
?- 'V11
~1' '1' (S
l. (,k l~ I
d'j c; [j} UCID- 17556
~ ~------------------------------~

Lawrence Livermore Laboratory
AN LTSS COMPENDIUM: AN INTRODUCTION TO THE CDC 7600

AND THE LIVERMORE TIMESHARING SYSTEM

K. W. Fong

August 15, 1977

This is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng48.

DISTRIBUTION OF. THIS DOCUMENT IS UNUMITEQ

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

c.•

AVAILABILITY

This document is available online as follows:

ELF RDS .717675:UCID:UCID17556 I 1 1

.View the print file on the TMDS, or print it as follows:

TRIX AC I 1 1
.PRINT(<NIP UCID17556 BOX ann identification>)

.END

------NOTICE-------,

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United Stat~! nnr thl't llniteli StateJ Otpartmtnt of
Energy, nor any of their employees, nor any of their
.,;uuhacluu;, :subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or rc:;ponsibillty for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that Its use would not
infringe privately owned righti.

-i i-
drSTRIBUTION OF. THIS DOCUMENT ·Is UNLIMirt:O

fJ

,,

CONTENTS

Abstract ... ·
Intr9duction .. .
The Hardware .. .

Memory

Page

3

3
Central Processing Unit ... ·.. 3
Floating-Point Numbers . 4

Exchange Jumps . 5
Input/Output Capability , , . 6

The Operating System ... ·.. 7

Control lees 7
Timesharing and FLL . 9

Using Tapes . 0

Usjng Disks 10
Connecting Disk F i 1 e s . 13
File Structures . 13
System Documentation . 14

Utility Routines····:··· 14
Charging Algorithms 15

Fundamentals of Creating and Executing Control lees 18
Introduction . 18

Compi 1 ing 18
Assembling . 19
Relocatable Binary Libraries .. 19
Loading . 19
Executing . 21

Cone 1 us ion .. 24

-iii-

I

AN LTSS COMPENDIUM: AN INTRODUCTION TO THE CDC 7600
AND THE LIVERMORE TIMESHARING SYSTEM

ABSTRACT

This report is an introduction to the CDC 7600 computer and to the
Livermo.re Ti!llesharing __ s_y_s_t.em_{_LTSS) used by the National Magnetic Fusion Energy
Computer c~·nt~·;'"(NMFECC) a~·d--th;- Lawrence Livermore Laboratory Computer Center
(LLLCC or Octopus network) on their 7600's. This report is based on a document
originally written specifically about the system as it is implemented at NMFECC
but has been broadened to point out differences in implementation at LLLCC. It
also contains information about LLLCC not relevant to NMFECC. This report is
written for. computational physicists who want to prepare large production codes
to run under LTSS on the 7600's. The generalized discussion of the operating
system focuses on creating and executing controllees. This document and its
companion, UCID-17557, CDC 7600 LTSS Programming Stratagems, provide a basis for
understanding more specialized documents about individual parts of the system.

INTRODUCTION

This document is an adaptation of the first of two reports that I wrote for
the National Magnetic Fusion Energy Computer Center (NMFECC) on-line
documentation system on the subject of applied programming. The original
documents were aimed specifically at users of the MFE 7600, which runs a
slightly different set of software than do the CDC 7600 computers that are a
part of Lawrence Livermore Laboratory's Octopus computer system. Therefore,
most but not all of the material is applicable to Octopus as well. This UCID
and UCID-17557 bear the same titles as the NMFECC documents from which they are
derived. Almost all the MFE material has been retained. The difference is that
I have added information about 817 disks, the Octopus charging algorithm, and
the Octopus hardware configurations, so that Octopus readers may have a complete
picture of their own system. The NMFECC has received considerable help from
Octopus personnel and hopes to return the favor in part by sharing this
educational material it has prepared.

This document. and its companion, UCID-17557, were written for computati'onal
physicists who want to prepare large production codes. I contend that a
knowledge of FORTRAN alone is not sufficient for achieving this goal. You must
also learn some applied programming. These documents attempt to give an overall
view of the 7600 and LTSS so that you may profitably read the many other
specialized documents about parts. of the system. This report deals with the
machine and its operating system. UCID-17557 discusses the problems to be
addressed in applied programming and some techniques for dealing w~th them.

-1-

LTSS is an exceedingly flexible system. Since there is usually more than
one way to solve a problem, your goal should be to understand the system and its
software well enough that you can easily find the cheapest acceptable solution
for your problem. This understanding comes with writing, compiling, loading,
executing, and debugging moderately complex programs. It cannot come solely
from reading these documents; nevertheless, I feel that these documents contain
much useful information distilled from the experience of many other users as
well as myself and that reading these documents should accelerate your learning.
I would even say you should read these documents before proce~ding to work on a
very large production code.

-2-

"

THE HARDWARE

Memory

The NMFECC's 7600 has two memories. One is called small semiconductor
memory (SSM), and the other is large core memory {LCM). Memory sizes are
measured in words rather than bytes because the 7600 is a word.-or ienled machine.
A word is 60 bits long. SSM contains 65,536 (decimal) words; however, not all
of this is available
you to have at most
normally think of

to you. The operating system needs part
157,760 {octal) or 57,328 (decimal) words.

as the computer's memory. It can hold

of it and allows
SSM is what you
both data and

instructions and is the memory most easily accessible to the central processing
unit {CPU). LCM is a secondary memory that is used for holding data. LCM is
also used for input/output {1/0) operations in that all information going to and
from disk must go through LCM. Instructions exist for transferring data between
SSM and LCM. The size of LCM is 512,000 {decimal) words; however, part of it is
reserved by the operating system, so you may have at most 1,414,600 {octal) or
399,744 {decimal) words. We will see later that there are additional
constraints on the amount of LCM that you can or should use. The Octopus 7600's
are similar to the NMFECC 7600 except they have small core memory {SCM) instead
of SSM. In the rest of this document, references to SSM are also applicable to
SCM except where staled otherwise.

Central Processing Unit

Computation occurs in the central processing unit {CPU). Viewed simply,
the {CPU) has three parts of concern to the user: (1) registers, {2) functional
units, and {3) instruction stack.

The 7600 is a register-oriented machine. All data must be fetched from
memory to a storage location {i.e., a register) inside the CPU before they can
be used. The registers are also used to calculate the addresses from which
operands must come in memory and addresses to which results should be stored in
memory.

The functional units accept operands from registers and return results to
registers. Most of the functional units are segmented so that another pair of
operands may be fed in even before a preceding pair has produced a result. The
unit lhus·acls like an assembly l·ine. In addition, different functions are
handled by different functional units; thus, a floating-point multiply may be
initiated immediately after a floating-point addition is star.led,. without
waiting for the addition to complete. Therefore, great speed of computation is
possible if instructions are carefully sequenced and registers are cleverly

-3..:..

allocated to take advantage of the potential concurrency. We shall see later
how you may do this.

The 7600 executes code by reading instructions from memory into its
instruction stack and then executing the instructions. Instructions may be
either 15 or 30 bits long, so it is possible to pack two-to-four instructions
per word. A 30-bil instruction is not allowed to straddle a word boundary, so
it may be necessary to insert no-ops (non-operations) into the instruction
stream for padding. The instruction-word slack consists of 12 words, two of
which are look-ahead words. In parallel with the instruction-word stack is the
instruction-address slack (also 12 words long), which contains the memory
address from which the corresponding word in the instruction-word stack came.
The look-ahead words are pre-fetched in the hope that you will execute
instructions sequentially in memory. This minimizes delays waiting for another
instruction word to be read from memory. The instruction stack also keeps the
nine words that were read previous to reading the current instruction word, so a
jump to a very recently executed instruction is a jump to an instruction already
in the stack. Thus, if a DO loop is short, it can be represented by a series of
instructions contained entirely in the instruction stack. This is a desirable
situation because instructions going to the stack and data going to the
registers must both come from memory, and a memory-bank conflict could result if
an instruction and a datum are both in the same memory bank. To appreciate
this, you must know that SSM is laid out in 16 banks in which consecutive words
reside in consecutive banks; however, the 17th word wraps around and is in the
same bank as the first word. Thus, when a bank is asked to deliver a second
word before it has recovered from delivering the first, a bank conflict occurs,
and the second word is delayed. SCM, unlike SSM, is laid out with 32 banks, so
bank conflicts occur every 38 words instead of every 16. Again, we will see
later what can be done to avoid such delays.

Floating-Point Number~

In an oversimplified view, the left 12 bits of a floating-point number
represent the exponent to the base 2, and the right 48 bits are the coefficient.
Since the FORTRAN compiler takes care of representing and normalizing
floating-point numbers, users of FORTRAN generally need not be concerned with
these topics. What is important is that a single-precision number has
approximately 14 decimal digits of precision, so that double precision (which is
very expensive on the 7600) is generally not needed. The range of
floating-point numbers is approximately l.OE-293 to 1.0E+322.

There are two non-standard floating-point operands: overflow and
indefinite. Normally, using or generating either of these in a floating-point
operation aborts your code. (Dividing zero by zero is the most frequent error
that generates an indefinite.) Normally, an underflow condition returns a zero
result but does not interrupt your code; however, it is possible to ~un your

-4-

code in a mode where an underflow does cause an interrupt. Consult the 7600
hardware manual for more detailed information.

Exchange Jumps

Every user program has a set of 16 words, called an exchange package,
associated with it. Whenever the user's program must stop, the contents of the
CPU registers are written into the exchange package. (For the time being, we
will not discuss the physical location of the exchange package.) The contents
of the exchange package are validated by the operating system and then copied
into the registers if and when the program regains the use of the CPU. One
reason that.a program might stop is that it created. an overflow or indefinite.
In this case, the hardware stops it automatically. Another reason is that it
has voluntarily given up the use of the CPU for some reason. In particular, no
user program is allowed to deal with files or perform I/0 directly. Instead,
the program leaves a request for file manipulation or I/0 in one of the
locations where the system looks for such requests and then performs an exchange
jump. The exchange jump causes the program to relinquish the CPU to the
operating system and also causes the registers to be saved in the exchange
package. The operating system services any legitimate requests and then allows
the user program to resume when appropriate. One of the items in the exchange
package is the program counter (P counter), which is the address of the
instruction word to be executed when the program resumes. When a program is
aborted because of some error condition, the exchange package is saved, and you
may use various utilities to determine the final value of the P counter. This
value is the location where the program stopped unless the error was an
erroneous jump.

The process of doing exchange jumps in order to make requests of the
operating system is known as making system calls. System calls are seldom coded
directly by the user. Usually you use subroutines in an existing library to
take care of your I/0 and other system requests. In a large production code,
however, an intermediate course is sometimes used. In this situation, the
programmer has designed his own I/0 scheme in terms of the basic functions
provided by the operating system. He then uses subroutines (such as GOB, FROST,
SETIO, and REIO in ORDERLIB) to construct the system call and do the exchange
jump. We have found that users who obtain good I/0 performance on LTSS have had
to descend to a level just above stringing together the bit fields in a system
call. BLIB76 and URLIB are other libraries in which you might find subroutines
for issuing system calls.

You may feel that groveling in such details is inappropriate for a
computational physicist. If a code is to be used only once, it is economical to
use the inefficient standard FORTRAN I/0 routines, but if a production code is
to be run repeatedly and uses dozens of hours of 7600 time, then it is worth
designing and programming it to take every advantage of the system. You cannot
expect a common FORTRAN program to run efficiently on all machines and systems.

-5-

Large codes must be
w i I I be run. If
hour or ten hours,
running at all.

tailored to the machine and operating system on which they
correct design means the difference between running for one
then it may also mean the difference between running or not

Input/Output Capability

I/0 is the ·area most often ignored by the unsophisticated programmer to the
detriment of his pocketbook. We will consider the influence of the operating
system later, but here let us look at what the hardware can do. Data from disk
can go only to LCM. If the data are needed in SSM, they must then be copied
from LCM to SSM. Likewise data can be written Lo ~isk only from LCM. If the
data are in SSM, they must first he transferred to LCM. We wi II see that an
excessive amount. of inad~ertant copying bet~een SSM and LCM is easy to do but
also easy to avoid. Once a data transfer has started between LCM and disk, it
is possible to return to your program and compute while data are being moved.
Obviously, you should not use data while they are in transit. You should read
in data before you need them and meanwhile compute on something else. ,Just
before you need the data, test to see if the data transfer is complete and give
up the CPU only if the transfer is not complete. In fact, it is quite common in
a production code for two I/0 operations to proceed simultaneously with central
processing. This minimizes the wall-clock time needed to .run the job. Since
the 7600 can crash like any other computer, it behooves you to push your job
through as quickly as possible. Furthermore, the present charging algorithm
contains a charge proportional to the length of time you spend in the 7600, so
you are penalized if you fail to overlap I/0 with CPU when you could have.

Making a few large I/0 transfers is usually cheaper than making many small
ones. The usunl.mechani~m for consolidating small amounts of data is an LCM
buffer. If the LCM space is available, pack small logical records into one
large physical record before writing. Positioning the disk for a read or write
is expensive, so you should move large blocks of data to keep the cost per word
down. Correct buffering can make a tremendous difference in I/0 charges and
execution time.

-6-

THE OPERATING SYSTEM

Control lees

All executable ·programs must start as an executable core image on disk.
Executable programs are usually called controllees and are constructed on disk
by the loader. To execute a controllee you normally type the controllee's name
at your terminal. (In this case you are the controller of the controllee.)
Next you type execute-line parameters if any, a slash, the running time, the
value, and a carriage return. The program is not through until the "all done"
message comes back to your terminal. Before the program completes, it can send
messages to. your terminal and receive responses from you. All these
interactions with the outside are done via system calls. If the program wants
to send you a message, it issues a system call, "send message to controller."
The system picks up the message and prints it at your terminal if you ·are logged
in under the suffix under which the program is running. The controller is
whatever started the controllee. In this case, it is the terminal, which for
historical reasons is referred to as TTY. The designation as controller or
controllee is relative, however. If you execute program A from your terminal,
you are the controller, and A is the controllee. But on LTSS, A is allowed to
execute a program, so if A starts up program B, A is the controller of B, and B
is the controllee of A. Controller-controllee chains may extend to ten levels.

Let us consider an example of where the controller-controllee concept may
be used. The initialization and clean-up phases of many production codes
require extensive programming. Each of these is coded as a separate controllee,
as is a third controllee that actually does the calculations. Then, to execute
the three controllees, you write a controller or use an ex{sting general-purpose
controller su~h as ORDER or BCON). The first ~ontrollee will create and
initialize disk files for the second to use. The third will save files,
construct plots, and dispose of files. This scheme has at least two virtues.
One is that, after the files and contents are clearly defined, separate people
can write the separate controllees without needing extensive co-ordination. A
second is that overlaying of codes can be avoided. It may also be etlsier to
debug three smaller codes than one big one.

How is a controllee laid out on the disk? The first thing in the disk file
is 230 (octal) words called the minus words. The system keeps a copy of these
minus words in its share of LCM and records in it information about your job and
the files that are connected to it. After the minus words comes word zero of
your program. Starting at you·r word zero is the image in SSM of your program.
Your SSM image contains code, labeled and numbered common blocks, and the space
needed by your largest combination of overlays. The size of this image is
called field length small (FLS). This is followed by your LCM common blocks out
to field length large (FLL). The LCM image always contains the $SM image, so
FLL is always greater than or equal to FJ.S.

-7-

To execute your job, the system reads your LCM image into LCM and then
copies that part of it which represents the SSM image into SSM. The minus words
contain the exchange package, which is then copied into the registers. Since
the loader has set the P counter at the beginning of your program, that is where
execution begins. The loader also sets the mode flags for overflow. and
indefinite in your exchange package. This lets the system know that you want to
be stopped as soon as you generate an overflow or an indefinite. The mode flag
for underflow is not set by the loader; therefore, the system lets you continue
running without an interrupt whenever you generate an underflow. This is
usually harmless since an underflow is returned as a zero, which can be used in
further calcuations. Overflows and indefinites have a special representation
and cannot·be used as operands in subsequent floating-point computations.

In the course of running your program, the system may need to copy your job
to disk. For example, some other user could bid a higher priority. His job
will run while you are temporarily restrained from executing. If the system
needs the memory space, your memory image will be dropped into a disk
"dropfile." If you have riot issued a system call to tell .the system otherwise,
your dropfile is the original controllee disk file. Dropping to it destroys the
original copy of the program so that it cannot be executed from the beginning
again. Therefore; you will usually call CHANGE or ADJUST (in ORDERLIB), which
make system calls to create a separate dropfile. This call' should be the first
executable instruction in your program so that the system finds out you want a
separate dropfile before not after -- it has to drop you to disk the first
time. If you allow the ORDER batch-processing system to load your program, it
will load in extra code to perform the system call for yo~ to drop t6 another
disk file (i.e., you don't need to call CHANGE or ADJUST).

Note that the dropfile is actually a copy of your program at some
intermediate state of execution. In case of a system crash where the system
forgets what was supposed to be running, you can give the dropfile name on the
execute line to restart the program. This usually works if the program was only
reading or only writing each of its disk files, but it may fail if any file is
being both read and written. The failure can occur in the following way.
Suppose a job drops to disk and later continues execution. When it is back in
memory and executing, it reads a disk file and then overwrites it with new
information. Then the system crashes and loses the job in memory. At this
point, the dropfile that is left represents a state before the file was
modified. If it is restarted, it will read new rather than old information. If
it does not recognize that the wrong information was read, it may generate
erroneous results. A good production code allows for system crashes by telling
ORDER what controllee to start after a crash in order to verify the existence
and integrity of all working files before resuming computation. Restarting the
dropfile of a program that was using tapes is usually not possible, because
tapes are usually dismounted during a .system crash. It is possible to write a
recovery procedure for such codes, but you are advised instead riot to connect
tapes directly to your program.

-8-

Timesharing and FLL

LTSS is a timesharing system. This means each job gets time slices that
are usually less than it needs to run to completion. There are two kinds of
time slices: one for LCM residence, which depends on FLL and priority, and one
for SSM, which depends on priority only. If the job is not finished at the
conclusion of a lime slice, it will get another slice later (unless the system
has no other job to run, in which case it can have another slice immediately).
When your job has exhausted its current slice, some other job will be given a
chance to run for a while. What ·happens to your job depends on the other jobs.
If the FLS for your job plus the FLS for the other job or jobs fit into SSM,
your SSM image may be left in SSM while other jobs cohlpute. If other jobs need
more SSM, the system will copy your SSM image into that part of your LCM field
length reserved for your SSM image. If the system needs your LCM space for
someone else, your LCM image, including the SSM image, will be dropped to disk
(into your dropf i le). When you will get back into memory to resume depends on
what priorities other users have bid that are higher than yours and how large
other jobs are that are bidding the same priority as yours. For any given
priority, the system selects the smallest job. That .is why jobs with very large
FLL cannot get in very often without a high priority when the system is heavily
loaded. You should be very careful about writing a program that uses all
available LCM because you will have a hard time running it during the day to
debug it. Furthermore, if such a job does unoverlapped I/0, the CPU.will become
idle because no other job can come into LCM simultaneously to use the CPU. This
is why the charging algorithm is designed to penalize jobs that do not overlap
their I/0 and CPU.

Using Tapes

The use of tapes by user jobs running in a timesharing mode is discouraged
because a job might tic up a tape drive indefinitely. Try louse FILEM on the
MFE network or ELF on the Octopus network instead of tapes. If you absolutely
must use tapes, use utility routines such as ADT, RDFILES, and MCT to write and
read tapes. These routines will copy from disk to tape or tape to disk and
relinquish the tape drive as soon as -possible. Utility routine TAPECOPY may
also be used for tapes coming from or going to other computer systems.

-9-

You should think of disks
Print and film files should be

Using Disks

as the only I/0 devices your job should use.
thought of as disk files that will later be

processed through the appropriate device. On LTSS disk files'are of fixed size.
The size is specified at the time of creation. Many existing routines will
create families of files. When one member of a family is filled, another file
with a related name is created, and output continues there. A file may be
truncated if the output does not fill it, but a file cannot be expanded. Disk
files are allocated on contiguous disk sectors. If you ask for too large a
file, you may not find enough unflawed consecutive sectors to accommodate it.

Disk files fall into two general categories: public and private. The
files you normally create are private files under your own user number. Unless
you save them on FILEM (or ELF), they will be purged after some period of
disuse. This is to prevent the 7600's disks from being clogged with unused
files. In order to allow production computing more disk space, you should
destroy unneeded files before you go home for the evening. Public files are not
purged. They are used to hold libraries, utilities, and other useful things
where they will be readily accessible to users. For example, the CHATR (or
CHAT) compi l~r and the LOD loader are public files that anyone may execute.
Compiling and loading are considered user functions, not system functions. You
will notice, for example, that CHATR drops to +QUlKTRAN in your private file
space.

The NMFECC's 7600 has two kinds of disks available: CDC models 819 and 844
disks. Four of each are accessible by users. Both kinds of disks rotate at
approximately 17 milliseconds (ms) per revolution. The maximum time required to
move the heads to the correct position is 85 ms for 819 disks and 55 ms for 844
disks. The bandwidth or transfer rate of the 819 disks is about 30 million bits
per second, so 1000 (octal) words can be moved in about 1 ms. The 844 disks are
slower and require about 6 ms to transfer 1000 (octal) words. For small amounts
of data, the 844 disk is a better place because its shorter seek time
(positioning the heads) is far more important than its transfer rate. Files
from which many thousands of words will be accessed at a time should be put on
the 819 disks because the transfer time will dominate the seek time. Octopus
7600's also have CDC model 817 disks, which we will describe later.

On the MFE 7600, data move between LCM and disk files under the control of
peripheral processing units (PPU's), which are computers in their own right.
The disks are given unit numbers. The PPU's also are numbered. The 819 disks
are units 1, 2, 3, and 4 and are served by PPU's 4, 5, 6, and 7. Because the
transfer rate of the 819 disks is so high, two PPU's are required to effect a
read or write. One 819 can be acces~ed by only one pair of PPU's at a time.
This means that two 819 files that are to undergo reading or writing
simultaneously must be on separate units. Also, no more than two 819 files may
be read or written simultaneously, since there are only four PPU's connected to
the 819 disks. PPU's 4 and 5 can access any of the 819 disks, as can pair 6 and
7. Your program, of course, may be connected to as many as sixteen 819 files at

-10-

-.

a time, but your read and write requests will have to be queued up once all four
PPU's are busy. The 844 disks are units 5, 6, 7, and 10 (octal). They are
serviced through PPU's 2 and 3, either of which can access any of the 844 disks.
Only one PPU is needed to read or write an 844 disk, since the transfer rate is
low enough to be handled by a single PPU. Again, two files on the same unit
cannot be read or written simultaneously; the requests must be queued. The two
PPU's can service two requests at any moment; other requests to read or write
844 disks must be queued. At the system-call level, you may specify which unit
(number) you desire when you create a file. If the system cannot find enough
space on the unit you requested, it will next look at a unit of the same
type--i.e., another 844 or another 819. If that fails, your file is created
wherever space is available. At the completion of a file-create call, the
system will tell you which unit actually was used. This detailed information is
hidden from you when you allow ORDERLIB subroutines to make the create calls for
you; however, it may be important to a production code to place its working
files on disk of a specific type.

In estimating the elapsed wall-clock time required for an I/0 operation,
you should· add 150 ms to the transfer time. The 150 ms not only cover the seek
time and rotational latency, but allow a generous delay while the operating
system completes other users' I/0 requests that arrived before yours. That is,
if some other user is reading from the same disk unit that you want to read,
your request is held by the system until the unit and an appropriate PPU are
available to process the request. In the meantime, you should try to find
useful computation to perform for 150 ms plus the transfer time. That
computation should neither use the data being read nor reuse the space from
which data are being written until the I/0 operation is complete. The actual
wall-clock time required to complete I/O clearly depends on the system load.
The recommended base of 150 ms was derived from looking at the MFE 7600
statistics on a busy day.

The sector size of the 819 disk is 512 (decimal) or 1000 (octal) words.
There are 20 (decimal) sectors per track and 200 (decimal) sectors per cylinder.
The 844 has 64 (decimal) word sectors with 24 (decimal) sectors per track and
456 (decimal) sectors per cylinder. Disk file addresses always start at zero,
and address zero is alwayi on a sector boundary. The basic system call for
reading or writing disks allows you to transfer an arbitrary amount of data to
or from any starting address on disk; however, certain disk starting addresses
and transfer siies are preferred above others. If you begin writing a block of
data in the middle of a sector and end in the middle of another sector, you have
the worst possible case. The sector where you start· writing must be read into
the PPU buffer, and your data i~ written over it. Then the revised copy of the
sector is written back out to disk. Intermediate sectors go from LCM through
the PPU buffer to disk. The last sector must be read from disk to the PPU
buffer, where part of it is overwritten with the remaining data from LCM, and
then it is written back to disk. What we have described is the preservation of
the unreferenced portion of the first and last sectors. Notice that each causes
you to lose a disk revolution.

There are two solutions.
starting on sector boundaries so

One is to write multiples of sector sizes,
that there are no unreferenced portions. The

-11-

other is to use special options in the system call to tell the PPU not to
preserve the unreferenced portions of the first or last sectors. In the latter
case, the unreferenced portion of the sector is overwritten with whatever
happens to be in the PPU buffer. On the Octopus ?BOO's, which may have
classified data, the PPU must generate disk pattern in that part of its buffer
that you don't use, so that you will not pick up a chunk of someone else's
possibly classified data. The PPU generates this disk pattern so slowly that
you are almost certain to lose a disk revolution; therefore, the option not to
preserve the unreferenced portion of a sector is generally not economical. You
should instead try to write multiples of sector sizes, starting on sector
boundaries. When reading a disk file, there is no problem with preserving
sectors, but you should be aware that entire sectors must be read whether all
the data in them are needed or not. Therefore, it is marginally more economical
to read multiples of sector sizes, starting on sector boundaries.

The Octopus ?BOO's use 817 disks as well as 819 and 844 disks. The 817
disks come as two units in a single cabinet. Each cabinet contains two spindles
with 32 recording surfaces per spindle. You might expect that each spindle is a
logical unit, but this is not so. The top 1B recording surfaces of the spindles
are one unit, and the bottom 1B recording surfaces of the spindles constitute
the other unit. Each unit has its own set of heads. Since a unit is split
between two spindles, a set of heads must likewise be split into two stacks, one
for each spindle. The two stacks of heads are mechanically linked so that, when
one stack ·is in a given cylinder for its spindle, the other stack must be in the
corresponding cylinder of the other spindle. The 817 disks have 40 sectors per
track, and each sector holds 512 words of data. There are also 512 cylinders in
a spindle. All together, an 817 cabinet offers 83,88B,080 words of storage.
Data are read and written with eight bits in parallel. As you write to disk,
eight bits go to the upward-facing recording surfaces on eight consecutive
platters on a spindle. At the completion of a revolution, you have written
20,480 words. You then write eight bits in parallel on the downward-facing
recording surfaces of eight consecutive platters in the same cylinder on the
same half spindle. Thus you can write up to 40,9BO words in any particular
cylinder on any half spindle. lf you have more data, you go over to the
corresponding cylinder on the other spindle to write 20,480 words on the
upward-facing surfaces and then 20,480 words on the downward-facing surfaces.
Thus, you can write up to 81,920 words before you have to move the heads. Since
there are 512 possible head positions (or cylinders), a logical unit will hold
up to 512 x 81,920 = 41,943,040 words. It takes 30 ms to move the heads to an
adjacent track. The maximum positioning time for the heads is 145 ms. The
average random-positioning time is 85 ms. The 817 makes one revolution in 34
ms. Forty megabits per second is the highest instantaneous-data-transmission
rate, and 36 megabits per second is the average rate.

The admonition to move data blocks that are multiples of the sector size
and that start on sector boundaries also applies to the 817 disks. Like the
819, the 817 has 512 word sectors, but, unlike the 819, the 817 can write only
160 sectors for a given position of the heads. As of August 1977, the R, S, U,
and Z machines each have eight 844 disks, which are logical units 5 to 14 octal,
and all the 844 disks are accessible only through PPU 2. ThY~. the Octopus
?BOO's cannot access two 844 files simultaneously. The 817 disks are used with

-12-

machines R, S, and U. Logical units 1 and 2 in one 817 cabinet are served by
PPU's 4 and 5, and logical units 3 and 4 (also 817's) are served by PPU's 6 an~
7. PPU's 4 and 5 cannot access units 3 and 4, and PPU's 6 and 7 cannot access
units 1 and 2. As was the case with 819 disks, the 817 transfer rate is so high
that a pair of PPU's is needed to handle a transmission. If you expect to do
simultaneous transfers to two 817 files, you must place one file on units 1 or 2
and the other on units 3 or 4. Machines R, S, and U do not have 819 disks.
Machine Z does not have 817 disks; instead, it has four 819 disks configured
exactly the same way as the NMFECC 7600.

In orc:ier
Each program
numbered 0 to
minus words.
You can become
existing file.

for a program
has up to 16
15 (decimal) .

Connecting Disk Files

to use a file, it must be connected to the file.
I/0 connectors (IOC's) that it can use. They are

Each IOC corresponds to a three-word block in the
The system uses these to record which files you are connected to.
connected to a file by creating the file or by opening an

There are also system calls for closing or destroying files.

When you do BCD I/0 (formatted reads and writes in FORTRAN) and use the
PROGRAM card, the opening of input files and creation of output files is handled
automatically by the BCD read/write routines in ORDERLIB. For FORTRAN binary
(unformatted) reads and writes, existing files to be read will be opened
automatically., but files to be written must be created explicitly. For any
other I/0, you must handle the file openings and creations yourself. Routine
DEVICE in ORDERLIB may be used to create files, and routine ASSIGN may be used
to associate logical unit numbers with file names. The PROGRAM card causes
buffers to be reserved in a common block in LCM named IOCHIP$. Since these
buffers are used only by the BCD and binary read/write routines, you need not
mention on the PROGRAM card which files will be accessed by.BUFFER IN/OUT, or
other sets of I/0 routines.

File Structures

The various file structures used by ORDERLIB are described in a short
section at the beginning of the chapter on I/0 routines in the ORDERLIB manual.
This section is only three pages long, and you should read it to understand the
terminology we will be using. The BCD read routines can read either packed
ASCII or squoze-monitor files. The HCU write routines write only packed ASCII
files. The binary tape-simulated files are an archaic format read and written

-13-

only by the binary read/write routines. This format is a relatively expensive
one to read and write binary data, and you should avoid it. This means avoiding
FORTRAN binary read/write statements. The so called two-argument BUFFER IN and
BUFFER OUT statements read a~d write squoze-monitor files. Bits are transmitted
between memory and disk without character conversion. The two-argument BUFFER
routines are comparable in cost to the binary read/write routines. Better are
the three-argument BUFFER routines where you specify the disk address yourself.
The three-argument mode does not depend on any file structure. It essentially
allows random access so that you can read or write exactly what you want. You
should not settle for anything less than the three-argument BUFFER INiOUT for
your scratch files in a production code. The use of BUFFER IN and BUFFER OUT is
described in the CHATR manual and in the CHAT manual (LTSS-207). In a sense,
the BUFFER routines are misnamed, since there is in fact no buffer. The data to
be transferred should reside in LCM. If the data happen to be in SSM, the
system will block copy your entire SSM image to LCM before doing the
transmission and then block copy you back to SSM. This means you cannot
continue computing with the CPU while the data are moving. You should block
copy the data between SSM and LCM yourself to minimize your cost. Methods for
block copying between SSM and LCM are described in the CHATR and CHAT manuals.

System Documentation

ORDERLIB is considered to be the system library; however, you are not
required to use it. Unlike other operating systems, LTSS permits you to use
your own I/0 routines if you desire. Indeed, users often have legitimate
reasons for not using ORDERLIB. We cannot decide, without knowing your problem,
what alternative you should use to supplement ORDERLIB. You should read the
chapter of ORDERLIB .describing the I/0 routines and the appendix demonstrating
the use of these. routines to learn the capabilities and limitations of the
ORDERLIB routines. ORDERLIB also has some routines, such as GOB, FROST, SETIO,
and REIO, to help you write your own 1/0 routines. Another public library is
URLIB, where subroutines are available for making system calls. A further
·source of useful I/0 routines is public library BLIB76. Finally, the SYSCALLS
document (or LTSS Chapter 10) describes all the elementary services the system
can perform for you and how to request them.

Utility Routines

LTSS is not a control-card-oriented system with extensive job-control
language. Services such as compiling, assembling, loading, reading, and writing
tapes are performed by controllees that happen to be in public files so everyone
can use them. Even ORDER is a fairly normal controllee. Although ORDER looks

-14-

to you 1 ike a batch processor, it looks to the operating system 1 ike just
another user program. Text editors are also.utility routines.

Charging Algorithms

To estimate the cost of various programming strategies, you will need to
know the algorithm used to calculate your bank-account charge. We start first
with the NMFECC charging algorithm.

CHARGE TlME = (UNWEIGHTED CHARGE TIME)*(PRIORITY)

UNWEIGHTED CHARGE TIME =
(CPU FACTOR)*(CPU CHARGE)

+(I/0 FACTOR)*(I/0 CHARGE)
+(MEMORY FACTOH)*(MEMORY CHARGE)

1/0 CHARGE= (I/0 CHANNEL TIME)+
(VOLUNTARY LOAD/DUMP TIME)

MEMORY CHARGE = (CPU CHARGE)
+(I/0 IDLE TIME)
+(VOLUNTARY LOAD/DUMP TIME)

CHARGE TIME is the amount of time deducted from your bank account.

PRIORITY is the quotient of the value and time as specified on the execute
line. The default is 1.0.

CPU CHARGE is the real CPU time used by your program, including CPU time
needed by the operating system to service your system calls. Most system calls
are charged the actual CPU time required, but some are charged at a flat rate.

CPU FACTOR i~ currently 0.8.

1/0 CHANNEL TIME is the time a PPU (or pair of PPU's for an 819 disk)
requires to process an 1/0 request. It does not include queue time--the time
between the .issue of your request to the system and the time the system issues
your request to the PPU. 1/0 channel time is measured from the instant the
system sends the request to the PPU until the instant the system receives the
final status message from the PPU. By allocating disk files appropriately, it
is possible to use up to four 1/0 channels simultaneously. A tape operation
could cause a fifth channel to be used simultaneously. The time for each
channel is added up in the 1/0 CHANNEL TIME, so that, if several channels are
used simultaneously, the I/0 CHANNEL TIME will exceed the actual elapsed
wa 11-c 1 oc k t i me .

-15-

VOLUNTARY LOAD/DUMP TIME is incurred whenever your program does something
that requires it to be dumped to disk or be read in after a voluntary dump.
Sending and getting messages to and from controllers and controllees are
examples of a program vol~ntarily going to disk. A load charge is always
incurred when a program is initially loaded into memory for execution. Upon
completion of execution, a dump charge is incurred only if the dropfile must be
saved. Normally the dropfile is destroyed and the core image is erased upon
termination. Both the load and the dump times are calculated at the rate of
17,000 microseconds plus 2 microseconds for each word transferred. The number
of words transferred is FLL plus 230 (octal).

I/0 FACTOR is currently 0.2.

I/0 IDLE TIME is the amount of time a program spends waiting for its I/0 to
complete. The time is measured from the point at which the program issues a
knowledge-of-completion sy:stem call until the I/0 completes. A program that
completely overlaps I/0 with computation is using the CPU while I/0 proceeds.
It will incur charges fcir CPU and I/0 channe'l time but will have no I/0 idle
time. This encourages programs to initiate reading of data so that input is
complete before the data are actually needed.

MEMORY FACTOR is currently 0.4
program. The fraction of LCM
400,000 (decimal). Since a program

used
times

is
the
FLL

fraction of LCM used by the
+ 230 (octal) divided by

can vary FLL as it is running, the memory
factor may also vary.

The Octopus system uses a different charging algorithm.

CHARGE TIME = (UNWEIGHTED CHARGE TIME)•(PRIORITY)

UNWEIGHTED CHARGE TIME = CPU CHARGE
+(I/0 FACTOR)•minimum(I/0 TIME, BLOCKED TIME)

I/0 TIME =
QUEUE TIME

+I/0 CHANNEL TIME
+VOLUNTARY LOAD/DUMP TIME)

QUEUE TIME is the time elapsed between the submission of your IOD to the
system and the time it is given to the peripheral processing unit.

BLOCKED TIME is the time your code is in LCM but cannot use the CPU
(usually because it is waiting for I/0).

I/0 FACTOR on the Octopus machines.
the fraction of LCM
(1/2) + (1/2)FLR.
(3/4)FLR.

that you are using.
During the day on

depends on the time of day and on FLR,
During production periods, I/0 FACTOR=
working days, I/0 FACTOR = (1/4) +

Charging algorithms can and do change. The ones given above were in effect

-16-

in August 1977. If you are concerned about minimizing your unweighted charge
time, you should verify what algorithm is currently in effect.

-1~-

FUNDAMENTALS OF CREATING AND EXECUTING CONTROLLEES

Introduction

The process of creating and executing a controllee is a mystery to most
users. They follow recipes that work on simple programs and find that t.hey
generally work. For a production program, however, there is no excuse for such
ignorance, because ignorance can lead you to do things wastefully. We shall
present an overview of the process, which is described in greater detail by a
whole host of other available documents.

Compiling

Normally, your programs or subroutines are written in FORTRAN or LRLTRAN.
Compilation occurs when you or ORDER execute the CHATR (or CHAT) compiler with
your source as input. Your source
subroutines. The primary output

is a disk file with the text for your
of the compiler is a relocatable binary deck

for each ~ubroutine. Normally you never get card decks; instead,· the images of
the card decks are written one after another into a disk file. The compiler
compiles the subroutines one at a time.
other subroutines and common blocks
generate instructions
References to unknown

that reference
addresses are

Since the compiler is ignorant of where
will eventually be in memory, it cannot

the location of these externals.
flagged in the relocatable binary deck.

Lists of needed externals are also included. Variables that are defined only
within the subroutine il~elf are local variables. The compiler determines the
length of the subroutine, including storage space for local variables. These
local variables as well as internal locations to which the subroutine jumps are
recorded in the relocatable binary as being a certain number of words away from
the beginning of the program. Instructions referencing these locations must
also be flagged so that the eveulual memory addresses can be calculated and put
in the instruction. A relocatable binary represents an intermediate state where
most of the work of translating FORTRAN into 7600 machine instructions has been
done, and enough information is available that the routines may be loaded
anywhere in memory.

Normally the relocatable binary contains no information about internal
variables and locations. That is, no correspondence is kept of a statement
label and its eventual memory location. Nor are the locations of the local
variables and their names included. This information is not necessary for
running your code; but, if your code has bugs, it would be nice to know where
everything went in memory. CHATR (and CHAT) can be asked to produce so-called
type-26 cards or symbol-table cards in your relocatable binaries. The cards
contain additional information about variables and labels and where they are

-18-

..

relative to the beginning of a subroutine or common block. These cards can be
very useful in debugging a code, and you should read the CHATR (or CHAT) and/or
ORDER manuals about getting these symbol-table cards.

Assembling

Occasionally you may need to write a. code that is difficult to write in
LRLTRAN or cannot be written efficiently in LRLTRAN. It may then be appropriate
to write the program in an assembly language. Assembly languages are low-level
languages in which you describe exactly which machine instructions you wish to
use. Obviously you must kriow a great deal about the 7600 and interfaces to
other subroutines to write in assembly language. (The NMFECC strongly urges its
users to consull with it before embarking on assembly-language programming, so
that it may fully apprise them of background information they need. If users
must write in assembly language, the NMFECC suggests that users use COMPASS.)
The principal output of an asserubler is also a relocatable binary deck.

Relocatable Binary Libraries

A disk file containing images of relocatable binarr decks can be loaded by
the loader. The loader will run faster, however, if there is also a directory
at the end of the file to describe the routines and tell where they are in the
file. Public libraries such as ORDERLIB and STACKLIB have such directories. It
is feasible and often desirable for users to create private libraries with
directories. LIBMAK is the utilily routine for creating and manipulating
libraries. If your code is very long, you should save the binaries. When you
repair u subroutine, you will then compile only the modified routine
(compilation is an expensive process) and replace the relocatable binary in your
private library. The library format (i.e., with directory constructed by
LIBMAK) is preferred because it can be loaded more quickly.

Loading

In the ·simplest view of loading, you present one or more binary files
(either relocatable binary libraries or the direct output of the compiler) to
the loader and tell it at which subroutine the program is to start. The loader
assigns memory locations to all the routines it needs, and all their common
blocks. It then relocates al1 the codes, constructing an image on disk of the
executable program. This disk image is the controllee. The loader constructs

-19-

, ..

'I .

,·,

the initial exchange package in the minus words and sets the P counter to the
starting instruction location. The correct values of FLS and FLL are determined
and written into words 16 (octal) and 17 (octal) of your program as well as into
the exchange package. The loader also produces a map telling where all the
subroutines and common blocks are located.

As a convenience to you, the loader assumes you want to start execution at
a routine named MAIN. (the period is part of the name). Any routine that does
not have a SUBROUTINE or FUNCTION declaration will be compiled into a program
named MAIN. by CHATR (or CIIAT). Even if your main program has a PROGRAM card
that uses some other name, MAIN. is the name that will be assigned by CHATR (or
CHAT). Thus, it is normally not necessary to tell LOD (the loader) where to
start. Conversely, it is ini:ippropriate to have more than one main program in
your binary files.

lf requested, the loader will also construct a symbol table, using any
available type-26 cards. The symbol table can be thought of as an elaborate
load map that tells not only where subroutines and common blocks have been
placed but where internal variables and labels have gone. The symbol table may
be placed in a separate disk file or may be in the controllee disk file
following the controllee. The symbol table is intended for use by such
debugging utility routines as DBUG, DBCTRL, and DOD.

As you recall, SSM is small. But, code can be executed only out of SSM;
LCM can be used only for LCM common block~. If you have a very large program,
it may not be possible to load every subroutine into SSM s.imultaneously. You
arc then forced to use a Let:lmique called overlaying. r'or example, two sets of
subroutines thal <:ire not needed simultaneously are grouped into separate code
blocks. The loader writes both code blocks to the controllee file. The two
code blocks are constructed in such a way that they must be read into the same
SSM space, but only one can be in SSM and executing at any instant. A resident
or level-1 code block must always be in SSM to control the reading of the
overlays from the controllee disk inlo memory. As it turns out, you can have
mor~ than two overlays, and overlays can call in higher-level code blocks. In
fact, LOD supports seven levels of code blocks, but you must be doing something
wrong if you think you need more than three levels. If you use ORDER, you will
see that it has control cards *MAIN, •OVERLAY, and *SEGMENT, which you can use
to define three levels of code blocks. You will also have to become familiar
with subroutine CHAIN in ORDERLIB, whic~ you will normally use to ask for a code
block to be reod iulo SSM.

The overlaying process and other esoteric options are too much to be
presented here. They are described in the LOD write-up, however, so we suggest
you look there first and then (NMFECC users only, please!) consult with the
NMFECC if you have problems. As an alternative to overlaying,·you might also
consider leaving all your data in disk files and running several controllees one
after another Lo accomplish the same task as a large, overlaid controllee.

-20-

Executing

All controllees have an attribute named FLLCM. This is the initial load
length or the number of words of the controllee, not counting the minus words
that the system will read into LCM when the file is first executed. FLLCM is
not written in the controllee; the system remembers it in a system table. LOD
determines FLLCM and informs the system. Sometimes this number gets lost, such
as when writing a controllee to FILEM and reading it back. In this case, FLLCM
is zero, which means the entire· file is to be read into LCM. This is usually
harmless unless the file is too big to fit into LCM. Utility routines COPY and
SWAT can be used to set t.hP. F'LLCM of a file.

There are two other LOD options worth noticing. One eliminates the images
of all LCM common blocks on tlisk. The second also.does this and, in addition,
eliminates numbered common in SSM if it is a single-code-block code and has
numbered common last. For multi-level codes, this option eliminates the space
on disk of that part of the SSM image that would have level-2 and higher-level
blocks. There are two reasons for these options. One is that LCM common blocks
cannot be data loaded (with DATA statements), and numbered common blocks in SSM
should not be data loaded; therefore, since the disk space they would occupy has
no information, it can be eliminated. The second reason is that higher-level
code blocks are stored on disk between the initial core image and the symbol
table if any. These loader options are often used to keep the size of the
controllee file at a minimum. The loader will set the FLLCM to the compressed
size. FLS and FLL in the exchange package will also be reduced; however, FLS
and FLL in words 16 (octal) and 17 (octal) of your program will be the sizes
actually required for execution. The first thing the program should do upon
starting is to create a dropfile large enough to hold the fully expanded
program. Then it should use the values of FLS and FLL in words 16 (octal) and
17 (octal) and ask the system to be allowed to expand to those amounts of space
in memory. Both of these steps t:c:ut be achieved easily by calling subroutine
ADJUST in ORDERLIB, which issues the appropriate system calls. If your program
is loatletl under the control of ORDER, the compressing, dropping to another file,
and expanding are done for you automatically, either by ORDER or by additional
code that it adds to your program.

You should be aware that you are allowed to reset your FLS and FLL while
you are running. Frequently, users place a single array in an LCM common block
and position that common block at the end of their field length. Initially, the
last word in the array (as determined by a DIMENSION) falls at the end of the
field length (i.e., FLL). However, by creating a new dropfile and then
increasing FLL (not exceeding the dropfile size minus 230 (octal) words), you
can increase the size of the last array; that is, you can use subscripts greater
than those declared at compile time. Adjusting FLL up and down is useful when
various amounts of storage are needed at different times. The idea is to keep
FLL as small as possible at all times because you are charged for the amount of
LCM you use and because smaller jobs are more likely to get into memory than
larger jobs al 1:1uy given pr1or1ty. Note, however, that adjusting FLS or FLL

-21-

always causes your code to drop to disk (a costly I/0 operation); therefore, do
not adjust field lengths unnecessarily.

Figure 1 shows how a controllee is laid out on disk. The symbol table is
optional and need not be present. It may be placed in a separate disk file.
The higher-level code blocks exist only for overlaid codes. Likewise, the space
within FLS where higher-level blocks will be read for execution exists only if
there are higher-level blocks. In Fig. 1, none of the loader options for
squeezing out unused space has been used. The space for code blocks in FLS and
common blocks in FLL is all zero. If you wish, you could use the controllee
file as a dropfile, since it is large enough to hold the image of the executing
program.

In Fig. 2, the unused space is eliminated. The compressed FLS a·nd FLL
shown are the ones in the exchange package. Your program can never reference
addresses beyond these. The FLS and FLL you actually need are written into
words 16 (octal) and 17 (octal) in the resident code block, and you must tell
the system to expand your
separate dropfile, since
enough) would destroy your

job in memory to these sizes. Also you will need a
dropping into the controllee file (if it were large
higher-level code blocks.

In the overlaying process, a fresh copy of the code block is always read
in. Code blocks in SSM are never written back out to disk. If a code block is
used a second time, there cannot be any variables in its subroutines that ~ely
on being set from a previous execution. Information that must be preserved from
one execution of a code block to a subsequent execution should be placed in a
common block, and the common block should be forced into a lower-level code
block.

A code block is a group of subroutines plus the common blocks they use that
have not yet been defined at a lower level. Figure 3 shows how a code block is
usually laid out. Subroutines with their internal variables come first,
f o 11 owed by al l t.he I abe I ed common b I ocks, f o 11 owed by the numbered common
blocks. On the load map, the name of a numbered common block is its number with
two dollar signs appended. Blank common is named 999999$$. For a Ievel-l code
block, you can data-load numbered common, but you shouldn't, because there is a
loader option to eliminate the image (and hence the data) of the numbered common
from the controllee disk file. There is another loader option used by ORDER
that asks for code blocks to be constructed with labeled common first, followed
by code, followed by numbered common. Under the default ordering as well as the
ordering used by ORDER, numbered common is at the end of the code block. If the
code block, furthermore, is at a higher level than 1, space will be allocated on
disk only for the code and the labeled common blocks. Therefore, you cannot
data-load numbered common in higher-level blocks.

As for LCM common blocks, the loader determines the amount of LCM space
required by the various possible combinations of code blocks; that is, it
determines how much LCM is required by the LCM common blocks in each combination
of code blocks and includes it in FLL. As is the case with SSM common blocks,
an LCM common block that is meant to be shared by two or more high-level code
blocks must be declared in a lower-level code block through which the high-level

-22-

....

0

0

0

FLS·

FLL

0

0

Minus words

Level-1 (resident) code block

Space for the largest
combination of code blocks
to be used

Space for LCM common blocks

Higher-level code blocks

.

Symbol table

Fig. 1. Controllee layout on disk, where unused space is i·ncluded.

,.... - Minus words

-. Level-l {resident) code block

FLS

Higher-level code blocks

.

""' - Symbol table

••

Fig. 2. Controllce layoul on disk, wl1ere unused space is eliminated.

Subroutines

Labeled common blocks

Numbered common blocks

Fig. 3. Code-block layout.

code blocks are called. For example, two level-2 code blocks know nothing about
each other's common blocks. If they are to share information, some subroutine
at Ievel-l must declare the shared common blocks. That way the shared common
blocks are allocated in the Ievel-l part of the LCM area. Otherwise each
level-2 code block would have its own version of the shared common blocks
somewhere in LCM, and the the locations of the shared blocks would in general
not be the same; that is, the two code blocks have different ideas of where in
LCM a given common block resides.

-23-

RGW/sv/lc

CONCLUSION

If all this seems somewhat complicated, we can assure you that it is!
Large-scale scientific computing is not for casual programmers. Successful
computing requires knowledge not only of the computational problem but of the
tools available and how to use them. Suitably sobered, you should next read the
treatise about preparing your first production code, in UCID-17557.

-24-

NOTICE

"This report was prepared as an account of work
sponsored by the United States Government.
Neither the United States nor the United States
Department of Energy, nor any of their em­
ployees, nor any of their contractors, subcon­
tractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness
or usefulness of any information, apparatus,
product or process disclosed, or represents that
its use would not infringe privately-owned rights."

NOTICE

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the
U.S. Department of Energy to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $; Microfiche $3.00

Domestic
Page Range Price Page Range

001 025 s 4.00 326 - 350
026 - 050 4.50 351 375
051 - 075 5.25 376- 400
076 - 100 6 .00 401 425
101 125 li .50 421i - 450
126 - 150 7.25 451 - 475
151 175 8.00 476- 500
176 200 9 .00 501 -525
201 - 225 9 .25 526 550
226 . 250 9.50 551 575
251 - 275 10.75 576- 600
'276 300 11 .00 601 - up
301 - 325 1 1.75

Domestic
Price

512.00
12.50
13.00
13.25
14.00
14.50
15.00
15.25
15.50
16.25
16.50

I

llAud S2 .50 fu r oach addninnal 100 pa~e increment fr om601 page> up .

• ""!

Technical Information Department
LAWRENCE LIVERMORE LABORATORY
University of California I Livermore, California 194550

