A Portable Machine-Independent Global Optimizer —

Design and Measurements

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

by
Frederick C. Chow

December 1983

© Copyright 1984
by

Frederick C. Chow

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.

7O Principal Adviser) 71

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.

' ‘ﬁedicine E‘C;m'p;ter Science)

1 certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy. ’

7] 7 7

Approved for the University Committee on Graduate Studies:

Dean of Gra@ate Studics & Research

Abstract

This dissertation addresses the topic of portable and machine-independent program opti-
mization on a standard, well-defined intermediate code. The feasibility, advantages and problems
of this approach of implementing an optimizer are discussed. We also look into issues on the
design of the intermediate code, and the features in the intermediate code needed to support
machine-independent optimization.

A number of new techniques in program optimization are developed. A concise and more
generalized method for performing copy propagation, and a new method to perform redundant
store elimination are introduced. The partial redundancy algorithm is formulated and general-
ized to strength reduction, thus cnabling common subexpression elimination, code motion and
strength reduction to be performed at the same time. The concept of partial redundancy in
stores is derived from partial redundancy in expressions and applied, in performing forward code
motion. Using these techniques, it is possible to integrate previously separate transformations
into common processes and have them performed together. As a result, it is possible to do all
common global optimizations in a small number of passes. This approach can also substan-
tially reduce the implementation complexities and running time of optimizers in general, with
no sacrifice in the optimizations performed.

A register allocation algorithm based on the coloring algorithm and suitable for use in the
machine-independent context is introduced. The algorithm performs well independent of the
number of registers available. A parameterization of register allocation cost and saving enables
us to catcr to the characteristics of different machines.

An implementation of the above optimization techniques in the machine-independent ‘opti-
mizer UOPT is presented. We look into the interactions between the different types of optimiza-
tions, and how the phase structures can be organized to take these interactions into account.
The optimization performance, efficiency and the relative importance among the different types
of optimization transformations are studied according to timing measurements, optimization
statistics and by variation in optimization parameters.

Finally, the effectiveness of portable machine-independent optimization on a number of
target machines that support the intermediate code is discussed, based -on optimization per-
formance data in the different machines and comparisons of machine characteristics. Intuitive
ways to predict the effectiveness of some types of optimizations with respect to specific architec-
tural features are furnished. The overall evaluation confirms the advantages of using portable,
machine-independent optimization in a retargetable compiler system.

iv

This thesis was submitted to the Department of Electrical Engineering and the Commilttee
on Graduate Studies of Stanford University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

This dissertation represents part of the programming language and piler develop ¢
work at Stanford University for the S-1 computer, under Contract No. 2213801 from the Laow-
rence Livermore National Laboratory. The dcvelopment of the S-1 computer is funded by the
Office of Naval Research of the U. S. Navy and the Department of Energy.

To my parents

Preface

.

The subject of program optimization has been dealt with in many text-books on compiler
construction as one aspect of the compilation process. It has seldom been treated in an iso-
lated manner, separate from the influences of other parts of the compiler and as a coherent,
self-contained piece of software. The development of the UOPT optimizer has provided the
opportunity to address optimization in such a setting. This thesis focuses on the subject of
machine-independent optimization in depth. Following a brief look into the design issues of
the intermediate code, a complete range of optimization techniques are covered in detail, from
algorithms to practical aspects of implementation. The integration of the various kinds of op-
timizations into a practical production optimizer is also addressed. The optimization topics
covered are concluded with a performance evaluation of the actual optimization results.

I first started on this work about three and a half years ago, when Gio Wiederhold and
John Hennessy first suggested to me the possibility of building a local optimizer on U-Code.
Later on, John Hennessy continued to guide me along in developing and implementing the global
optimizer UOPT. Before this, I have never thought that the comnlete task of implementing a
global optimizer can be handled by a single person. UOPT has set a pi'ecedent by showing that -
this is indeed possible.

I am very indebted to John Hennessy, for his excellent and continuous guidence; and to Gio
Wicderhold and Forest Baskett, for the advice they havc given me on numerous occasions. A
number of people have affected the outcome of this work, and I have benefited from interacting
with them. I wish to thank Peter Nye, who co-ordinated and standardized the software and
documentation of the U-Code environment at Stanford, and also implemented the DEC 10 code
gencrator; David Schnepper, who wrote the procedure integrator Pmerge; Per Bothner, who
brought up the 68000 code generator; Gregory Boyd and Steve Tjiang, who did the VAX code
generator; Chris Rowen, who implemented the MIPS code generator; Mahadevan Ganapathi
and Vivek Sarkar, who built the FOM code generator; and Wes Witte, who implemented the S-
1 code generator. I appreciate the companionships of Kyu-Young Whang and Edwin Pednault,
who shared my office during these years. This research has been supported by the S-1 project,
and my thanks also extend to all members of the S-1 project staff at Stanford and the Lawrence
Livermore Laboratory. i

Above all, I am grateful to my father and mother, for the care and support they have given
me all through the years. I dedicate this thesis to them.

vii

Contents

1 Introduction

11
1.2
1.3
14
15

Related Work

Background of This Work
Objectives and Contributions
Optimizations Performed
Organization of This Thesis

2 The Intermediate Code

21
2.2
2.3
24
2.5
2.6

Goals of Intermediate Languages

The Level of the Intermediate Code

The Form of the Intermediate Code .

Other Requirements . e e e
The Overall Corﬁpilation and Optimization Plan
The U-Code Intermediate Language

3 The Optimization Algorithms

3.1
3.1.1
3.1.2
3.1.3
3.14
3.2
3.3
3.3.1
3.3.2
34
3.5
3.6
3.6.1
3.6.2
3.6.3
3.7
38
3.8.1
3.8.2

_ Local Optimizations .

Value Numbering .

Local Copy Propagatibn -

Stack Height Reduction

Constant Arithmetic o

Overview of Global Optimization Strategy

Boolean Attributes for Global Optimization .
Local Data Flow Attributes
Global Data Flow Attributes .

Copy Propagation . .

Redundant Store Elimination .

Code Motion . e,
The Partial Redundancy Suppression Algorithm
Implementation Notes .

Observations . .

Reduction of Operator Strength

Induction Variable Elimination

Linear Function Test Replacement-

Finding and Eliminating Redundant Induction Variables .

viii

® O W

11

13
13
14
15
19
20
22

25
25
28
27 -
28
30
32
34
34
37
39
41

45
51

&EES

61

3.9
3.10

3.10.1
3.10.2

3.11

CONTENTS

Optimization of Store Positions .
Global Optimization of Saves .
Determination of Saved Computations

Optimization of Saves by Flow Analysis
Summary

4 Register Allocation

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5
5.1
5.1.1

5.1.2.
5.1.3

5.2
5.3
5.3.1
5.3.2
5.4
5.5

Limitations

Assumptions and Overview
Cost and Saving Estimates .
Local Register Allocation
Control and Data Flow Analysis

Global Register Allocation by Priority-based Coloring

Optimization of Register-Memory Moves .
Summary

Organization and Structure

The Optimization Phases
Underlying Principles .
Relationships among the Phases
The Actual Optimization Phases
Timings of the Optimization Phases
Data Structures e e
Data Structures for Global Optimization
Data Structures for Register Allocation
Collection of Data Flow Information
Effects of Procedure Integration

6 Performance Evaluation .

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4

Analysis of Optimization Performance
Analysis by Statistical Counts
Analysis by Partial Optimization

Effects of Optimization Parameters N
Number of Registers Availabie to the Optimizer
Changing the Register Move-Cost .
Effects of Bounds-Checking

Characterization of Machines .

Optimization Results in Different Machines

ix

62
65

68

70
70
72
73
75
7
79
84
87
%
88
89
91

98
99

100

. 102

108

. 108

108

. 109

113

117

117

. 118

120

. 122

123

CONTENTS

6.5 Effects of the Optimizations on Machine Code
6.6 Relation to Machine Characteristics .
6.7 Additional Remarks .

7 Conclusion
7.1 Concluc..g Overviews
7.2 Suggestions for Further Work

References .

Appendix A: Short Guide to U-Code .
Appendix B: Notes on programming Data Flow Analysis . .
- Appendix C: Hints on Writing Programs that Cater to Optimization
Appendix D: What the Compiler Front-ends Should Do .
D1 Pascal Front-end .
D2 Fortran Front-end .
Appendix E: Examples of Optlmlzed Machine Code .
" E1 U-Code
E2 DEC 10 .
E3 68000 . .
VAX .
MIPS .
E6 FOM
E7 S5-1

. 125

133

. 134

136

. 136 .

137

. 139

145

. 153

155

. 157

157

. 158

159

. 159

162

. 163’

165

. 167

169

. 171

1. Introduction

Lowering software cost has been one of the main concerns among somputer professionals
ever since the use of computers. In the software world, compilers have been among the most
important and prevalent pieces of software. In the last decade.. newly emerging machine ar-
chitectures, coupled with the need to support the growing number of programming languages,
have made it increasing important to systematize and automate the construction of compilers
for the purpose of shortening new compiler development time and reducing the cost of construc-
tion and maintenance. The conventional approach to compiler construction has been to build
a separate compiler for each programming language and machine combination. This results in
language and machine dependencies being spread throughout the compilers. Algorithms and
code structures that are common to the compilers are duplicated in each implewnentation. For
a given programming language, the individually-developed compilers often create incompatibil-
ities across different machines. For a given machine architecture, the different programming
languages supported may not be able to reflect uniform hardware characteristics due to the

completely separate compiler implementations.

Much of the work on portable compilers has involved the use of intermediate code. Using
a standard intermediate representation for a programming language enhances the portability of
the langnage. This also makes pussible the division of compilers into front-ends for lexical and
syntactical analysis and back-ends for code generation. An intermediate language can be made to
act as the common interface between the language-dependent front-ends and machine-dcpendent
back-ends of a compiling system. By using a single intermediate form, (p x m) compilers can be
replaced by p front-ends and m back-ends. This also helps ensure the machine-independence of

the source languages and language-independence of the code generators [Stee61].

With the use of intermediate code, compiler automation can be applied to the front-ends
and back-ends separately. Rescarch into automating the process of parsing program text into
intermediate representations has resulted in the successful construction of parser generators that
are now in common use. Using these translator writing systems, it is sufficient to specify the
grammar of the source language. The syntax analyzers construct tables from syntax descriptions
and use the tables to drive program analysis. Recently, attention has been turned towards
automating the code-generating back-ends, and retargetable code generation has become an
increasingly important area [Grah80] {Gana82]. Using modular approaches to code synthesis,
these code portable generators are parameterized with respect to machine descriptions. By
giving them different sets of machine parameters, the code gcnerhtors can be adapted and

retargeted to produce code for different new machines.

1

1. INTRODUCTION

Programming
Language 1 _'>
Programming E
Language p

Fig. 1.1 Use of intermediate code in a compiling system

When a common intermediate form is used, there exists the opportunity to construct pro-
gram optimizers that use the intermediate form as their input and output languages. Optimiza-
tions can be divided into machine-independent optimizations and machine-dependent optimiza-
tions. Since machine-dependent optimizations take full account of the instructions and hardware
features of the underlying machines, they are usually performed by code generators, and the
transformations are mostly confined to local regions of the program code. Machine-independent
optimizations, if performed independent of the code generators, can be made zvailable for all
target machines. By doing machine-independent optimizations on the intermediate code, the
optimizations can be made independent of the source languages as well, at least to the extent
that the intermediate code is language-independent. Intermediate forms of progra_xh code have
often been used for optimization purposes in classical monolithic compilers [Aho77]. In spite of
this, conventional optimizers depend a great deal on other parts of the compilers and are not
capable of independent existence, even if the optimizations performed are independent of the
target machines.

In this thesis, a self-contained global optimizer on a machine-independent intermediate
language is presented. Compiler front-ends translate source programming languages to this
intermediate language; called U-Code. The optimizer inputs the intermediate program code,
performs- machine-independent optimizations and outputs an optimized version of the program
in the same intermediate language. The code-generating back ends will translate the inter-
mediate code to target machine code. The result is a portable compiler module performing
machine-independent optimizations. By existing independently of any front-end and back-end,
its applicability across multiple machines and source languages is guarantced. Apart from
widening its usages, this approach also climinates the nceds of the front-ends and back-euds to

attempt optimizations that have been performed by the optimizer, enabling them to specialize

2

1. INTRODUCTION

and concentrate on their forms of processing. This contributes to modularity and clarity of
interface among the various components of the compiler system. Fundamentally, this approach
also makes code optimization an easily affordable and available facility in program translation

environments that use the same intermediate code.

1.1. Related Work

The importance of code optimization has been recognized since the days of the first Fortran
compilers. The loss of object code efficiency has been inherent to high-level language program-
ming. Most programming language compilers do some forms of code optimization, although the
extents tc vhich they perform optimization differ widely. They usually incorporate their own

sets of well-defined, limited transformations to improve running times for most executions. The

term optimizing pilers refers to compilers that perform more substantial code optimization
in the compilation process. In recent years, as the use of compiler-compilers gradually becomes
entrenched and retargetable code generation begins to gain wide acceptance, the need to apply
the same idea of retargetability in the construction of optimizers is recognized. In this section,
we survey optimization-related works which display the built-in capability of being transportable
and machine-independent.

The Production-Quality Compiler-Compiler (PQCC) Project [Leve79] at Carnagie-Mellon
University has as its goal the building of a truly automatic compiler-writing system. PQCC ex-
tends compiler-compiler techniques in parser generation to include the production of optimizers
and code generators. The system operates from descriptions of both the source languages and
the target computers. Tables arc generated from the language and machine descriptions and
used to guide the operation of the skeleton compiler. Both machine-independent and machine-
dependent optimizations are performed. In the czse of machine-dependent optimizations, at-
tempts were made to parameterize optimization techniques so that they can be moved from one
target machine to another by changing only the set of tables describing the machines. The com-
piler is divided into a number of phases which operate serially. This allows the decomposition
of the PQCC into manageable portions. The different phases do not rely on each other for their
operations, and can run in stand-alone modes. A uniform intermediate representation is used
as input and output for the machine-independent i)ha.scs. Machine-independent optimizations
performed are code motion and elimination of redundant computations and various local opti-
mizations. Register allocation, code selection, peephole optimizations and other optimizations
requiring detailed knowledge of the instructions are performed on a linear form of code that

retains only minimal target machine independence in the final phases.
The PL.8 compiler project of IBM [Ausl82] accepts multiple source languages and produces

3

1.1. RELATED WORK

high quality object code for several different machines. It divides the compilation process into
translation, optimization, register allocation and final assembly. Optimization is further parti-
tioned into as many indcpendent operations as possible to make them reliable and easy to imple-
ment. Each optimization is repetitively performed because one may pro;ide new opportunities
for another. A low level intermediace language is used whose semantics matches the computa-
tional semantics of the limited set of target machines, and whosé level is low enough to expose
all instructions that will be executed on the target machines. Global optimization and register
allocation are performed on this code, and further optimization on the machine-code level for in-
dividual machines is unnecessary. The intermediate language is partly machine-dependent, and
is at a lower level than some of the target CPU’s. The compilation and optimization methods
are biased towards machines with regular and simple register-register architectures.

The Experimental Compiling System (ECS), also undertaken at IBM [Alle80], uses a new
compiler construction methodology [Harr76] in which compilers for a variety of source languages
and target machines can be developed. Language semantics is specified by writing defining pro-:
cedures which take the place of code generators and code macros. Programs together with the
defining procedures are expressed by a single program schema, called IL, which can represent
programs a; different levels cf semantics in the compilation and optimization processes. As a
result, an optimizer can be constructed which deals with several levels of expansion of a pro-
gram. High-level code is expanded to lower-level code via procedure integration, and analysis
and optimization are then used to tailor code to its particular context. The system permits
varying degrees of optimization by repeated application of procedure integration and an exten-
sive collection of machine-independent optimizations. A primitive language version of the IL is
produced which reflects the operations of the target machine. A final machine tailoring phase
generates the target machine code.

The Universal Compiling System (UCS) [Gyll79] at Sperry Corp. is a unified compiling
system for a set of languages and architectures. Through the use of an intermediate text and
symbol table, source language dependent processes are separated from architecture dependent
processes. A common global optimiier is used between the front-ends and back-ends.

The MUG2 compiler generating system at the Technical University of Munich [Wilh81] is
an effort to produce optimizing compilers from laxfguage and machine descriptions. Description
tools and generators for multi-pass semantic analysis, code optimization and code generation
are offered. The description tools can completely describe optimization passes like global data

analysis, constant propagation and foldixig and invariant code motion from while loops.

The Amsterdam Compiler Kit (ACK) [Tane83)| is a compiler-building system that consists of

a number of parts th:at can be combined to form compilers with various propertics. The tool kit

4

1.1. RELATED WORK

consists of eight components: the preprocessor, separate front-ends, the peephole optimizer, the
global optimizer, the back-end, the target machine optimizer, the universal assember/linker and
the utility package. The front-ends output an intermediate code, which is the machine language
for a simple stack machine called- EM. The peephole optimizer and the global optimizer perform
machine-independent optimizations on this intermediate code. The peephole optimizer [Tane82]
is driven by a pattern/replacement table that specifies how specific patterns of instruction
sequences within a window can be replaced by more efficient cnes This optimization process
involves only pattern matching and substitutions. The global optimizer examines the program as
a whole and performs morc cxtensive transformations. The back-end target machine optimizer
and universal assembler/linker are driven i)y machine-dependent driving tables, which tell how
the EM code is mapped onto the target machine’s assembly language. The target machine
optimizer performs optimizations involving idiosyncracies of the target machine that cannot be
included in the EM-to-EM optimizers.

The target-independent optimizers described above have been developed as built-in compo-
nents of large, comprehensive compiler-generating systems, and they can only operate in their
specific program translation environments. There are other target-independent optimizers which
exist in more distinct fashions-from the front-ends and back-ends and whose modes of operation -

are more independent. The types of optimizations they perform are more limited in scope.

In [Frai79], a source- and target-independent code optimizer is described which uses an
intermediate language in the forin ot N-tuples. The optimizer performs only local expression
optimization and common subexpression elimination. The principal role of the optimizer is
in gathering information about operand usages in a target-independent manner which enables
the target-dependent code generator to fold constants, avoid redundant loads and stores, and
perform more efficient register allocation. -

A retargetable peephole optimizer, PO, is presented in [Davi80] which performs peephole
optimization on object code. Given an assembly language program and a symbolic machine de-
scription, PO simulates pairs of adjacent instructions and, wherever possible, replaces them with
an equivalent single instruction. It can be easily retargeted by changing machine descriptions.
It can serve to supplement machine-dependent optimizations performed by the code generators
which can be locally optimal but may be suboptimal when juxtaposed. This results in a further
division of labor in the code generation phase which can simplify the code generator.

OPTIMA [Wilk83] is another portable optimizer on an intermediate code — the Pascal
PCODE. It outputs QCODE, which is a portable code for a machine that retains the stack
configuration bul is generalized to exhibit memory areas and a parameterized number of general-

purpose and floating-point registers. OPTIMA performs only local optimizations. The first

5

1.1. RELATED WORK

stage transforms PCODE by the pcephole optimization method which is also table-driven. The
output is saved in a doubly-linked list of tuples which represents the PCODE in triple forms and
includes other information needed for later optimization and code generation. The second stage
operates on the tuples generated to perform optimizations in array element offset computation
and eliminate locally redundant operations. The third stage performs register allocation and
generates the output QCODE. The second and third stages use machine descriptions in their
processing. The output QCODE is translated into assembly code of target machines by macro
expansions.

The portable C compiler [John78] also contains a limited number of machine-independent
optimizations and some register-related optimizations that have to be adapted when porting to
new machines. '

The UCSD Machine-independent Pascal Code Optimization project [Site9] set out to build
an optimizer that performs ;)ptimization on standard Pascal P-Code. In the process, they defined
the Universal P-Code (U-Code) which is designed specifically to include enough information
for optimization purposes. Though ideas were presented for implementing the optimizer, the
implementation was never completed, but portions of the results do demonstrate the feasibility
and practicality of optimization on U-Code. The intermediate language used by the global
optimiier presented in this thesis is based on the U-Code as originally defined by the UCSD
group. :

1.2. Background of This Work

This thesis research was undertaken as part of the Stanford U-Code Compiling System.
This system was originated as the software project to develop programming language support
for the Stanford-1 (8-1) multiprocessor architecture being developed at the Lawrence Livermore
Laboratory [Hail79] [Livi83]. The project involves the support of standard Pascal and the writing
of a Fortran compiler that implements the Fortran66 Standard [Chow80]: In the process, the
Pascal P-Code was adopted as the intermediate code common to both Pascal and Fortran, and

a common code generator was written that translates P-Code to S-1 machine code.

Later, the UCSD Machine-independent Pascal Code Optimization project was undertaken.
The S-1 was then intended as one of the beneficiaries of the optimizer that was to be built.
As the UCSD group went on to define the U-Code language to be used as the medium of their
‘optimizer, the Stanford S-1 project began to adopt U-Code as the intermediate code. The
UCSD optimization project was not able to reach completion [Site79b]. As a result, the author

of this thesis undertook the independent project to build an intermediate code global optimizer

6

1.2. BACKGROUND OF TIiiS WORK

at Stanford. The content of this thesis, together with the production optimizcr UOPT, represent
the bulk of this work.

In the meantime, the U-Code Compiling System at Stanford began to enlarge in scope. The
Pascal front-end was cxtended to Pascal* which expands the features supported and enlarges
its capability [Henn82b]. The Fortran Compiler was extended to support Fortran77. A front-
end that translates a subset of C to U-Code was also implemented. A procedure integrator
for U-Code was implemented separately; when invoked as a pre-pass for UOPT, the procedure
integrator can allow the intra-procedural optimizations of UOPT to extend beyond the procedure
boundaries of the original programs. The Stanford Retargetable Code-Generation Project was
started. The goal of this project is to build a code generator using a code generation skeleton
and scheme such that the code generator can be ported to a different machine by just rewriting
a small portion of the code. To take advantage of retargetable code generation, the S-1 code
generator was rewritten using the retargeting methodology. Code generators for the DEC 10
and VAX, the host computers where most of the compilers were constructed, have also been’
written for testing and demonstration purposes, and will eventually be adopted as the resident
compilers. As part of the Stanford University Network (SUN) project, a MC68000 code generatof
was also written for the SUN Work Station. A code geneiator is being developed for the MIPS
Microprocessor Pi‘éject at Stanford [Henn82c] [Henn83‘]. A code gencrator for the Fortran
Optimized Machine (FOM), an experimental architectural project at IBM [Bran82], is also
being undertaken at Stanford [Gana80]. An accompanying product of this latter project is'a
code generator for the IBM 370. The MIPS, FOM and 370 code generators are not related to
the retargetable code gencrator project, although they use U-Code as the input intermediate
code.

The U-Code compiling system at Stanford [Nye83| is a portable and retargetable compiler
project which has goals similar to those of the various projects surveyed in Section 1.1. What
distinguishes this project from others is that the U-Code intermediate language together with
its related software facilities are the only connecting links among the various components of the
system. We do not attempt a large system that is so integrated that the various components
could not work independently when taken out of the system, and so extensive that the whole
system is hard to install, maintain and modify. Instead, the different components of the sys-
tem are separately implemented, the only requirement being that they conform to the U-Code
standard. The separation also means that modules of the system can be optionally run on
any given compilation. Since U-Code is a well-defined and popular intermediate language, it is
only necessary for a new installation to nse the same U-Code in order to be able to make use

of the different software provided in the compiling system. Thus, the restrictions imposcd by

7

1.2. BACKGROUND OF THIS WORK

the different components of the compiling system are minimal. New front-ends, back-ends or
middle-ends can be frecly and independently implemented whenever the needs arise. The whole
system is simple and modular. We think that this approach can result in a greater degrec of
acceptance of our software by outside sources, and may also lead to eventual popularization and

standardization of a single intermediate code in program compilation.

1.3. Objectives and Contributions

This dissertation deals with the design of a machine-independent optimizer. While the
optimization output of the optimizer is machine-independent, the optimizer is also portable
in that it is operational under a wide range of dissimilar compilation and operating system
environments. The portability attribute dictates that the optimizer must be able to operate in
a stand-alone mode, independent of the front-ends and back-ends. Mor2over, this self-contained
characteristic makes it unnecessary to recode the analysis and optimization parts of the optimizer
several times for the purpose of exhaustive optimizations. The optimization pass can be re-run
as many times as desired.

A key to the portability' of the optimizer is the fact that it performs optimization on
an intermediate language and outputs the optimized code in the same intermediate language.
The presence of the optimizer as a middle pass in the compilation sequence should not have
substantial impact on the front-ends for them to specifically accommodate its presence. The
code generating back-ends should have to do little, if any, to initially take advantage of all
the optimizations done by the optimizer. Apart from contributing to clean interfaces, this also
serves to ensure that the performances of the front-ends and back-ends will not suffer if the user
selects not to use the optimizer in his compilation. In practice, few code generators are perfect
in being able to handle all kinds of input intermediate code sequences well, and nearly all code
generators have some built-in expectations of the kinds of code sequences they see most often.
After the optimizer has been accepted as the middle pass, the code generators can be gradually
made to utilize specific optimized code constructs to their full advantages.

Since the optimization medium is an intermediate code, emphasis is not placed on machine-
dependent optimizations, which are better done in the code generation phases. On the other
hand, a main goal in this ‘thesis is to include as many useful machine-independent optimizations
as possible in the portable optimizer. These include all common local and global optimization
transformations. Register allocation; which is slightly machine-dependent, is included since this
can take advantage of the global flow analysis performed in the optimizer. All these optimizations

are integrated together so that they can take advantage of each others’ results.

8

1.3. OBJECTIVES AND CONTRIBUTIONS

Optimization techniques have developed and appeared in the literature for more than a
decade. The most common optimizations consist of different transformations that bear little
relationship to each other. In conventional program optimizers, these transformations are imple-
mented and performed separately, often by case analysis of the program text. This conventional
approach, though easily comprehensible,‘ creates great program complexities in the implemen-
tation effort due to the different naturc of the various optimizations and the large number of
special cases to be taken care of under each category. The whole optimization process is often
broken down into a number of separate passes and filters in order to make the optimization
effort manageable, but this usually seriously degrades the optimization speed.

The global optimization approach presented in this thesis represents a departure from
conventional global optimizer designs, and is another contribution of this thesis. Central to
our global optimization framework is the use of the partial redundancy elimination algorithm
as the underlying theme. The goal is to shift as much processing as possible to the data flow
analysis phases. Apart from simplifying the individual program transformation processes, our
approach also makes possible the identification of previously separate global optimizations as
being special cases of some common processes. As a result, the optimizer is able to do all
common global optimizations in a small number of passes. This approach leads to a reduction
in program complexities and implementation efforts compared with conventional techniques.
The result is a closely-knit, concisely implemented global optimizert that is also fast compared
with conventional optimizer doing the same optimizations. These optimization techniques are
applicable to global optimizers in general. By implementing these new techniques, the machine-

independent optimizer providcs a working-model that can be followed by other optimizers.

Register allocation is another area where a new approach is tried in this thesis. We have de-
signed a register allocation scheme for use in the macliine-independcnt context. We introduced
a parameterization of the cost and saving in register allocation that can cater to the character-
istics of different machines. No constraint is imposed on the front-ends. The register allocation
algorithm is a combination of a local method based on usage counts and the global method that
uses priority-based coloring. The relative importance of the two can be varied. The algorithm
is cfficient and yields reasonable solutions with most target machine register configurations.

As a compounent in a retargetable compiling systemn, the optimizer provides the opportunity
to study the effects of the same optimizations on different machines. The optimizations in UOPT
are performed without specific target machines in mind. It is expected that the percentage

improvements in execution spceds of the same optimized programs will differ among machines.

t UOPT is written in 13000 lines of Pascal code.

1.3. OBJECTIVES AND CONTRIBUTIONS

We offer interpretations for some of the differences in performance based on evaluations of
machine characteristics, and we also provide some intuitive ways to predict the effectiveness of

some types of optimizations with respect to specific architectural features.
A)

Apart from these, the machine-independent optimizer also plays a role in supporting archi-
tectural experimentation. Using the data on optimization pei'formances on diiferent machines, it
is possible to determine the machine characteristics that can best.beneﬁt from the optimizations
performed. Efforts can then be made to design machine architectures which will exhibit superior
performance in a compilation environment that provides intermediate code optimization, much
as architectures have been developed with particular programming languages or code generation
techniques in mind. Such investigations can have an impact on the evolution of future machine
architectures.

1.4. Optimizations Performed

The global optimizer presented in this thesis, UOPT, performs most standard local and
global optimizations. It operates on a procedure by procedure basis, and performs all bit-vector
data flow analyses short of inter-procedural analysis. A separate procedure merger can be used
as a pre-pass to perform procedure integration. ’

Apart from decad code elimination, there is not any optimization that changes the control
flow structure of the program. The fact that the control flow graph does not change during
optimization simplifies the internal structure of the optimizer. Apart from the computation of
loop-nesting depths for register allocation, none of the optimizations performed requires detailed
control flow analysis. The following is a list of the optimizations included in UOPT:

1. Stack height reduction in expression evaluation.

2. Constant propagation.

3. Constant expression evaluation.

4. Address collapsing in array expressions.

5. Dead code elimination.

6. Copy propagation.

7. Common subexpression elimination.

8. Loop-invariant expression optimization.)

9. Partial redundancy suppression by backward code - otion.
10. Loop induction expression optimization (strength reduction).
11. Linecar function test replacement and induction variable elimination.
12. Redundant store elimination. '

13. Dead variable elimination.

10

1.4. OPTIMIZATIONS PERFORMED

14. Partial redundancy suppression by forward code motion.
15. Optimization of positions to save computations in temporaries.

16. Global register allocation and assignments.

Program optimization aims at improving the execution speed and reducing the code space
and storage requirements. In some transformations, conflict exists between these two objectives
in that one can be fulfilled only at the expense of the other. The main objective in UOPT is
to optimize running time. In some cases, code sections are duplicated and re-introduced with
the effect of increasing code speed while sacrificing code space. These occur especially in partial
redundancy suppression and some loop induction expression optimizations. Register allocation
actually introduces extra register transfer instructions that would not otherwise be present in
the program. Some of these new code may not be reflected in the fnal object code alter the
code generation phase. We have not included any transformation that optimizes only space.
The most important code space optimizations can be efficiently done in the code-generating

back-ends on the machine instruction level, since the optimizations are mostly local in nature.

1.5. Organization of This Thesis

The remainder of this thesis is divided into six chapters.

Chapter 2 cxamines issues in the design of intermediate languages from the point of view
of supporting and expressing machine-independent optimizations. Important features of the
intermediate language U-Code, the medium of optimization in this t_hesis, are also presented.

Chapter 3 covers the optimization methods. Some new optimization algorithms are formu-
lated. The theories and motivations behind them are presented, together with explanations as

to how they represent improvements over traditional optimization techniques.

Chapter 4 discusses the feasibility and limitations of performing register allocation and
assignments at the intermediate code level. The coloring algorithm is modified and adapted
for use in the intermediate-code environment of UOPT. The register allocation algorithm is
presented, and issues related to performances, efficiency and implementation comnplexities are
discussed.

Chapter 5 addresses the more practical aspects in the overall design, organization and im-
plementation of the UOPT as a production optimizer. The interactions between the different
types of optimizations are examined, and a specific order for performing the various optimiza-
tions is developed. Some data on the exccution, time requirements of the optimization phases are

given. The optimization data structures in UOPT are presented. The actual methods used for

11

)
1.5. ORGANIZATION OF THIS THESIS

the collection of data flow information are exainined. The effects of using procedure integration
prior to cntering UOPT are also discussed.

Chapter 6 evaluates the performance of UOPT, with respect to the optimizations performed
and their effects on different target machines. Data on the contributions to overall performance
of the different types of optimizations are presented. This indicates the relative importance
of the various optimizations. We also study how optimization performance can be affected
by some program and machine parameters. The effects of the common optimization results
on a number of target machines with different machine characteristics are studied and com-
pared. The machines considered are the DEC 10, 68000, VAX, MIPS, FOM and S-1. Mecans
for predicting the effectiveness of some types of optimizations on different machines based on
architectural features are developed. The overall evaluation serves to indicate the benefits of
portable, machine-independent optimization in a retargetable compiler system. '

Chapter 7 gives some concluding remarks, and suggests areas for further work.

12

2. The Intermediate Code

The use of intermediate languages in program translations has received increased attention
in recent years [Chow83a]. Intermediate languages have traditionally been used to bridge the
semantic gap between high-level source languages and low-level target code. Later, intermediate
languages were defined as aids in the bootstrapping of self-com;;iling compilers into host ma-
chines [Amnma?75|. An interpreter, written in a language already available in the host machine,
is used in the initial bootstrap phase. Once the interpretive language processor is available, the
front-end together with the code-generation parts are rewritten in the language of the compiler.
The interpreter can also serve to enhance the portability of the front-end compiler by standardiz-
ing the definition of the intermediate language [Bush79]. Present-day parser-generators output
the results of syntactic analysis in the form of some symbolic representations. Retargetable
code-generators use intermediate code as the starting points for generating object code.

The intermediate language used in a compiler system affects its portability, compilation and.
code generation efficiencies, and the source languages that can be supported. Its role as the in-
terface between the machine-independent front-end and the machine-dependent code-generating
back-end has a tremendous impact on the overall design of the different components of the sys-
tem. .When we include pfogram optimization in the picture, the choice of the intermediate code
becomes all the more important. The intermediate code affects the optimizations performed, the
means of expressing the optimization results and the optimization efficiency. The portabi}it&,
source- and machine-independence of the optimizer also depend on these same aspects of the

intermediate code.

2.1. Goals of Intermediate Languages

Since the intermediate code affects so many different aspects in a compiling system, the
following set of possible goals can be considered in designing and choosing an intermediate
language:

1. The intermediate language should be able to support as many source languages as possible.

2. Interpretation of the code should yield the correct computational result without knowiedge
of the programming language origin of the code. All language operations should be clearly
and explicitly expressed. ’ ')

3. It should contain only a small number of op-codes and constructs for uniform representation

of differing language semantics and source level constructs.

13

2.1. GOALS OF INTERMEDIATE LANGUAGES

4. It should be in symbolic form, with no machine-dependent representation of computation

whenever possible. For example, real constants should be represented as character strings.

5. It should have a simple and uniform syntax, and program representation should be compact.
The context should not contain special declaration sections. Complete program information
should be reflected in the code itself. Symbolic names and declarative information, if needed,

should be put in separate symbol table files.

6. It should include information useful in optimization and code generation if the information
can be gathered from the source code.

7. There should be maximum exposure of computations for purposes of optimization. .

8. It should introduce no ambiguity in the control flow and data flow information to be col-
lected. Such ambiguity sometimes comes from the certain characteristics of the source
languages, and should be resolved by the compiling front-ends.

9. There should be some presence of the concepts of memory hierachy, including registers, to
reflect storage structures in real machines.

Obviously, no single intermediate language is superior to all others in terms of meeting the "
above goals. Moreover, some of the above goals are hard to satisfy fully in the real world. Some
arbitrary design decisions may lead to different language definitions. In the following, we discuss
the important criteria from the point of view of performing machine-independent optimization.
We limit our consideration to algebraic languages (Pascal,'Fortran, C, etc).

2.2. The Level of the Intermediate Code

Program optimization can be performed at different levels of program code in the program
translation process. At the high level, there is program optimization by source to source trans-
formation [Schn73] [Palm75| [Love76] [Arsa79|. At the lower end, optimization is performed on
the target machine code. The optimization at the low level usually involves using many machine
parameters, and is highly machine-dependent. Most code generators perform some degree of
target code optimization.

While it is possible to perform machine-independent optimization at any level of program
code, an intermediate code level midway between the source and the target code has been the

predominant choice. The main reasons are:

1. Source and target independence: Optimization at the source code level is langnage-
dependent. Optimization at the target code level is machine-dependent. Optimization at

the intermediate code level can be both language- and machine-independent.

14

.

2.2. THE LEVEL OF THE INTERMEDIATE CODE

2. Visibility of optimizable code: Source languages usually contain language implemen-
tation details which are inaccessible at the source code level, and can only be optimized
after the high-level operations have been expanded into lower-level code. For example, off-
set computation in array references cannot be optimized at the source level. Also, similar
source level text may convey different underlying operations. For example, the same sym-
bolic variable name can specify both direct or indirect memory references. In general, the
lower the level, the more opportunities we can find for performing optimization. But if the
level is too low, machine characteristics creep in. Also, low-level machine details obscure

the collection of information needed to perform optimization.

3. Number of code constructs: Source languages contain numerous high-level constructs
which can be broken down to a much smaller number of low-level constructs. At the
intermediate level of code, the optimizer only needs to deal with the limited number of
intermediate level constructs. For example, computed GOTO statements in Fortran are
represented similar to CASE statements in i’ascal. Within the same source language, different
loop constructs can be unifornily represented using jumps at the intermediate code level.
At the target code level, the number of constructs again increases due to the instruction
repertoire of the machine.

Pei-forming machine-independent optimization on the intermediate code level does have
limitations. Procedure invocations, manipulations of the display, various accesses via static and
dynamic links cannot usually be optimized since the runtime organization is invisible at the

intermediate code level.

With intermediate code, it is sometimes necessary to cxpress the presence of computed
quantities (temporarics) that need not exist when realized in the code of the target machines.
This is because machine instructions may contain constructs ‘moro complex and high-level than
the intermediate code. For example, address computations can be implicit in many addressing
modes. Boolean evaluation often automatically sets the condition code that can be used to
advantage in condicional jumps. Some data type conversions may cortespdnd to no-op in some
underlying machines, but this cannot be assumed on the intermediate code level. These are

limitations we have to live with under the context of target-independent optimization.

2.3. The Form of the Intermediate Code

In this section, the different forms of intermediate code are considered with respect to their
impact on optimization. Intermediate representations generally fall into one of the following

three classes:

15

2.3. THE FORM OF THE INTERMEDIATE CODE

1. Tuples: This class comprises quadruples, triples, indirect triples (Section 7.6 of [Aho77])
and n-tuples [Frai79]. Indirect triples are triples with one level of indirection, in the form

of a list of pointers to the triples, to provide ﬁe)dBﬂity in moving statements around.

2. Trees: They are usually associated with program graphs that represent the program state-
ments and convey the overall program structure. Dirécted.acyclic graj)hs (DAG), ie. a
group of trees with shared sub-h"ees, is also included under this category, since they belong
to an optimized form of trecs.

3. Linear representations (expressions): This class comprises the reverse Polish (prefix), the
standard Polish {postfix) and the infix notations. Infix has the disadvantage of requiring

the use parentheses, and is mainly suited for human comprehension.

To provide adequate program representation, the above classes do not exist in the pure
form, because of the fact that special operations need to be specified at different points in the
code. For example, jumps, function calls and other control constructs have to be allowed in the:
middle of an expression.

Some intermediate languages are in the form of an assembly code for an abstract machiné,‘
which may be a stack machine or a general register machine. We do not specifically consider
these intermediate forms, since they either correspond to one of the above classes or are too

low-level to be regarded as general intermediate representations.

We now want to consider whicix of the above forms of code are logically equivalent. Two
forms of code are logically equivalent if a representation in one form can be frecly converted to
a unique representation in another form. Let us consider these forms under two different levels
of representation requirements — without DAGs and with DAGs.

If we do not include DAGs in our consideration, then, with the exceptions of quadruples, all
the above forms of code can be shown to be logically equivalent. The reasonings are as follows:

- Given a tree structure, the corresponding postfix can be formed by a post-order traversal
of the tree, writing out the symbol for each node during the traversal. Similarly, the prefix
form can be formed by a pre-order traversal of the tree, and the infix form can be formed by
an in-order traversal, though in the latter case, parentheses need to be written out at every
internal node. Conversely, given either postfix, prefix or infix notation, the corresponding
tree structure can be formed. Such a process is similar to the parsing done by a syntactic

analyzer according to the grammar specified.

- In the triple or indirect triple representation, each triple eni:ry consists of an operator

and its two operands, which can be regarded as representing an internal node of a tree. If

16

2.3. THE FORM OF TIHE INTERMEDIATE CODE

An operand is a lecaf, the variable or constant is directly named. If the operand is another

subtree, then it points to the entry for the internal representing the root of the subtree.

- N-tuples is a generalization of triples by enabling the specification of an arbitrary number
of operands to be combined by the same operator. An N-tuple can be converted to a set of

triples, and thus can be converted to and from trees.

~ Quadruples are not logically equivalent to the others because they involve the definition
of many temporary names which do not exist in the other representations. The extra
information contents residing in the re-uses of the temporaries make quadruples different
from the other forms. But if we impose the restriction that cach temporary can be defined
only once, then we in effect convert the quadruples to the triple representation.

Program flow graphs can be represented correspondingly in any of the above forms. These
are usually in the form of jump instructions or pointers, depending on the context. We regard
binary trees and program flow graphs as the canonical representation, since it is the easiest to
visualize, analyze and manipulate.

At the second level, we require that the code also represents DAGs. In this case, only trees
and triples (direct or indirect) are equivalent. The reason the rest are not equivalent to trees is
as follow: :

- To represent DAGs in postﬁx.and prefix, it is necessary to define temporaries to store the
results of common subexpressions. Again, the extra information contents residing in the
re-uses of the temporaries make them logicalfy different from trees and triples.

- In quadruples, there will also be extra temporaries used to store the results of common
subexpressions. These temporaries are intermixed with the other temporaries that are
present even without DAGs.

Therefore, trees and triples are the cleanest forms of program representation, because they
do not require the definitions and uses of temporaries. In light of this, we consider quadru-
ples, postfix and prefix as program representations at a lower level than trees and triples, with
quadruples being the lowest of all the forms, since they express extra details about the usage of
temporary names.

Quadruples stand apart from the others as a distinct form of code with many character-
istics of its own. It is important to evaluate its advantages and disadvantages with respect to
optimization.

17

Advantages of Quadruples:

3.

i

2.3. THE FORM OF THE INTERMEDIATE CODE

Quadruples are closest in format to many target machine instruction sets, since machine
instructions by and large perform single operations and store the results.

Every expression is broken down and named, making it is easier to move computations
around.

The presence of numerous temporaries makes it possible to perform optimization related
to the temporaries (e.g. subsumption).

The temporaries allow the optimizer to perform more register optimization. since registers
containing by-products of arithmetic operations are not hidden to the optimizer..

Disadvantages of Quadruples:

1

2.

5.

Quadruples limit the machine-independence of the optimizer, since not all machines have
the 3-address instruction format.

Since whole expressions are broken down, it is difficult for the optimizer to manipulate
whole expressions, or perform transformations that involve tree-restructuring like stack-
height reduction. Deep common subexpressions are harder to recognize.

It is possible that some of the named temporaries need not be present in the object code,
and the subsumption of these temporaries in turn creates overhead.

Temporaries not allocated in registers are not necessarily of help to the code generators,
since the temporaries may duplicate registers that need to be used as operands due to
restrictions imposed by instruction formats: For exa.mplé, in some machine instruction for-
mats, the operands must be register-residing, so that the temporary must first be transferred
to a register.

Even for temporaries residing in registers, the benefits may also be restricted by non-
orthogonality in the instruction set architecture. For cxample, some machines require the
operands of multiplication to be in specific registers, so that additional register moves are
often required. '

Temporaries occurring as intermediaries in address computation expressions may also be
superfluous since whole address expressions may be translated to individual operand ad-
dressings using special addressing modes, or there may exist specific op-codes that map to

the cxpressions.

18

2.3. THE FORM OF THF INTERMEDIATE CODE

In summary, from the machine-independent optimization standpoin*, since postfix, prefix
and quadruples are at a lower level of semantics, it can be concluded that trees and triples
are the preferred intermediate forms. If the input program code does not contain DAGs, as in
most unoptimized programs, then postfix and prefix are just as good ;s trees and triples. If
postfix or prefix is used, then the optimized output can use generated temporaries to represent
DAGs. The tree representation is more a structure than a form of program code, and so cannot
be considered as a choice for intermediate code, but rather as a preferred form of internal
representation. Triples, postfix and prefix can readily be converted to internal tree representation
by the optimizer. ’

2.4. Other Requirements

Next, we consider other features of intermediate code that can enhance its use as a medium
for machine-independent optimization.

To support optimization related to address computation, the intermediate code must include
the effect of storage binding. All symbol references in the source program must have been
replaced by their memory addresses. Without the specification of offsets, address collapsing and
similar address-dépendent optimizations cannot be performed. Moreover, the use of addresses
allows the optimizer to necessarily distinguish between local, non-local and static variables,
and detect storage relationships like equivalences, which affect the data flow information being
collected and analyzed.

Register allocation optimization identifies variables, temporaries and evaluation results that
should reside in registers at diffcrent regions of the code. Such optimization can be specified by
attaching a register attribute to variables, which may also identify the register number. This
method of specification does not allow the assignment of different variables to the same register
throughout the course of a procedure, unless some kind of range specification (e.g. range of
current statement, basic block or procedure) is used. An alternative is to regard registers as
specific memory elements in the intermediate code, specified by either addresses or register
numbers, which are to be mapped to actual machine registers. These registers can be grouped
to different classes if required by the target machine architecture. By treating the registers as
distinct objects, register-to-memory or memory-to-register transfer operations can be explicitly
specified in the optimized intermediate code. Under this scheme, the optimizer is allowed to
determine and specify the optimal positions for placement of register transfer code in addition
to performing register allocation and assignment. Efficient registex: management is important

for the speed of the optimized code.

19

2.4. OTHER REQUIREMENTS

Common subexpressions can be expressed by using attributes to flag expressions which are
redundant and do not need to be computed more than once. This method of specification,
however, does not convey the fact that there is cost associated with the saving of a computed
expression and the latex re-use of it. Also, the responsibility of allocating the temporaries or
registers to store the expressions has to be left to the code generators. The alternative is to have
the temporary together with the code that saves the computed expression explicitly specified.
In this case, apart from optimizing the allocation of temporaries, the optimizer can go a step
further to determine the best positions to insert the save code.

As the result of these additional requirements, an intermediate language suitable for op-
timization has to be of a lower level than the traditional intermediate representation which is
completely machine-independent. But the level of the code must not be so low as to affect its
portability.

In addition to the above, the intermediate code should be a widely used form of code. This
serves to increase the acceptability and applicability of the optimizer.

2.5. The Overall Compilation and Optimization Plan

Though the optimizer transforms intermediate code independent of the source, knowledge
of source language features can help it make better decisions in some cases. For example, in
Fortran, all references to the global static memory can be treated as local references, and all
non-static memory elements are either parameters or compiler-generated tempo_raries. Both
these facts are not true in Pascal. Thus, if the intermediate code supports more than one source
programming language, the intermediate code should contain some identification of the source
that produces the code, or should be able to indicate the key features that may not be visible
in the code itself. If these are not known, the optimizer has to make the worst assumptions to
safeguard against incorrect optimized output.

On the other hand, the machine-independent optimizer also requires the knowledge of some
machine parameters. These inachine parameters include the different types of memory (storage
hierarchy), the word lengths, the sizes of the data types, the structure of the activation records,
the number and classes of registers and estimates of transfer cost between registers and memory.
For the optimizer to be portable and machine-independent, these machine parameters must not
be built into the optimizer. »

There are two ways to make machine parameters available to the optimizer. The first
method is to have the intermcdiate code contain all necessary machine descriptions, using special

option specification instructions if necessary. Such a scheme has the disadvantage of making the

20

2.5. THE OVERALL COMPILATION AND OPTIMIZATION PLAN

Machine
Description

U

Portable

. Machine-
independent
Optimizer

<—

Machine-
dependent

Compiler

IR

>

Machine-
dependent
Code
Generator

Fig. 2.5.1 Machine-dependent Intermediate Representation (IR)

Portable

Compiler

Machine
Description
\L/ Machine
Description
Machine-
independent :
Optimizer
Machi Machine-
chine- i
independent f~———————>> md%."fé‘g ent
IR Generator

Fig. 2.5.2 Machine-independent Intermediate Representation (IR)

intermediate code and thus the compiling front-end machine-dependent. The common strategy
is to supply the machine parameters to the portable front-end scparatecly, either by conditional
compilation or by look-up during execution of the front-end (Fig. 2.5.1). The intermediate code
in this case is usually closer to the form of a code generation language based on an abstract
machine model, ard the code generators follow the interpretive code generation scheme [Gana82).

The sccond method is to feed the machine parameters to the optimizer directly. This can
be done either by conditional compilation or by separate look-up while performing optimization
(Fig. 2.5.2). This scheme allows the intermediate codc and the front-ends to be totally machine-
indcpendent. The corresponding code generators usually follow the pattern-matched or table-

driven code generation schemes.

21

2.6. The U-Code Intermediate Language

From the above discussions, it can be concluded that an intermediate language in postfix,
prefix or triples form, at a level low enough so as to reflect the results of s'torage-binding and the
availability of registers, is the ideal choice for performing machine-independent optimizations.
The U-Code intermediate language is one that saticfies most of these criteria.

U-Code originated as an intermediate form for the Pascal language. The idea of an inter-
mediate language for Pascal existed from the first portable Pascal compiler [Amma75], which
emitted the Pascal pseudo-code P-Code [Nels79]. While P-Code is adequate as an intermediate
code for translation purposes, it does not lend itself weil to supporting optimization. U-Code,
short for Universal Pascal code, incorporates P-Code as the base language along with the ad-
ditional information to allow for optimization at the intermediate code level [Perk79] [Nye81].
By putting in minor extensions, U-Code has been made apnlicable for representing Fortran
programs as well [Chow80]. Thus, U-Code is largely source-independent.

U-Code programs are in the form of a linear list of instructions, with each instruction
identified by an operator. It is basically a form of reverse l"olish notation and is defined in terms
of an evaluation stack used to specify all computations. Control flow is specified using labels and
jump. instructions. In a U-Code program, all variabies in the source program have been resolved
into addresses in a hypothetical machine. Information about the symbolic names as used in the
source program resides in separate symbol table files which are used only by a debugger. The
run-time organization of the abstract stack machine is characterized according to the run-time
model of Pascal, with a memory stack containing procedure activation records and the heap
for dynamically allocated data records and static and dynamic links. Each activation record is
divided into areas for representing different types of stored objects which can be parameters,
local variables or temporaries. In addition, there are global (static) memory areas and registers.
The registers are divided into classes to provide for special-purpose registers such as address
registers or floating point registers. Thus, storage structures in the underlying machines are
adequately represented.

The different memory areas including registers are referred to by unique memory types.
Variables local to a procedure are referred to by the number of the procedure they are in and
their offsets within their particular memory areas in the stack frame of the latest instantiation
of the procedure. Global variables are referenced by their offsets in their particular static block.
Although the U-machine is primarily a bit machine, it also has a word size, which is the size of
an unpacked integer on the target machine, and an addressable unit-, which is the smallest unit

that can be directly addressed on a target machine.

22

2.6. Tk U-CODE INTERMEDIATE LANGUAGE

Objects in memory and on the stack always have associated data types. As in real target
machines, two objects with different data types or different sizes can occupy the same location
in memory. Objects never overlap different memory areas. Each data type has an implied size
when the data object is on the computation stack, except for the Set type. Data objects of type
M are never loaded on the stack. Instead, their addresses are loaded, and all operations are
performed indirectly. The size of the data object in memory may be less than its size on the
stack, as is the case in packed records and arrays. Thus, many of the U-Code instructions have

size specifications in addition to data types.

U-Code programs are not completely .portable, since a given version of a U-Code program
does contain machine-dependent parameters. These parameters are given to the portable front-
ends according to the scheme of Fig. 2.5.1. The machine dependent parameters in U-Code
programs are minimal, and they include the word and byte sizes, the default sizes of each
data types and their alignment restrictions, and the structure of the activation records. Highly
machine- and system-dependent mechanisms, like the use of the display, passing of parameters,
procedure linkage conventions are not expressed or visible in U-Code. Currently, code generators
exist that translate U-Code to object code for the DEC 10/20, VAX, MC68000, S-1, MIPS and
FOM. They belong to the interpretive model of code generation. A U-Code interpreter written'
in Pascal also exists [Bush79].

U-Code is not completely language-independent in that it supports the Pascal model of
static and run-time organizations, and the semantics of most operations follows that of Pascal.
Most of these assumptions are visible in the U-Code context, and by suitable simple extensions,
it is possible to make U-Code support most algebraic languages (e.g. Algol, C, PL/1).

The U-Code stack is usually implemented by registers in the underlying machine, and the
U-Code operators describe the operations to be performed on the items on the stack. This
stack orientation, however, causes inflexibility in the way that the items on the stack can be
manipulated, since only the top items can be operated on. When an item is loaded on the stack
in U-Code, many code generators do not actually load the item until the time that it is involved
in computation. This is because an item may reside at a lower part of the stack for a iong
time while many other computations occur on the items near the top of the stack. A problem
that arises involves storing when the stack is non-empty. Such a store can change the value
of a location which has previously been loaded and still resides further down the stack. This
complicates the implementation in those code generators that delay loads. However, the stack
orientation of U-Code is inherent in the postfix form of code.

The storage rclationships among the data objects are adequately represented, so that data-

flow information can be collected with no ambiguity. Each data object is uniquely identified

23

2.6. THE U-CODE INTERMEDIATE LANGUAGE

by its memory type, block number and offset. Local, non-local, indirect memory references are
distingnished. Storage relationships are clearly expressed by the size specifications of the data
objects, so that equivalences and overlap;;ing objects can be recognized. In array references with
associated offset computation, the base address and length specifications in the LDA instruction
precisely indicate the range of addresses where the resultant array clement can be located.
Possible side effects and aliases can be recognized. These enable the optimizer to pinpoint data
objects that can be affected in memory references and assignments, which helps it prevent unsafe

optimizations.

In addition, the instruction set of U-Code is versatile enough to expresse most needed
operations. All program computations are exposed, and all implicit conversions are specified
whether or not they translate into actual machine operations (e.g. the CVT instruction). Common
subexpressions can be saved using the NSTR (non-destructive store) instruction. The RLOD and
RSTR instructions permit the specifications of transfer operations between registers and memory.
All these features make U-Code suitable as a medium for performing machine-independent
optimizations. '

The U-Code optimizer, UOPT, gets most machine parameters from the input U-Code itself.
Tn addition, a few other machine parameters that are not available from the U-Code are set in
the optimizer by conditional compilation. Included in them are the sizes of the various data
types, which are needed in performin_g constant expression computations. Some parameters
about the stack frame are also given for the purpose of deciding where to allocate temporaries
generated by the optimizer. For the purpose of performing register allocation, information
about the number and kinds of registérs,‘ the cost of register-memory transfer operations and
comparisons of register and memory fetch times is needed. Thus, the optimization plan used by
UOPT is a mixture of the two schemes shown in Section 2.5.

Only a small portion of the information present in U-Code programs output by the front-
ends is intended for use by only the optimizer. The optimizer does not introduce its own
U-Code constructs in expressing optimizations performed. The code generators do not have to
distinguish between optimized and unoptimized U-Code in inputing and translating programs
in order to take full advantage of the optimizations performed. Thus, both the front-cnds and
back-ends need not spccifically accommodate the presence of the optimizer. The cfliciencies of
both the front-ends and back-ends are not affected.

Appendex A gives more details about the U-Code intermediate language.

24

3. Optimization Algorithms

In this chapter, the optimization algorithms in UOPT are presented. Scction 3.1 describes
the local optimization algorithms. The remaining sections address global optimizations. Local
optimization is performed before global optimization because the latter has to rely on infor-
mation gathered during the local phase. All the global optimizations are based on data flow
analysis, and they are closely related to each other because some of them use similar global data
flow attributes, and some of them are performed at the same time. The global optimization
algorithms are characterized by ubiquitous bit vector operations, especially when solving data
flow equations, which represent the bulk of the processing. Apart from constructing the program
flow graph while inputing the program, no control flow analysis is needed in any of the global

optimizations.

3.1. Local Optimizations

Tocal optimizations refer to the optimizations done within individual basic blocks [Aho72]
[Bagw70]. A basic block is a straight-line block of code of maximal length with no branch except
at the entry or exit. Maximal length is a desirable feature since it increases the opportunities for
the various local optimizations. A basic block corresponds to a node in the control flow graph
representation of a program.

The local optimizations in UOPT are done by straight transformation on the program-
representing data structures. The building of these structures and the local optimizations also
serve to prepare for the global optimization phases. After the local optimization phase, the more
unified code form exhibiting more commonly-occurring code structures can serve to expose more
global optimization opportunities. There is no peephole optimization pass on the intermediate
code as in [Tane81] and [Wilk83], since our local transformations already include many of these
peephole optimizations, and the rest can be done by case analysis of specific code constructs at
appropriate times during the local transformations and the later code re-emission. In ge!icml,
peephole optimization on intermediate code is useful and cost-effective only when no other major
optimization transformation is present, so that there is no other mechanism or process availatle
on which to overlay the checks for the occurrences of specific code constructs. In the case
of UOPT, the precise internal representation of the program code and different kinds of code
transformation make it unnecessary to do pecphole optimization by pattern-matching specific

code sequences in the intermediate code text.

25

3.1. LOCAL OPTIMIZATIONS
3.1.1. Value Numbering

Value numbering is a technique for recognizing commonly occurring computations within
a basic block [Cock70]. It is an efficient method for building directed atyclic graphs (DAG’s)
using a hash table and a triple representation.

The hash table is used for storing all cxpression trees. E:ach entry in the hash table is
either an operand (leaf) or an operator (internal) node. The hash table index of cach entry
corresponds to its unique value number. For operator nodes, the table entry is in the form of
a triple consisting of (op,l,r). The ! and r fields are the value numbers of the left and right
subtrees or leaf operands respectivelyt. The entries are determined by hashing using the open
addressing with linear search scheme. Variables are hashed according to their addresses, and
constants are hashed according to their values. Internal nodes are hashed according to the triple
(op,l,7). Since the same entry can be hashed to by entries that are not identical, collision in
hashing is resolved by entering the new entry in the next empty entry down the table. Thus, in_
finding the table entries for expressions and operands, hashing is accompanied by searching, and
the uniqueness of value numbers is guaranteed by the resolution of collisions. For commutative
operators, [and are allowed to be interchanged in searching for a match. To retain information
about the order of occurrences of the expressions in the basic block, a linked list representing
the statements in their execution order in the basic block is used. These statement nodes point
to the expression trees in the hash table that they reference (Fig. 3.1.1).

Local common subexpressions are recognized when two expressions yield the same value
number. To prevent the recognition of common subexpressions that are identical but which no
longer yield the same resuits because some of the operands have been assigned new values, it
is necessary to assign new value numbers for later occurrences of the same expressions. This is
effected by the killing of variable entries. A variable is killed whenever there is an assignment
that can potentially alter its value (Section 5.3). This not only applies to direct assignments, but
to indirect assignments as well. The effects of aliases and equivalences have to be included also.
After a variable eniry has been killed, it is prevented from being recognized in the searching that
follows the hashing. Thus, a new entry with a new value number will automatically be created
out of an empty entry. Sincc the variable is given a new value numbcr, any expression that
directly references it will have a different { or r operand value number; after hashing, the value
number of this expression will have no relation to the value number of the identical expression
that references the variable with the old value. The same applies to any larger expression in

which the expression is nested. Thus, expressions do not need to be killed, since the different / or

t Only the ! field is used for unary operators.

26

3.1. LOCAL OPTIMIZATIONS

Code Table
index i
A:=B+ 777 - M
2 034. left = 9 right = 21

Statement Node -
STR

3| Variable B

J21|Const 7

27 | Variable A curval = 2

Fig. 3.1.1 Intcrnal Representation of Basic Block Code

r operand value numbers automatically prevent them from being wrongly recognized. Constants .
also do not ever need to be killed, since they always represent the same values in computations.

In arrays, each array elcment is not assigned a value number. In fact, address compu-
tations and their subsequent indirect references are treated no different than other expression
trees. Thus, an expression that leads to referencing a memory clement is aséigned a unique value
number. These indirect references, which include indirect loads {(ILOD’s) and indirect corﬁpar-
isons (IEQU’s, ILES’s, etc.), also need to be considered for being killed, since they belong to the
category of memory references. It is possible that the value at the address yielded by an address
expression is changed between its multiple references via the address expression. This situation
is taken care of by killing the entry of the indirect operator.

The optimizer removes redundant assignments in a basic block. Each direct assignment to
a variable usually results in creation of a new value number for the variable, but if the variable
has not been directly or indirectly (as in aliases and equivalences) referenced, then the previous
assignment can be climinated, and the same value number is used for the variable with the
newly assigned value.

3.1.2. Local Copy Propagation

In the representation for variables in the hash table, a value field gives the value number of

27

.

3.1. LOCAL OPTIMIZATIONS

the expression that was previously assigned to each variable in the basic block if there has been
such an assignmert (Fig. 3.1.1). The optimizer performs local copy propagation by looking up
this field whenever a variable is referenced. If the value field indicates a previously assigned
expression, variable or constant, the assigned expression is used instead of the variable itself.
This implicitly creates an additional common subexpression reference. A special case is when
the assigned expression contains operands whose values have been changed, as indicated by their

having been killed. In this case, no copy propagation is performed.

Local ropy propagation is useful for a number of reasons. First, a variable reference is
replaced by a copy, which will be made fast since the later register allocation phase will allocate
registers to store intermediate quantitics which are referenced more than once. Second, by
substituting variables with their values, it is possible to recognize more common subexpressions,
since two or more variables with the same assigned values are identically mapped. Third,
a larger common subexpression can be successively constructed across statement boundaries.
Lastly, more redundant assignments can be exiaosed, since eliminating all references to a variable
before the next assignment to it makes the first assignment redundant.

Example. .
a=bxc . t=bxc+e
d=a+e d=t
becomes
f=bxc+e. f=t

a=d a=t
where ¢ is a temporary

Local copy propagation automatically performs local constant folding for variables, when
the copied expression is a constant value. This can potentially lead to more opportunities for
constant arithmetic later.

3.1.3. Stack Height Reduction

Since the evaluation stack in U-Code is usually realized as registers in the target machine
after translation, minimizing the height of the stack during expression evaluation can reduce
the chance of spill-over of the stack items from the fegisters into slower memory. In the internal
tree representation of the expression code, the goal 6f the transformation is to make the larger
expressions appear on the left of the binary operators as much as possible.

There are two approaches to stack height reduction. The first method involves re-association
between operators of the same precedence level. Tree restructuring is applied so that, the tree is

reduced to the left-associative form with each operator node weighted on the left-hand side. This

28

3.1. LOCAL OPTIMIZATIONS

Stack height =5 ’) Stack height = 4
Fig. 3.1.2 Stack Height Reduction by Re-association

process leaves the order of appearances of the operands intact. To avoid destroying common
subexpressions, the transfer of operands into and out of common subexpression subtrees is
specifically avoided (Fig. 3.1.2). The algorithm for tree restructuring is recursive, and is applied
to each internal node:

Algorithm Restructure.
1. Call Restructure for the right subtree of the current node.

2. If the operator of the right son is of the same rank, transfer the right son’s left son to the
left of the current node by creating a new internal node on the left side, and make the right

son’s right son the new right son:

AR o A
AN AN

3. Call Restructure for the loft subtree of the current node. O

29

3.1. LOCAL OPTIMIZATIONS

Stack height = 4 Stack height = 3
Fig. 3.1.3 Stack Height Reduction by Swapping Left and Right

After the re-association transformation, any expression containing only operators of the
same precedence level can be evaluated with a stack height of two. Operators that can be
transformed by re-association, grouped by their precedence levels, are: (a) +, —, IXA (indexing
on address), (b) x, floating point /, (c) AND, (d) OR, (e) INT (set intersection) and (f) UNI (sct

union).

The second method involves reversing the order of the operands of a binary uperator so that
the one with higher stack height is evaluated first (Fig. 3.1.3). For non-commutative operators,
the two top items have to be swapped afterwards to preserve the correctness of the code. The
extra swap does not usually cause extra object code to be generated. Apart from expression
trees, this transformation is also applicable to statement opcrators which reference more than
one expressions. Such statement operators include ISTR (indirect store), MOV (record copy), NEW
(create record) and DSP (dispose of record).

After stack height reduction, all expressions containing (2™ — 1) or fewer operands can be
evaluated with a maximum stack height of n.

3.1.4. Constant Arithmetic

This involves replacing an opcrator with constant operands by the constant value obtained
by performing the -computation during optimization. Related to this are the reduction of an
AND operator with a FALSE operand to FALSE, and the reduction of an OR opcrator with a TRUE

.

30

3.1. LOCAL OPTIMIZATIONS

Fig. 3.1.4 Constant Collapsing

operand to TRUE. An AND operator with a TRUE operand is removed, and so is an OR operator
with a FALSE operand. These opcrations for AND and OR also have corresponding operations for
set intersection and union (INT and UNI). Bound checks of constant operands are performed,
and any bound check error is reported. Decrements and increments of addresses can be folded
into ILOD and ISTR instructions. When the operands of these same ILOD and ISTR instructions
are constant addresses, direct_loads and direct stores can be used instead. Conditional jumps
with constant conditional expressions are either removed or replaced by unconditional jumps
depending on the conditions evaluated.

An additional type of constant arithmetic is the combination of non-adjacent constants be-
longing to separate nodes of a tree. This is performed in conjunction with the tree-restructuring
algorithm above (Fig. 3.1.4). After the tree is converted to the left-associative form, a constant
can be moved downwards along the left-weighted branch to combine with another constant.
This process is repeated until only a single constant is left hanging along a branch made up of

operators of the same precedence level.

Another optimization rclated to constant arithmetic is the application of the distributive
law. In the expression a x (b+c), when a and either b or ¢ are constants, applying the distributive
law to yicld (a x b) + (a X c) allows two constants to be combined. The resulting expression
has the same number of operations, but under the condition that there are adjoining operators
of the same precedence level as the + opcrator, this transformation can create opportunities
for stack height reduction and constant collapsing (Fig. 3.1.5). If this condition is not met, the
distributive law transformation is not applied.

The above transformations in constant arithmetic are performed by a single recursive pro-
cedure ConstArith which also makes usc of the earlicr Restructure algorithm. ConstArith is

applied to each internal node regarded as the root of a subtree:

31

3.1. LOCAL OPTIMIZATIONS

Fig. 3.1.5 Application of the Distributive Law

Algorithm ConstArith.

1

2.

Call ConstArith for the right subtree of the current node.
Call Restructure for the current node;

Call ConstArith for the left subtree of the current node. (This completes the conversion of
the subtree at the current node to the left-associative form, and also guarantees that there

is at most one constant left hanging along the left-associative branch.)

If the right subtree is a constant or the operator of the current node is INC or DEC, then

(a) if the left subtrce is a constant, then apply the operator to combine the constants and
convert the current node to a constant bearing the value of the result;

(b) if the left subtree is not a constant, then if there is a constant further down the left-
associative branch (or there is a INC or DEC), call MergeConst which combines the
constant at the right son (or the INC or DEC parameter) to the lower constant and

deletes the current node.
Apply the distributive law if this is beneficial. O

Stack height reduction by re-association and the merging of non-adjacent constants are

not applied across common subexpression subtrees, since these transformations may render the

common subexpressions invalid.

3.2

. Overview of Global Optimization Strategy

Global optimiations rely heavily on the availability of global data flow information computed

by data flow analysis. A global optimizing pass typically begins with a data flow analysis

phase. Subsequently, the appropriate pattern matching and code manipulation operations are

undertaken to perform the given optimization. The data flow analysis phase can be concisely and

efficiently performed for the different types of optimizations. The second program manipulation

32

3.2. OVERVIEW OF GLOBAL OPTIMIZATION STRATEGY

phasé is not as straighforward, and usually requires a much more substantial amount of cede
to implement. Repeated passes over the program code are often needed to detect all possible
optimizations. Since the program manipulations for the different types of optimizations are
different in nature, the whole global optimization process is inevitably divided into a large
number of passes, all of which have their own data flow analysis and program manipulation

phases. The program manipulation phases are ad hoc and bear little relationship to each other.

The central strategy of our global optimization approach is to let data flow analysis assume a
greater role in processing optimization transformations. The goal is to shift as much processing
as possible to the data flow analysis phases. Apart from computing data flow information,
the data flow analysis phases also take up the responsibility for determining the actual code
transformation (insertions, delctions) to be performed. Although the data flow analyses become
more involved, the program manipulation phases are much more simplified. Since data flow
analysis can be implemented by a well-established set of code, the overall global optimization
structure can be made much more manageable.

Because the program manipulation portion of the processing is reduced in size and complex-
ities, our approach also makes possible the identification of the following thrce broad categories -

of global optimizations:
1. Uses of copy information — This includes copy propagation and constant propagation.

2. Backward code motion and backward redundancies — This includes global common subex-

pression elimination, loop-invariant expression removal and partial redundancy elimination.

3. Forward code motion and forward redundancies — ‘Chis includes the elimination of fully
or partially redundant stores, dead variable elimination, loop-invariant assignment removal
and the optimization of temporary saves.

Optimizations belonging to the same category are similar in nature and not distinguished
from each other. They are performed concurrently by the same process. Thus, it can be seen
that the above three optimizations already include up to 80 per cent of all useful global opti-
mization transformations. Moreover, since the data flow analyses can determine all the desired
transformations at cace, no incremental update of data flow information is required after each
change to the code. Updates of data flow information is needed only between the small number
of global optimization passes. Thus; it can be seen that the global optimization framework in
UOPT offers significant advantages in reducing the complexitics of both the optimizer imple-

mentation and the optimization phase structure. The optimization speed is also enhanced.

33

3.3. Boolean Attributes for Global Optimization

The global optimization of programs requires the knowledge of data flow information within
procedures. This data flow information, in the fc:m of Booleans, can be divided into local and
global attributes. A procedure text is represented by a directed contrnl flow graph, with each
node in the graph representing a basic block. A local attribute depends only on the basic block
in which a variable, expression or assignment occurs. A global attribute is determined by the
interaction of the local attributes in the set of basic blocks.

In this section, the attributes which are used in our global optimization algorithms are
defined. We also consider how these attributes can be collected or computed from the program.

3.3.1. Local Data Flow Attributes

Our ideas of boolean attributes apply to variables, expressions and assignments (or defini-
tions). These attributes are defined in terms of basic blocks. Some attributes use the entries or
exits of basic blocks as points of reference, and some refer to entire basic blocks. The direction

of flow considered may be forward or backward in relation to the flow of control of the program.’
There are three local attributes for variables, defined as follows:

ANTLOC - (Locally Anticipated, Locally Live or Locally upward-exposed) A variable is
locally anticipated in a basic block if there is a use of the variable {(which excludes assignment
to the variable) within the block, and the value of the variahle can in no way be affected
if the use of the variable is moved to the entry of the block. In other words, there is no
assignment in the block preceding the use of the variable which can potentially alters the
value of the variablet.

AVLOC - (Locally Available) A variable is locally available in a basic block if there is a use
of the variable within the basic block, and the value of the variable will stay the same if
the use of the variable is moved to the exit of the block.

ALTERED - (Killed locally) A variable is altered in a basic block if its value may be modified
by executing the code of the basic block. The variable does not necessarily have to appear
in the basic block for it to be altered.

The above three attributes are made to apply to expressions by replacing the word variable

in the above definitions by ezpression. The attributes of expressions represent stronger qualifi-

t The optimizer will try its best to decide if a given assignment can alter the value of a variable. If the
information provided to it is not sufficient for making such a decision, it will regard that the variable can
possibly be altered by the assignment, for the sake of safety.

34

3.3. BOOLEAN ATTRIBUTES FOR GLOBAL OPTIMIZATION

cations than the corresponding attributes of the components of the expressions. An expression
is ALTERED in a block if any variable within the expression is. If an expression is ANTLOC in a
block, then any component of the expression must also be ANTLOC. A constant appearing in
a basic block is always ANTLOC, AVLOC and not ALTERED. ANTLOC is a b:wkward attribute and
AVLOC is a forward attribute.

In applying the local attributes to assignments, the values assigned together with the vari-
able being stored into are considered:

ANTLOC - An assignment is locally anticipated in a basic biock if the assignment occurs
within the block and the effect of the assignment on the result of executing the code of
the block will be the same if the assignment is moved to the entry of the block. In other
words, the assigned expression is ANTLOC, and the assigned location is unaltered and not
used anywhere in the block before the assignmentf.

ALTERED - An assignment is altered in a basic block if the value of the assigned expression’
or the assigned location may be modified by executing the code of the block, and there
is no use of the assigned variable in the block; if the assignment actually occurs in the
block, then its own code is excluded from consideration in the determination of its ALTERED
@ttribute. To state it in another way, an assignment is not ALTERED if there is no effect on

the execution result by moving the assignment from one end of the block to the other end.

A variable, expression or assigr;lment is not ALTERED if there is an occurrence in the block
and that occurrence is both ANTLOC and AVLOC. An item can be both ANTLOC and AVLOC but

ALTERED since there can be two occurrences and the altering is due to the code between the two

occurrences.
Example.
Q
a b c a+b [{(a+b)+d
(a+b)+¢ ANTLOC F T T F
: AvLac T T F F
C
ALTERED T F T T T

} In accordance to U-Code syntax, the code for computing the assigned expression is always computed before
the actual storing into the assigned location.

35

3.3. BOOLEAN ATTRIBUTES FOR GLOBAL OPTIMIZATION

We have used code movement to characterize the above attributes. The reason is that these
attributes will be used among other things in solving the feasibility of various kinds of code
motion in the subsequent global optimizations. Also, the availability of complete information
is critical. Side effects, aliases and cquivalences often make it hard to obtain the exact use or
definition information of a data item. In such cases, the most pessimistic assumption is made

in obtaining the information in the attributes.

In the case of assignments, therc are additional local attributes with slightly different mean-
ings:

PAVLOC - (Partial Local Availability) " An assignment is partially locally available in a basic
block if the assignment occurs within the block and the assigned location still holds the
value of the assigned expression which also has not changed before the exit of the block. In
other words, the values of the assigned variable and assigned expression are not altered in
the code of !:he basic block following the assignment. '

ABSALTERED - An assignment is absolutely altered in a basic block if there is code in the
basic block that can potentially alter the value of the assigned expression or the assigned
location, excluding the effect of the assignment itself if it exists in that block.

The attributes PAVLOC and ABSALTERED differ from ANTLOC and ALTERED respectively in that
the former do not take into account the usage of the assigned variable in the relevant region.
The definitions of PAVLOC and ABSALTERED do not rely on code movements. PAVLOC is a weaker
property than AVLGC. An assignment that is PAVLOC is not necessarily AVLOC, but an assignment
that is AVLOC must be PAVLOC. An assignment that is ABSALTERED must also be ALTERED in a
basic block, but an assignment that is ALTERED is not necessarily ABSALTERED. The PAVLOC and
ABSALTERED are not used for solving code motion, whereas ANTLOC and ALTERED are. The former
can be regarded as static data flow attributes and the latter can be regarded as dynamic data
flow attributes.

Eximple.
a+—b+ 3]
ANTLOC F
a
: ALTERED T
ae—b+3 ABSALTERED| F
. PAVLOC T

36

3.3. BOOLEAN ATTRIBUTES FOR GLOBAL OPTIMIZATION
3.3.2. Global Data Flow Attributes

In constrast to local optimizations, global optimizations take into account the procedure’s
large scale structure in performing transformations. In‘defining the global attributes, we can
just extend the meanings of anticipability and availability:

- A variable, expression or assignment is anticipated at a given point if all paths leading
from it contains an instance of the computation, and the computation placed anywhere
along the paths always deliver the same result.

- A variable, expression or assignment is available at a given point if all paths leading to
the point contains an instance of the computation, and the computation placed anywhere
along the paths always deliver the same result.

Partial anticipability and availability are weaker properties:

- A variable, expression or assignment is partially anticipated at a given point if at least
one path leading from the point contains the computation, and the computation placed
anywhere along the path always deliver the same result. -

- A variable, expression or assignment is partially avaslable at a given point if at least one
path leading to the point contains the computation, and the computation placed anywhere
along the path always deliver the same result.

The global attributes are usually applied to the entries and exits of basic blocks. ANTIN,
AVIN, PANTIN and PAVIN denote these attributes at the entries of basic blocks, and ANTOUT,
AVOUT, PANTOUT and PAVOUT denote these attﬁbutes at the exits. In practice, the attributes
for different variables, expressions and assignments can be aggregately represented using bit
vectors, with each bit position allocated to a variable; expression or assignment. The resultant
bit vector operations substantially speed up the computations involving the attributes by a
factor depending on the word size of the host computer.

The following system of boolean equations defines the global availability attributes based
on the corresponding local attributes. Th~ subscript ¢ identifies the attribute as being for the
tth basic block.

Availability System:

FALSE if ¢ is the entry block;
AVIN; = H AVOUT; otherwise. (3.3.1)
jEPred(s) e

AVOUT; = AVLOC; -+ ~ALTERED; - AVIN;.

37

3.3. BOOLEAN ATTRIBUTES FOR GLOBAL OPTIMIZATION

The first equation says that an item is available at the entry co a basic block if and only if
it is available at the block exits of all its predecessors. The second equation says that a variable
is available at the exit of a basic block if it is either loéally available there or is available at the
entry of the block and is not changed inside that block.)

The cther groups of global data flow attributes can similafly be computed by solving systems
of boolean equations: ‘

Anticipability System:

FALSE if 1 is the exit block;
ANTOUT: = ¢ J] ANTIN; otherwise.
. . (3.3.2)
J€Suce(s)
ANTIN; = ANTLOC; + —~ALTERED; - ANTOUT;. .
Partial Avatlability System:
FALSE if 1 is the entry block;
PAVIN:= 9 3™ pAVOUT; otherwise.
. . . (3.3.3)
FEPred(s)
PAVOUT; = AVLOC; + —~ALTERED; - PAVIN;.
Partial Anticipability System:
FALSE if 1 is the exit block;
PANTOUT; = ANTIN, therwi
P 5 otherwise. (3.3.4)

J€Suce(s)

PANTIN; = ANTLOC; + —ALTERED; - PANTOUT;.

The above data flow equatibns' can be solved using an iterative algorithm, as given in
[Kild73] and [Hech73]. It involves applying the above equations to the nodes of the control
flow graph until the information stabilizes. Depending on the initializations of the unknowns,
different solutions can be obtained that satisfy the systems of equations. In the case of the
conjunction operator [], the wanted solution is the one with the largest number of true bits.
If the unknowns are initialized to TRUE, the unknowns will converge to the largest solution
as iteration progresses. For the disjunction operator }_, the wanted solution is the one with
the smallest number of true bits. If the unknowns are initialized to FALSE, the unknowns will
converge to the smallest solution during itcrations.

38

3.3. BOOLEAN ATTRIBUTES FOR GLOBAL OPTIMIZATION

There are other local and global attributes which are specific to the kinds of global opti-

mization they support. These will be described in due course.

Appendix B presents some more details in programming data flow analysis using the iter-
ative algorithm. '

3.4. Copy Propagation

Copy propagation traditionally involves statements of the form a — b. After determining
all places where this definition of @ is used, it may be possible to eliminate this statement
by substituting b for a in all references of a. Standard algorithms for performing this copy
propagation can be found in [Aho77].

The treatment of copy propagation in UOPT is slightly more generalized. Any assignment
of the form a + {expr) is considered, where {expr) is not limited to.being a single variable. The
copy propagation involves replacing variables by their known assigned expressions. In the case
that the expression is a constant, the effect is global constant propagation.

By making use of the attributes defined in the previous section, our algorithm to perform
copy propagation is simpler and more elegant than traditional omes. It turns out that the
attributes PAVLOC and ABSALTERED together with the global attributes derived from them already
contain most of the information needed to copy propagate. Let AVIN and AVOUT be the global
attributes that indicate the availability of assignments. By substituting PAVLOC and ABSALTERED
into Eq. (3.3.1), AVIN and AVOUT can be solved as follows:

Availability of Assignments:

FALSE . if ¢ is the entry block;
AVIN; = H AVOUT; otherwise.

L (3.4.)

AVOUT; = PAVLOC; + —ABSALTERED; - AVIN,.

THEOREM 3.4.1. A use éf the variable a in basic block n can be replaced by the ezpression {ezpr)
if all of the following conditions are met:

(a) The assignment a +— (ezpr) is AVIN,.

(b) The replaced variable a is ANTLOC,,.

(c) The expression (ezpr) is ANTLOC,, if inserted at the point of the variable a in block n.

Proo¥. Condition (a) implies that the assignment a +— (expr) is the only assignment to a
reaching block n, and that both the values of a and {expr) have not been changed in the paths

39

3.4. COPY PROPAGATION

+ 4 ’ { 4
[a—bx3] [a—bx3] [a=bx3] [a=bx3]
I $ i 4 b x ¢ will be recognized’
. ¢ N ¢ later as common subex-
4 $
ib«-bxc+(bxc+1)l
+ 4

Fig. 3.4.1 Multiple Copy Propagation

that lead to block n. Condition (b) and (c) guarantee that the same is true in the region in
block n preceding the point where @ occurs. O

The algorithm to perform copy propagation can now be specified. The algorithm is applied
to each variable reference in each basic block.

Algorithm CopyPropagate.

1. For each reference of a simple va.rié\ble a, in basic block 1, in which ANTLOC; is true, look for
an assignment which is of the form a «— (expr) whose AVIN; is true. If this is found, then
check that the expression {expr) if inserted at that point will cause its ANTLOC; to be true.

2. If the expression (expr) can be found in 1, then replace the occurrence of a by (expr). Apply
the algorithm recursively to each variable reference in (expr). O

Since each new insertion of an expression creates new occurrences of variables in the basic
block, the algorithm CopyPropagate is applied recursively in step 2 to ensure that copy propa-
gation is done completely. At the termination of the algorithm, no more copy propagation can
be performed in the program code (Fig. 3.4.1).

It is to be noted that if the attributes AVLOC and ALTERED were used in Eq. (3.4.1) instead
of PAVLOC and ABSALTERED, the resultant condition to be satisfied in step 1 of the algorithm
would be stronger than needed.

When a variable is replaced by its known assigned expression (expr), the resultant code
could be worse if the expression is large. However, in all cases, the expression (expr).is a global

common subexpression, and does not need to be recomputed. This is because the fact that the

40

3.4. COPY PROPAGATION

S—

+ 13 ¢
. d«—bx3+2| ce—t
) 4
] "4
N "4
de—bx3+2 -
¢ ')
a dead a removed

Fig. 3.4.2 Partial Redundancy in b X 3 + 2 exposed by Copy Propagating through a

assignment a — (expr) is AVIN; implies that (expr) is also AVIN, which is a sufficient condition
that the cxpression (expr) is globally redundant. As a result, later redundant expression elimina-
tion and register allocation will replace {(expr) by a load from a register in which the previously
computed value of the expression is saved. In most cases, this is faster than a memory reference
to the replaced variable a.

Apart from this, the other benefits of local copy propagation mentioned in Section 3.1.2
also apply in the global case. Since copy propagation is performed until no more copies can be
made, variables and cxpressions are commonly mapped, and more common subexpressions can
be exposed which would not otherwise be recognized. These common subexpressions can also
be successively constructed across multiple basic blocks.

After replacing the variable a by the expression (expr), the assignment a « (expr) can be
made redundant. The elimination of these and other redundant assignments are done together

in subsequent phases (Fig. 3.4.2).

3.5. Redundant Store Elimination

Redundant assignments are assignments to variables whose uses cannot be anticipated
before the next assignments. In the case of local variables, assignments are also redundant if
no more use of the variables occurs before procedure cxit. In'this case, the variables are called
dead variables. A local variable is dead at a point if its value will not be used along any path in

the procedure starting at that point.

41

3.5. REDUNDANT STORE ELIMINATION

ren) *

N ¢ A
[a+b | ¢ v
' [ae], la =],
(a) Redundant @ + b at node 3 (b) Redundant @ — at node 1

Fig. 3.5.1 Duality between Redundant Expressions and Redundant Stores

 Redundant assignments are traditionally found by solving for the liveness of variables ap-
pearing on the left-hand-sides of assignments. The assignment a «~ (expr) is redundant if a is
not live at the point of the assignment. However, this approach is complicated by the fact that a
variable should still be regarded as live if there is an operation that.may or may not change the
value of the variable, as in function calls or indirect stores. If Eq. (3.3.4) in Section 3.3 were used
in solving for partial anticipability or liveness, the resulting PAVOUT would not include variables

that may or may not be live, and thus would not be applicable in finding store redundancies.

The approach to redundant store elimination in UOPT involves defining a set of new local -
attributes, which are applied to the uses of variables as the L-values (the assigned sides) in
assignments. The same names are used for these new attributes, since they convey similar
meanings, though in different contexts.

ANTLOC - The L-value of a variable is locally anticipated in a basic block if there is a simple
assignment to the variable, and there is no effect on the execution result of the basic block by
moving the assignment to the entry of the block, assuming the same value can be assigned.
This means that in the code preceding the assignment, there is no use of the variable and

no other indirect assignment that can potentially alter the value of the variable.

AVLOC - The L-value of a variable is locally available in a basic block if there is a simple
assignment to the variable, and there is no effect on the execution result of the basic block
by moving the assignment to the exit of the block, assuming the same value can be assigned.
This means that in the code following the assignment, there is no use of the variable and
no other indirect assignment or procedure call that can potentially alter the value of the
variable.

ALTERED - The L-value of a variable is altered in a basic block if there is some refcrence to
the variable, or some indirect assignment, or procedure call that can potentially alter the

valuc of the variable. Direct assignments to the variable arc excluded from consideration.

42

.

3.5. REDUNDANT STORE ELIMINATION

13 : $
e]
4 N "4 N

exit a—c exit a+—c

Fig. 3.5.2 Redundant Assignments (a local variable)

It is important to note the difference between the attributes for an assignment and the
attributes for the L-value of a variable. The former refers to the assignment as an expression
tree, whereas the latter refers the use of the variable on the left hand side of a direct assignment,
even if different values are assigned at different times.

Example.
QG +—
a ' ANTLCC
ALTERED
@
. PAVLOC

By using these attributes, redundancies in assignments can be found by solving for the
global anticipability attributes using Eq. (3.3.2).

THEOREM 3.5.1. An assignment of the form a «— (ezpr) in basic block n is redundant if:
{a) the local attribute AVLOC,, for the L-value of a is true,. and
(b) the global attribute ANTOUT,, for the L-value of a is true.

PROOF. An assignment of the forin @ «— (expr) is redundant if additional assignmeats to a, of
the form a ~ , occur later regardless of the path taken, and in the intervening paths there is no
potential reference or store to a. Condition (b) guarantees that assignments a «— occur later,
and in the intervening paths starting from the exit of block n, there is no potential reference or
store to a. Condition (a) guarantees that in the region in the basic block n after the assignment,

there is also no potential reference or store to a. O

The reason for our doing redundant assignment elimination different from traditional ap-
proach is because this method recognizes a duality that exists between redundant expressions
and redundant assignments. The former refers to the computation of expressions, and the latter

refers to the process of storing into a location. An expression which has been computed earlier

43

3.5. REDUNDANT STORE ELIMINATION

is redundant, while first stores into a location are redundant if they are followed later by other
stores into the same location regardless of the stored values. The former is an availability prob-
lem, and the latter is an anticipability problem (Fig. 3.5.1). A major benefit of this approach
is that this allows us to perform forward code motion involving assignme‘nts. This topic will be
addressed later in Section 3.9.

This method also allows us to }ecognize redundant assignments to dead variables (Fig.
3.5.2). In the initializations to solve data flow Eq. (3.3.2) iteratively, ANTOUT; can be set to true
for all exit blocks ¢ and all variables which are local, and false otherwise. The effect is similar
to inserting imaginary assignments to these variables just before the cxits. Such a setup will
enable the algorithm to expose the redundancies of assignments to dead variables.

3.6. Code Motion

Code motion optimization invclves the backward movement of code from more frequently
executed regions of the program to less frequently executed regions. The computations moved
are usually invariant computations in strongly connected components of the program flow graph.
To perform code motion, the loop-invariant computations must first be found. This requires
the computation of use-def chains by data flow analysis. The use-def chains give the origins of
the definitions that affect the variables insidé the loops. After the loop-invariant computations
are found, they are moved to the loop headers dominating all exit nodes in the loops involved.
Finally, the invariant computations that are made redundant as a result of the insertions are
deleted. All this analysis involves uncovering the loop structures embedded in the control flow
graph using control flow analysis. ‘The code motion is done loop by loop, and repeated passes

over the same loop are often necessary to exhaust all possible code motion.

Morel and Renvoise [More79| have presented a method in which it is possible to perform code
motion and the elimination of redundant expressions at the same time. They also generalize
these optimizations to the suppression of partial redundancies. They view code motion as a
program flow analysis problem in which positions to insert and delete code are determined once
and for all by solving data flow equations. The resulting code movements are then from deleted
positions to inserted positions. The algorithm does not require detailed analysis of the program
control flow graph. The goal is to let flow analysis play the role of determining the profitability,
correctness, origins and destinations of code movements, which were previously done by case
analysis. This method of global partial redundancy suppression is adopted in UOPT with
minor modifications. The approach has enabled us to acheive a concise, cfficient and less costly

implementation of the global optimizer.

44

3.6. CODE MOTION

pp =T pp=T

. L |, [Caxe

pp=T pp=T
4

axce

pp=PF
——e §

Fig. 3.6.1(a) The PP attribute for a X ¢

Morel and Renvoise have pointed out that global redundant expression elimination and
code motion are actually special cases in the global suppression of partial redundancies. A
computation at a point is redundant if the computation is available at that point. A computation
at a point is partially redundant if it is partially available at that point. The suppression of
partial redundancies involves the determination of positions to insert compnutations that cause
some partially redundant expressions to become redundant and be deleted, without introducing
any new partial redundancy. Not all partial redundancies can be removed, but the method
performs all code motion and removes all complete redundancies. We now present the steps
that lead to the formulation of the partial redundancy suppression algorithm.

3.8.1. The Partial Redundancy Algorithm

Partial redundancy exists when an identical computation is performed more than once in a
certain path in the program. The optimization transformation we are considering involves the
insertion and deletion of computations at various points in the program. It is necessary that the
transformation does not result in any path of the program flow graph containing more of the
same computations than it contains before. This means that every insertion is at a point that

the computation can be anticipated, and that all the anticipated first computations made after

45

. 3.6. CODE MOTION

ppin = T ppia = T te—aXc
| axc eaxs]
ppout = T ppout = T - t«axe n t
¢
N "4 N <
ppin = T
ppout = F - ‘
¢ 4
ppia = F ppin = ¥ = a — c+—
Ca= 1 [Ce= 1 optimi
ppout = T ppout = T v te—axce t—axe
¢ 4
N 4
N "4
ey
ppin = T 4
axce ¢
. ppout = T
— 3 S —]

Fig. 3.6.1(b) Partial redundancy suppression for a X ¢

that point are rendered completely redundant by the total effect of the insertions made. Global
common subexpression is a special case in this optimization because it requires no insertion for
the expression to become redundant. To establish positions to insert éomputations, we define a
number of global atiributes:

PP - (Placement Possible) A computation e is PP at a ﬁoint p if it is anticipated at p and
all the anticipated e’s can be rendered redundant by zero or more insertions at that point
and some other points in the procedure, and these insertions satisfy the conditions that the
insertions are always at points that e is anticipated and the first anticipated e’s after the
insertions are rendered redundant (Fig. 3.6.1).

THEOREM 3.6.1. If a computation e is PP at painf p, then it is also PP at any point q on any
path that leads from p to an anticipated e. ’

PROOF. Since the computation e is anticipated at p and p leads to g before reaching e, e must
be anticipated at ¢, and the set of occurrences of e anticipated at ¢ must be a subset of those
anticipated at p. Suppose p is established as PP by insertions at a set of points s. To establish

that ¢ is PP, apart from inscrting at g, we can pick enough inscrtions from s until the e’s

48

3.6. CODE MOTION

anticipated at g are all rendered redundant. O .

For the sake of uniformity, we restrict all insertions to be at the end of basic blocks. This

will have no effect on the optimizations that are to be performed. To.generalize further, we

aiso regard a computatiou to be placement possible when the computation is available, since no
insertion is needed. '

PPOUT - (Placement Possible on exit) A computation e is PPQUT at the exit of a basic
block 1 if it is ANTOUT; and all the anticipated e’s can be rendered redundant by insertions
at the exits of block ¢ and some other blocks in the procedure, and these insertions satisfy
the conditions that the insertions are always at points that e is anticipated and the first
anticipated e’s after the insertions are rendered redundant; a computation e is also PPOUT;
if it is AVOUT;.

The purpose of the attribute PP or PPOUT is to determine the feasibility of insertions at

particular points for the purpose of eliminating partial redundancies. To help solve for PPOUT,.
we also define PPIN for basic block entries:

PPIN - (Placement Possible on entry) A computation e is PPIN at the entry of a basic
block 1 if it is ANTIN; and all the anticipated e’s can'be rendered redundant by insertions
at the entry of block ¢ and some other blocks in the procedure, and these insertions satisfy
the same condition that the insertions are always at points that the e is anticipated and
the first anticipated e’s after the insertions are rendered redundant; a computation e is also
PPIN; if it is AVIN;. ' ‘

As in the case of the other global attributes in Section 3.3.2, we can solve for PPIN and

PPOUT by the following set of flow equations. The use of the [] operator in the second equation
is implied by Theorem 3.6.1.

PPIN; = ANTIN; - (ANTLOC; + —~ALTERED; - PPOUT;).

FALSE if ¢ is the exit block; (36)

PPOUT; = H PPIN; otherwise.
k€SBucce(s)

The above solution for PPOUT does not give the best set of points for the final insertions.

A necessary requirement to guarantee the profitability of the code transformation is that there

must be no partial redundancy among the final set of insertions. We can partially satisfy this

requirement by putting insertions at the earliest point in each simple path of conseccutive blocks
at which PPOUT is true. The insertion will then be available throughout the path. Thus, the
condition to put insertion at a block exit, called INSERT, is:

47

3.6. CODE MOTION

I S

ppout = F ppout = F
¢ N v N
ppin = F ppin = F ppin = F
late] [|
ppout = T ppout = T ppout = F
La+b]
+

Fig. 3.6.2 l;PIN and PPOUT of a + b

INSERT; = PPOUT; - (3 (-~PPOUT; - ~AVOUT;) - ALTERED;). (3.6.2)
. JEPred(s)

Eq. (3.6.2) indicates that we will put insertions at the exit of block ¢ if it is PPOUT and at
least one of the predecessors of i is not PPOUT and not AVOUT, or if the computation is altered in .
block ¢ so that the insertion at the exit of block 7 will not be redundant. If all of the predecessors
of block ¢ are PPQUT, then the insertion at block 7 is redundant unless the computation is changed
in that block.

After insertion at block ¢, we must prevent any insertion at the ancestors of block ¢ that will
become available at block ¢ and thus would cause new partial redundancy with the computation
inserted at block i. In other words, when the computation is not altered in block ¢, insertion
at the exit of ¢ should be prohibited if there is some insertions at some predecessors. This can
occur only if the computation is PPOUT at the exits of some of the immediate predecessors of
block . Insertions should be put at block ¢ only if the computation is not PPOUT at any of the
immediate predecessor. Thus, we impose a stronger condition for insertions:

INSERT; = PPOUT; - (] (~PPOUT; - ~AVOUT;) + ALTERED;). (3.6.3)
JEPred(s) R

To use this formulation of INSERT, we also require that a computation be PPOUT at block
t only if it is also PPOUT at all the predecessors of the successors of 1. In Fig. 3.6.2, the
expression a + b is not PPOUT at block 1 because it is not PPQUT at block 3. We add the term

I1;epreaqs) (PPOUT; + AVOUT;) to Eq. (3.6.1) to get:

48

3.6. CODE MOTION

FALSE i if ¢ is the entry block;
pprv; = ANTIN; . [(ppouT; + AvouT))
jEPred(s) :
-(ANTLOC; + —ALTERED; - PPOUT;) otherwise. (3.6.4)
FALSE if ¢ is the exit block;
PPOUT: =9 J] PPNy otherwise.
keSuce(s)

Eq. 3.6.3 can then bc rewritten using PPIN as follows. The term AVOUT is added to exclude
cases where the computation is available, when no insertion is needed:

INSERT; = PPOUT; - ~AVOUT; - (~PPIN; + ALTERED;). (3.6.5)

After the insertions, the computations that are anticipated at the points of insertions will
be made redundant, and can be deleted. A computation at block n can be deleted if it is PPIN,,
since this implies that there have been some insertions at the ancestors of n which are available
at n. The local attribute ANTLOC indicates whether the computation occurs in a basic block.
Thus, the condition for deletions, designated by the term DELETE, can be computed as follows:

DELETE; = ANTLOC; - PPIN;. (3.6.6)

This deletion includes the case of redundant computations, when PPIN is true but no insertion
is needed.

We can make an additional refinement to the above solution of PPOUT and PPIN. The
application of the above partial redundancy elimination algorithm has the effect of moving
computations upwards (or backwards) in the control flow graph so that some computations are
computed carlier. Sometimes, this movement is a code hoisting optimization, but at other times,
the same computation is unnecessarily duplicated. In all cases, the live ranges of expressions
are increased (Fig. 3.6.3). Lengthened live ranges are undesirable because the variables in their
extended points of occurrences may interfere with other code movements in later global opti-
mization phases. Long live ranges also use up more register rcsources if allocated in registers. To
limit the live ranges, insertions are desirable only at blocks at which the expression is originally

partially available. It is possible to limit the expansion of live ranges by introducing the term

49

3.8. CODE MOTION

L1 —
+ < Y

+ v N
] | | o] [1 =
4 + ¥ 4 $ +
N 1 "4] ¢ 4
——
+ 4
(a) Before optimization (b) Large live ranges

1 [

te—a+3
lt«-—a+3] (t«-a+3| t
1 ¢ é
N 4 "4
$

(c) Smaller live ranges
Fig. 3.6.3 Effects on Live Ranges in Partial Redundancy Suppression

PAVIN in the solution for PPIN and PPOUT, without restricting the optimizations performed:

FALSE . if 7 is the entry block;
ppIN; = { ANTIN; -PAVIN; - [] (PPouT; + AvouT;)
JEPrad(i) .
-(ANTLOC; + ~ALTERED; - PPOUT;) otherwise. : (3.6.7)
FALSE if ¢ is the exit block;
PPOUT: =3] PPmve otherwise.

keSuce(s)

Eq. (3.6.7), Eq. (3.6.5) and Eq. (3.6.6) are the actual data flow equations implemented in
UOPT.

50

3.6. CODE MOTION

—| —|
=
a+—bxHd
—] —

Fig. 3.6.4 Code Motion of Loop-invariant Assignment
3.6.2. Implementation Notes

The above optimization of partially redundant computations not only applies to expressions,
but to assignments as well, by treating assignment as an operator. (Fig. 3.6.4). To ensure the
recognition of all redundancies and that all movements of assignments are legal, it is necessary
that the global attributes are solved using the appropriate local attributes for assignments. The
forward attributes AVIN, AVOUT, PAVIN and PAVOUT do not imply any code movement, so they
can be solved using the PAVLOE and ABSALTERED local attributes for assignments. The backward E
attributes ANTIN and ANTOUT imply backward movements. It is incorrect to move an assignment
across a block in which the assigned variable is used, since this changes the effective value of
the variable at the time it is referenced. Thus, the ANTIN and ANTOUT attributes must be solved
using the ANTLOC and ALTERED local attributes for assignments (Fig. 3.6.5).

Expressions are optimized individually, indcpéndent of any potexitial nesting. Each operator
constitutes a computational item whose code motion is to be solved. In the case of nested
expressions, some further attention is warranted. When DELETE; is true for an expression in
basic block ¢, it must also be true for all its subexpressions, and only the value of the outermost

- exprossion needs to be saved in its prior computations. Thus, any deleted subexpression nested
within another deleted expression must be flagged to indicate that its value is not needed in that
basic block. The bit vector SUBDELETE; gives such expressions. It can be computed by checking

whether a deleted expreésion occurs only as part of a larger deleted expression.

On the other hand, when INSERT is true for an expression, it may be false for some of
its subexpressions. In such cases, their values are available at that point, and do not need to
be recomputed at the point of insertion. Such expressions also have to be flagged to indicate
that the values in their prior computations need to be saved up to that point. The bit vector
SUBINSERT gives those expressions in a basic block which are not inserted but are part of inserted

expressions (Fig. 3.6.6).

51

3.6. CODE MOTION

tu—bx3
Itq«—bxl)]' a+—t
l L Iac-bx3L + +
’ ' N~ Vs
N ¢ e
I a | la—=bx3] ach Iao—bx3‘
R .)) ‘o
N <
N ¢
R
]
‘.

a «— b x 3 cannot be moved across
block 3 because of the use of a in
that block, but b x 3 can.

Fig. 3.6.5 Partial Redundancies in Assignments

ty—a+b
I , [at+s | [tiea+b] [t
: EE S ' ¢
vy v N
| l, latb+el - ' tg —a+b+c
; ; Fead, |t
N~ Vg + . 4

Fig. 3.6.6 Nested Partial Redundancies

After the partial redundancy optimizations, points of performing computations are changed.
At a point of insertion, the inserted expression is computed and saved. At a point of deletion,

the reference of the saved vale of an earlicr computation is made. Section 3.10 presents details

52

3.6. CODE MOTION

about determining the flow of saved computation results.

3.6.3. Observations

One elegant point about generalizing code motion to partial redundancy suppression is that
additional cases of code motion out of loops are covered which would not otherwise be recognized
in conventional code motion in which only loop-invariant computations are moved out of loops.
Fig. 3.6.7 illustrates a case in which a computation is not loop-invariant because of a function
call inside the loop. But because the computation is performed a second time in the loop after

the function call, the first computation in the loop can be moved outside to the loop header.

te—a+7

i

a+7

l

SAFC) (S
: I

]

(LI

—1

Fig. 3.6.7 Code motion of first occurrence of loop-variant a + 7 out of loop (¢ is temporary)

Although the term PAVIN; is introduced in Eq. (3.6.7) to prevent the unnecessary expansion
of live ranges, not all useless code movement can be prevented. This over-movement can occur
when the term PAVIN; is true due to the presence of a larger enclosing loop. Another situation
occurs in the case of the WHILE loop, in which the loop termination conditional expression
is unnecessarily moved and duplicated (Fig. 3.6.8). Appendix D contains notes on how the
WHILE loop can be compiled by the front-end to allow for code motion, which also prevents this
over-movement of the conditional expression.

A final point is that the copy propagation algorithm mentioned in Scction 3.6 can enable
more loop invariant computations to be detected in code motion optimization without additional
effort. For example, if the statements a « b + ¢ followed by a + d occur inside the same loop,
and b, ¢ and d are loop invariant, then copy propagation will convert a + d to (b+ ¢) + d which

can then be recognized as loop invariant and moved out of the loop.

53

E—

[mtazo]_, | e
i !
=
t—a<9
1 1
L l

Fig. 3.6.8 Over-movement of the conditional expression in a WHILE loop

3.7. Reduction of Operator Strength

The purpose of the strength reduction optimization transformation is to replace complex
operations by simpler ones. It is primarily associated with quantities that are linear func-
tions of induction variables in loops. The proces;s involves replaciﬁg multiplications between
induction variables and constants (including region constants) by simple increments [Cock77]
[Alle81]. Opportunities for strength reduction arise most often in subscripted array references.
In multi-dimensional arrays, multiplications by constants are always necessary to compute off-
sets. Strength reduction optimization is especially important in machines with index registers,

and fast instructions that increment or decrement these index registers.

Although strength reduction and code motion are different types of optimization problems,
they are similar in a certain perspective, as illustrated in Fig. 3.7.1. The reduction candidate
i X 3 is to be replaced by a temporary ¢, which is to be properly initialized to 3 before loop
entry, and properly incremented by 3 each time ¢ is incremented by 1. It is possible to regard
the whole process as movement of the induction expression ¢ x 3 to outside the loop. Although
£ X 3 is not a loop constant expression, it is expensive to compute inside a loop. It is instead
computed outside the loop as # x 3, which is constant folded to 1 X 3 = 3, and stored in the

temporary ¢. Because ¢ is not a loop constant, but is an induction variable in the loop, ¢ is

54

‘
3.7. REDUCTION OF OPERATOR STRENGTH

updated every time ¢ is incremented inside the loop. Code motion is a special case because

there is no induction expression to update each time through the loop.

ie—1
t—1x3

=3

T
! = te—t+1x3
=t4+3
¢]
—]

Fig. 3.7.1 Strength Réduction as Code Motion

This generalization can be further applied to more general strength reduction transfor-
mations involving products of induction variables. In Fig. 3.7.2(a), where @ and b are region
coustants, applying the above process to the reduction candidate § x 7 transforms to Fig. 3.7.2(b).
By targeting the newly formed 1 X b and j X a as reduction candidates, Fig. 3.7.2(b) is reduced
to Fig. 3.7.2(c), which contains no more ‘reduction candidate, although an additional pass is
needed to move the lo;.)p-inva.riant expression a X b outside the loop by straight code motion.

Since code motion can be viewed as a special case of suppressing partial redundancy, as
discussed in the Section 3.6, strength reduction can also be generalized in this respect and be
included under the category of optimizations associated with partial redundancies. As a result
of such a gencralization, strength reduction is no longer limited to loops, but is possible in
acyclic regions of flow graphs as well. Fig. 3.7.3 illustrates such a situation as compared with
straight common subexpressicn. The reduction candidate ¢ X 3 can be regarded as a common
subexpression, although there is an increment of 5 in between the two occurrences. In the
optimization, the second multiplication is replacedi)y an increment of the temporary ¢. Fig.
3.8.2, in the next section, shows a case of combined strength reduction and partial redundancy.

The method of partial redundancy suppression of the Scction 3.6 has the important char-
acteristic that the code movements of all computations in the procedure arc determined once,
by the solution of the bit vectors INSERT and DELETE. The lengths of the bit vectors depend on

55

3.7. REDUCTION OF OPERATOR STRENGTH

beixe

. —l —
| ! !
Poira Poite
= t—t+jx%xa == ty —ti+axb
l i te—t+tg
j—j+b .
iei+h ‘ :
—] . —
t—t+itxb j—J+b
(a) — tg—ta+axbd
te—t+t
(d)
—]
()

Fig. 3.7.2 Iterative Strength Reduction -

the number of different computations in the procedure to be included in the optimization. In-
creasing the lengths of the bit vectors will increase the optimization time only marginally, since
in the iterative solution of the data flow equations, the number of iterations is usually small,
and depends more on the form of the control flow graph than on the contents of the bit vectors
[Knut71]. Thus, by including strength reduction in the suppression of partial redundancies, we
essentially get an additional optimization performed for free. '

Before using the algorithm of Section 3.6 to perform strength reduction, it is necessary
to determine the set of induction variables IV and strength reduction candidates CAND. In the
current implementation, induction variables are limited to variables incremented by constant
terms. As is the case in code motion, no analysis of program loop structure is needed. IV and
CAND are local properties, and their dcterminations are limited to individual basic blocks. They
are identified as follows: ’

IV - (Induction Variable) A variable v is IV in basic block ¢ if it is defined in block i only

56

3.7. REDUCTION OF OPERATOR STRENGTH

ty —ix3
)
4 !
—~ [
tl‘—t1+3

mzcm l
[&]

Fig. 3.7.3 Strength Reduction in Straight-line Code

by instructions of the form v «— (expr) where the expression (expr) consists only of the
+ and - operators, constants and the variable v itself which must occur at least once in
{expr). '

Candidacy for strength reduction is recursively defined. The expression itself does not have
to occur in a basic block for it to be a strength reduction candidate. This is because in the
subsequent transformation, it ‘may be necessary to move the expression across the basic block,
and this recognition is necessary to enable the code motion.

CAND - (Strength Reduction Candidates) An expression is CAND in basic block ¢ if it is one
of the following operations and satisfies the corresponding conditions:

(a) +,—: one of its operands is CAND; and the other operand is either CAND; or is invariant
in block ¢.
(b) x: one of its operands is a constant or region constant and the other opecrand is

either CAND; or is an expression consisting only of the + and — operators combining
variables at least one of which is IV; and the rest are either IV; or are invariant in
block .

According to the above construction of CAND, the following are examples of induction ex-
pressions being recognized: ‘
1'1 X k;
1'1 Xa
(il xa+i3+k1) x b
(f1 Xxa+i3+k)xdb+e
(51 X @ +1dq + k) X b+ kg X i3

where 1, 13, etc. are induction variables,

57

3.7. REDUCTION OF OPERATOR STRENGTH

ky, ka, etc. are constants and

a, b, etc. are region constants.

Note that expressions of the form ¢; + k; are excluded because they do not contain any
complex operation to be simplified.

Strength reduction optimization is incorporated into the algorithm of the Section 3.6 by
adjusting the local attributes using CAND. The result of the flow analysis will then automatically
reflects the code motion of the strength reduction candidates. The local attributes are adjusted

as follows:
ALTERED; = ALTERED; — CAND;

ANTLOC; = ANTLOC; + EXPOCCUR; - CAND; (3.7.1)
AVLOC; = AVLOC; + EXPOCCUR; - CAND;

In the above, the attribute EXPOCCUR gives whether an expression occurs in a basic block.
The meaning of the first redefinition is that if an expression is a strength reduction candidate
in block ¢, then block ¢ should be made transparent to the expression so that the expression can
move across the block. The second and third redefinitions say that if the expression occurs in
the block, then it should be regarded as being locally anticipated and locally available.

The subsequent solutions for INSERT and DELETE will then determine the movements of
the reduction candidates exactly as tﬁey do for partially redundant expressions. In the final
code emission phase, in regions in which the reduction candidates are available and live, any
increment or decrement of the induction ‘variables will cause generation of the corresponding
code to update the temporaries that contain the values of the induction expressions.

3.8. Induction Variable Elimination

After the strength reduction optimization of Section 3.7, additional opportunities for a dif-
ferent optimization are unfolded. If an induction variable is used only in strength reduction
candidates that have becen moved uﬁward, and the variable is not live or will be assigned a new
value, the variable can be eliminated in its loop-induction region. This means that the initi&liza-
tion and updates of the induction variable can be suppressed. Most often, the induction variable
appears in the test for loop termination condition. In this case, linear function test replacement
can be performed, which involves substituting the induction variable in the test by its induction
expression. Such an opcration further enhances the chance that the induction variable can be
climinated (Fig.'3.8.1). The algorithm we use, which relies on information gathered during code

motion optimization, is applicable not only to strongly connected components of the flow graph,

58

3.8. INDUCTION VARIABLE ELIMINATION

but to all regions of the code. In addition, we do not limit test replacement to loop termination
tests, but to any comparison operation which may be part of a boolean expression that can
exist in any region of the program.’ Section 3.8.1 presénts the lincar function test replacement
algorithm. Section 3.8.2 discusses the operations to eliminate induction :rariables.

3.8.1. Linear Function Test Replacement

Linear function test replacement is performed only for the purpose of enhancing the elimi-
nation of induction variables. If it does not result in making the replaced variable dead, then the
test replacement should not be pert"ormed. The algorithm for linear function test replacement
in UOPT finds and marks possible test replacement candidates. Subsequent to this, induction
variable elimination is performed. This in turn results in establishing which test replacements
are beneficial and which are not. A final pass over the test replacement candidates suppresses
all those test replacements that. are not desirable. ’

)

______gl

Te—i+1 . | te=t+3

1
——
1
7 < (o)
—]

Fig. 3.8.1 Linear Function Test Replacement

The linear function test replacement algorithm is as follows:
Algorithm TestReplace.

Tor each comparison operation which occurs in block n in the program of the form ¢ op k;
where k) is a constant, if 1 is IV, or is not ALTERED,,, then 1 can potentially be replaced by its
induction expression. (The ALTERED attribute is the one that has been modified by Eq. (3.7.1).)
Find an expression e in the program that satisfies the following condition:

1. e is an induetion expression (see definition of CAND in Section 3.7);

2. e contains 3 as the only variable operand;

59

3.8. INDUCTION VARIABLE LLIMINATION

3. e is PPIN,. i
If the expression e can be found, then mgu-k 1 as being replaccable by e. O

The purpose of condition 2 and the requirement tl;at the test operation must be of .the
form ¢ op k; is for ensuring that an equivalent test of the form e op k3 can be obtained by
transformation after the testvreplacement, where k3 is formed by some constant arithmetic. If
the form e op k; cannot be obtained, the transformation will slow down the program since the
left or right sides of the comparison then contain additional computations.

Condition 3 makes sure that e is available at the point of replacement so that it does not
have to be recomputed. The use of the PPIN attribute is more general than the AVIN attribute
that applies before the code motion transformation. This is established by the following theorem:

THEOREM 3.8.1. Ifa com'putatfén e is PPIN at block i, computed by Eq. (3.6.7), then it is
available at the entry of block i after the insertions performed according to Eq. (3.6.5).

PROOF. By Eq. (3.6.7), for PPIN; to be true, PPOUT; or AVOUT; must be true for all j € Pred(s).
According to Eq. (3.6.5), one of the following cases must occur at block j:

(a) e is inserted at the exit of j (INSERT; = true);

(b) e is available at the exit of j (AVOUT; = true);

(c) e is PPIN; and not ALTERED; ((—PPIN, + ALTERED;) = false).
In cases (a) and (b), e will be available at the exit of j. In case (c), the problem is reduced
to finding whether the theorem is true for block j. We can apply the same reasoning to block
7, and this process will eventually terminate since PPIN at the entry of the flow graph is false.
The only situation where reasoning through case (c) will not terminate is when there is a cycle
in which PPIN is true for all the nodes and e is not ALTERED in the cycle. But in this case, the
fact that e is available at the exits of the headers to the cycle is sufficient to guarantee that e is
available throughout the cycle. O

The above test replacement algoﬁthm does not specifically require that the replaced variable
1 be an induction variable. Onc reason is that we do-not recognize induction variables on a global
basis. The induction variable attribute IV that we use is only a local attribute. A loop may
contain more than one basic block, and a variable is an induction variable if it is' IV in just one of
the basic blocks. Also, the substituted expression e, although involved in code motion, may not
have been a strength reduction candidate. But even under such situations, the test replacement
performed is still an optimization. Thus, our approach to linear function test replaccment is

more general than the traditicnal approach.

60

3.8. INDUCTION VARIABLE ELIMINATION

|

¥ 4
]
1 ¥ 4 . 4
I ‘ lt0—t+l} |t4—3x-q [t—t+3]
4 ¢ v v
_
N "4

N "4

——

+ . ¢
1 &

1 dead 1 removed
Fig. 3.8.2 Combined Strength Reduction and Partial Redundancy

3.8.2. Finding and Eliminating Redundant Induction Variables

After the uses of the induction variables have been replaced, the elimination of these vari-
ables is actually equivalent to eliminating assignments to these variables which have now become
redundant. These assignments consist only of increments to the induction variables. The same
basic scheme of Section 3.5 can be used, which determines store redundancies by solving for
_anticipabilities of L-values. A different treatment is needed for induction variables, however. If
a variable is an induction variable in a basic block, then its use in its increment statements must
not be regarded as altering its L-value, in the definition of ALTERED of Section 3.5. The meaning
of this is that all increments to induction variables are to be regarded as transparent. Thus, in
a basic block in which an induction variable is only incremented, ANTLOC and ALTERED are both
false. The earlier code motion and test replacement optimization also affect these attributes,
and updating them is also needed.

After the computation of ANTIN and ANTOUT according to Eq. (3.3.2), an induction variable
is redundant if its L-value is ANTOUT and not ALTERED in a basic block. In this case, all of its

increments in that basic block are to be deleted.

Following the elimination of redundant induction variables, the test replacements performed
by algorithm TestReplace have to be validated. This consists of checking, for each replaced

variable 7, whether ANTOUT,, just computed is true. If this is false, then variable ¢ has not been

61

3.8. INDUCTION VARIABLE ELIMINATION

. t—a+3
1 — [=ai3], :
N < Optimize . ~ <
| Lt 1

¢ 2
(a) Expression a + 3
4 . +
[i=i+7] —]

Optimise

kY ¢ N
—

(b) Assigment j —
Fig. 3.9.1 Duality in Partial Redundancies between Expressions and Assignments

eliminated, and the test replacment for 1 is cancelled.

3.9. Optimization of Store Positions

The optimization of Section 3.5 involves only assignments that are completely redundant.
As was noted in Section 3.5, a duélity exists between te&undant expressions and redundant
assignments. The same is true when we generalize to partial redundancies. Fig. 3.9.1 illustrates
this. Partial redundancy in expressions is a partial availability problem, and partial tcdmxdancy
in stores is a partial anticipability problem. As partial redundancy in expressions can be removed
by backward code motion, partial redundancy in stores can be removed by forward code motion.
Fig. 3.9.2 shows a partial redundancy in stores occurring in a loop. The variable a is not
referenced anywhere inside the loop. The resulting code motion moves the store to the exit of
the loop, rather than the entry as is the case with expressionst.

Since partial redundancy in stores corresponds exactly to partial redundancy in expressions,
provided that we reverse the direction of view from backward to forward (or from upward to
downward), we can apply the same method of partial redundancy suppression to stores. The
consequence is a scheme to optimize assignments that encompasses a greater scope, involving

deletions from their original positions and forward movements to places where they are inserted.

t If the assigned value is loop-invariant, then the assig;
and moved to the entry of the loop: (see Section 3.8).

t will be treated as a loop-invariant computation

62

3.9. OPTIMIZATION OF STORE POSITIONS

i T

—— ' 1

[imizi]
=

il 1
Cemize] —

— —_—]
E—

13]

Fig. 3.9.2 Store Redundancy in Loop

Since the movements of the stores are only in the forward direction, an additional but important
benefit that can be brought about is live range shrinkage.

The same methodology as in Section 3.6 is used in UOPT to suppress partial redundancies
in stores. Instead of inserting at the exits of individual basic blocks, we now insert the stores at
the entries. The L-value attributes of Section 3.5 are used as the starting local attributes in the
flow analysis. The directions of all the ‘parameters and attributes are reversed: QUT < IN, ANT °
& AV and Pred ¢ Succ. The system of flow equations to solve for PPIN and PPOUT for stores,
which correspond to Eq. (3.6.7), is as follows: .

FALSE if ¢ is the exit block;
PPOUT; = { AVOUT; -PANTOUT; - [] (PPIN, + ANTIN;)
JESuce(s))
+(AVLOC; + —ALTERED; - PPIN;) otherwise. (3.9.1)

FALSE if ¢ is the entry block;
PPIN; = PPOUT, otherwise.
kE&Pred(s) :

Using the resulting PPIN and PPOUT attributes, insertions and deletions of stores are de-
termined by computing the attributes INSERTIN and DELETE. In this case, INSERTIN indicates

insertion at the entry to a basic block rather than exit as was the case in backward code motion.

63

3.9. OPTIMIZATION OF STORE POSITIONS

F=7xm) R
¢ v
V4 N = o >
Optimis: . te=T7xm
S X PR et me |
"4 N
4E N
exit Jei . —
R =

+

Fig. 3.9.3 Forward Code Movement to Eliminate Partial Redundancy in Store to ¢

INSERTIN; = PPIN; - ~ANTIN; - (~PPOUT; + ALTERED;).

(3.9.2)
DELETE; = AVLOC, - PPOUT;.

As was remarked in Section 3.5, in solving for ANTIN, ANTOUT, PANTIN and PANTOUT, the
initial values of ANTOUT and PARTOUT can be set to truc if the variable is local, and false otherwise.
This allows the recognition of path in the program in which variables are dead. The result is
that in the subsequent forward code movement, on reaching the entry to a path on which the
assigned variable is dead, code insertion will be automatically inhibited (Fig. 3.9.3).

In the current optimization of store redundancies, no account is taken of the right-hand-
sides of assignments. For an assignment @ « (expr), the content of (expr) does not affect
the data flow analysis that resuits in computation of INSERTIN and DELETE. However, if a is
assigned different values on different paths that converge, then the assignments to a cannot
be moved to the point where the paths converge (Fig. 3.9.4). To take this into account, it is
necessary to impose additional restrictions in the solution for PPIN and PPOUT in Eq. (3.9.1).
In the initialization to solve for PPIN and PPOUT iteratively, the PPIN’s for nodes which are
confluences of more than one paths are to be set to false. In this' way, these PPIN’s will remain
false throughout the iterations. The result is that the stores will not be moved across these
nodes. '

The attribute INSERTIN computed by Eq. (3.9.2) gives the stores to be inserted at the entry

to a basic block by referring to the assigned variables, but gives no details about the assigned

°

64

3.9. OPTIMIZATION OF STORE POSITIONS

[a 3] la =]
7
"4 N
c+—a exit

Fig. 3.9.4 Partial Redundancy in @ ~— cannot be eliminated (e local variable)

expressions to be used. This is because all assignments of the form a « (expr) are aggregately
referred to as occurrences of the L-value of a. In performing the forward code motion specified

" by the INSERTIN attribute, it is necessary to determine the actual assigned expressions. Since

A

the insertions are moved fromn the ancestral nodes in the flow graph, it is only necessary to
search through the predecessors by taking an upward path starting with the immediate parent.
Because of the restriction that stores cannot be moved from different paths that converge, a
block in which a store insertion is indicated will not have more than one parent. The search
must succeed, and the assignments found are deleted at their original basic blocks.

The content of the right-hand-side expression also affects the feas{bility of the forward code '
movement in another way. It is possible that the value of the assigned expression (expr) in the
assignment a.s— (expr) is altered somewhere along the path that leads to the node where the
store is inserted (Fig. 3.9.3). In such situations, the assignment should still be moved forward
as far as possible, because even though the store partial redundancy cannot be fully suppressed,
it can still be confined to the smallest region possible. The resulting insertion is at the entry to
the node where the assigned expression {expr) is first altered.

It is to be noted that the optimization of Section 3.6 also removes partial redundancies in
assignments, but in a different sense: the assignments are regarded as computations and are
moved backwards in the flow graph instead of forward. (Compare Fig. 3.9.2 with Fig. 3.6.4.)
The right-hand-sides of assignments are included in the data flow analysis, and the assignments
a «— (expry) and @ — (expr,) are regarded as different computations. There is no overlap

between the current optimization and those performed in Section 3.6.

3.10. Global Optimization of Saves

The optimization of partial redundancy suppression for expressions (Section 3.6) requires
that the values of expressions be saved at their points of computation and be made available
for use later on at various points in the program. The saving of computed expression values

constitutes a major portion of the new code introduced by the optimizer to the optimized

65

3.10. GLOBAL OPTIMIZATION OF SAVES

— | —|
.————_)1
T—it1 feidl Pl
i+ te—t+] t+7
t
= = !
—]
J— —
— te—1+3
¢] t
(a) (b) (C)

Fig. 3.10.1 Suppression of Undesired Common Subexpression Optimization

program. The optimizer has to make sure that these . dditional saves are optimally placed so
that they do not cause dcterioration in program performance. Fig. 3.10.i{b) shows a common
subexpression optimization which actually results in slowing program execution; to avoid the one
recomputation of ¢ + 7 outside the loop, the common subexpression is stored into the temporary
¢t multiple times during the iterations of the loop. The optimization algorithm of Section 3.6 and
many other redundancy elimination algorithms do not recognize such cases and do not avoid the
‘optimization. This is because a computation is redundant whenever it occurs at a point where
it is available. This availability condition applies even if the previous computation occurs inside »
a loop.

To enable the optimizer. to avoid such undesirable optimuzation of redundant expressions,
we address this problem in terms of the optimization of positions to save common subexpressions
(Fig. 3.10.1(c)). The saving of expression values takes up execution time, and it is necessary to
eliminate any redundancy in the save code. Since this redundancy in saves is of the same nature
as the redundancy in stores discussed in Section 3.9 (both are memory store operations), this
problem can be tackled using the same approach and with the same algorithm. Moreover, they
can be performed at the same time, thus allowing us to obtain the effects of the optimization of
temporary saves essentially for free.

3.10.1. Determination of Saved Computations

To apply the algorithm of Section 3.9 to the suppression of redundancies in temporary saves,
some preliminary steps are needed after the code motion transformation of Section 3.6. It is
necessary to look at all the places where computed values are saved and referenced across basic

block boundaries. Then it will be possible to establish the local attributes for the temporary

66

3.10. GLOBAL OPTIMIZATION OF SAVES

saves with which we do flow analysis to suppress their partial redundancies. We call a node
in which a computation is saved a source and a node in which a previously saved computation
is referenced a sink. The reason for these names is because computations done at the sources
are available and used at the sinks by virtue of the control flows. Our t‘)bjective is to establish
the bit vectors SOURCE and SINK for all basic blocks. If the bit position for an expression e in
SOURCE,, is true; then the expression must have been computed in block n, and the value of the
last computationt in n is to be saved. If the bit position for e in SINK,, is true, then a previously
saved value of the computation of e is referenced in block n. SOURCE refers to the definitions of
the temporaries and SINK refers to their references.

The bit vectors SOURCE and SINK can be computed by pure bit vector operations on at-
tributes which are used in the previous optimizations. A computation e is saved in block n in

one of the following two occasions:

1. The computation e occurs in the basic block n and is available at the block exit (AVLOC,
is true). It is not redundant at the entry point of n (i.e. DELETE, is false) or it is altered
earlier in block n (ALTERED,, is true) so that its recomputation in n is needed.

2. The expression e has been inserted at the exit of basic block » in the code motion of Sectioﬁ
3.6 (INSERT, is true).

In both of the above cases, it is necessary that there is some partlal]y anticipated sink, so
that the computed value needs to be saved.)

A previously saved computation e is referenced in block » under the following situations:

1. The expression e has a redundant occurrence in block n, and in this occurrence, it is not
part of another redundant expression (DELETE,, — SUBDELETE,, = true).

2. The expression e is a subexpression of a iarger expression inserted at the exit of block n in
the earlier code motion, but e does not need to be inserted there because it is available at
that point (SUBINSERT, — AVLOC,, = true).

From the above, the bit vector SINK can be computed as follows:
SINK; = (DELETE; — SUBDELETE,) + (SUBINSERT; — AVLOC;) (3.10.1)
From the local attribute SINK, we can solve for its global partial anticipability by flow
analysis. The resulting SINKPANTOUT b\t vector is used in computing SOURCE:

SOURCE; = [AVLOC; - (~DELETE; + ALTERS.) + INSERT;] - smxpmotrr. (3.10.2)

t There can be more than one computation of ¢ in block n when all except the last are altered inside n.

67

3.10. GLOBAL OPTIMIZATION OF SAVES
3.10.2. Optimization of Saves by Flow Analysis

After the computaticn of the SOURCE and SINK attributes, we can transform them into
the corresponding attributes which we use in the suppression of store partial redundancies in
Section 3.9. We can then includé temporary saves in the forward code motion algorithm. The
transformation can be specified as follows:

SOURCE; = AVLOC;
_SINK; => ALTERED;
SOURCE; — SINK; => ANTLOC;

The above transformation allows us to obtain the AVLOC, ANTLOC and ALTERED as defined

in Section 3.5 applied to the temporaries that store the values of the expressions.

The iterations employed in Section 3.9 are used to solve for the basic blocks at the entries of
which the saves to temporaries are to be inserted. At these points of insertion, the recomputation
of the saved expressions are needed. At places where there are redundant stores to temporaries,.

the stores are inhibited.

3.11. Summary

In this Chapter, we have presented a framework of performing optimization that is com-
prehensive enough to include all the common and important optimization transfdrmatioqs. In
Section 3.1, we present a set of local optimization techniques, most of which involve manipu-
lations of the underlying data structures, which are used in various phases in the subsequent
global optimizations, and according to which data flow information is gathered. In Section
3.3, we define the data flow attributes that form the basis for performing the various global
optimizations.

A concise and more generalized method for performing copy propagation is introduced in
Section 3.4. The method also includes global constant propagation as a special case. The
copy propagation algorithm relies on the subsequent redundant expression and redundant store
eliminations for its full benefits to be derived.

In Scction 3.5, a method to perform redundant store elimination is presented. The method
is based on the determination of whether a store is anticipated, as opposed to whether a variable
is not live in the traditional approach. The dual relationship between redundant expressions

and redundant assignments is introduced.

68

3.11. SUMMARY

In Scction 3.6, the partial redundancy algorithm to perform code motion and common
subexpressions is formulated and a scheme for its usage is presented. In Section 3.7, we present a
new method of performing strength reduction by regarding it as a generalization of code motion,
thus enabling it to be performed at the same time as code motion in the partial redundancy

algorichm.

In Section 3.8, we give a method to perform linear function test replacement. The method
of Section 3.5 is adapted for use in the elimination of induction variables made redundant by

previous optimizations.

In Section 3.9, the concept cf partial redundancy in stores is derived using the duality first
exposed in Section 3.5, and we propose the optimization of forward code motion as opposed to
the standard backward code motion. The algorithm of Section 3.6 is modified to perform partial
redundancy elimination in stores. This same algorithm is then re-appiied to the optimization of
temporary saves in Section 3.10. This completes the presentation of the sequence of optimization
techniques that we use. A

69

4. Register Allocation

Machines have different forms of memory organization and storage hierarchy. The memory
storage elements that affect machine performance the most are the set of hardware registers —
the fastest type of memory in most machines. Machine instruction sets are designed around the
set of registers residing in the machines. Instructions involving registers are usually shorter and
faster than those in\;olving memory references. Therefore, efficient utilization of registers is very
important in generating good object code.

Register management is a highly machine-dependent process. In many machines, specific
operations are tied to specific registers. Many machine instructions limit one or more instruction
operands to be among the hardware registers, since such a specification usually takes up a smaller
number of bits in the instruction word. Index and base registers are commonly provided to access
elements in arrays, or in indirect addressing. Many machines also offer the auto-increment and
auto-decrement modes of addressing via index registers. Register management depends heavily
on instruction selection at the lowest level of code generation, and is more appropriately done
by the code-generating back-ends.

However, there is another aspect of register allocation which is less related to instruction’
selection, and can best be performed by the machine-independent optimizer so that the results
can be used by all back-ends. This aspect of register allocation determines which quantities
should reside in the limited number of registers during the course of execution of various program
segments, and the optimization of the associated register-memory transfer operations. This
global machine-independent register allocation, pérfonned across entire procedures, is based on
usage counts, and depends on the global control structure of the program and the availability
of data flow information. Code generators usually gather only local information related to the
instructions they are going to cmit, and thus cannot be relicd upon to perform this task in the
global context. Global register allocation is best done in the global optimizer as the last phase,
when the final structure of the code to be emitted has been determined. This chapter discusses

the various aspects of machine-independent register allocation in UOPT.

4.1. Limitations

Register allocation at the intermediate code level has a number of limitations compared
with register allocation done by the code generators. All of these limitations are due to the

machine-independent nature of the intermediate code.

1. Only allocation of general-purpose registers is possible. Dedicated registers (e.g. stack

pointers, displays, subroutine linkage registers) and registers restricted to specific operations

70

4.1. LIMITATIONS

(e.g. multiplication in the Intel 8086) cannot be allocated, since these registers are invisible
at the intermediate code level. Nevertheless, if the registers in the target inachine are
divided into classes, the optimizer can allocate variables of different data types to the
different classes of registers according to the description given to it (e.g. the data registers
and address registers in the MC68000, the general registers and floating-point registers in
the IBM 360/370).

The requirements and effects of individual machine instructions pertaining to registers can-
not be taken into account. Such uses of registers arising out of instruction selection by the
code gencrators are not necessarily related to the register allocation decisions. When regis-
ters are globally allocated by the optimizer, intermixing of registers used by the optimizer
and registers used by the code generator is not possible. Since the registers used by the
code generator are not available to the optimizer, redundant register copies are sometimes
introduced. For example, the optimizer cannot utilize the fact that an expression may al-
ready be residing in a register at the end of a sequence of machine instructions, unless it
specifically tells the code generator to move the result there. Of course, no real move may
be needed.

There are hidden register operations over which the optimizer has no control. For example,
in U-Code, the computation stack is a storage area which is usually implemented using a
set of registers in real machines. At a function call, it is necessary to save the items still
exist on the computation stack — an operation that involves many register moves. At the
intermediate code level, an item loaded on the stack is assumed to have been used even if
it still resides on the stack. Since the home locations of the variables residing further down
the stack may be changed by the call due to side effects, it is necessary to save the stack
items in special temporary save areas. Another example is the passing of parameters in
procedure calls. The actual mechanism may involve the use of registers, which is invisible
at the intermediate code level.

The optimizer has to assume a fixed saving in execution cost for accessing a variable in
register rather than from memory. This saving estimate, supplied to the optimizer in
the machine description, is not in reality ﬁxt;d for a given machine, since the execution
times of individual machine instructions vary and are also dcpendent on the actual operand
addressing modes used. .

The optimizer employs usage counts of variables in the program to estimate the possible
improvements when allocating variables in registers. The usage counts of variables in the
intermediate code may differ from those in the object code, duc to the availability of spe-

cialized instructions in the target machine. In most of these cases, a sequence of U-Code

71

. 4.1. LIMITATIONS

instructions is collapsed into a single machine instruction. Examples include “increment
and test”, “increment pointer and load indirect”.

The first two of these limitations are the most serious while the last three limitations are
largely unavoidable and have minor impact. The unavailability of the detailed structure of the
registers and the code sequence requirements introduce some inefficiency. However, we believe
that such inefficiency is small and the more abstract model used in UOPT allows the same

register allocation to be used across a wide variety of machines and code generators.

4.2. Assumptions and Overview

The purpose of register allocation in UOPT is to best utilize the limited number of general-
purpose registers set aside for use by the optimizer in the code-generating back-ends. The
register allocator should try to introduce as little register load and store code as possible. If the
optimizer does not use up all the registers set aside for it, it conveys the information to the code
generator so that the unused registers are available for use by the back-end. Since the input
program is assumed executable without using the global optimizer, all program variables in the
input are assumed to have been allocated in main memory. The optimizer does not attempt
to change the stack frame composition or re-map variable addresses, since such transformations
provide little improvement in execution speed. The optimizer also assumes no register allocation
is present in the input program, since this interferes with its own register allocation. Temporaries
generated by the previous phases of the optimizer are also assumed to have been allocated
in main memory, and they are treated uniformly as variables. Due to these assumptions, it
is not necessary to generate spill cocie for variables not allocated to registers. Instead, all
objects have home memory locations and the optimizer attempts to re-map memory accesses to
register accesses. This contrasts with the approach used in the PL.8 compiler project [Chai82] in
which the register allocation phase attempts to map the unlimited number of symbolic registers
assumed during earlier compilation and optimization phases into hardware registers. If this is
unsuccessful, code is added to spill computations from registers to storage and later re-load
them.

A precaution is taken due to alias and equivalence. Variables can be equivalenced to an
array element. Non-local variables can also be altered or referenced by indirect assignments or
loads. Such potentially aliased variables are not considered for assignment to registers since the
indirect operations may alter or reference the home locations of these variables which have not

been updated, resulting in incorrect program execution.

The general purpose registers used by UOPT are divided into classes, with each class being

designated for specific data types and sizes. The division into classes is strict, and no overlap of

72

4.2, ASSUMPTIONS AND OVERVIEW

registers between the classes or more complex machine idiosyncrasy is currently handled. The

registers within each class are assumed to be uniform.

The register allocation algorithm used is a combination of a local method based on usage
counts and the global method based on the coloring algorithm, which also takes into account
cost and saving estimates. The local phase allocates one block to a register each time. The
global phase allocates one live rangé to a register each time. ‘The local register allocation
phase is inexpensive and near-optimal for straight-line code, but does little to contribute to
the globally optimal solution. The global allocation phase is more computation-intensive and
time-consuming. In our approach, the local allocation process is made to do as much allocaiion
as possible so long as the allocation' would not have any effect on the outcome of the global
allocation phase. The algorithm is general enough to be applicable to all target machines.

The relative importance between the local and global phases can be varied by changing the
maximum length of blocks allowed. The user can set the ZVREF option with a number, which
imposes a limit on the maximum number of variable appearances allowed in a basic block. If
this number is exceeded, the remaining code is made to belong to a new block. A default
value for this option serves to guard against the presence of large blocks that can degrade the
output of the register allocator. When blocks are small, the local phase will not be able to
allocate as many items to registers based on its allocation criteria, and more work is left to
the more expensive global phase. As the limit on block lengths becomes smaller ‘and smaller,
the overall allocation also approaches the optimal solution since registers can now be allocated
across shorter segments to cater to any irregular clustering of accesses. The processing cost
also increases correspondingly because of the larger number of blocks involved and the greater
amount of work being performed by the global phase. Thus, the register allocation phase in
UOPT has a large amount of built-in flexibility with respect to processing cost and quality of
results. i practice, basic blocks are usually short, and most of the work is done by the global
phase.

4.3. Cost and Saving Estimates

In determining the feasibility of assigning a variable to register, it is necessary to estimate
the execution-time cost and saving due to the register assignments.

Assigning a variable to a register involves the loading of the variable from main memory
to the assigned register prior to referencing the variable in a register in the subsequent code.
If the value of the variable is changed in the intervening code where it resides in register, the
home memory location of the variable has to be updated with the register content at the end

of the code scgment unless it is dead on exit. These extra move operations between registers

73

4.3. COST AND SAVING ESTIMATES

/ RLOD ’ } \

l |

RSTR RSTR |
T

Fig. 4.3.1 Example of a live range with associated RLOD’s and RSTR's

and memory represent thé execution time cost of the register assignment. The execution time
saving of the register assignment refers to how much the code segment is rendered faster due to
the variable’s residing in a register (Fig. 4.3.1). Thus, we define the following three paramieters,
which vary among target machines: '

MOVCOST — The cost of a memory-to-register 01; regiater-to-memoﬁ move, which in practice
is the execution time of the U-Code instructions RLOD and RSTR in the target
machine. '

LODSAVE — The amount of execution time saved for each rcference of a variable residing in
register compared with the corresponding memory reference that is replaced.

STRSAVE — The amount of execution time saved for each definition of & variable residing in
register compared with the corresponding store to memory being replaced.

The parameters LODSAVE and STRSAVE may not be constant for all loads and stores for the
same machine, since they depend on the actual machine instructions and addressing modes being
used. For example, a machine instruction may directly specify an operand in main memory,
or there may be loading of the operand into a register in a prior instruction before referencing
the opcrand via the register. The addressing mechanisms used also depend on whether a given
variable is local, glebal or an up-level reference. The actual addressing mechanisins may be via

74

4.3. COST AND SAVING ESTIMATES

displays or static links. Pipelining in the underlying architecture also affccts the values. For
machines that require operands to be in a register before any operation, LODSAVE is equal to
MOVCOST. Otherwise, MOVCOST is larger than LODSAVE or STRSAVE. It is necessary to use average
values for LODSAVE and STRSAVE for a given machine.

It is to be noted that LODSAVE and STRSAVE as defined above may not represent all the saving
that comes from register assignments. The benefits of register allocation do not arise solely out
of being able to reference an item in register instead of from memory. In many machines, having
a register operand has the added benefit of allowing more freedom in the instruction selection
process of the code generator. The saving that comes from enabling the code generator to use

more efficient instructions is highly context-dependent, and cannot be easily paramaterized.

Only the relative values of the above three paramecters are significant. A typical set of
values for these parameters are 1.5 for MOVCOST and 1 for LODSAVE and REGSAVE. Section 5.7.2
discusses the effect of these parameters on the optimization results.

4.4. Local Register Allocaf;ion

Local register allocation in UOPT precedes the global register allocation phase. Local
register allocation refers to allocation in a basic block, or a straight-line piece of code segment
which may be part of a basic block. The allocation is based only on information available in each
basic block. The solution to this problem using reference counts is well-established, inexpensive
and can be easily implemented [Frei74]. Nevertheless, separate locaily optimal solutions to the
register allocation problem do not necessarily add up to the globally optimal solution. However,
it is possible to determine a portion of register allocation locally that also belongs to the global
solution, so that the work load of the subsequent, mare cxpensive global allocation phase can
be made smaller. '

For each variable in the local code segment being considered, the local saving that can be
achieved by assigning the variable to register is estimated. This is computed by:

NETSAVE = LODSAVE X u + STRSAVE X d — MOVCOST X n (4.4.1)

where u is the number of uses of the variabl'e,A
d is the number of definitions of the variable and

n is either 0, 1 or 2.

n depends on whether a load of the variable to a register (RLOD) at the beginning of the
code segment and a store from the register back to the variable’s home location (RSTR) at the

end of the code segment are to be inserted. If they arc both needed, n is 2. If the first occurrence

75

4.4. LOCAL REGISTER ALLOCATION

of the variable is a store, then the initial RLOD is not needed. If the variable is not altered, or if

the variable is not live at the end of the code segment, then the RSTR is not necessary.

If the local code segment is considered together with its preceding and subsequent code, the
term involving MOVCOST represents the uncertainty in cost with regard to NETSAVE that may or
may not contribute to the final global solution. This is because if the variable is also allocated
to the same register in the surrounding code, then the RLOD and RSTR at the beginning and
end of the current code segment are unnecessary, and the actual value of NETSAVE is increased.
Thus, for each variable in the local code, we compute two separate quantities:

MAXSAVE = LODSAVE X u + STRSAVE X d (4.4.2)
MINSAVE = LODSAVE X u + STRSAVE X d — MOVCOST X n. (4.4.3)

The quantity MINSAVE represents the minimum saving in the local code segment gained by
allocating the variable to register. The quantity MAXSAVE is the maximum possible saving. The
actual saving after all register allocation is performed will range between MINSAVE and MAXSAVE.
The parameters MAXSAVE and MINSAVE also apply to variables which do not occur in the codé
segment, when they are both 0; in such cases, the two ;iarameters are used only in the later
global allocation process.

When the surrounding blocks are considered together with the. current bloék, the local
allocation may displace some other variable which has been assigned to the same register in the
adjacent blocks and which, if allowed to occupy the same register in the current block, would
enable the elimination of the RSTR’s at the ends of the preceding blocks and the RLOD’s at the
starts of the succeeding blocks. Thus, the absolute criterion for determining the local allocation

of a variable in register can be given as:
MINSAVE > MOVCOST X (p + s) (4.4.4)

where p is the number of prédecessors of the block,

8 is the number of successors of the block.

When this condition is satisfied, the variable can be locally allocated in register with cer-
tainty regardless of the rest of the program. In comprting the above condition, the frequency
weights (sec Section 4.5) of the adjacent blocks relative to the current code segment have to be

taken into account.

In making local register allocations, if there are more variables satisfying the condition

given by Eq. (4.4.3) than there are registers available, it is necessary to determine the priorities

76

4.4. LOCAL REGISTER ALLOCATION

amoﬁg the variables. Priorities are assigned by imposing a partial ordering on the variables.
Variable a is preferred over b if:

. MINSAVE(a) > MAXSAVE(b) (4.4.5)

Otherwise, the preference cannot be established absolutely.

The actual assignment of register number is not performed in the local allocation pass.
It is done during node coloring in the global allocation phase, when the optimizer will look
for opportunities to assign the same register to a variable over contiguous code segments to
minimize the number of RLOD’s and RSTR's.

4.5. Control and Data Flow Analysis

The overall register allocation process depends on the division of the input program flow
graph into discrete code segments, each not longer than a basic block. A code segment is the
smallest extent of program code over which a register is assigned to a variable. The smaller the
code segments, the closer will the final solution be to the optimal allocation solution. However,
the amount of processing time in global register allocation is potentially some exponential func-
tion of the number of program nodes. In UOPT, long basic blocks can be broken up into smaller
segments based on the number of variable references already encountered. It is expected that
as the limit on the sizes of the code segments becomes smaller and smaller, the usefulness of
the local register allocation stage will diminish, since fewer and fewer variables can satisfy the
condition given by Eq. (4.4.4). ’

The global register allocation solution also depends on estimates of the cost and saving of
letting a variable reside in register across a certain region. In computing the cost and saving, it
is necessary to take into account the loop structures of the program. This is because a register
load or store outside a loop is preferred over one inside a loop, and a live range extending over a
loop has greater priority to occupy a register than one not over a loop. Thus, each code segment
is assigned a frequency weight poportional to how deep the segment is nested inside loops. The
weight is arbitrarily increased by a factor of 10 each time a loop is entered. Thus, the frequency
weight of a given code segment is 10 times its loop-nesting depth.

The loop structure of' the program is detected by performing interval analysis on the control
flow graph. The flow graph is partitioned into inter-=zls, forming the derived flow graph. This
process is performed iteratively until the derived sequence of the low graph is obtained {Section
3.3 of [Hech77]). In the derived sequence Gg, Gy, ..., Gk, each G;4 is the derived flow graph of
G, and Gy is the limit flow graph. The degree of nesting of individual nodes in the original flow

7

4.5. CONTROL AND DATA FLOW ANALYSIS

Proc. Entry
Use of a .live
range
aQ &
Use of a .
live
range
Use of a
Proc. Exit

Fig. 4.5.1 The live ranges of a non-local variable a

graph is then found by going down the intervals starting with the limit flow graph Gy in the
reverse order of the derived sequence until the nodes in the original flow graph Gy are reached.
In going from G; to G;_i, not more than one loop can be entered, and the loop must include
an interval header in G;.

A live range of a variable is an isolated and contiguous group of nodes in the control flow
graph in which the variable is defined and referenced. No other definition of the variable reaches
a reference point inside the live range. Also, the definitions of the variable inside the live
range do not reach any other reference point outside the live range. Global register allocation
assigns complete live ranges to registers, and if this is not possible, parts of live ranges are
assigned. Cemputations for the separate live ranges of the program variables require processing
and representation overhead. Since UOPT does not perform variable subsumption, computation
of the separate live ranges is not strictly needed. Instead, one live range is assumed for each
variable in a procedure at the beginning of the global register allocation phase. The optimizer
can break each live range up into separate segments if necessitated by the register allocation
process. In this respect, the live range of a variable in UOPT is the set of nodes in the program
flow graph in which the variable needs be considered for allocation in register. This inclndes
nodes in which the variable does not appear, because these nodes can serve as connecting links
between definition nodes and reference nodes.

By virtue of the contiguity of the blocks in a live range, when the live range is assigned
to a register, RLOD’s are nceded only at entry points to the live range and RSTR’s are required

78

4.5. CONTROL AND DATA FLOW ANALYSIS

only at its exit points. UOPT supports both the caller-save and callee-save convention regarding
registers in procedure calls. In the caller-save context, all registers need to be freed at a procedure
call so that they can be used in the called procedure. Thus, live ranges are never allowed to
extend over a procedure call. The optimizer is responsible for indicatin.g which variable home
locations are to be updated from registers before a procedure call, and which variables are
to be re-loaded to registers after the call. Because of the occurrence of points that interrupt
the contents of registers, our live ranges do not necessarily begin at definition points or end
at reference points. When a procedure call is occurring later in the code, the live range of a
variable should end at the last appcarance of the variable before the call, regardless of whether
that last appearance is a use or definition. Otherwise, it will needlessly occupy the register up to
the procedure call when the register still has to be saved there. After a procedure call, the live
range should begin at the first appearance of the variable, even though the procedure call may
assign a value to it as a side effect. These remarks about live ranges bordering on procedure
calls also apply to non-local vﬁables near procedure boundaries: after the entry point to a
procedure, the live range of a non-local variable begins at its first appearance; before the exit
points of a procedure, the live range of a non-local variable ends at its last appearance. Fig.

4.5.1 gives an example of live range delimitation.

The live ranges of variables are computed by solving for the live and reaching attributes.
A va;'iable is live at block 1 if there is a direct reference of the variable at block ¢ or ~at some
point leading from block ¢ not preceded' by a re-definition or a procedure call. A variable is
reaching block 1 if a definition or use of the variable reaches block ¢ without passing through
any procedure call. The live range of a variable is then the set of flow graph nodes in which the
variable is both live and reaching.

In the case of the callee-save convention, live ranges are allowed to extend over procedure
calls, and registers are allocated across the calls.

4.6. Global Register Allocation by Priority-based Colofing

The view of register allocation as a graph coloring problem has been well-established
[Schw73] \Leve8l] [Chai82]. A coloring of a graph is an assignment of a color to each node
of the graph in such a manner that each two nodes connected by an edge do not have the
same color. The interference graph is distinct from the program flow graph. Each node in the
interference graph represcnts a program quantity that is a candidate for residing in a register.
Two nodes in the graph are connected if the quantitics interfere with each other. In our case,

interference means there is overlap between their live ranges.

79

4.6. GLOBAL REGISTER ALLOCATION BY PRIORITY-BASED COLORING

After the building of the interference graph among the variables, the next stage is node
coloring the interference graph. The number of colors used for coloring, r, is the number of
registers available for use by the optimizer. The goal is to find the best way to assign the
program variables to registers so that the execution time is miniriized. Even if there are enough
registers around, the best solution is not necessarily the one that allows all variables to reside in
registers, because the cost of loading and updating the values of the variables have to be taken
into account.

The standard coloring algorithm that determines whether a graph is r-colorable is NP-
complete. It involves selecting nodes for which to guess colors, and backtracking if the guesses
fail. The algorithm takes only linear time when the first trial succeeds. But if the graph is
not r-colorable, or is in one of the borderline cases, an exponential amount of computation
can be needed to prove that it is indeed so, since it is necessary to backtrack and attempt
all possible coloring combinations before reaching the final conclusion. Thus, the standard
coloring algorithm works well only when the target machines have a large number of registers.
The standard coloring algorithm also does not take into account the cost and saving involved
in allocating variables to registers. It always tries to allocate as many items in registers as
possible, and does not consider the relative benefits of the individual variables, since they occur .
with different frequencies and with varying degrees of clustering. When it is found that an
r-coloring is impossible, the decision regarding which variables to be excluded in the coloring
(i.e. to be spilled) is difficult to make, since it is hard to predict the effect of spilling a certain
variable on the outcomes of the subsequent coloring attempts. The loop-nesting depths of
different parts of the program are also overlooked.: In practice, variables océurring in frequently
executed regions should be given greater preference for residing in registers. The a.lgorithﬁ also
overlooks the fact that procedure calls affect register allocation. In the caller-save environment,
the saving of registers before procedure calls and their reloading after the calls represent extra
register allocation cost that has to be factered into the register allocation algorithm.

Because of the immense complexity of finding the optimal register allocation solution, most
register allocators overcome the NP-completeness obstacle by aiming for a practical rather than
the optimal solutiont. Our philosophy regarding register allocation is the same. The emphasis
is to do register allocation efficiently but still yield reasonable solutions for most input program

configurations (with respect to the number of live ranges and the complexity of the interferences).

Our global register allocation algorithm is an adaptation of the standard coloring algo-

t To find the optimal solution also requires the nse of very small code scgments as the llest allocati
code range, and this also adds to the complexity of the allocation process.

80

4.6. GLOBAL REGISTER ALLOCATION BY PRIORITY-BASED COLORING

rithm that enables us to overcome the problems in the standard algorithm mentioned above.
By regarding all variables to have been assigned home locations before register allocation, we
circumnvent the problem of having to introduce spill code. Cost and saving estimates, which
also include the effects of loop-nesting depths, are factored into the coloring decisions. This
serves to prevent the over-allocation problem. The algorithm does not backtrack. Instead, it
is benefit-driven. Allocation is ordercd according to the cost and saving estimates. One live
range is assigned to a register each iteration, each time picking the most promising live range
according to the estimates of cost and execution time saving. It is hoped that this ordering
procedure will allow the results of the allocation to be close to optimal. Our algorithm is also
linear when an r-coloring can be found. Moreover, it does not deteriorate when r-coloring can-
not be achieved. Thus, the algorithm works under any situation regarding register resources
in the target machine — an attribute that is especially important in the machine-independent

context.

Initially, we assume that one variable occupies a single live range, even though the live range
may consist of non-adjacent parts. This allows us to avoid the cost of computing and representing
separate live ranges prior to coloring. The interterence graph is also made much simpler, and
the processing cost associated with accessing, manipulating and updating the interference graph
during coloring is also greatly reduced. In the course of performing coloring, when a variable
cannot be assigned the same color throughout the procedure, its live program nodes will be
separated into two or more groups, each group constituting a new live range. The new live
ranges are treated the same way as variables as far as the coloring algorithm is concerned, and
the interference graph is updated accofdingly. Splitting is repeated until all the split live ranges
can be colored or until all the split live ranges consist of single blocks. If a split-out live range
is left uncolored at the termination of coloring, the effect is equivalent to spilling. In our case,
no spill code needs be explicitly inserted, since register candidates are assumed to have been
allocated in main memory either by the compiler front-end or earlier optimization phases. Live
range splitting is performed with the emphasis on not creating small live range fragments unless
warranted by the situation.

In the node coloring algorithm, variables which have a number of neighbors in the intérfcr-
ence graph less than the original number of colors available are left uncolored nntil the very end,
since it is certain that an unused color can be found for them. These are called unconstrained
variables or live ranges. The rest of the variables live ranges are assigned colors by successive
iterations of Step 2 of the algorithm. Each iteration selects a variable and assigns a color to
it. New live ranges are formed out of splitting during the iterations, and if any of these are

unconstrained, they are added to the unconstrained pool of variables. The itcrations continue

81

4.6. GLOBAL REGISTER ALLOCATION BY PRIORITY-BASED COLORING

until all constrained live ranges have been assigned a color, or there is no color left that can be

assigned to any constrained variable in any code segment.

Algorithm Priority-based Node Coloring. .

1. Find the live ranges whose number of neighbors in the intcrference graph is less than the

number of colors available, and set them aside in the pool of unconstrained live ranges.

2. Repeat Steps a to c, each time assigning one color to a live range until all constrained live
ranges have been assigned a color, or there is no register left that can be assigned to any
live range in any code segmeni: (taking into account registers allocated in the preceding
local allocation phase).

a. Perform Step (i) or (ii) for each live range Ir until TOTALSAVE for all original or newly

formed live ranges are computed:

(i). Ifir has a numbex; of colored neighbors less than the total number of colors avail-
able, assume a color is assigned to it through all its live blocks. Then compute
and record TOTALSAVE for the variable Ir as follows: .
1. In each block 7 of the live range Ir, determine whether register load and store
is necessary based on whether the adjacent blocks in the flow graph belong to
the same live range. Let the number of register loads and stores be n, which
ranges from 0 to 2. 4

2. Compute NETSAVE; as

NETSAVE; = LODSAVE X u + STRSAVE X d — MOVCOST X n

where u is the number of uses of the live range variable and
d is the number of definitions of the live range variable in block 1.
3. Let f; denotes the frequency weight based on loop nesting of block 7 in the
flow graph. Compute TOTALSAVE for the live range Ir as:

TOTALSAVE =) _ (NETSAVE; X f;).
s€lr

(ii). If the number of colored ncighbors of Ir is already equal to the number of colors
available, then the live range Ir has to be split. In performing live range splitting,
attempts are made to split out as large live ranges as possible. A new live range

Iry is split out from Ir as follows:

A new node in the interference graph is created for Iry. A definition block from I,

preferably one at an entry point to lr, is first added to Iry. Blocks adjacent to Iry

°

82

4.6. GLOBAL REGISTER ALLOCATION BY PRIORITY-BASED COLORING

that also belong to Ir are successively added to Iry, updating the ncighbors in the
interference graph until the number of colored neighbors of Ir; in the interference
graph is one less than the number of available colors. The motivation of this is to
produce the largest possible live range that can still be colored. This is continued

until no more adjacent block can be added to the new live range Ir;.

If the newly formed live range Ir; has a number of neighbors in the interference
graph less than the number of colors available, set it aside in the pool of uncon-
strained variables to be colored later. Otherwise, add it to the pool of candidates
for estimation of TOTALSAVE,

As a result of the new node in the interference graph, some previously uncon-
strained live ranges may now become constrained. These have to be updated.

b. Fo; each live range lr, compute ADJSAVE as

TOTALSAVE

ADJSAVE = (number of nodes in Ir)’

(The quantities TOTALSAVE and ADJSAVE do not have to be recomputed if the live range
has not changed since the previous iteration.)

c. Looking at the values of ADJSAVE computed for all the uncolored but constrained live
ranges in Steps a and b, choose the live range with the highest value of ADJSAVE and
assign a color to it. '

3. Assign colors to the unconstrained live ranges, each time using a color that has not been

assigned to one of their neighbors in the interference graph. O

Thus, the algorithm orders the assigning of colors according to which variable currently
has the highest value of ADJSAVE (Step 2c). ADJSAVE can be visualized as the total number of
occurrences of the variable in the live range, weighted by loop-nesting depths and normalized
by the length of the live range. The adjustment by the live range length (the number of basic
blocks belonging to the live range) is needed because a live range occupying a larger region of
code takes up more register resource if allocated in register. In the local allocation phase, we
have already taken bure occurrence frequenciecs into account. Thus, when entering the global
allocation phase, ail the variables that remain unallocated in each code segment have occurrence
frequencies that do not differ widely, so the important consideration is whether the allocation
enables the same register to be assigned across contiguous code segments so that register loads
and stores can be minimized. The value of ADJSAVE comprises a measure of this connectedness.
The more connerted the code scgments in the live ranges of a variable are, the more worthy is

the variable to be allocated in register, and the more difficult it will be to find the same register

83

4.6. GLOBAL REGISTER. ALLOCATION BY PRIORITY-BASED COLORING

for it throughout; so, it is important to assign a color to it before other variables. The use of
the ADJSAVE criterion is justified only if the local allocation phase precedes global allocation.

The determination of n in Step 2a(i) can make use of more information than previously
possible in the local allocation phase of Section 4. If the first occurrence of the variable at an
entry block is a store, then the RLOD is not needed. If all the predecessors of a block also belong
to the live range, then the RLOD is also not necessary, unless any of the predecessor contains
a procedure call in the case of caller-save environments, or the mﬁent block is an entry node
(including the case of a goto-out-of-block target). An RSTR is necessary at the exit blocks of a
live range only if the live range contains at least one assignment to the live range variable and
the variable is not dead on exit. At blocks internal to live ranges, RSTR’s are also generated if any

successor node has an RLOD, or contains a procedure call in the case of caller-save environments.

The computation time complexity of the above aigorithm can be estimated. We are mainly
concerned with Step 2 of the algorithm, since this step takes a lot more time compared with
Step 3 for the unconstrained live ranges. Let r be the number of registers. Let ! be the number
of live ranges, and assume that this stays fixed during the course of the algorithm. Also assume
that each register is assigned to one and only one live range in the procedure, though in reality
this is not always the case. Then there is r iterations for Step 2 of the algorithm. For the first
iteration, a live range is to be chosen out of / live ranges. For the second iteration, the choice is

to be made out of the ! — 1 live ranges remaining. Summing all the iterctions, we get

r@@l—r+1)

l+(l-1)+._..+(l—r+1)= 3

Thus, the algorithm is O(r(!' - r)). The time of the algorithm proportional to both the number
of registers available and the number of candidates to reside in registers.

The above algorithm can easily extend to the case of multiple classes of registers. The
interference graph will only give interferences between variables of the same class. The algorithm
is repeated once for each class of register. In each case, the number of colors corresponds to the
number of registers in the class being considered.

4.7. Optimization of Register-Memory Moves

To enhance the effectiveness of register allocation, the optimizer must optimize the register
move operations it introduces as much as possible. In the previous register allocation phases,
the optimizer takes into account the cost of the register move operations in determining register
allocation. The RLOD’s and RSTR’s are assumed to be placed at the beginnings and ends of

allocation code segments in the saving estimates.

84

4.7. OPTIMIZATION OF REGISTER-MEMORY MOVES

RLOD a RLOD a
live live
range range
of a ofa
1 RLOD a °
4 ¢ ¢ $
= N "4
live
range
of a

Fig. 4.7.1 Removing partial redundancy in RLOD

After register allocation has been completed, UOPT conducts one further pass to optimize
the placements of RLOD’s and RSTR’s. This optimization can be viewed as z form of code motion,
since the purpose is to move the register transfer instructions away from frequently executed
regions. The algorithm of Section 3.6 can in principle be used, but in practice, a more simplified
and condensed approach is possible. This is based on the fact that RLOD’s are generated only
at entry points to live ranges and RSTR’s at their exits. Furthermore, the RLOD’s and RSTR’s
are never moved across entire blocks, since this would alter the effective live ranges. RLOD’s are
only moved from the entry points of blocks to the exit points of their immediate predeccssors,
and RSTR’s are only moved from the exit points of blocks to the entry points of their immediate
successors. No data How analysis is involved.

An RLOD for a variable a in block ¢ is moved to the exits of the predecessors of 1 when the
following conditions are satisfied:
(a) At least one predecessor of i belongs to the same live range of a;
(b) All the predecessors of ¢ that do not belong to the live range have i as their only successor;
(c) % is not the target of a goto-out-of-block.

When the above conditions are satisfied, the RLOD is deleted from ¢ and inserted at the exits
of the predecessors of 1 which do not belong to the live range (Fig. 4.7.1). When one of the
predecessors of 1 belonging to the same live range under condition (a) is also reachable from 1,

the result is the movement of the RLOD from the loop in which ¢ is the loop eniry bLlock (IMig.

.

85

4.7. OPTIMIZATION OF ’REGISTER-MEMORY MovVES

RLOD a

= live
range

of a

——]

Fig. 4.7.2 Movement of RLOD out of loop

———] —!
live live
range) range’
ofa = ofa
RSTRa

—_—]
’ RSTR a

Fig. 4.7.3 Movement of RSTR out of loop

4.1.2).

PRy

An RSTR for a variable a in block ¢ is moved to the entries of the successors of ¢ when the
following conditions are satisfied:
(a) At least one successor of i belongs to the same live range of a, and there is no RLOD of a
at the entry point of that successor;
(b) For the successors of i which do not satisfy condition (a), they have i as their only
predecessor, and are not the targets of gotos-out-of-block.

When the above conditions are satisfied, the RSTR is deleted from ¢ and inserted at the
entries of the successors of ¢ that do not satisfy condition (a). As in the case of RLOD, forward

movement out of loops (Fig. 4.7.3) is a special case of this transformation.

86

4.8. Summary

In this Chapter, we have introduced an integrated register allocation scheme that is suitable
for use in the machine-independent context. The algorithm works for most configurations of
general-purpose registers in the target machines up to and including the grouping into ron-
intersecting register classes. The performance and efficiency of the algorithm are not affected
by the number of registers available. We introduced the parameterization of cost and saving in
register allocation that enables our algorithin to cater to the different characteristics in machines

regarding the benefits of register accesses over memory accesses.

The register allocation is divided into a local and a global phase. The local phase is employed
to perform some initial allocation quickly that can reduce the work load of the subsequent global
phase without affecting the final outcome. The local phase is useful only when there are long
basic blocks. But when blocks are long, register allocation is unable to cater to the clustering
of appearances within the blocks. The user can decrease the maximum size of the blocks used,
thus increasing the number of discrete code segments and allowing the finding of more optimal
register allocation solutions. The processing cost in register allocation will correspondingly

increase, when more work is involved in the global phase.

The global register allocation scheme is an adaptation of the standard coloring algorithm. .
The standard algorithm handles insufficicnt registers by spilling variables into main memory. We
have taken the different approach of &suming that all variables have been assigned home memory
locations initially, and we handle the situation of insufficient regiéters by live-range splitting.
This allows us to make the initial aseﬁmpl;ion of one live range for each variable throughout the
whole procedure, which in turn enables us to avoid the processing and representation overhead
of computing separate live ranges prior to performing the global allocation. The resulting
smaller size of the interference graph also saves the processing cost associated with accessing and
manipulating the interference graph during coloring. Our node coloring algorithm is priority-
based. The allocation is ordered according to which variables have greater priority for residing
in registers. By taking into account the cost of register transfer operations to and from memory,
we can factor the effects of not allocating in register into the coloring decisions. We have
weighted the cost and saving estimates by the loop-nesting depths of the regions concerned, and
thus also take into account the control flow of the procedure concerned. Using the cost and
saving estimates also makes it possible for us to take into account the effects of procedure calls
in caller-save environments. The running time of our coloring algorithm is proportional to the
number of registers and the number of live ranges to be cnlored. After the completion of register
allocation, we conduct one more pass to optimize the positions of the register-memory transfer

opcrations by suppressing partial redundancies among them.

87

5. Organization and Structure

In this Chapter, we look into the overall organization and structure of UOPT in imple-
menting the optimization algorithms presented in Chapters 3 and 4. The interactions among
the optimizations performed are addressed. A specific order Jor performing the optimizations is
developed. Based on our implementation, the timings and efficiencies of the various optimiza-
tion phases are studied. The data structures used in UOPT are described. The methods used
in the collection of data flow information are examined. The interactions of UOPT with the
procedure integrator PMERGE are also discussed.

5.1. Optimization Phase Structure

In performing optimization on an input program module, UOPT passes over the program
code only once, when it reads in the code of the procedures. It optimizes procedures one at
a time, writing out the optimized code before reading in the next procedure. In general, the
contents of one proccdure have no effect on the optimization of other procedures (i.e. no inter-
procedural analysis is done). The one exception to this is that UOPT does remember the levels
of previously encountered procedures. By taking the static nesting of procedures into account,

UOPT .can determine whether side cffects on variables in the current procedure are possible.

The input procedure code is separated into basic blocks while they are read. Basic blocks
are delimited according to the set of op-codes that mark the ends of basic blocks, and U-Code
labels that mark the starts of new basic blocks. As the code is read in, unreachable code is also
removed by skipping until the next label if the previous basic block ends with an unconditional
jump or a return. Some local optimizations are performed as part of the process of inputing
program code, when data structures are built to represent the basic block code. After each basic
block is completely read in, the remaining set of local optimization transformations are invoked
(Section 3.1). Following local optimization, the local data flow attributes (Section 3.3.1) are
collected. The reading of a basic block also causes a node to be added to the global control flow
graph.

Once the whole procedure is read in, the global optimization phascs begin. The initial
step is analysis of the control flow graph. Unreachable flow graph nodes are identified, and
the corresponding basic blocks are deleted. The control flow graph nodes are put into a depth-
first ordering for maximizing speed in the subsequent data flow analyses. Additional data flow

information is collected from the program code.

Using the global optimization approach presented in Chapter 3, we identify the following
three underlying phases in global optimization:

88

5.1. OPTIMIZATION PHASE STRUCTURE

Phase A — Copy propagation.
Phase B — Partial redundancy elimination for expressions (backward code motion).

Phase C — Partial redundancy elimination for stores to both program variables and optimizer-

generated temporaries (forward code motion).
To the above, we add extra phases that perform the optimizations not yet included:
Phase D — Linear function test replacement.
Phase E — Induction variable climination.
Phase F — Register allocation.

Induction variable elimination (Section 3.7) cannot be included in phase C because the data
flow information used in solving for redundant induction variables has to be specially set up to

disregard increments to induction variables.

For completeness, we list the local optimization phase here since new local optimization

opportunities may be created by various code movements:
Phase G — Local optimization.

For maximum optimization efficiency, the diﬂ'érent optimization phases should be performed
only once. This, however, conflicts with the objective of achieving the most optimization, since
further optimization opportunities can be uncovered by performing a given set of optimization
transformations. Our objective is to develop a particular sequence in which the above opti-
mization phases are applied or repeated that represents the best tradeoff between optimization
efficiency and exhaustive optimization. We have io take into account the interactions between
the various optimizations and the need to update the relevant data flow information after each

optimization phase.

§.1.1. Underlying Principles

A program can be visualized as a sequence of points at which variables are alternately
defined and referenced. Let d denotes a direct assignment to a variable a and u denotes a direct
reference of a. Let u; denotes an operation which may potentially reference the value of a, and
d; denotes an operation which may potentially alter the value of a. d; and u; occur in indirect
loads (ILOD’s) and indirect stores (ISTR’s) respectively, and also in procedure calls due to side
effects, and in the passing of address pa.l;ametcrs to called procedures (see Section 5.4).

The optimizations of backward and forward code motion involve moving the u’s, d’s, u;’s

and d;’s around, although procedure calls are considered stationary points and never moved.

89

5.1. OPTIMIZATION PHASE STRUCTURE

Embedded in the code motion algorithms of Chapter 3 are criteria for determining the movement
of items from one point to another. One of the criteria is the rule that governs the legality of
code movement: a u or u; item cannot be moved across a d or d; point, and a d or d; item
cannot be moved across a u, u;, d or d; point}. As an example, suppose the variable a has the

following occurrences in a straight-line piece of code:
d," ...‘ul...dg...ds...uq...'u." oo Ug.
Then a legal rearrangement of this picce of code is

d;,,..ug...dz...d,...us...u,-‘...ug.

Whenever tl_xere are two consecutive occurrences of d’s, the earlier occurrence is redundant.
This transformation takes place in the redundant store elimination algorithm of Section 3.5.
Thus, the above sequence of code can be reduced to

d,-‘...ul...da...ua...u.-‘...ug.

The u’s and d’s also govern the availability of computations, which plays a major role in copy
propagation and common subexpressions. An expression or assignment is no longer available
after the occurrence of a d or d; that changes the value of any of the variables in the expression
or the value of the assigned variable.

In the code motion optimizations of phases B and C, the above d’s and u’s occurrences are
what limit the code movement that can be attempted. Thus, in the code sequence

d;...‘u;...dz,

if dy had been moved backward (to the left) or deleted, it would be possible to move uy backward
past the original position of d,. Similarly, if d3 had been moved forward (to the right)or deleted,
it would be possible to move u; forward past the original position of d. The same reasoning

applies to the movement of a d in relation to the other u’s, u;’s, d’s and d;’s in its vicinity.

t When an item moved ists of multiple variables, the use-7sf of all the variables arc taken into account.

P

90

5.1. OPTIMIZATION PHASE STRUCTURE
5.1.2. Relationships among the Phases

We now study the interactions among the phases A to G we cnumcrated above in order to
establish the best order of applying the various optimizations. The first observation we can make
is that register allocation should be the last phase in the optimization sequence, because it his to
take into account the appearances of all potential register-residing items, which are affected by all
the other optimizations. Among the register-residing items are optimizer-gencrated temporaries
whose associated optimizations are beneficial in terms of execution speed only if the temporaries
are allocated in registers.

Linear function test replacement (phase D) has to be performed right after backward code
motion (phase B), because it makes use of the availability information computed in that phzase in
finding expressions to replace a test variable. Induction variable climination (phase E) depends
on the test replacements performed, so phase E should occur after phase D.

Having taken care of register allocation, linear function test replacement and induction
variable elimination, we are left with copy propagation (phase A), backward code motion (phase
B), forward code motion (phase C) and local optimization (phase G). To study the interactions
among these four different optimizations, we construct Table 5.1.1. In each entry of this lable,
we need to decide whether the optimization of the row entry affects the optimization of the
column entry. Theoretically speaking, whenever an entry is yes, it is necessary to repeat the
column entry’s optimization after éach application of the row entry’s optimization in order to '
exhaust all optimization opportunitigs. ‘

Entry I(a). According to our lécal'optiinization algorithms, the local optimization pass
does all possible local optimizations within each basic block, and it is useless to repcat the

local optimization pass on itself.

Entry I(b), I(c) and I(d). Local optimization can affect all other optimizations. We
do not consider the optimization of local common subexpressions here, since it is a direct
result of inputing the program code. Constant folding and stack height reduction change
the structures of expressions. Expressions are mapped to their constant-folded and stack-
height-reduced forms, and these locally optimized forms of the expressions are used in global
data flow analyses. As we have mentioned in Section 3.1.2, local copy propagation cnables
more common subexpressions to be recognized, and also can create redundant assignments.
Thus, we make the local optimization phase in UOPT precede all other optimizations.

Entry II(a). Copy propagation merges expressions from outside the basic block into
expressions within the basic block. New local common subexpressions can be introduced.

The large cxpressions may cxhibit new oppox;tunities for constant folding and stack hcight

91

5.1. OPTIMIZATION PHASE STRUCTURE

(a) Local (b) Copy | {c) Backward | (d) Forward
Optimization | Propagation | Code Motion |Code Motion
1. Local
Optimization No Yes Yes Yes
I Cop.y Yes No Yes Yes
Propagation
III. Backward
Code Motion Yes Yes No Yes
IV. Forward
Code Motion No ‘Yes Yes Yes

Does the optimization of the row entry brings in new

opportunities in the optimization of the column entry?

Fig. 5.1.1 Inter-relationships between the optimizations

reduction. In UQOPT, local common subexpressions are recognized after copy propagation
by re-hashing the newly formed expressions. Constant folding and stack height reduction
are repeated in the final code re-emission phase.

Entry II(b). The copy propagation algorithm of Section 3.4 does all possible copy prop-
agation for each basic block variable, and every' time a new expression is merged into a
basic block, the copy propagation algorithm is repeated recursively in the newly introduced

expression. Thus, it is unnecessary to repeat the copy propagation pass on itself.

Entry II(c). As we have mentioned in Section 3.4, common subexpression recognition is

a necessity after copy propagation for preventing the proliferation of copied expressions.

Entry II(d). One primary purposc of copy propagation is to create dead variables or
redundant assignments. Thus, a redundant store climination phase should always take
place after copy propagation.

Entry III(a). Backward code motion involves the deletion and insertion of expressions
at various points in the program. Expression structures are not altered. Any new local

copy propagation that can possibly be resulted could have been globally accomplished in

92

5.1. OPTIMIZATION PHHASE STRUCTURE

global copy propagation. Any ﬁew local common subexpression that results from the inser-
tions would have already been recognized as such by our backward code motion algorithm.
Backward code motion cannot result in new store redundancy in the program variables.
However, backward code motion does create new opportunities for l;)cal copy propagation,
which we explain under entry III(b).

Entry III(b). Backward code motion does not usually create new opportunities for copy
propagation, because the movement of the expressions does not alter the solution for the
availability of assignments, represented by Eq. (3.4.1). An exception is in the case of
induction expressions, where in the original code the incremer.ts to the induction variables
prevent copy propagation from taking place. After an induction expression is moved to a
loop header, an assignment to the induction variable may be available there so that new
copy propagation can occur. For example, in Fig. 3.7.1, the induction expression & x 3 is
constant propagated to 1 x 3 and then folded to 3 after code motion has taken place.

Entry ITI(c). Backward code motion involves the movement of both the d’s and the ws.
In the code sequence

..d;...ul...,‘

after dy has beéen moved to the left, #; can be moved to the left past the original position
of dy. This movement of u; past the original position of dy cannot be done concurrently in
one pass of our backward code motion algorithm, since the deletion of dy from its original
position is not done until the end of the pass. The movement of d; to the left must be due
to some store partial redundancy in the variable. This means that some d nccurs to the left
of dy, and the presence of this earlier d implies that the same form of partial redundancy
that moves d, to the left cannot occur to u; after the movement of d;. Thus, we conclude
that, in the above code, if d; has been moved to the left, repetition of our code motion
algorithm will never result in moving u; to the left past the original position of dy. The
same argument applies to the code sequence

..ul..‘dl....

Thus, there is nothing to gain by rcpeating the backward code motion pass on itself.

Entry III(d). Backward code motion involves the backward movement of u’s, u;’s, d’s and
d;’s, and forward code motion involves their forward movement. Thus, the optimizations of
these two phases are mutually restricting, and no new forward code motion optimization can
be brought about by backward code motion. Even when some redundant expressions are

deleted, no new redundancy in stores can be resulted, since the redundant cxpressions are

93

5.1. OPTIMIZATION PHASE STRUCTURE

[]
___...._.1

—]

Je=2+1

te5

—]
- =

Fig. 5.1.1 Effects of redundant store elimination followed by backward code motion

|l

1 —
. ¢
4
_ L
"4 R Optimi
- Je=1 .
it Sl
4
$
3 live J live

Fig. 5.1.2 Effects of redundant store elimination followed by further forward code motion

deleted at points where some earlier occurrences of the expressions are available. However,
our forward code motion phase also eliminates redundancies in the saving of temporaries,
and these temporaries are generated by the backward code motion phase. Thus, a forward
code motion pass should always take place after the backward code motion phase.

Entry IV(a). Forward code motion is not likely to introduce new opportunities for local
optimization. It involves the movement of assignments together with their assigned ex-
pressions. It does not alter expression structures. Any new local copy propagation could
have been globally performed in the global copy propagation phase. Any new local com-
mon subexpression could have been recognized as global common subexpression in the
backward code motion phase. Any new local redundant assignment could also have been
globally suppressed earlier.

94

5.1. OPTIMIZATION PHASE STRUCTURE

ici+s] 1
' '
o S —
‘ _ < N
[_i‘_j_+3L exit
¢

i live 1 live
7 dead 7 dead

l)

2

Fig. 5.1.3 Effects of redundant store elimination followed by further forward code motion

Entry IV(b). Forward code motion‘ does not create new occasions for copy propagation,
since the code motion does not influence the solution of Eq. (3.4.1). However, copy prop-
agation for the temporaries creatcd in other optimizations is possible after forward code
motion. In Fig. 3.10.1(c), copy propagation of the temporary ¢ is possible. This optimiza-
tion is not performed in UOPT since such cases do not frequently occur and they do not

considerably affect execution time.

Entry IV(c). As we have mentioned under entry II(c), the code movements in backward

code motion and forward code motion are mutually restricting when no deletion is involved. .

However, when deletion of d’s, d;’s, u’s or u;’s takes placet, backward code motion can
benefit because larger gaps for code movement are made possible. For cxample, in Fig.
5.1.1, the deletion of the redundant j «— 2+ (a u in t) enables 1 — 5 (a d in 1) to be
moved out of the loop. The decletion of a d is possible only when the next occurrence is
another d, so the backward movement of any u further down cannot be affected. But the
example shows that a store redundancy elimination phase can create more opportunities
for backward code motion.

Entry IV(d). The reasoning similar to that of entry III(c) is also applicable here. However,
in the current case, dcletions involve deleting both the redundant stores and the right-hand-
side assigned expressions. The assigued expressions may contain u’s that previously obstruct

the forward movement of the corresponding d’s. For example, in Fig. 5.1.2, the deletion

1 The delction ‘of assig ts are uni in that both the left and right hand sides are eliminated. The left

hand side is a d for the assigned variable, and the right hand side may consists of w's for other variables.

The data flow solution in forward code motion that leads to the deletion of stores is dependent only on the

data flow attributes of the left hand sides of stores, aud is independent of the data flow attributes of the
right hand side expressions.

95

5.1. OPTIMIZATION PHASE STRUCTURE

of i « j+1 (a u in j) cnables the forward movement of j «— 7 (a d in j) to remove a
store partial redundancy in j. The deleted store may also facilitate the forward movement
of assignments whose assigned' expressions contain uses of the variables whose stores are
deleted. For example, in Fig. 5.1.3, the deletion of j +— 2 (a d in :1) enables the forward
movement of ¢ — j + 3 (& u in j) to remove. a store partial redundancy in i. Thus, it is

useful to repeat the forward code motion phase on itself.

5.1.3. The Actual Optimization Phases

We now construct a practical optimization sequence according to Table 5.1.1 and our dis-
cussions related to this table. As we have mentioned earlier, local optimization is applied while
inputing each basic block. Because copy propagation and backward code motion can affect
local optimization, we repeat local copy propagation and constant arithmetic in the final code
re-emission phase. :

Because copy propagation affects both backward code motion and forward code motion
(entries II(c) and II(d)), it is best performed as the first global optimization phase. Under entry
IV(c), we have concluded that a store redundancy elimination phase is beneficial for backward
code motion. Thus, after copy propagation, we conduct a store redundancy elimination phase.
This -phase does not perform full forward code motion optimization since this is done in a later
phase. Next, we perform backward code motion. Immediately following backward code motion
is linear function test replacement and then induction variable elimination. The final global code
optimization phase is forward code motion, which takes into account the expression tcmporaries
generated in the backward code motion phase and the induction variables eliminated in the
induction variable elimination phase. Register allocation concludes the global optimization
phases.

We now list the complete sequence of events in the optimization of a procedure by UOPT:

Phase 1 — Input of the procedure code and performance of local optimization on a block by
block basis.

Phase 2 — Collection and setting up of data flow information.

Phase 3 — Processing of the program control flow graph.

Phase 4 — Copy propagation.

Phase 5 — Elimigaticn of redundant assignmenta.

Phase 6 — Partial redundancy climination for expressions by backward code motion. (This

96

5.1. OPTIMIZATION PHASE STRUCTURE

includes global common subexpressions elimination, loop-invariant expression re-
moval and strength reduction.)

Phase 7 — Linear function test replacement.
Phase 8 — Induction variable elimination.

Phase 9 — Partial redundancy elimination for stores to both program variables and optimizer-

generated temporaries by forward code motion.

Phase 10 — Global register allocation and assignments, and allocation of storage to temporaries

not residing in registers.

Phase 11 — Emission of optimized code, with further local transformations applied to a few

op-codes.

To recognize the relationship displayed in Table 5.1.1, our requirement is that, for cach yes
entry in the table, there must be an occurrence of the optimization of the corresponding column
a&er the occurrence of the optimization of the corresponding rowt. The above optimization
sequence in UOPT obeys our requircment with the exception of entries III(b) and IV(b). Notice
that the extra redundant assignment elimination pass of phase 5 has taken care of entries IV(c) -
and IV(d). Entries II(a) and II(a) are taken care of by the extra local optimizations performed
during the final code emission phase. The ignorance of entry III(b) results in induction variable
moved out of loops not being globally constant propagated. However, in most cases, the constant
propagation of these induction variables is local in nature, and this is taken care of in the code
emission phase.

Updates of all data flow information are necded for the code transformations done in phases
4 and 5. After phase 6, only the data flow information related to stores needs to be updated.
Global data flow analysis is performed in phases 4, 5, 6, 8, 9 and 10. These different optimizations
require different kinds of global data flow information. Also, since the global data flow attributes
may be affected by each update, it is necessary to re-compute the relevant global data flow
information cach time prior to its use.

UOPT can potentially be re-invoked to conduct another optimization pass over its own
optimization output to further exhaust the optimization opportunities. In such a second opti-
mization pass, the new optimization opportunities that can be recognized will be very marginal,

not only because most of them have already been performed, but also due to the numerous

t To fully implement Table 5.1.1, it is neccssary to-to apply this rcasoning for the repctition passes also, but
we regard this as overkill.

97

5.1. OPTIMIZATION PHASE STRUCTURE

NSTR’s introduced that prevent the construction of complete trees. The items allocated in reg-
isters also need to be remapped to regular storage. To re-run UOPT over its own optimized

output, it is currently necessary to turn off the register a_llocation option in previous runs.

5.2. Timings of the Optimizaﬁion Phases

The execution times of the various optimization phases in UOPT have been measured on
a set of input benchmark programs. The approximate times spent in the different phases,
expressed as percentages of the total optimization time, are as follows:

Phase 1: 5~ 10 %.
Phase 2: 25 - 30 %.
Phase 3: negligible.
Phase 4: 5-7%.
Phase 5: 2 %.
Phase 6: 10 - 15 %.
Phase 7: negligible.
Phase 8: 2-3%.
~ Phase 9: 10 - 15 %.
Phase 10: 20 - 25 %.
Phase 11: 5-10 %.

All the above optimization times. are reasonable, except perhaps phase 2. The main reason
why phase 2 is time-consuming is that, for each variable, expression or assignment that occurs
in the procedure, it is necessary to check whether it is affected by the code of each individual
basic block, regardless of whether it occurs in the basic block or not {Section 5.4). Thus,
the complexity of this phase is of the order of the total number of variables, expressions and
assignments in the procedure, which is the length of the bit vectors, times the total number of
basic blocks.

The total amount of time spent in data flow analysis has also been measured. There
are altogether 15 separate data flow analysis steps among all the phases. It is found that
approximately 10 — 17 % of the total optimization time is spent in performing data flow analysis.

The average number of iterations needed in performing each data flow analysis is 3.

Because quite a number of operations in the various phases are of the order of complexity
of the total number of variables, expressions and assignments in the procedure times the total
number of basic blocks, the time taken to optimize a procedure is approximately proportional

to the square of the procedure size.

98

5.3. Data Structures

The data structures in UOPT are designed to represent the executable code of a complete
procedure while performing optimizations. Since a procedure can be ol arbitrary length, the
data structures have to be space-efficient to accommodate large procedures. The data structures

should also allow the various operations during optimization to be performed efficiently.

5.3.1. Data Structures for Global Optimization

For the purpose of recording program code, hash tables and linearly linked lists of statement
nodes are used. A node in the linear list represents the equivalent of a statcment in the source
language. The order of appearance of the statements in the input program is preserved in the
linked list. The hash tables are for representing expressions in the form of triples (op,l,r).
Hashing of the table entries allows fast retrieval of the entry for a given cxpression in the
construction of DAG’s.

Two hash tables are used in UOPT. The local hash table contains all the expressions in the
whole procedure. Apart from representing code, it also plays a crucial role in the recognition
of local common subexpressions, since expressions exist in the table in the form of DAG’s
(Section 3.1.1). Each entry gives the basic block in which the item occurs. The same variables
or expressions from different basic blocks are mapped to different table entrics, so that any
common subexpression recognized is limited to within the same basic block. Expressions in
the local hash table are pointed to from the statement nodes that reference them. The list of
statement nodes together with the local hash table gives the complete code of the procedure

being optimized.

The global hash table is used to record the variables or expressions that exist in the proce-
dure. One of its uses is to give the unique bit vector position assigned to each data flow item.
Unlike the local hash table, each variable or expression is given a unique entry, regardless of
where and how many times it occurs in the procedure. Although it is also in the form of DAG’s,
it is not used for recognizing common subexpressions. The DAG characteristic, which is due
to the hashing nature of the table, also allows a smaller number of entrics to be used in the
case of tree expressions with commonly nested subtrees. An additional column in the global
hash table gives the entry number of the item assigned to each bit position. Thus, from the
assigned bit positions, the aggregate of all the variables and expressions that have appeared in
the procedure can be accessed. An entry in the global hash table can be regarded as the image
of many different entries in the local hash table, which are of the same variable or expression
but belong to diffcrent basic blocks. Thus, the global hash table is of a fraction of the size of

99

5.3. DATA STRUCTURES

the local table. Each entry in the local hash table has a pointer field that gives its image in the
global hash table.

The control flow graph of a procedure is represented by a list of graph nodes. Each node
corresponds to a basic block in the procedure, and has a list of predecessor nodes and a list of
successor nodes. The predecessor and successor relationships together give the control structure
of the procedure. The list of statement nodes for each basic block originates from the corre-
sponding graph node in the control flow graph. Each basic biock node also gives information
about the state of register usages in that block.

Data flow analysis in UOPT is perforn;ed by bit vector operations. The total number of bits
used depends on the number of different variables and expressions that exist in the procedure.
Bit vectors are implemented by linked lists of sets in Pascal so that the lengths of bit vectors
used are not restricted. As a result, a bit vector operation corresponds to multiple set operations
for individual sets in the bit vector lists. The efficiency of bit vector operations depends on the
maximum set length that the host machine can handle in a single machine operation. A bit
vector gives information about a certain data flow attribute at a given basic block. To provide
information about an attribute throughout the procedure, there has to be one bit vector per’
basic block for the data flow attribute. Since the bit vectors are used mainly in data flow analysis,
they are closely related to the coutrol flow graph. Thus, the bit vectors for the different data
flow attributes also originate from the basic block nodes in the control flow graph.

The basic block nodes also have other bit vectors that give details about the changes to be
made to the code in the basic blocks as the results of global optimizations. Computations to be
inserted at the entry and exit of each basic block are indicated by two INSERT bit vectors, and
computations to be deleted in the basic block are given by the DELETE bit vector (Section 3.5
and 3.10). The final code re-emission phase will generate the optimized output according to the
contents of these bit vectors. While these b1t vectors have been the direct results of our global
optimization algorithms, this method of representation is also space-cfficient, since bits rather
than actual code-representing data structures are used. The overhead in manipulating the data
structures in code insertions and deletions is also saved.

5.3.2. Data Structures for Register Allocation

Register allocation determines the items to reside in register at any point in the program
code. The smallest segment of code over which an item is assigned to a register is a basic block
in the control flow graph. Each basic block node contains information about the availability of

the register resource for cach register class in the basic block during and after register allocation.

100

5.3. DATA STRUCTURES

Before register allocation begins, the live ranges of all potential registes-residing items have
to be determined by data flow analysis (Section 4.5). At the end of the data flow analysis, an
ACTIVE bit vector in each basic block node indicates the variables and expressions whose live
ranges cover that basic block. Inside a given basic block, only these active items need to be
considered for possible assignment to registers. We refer to each pair of basic block and active

item as a live unit.

Although the live ranges of the variables and expressions are alreédy given in the ACTIVE bit
vectors of the basic block nodes, such a representation is not adequate for supporting the various
manipulations during register allocation. Additional data structures to represent individual live
ranges and individual live units are necessary. A live range node represents a live range for a
variable or expression. Each entry in the global hash table points to a list of the live range
nodes corresponding to all its separate live ranges in the procedure. Since only one live range is
assumed for each item initially (Section 4.8), only one live range node is created at the beginning
of register allocation. As live ranges are split in the course of register allocation, new live range
nodes are created and linked together in the lists. Before register allocation, each variable or
expression is assigned a unique bit position. These bit position assignments are also used for
the unsplit live ranges at the start of register allocation. As new live ranges are formed from
splitting, they are assigned new, unique and unused bit positions to indicate that they are now

considered separate from their parent live ranges.

Each live range node points to a ﬁst of live unit nodes that represents the individual live
units belonging to the live range. Each live unit node contains register allocation information
for the item in a basic block. This iﬂcludes the number of local uses and assignments of the
item, and information as to whether the first appearance is a store, and whether the item is
dead on block exit. According to whether the predecessors and successors belong to the same °
live range, two flags also indicate whether RLOD and RSTR nced to be generated at the block
entry and exit respectively if the item ig allocated in register. An additional field tells if the
item has been locally allocated to register in the local register allocation phase.

Each live range node contains other information related to register allocation. All the basic
blocks covered by the live range are given by a set of basic block numbers. The saving estimate
that indicates the saving achieved if a register is assigned to the live range, which is computed in
the node coloring algorithm (Section 4.8), is also given. A field also indicates if a color (register)
has been assigned to the live range.

The interference graph is given using pointers among the live range nodes. Each live range
node has a list of interference pointers that point to the live range nodes interfering with it. To

sce whether two live ranges interfere, it is only nccéssary to check whether they contain common

101

5.3. DATA STRUCTURES

basic blocks. This can easily be found by computing the intersection of the two sets of basic
block numbers in their live range nodes and checking whether the result is an empty set.

In implementing the node coloring algorithm of Section 4.6, bit vectsrs are used in separat-
ing all the live ranges into pools. For example, bit vectors are used to indicate the items that
are candidates for each class of registers. Another bit vector gives the unconstrained versus the
constrained live ranges. During the node coloring iterations, ano'ther bit vector gives the items
that have so far been allocated to registers. This method of processing is storage-efficient, and
also reduces the overhead in moving data structures around.

At the end of register allocation, the final register assignments are given in tables in the
basic block nodes, with one table entry for each register in the target machine. The register
tables also indicate whether RLOD’s and RSTR’s are necessary. In the final code re-emission
phase, these tables are referenced to generate the appropriate register code for items residing
in registers. Registers not used by the optimizer throughout the procedure are indicated in the
output so that they may be used by the code-generating back-ends. .

5.4. Collection of Data Flow Information

In Secﬁon 3.3,.data flow information is classified into local attributes and global attributes.
Local attributes are the data flow information that can be collected by looking at the code of a
basic block. Global attributes are the data which have to be computed by data flow analysis.
In this section, we focus on the collection of the local attributes.

Data flow information depends on the memory relationships among the storage items in a
program, and the sequence in which the uses and stores of the items occur. In Section 5.1, we
have referred to these appearances as u’s, d’s, u;’s and d;’s. We divide memory references into
four categories:

(i) Direct loads of simple variables — This corresponds to the LOD instruction.

{ii) Indirect loads with known source range — This comes from the uses of the ILOD and the
indirect comparison operators whose base addresses are given by the LDA instructions. The
passing of a reference parameter is also regarded as an indirect reference, and so is included
in this category. This corresponds to a PAR instruction with an address parameter based
on an LDA instruction. '

(iii) Indirect loads with unknown source range — This comes from the uses of the ILOD and the
indirect comparison operators whose base addresses are loaded from locations in memory
or are the results of function calls. The passing of a refercnce ;;arameter whose address is
formed the same way is also included.

102

5.4. COLLECTION OF DATA FLOW INFORMATION

(iv) Procedure calls — A called procedure can reference variables at the lexical levels that

surround it (up-level references).

The indirect comparision operators are IEQU, INEQ, IGRT, IGEQ, ILES and ILEQ. Each of
them involves two indirect references. Associated with the LDA instruction are two ficlds that
specify the lower and upper limits of the address range within which the resultant address of
any address computation that ensues can possibly lie. This information can casily be supplied
by the compiler.

In a similar way, memory assignments are classificd into four categories:
(a) Direct stores to simple variables — This corresponds to the STR instruction.

(b) Indirect stores with known target range — This occurs with the uses of the ISTR, INST, MOV
and VMOV instructions whose base addresses are given by the LDA instruction. The passing
of a reference parameter can also involve a potential store to the passed parameter in the
called procedure, and is also included.

(c) Indirect stores with unknown source range — This comes from the uses of the ISTR, INST,.
MOV and VMOV and the indirect comparison operators whose base addresses are loaded from °
locations in memory or are the results of function calls. The passing of a reference parameter
whose address is formed the same way is similarly included.

(d) Procedure calls — A called procedure can store to aﬁy variable at the lexical levels that
surround it. ’)

In collecting data flow information, we are concerned with whether a memory reference
(categories (i), (ii) and (iii)) is affected by the memory assignments (categories (a) to (d)) in
the region concerned, and whether an assignment (categories (a), (b) and (c)) is affected by
the memory references and assignments (categories (i) to (iv) and (a) to (c)) in the region
concerned. The kinds of operations to be taken into account depend on the actual definition
of the local data attribute being considered (Section 3.3.1). In all cases, a memory rcference
affects (or kills) a memory assignment, and vice versa, if the two operations can possibly involve
a common memory location. '

Table 5.3.1 summaﬁzes the rules for determining if a memory reference and a memory
assignment can kill each other for each combination of reference and assignment categories.
All available information is used in trying to effect as little kills as possible, since the killing
operations restrict the optimization opportunitics that can be unfolded. The explanations of

the rules are as follows:

103

5.4. COLLECTION OF DATA FLOW INFORMATION

(a) Direct Store

(b) Indirect Store
{Range Known)

(c) Indirect Store

{Range Unknown)

(d) Procedure
Call

(i) Direct Load

Check Overlap

Check Overlap

Block no. of (i)
Current Block

Level of (i)
encloses Called Proc.

(ii) Indirect Load

Check Overlap

Check Overlap

Block no. of (ii)

Level of (ii)

(Range Known) # Current Block |encloses Called Proc.
(iii) Indirect Load| Block no. of (a) Block no. of (b)
{Range Unknown) # Current Block # Current Block Always Kill Alwa.ys Kill
(iv) Procedure Level of (a) Level of (b)
) Always Kill | (Not Applicable)

Call

encloses Called Proc.

encloses Called Proc.

Table 5.3.1 Rules for the killing between memory references and assignments

— When the source range of the memory reference and the target range of the assignment
are known, it is only necessary to check whether the two ranges overlap. Entries (i-a), (i-b),
(ii-a) and (ii-b) of the table fall under this rule.

~ When either the source rangé of the memory reference or the target range of the as-
signment is unknown, the unknown range must not be from the local memory area of the
current procedure. If the known range is from the local memory area, then it is certain
that the two ranges do not overlap. Otherwise, it is possible that they overlap. This covers

entries (i-c), (ii-c), (ili-a) and (iii-b).

— When both the source range of the memory reference and the target range of the as-
signment are unknown, they must both be outside the local memory area of the current
procedure. No information is available to determine whether the source and target ranges

aoverlap, so it has to be assumed that they kill cach other. This covers entry (iii-c).

~ When a source or target range is known, a called procedure can refercnce or alter a
location only if the address is at a lexical level that encloses the called procedure. This fact
is used in determining whether a procedure call can affect a memory reference or assignment
in entries (i-d), (ii-d), (iv-a) and (iv-b).

- When a source or target range is unknown, then a procedure call is assumed to affect it.

104

5.4. COLLECTION OF DATA FLOW INFORMATION

(b) Indirect Store |(c) Indirect Store | (d) Procedure
(a) Direct Store (Range Known) (Range Unknov;n) Call
(i) Direct Load General Equivalence Alias Side Effects
(ii) Indirect Load
(Range Known) Equivalence’ General Alias Side Effects
(i) Indirect Load
(Range Unknown) Alias Alias General Side Effects
(iv) Procedure)
Call Side Effects Side Effects Side Effects | (Not Applicable)

Table 5.3.2 Table of conditions for the occurrences of the killing relationships
This relates to entries (iii-d) and (iv-c).

Table 5.3.2 gives the circumstances that bring about the occurrences of the table entries.
Entries (i-b) and (ii-a) occur when a simple variable is within the range of an array, which can
only be brought about by equivalences. In cntries (i-c), (ii-c), (iii-a) and (iii-b), we want to
guard against the possibility that the same location is accessed both directly and indirectly,
which happens in association with aliases. Killing due to procedure calls is necessary because

of side effects. The other entries do not occur under specific circumstances.

The above rules apply only in the absence of inter-procedural data flow analysis. By
taking into account possible candidates to be associated with the formal parameters and also

the contents of called procedures, it is possible to eliminate many unnecessary kills among the
memory references and assignments.

An additional data structure is used to represent the presence of the above memory refer-
ences and assignments which affect data flow. Each basic block node points to a list of kill-nodes
consisting of the u’s, u;’s, d’s and d;’s in their order of appearances in the code of the basic
block. To determine whether an item is altered by the code of a basic block, it is only neccessary
to go through this list to check whether any clement in the list kills the item. To determine

whether a locally occurring item is anticipated at the basic block entry, it is only necessary to go

105

5.4. COLLECTION OF DATA FLOW INFORMATION

throdgh the part of the kill-list that preccdes the item in the basic block. To determine whether
it is available at the block exit, the part of the kill-list that succeeds the item is used. These

kill-nodes have to be updated on deletions and insertions in the course of optimization.

5.5. Effects of Procedure Integration

A procedure integrator, called PMERGE, has been implemented on U-Code at Stanford.
Procedure integration is an optimization because it improves program running time by reducing
the overhead in procedure calls, returns and the associated parameter passing. When invoked,
PMERGE selects procedures in a program whose code is copied in-line at points at which they
are called. With procedure integration, there is an associated cost in the increase in the total
code size of the program. This cost does not apply for procedures that are called only once in
the program.

We are maihly interested in how the procedure integrator affects the optimization perfor-
mance of the global optimizer when they are used together. By invoking procedure integration
as a pre-pass, the global optimization opportunitics can be substantially increased, since the.
optimizations are performed one proce'dﬁre at a time. It is expected that the total reduction in’
execution time will be greater than the sum of the two separate reductions when they work in
isolation.

Procedure integration can bring in new global optimization opportunities in the following
ways: ’ '

1. Since a procedure becomes larger, the optimizer can take into account a greater segment of
code in looking for global optimization opportunities. All the optimizations performed can
benefit.

2. By eliminating procedure calls, the optimizer can save the killing of many variables that
arise out of the cails. Thus, computations can become available over a larger range. More
redundant assignments and dead variables can be exposed. Computations can also be

moved over greater distances since their movement is no longer hindered by the calls.

3. Copy propagation will dereference the parameters in the merged calls, so that more infor-

mation is available when optimizing the code of the merged procedures.

4. Code in the merged procedures can be moved outside to the caller. This is especially
beneficial when the merged call occurs in a loop and the merged procedure contains loop-

invariant computations or strength reduction candidates.

106

5.5. EFFECTS OF PROCEDURE INTEGRATION

5. The bencfits of register allocation are substantially improved since the overhead of memory
updates, the saving of registers before procedure calls and their re-loads after the calls can
be eliminated. Registers can also be zllocated over larger ranges of code that include the
text of merged procedures.

The last point is particularly important in the case of common subexpressions occurring
across procedure calls. Mauy common subexpressions can save execution time only if their values
are saved and re-used in registers, because the cost of accessing main memory may exceed the
cost of their re-computations. Procedure calls occurring between the common subexpressions
can inhibit the use of registers to store their values, so that the full benefits of recognizing these

common subexpressions cannot be derived.

There is a minor disadvantage thaf arises out of the use of the procedure mcrger with
regard to optimization. When a procecdure is integrated into the caller, its local variables are
merged into the stack frame of the calling procedure. If the caller contains other procedure
calls at some later points that cannot be merged, then these calls will prohibit the recognition
of dead variables and redundant assignments in the merged procedure, which could have been
recognized if the procedure is unmerged. In spite of this, the advantages of using a procedure
integration pre-pass far ~utweigh this occasional disadvantage.

107

6. Performance Evaluation

In this Chapter, we study the performance of UOPT with respect to the optimizations
performed and their effects on real machines. Using one machine as a main example and a set of
benchmarks, the frequencies and contributions of the different optimization transformation are
analyzed. The effects of some program and machine parameters on optimization performance
are also cxam{ned. Then, we investigate the effects that the same machine-independent opti-
mizations at the intermediate code level have on a variety of machines. The machines considered
are the DEC 10 [Stan76], the 68000 [Moto80], the VAX [Digi81], the MIPS {Henn82c|, the FOM
[Bran82] and the S-1 [Hail79] [Livi83]. Using actual timing measurements, the differing im-
provements in the target machines are compared. We evaluate some machine characteristics
and discuss how these characteristics interact with the different optimizations performed by
UOPT and influence the ways that the optimizations are reflected in the underlying machine
code. Finally, we give some general comments about the role played by machine-independent op-.
timization and its relationship with all the other possible optimizations in real-world machines.
Although we assume throughout that U-Code is the intermediate code, most of the remarks in
this chapter also apply under more general compilation and machine-independent optimization
environments.

6.1. Analysis of Optimization ‘Performance

In this section, we study the coﬁtributions to overall performance of the different optinﬁza.-
tion phases in UOPT. A set of benchmark programs are run through the optimizer, and their
optimized running times compared with their original running times. These benchmark pro-
grams are standard application programs, with minimal calls to un-optimizable external routines
and runtimes. Inputs and outputs have been eliminated so that their execution is not affected
by external devices. These studics are done on the DEC 10 target machine. The corresponding

results for other machines are given at appropriate places to supplement the discussions.

Here is a brief description of the benchmark programs. All but the last two are in Pascal.

Perm — A program that computes permutations with recursions.

Tower — A program that solves the Tower of Hanoi problem. It is written in 120 lines of
Pascal code.

Queen — A program that solves the Eight Quecens problem. It contains a single recursive
procedure.

Intmm — A program to compute the product of two integer matrices.

Mm — This program is identical to Intinm cxcept that the matrices are in real numbers.

°

108

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

Puzzle — A compute-bound program that solves a puzale about packing blocks into a cube.
1t contains 4 procedures and a main program in 160 lines of Pascal code. One of the
procedures is recursive.

Quick — A program that performs the Quick Sort.

Bubble — A program that performs the Bubble Sort.

Tree — A program that performs the recursive Insertion Sort on a binary trce and checks

the correctness of the insertions.

Fft — A program to perform the Fast Fourier Transformation. It is written in 250 lines of
Pascal code.
Sieve — A program that compute the first n prime numbers using the Sieve of Erastosthenes.

It contains only a main program with loop.

Quick2 — A second program that also performs the Quick Sort, but written in Fortran. There
is no direct relation to the above Quick written in Pascal. In particular, it is not
fccur_aive.)

Inverse — A program written in Fortran that computes the inverse of a matrix and verifies the

result by multiplying back to form the unit matrix.

Table 6.1.1 shows the improvement in the running times of these benchmark programs on -
the DEC 10 using only PMERGE, only UOPT and a combination of the two. Some of the
programs do not have procedures that can be integrated. Procedure integration is especially
effective in reducing execution times in programs Perm, Tower, Bubble and Tree. In Perm
and Tree, where the programs consist of mainly short procedures and numerous procedure
calls, global optimization is not effective without-procedure integration. The improvement in
execution times shown in row 3 always exceeds the product of the improvement shown in rows
1 and 2.

The optimization in Mm is not as good as that in Intmm because constant arithmetic,
linear function test replacement and strength reduction are not performed on real numbers, and

the floating point operations have greater dominance of the running time.

6.1.1. Analysis by Statistical Counts

To analyze the usefulness of each optimization transformation, we have specifically set up,
in UOPT, counts of the number of instances that each transformation is performed in the course
of optimizing each program. Table 6.1.2 shows these statistics for the versions of the programs
that have been procedure-integrated. Although the data shown are those for DEC 10 U-Code,
they do not vary widely among different target machines. Due to the way we perform global

optimizations, it is not possible to separate out the different kinds of optimizations in the way

109

‘

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

Program Perm | Tower Queen' Intmm | Mm | Puzzle | Quick
o onamirmaostime | 15 | &8 [% | & | 48 | 63 | 4%
e vt pose | 2 | 0 | O | G | | 0m | 08
2. Time wing only Uopt (o) | Cow | com | 3 | G | G | oo
i vyt 183 | (3| 05| | | 2 |
Program Bubble | Tree Fft Sieve | Quick2 | Inverse | Average
0. Orignalrumning time . | G0 | 4% | &% | &% | do | &% | (0)
1. Time using only Pmerge | 075) | (a3 | (o) | Go | uo | Go | (90
2 T gy Uopt | 3| 8| 1 | 2 | g | am | (e)
3. Time using Pmerge and Uopt ﬁf& (122) (’ 53,") (’6"’45) ('?3702) (2!?05) {.55)

Running times in Seconds
(Normalized running times in parentheses)

Table 6.1.1 Optimized and un-optimized running times

they are generally visualized. The number of instances of code motion can be approximated as
the number of insertions (row 5). However, these insertions are not only due to loop-invariant
code motion, but to partial redundancy suppression as well. The number of redundant expres-
sions can be taken as the number of deletions (row 6), but the deletions actually include those
made redundant after the insertions. Also, we cannot directly count the number of strength
reductions since they are performed as part of code motion. These same comments apply to

estimating the number of optimizations related to stores.

From Table 6.1.2, it can be seen that, with the exceptions of local redundant assignment
elimination (row 2) and linear function test replacement (row 7), all the optimization transforma-
tions occur quite frequently. Especially important are local and global common subexpressions,
code motion and constant expression computation. Most of the constant cxpressions come
from address collapsing in array offset computations. Common subexpressions, code motion

and induction expressions also frequently occur in association with address expressions. Copy

110

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

Program Perm | Tower | Queen |Intmm | Mm | Puzzle | Quick
1. # of local common subexpr. 8 30 3 14 14 22 19
2. # of locally redundant assignments | 0 0 0 | 0 0 1 0

3. # of constant arith. . 4 11 13 21 21 83 21
4. # of global copy propagations . 2 15 0 S 5 18 30
5. # of backward code motion insertions | 4 10 6 20 21 42 5

8. # of backward code motion deletions 8 21 16 22 23 51 80
7. # of test replacements 2 0 1 4 4 2 0
8. # of globally redundant ausignmr;nts 7 22 2 5 5 11 14
9. # of forward code motion insertions 0 4 2 0 0 3 4
Program - Bubble| Tree Fft Sieve |Quick2 |Inverse| Total
L # of local common subexpr. 4 3 92 2 4 15 | 230
2. # of locally redundant assignments | 0 0 0 0 2 0 3 '
3. # of constant arith. 8 1 51 2 27 20 283
4. # of global copy propagaticn 3 18 18 1 1 1 117
5. # of backward code motion insertions 7 1 15 2 25 17 175
6. # of backward code motion deletions 11 15 18 4 27 25 321
7. # of test replaccments 1 1 2 1 1 0 19
8. # of globally redundant assignients 4 11 17 1 1 1 101
9. # of forward code motion insertions 1 0 0 0 8 1 23

Table 6.1.2 Optimization statistics

propagation often occurs with the parameters of procedures that have been integrated into the
callers. There is a strong correlation between the number of redundant assignments (row 8) and

the number of copy propagations, since the latter transformation often gives rise to non-live

.

111

8.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

Program l Perm | Tower | Queen |Intmm| Mm | Puzzle | Quick
% of var. references in registers .85 40 .76 .95 .95 94 .67
% of var. assignments in registers| .70 .23 72 96 | .96 a7 7
Program Bubble| Tree Fft Sieve 'QuickZ Inverse | Average
% of var. references in registers 91 |, .78 .87 .87 .62 .71 7
% of var. assignments in registers| .92 .74 .80 .89 .62 75 .76

Table 6.1.3(a) Static register allocation statistics in the DEC 10

Program Perm | Tower | Queen |Intmm| Mm |Puzzle | Quick
% of var. references in registers .94 72 .90 .96 .96 .95 .80

% of var. assignments in registers| .95 .58 1.0 .95 .95 a7 .80
Program Bubble| Tree Fft Sieve |Quick2 | Inverse | Average|
% of var. references in registers | .90 | .79 | .93 86 | .74 | .88 .87

% of var. assignments in registers| .91 .80 .83 .88 7 .94 .86

Table 6.1.3(b) Static register allocation statistics in the 68000

variables.

Table 6.1.3 displays the register allocation statistics for the benchmark programs. It shows
the percentages of variable references and the percentages of variable assignments that are in
registers. The data are obtained by static counts in the optimized programs. The dynamic
counts are expected to be better, since the register allocator in UOPT takes loop-nesting depths
into account. Since all the program procedures are fairly small, the data may not be typical of

those obtained in large procedures.

The DEC 10 uses the caller-save linkage convention, and the DEC 10 code generator allows
UOPT to allocate up to 9 registers. Most of the programs do not use up all the registers. It

112

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

is the nature of the programs that dictates the percentages of variables allocated. Programs
that have many procedure calls (e.g. Tower) tend to diminish the percentage allocated because
the numerous instances of register saves and re-loads around procedure calls tend to increase
the cost of the allocations. These calls are frequently standard function calls that cannot be

merged.

The register allocation statistics for the 68000 is markedly different from that for the DEC
10, which is due to the use of the callee-save linkage convention in the 68000. The percentages
of variable accesses allocated in registers in the 68000 are always greater than those in the DEC
10, since register saves and re-loads do not occur around procedure calls, so that the cost of
allocating to registers does not increase due to procedure cails. Tables 6.1.3(a) and (b) show
that the linkage convention concerning the handling of registers does affect register allocation.
The 68000 code generator allows UOPT to use up to 6 data registers and 4 address registers,
out of the 8 data registers and 8 address registers available.

6.1.2. Analysis by Partial Optimization

Another method we can use to study the effectiveness of individual optimizations is by ap-
plying each optimization separately and studying the resulting improvement in running times.
1t is also possible to get some ideas about the degree of correlation between the diffcrent opti-
mizations by studying by how much the imprbvement from the completely optimized versions
of the benchmarks excecds the sum of the improvement from the partially optimized versions.
Partial optimization is possible in UOPT according to the phase structure of the optimization
process (Section 5.1.3). UOPT allows the.user to control the extents of optimization by speci-
fying options in his programs. In the following, we study the different degrees of improvement

in program running times due to the sclective applications of the various optimization phases.

Table 6.1.4 displays the running times of the benchmark programs on the DEC 10 for varying
degrees of global optimization. Shown in row 0 are the running times for the un-optimized
procedure-integrated versions. Row 1 shows the times when all the global .optimization phases
have been applied. Row 2 shows the running times with only local optimizations (phases 1, 3
and 11). Row 3 shows the running times with only local optimizations and register allocation
(phases 1, 3, 10, 11). Row 4 shows the times when copy propagation (phase 4) is left out. Row
5 shows the times when backward code motion, redundant expression elimination and strength
reduction (phase 6) are left out. Row 6 shows the times when no store optimization is performed,
in which phases 5, 8 and 9 are left out. The last row shows the optimized running times when
no register allocation (phase 10) is performed. The average column in the table shows that

backward code motion and register allocation are the optimizations that reduce running time

113

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

the most. Next are store optimizations and copy propagation. Local optimization can only
reduce running time by 5% on the average.

We now look more closcly at the data for the individual programs: In all the programs,
the times shown in rows 4 and 6 are always worse than the times shown in row 1. This shows
that copy propagation and store optimizations always result in immprovement in execution time,
although the effect is not as substantial for copy propagation. Copy propagation is important
in the program Tower, where there is a 14% dcterioration in the optimized execution time when
copy propagation is not performed.

Backward code motion is important in most of the programs. Comparing row 5 with row 1,
it can be seen that the backward code motion phase is mainly responsible for the large running
time improvement in Queen, Intmm, Mm, Puzzle, Fft and Inverse. In Perm, Tower and Tree,
there are not many opportunities for code motion, and the numerous procedure calls tend to
inhibit the saving of common subexpressions in registers. In contrast to the DEC 10, procedure
calls do not affect register allocation to common subexpressions in the 68000, which explains
why Table 6.1.5 shows that backward code motion always decreases the running time in the
68000. For Bubble and Quick2 running on the DEC 10, backward code motion actually has a
negative effect on the optimization results. This is because most of the common subexpressions
and induction exﬁressions in these two programs are simple address expressions that can be
collapsed into single instructions using special operand addressing modes in the DEC 10. The
use of special operand addressing modes is facilitated when array indices have been allocated in
registers, so that the common subexpressions are not really beneficial. In addition, there is an
overhead in the saving and re-loading of these expressions. In the case of strength reduction,
there is the additional overhead of incrementing the induction expressions every time through
the loop. The effect of induction expression optimization is not pronounced when the induction
expression does not involve multiplication, and the target machine can address operands using
the indexed addressing mode. The good and bad effects of this backward code motion phase
exist in all programs, and not necessarily all machines. It is our belief that any non-beneficial
effect is marginal, but the gain is substantial enough in common programs to justify the use of
this optimization phase in all machines. Appendix E contains the unoptimized and optimized
object code for the inner loop of Bubble across a variety of machines.

Local optimization (phase 1) represents the minimal optimization that the user may specify
when he invokes UOPT. Local optimization is most effect in Fft, where there are many array.
references and fields within arrays. In Perm, Qucen, Puzzle, Bubble, Tree and Sieve, the re-
sulting running times are worse. However, if register allocation is added (row 3), the running

times are substantially improved. In fact, in Perm, Quick, Bubble, Tree, Sicve and Quick2, the

114

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

Program Perm | Tower | Queen |Intmm|{ Mm |Puzzle| Quick
0. No optimisation a0 | &9 | (0 | @0 | @0 | do | (o
1. Full global optimization (m | ¢ | Com | a9 | @3 | Gm | o)
2. Only local optimizations | G Lol & | | & | oo
3. Only local optimizations, reg. alloc. (”s“a“) (l.k?) (fjgf) ("g’f) (f's“") (‘_;,‘f.f) (‘.:,’85)
- R
0 o ot ot o | 088 | (35 | 318 | 0 | 3 | 68 |
o 8 ot e i AERBEIERRE
7. All except regintr allc. Con | an | Cop | G0 | (9 | OB | G0
Program Bubble| Tree Fft | Sieve |Quick2|Inverse{Average| Cost
0. No optimization Gl o 1 o oo | do | &% | o | 0%
1. Pull global optimization Gl o | i | e | Sy | oy | (61) | 100%
2. Ouly local optimisations G0 | ony | Con | &35 | (ony | Coy | (:99) | 15%
3. Only local optimizations, reg. alloc. (51 | 30) | (59) | Ces) | oy | (vy | (79) | 37%
4. All except copy propagati IR LG K
oA etk ot moion | 038 |t | 2 | 0 | | 25 | o9 [o
- A excep stor aptmna Con) | Comy | cam | Croy | (am | Csoy | (65) [83%
T— go o T aas T ean T am Tasn 1 (or) | o

t The times in this row correspond to the times in row 1 of Table 6.1.1

Running times in Seconds

(Ratio to un-optimized running times in parentheses)

Cost (last column) in % running time of full optimization by TOPT

Table 6.1.4 Running times for various extents of optimization (DEC 10)

11

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

Pr~gram Perm | Tower | Queen |Intmm|Puzzle |Bubble{ Tree | Sieve

32.30 5.85 12.58 17.12 16.39 18.85 9.77 23.90,

No optimisation o)y | (1o) | (o) | o) | oy | oy | (o) | (1)

27.90 3.95 6.54 7.56 6.33 5.74 0.44 10.42

Full global optimization 86) | (68) | (.52) | (44) | (.38) | (.30) | (97) | (.44)

28.80 4.24 8.93 17.83 10.57 10.05 9.57 13.91

All except backward code motion] g9y | (72) | (1) | (1.04) | (.64) | (.53) | (98) | (.60)

Running times in Seconds

(Ratio to un-optimized running times in parentheses)

Table 6.1.5 Eﬂ'ectiveness'of backward code motion on the 68000

running times after only local optimization and register allocation approach or excced the times
after full optimization. The optimization cost in this case is only 37% of full optimization. Thus,
it can be said that local optimizatibn followed by register allocation is.the most cost-efficient
optimization choice if the user wants to compromise the needed performance of his programs
with the associated optimization running-time cost.

Row 7 shows that, in order to bring across the full benefits of the various global optimiza-
tions, register allocation is a required concluding phase of the optimizations. Without register
allocation, the programs Bubble, Tree, Sieve and Quick2 are worse in spite of all the global
optimizations. Even more instructive is comparing the differences in improvement that row 3
has over row 2 and row 1 has over row 7. Rows 2 and 3 show between them the cffects of adding
the register allocation phase if the optimizer performs only the minimal local optimizations.
Rows 1 and 7 show between them the effects of leaving out the register allocation phase when
the optimizer performs its full set of optimization. In the average column, row 3 is .16 less
than row 2, and row 1 is .26 less than row 7. This means that register allocation is a lot more
effective when the optimizer performs other global optimizations. Without register allocation,
the benefits of the other global optimizations cannot be fully exposed, because the cost of saving
intermediate quantities in main memory is high enough in some cases to cancel out the benefits
that can be derived from the optimizations. .

The programs Quick and Sicve present an additional observation. In these two programs,
copy propagation, backward code motion and store optimizations are all beneficial phases, since
the running time is worse when each of them is left out (comparing row 1 with rows 4, 5 and 6
respectively). However, when all these three kinds of optimization are not performed, as is in

row 3, the resulting running times are better instcad. This means that these optimizations build

116

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

on each other. The benefits of a set of transformations can often be augmented if preceded or
followed by other transformations. Thus, it is important not to leave out any of these phases
when carrying out global optimization.

.

6.2. Effects of Optimization Parameters

In this section, we study the variétion ir. optimization performance due to some parameters
that influence optimization. The observations are explained and, in some cases, inferences are
made regarding optimization in general. The studies are also done using the DEC 10 as the
target machine.

6.2.1. Number of Registers Available the Optimizer

The DEC 10 has 14 general-purpose registers that can be used in code generation. Of these,

the code generator set aside 9 registers for use by UOPT in allocating to program variables.

" The remaining registers are used by the code generator in generating machine instructions. We'

investigated the effects of allowing different numbers of registers to be allocated by UOPT. The

results displayed in Table 6.2.1 show that the optimized running times always improve when a

larger number of registers are available to UOPT. The 5 registers used by the code generator

is enough for most-practical purposes, and increasing the number for the code generator (i.e.

decreasing the number used by UOPT) does not cause appreciable improvement in execution

speed. Thus, we see that global machine-independent register allocation is an extremely useful
optimization. '

Another observation in Table 6.2.1 is that different programs require different numbers of
registers for optimal register allocation. In the programs Perm, Tower and Tree, 4 registers
seem to be all that are needed; for others, increasing the number further yields better execution
speeds. In the programs Puzzle and Sieve, just 2 registers can dramatically improve the program
running time. Different programs have different cut-off points regarding the number of registers
they need for optimal register allocation. The cut-off number of registers required is related to
the chromatic numbers of the interference graphs — the numbers of colors needed to color the
graphs.

Combining the data of Table 6.2.1 with those in Table 6.1.3(a), in which 9 registers are
used, we notice that in the programs Perm, Tower and Tree in which the percentages of variable
accesses in registers are not high, the programs have not run out of registers. These programs
actually have a large number of variable accesses that should not be put into registers. This
supports our original conviction that the best allocation for some architectures is not necessarily

the one that puts all variables into registers.

117

6.2. EFFECTS OF OPTIMIZATION PARAMETERS

Prograr;l Perm | Tower | Queen | Intmm | Mm | Puzzle | Quick
Oregisters | (%) | (9 | G | ao | a9 | a0 | do
s | 0 | 0| 0% | b | B | b | o8
dregisers | (3 | (o0 | (m | cw | (on | (e | ()
Gregisters | () | (o3) | (| (e | ¢ | lom | o
Al 9 registers| (50 | (on | ¢y | e |y | Com | (any
Program Bubble | Tree Fft Sieve | Quick2 | Inverse | Average
Oregisters | (g | (o) | (o | (o | 0o | Go | 00
2registers | 3 | (8 | () | Com | oo | Cony | (88)
dregisters | oy | (e |) | comy | (em | Com | (84)
Gregisters | 5 | (5o | () | (o) | () | Ge | (79)
All 9 registers (2;'5313) (:gg) (l.:;)ss) (3.'5?) ('.5;12) ("..'133 (.73)

Running times in Seconds
(Normalized running times in parentheses)

Table 6.2.1 Effects of the number of registers available for register allocation (DEC 10)
8.2.2. Changing the Register Move-Cost

In Section 4.3, we discussed the cost and saving estimates that determine whether a variable
should reside in a register. MOVCOST is the cost of a transfer operation between register and
memory. LODSAVE and STRSAVE arc the amounts of execution time saved for cach reference and
assignment of a variable respectively, due to the variable being in register at the time. The
best values to usc for these parameters vary among target machines. They are dependent on

machine architectures and instruction characteristics.

Only the ratios of MOVCOST to LODSAVE and STRSAVE are important. We take both LODSAVE
and STRSAVE to be 1. The value of MOVCOST ig then a paramcter in UOPT that can be set by

the user in his program. When MOVCOST is 0, it implics that no execution time is sacrificed in

118

6.2. EFFECTS OF OPTIMIZATION PARAMETERS

(Time shown is in Seconds-of CPU time)

Program Perm | Tower | Queen | Intmm Mm | Puzzle | Quick
MOVCOST = 0 7.67 1.21 2.61 42 .55 2.53 1.49
MOVCOST = 1.0 | 7.44 1.24 2.58 42 .05 2.48 1.30
MOVCOST = 1.5| 7.44 1.27 2.67 42 .55 2.47 1.30
MOVCOST = 2.0 | 7.44 1.28 3.61 42 .55 2.47 1.29
MOVCOST =3.0| 7.55 1.28 3.61 42 .55 2.49 1.29
MCVCOST =4.0| 8.08 1.28 3.61 42 .55 2.49 1.28
Program Bubble | Tree Fft Sieve | Quick2 | Inverse
MovcosT=0 | 233 | .94 | 107 | 325 | 622 | 236

MOVCOST = 10| 2.33 .93 1.07 3.25 579 ‘;’.36

MOvCOST = 1.5 | 2.33 .93 1.07 3.25 572 2.36

AMOVCOST =20 233 .93 1.07 3.24 573 2.36

MOVCOST = 3.0 | 2.33 93 | 107 | 324 | 572 | 2.36

MOVCOST = 4.0 | 2.33 .95, 1.07 3.24 572 2.36

Table 6.2.2 Effects of the value of MOVCOST to optimized running times (DEC 10)

119

register-memory transfers. Since no cost is involved, UOPT will allocate as many variables in
registers until all the registers are used up. Such a value of MOVCOST does nbt befit any machine
in the real world. When MOVCOST is 1, it implies that, in the target machine, arithmetic and
logic opcrations can only be performed on registers. If any computation involves a memory item
as an operand, the item must first be brought into a register by a separate memory transfer
instruction. The memory target to receive the value of a computation also has be stored into by
a separate instruction. When MOVCOST is vary large, it means in the limiting case that the target
machine can access memory as fast as it accesses the registers. This happens when the machine
contains no fast memory elements, and all computations directly refercnce operands in memory

(memory-to-memory architecture). In this case, UOPT will not allocate anything in register due

6.2. EFFECTS OF OPTIMIZATION PARAMETERS

to the large value of MOVCOST. Thus, it can be seen that MOVCOST and the related LODSAVE and

STRSAVE are indispensible parameters in the context of machine-independent register allocation.

Sinca the value of MOVCOST is machine-dependent, for each target machine, there must be
an optimal value of this parameter at which the optimizer will yield the best register allocation.
We studied the effects that varying the value of MOVCOST has on the optimized running times
of the benchmark programs on the DEC 10. The results are t;abulated in Table 6.2.2. The
occurrences of the minimal running times in the table empirically determine MOVCOST.

From the table, it can be seen -that the value of MOVCOST at which the optimized running
times are best also vary among individual programs. This is because each program has differ-
ent occurrence counts of individual machine instructions and addressing modes, which exhibit
different fetch times. Also, register allocation can introduce an added degree of flexibility to the

instruction selection process of the code generators that also affects the execution time.

The optimized running times displayed in Table 6.2.2 also have different degrees of depen-.
dence on the value of MOVCOST. The running times of Intmm, Mm, Bubble, Fft, Sieve and Inverse
are somewhat unaffected by the variation in the value of MOVCOST, whereas Perm, Tower, Queen,
Quick and Quick2 show higher dependence. This degree of dependence on MOVCOST is based on
many factors. Programs that have only a few number of register-memory transfer operations
(RLOD’s and RSTR’s), or whose such instructions are not nested inside loops, are relatively inde-
pendent of the value of MOVCOST. This is because in our algorithm the cost of register allocation
represented by MOVCOST arises directly from the RLOD and RSTR instructions. There are aiso
different degrees of clustering of occurrences of the same variable. When a variable occurs very
frequently in a block, the saving out of allocating the variable in register is great; MOVCOST will
have to be made very large for UOPT to decide not to allocate the variable in register. When
the target machine has many registers available for use by the optimizer, the results displayed
in the row MOVCOST = 0 will worsen because the optimizer will allocate many items in registers
even though their allocation is not profitable in terms of execution time.

In Table 6.2.2, the program Perm shows the best optimization when MOVCOST is 2; Queen
shows the best time when MOVCOST is 1; Puzzle, Tree and Quick2 shows the best times when
MOVCOST is from 1.5 to 2. We conclude that, for the DEC 10, the best value of MOVCOST is in
the region 1.5 to 2. We have set MOVCOST to be 1.5 in the production optimizer.

6.2.3. Effects of Bounds Checking

Table 6.2.3 compares the optimization perforinance for versions of the programs with and
without bounds-checking. Programs which have bounds-checking contain extra code that checks

whether the ranges of subrange types or array subscripts are cver exceeded. Bounds-checked

120

6.2. EFFECTS OF OPTIMIZATION PARAMETERS

versions always take longer to run than the corresponding versions without bounds-checking.
UOPT does not perform any specific optimization on bounds-checking. We are comparing
the percentage improvement that is achieved with respect to their un-optimized versions. The

improvement shown in the table includes the effects of procedure integration.

The results show that programs without bounds-checking can be optimized more than the
corresponding versions with bounds-checking. This is due to the fact that the bounds-checking
instructions (CHKL, CHKR) cause changes in the tree structures of cxpressions that prohibit tree-
restructuring in stack-height reduction. Address collapsing and strength reduction are affected,
since they cannot casily be performed across a bounds-checked expression subtree. Bounds-
checking also reduces the number of common subexpressions, since two expressions are the
same only if their bounds-checking code is identical. It is possible to incorporate an extra
bounds-checking optimization phase to further extend the optimization capability of UOPT.

Program Perm | Tower | Queen | Intmm | Mm | Puzzle | Quick
s, wen somiectie] 13| 38 | 3% | 0% [% | &% | o
—— R
Unoptimised, with bounds-checks | (15) | (1) | (i) | a0 | do | a0 | (o
Optimized, with bounds-cherl ot | Con | w | @9 | e | Gen | G
Program Bubble| Tree Fft Sieve | Quick2 | Inverse | Average
- [Unoptimised, without bounds-checks| (0} | (%) | () | (o | oy | (Toy | (10)
Onimie, i vonisavete | 235 | 8 | 08 | 1 | B | (5 | 19
oot i bmivciotn | (%5 | 0% | 0% | & | % | 88 | 00
Optimized, with bounds-checks (4 60:) (1..8111) (l.f:) ("’ ;01) (1:59) (4:25) (-69)

Running times in Seconds
(Normalized running times in parentheses)

Table 6.2.3 Comparison of optimization for versions with and without bounds-checking (DEC 10)

121

6.3. Characterization of Machines

In this section, we look at the machine characteristics that influence the ways the machines

can benefit from the machine-independent optimizations we have addressed in the previous

chapters. We are mostly concerned with the instruction sets, since they have the most to'do

with optimizability at the program code level. In Section 6.6, we shall summarize our findings

about the relationships between the various machine-independent optimizations and machine

characteristics.

Number of Addresses in Instructions

Most arithmetic operations reference two operands and yield a result. There are different

ways in which machine instructions can upecify these addresses:

1

Three-address instructions: This instruction format completely specifies the two operands
and the address where the result of the operation is stored.

Two-address instructions: The two addresses specify the two operands in the case of binary
operations, or the source and target in the case of data move operations. The result of an

arithmetic operation is always left in one of the two addresses.

One-address instructions: Arithmetic operations are always carried out on a single register
or accumulator. The results are always left on the accumulator. Since there is only one
possible accumulator, the instructions do not need to specify it explicitly. They only specify
the second operand in the case of binary operations, or the load and store targets in the

case of transfers to and from the accumulator.

Addressing Modes

Operands can be specified in different ways in machine instructions:

Immediate addressing: The operand, which is a constant, is directly specified in the in-
struction.

Direct addressing: The instruction provides the absolute address of the operand in memory.

A special case is register direct addressing, in which a register contains the operand.

Indirect addressing: The instruction gives the address of a memory location that in turn
provides the address of the actual operand. A special case is register indirect addressing, in
which the instruction selects a register that contains the address of the operand. Another
variation of indirect addressing is indirect with autoincrement or autodecrement, in which
the location containing the address is automatically incremented or decremented after or

before the operand fetch.

122

6.3. CHARACTERIZATION OF MACHINES

4. Indexed addressing: The instruction specifies an offset and an index register. The address
of the operand is found by adding the offset to the content of the index register. The
actual base address can be either the offset or the content of the index register. When
the base address is contained in a register, it is termed base addrese;ing which can be used
to implement program relocatability, for addressing within an activation record using a

stack-frame pointer or in accessing array reference parameters.

On top of the number of addresses and the possible addressing modes for each field in
the instructions, numerous restrictions or idiosyncracies may be present. This concerns the
orthogonality of the instruction set. A machine with an orthogonal (symmetric or regular)
instruction set provides uniform addressing capability for all op-codes. A machine with a non-
orthogonal instruction set has different restrictions on addressing modes among the op-codes
and the fields in each instruction. For each addressing mode, there can be other restrictions
as well, such as limitation to a subset of the registers and the size of the constant or address
specified.

An attribute often used to describe machines is the complexity of the instruction set, which
has to do with the number and types of instructions provided and the lengths of the instruc-A
tions. Complicated instruction sets often exist in machines that provide powerful operations
and addressing modes, which require multiple instruction word lengths for their complete spec-
ifications (e.g. S-1). Reduced instruction-set computers (RISC’s) have only a limited number

of instructions that execute in singlé clock cycles and are of the same word size.

An important consideration regarding machine instruction sets is whether each address field
in the instruction can address memory. The common situation is that not all the address fields
can address memory, regardless of the number of addresses in the instruction. In such machines,
individual arithmetic operations usually involve multiple instructions, the extra instructions
being for transfering memory operands to registers. In machines with simple instruction sets,
memory access is usually restricted only to the load and store commands (e.g. MIPS).

A additional attribute used to qualify machines is the level of the machine code. When
many non-primitive operations are provided by the instruction sect, the level of the instruction
code is high. A special type of machines, the directly-executable language (DEL) processors,
directly map language constructs into hardware. These machines are hardware interpreters for
the source language statements. An example is the Fortran Optimized Machine (FOM) at IBM.

6.4. Optimization Results in Different Machines

123

6.4. OPTIMIZATION RESULTS IN DIFFERENT MACHINES

Program Perm | Tower | Queen | Intmm | Mm | Puzzle
Original DEC 10 running time | (1) | (%) | G0y | 4o | (0 | (o)

Optimized DEC 10 running time| (55 | (51 | (aw | (s» | (3 | (iey

orgnd oo reming e | 33| &9 | R | W | P 4

opimi o v e | T | 205 | 085 | 03 | 1| o

orgnu vax rmng e | 038 | i [0w | g | ay |

Ot vax rnmng e | B3 | 03 | 0 | b | o | B

Original MIPS running time? (1.0) | (1.0) | (1.0) | (1.0) -1 (1.0)

Optimised MIPS running time? | (.52) | (.35) | (46) | (41) | -1 | (24)

Trogram Quick |Bubble | Tree | Fft | Sieve | Average
Original DEC 10 running time | 4% | &%) | (&5 | &% | &% | 10

Optimized DEC 10 runming time| 158 | 238 | (33 | o | (ea | (53)

vt oo rnming ame | %ae | 0ot | 0w | -1 | 2 [0o

Optimised 63000 running time | 133 | 324 | o4t | _t | toa1 | (5

Original VAX running time Go | &8 | &% | &S | oY | o

it vix e | {3 | (3 | (o9 | G | oo | o

Original MIPS running time! | (1.0) | (1.0) | (.0) | -t | (o) | (10)
Optimized MIPS running time} | (.52) | (33) | (71) | -1 | (40 | (45)

{ Floating point instructions not yet available for running these progr

3 Real running times not available; programs are run using a simulator.

Running times in Seconds

(Normalized running times in parentheses)

Table 6.4.1 Optimizaticn performance on different machines

124

6.4. OPTIMIZATION RESULTS IN DIFFERENT MACHINES

To this date, the optinii~ation output of UOPT has been used on 6 different machines —
the DEC 10, the 68000, the VAX, the MIPS, the S-1 and the FOM. The code generators for
these machines are all implemented at Stanford. The S-1 and the FOM are not capable of
running real programs yet. In Table 6.4.1, we present the optimization results for the preceding
benchmarks on the DEC 10, the 68000, the VAX and the MIPS.

Table 6.4.1 compares the original running times of the programs with their running times
after procedure integration and global optimization. The data for the MIPS are based on
counts of the number of instructions executed on the MIPS simulator. The 68000 currently
implements multiplication using subroutines, and this may influence the comparison since more
time is spent in performing multiplication. Also, the 68000 uses 32 bits for all non-boolean
data even though it is not a true 32-bit machine, and the extra running time due to the use
of 32-bit arithmetic cannot be optimized. Apart from the 68000, which uses the callee-save
convention, and the FOM, which does not have conventional registers, all the machines use the
caller-save linkage convention. All the code 'generators are implemented by different persons,
so that there ie a variety of code generating methodology used. The code generators perform
machine-dependent peephole optimization, and the peepholing may duplicate some of the local
optimizations performed in UOPT. The timing data for the unoptimized versions of the programs
in the table include the effects of the machine-dependent optimization. Since the quality of the
translated object code for a machine is highly dependent on the code generator, it is possible
that a different code generator for the same machine may yield very different results in the Table ‘
6.4.1.

6.5. Effects of the Optimizations on Machine Code

In this section, we look at the different types of optimizations performed in UOPT and
consider how these optimizations at the intermediate code level can bring about differing effects
on the object code of target machines. Since UOPT uses U-Code as the optimization medium,
a machine that closely resembles the hypothetical U-Code machine is expected to exhibit the
most direct and predictable benefits from the optimizations performed. The case in point is a
stack machine whose instruction set closely resembles U-Code. We are mainly interested in how
optimization in U-Code influences the object code loi‘ machines with other characteristics.

Among the optimizations performed, those that shorten code sequences will yield noticeable
improvements in all machines, since the translated machine code will correspondingly be short-
ened. Thus, it can be certain that dead code elimination, redundant store and dead variable
elimination are always bencficial; these optimizations result in the removal of useless code. Con-

stant expression evaluation replaces a sequence of arithmetic operations by a single constant.

125

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

Since this cuts the code size of the computation to a fraction of its original length, the benefits

of this optimization are also independent of the characteristics of the target machines.

Another class of optimizations moves program code from frequently sxecuted regions of the
program to less frequently executed regions. The transformation involves little or no change to
the forms of the moved code, and thus their effects on the real machines are also independent
of the machine characteristics. These optimizations include the various forms of code motion,

which are related to either loop invariant expressions or partial redundancy suppression.

Next we consider the remaininig types of optimizations whose effects on the underlying
machines are not as obvious those just considered:

Constant propagation

Constant propagation rcplaces a memory operand by a constant. This allows the use of
immediate addressing in the machine instruction, and saves the target machine a memory cycle
to access the content of the memory location originally referenced. This does not necessarily
result in the elimination of any machine instruction. However, if the constant is small, the
immediate address occupies less space in the instruction. In two- or three-address machines in
which only one operand can address memory, this can allow the code generator to squeeze the

specification of an arithmetic operation into a single instruction.
Example. For the statement “I := I + J” where J is folded to 3, in 68000 code,

movl pp$dat+680,d0 load J
addl d0,pp$dat+576 add to I

can be reduced to:

addql #3,ppSdat+578 add 3to I

In the MIPS, an instruction to load a constant is also eliminated because the add instruction
cannot address memory but can take an immediate operand:

1d FPinit+(-3).,r1. load J
1d FPinit+(-4),r2 load 1
add r2,r1 I+13
st r1,FPinit+(-4) store to 1
is reduced to:
1d FPinit+(-4),r1 load 1
add #3,r1 add 3to X
st r1,FPinit+(-4) store to I

In the DEC 10, however, there is no chax‘\ge in the'number of instructions:

MOVE 2 ,PPSDAT+87 load I
ADD 2 ,PPSDAT+88 I+3
MOVEM 2 ,PPSDAT+87 store to 1

126

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

is transformed to:

o

MOVE 2 ,PPSDAT+87 load 1
' ADDI 2 ,3 I+3
MOVEM 2 ,PPSDAT+87 store to I

Stack height reduction

Stack height reduction affects the target machine code in two different aspects:

The U-Code stack is usually implemented using general-purpose registers in the underlying
machines. Stack height reduction reduces the number of registers needed to hold the items
on the stack, thus freeing registers for other usages and reducing the chance that the code
generators run out of registers, when spilling to main memory occurs with the associated
spill code. When an item on the stack is an intermediate result of an earlier computation,
a temporary register is always needed to keep its value. When the item on the stack is a
variable, however, depending on the target machines, it may or may not need to reside in a
register before being combined in the subsequent evaluation, since appropriate addressing
modes may allow the arithmetic instruction to address one or both operands directly in
memory. This optimization is especially important in machines that have only a small -

number of registers.

Stack height reduction can reduce the number of instructions in the target machine needed
to evaluate the entire expression by eliminating extra load instructions. This is especially
true in arithmetic instructions in which one and only one operand can address memory.
In machines that provide memory-to-memory' operations (e.g. S—l), no load instruction is
needed; in machines in which all operands in expressions need to be loaded (e.g. MIPS),
stack height reduction cannot reduce the number of load instructions.

Example. TFor the Fortran statement

I=(I+8)+ J+K + (L+M+ M+ D).

Original DEC 10 code:

MOVE 4 ,$MAIN,.+33 load 1

ADDI 4, 1+5

MOVE 1 ,SMAIN.+34 load J

ADD 1 ,SMAIN.+36 J+K

ADD 4,1 I+5+ T +X
MOVE 2 ,$MAIN.+38 load L

ADD 2 ,SMAIN.+37 L+M

MOVE 3 ,SMAIM +37 . load M

ADD 3 ,SMAIN.+34 M+

ADD 2.3 (L+M) +(M+1J)
ADD 4,2 I+5)+@+K)+ ((L+M)+M+1J)
MOVEM 4 ,SMAIN.+33 store to I .

127

‘

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

Stack-height reduced DEC 1u code:

MOVE 4 ,SMAIN.+33 . load I

ADDI 4, : 1+5

ADD 4 ,SMAIN.+34 add J

ADD 4 ,SMAIN.+35 add K

ADD 4 ,SMAIN.+36 add L

ADD 4 ,SMAIN.+37 add M

ADD 4 SMAIN.+37 add M

ADD 4 ,SMAIN.+34 add J

MOVEM 4 ,SMAIN.+33 store to I
Original S-1 code:

Add.S RTA,SMAIN.+118,#6 1+5

Add.S RTB,SMAIN.+120,SMAIN.+124 J+K

Add.S RTA,RTB (I+5)+ (I +K)

Add.S RTB,SMAIN.+128,$MAIN.+132 L+ M)

Mov.S.S R1 ,SMAIN.+132 load M

Add.S R1 ,SMAIN.+120 M+13

Add.S RTB,R1 L+M+M+J) .

Add.S $MAIN.+116,RTA,RTB : I=@1+5)+ T +K)+ ((L+M)+(M+13)
Stack-height reduced S-1 code:

Add.S RTA,SMAIN.+116,#5 - 1+5

Add.S RTA,SMAIN. +120 add J

Add.S RTA,SMAIN.+124 add K

Add.S RTA,SMAIN.+128 add L

Add.S RTA,SMAIN.+132 add M

Add.S RTA,SMAIN.+132 add M

Add.S SMAIN.+116,RTA,SMAIN.+120 add J and store to I

a

In the above examples, the DEC 10 instructions allow only one <;perand to address memory.
Thus, the improvement in the optimized codec-is quite significant. The S-1 instructions allow
both operands to address memory, and the effect of stack-height reduction is not as dramatic. In
the MIPS, the arithmetic instructions cannot have memory operands, and all memory references
require separate load instructions. Thus, the number of instructions in expression evaluation
will not be affected by stack-height reduction. However, stack-height reduction still benefits the
MIPS by reducing the number of registers required in expression evaluation.

Register allocation

Register allocation on the intermediate code level can affect the underlying machine code

in many different ways:

1. By referencing variables in registers, it allows the use of the register direct addressing mode
without the need of extra load instructions generated by the code gencrators. The same is
true for stores to variables. The use of the register direct mode saves one memory cycle.
The number of instructions may or may not be affected depending on the machine and the
type of operation. '

128

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

Example. In the DEC 10, the number of instructions is not.changed in the case of addition

because the code generator can use direct memory addressing. Register allocation only changes

the addressing mode:
.
ADD 3 ,PPSDAT+86 add I to register 3
is changed to
ADD 3 .4 : add 1 in register 4 to register 3

In the MIPS, register allocation is especially effective because the arithmetic instructions cannot
reference operands in memory. The expressions A + B is translated to:

1d #FPinit-104,r4 load A tord
1d #FPinit-100,r5 . load B tor$
add r4,r8 Afl}+B(1]

If variables A and B have been allocated to registers, the two load instructions can be eliminated.
a .

2. The positions of the load and store instructions to and from registers are optimized so that’
they do not occur at frequently executed program points. This optimization is effective

regardless of the machine characteristics.

3. By allocating index variables in registers, it facilitates i;he code generators to use the indexed
or base addréssing modes instead of performing straight additions in address expressions.
Each IXA operation in U-Code can he handled by the use of an indexed operand address.

Example. In accessing an array element A[I], the DEC 10 code before register allocation is:

MOVEI 2 ,PPSDAT+86 load adr(A)
ADD 2 ,PPSDAT+287 adr(A)+1
MOVE 4 ,0(2) load Aff]

After register allocation, the code becomes:

MOVE 4 ,PPSDAT+86(1) load A[l] (I residing in register 1)

In the S-1, the code before register allocation for the statement “A[I] := B[J]” is:

Shfa.Lf.S RTA,PPSDAT+300 #2 load T and shift it by 2 bits
Shfa.Lf.S RTB,PPSDAT+296,#2 load J and shift it by 2 bits
Mov.S.S PPSDAT+304[RTA],PPSDAT+340(RTB] Afl] := B(J]

After register allocation, the entire statement can be handled by one instruction, with I residing
in register R27 and J residing in register R28.

Mov.S.S PPSDAT+304(R27]+2, PPSDAT+340[R28]42
]

4. By allocating -address variables in registers, it facilitates the use of the register-indirect

addressing mode or base addressing, possibiy in conjunction with an index register.

129

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

Exaﬁlple. In the 68000, the base address in the indirect or indexed addressing mode is always
specified using an address register. The instructions to load addresses into the address registers
prior to the uses of these addressing modes can be avoided if the address quantitics have been

allocated in registers by the optimizer. (See the examples on induction expressions below.)

The cffects of 3 and 4 depend on the availability of the respective addressing modes in the
machine. Since different machines provide different forms of addressing, the effects of register

allocation on addressing can vary widely among machines.
Common subexpressions

Common subexpression optimization eliminates duplicate computations occurring in the
prbgrax'n. Since redundant code is eliminated, this optimization is beneficial regardless of the
machine characteristics. However, the values of the common subexpressions have to be saved at
their points of computation and re-loaded at their subsequent occurrences. Since each redundant
computation involves at least one memory referencet, the execution time saved is likely to be
greater than the cost for the saving and re-loading. The net speed-up depends on how much
the saved computation time exceeds the time for the saving and re-loading. If registers cannot
be used to save the contents, the saving and re-loading to and from memory may exceed the -
computation time saved in the case of simple expressions. Thus, if the underlying machine does
not provide many registers, common subexpression elimination may not be very effective. This
saving and re-loading of the values of expressions also occurs in the case of the code motion of
expressions, but in that case, it is the movement of computations out of loops that is mostly
responsible for speeding up the execution time.

The optimizer detects redundancy among all expressions. In the case of address exi;res-
sions, however, the recognition of redundancy may or may not be beneficial, depending on the
machines. This is because it is possible to incorporate some address arithmetic into operand
addresses using special addressing modes. Examples of address arithmetic that can be handled
by special addressing modes are the indirect loads and indexing operations. In some cases,
special addressing modes can represent the same computations as entire address expressions. If
common subexpressions- are recognized in address cxpressions that can be translated into spe-
cial operand addresses, the saving into temporaries may be more expensive than the redundant
address computations. If a common subexpression is nested inside a larger address expression,
the saving operation also prevents the collapse of the larger address expression into a single
operand address. Thus, common subexpression optimization in address expressions is not as
effective in machines with advanced addressing modes. But since not all address expressions can

t Otherwise, constant arithmetic wilt be performed by the optimizer.

130

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

fit into single operand addresses, common subexpression optimization in address expressions is

still beneficial in many situations.
Example. The array reference A[I] can be translated: into a single opcrand address in the
DEC 10:
MOVE 10,PP$SDA+86(5) load A[l], Iin register 5
Even if the address computation of A[I] has been saved in an earlier occurrence, the re-use of

the saved value would not result in better code because indexed addressing is just as fast as
indirect addressing in the DEC 10:

MOVEI 8,PPSDA+86(5) save adr(A(I])

ADD 10,0(8) . load A[l] using address in register 8

a
Strength reduction

The optimization of strength reduction, associated with induction expressions in loops, can
bring about the following effects on the underlying machines:

1. Mpmsive multiplication operations are replaced by additions, thus saving computation
time. '
2. The computation of address expressions is moved out of loops and incremented each time

through the loop; this can be looked at as code motion of expressions that contain induction

variables.

Example. Suppose the array reference A[I,J] occurs in a loop. The DEC 10 code for the

address computation is:

MOVE 4 ,PPSDAT+20087 load I

IMULI 4 ,100 1 times 100

MOVE 1 ,PPSDAT+20088 load J

S0s 1.1 decrement J

MOVET 2 ,PPSDAT+-13(4) load adr(A)

ADD 2,1 adr(A) + computed offset
MOVE 4 ,0(2) . load AfLJ)

After optimization, the induction expression that computes the address of A[I,J] are moved

outside the loop. In the loop, the same array reference is replaced by:

MOVE 1 ,0(8)

where register 8 contains the address of A[I,J]. Register 8 is incremented in .thc loop whenever

the induction variables I and J arc incremented. O

131

8.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

3. Registers are allocated to contain: the address expressions that are moved, thus facilitating
the usec of special addressing modes, especially the register-indirect addressing mode and

base addressing.

4. Because the optimizer introduces the increments of registers containing address expres-
sions, it enables the code generators to make use of the autoincrement and autodecrement
addressing modes in machines where these addressing capabilities are available.

Exampie. Pascal Foﬁ loop:
FOR I:=1 TO 100 DO A[I]:=A[I]+B(I];

Original 68000 code:

movl #1,pp$dat+1378 I:=1
$2:

mov1i ppSdat+1378,d0 load I
asil #2,d0 1 times 4 to get offset in bytes
mov1 #ppSdat+572,a0 load adr(A)
mov1 pp$dat+1376,d1 load 1
asn #2,01 1 times 4 to get offset in bytes
mov1 #ppSdat+572,al load adr(A)
mov1 ppSdat+1376,d7 load 1
asll #2,d7 I times 4 to get offset in bytes
mov1 #pp$dat+372,ab load adr(B)
movl a1@(0,d1:iL),d1 load Aff]
addl a5@(0,d7:L),d1, Af1}+Bi1)
mov1 d1,a08(0,d0:L) assign to Afl)
addql #1,pp$dat+1376 increment I
cmpl #100,ppSdat+1378 check for loop termination
Jie $2

Optimized 68000 code:
moveq #1,d7 I=1
mov1 #ppSdat+576,a4 load adr(A)
mov1 #pp$dat+976,ad load adr(B)

$2:

mov1 a6@8+,d0 load B{l] and increment adr(B{I})
addl d0, ad4@+ add BII] to A[l} and increment adr(A([f])
addql #,d7 increment I
cmpl #100,d7 check for loop termination
ile $2

u]

The detection of the opportunities to use autoincrement or autodecrement addressing, as in
the above example, is limited to information that can be gathered within one basic block, since
code generators rarely do global analysis of the program. If the reference and increment of an
address do not occur in the same basic block, the code generator mi;y not be able to recognize

the opportunity.

132

6.6. Relation to Machine Characteristics

We now summarize how the relevant machine qualifications we mentioned in Section 6.3

influence the ways machines can benefit from the optimizations of UOPT.

Three-address machines can completely specify an arithmetic operation in one instruction.
Small common subexpression elimination may not be very useful to such machines, since a one-
instruction computation may be less expensive than the saving and re-loading of an identical

computation.

In one-address machines, stack height'reduction is extremely beneficial, because the number
of load instructions is minimized. In a stack height reduced, left-associative expression tree, only
a single load instruction is needed; other operands are added to the accumulator directly from
memory. In this case, the total number of instructions is equal to one plus the number of

operations involved in the expression.

Machines without the immediate addressing mode cannot benefit from constant propaga-
tion, since constants have to be stored and referenced from memory. Machines with register
indirect addressing benefit from the allocation of address.quantities in registers. The use of the
autoincrement and autodecrement modes are also made possible by strength reduction. Ma-
chines with indexed and base addressing also benefit from register allocation. In machines with
multiple offset fields in these addressing modes, however, the optimization of address collapsing
may not have direct benefits since the constants to be combined could have originally occupied
the multiple offset fields.

Machines with non-orthogonal instruction sets usually exhibit a high degree of irregularity
or unpredictability in the ways they can benefit from machine-independent optimizations.

Machines with complex and powerful instruction sets usually do not benefit as much from
common subexpressions as reduced instruction-set machines. The primitive operations on the

intermediate code level do not map easily into the operations at the machine instruction level.

For machines in which one and only one operand field in arithmetic instructions can access
memory, stack height reduction is extremcly uscful, for the same reason as it is in the case
of one-address machines above. Whenever there are some operand fields in instructions that
cannot refcrence memory, register allocation is useful. For machines in which memory reference
is limited to only the load and store instructions, register allocation is especially beneficial.
These machines also benefit from stack height reduction because all variables that appear in
expressions have to occupy registers; the chance of running out of registers is reduccd, but the

total number of instructions will not be changed.

133

6.6. RELATION TO MACHINE CHARACTERISTICS

The characteristics of directly-executable language (DEL) machines differ widely with re-
spect to the nature of the languages that they support. In the case of FOM, the level of the
machine code corresponds quite well with the level of U-Code. Since the level of U-Code is
not low, we do not anticipate much difficulty for other DEL’s to make use of optimizations
in U-Code. The instruction sets of DEL’s are usually quite orthogonal, and this enhances the
usefulness of machine-independent optimizations to them.

6.7. Additional Remarks

From the comparison of optimization results on different machines in Section 6.4, and the
discussion of the differing effects of the various optimizations un target machines in Section 6.5
and 6.6, we can reach an overall conclusion: the machine-independent optimizations performed
by UOPT are beneficial fqr most real rﬁachines, but are slightly more effective in machines
with simple instruction sets and addressing formats, although there are exceptions with respect
to individual optimizations. To explain this, we introduce the concept of context-independent
optimizations and context-dependent optimizations. Both these qualifications are applied to
machine-independent optimizations. The optimizations mentioned in Section 6.5 that have dif-
fering effects on different machines are context-dependent optimizations, because their effective-
ness dépends on the details of the machine code. The rest of the optimizations (e.g. dead code
elimination, constant arithmetic, code motioh, etc.) are context-independent optimizations,
because their effectiveness is independent of the machine characteristics. In machines with pow-
erful and complicated instruction sets and addressing modes, the code generation process is more
complex, because the code generator has’to look for opportunities of using specific constructs
in the instruction sets in order to fully utilize the capability provided by the machine. This
peephole optimization is highly machine-dependent, and interferes with the context-dependent
optimizations so that the latter’s effects are not so directly felt in the final machine code.

To bring the above remarks into better perspectives, we group the set of all possible opti-
mizations for a given machine according to whether they are machine-indépendent or machine-
dependent. As shown in Fig. 6.6.1, the machine-independent optimizations are further divided
into two subsets corresponding to the context-independent and context-dependent optimizations.
The set of machine-dependent optimizations intersects with the context-dependent subset be-
cause the effects of the latter are masked by machine-dependent peephole optimizations. The
set of machine-independent cptimizations is always the same, but the set of machine-dependent
optimizations varies among machines. A machine with a powerful instruction repertoire provides
greater opportunities for peephele optimization, and the sct of machine-dependent optimizations

shown in Fig. 6.6.1 will correspondingly be larger; and when this set is larger, it is likely that

134

6.7. ADDITIONAL REMARKS

-- | ___Machinel

| | Machine2

Machine-independent

Possible
Optimizations Machine-dependent
Optimizations -

Fig. 6.6.1 Possible optimizations in real-world machines

its intersection with the context-dependent subset of machine-independent optimizations will
increase. Because of this larger area of intersection, a larger portion of machine-independent
optimizations is always performed in the code generation process, so that the imjmct of the
machine-independent optimizations on the object code is not as Qtrongly felt as in machines
with simpler instruction sets. .

Although a small part of the machine-independent optimizations can be obscured by the
code generation process, the optimizations performed by UOPT can effectively reduce the run-
ning times of the object code in all the machines we have encountered. The preceding mea-
surements and evaluations have allowed us to conclude that our approach of portable, machine-
independent optimization is highly feasible in implementing production optimizers.

135

7. Conclusion

In this Chapter, we remark on the significance of this research, and put forth some sugges-
tions for further related work. -

7.1. Concluding Overviews

This thesis work has demonstrated that a separate, self-contained optimizer that exists
independently of the front-ends and.back-ends is both feasible and beneficial. The optimizer
UOPT has a simple and clean interface with the front-ends and back-ends, and does not require
significant changes to target it to new machines. It has been proven to be highly effective on a
wide rangc of machines.

We belicve that the intermediate code we used is a good compromise between completely.
machine-independent intermediate forms, which often restrict the cxtent of optimization that
can be performed, and low-level pseudo-machine languages, which limit the types of machmes
that can benefit from the machine-independent optimiz&tions. Although U-Code is slightly
mach,inc-dopendelif, this machine dependence does not limit the portability or the machine-
independence of UOPT. i

One of the greatest obstacles facing the prospective compiler writer is the need to implement
various optimizations in his compiler. As a result of UOPT, an optimizer potentially exists for
any machine, on the condition that the compilation process uses U-Code as the intermediate
form.

Looking at the implementation aspect of UOPT, the novel global optimization framework
introduced in this thesis makes it possible to systematize, simplify and speed up a full range
of optimization processes. Some previously separate optimizations can now be performed con-
currently. We have addressed the problem of sequencing the various optimization phases for
maximal efficiency and best optimization results. All these are accomplished with an accompa-
nying reduction in implementation complexities. The global optimization methodology can be

followed by any other general-purpose optimizer.

In the area of register allocation, we have demonstrated that, using a few machine parame-
ters, register allocation can be effectively and efficiently performed in the machine-independent
context. Using a priority-based coloring algorithm, the traditional coloring problem can be

approached practically and efficiently at the intermediate code level.

136

7.2. Suggestions for Further Work

One of the main limitations to UOPT’s optimizations has been the need to assume the worst
case at procedure calls regarding which variables are altered or referenced. Implementing inter-
procedural flow analysis will alloiv UOPT to pin-point the exact variables affected by procedure
calls. The analysis will involve an initial pass over the program that gathers and computes the
effects of each procedure. The information made available by the inter-procedural flow analysis
can then be supplied to UOPT when it performs global optimization.

Extensions and additions to the optimizations performed in UOPT are possible. Among
these are the optimization of bounds-checking, optimizations aimed at reducing code size (e.g.
code hoisting) and the cg{pabﬂity to allow UOPT to change the control flow constructs of th-. pro-
grams. Since these interact with the optimizations already performed in UOPT, the conciseness

and ease of maintenance of UOPT may have to be compromised.

Register allocation in UOPT also provides opportunities for further enhancement, perhaps
at the expense of more optimization running time in the register allocation phase. Currently,
code motion of the register-memory move instructions is performed after all register allocation
has taken place. In the global coloring phase, register allocation priorities are computed by .
assuming that the register-memory move instructions are at their fixed positions, and no account
is taken of the possibility that these move instructions can be transferred later to better positions
to minimize the execution time cost. The algorithm could be made more exact if the possibility

of code motion to reduce cusi is factored into the priority .ordering.

Procedure parameters are commonly passed in registers. Optimizing the use of registers in
parameter passing is another possible extension to register allocation in UOPT. The primary
purpose is to minimize the cost for the loading of parameters into registers before they are passed
and the saving of parameters into home locations at the entries to callees. Register assignments
to passed parameters should take into account the appearances of the parameters in the callees
and before the points of call in the callers.

The possibility of overlapping registers of different sizes has not been treated in UOPT.
Although such sitnations have not appeared in the machines to which UOPT has been applied,
they do occur in other machines. It would be interesting to see how well the coloring algorithm
in UOPT can be adapted to such situations.

In the systems aspect, there are many other opportunities related to UOPT that can be
attempted. UOPT currently supports only Pascal and Fortran. It is possible to introduce ad-
ditional programming languages that are compiled via U-Code. Extensions to U-Code should

be minimized and reserved only for extreme cases. Specialized languages may display their

137

7.2. SUGGESTIONS FOR FURTHER WORK

own commonly-occurring optimization opportunities, and these languages can have their own
front-end optimizers that perform their own specialized optimization transformations and out-
put U-Code; UOPT can still be used to advantage as the general-purpose global optimizer in
the subscquent common optimization phase. Any extension to U-Code, or modification to its
semantics, could entail changes in the 6pnimizer itself. The extensions introduced should be
such that they do not affect the optimizations already cxisting in UOPT.

To recognize the existence of other intermediate code for other pfogrammiug languages and
code generators, UOPT can be re-implemented on other intermediate code. Although the inter-
mediate code may affect the optimizations that can be performed, the optimization methodogy
in UOPT is somewhat independent of the intermediate code. Another possibility is to build
translators betwcen U-Code and other intermediate forms supported by other programming
languages and code generators. This approach requires much less programming cffort, although
there is more overhead in the compilation and optimization processes due to the existence of

multiple intermediate forms and the larger number of phases in translation.

Lastly, it is also possible for specific installations to incorporate UOPT as a built-in com-
ponent in code generation. UOPT can be made the front part of a code generator. The code
generator uses UOPT as the module that inputs the intermediate code. After global optimiza-
tion, the code generator emits object code directly from the internal representations of UOPT.
Such an arrangement serves to climinatg the input/output overhead inherent in multi-pass com-

piling systems and can render greater code generation efficiency without sacrificing modularity.

138

References

Aho72

Aho77
Alle71

Alle75
Alle76a
Alle76b
Alle80
Alle81
Amma75
Ankl82
Arsa79
Ausl82
Bagw70
Beat74
Bran82

Bush79

A. V. Aho and J. D. Ullman, “Optimization of Straight Line Code,” SIAM J. Com-
puting 1, 1, pp. 1-19.

A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1977.

F. Allen and J. Cocke, “A Catalogue of Optimizing Transformations,” pp. 1-30 of
[Rust72].

F. Allen, “Bibliography on Program Optimization,” IBM Research Report No. RC
5767, Dec. 1975.

F. Allen and J. Cocke, “A Program Data Flow Analysis Procedure,” Comm. ACM
19, 3, pp. 137-147.

F. Allen, “An Annotated Bibliography of Sclected Papers on Program Optimi-
zation,” IBM Research Report No. RC 5889, March 1976. '

F. Allen et al., “The Experimental Compiling System,” IBM J. Res. Develop. 4, 6
(Nov. 1980). '

F. Allen, J. Cocke and K. Kennedy, “Reduction of Operator Strength,” pp. 79-101
of [Much81].

U. Amman, K. Jensen, K. Nori, ét al., “Pascal P Compiler Implementation Notes;,”
ETH Zurich, 1975. .

P. Anklam, D. Cutler, R. Heinen, Jr. and M. D. MacLaren, Engineering a Compiler
— VAX-11 Code Generation and Optimization, Digital Press, 1982.

J. J. Arsac, “Syntactic Source to Source Transforms and Program Manipulation,”
Comm. ACM 22, 1 (January 1979).

M. Auslander and M. Hopkins, “An Overview of the PL.8 Compiler,” ACM SIG-
PLAN Notices, 17, 6 (June 1982), (Proceedings of the SIGPLAN’82 Symposium on
Compiler Construction), pp. 201-207.

J. T. Bagwell, “Local Optimizations,” SIGPLAN Notices 5, 7 (July 1970).

J. C. Beatty, “Register Assignment Algorithm for Generation of Highly Optimized
Object Code,” IBM J. Res. Develop., Jan. 74. '

W. C. Brantley and J. Weiss, “FOM: Principles of Operations,” IBM Research Re-
port, August 1982,

R. Bush, “UASMINT: A U-Code Assembler and Irlterx;reter,” S-1 Project Docu-
ment, Computer System Lab, Stanford University, June 1979.

139

Cast79

Chai82

Chow80
Chow83a
Cﬁow83b

Cock70

Cock?T

Cock30

Davi80

Digi81

Frai79

Frei74

Gana80

Gana82

Gana84

. REFERENCES

F. Castaneda, F. Chow, P. Nye, D. Sleator and G. Wicderhold, “PCFORT: A For-
tran to P-Code Translator,” Computer System Lab Technical Report 160, Stanford
University, January 1979.

G. J. Chaitin, “Register Allocation and Spilling via Graph Coloring,” ACM SIG-
PLAN Notices, 17, 6 (June 1982), (Proceedings of the SIGPLAN’32 Symposium on
Compiler Construction), pp. 201-207.

F. Chow, P. Nye and G. Wicderhold, “UFORT: A Fortran to U-Code Translator,”
Computer System Lab Technical Report 168, Stanford University, January 1980.

F. Chow and M. Ganapathi, “Intermediate Languages in Compiler Construction —
A Bibliography,” ACM SIGPLAN Notices, 18, 11 (Nov. 83), pp. 21-23,

F. Chow, “Implemenation Manual for the U-Code Optimizer UOPT,” Computer
System Lab Technical Note, Stanford University, December 1983.

J. Cocke and J. T. Schwartz, Programming Languages and Their Compilers, Courant
Institute of Mathematical Sciences, New York University, April 1970.

J. Cocke and K. Kennedy, “An Algorithm for the Reduction of Operator Strength,”
Comm. ACM 20, 11, Nov. 77.

J. Cocke and P. Markstein, “Measurement of Program Improvement Algorithms,”
Proc. IFIP Cong. 80, (Tokyo, Japan, Oct. 6-9, Melbourne, Australia, Oct. 14-17,
1980).

J. W. Davidson and C. W. Fraser, “The Design and Application of a Retargetable
Peephole Optimizer,” ACM Tran. Proy Lang. Syst., April 1980.

VAX Architecture Handbook, Digital Eqmpment Corporatxon, 1981.

D. J. Frailey, “An Intermediate Language for Source and Target Independent Code
Optimization,” ACM SIGPLAN Notices 14, 8 (August 1979), (Proceedings of the
SIGPLAN’79 Symposium on Compiler Construction), pp. 188-200.

R. A. Freiburghouse, “Register Allocation Via Usage Counts,” Comm. ACM 17, 11,
Nov. 74.

M. Ganapathi, “Retmgétable Code Generation and Optimization using Attribute
Grammars,” Ph.D. Thesis and Tech. Report 406, Computer Sciences Department,
University of Wisconsin — Madison, 1980.

M. Ganapathx, C. N. Fischer and J. L. Hennessy, “Retargetable Compiler code Gen-
eration,” ACM Computing Surveys, 14, 4 (Dec. 1982).

M. Ganapathi and C. N. Fischer, “Attributed Linear Intermediate Representations
for Retargetable Code Generators,” Software — Practice and Ezperience 14, 1, Jan-
uary 1984.

140

Gesc72

Grah80

Gyll79

Hail79

Harr75

Harr76

Hech73

Hech77

Henn82a

Henn82b

Henn82c

Henn83

Jens75

John75

John77

Kenn76

. REFERENCES

C. M. Geschke, “Global Program Optimizations,” Ph.D. Thesis, Carncgie-Mellon
University, October 1972.

S. L. Graham, “Table-driven Code Generation,” IEEE Computer, 13, 8 (August 80),
pp. 25-34.

H. C. Gyllstrom, R. C. Knippel, L. C. Ragland, K. E. Spackman, “The Universal
Compiling System,” ACM SIGPLAN Notices, 14, 12 (Dec. 1979), pp. 64-70.

B. Hailpern and B. Hitson, “S-1 Architecture Manual,” Computer System Lab Tech-
nical Report 161, Stanford University, January 1979.

W. Harrison, “A Class of Register Allocation Algorithms,” IBM Research Report
No. RC 5342, March 27, 1975.

W. Harrison, “Formal Semantics of a Schematic Intermediate Language,” IBM Re-
search Report No. RC 6271, November 1976.

M. S. Hecht and J. D. Ullman, “A'nalysis of a simple algorithm for global flow prob-
lems,” Conf. Record, ACM Symposium on Principles of Programming Languages,
Boston, Mass., Ocu. 1973, pp. 207-217.

M. S. Hecht, Data Flow Analysis of Computer Programs, American Elsevier, New
York, New York.

J. L. Hennessy, “Symbolic Debugging of Optimized Code,” ACM Tran. Prog. Lang. .
Syst., 19082. .

J. L. Hennessy, “Pascal*: A Pascal Based Systems Programming Language,” Com-
puter System Lab Technical Note 174, Stanford University, September 1982.

J. L. Hennessy, et al., “The MIPS Machine,” Proc. Compcon, IEEE, San Francisco,
Feb. 1982, pp. 2-T. ’

J. L. Hennessy, et al., “Design of a High Performance VLSI Processor,” Technical
Report 236, Computer System Lab, Stanford University, 1983.

X. Jensen and N. Wirth, Pascal User Manual and Report, Springer Verlag, New
York, 1975.

R. K. Johnsson, “An Approach to Gloi)a_l Register Allocation,” Ph.D. Thesis, De-
partment of Computer Science, Carnegie-Mellon University, December 1975.

S. C. Johnson, “A Tour through the Poriable C Compiler,” UNIX documentation,
Bell Tclephone Laboratories, Murray Hill, N. J., 1977.

K. Kcnnedy, “A Comparisor of Two Algorithms for Global Data Flow .Analysis,”
SIAM J. Computing, 5, 1 (March 76), pp. 158-180.

141

Kild73

Kim78

Knut71

Korn78

Leve79

Leve81

Livi83

Love76

Mads76

Mint79

More79

More81

Moto80
Much81

Nels79

. REFERENCES

G. A. Kildall, “A Unified Approach to Global Program Optimization,” Proc. ACM
Symposium on Principles of Programming Languages, 1973, pp. 194-2086.

J. Kim, “Spill Placement Optimization in Register Allocatiop for Compilers,” IBM
Research Report No. RC 7251, August 8, 1978.

D. E. Knuth, “An Empirical Study of Fortran Progrfxms,” Software - Practice and
Ezperience 1, 2, pp. 105-133.

P. Kornerup, B. B. Kristensen and O. L. Madsen, “Interpretation and Code Genera-
tion based on Intermediate Languages,” Report DAIMI PB-88, Matematisk Institut,
Aarhus Universitet, Danmark, May 1978.

B. W. Leverett, “An Overview of the Production-Quality Compiler-Compiler Pro-
ject,” Tech. Report CMU-CS-79-105, Carnegie-Mellon University, February 1979.

B. W. Leverett, "R_egister Allocation in Optimizing Compilers,” Ph.D. Thesis and
Technical Report CMU CS-81-103, Carnegie-Mellon University, February 1981.

S§-1 Uniprocessor Architecture, Lawrence Livermore Laboratory, University of Cali-
fornia, April 1983.

D. B. Loveman, “Program Improvement by Source to Source Transformation,” Con/.
Record -of the Third ACM Symposium on Principles of Programming Languages,
1976.

O. L. Madsen, B. B. Kristensen and J. Staunstrup, “Use of Design Criteria for
Intermediate Languages,” Report DAIMI PB-59, Matematisk Institut, Aarhus Uni-
versitet, Danmark, August 1976.

R. J. Mintz, G. A. Fisher and M. Sharir, “The Design of a Global Optimizer,”
ACM SIGPLAN Notices, 14, 8 (August 1979), (Proceedings of the SIGPLAN’T9
Symposium on Compiler Construction), pp. 226-234.

E. Morel and C. Renvoise, “Global Optimization by Suppression of Partial Redun-
dancies,” Comm. ACM 22, 2 (February 1979).

E. Morel and C. Renvoise, “Interprocedural Elimination of Partial Redundancies,”
pp. 160-188 of [Much81].

MC68000 16-bst Microprocessor User’s Manual, Motorola Inc., 1980.

S. S. Muchnick and N. D. Jones, Program Flow Analysis, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1981i.

P. A. Nelson, “A Comparison of Pascal Intermediate Languages,” ACM SIGPLAN
Notices, 14, 8 (August 1979), (Proceedings of the SIGPLAN’79 Symposium on Com-
piler Construction), pp. 208-213.

142

Nye81

Nyes3
Palm75

Perk79

Rust72
Scha73
Schn73
Schw73

Site79a
Site79b
Stah76

Stan76
Stee6l

Tane82

. REFERENCES

P. Nye, “6-1 U-Code: An Intermediate Language for Pascal* and Fortran,” S-1
Project Document PAIL-8, Computer System Lab, Stanford University, October
1981.

P. Nye and F. Chow “A Transporter’s Guide to the Stanford U-Code Compiler
System,” Technical Report, Computer System Lab, Stanford University, June 1983.

R. C. Palm Jr., “A Portable Optimizer for the Language C,” Master’s Thesis, July
1975, Masachusetts Institute of Technology.

D. Perkins and R. Sites, “Machine-independent Pascal Code Optimization,” ACM
SIGPLAN Notices, 14, 8 (August 1979), (Proceedings of the SIGPLAN’79 Sym-
posium on Compiler Construction), pp. 201-207.

R. Rustin (Editor), Design and Optimization of Compilers, Prenticc-Hall, Engle-
wood Cliffs, N. J., 1972.

M. Schaefer, A Mathematical Theory of Global Program Optimization, Prentice-Hall,
Englewood Cliffs, N. J.

P. B. Schneck and E. Angel, “A Fortran to Fortran Optimizing Compiler,” Computer
Journal, 16, 4, pp: 353-354. :

J. T. Schwartz, “On Programming: An Interim Report on the SETL Project,” Cou-
rant Institute of Math. Sciences, New York University, 1973.

R. L. Sites and D. R. Perkins, “ achine-indépendent Register Allocation,” ACM
SIGPLAN Notices, Vol. 14, Number 8 (August 1979), (Proceedings of the SIG-
PLAN’79 Symposium on Compiler Construction), pp. 221-225.

R. Sites et al., “Machine-independent Pascal Optimizer Project: Final Report,”
Technical Report UCSD/CS-79/038, University of California at San Diego, Novem-
ber 1979.

T. A. Standish, D. C. Harriman, D. F. Kibler and J. M. Neighbors, The Irvine
Program Transformation Catelogue, Dept. of Information and Computer Science,
University of California, Irvine, 1976.

“DEC System 10/20 Hardware Manual and FAIL,” Stanford Artificial Intelligence
Lab Operating Note 75, November 1976.

T. B. Steel, Jr., “A First Version of UNCOL,” Proc. Westzrn Joint Computer Con-
ference, AFIPS, 1961, pp. 371-378.

A. S. Tanenbaum, H. V. Staveren and J. W. Stevenson, “Using Pecphole Optimiza-
tion on Intermediate Code,” ACM Tran. Prog. Lang. Syst. 4, 1 (January 1982).

143

Tane83

Wilh81

Wilk83

Wulf75

" . REFERENCES

A. S. Tanenbaum, H. V. Staveren, E. G. Keizer and J. W. Stevenson, “A Practical
Tool Kit for Making Portable Compilers” Comm. ACM 26, 9 (September 1983), pp.
654-660.

R. Wilhclm, “Global Flow Analysis and Optimization in the MUG2 Compiler Gen-
erating System,” pp. 132-159 of [Much81].

A. Wilk and W. Silverman, “OPTIMA - A Portable PCODE Optimizer,” Software
- Practice and Ezperience, 18 (April 1983), pp. 323-354.

W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs and C. M. Geschke, The
Desiyn of an Optimizing Compiler, American Elsevier, New York, N. Y.

144

Appendix A. Short Guide to U-Code

U-Code, a descendent of the P-Code intermediate language emitted by many Pascal com-
pilers, exists in two different formats: a text format and a binary format. A U-Code instruction
is represented in compiler programs as a record. In the binary format, these records are written
directly into files. As a result, the read-write process is faster, and the binary format files occupy

much less disk spacé.

U-Code can be thought of as the assembler language for a hypothetical U-machine. The
U-machine has the following components: -

1. A stack for use in all expression evaluation.
2. A read-only storage area where instructions and string constants are kept.

3. A static storage area (memory type S) where global variables and Fortran own variables

are kept.
4. A sct of registers (memory type R) where data items can be kept for fast accesses.

5. A memory stack divided-into stack frames for the proccssing of procedure invocation. A -
stack frame (or activation record) is pushed on top of the memory stack whenever a pro-
cedure is invoked. The stack frame contains parameters, local variables and compiler-
generated temporaries. Stack frame storage areas are either designated as memory type M

for local storage or memory type P for parameters.
6. A heap for dynamic allocation of data objecté at program execution time.

The Pascal and Fortran front-ends that output U-Code are both one-pass compilers. U-
Code programs are organized into modules and procedures in the same order as they occur in
the source programs. In the following, we group the complete U-Code instruction set into classes
and give the syntax and a short description of each op-code. Information of particular use to
the optimizer is noted. The readers are referred to [Nye81| for a more complete definition of the
U-Code language.

1. Direct memory operations

I(op) (data type) (memory type) (block number) (address) (length) l

where (op) is:

LOD — load onto stack.

STR — store from stack into memory.

145

APPENDIX A. SHORT GUIDE TO U-CODE
NSTR — same as STR but not popping item.

The length information is important in checking for storage interference in instructions that
access memory. When the memory type is M or P, the variable is local if the block number is

the same as the block number of the current procedure.

2. Constants

ILDC {data type) (length) (constant value) l

lLCA (memory type) (length) (block number) (constant value) I

|LDA (memory type) (block number) (address) (length) (base address) |

II.DP (static level) (block number) (procedure name) I

LDC pushes a constant. value onto the stack. LCA pushes the address of a string constant
onto the stack. LDA pushes a constant address ‘onto the stack. LDP pushes a procedure descriptor
onto the stack. In the LDA instruction, the base address together with the length field gives the
range within which the result of the subsequent address computation will lie.

3. Unary operators
{op)

where (op) is:

CHKF — check if false.
CHKT — check if true.
CHKN — check if nil pointer.

{op) (data type) v

where (op) is:

ABS — get absolute value.
CHKH — check upper bound.
CHKL — check lower bound.
NEG — negate.

NOT — boolean not.

0DD — check if odd number.
SQR — square root.

I (op) (data type) (integer value) l

146

APPENDIX A. SHORT GUIDE TO U-CODE

where (op) is:

DEC — decrement.
INC — increment.
SGS — form singleton set.

| {op) (rcsultant data type) (original data type) J

where (op) is:

CVT — convert type of top of stack item.
CVT2 — convert type of second item on stack.
RND — round value of top of stack item.

[ADJ (data type) (offset) (length) |

ADJ adjusts the size of a set.

4. Binary operators

(op) (data type)

where {op) is:

ADD — addition.

AND — boolean and.

DIF — set difference.

DIV — division.

EQU — equal.

GEQ — greater than or equal to.
GRT — greater than.

IOR — inclusive or.

LEQ — less than or equal to. ’
LES — less than.

MAX — maximum of two numbers.

MIN — minimum of two numbers.

MOD — remainder.

MPY — multiplication. .

MUS — form a set of the elements in the given range.

NEQ — not equal.
SUB — subtraction.

147

APPENDIX A. SHORT GUIDE TO U-CODE

.XOR — exclusive or.

!IXA (data type) (unit size) j

IXA computes the offset within an array by multiplying the subscript by the nﬁit size of the
array and adding to the base address.

| (op) (data type) (length) |

where (op) is:

INT — set intersection.
UNI — set union.

IINN (data type) {check flag)]

INN checks set membership of an element.

5. Indirect memory operations

[(op) (data type) {offset) (length) ‘

where (op) is:

ILOD — load indirect.
ISTR — store indirect.
INST — non-destructive store indirect.

l(op) (memory type) (length)]

where (op) is:

MOV — block move.

1EQU — indirect equal.

IGRT — indirect greater than.

IGEQ — indirect greater than or equal to.
ILEQ — indirect less than or equal to.
ILES — indirect less than.

INEQ — indirect not equal.

In cach of these instructions, the range of storage locations affected by the opcration is

given by the LDA instruction that loads the address argument.

148

APPENDIX A. SHORT GUIDE TO U-CODE

6. Labels
I(labcl) LAB (flag) l

The flag indicates whether there is jump to the label from outside the current procedlgre.
If there is such a jump, the block marked by the label is included as an entry point.
7. Jumps

(op) (label)

where (op) is:
FJP — jump if falze.
TJP — jump if true.
UJP — unconditional jump.

IGOOB (static level) (label) I

GOOB specifies a jump out of the current procedure to a nesting procedure.

RET causes control to return to the calling procedure.

IXJP (data type) (case label) (default label) (lower bound) (upper bound) I

| (1abel) CLAB (length) |

XJP and CLAB together implement the case statement.

8. Procedure calls

[CUP (data type) (block number) (name) (pop) (push)]

[16UP (data rpe) (por) (push) |

MST (level)

IPAR {data type) (memory type) (block number) (address) (length) }

CUP calls the procedure specified. ICUP calls the procedure whose descriptor is on top of
the stack. MST marks the stack prior to parameter passing in procedure calls. PAR specifies
the current item on the stack as a parameter to be passed in the upcoming call. In the CUP
instruction, UOPT can determine the level of the called procedure by table look-up using the

block number given in the instruction.

149

APPENDIX A. SUHORT Gme TO U-CODE
9. Special operators
'

ISWP (top data type) {second data type) l

DUP pushes an extra copy of the top item on the stack. POP pops the stack top item. SWP
interchanges the top and second items on the stack.

10. Register operations '

!REGS (action) (register class) (offset) (length) l

REGS appears at the beginning of each procedure to reserve the registers used by UOPT in
that procedure.

l(op) {data type) {memory type) (biock number) (register offset) (length)]

where {op) is:

RLOD — load register item on the stack.
RSTR — store item from top of stack to register.

11. Non-executable instructions:

lBGN (module name) (integer flag) |

!STP {module name) I

BGN and STP mark the beginning and end of a U-Code module. One module usually corre-
sponds to a source program file.

l(name) ENT (data type) (static level) {block number) (pop) (push) (external flag) l

END (name)
ENT and END mark the beginning and end of a procedure.

BGNB and ENDB together mark a range in the programn code where the-stack does not fall
below its height at the positions of the BGNB and ENDB.

150

APPENDIX A. SHORT GUIDE TO U-CODE

iLEX (tevel) (block number) I

LEX specifies the static levels and block numbers of the procedures that enclose the current
procedure. The nesting relationships among the procedures are determined according to the

LEX instructions.

ILOC (page number) (line number) (character count) I

LOC is used for rcporting source program line numbers for debugging purposes.
COMM (comment)

COMM is for putting in comments in U-Code files.

'OPTN {option name) (integer) l

OPTN is for specifying a variety of compilation and optimization options.

[(name) EXPV (data type) (memory type) (block number) (address) (length)]

[(name) IMPV (data type) {memory type) (block number) (address) (length)]

EXPV and IMPV specify the export and import of variables.
!(na.me) DATA {number) }

'DEF (memory type) (length)]

ISDEF (block number) (length)]

DATA is for associating a name and a block number to a static data area. DEF defines the size
of the M or P memory area of the current procedure. SDEF defines the size of a static memory
block.

lINIT (data type) (memory type) (block number) (first offset) (last offset) (length) (value) I

IZERO (data type) (memory type) (block number) (address) (lcngth)—l :

INIT initializes the given storage area to the specified value. ZERO is for zeroing out the

area indicated.

IPLOD (data type) (memory type) (block number) {address) (length) l

!PSTR (data type) (memory type) (block number) {(address) (length)]

151

APPENDIX A. SHORT GUIDE TO U-CODE

PLOD indicates the loading on the stack of a function result. PSTR indicates the storing of
parameters from the stack to their assigned locations at the entry point of a procedure.

152

Appendix B. Notes on programming Data Flow Analysis

Data flow analysis plays a major role in the various global optimizations of UOPT. Since
data flow analysis constitutes a non-trivial part of the processing in global optimization, it is

necessary to do it as efficiently as possible.

The iterative algorithm is the simplest and most popular method to perform data flow
analyeis. The algorithm involves iterating through the nodes of the control flow graph applying
the appropriate data flow equation until no more changes take place. When properly imple-
mented, the average number of iterations in the outermost loop of the algorithm required to
reach the final solution is around 3, and is seldom above 4 for well-structured programs. How-
ever, there are details of implementation not directly evident in the algorithm itself which, if
not handled properly, can result in a substantial increase in the number of iterations required.
These implementation details are dependent on the nature of the data flow analysis performed.

Most of the data flow analyses in UOPT involve the simultaneous solution of an IN at.tribute'
and an QUT attribute at the entries and exits respectively of the basic blocks. As an illustration,
we take Eq. (3.3.1) from Chapter 3:

Availability System:

FALSE . if 7 is the entry block;
AVIN; = I Avour; otherwise. (3.3.1)
JEPred(s) -

AVOUT; = AVLOC; + —~ALTERED; - AVIN;.

The algorithm to compute AVIN and AVOUT is:
Algorithm Global Avaslabslsty.

i. changed « true;
2. WHILE changed DO
a. changed « false;
b. %+ graph head;
c. Repeat (i) - (vii) until 1 = last node;
(i) old — AVIN;
(i) For each predecessor j of i do
AVIN; « AVIN; - AVOUT;;
(iii) IF old # AVIN; THEN changed «— true;
(iv) old «— AVOUT;

153

ATPENDIX B. NOTES ON PROGRAMMING DATA FLOW ANALYSIS

(v) AVOUT; — AVLOC; + ~ALTERED; - AVIN;;
(vi) IF old # AVOUT; THEN changed « true;
(vii) § — next node. o

There are a number of ways to minimize the number of iterations in the above algorithm:

1., The graph nodes should be put in depth-first ordering prior to executing the above algo-
rithm. This enables any change in the attribute of the current node to be immediately
propagated to its adjacent nodes.

2. If not all the bits of the bit vector are used, masking the unused bits may also eliminate any
extra iterations required to propagate {nfonna.tion in the unused bits. When the conjunction
operator is used, the unused bits should be initially set to 0. When the disjunction operator
is used, they should be initially set to 1. Using such masking, the values of the unused bits
will not change during the iterations.

3. If the propagation of information is in the forward direction, the loop of step 2c¢ should
" start from the head of the graph. If the propagation of information is in the backward
direction, this loop should start from the tail of the depth-first ordering. In the latter case,
step 2c(vii) becomes '

(vii) # ~ previous node.

4. The relative positions of steps 2c(i)-(iii) and 2c(iv)-(vi) also depend on the direction of
information propagation. When propagation is in the forward direction, the positions are
as they appear above. When propagation is in the backward direction, steps 2c(1v) (vi)
should precede 2¢(i)-(iii).

The arrangements of 1, 3 and 4 above specd up the algorithm by following the actual
paths of information propagation as close as possible in performing the data flow operations.
By propagating information downstream immediately, it is unnecessary to wait for the next
iteration in the loop of stcp 2 whenever any change in the attribute of a node occurs.

Appendix C. Hints on Writing Programs that Cater to Optimization

Different programs cxhibit different amount of optimization opportunitics. While optimiza-
tion opportunities are highly dependent on the hature of the programs, the ordinary programiner
can enhance the optimizability of his programs by adhering to some guidelines. Here, we give
a sct of guidelines in writing Pascal and Fortran programs that can specifically enhance the
optimizations performed by UOPT. Most of the following points are also applicable to other
general-purpose optimizers. Some of these are due to the abscence of inter-procedural data flow
analysis in UOPT.

1. Variable declarations: Variables should be declared locally and used locally as much as
possible. This is because a pointer cannot point to a local variable. Also, local variables
cannot be altered or accessed in calls to procedures not nested within the current one. In

Fortran, only the common blocks arc regarded as non-local storage.

2. Storage relationships: Storage overlaps caused by the use of equivalences (or variant
records in Pascal) or commons should be minimized. Storage overlaps may cause unneces-
sary storage interferences that obstruct code movement and the recognition of redundancies.
Equivalences also inhibit the allocation of variables in registers by UOPT.

3. Memory accesses: Up-level references and side effects (assignments to non-local variables)
should be minimized. A pointer or a procedure call can interfere with an up-level memory

access.

4. Parameters: Parametérs should be passed by value whenever possible. This serves to
suppress aliasing and side cffocts. An assignment to a reference parameter potentially kills
many non-local variables. Values should be returned via the return values of functions.
(This rule does not apply to Fortran programs, which only allow passing by reference.)

5. Procedure declaration: Procedures should be declared at the same level as much as
possible. In Fortran, this means not using statement functions. When there are nestings
among the procedures, procedures in down-level calls can access the local variables of the

callers via up-level references and side cffects.

6. Pointers: The use of pointers should be minimized. Pointer accesses kill all non-local

variables, since the pointer can potentially point to any of them.

7. Loops: The programmers should stick to the use of standard loops provided in the pro-

gramming languages. The compiler front-ends specifically compile the loops so that the

155

APPENDIX C. HIINTS ON WRITING PROGRAMS THAT CATER TO OPTIMIZATION

resultant control flow structures allow for code motion out of loops. Jumps into or out of

loops should be avoided. The programmer should not construct his own loops using goto’s.

.

156

Appendix D. What the Compiler Front-ends Should Do

UOPT assumes certain configurations in the input code that, if adhered to by the front-ends,
can greatly enhance the optimizétion tasks.

D1. Pascal Front-end

1. Order of procedures: The order of the procedures in the U-Code file must correspond
to the order in which they are declared in the source program. UOPT needs to know the
level of the called procedures at the points of calls and, due to its one-pass nature, the level
of a callee is recorded only if its body has been processed earlier.

2. Identification of the main block: The main program should be appropriately identified
to the optimizer so that, when it is processing the body of the main block, it can treat
global static variables as local variables. Currently, the main block is always assigned block
number 1 by the Pascal front-end.

4

_
, ,
loop header

—.—-pl

loop
body

!

| loop test

!

e

Fig. D.1 Recommended loop structure for WHILE and FOR loops

157

D1. PASCAL FRONT-END

WHILE and FOR loops: Because UOPT does not alter the control flow structure of the
program, the front-ends must compile loop statements in the source programs into forms
that allow for code insertions in code motion. There have to be header nodes for the
placement of loop-invariant expressions in backward code motion, and tail nodes for the
placement of assignments moved forward and out of the loops. The more usual WHILE loop
form of Fig. 3.6.8 does not accommodate code motion. For both WHILE loops and FOR loops,
the compiled control flow structure should be as shown in Fig. D.1. In this configuration,
the loop header and loop tail are formed by generating extra labels. In the unoptimized
program, these two nodes do not contain any code. During optimization, backward code
motion causes insertion of loop invariant expressions at the loop header, and forward code
motion moves redundant stores in the loop forward and inserts them at the loop tail. Note
that there is an increase in code space, since the loop termination condition appéars twice.
But constant propagation followed By constant arithmetic can often eliminate the loop
entry test. (The REPEAT loop does not-require any special treatment for the purpose of
optimization.)

D2. Fortran Front-end

1.

Static memory: All Fortran variables are own variables, and they must be allocated
static storage. Also, variables within a program unit are not accessible from within other
program units. Variables in the common areas are to be treated as global variables instead,
since they are static and accessible from more than one program unit. Thus, the block
in which non-common variables are allocated has to be identified to the optimizer so that
the optimizer can treat the variables there as local variables. Currently, this static block is
always assigned the block number 1 by the Fortran front-end.

The levels of procedures: There is no nesting of procedures in Fortran. However,
statement functions can access variables within the program units in whicl.the statement
functions are declared. The optimizer has to be able to distinguish statement functions
from other Fortran subroutines and functions because the static variables referenced within
statement functions are non-local variables. The Fortran front-end UFORT declares all
statement functions at static level 3. Except the main program unit, which is at level 1, all
other subroutines and functions are declared at lcvel 2.

158

Appendix E. Examples of Optimized Code

In this appendix, we use a piece of Pascal source code as example and compile this code for
the 6 target machines. The U-Code both before and after optimization by UOPT are displayed.
For each of the 6 target machines, we list the object code generated from the unoptimized U-
Code followed by those generated from the optimized U-Code. This will serve to give a more
complete view of the effects that the same optimizations on the intermediate code have on

different target machine code.

The example we use is the full extent of the loop that does bubble sort, taken from the
benchmark program Bubble used in Chapter 6. The Pascal source code is:

top := 70;
WHILE top > 1 DO
BEGIN
i:=1;
WHILE i < top DO
BEGIN

IF list{i] > list(i+1]
THEN Swap(list[i], 1ist(i+1]);
i = i+ : :
END;
top := top -1
END; -

El. U-Code

The DEC 10 versions of U-Code are given here. The procedure Swap has been copied
in-line by the procedure integrator PMERGE earlier. Note the allocation of various quantities
in registers in the optimized version.

Unoptimized C Optimized
COMM top := 70: / COMM ----BB 06
/ COMM top := 70;
toc 1 40 0 /7 LoC 1 40 0
LOC L 36 70 / COMM while top > 1 do
cvVr J L /
STR J S 1 8280 36 /
COMM while top > 1 do /
toc 1 42 0 / Loc 1 42 0
LOD J S 1 8280 38 -/ COMM ----88 06
LDC L 36 1 /L5 LAB 0
cvr J L /L0C J 36 70
GRT J / STR J RO 72 36
FJP L4 / COMM ----8B 07
L5 LA3 0 /L6 LAB 0

159

E1l. U-CODE

L6 LAB 0

/ COMM begin 1 := 1;
COMM begin i := 1; /
Loc 1, 43 0 / LoC 1 43 0
LoC L 36 1 / COMM while i < top do
STR L S 1 8244 36 /
COMM while 1 < top do /
Loc 1 44 0 / LoC 1 44 0
LOD L S 1 8244 38 /LDC J36 1
LOD J S 1 8280 38 / LOD J R O 72 36
Cviz J L / LES J
LES J / FJP L7
FJp L7 / COMM ----BB 08
L8 LAB 0 /L8 LAB 0
L9 LAB 0 / LDC L 36 1
COMM begin if 1ist[i] > 1ist[i+1] / STR LR 0 0 36
{ LDA S 1 3096 2520 3132
/LOD LROO36
/ IXA L 36
/ STR. AR O 368 38
/ LDA S 1 3132 2520 3132
/LOD LROO 386
/ IXA L 36
/ STR AR O 144 36
/ COMM ----8B 09
/L9 LAB 0
. / COMM begin if 1ist[i] > 1ist[i+1] then
Loc 1 45 0 /7 L0C 1 45 0
LDA S 1 3096 2520 3132 / LOD AR O 36 38
LOD L S 1 8244 368 / ILOD J 0 36
IXA L 38 / NSTR J R 0 108 38
LOD L S 1 8244 38 / LOD AR 0 144 38
LoC L 36 1 / ILOD J 0 36
ADD L / NSTR J R 0 180 38
LDA S 1 3096 2520 3132 / GRT J
SwP AL /7 FJP L10
IXA L 38 / COMM ----BB 10
IL0D J 0 36 / COMM swap(1ist[1], 1ist[i+1]);
SWP J A / .
ILOD J 0 38 /
SWP JJ /
GRT J /
FJP L10 /
COMM swap(1ist{1], 1ist[i+1]) #
Loc 1 46 0 / LOC 1 46 0
COMM starting merge of call to BU / COMM begin t := x:
LDA S 1 3096 2520 3132 /
LOD L S 1 8244 36 /
IXA L 36 /
STR AM1 0238 /
LOD L S 1 8244 36 /
LDC L 36 1 /
ADD L ’ /
LDA: S 1 3096 2520 3132 /
SWE AL /
IXA. L 38 /
STR A M1 36 36 /
COMM code start for BUB$O01 /
COMM SWAP /
OPTN TSOURCELOC 385 /
COMM begin t := x; /
toc 1 220 / LOC 1 22 0
Lot AM10 36 / LOD J R O 108 36
ILOD J 0 36 / STR J R 0 216 36
STR J S 1 8352 38 / COMM x := y;

160

IL0D J 0 36
LOD AM10 36
SWP A J
ISTR J 0 33
COMM y := t
Loc 1
LOD J S 1 8352 36
LOD A M1 36 36
SWP AJ
ISTR J 0 38
OPTN TSYMLOC 0
COMM end;
Loc 1 26 0
COMM end of merged call to
L10 LAB
COMM 1= i+
Loc 50 0
Lo L
e L
ADD L
STR L S 1 8244 38
LOD L S 1 8244 36
Js1
JL
J

24 0

1
S 1 8244 38
36 1

LoD 8280 36
cvr2

LES

TIP L9
L11 LAB 0
L7 LAB 0

COMM . top := top - 1

Loc 1 62 0
LOD J S 1 8288 36
LoC L 38 1
VT J L
sus
STR J S 1 8280 38
LoD J S 1 8280 38
LoC L 36 1

VT J L

GRT J
TP L8

L12 LAB O

L4 LAB O

BU

NN N N N NN NN N SN SN NN NN SN SN NSNS S SNSSNSNSSSNSSSNSNNSNSSSSSSS

El. U-CoDE

Loc

LoD 9
LoD A
SWP A
ISTR J
COMM y :

Loc

LoD J
LOD A
SWP A
ISTR J
COMM en

24 0

Loc 1 2560

COMM --~--BB 11

L10 LAB 0

COMM i := i+l
Loc 1 60 0

LOD R 0 36 38

LDC 36 1

cvt Jd

ADD
STR
LoD
LoC
cvrt
ADD
STR
LoD
LDC
ADD
STR
LOD
cvr

R 0 36 38
R 0 144 36
361

J

[N

072 36

racaLr-rrrreE>» »r0>»>rP> 230>

9
COMM ----BB 12
/L11 LAB 0
/ COMM ----BB 13
/L7 LAB 0 }
COMM top := top - 1
Loc 1 52 0
RO 72 38

J
Jd
J
J
J
J
J

TP L6

COMM ----BB 14
/L12 LA 0
/ COMM ----BB 18
/L4 LAB 0

NNSSSNSNSNSSNS
%
-
=

161

El. U-CoDE

E2. DEC 10
Unoptimized DEC 10 Code-
1 == 4071 top := 70 MOVEI 1,70

MOVEM 1 ,BUBSDA+230

;== 42/1 while top > 1 do
CAIG 1,1
JRST $4

p11 :

$6 B

3 -~ 43/1 begin 1 := i;
MOVEI 1 ,1
MOVEM 1 ,BUBSDA+229

;- 44/1 while i < top do
CAML 1 ,BUBSDA+230

SRST 87
$8 :
$9 :
; -- 45/1 begin if 1ist{i] > 1ist[i+1] then
MOVEI 1 ,BUBSDA+86
ADD 1 ,BUBSDA+229
MOVE 2 ,BUBSDA+229
A0S 2,2
MOVE 3 ,0(1)
CAMG 3 ,BUBSDA+86(2)
JRST §10
;starting merge of call to BUBSO1
3 == 48/1 swap(1ist[i], Tist[i+1]);
MOVEI 4 ,BUBSDA+86
ADD 4 ,BUBSDA+229
MOVEM 4 ,2(FP)
MOVE 1 ,BUBSDA+229
A0S 1,1
icode start for BUBSO1
1 SWAP

MOVEI 2 ,BUBSDA+86(1)
MOVEM 2 ,3(FP)

3 == 2271 t 2 x3
MOVE 1 ,0(4)
MOVEM 1 ,BUBSDA+232

;== 2371 X = y3
MOVE 1 ,0(2)
MOVEM 1 ,0(4)

3 == 24/1 y = t;
MOVE 2 ,BUBSDA+232
MOVEM 2 ,3(FP)@

;end of merged call to BUBSO1
3 == 25/1 .
$10 :

3 == 50/1 1= §+1

A0S 0 ,BUBSDA+229
MOVE 1 ,BUBSDA+229
CAMGE 1 ,BUBSDA+230
JRST $9

$11

$7 :

: -= 52/1 top := top - 1
S0s 0 ,BUB$DA+230
MOVE 1 ,BUBSDA+230
CAILE 1 ,1
JRST $6

$12 '

$4 :

162

E2. DEC 10

Optimised DEC 10 Code

; == 40/1 top := 70
;s == 42/1 while top > 1 do
$5 :
MOVEI 7 ,70
$6 :
; -= 43/1 begin {1 := 1;
s == 44/1 while 1 < top do
CAIG 7 ,1
JRST §7
$8. H
MOVEI 6
MOVEI 6
MOVEI 9
$9 : .
.-- 46/ begin if Tist[1] > 1ist[1+1] then
_MOVE 8 ,0(6
MOVE 1 ,0(8
MOVE 10,0(9
CAMG 1 ,0(9
JRST 810
-- 46/1 swap(1ist{i], Vist[i+1]):
-- 22/1 t o= x3
MOVE 11,8
== 2371 X 1=y
MOVEM 10,0(6
s -= 2471 y =t
MOVEM 11,0(9
;== 25/1
s$10 : .
: -= 60/1 1= 441
MOVEI 6 ,1(6
MOVEI 9 ,1(9
AOS 0,5
CAMGE 5 ,7
JRST 89
$11 H
$7 : .
: == 52/1 top := top - 1
S0s 0,7
CAILE 7 ,1
JRST $8

1
,BUBSDA+86(5)
.BUBSDA+87(5)

- . e
~ o~ ~

~~

$12
$4

o o

E3. 68000

Unoptimized 68000 Code

| 40 top := 70:
mov1 #70,bubblesort$dat+1148
| 42 while top > 1 do
cmpl #1,bubblesortSdat+1148
jle $4

| 43 begin 1 := 1; .
mov1 #1,bubblesortSdat+1144
[44 while i < top do
mov1 bubblesort$dat+1144,d0
cmpl bubblesort$dat+1148,d0

163

|
$10

$12
$4:

45

46

22

23

24

26

50

E3. 68000

Jjge $7

begin if 1ist[i] > Tist{i+1] then

mov bubblesort$dat+1144,d0
asll #2,d0
mov1 #bubblesortSdat+572,a0
mov1 bubblesort$dat+1144,d1
addql #1,d1
asli #2,d1
mov1 #bubblesortSdat+572,al
mov1 a0e(0,do:L),do
cmpt 416(0,d1:L),d0
jle $10

swap(1ist[1], Tist[i+1]):
mov1 bubblesort$dat+1144,d1
asll #2,d1
add? di.a0
movi a0,a6@(-4)
mov1 bubblesort$dat+1144,d0
addql #1,d0
asl? #2,d0
add1 d0,al .
mov1 al,a6@(-8)

mov1 a68(-4),a0 :
mov1 a0@,bubblesort$dat+1156

mov1 a6@(-8),a1
mov 1 al9,a00

. movl a6@(-8),a0
mov1 bubblesort$dat+1156,a0@

i = i1
addql #1,bubblesortSdat+1144
mov1 bubblesort$dat+il44,d0
cmpl bubbiesort$dat+1148,d0
i1t $9

top := top - 1

subql #1,bubblesortSdat+1148
cmpl #1,bubblesortSdat+1148
Jgt $6

Optimized 68000 Code

top := 70:
while top > 1 do

moveq #70,d4
begin { := 1;
while i < top do
cmpl #1,d4
jle 87
moveq #1.45
mov1 43,40

164

E3. 68000

asll #2,d0

mov1 #bubblesortSdat+672,a0
Tea a00(0,do0:L),a4

movl d3,d1

asll #2,d1

mov1 #bubblesort$dat+576,al
lea a10(0,d1:L),a6

$9:
| 45 begin if 1ist[i] > 1ist[i+1] then
mov1 24@,ds
mov1 a5@,dé
cmpl d6,d5
jle $10
| 48 swap(1ist[1], Vist{i+1]):
| 22
mov1 dé,d7 .
|- 23
. mov1 d6,a4@
| 24
mov1 d7,as8
| 28
$1a0:
| 50 1o iel
addql #4, 24
addql #4,ab
addql #1,d3
“cmpl d4,d3
Jit $9
$11:
$7: .

| 682 top := top -1
subql #1,d4

cmpl #1,d4
gt $6
$12:
$4:
E4. VAX

Unoptimized VAX Code

-- 40/1 top := 70;
mov1 $70,bubblesort_dat+1148
-- 42/1 while top > 1 do
cmpl bubblesort_dat+1148,$1
Jleq

-- 43/1 begin 1 := 1;
movl $1,bubblesort_dat+1144
-- 44/1 while i < top do
mov] bubblesort_dat+1144,r10
cmpl r10,bubblesort_dat+1148
jgeq _7 ‘

-- 45/1 begin if 1ist[1] > Vist[i+1] then
add13 bubblesort_dat+1144,bubblesort_dat+1144,r10
add12 r10,r10
3dd12 Sbubblesori_dat+572,r10
add13 $1,bubblesort_cat+1144,r
1dd12 r9 ,r9 :

165

E4. VAX

add12 r9 ,r9

add12 Sbubblesort_dat+572,r9
movl 0(r10),r8

movl 0(r9),r7

cmpl r8 ,r?7

jleg _10
#starting merge of call to BUBBLESORTS01
¥ -~ 46/1 swap(list{i], Vist[i+1]):

add13 bubblesort_dat+1144 bubblesort_dat+1144,r6
add12 r6 ,r6
add12 Sbubblesort_dat+572,r6
movl r6 ,-4(fp)
add13 $1,budbblesort_dat+1144,r5
add12 r6 .6
addi2 r5 ,r§
add12 $bubblesort_dat+572,r5
#code start for BUBBLESORTS01
#SWAP
movl rb ,-8(fp)
-- 22/1
movl *-4(fp),bubblesort_dat+1166
-- 23/1
movi *-8(fp).*-4(fp)
-~ 24/1
mov1 bubblesort_dat+1156,*-8(fp)
#end of merged call to BUBBLESORTS01
-- 25/1
-10:
-- 50/1 1 s i+
incl bubblesort_dat+1144
movl bubblesort_dat+1144,r10
cmpl r10,bubblesort_dat+1143
jiss _9
<11

w7

-~ 52/1 top := top - 1
decl bubblesort_dat+1148
cmpl bubblesort_dat+1148,81
jgtr _6

J12:

I H

Optimized VAX Code

-- 40/1 top := 70;
== 42/1 while top > 1 do
- H
movl $70,r7
:-H
-- 43/1 begin i := 1;
-- 44/1 while 1 < top do
cmpl $1,r7
jgeq 7
8:
movl §1,r8
add13 r5 ,r65 ,r4
add12 r4 ,rd
addi2 S$bubblesort_dat+572,r4
mov1 r4 ,r8
addi3d r65 ,rb ,r3
add12 r3 ,r3 .
add12 $bubblesort_dat+576,r3
movl r3 ,r9

166

E4. VAX

-9
-- 45/1 begin if 1ist{i] > 1ist[i+1] then
movl 0(r8),r8
movl 0(r9),r10
movl 0(r6),r4
mov1 0(r9).r3
cmpl r4 ,r3
jleq .10
-- 46/1 swap(1ist[1], 1ist{i+1]):
-- 22/1 :
movl r8 ,rii
-- 23/1
movl r10,0(r6)
-= 24/1
movl r11,0(r9)
-- 26/1
~10: # -- 50/1 AREL IR L2 I
addi2 $4,r8
addi2 $4,r9
incl r8
movl r§ ,ré4
cmpl r4 ,rl
jiss 9
~11:
. H
-- 52/1 top := top - 1
decl 7
cmpl r? ,$1
jotr 8
~12:
. H

- = & wx

E5. MIPS

Note that the MIPS code generator incorporates the local optimization portion of UOPT,
so that local optimization is always performed.

Unoptimized MIPS Code

-~ 40/1 top := 70;
-- 42/1 while top > 1 do
mov #70,r1
st r1,FPinit+(~4)
LBUBBS:
LBUBBS:
-~ 43/1 begin 1 := 1;
mov #1,r1
st r1,FPinit+(-5)
-~ 44/1 while 1 < top do
1d FPinit+(-4),r2
bge #1,r2,LBUBB7
LBUBBS:
LBUBBY:
-- 46/1 begin if 1istf1] > Tist[i+1] then
1d #FPinit-147,r1
1d FPinit+(-5),r2
1d [r1+r2],r3
1d #FPinit-148,r4
1d [r4+r2],r5
ble r5,r3,LBUBB10
-- 46/1 swap(1ist[1], Vist[i+1]):

167

E5. MIPS

add r4,r2,r6

st r6,-306[r16]
add r1,r2

st r2,-305[r15]
st r5,FPinit+(-2)
st r3,0[r6]

st r5,0[r2]

LBUBB10:

-- 50/1 1= i#1
1d FPinit+(-5),r1
add #1,r1

st r1,FPinit+(-5)
1d FPinit+(-4),r2
bit r1,r2,LBUSR0
LBUBB11:
LBUBB7: .
-- 52/1 top := top - 1
14 FPinit+(-4),r1
sub #1,r1
st r1,FPinit+(-4)
b1t #1,r1,.LBUBBS
LBUBB12:
LBUBB4:

Optimized MIPS Code

-- 40/1 top := 70;
-= 42/1 while top > 1 do -

LBUBBS:
mov #70,r12
LBUBBSG:
== 43/1 begin 1 := 1;

-~ 44/1 while 1 < top do
bge #1,r12,LBUBB7
L8usBa8:
mov #1,ri4
1d #FPinit-148,r1
add r1,r14,r13
1d #FPinit-147,r2
add r2,r14,r10
LBUBBY: . :
-- 45/1 begin if 1ist[i] > 1ist[i+1] then
1d 0{r13],r11
14 ofr10],r9
ble r11,r9,LB8UBB10
-- 46/1 swap(1ist[i], 1ist[i+1]);
mov ri1,r8
st r9,0[r13]
st r8,0[r10]
LBUBB10:
-~ 50/1 1= i+l
add #1,r13
add #1,r10
add #1,r14 :
bit ri14,r12,LBUBBO
LBUBB11:
LBUBB7:
-~ 52/1 top := top -~ 1
sub #1,r12 ’
b1t #1,r12,LBUBBG
LBUBB12: ’ : :
LBUBB4:

168

E6. FOM

Unoptimized FOM Code

.

-=- 40/1 top := 70;

kaa, 0, $C70, TOP

-- 42/1 while top > 1 do

GtI
IfLF
Nop
Nop
Label
Label
-- 43/1
AddI
-~ 44/1
LtI
IfLF
Nop
Nop
Label
Label
-- 45/1
AddI
Addl
Loadl
AddI
AddI
Add1
LoadI
- GtI
-- 46/1
Nop

Nop

Add1
Add1
AddI
AddI
Add1
Add1
AddI
LoadI
Addl
AddI
AddI
Stol
Label
-=- 50/1
AddI
AddI
LtI
IfLY
Nop
Nop
Label
Label
-- 52/1

Subl
Addl
GtI
IfLTY
Nop
Nop

whi

top

aka, TOP, 1, $T6
aa., $76, LS4

LS5

LS8

egin i := 1;
kka, 0, 1, I

le 1 < top do
aaa, I, TOP, $T7
aa., $T7, L$?

L$8

LS9 .

begin if 1ist[i] > 1ist(1+1] then

kas, -1, LIST,

sas, , I,

sk., , 0

kaa, -1, LIST, $T9

aka, I, 1, $T10

aaa, $T9, $T10, $T9

ak., $7T9, 0

qqa, Load IfLF aa., $T11, LS10
swap(1ist[i], 1ist[i+1]):

kas, -1, LIST,

sas, , I,

ksa, 0, , T$1

kas, -1, LIST,

aka, I, 1, $T14

sas, , $T14,

ksa, 0, , T$2

ak., 7$1, ¢

kqa, 0, Load LoadI ak., T7$2, 0
kqa, 0, Load Stol ak., 781, 0
kaa, 0, T, T

ak., T$2, 0

1 = i+
aks, I, 1,
ksa, 0, , I
aaa, I, TOP, $T17
aa., $T17, LS9

L3111

LS$7

:= top - 1

aks, TOP, 1,

ksa, 0, , TOP
aka, TOP, 1, $T19

" aa., $T19, L$8

169

Label
Label

E6. FOM

Ls12
L34

Optimized FOM Code

-= 40/1 top := 70:
-~ 42/1 while top > 1 do

. ve

e or

Label
AddI
Label
-= 43/1
-= 44/1
LtI
IfLF
Nop
Nop
Label
AddI
AddI
AddI
AddI
Add1
Addl
Label
-- 46/1
LoadI
Add1
AddI
IfLF
-= 46/1
Nop
Nop
AddI
AddI
Stol
Addl
Stol
Label
-~ 60/1
AddI
AddI
Add1
AddI
AddI
AddI
LtI
IfLT
Nop
Nop
Label
Label
-- 52/1
Subl
AddI
GtI
IfLT
Nop
Nop
Label
Label

b
whi

top

LSS

kaa, 0, $C70, TOP . .
L$6

egin 1 := 1;

1e 1 < top do

kaa, 1, TOP, $T5

aa., $T5, LS$?7

LS8

kka, 0, 1, I
kas, -1, LIST,
sas, ., I,

ksa, 0, , T$1
aas, LIST, I,
ksa, 0, , T$3

LS9

begin if 1ist[i] > 1ist[i+i] then

ak., T$1, 0

kga, 0, Load LoadI ak., T$3, 0

kqa, 0, Load GtI aaa, T$2, T34, $T8

aa., $T8, LS10
swap(list{1], Vist[i+1]);

kaa, 0, T$2, T
kaa, 0, TS4, TS4
ak., TS1, 0
kaa, 0, T, T
ak., T$3, 0
L$10

1= 441
aks, 181, 1,
ksa, 0, , T$1
aks, T$3, 1,
ksa, 0, . T$3
aks, I. 1,
ksa, 0, , I
aaa, I, TOP, $T12
aa., $T12, L$9

L$11

LS?

= top - 1

aks, TOP, 1,

ksa, 0, , TOP
aka, TOP, 1, $T14
aa., $T14, LS$6

L$12
LS4

170

E7. S-1

1i6. FOM

Unoptimized S-1 Code

s == 40/1
Mov.S.S

s = 42/1
Skp.Gtr.S
SJmp

$5:

$6:

s == 4371
Mov.S.S

;== 44/1
Skp.Lss.S
SJmp

$8:

$9:

s == 45/1
Shfa.Lf.S
Inc.s
Skp.Gtr.S
SJmp

: == 46/1
Shfa.Lf.S
Movp,.P.A
Inc.s
Movp.P.A

i == 22/1

Mov.S.S

- 23/1

Mov.S.S

-- 24/1

Mov.S.S

;== 26/1

$10:

s == 50/1
Inc.s
Skp.Geq.S
SJdmp

$11:

$7:

;== 52/1
Dec.s
Skp.Leq.S
Sdmp

$12:

$4:

top := 70;

BUBBLSDA+872,#70

while top > 1 do

BUBBLSDA+872,#1
$4

begin {1 := 1;
BUBBLSDA+868,#1
while i < top do
BUBBLSDA+868 ,BUBBLSDA+872
$7 ! :

begin if 1ist(i] > 1ist[i+1] then
RTA,BUBBLSDA+868 , #2
RTB,BUBBLSDA+868
BUBBLSDA+296[RTA],BUBBLSDA+296[RTB]*2
$10

swap(1ist(i], 1ist[i+1]);
RTA,BUBBLSDA+868, #2
(FP)0,BUBBLSDA+296(RTA]
RTA,BUBBLSDA+868
(FP)4,BUBBLSDA+296[RTA]*2

BUBBLSDA+880,{FP)08
(FP)0@,(FP)48

(FP)4@,BUBBLSDA+880

EEEBRL S
BUBBL$DA+868 ,BUBBLSDA+868
BUBBLSDA+868,BUBBLSDA+872
$9

top := top - 1
BUBBLSDA+872,BUBBLSDA+872
BUBBLSDA+872,#1
$6

Optimized S-1 Code

-~ 40/1

Mov.S.S
i- 431

-= 44/1
Skp.Lss.S
SJmp

$5
s6

$8:
Mov.S.S
Movp.P.A

top := 70;
s == 42/1 while top > 1 do

R24,#70 -

begin {1 := 1;
while 1 < top do

#1,R24

$7 '

R22,#1 ’ -t
R23,BUBBL$DA+296[R22]12

171

Movp.P.A

$9:

3 == 4571
Mov.S.S
Mov.S.S
Mov.S.S
Skp.Gtr.S
SJmp
~-= 4871

-- 22/1
Mov.S.S
3 o== 2371

Mov.S.S

;== 24/1
Mov.S.S

i == 25/1

$10:

s == 50/1
Mov.S.S
Movp.P.A
Movp.P.A
Inc.s
Skp.Geq.S
SJmp

$11:

$7:

; == §2/1
Dec.s
Skp.Leqg.S
SJdmp

$12:

$4:

E7. 8-1

R26,BUBBLSDA+300[R22]+2,

begin if 1ist[i] » Vist[i+1] then
R25, (R23)0
RTA, (R23)0
R27,(R26)0
RTA, (R26)0
$10
swap(1ist[i], Vist[i+1]);

R28,R25
(R23)0,R27

(R26)0,R28

i 41
RTA, (R26)0
R23, (R23)0[RTA]
R26, (R23)0[R26]
R22 ,R22
R22,R24
39

top := top - 1

R24,R24
R24,#
$6

172

