
?- 'V11 
~1' '1' (S 
l. (,k l~ I 
d'j c; [j} UCID- 17556 
~ ~------------------------------~ 

Lawrence Livermore Laboratory 
AN LTSS COMPENDIUM: AN INTRODUCTION TO THE CDC 7600 

AND THE LIVERMORE TIMESHARING SYSTEM 

K. W. Fong 

August 15, 1977 

This is an informal report intended 
primarily for internal or limited 
external distribution. The opinions 
and conclusions stated are those of 
the author and may or may not be 
those of the laboratory. 

Prepared for U.S. Energy Research & 
Development Administration under 
contract No. W-7405-Eng48. 

DISTRIBUTION OF. THIS DOCUMENT IS UNUMITEQ 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 





c.• 

AVAILABILITY 

This document is available online as follows: 

ELF RDS .717675:UCID:UCID17556 I 1 1 

.View the print file on the TMDS, or print it as follows: 

TRIX AC I 1 1 
.PRINT(<NIP UCID17556 BOX ann identification>) 

.END 

------NOTICE-------, 

This report was prepared as an account of work 
sponsored by the United States Government. Neither the 
United Stat~! nnr thl't llniteli StateJ Otpartmtnt of 
Energy, nor any of their employees, nor any of their 
.,;uuhacluu;, :subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal 
liability or rc:;ponsibillty for the accuracy, completeness 
or usefulness of any information, apparatus, product or 
process disclosed, or represents that Its use would not 
infringe privately owned righti. 

-i i-
drSTRIBUTION OF. THIS DOCUMENT ·Is UNLIMirt:O 

fJ 



,, 

CONTENTS 

Abstract ..................................................... · ........... . 
Intr9duction ............................................................ . 
The Hardware ............................................................ . 

Memory ............................................................. . 

Page 

3 

3 
Central Processing Unit ........................................... ·.. 3 
Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Exchange Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Input/Output Capability ............... , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

The Operating System ... ·.................................................. 7 

Control lees 7 
Timesharing and FLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Using Tapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 

Usjng Disks 10 
Connecting Disk F i 1 e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
File Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
System Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

Utility Routines····:··············································· 14 
Charging Algorithms 15 

Fundamentals of Creating and Executing Control lees ....................... 18 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

Compi 1 ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . 18 
Assembling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Relocatable Binary Libraries .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 19 
Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Executing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

Cone 1 us ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 24 

-iii-



I 

AN LTSS COMPENDIUM: AN INTRODUCTION TO THE CDC 7600 
AND THE LIVERMORE TIMESHARING SYSTEM 

ABSTRACT 

This report is an introduction to the CDC 7600 computer and to the 
Livermo.re Ti!llesharing __ s_y_s_t.em_{_LTSS) used by the National Magnetic Fusion Energy 
Computer c~·nt~·;'"(NMFECC) a~·d--th;- Lawrence Livermore Laboratory Computer Center 
(LLLCC or Octopus network) on their 7600's. This report is based on a document 
originally written specifically about the system as it is implemented at NMFECC 
but has been broadened to point out differences in implementation at LLLCC. It 
also contains information about LLLCC not relevant to NMFECC. This report is 
written for. computational physicists who want to prepare large production codes 
to run under LTSS on the 7600's. The generalized discussion of the operating 
system focuses on creating and executing controllees. This document and its 
companion, UCID-17557, CDC 7600 LTSS Programming Stratagems, provide a basis for 
understanding more specialized documents about individual parts of the system. 

INTRODUCTION 

This document is an adaptation of the first of two reports that I wrote for 
the National Magnetic Fusion Energy Computer Center (NMFECC) on-line 
documentation system on the subject of applied programming. The original 
documents were aimed specifically at users of the MFE 7600, which runs a 
slightly different set of software than do the CDC 7600 computers that are a 
part of Lawrence Livermore Laboratory's Octopus computer system. Therefore, 
most but not all of the material is applicable to Octopus as well. This UCID 
and UCID-17557 bear the same titles as the NMFECC documents from which they are 
derived. Almost all the MFE material has been retained. The difference is that 
I have added information about 817 disks, the Octopus charging algorithm, and 
the Octopus hardware configurations, so that Octopus readers may have a complete 
picture of their own system. The NMFECC has received considerable help from 
Octopus personnel and hopes to return the favor in part by sharing this 
educational material it has prepared. 

This document. and its companion, UCID-17557, were written for computati'onal 
physicists who want to prepare large production codes. I contend that a 
knowledge of FORTRAN alone is not sufficient for achieving this goal. You must 
also learn some applied programming. These documents attempt to give an overall 
view of the 7600 and LTSS so that you may profitably read the many other 
specialized documents about parts. of the system. This report deals with the 
machine and its operating system. UCID-17557 discusses the problems to be 
addressed in applied programming and some techniques for dealing w~th them. 
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LTSS is an exceedingly flexible system. Since there is usually more than 
one way to solve a problem, your goal should be to understand the system and its 
software well enough that you can easily find the cheapest acceptable solution 
for your problem. This understanding comes with writing, compiling, loading, 
executing, and debugging moderately complex programs. It cannot come solely 
from reading these documents; nevertheless, I feel that these documents contain 
much useful information distilled from the experience of many other users as 
well as myself and that reading these documents should accelerate your learning. 
I would even say you should read these documents before proce~ding to work on a 
very large production code. 
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THE HARDWARE 

Memory 

The NMFECC's 7600 has two memories. One is called small semiconductor 
memory (SSM), and the other is large core memory {LCM). Memory sizes are 
measured in words rather than bytes because the 7600 is a word.-or ienled machine. 
A word is 60 bits long. SSM contains 65,536 (decimal) words; however, not all 
of this is available 
you to have at most 
normally think of 

to you. The operating system needs part 
157,760 {octal) or 57,328 (decimal) words. 

as the computer's memory. It can hold 

of it and allows 
SSM is what you 
both data and 

instructions and is the memory most easily accessible to the central processing 
unit {CPU). LCM is a secondary memory that is used for holding data. LCM is 
also used for input/output {1/0) operations in that all information going to and 
from disk must go through LCM. Instructions exist for transferring data between 
SSM and LCM. The size of LCM is 512,000 {decimal) words; however, part of it is 
reserved by the operating system, so you may have at most 1,414,600 {octal) or 
399,744 {decimal) words. We will see later that there are additional 
constraints on the amount of LCM that you can or should use. The Octopus 7600's 
are similar to the NMFECC 7600 except they have small core memory {SCM) instead 
of SSM. In the rest of this document, references to SSM are also applicable to 
SCM except where staled otherwise. 

Central Processing Unit 

Computation occurs in the central processing unit {CPU). Viewed simply, 
the {CPU) has three parts of concern to the user: (1) registers, {2) functional 
units, and {3) instruction stack. 

The 7600 is a register-oriented machine. All data must be fetched from 
memory to a storage location {i.e., a register) inside the CPU before they can 
be used. The registers are also used to calculate the addresses from which 
operands must come in memory and addresses to which results should be stored in 
memory. 

The functional units accept operands from registers and return results to 
registers. Most of the functional units are segmented so that another pair of 
operands may be fed in even before a preceding pair has produced a result. The 
unit lhus·acls like an assembly l·ine. In addition, different functions are 
handled by different functional units; thus, a floating-point multiply may be 
initiated immediately after a floating-point addition is star.led,. without 
waiting for the addition to complete. Therefore, great speed of computation is 
possible if instructions are carefully sequenced and registers are cleverly 
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allocated to take advantage of the potential concurrency. We shall see later 
how you may do this. 

The 7600 executes code by reading instructions from memory into its 
instruction stack and then executing the instructions. Instructions may be 
either 15 or 30 bits long, so it is possible to pack two-to-four instructions 
per word. A 30-bil instruction is not allowed to straddle a word boundary, so 
it may be necessary to insert no-ops (non-operations) into the instruction 
stream for padding. The instruction-word slack consists of 12 words, two of 
which are look-ahead words. In parallel with the instruction-word stack is the 
instruction-address slack (also 12 words long), which contains the memory 
address from which the corresponding word in the instruction-word stack came. 
The look-ahead words are pre-fetched in the hope that you will execute 
instructions sequentially in memory. This minimizes delays waiting for another 
instruction word to be read from memory. The instruction stack also keeps the 
nine words that were read previous to reading the current instruction word, so a 
jump to a very recently executed instruction is a jump to an instruction already 
in the stack. Thus, if a DO loop is short, it can be represented by a series of 
instructions contained entirely in the instruction stack. This is a desirable 
situation because instructions going to the stack and data going to the 
registers must both come from memory, and a memory-bank conflict could result if 
an instruction and a datum are both in the same memory bank. To appreciate 
this, you must know that SSM is laid out in 16 banks in which consecutive words 
reside in consecutive banks; however, the 17th word wraps around and is in the 
same bank as the first word. Thus, when a bank is asked to deliver a second 
word before it has recovered from delivering the first, a bank conflict occurs, 
and the second word is delayed. SCM, unlike SSM, is laid out with 32 banks, so 
bank conflicts occur every 38 words instead of every 16. Again, we will see 
later what can be done to avoid such delays. 

Floating-Point Number~ 

In an oversimplified view, the left 12 bits of a floating-point number 
represent the exponent to the base 2, and the right 48 bits are the coefficient. 
Since the FORTRAN compiler takes care of representing and normalizing 
floating-point numbers, users of FORTRAN generally need not be concerned with 
these topics. What is important is that a single-precision number has 
approximately 14 decimal digits of precision, so that double precision (which is 
very expensive on the 7600) is generally not needed. The range of 
floating-point numbers is approximately l.OE-293 to 1.0E+322. 

There are two non-standard floating-point operands: overflow and 
indefinite. Normally, using or generating either of these in a floating-point 
operation aborts your code. (Dividing zero by zero is the most frequent error 
that generates an indefinite.) Normally, an underflow condition returns a zero 
result but does not interrupt your code; however, it is possible to ~un your 
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code in a mode where an underflow does cause an interrupt. Consult the 7600 
hardware manual for more detailed information. 

Exchange Jumps 

Every user program has a set of 16 words, called an exchange package, 
associated with it. Whenever the user's program must stop, the contents of the 
CPU registers are written into the exchange package. (For the time being, we 
will not discuss the physical location of the exchange package.) The contents 
of the exchange package are validated by the operating system and then copied 
into the registers if and when the program regains the use of the CPU. One 
reason that.a program might stop is that it created. an overflow or indefinite. 
In this case, the hardware stops it automatically. Another reason is that it 
has voluntarily given up the use of the CPU for some reason. In particular, no 
user program is allowed to deal with files or perform I/0 directly. Instead, 
the program leaves a request for file manipulation or I/0 in one of the 
locations where the system looks for such requests and then performs an exchange 
jump. The exchange jump causes the program to relinquish the CPU to the 
operating system and also causes the registers to be saved in the exchange 
package. The operating system services any legitimate requests and then allows 
the user program to resume when appropriate. One of the items in the exchange 
package is the program counter (P counter), which is the address of the 
instruction word to be executed when the program resumes. When a program is 
aborted because of some error condition, the exchange package is saved, and you 
may use various utilities to determine the final value of the P counter. This 
value is the location where the program stopped unless the error was an 
erroneous jump. 

The process of doing exchange jumps in order to make requests of the 
operating system is known as making system calls. System calls are seldom coded 
directly by the user. Usually you use subroutines in an existing library to 
take care of your I/0 and other system requests. In a large production code, 
however, an intermediate course is sometimes used. In this situation, the 
programmer has designed his own I/0 scheme in terms of the basic functions 
provided by the operating system. He then uses subroutines (such as GOB, FROST, 
SETIO, and REIO in ORDERLIB) to construct the system call and do the exchange 
jump. We have found that users who obtain good I/0 performance on LTSS have had 
to descend to a level just above stringing together the bit fields in a system 
call. BLIB76 and URLIB are other libraries in which you might find subroutines 
for issuing system calls. 

You may feel that groveling in such details is inappropriate for a 
computational physicist. If a code is to be used only once, it is economical to 
use the inefficient standard FORTRAN I/0 routines, but if a production code is 
to be run repeatedly and uses dozens of hours of 7600 time, then it is worth 
designing and programming it to take every advantage of the system. You cannot 
expect a common FORTRAN program to run efficiently on all machines and systems. 
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Large codes must be 
w i I I be run. If 
hour or ten hours, 
running at all. 

tailored to the machine and operating system on which they 
correct design means the difference between running for one 
then it may also mean the difference between running or not 

Input/Output Capability 

I/0 is the ·area most often ignored by the unsophisticated programmer to the 
detriment of his pocketbook. We will consider the influence of the operating 
system later, but here let us look at what the hardware can do. Data from disk 
can go only to LCM. If the data are needed in SSM, they must then be copied 
from LCM to SSM. Likewise data can be written Lo ~isk only from LCM. If the 
data are in SSM, they must first he transferred to LCM. We wi II see that an 
excessive amount. of inad~ertant copying bet~een SSM and LCM is easy to do but 
also easy to avoid. Once a data transfer has started between LCM and disk, it 
is possible to return to your program and compute while data are being moved. 
Obviously, you should not use data while they are in transit. You should read 
in data before you need them and meanwhile compute on something else. ,Just 
before you need the data, test to see if the data transfer is complete and give 
up the CPU only if the transfer is not complete. In fact, it is quite common in 
a production code for two I/0 operations to proceed simultaneously with central 
processing. This minimizes the wall-clock time needed to .run the job. Since 
the 7600 can crash like any other computer, it behooves you to push your job 
through as quickly as possible. Furthermore, the present charging algorithm 
contains a charge proportional to the length of time you spend in the 7600, so 
you are penalized if you fail to overlap I/0 with CPU when you could have. 

Making a few large I/0 transfers is usually cheaper than making many small 
ones. The usunl.mechani~m for consolidating small amounts of data is an LCM 
buffer. If the LCM space is available, pack small logical records into one 
large physical record before writing. Positioning the disk for a read or write 
is expensive, so you should move large blocks of data to keep the cost per word 
down. Correct buffering can make a tremendous difference in I/0 charges and 
execution time. 
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THE OPERATING SYSTEM 

Control lees 

All executable ·programs must start as an executable core image on disk. 
Executable programs are usually called controllees and are constructed on disk 
by the loader. To execute a controllee you normally type the controllee's name 
at your terminal. (In this case you are the controller of the controllee.) 
Next you type execute-line parameters if any, a slash, the running time, the 
value, and a carriage return. The program is not through until the "all done" 
message comes back to your terminal. Before the program completes, it can send 
messages to. your terminal and receive responses from you. All these 
interactions with the outside are done via system calls. If the program wants 
to send you a message, it issues a system call, "send message to controller." 
The system picks up the message and prints it at your terminal if you ·are logged 
in under the suffix under which the program is running. The controller is 
whatever started the controllee. In this case, it is the terminal, which for 
historical reasons is referred to as TTY. The designation as controller or 
controllee is relative, however. If you execute program A from your terminal, 
you are the controller, and A is the controllee. But on LTSS, A is allowed to 
execute a program, so if A starts up program B, A is the controller of B, and B 
is the controllee of A. Controller-controllee chains may extend to ten levels. 

Let us consider an example of where the controller-controllee concept may 
be used. The initialization and clean-up phases of many production codes 
require extensive programming. Each of these is coded as a separate controllee, 
as is a third controllee that actually does the calculations. Then, to execute 
the three controllees, you write a controller or use an ex{sting general-purpose 
controller su~h as ORDER or BCON). The first ~ontrollee will create and 
initialize disk files for the second to use. The third will save files, 
construct plots, and dispose of files. This scheme has at least two virtues. 
One is that, after the files and contents are clearly defined, separate people 
can write the separate controllees without needing extensive co-ordination. A 
second is that overlaying of codes can be avoided. It may also be etlsier to 
debug three smaller codes than one big one. 

How is a controllee laid out on the disk? The first thing in the disk file 
is 230 (octal) words called the minus words. The system keeps a copy of these 
minus words in its share of LCM and records in it information about your job and 
the files that are connected to it. After the minus words comes word zero of 
your program. Starting at you·r word zero is the image in SSM of your program. 
Your SSM image contains code, labeled and numbered common blocks, and the space 
needed by your largest combination of overlays. The size of this image is 
called field length small (FLS). This is followed by your LCM common blocks out 
to field length large (FLL). The LCM image always contains the $SM image, so 
FLL is always greater than or equal to FJ.S. 
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To execute your job, the system reads your LCM image into LCM and then 
copies that part of it which represents the SSM image into SSM. The minus words 
contain the exchange package, which is then copied into the registers. Since 
the loader has set the P counter at the beginning of your program, that is where 
execution begins. The loader also sets the mode flags for overflow. and 
indefinite in your exchange package. This lets the system know that you want to 
be stopped as soon as you generate an overflow or an indefinite. The mode flag 
for underflow is not set by the loader; therefore, the system lets you continue 
running without an interrupt whenever you generate an underflow. This is 
usually harmless since an underflow is returned as a zero, which can be used in 
further calcuations. Overflows and indefinites have a special representation 
and cannot·be used as operands in subsequent floating-point computations. 

In the course of running your program, the system may need to copy your job 
to disk. For example, some other user could bid a higher priority. His job 
will run while you are temporarily restrained from executing. If the system 
needs the memory space, your memory image will be dropped into a disk 
"dropfile." If you have riot issued a system call to tell .the system otherwise, 
your dropfile is the original controllee disk file. Dropping to it destroys the 
original copy of the program so that it cannot be executed from the beginning 
again. Therefore; you will usually call CHANGE or ADJUST (in ORDERLIB), which 
make system calls to create a separate dropfile. This call' should be the first 
executable instruction in your program so that the system finds out you want a 
separate dropfile before not after -- it has to drop you to disk the first 
time. If you allow the ORDER batch-processing system to load your program, it 
will load in extra code to perform the system call for yo~ to drop t6 another 
disk file (i.e., you don't need to call CHANGE or ADJUST). 

Note that the dropfile is actually a copy of your program at some 
intermediate state of execution. In case of a system crash where the system 
forgets what was supposed to be running, you can give the dropfile name on the 
execute line to restart the program. This usually works if the program was only 
reading or only writing each of its disk files, but it may fail if any file is 
being both read and written. The failure can occur in the following way. 
Suppose a job drops to disk and later continues execution. When it is back in 
memory and executing, it reads a disk file and then overwrites it with new 
information. Then the system crashes and loses the job in memory. At this 
point, the dropfile that is left represents a state before the file was 
modified. If it is restarted, it will read new rather than old information. If 
it does not recognize that the wrong information was read, it may generate 
erroneous results. A good production code allows for system crashes by telling 
ORDER what controllee to start after a crash in order to verify the existence 
and integrity of all working files before resuming computation. Restarting the 
dropfile of a program that was using tapes is usually not possible, because 
tapes are usually dismounted during a .system crash. It is possible to write a 
recovery procedure for such codes, but you are advised instead riot to connect 
tapes directly to your program. 
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Timesharing and FLL 

LTSS is a timesharing system. This means each job gets time slices that 
are usually less than it needs to run to completion. There are two kinds of 
time slices: one for LCM residence, which depends on FLL and priority, and one 
for SSM, which depends on priority only. If the job is not finished at the 
conclusion of a lime slice, it will get another slice later (unless the system 
has no other job to run, in which case it can have another slice immediately). 
When your job has exhausted its current slice, some other job will be given a 
chance to run for a while. What ·happens to your job depends on the other jobs. 
If the FLS for your job plus the FLS for the other job or jobs fit into SSM, 
your SSM image may be left in SSM while other jobs cohlpute. If other jobs need 
more SSM, the system will copy your SSM image into that part of your LCM field 
length reserved for your SSM image. If the system needs your LCM space for 
someone else, your LCM image, including the SSM image, will be dropped to disk 
(into your dropf i le). When you will get back into memory to resume depends on 
what priorities other users have bid that are higher than yours and how large 
other jobs are that are bidding the same priority as yours. For any given 
priority, the system selects the smallest job. That .is why jobs with very large 
FLL cannot get in very often without a high priority when the system is heavily 
loaded. You should be very careful about writing a program that uses all 
available LCM because you will have a hard time running it during the day to 
debug it. Furthermore, if such a job does unoverlapped I/0, the CPU.will become 
idle because no other job can come into LCM simultaneously to use the CPU. This 
is why the charging algorithm is designed to penalize jobs that do not overlap 
their I/0 and CPU. 

Using Tapes 

The use of tapes by user jobs running in a timesharing mode is discouraged 
because a job might tic up a tape drive indefinitely. Try louse FILEM on the 
MFE network or ELF on the Octopus network instead of tapes. If you absolutely 
must use tapes, use utility routines such as ADT, RDFILES, and MCT to write and 
read tapes. These routines will copy from disk to tape or tape to disk and 
relinquish the tape drive as soon as -possible. Utility routine TAPECOPY may 
also be used for tapes coming from or going to other computer systems. 
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You should think of disks 
Print and film files should be 

Using Disks 

as the only I/0 devices your job should use. 
thought of as disk files that will later be 

processed through the appropriate device. On LTSS disk files'are of fixed size. 
The size is specified at the time of creation. Many existing routines will 
create families of files. When one member of a family is filled, another file 
with a related name is created, and output continues there. A file may be 
truncated if the output does not fill it, but a file cannot be expanded. Disk 
files are allocated on contiguous disk sectors. If you ask for too large a 
file, you may not find enough unflawed consecutive sectors to accommodate it. 

Disk files fall into two general categories: public and private. The 
files you normally create are private files under your own user number. Unless 
you save them on FILEM (or ELF), they will be purged after some period of 
disuse. This is to prevent the 7600's disks from being clogged with unused 
files. In order to allow production computing more disk space, you should 
destroy unneeded files before you go home for the evening. Public files are not 
purged. They are used to hold libraries, utilities, and other useful things 
where they will be readily accessible to users. For example, the CHATR (or 
CHAT) compi l~r and the LOD loader are public files that anyone may execute. 
Compiling and loading are considered user functions, not system functions. You 
will notice, for example, that CHATR drops to +QUlKTRAN in your private file 
space. 

The NMFECC's 7600 has two kinds of disks available: CDC models 819 and 844 
disks. Four of each are accessible by users. Both kinds of disks rotate at 
approximately 17 milliseconds (ms) per revolution. The maximum time required to 
move the heads to the correct position is 85 ms for 819 disks and 55 ms for 844 
disks. The bandwidth or transfer rate of the 819 disks is about 30 million bits 
per second, so 1000 (octal) words can be moved in about 1 ms. The 844 disks are 
slower and require about 6 ms to transfer 1000 (octal) words. For small amounts 
of data, the 844 disk is a better place because its shorter seek time 
(positioning the heads) is far more important than its transfer rate. Files 
from which many thousands of words will be accessed at a time should be put on 
the 819 disks because the transfer time will dominate the seek time. Octopus 
7600's also have CDC model 817 disks, which we will describe later. 

On the MFE 7600, data move between LCM and disk files under the control of 
peripheral processing units (PPU's), which are computers in their own right. 
The disks are given unit numbers. The PPU's also are numbered. The 819 disks 
are units 1, 2, 3, and 4 and are served by PPU's 4, 5, 6, and 7. Because the 
transfer rate of the 819 disks is so high, two PPU's are required to effect a 
read or write. One 819 can be acces~ed by only one pair of PPU's at a time. 
This means that two 819 files that are to undergo reading or writing 
simultaneously must be on separate units. Also, no more than two 819 files may 
be read or written simultaneously, since there are only four PPU's connected to 
the 819 disks. PPU's 4 and 5 can access any of the 819 disks, as can pair 6 and 
7. Your program, of course, may be connected to as many as sixteen 819 files at 
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a time, but your read and write requests will have to be queued up once all four 
PPU's are busy. The 844 disks are units 5, 6, 7, and 10 (octal). They are 
serviced through PPU's 2 and 3, either of which can access any of the 844 disks. 
Only one PPU is needed to read or write an 844 disk, since the transfer rate is 
low enough to be handled by a single PPU. Again, two files on the same unit 
cannot be read or written simultaneously; the requests must be queued. The two 
PPU's can service two requests at any moment; other requests to read or write 
844 disks must be queued. At the system-call level, you may specify which unit 
(number) you desire when you create a file. If the system cannot find enough 
space on the unit you requested, it will next look at a unit of the same 
type--i.e., another 844 or another 819. If that fails, your file is created 
wherever space is available. At the completion of a file-create call, the 
system will tell you which unit actually was used. This detailed information is 
hidden from you when you allow ORDERLIB subroutines to make the create calls for 
you; however, it may be important to a production code to place its working 
files on disk of a specific type. 

In estimating the elapsed wall-clock time required for an I/0 operation, 
you should· add 150 ms to the transfer time. The 150 ms not only cover the seek 
time and rotational latency, but allow a generous delay while the operating 
system completes other users' I/0 requests that arrived before yours. That is, 
if some other user is reading from the same disk unit that you want to read, 
your request is held by the system until the unit and an appropriate PPU are 
available to process the request. In the meantime, you should try to find 
useful computation to perform for 150 ms plus the transfer time. That 
computation should neither use the data being read nor reuse the space from 
which data are being written until the I/0 operation is complete. The actual 
wall-clock time required to complete I/O clearly depends on the system load. 
The recommended base of 150 ms was derived from looking at the MFE 7600 
statistics on a busy day. 

The sector size of the 819 disk is 512 (decimal) or 1000 (octal) words. 
There are 20 (decimal) sectors per track and 200 (decimal) sectors per cylinder. 
The 844 has 64 (decimal) word sectors with 24 (decimal) sectors per track and 
456 (decimal) sectors per cylinder. Disk file addresses always start at zero, 
and address zero is alwayi on a sector boundary. The basic system call for 
reading or writing disks allows you to transfer an arbitrary amount of data to 
or from any starting address on disk; however, certain disk starting addresses 
and transfer siies are preferred above others. If you begin writing a block of 
data in the middle of a sector and end in the middle of another sector, you have 
the worst possible case. The sector where you start· writing must be read into 
the PPU buffer, and your data i~ written over it. Then the revised copy of the 
sector is written back out to disk. Intermediate sectors go from LCM through 
the PPU buffer to disk. The last sector must be read from disk to the PPU 
buffer, where part of it is overwritten with the remaining data from LCM, and 
then it is written back to disk. What we have described is the preservation of 
the unreferenced portion of the first and last sectors. Notice that each causes 
you to lose a disk revolution. 

There are two solutions. 
starting on sector boundaries so 

One is to write multiples of sector sizes, 
that there are no unreferenced portions. The 
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other is to use special options in the system call to tell the PPU not to 
preserve the unreferenced portions of the first or last sectors. In the latter 
case, the unreferenced portion of the sector is overwritten with whatever 
happens to be in the PPU buffer. On the Octopus ?BOO's, which may have 
classified data, the PPU must generate disk pattern in that part of its buffer 
that you don't use, so that you will not pick up a chunk of someone else's 
possibly classified data. The PPU generates this disk pattern so slowly that 
you are almost certain to lose a disk revolution; therefore, the option not to 
preserve the unreferenced portion of a sector is generally not economical. You 
should instead try to write multiples of sector sizes, starting on sector 
boundaries. When reading a disk file, there is no problem with preserving 
sectors, but you should be aware that entire sectors must be read whether all 
the data in them are needed or not. Therefore, it is marginally more economical 
to read multiples of sector sizes, starting on sector boundaries. 

The Octopus ?BOO's use 817 disks as well as 819 and 844 disks. The 817 
disks come as two units in a single cabinet. Each cabinet contains two spindles 
with 32 recording surfaces per spindle. You might expect that each spindle is a 
logical unit, but this is not so. The top 1B recording surfaces of the spindles 
are one unit, and the bottom 1B recording surfaces of the spindles constitute 
the other unit. Each unit has its own set of heads. Since a unit is split 
between two spindles, a set of heads must likewise be split into two stacks, one 
for each spindle. The two stacks of heads are mechanically linked so that, when 
one stack ·is in a given cylinder for its spindle, the other stack must be in the 
corresponding cylinder of the other spindle. The 817 disks have 40 sectors per 
track, and each sector holds 512 words of data. There are also 512 cylinders in 
a spindle. All together, an 817 cabinet offers 83,88B,080 words of storage. 
Data are read and written with eight bits in parallel. As you write to disk, 
eight bits go to the upward-facing recording surfaces on eight consecutive 
platters on a spindle. At the completion of a revolution, you have written 
20,480 words. You then write eight bits in parallel on the downward-facing 
recording surfaces of eight consecutive platters in the same cylinder on the 
same half spindle. Thus you can write up to 40,9BO words in any particular 
cylinder on any half spindle. lf you have more data, you go over to the 
corresponding cylinder on the other spindle to write 20,480 words on the 
upward-facing surfaces and then 20,480 words on the downward-facing surfaces. 
Thus, you can write up to 81,920 words before you have to move the heads. Since 
there are 512 possible head positions (or cylinders), a logical unit will hold 
up to 512 x 81,920 = 41,943,040 words. It takes 30 ms to move the heads to an 
adjacent track. The maximum positioning time for the heads is 145 ms. The 
average random-positioning time is 85 ms. The 817 makes one revolution in 34 
ms. Forty megabits per second is the highest instantaneous-data-transmission 
rate, and 36 megabits per second is the average rate. 

The admonition to move data blocks that are multiples of the sector size 
and that start on sector boundaries also applies to the 817 disks. Like the 
819, the 817 has 512 word sectors, but, unlike the 819, the 817 can write only 
160 sectors for a given position of the heads. As of August 1977, the R, S, U, 
and Z machines each have eight 844 disks, which are logical units 5 to 14 octal, 
and all the 844 disks are accessible only through PPU 2. ThY~. the Octopus 
?BOO's cannot access two 844 files simultaneously. The 817 disks are used with 
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machines R, S, and U. Logical units 1 and 2 in one 817 cabinet are served by 
PPU's 4 and 5, and logical units 3 and 4 (also 817's) are served by PPU's 6 an~ 
7. PPU's 4 and 5 cannot access units 3 and 4, and PPU's 6 and 7 cannot access 
units 1 and 2. As was the case with 819 disks, the 817 transfer rate is so high 
that a pair of PPU's is needed to handle a transmission. If you expect to do 
simultaneous transfers to two 817 files, you must place one file on units 1 or 2 
and the other on units 3 or 4. Machines R, S, and U do not have 819 disks. 
Machine Z does not have 817 disks; instead, it has four 819 disks configured 
exactly the same way as the NMFECC 7600. 

In orc:ier 
Each program 
numbered 0 to 
minus words. 
You can become 
existing file. 

for a program 
has up to 16 
15 (decimal ) . 

Connecting Disk Files 

to use a file, it must be connected to the file. 
I/0 connectors (IOC's) that it can use. They are 

Each IOC corresponds to a three-word block in the 
The system uses these to record which files you are connected to. 
connected to a file by creating the file or by opening an 

There are also system calls for closing or destroying files. 

When you do BCD I/0 (formatted reads and writes in FORTRAN) and use the 
PROGRAM card, the opening of input files and creation of output files is handled 
automatically by the BCD read/write routines in ORDERLIB. For FORTRAN binary 
(unformatted) reads and writes, existing files to be read will be opened 
automatically., but files to be written must be created explicitly. For any 
other I/0, you must handle the file openings and creations yourself. Routine 
DEVICE in ORDERLIB may be used to create files, and routine ASSIGN may be used 
to associate logical unit numbers with file names. The PROGRAM card causes 
buffers to be reserved in a common block in LCM named IOCHIP$. Since these 
buffers are used only by the BCD and binary read/write routines, you need not 
mention on the PROGRAM card which files will be accessed by.BUFFER IN/OUT, or 
other sets of I/0 routines. 

File Structures 

The various file structures used by ORDERLIB are described in a short 
section at the beginning of the chapter on I/0 routines in the ORDERLIB manual. 
This section is only three pages long, and you should read it to understand the 
terminology we will be using. The BCD read routines can read either packed 
ASCII or squoze-monitor files. The HCU write routines write only packed ASCII 
files. The binary tape-simulated files are an archaic format read and written 
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only by the binary read/write routines. This format is a relatively expensive 
one to read and write binary data, and you should avoid it. This means avoiding 
FORTRAN binary read/write statements. The so called two-argument BUFFER IN and 
BUFFER OUT statements read a~d write squoze-monitor files. Bits are transmitted 
between memory and disk without character conversion. The two-argument BUFFER 
routines are comparable in cost to the binary read/write routines. Better are 
the three-argument BUFFER routines where you specify the disk address yourself. 
The three-argument mode does not depend on any file structure. It essentially 
allows random access so that you can read or write exactly what you want. You 
should not settle for anything less than the three-argument BUFFER INiOUT for 
your scratch files in a production code. The use of BUFFER IN and BUFFER OUT is 
described in the CHATR manual and in the CHAT manual (LTSS-207). In a sense, 
the BUFFER routines are misnamed, since there is in fact no buffer. The data to 
be transferred should reside in LCM. If the data happen to be in SSM, the 
system will block copy your entire SSM image to LCM before doing the 
transmission and then block copy you back to SSM. This means you cannot 
continue computing with the CPU while the data are moving. You should block 
copy the data between SSM and LCM yourself to minimize your cost. Methods for 
block copying between SSM and LCM are described in the CHATR and CHAT manuals. 

System Documentation 

ORDERLIB is considered to be the system library; however, you are not 
required to use it. Unlike other operating systems, LTSS permits you to use 
your own I/0 routines if you desire. Indeed, users often have legitimate 
reasons for not using ORDERLIB. We cannot decide, without knowing your problem, 
what alternative you should use to supplement ORDERLIB. You should read the 
chapter of ORDERLIB .describing the I/0 routines and the appendix demonstrating 
the use of these. routines to learn the capabilities and limitations of the 
ORDERLIB routines. ORDERLIB also has some routines, such as GOB, FROST, SETIO, 
and REIO, to help you write your own 1/0 routines. Another public library is 
URLIB, where subroutines are available for making system calls. A further 
·source of useful I/0 routines is public library BLIB76. Finally, the SYSCALLS 
document (or LTSS Chapter 10) describes all the elementary services the system 
can perform for you and how to request them. 

Utility Routines 

LTSS is not a control-card-oriented system with extensive job-control 
language. Services such as compiling, assembling, loading, reading, and writing 
tapes are performed by controllees that happen to be in public files so everyone 
can use them. Even ORDER is a fairly normal controllee. Although ORDER looks 
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to you 1 ike a batch processor, it looks to the operating system 1 ike just 
another user program. Text editors are also.utility routines. 

Charging Algorithms 

To estimate the cost of various programming strategies, you will need to 
know the algorithm used to calculate your bank-account charge. We start first 
with the NMFECC charging algorithm. 

CHARGE TlME = (UNWEIGHTED CHARGE TIME)*(PRIORITY) 

UNWEIGHTED CHARGE TIME = 
(CPU FACTOR)*(CPU CHARGE) 

+(I/0 FACTOR)*(I/0 CHARGE) 
+(MEMORY FACTOH)*(MEMORY CHARGE) 

1/0 CHARGE= (I/0 CHANNEL TIME)+ 
(VOLUNTARY LOAD/DUMP TIME) 

MEMORY CHARGE = (CPU CHARGE) 
+( I/0 IDLE TIME) 
+(VOLUNTARY LOAD/DUMP TIME) 

CHARGE TIME is the amount of time deducted from your bank account. 

PRIORITY is the quotient of the value and time as specified on the execute 
line. The default is 1.0. 

CPU CHARGE is the real CPU time used by your program, including CPU time 
needed by the operating system to service your system calls. Most system calls 
are charged the actual CPU time required, but some are charged at a flat rate. 

CPU FACTOR i~ currently 0.8. 

1/0 CHANNEL TIME is the time a PPU (or pair of PPU's for an 819 disk) 
requires to process an 1/0 request. It does not include queue time--the time 
between the .issue of your request to the system and the time the system issues 
your request to the PPU. 1/0 channel time is measured from the instant the 
system sends the request to the PPU until the instant the system receives the 
final status message from the PPU. By allocating disk files appropriately, it 
is possible to use up to four 1/0 channels simultaneously. A tape operation 
could cause a fifth channel to be used simultaneously. The time for each 
channel is added up in the 1/0 CHANNEL TIME, so that, if several channels are 
used simultaneously, the I/0 CHANNEL TIME will exceed the actual elapsed 
wa 11-c 1 oc k t i me . 
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VOLUNTARY LOAD/DUMP TIME is incurred whenever your program does something 
that requires it to be dumped to disk or be read in after a voluntary dump. 
Sending and getting messages to and from controllers and controllees are 
examples of a program vol~ntarily going to disk. A load charge is always 
incurred when a program is initially loaded into memory for execution. Upon 
completion of execution, a dump charge is incurred only if the dropfile must be 
saved. Normally the dropfile is destroyed and the core image is erased upon 
termination. Both the load and the dump times are calculated at the rate of 
17,000 microseconds plus 2 microseconds for each word transferred. The number 
of words transferred is FLL plus 230 (octal). 

I/0 FACTOR is currently 0.2. 

I/0 IDLE TIME is the amount of time a program spends waiting for its I/0 to 
complete. The time is measured from the point at which the program issues a 
knowledge-of-completion sy:stem call until the I/0 completes. A program that 
completely overlaps I/0 with computation is using the CPU while I/0 proceeds. 
It will incur charges fcir CPU and I/0 channe'l time but will have no I/0 idle 
time. This encourages programs to initiate reading of data so that input is 
complete before the data are actually needed. 

MEMORY FACTOR is currently 0.4 
program. The fraction of LCM 
400,000 (decimal). Since a program 

used 
times 

is 
the 
FLL 

fraction of LCM used by the 
+ 230 (octal) divided by 

can vary FLL as it is running, the memory 
factor may also vary. 

The Octopus system uses a different charging algorithm. 

CHARGE TIME = (UNWEIGHTED CHARGE TIME)•(PRIORITY) 

UNWEIGHTED CHARGE TIME = CPU CHARGE 
+(I/0 FACTOR)•minimum(I/0 TIME, BLOCKED TIME) 

I/0 TIME = 
QUEUE TIME 

+I/0 CHANNEL TIME 
+VOLUNTARY LOAD/DUMP TIME) 

QUEUE TIME is the time elapsed between the submission of your IOD to the 
system and the time it is given to the peripheral processing unit. 

BLOCKED TIME is the time your code is in LCM but cannot use the CPU 
(usually because it is waiting for I/0). 

I/0 FACTOR on the Octopus machines. 
the fraction of LCM 
(1/2) + (1/2)FLR. 
(3/4)FLR. 

that you are using. 
During the day on 

depends on the time of day and on FLR, 
During production periods, I/0 FACTOR= 
working days, I/0 FACTOR = (1/4) + 

Charging algorithms can and do change. The ones given above were in effect 

-16-



in August 1977. If you are concerned about minimizing your unweighted charge 
time, you should verify what algorithm is currently in effect. 
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FUNDAMENTALS OF CREATING AND EXECUTING CONTROLLEES 

Introduction 

The process of creating and executing a controllee is a mystery to most 
users. They follow recipes that work on simple programs and find that t.hey 
generally work. For a production program, however, there is no excuse for such 
ignorance, because ignorance can lead you to do things wastefully. We shall 
present an overview of the process, which is described in greater detail by a 
whole host of other available documents. 

Compiling 

Normally, your programs or subroutines are written in FORTRAN or LRLTRAN. 
Compilation occurs when you or ORDER execute the CHATR (or CHAT) compiler with 
your source as input. Your source 
subroutines. The primary output 

is a disk file with the text for your 
of the compiler is a relocatable binary deck 

for each ~ubroutine. Normally you never get card decks; instead,· the images of 
the card decks are written one after another into a disk file. The compiler 
compiles the subroutines one at a time. 
other subroutines and common blocks 
generate instructions 
References to unknown 

that reference 
addresses are 

Since the compiler is ignorant of where 
will eventually be in memory, it cannot 

the location of these externals. 
flagged in the relocatable binary deck. 

Lists of needed externals are also included. Variables that are defined only 
within the subroutine il~elf are local variables. The compiler determines the 
length of the subroutine, including storage space for local variables. These 
local variables as well as internal locations to which the subroutine jumps are 
recorded in the relocatable binary as being a certain number of words away from 
the beginning of the program. Instructions referencing these locations must 
also be flagged so that the eveulual memory addresses can be calculated and put 
in the instruction. A relocatable binary represents an intermediate state where 
most of the work of translating FORTRAN into 7600 machine instructions has been 
done, and enough information is available that the routines may be loaded 
anywhere in memory. 

Normally the relocatable binary contains no information about internal 
variables and locations. That is, no correspondence is kept of a statement 
label and its eventual memory location. Nor are the locations of the local 
variables and their names included. This information is not necessary for 
running your code; but, if your code has bugs, it would be nice to know where 
everything went in memory. CHATR (and CHAT) can be asked to produce so-called 
type-26 cards or symbol-table cards in your relocatable binaries. The cards 
contain additional information about variables and labels and where they are 
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relative to the beginning of a subroutine or common block. These cards can be 
very useful in debugging a code, and you should read the CHATR (or CHAT) and/or 
ORDER manuals about getting these symbol-table cards. 

Assembling 

Occasionally you may need to write a. code that is difficult to write in 
LRLTRAN or cannot be written efficiently in LRLTRAN. It may then be appropriate 
to write the program in an assembly language. Assembly languages are low-level 
languages in which you describe exactly which machine instructions you wish to 
use. Obviously you must kriow a great deal about the 7600 and interfaces to 
other subroutines to write in assembly language. (The NMFECC strongly urges its 
users to consull with it before embarking on assembly-language programming, so 
that it may fully apprise them of background information they need. If users 
must write in assembly language, the NMFECC suggests that users use COMPASS.) 
The principal output of an asserubler is also a relocatable binary deck. 

Relocatable Binary Libraries 

A disk file containing images of relocatable binarr decks can be loaded by 
the loader. The loader will run faster, however, if there is also a directory 
at the end of the file to describe the routines and tell where they are in the 
file. Public libraries such as ORDERLIB and STACKLIB have such directories. It 
is feasible and often desirable for users to create private libraries with 
directories. LIBMAK is the utilily routine for creating and manipulating 
libraries. If your code is very long, you should save the binaries. When you 
repair u subroutine, you will then compile only the modified routine 
(compilation is an expensive process) and replace the relocatable binary in your 
private library. The library format (i.e., with directory constructed by 
LIBMAK) is preferred because it can be loaded more quickly. 

Loading 

In the ·simplest view of loading, you present one or more binary files 
(either relocatable binary libraries or the direct output of the compiler) to 
the loader and tell it at which subroutine the program is to start. The loader 
assigns memory locations to all the routines it needs, and all their common 
blocks. It then relocates al1 the codes, constructing an image on disk of the 
executable program. This disk image is the controllee. The loader constructs 
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the initial exchange package in the minus words and sets the P counter to the 
starting instruction location. The correct values of FLS and FLL are determined 
and written into words 16 (octal) and 17 (octal) of your program as well as into 
the exchange package. The loader also produces a map telling where all the 
subroutines and common blocks are located. 

As a convenience to you, the loader assumes you want to start execution at 
a routine named MAIN. (the period is part of the name). Any routine that does 
not have a SUBROUTINE or FUNCTION declaration will be compiled into a program 
named MAIN. by CHATR (or CIIAT). Even if your main program has a PROGRAM card 
that uses some other name, MAIN. is the name that will be assigned by CHATR (or 
CHAT). Thus, it is normally not necessary to tell LOD (the loader) where to 
start. Conversely, it is ini:ippropriate to have more than one main program in 
your binary files. 

lf requested, the loader will also construct a symbol table, using any 
available type-26 cards. The symbol table can be thought of as an elaborate 
load map that tells not only where subroutines and common blocks have been 
placed but where internal variables and labels have gone. The symbol table may 
be placed in a separate disk file or may be in the controllee disk file 
following the controllee. The symbol table is intended for use by such 
debugging utility routines as DBUG, DBCTRL, and DOD. 

As you recall, SSM is small. But, code can be executed only out of SSM; 
LCM can be used only for LCM common block~. If you have a very large program, 
it may not be possible to load every subroutine into SSM s.imultaneously. You 
arc then forced to use a Let:lmique called overlaying. r'or example, two sets of 
subroutines thal <:ire not needed simultaneously are grouped into separate code 
blocks. The loader writes both code blocks to the controllee file. The two 
code blocks are constructed in such a way that they must be read into the same 
SSM space, but only one can be in SSM and executing at any instant. A resident 
or level-1 code block must always be in SSM to control the reading of the 
overlays from the controllee disk inlo memory. As it turns out, you can have 
mor~ than two overlays, and overlays can call in higher-level code blocks. In 
fact, LOD supports seven levels of code blocks, but you must be doing something 
wrong if you think you need more than three levels. If you use ORDER, you will 
see that it has control cards *MAIN, •OVERLAY, and *SEGMENT, which you can use 
to define three levels of code blocks. You will also have to become familiar 
with subroutine CHAIN in ORDERLIB, whic~ you will normally use to ask for a code 
block to be reod iulo SSM. 

The overlaying process and other esoteric options are too much to be 
presented here. They are described in the LOD write-up, however, so we suggest 
you look there first and then (NMFECC users only, please!) consult with the 
NMFECC if you have problems. As an alternative to overlaying,·you might also 
consider leaving all your data in disk files and running several controllees one 
after another Lo accomplish the same task as a large, overlaid controllee. 
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Executing 

All controllees have an attribute named FLLCM. This is the initial load 
length or the number of words of the controllee, not counting the minus words 
that the system will read into LCM when the file is first executed. FLLCM is 
not written in the controllee; the system remembers it in a system table. LOD 
determines FLLCM and informs the system. Sometimes this number gets lost, such 
as when writing a controllee to FILEM and reading it back. In this case, FLLCM 
is zero, which means the entire· file is to be read into LCM. This is usually 
harmless unless the file is too big to fit into LCM. Utility routines COPY and 
SWAT can be used to set t.hP. F'LLCM of a file. 

There are two other LOD options worth noticing. One eliminates the images 
of all LCM common blocks on tlisk. The second also.does this and, in addition, 
eliminates numbered common in SSM if it is a single-code-block code and has 
numbered common last. For multi-level codes, this option eliminates the space 
on disk of that part of the SSM image that would have level-2 and higher-level 
blocks. There are two reasons for these options. One is that LCM common blocks 
cannot be data loaded (with DATA statements), and numbered common blocks in SSM 
should not be data loaded; therefore, since the disk space they would occupy has 
no information, it can be eliminated. The second reason is that higher-level 
code blocks are stored on disk between the initial core image and the symbol 
table if any. These loader options are often used to keep the size of the 
controllee file at a minimum. The loader will set the FLLCM to the compressed 
size. FLS and FLL in the exchange package will also be reduced; however, FLS 
and FLL in words 16 (octal) and 17 (octal) of your program will be the sizes 
actually required for execution. The first thing the program should do upon 
starting is to create a dropfile large enough to hold the fully expanded 
program. Then it should use the values of FLS and FLL in words 16 (octal) and 
17 (octal) and ask the system to be allowed to expand to those amounts of space 
in memory. Both of these steps t:c:ut be achieved easily by calling subroutine 
ADJUST in ORDERLIB, which issues the appropriate system calls. If your program 
is loatletl under the control of ORDER, the compressing, dropping to another file, 
and expanding are done for you automatically, either by ORDER or by additional 
code that it adds to your program. 

You should be aware that you are allowed to reset your FLS and FLL while 
you are running. Frequently, users place a single array in an LCM common block 
and position that common block at the end of their field length. Initially, the 
last word in the array (as determined by a DIMENSION) falls at the end of the 
field length (i.e., FLL). However, by creating a new dropfile and then 
increasing FLL (not exceeding the dropfile size minus 230 (octal) words), you 
can increase the size of the last array; that is, you can use subscripts greater 
than those declared at compile time. Adjusting FLL up and down is useful when 
various amounts of storage are needed at different times. The idea is to keep 
FLL as small as possible at all times because you are charged for the amount of 
LCM you use and because smaller jobs are more likely to get into memory than 
larger jobs al 1:1uy given pr1or1ty. Note, however, that adjusting FLS or FLL 
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always causes your code to drop to disk (a costly I/0 operation); therefore, do 
not adjust field lengths unnecessarily. 

Figure 1 shows how a controllee is laid out on disk. The symbol table is 
optional and need not be present. It may be placed in a separate disk file. 
The higher-level code blocks exist only for overlaid codes. Likewise, the space 
within FLS where higher-level blocks will be read for execution exists only if 
there are higher-level blocks. In Fig. 1, none of the loader options for 
squeezing out unused space has been used. The space for code blocks in FLS and 
common blocks in FLL is all zero. If you wish, you could use the controllee 
file as a dropfile, since it is large enough to hold the image of the executing 
program. 

In Fig. 2, the unused space is eliminated. The compressed FLS a·nd FLL 
shown are the ones in the exchange package. Your program can never reference 
addresses beyond these. The FLS and FLL you actually need are written into 
words 16 (octal) and 17 (octal) in the resident code block, and you must tell 
the system to expand your 
separate dropfile, since 
enough) would destroy your 

job in memory to these sizes. Also you will need a 
dropping into the controllee file (if it were large 
higher-level code blocks. 

In the overlaying process, a fresh copy of the code block is always read 
in. Code blocks in SSM are never written back out to disk. If a code block is 
used a second time, there cannot be any variables in its subroutines that ~ely 
on being set from a previous execution. Information that must be preserved from 
one execution of a code block to a subsequent execution should be placed in a 
common block, and the common block should be forced into a lower-level code 
block. 

A code block is a group of subroutines plus the common blocks they use that 
have not yet been defined at a lower level. Figure 3 shows how a code block is 
usually laid out. Subroutines with their internal variables come first, 
f o 11 owed by al l t.he I abe I ed common b I ocks, f o 11 owed by the numbered common 
blocks. On the load map, the name of a numbered common block is its number with 
two dollar signs appended. Blank common is named 999999$$. For a Ievel-l code 
block, you can data-load numbered common, but you shouldn't, because there is a 
loader option to eliminate the image (and hence the data) of the numbered common 
from the controllee disk file. There is another loader option used by ORDER 
that asks for code blocks to be constructed with labeled common first, followed 
by code, followed by numbered common. Under the default ordering as well as the 
ordering used by ORDER, numbered common is at the end of the code block. If the 
code block, furthermore, is at a higher level than 1, space will be allocated on 
disk only for the code and the labeled common blocks. Therefore, you cannot 
data-load numbered common in higher-level blocks. 

As for LCM common blocks, the loader determines the amount of LCM space 
required by the various possible combinations of code blocks; that is, it 
determines how much LCM is required by the LCM common blocks in each combination 
of code blocks and includes it in FLL. As is the case with SSM common blocks, 
an LCM common block that is meant to be shared by two or more high-level code 
blocks must be declared in a lower-level code block through which the high-level 
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Level-1 (resident) code block 

Space for the largest 
combination of code blocks 
to be used 

Space for LCM common blocks 

Higher-level code blocks 

. 

Symbol table 

Fig. 1. Controllee layout on disk, where unused space is i·ncluded. 
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Fig. 2. Controllce layoul on disk, wl1ere unused space is eliminated. 



Subroutines 

Labeled common blocks 

Numbered common blocks 

Fig. 3. Code-block layout. 



code blocks are called. For example, two level-2 code blocks know nothing about 
each other's common blocks. If they are to share information, some subroutine 
at Ievel-l must declare the shared common blocks. That way the shared common 
blocks are allocated in the Ievel-l part of the LCM area. Otherwise each 
level-2 code block would have its own version of the shared common blocks 
somewhere in LCM, and the the locations of the shared blocks would in general 
not be the same; that is, the two code blocks have different ideas of where in 
LCM a given common block resides. 
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RGW/sv/lc 

CONCLUSION 

If all this seems somewhat complicated, we can assure you that it is! 
Large-scale scientific computing is not for casual programmers. Successful 
computing requires knowledge not only of the computational problem but of the 
tools available and how to use them. Suitably sobered, you should next read the 
treatise about preparing your first production code, in UCID-17557. 
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