appear­
ance of the word 'ERROR' followed by one or
more of the letters E, I. L, M, 0, P, and U, which
denote the types of errors encountered in analyz­
ing the source statement (refer to paragraph IO-6c
below). This message appears in the line of as­
sembly listing, immediately following the errone­
ous source statement.

b. Error and Error Symbol Count Message. At
the end of each assembly listing, a count of the
assembly errors encountered during the assembly
and a count of the number of error symbols
appearing in the listing are provided. The reason
for providing both counts is to inform the pro­
grammer that there are errors for which a symbol
is not present. (This occurs only when the same
error symbol would have to appear more than
once for the same source statement.)

c. Explanation of Errors. Encountered During
Assembly. Following the error counts is an expla­
nation of the type of errors encountered during
the assembly process. The explanations appear in
the listing as specified in table 10-3.

10-1

USACSCS-TF 2

Table 10-1. ""'mbly Lis'., Tabl, 10-1. Exterruil Symbol Dieti_1',)' llf/ormlltUm

Content Remarks Card Remarks

Error line Refer to paragraph I ()'6 Type 1 (LOAD) Contains the assembly module

Address For machine instructions. GEN.
and BSS assembler instructions

name. the location of thl' first
relocatable instruction. the

the address is printed in
hexadecimal

length of the module. and the
length of local data used by

function For all machine instructions. the the module

function code IS printed in
hexadecimal

Type 3 (ENTRY) Contain the entry names and
their assembled locations

H field For all machine instructions except
MIU and MIL. the H field is
printed in hexadecimal

I (immediate) field For MIU and MIL machine
instructions. the immediate field

Type· 4 (EXTRN) Contain the external reference
na."es, their assumed values.
and the address of the last
link in the chain of references

Is printed in hexadecimal Type 9 (START) Contain the module starting
M ficld For all machine instructions except location (in hexadecimal) and

MIU and MIL. the mode is printed its program level (in decimal)
in hexadecimal

S field For all machine instructions except 20079-32
MIU and MIL. the index is ptinted
in hexadecimal

D-A-W field For all machine instructions. the
D-A-W Hcld is printed in
hexadeCimal

R field For shift and format machine in-
structions. the tally. or destination
register is printed in hexadecimal Table 10-3. Assembly Error ItulkatilRts

T field For shift and format instructions.
the shift option code is printed in
hexadecimal Error code Error code explanations

K field for shift arid format instructions.
I the number of shifts is printed

in hexadecimal '

E (erroneous operand Operand cannot be
instructions) interpreted
I (illegal character or name Illegal character en-

Generate instructions A maximum of four half-words
are printed per line. If more
half-words are generated by
one GEN statement. additional
lines, each containing a

field entry) countered in operand
field or a com pool-
defined symbol
encountered in name field

maximum of four half-words. L (machine field limit Limit error. A subfheid
are printed if the DATA
option has been specified
on the OPT card. If less

surpassed) has exceeded its size
limitation

than four half-words are to be M (multiple name field A symbol appears in the
printed on a line. they are
left justified within the
allocated columns

symbol definition) name field of more than
one source statement

EQU. ass. ORG. and The evaluation of the operand
LOC instructions field is printed in hexadecimal

under the D-A-W column

o (undefined operation code) An operation code was
encountered which was
neither a machine or

Statement number The number of each source
statemen.t is printed in decimal

extended mnemonic; nor
a macro-instruction

Macro-expansion A "plus" sign precedes the source
statement indicator statement for macro-

P (possible error caused by Possible error caused by
forced offset) . forced offset

instruction U (undefined symbol in Symbol encountered in

Source statement The source statement is
printed in its entirety

Sequence error An asterisk following the
indicator source statement indicates

a sequence error

operand field) operand field which has
not been defined in name
field or COMPOOL. and
which has not been
declared ex ternal

20079-30 20079-33

1~2

