
A Portable Machine-Independent Global Optimizer -

Design and Measurements

A DISSERTATION

SUBMlTTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by

Frederick C. Chow

December 1983

© Copyright 1984

bf

1\'ederick c. Chow

ii

I certify that I have read this thesis and that in my opinion it is

fully adequate, in scope and quality, 88 a dissertation for the degree

of Doctor of Philosophy.

,. ID''*'E"- (Principal Adviser) If

I certify that I have read this thesis and that in my opinion it is

fully adequate, in scope and quality, 88 a dissertation for the degree

of Doctor of Philosophy.

-.,. iMedicine &b~m'i>irter scien~e)

I certify that .I have read this thesis and that in my opinion it is

fully adequate, in scope and quality, as a dissertation for the degree

of Doctor of Philosophy.

I certify that I have read this thesis and that in my opinion it is

fully adequate, in scope and quality, 88 a dissertation for the degree

of Doctor of Philosophy.

Approved for the University Committee on Graduate Studies:

Dean ~f G~~ate Studies & R~s~~rch

ill

Abstract

This dissertation addresses the topic of portable and machine-independent program opti­

mization on a standard, well-defined intermediate code. The feasibility, advantages and problems

of this approach of implementing an optimizer are discussed. We also look into issues on the

design of the intermediate code, and the features in the intermediate code needed to support

machine-independent optimization.

A number of new techniques in program optimization are developed. A concise and more

generalized method for performing copy propagation, and a new method to perform redundant

store elimination are introduced. The partial redundancy algorithm is formulated and general­

ized to strength reduction, thus enabling common subexpression elirrination, code motion and

strength reduction to be performed at the same time. The concept of partial redundancy in

stores is derived from partial redundancy in expressions and applied in performing forward code

motion. Using these techniques, it is possible to integrate previously separate transformations

into common processes and have them performed together. As a result, it is possible to do all

common global optimizations in a small number of passes. This approach can also substan­

tially reduce the implementat~on complexities and running time of optimizers in general, with .

no sacrifice in the optimizations performed.

A register allocation algorithm based on the coloring algorithm and suitable for use in the

machine-independent context is introduced. The algorithm performs well independent of the

number of registers available. A parameterization of register allocation cost and saving enables

us to cater to the characteristics of different mach,ines.

An implementation of the above optimization teclmiques in the machine-independent opti·

mizer UOPT is presented. We look into the interactions between the different typ~s of optimiza­

tions, and how the phase structures can he organized to take these interactions into account.

The optimization performance, efficiency and the relative importance among the different types

of optimization transformations are studied according to timing measurements, optimization

statistics and by variation in optimization parameters.

Finally, the effectiveness of portable machine-independent optimization on a number of

target machines that support the intermediate code is discussed, based on optimization per­

formance data in the different machines and comparisons of machine characteristics. Intuitive

ways to predict the effectiveness of some types of optimizations with respect to specific architec­

tural features are furnished. The overall evaluation confirms the advantages of using portable,

machine-independent optimization in a retargetable compiler system.

iv

This theaia was submitted to the Department of Electrical Engineering and the Committee

on Graduate Studies of Stanford University in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

This diaaertation repreaenb part oj the programming language and compiler developmimt

work at Stanford University for the S-1 computer, under Contract No. !J!J19801 from the Law·

rence Livermore National Laboratory. The development of the S -1 computer is funded by the

Office of Naval Research of the U. S. Navy and the Department of Energy.

v

To mv parenta

vi

Preface

The subject of program optimization has been dealt with in many text-books on compiler

construction as one aspect of the compilation process. It has seldom been treated in an iso­

lated manner, separate from the influences of other parts of the compiler and as a coherent,

self-contained piece .of software. The development of the UOPT optimizer has provided the

opportunity to address optimization in such a setting. This thesis focuses on the subject of

machine-independent optimization in depth. Following a brief look into the design issues of

the intermediate co<le, a complete range of optimization techniques are covered in detail, from

algorithms to practical aspects of implementation. The integration of the various kinds of op­

timizations into a practical production optimizer is also addressed. The optimization topics

covered are concluded with a performance evaluation of the actual optimization results.

I first started on this work about three and a half years ago,. when Gio Wiederhold and

John Hennessy first suggested to me the possibility of building a local optimizer on U-Code.

Later on, John Hennessy continued to guide me along in developing and implementing the global

optimizer UOPT. Before this, I have never thought that the com:nlete task of implementing a

global optimizer can be handl~ by a single person. UOPT has set a precedent by showing that

this is indeed possible.

I am very indebted to John Hennessy, for his excellent and continuous guidence; and to Gio

Wiederhold and Forest Baskett, for the advice they have given me on numerous occasions. A

number of people have affected the outcome of this work, and I have benefited from interacting

with them. I wish to thank Peter Nye, who co-~rdinated and standardized the software and

documentation of the U-Code environment at Stanford, and also implemented the DEC 10 ·code

generator; David Schnepper, who wrote the procedure integ~.itor Pmerge; Per Bothner, who

brought up the 68000 code generator; Gregory Doyd and Steve Tjiang, who did the VAX code

generator; Chris RoWCJl, who implemented the MIPS code generator; Mahadevan Ganapathi

and Vivek Sarkar, who built the FOM code generator; and Wes Witte, who implemented the S-

1 code generator. I appreciate the companionships of Kyu-Young Whang and Edwin Pednault,

who shared my office during these years. This research has been supported by the S-1 project,

and my thanks also extend to all members of the S-1 project staff ~t Stanford and the Lawrence

Livermore Laboratory.

Above all, I am grateful to my father and mothE:t, for the care and support they have given

me all through the years. I dedicate this thesis to them.

vii

Contents

1 Introduction ..
1.1 Related Work

1.2 Background of This Work

1.3 Objectives and Contributions

1.4 Optimizations Performed

1.5 Organization of This Thesis

2 The Intermediate Code •

2.1 Goals of Intermediate Languages

2.2 The Level 0£ the Intermediate Code

2.3 The Form of the Intermediate Code .

2.4 Other Requirements •

2.5 The Overall Compilation and Optimization Plan

2.6 The U-Code Intermediate Language

3 The Optimization Algorithms

3.1 Local Optimizations .

3.1.1

3.1.2

3.1.3

3.1.4

3.2

3.3

3.3.1

3.3.2

3.4

3.5

3.6

3.6.1

3.6.2

3.6.3

3.7

3.8

3.8.1

3.8.2

Value Numbering . .•

Local Copy Propagation · .

Stadt Height Reduction

Constant Arithmetic

Overview of Global Optimization Strategy

Boolean Attributes for Global Optimization .

Local Data Flow Attributes

Global Data Flow Attributes

Copy Propagation .

Redundant Store Elimination .

Code Motion •

The Partial Redundancy Suppression Algorithm

Implementation Notes .

Observations

Reduction of Operator Strength

Induction Variable Elimination

Lillear Function Test Replacement·

Finding and Eliminating Redundant. Induction Variabfos .

viii

1

3

6

8

10

11

13

13

14

15

19

20

22

25

25
26

27

28

30

32

34

34

37

39

41

44

45

51

53

54

58

59

61

3.9

3.10

3.10.1

3.10.2

3.11

CONTENTS

Optimization of Store Positions .

Global Optimization· of Saves .

Determination of Saved Computat!ons

Optimization of Saves by Flow Analysis

Summary

4 Register Allocation

4.1 Limitations ·

4.2 Assumptions and Overvie~

4.3 Cost and Saving Estimates .

4.4 Local Register Allocation ·

4.5 Control and Data Flow Analysis

4.6 Global Register Allocation by Priority-based Coloring

4. 7 Optimization of Register-Memory Moves .

4.8 Summary

5 Organization and Structure

5.1 The Optimization Phases

5.1.l Underlying Principles

5.1.2.

5.1.3

5.2

5.3

5.3.1

5.3.2

5.4

5.5

Relationships among the Phases

The Actual Optimization l?hases

Timings of the Optimizatfon Phases

Data Structures

Data Structures for Global Optimization

Data Structures for Register Allocation

Collection of Data Flow Information

Effects of Procedure Integration

6

6.1

6.1.1

Performance Evaluation .

6.1.2

6.2

6.2.l

6.2.2

6.2.3

6.3

6.4

Analysis of Optimization Performance

Analysis by Statistical Counts

Analysis by Partial Optimization

Elfects of Optimization Parameters

Number of Registers Available to the Optimizer

Changing the Register Moye-Cost

Effects of Bounds-Checking

CharactCl'ization of Machines .

Optimization Results in Different Machines

ix

62

65

66

68

68

70

70

72

73

75

77

79

84

87

88

88

89

91

96

98

99

99

100

. 102

106

• 108

108

. 109

113

. 117

117

. 118

120

. 122

123

CONTENTS

6.5 Effects of the Optimizations on Machine Code

6.6 Rclatio!l to Machine Characteristics

6.7 Additional Remarks •

'1 Conclusion

7.1 Conclu1''·•6 Overviews

7.2 Suggestion~ for Further Wol'.k

References .

Appendix A: Short Guide to U-Code

Appendix B: Notes on programming Data Flow Analysis .

Appendix C: Hints on Writing Programs that Cater to Optimization

Appendix D: What the Compiler Front-ends Should Do

Dl Pascal Front-end .

D2 Fortran Front-end .

AJ>pendix E: Examples of Optimized Machine Code

El U-Code

E2 DEC 10

E3 68000

E4 VAX

E5 MIPS
E6 FOM

E7 S-1

x

. 125

133

. 134

136

. 136

137

. 139

145

• 153
155

. 157

157
. 158

159

. 159

162 .
. 163.

165

. 167

169
. 171

1. Introduction

Lowering software cost has been one of the main concerns among •:omputer professionals

ever since the use of computers. In t.he software world, compilers have been among the most

important and prevalent pieces of software. In the la.qt decade: newly emerging machine ar·

chitectures, coupled with the need to support the growing number of programming languages,

have made it increasing important to systematize and automate the construction of compilers

for the purpose of shortening new compiler development time and reducing the cost of construe·

tion and maintenance. The conventional approach to compiler construction has been to build

a separate compiler for each programming language and machine combination. This results in

language and machine dependencies being spread throughout the compilers. Algorithms and

code structures that are common to the compilers are duplicated in each implementation. For

a given programming language, the individually-developed compilers often create incompatibil­

ities across different machines. For a given machine architecture, the different programming·

languages supported may not be able to reflect uniform hardware characteristics due to the

completely separate compiler implementations.

Much of the work on portable compilers has involved the use of intermediate code. Using

a standard intermediate representation for a programming language enhances the portability of

the lnngn~ge. This n!so makes po>aible the division of compilers into front-ends for lexical and

syntactical analysis and back-ends for code generation. An intermediate language can be made to

act as the common interface between the language-dependent front-ends and machine-dependent

back-ends of a compiling system. By using a single intermediate form, (p x m) compilers can be

replaced by p front-ends and m back-ends. This also helps ensure the machine-independence of

the source languages and language-independence of the code generators [Stee61].

With the use of intermediate code, compiler automation can be applied to the front-ends

and back-ends separately. Research into automating the process of parsing program text into

intermediate representations has resulted in the successful construction of parser generators that

are now in common use. Using these translator writing systems, it is sufficient to specify the

grammar of the source language. The syntax analyzers construct tables from syntax descriptions

and use the tables to drive program analysis. Recently, attention has been turned towards

automating the code-generating back-ends, and retargetable code generation has become an

increasingly important area [Grah80J [Gana82]. Using modular approaches to code synthesis,

these code portable generators are parameterized with respect to machine descriptions. By

giving them different sets of machine parameters, the code generators can be adapted and

retargeted to produce code for different new machines.

1

1. INTRODUCTION

Intermediate

Code.

Code

Generator 1

Code

Generatorm

Fig. 1.1 Use of intermediate code in a compiling system

When a common intermediate form is used, there exists the opportunity to construct pro­

gram optimizers that use the intermediate form as their input and output languages. Optimiza..

tions can be divided into machine-independent optimizations and machine-dependent optimiaa­

tions. Since machine-dependent optimizations take Cull account of the instructions and hardware

features of the underlying machines, they are usually performed by code generators, and the

transformations are mostly colifined to lOcal regions of the program code. Mai:hine-independent ·

optimizations, if performed independent of the code generators, can be made ll.vailable for all

target machines. By doing machine-independent optimizations on the intermediate code, the

optimizations can be made independent of the source languages as well, at least to the extent

that the intermediate code is language-independent. Intermediate forms o~ program code have

often been used for optimization purp08CS in clusical monolithic compilers (Aho77). In sp~te of

this, conventional optimizers depend a great deal on other parts of the compilers and are not

capable of independent existence, even if the optimizations performed arc independent of the

target machines.

In this thesis, a self-contained global optimi&er on a machine-independent intermediate

language is presented. Compiler front.ends translate source programming languages to this

intermediate language; called U·Code. The optimizer inputs tbe intermediate program code,

performs· machine-independent optimizntions and outputs an optimized version of the program

in the same intermediate language. The code-generating back ends will tranSlate the inter­

mediate code to target machine code. The result is a portable compiler module performing

machine-independent optimizations. By existing independently of any front-end and back-end,

its applicability across multiple machines and source languages is guaranteed. Apart from

widening its usages, this approach also elhninl}tes the needs of tbe front-ends and back-ends to

attempt optimizations that have bccn .pcrformecl by tbP. optimi,;er, enabling them to spccialie

2

1. [NTRODUCTION

and concentrate on their forms of proc!;l!sing. This contributes to modularity and clarity of

interface among the various components of the compiler system. Fundamentally, this approach

also makes code optimization an easily affordable and av:ailable facility in program translation

environments that use the same intermediate code.

1.1. Related Work

The importance of code optimization has bt.'CD recognized since the days of the first Fortran

compilers. The loss of object code efficiency has been inherent to high-level language program­

ming. Most programming language compilers do some forms of code optimization, although the

exten~:; t::: ·.•rhich they perform optimization dift'er widely. They usually incorporate their own

sets of well-defined, limited transformations to improve running times for most executions. The

term optimizing compil11r11 refers to compilers that perform more substantial code optimization

in the compilation process. ·1n recent years, Ill! the use of compiler-compilers gradually becomes

entrenched and retargetable code generation begins to gain wide acceptance, the need to apply

the same idea of retargetability in the construction of optimizers is recognized. In this section,

we survey optimization-related works which display the built-in capability of being transportable

and machine-independent.

The Production-Quality Compiler-Compiler (PQCC) Project [Leve79j at Camagie-Mellon

University has as its goal the buildllig of a truly automatic compiler-writing system. PQCC ex­

tends compiler-compiler techniques in parser generation to include the production of optimizers

and code generators. The system operate~ from descriptions of both the source languages and

the target computers. Tables arc generated from the language and machine descriptions and

used to guide the operation of the skeleton compiler. Both machine-indepentlent and machine­

dependent optimizations are performed. In the cc.se of machine-dependent optimizations, at­

tempts were made to parameterize optimization techniques so that they can be moved from one

target machine to another by changing only the set of tables describing the machines. The com­

piler is divided into a number of phases which operate serially. This allows the decomposition

of the PQCC into manageable portions. The different phases do not rely on each other for their

operations, and can run in stand-alone modes. A uniform intermediate representation is used

as input and output for the machine-independent phases. Machine-independent optimir.ations

performed are code motion and elimination of redundant computations and various local opti·

mizations. Register allocation, code selection, peephole optimizations and other optimizations

requiring detailed knowledge of the instructions are performed on a linear form of code that

retains only minimal target machine independence in the final phases.

The PL.8 compiler project of IDM (Ausl82] accepts multiple source 11U1guagcs 1U1d produces

3

1.1. RELATED WORK

high quality object code for several different machh1es. It divides the compilation process into

translation, optimization, regiilter allocation and final assembly. Optimization is further parti­

tioned into as many independent operations as possible to make them reli~ble and easy to imple­

ment. Each optimization is repetitively performed because one may provide new opportunities

(or another. A low level intermediate language is used whose semantics matches the computa­

tional semantics· of the limited set of target machines, and whose level is low enough to expose

all instructions that will be executed on the target machines. Global optimization and register

allocation are performed on this code, and further optimization on the machine-code level for in­

dividual machines is unnecessary. The intermediate l.mguage is partly machine-dependent, and

is at a lower level than some of the target CPU's. The compilation and optimization methods

are biased towards machines with regular and simple register-register architectures.

The Experimental Compiling System (ECS), also undertaken at IBM (Alle80j, uses a new

compiler construction methodology (Harr76) in which compilers for a variety of source languages

and target machines can be developed. Language semantics is specified by writing defining pro-·

cedures which take the place of code generators and code macros. Programs together with the

defining procedures are expressed by a single program schema, called IL, which can represent

programs ai; different levels cf semantics in the compilation and optimization processes. As a

result, an optimizer can be constructed which deals with several levels of expansion of a pro­

gram: Higli-level code is expanded to low~level code via procedure integration, . and analysis

and optimization are then used to. tailor code to its particular context. The system permits

varying degrees of optimization by repeated application of procedure integration and an exten­

sive collection of machine-independent optimizations. A primitive language version of the IL is

produced which reftects the operations of the target machine. A final machine tailoring phase

generates the target machine code.

The Universal Compiling System (UCS) (Gyll79j at Sperry Corp. is a unified compiling

system for a set of languages and architectures. Thro11gh the use of an intermediate text and

symbol table, source langliage dependent processes are separated from architecture dependent

processes. A common global optimizer is used between the front-ends and back-ends.

The MUG2 compiler generating system at the Technical Uiliversity of Munich (Wilh81j is

an effort to produce optimizing compilers from language and machine descriptions. Description

tools and generators for multi-pass semantic analysis, code optiinization and code generation

are offered. The description tools can completely describe optimization passes like global data

analysis, constant propagation and foldhig and in~ariant code motion from while loops.

The Amsterdam Compiler Kit (ACK) (Tane83J is a compiler-building system that consists of

a number of parts that can be combined to form compilers with various properties. The tool kit

4

1.1. RELATKD WORK

consists of eight components: th.i preprocessor, separate front-ends, the peephole optimizer, the

global optimizer,, the back-end, the target machine optimizer, the universal assember/linker and

the utility package. The front-ends output an intermediate code, which is the machine language

for a simple stack machine called· EM. The peephole optimizer and the global optimizer perform

machine-independent optimizations on this intermediate code. The peephole optimizer [Tane82)

is driven by a pattern/replacement table that specifies how specific patterns of instruction

sequences within a Window can be replaced by I!lore efficient ones This optimization process

involves only pattern matching and substitutions. The global optimizer examines the program as

a whole and performs more extensive transformations. The back-end target machine optimizer

and universal assembler/linker are driven by machine-dependent driving tables, which tell how

the EM code is mapped onto the target machine's assembly language. The target machine

optimizer performs optimizations involving idiosyncracies of the target machine that cannot be

included in the EM-to-EM optimizers.

The target-independent optimizers described above have been developed as built-in compo­

nents of large, comprehensive compiler-generating systems, and they can only operate in their

specific program translation environments. There are other target-independent optimizers which

exist in more distinct fashions.from the front-ends and back-ends and whose modes of operation ·.

are more independent. The types of optimizations they perform are more limited in scope.

In [Frai79), a source- and target-independent code optimizer is described which uses an

intermediate language in the form ot N-tuples. The optimizer performs only local expression

optimization and common subexpression elimination. The principal role. of the optimizer is

in gathering information about operand usages in' a target-independent manner which enables

the target-dependent code generator to fold constants, avoid redundant loads and stores, and

perform more efficient register allocation.

A retargetable peephole optimizer, PO, is presented in [Davi80] wh.ich p~forn111 po.>ephole

optimization on object code. Given an assembly language program and a symbolic machine de­

scription, PO simulates pairs of adjacent instructions and, wherever possible, replaces them with

an equivalent single instruction. It can be easily retargetcd by changing maclline descriptions.

It can serve to supplement machine-dependent optimizations performed by the code gmerators

which can be locally optimal but may be suboptimal when juxtaposed. This results in a further

division of labor in the code generation phase which can simplify the code generator.

OPTIMA (Wilk83) is another portable optimizer on an intermediate code - the Pascal

PCODE. It outputs QCODE, which is a portable code for a machine that retains the stack

configuration but fa generali:i:ed to exhibit mcmpry areas and a parametcri7.Pd number of g1>ncral­

purpose and floating-point registers. OPTIMA performs only loc:al optimizations. The first

5

1.1. RELATED WORK

stage transforms PCODE by the pcephqle optimization method which is also table-driven. The

output is saved in a doubly-linked list of tuples which represents the PCODE in triple forms and

includes other information needed for later optimization !'lld code generation. The second stage

operates on the tuples generated to perform optimizations in array element offset computa~ion

and eliminate locally redundant operations. The third stage performs register allocation and

generates the output QCODE. The second and third stages use machine descriptions in their

procesiring. The output QCODE is translated into assembly code of target machines by macro

expansiollll.

The portable C compiler [John78) also contains a limited number of machine-independent

optimizations and some register-related optimizations that have to be adapted when porting to

new machines.

The UCSD Machine-independent P~al Code Optimization project (Site79] set out to build

an optimizer that performs optimization on standard Pascal P-Code. In the process, they defined

the Universal P-Code (U-Code) which is designed specifically to include enough information

for optimization purposes. Though ideas were presented for implementing the optimizer, the

implementation was never completed, but portions of the results do demonstrate the feasibility

and practicality of optimization on U-Code. The intermediate language used by the global

optimizer presented in this thesis is based on the U-Code as originally defined by the UCSD

group.

1.2. Background of This Work

This thesis research was undertaken as part of _the Stanford U-Code Compiling System.

This system was originated as the software project to develop programming language support

for the Stanford-! (S-1) multiprocessor architecture being developed at the Lawrence Livermore

Laboratory [Hail79) [Livi83). The project involves the support of standard Pascal and the writing

of a Fortran compiler that implements the Fortran66 Standard [Chow80]; Jn the process, the

Pascal P-Code was adopted as the. intermediate code common to both Pascal and Fortran, and

a common code generator was written that translates P-Code to S-1 machine code.

Later, the UCSD Machine-independent Pascal Code Optimization project was undertaken.

The S-1 was then intended as one of the beneficiaries of the optimizer that was to be built.

As the UCSD group went on to define the U-Code language to be used as the medium of their

'optimizer, the Stanford S-1 project began to adopt U-Code as the intermediate code. The

UCSD optimization project was not able to reach completion [Sitc79bJ. As a result, .the author

of this thesis undertook the independent project to build an intermediate code global optimizer

6

1.2. BACKGROUND OF Tills WORK

at Stanford. The content of this thesis, together with the production optimfacr UOPT, represent

the bulk of this work.

In the meantime, the U-Code Compiling System at Stanford began to enlarge in scope. The

Pascal front-end was extended to Pascal* which expands the features supported and enlarges

its capability [Henn82b]. The Fortran Compiler was extended to support Fortran77. A front­

end that translates a subset of C to U-Code was also implemented. A procedure integrator

for U-Code was implemented separately; when invoked as a pre-pass for UOPT, the procedure

integrator can allow the intra-procedural optimizations of UOPT to extend beyond the procedure

boundar.es of the original programs. The Stanford Retargetable Code-Generation Project was

started. The goal of this project is to build a code generator using a code generation skeleton

and scheme such that the code generator can be ported to a different machine by just rewriting

a small portion of the code. To take advantage of retargetable code generation, the S-1 code

generator was rewritten using the retargeting methodology. Code generators for the DEC 10

and VAX, the host computers where most of the compilers were constructed, have also been

written for testing and demonstration purposes, and will eventually be adopted as the resident

compilers. As part of the Stanford University Network (SUN) project, aMC68000 code generator

was also written for the SUN Work Station. A code generator is being developed for the MIPS

Micrqprocessor Project at Stanford [Henn82c] [Henn83]. A code generator for the Fortran

Optimized Machine {FOM), an experi~ental architectural project at IBM [Bran82], is also

being undertaken at Stanford [Gana80]. An accompanying product of this latter project is. a

code generator for the IBM 370. The MIPS, FOM and 370 code generators are not related to

the retargetable code generator project, although they use U-Code as the input intermediate

code.

The U-Code compiling system at Stanford [Nye83] is a portable and retargetable compiler

project which has goals similar to those of the various projects surveyed in Section 1.1. What

distinguishes this project from others is that the U-Code intermediate language together with

its related software facilities are the ·only connecting links among the various components of the

system. We do not attempt a large system that is so integrated that the various components

could not work independently when taken out of the system, and so extensive that the whole

system is hard to install, maintain and modify. Instead, the different components of the sys­

tem are separately implemented, the only requirement being that they conform to the U-Code

standard. The separation also means that modules of the system can be optionally run on

any given compilation. Since U-Code is a well-defined and popular intermediate language, it is

only necessary for a new inbtallation to u~e the same U-Code in order to be able to make use

of the different software provided in the compiling system. Thus, the restrictions impo~t.'I.! by

7

1.2. JlACKGROUND OF THIS WORK

the different components of the compiling system are minimal. New front-ends, back-ends or

middle-ends can ,be freely and independently implemented whenever the needs arise. The whole

system is simple and modular. We think that this approach can result in a greater degree of

acceptance of our software by outside sources, and may also lead to eventual popularization and

standardization of a single intermediate code in program compilation.

1.3. Objectives and Contributions

This dissertation deals with the design of a machine-independent optimizer. While the

optimization output of the optimizer is machine-independent, the optimizer is also portable

in that it is operational under a wide range of dissimilar compilation and operating system

environments. The portability attribute dictates that the optimizer must be able to operate in

a stand-alone mode, lndcpendent of the rront-ends and back-ends. Mor·wver, this self-contained

characteristic makes it unnecessary to recode the analysis and optim~ation parts of the optimizer

several times for the purpose of exhaustive optimizations. The optimization pass can be re-run

as many times as desired.

A key to the portability of the optimizer is the fact that it performs optimization on

an intermediate language and outputs the optimized code in the same intermediate language.

The presence of the optimizer as a middle pass in the compilation sequence should not have

substantial impact on the front-ends for them to specifically accommodate its presence. The

code generating back-ends should have to do little, if any, to initially take advantage of all

the optimizations done by the optimizer. Apart from contributing to clean interfaces, this also

serves to ensure that the performances of the front-ends and back-ends will not suffer if the user

selects not to use the optimizer in his compilation. In practice, few code generators are pmfect

in being able to handle all kinds of input intermediate code sequences well, and nearly all code

generators have some built-in expectations of the kinds of code sequences they see most often.

After the optimizer has been accepted as the middle pass, the code generators can be gradually

made to utilize specific optimized code constructs to their full advantages.

Since the optimization medium is an intermediate code, emphasis is not placed on machine­

dependent optimizations, which are better done in the code generation phases: On the other

hand, a main goal in this thesis is to include as many useful machine-independent optimizations

as possible in the portable optimizer. These include all common local and global optimization

transformations. Register allocation; which is slightly machine-dependent, is included since this

can take advantage of the global flow analysis pr.rformed in the optimizer. All these optim.i?.ations

are integrated together so that they can take advantage of each others' results.

8

1.3. OBJECTIVES AND CONTRIBUTIONS

Optimization techniques have developed and appeared in the literature for more than a

decade. The most common optimizations consist of different transformations that bear little

relationship to each other. In conventional program opti~zers, these transformations arc imple­

mented and performed separately, often by case :uialysis of the program text. This conventio~al

approach, though easily comprehensible, creates great program complexities in the implemen­

tation effort due to the different nature of the various optimizations and the large number of

special cases to be taken care of under each category. The whole optimization process is often

broken down into a number of separate passes and filters in order to make the optimization

effort manageable, but this usually seriously degrades the optimization speed.

The global optimization approach presented in this thesis represents a departure from

conventional global optimizer designs, and is another contribution of this thesis. Central to

our global optimization framework is the. UP1! of the partial redundancy f'Jimination algorithm

a11 the underlying theme. The goal is to shift as much processing as possible to the data .flow

analysis phases. Apart from simplifying the individual program transformation processes, our

approach also inakes possible the identification of previously separate global optimizations as

being special cues of some common processes. A.a a result, the optimizer is able to do all

common global optimizations in a small number of passes. This approach leads to a reduction

in program complexities and implementation efforts compared with conventional techniques.

The result is a closely-knit, concisely implemented global optimizert that is also fast compared

with conventional optimizer doing the ·same optimizations. These optimization techniques are

applicable to global optimizers in general. By implementing these new techniques, the machine­

independent optimizer provides a working-model that can be followed by other optimizers.

Register allocation is another area where a new ar-proach is tried in this thesis. We have de­

signed a register allocation scheme for use in the machine-independent context. We introduced

a parameterization of the cost and saving in register allocation that can cater to the character­

istics of different machines. No constraint is imposed on the front-ends. The register allocation

algorithm is a combination of a local method based on usage counts and the global method that

uses priority-based coloring. The relative importance of the two can be varied. The algorithm

is efficient and yields reasonable solutions with most target machine register configurations.

A.a a component in a rctargetable compiling system, the optimizer provides the opportunity

to study the effects of the same optimizations on different machines. The optimizations in UOPT

are performed without specific target machines in mind. It is expected that the percentage

improvements in execution speeds of the same optimized programs will difFer among machines.

t UOPT is written in 13000 lines oC Pascbl code.

9

1.3. OBJECTIVES AND CONTRIBUTIONS

We offer interpretations for some of the differences in performance based on evaluations of

machine characteristics, and we also provide some intuitive ways to predict the effectiveness of

some types of optimizations with respect to ~pecilic architectural featlL'"f!S . .
Apart from these, the machine-independent optimizer also plays a role in supporting archi·

tectural experimentation. Using the data on optimization performances on different machines, it

is possible to determine the machine characteristics that can best benefit from the optimizations

performed. Efforts can then be made to design machine architectures which will uxhibit superior

performance in a compilation environment that provides intermediate code optimization, much

as architectures have been developed with particular programming languages or code generation

techniques in mind. Such investigations can have an impact on the evolution of future machine

architectures.

1.4. Optimizations Performed

The global optimizer presented in this thesis, UOPT, performs most standard local and

global optimizations. It operates on a procedure by procedure basis, and performs all bit-vector

data ftow analyses short of inter-procedural analysis. A separate procedure merger can be used

as a pre-pass to perform procedure integration.

Apart from dead code elimination, there is not any optimization that changes the control

flow structure of the program. The fact that the control flow graph does not change during

optimization simplifies the internal structure of the optimizer. Apart from the computation of

loop-nesting depths for register allocation, none of the optimizations performed requires detailed

control flow analysis. The following is a list of the optimizations included in UOPT:

1. Stack height reduction in expression evaluation.

2. Constant propagation.

3. Constant expression evaluation.

4. Address collapsing in array expressions.

5. Dead code elimination.

6. Copy propagation.

7. Common subexpression elimination.

8. Loop-invariant expression optimization.

9. Partial redundancy suppression by backward code · ·otion.

10. Loop induction expression optimization (strength reduction).

11. Linear function test replacement and induction varinble elimination.

12. Rcdnn<lant store elimination.

13. Dead variable elimination.

10

1.4. OPTIMIZATIONS PlmFORMED

14. Partial 'redundancy suppression by forward code motion.

15. Op.timization of positions to save computations in temporaries.

16. Global register allocation and assignments.

Program optimization aims at improving the execution speed and reducing the code space

and storage requirements. In some transformations, conflict exists between these two objectives

in that one can be fulfilled only at the expense of the other. The main objective in UOPT is

to optimize running time. In some cases, code sections are duplicated and re-introduced with

the effect of increasing code speed while sacrificing code space. These occur especially in partial

redundancy suppression and some loop induction expression optimizations. Register allocation

actually introduces extra regj~t.r.:r transfer instructions that would not otherwise be present in

the program. Some of these new code may not be reflected in the Ilnal object code .Jler the

code generation phase. We have not included any transformation that optimizes only space.

The most important code space optimizations can be efficiently done in the code-generating

back-ends on the machine instruction level, since the optimizations are mostly local in nature.

1.6. Organization of This Thesis

The remainder of this thesis is divided into six chapters.

Chapter 2 examines issues in the design of intermediate languages from the point of view

of supporting and expressing machine-independent optimizations. Important features of the

intermediate language U~Code, the medium of op~imization in this thesis, are also presented.

Chapter 3 covers the optimization methods. Some new optimization algorithms are formu­

lated. The theories and motivations behind them are presented, together with explanations as

to how they represent improvements over traditional optimization techniques.

Chapter 4 discusses the feasibility and limitations of performing register allocation and

assignments at the intermediate code level. The coloring algorithm is modified and adapted

for use in the intermediate-code environment of UOPT. The register allocation algorithm is

presented, and issues related to performances, efficiency and implementation complexities are

discussed.

Chapter 5 addresses the more practical aspects in the overall design, organization and im­

plementation of the UOPT as a production optimizer. The interactions between the different

types of optimizations are examined, and a specific order for performing the various optimiza­

tions is developed. Some data on the execution. time requirements of the optimiimtion phases are

given. The optimization data structures in UOPT are presented. The actual methods used for

11

1.5. ORGANIZATION OF Tms THESIS

the collection or data flow information ~e examined. The eft'ccts or using procedure integration

prior to entering UOPT are also discuued.

Chapter 6 evaluates the performance orUOPT, with respect to the optimizations performed

and their effects on different target machines. Data on the contributions to overall performance

of the dift'erent types of optimizations are presented. This indicates the relative importance

of the various optimizations. We also study how optimization performance can be affected

by some program and machine parameters. The eft'ects of the common optimization results

on a number of target machines with different machine characteristics are studied and com·

pared. The machines considered are the DEC 10, 68000, VAX, MIPS, FOM and S-1. Means

for predicting the effectiveness of some types of optimizations on different machines based on

arehitectural features are developed. The overall evaluation serves to indicate the benefits of

portable, machine-independent optimization in a retargetable compiler system.

Chapter 7 gives some concluding remarq, and suggests areas for further work.

12

2. The Intermediate Code

The use of intermediate languages in program translations has recei'led increased attention

in recent years [Chow83aj. Intermediate languages have traditionally been used to bridge the

semantic gap between high-level source languages and low-level target code. Later, intermediate

languages were defined as aids in the bootstrapping of self-compiling compilers into host ma­

chines [Amma75]. An interpreter, written in a language already available m the host machine,

is used in the initial bootstrap phase. Once the interpretive language processor is available, the

front-end together with the code-generation parts are rewritten in the language of the compiler.

The interpreter can also serve to enhance the portability of the front-end compiler by standardiz­

ing the definition of the intermediate language [Bush79]. Present-day parser-generators output

the results of syntactic analysis in the form of some symbolic representatio11s. Retargetable

code-generators use intermediate code as the starting points for generating object coda.

The intermediate language used in a compiler system affects its portability, c?mpilation and

code generation efficiencies, and the source languages that can be supported. Its role as the in­

terface between the machine-independent front-end and the m'lehine-dependent code-generating

back-end has a tremendous impact on the overall design of the different components of the sys­

tem .. When we include program optimization in the picture, the choice of the intermedlate code

becomes all the more important. The inte.rmediate code affects the optimizations performed, the

means of expressing the optimization results and the optimi~ation efficiency. The portability,

source- and machine-independence of the optimizer also depend on these same aspects of the

intermediate code.

2.1. Goals of Intermediate Languages

Since the intermediate code affects so many different aspects in a compiling system, the

following set of possible goals can .be considered in designing and choosing an intermediate

language:

1. The intermediate language should be able to support as many source languages as possible.

2. Interpretation of the code should yield the correct computatii>nal result without knowiedge

of the programming language origin of the code. All language operations should be clearly

and explicitly expressed.

3. It should contain only a small number of op-codes and constructs for uniform representation

of differing language semantics and source level constructs.

13

2.1. GOALS OF INTERMEDIATE LANGUAGES

4. It should be in symbolic form, with no machine-dependent representation of computation

whenever P<!ssible. For example, real constants should be represented as cltaracter strings.

5. It should have a simple and uniform syntax, and program representation should be compact.

The context should not contiiin special declaration St.'Ctions. Complete program information

should be reflected in the code itself. Symbolic names and declarative information, if needed,

should be put iJ1 separate symbol table files.

6. It should include information useful in optimization and code generation if the information

can be gathered from the source code.

7. There should be maximum exposure of computations for purposes of optimization.

8. It should introduce no ambiguity in the control flow and data flow information to be col·

lected. Such ambiguity sometimes comes from the certain characteristics of the source

languages, and should be resolved by the compiling front-ends.·

9. . There should be some presence of the concepts of memory hierachy, including registers, to

reflect storage structures in real niachines.

Obviously, 110 single intermediate language is superior to all others in terms of meeting the .

above goals. Moreover, some of the above goals are hard to satisfy fully in the real world. Some

arbitrary design decisions may lead to different language definitions. In the following, we discuss

the important criteria from the point of view of performing machine-independent optimization.

We limit our consideration to algebraic languages (Pascal, Fortran, C, etc).

2.2. The Level of the Intermediate Code

Program optimization can be performed at different levels of program code in the program

translation process. At the high level, there is program optimization by source to source trans·

formation [Schn73] [Palm75l [Love76] [Arsa79J. At the lower end, optimization is performed on

the target machine code. The optimization at the low level usually involves using many machine

parameters, and is highly machine-dependent. Most code generators perform some degree of

target code optimization.

While it is possible to perform machine-independent optimization at any level of program

code, an intermediate code level midway between the source and the target code has been the

predominant choice. The main reasons are:

1. Source and target independence: Optimization at the source code level is l.o.ngnage­

dependent. Optimization at the target cqde level is machine-dependent. Optimization at

the intermediate code level can be both language- and machine-independent.

14

2.2. TUE L~:VEL 0)' THE INTERMEDIATE CODE

2. Visibility of optimizable code: . Source languages u9uaJly contain language implemen­

tation details which arc inaccessible at the source code level, and can only be optimized

after the high-level operations have been expanded i?to lower-level code. For example, off­

set computation in array references cannot be optimized at the source level. Also, ~imµar

source level text may convey different underlying operations. For example, the same sym­

bolic variable name can specify both direct or indirect memory references. In general, the

lower the level, the more opportunities we can find for performing optimization. But if the

level is too low, machine characteristics creep in. Also, low-level machine details obscure

the collection of information needed to perform optimization.

3. Number of code constructs: Source languages contain numerous high-level constructs

which can be broken down to a much smaller number of low-level constructs. At the

intermediate level of code, the optimizer only needs to deal with the limited number of

intermediate level constn1cts. For example, computed GOTO statements in Fortran are

represented similar to CASE statements in Pascal. Within the same source language, different

loop constructs can be uniformly represented using jumps at the intermediate code level.

At the target code level, the number of constructs again increases due to the instruction

repertoire of the machine.

Performing machine-independent optimization on the intermediate code level docs have

limitations. Procedure invocations, manipulations of the display, various accesses via static and

dynamic links cannot usually be optimized since the runtime organization is invisible at the

intermediate code level.

With intermediate code, it is sometimes necessary to express the presence of computed

quantities (temporaries) that need not exist when realized in the code of the target machines.

This is because machine instructions may contain constructs more complex and high-level than

the intermediate code. For example, address computations can be implicit in many addressing

modes. Boolean evaluation often automatically sets the condition code that can be used to

advantage in conditional jumps. Some. data type conversions may correspond to no-op in some

underlying machined, but this cannot be assumed on the intermediate code level. These are

limitations we have to live with under the context of target-independent optimization.

2.3. The Form of the Intermediate Code

In this section, the different forms of intermediate code arc considered with respect to their

impact on optiffiization. hitermediate representations generally fall into one of the following

three classes:

15

2.3. THE {<'ORM OF THE INTERMEDIATE CODE

1. Tuples: This class comprises quadruples, triples, indirect triples (Section 7.6 of [Aho77])

and n-tuples [Frai79]. Indirect triples are triples with one level of indirection, in the form

of a list of pointers to the triples, to provide flexibility in moving st!1'tements around.

2. Trees: They are usually associated with program graphs that represent the program state­

ments and convey the overall program structure. Directed. acyclic graphs (DAG), i.e. a

group of trees with shared sub-trees, is also included under this category, since they belong

to an optimized form of trees.

3. Linear representations (expressions): This class comprises the reverse Polish (prefix), the

standard Polish (postfix) and t~e infix notations. Infix has the disadvantage of requiring

the use parentheses, and is mainly suited for human comprehension.

To provide adequate program representation, the above classes do not exist in the pure

form, because of the fact that special operations need to be speeified at different points in the

code. For example, jumps, function calls and other control constructs have to be allowed in the­

middle of an expression.

Some intermediate languages are in the form of an assembly code for an abstract machine;

which may be a stack machine or a general register machine. We do not specifically consider

these. intermediate forms, since they either correspond to one of the above classes or are too

low-level to be regarded as general int~ediate representations.

We now want to consider which of the above forms of code are logically equivalent. Two

forms of code are logically equivalent if a representation in one form can be freely converted to

a unique representation in another form. Let us consider these forms under two different levels

of representation requirements - without DAGs and with DAGs.

If we do not include DA Gs in our consideration, then, with the exceptions of quadruples, all

the above forms of code can be shown to be logically equivalent. The reasonings are as follows:

- Given a tree structure, the COfl'CSponding postfix can be formed by a post-order traversal

of the tree, writing out the symbol for each node during the traversal. Similarly, the prefix

form can be formed by a pre-order traversal of the tree, and the infix form can be formed by

an in-order traversal, though in the latter cazie, parentheses need to be written out at every

internal node. Conversely, given either postfix, prefix or i.nfilt notation, the corresponding

tree structure can be formed. Such a process is similar to the parsing done by a syntactic

analyzer according to the grammar specified.

- In the triple or indirect triple representation, each triple entry consists of an operator

and its two operands, which can be regarded as representing an intenial node of a tree. If

16

2.3. THE FORM OF THE INTERMEDIATE CODE

an operand is a icaf, the variable or constant is directly named. If the operand is another

subtree, th~ it points to the entry for the internal representing the root of the subtree.

- N-tuples is a generalization of triples by enabling the specification of an arbitrary number

of operands to be combined by the same operator. An N-tuple can be converted to a set of

triples, and thus can be converted to and from trees.

- Quadruples are not logically equivalent to the others because they involve the definition

of many temporary names which do not exist in the other representations. The extra

information contents residing in the ~uses of the temporaries make quadruples di.lferent

from the other forms. But if we impose the restriction that each temporary can be defined

only once, then we in e.lfect convert the quadruples to the triple representation.

Program llow graphs can be represented correspondingly in any of the above forms. These

are usually in the form of jump instructions or pointers, depending on the context. We regard

binary trees and' program llow graJJhs ai. the canonical representation, since it is the easiest to

visualize, analyze and manipulate.

At the second level, we require that the code also represents DAGs. In thi11 case, only trees ·.

and triples (direct or inmrect) are equivalent. The reason the rest are not equivalent to trees is

as follow:

- To represent DAGs in postfix and prefix, it is necessary to define temporaries to store the

results of common subexpressions. Again, the extra information contents residing in the

re-uses of the temporaries make them logically di.lferent from trees and triples.

- In quadruples, there will also be extra temporaries used to store the results of common

subexpressions. These temporaries are intermixed with the other temporaries that are

present even without DAGs.

Therefore, trees and triples are the cleanest forms of program representation, because they

do not require the definitions and uses of temporaries. In light of this, we consider quadru­

ples, postfix and prefix as program representations at a lower level than trees and triples, with

quadruples being the lowest of all the forms, since they expr~s extra details about the u11age of

temporary names.

Quadruples stand apart from the others as a distinct form of code with many charactcr­

istica of its own. It is important to 'evaluate its advantages and disadvantages with respect to

optimization.

17

2.3. THB FORM OF THE (NTERMEDIATB CODE

Advantages or Quadruples:

1. Quadruples are closest in format tO man:y target machine instmction sets, since machine

instmctions by and large perform single operations and store the results.

2. Every expression is broken down and named, making it is easier to move computations

around.

3. The presence of numerous temporaries makes it possible to perform optimization related

to the temporaries (e.g. subsumption).

4. The temporaries allow the optimizer to perform more register optimization, since registers

containing by-products of arithmetic operations are not hidden to the optimizer ..

Disadvantages or Qua~ples:

1. Quadruples limit the machine-independence of the optimizer, since not all machines have

the 3-address instmction format.

2. Since whole expressions are broken down, it is difficult for the optimizer to manipulate

whole expressions, or perform transformations that involve tree-restmcturing like stack·

height reduction. Deep common subexpressions are harder to recognize.

3. It is possible that some of the named temporaries need not be preiient in the object code,

and the subsumption of these temporaries_ in turn creates overhead.

4. Temporaries not allocated in registers are not necessarily of help to the code generators,

since the temporaries may duplicate registers that need to be used as operands due to

restrictions imposed by instmction formats: For example, in some machine instmction for­

mats, the operands must be register-residing, so that the temporary must first be transferred

to a register.

5. Even for temporaries residing ·in registers, the benefits may also be restricted by non­

orthogonality in the instruction set architecture. For example, some machines require the

operands of multiplication to be in specific re~ters, so that additional register moves are

often required.

6. Temporaries occurring as intermediaries in address computation expressions may also be

superfluous since whole address expressions may be translated to individual operand ad·

dressings using special addressing modes, or there may exist specific op-codes that map to

the expressions.

18

2.3. THE FORM OF TllF- INTERMEDIATE CODE

In summary, from the machine-independent optimization standpoin!, since postfix, prefix

and quadruples are at a lower level of semantics, it can be concluded that trees and triples

are the preferred intermediate forms. If the input program code does n?t contain DAGs, as in

most unoptimized programs, then postfix and prefix are just as good as trees and triples. If

postfix or prefix is used, then the optimized output can use generated temporaries to represent

DAGs. The tree representation is more a structure than a form of program code, and so cannot

be considered as a choice for intermediate code, but rather as a preferred form of internal

representation. Triples, postfix and prefix can readily be converted to internal tree representation

by the optimizer.

2.4. Other Requirements

Next, we consider other features of intermediate code that can enhance its use as a medium

for machine-independent optimization.

To support optimization related to address computation, the intermediate code must include

the effect of storage binding. All symbol references in .the source program must have been

replaced by their memory addresses. Without the specification of offsets, address collapsing and

similar address-dependent optimizations cannot be performed. Moreover, the use of addresses

allows the optimizer to necessarily distingtiish between local, non-local and static variables,

and detect storage relationships like equivalences, which affect the data flow information being

collected and analyzed.

Register allocation optimization identifies variables, temporaries and evaluation results that

should reside in registers at different regions of the code. Such optimization can be specified by

attaching a register attribute to variables, which may also identify the register number. This

method of specification does not allow the assignment of different variables to the same register

throughout the course of a procedure, unless some kind of range specification (e.g. range of

current statement, basic block or procedure) is used. An alternative is to regard registers as

specific memory elements in the intermediate code, specified by either addresses or register

numbers, which are to be mapped to actual machine registers. These registers can be grouped

to different classes if required by the target machine architecture. By treating the registers as

distinct objects, register-to-memory or memory-to-register transfer operations can be explicitly

specified in the optimized intermediate .code. Under this scheme, the optimizer is allowed to

determine and specify the optimal positions for placement of register transfer code in addition

to performing register allocation and assignment; Efficient register management is important

for the speed of the optimized code.

19

2.1. 0TUER REQUIREMENTS

Common subexpressions can be expressed by using attributes to flag expressions which are

redundant and ~o not need to be computed more than once. This method of specification,

however, does not convey the fact that there is cost associated with the saving of a computed

expression and the late1· re-use of it. Also, the responsibility of allocating the tempor'U'ies or

registers to store the expressions has to be left to the code generators. The alternative is to have

the temporary together with the code that saves the computed expression explicitly specified.

In this case, apart from optimizing the allocation of temporaries, the optimizer can go a step

further to determine the best positions to insert the save code.

As the result of these additional requirements, an intermediate language suitable for op­

tiinization has to be of a lower level than the traditional intermediate representation which is

completely machine-independent. But the level of the code must not be so low as to affect its

portability.

In addition to the above, the intermediate code should be a widely used form of code. This

~es to increase the acceptability and applicability of the optimizer.

2.5. The Overall Com.pilation. and Optimization Plan

Though the optimizer transforms intermediate code independent of the source, knowledge

of source language features can help it make better decisions in some cases. For example, in

Fortran, all references to the global_ static memory can be treated as local references, and all

non-static memory elements are either parameters or compiler-generated. temporaries. Both

these facts are not true in Pascal. Thus, if the intermediate code supports more than one source

programming language, the intermediate code should contain some identification of the source

that produces the code, or should be able -to indicate the key features that may not be visible

in the code itself. If these are not known, the optimizer has to make the worst assumptions to

safeguard against incorrect optimized output.

On the other hand, the machine-independent optimizer also requires the knowledge of some

machi.ue parameters. These machine parameters include the different types of memory (storage

hierarchy), the word lengths, the sizes of the data types, the structure of the activation records,

the number and classes of registers and estimates of transfer coat between registers and memory.

For the optimizer to be portable and machine-independent, these machine parameters must not

be built into the optimizer.

There are two ways to make machine parameters available to the optinlizer. The first

method is to have the intermediate code conta41 all necessary machine descriptions, using special

option specification instructiom if nP.Cl'!lsary. Such a sc-hcmc has the di~;1.tlvantage of making tlli!

20

2.l). 1'118 0VRRALL COMPILATION AND OPTIMIZATION PLAN

Machine Machine-
Description independent

~
Optimizer

Machine-
Machine- dependent

Portable dependent Code Compiler IR Generator

Fig. 2.s.1 Machine-dependent Intermooiate Repreaentation (IR)

Machine
Description

~ Machine
Description

Machine-

~ independent
Optimizer

Machine-
Machine-

Portable independent
Compiler independent Code IR Generator

Fig. 2.s.2 Machine-independent Iritermediate Repreientation (m)

intermediate code and thus the compiling front-end machine-dependent. The c:ommon strate17

is to supply the machine parameters to the portable front-end separately, either by conditional

compilation or by look-up during execution of the front-end (Fig. 2.5;1). The intermediate c:ode

in this c:ase is usually c:loser to the form of a code generation language based on an abstract

machine model, and the c:odc generators follow the interpretive code generation sc:hcme (Gana82).

The second method is to feed the machine parameters to the optimizer directly. This can

be done either by conditional compilation or by separate look-up while performing optimization

(Fig. 2.5.2). This sc:heme allows the intermediate code and the front·cnds to be totally macbine­

indcpcndent. The corresponding code generators mrually follow the pattern-matched or table­

drivcn code generation schemes.

21

2.6. The U-Code Intermediate Language

From the above discussions, it can be concluded that an intermediate language in postfix,

prefix or triples form, at a level low enough so as to reflect the retmlts of storage-binding and the

availability of registers, is the ideal choice for performing machine-independent optimizations.

The U-Code intermediate language is one that satiefies most of these criteria.

U-Code originated as an intermediate form for the Pascal language. The idea of an inter­

mediate language for Pascal existed from the first portable Pascal compiler [Amma75j, which

emitted the Pascal pseudo-code P-Code [Nels79]. While P-Code is adequate as an intermediate

code for translation purposes, it does not lend itself well to supporting optimization. U-Code,

short for Universal Pascal code, incorporates P-Code as the base language along with the ad­

ditional information to allow for optimization at the intermediate code level [Perk79) [Nye81J.

By putting in minor extensions, U-Code has been made ap!)licable for representing Fortran

programs as well [Chow80]. Thus, U-Code is largely source-independent.

U-Code programs are in the form of a linear list of instructions, with each instructio11

identified b7 an operator. It is basically a form of reverse I:'olish notation and is defined in terms

of an evaluation stack used to specify all computations. Control flow is specified using labels and

jump.instructions. In a U-Code program, all variables in the source program have been resolved

into addresses in a hypothetical machine. Information about the symbolic names as used in the

source program resides in separate symbol table files which are used only by a debugger. ,The

run-time organization of the abstract stack machine is characterized according to the run-time

model of Pascal, with a memory stack containing procedure activation records and the heap

for dynamically allocated data records and static and dynamic links. Each activation record is

divided into areas for representing different types of stored objects which can be parameters,

local variables or temporaries. In addition, there are global (static) memory areas and registers.

The registers are divided into classes to provide for special-purpose registers such as address

registers or floating point registers., Thus, storage structures in the underlying machines are

adequately represented.

The different memory areM including registers are referred to by unique memory types.

Variables local to a procedure are referred to by the number of the procedure they are in and

their offsets within their particular memory areas in the stack frame of the latest instantiation

of the procedure. Global variables are referenced by their offsets in their particular static block.

Although the U-machine is primarily a bit machine, it also has a word size, which is the size of

an unpacked integer on the target machine, and an addressable unit, which is the smallest unit

that can be directly addressed on a target machine.

22

2.6. Tiii~ U-CODE INTEltMEDIATE LANGUAGE

Objects in memory and Oil the stack always have associated data types. AP. in real target

machines, two o~jects with different data types or different sizes can occupy the same location

in memory. Objects never overlap different memory areas. Each data type has an implied size

when the data object is on the computation stack, except for the Set type. Data objects of type

M are never loaded on the stack. Instead, their addresses are loaded, and all operations are

performed indirectly. The size of the data object in memory may be less than its size on the

stack, as is the case in packed records and arrays. Thus, many of the U-Code instructions have

size specifications in addition to data types.

U-Code programs are not completely .portable, since a given version of a U-Code program

does contain machine-dependent parameters. These parameters are given to the portable front­

ends according to the scheme of Fig. 2.5.1. The machine dependent parameters in U-Code

programs are minimal, and they include the word and byte sizes, the default sizes of each

data types and their alignment restrictions, and the structure of the activation records. Highly

machine- and system-dependent mechanisms, like the use of the display, passing of parameters,

procedure linkage conventions are not expressed or visible in U-Code. Currently, code generators

exist that translate U-Code to object code for th«> DEC 10/20, VAX, MCGSOOO, S-1, MIPS and

FOM. They belong to the interpretive model of code generation. A U-Code interpreter written·.

in Pascal also exists [Bush79].

U-Code is not completely language-independent in that it supports the Pascal model of

static and run-time organizations, and the semantics of most operations follows that of Pascal.

Most of these assumptions are visible in the U-Code context, and by suitable simple extensions,

it is possible to make U-Code support most algebraic languages (e.g. Algol, C, PL/1).

The U-Code stack is usually implemented by registers in the underlying machine, and the

U-Code operators describe the operations to be performed on the items on the stack. This

stack orientation, however, causes inflexibility in the way that the items on the stack can be

manipulated, since only the top items can be operated on. When an item is loaded on the stack

in U-Code, many code generators do not actually load the item until the time that it is involved

in computation. This is because an item may reside at a lower part of the stack for a long

time while many other computations occur on the items near the top of the stack. A problem

that arises involves storing when the stack is non-empty. Such a store can change the value

of a location which has previously been loaded and still resides further down the stack. This

complicates the implementation in those code generators that delay loads. However, the stack

orientation of U-Code is inherent in the postfix form of code.

The storage relationships among the data. objects are adequately represented, so that data­

How information can be collected with no ambiguity. Each data object is uniquely identified

23

2.6. TUE U-CODI~ INTEltMBDIA'l'E LANGUAGE

by its memory type, block number and offset. Local, non-local, indirect memory references are

disiinguished. Storage relationships are clearly expressed by the size specifications of the data

objects, so that equivalences and overlapping objects can J:>e recognized. In array references with

associated offset computation, the base address and length specifications in the LDA instruc~ion

precisely indicate the range of addresses where the resultant array element can be located.

Possible side effects and aliases can be recognized. The~" enable the optimizer to pinpoint data

objects that can be affected in memory references and assignments, which helps it prevent unsafe

optimizations.

Jn addition, the instruction set of U-Code is versatile enough to expresse most needed

operations. All program computations are exposed, and all implicit conversions are specified

whether or not they translate into actual machine operations (e.g. the CVT instruction). Common

subexpressions can be saved using the NSTR (non-destl'l.'.ctive store) instruction. The RLOD and

RSTR instructions permit the specifications of transfer operations between registers and memory.

All these features make U-Code suitable as. a medium for performing machine-independent

optimizations.

The U-Code optimizer, UOPT, gets most machine parameters from the input U-Code itself.

Jn addition, a few other machine parameters that are not available from the U-Code are set in

the optimizer by conditional compilation. Included in them are the sizes of the various data

types, which are needed in performing constant expression computations. Some parameters

about the stack frame are also given for the purpose of deciding where to allocate temporaries

generated by the optimizer. For the purpose of performing register allocation, information

about the number and kinds of registers,· the .cost of register-memory transfer operations and

comparisons of register and memory fetch times is needed. Thus, the optimization plan used by

UOPT is a mixture of the two schemes ~hown in Section 2.5.

Only a small portion of the information present in U-Code programs output by the front­

ends is intended for use by only the optimizer. The optimizer does not introduce its own

U-Code constructs in expressing optimizations performed. The code generators do not have to

distinguish between optimized and unoptimized U-Code in inputing and h-anslating programs

in order to take full advantage of the optimil'lations performed. Thus, both the front-<'nds and

back-ends need not specifically accommodate the presence of the optimizer. The efficiencies of

both the front-ends and hack-en<ls are not affected.

Appendex A gives more details about the U-Code intermediate language.

24

3. Optimization Algorithms

In this chapter, the optimization algorithms in UOPT are presented. Section 3.1 describes

the local optimization algorithms. The remaining sections address global optimizations. Local

optimization is performed before global optimization because the l'lttcr has to rely on infor·

mation gathered during the local phase. All the global optimizations are based on data flow

analysis, 11I1d they are closely related to each other because some of them use similar global <lata

flow attributes, and some of them are performed at the same time. The global optimization

algorithms are characterized by ubiquitous hit vector operations, especially when solving data

ftow equations, which represent the bulk of the processing. Apart from constructing the program

ftow graph while inputing the program, no control ftow analysis is needed in any of the global

optimizations.

3.1. Local Optimizations

J..ocal optimizations refer to the optimizations done within individual basic blocks [Aho72]

[Bagw10]. A basic block is a straight-line block of code of maximal length with no branch except

at the entry or exit. Maximal length is a desirable feature since it increases the opportunities for

the various local optimizations. A basic block corresponds to a node in the control flow graph

representation of a program.

The local optimizations in UOPT are done by straight transformation on the program·

representing data stmctures. The building of these structures and the local optimizations also

serve to prepare for the global optimization phases. After the local optimization phase, the more

unified code form exhibiting more commonly-occurring code structures can serve to expose more

global optimization opportunities. There is no peephole optimization pass on the intermediate

code as in [Tane81] and [Wilk83], since our local transformations already include many of these

peephole optimizations, and the rest can be done by case analysis of spf'Cific code constructs at

appropriate times during the local transformations and the later code re-emission. In general,

peephole optimization on intermediate code is useful and cost-effective only when no other major

optimization transformation is present, so that there is no other mechanism or process available

on which to overlay the checks for the occurrences of specific code constructs. In the case

of UOPT, the precise internal representation of the program code and different kinds of code

transformation make it unnecessary to do peephole optimization by pattcm-matchU1g specific

code sequences in the intermediate code text.

25

3.1. LOCAL OPTIMIZATIONS

3.1.1. Value Numbering

Value numbering is a technique for recognizing commonly occurring computations within

a basic block [Cock70). It is an efficient method for building directed atyclic graphs (DAG's)

using a hash table and a triple representation.

The hash table is used for storing all expression trees. Eccch entry in the hash table is

either an operand {leaf) or an operator (internal) node. The hash table index of each entry

corresponds to its unique value number. For operator nodes, the table entry is in the form of

a triple consisting of (op,l,r). The· z and r 6elds are the value numbers of the left and right

subtrees or leaf operands respectivelyf. The entries are determined by hashing using the open

addressing with linear search scheme. Variables are hashed according to their addresses, and

constants are hashed according to their values. Internal nodes are hashed according to the triple

(op,l,r). Since the same entry can be hashed to by entries that are not identical, collision in

hashing is resolved by entering the new entry in the next empty entry down the table. Thus, in

finding the table entries for expressions and operands, hashing is accompanied by searching, and

the uniqueness of value numbers is guaranteed by the resolution of collisions. For commutative

operators, l and r are allowed to be interchanged in searching for a match. To retain information

about the order of occurrences of the expressions in the basic block, a linked list representing

the statements in their execution order in the basic block is used. These statement nodes point

to the expression trees in the hash table that they reference (Fig. 3.1.1).

Local common subexpressions are recognized when two expressions yield the same value

number. To prevent the recognition of common subexpressions that arc identical but which no

longer yield the same results because some of the operands have been assigued new values, it

is necessary to assign new value numbers for later occurrences of the same expressions. This is

effected by the killing of variable entries. A variable is killed whenever there is an assignment

that can potentially alter its value (Section 5.3). This not only applies to direct assignments, bnt

to indirect assignments as well. The effects of aliases and equivalences have to be included also.

After a variable entry has been killed, it is prevented from being recognized in the searching that

follows the hashing. Thus, a new entry with a new value number will automatically be created

out of an empty entry. Since the variable is given a new value number, any expression that

directly references it will have a different l or r operand value number; after hashing, the value

number of this expression will have no relation to the value number of the identical expression

that references the variable with the old value. The same applies to any larger expression in

which the expression is nested. Thus, (,,"Xpressions do not need to be killed, since the different l or

t Only the I field is used for unary operators.

26

3.1. LOCAL OPTIMIZATIONS

Code Table
index

A • - B + 777
2 0 + right = 21

Statement Node · s Variables

Const7

Variable A curval = 2

Fig. 3.1.1 Internal Representation of Basic Bio~ Code

r operand value numbers automatically prevent them from being wrongly recognized. Constants

also do not ever need to be killed, since they always represent the same values in computations.

In arrays, each array element is not assigned a value number. In fact, address compu­

tations and their subsequent indirect references are treated no different than other expression

trees. Thus, an expression that leads to referencing a memory clement is assigned a unique value

number. These indirect references, which include indirect loads (ILOD's) and indirect compar·

isons (IEQU's, ILES's, etc.), also neetl to be considered for being killed, since they belong to the

category of memory references. It is possible that the value at the address yielded by an address

expression is changed between its multiplt? references via the address expression. This situation

is taken care of by killing the entry of the indirect operator.

The optimizer removes redundant assignments in a basic block. Each direct assignment to

a variable usually results in creation of a new value number for the variable, but if the variable

has not bc.'en directly or indirectly (as in aliases and equivalences) referenced, then the previous

assignment can be eliminated, and the same value number is used for the variable with the

newly assigned value.

3.1.2. Local Copy Propagation

In the reprcs<>.utation for variables in the hash table, a valt&e field gives the value number of

27

3.1. LOCAL OPTIMIZATIONS

the expression that was previously assigped to each variable in the basic block if there has been

such an assignmed (Fig. 3.1.1). The optimizer performs local copy propagation by looking up

this field whenever a variable is referenced. If the valu~ field indicates a previously assigned

expression, variable or constant, the assigned expression is used instead of the variable i~lf.

This implicitly creates an additional common subexpression reference. A special case is when

the assigned expression contains operands whose values have been changed, as indicated by their

having been killed. In this case, no copy propagation is performed. ·

Local ropy propagation is useful for a number of reasons. First, a variable reference is

replaced by a copy, which will be made fast since the later register allocation phase will allocate

registers to store intermediate quantities which are referenced more than once. Second, by

substituting variables with their values, it is possible to rcc<>gnize more common subexpressions,

since. two or more variables with the same assigned values are identical!y mapped. Third,

a larger common subexpression can be successively constructed across statement boundaries.

Lastly, more redundant assignments can be exi>osed, since eliminating all references to a variable

before the next assignment to it mAkes the first assignment redundant. .

Example.
a=bxc

d=a+e

/=bxc+e.

a=d

becomes

t=bxc+e

d=t

/=t

a=t

where t is a temporary

Local copy propagation automatically performs local constant folding for variables, when

the copied expression is a constant value. This can potentially lead to more opportunities for

constant arithmetic later.

3.1.3. Stack Height Reduction

Since the evaluation stack in U-Code is usually realized as registers in the target machine

after translation, minimizing the height of the stack during expression evaluation can reduce

the chance of spill-over of the stack items from the registers into slower memory. In the internal

tree representation of the expression code, the goal of the transformation is to make the larger

expressions appear on the left of the binary operators as much as possible.

There are two approaches to stack height reduction. The first method involves re-association

between operators of the same precedence level. Tree restructuring is applied so that_ the tree is

reduced to the left-associative form with each oper.;,tor node weighted 011 the left-hand side. This

28

Stack height = 5

3.1. LOCAL 0PTIMl1.ATIONS

Stack height = 4

Fig. 3.1.2 Stack Height Reduction by Re-associntion

process leaves the order of appearances of the operands intact. To avoid destroying common

subexpressions, the transfer of operands into and out of common subexpression subtrees is

specifically avoided (Fig. 3.1.2). The algorithm for tree restructuring is recursive, and is applied

to each internal node:

Algorithm Jle11tructure.

1. Call Reatructure for the right subtree. of the current node.

2. If the operator of the right son is of the same rank, transfer the right son's left son to the

left of the current node by creating a new internal node on the left side, and make the right

son's right son the new right son:

3. Call .llc3tr':r.cture fer the il'ft mbtr~ ~r the m~cnt node. a

29

3.1. LOCAL OPTIMIZATIONS

Stack height = 4 Stack height = 3

Fig. 3.1.3 Stack Height Reduction by Swapping Left and Right

After the re-association transformation, any expression containing only operators or the

11&1118 precedence level can be evaluated with a stack height of two. Operators that can be

transformed by re-association, grouped by their precedence levels, are: (a) +, -, IIA (indexing

on address), (b) x, floating point /, (c) AHO," (d) OR, (e) IHT (set intersection) and (f) UHI (set

union).

The second method involves reversing the order of the operands or a binary uperator so that

the one with higher stack height is evaluated first (Fig. 3.1.3). For non-commutative operators,

the two top items have to be swapped afterwards to preserve the correctness of the code. The

extra swap does not usually cause extra object code to be generated. Apart from expression

trees, this transformation is also applicable to statement operators which reference more than

one expressions. Such statement operators include ISTR (indirect store), MOY (record copy), HEW

(create record) and DSP (dispose of iec:ord).

After stack height reduction, all expressions containing (2" - 1) or fewer operands can be

evalUated with a maximum stack height or n.

1.1.4. Constant Arithmetic

This involves replacing an op'-'l'ator with constant operands by the constant value obtained

by pcrfonning the ·computation during optimization. Related to this are the reduction of an

AHD operator with a FALSE operand to FALSE, and the reduction of an OR operator with a TRUE

30

3.1. (,OCAL 0PTIMl?.ATIONS

·~

Fig. 3.1.4 Constant Collapsing

operand to TRUE. An AND operator with a TRUE operand is removed, and so is an OR operator

with a FALSE operand. These operations for AND and OR also have corresponding operations for

set intersection and union (INT and UNI). Bound checks of constant operands are performed,

and any bound check error is reported. Decrements and increments of addresses can be folded

into ILOD and ISTR instructions. When the operands of these same ILOD and ISTR instructions

are constant addresses, direct.loads and direct stores can· be used instead. Conditional jumps .

with constant conditional expressions are either removed or replaced by unconditional jumps

depending on the conditions evaluated.

An additional type of constant arithmetic is the combination of non-adjacent constants be­

longing to separate nodes of a tree. This is performed in conjunction with the trce-restru.-:turing

&!gorithm above (Fig. 3.1.4). After the tree is converted to the left-associative form, a constant

can be moved downwards along the left-weighted branch to combine with another constant.

This process is repeated until only a single constant is left hanging along a branch made up of

opera.tors of the same precedence level.

Another optimization related to constant arithmetic is the application of the distributive

law. In the expression ax (b+c), when a and either b or care constants, applying the distributive

law to yield (a x b) + (ax c) allows two constants to be combined. The resulting expression

has the same number of operations, but under the condition that there are adjoining operators

of the same precedence level as the + operator, this transformation can create opportunities

for stack height reduction and constant collapsing (Fig. 3.1.5). If this condition is not met, the

distributive law transformation is not applied.

The above transformations in constant arithmetic arc performed by a single recursive pro­

cedure ConatArith which also makes t18c of tbe earlier Restructure algorithm. ConiltArith is

applied to each internal node regarded as the root of a subtree:

31

3.1. LOCAi. OPTIMIZ:ATIONS

Fig. 3.1.5 Application of the Distributive Law

Algorithm ComtArith.

1. Call ConstArith. for the right subtree of the current node.

2. Call Restructure for the current node.

3. Call ConatArith. for the left subtree of the current node. (This completes the conversion of

the subtree at the current node to the left-associative form, and also guarantees that there

is at most one constant left hanging along the left-associative branch.)

4. If the right subtree is a constant or the operator of the current node is INC or DEC, then

(a) if the left subtree is a constant, then apply the operator to combine the constants and

convert the current node to a constant bearing the value of the result;

(b) if the left subtree is not a constant, then if there is a constant further down the left.

associative branch (or there .is a INC or DEC), call MergeConat which combines the

constant at the right son (or the INC or DEC parameter) to the lower constant and

deletes the current node.

5. Apply the distributive law if this is beneficial. 0

Stack height reduction by re-association and the merging of non-adjacent const.'Ults are

not applied across common subexpression subtrees, since these transformations may render the

common subexpressions invalid.

3.2. Overview of Global Optimization Strategy

Global optirniations rely heavily on the availability of global data flow information computed

by data flow analysis. A global optimizing pass typically begins with a data flow analysis

phase. Subtrequently, the appropriate pattern matching and code manipulation operations are

undertaken to perform the given optimization. The data flow analysis phase can be cm1cisely ruul

dliciently performed for the different types of optiffiizations. The second program manipulation

32

3.2. OVERVIEW OI•' Gt.OBAL 01'TIMIZATION STRATEGY

phase is not as straighforward, and usually requires a much more substantial amount of cede

to implement. ~cpeated passes over the program code are often needed to detect all possible

optimizations. Since the program manipulations for the different types of optimizations are

different in nature, the whole global optimization process is inevitably divided into a large

number of passes, all of which have their own data flow analysis and program manipulation

phases. The program manipulation phases are ad hoc and bear little relationship to each other.

The central strategy of our global optimization approach is to let data flow analysis a.~sume a

greater role in processing optimization transformations. The goal is to shift as much processing

as possible to the data flow analysis phases. Apart from computing data flow information,

the data flow analysis phases also take up the responsibility for determining the actual code

transformation (insertions, deletions) to be performed. Although the data flow analyses become

more involved, the program manipulation phases are much more simplified. Since data flow

analysis can be implemented by a well-established set of code, the overall global optimization

structure can be ma.de much more manageable.

Because the program manipulation portion of the processing is reduced in size and complex­

ities, our approach also makes- possible the identification of the following three broad categories ·

of global optimizations:

1. Uses of copy information - This includes copy propagation and constant propagation.

:?. Backward code n::.otion and backward redundancies - This includes global common subex­

pression elimination, loop-invariant expression removal and partial redundancy elimination.

3. Forward code motion and forward redundancies - This includes the elimination of fully

or partially redundant stores, dead variable elimination, loop-invariant assignment removal

and the optimization of temporary saves.

Optimizations belonging to the same category are similar in nature and not distinguished

from each other. They arc performed concurrently by the same process. Thus, it can be seen

that the above three optimizations already include up to 80 per cent of all useful global opti­

mization transformations. Moreover, since the data flow analyses can determine all the desired

transformations at c!lce, no incremental update of data flow information is required after each

change to the code. Updates of d:i.ta flow inform~tion is needed only between the small number

of global optimization passes. Thus; it can be seen tha.t the global optimization fram~work in

UOPT offer~ significant advantages in reduci~g the complexities of both the optimiicr imple­

mentation and the optimization phase structure. The optimization speed is also enhanced.

33

3.3. Boolean Attributes for Qlobal Optimization

The global optimizatiou of programs· requires the knowledge of data flow information within

procedures. This data flow information, in the fcrm of liooleans, can be divided into local and

global attributes. A procedure text is represented by a directed control flow graph, with each

node in the graph representing a basic block. A local attribute depends only on the basic block

in which a variable, expression or assignment occurs. A global attribute is determined by the

inter11Ction of the local attributes in the set of basic blocks.

In this section, the attributes which are used in our global optimization algorithms are

defined. We also consider how these attributes can be collected or computed from the program.

3.3.l. Local Data Flow Attributes

Our ideas of boolean a~tributes apply to variables, expressions and assignments (or defini­

tions). These attributes are defined in terms of basic blocks. Some attributes use the entries or

exits of basic blocks as points of reference, and some refer to entire basic blocks. The direction

of flow considered may be forward or backward in relation to the flow of control of the program.·

There are three local attributes for variables, defined as follows:

ANTLOC • (Locally Anticipated, Locally Live or Locally upward-exposed) A variable is

locally anticipated in a basic blo·ck if there is a use of the variable {which excludes assignment

to the variable) within the block, and the value of the variable can in no way be aJfected

if the use of the variable is moved to the entry of the block. In other words, there is no

assignment in the block. preceding th~ use of the variable which can potentially alters the

value of the variablct.

AVLOC • (Locally Available) A variable is locally available in a basic block if there is a use

of the variable within the basic block, and the value of the variable will stay the same if

the use of the variable is moved to the exit of the block.

ALTERED· (Killed locally) A variable is altered in a basic block if its value may be modified

by executing the code of the basic block. The variable does not necessarily have to appear

in the basic block for it to be altered.

The above three attributes are made to apply to expressions by replacing the word variable

in the above definitions by ezpresaion. The attributes of expressions represent stronger qualifi-

t The optimizer will try its best to decide it a given assignment can alter the value oC a variable. IC the
information provided to it is not suflicimit for making such a decision, it will regard that the ·variable can
posoibly be alter<od by the assib'llJD<'llt, for the sake of oafety.

34

3.3. DOOLEAN ATTRmu·ri.:s FOR GLOUAI. OPTIMIZATION

cations than the corresponding attributes of the components of the expressions. An expression

is ALTERED in a block if any variable within the expression is. Han expression is ANTLOC in a

block, then any component of the expression must also be ANTLOC. A .constant appearing in

a basic block is always ANTLOC, AVLOC and not ALTERED. ANTLOC is a backward attribute and

AVLOC is a forward attribute.

In applying the local attributes to assignments, the values assigned together with the vari·

able being stored into are considered:

ANTLOC • An assignment is locally anticipated in a basic block if the assignment occurs

within the block and the effect .of the assignment on the result of executing the code of

the block will be the same if the assignment is moved to the entry of the block. In other

words, the assigned expression is ANTLOC, and the assigned location is unaltered and not

used anywhere in the block before the assignmentt.

ALTERED· An assignment is altered in a basic block if the value of the assigned expression·

or the assigned location may be modified by executing the code of the block, and there

is no use of the assigned variable in the block; if the assignment actually occurs in the

block, then its own code is excluded from consideration in the determination of its ALTERED

attribute. To state it in another way, an assignment is not ALTERED if there is no effect on

the execution result by moving the assignment from one eild of the block to the other end.

A variable, expression or assignment is not ALTERED if there is an occurrence in the block

and that occurrence is both ANTLOC and AVLOC. An item can be both ANTLOC and AVLOC but

ALTERED since there can be two occurrences and the altering is due to the code between the two

occurrences.

Example.

a+-
a b c a+b (a+ b) + c

(a+ b) + c ANTLOC F T T F F

AVLOC T T F T F
c +-

ALTERED T F T T T

* bt accordance to U-Code syntax, the code for computing the assigned expression is always computed before

the actual storing into the assigned location.

35

3.3. BOOLEAN ATTRIBUTES FOR GLOBAL OPTIMIZATION

We have used code movement to characterize the above attributes. The reason is that these

attributes will b,e used among other things in solving the feasibility of various kinds of code

motion in the subsequent global optimizations. Also, the availability of complet.-i information

is critical. Side effects, aliases and equivalences often make it bard to obtain the exact use or

definition information of a data item. In such cases, the most pessimistic assumption is made

in obtaining the information in the attributes.

ings:

In the case of assignments, there are additional local attributes with slightly different mean-

PAVLOC - (Partial Local Availability) An assignment is partially locally available in a basic

block if the assignment occurs within the block and the assigned location still holds the

value of the assigned expression which also has not changed before the exit of the block. In

other words, the values of the assigned variable and assigned expression are not altered in

the code of the basic block following the assignment.

ABSALTERED - An assignment is absolutely altered in a basic block if there is code in the

basic block that can potentially alter the value of the assigned expression or the assigned

location, excluding the elfect of the assignment itself if it exists in that block.

The attributes PAVLOC and ABSALTERED differ from ANTLOC and ALTERED respectively in that

the former do not take into account the usage of the assigned variable in the relevant region.

The definitions of PAVLOC and ABSALTERED do not rely on code movements. PAVLOC is a weaker

property than AVLOC. An assignment that is PAVL~C is not necessarily AVLOC, but an assignment

that is AVLOC must be PAVLOC. An assignment that is ABSALTERED must also be ALTERED in a

basic block, but an assignment that is ALTERED is not necessarily ABSALTERED. The PAVLOC and

ABSALTERED are not used for solving code motion, whereas ANTLOC and ALTERED are. The former

can be regarded as static data flow attributes and the latter can be regarded as dynamic data

flow attributes.

Eumple.

a .-b+~

ANTLOC F

ALTERED T

ABSALTERED F

PAVLOC T

36

3.3. BOOLEAN ATTRIBUTES FOR GLOBAL OPTIMIZATION

3.3.%. Global Data Flow Attributes

In constrast to local optimizations, global optimizations take into account the procedure's

large scale structure in performing transformations. In ·defining the global attributes, we can

just extend the meanings of anticipability and availability:

- A variable, expression or assignment is anticipated at a given point if all paths leading

from it contains an instance of the computation, and the computation placed anywhere

along the paths always deliver the same result.

- A variable, expression or assignment is available at a given point if all paths leading to

the point contains an instance of the computation, and the computation placed anywhere

along the paths always deliver the same result.

Partial anticipability and availability· are weaker properties:

- A variable, expression or assignment is partially anticipated at a given point if at least

one path leading Crom the point contains the computation, and the computation placed

anywhere along the path always deliver the same result.

- A variable, expression or assignment is partially available at a given point if at least one

path leading to the point contains the computation, and the computation placed anywhere

along the path always deliver the same result.

The global attributes are usually applied to the entries and exits of basic blocks. ANTIN,

AVIN, PANTIN and PAVIN denote these attributes at the entries of basic blocks, and AMTOUT,

AVOUT, PAMTOUT and PAYOUT denote these attributes at the exits. In practice, the attributes

for different variables, expressions and assignments can be aggregately represented using bit

vectors, with each bit position allocated to a variable, expression or assignment. The resultant

bit vector operations substantially speed up the computations involving the attributes by a

factor depending on the word size of the host computer.

The following system of boolean equations defines the global availability attributes based

on the corresponding local attributes. Thi? subscript i identifies the attribute as being for the

ith basic block.

Availability Syatem:

{
FALSE

AVIN, = II AVOUT;

;el'l'ed(i) .

if i is the entry block;

otherwise.
(3.3.1)

37

3.3. BOOLEAN ATTRIBUTES FOR GI.OBAL OPTIMIZATION

The first equation says that an item is available at the entry to a basic block if and only if

it is available at the block exits of all its predecessors. The second equation says that a variable

is available at the exit of a basic block if it is either locally available ther.e or is available at the

entry of the block and is not changed inside that block.

The ether groups of global data flow attributes can similarly b~ computed by solving systems

of boolean equations:

A nticipability System:

{
FALSE

ANTOUT, = I1 ANTIN;
jESucc(i)

if i is the exit block;

otherwise.

ANTIN, = ANTLOC1 + -.ALTERED,; • ANTOUTi.

Partial Availability S1111tem:

{
FALSE

PAYIN, = L PAYOUT;
. jCPreJ(i)

if i is the entry block;

otherwise.

PAYOUT; = AYLOC1 +-.ALTERED;· PAYIN,.

Partial Anticipability System:

{
FALSE

PANTOUT, = L PANTIN;

jeSucc(i)

if i is the exit block;

otherwise.

PANTIN, = ANTLOC1 + -.ALTERED, • PANTOUT,.

(3.3.2)

(3.3.3)

(3.3.4)

The above data flow equations can be solved using an iterative algorithm, as given in

[Kild73] and [Hech73]. It involves applying the above equations to the nodes of the control

flow graph until the information stabilizes. Depending on the initializations of the unknowns,

different solutions can be obtained that satisfy the systems of equations. In the case of the

conjunction operator TI, the wanted solution is the one with the largest number of true bits.

If the unknowns are initialized to TRUE, the unknowns will converge to the largest solution

as iteration prngresses. For the disjunction operator l:, the wanted solution is the one with

the smallest number of true bits. If the unknowns arc initialized to FALSE, the unknowns will

converge to the smallest solution during iterations.

38

3.3. BOOLEAN ATTRIBUTES FOR GI.OBAL OPTIMIZATION

There are other ·local and global attributes which are specific to the kinds of global opti­

mization they su,pport. These will be described in due course.

Appendix B presents some more details in programming data Bow analysis using the iter­

ative algorithm.

3.4. Copy Propagation

Copy propagation traditionally involves statements of the form a +- b. Af"ter determining

all places where this definition of a is used, it may be possible to eliminate this statement

by substituting b for a in all references of a. Standard algorithms for performing this copy

propagation can be found in [Aho77].

The treatment of copy propagation in UOPT is slightly more generalized. Any assignment

of the form a+- (expr} is considered, where {expr) is not limited to.being a single variable. The

copy propagation involves replacing variables by their known assigned expressions. In the case

that the expression is a constant, the effect is global constant propagation.

By making use of the attributes defined in the previous section, our algorithm to perform

copy propagation is simpler ~d more elegant than traditional ones. It turns out that the ·

attributes PAVLOC and ABSALTERED together with the global attributes derived from them already

contain most of the information needed to copy propagate. Let AVIN and AVOUT be the global

attributes that indicate the availability of assignments. By substituting PAVLOC and ABSALTERED

into Eq. (3.3.1), AVIN and AVOUT can be solved as follows:

Availability of Assignments:

{
FALSE ·

AVIN, = II AVOUT;

jEPred(i)

if i is the en try block;

otherwise.

AVOUT1 = PAVLOC; + -iABSALTERED1 • AVIN,.

(3.4.1)

THEOREM 3.4.1. A use of the variable a in basic block n can be replaced by the expression (expr}

if all of the following conditions are met:

{a) The assignment a+- (e:epr} is AVINn.

{b} The replaced variable a is ANTLOCn.

{ c} The expression (expr} is ANTLOC,. if inserted at the point of the variable a in block n.

PROOF. Condition (a) implies that the assignment a +- {expr) is the only assignment to a

reaching block n, and that both the values of a and (expr} have not been changed in the paths

39

la+-bxal
.j.

lc+-a+tl

.j.

3.4. COPY PROPAGATION

la>-bxal

,;.

I c+-bx3+1 I
.j.

lb bx c +(bx c + 1)j

.j.

Fig. 3.4.1 Multiple Copy Propagation

b x c will be recognized·

later as common subex­

pression

that lead to block n. Condition (b) and (c)' guarantee that the same is true in the region in

block n preceding the point where a occurs. CJ

The algorithm to perform copy propagation can now be specified. The algorithm is applied

to each variable reference in each basic block.

Algorithm CopyPropagate.

1. For each reference of a simple variable a, in basic block i, in which ANTLOC; is true, look for

an assignment which is of the form a +- (expr) whose AVIN, is true. If this is found, then

check that the expression (expr) if ini:>erted at that point will cause its ANTLOC; to be true.

2. If the expression (expr) can be found in 1, then replace the occurrence of a by (expr}. Apply

the algorithm recursively to each variable reference in (expr). 0

Since each new insertion of an expression creates new occurrences of variables in the basic

block, the algorithm CopyPropagate is applied recursively in step 2 to ensure that copy propa·

gation is done completely. At the termination of the algorithm, no more copy propagation can

be performed in the program code (Fig. 3.4.1).

It is to be noted that if the attributes AVLOC and ALTERED were used in Eq. (3.4.1) instead

of PAVLOC and ABSALTERED, the resultant condition to be satisfied in step 1 of the algorithm

would be stronger than needed.

When a variable is replaced by its known assigned expression (expr}, the resultant code

could be worse if the expression is large. However, in all cases, the expr!1ssion (expr}.is a global

common subexpression, and does not need to be recomputed. This is because the fact that the

40

3.4. COPY PROPAGATION

a+-bX3

c+-a+2

'» ~

ld+-bx3+2J

~

a dead

Id - bx a+ 21
~

t-bx3+2

c +- t

a removed

Fig. 3.4.2 Partial Redundancy in b x 3 + 2 exposed by Copy Propagating through a

assignment a+- (expr) is AVINi implies that (expr) is also AVIN, which is a sufficient condition

that the expression (expr) is globally redundant. As a result, later redundant expression elimina­

tion and register allocation will replace (expr) by a load from a register in which the previously

computed value of the expression is saved. In most cases, this is faster than a memory reference

to the replaced variable a.

Apart from this, the other b~efits of local copy propagation mentioned in Section 3.1.2

also apply in the global case. Since copy propagation is performed until no more copies can be

made, variables and expressions are commonly mapped, and more common subexpressions can

be exposed which would not otherwise be recognized. These common subexpressions can also

be successively constructed across multiple basic blocks.

After replacing the variable a by the expression (expr), the assignment a._ {expr) can be

made redundant. The elimination of these and other redundant assignments are done together

in subsequent phases (Fig. 3.4.2).

3.5. Redundant Store Elimination

Redundant assignments are assignments to variables whose uses cannot be anticipated

before the next assignments. In the case of local variables, assignments are also redundant if

no more use of the variables occurs before procedure exit. In'this ca.~e, the variables are called

dead variables. A local variable is dead at a point if its value will not be used along any path in

the procedure starting at that point.

41

3.5. REDUNDANT STORE ELIMINATION

(a) .Redundant a+ bat node 3 (b) Redundant a <- at node 1

Fig. 3.5.1 Duality between Redundant Expressions and Redundant Stores

Redundant assignments are traditionally found by solving for the liveness of variables ap·

pearing on the left-hand-sides of assignments. The assignment a +- (expr} is redundant if a is

not live at the point of the assignment. However, this approach is complicated by the fact that a

variable should still be regarded as live if there is an operation that.may or may not change the

value of the variable, as in function calls or indirect stores. IfEq. (3.3.4) in Section 3.3 were used

in solving for partial anticipability or liveness, the resulting PAVOUT would not include variables

that may or may not be live, and thus would not be applicable in finding store redunda.;.cies.

The approach to redund~t store elimination in UOPT involves defining a set of new local .

attributes, which are applied to the uses of variables as the L-valuea (the assigned sides) in

assignments. The same names are used for these new attributes, since they convey similar

meanings, though in dilferent contexts.

ANTLOC - The L-value of a variable is locally anticipated in a basic block if there is a simple

assignment to the variable, and there is no effect on the execution result of the basic block by

moving the assignment to the entry of the block, assuming the same value can be assigned.

This means that in the code preceding the assignment, there is no use of the variable and

no other indirect ass~gnment t.hat can potentially alter the value of the variable.

AVLOC - The L-value of a variable is locally available in a basic block if there is a simple

assignment to the variable, and there is no elfcct on the execution result of the basic block

by moving the assignment to the exit of the block, assuming the same value can be assigned.

This means that in the code following the assignment, there is no use of the variable and

no other indirect assignment or procedure call that can potentially alter the value of the

variable.

ALTERED - The L-value of a variable is altered in a basic block if there is some reference to

the variable, or some indirect assignment. or procedure call that can potentially alter the

value of the variable. Direct assignments to the variable arc excluded from con$ideration.

42

3.5. REDUNDANT STORE ELIMINATION

' ' la +-bl
=*

C:J
~ 'II ~ 'II

exit la+- cl exit la +-cl

Fig. 3.5.2 Redundant Assignments (a local variable}

It is important to note the .difference between the attributP.S for an assignment and the

attributes for the L-value of a variable. The former refers to the assignment as an expression

tree, whereas the latter refers the use of the variable on the left hand side of a direct assignment,

even if different values are assigned at different times.

Example.

a+-

[] AKTLCC F

ALTEnED T

PAVLOC T

By using these attributes, redundancies in assignments can be found by solving for the

global anticipability attributes using Eq. ,3.3.2}.

THEOREM 3.5.1. An asaignment of the form a+- (e:rpr) in baaic block n ia redundant if:

(a) the local attribute AVLOC,. /or the L-value of a ia true,. and

(b) the global attribute ANTOUT,. /or the L-value of a ia true.·

PROOF. An assignment of the form a+- (expr) is redundant if additional assignments to a, of

the form a +- , occur later regardless of the path taken, and in the intervening paths there is no

potential reference or store to a. Condition (b) guarantees that assignments a+- occur later,

and in the intervening paths starting from the exit. of block n, there is no potential reference or

store to a. Condition (a) guarantees tbat in the region in the basic block n after the assignment,

there is also no potential reference or store to a. CJ

The reason for our doing redundant assignment elintination diJferent from traditional ap­

proach is because this method recognizes a duality that exists between redundant expressions

and redundant assignments. The former refers to the computation of expressions, ru1.1!. the latter

refers to the process of storing into a location. Aii expression which has been computed earlier

43

3.5. RIWUNDANT STORE ELIMINATION

is redundant, while first stores into a location are redundant if they are followed later by other

stores into the same location regardless of the stored values. The former is an availability prob­

lem, and the latter is an anticipability problem (Fig. 3.5.1). A major b~efit of this approach

is that this allows us to perform forward code motion involving assignments. This topic will be

addressed later in Section 3.9.

This method also allows us to recognize redundant assignments to dead variables (Fig.

3.5.2). In the initializations to solve data flow Eq. (3.3.2) iteratively, ANTOUTi can be set to true

for all exit blocks i and all variable;;i which are local, and false otherwise. The effect is similar

to inserting imaginary assignments to these variables just before the exits. Such a setup will

enable the algorithm to expose the redundancies of assignments to dead variable'!.

3.6. Code Motion

Code motion optimization invol•.~ the backward movement of code from more frequently

executed regions of the program to less frequently executed regions. The computations moved

are usually invariant computations in strongly connected cc;>mponents of the program flow graph.

To perform code motion, the loop-invariant computations must first be found. This requires

the computation of use-de/ chains by data How analysis. The use-def chains give the origins of

the definitions that affect the variables inside the loops. After the loop-invariant computations

are found, they are moved to the loop headers dominating all exit nodes in the loops involved.

Finally, the invariant computations that are made redundant as a result of the insertions are

deleted. All this analysis involves uncovering the loop stn1ctures embedded in the control flow

graph using control flow analysis. ·The code motion is done loop by loop, and repeated passes

over the same loop are often necessary to exhaust all possible code motion.

Morel and Renvoise [More79] have presented a method in which it is possible to perform code

motion and the elimination of redundant expressions at the same time. They also generalize

these optimizations to the suppression of partial redundancies. They view code motion as a

program flow analysis problem in which positions to insert and delete code are determined once

and for all by solving data flow equations. The resulting code movements are then from deleted

positions to inserted positions. The algorithm does not require detailed analysis of the program

control flow graph. The goal is to let flow analysis play the role of determining the profitability,

correctness, origins and destinations of code movements, which were previously done by case

analysis. This method of global partial redundancy suppression is adopted in UOPT with

minor modifications. The approach has enabled us to acheive a concise, efficient and less costly

implementation of the global optimizer.

44

3.6. CODE MOTION

PP= T PP= T

I, axe l
PP= T PP= T

.j, .j,

'Iii ~
PP~ T

axe l
pp= •

.j,

£P = r pp=•

a+- I, e L
pp,=T pp• T

.j, .j,

'Iii ~

-----+.j,

CJ
pp= ..

·----.i.
Fig. 3.6.l(a) The PP attribute for a x e

Morel and Renvoise have pointed out that global redundant expression elimination and

code motion are actually special cases in the global suppression of partial redundancies. A

computation at a point is redundant if the computation is available at that point. A computation

at a point is partially redundant if it is partially -available at that point. The suppression of

partial redundancies involves the determination of positions to insert comp11tations that cause

some partially redundant expressions to become redundant and be deleted, without introducing

MY new partial redundancy. Not all partial redundancies can be removed, but the method

performs all code motion and removes all complete redundancies. We now present the steps

that lead to the formulation of the partial redundancy suppression algorithm.

3.8.1. The Partial Redundancy Algorithm

Partial redundancy exists when an identical computation is performed more than once in a

certain path in the program. The optimization transformation we are considering involves the

insertion and deletion of computations at various points in the program. It is necessary that the

transformation does not result in any path of the program flow graph containing more of the

same computations than it contains before. T,his means that every insertion is at a point that

the computation can be anticipated, and that all the anticipated first computations made after

45

3.8. CODE MOTION

ppla = T EJ!ia = T

l axe L
ppoa.A =- T ppos• =- T

' '
1t-t axcl

lt+-axel1

' ' 'Iii II'
ppia = T

axe L
ppoal•I'

'Iii II'

t L

' ppia • P £Ela :a r ==>
a- I, e- L Optimise

ppo•& =- T pp01&t. =s T

' '
'Iii II'

.--_,... ,

CJ
____ ,

D
ppoat; = T . ____ , . ____ ,

Fig. 3.6.l(b) Partial redundancy suppreSBi.on fur axe

that point are rendered completely redundant by the total effect of the insertions made. Global

common subexpreSBi.on is a special cast1 in this_optimization because it requires no insertion for

the expression to become redundant. To establish positions to insert computations, we define a

number of global attributes:

PP· (Placement Possible) A computation e is PP at a point p if it is anticipated at p and

all the anticipated e's can be rendered redundant by zero or more insertions at that point

and some other points in the procedure, and these insertions satisfy the conditions that the

insertions are always at points that e is anticipated and the first anticipated e's after the

insertions are rendered redundant (Fig. 3.6.1).

TJJEORBM 3.8.1. If a computation e ia PP at point p, then it ia also PP at any point q on any

path that leada from p to an anticipated e.

PROOF. Since the computation e is anticipated at p and pleads to q before reaching e, e must

be anticipated at q, and the set of occurrences of e anticipated at q must be a subset of those

· anticipated at p. Suppose p is established as PP by insertions at a set of points s. To establish

that q is PP, apart from inserting at q, we can ·pick enough insertions from s until the e's

46

3.6. CODE MOTION

anticipated at q arc all rendered redundant. a
For the sake of uniformity, we restrict all insertions to be at the end of basic blocks. This

will have no effect on the optimizations that arc to be performed. To.generalize further, we

also regard a cnmputatiou to be plact!ment possible when the computation is available, since no

insertion is needed.

PPOUT • (Placement Possible on exit) A computation e is PPOUT at the exit of a basic

block i if it is AHTOtrr, and all the anticipated e's can be rendered redundant by insertions

at the exits of block i and some other blocks in the procedure, and these insertions satisfy

the conditions that the insertions are always at points that e is anticipated and the first

anticipated e's after the insertions are rendered redundant; a computation e is also PPOtrr;

if it is AVOUT;.

The purpose of the attribute PP or PPOUT is to determine the feasibility of insertions at

particular points for the purpose of eliminating partial redundancies. To help solve for PPOUT,.

we also define PPIN for basic block entries:

PPIN • (Placement Possible on entry) A computation e is PPIN at the entry of a basic
block i if it is .ANTIN; and all the anticipated e's can· be rendered redundant by insertions

at the entry of block i and some other blocks in the procedure, and these insertions satisfy

the same condition that the insertions ~ always at points that the e is anticipated and

the first anticipated e's after the inse~tions are rendered redundant; a computation e is also

PPIN, if it is AVI!f;.

As in the case of the other global attributes in Section 3.3.2, we can solve for PPIN and

PPOUT by the following set _of Ilow equations. The use of the TI operator in the second equation

is implied by Theorem 3.6.1.

PPIN; = ANTIN; • (AHTLOC; +-.ALTERED,· PPOUT;}.

{
FALSE

PPOUT, = II PPilf.,
A:eSucc(i)

if i is the exit block;

otherwise.

(3.6.1)

The above solution for PPOUT does not give the best set of points for the final insertions.

A necessary requirement to guarantee the profitability of the code transformation is that there

must be no partial redundancy among the final se.t of insertions. We can partially satisfy this

requirement by putting insertions at the earliest point in each simple path of consecutive blocks

at which PPOtrr is ·tme. The insertion will then be available throughout the path. Thus, the

condition to put insertion at a block exit, called INSERT, is:

47

3.6. CODE MOTION

CJ.
ppoat = F ppout a r

"ii ~

(ai:n LJ ppia = r

CJ.
ppoal == T ppoa& =r T ppout =I'

~

~
~

Fig. 3.6.2 PPIN and PPOUT of a + b

msmr, = PPOUT,. (E (-.PPOUT;. -.AVOUT;) +.ALTERED,).
;ePred(i)

(3.6.2)

Eq. (3.6.2) indicates that we will put insertions at the exit of blqck i if it is PPOUT and at

least one of the predecessors of i is not PPOUT and not AVOUT, or if the computation is altered in .

block i so that the insertion at the exit of block i will not be redundant. If all of the predecessors

of block i are PPOUT, then the insertion at block i is redundant unless the computation is changed

in that block.

After insertion at block i, we must prevent 8Df insertion at the ancestors of block i that will
become available at block i and thus would cause new partial redundancy with the cornputation

inserted at block i. Jn ot11er words, when the computation is not altered in block i, insertion

at the exit of i should be prohibited if there is some insertions at some predecessors. This can

occur only if the computation is PPOUT at the exits of some of the immediate predecessors of

block i. Insertions should be put at block i only if the computation is not PPOUT at any of the

immediate predecessor. Thus, we impose a stronger condition for insertions:

msERT, = PPOUT,. (fI (-.PPOUT;. -.AVOUT;) +ALTERED,).
;ePred(i)

(3.6.3)

To use this formulation of INSERT, we also require that a computation be PPOUT at block

i only if it is also PPOUT at all the predecessors of the successors of i. Jn Fig. 3.6.2, the

e."tpression a + b is not PPOUT at block 1 beca~se it is not PPOUT at block 3. We add the term

II;ePred(i)(PPOUT; + AVOUT;) to Eq. (3.6.1) to get:

48

3.6. CODI!: MOTION

PPI>I, = {::.. II (PPOUT; + AVOUT;)
;ePrecl(i)

·(AHTLOC1 + -.ALTERED, • PPOUTi)

{
FALSE

PPOUT1 = II PPIH1:
l:ESucc(i)

if i is the exit block;

otherwise.

if i is the entry block;

otherwise. (3.6.4)

Eq. 3.6.3 can then be rewritten using PPIH as follows. The term AVOUT is added to exclude

cases where the computation is available, .when no insertion is needed:

(3.6.5)

After the insertions, the computations that are anticipated at the points of insertions will

be made redundant, and can be deleted. A computation at block n can be deleted if it is PPIH,.,

since tliis implies that there have been some insertions at the ancestors of n which are available

at n. The local attribute AHTLOC indic:ates whether the computation occurs in a basic block.

Thus, the condition for deletions, designated by the term DELETE, can be computed as follows:

DELE'l'Et. = ANTLOC1 • PPIH0• (3.6.6)

This deletion includes the case of redundant computations, when PPIH is true but no insertion

is needed.

We can make an additional refinement to the above solution of PPOUT and PPI?l. The

application of the above partial redundancy elimination algorithm has the effect of moving

computations upwards (or backwards) in the control flow graph so that some computations are

computed earlier. Sometimes, this movement is a code hoisting optimization, but at other times,

the same computation is unnecessarily duplicated. In all cases, the live ranges of expressions

are increased (Fig. 3.6.3). Lengthened live ranges are undesirable because the variables in their

extended points of occurrences may interfere with other code movements in later global opti·

mization phases. Long live ranges also use up more register resources if allocate<l in registers. To

limit the live ranges,. insertions are dct:irable only at blocks at which the expression is originally

partially available. It is possible to limit the expa:nsion of live ranges by introducing the term

49

+

+

~ 'll

+
'll + ~

a+3

I

3.6. CODE MOTION

lt+-a+3l

+
a+3

~

(a) Before optimization (b) Large live ranges

[t+-a+3] lt+-a+3I

+ +

·._I __ __,

+
(c) Smaller live ranges

Fig. 3.6.3 Effects on Live Ranges in Partial Redundancy Suppression

PAVIN in the solution for PPIN and PPOUT, without restricting the optimizations performed:

PPIN, = {::: •. PAVIN, • II (PPOUT; + AVOUT;)
jCPrcd(i)

·(ANTLOC, + -.ALTERED, • PPOUT1)

{
FALSE

PPOUT1 = 11 PPIN1:
A:ESucc(i)

if i is the exit block;

otherwise.

if i is the entry block;

otherwise. (3.6.7)

Eq. (3.6.7), Eq. (3.6.5} and Eq. (3.6.6) are the actual data flow" equations implemented in

UOPT.

50

3.6. CODE MOTION

a+-bX5

----+! .----+l

I ·~·x· I D
·----! ·----!

Fig. 3.6.4 Code Motion of Loop-invariant Assignment

3.6.2. Implementation Notes

The above optimization of partially redundant computations not only applies to expressions,

but to assignments as well, by treating assignment as an operator. (Fig. 3.6.4). To ensure the

recognition of all redundancies and that all movements of assignment~ are legal, it is necessary

that the global attributes are solved using the appropriate local attributes for assignments. The

forward attributes AVIN, AVOUT, PAVIN and PAYOUT do not imply any code movement, so they

can be solved using the PAVLOC and ABSALTERED local attributes for assignments. The backward ·

attributes ANTIN and ANTOUT imply backward movements. It is incorrect to move an assignment

across a block in which the assigned variable is used, since this changes the eff'ective value of

the variable at the time it is referenced. Thus, the ANTIN and ANTOUT attributes must be solved

using the ANTI.DC and ALTERED local attributes for assignments (Fig. 3.6.5).

Expressions are optimized individually, independent of any potential nesting. Each operator

constitutes a computational item whose code motion is to be solved. In the case of nested

expressions, some further attention is warranted. When DELETE; is true for ar.. expression in

basic block i, it must also be true for all its subexpressions, and only the value of the outermost

CXt2':>Scion needs to be s:ived in its prior computations. Thus, any deleted subexpression nested

within another deleted expression must be fiagged to indicate that its value is not needed in that

basic block. The bit vector SUBDELETE; gives such expressions. It can be computed by checking

whether a deleted expression occurs only as part of a larger deleted expression.

On the other hand, when INSERT is true for an expression, it may be false for some of

its subexpressions. In such cases, their values are available at that point, and do not need to

be recomputed at the point of insertion. Such expressions also have to be Hagged to indicate

that the values in their prior computations need to be saved up to that point. The bit vector

SUBINSERT gives those expressions in a basic blpck which are not inserted but are part of inserted

expressions (Fig. 3.6.6).

51

...._ __ _.11 la-bx3L
... ...

'» ""
la-bx3L

... .

3.6. CODE MOTION

ti - bx 3

I t-i - b x a !1 a - ti

.__ __ ,...!,.·
...

a +- b x 3 cannot be moved across

block 3 because of the use or a in

that block, .but b x 3 can.

Fig. 3.6.S Partial Redundancies in Assignments

...

.__a_+_b __ L
...

"" L I a+b+c ~
...

'» "" I a+b+c I,
...

~

Fig. 3.6.6 Nested Partial Redundancies

t, -a+b+c

t2

After the partial redundancy optimizations, points of performing computations are changed.

At a point of ineertion, the inserted expression is computed and saved. At a point of deletion,

the reference of the saved val•1e of an earlier computation is made. Section 3.10 presents details

52

3.6. CODE MOTION

about determining the flow of saved computation results.

3.6.3. Observations

One elegant point about generalizing code motion to partial redundancy suppression is that

additional cases of code motion out of loops arc covered which wo~ld not otherwise be recognized

in conventional code motion in which only loop-invariant computations are moved out of loops.

Fig. 3.6. 7 illustrates a case in which a computation is not loop-invariant because of a function

call inside the loop. But because the computation is performed a second time in the loop after

the function call, the first computation in the loop can be moved outside to the loop header.

t +-a+7\

! !

a+7

! !

I Call F(.Jj
~

.1 Call F(.. .)

! !

a+7 I t+-a+1

! !

Fig. 3.6.7 Code motion of first occurrence of loop-variant a+ 1 out of loop (tis temporary)

Although the term PAVIN; is introduced in Eq. (3.6.7) to prevent the unnecessary expansion

of live ranges, not all useless code movement can be prevented. This over-movement can occur

when the term PAVIN; is true due to the presence of a larger enclosing loop. Another situation

occurs in the case of the WHILE !opp, in which the loop termination conditional expression

is unnecessarily moved and duplicated (Fig. 3.6.8). Appendix D contains notes on how the

WHILE loop can be compiled by the front-end to allow for code motion, which also prevents this

over-1novcment of the conditional expression.

A final point is that the copy propagation algorithm mentioned in Section 3.6 can enable

more loop invariant computations to be detected in.code motion optimization without additional

effort. For example, if the statements a +- b + c followed by a + d occur inside the same loop,

and b, c and dare loop invariant, then copy propagation will convert a+ d to (b + c) + d which

can then be recognized as loop invariant and moved out of the loop.

53

I t+-a<9

! !

test a< 9
,_

test t
,_

l !

Fig. 3.6.8 Over-movement of the conditional expression in a WHILE loop

3.7 •. Reduction of Operator Strength

The purpose of the strength reduction optimization transformation is to replace complex

operations by simpler ones. It is primarily associated with quantities that are linear func·

tions of induction variables in loops. The process involves replacing multiplications between

induction variables and constants (including region constants) by simple increments [Cock77)

(Alle81). Opportunities for strength reduction arise most often in subscripted array references.

In multi-dimensional arrays, multiplications by constants are always necessary to compute off·

sets. Strength reduction optimization is especially important in machines with index registers,

and Cast instructions that increment or decrement these index register&.

Although strength reduction and code motion are different types of optimization problems,

they are similar in a certain perspective, as illustrated in Fig. 3.7.1. The reduction candidate

i x 3 is to be replaced by a temporary t, which is to be properly initialized tO 3 before loop

entry, and properly incremented by 3 each time i is incremented by 1. It is possible to regard

the whole process as movement of the induction expression i x 3 to outside the loop. Although

i x 3 is not a loop constant expression, it is expensive to compute inside a loop. It is instead

computed outside the loop as i x 3, which is .constant foldt.'<l to 1 x 3 = 3, and stored in the

temporary t. Because i is not a loop constant, but is an induction variable in the loop, t is

54

3.7. REDUCTION OF OPERATOR STRENGTH

updated every time i is incremented ~side the loop. Code motion is a special case because

there is no induction expression to update each time through the loop.

i ,_ 1

t <--iX 3

i<--1 =3

! !

i<--i+l i<-i+l
==>

! t<--t+lx3

=t+3
ix 3

!
!

·----!

Fig. 3.'1.1 Strength Reduction as Code Motion

This generalization can be further applied to more general strength reduction transfor·

mations involving products of induction variables. In Fig. 3.7.2(a), where a and bare region

constants, applying the above process to the reduction candidate ixj transforms to Fig. 3.7.2(b).

By targeting the newly formed ix band; x a as reduction candidates, Fig. 3.7.2(b) is reduced

to Fig. 3.7.2(c), which contains no ~re'reduction candidate, although an additional pass is

needed to move the loop-invariant expression a x b outside the loop by straight code motion.

Since code motion can be viewed as a special case of suppressing partial redundancy, as

discussed.in the Section 3.6, atrength reduction can also be generalized in this respect and be

included under the category of optimizations associated with partial redundancies. As a result

of such a generalization, strength reduction is no longer limited to loops, but is possible in

acyclic regions of flow graphs as well. Fig. 3.7.3 illustrates such a situation as compared with

atraight common subexpression. The reduction candidate i x 3 can be regarded as a common

subexpression, although there is au increment of i in between the two occurrences. In the

optimization, the second multiplication is replaced. by an increment of the temporary t. Fig.

3.8.2, in the next section, shows a case of combined strength reduction and partial redundancy.

The method of partial redundancy suppression of the Section 3.6 has the important char·

actcristic that the code movements of all computatfons in the procedure arc deter1n.ined once,

by the solution of the bit vectors INSJ::RT and DELETE. The lengths of the bit vectors depend on

55

3.7. REDUCTION OF OPERATOR STRENGTH

t+-ixj

.t, - ix b
t+-ixj t2+-Jxa

! ! !

n+-i-x; n +-; n +-t

! ! !

i+-i+a i-i+a i+-i+a

==> t+-t+jxa ==> ti +- t1 +ax b
! t+-t+t2 !

;-J+b ! j+-j+b
! t+-t+ixb j+-j+b

(a) ! t, +- t, +ax b

t +-t+t1
(b)

!

(c)

Fig. 3.7.2 Iterative Strength Reduction

the number of different computations in the procedure to be included in the optimization. In­

creasing the lengths of the bit vectors will increase the optimization time only marginally, since

in the iterative solution of the data flow equations, the number of iterations is usually small,

and depends more on the form of the control flow graph than on the contents of the bit vectors

[Knut71). Thus, by including strength reduction in the suppression of partial redundancies, vie
essentially get an additional optimization performed for free.

Before using the algorithm of Section 3.6 to perform strength reduction, it is necessary

to determine the set of induction variables IV and strength reduction candidates CAMI>. Jn the

current implementation, induction variables are limited to variables incremented by constant

terms. As is the case in code motion, no analysis of program loop structure is needed. IV and

CAMI> are local properties, and their determinations are limited to individual basic blocks. They

are identified as follows:

IV· (Induction Variable) A variable vis IV in basic block i if it is defined in block i only

56

3.7. REDUCTION OF OPERATOR STRENGTH

ix3 ~ 1

-! !

i-i+l ==> i+-i+l

! t1+-t1+3

ix 3 !

t1

Fig. 3.7.3 Strength Reduction in Straight-line Code

by instructions of the form 11 +- (expr) where the expression (expr) consists only of the

+ and :- operators, constants and the variable v itself which .must occur at least once in

(expr).

Candidacy for strength reduction is recursively defined. The expression itself does not have

to occur in a basic block for it to be a strength reduction candidate. This is because in the

subsequent transformation, it ·may be necessary to move the expression across the basic block, ·

and this recognition is necessary to enable the code motion.

CAND - (Strength Reduction Candidates) An expression is CAND in basic block i if it is one

of the following operations and satisfies the corresponding conditions:

(a) +,-: one ofits operands is CANDi and t~e other operand is either·CANDi or is invariant

in block i.

(b) x: one of its operands is a constant or region constant and the other operand is

either CANDi or is an expression· consisting only of the + and - operators combining

variables at least one of which is IVi and the rest are either IVi or are invariant in

block i.

According to the above construction of CAND, the following are examples of induction ex­

pressions being recognized:

i1 Xk1

i1 x a

(i1 x a+ i2 + k1) x b

(i1 x a+i2 +k1) x b+c

(i1 x a+i2 +k1) x b+ k2 x i3

where ii, i2, etc. are induction variables,

57

3.7. REDUCTION OF OPERATOR STRENGTH

ki, k2, etc. are constants iµid

a, b, etc. are region constants.

Note that expressions of the form it +kt are excluded because they do not contain any

complex operation to be simplified.

Strength reduction optimization is incorporated into the algorithm of the Section 3.6 by

adjusting the local attributes using CAND. The result of the flow analysis will then automatically

reflects the code motion of the strength reduction candidates. The local attributes are adjusted

as follows:

ANTLOC1 = ANTLOC; + EIPOCC'Ulto • CAND1 (3.7.1)

AVLOC; = AVLOC1 + EIPOCC'Ulto • CAND1

In the above, the attribute EIPOCCUR gives whether an expression occurs in a basic block.

The meaning of the first redeJinition is that if an expression is a strength reduction candidate

in block i, then block i should be made transparent to the expression so that the expression can

move across the block. The second and third redefinitions say that if the expression occurs in

the blo~, then it should be regarded as being locally anticipated and locally available.

The subsequent solutions for INSERT and DELETE will then determine the movements of

the reduction candidates exactly as they do for partially redundant expressions. In the final

code emission phase, in regions in which the reduction candidates are available and live, any

increment or decrement of the induction 'variables will cause generation of the corresponding

code to update the temporaries that contain the values of the induction expressions.

3.8. Induction Variable Elimination

After the strength reduction optimization of Section 3.7, additional opportunities for a dif­

ferent optimization are unfolded. If an induction variable is used only in strength reduction

candidates that have been moved upward, and the variable is not live or will be assigned a new

value, the variable can be eliminate1l in its loop-induction region. This means that the initializa­

tion and updates of the induction variable can be suppressed. Most often, the induction variable

appears in the test for loop termination condition. In this case, linear function test replacement

can be performed, which involves substituting the induction variable in the test by its induction

expression. Such an operation further enhances the chance that the induction variable can be

eliminated (Fig.· 3.8.1). The algorithm we use, which relies on information gathered d.uring colle

motion optimization, is applicable not only to strongly connected components of the flow graph,

58

3.8. INDUCTION VARIABLE ELIMINATION

but to all regions of the code. In addition, we do.not limit test replacement to loop termination

tests, but to any comparison operation which may be part of a boolean expression that can

exist in any region of the program. Section 3.8.1 presents the linear fm~ction test replacement

algorithm. Section 3.8.2 discusses the operations to eliminate induction variables.

3.8.1. Linear Function Test Replacement

Linear function test replacement is performed only for the purpose of enhancing the elimi·

nation of induction variables. If it does not result in making the replaced variable dead, then the

test replacement should not be performed. The algorithm for linear function test replacement

in UOPT finds and marks possible test replacement candidates. Subsequent to this, induction

variable elimination is performed. This in turn results in establishing which test replacements

are beneficial and which are not. A final pass over the test replacement candidates suppresses

all those test replacements that. are not desirable •

. ---... !

ix3

Irr i <(cxpr) I
·----!

---... !

I t+-t+a

!

t

Irr t < (expr) x a I
·----!

Fig. 3.8.1 Linear Function Test Replacement

The linear function test replacement algorithm is as follows:

Algorithm Te11tReplaee.

For each comparison operation which occurs in block n in the program of the form i op A:1

where A:1 is a constant, if i is IVn or is not ALTEREDn, then i can potentially be replaced by its

induction expression. (The ALTERED attribute is the one that has been modified by Eq. (3.7.1).)

Find an expression e in the program that satisfies the following condition:

1. e is an. induction expression (see definition of CAND in Section. 3.7);

2. e contains i as the only variable operand;

59

3.8. INDUCTION VARIABLE ELIMINATION

3. e is PPIN,..

If the expression e can be found, then mark i as being replaceable by e. [J

The purpose of condition 2 and the requirement that the test operation must. be of .the

form i op k1 is for ensuring that an equivalent test of the form e op k2 can be obtained by

transformation after the test replacement, where k2 is formed by some constant arithmetic. If

the form e op k2 cannot be obtained, the transformation will slow down the program since the

left or right sides of the comparison then contain additional computations.

Condition 3 makes sure that e is available at the point of replacement so that it does not

have to be recomputed. The use of the PPIN attribute is more general than the AVIN attribute

that applies before the code motion transformation. This is established by the following theorem:

THEOREM 3.8.1. If a computation e is PPI~ at block i, computed by Eq. {9.6. 7}, then it is

available at the entry of block i after the inserliona performed according to Eq. {9.6.5).

PROOF. By Eq. (3.6.7), for PPINi to be true, PPOUTj or AVOUTj must be true for all j E Pred(i).

According to Eq. (3.6.5), one of the following cases must occur at block j:

(a) e is inserted at the exit of j (INSERT; = true);

(b) e is available at the exit of j {AVOUT; =true);

(c) e is PPIN; and not ALTERED; ((..:,PPIN; +ALTERED;)= false).

In cases (a) and (b), e will be available at the exit of j. In case (c), the problem is reduced

to finding whether the theorem is true for block j. We can apply the same reasoning to block

j, and this process will eventually terminate since PPIN at the entry of the flow graph is false.

The only situation where reasoning through case (c) will not.terminate is when there is a cyde

in which PPIN is true for all the nodes and e is not ALTERED in the cycle. But in this case, the

fact that e is available at the exits of the headers to the cycle is sufficient to guarantee that e is

available throughout the cycle. 0

The above test replacement algorithm does not specifically require that the replaced variable

i be an induction variable. One reason is that we do-not recognize induction variables on a global

basis. The induction variable attribute IV that we use is only a local attribute. A loop may

contain more than one basic block, and a variable is an induction variable if it is· IV in ju:st one of

the basic blocks. Also, the substituted expression e, although involved in code motion, may not

have been a strength reduction candidate. But even under such situations, the test replacement

perfonned is still an optimization. Thus, our approach to linear function test replacement is

more general than the traditi&nal approach.

60

3.8. INDUCTION VARIADLE ELIMINATION

3xi

I i+-i+1 I
...

3xi

IF i > 5

i dead

... ...

I t +- 3 x.i I I t +- t+ 3 I
... ...

IIFt>15I
...

i removed

Fig. 3.8.2 Combined Strength Reduction and Partial Redundancy

3.8.2. Finding ~d Eliminating Redundant Induction Variables

After the uses of the induction varU!:bles have been replaced, the elimination of these vari­

ables is actually equivalent to eliminating assignments to these variableii which have now become

redundant. These assignments consist only of increments to the induction variables. The same

basic scheme of Section 3.5 can be used, which determines store redundancies by solving for

anticipabilities of L-values. A different treatment is needed for induction variables, however. If

a variable is an induction variable in a basic block, then its use in its increment statements must

not be regarded as altering its L-value, in the definition of ALTERED of Section 3.5. The meaning

of this is that all increments to induction variables are to be regarded as transparent. Thus, in

a basic block in which an induction variable is only incremented, AHTLOC and ALTERED are both

false. The earlier code motion and· test replacement optimization also affect these attributes,

and updating them is also needed.

After the computation of ANTIN and ANTOUT according to Eq. (3.3.2), au induction variable

is redundant if its L-value is ANTOUT and not ALTERED in a basic· block. In this case, all of its

increments in that basic block are to be deleted.

Following the elimination of redundant induction variables, the test replacements performed

by algorithm TeatReplace have to be validated. This consists of checking, for each replaced

variable i, whether AHTOUTn just computed is true. If this is fal11C, then variable i has not been

61

.__ _ __.I~

"

3.8. INDUCTION VARIABLE El.IMINATION

.__a_+_3___,b

Optlm!H

lt+-a+3j1

" 1.--a-+_3___,~ ... , -----.
~

'
(a) Expression a + 3

'
Optimi••

11

li+-i+1 L
(b) Assignmr.nt i +-

It +-ta +3 l
""

'\!

li+-k+21 a

Fig. 3.9.1 Duality in Partial Redundancies between Expressions and Assignments

eliminated, and the test replac:ment for i is cancelled.

3.9. Optimization of Store Positions

The optimization of Section 3.5 involves only assignments that are completely redundant.

As was noted in Section 3.5, a du&lity exists between redundant expressions and redundant

assignments. The same is true when We generalize.to partial redundancies. ·Fig. 3.9.1 illustrates

this. Partial redundancy in expressions is a partial availability problem, and partial r<!dundancy

in stores is a partial anticipability problem. _As partial redundancy in expressions can be removed

by backward code motion, partial redundancy in stores can be removed by forward code motion.

F'ig. 3.9.2 shows a partial redundancy in stores occurring in a loop. The variable a is not

referenced anywhere inside the loop. The resulting code motion moves the store to the exit of

the loop, rather than the entry as is the case with expressionst.

Since partial redundancy in stores corresponds exactly to partial redundancy in expressions,

provided that we reverse the direction of view from backward to forward (or ~m upward to

downward), we can apply the same method of partial redundancy suppresBion to stores. The

consequence is a scheme to optimize assignments that encompasses a greater scope, involving

deletions from their original positions and forward movements to places where they are inserted.

t IC the assigned 'Ylllue ill loop-invariant, then the 1111signment will be treated as a loop-inYBriant computation

and moved to the entry of the loop· (see Section 3.6).

62

3.9. OPTIMIZATION OF STORE POSITIONS

i-1 I." i-1

! !

i+-i+ 1 I. i<-i+l

!
~

!
Optimi••

a+-i+9

! !

a-i+9

! !

Fig. 3.9.2 Store Redundancy in Loop

Since the movements of the stores are only in the forward direction, an additional but important

benefit that can be brought about i8 live range shrinkage.

The same methodology as in Section 3.6 is used in UOPT to suppress partial redundancies

in store;S. Instead of inserting at the exits of individual basic blocks, we now insert the stores at

the entries. The L-value attributes of Section :}.5 are used as the starting local attributes in the

flow analysis. The directions of all the ·parameters and attributes are reversed: OUT·~ IN, ABT

~ AV and Pred ~ Succ. The system of flow equations to solve for ·PPIN and PPOUT for stores,

which correspond to Eq. {3.6.7), is as foll~ws:

PPOUTi = {::i. PANTOUT,. II (PPIN; + AHTIH;)
;eSucc(i)

·(AVLOC. + -.ALTEREDi • PPIHi)

{
FALSE

PPIHi = II PPOUT.1:
.l:EPred(•1

if i is the entry block;

otherwise •

if i is the exit block;

otherwise. (3.9.1)

Using the resulting PPIN and PPOUT attributes, insertions and deletions of stores are de­

termined by computing the attributes INSERTIN and DELETE. Ju this case, INSERTIN indicates

insertion at the entry to a basic block rather than Cxit as was the case in backward code motion.

63

3.9. OPTIMIZATION OF STORE POSITIONS

,j. •

rt' 'II

exit m+- b
Optimise exit

rt' 'II

exit j +-i . I,
,j.

IL 'II

exit ; .- i I
'

Fig. 3.9.3 Forward Code Movement to Eliminate Partial Redundancy in Store to i

INSERTIN.: = PPIN1 ·,ANTIN1 · (....,PPOUT1 +ALTERED,).
(3.9.2)

DELETE,= AVLOC1 · PPOUT,.

AB was remarked in Section 3.5, in sol\'.ing for ANTIN, ANTOUT, PANTIN and PANTOUT, the

initial values of ANTOUT and PANTOUT can be set to true if the variable is local, and false otherwis'e.

This allows the recognition of paths in the program in which variables are dead. The result is

that in the subsequent forward code movement, on reaching the entry to a path on which the

assigned variable is dead, code insertion will be automatically inhibited (Fig. 3.9.3).

In the current optimization of store redundancies, no account is taken of the right-hand­

sides of assignments. For an assignment a +- (expr), the content of (expr) does not affect

the data flow analysis that results in computation of INSERTIN and DELETE. However, if a is

assigned different values on dift'er~t paths that converge, then the assignments to a cannot

be moved to the point where the paths converge (Fig. 3.9.4). To take this into account, it is

necessary to impose additional restrictions in the solution for PPIN and PPOUT in Eq. (3.9.1).

In the initialization to solve for PPIN and PPOUT iteratively, the PPIN's for nodes which are

conlluences of more than one paths are to be set to false. In this.way, these PPIN's will remain

false throughout the iterations. The result is that the stores will not be moved across these

nodes.

The attribute INSERTIN computed by Eq. (3.9.2) gives the stores to be inserted at the entry

to a basic block by referring to the assigned variables, but gives no details about the assigned

64

3.9. OPTIMIZATION OF STORE POSITIONS

la+- al1

Fig. 3.9.4 Partial Redundancy in a+- cannot be eliminated (a local variable)

expressions to be used. This is because all assignments of the form a+- {expr) are aggregately

referred to as occurrences of the L-value of a. In performing the forward code motion specified

by the INSEJlTIN attribute, it is necessary to determine the actual assigned expressions. Since

the insertions are moved from the ancestral nodes in the flow graph, it is only necessary to

search through the predecessors by taking an upward path starting with the immediate parent.

Because of the restriction that stores cannot be moved from different paths that converge, a

block in which a store insertion is indicated will not have more than one parent. The search

must succeed, and the assignments found are deleted at their original basic blocks.

The content of the right-hand-side expression also affects the feasibility of the forward code .

movement in another way. It is possible that the value of the assigned expression {expr} in the

• J:lSsignment AJ- .{expr) is altered somewhere along the path that leads to the node where the

store is inserted (Fig. 3.9.3). In such situations, the assignment should still be moved forward

as far as possible, because even though the store partial redundancy cannot be fully suppressed,

it can still be con.lined to the smallest region possible. The resulting.insertion is at· the entry to

the node where the assigned expression {expr) is first altered.

It is to be noted that the optimization of Section 3.6 also removes partial redundancies in

assignments, but in a different sense: the assignments 11:re regarded as computations and are

moved backwards in the flow graph instead of forward. (Compare Fig. 3.9.2 with Fig. 3.6.4.)

The right-hand-sides of assignments are included in the data flow analysis, and the assignments

a +- (expr1} and a +- (expr2) are regarded as different computations. There is no overlap

between the current optimization and those performed in Section 3.8.

3.10. Global Optimization of Saves

The optimization of partial redundancy suppression for expressions (Section 3.6) requires

that the values of expressions be saved at their points of computation and be made available

for use later on at various points in the program. The saving of computed expression values

constitutes a major portion of the new code introduced by the optimizer to the optimized

65

3.10. GLOBAL OPTIMIZATION OF SAVES

! ! !

i-i+l i-i+1 i-i+1

i+j t-i+j i+j

~
t => ! !
! t-i+j

i+j
t t

(a) (b) (c)

Fig. 3.10.1 Suppression of Undesired Common Subexpression Optimization

program. The optimizer has to make sure ~t thest" •. tlditional saves are optimally placed so

that they do not cause deterioration in program performance. Fig. 3.10.l(b) shows a common

subexpression optimization which actually results in slowing program execution; to avoid the one

recomputation of i + j outside the loop, the common subexpression is stored into the temporary

t multiple times during the iterations of the loop. The optimization algorithm of Section 3.6 and

mau.y other redundancy elimination algorithms do not recognize such cases and do not avoid the

optimization. This iS because a computation is redundant whenever it occurs at a point where

it is a'V8ilable. This availability condition applies even if the previous computation occurs inside

a loop.

To enable the optimizer. to avoid such undesirable optimization of redundant expressions,

we address this problem in terms of the optimization of positions to save common subexpressions

(Fig. 3.10.l(c)). The saving of expression values takes up execution time, and it is necessary to

eliminate any redundancy in the save code. Since this redunda.nCy in saves is of the same nature

as the redundancy in stores discussed in Section 3.9 (both are memory store operations}, this

problem can be tackled using the same approach and with the same algorithm. Moreover, they

can be performed at the same time, thus allowing us to obtain the effects of the optimization of

temporary saves essentially for free.

3.10.1. Determination of Saved Computations

To apply the algorithm of Section 3.9 to the suppression of redundancies in temporary saves,

some preliminary steps are needed after the code motion transformation of Section 3.6. It is

necessary to look at all the places where computed values are saved and referenced ai:ross basic

block boundaries. Then it will be posHible to establish the local attributes for the temporary

66

3.10, GLOBAL OPTIMIZATION OF SAVES

saves with which we do flow analysis to suppress their partial redundancies. We call a node

in which a computation is saved a source and a node in which a previously saved computation

is referenced a sink. The reason for these name11 is because computati'!ns done at the sources

are available and used at the sinks by virtue of the control flows. Our objective is to establish

the bit vectors SOURCE and SINK for all basic blocks. If the bit position for an expression e in

SOURCEn is true; then the expression must have been computed in block n, and the value of the

last computation t in n is to be saved. If the bit position for e in SINKn is true, then a previously

saved value of the computation of e is referenced in block n. SOURCE l't!fers to the definitions of

the temporaries and SINK refers to "their references.

The bit vectors SOURCE and SINK can be computed by pure bit vector operations on at­

tributes which are used in the previous optimizations. A computation e is saved in block n in

one of the following two occasions:

1. The computation e occurs' in the basic block n and is available at the block exit (AVLOCn

is true). It is not redundant at the entry point of n (i.e. DELETEn is false) or it is altered

earlier in block n (ALTEREDn is true) so that its recomputation inn is needed.

2. The expression e has been inserted at the exit of basic; block n in the code motion of Section

3.6 (DTSERTn_is true).

In both of the above cases, it is necessan- that there is some partially anticipated sink, so

that the computed value neeclS to be sav~.

A previously saved computation e is referenced in block n under the following situations:

1. The expression e has a redundant occurrence in bloc!t n, and in this occurrencti, it is not

part of another redundant expression (DELETEn - SUBDELETE,., = true).

2. The exprei<sion e is a subexpression of a iarger expression inserted at the exit of block n in

the earlier code motion, but e does not need to be inserted there because it is available at

that point (SUBINSERT,. - AVLOCn =true).

From the above, the bit vector SINK can be computed as follows:

SINK, = (DELETE\ - SUBDELETE.) + (SUBINSERT, - AVLOC.} (3.10.1)

From the local attribute SINK, we can solve for its global" partial anticipability by flow

analysis. The re.;ulting SINKPANTOUT bit vector is used in computing SOURCE:

SOURCEo = (AVLOC. ·(-.DELETE,+ ALTERS,)+ INSERT,]· SINKPANTOUT,; (3.10.2)

f There CBD be more than one computation of • in block n when all except the Inst are altered inside 11.

67

3.10. GLOBAL OPTIMIZATION OF SAVBS

3.10.2. Optimization of Saves by Flow Analysis

After the computation of the SOURCE and SINK attributes, we can transform them into

the corresponding attributes which we use in the suppression of store partial redundancies in

Section 3.!J. We can then include temporary saves in the forward code motion algorithm. The

transformation can be specified as follows:

SOURCE,==> AVLOC1

SINK, ==> ALTERED,

SOURCE, - SINK,=> ANTLOC1

The above transformation allows us to obtain the AVLOC, ANTLOC and ALTERED as defined

in Section 3.5 applied to the temporaries that store the values of the expressions.

The iterations employed in Section 3.9 are used to solve for the basic blocks at the entries of

which the saves to temporaries are to be inserted. At these points of insertion, the recomputation

of the saved expressions are needed. At places where there are redundant stores to temporaries,.

the stores are inhibited.

3.11. Summary

In this Chapter, we have presented a framework of performing optimization that is com·

prehensive enough to include all the common and important optimization transformations. In

Section 3.1, we present a set of local optimization techniques, most of which involve manipu­

lations of the underlying data structures, which are used in various phases in the subsequent

global optimizations, and according to which data fl.ow information is gathered. In Section

3.3, we define the data flow attributes that form the basis for performing the various global

optimizations.

A concise and more generalized method for performing copy propagation is introduced in

Section 3.4. The method also includes global constant propagation as a special case. The

copy propagation algorithm relies on the subsequent redundant expression and redundant store

eliminations for its full benefits to be derived.

In Section 3.5, a method to perform redundant store elimination is presented. The method

is based on the determination of whether a store is anticipated, as opposed to whether a variable

is not live in the traditional approach. The pual relationship between redundant expressions

and redundant assignments is introduced.

68

3.11. SUMMARY

In Section 3.6, the partial redundancy algorithm to perform code motion an<l common

subexpressions is formulated and a scheme for its usage is presented. In Section 3.7, we present a

new method of performing strength reduction by rcgardi~g it as a generalization of code motion,

thus enabling it to be performed at the same time as code motion in the partial redund~cy

alitodchm.

In Section 3.8, we give a method to perform linear function test replacement. The method

of Section 3.5 is adapted for use in the elimination of induction variables made redundant by

previous optimizations.

In Section 3.9, the concept cf partial redundancy in stores is derived using the duality first

exposed in Section 3.5, and we propose the optimization of forward code motion aE. opposed to

the standard backward code motion. The algorithm of Section 3.6 is modified to perform partial

redundancy elimination in stores. This same algorithm is then re-applied to the optimization of

temporary saves in Section 3.10. This complet.es the presentation of the sequence of optimization

techniques that we use.

69

4. Register Allocation

Machines have different forms of memory organization and storage hierarchy. The memory

storage elements that affect machine performance the most are the set of hardware registers -

the fastest type of memory in most machines. Machine instruction sets are designed around the

set of registers residing in the machines. Instructions involving registers are usually shorter and

faster than those involving memory references. Therefore, efficient utilization of registers is very

important in generating good object code.

Register management is a highly ma!:hine-dependent process. In many machines, specific

operations are tied to specific registers. Many machine instructions limit one or more instruction

operands to be among the hardware registers, since such a specification usually takes up a smaller

number of bits in the instruction word. Index and base registers are commonly provided to access

elements in arrays, or in indirect addressing. Many machines also offer the auto-increment and

auto-decrement modes of addressing via index registers. Register management depends heavily

on instruction selection at the lowest level of code generation, and is more appropriately done

by the code-generating back-ends.

However, there is anothe~ aspect of register allocation which is less related to instruction

selection, and can best be performed by the machine-independent optimizer so that the results

can be used by all back-ends. This aspect of register allocation determines which quantities

should reside in the limited number of registers during the course of execution of various program

segments, and the optimization of the associated register-memory transfer operations. This

global machine-independent register allocation, p~rformed across entire procedures, is based on

usage counts, and depends on the global control structure of the program and the availability

of data flow information. Code generators usually gather only local information related to the

instructions they are going to emit, and thus cannot be relied upon to perform this task in the

global context. Global register allocation is best done in the global optimizer as the last phase,

when the final structure of the code to be emitted has been determined. This chapter discusses

the various aspects of machine-independent register allocation in UOPT.

4.1. Limitations

Register allocation at the intermediate code level has a number of limitations compared

with register allocation done by the code generators. All of these limitations are due to the

machine-independent nature of the i,ntermediate code.

1. Only allocation of general-purpose rei,>isters is possible. Dedicated registers (e.g. stack

pointers, displays, subroutine linkage registers) and registers restricted to specific operations

70

4.1. LIMITATIONS

(e.g. mnltiplication in the Intel aoaq) cannot be allocated, since these registers arc invisible

at the intermediate code level. Nevertheless, if the registers in the target machine are

divided into classes, the optimizer can allocate v~ables or different data types to the

different classes or registers according to the description given to it (e.g. the data regis~ers

and address registers in the MC68000, the general registers and ftoating-point registers i:a

the IDM 360/370).

2. The requirements and effects of individual machine instructions pertaining to registers can·

not be taken into account. Such uses of registers arising out of instruction selection by the

code generators are not necessarily related to the register allocation decisions. When regis­

ters are globally allocated by the optimizer' intermixing or rt>gisters used by the optimizer

and registers used by the code generator is not possible. Since the registers used by the

code generator are not available to the optimizer, redundant register copies are sometimes

introduced. For example, the optimizer cannot utilize the fact that an expression may a).

ready be residing in a register at the end of a sequence of machine instructions, unless it

specifically tells the code generator to move the result there. Of course, no real move may

be needed.

3. There are hidden register operations over whicli the optimizer has no control. For example,

in U-Code, the computation stack is a storage area which is usually implemented using a

set of registers in real machines. ~t a function call, it is necessary to save the items still

exist on the computation stack - an operation that involves many register moves. At the

intermediate code level, an item loaded on the stack is assumed to have been used even if

it still resides on the stack. Since the home locations of the variables residing fnrther down

the stack may be changed by the call due to side effects, it is necessary to save the stack

items in special temporary save areas. Another example is the passing of parameters in

procedure calls. The actual mechanism may involve the use of registers, which is invisible

at the intermediate code level.

4. The optimizer has to assume a fixed saving in execution cost for accessing a variable in

register rather than from memory. This saving estimate, supplied to the optimizer in

the machine description, is not in reality fixed for a given machine, since the execi1tion

times of individual machine instructions vary and are also dependent on the actual operand

addressing modes used.

5. The optimizer employs usage counts of variables in the program to estimate the possible

improvements when allocating variables in registers. The usage counts of variables in the

intermediate code may diJfer from those in the object code, dne to the availability of spe­

cialized instructions in the target machine. Ill most of these cases, a scqncuce of U-Code

71

4.1. LIMITATIONS

instructions i11 .:ollapsed into a single machine instruction. Examples include "increment

and test•, "increment pointer and load indirect".

The lirst two of these limitations are the most scriou" while the last three limitations are

largely unavoidable and have minor impact. The unavailability of the detaifod structure of the

registers and the code sequence requirements introduce some inefficiency. However, we believe

that such inefficiency is small and the more abstract model used in UOPT allows the same

register allocation to be used across a wide variety of machines and code generators.

4.2. Assumptions and Overview

The purpose of register allocation in UOPT is to best utilize the limited number of general­

purpose registers set aside for use by the optimizer in the code-generating back-ends. The

register allocator should try to introduce as little register load and store code as possible. If the

optimizer does not use up all the registers set .aside for it, it conveys the information to the code

generator so that the unused registers are available for use by the back-end. Since the input

program is assumed executable without using the global optimizer, all program variables in the

input are assumed to have been allocated in main memory. The optimizer does not attempt

to change the stack frame composition or re-map variable addresses, since such transformations

provide little improvement in execution speed. The optimizer also assumes no register allocation

is present in the input program, since this interferes with its own register allocation. Temporaries

generated by the previous phases of the optimizer are also assumed to have been allocated

in main memory, and they are treated uniformly as variables. Due to these assumptions, it

is not necessary to generate spill code for v.;,nables not allocated to registers. Instead, all

objects haYe home memory locations and the optimizer attempts to re-map memory accesses to

register accesses. This contrasts with the approach used in the PL.8 compiler project [Chai82j in

which the register allocation phase attempts to map the unlimited number of symbolic registers

assumed during earlier compilation and optimization phases into hardware registers. If this is

unsuccessful, code is added to spill computations from registers to storage and later re-load

them.

A precaution is taken due to alias and equivalence. Variables can be equivalenced to an

array element. Non-local variables can also be altered or referenced by indirect assignments or

loads. Such potentially aliased variables arc not considered for assignment to registers since the

indirect operations may alter or reference the home locations of these variables which have not

been updated, resulting in incorrect program execution.

The generai purpose registers used by UOPT are divided into classes, with each dass being

designated for specific data types and sizes. The division into classes is strict, anil no overlap of

72

4.2. AsSUMPTIONS AND OVERVIEW

registers between the classes or more complex machine idiosyncrasy is currently handled. The

registers within each class arc assumed to be uniform.

The register allocation algorithm used is a combination of a local method based on usage

counts and the global method based on the coloring algorithm, which also takes into account

cost and saving estimates. The local phase allocates one block to a register each time. The

global phase allocates one live range to a register each time. The local register allocation

phase is inexpensive and near-optimal for straight-line code, but does little to contribute t11

the globally optimal solution. The _global allocation phase is more computation-intensive anJ

time-consuming. In our approach, the local allocation process is made to do as much allocalbn

as possible so long as the allocation- would not have any effect on the outcome of the global

allocation phase. The algorithm is general enough to be applicable to all target machines.

The relative importance between the local and global phases can be varied by changing the

maximum length of blocks allowed. The user can set the ZVREF option with a number, which

imposes a limit on the maximum number of variable appearances allowed in a basic block. H

this number is exceeded, the remaining code is made to belong to a new block. A default

value for this option serves to guard against the presence of large blocks that can degrade the

output of the register allocator. When blocks are· small; the local phase will not be able to

allocate as many items to registers based on its allocation criteria, and more work is left to

the more expensive global phase. As tht; limit on block lengths becomes smaller and smaller,

the overall allocation also approaches the optimal solution since registers can now be allocated

across shorter segments to cater to any irregular clustering of accesses. The processing cost

also increases correspondingly because of the larger number of blocks involved and the greater

amount of work being performed by the global phase. Thu~, the register allocation phase in

UOPT has a large amount of built-in flexibility with respect to ptocessing cost and quality of

results. ill practice, basic blocks are usually short, and most of the work is done by the global

phase.

4.3. Cost and Saving Estimates

In determining the feasibility of assigning a variable to register, it is necessary to estimate

the execution-time cost and saving due to the register assignments.

Assigning a variable to a register involves the loading of the variable from main memory

to the assigned register prior to referencing the variable in a register in the subsequent code.

If the value of the variable is changed in the intt<rvening code where it resides in register, the

home memory location of the variable has to be updated with the register content at the end

of the code segment unless it is dead on exit. These extra move operations bt>twuen registers

73

4.3. COST AND SAVING EsTIMATBS

I
·;

RSTR

"" \ Live
\ Range

(
\
\
I

RSTR I
,/ -

Fig. 4.3.1 Example of a live range with associated RLOD's and RSTR's

and memory represent the execution time cost of the register assignment. The execution time

saving of the register assignment refers to hc>w much the code segment is rendered faster due to

the variable's residing in a register (Fig. 4.3.1). Thus, we define the following three parameters,

which vary among target machines:

MOVCOST - The cost of a memory-to-register or register-to-memory move, which in practice

is the execution time of the U-Code instructions RLOD and RSTR in the target

machine.

LODSAVE - The amount of execution time saved for each reference of a variable residing in

register compared with the corresponding memory reference that is replaced.

STISAVE - The amount of execution time saved for each definition of a variable residing in

register compared with the corresponding store to memory being replaced.

The parameters LODSAVE and STRSAVE may not be constant for all loads and stores for the

same machine, since they depend on the actual machine instructions and addressing modes being

usetL For example, a ma.chine instruction may directly specify an operand in main memory,

or there may be loading of the operand into a register in a prior instruction before referencing

the operand via the register. The addressing 111echanisms used also depend on whether a given

variable is local, global or an up-lcv<.'1 reference. The actual addressing mechanisms may be via

711

4.3. COST AND SAVING !';STIMATES

displays or static links. Pipelining in tl~e underlying architecture also affects the values. For

machines that rec;uire operands to be in a register before any operation, LODSAVE is equal to

MOVCOST. Otherwise, MOVCOST is larger than LODSAVE or ~TRSA"IE. It is necessary to use average

values for LODSAVE and STRSAVE for a given machine.

It is to be noted that LODSAVE and STRSAVE as defined above may not represent all the saving

that comes from register assignments. The benefits ofregister allocation do not arise solely out

of being able to reference an item in register instead of from memory. In many machines, having

a register operand has the added benefit of allowing more freedom in the instruction selection

process of the code generator. The saving that comes from enabling the code generator to use

more efficient instructions is highly context-dependent, and cannot be easily paramaterized.

Only the relative values of the above three parameters are significant. A typ~cal set of

values for these parameters are 1.5 for MOVCOST and 1 for LODSAVE and REGSAVE. Section 5.7.2

discusses the effect of these 'parameters on th11 optimization results.

4.4. Local Register Allocation

Local register allocation in UOPT precedes the global register allocation phase. Local

register_ auocation refers to allocation in a basic block, or a straight-line piece of code segment

which may be part of a basic block. The allocation is based only on information available in each

basic block. The solution to this problem using reference counts is well-established, inexpensive

and can be easily implemented [Frei74]. Nevertheless, separate locaily optimal solutions to the

register allocation problem do not necessar~ly add up to the globally optimal solution. However,

it is possible to determine a portion of register allocation locally that also belongs to the global

solution, so that the work load of the subsequent, more expensive global allocation phase can

be made smaller.

For each variable in the local code segment being considered, the local saving that can be

achieved by assigning the variable to register is estimated. This is computed by:

NETSAVE = LODSAVE x u + STRSAVE x d - MOVCOST x n

where u is the number of uses of the variable,

d is the number of definitions of the variable and

n is either 0, 1 or 2.

(4.4.1)

n depeilds on whether a load of the variable to a register (RLOD) at the beginning of the

code segment and a store from the register back to the variable's home location {RSTR) at the

end of the code segment are to be inserted. If they arc both needed, n is 2. If the first occurrence

75

4.4. LOCAL REGISTER ALLOCATION

of the variable is a store, then the initial P.LOD is .not needed. If the variable is not altered, or if

the variable is not live at the end of the code segment, then the RSTR is not necessary.

If the local code segment is considered together with its preceding and subsequent code, the

term invohing MOVCOST represents the uncertainty in cost with regard to NETSAVE that may or

may not contribute to the final global solution._ This is because i! the variable is also allocated

to the same register in the surrounding code, then the RLOD and RSTR at the beginning and

end of the current code segment are unnecessary, and the actual value of NETSAVE is increased.

Thus, for each variable in the local ~ode, we compute two separate quantities:

MAXSAVE.::: LODSAVE x u + STRSAVE x d (4.4.2)

MINSAVE = LODSAVE x u + STRSAVE X d- MOVCOST X n (4.4.3)

The quantity MINSAVE represents the minimum saving in the local code segment gained by

allocating the variable to register. The quantity MAXSAVE is the maximum possible saving. The

actual saving after all register allocation is performed will range between MIMSAVE and MAXSAVE.

The parameters MAXSAVE and MINSAVE also apply to variables which do not occur in the code

segment, when they are both O; in such cases, the two parameters are used only in the later

globaj allocation process.

When the surrounding blocks are considered together with the. current block, the local

allocation may displace some other variable· which has been assigned to the same register in the

adjacent blocks and which, if allowed to occupy the same register in the current block, would

enable the elimination of the RSTR's at the ends of the preceding blocks and the RLOD's at the

starts of the succeeding blocks. Thus, the absolute criterion for determining the local allocation

of a variable in register can be given as:

MINSAVE > MOVCOST x (p + s)

where p is the number of predecessors of the block,

s is the number of successors of the block.

(4.4.4)

When this condition is satisfied, the variable can be locally allocated in register with cer­

tainty regardless of the rest of the program. In compding the above condition, the frequency

weights (sec Section 4.5) of the adjacent blocks relative to the current code segment have to be

taken into account.

In making local register allocations, if there are more variables satisfying the condition

given by Eq. (4.4.3) than there arc registers available, it is necessary to determine the priorities

76

4.4. LOCAL REGISTER ALLOCATION

among the variables. Priorities are assigned by imposing a partial ordering on the variables.

Variable a is preferred over b if:

MINSAVE(a) > MAXSAVE(b) (4.4.5)

Otherwise, the preference cannot be established absolutely.

The actual assignment of register number is not performed in the local allocation pass.

It is done during node coloring in the global allocation phase, when the optimizer will look

for opportunities to assign the same register to a variable over contiguous code segments to

minimize the number of RLOD's and RSTR'~.

4.5. Control and Data Flow Analysis

The overall register allocation process depends on the division of the input program flow

graph into discrete code segments, each not longer than a basic block. A code segment is the

smallest extent of program code over which a register is assigned to a variable. The smaller the

code segments, the closer will the final solution be to the optimal allocation solution. However,.

the amount of processing time· in global register allocation is potentially some exponential func· ·

tion of the number of program nodes. In UOPT, long basic blocks can be broken up into smaller

segments based on the number of variable references already encountered. It is expected that

as the limit on the sizes of the code segments becomes smaller and smaller, the usefulness of

the local register allocation stage will diminish, since fewer and fewer variables can imtisfy the

condition given by Eq. (4.4.4).

The global register allocation solution also depends on estimates of the cost and saving of

letting a variable reside in register across a certain region. In computing the cost and saving, it

is necessary to take into account the loop structures of the program. This is because a register

load or store outside a loop is preferred over one inside a loop, and a live range extending over a

loop has greater priority to occupy a register than one not over a loop. Thus, each code segment

is assigned a frequency weight poportional to how deep the segment is nested inside loops. The

weight is arbitrarily increased by a factor of 10 each time a loop is entered'. Thus, the frequency

weight of a given code segment is 10 times its loop-nesting depth.

The loop structure of the program is detected by performing interval analysis on the control

flow graph. The flow graph is partitioned into inter,,tls, forming the derived flow graph. This

process is performed iteratively until the derived sequence of the flow graph is obtained (Section

3.3 of [Hech77]). In the derived sequence Go,G1,. .• ,G1c, each G;+l is the derived flow graph of

G;, and G 1c is the limit flow graph. The degree of nesting of individual nodes in the original flow

77

4.5. CONTROL AND DATA FLOW ANALYSIS

Proc. Entry

Use of a
]

live

range
a-

Call F(...)

Use of a l live

range
Use of a

Proc. Exit

Fig. (,li.1 The live ranges of a non-local variable a

graph is then found by going down the intervals starting with the limit Bow graph G,. in the

reverse order of the derived sequence until the nodes in the original flow graph Go are reached.

In going from Gi to Gi-1• not more than one loop can be entered, and t~e loop must include

an interval header in G0•

A live rang11 of a variable is an isolated and contiguous group of nodes in the control How

graph in whicl1 the variable is defined and ~fcrenced. No other definition of the variable reaches

a reference point inside the. live range. Also, the definitions of the variable inside the live

range do not reach any other reference point outside .the live range. Global register allocation

assigns complete live ranges to registers, and if this is not ·possible, parts of live ranges are

assigned. Computations for the separate live ranges of the program variables require processing

and representation overhead. Since UOPT does not perform variable subsumption, computation

of the separate live ranges is not strictly needed. Instead, one live range· is assumed for each

variable in a procedure at the beginning of the global register allocation phase. The optimizer

can break each live range up into separate segments if necessitated. by the regidter allocation

process. In this respect, the live range of a variable in UOPT is the set of nodes in the program

flow graph in which the variable needs be considered for allocation in register. This inclndes

nodes in which the variable does not appear, because these nodes can serve as connecting links

between definition nodes and reference nodes.

By virtue of the contiguity of the blocks in a live range, when the live range ls assigned

to a register, RLOD's are needed only at entry pohtts to the live range aud RSTR's are required

78

4.5. CONTROL AND DATA FLOW ANAl.YSIS

only at its exit points. UOPT supports both the caller-save and callee-save convention regarding

registers in procedure calls. In the caller-save context, all registers need to be freed at a procedure

call so that they can be used in the called procedure. Thus, live ranges arc never allowccl to

extend over a procedure call. The optimizer is rcspon~ible for indicating which variable home

locations arc to be updated from registers before a procedure call, and which variables are

to be re-loaded to registers after the call. Because of the occurrence of points that interrupt

the contents of registers, our live ranges do not necessarily begin at definition points or end

at reference points. When a procedure call is occurring later in the code, the live range of a

variable should end at the last appearance of the variable before the call, regardless of whether

that last appearance is a use or definition. Otherwise, it will necdlc8sly occupy the register up to

the procedure call when the register still has to be saved there. After a procedure call, the live

range should begin at the first appearance of the variable, even though the procedure call may

assign a value to it as a side effect. These remarks about live ranges bordering on procedure

calls also apply to non-local variables near procedure boundaries: after the entry point to a.

procedure, the live range of a non-local variable begins at its first appearance; before the exit

points of a procedure, the live range of a non-local variable ends at its last appearance. Fig.

4.5.1 gives an example of live range delimitation.

The live ranges of variables are computed by solving for the live and reaching attributes. . .
A variable is !foe at block i if there is a dir~t reference of the variable at block i or at some

point leading from block i not preceded. by a re-definition or a procedure call. A variable is

reaching block i if a definition or use of the variable reaches block i without passing through

any procedure call. The live range of a variable is then the set of flow graph nodes in which the

variable is both live and reaching.

In the case of the callee-save convention, live ranges are allowed to extend over procedure

calls, and registers are allocated across the calls.

4.6. Global Register Allocation by Priority-based Coloring

The vir"V of r<?gister allocation as a graph coloring problem has been well-established

[Schw73] tLcvc81] [Chai82]. A coloring of a graph is an assignment of a color to each node

of the graph in such a manner that each two nodes connected by an edge do not have the

same color. The interference graph is distinct from the program flow graph. Each node in the

interference graph represents a program quantity that is a candidate for residing in a register.

Two nodes in the graph are connected if the quant.itics interfere with each other. hi our case,

interference meaus there is overlap between their live ranges.

79

4.6. GLOBAL REGISTEll ALLOCATION BY PRIORITY-BASED COLORING

After the builrung of the interference graph among the variables, the next stage is node

coloring the inti:rference graph. The number of colors used for coloring, r, is the number of

registers available for use by the optiinizer. The goal is to find the best way to assign the

program variables to registers so that the execution time is minimized. Even if there are enough

registers aro1md, the best solution i11 not necessarily the one that allows all variables to reside in

registers, because the cost of loading and updating the values of the variables have to be taken

into account.

The standard coloring algorithm that determines whether a graph is r-colorable is NP­

complete. It involves selecting nodes for which to guess colors, and backtracking if the guesses

rail. The algorithm takes only linear time when the first trial succeeds. But if the graph is

not r-colorable, or is in one of the borderline cases, an exponential amount of computation

can be needed to prove that it is indeed so, since it is necessary to backtrack and attempt

all possible coloring combinations before reaching the final conclusion. Thus, the standard

coloring algorithm works well only when the target machines have a large number of registers.

The standard coloring algorithm also does not take into account the cost and saving involved

in allocating variables to registers. It always tries to allocate as many items in registers as

possible, and does not consider the relative benefits of the individual variables, since they occur ·

with different frequencies and with varying degrees of clustering. When it is found that an

r-coloring is impossible, the decision regarding which variables to be excluded in the coloring

(i.e. to be spilled) is difficult to make, since it is hard to predict the effect of spilling a certain

variable on the outcomes of the subsequent coloring attempts. The loop-nesting depths of

different parts of the program are also overlooked.· In practice, variables oc~urring in frequently

executed regions should be given greater preference for residing in registers. The algorithm also

overlooks the fact that procedure calls affect register allocation. In the caller-save environment,

the saving of registers before procedure calls and their reloading after the calls represent extra

register allocation cost that has to be factered into the register allocation algorithm.

Because of the iinmeJlllC complexity of finding the optimal register allocation solution, most

register allocators overcome the. NP-completeness obstacle by aiming for a practical rather than

the optimal solutiont. Our philosophy regarding register allocation is the same. The emphasis

is to do register allocation efficiently but still yield reasonable solutions for most input program

configurations (with respect to the number oflive ranges and the complexity of the interferences).

Our global register allocation algorithm is an adaptation of the standard coloring alg~

t To find the optimal solution also requires the nae of very small code llCgments as the smnllest allocation

code range, and this also adds to the complexity of the allocation process.

80

4.6. GLOBAL REGISTER ALLOCATION BY PRIORrrY-BASED COLORING

rithm that enables us to overcome the problems in the standard algorithm mentioned above.

By regarding all variables to have been assigned home locations before register allocation, we

circumvent the problem of having to introduce spill co~e. Cost and saving estimates, which

also include the effects of loop-nesting depths, are factored into the coloring decisions. 'I'.his

servcs to prevent the over-allocation problem. The algorithm does not backtrack. Instead, it

is benefit-driven. Allocation is ordered according to the cost and saving estimates. One live

range is assigned to a register each iteration, each time picking the most promising live range

according to the estimates of cost and execution time saving. It is hoped that this ordering

procedure will allow the results of the allocation to be close to optimal. Our algorithm is also

linear when an r-coloring can be found. Moreover, it does not deteriorate when r-coloring can­

not be achieved. Thus, the algorithm works under any situation regarding register resources

in the target machine - an attribute that is especially important in the machine-independent

context.

Initially, we assume that one variable occupies a single live range, even though the live range

may consist of non-adjacent parts. This allows us to avoid the cost of computing and representing

separate live ranges prior to coloring. The interference graph is also made much simpler, and

the processing cost associated with accessing, manipulating and updating the interference graph

during ·coloring is also greatly reduced. In the course of performing coloring, when a variable

cannot be assigned the same color throughout the procedure, its live program nodes will be

separated into two or more groups, each group constituting a new live range. The new live

ranges are treated the same way as variables as far as the coloring algorithm is concerned, and

the interference graph is updated accordingly. Splitting is repeated until all the split live ranges

can be colored or until all the split live ranges consist of single blocks. If a split-out live range

is left uncolored at the termination of coloring, the effect is equivalent to spilling. In our case,

no spill code needs be explicitly inserted, since register candidates are assumed to have been

allocated in main memory either by the compiler front-end or earlier optimization phases. Live

range splitting is performed with the emphasis on not creating small live range fragments unless

warranted by the situation.

In the node coloring algorithm, variables which have a number of neighbors in the interfer­

ence graph less than the original number of colors available are left uncolored 1mtil the very end,

since it is certain that an unused color can be found for them. These are called unconstrained

variables or live ranges. The rest of the variables live ranges are assigned colors by successive

iterations of Step 2 of the algorithm. Each iteration selects a variable and assigns a color to

it. New live ranges arc fom1ed out of splitting during the iterations, and if any of these are

unconstrained, they arc added to the unconstrain~d pool of variables. The iterations continue

81

4.6. GLOBAL REGISTER ALLOCATION BY PIUORITY-BASED COLORING

until all constrained live ranges have been assigned a color, or tht>re is no color left that can be

assigned to any constrained variable in a.ny code segment.

Algorithm Prioritu-baaed Node Coloring.

1. Find the live ranges whose number of neighbors in the interference graph is less than the

number of colors available, and set them aside in the pool of unconstrained live ranges.

2. Repeat Steps a to c, each time assigning one color to a live range until all constrained live

ranges have been assigned a color, or there is no register left that can be assigned to any

live range in any code segment (taking into account registers allocated in the preceding

local allocation phase).

a. Perform Step (i) or (ii) for each live range Ir until TDTALSAVE for all original or newly

formed live ranges are computed:

(i). If Ir has a number of colored neighbors less than the total number of colors avail·.

able, assume a color is assigned to it through all its live blocks. Then compute

and record TDTALSAVE for the variable Ir as follows:

1. In each block i of the live range lr, det~mine whether register load and store

is necessary based on whether the adjacent blocks in the flow graph belong to

the same live rang~. Let the number of register loads and stores be n, which

ranges from 0 to 2.

2. Compute NETSAYEo as

NETSAVE1 = LDDSAVE x u + STRSAVE x d - MOVCOST x n

where u is the number of uses of the live range variable and

d is the number of definitions of the live range variable in block i.
3. Let /; denotes the frequency weight based on loop nesting of block i in the

flow graph. Compute TOTALSAVE for the live range Ir as:

TOTALSAVE = L(NETSAW. x /.).
iElr

(ii). If the number of colored neighbors of Ir is already equal to the number of colors

available, then the live range Ir has to be split. In performing live range splitt.ing,

attempts are made to split out as large live ranges as possible. A new live range

lr1 is split out from Ir as follows:

A new node in the interference graph is created for lr1 .' A dclh::itfon block from Ir,

preferably one at an entry point to Ir, is first added to lr1. Blocks adjacent to lr1

82

4.6. 0LODAL REGISTER ALLOCATION UY PRIORITY-BASED COLORING

that ahio belong to Ir are successively added to lr1, updating the neighbors in the

int~rference graph until the number of colored neighbors of lr1 in the interference

graph is one less than the number of available colors. The motivation of this is to

produce the largest possible live range that can still be colored. This is continued

until no more adjacent block can be added to the new live range lr1•

If the µcwly formed live range lr1 has a number of neighbors in the interference

graph less than the number of colors available, set it aside in the pool of uncon­

strained variables to be colored later. Otherwise, add it to the pool of candidates

for estimation of TOTALSAVE,

As a result of the new node in the interference graph, some previously uncon­

strained live ranges may now become constrained. These have to be updated.

b. For each live range Ir, compute ADJSAVE as

ADJSAVE = TOTALSAVE • •
(number of nodes m Ir)

(The quantities TOTALSAVE and ADJSAVE do not have to be ~omputed if the live range

has not changed since the previous iteration.)

c. Looking at the values of ADJSAVE computed for all the uncolored but constrained live

ranges in Steps a and b, choose the live range with the highest value of ADJSAVE and

assign a color to it.

3. Assign colors to the unconstrained live rang~, each time using a color that has not been

assigned to one of their neighbors in the interference graph. a
Thus, the algorithm orders the assigning of colors according to which variable currently

has the highest value of ADJSAVE (Step 2c). ADJSAVE can be visualized as the total number of

occurrences of the variable in the live range, weighted by loop-nesting depths and normalized

by the length of the live range. The adjustment by the live range length (the number of basic

blocks belonging to the live range) is needed because a live range occupying a larger region of

code takes up more register resource if allocated in register. In the local allocation phase, we

have already taken pure occurrence frequencies into account. Thus, when entering the global

allocation phase, all the variables that remain unallocated in each code segment have occurrence

frequencies that do not differ widely, so the important consideration is whether the allocation

enables the same register to be assigned across contiguous code segments so that register loads

and stores can be minimized. The value of ADJSAVE comprises a measure of this conncct1:.'tlness.

The more connec-ted the code segments in the. live ranges of a variable are, the more worthy is

the variable to be allocated in register, and the more difficult it will.be to find the same register

83

4.6. GLOBAL H.EGISTER.ALLOCA'rION BY PtUORITY-BASlm COLORING

for it throughout; so, it is important t~ assign a color to it before other variables. The use of

the ADJSAVE criterion is justified only if the local allocation phase precedes global allocation.

The determination of n in Step 2a(i) can make use of more information than previously

possible in the local allocation phase of Section 4 .. If the first occurrence of the variable at an

entry block is a store, then the RLOD is not needed. If all the predecessors of a block also belong

to the live range, then the RLOD is also not necessary, unless any of the predecessor contains

a procedure call in the case of caller-save environments, or the current block is an entry node

(including the case of a goto-out-of-block target). An RSTR is necessary at the exit blocks of a

live rl\Jlge only if the live range contains at least one assignment to the live range variable and

the variable is not dead on exit. At blocks internal to live ranges, RSTR's are also generated if any

successor node has an RLOD, or contains a procedure call in the case of caller-save environments.

The computation time complexity of the above algorithm can be estimated. We are mainly

concerned with Step 2 of the algorithm, since this step takes a lot more time compared with

Step 3 for the unconstrained live ranges. Let r be the number of registers. Let l be the number

of live ranges, and assume that this stays fixed during the course of the algorithm. Also assume

that each register is assigned to one and only one live range in the procedure, though in reality

this is not always the case. Then there is r iterations for Step 2 of the algorithm. For the first

iteration, a live range is to be chosen out of I live ranges. For the second iteration, the choice is

to be made out of the l - 1 live ranges. remalliing. Summing all the iter<.tions, we get

r(2l -r+ l)
I + (l - 1) +: .. + (l -: r + 1) = 2 ·

Thus, the algorithm iii O(r(l'- r)). The time of the algorithm proportional to both the number

of registers available and the number of candidates to reside in registers.

The above algorithm can easily extend to the case of multiple classes of registers. The

interference graph will only give interferences between variables of the same class. The algorithm

is repeated once for each class of register. Iu each case, the number of colors corresponds to the

number of registers in the class being considered.

4.7. Optimization of Register-Memoey Moves

To enhance the effectiveness of register allocation, the optimizer must optimize the register

move operations it introduces as much as possible. In the previous register allocation phases,

the optimizer takes into account the cost of the register move operations in determining register

allocation. The RLOD's and RSTR's are 11.'!sumed to be p!nl'eii at t.he beginning~ nnil end~ of

allocation code segments in the saving estimates. ·

84

4.7. OPTIMIZATION OF RECISTER·MRMORY MOVES

D
RLOD a

live

range

of a

R OD

live

range

of a D
RLOD a .

...

live

range

of a

RLOD a

live

range

of a

Fig. 4.. '1.1 Removing partial redundancy in RLOD

After register allocation has been completed, UOPT conducts one further pass to optimize

the placements of RLOD's and RSTR's. This optimization can be viewed as n form of code motion,

since the purpose is to move the register tr~sfer instructions away from frequently executed

regions. The algorithm of Section 3.6 can' in principle be used, but in practice, a more simplified

and condensed approach is possible. This is based on the fact that RLOD's are generated only

at entry points to live ranges and RSTR's at their exits. Furthermore, the RLOD's and RSTR's

are never moved across entire blocks, since this would alter the effective live ranges. RLOD's are

only moved from the entry points of blocks to the exit points of their immediate predecessors,

and RSTR's are only moved from the exit points of blocks to the entry points of their immediate

successors. No data tlow analysis is involved.

An RLOD for a variable a in blo~k i is moved to the exits of the predecessors of i when the

following conditions are satisfied:

(a) At least one predecessor of i belongs to the same live range of a;

(b) All the predecessors of i that do not belong to the live range have i as their only successor;

(c) i is not the target of a goto-out.of-block.

When the above conditions are satisfied, the RLOD is deleted from i and inserted at the exits

of the predecessors of i which do not belong to the live range (Fig. 4.7.1). When one of the

predecessors of i belonging to the same live range under condition (a) is also reachable from i,

the result is the movement of the RLOD from the loop in which i is the loop entry block (Fig.

85

4.7. OPTIMIZATION o~· _REGISTlm-MEMORY MOVES

RLOD a
! !

RLOD a

live live

range range

of a
of a

! !

Fig. 4, 7.2 Movement of RLOD out of loop

! !'

live live

range range

of a of a

RSTR a
! !

RSTR a
1.

Fig. 4.7.3 Movement of RSTR out of loop

4.7.2).

An RSTR for a variable a in block i is moved to the entries of the successors of i when the

following conditions are satisfied:

(a) At least one successor of i belongs to the same live range of a, and there is no RLOD of a

at the entry point of that successor;

(b) For the successors of i which do not satisfy condition (a), they have .i as their only

predecessor, and are not the targets of gotos-out-of-block.

When the above conditions are satisfied, the RSTR is deleted from i and inserted at the

entries of the successors of i that do not satisfy condition (a). As in the case of RLOD, forw<>.rd

movement out of loops (Fig. 4. 7.3) is a special case of this transformation.

86

4.8. Summary

In this Chapter, we have introduced an integrated register allocation scheme that is suitable

for use in the machine-independent context. The algorithm works for most configuratious of

general-purpose registers in the target machines up to and including the grouping into Iion­

intersecting register classes. The performance and efficiency of the algorithm are not affected

by the number of registers available. We introduced the parameterization of cost and saving in

register allocation that enables our algorithm to cater to the different characteristics in machines

regarding the benefits of register accesses over memory accesses.

The register allocation is divided into a local and a global phase. The local phase is employed

to perform some initial allocation quickly that can reduce the work load of the subsequent global

phase without affecting the final outcome. The local phase is useful only when there are long

basic blocks. But when blocks are long, register allocation is unable to cater to the clustering

of appearances within the blocks. The user can decrease the maximum size of the blocks used,

thus increasing the number of discrete code segments and allowing the finding of more optimal

register allocation solutions. The processing cost in register allocation will correspondingly

increase, when more work is involved in the global phase.

Th,e global register allocation scheme is an adaptation of the standard coloring algorithm •.

The standard algorithm handles insuffici;:nt registers by spilling variables into main memory. We

have taken the different approach of assuming that all variables have been assigned home memory

locations initially, and we handle the situation of insufficient registers by live-range splitting.

This allows us to make the initial aseumpt;on of one live range for each variable throughout the

whole pro«"edure, which in turn enables us to avoid the processing and representation overhead

of computing separate live ranges prior to performing the global allocation. The resulting

smaller size of the interference graph also saves the processing· cost associated with accessing and

manipulating the interference graph during coloring. Our node coloring algorithm is priority­

based. The allocation is ordered according to which variables have greater priority for residing

in registers. By taking into account the cost of register transfer operations to and from memory,

we can factor the effects of not allocating in register into the coloring decisions. We have

weighted the cost and saving estimates by the loop-_nesting depths of the regions concerned; and

thus also take into account the control flow of the procedure concerned. Using the cost and

saving estimates also makes it possible for us to take into account the effects of procedure calls

in caller-save environments. The running time of our coloring algorithm is proportional to the

number of registers and the number of live ranges to be c.-'llored. After the completion of register

allocation, we conduct one more pass to optimize the positions of the register-memory transfer

operations by suppressing partial redundancies among them.

87

S. Organization and Structure.

In this Chapter, we look into the overall organizatJon and structure of UOPT in imple­

menting the optimization algorithms presented in Chapters 3 and 4. The interactions am.ong

the optimizations performed arc addressed. A specific ordc1 . .:'or performing the optimizations is

developed. Based on our implementation, the timings and efficiencies of the various optimiza·

tion phases are studied. The data structures used in UOPT are deiicribed. The methods used

in the collection of data Bow information arc examined. The interactions of UOPT with the

procedure integrator Pl\i!ERGE are also discussed.

5.1. Optimization Phase Structure

In performing optimization on an input program module, UOPT passes over the program

code only once, when it reads in the code of the procedures. It optimizes procedures one at

a time, writing out the optimized code befo~e reading in the next procedure. In general, the

contents of one procedure have no effect on the optimization of other procedures (i.e. no inter·

procedural analysis is done). The one exception to this is that UOPT does remember the levels

of previously encountered procedures. By taking the static nesting of procedures into account,

UOPT .can determine whether side effects on variables in the current procedure are possible.

The input procedure code is separated into basic blocks while they are read. Basic blocks .

are delimited according to the set of op-codes that mark the ends of basic blocks, and U·Code

labels that mark the starts of new basic blocks. As the code is read in, unreachable code is also

removed by skipping until the next label if the previous batiic block ends with an unconditional

jump or a return. Some local optimizations are performed as part of the process of inputing

program code, when data structures are built to represent the basic block code. After each basic

block is completely read in, the remaining set of local optimization transformations are invoked

(St.>ction 3.1). Following local optimization, the local data Bow attributes (Section 3.3.1) are

collected. The reading of a basic block also causes a node to be added to the global control How

graph.

Once the whole procedure is read in, the global optimization phases begin. The initial

step is analysis of the control flow graph. Unreachable Bow graph nodes are idtmtified, and

the corresponding basic blocks are deleted. The control !low graph nodes are put into a depth·

first ordering for maximizing speed in the subsequent oata flow analyses. Additional data flow

information is collected from the program code.

Using tbe global optimization approach presented in Chapter 3, we identify the following

three underlying phases in global optimization:

88

5.1. OPTIMIZATION PHASE STRUCTURE

Phase A - Copy propagation.

Phase D - Partial redundancy elimination for expressions (backward code motion).

Phase C - Partial redundancy elimination for stores to both program variables and optimizer·

generated temporaries (forward code motion).

To the above, we add extra pha8es that perform the optimizations not yet included:

Phase D - Linear function test replacement.

Phase E - Induction variable elimination.

Phase F - Register allocation.

Induction variable elimination (Section 3.7) cannot be included in phase C because the data

flow information used in solving for redundant induction variables has to be specially set up to

disregard increments to induction variables.

For completeness, we list the local optimization phase here since new local optimization

opportunities may be created by various code movements:

Phase G - Local optimization.

For maximum optimization efficiency, the different optimization phases should be performed

only once. This, however, conflicts with the objective of achieving the most optimization, sin~e

further optimization opportunities can be uncovered by performing a given set of optimization

transformations. Our objective is to develop a particular sequence in which the above opti·

mization phases arc applied or repeated that represents the best tradeoff between optimization

efficiency and exhaustive optimization. We have LO take into account the interactions between

the various optimizations and the need to update the relevant data flow information after each

optimization phase.

5.1.1. Underlying Principles

A program can be visualized as a sequence of points at which variables are alternately

defined and referenced. Let d denotes a direct assignment to a variable a a.nt.1 ·u denotes a direct

reference of a. Let Ui denotes an operation which may potentially reference the value of a, and

d, denotes an operation which may potentially alter the value ofa. d, and u; occur in indirect

loads (ILOD's) and indirect stores (ISTR's) respectively, and also in procedure calls due to side

effects, and in the passing of address p~ameters to called procedures (see Section 5.4).

The optirnizations of backward and forward code motion involve moving the u's, d's, u;'s

and d;'s around, although procedure calls are considered stationary points and never moved.

89

5.1. OPTIMIZATION PHASE STRUCTURE

Embedded in the code motion algorithms of Chapte. 3 are criteria for determining the movement

of items from on.e point to another. One of the criteria is the rule that governs the legality of

code movement: a u or u; item cannot be moved across a d or d; point, and a d or d; item

cannot be moved across au, u;, d or d; pointt. AB an example, suppose the variable a has the

following occurrences in a straight-line piece of code:

Then a legal rearrangement of this pi"ce o_f code is

Whenever there are two consecutive occurrences of d's, the earlier occurrence is redundant.

This transformation takes place in the redundant store elimination algorithm of Section 3.5.

Thus, the above sequence of code can be reduced to

The u's and d's also govern the availability of computations, which plays a major role in copy

propagation and common subexpressions. An expression or assignment is no longer available

after the occurrence of a d or d; that changes the value of any of the variables in the expression

or the value of the assigned variable.

In the code motion optimizations of phases B and C, the above d's and u's occurrences are

what limit the code movement that can be attempted. Thus, in the code sequence

if d, had b<.'Cn moved backward (to the left) or deleted, it would be possible to move u1 backward

past the original position of d,. Similarly, if d2 had been moved forward (to the right)or deleted,

it would be possible to move u1 forward past the original position of d2. The same reasoning

applies to the movement of ad in relation to the other u's, u;'s, d's.and d;'s in its vicinity.

t When an item moved consists of multiple variables, the .,,.,,.,J•/ of all the variables are taken into account.

90

5.1. 0PTIMIZA1'10N PHASE STRUCTURE

5.1.2. Relationships among the Phall!es

We now study the interactions among the phases A to G we enumerated above in order to

establish the best order of applying the various optimizations. The first observation we can make

is that register allocation shollld be the last phase in the optimization sequence, because it has to

take into account the appearances of all potential register-residing items, which arc affected by all

the other optimizations. Among the register-residing items are optimizer-generated temporaries

whose associated optimizations are beneficial in terms of execution speed only if the temporaries

are allocated in registers.

Linear function test replacement (phase D) has to be performed right after backward code

motion (phase B), because it makes use of the availability information computed in that ~!!z:.se in

finding expressions to replace a test variable. Induction variable elimination (phase E) depends

on the test replacements performed, so phase E should occur after phase D.

Having taken care of register allocation, linear function test replacement and induction

variable elimination, we are left with copy propagation (phase A), backward code motion (phase

B), forward code motion (phase C) and local optimization (phase G). To study the interactions

among these four different optimizations, we construct Table 5.1.1. In each entry of Lhls table,

we need to decide whether the optimization of the row entry affects the optimization of the

column entry. Theoretically speaking, whenever an entry is yes, it is necessary to repeat the

column entry's optimization after each application of the row entry's optimization in order to ·

exhaust all optimization opportunities.

Entry I(a). According to our local'optiinization algorithms, the local optimization pass

does all possible local optimizations within each basic block, and it is useless to repeat the

local optimization pass on itself.

Entry I(b), I(c) and I(d). Local optimization can affect all other optimizations. We

do not consider the optimization of local common subexpressions here, since it is a direct

result of inputing the program code. Constant folding and stack height reduction change

the structures of expressions. Expressions are mapped to their constant-folded and stack­

height-rcduced forms, and these locally optimized forms of the expressions are used in global

data llow analyses. As we have mentioned in Section 3.1.2, local copy propagation enables

more common subexpressions to be recognized, and also can create redundant assignments.

Thus, we make the local optimization phase in UOPT precede all other optimizations.

Entry II(a). Copy propagation merges expressions from outside the basic block into

expressions. within the basic block. New local common subexpressions can be introduced.

The large expressions may exhibit new opportunities for constant folding and stack height

91

5.1. OPTIMIZATION PHASE STRUCTURE

(a) Local (b) Copy .(c) Backward (d) Forward
Optimization Propagation Code Motion Code Motion

I. Local
No Yes Yes

Optimization

II. Copy
Yes No Yea

Propagation

ill. Backward
Yea Yes No

Code Motion

IV. Forward
No Yes Yea

Code Motion

Does the optimization of the row entry brings in new

opportunities in the optimization of the column entry?

Fig. 5.1.1 Inter-relationships between the optimizations

Yes

Yea

Yes

Yea

reduction. In UOPT, local common subexpressions are recognized after copy propagation

by re-hashing the newly formed expressions. Constant folding and stack height reduction

are repeated in the final code re-emis~ion phase.

Entry II(b). The copy propagation algorithm of Section 3.4 does all possible copy prop­

agation for each basic block variable, and every time a new expression is merged into a

basic block, the copy propagation algorithm is repeated recursively in the newly introduced

expression. Thus, it is unnecessary to repeat the copy propagation pass on itself.

Entry ll(c). As we have mentioned in Section 3.4, common subexp~ession recognition is

a necessity after copy propagation for preventing the proliferation of copied eJC:pressions.

Entry II{d). One primary purpose of copy propagation is to create dead variables or

redundant assignments. Thus, a redundant store elimination phase should always take

place after copy propagation.

Entry III{ a). Backward code motion involves the deletion and insertion of expressions

at various points in the program. Expression structures are not altered. Any. new local

copy propagation that can possibly be result~d could have been globally accomplished in

92

5.1. OPTIMIZATION PHASE STRUCTURE

global copy propagation. Any new local common subexpression that results from the inser­

tions would have already been recognized as such by our backward code motion algorithm.

Backward code motion cannot result in new store redundancy in !he program variables.

However, backward code motion does create new opportunities for local copy propagation,

which we explain under entry ID(b).

Entry DI(h). Backward code motion does not usually create new opportunities for copy

propagation, because the movement of the expressions does not alter the solution for the

availability of assignments, represented by Eq. (3.4.1). An exception is in the case of

induction expressions, where in the original code the incremimts to the induction variables

prevent copy propagation from taking place. After an induction expression is moved to a

loop header, an assignment to the induction variable may be available there so that new

copy propagation can occur. For ex:ampfo, in Fig. 3.7.1, the induction expression ix 3 is

constant propagated to 1 x 3 and then folded to 3 after code motion has taken place.

Entry m(c). Backward code motion involves the movement of both the d's and the u's.

Jn the code sequence

... di• .. Ui ••• ,

after di has been moved to the left, ui can be moved to the left past the original position

~f di. This movement of ui past the original position of di cannot be done concurrently in

one pass of our backward code. motion algorithm, since the deletion of di from its original

position is not done until the end of the pass. The movement of di to the left must be due

to some store partial redundancy in the variable. This means that some d f)Ccurs to the left

of di, and the presence of this earlier d implies that the same form of partial redundancy

that moves di to the left cannot occur to ui after the movement of di. 'l'hus, we conclude

that, in the above code, if di has been moved to the left, repetition of our code motion

algorithm will never result in moving ui to the left past the original position of di. The

same argument applies to the code sequence

... ui ... dJ. ••••

Thus, there is nothing to gain by repeating the backward code motion pass on itself.

Entry m(d). Backward code motion involves the backward movement of u's, u1's, d's and

d/s, and forward code motion involves their forward movement. Thus, the optimizations of

these two phases arc mutually restricting, and no new forward code motion optimization can

be brought aoout by backward code motion. Even when some redundant expressions are

deleted, no new redundancy in stores can be resulted, since the redundant expressions are

93

5.1. OPTIMIZATION PHASE STRUCTURE

i +- 5

! !

EJ 5
=:::> D

! !

j +- 3 j +-3

Fig. 5.1.l Effects of redundant store elimination followed by backward code motion

; -1 I
'------'1

i +- 3 ~
,j,

j live

exit

Optimise

.__ __ !.

~ exit

,j,

j live

Fig. 5.1.2 Effects of redundant store elimination followed by further forward code motion

deleted at points where some earlier occurrences of the expressions are available. However,

our forward code motion phase also eliminates redundancies in the saving of temporaries,

and these temporaries are generated by the backward code motion phase. Thus, a forward

code motion pass should always take place after the backward code motion phase.

Entry IV(a). Forward code motion is not likely to introduce new opportunities for local

optimization. It involves the movement of assignments together with their assigned ex­

pressions. It does not alter expression structures. Any new local copy propagation could

have been globally performed in the global copy propagation phase. Any new local com­

mon subexpression could have been recognized as global common subexpression in the

backward code motion phase. Any new local redundant assignment could also have been

globally suppressed earlier.

94

.j,

i live

j dead

5.1. OPTIMIZATION PHASE STRUCTURE

Optimise

i live

j dead

Fig. 5.1.3 Effects of redundant store elimination followed by further forward code motion

Entry IV{b). Forwar~ code motion does not create new occasions for copy propagation,

since the code motion does not influence· the solution of Eq. (3.4.1). However, copy prop­

agation for the temporaries created in other optimizations is possible after forward code

motion. In Fig. 3.10.l{c), copy propagation of the temporary tis p~ssible. This optimiza­

tion is not performed in UOPT since such cases do not frequently occur and they do not

considerably affect execution time.

Entry IV(c). As we have mentioned under entry ill(c), the code movements in backward

code motion and forward code motion are mutually restricting when no deletion is involved.

However, when deletion of d's, di's, u's or ui's takes placet, backward code motion can

benefit because larger gaps for code -movement are made possible. For example, in Fig.

5.1.1, the deletion of the redundant j +- 2 + i (a u in i) enables i +- 5 (a d in i) to be

moved out of the loop. The deletion of a d is possible only when the next occurrence is

another d, so the backward movement of any u further down cannot be affected. But the

example shows that a store redundancy elimination phase can create more opportunities

for backward code motion.

Entry IV{d). The reasoning similar to that of entry ill(c) is also applicable here. However,

in the current case, deletions involve deleting both the redundant stores and the right-hand­

side assigned expressions. The assigued expressions may contain u's that previously obstruct

the forward movement of the corresponding d's. For example, in Fig. 5.1.2, the deletion

t The deletion of assignments are unique in that both the left and right band sides are eliminated. The left
band side is a d for the assigned variable, and the right hand side may consists of u's for other variables.
The data Jlow solution in forward code motion that leads to the deletion of stores is dependent only on the
data How attributes of the left band sides of stores, ~nd is independent of the data Jlow attributes of the
right hand side expressions.

95

5.1. OPTIMIZATION PHASE STRUCTURE

of i j + 1 (a u in j) enables the forward movement of j +- 7 (a d in j) to remove a

store partial redundancy in j. The deleted store may also facilitate the forward movement

of assignments whose assigned expressions contain uses of the vari;bles whose stores are

deleted. For example, in Fig. 5.1.3, the deletion of j +- 2 (ad in j) enables the forward

movement of i +- j + 3 (c. u in j) to remove. a store partial redundancy in i. Thus, it is

useful to repeat the forward code motion phase on itself.

5.1.3. The Actual Optimisation Phases

We now construct a practical optimization sequence according to Table 5.1.1 and our dis­

cussions related to this table. As we hi.ve mentioned earlier, local optimization is applied while

inputing each basic block. Because copy propagation and backward code motion can affect

local optimization, we repeat local copy propagation and constant arithmetic in the final code

re-emission phase.

Because copy propagation affects both backward code motion and forward code motion

(entries II(c) and II(d)), it is best performed as the first global optimization phase. Under entry

IV(c), we have concluded that a store redundancy elimination phase is beneficial for backward

code motion. Thus, after copy propagation, we conduct a store redundancy elimination phase.

This ·phase does not perform full forward code motion optimization since this is done in a later

phase. Next, we perform backward code motion. Immediately following backward. code motiqn

is linear function test replacement and then induction variable elimination. The final global code

optimization phase is forward code motion, which takes into account the expression temporaries

generated in the backward code motion phase and the induction variables eliminated in the

induction variable elimination phase. Re~ister allocation concludes the global optimization

phases.

We now list the complete sequence of events in the optimization of a procedure by UOPT:

Phase 1 - Input of the procedure.code and performance of local optimization on a block by

block basis.

Phase 2 - Collection and setting up of data flow information.

Phase 3 - Processing of the program control flow graph.

Phase 4 - Copy propagation.

Phase 5 - Elimination of redundant assignments.

Phase 6 - Partial redundancy elimination for expressions by backward code motion. (This

96

5.1. OPTIMIZATION PHASE STRUCTURE

includes· global common subexpressions elimination, loop-invariant expression re­

mo~al and strength reduction.)

Phase 7 - Linear function test replacement.

Phase 8 - Induction variable elimination.

Phase 9 - Partial redundancy elimination for stores to both program variables and optimizer­

generated temporaries by forward code motion.

Phase 10 - Global register allocation and assignments, and allocation of storage to temporaries

not residing in registers.

Phase 11 - Emission of optimized code, with further local transformations applied to a few

op-codes.

To recognize the relationship displayed in Table 5.1.1, our requirement is that, for each yes

entry in the table, there must be an occurrence of the optimization of the corresponding column

after the occurrence of the optimization of the corresponding rowt. The above optimization

sequence in UOPT obeys our requirement with the exception of entries ill(b) and IV(b). Notice

that the extra redundant assignment elimination pass of phase 5 has taken care of entries IV(c) ·

and IV(d). Entries II(a) and ill(a) are taken care of by the extra local optimizations performed

during the final code emission phase. The ignorance of entry ill(b) results in induction variable

moved out of loops not being globally constant propagated .. However, in most cases, the constant

propagation of these induction variables is local in nature, and this is taken care of in the code

emission phase.

Updates of all data flow information are needed for the code transformations done in phases

4 and 5. After phase 6, only the data flow information related to stores uee<lo to be updated.

Global data flow analysis is perfom1ed in phases 4, 5, 6, 8, 9 and 10. These different optimizations

require different kinds of global data flow information. Also, since the global data flow attributes

may be affected by each update, it is necessary to re-compute the relevant global data flow

information each time prior to its use.

UOPT can potentially be re-invoked to conduct another optimization pass over its own

optimization output to further exhaust the optimization opportunities. In such a second opti­

mization pass, the new optimization opportunities that can be recognized will be very marginal,

not only because most of them have already been performed, but also due to the numerous

t To fully implmnent Table 5.1.1, it is necessary to· to apply this reasoning for the repetition passes also, but

we regard this as oVCl'kiJI.

97

5.1. OPTIMIZATION PHASE STRUCTURE

NSTR's introduced that prevl!Ilt the cons.tmction of complete trees. The items allocated in reg·

isters also ne<!d to be remapped to regular storage. To re-r.m UOPT over its own optimized

output, it is currently necessary to turn off the register ~ocation option in previous runs.

5.2. Timings of the Optimization Phases

The execution times of the various optimization phases in UOPT have been measured on

a set of input benchmark programs. The approximate times spent in the different phases,

expressed as percentages of the total optimization time, are as follows:

Phase 1: 5-10 %.

Phase 2: 25-30%.

Phase 3: negligible.

Phase 4: 5-t%.

Phase 5: 2%.

Phase6: 10 - 15 %.

Phase 7: negligible.

Phase 8: 2-3 %.
Phase 9: 10-15%.

Phase 10: 20-25%.

Phase 11: 5-10%.

All the above optimization times. are reasonable, except perhap11 phase 2. The main reason

why phase 2 is time-consuming is that, for each variable, expression or a&signment· that occurs

in the procedure, it is necessary to check whether it is affected by the code of each individual

basic block, regardless of whether it occurs in the basic bJock or not (Section 5.4). Thus,

the complexity of this phase is of the order of the total number of variables, expressions and

assignments in the procedure, which is the length of the bit vectors, times the total number of

basic blocks.

The total amount of time spent in data Jlow analysis has also been measured. There

are altogether 15 separate data Jlow analysis steps among all the phases. It is found ·that

approximately 10 - 17 % of the total optimization time is spent in performing data Jlow /malysis.

The average number of iterations needed in performing each data flow analysis is 3.

Because quite a number of operations in the various phases are of the order of complexity

of the total number of variables, expressions and assignments in the procedure times the total

number of basic. blocks, the time taken to optimize a procedure is approximately pr.oportional

to the square of the procedure size.

98

5.3. Data Structures

The data stM1cturcs in UOPT arc designed to represent the executable code of a complete

procedure while performing optimizations. Since a procedure can be ot arbitrary length, the

data structures have to be space-efficient to accommodate large procedures. The data structures

should also allow the various operations during optimization to he performed efficiently.

5.3.1. Data Structures for Global Optimization

For the purpose of recording program code, hash tables and linearly linked lists of statement

nodes are used. A node in the linear· list represents the equivalent of a ~tatement in the source

language. The order of appearance of the statements in the input program is preserved in the

linked list. The hash tables are for representing expressions in the form of triples (op, I, r).

Hashing of the table entries allows fast retrieval of the entry for a given expression in the

construction of DAG's.

Two hash tables are used in UOPT. The local hash table contains all the expressions in the

whole procedure. Apart from representing code, it also J>lays a crucial role in the recognition

of local common s.ubexpressions, since expressions exist in the table in the form of DAG's

(Section 3.1.1). Each entry gives the basic block in which the item occurs. The same variables

or expressions from different basic blocks are mapped to different table entries, so that any

common subexpression recognized is limited to within the same basic block. Expressions in

the local hash table are pointed to from the statement nodes that reference them. The list of

statement nodes together with the local hash table gives the complete code of the procedure

being optimized.

The global hash table is used to record the variables or expressions that exist in the proce­

dure. One of its uses is to give the unique bit vector position assigned to each data flow ite:rn.

Unlike the local hash table, each variable or expression is given a unique entry, regardless of

where and how many times it occurs· in the procedure. Although it is also in the form of DAG's,

it is not used for recognizing common subexpre8sions. The DAG characteristic, which is due

to the hashing nature of the table, also allows a smaller number of entries to be used in the

case of tree expressions with commonly nested subtrees. An additional column in the global

hash table gives the entry number of the item assigned to each bit position. Thus, from the

assigned bit positions, the aggregate of all the variables and expressions that have appeared in

the procedure can be accessed. An entry in the global hash table can be regarded as the image

of many different entries in the local hash table, which arc of the same variable or expression

but belong to different basic blocks. Thus, the global hash table is of a fraction of the si?.e of

99

5.3. DATA STRUCTURES

the local table. Each entry in the local hash table has a pointer field that gives its image in the

global hash tabli;.

The control flow graph of a procedure is represented by a list of graph nodes. Each node

corresponds to a basic block in the procedure, and has a list of predecessor nodes and a list of

successor nodes. The predecessor and successor relationships together give the control structure

of the procedure. The list of statement nodes for each basic block originates from the corre·

sponding graph node in the control flow graph. Each basic block node also gives information

about the state of register usages in that block.

Data flow analysis in UOPT is performed by bit vector operations. The total number of bits

used depends on the number of different variables and expressions that exist in the procedure.

Bit vectors are implemented by linked lists of sets in Pascal so that the lengths of bit vectors

used are not restricted. As a result, a bit vector operation corresponds to multiple set operations

for individual sets in the bit vector lists. The efficiency of bit vector operations depends on the

maximum set length that the host machine ran handle in a single machine operation. A bit

vector gives information about a certain data flow attribute at a given basic block. To provide

information about an attribu~e throughout the procedure, there has to be one bit vector per .

basic block for the data flow .~ttribute. Since the bit vectors are used mainly in data flow analysis,

they are closely reln.tcd to the control !low graph. Thus, the bit vt.>ctors for the different data

flow attributes also originate from the basic block nodes in the control flow graph.

The basic block nodes also have other bit vectors that give details about the changes to be

made to the code in the basic blocks as the results of global optimizations. Computations .to be

inserted at the entry and exit of each basic block are indicated by two INSERT bit vectors, and

computations to be deleted in the basic block are given by the DELETE bit vector (Section 3.5

and 3.10). The final code re-emission phase will generate the optimized output according to the

contents of these bit vectors. While these bit vectors have been the direct results of our global

optimization algorithms, this method of representation is also space-efficient, since bits rather

than actual code-representing data structures are used. The overhead in manipulating the data

structures in code insertions and deletions is also saved.

5.3.Z. Data Structures for Register Allocation

Register allocation determines the items to reside in register at any point in the program

code. The smallest segment of code over which an item is assigned to a register is a baaic block

in the control flow graph. Each basic block n0 de contains informat.ion about the availability of

the register resource for each register class iu the basic block during and after reb-ister allocation.

100

5.3. DATA STRUCTURES

Before register allocation begins, the live ranges of all potential registe<-residing items have

to be determined by data flow analysis (Section 4.5). At the end of the data flow analysis, an

ACTIVE bit vector in each basic block node indicates th~ variables and expressions whose live

ranges cover that basic block. Inside a given basic block, only these active items need to. be

considered for possible assignment to registers. We refer to each pair of ba.~ic block and active

item as a live unit.

Although the live ranges of the variables and expressions are already given in the ACTIVE bit

vectors of the basic block nodes, such a representation is not adequate for supporting the various

manipulations during register allocation. Additional data structures to represent individual live

ranges and individual live units are necessary. A live range node represents a live range for a

variable or expression. Each entry in the global hash table points to a list of the live range

nodes corresponding to all its separate live ranges in the procedure. Since only one live range is

assumed for each item initially (Section 4.6), only one live range node is created at the beginning

of register allocation. As live ranges are split in the course of register allocation, new live range

nodes are created and linked together in the lists. Before register allocation, each variable or

expression is assigned a unique bit position. These bit position assignments are also used for

the unsplit live ranges at the start of register allocation. As new live ranges are formed from

splitting, they are assigned new, unique and unused bit positions to indicate that they are now

considered separate from their parent live ranges.

Each live range node points to a list of live unit nodea that represents the individual live

units belonging to the live range. Each live unit node contains register allocation information

for the item in a basic block. This includes the number of local uses and assignments of the

item, and information as to whether the first appearance is a store, and whether the item is

dead on block exit. According to whether the predecessors and successors belong .to the same

live rangP., .two flags also indicat.P. wh,.thf>r RLOD and RS'ra need to be ~enerated at the block

entry and exit respectively if the item ia.. ~ll2.<;.~ted in i:eaj_ster. An a<lrlitional field tells if the

item has been locally allocated to register in the local register allocation phase.

Each live range node contains other information related to register allocation. All the basic

blocks covered by the live range are given by a set of basic block numbers. The saving estimate

that indicates the saving achieved if a register is assigned to the live range, which is computed in

the node coloring algorithm (Section 4.6), is also given. A field also indicates if a color (register)

has been assigned to the live range.

The interference graph is given using pointers among the live range nodes. Each Jive range

node has a list ~f interference pointers that point to the live rang1! nodes interfering with it. To

see whether two live ranges interfere, it is only necessary to check whether they contain common

101

5.3. DATA STRUCTURES

basic blocks. This can easily be found by computing the intersection of the two sets of basic

block numbers in their live range nodes and checking whether the result is an empty set.

In implementing the node coloring algorithm of Section 4.6, bit vectQrs are used in separat­

ing all the live ranges into pools. For example, bit vectors are used to indicate the items that

are candidates for each class of registers. Another bit ~ector gives the unconstrained versus the

constrained live ranges. During the node coloring iterations, another bit vector gives the items

that have so far been· allocated to registers. This method of processing is storage-efficient, and

also reduces the overhead in movin~ data structures around.

At the end of register allocation, the final register assignments are given in tables in the

basic block nodes, with one table entry for each register in the target machine. The register

tables also indicate whether RLOD's and RSTR's are necessary. In the final code re-emission

phase, these tables are referenced to generate the appropriate register code for items residing

in registers. Registers not used ·by the optimizer throughout the procedure are indicated in the

output so that they may be used by the code-generating back-ends.

6~4. Collection of Data Flow Information

In Section 3.3_,. data .flow information is classified into local attributes and global attributes.

Local attributes are the data .flow information that can be collected by looking at the code of a

basic block. Global attributes are the data which have to be computed by data flow analyitjs.

In this section, we focus on the collection of the local attributes.

Data .flow information depends on the memory relationships among the storage items in a

program, and the sequence in which the uses and stores of the items occur. In Section S.1, we

have referred to these appearances as u's, d's, Ui's and di's. We divide memory references into

four categories:

(i) J;>irect loads of simple variables - This corresponds to the LOD instruction.

(ii) Indirect loads with known sour.cc range - This comes from the uses of the ILOD and the

indirect comparison operators whoae base addresses are given by the LDA instructions. The

passing of a reference parameter is also regarded as an indirect reference, and so is included

in this category. This corresponds to a PAR instruction with an address parameter based

on an LDA instruction.

(iii) Indirect loads with unknown source range - This comes from the uses of the ILOD and the

indirect comparison operators whose base addresses are loaded from locations in memory

or are the results of function calls. The passing of a reference parameter whose address is

formed the same way is also included.

102

5.4. COLLECTION OF DATA ~'LOW INFORMATION

(iv) Procedure calls·- A called procedure can reference variables at the lexical levels that

surround it ,(up-level references).

The indirect comparision operators are IEQU, INEQ, IGRT, IGEQ, ILES and ILEQ. Each of

them involves two indirect references. Associated with the LDA instruction are two fields that

specify the lower and upper limits of the address range within which the resultant address of

any address computation that ensues can possibly lie. This information can easily be supplied

by the compiler.

In a similar way, memory assignmen~ are classified into four categories:

(a) Direct stores to simple variables - This corresponds to the STR instruction.

(b) Indirect stores with known target range - This occurs with the uses of the ISTR, INST, MOV

and VNOV instructions whose base addresses are given by the ~A instruction. The passing

of a reference parameter can also involve a potential store to the passed parameter in the

called procedure, and is also included.

(c) Indirect stores with unknown source range - This comes from the uses of the ISTR, INST,.

NOV and VNOV and the indirect comparison operators whose base addresses are loaded from ·

locations in memory or are the results of function calls. The passing of a reference parameter

whose address is formed the same way is similarly included.

(d) Procedure calls - A called procedure can store to any variable at the lexical levels that

surround it.

In collecting data flow information, we are concerned with whether a memory reference

(categories (i), (ii) and (iii)) is affected by the memory assignments (categories (a) to (d)) in

the region concerned, and whether an assignment (categories (a), {b) and (c)) is affected by

the memory references and assignments (categories (i) to (iv) and (a) to (c)) in the region

concerned. The kinds of operations to be taken into account depend on the actual definition

of the local data attribute being considered (Section 3.3.1). In all cases, a memory reference

affects (or kills) a memory assignment, and vice versa, if the two operations can possibly involve

a common memory location.

Table 5.3.1 summarizes the rules for determining if a memory reference and a memory

assignment can kill each other for each combination of reference and assignment categories.

All available information is used in· trying to effect as little kills as possible, since the killing

operations restrict the optimization opportun,itfos that can be unfolded. The explanations of

the rules are as follows:

103

5.4. COLLECTION OF DATA ~·1.ow INFORMATION

(b) Indirect Star~ (c) Indirect Store (d) Procedure
(a) Direct Store

(Range Known) (Range Unknown) Call

Block DO. of (i) Level of (i)
(i) Direct Load Check Overlap Check Overlap

;/; Current Block encloses Called Proc.

(ii) Indirect Load Block no. of (ii) Level of (ii)

(Range Known)
Check Overlap Check Overlap # Current Block encloses Called Proc.

(iii} Indirect Load Block no. of (a) Block no. of (b)

(Range Unknown) # Current Block # Current Block
Always Kill Always Kill

(iv) Procedure Lev~) or (a) Le!el of (b)

Call encloses Called Proc. encloses Called Proc. Always Kill (Not Applicable)

Table S.3.1 Rules for the killing between memory references and assignments

- When the source range of the memory reference and the target range of the assignment

arc known, it is only necessary to check whether the two ranges overlap. Entries (i-a), (i-b),

(ii-a) and (ii·b) of the table fall under this rule.

- When either the source range of ~he memory reference or the target range of the as­

signment is unknown, the unknown range must not be from the local memory area of the

current procedure. If the known range is from the local memory area, then it is certain

that the two ranges do not overlap. Otherwise, it is possible that they overlap. This covers

entries (i·c), (ii·c), (iii-a) and (iii·b).

- When both the source range of the memory reference and the target range of the as·

signment are unknown, they must both be outside the local memory area of the current

procedure. No information is available to determine whether the source and target ranges

overlap, so it has to be assumed that they kill each other. This covers entry (iii-c).

- When a source or target range is known, a called procedure can reference or alter a

location only if the address is at a lexical level that encloses the called procedure. This fact

is used in determining whether a procedure call can affect a memory reference or assignment

in entries (i-d), (ii-d), (iv-a) and (iv-b).

- When a source or target range is unknown,· then a procedure call is assumed to affect it.

104

5.4. COLLKCTION OF DATA FLOW INt'OltMATION

(b) Indirect Store (c) Indirect Store (d) Procedure
(a) Direct Store

(Range Known) (Range Unknown) Call

(i} Direct Load General Equivalence Alias Side Effects

(ii) Indirect Load

(Range Known)
Equivalence· General Alias Side Effects

(iii) Indirect Load

(Range Unknown) Alias Alias General Side Effects

(iv) Procedure

Call Side Effects Side Effects Side Effects (Not Applicnble}

Table 5.3.2 Table of conditions for the occurrences of the killing relationships

This relates to entries (iii-d) and (iv-c).

Table 5.3.2 gives the circumstances "that bring about the occurrences of the table entries.

Entries (i-b) and (ii-a) occur when a simple variable is within the range of an array, which can

only be brought about by equivalences. In cntries (i-c), (ii-c), (iii-a) and (iii-b), we want to

guard against the possibility that the same location is accessed both directly and indirectly,

which happens in association with aliases. Killing due to procedure calls is necessary because

of side effects. The other entries do not occur under specific circumstances.

The above rules apply only in the absence of inter-procedural data flow analysis. By

taking into account possible candidates to be associated with the formal parameters and also

the contents of called procedures, it is possible to eliminate many unnecessary kills among the

memory references and assignments.

An additional data structure is used to represent the presence of the above memory refer·

ences and assignments which affect data flow. Each basic block node points to a list of kill-nodes

consisting of the u's, u;'s, d's and di's in their order of appearances in the code of the basic

block. To determine whether an item is altered by the code of a basic block, it is only necessary

to go through this- list to check whether any clement in the list kiiJs the item. To determine

whether a locally occurring item h1 anticipated at the basic block entry, it is only necessary to go

105

5.4. COl.LECTION OF DATA FLOW INFOllMATION

through the part of the kill-list that precedes the item in the basic block. To determine whether

it is available at. the block exit, the part of the kill-list that succeeds the item is used. These

kill-nodes have to be updated on deletions and insertions in the course of optimization.

5.5. Effects of Procedure Integration

A procedure integrator, called PMERGE, bas been implemented on U-Code at Stanford.

Procedure integration is an optimization because it improves program running time by reducing

the overhead in procedure calls, returns atid the associated parameter passing. When invoked,

PMERGE selects procedures in a program whose code is copied in-line at points at which they

are caJled. With procedure integration, there is an associated cost in the increase in the total

code size of the program. This cost does not apply for procedures that are called only once in

the program.

We are mainly interested in bow the procedure integrator alfects the optimization perfor..

mance of the global optimizer when they are used together. By invoking procedure integration

as a pre-pass, the global optimization opportunities can. be substantially increased, since the.

optimizations are performed ~ne procedure at a time. It is expected that the total reduction in

execution time will be greater than the sum of the two separate reductions when they work in

isolation.

Procedure integration can bring in new global optimization opportunities in the following

ways:

1. Since a procedure becomes larger, the optimizer can take into account a greater segment of

code in looking for global optimization opportunities. All the optimizations performed can

benefit.

2. By eliminating procedure calls, the optimizer can save the killing of many variables that

arise out of the calls. Thus, computations can become available over a larger range. More

redundant assignments and dead variables can be exposed. Computations can also be

moved over greater distances since their movement is no longer hindered by the calls.

3. Copy propagation will dereference the parameters in the merged calls, so that more infor­

mation ill available when optimizing the code of the merged procedures.

4. Code in the merged procednres can be moved outside to the caller. This is €specially

beneficial when the merged call occurs in. a loop and the merged procedure contains loop­

invariant computations or strength reduction candidates.

106

5.5. EFFECTS OF PROCEDURE INTEGRATION

5. The benefits of register allocation arc substantially improved since the overhead of memory

updates, the saving of registers before procedure calls and their re-loads after the calls can

be f'Jiminated. Registers can also be cllocated over }arger ranges of code that include the

text of merged procedures.

The last point is particularly important in the case of common subexpressions occurring

across procedure calls. Mauy common sui>exprcs'lions can save execution time only if their values

are saved and re-used in registers, because the cost of accessing main memory may exceed the

cost of their re-computations. Procedure calls occurring between the common subexpressions

can inhibit the use of registers to store their values, so that the full benefits of recognizing these

common subexpressions cannot be derived.

There is a minor disadvantage that arises out of the use of the procedure merger with

regard to optimization. When a procedure is integrated into the caller, its local variables are

merged into the stack franie of the calling procedure. If the caller contains other procedure

calls at some later points. that cannot be merged, then these calls will prohibit the recognition

of dead variables and redundant assignments in the merged procedure, ·which could have been

recognized if the procedure is unmerged. In spite of this, the advantages of using a procedure

integration pre-pass far "Utweigh this occasional disadvantage.

107

6. Performance Evaluation

In this Chapter, we study the performance of UOPT with rcspec~ to the optimizations

performed and their effects on real machines. Using one machine as a main example and a set of

benchmarks, the frequencies and contributions of the different optimization transformation are

analyzed. The effects of some program and machine parameters· on optimir.ation performance

are also examined. Then, we investigate the effects that the same machine-independent opti­

mizations at the intermediate code level have on a variety of machines. The machines considered

arc the DEC 10 [Stan76], the 68000 [Moto80], the VAX [Digi81], the MIPS [llenn82c), the FOM

[Bran82] and the S-1 [Hail79] [Livi83]. Using actual timin!!: measurements, the differing im­

provements in the target machines are compared. We evaluate some machine characteristics

and discuss how these characteristics interact with the different optimizations performed by

UOPT and influence the ways that the optimizations arc reflected in the underlying machine

code. Finally, we give some general comments about the role played by machine-independent op-.

timization and its relationship with all the other possible optimizations in real-world machines.

Although we assume throughout that U-Code is the intermediate code, most of the remarks in

this chapter also apply under more general compilation and machine-independent optimization

environments.

6.1. Analysis of Optimization ·Performance

In this section, we study the contributions to overall performance of the different optimiza­

tion phases in UOPT. A set of benchmark programs are run through the optimizer, and their

optimized running times compared with their original running times. These benchmark pro­

grams are standard application programs, with minimal calls to un-optimizable external routines

and runtimes. Inputs and outputs have been eliminated so that their execution is not affected

by external devices. These studies are done on the DEC 10 target machine. The corresponding

results for other machines are given at appropriate places to supplement the discussions.

Here is a brief description of the benchmark programs. All but the last two are in Pascal.

Perm - A program that computes permutations with recursions.

Tower - A program that solves the Tower of Hanoi problem.. It is written in 120 lines of

Pascal code.

Queen - A program that solves the Eight Qu~ns problem. It contains a single recursive

procedure.

Intmm - A program to compute the product of two integer matrices.

Mm- This program is identical to Intmm except that the matrices arc in real numbers.

108

6.1. ANALYSIS OF OPTIMIZATION PtmFORMANCE

Puzzle - A compute-bound program that solves a puzzle about packing blocks into a cube.

It co~tains 4 procedures and a main program in 160 lines of Pascal code. One of the

procedures is recursive.

Quick - A program that performs the Quick Sort.

Bubble - A program that performs the Bubble Sort.

Tree - A program that performs the recursive Insertion Sort on a binary tree and checks

the correctness of the insertions.

Fft- A program to perform the Fast Fourier Transformation. It is written in 250 lines of

Pascal code.

Sieve - A program that compute the m:st n prime numbers using the Sieve of Erastosthenes.

It contains only a main program with loop.

Quick2 - A second progl'am that also performs the Quick Sort, but written in Fortran. There

is no direct relation to the above Quick written in Pascal. Jn particular, it is not

recursive.

Inverse - A program written in Fortran that computes the inverse of a matrix and verifies the

result by multiplying back to form the unit matrix.

Table 6.1.1 shows the improvement in the running times of these benchmark programs on ·

the DEC 10 using only PMERGE, only UOPT and a combination of the two. Some of the

programs do not have procedures that can be integrated. Procedure integration is especially

eJfective in reducing execution times in programs Perm, Tower, Bubble and Tree. Jn Perm

and Tree, where the programs consist of mainly short procedures and numerous procedure

calls, global optimization is not effective without·procedure integration. The improvement in

execution times shown in row 3 always exceeds the product of the improvement shown in rows

1 and 2.

The optimization in Mm is not as good as that in Jntmm because constant arithmetic,

linear function test replacement and strength reduction are not performed on real numbera, and

the .ftoating point operations have greater dominance of the running time.

8.1.1. Analysis by Statistical Counts

To analyze the usefulness of each optimization transformation, we have specifically set up,

in UOPT, counts of the number of instances that each transformation is pmor1ned in the course

of optimizing each program. Table 6.1.2 shows these statistics for the versions of the programs

that have been procedure-integrated·. Although the data shown are those for DEC 10 U-Code,

they do not vary widely among different targ!!t machines. Due to the way we perform global

optimizations, it is not possible to·· separate out the different kinds of optimizations in the way

109

6.1. ANALYSIS OF OPTIMIZATION PER~'ORMANCE

Program Perm Tower Queen Intmm Mm

0. Original running time 13.77 2.48 3.05 1.30 1.43
(1.0) (1.0) (1.0) (1.0) (1.0)

1. Time using only Pmerge 9.62 1.68 3.05 1.29 1.42
(.70) (.68) (1.0) (.90) (.99)

2. Time using only Uopt 12.40 2.10 2.68 .46 .59
(.90) (.84) (.68) (.35) (.4.l)

3. Time using Pmerge and Uopt 7.44 1.26 2.68 .42 .56
(.54) (.51) (.68) (.32) (.39)

Program Ilubble Tree Fft Sieve Quick2

0. Original running time 5.06 1.22 2.85 5.09
(1.0) (1.0) (1.0) (1.0)

l. Time using only Pmerge 3.69 1.01 2.85 5.09
(.73) (.83) (1.0) (1.0)

2. Time using only Uopt 3.80 1.15 1.08 3.25
(.75) (.94) (.38) (.64)

3. Time using Pmerge and Uopt 2.34 .93 1.05 3.25
(.46) (.77) (.37) (.64)

Running times in Seconds

(Normalized running times in parentheses)

.719
(1.0)

.719
(1.0)

.572
(.80)

.572
(.80)

Table 6.1.1 Optimized and un-optimized running times

Puzzle Quick

5.32 1.94 .
(1.0) (1.0)

5.22 1.60
(.98) (.82)

2.58 1.739
(.49) (.90)

2.47 1.30
(.46) (.67)

Inverse Average

4.71 (1.0) (1.0)

4.71 (.90) (1.0)

2.35 (.65) (.50)

2.35 (.55) (.50)

they are generally visualized. The number of instances of code motion can be approximated as

the number of insertions (row 5). However, these insertions arc not only due to loop-invariant

code motion, but to partial redundancy suppression as well. The number of redundant exprcs·

sions can be taken as the number of deletions (row 6), but the deletions actually include those

made redundant after the insertions. Also, we cannot directly count the. number of strength

reductions since they are performed as part of code motion. These same comments apply to

estimating the number of optimizations related to stores.

From Table 6.1.2, it can be seen that, with the· exceptions of local redundant assignment

elimination (row 2) and linear function test replacement (row 7), all the optimization transforma­

tions occur quite frequently. Especially important are local and global common subexpressions,

code motion and constant expression computation. Most of the constant expressions come

from address collapsing in array offset computations. Common subexpressions, co.de motion

and induction expressions also frequently occur in a.'!sociation with address expressions. Copy

110

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

Program Perm Tower Queen Int mm Mm Puzzle Quick

1. # of local common aubexpr. 8 30 3 14 14 22 19

2. # of locally redundant assignments 0 0 0 D 0 1 0

3. # of constant arith. 4 11 13 21 21 83 21

4. # of global copy propagation• 2 15 0 5 5 18 30

5. # of backward code motion insertions 4 10 6 20 21 42 5

6. # ol backward code motion deletions 8 21 16 22 23 51 80

7. # of test replacementll 2 0 1 4 4 2 0

8. # ol globally redundant NISigmnenta 7 22 2 5 5 11 14

9. # ol forward code motion insertion• 0 4 2 0 0 3 4

Program Bubble Tree Fft Sieve Quick2 Inverse Total

1. # of local common aubexpr. 4 3 92 2 4 15 230

2. # of locally redundant asaignmenta 0 0 0 0 2 0 3.

3. # of constant arith. 8 1 51 2 27 20 283 ._,
4. # of global copy propagation 3 18 18 1 1 1 117

5. # of backward code motion insertions 7 1 15 2 25 17 175

6. # of backward code motion deletions 11 15 18 4 27 25 321

1. # or test replaccmentll 1 1 2 1 1 0 19

8. # of globally redundant asaignmenta 4. 11 17 1 1 1 101

O. # of forwnrd code motion insertions 1 0 0 0 8 1 23

Table 6.1.2 Optimization statistics

propagation often occurs with the parameters of procedures that have been integrated into the

callers. There is a strong correlation between the number of redunda.i1t assignments (row 8) and

the numb<'r of copy propagations, since the latter transformation often gives rise to nou·live

111

6.1. ANALYSIS or OPTIMl~~ATION PERFORMANCE

Program Perm Tower Queen Int mm Mm Puzzle Quick

% of var. references in registers .65 .40 .76 .95 .95 .94 .67

% of var. asoigmncnts in registers .70 .23 .72 .96 .96 .77 .77

Program Bubble Tree Fft Sieve Quick2 Inverse Average

% of var. references in registers .91 .78 .87 .87 .62 .71 .77

% of var. asaigmnents in registers .92 .74 .80 .89 .62 .75 .76

Table 6.1.3(a) Static register allocation statistics in the DEC 10

Program Perm Tower Queen Intmm Mm Puzzle Quick

% ohar. references in registers .94 .72 .90 .96 .96 .95 .so

% of var. assignments in registers .95 .58 1.0 .95 .95 .77 .80

Program Bubble Tree Fft Sieve Quick2 Inverse Average

% of var. re£ercnces in registers .90 .79 .93 .86 .74 .88 .87

% of var. 11118ignments in registers .91 .80 .83 .88 .77 .94 .86

Table 6.l.3(b) Static register allocation statistics in the 68000

variables.

Table 6.1.3 disp~ys the register allocation statistics for the benchmark programs. It shows

the percentages of variable references and the percentages of variable assignments that are in

registers. The data are obtained by static co1mts in the optimized programs.. The dynamic

counts are expected to be better, since the register allocator in UOPT takes lC'op-nesting depths

into account. Since all the program procedures are fairly small, the data may not be typical of

those obtained in large procedures. .

The DEC 10 uses the caller-save linkage cpnvention, and the DEC 10 code generator allows

UOPT to allocate up to 9 registers. Most of the programs do not use up all the registers. It

112

6.1. ANALYSIS o~· OPTIMIZATION PERFORMANCE

is the nature of the programs that dictates the percentages of variables allocated. Programs

that have many procedure calls (e.g. Tower) tend to diminish the percentage allocated because

the numerous instances of rl'gister saves ;ind re-loads ar?und procedure calls tend to increase

the cost of the allocations. These calls are frequently ~tandard function calls that cannot. be

merged.

The register allocation statistics for the 68000 is markedly different from that for the DEC

10, which is due to the use of the callee-save linkage convention in the 68000. The percent'lges

of variable accesses allocated in registers in the 68000 are always greater than those in the DEC

10, since register saves and re-loads do not occur around procedure calls, so that the cost of

allocating to registers does not increase due to procedure calls. Tables 6.1.3(a) and (b) show

that the linkage convention concerning the handling of registers does affect register allocation.

The 68000 code generator allows UOPT to use up to 6 data registers and 4 address registers,

out of the 8 data registers and 8 address registers available.

6.1.2. Analysis by Partial Optimization

Another method we can use to study the effectiveness of individual optimizations is by ap­

plying each optimization separately and studying the resulting improvement in running times.

It is also possible to get some ideas about the degree of correlation between the different opti­

mizations by studying by how much the improvement from the completely optimized versions

of the benchmarks exceeds the sum of the improvement from the partially optimized versions.

Partial optimization is possible in UOPT according to the phase structure of the optimization

process (Section 5.1.3). UOPT allows the user to control the extents of optimization by speci­

fying options in his programs. In the following, we study the different degrees of improvement

in program running times due to the selective applications of the various optimization phases.

Table 6.1.4 displays the running times of the benchmark programs on the DEC 10 for varying

degrees of global optimization. Shown in row 0 are the running times for the un-optimized

procedure-integrated versions. Row 1 shows the times when all the global optimization phases

have been applied. Row 2 shows the running times with only local optimizations (phases 1, 3

and 11). Row 3 shows the running times with only local optimizations and registl'r allocation

(phases 1, 3, 10, 11). Row 4 shows the times when copy propagation (phase 4) is left out. Row

5 shows the times when backward code motion, redundant expression elimination and strength

reduction (phase 6) arc left out. Row 6 shows the times when no store optimization is performed,

in which phases 5, 8 and 9 are left out. The last row shows the optimized running times when

no register allo~ation (phase 10) is performed. The average column in the table shows that

backward code motion and register allocation arc· the optimizations that reduce running time

113

6.1. ANALYSIS OF OPTIMIZATION PEIU'ORMANCE

the most. Next arc store optimizations and copy propagation. Local optimization can only

reduce running time by 5% on the average.

We now look more closely at the data for the individual programs: In all the programs,

the times shown in rows 4 and 6 are always worse than the times shown iu row 1. Thi;i shows

that copy propagation and store optimizations always result iu in_iprovcmeut in execution time,

although the effect is not as substantial. for copy propagation. Copy propagation is important

in the program Tower, where there is a 14% deterioration in the optimized execution time when

copy propagation is not performed ..

Backward code motion is important in most of the programs. Comparing row 5 with row 1,

it can be seen that the backward code motion phase is mainly responsible for the large running

time improvement in Queen, Intmm, Mm, Puzzle, Fft and Inverse. In Perm, Tower and Tree,

there are not many opportunities for code motion, and the numerous procedure calls tend to

inhibit the saving of common subexpressions in registers. In contrast to the DEC 10, procedure

calls do not affect register allocation to common subexpressions in the 68000, .vhich explains

why Table 6.1.5 shows that backward code motion always decreases the running time in the

68000. For Bubble and Quick2 running on the DEC 10, backward code motion actually has a

negative effect on the optimization results. This is because most of the common subexpressions

and induction expressions in these two programs are simple address expressions that can be

collapsed into single instructions using special operand addressing modes in the DEC 10. The

use of special operand addressing modes is facilitated when array indices have been allocated in

registers, so that the common subexpressions are not really beneficial. In addition, there is an

overhead in the saving and re-loading of these expressions. In the case of strength reduction,

there is the additional overhead of incrementing the induction expressions every time through

the loop. The effect of induction expression optimization is not pronounced when the induction

expression does not involve multiplication, and the target machine can address operands using

the indexed addressing mode. The good and bad effects of this backward code motion phase

exist in all programs, and not neces!!arily all machines. It is our belief that any non-beneficial

effect is marginal, but the gain is substantial enough in common programs to justify the use of

this optimization phase in all machines. Appendix E contains the unoptimized and optimized

object code for the inner loop of Dubble across a variety of machines.

Local optimization (phase 1) represents the minimal optimization that the user may specify

when he invokes UOPT. Local optimization is most effect in Fft, where there are many array

references and fields within arrays. In Perm, Queen, Puzzle, Bubble, Tree and Sieve, the re­

sulting n:nning times are worse. However, if register allocation is ~dcd (row 3), the nmuing

times are substantially improved. Iu fact, in Perm, Quick, Dubble, Tree, Sieve aud Quick2, the

114

6.1. ANAl.YSIS OF OPTIMIZATION l'BRFORMANCE

Program Perm Tower Queen Intmm Mm Puzzle Quick

O. No optimi•ation t 0.62 1.68 3.95 1.29 1.42 5.22 1.60
(1.0) (l.O) (1.0J (1.0) (1.0) (I.OJ (1.0)

1. Full global optimiaation 7.44 1.27 2.6.7 .42 .55 2.47 J.30
(.77) (.75) (.68) (.33) (.38) (.47) (.70)

2. Only local optimizations 10.92 1.68 4.22 1.10 1.23 5.24 1.42
(1.14) (1.0) {l.07) (.85) (.87) {1.0) (.89)

3. Only local optimizations, reg. alloc. 8.46 1.39 3.99 1.05 1.111 4.86 1.26
(.88) (.83) (1.01) (.81) (.84) (.93J (.78)

4. All except copy propagation 7.44 1.44 2.68 .43 .56 2.46 1.37
(.77) (.86) (.68) (.33) (.30) (.47) (.86)

5. All except backward code motion 8.00 1.31 3.00 1.22 1.35 4.83 1.45
(.83) (.78) (J.01) (.05) (.95) (.93) (.01)

6. All except store optimizations 8.94 1.37 2.68 .43 .56 2.52 1.36
(.93) (.82) (.68) (.33) (.30) (.48) (.85)

7. All except register alloc. 8.87 1.36 3.76 .65 .78 3.74 1.60
(.112) (.81) (.95) (.50) (.55) (.72) (1.0)

Program Bubble Tree Fft Sieve Quick2 Inverse Average Cost

0. No optimization t 3.69 1.01 2.85 5.011 .719 4.71 {1.0) 0% (1.0) (I.OJ (1.0) (1.0) (1.0) (1.0)

1. Full global optimization 2.33 .03 1.07 3.52 .572 2.36 (.61) 100% (.63) (.03) (.37) (.611) (.80) (.50)

2. Only locnl optimizations 3.79 1.05 1.82 5.22 .703 3·.89 (.95) 15% (1.03) (1.04) . (.64) (1.03) (.98J (.83J

3. Only local optimizations, reg. alloc. 2.04 .91 1.68 3.30 .487 3.67 (.79) 37% (.55) (.00) (.50) (.65J (.68) (.78)

4. All except copy propagation 2.34 .91 1.10 3.57 .572 2.35 (.65) 94% (.63) (.110) (.30) (.70) (.80) (.80)

5. All except backward code motion 1.98 .87 2.85 4.10 .497 3.67 (.85) 87% (.54) (.86) (I.OJ (.81) (.GO) (.78)

6. All except store optimizations 2.53 .97 1.07 3.57 .588 2.37 {.65) 83% (.68) (.96) (.37) (.70) (.82) (.50)

7. All except register alloc. 4.60 1.08 1.40 5.86 .807 3.17 (.87) 77% (1.25) (1.07) (.59) (l.15) (1.12) (.67)

t The times in this row correopond to the times in row 1 of Table 6.1.1

Running times in Seconds

(Ratio to un-optimized running times in parentheses)

Cost (last column) in 3 running time of full optimization by TTOPT

Table 6.1.4 Running timc8 for various extents of optimiv.ation (DEC 10)

115

6.1. ANALYSIS OF OPTIMIZATION PER•'ORMANCB

tJ'r"'gram Perm Tower Queen Intmm Puzzle Bubble Tree Sieve

NO optimisation ~2.30 $.811 12.58 17.12 16.311 18.85 0.77 23.00.
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

Full global optimizatioa 27.00 3.0li 6.54 7.56 6.33 li.74 0.44 10.42
(.86) (.68) (.52) (.44) (.38) (.30) (.117) (.44)

All acept backward code motion 28.80 4.24 8.93 17.83 1(1.&7 10.05 9,57 13.91
(.89) (.72) (.71) (1.04) (.84) (.$3) (.08) (.80)

Running times in Seconds

(Ratio to un-optimized running times in parentheses)

Table 6.1.5 Effectiveness of backward code motion on the 68000

running times after only local optimization ~d register allocation approach or exceed the times

after full optimization. The optimization cost in this case is only 37% of full optimization. Thus,

it can be said that local optimization followed by register allocation is. the most cost-efficient

optimization choice if the user wants to compromise the needed performance of his programs

with the associated optimization running-time cost.

Row 7 shows that, in order to bring across the· full benefits of the various global optimiza­

tions, register allocation is a required concluding phase of the optimizations. Without register

allocation, the program81 Bubble, Tree, Sieve and Quick2 are wor8e in spite of all the global

optimizations. Even more instructive .is comparing the differences in improvement that row 3

has over row 2 and row 1 has ovm- row 7. Rows 2 and 3 show between them the effects of adding

the register allocation phase if the optimizer performs only the minimal local optimizations.

Rows 1 and 7 show between them the effects of leaving out tbe register allocation phase when

the optimizer performs its full set of optimization. In the average column, row 3 is .16 less

than row 2, and row 1 is .26 less than row 7. This means that register allocation is a lot more

effective when the optimizer performs other global optimizations. Without register allocation,

the benefits of the other global optimizations cannot be fully exposed, because the cost of saving

intermediate quantities in main memory is high enough in some cases to cancel out the benefits

that can be derived from the optimizations.

The programs Quick and Sieve present an additional observation. In these two programs,

copy propagation, backward code motion and store optimizations are all beneficial phases, since

the running time is worse when each of them is left out (comparing row 1 with rows 4, 5 and 6

respectively). However, when all these three kinds of optimization are not perform11d, as is in

row 3, tbe resulting running times are better instead. This means that these optimizations build

116

6.1. ANALYSIS OF OPTIMIZATION PERFORMANCE

on each other. The benefits of a set of transformations can often be augmented if preceded or

followed by other transformations. Thus, it is important not to leave out any of these phases

when carrying out global optimization.

6.2. Effects of Optimization Parameters

In this section, we study the variation ir. optimization performance due to some parameters

that inlluence optimization. The observations are explained and, in some cases, inferences nre

made regarding optimization in general. The studies are also done using the DEC 10 as the

target machine.

8.2.1. Number of Registers Available the Optimizer

The DEC 10 has 14 general-purpose registers that can be used in code generation. Of these,

the code generator set aside 9 registers for use by UOPT in allocating to program variables.

The remaining registers are used by the code generator in generating machine instructions. We

investigated the effects of allowing diiferent numbers of registers to be allocated by UOPT. The

results displayed in Table G.2.1 show that the optimized running times always improve when a

larger number of registers are available to UOPT. The 5 ·registers used by the code generator

is en~ugh for most practical purposes, and increasing the number for the code generator (i.e.

decreasing the number used by UOPT) ~oes not cause appreciable improvement in execution

speed. Thus, we see that global machine-independent register allocation is an extremely useful

optimization.

Another observation in Table 6.2.1 is that different programs require different numbers of

registers for optimal register allocation. In the programs Perm, Tower and Tree, 4 registers

seem to be all that are needed; for others, increasing the number further yields better execution

speeds. In the programs Puzzle and Sieve, just 2 registers can dramatically improve the program

running time. Different programs have different cut-off points regarding the number of registers

they need for optimal register allocation. The cut-olf number of registers required is related to

the chromatic numbers of the interference graphs - the numbers of colors needed to color the

graphs.

Combining the data of Table 6.2.1 with those in Table 6.l.3(a), in which 9 registers are

used, we notice that in the programs Perm, Tower and Tree in which the percentages of variable

accesses in registers are not high, the programs have not run out of registers. These programs

actually have a large number of variable accesses that should not be put into registers. This

supports our original conviction that the best allocation for some architectures is not necessarily

the one that puts all variables into registers.

117

Program

0 registers

2 registers

4 registers

6 registers

All 9 registers

Program

0 registers

2 registers

4 registers

6 registers

All 9 registers

6.2. EFFECTS OF OPTIMIZATION PARAMETERS

Perm Tower Queen Int mm Mm

8.87 1.38 3.78 .65 .18
{l.O) (1.0) (1.0) (1.0) (1.0)

8.25 1.28 3.82 .M .78
(.93) (.94) (.08) (.98) (.09)

7.44 1.28 3.29 .58 .71
(.84) (.94) (.88) (.89) (.01)

7.44 1.27 2.88 .43 .56
(.84) (.93) (.71) (.06) (.72)

7.44 1.28 2.68 .42 .55
(.84) (.02) (.71) (.65) (.71)

Bubble Tree Fft Sieve Quick2

4.60 1.08 1.40 5.86 .807
(1.0) (1.0) (1.0) (1.0) (1.0)

3.71 .06 1.24 4.02 .724
(.81) (.80) (.80) (.60) (.00)

3.8"· .93 1.14 3.99 .680
(.83) (.86) (.81) (.68) (.83)

2.33 .93 1.09 3.53 .621
(.51) (.88) (.78) (.60) (.77)

2.33 .93 1.05 3.25 .572
(.51) c;86) (.75) (.55) (.71)

Running times in Seconds

(Normalized running times in parentheses)

Puzzle

3.74
(l.O)

2.58
(.68)

2.54
(.68)

2.1)4
(.68)

2.47
(.68)

Inverse

3.17
(1.0)

2.80
(.91)

2.75
(.87)

2.40
(.78)

2.35
(.74)

Quick

1.80
(1.0)

1.48
(.93)

1.42
(.80)

1.42
(.80)

1.30
(.81)

Avt!l'age

(1.0)

(.88)

(.84)

(.75)

(.73)

Table 6.2.1 Effects of the number of registers available for register allocation (DEC 10)

6.2.2. Changing the Register Move-Cost

In Section 4.3, we discussed the cost and saving estimates that determine whether a variable

should reside in a register. MOVCOST is the cost of a transfer op.eration between register and

memory. LODSAVE and STRSAVE arc the amounts of execution time saved for each reference and

assignment of a variable respectively, due to the variable being in register at the time. The

best values to use for these parameters vary among target machines. They are dependent on

machine architectures and instruction characteristics.

Only the ratios ofMOVCOST to LODSAVE and STRSAVE are important. We take both l:.ODSAVE

and STRSAVE to be L The value of MOVCOST i~ then a parameter in UOPT that can be set by

the user in his program. When MOVCOST is 0, it implies that no execution time is sacrificed in

118

6.2. Et'FECTS OF OPTIMIZATION PARAMETERS

Program Perm Tower Queen hitmm Mm Puzzle Quick

MOVCOST = 0 7.67 1.21 2.61 .42 .55 2.53 1.49

MOVCOST = 1.0 7.44 1.24 2.58 .42 .55 2.48 1.30

MOVCOST = 1.5 7.44 1.27 2.67 .42 .55 2.47 1.30

MOVCOST = 2.0 7.44 1.28 3.61 .42 .55 2.47 1.29

MOVCOST = 3.0 7.55 1.28 3.61 .42 .55 2.49 1.29

MCVCOST = 4.0 8.08 1.28 3.61 .42 .55 2.49 1.28

Program Bubble Tree Fft Sieve Quick2 Inverse

MOVCOST =0 2.33 .94 1.07 3.25 .622 2.36

MOVCOST = 1.0 2.33 .93 1.07 3.25 .579 2.36

MOVCOST = 1.5 2.33 .93 1.07 3.25 .572 2.36

MOVCOST = 2.0 2.33 .93 1.07 3.24 .573 2.36

MOVCOST = 3.0 2.33 .93 1.07 3.24 .572. 2.36

MOVCOST = 4.0 2.33 .95 1.07 3.24 .572 2.36

(Time shown is in Seconds·of CPU time)

Table 6.2.2 Effects of the value of MOVCOST to optimized running times (DEC 10)

register-memory transfers. Since no cost is involved, UOPT will allocate as many variables in

registers until all the registers are used up. Such a value of MOVCOST does not befit any machine

in the real world. When MOVCOST is 1, it implies that, in the target machine, arithmetic and

logic operations can only be performed on registers. If any computation involves a memory item

& an operand, the item must first be brought into a register by a separate memory t?ansfcr

instruction. The memory target to receive the value of a computation also has be stored into by

a separate instruction. When MOVCOST is vary large, it means in the limiting case that the target

machine can access memory a.'! fast as it accesses the registers. This happens when the machine

contains no fast ·memory elements, and all computations directly reference operands in memory

(memory-to-memory architecture). In this case, UOPT will not allocate anything in register due

119

8.2. EFFECTS OF OPTIMIZATION PARAMETERS

to the large value of MOVCOST. Thus, it can be seen that MOVCOST and the related LODSAVE and

STRSAVE are inclispensible parameters in the context of machine-independent register allocation.

Sine·~ the value of MOVCOST is machine-dependent, for each target machine, there D111st be

an optimal value of this parameter at which. the optimizer will yield the best register allocation.

We studied the effects that varying the value of MOVCOST has on the optimized running times

o! the benchmark programs on the DEC 10. The results are tabulated in Table 6.2.2. The

occurrences of the minimal running times in the table empirically determine MOVCOST.

From the table, it can be seen ·that the value of MOVCOST at which the optimized running

times are best also vary among individual programs. This is because each program has differ­

ent occurrence counts of individual machine instructions and addressing modes, which exhibit

different fetch times. Also, register allocation can introduce an added degree or flexibility to the

instruction selection process of the code generators that also affects the execution time.

The optimized running times displayed in Table 6.2.2 also have different degrees of depen·.

dence on the value of MOVCOST. The running times of Intmm, Mm, Bubble, Fft, Sieve and Inverse

are somewhat unaffected by the variation in the value of MOVCOST, whereas Perm, Tower, Queen,

Quick and Quick2 show higher dependence. This degree of dependence on MOVCOST is based on

many factors. Programs that have only a few number of register-memory transfer operations

(RLOD's and RSTR's), or whose such instructions are not nested inside loops, are relatively inde­

pendent of the value of MOVCOST. This is because in our algorithm the cost of register allocation

represented by MOVCOST arises directly from the RLOD and RSTR instructions. There are also

different degrees of clustering of occurrences of the same variable. When a variable occurs very

frequently in a block, the saving out of allocating the variable in register is great; MOVCOST will

have to be made very large for UOPT to decide not to allocate the variable in register. When

the target machine has many registers available for use by the optimizer, the results displayed

in the row MOVCOST = 0 will worsen because the optimizer will allocate many items in registers

even though their allocation is not profitable in terms of execution time.

In Table 6.2.2, the program Perm shows the best optimization when MOVCOST is 2; Queen

shows the best time when MOVCOST is 1; Puxzle, Tree and Quick2 shows the best times when

MOVCOST is from 1.5 to 2. We conclude that, for the DEC 10, the best value of MOVCOST is in

the region 1.5 to 2. We have set MOVCOST to be 1.5 in the production optimizer.

8.2.3. Effects of Bounds Checking

Table 6.2.3 compares the optimization performance for versions of the programs with and

without bounds-r.hecking. Programs which have bounds-checking contain extra code that checks

whether the ranges of subrange types or array subscripts ar1? ever ex.cee<fod. Dou11ds-d1cckcd

120

6.2. EFFl•CTS OF OPTIMIZATION PAUAMETERS

versions always take longer to run than the corresponding versions without bounds-checking.

UOPT does not. perform any specific optimization on bounds-checking. We are comparing

the percentage improvement that is achieved with respect to their un-optimized versions. The

improvement shown in the table includes the effects of procedure integration.

The results show that programs without bounds-checking can be optimized more than the

corresponding versions with bounds-checking. This is due to the fact that the bounds-checking

instructions (CHKL, CHKR) cause changes in the tree structures of expressions that prohibit tree­

restructuring in stack-height reduction. Address collapsing and strength reduction are affected,

since they cannot easily be performed across a bounds-checked expression subtree. Bounds­

checking also reduces the number of common subexpressions, since two expressions are the

same only if their bounds-checking code is identical. It is possible to incorporate an extra

bounds-checking optimization phase to further extend the optimization capability of UOPT.

Program Perm Tower Queen Intmm

Unoptimized, without bounds-checks 13.77 2.48 3.95 1.30
(1.0) (1.0) (1.0) (1.0)

Optimized, without bounds-checks 7.44 1.26 2.68 .424
(.54) (.51) (.68) (.32)

Unoptimized, with bounds-checks 19.37 3.4~ 5.24 1.64
(1.0) (1.0) (1.0) (1.0)

Optimized, with bounds-chccb 12.36 2.18 4.86 .86
(.64) (.64) (.93) (.53)

P?'ogram Dubble Tree Fft Sieve

Unoptimized, without bounds-checks 5.06 1.22 2.85 5.09
(1.0) (1.0) (1.0) (1.0)

Optimized, without bounds-checks 2.34 .93 1.05 3.25
(.46) (.77) (.37) (.64)

Unoptimized, with bounds-checks 7.46 1.36 3.49 6.49
(1.0) (1.0) (1.0) (1.0)

Optimized, with bounds-checks 4.66 1.11 1.68 5.21
(.63) (.81) (.48) (.80)

Rmming times in Seconds

(Normalized running times in parentheses)

Mm Puzzle Quick

1.43 5.32 1.94
(1.0) (1.0) (1.0)

.56 2.47 1.30
(.39) (.46) (.67)

1.78 7.01 2.75
(1.0) (1.0) (1.0)

1.00. 4.28 2.40
(.56) (.61) (.87)

Quick2 Inverse Average

.719 4.71 (1.0) (1.0) (1.0)

.572 2.35 (.55) (.80) (.50)

.924 6.51 (LO) (1.0) (1.0)

.789 4.05 (.69) (.85) (.62)

Table 6.2.3 Comparison of optimization for versions with and without bounds-checking (DEC 10)

121

6.3. Characterization of Mac~ines

In this section, we look at the machine characteristics that influence the ways the machines

can benefit from the machine-independent optimization's we have addressed in the previous

chapters. We are mostly concerned with the instruction sets, since they have the most to· do

with optimizability at the program code level. In Section 6.6, we shall summarize our findings

about the relationships between the various machin~indepeudent optimizations and machine

characteristics.

Number of Addresses in Instructions

Most arithmetic operations reference two operands and yield a result. There are different

ways in which machine instructions can '•pecify these addresses:

1. Three-address instructions: This instruction format completely specifies the two operands

and the address where "the result of the operation is stored.

2. Two-address instructions: The two addresses specify the two operands in the case of binary

operations, or the source and target in the case of data move operations. The result of an

arithmetic operation is always left in one of the two addresses.

3. One-address instructions: Arithmetic operations are always carried out on a single register

or accumulator. The results are always left on the accumulator. Since there is only one

possible accumulator, the instructions do not need to specify it explicitly. They only specify

the second operand .in the case of binary operations, or the load arid store targets in the

case of transfers to and from the accumulator.

Addressing Modes

Operands can be specified in different ways in machine illstructions:

1. Immediate addressing: The operand, which is a constant, is directly specified in the in­

struction.

2. Direct addressing: The instruction provides the absolute address of the operand in memory.

A special case is register direct addressing, in ~hich a register contains the operand.

3. Indirect addressing: The instruction gives the address of a memory location that in turn

provides the address of the actual operand. A special case is register indirect addressing, in

which the instruction selects a register that contains the address of the operand. Another

variation of indirect addressing is indirect with autoincrement or autodecrement, in which

the location containing the address is automatically incremented or dccremente!l after or

before the operand fetch.

122

6.3. CHARACTERIZATION OF MACHINES

4. Indexed addressing: The instniction specifies an offset and an index register. The address

of the operand is found by adding the offset to the content of the index register. The

actual base address can be either the offset or the content of the .index register. When

the base address is contained in a register, it is termed base addressing which can be used

to implement program relocatability, for addressing within an activation record using a

stack-frame pointer or in accessing array reference parameters.

On top of the number of addresses and the possible addrrssing modes for each field in

the instructions, numerous restrictions or idiosyncracies may be present. This concerns the

orthogonality of the instruction set. A machine with an orthogonal (symmetric or regular)

instruction set provides uniform addressing capability for all op-codes. A machine with a non­

orthogonal instruction set has different restrictions on addressing modes among the op-codes

and the fields in each instruction. For each addressing mode, there can be other restrictions

as well, such as limitation to a subset of the registers and the size of the constant or address

specified.

An attribute oftt!u used to describe machines is the complexity of the instruction set, which

has to do with the number and types of instructions provided and the lengths of the instruc­

tions. Complicated instruction sets often exist in machines that provide powerful operations

and addressing modes, which require multiple instruction word lengths for their complete spec­

ifications (e.g. S-1). Reduced instniction-set computers (RISC's) have only a limited number

of instructions that execute in single clock cycles and are of the same word size.

An important consideration regarding machine instruction sets is whether each address field

in the instruction can address memory. The common situation is that not all the address fields

can address memory, regardless of the number of addresses in the instniction. In such machines,

individual arithmetic operations usually involve multiple instructions, the extra instnictions

being for transfering memory operands to registers. In machines with simple instruction sets,

memory access is usually restricted only to the load and store commands (e.g. MIPS).

A additional attribute used to qualify machines is the level of the machine code. When

many non-primitive operations arc provided by the instruction set, the level of the instruction

code is high. A special type of machines, the directly-executable language (DEL) processors,

directly map language constructs into hardware. These machines are hardware interpreters for

the source language statements. An example is the_ Fortran Optimized Machine (FOM) at IBM.

6.4. Optimization Results in Different Machines

123

6.4. OPTIMIZATION RESULTS IN DIFFERENT MACHINES

Program Perm Tower Queen Int mm

Original DEC 10 runnillg time. 13.77 2.48 3.95 1.30
(1.0) (1.0) (1.0) (1.0)

Optimized DEC 10 runnillg time 7.44 1.26 2.68 .424
(.54) (.51) (.68) (.32)

Original 68000 runnillg time 36.52 6.59 12.68 17.12
(1.0) (1.0) (1.0) (1.0)

Optimized 68000 runnillg time 27.90 3.95 6.5' 7.56
(.76) (.60) (.52) (.44)

Original VAX running time 46.93 7.45 10.02 1.88
(1.0) (1.0) (1.0) (1.0)

Optimized VAX l'llDJling time 25.34 3.42 8.58 .58
(.54) (.46) (.86) (.31)

Original MIPS runnillg timei {1.0) (1.0) (1.0) (1.p)

Optimized :Mn>s running timei (.52) (.35) (.46) (.41)

I'rogram Quick Bubble Tree Fft

Original DEC 10 running time 1.94 5.06 1.22 2.85
(1.0) (1.0) (1.0) (1.0)

Optimized DEC 10 running time 1.30 2.34 .93 1.05
(.67) (.411) (.77) (.37)

Original 68000 runnillg time 23.59 20.6<1 10.47 _t
(1.0) (1.0) (1.0)

Optimized 68000 running time 17.75 5.74 9.'4 -t (.75) (.28) (.90)

Original VAX running time 6.07 16.23 9.32 4.32
(1.0) (1.0) (1.0) (1.0)

Optimized VAX l'llDJling time 4.17 4.98 8.70 1.76
(.69) (.31) (.94) (.40)

Original MIPS _runnillg timei (1.0) (1.0) (1.0) _t

Optimized MIPS nutning timei (.52) (.33) (.71) _t

f Floating point instructions not yet available for running these programs.

f Real ruDDing times not available; programs are run using a ollmWatOI'.

Running times in Seconds

(Normalized running times in parentheses)

Mm

1.43
(1.0)

.56
(.39)

-t

_t

1.97
(1.0)

.80
(.41)

_t

_t

Sieve

5.09
(1.0)

3.25
(.64)

23.90
(.J..O)

10.42
(.44)

13.60
(1.0)

8.32
(.61)

(1.0)

(.47)

Table 6.4.1 Optimization performance on different machines

124

Puzzle

5.32
(1.0)

2.47
(.46)

16.56
(1.0)

6.15
(.37)

10.28
(1.0)

4.53
(.44)

(1.0)

(.24)

AYerage

(1.0)

(.53)

(1.0)

(.56)

(1.0)

(.54)

(1.0)

(.45)

6.4. OPTIMIZATION RESULTS IN DIFFERENT MACHINES

To this date, the optiIU.::- ... tion output of UOPT has been used on 6 different machines -

the DEC 10, the 68000, the VAX, the MIPS, the S-1 and the FOM. The code generators for

these machines are all implemented at Stanford. The ~-1 and the FOM are not capable of

running real programs yet. In Table 6.4.1, we present the optimization results for the prece<!ing

benchmarks on the DEC 10, the 68000, the VAX and the MIPS.

Table 6.4.1 compares the original running times of the programs with their running times

after procedure integration and global optimization. The data for the MIPS are based on

counts of the number of instructions executed on the MIPS simulator. The 68000 currently

implements multiplication using subroutines, and this may influence the comparison since more

time is spent in performing multiplication. Also, the 68000 uses 32 bits for all non-boolean

data even though it is not a true 32-bit machine, and the extra running time due to the use

of 32~bit arithmetic cannot be optimized. Apart from the 68000, which uses the ·callee-save

convention, and the FOM, which does not have conventional registers, all the machines use the

caller-save linkage convention. All the code .generators are implemented by different persons,

so that there i= a variety of code generating methodology used. The cc;>de generators perform

machine-dependent peephole optimization, and the peepholing may duplicate some of the local

optimizations performed in UOPT. The tiining data for the unoptimized versions of the program.a

in the table include the effects of the machine-dependent optimization. Since the quality of the

translated object code for a machine is highly dependent on ilie code generator, it is possible

that a different code generator for the same machine may yield very different results in the Table ·

6.4.1.

6.5. Effects of the Optimizations on Machine Code

In this section, we look at the different types of optimizations performed in UOPT and

consider how these optimizations at the intermediate code level can bring about differing effects

on the object code of target machines. Since UOPT uses U-Code as the optimization medium,

a machine that closely resembles the hypothetical U-Code machine is expected to exhibit the

most direct and predictable benefits from the optimizations performed. The case in point is a

stack machine whose indtruction set closely resembles U-Code. We are mainly interested in how

optimization in U-Code influences the object code of machines with other characteristics.

Among the optimizations performed, those that shorten code sequences will yield noticeable

improvements in all machines, since the translated machine code will correspondingly be short­

ened. Thus, it can be certain that dead code eliinination, redundant store and dead variable

elimination are atways beneficial; these optimizations result in the removal of useless code. Con­

stant expression evaluation replaces a sequence of arithmetic operations by a single constant.

125

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

Since this cuts the code size of the computation to a fraction of its original length, the benefits

of this optimization are also iridependent of the characteristics of the target machines.

Another class of optimizations moved program code from frequently ... xecuted regions of the

program to less frequently executed regions. The transformation involves little or no change to

the forms of the moved code, and thus their effects on the real ~achines are also independent

of the machine characteristics. These optimizations include the various forms of code motion,

which are related to either loop invariant expressions or partial redundancy suppression.

Next we consider the remaining types of optimizations whose effects on the underlying

machines are not as obvious those just considered:

Constant propagation

Constant propagation replaces a memory operand by a constant. This allows the use of

immediate addressing in the machine instrnction, and saves the target machine a memory cycle .

to access the content of the memory location originally referenced. This does uot necessarily

result in the elimination of any machine instrnction. However, if the constant is small, the

immediate address occupies less space in the instruction .. In two- or three-address machiries in

which only one operand can address memory, this can allow the code generator to squeeze the

specification of an arithmetic operation into a single instruction.

Example. For the statement "I :• I + J" where J is folded to 3, in 68000 code,

movl pp$dat+580,d0
addl d0,pp$dat+578

can be reduced to:

addql #3,ppSdat+678

load J
add to I

odd3toI

In the MIPS, an instruction to load a constant is also eliminated because the add instruction

cannot address memory but can take an immediate operand:

is reduced to:

ld FPinit+(-3),rt.
ld FPlnit+(-4),re
add r2,rt
st rl,FPinit+(-4)

ld FPinit+(-4),rt
add #3,rl
st rt,FPinit+(-4)

load J
load I
I+ J
store to I

load I
add3toI
store to I

In the DEC 10, however, there is no change in the number of instructions:

MOVE
ADD
MOVEM

,PP$DAT+87
,PP$DAT+88
,PP$DAT+87

126

load I
l+J
store tCI I

6.5. EFFECTS OF THE OPTIMIZATIONS ON MAClllNE CODE

is transformed to:

CJ

MOVE 2 ,PP$DAT+87
ADDI 2 ,3
MDVEM 2 , PPSDAT+87

Stack height reduction

load I
1+3
store to I

Stack height reduction affects the target machine code in two different aspects:

1. The U·Code stack is usually implemented using general-purpose registers in the underlying

machines. Stack height reduction reduces the number of registers needed to hold the items

on the stack, thus freeing registers for other usages and reducing the chance that the code

generators run out of registers, when spilling to main memory occurs with the associated

spill code. When an item on the stack is an intermediate result of an earlier computation,

a temporary register is always needed to keep its value. When the item on the stack is a

variable, however, depending on the target machines, it may or may not need to reside in a

register before being combined in the subsequent evaluation, since appropriate addressing

modes may allow the arithmetic instruction to address one or both operands directly in

memory. This optimization is especially important· in machines that have only a small ·

number of registers.

2. Stack height reduction can reduce the number of instructions in the target machine needed

to evaluate the entire expression by eliminating extra load instructions. This is especially

tnte in arithmetic instructions in which one and only one operand can address memory.

Jn machines that provide memory-to-memoey operations (e.g. S-1}, no load instruction is

needed; in machines in which all operands in expressions need to be loaded (e.g. MIPS},

stack height reduction cannot reduce the number of load instructions.

Example. For the Fortran statement

I • CI + 6) + CJ + K) + CCL + M) + CM + J)).

Original DEC 10 code:

MOVE
ADDI
MOVE
ADD
ADD
MOVE
ADD
MOVE
ADD
ADD
AOD
MOVEM

4 ,SMAIN.+33
4 ,5
1 ,SMAIN.+34
1 ,$MAIN.+311
4 ,1
2 .SMAill.+38
2 ,SMAIN.+37
3 .SMAii!. +37 .
3 .SMAIN,+34
2 ,3
4 ,2
4 ,$MAIN.+33

127

load I
I+ ll
load J
J+K
(I + 5) + (J + k)
loadL
L+M
load M
M+J
(L + M) + (M + J)
(I + ll) + (J + K) + l(L + M) + (M + JI)
store to I

6.5. EFFECTS OF THE OPTIMIZATIONS ON MACHINE CODE

Stack-height rt.'tluced DEC 1il code:

MOVE
AODI
ADD
ADD
AOD
ADD
ADD
ADD
MOVEM

4 ,$MAIN.+33
4 ,5
4 ,$MAIN.+34
4 ,$MAIN.+35
4 ,$MAIN.+36
4 ,$MAIN.+37
4 ,$MAIN.+37
4 ,$MAIN.+34
4 ,SMAIN.+33

load I
1+5
add J
add K
add L
addM
addM
add J
store to I

Original S-1 code:

Add.S RTA.SMAIN.+116,#6
Add.S RTB,$MAIN.+120,$MAIN.+124
Add.S RTA,RTB
Add.S RTB,$MAIN.+128,$MAIN.+132
Mov.S.S Rt ,SMAIN.+132
Add.S Rt ,$MAIN.+120
Add.S RTB,Rt
Add.S $MAIN.+t16,RTA,RTB

Stack-height reduced S-1.code:

[J

Add.S
Add.S
Add.S
Add.S
Add.S
Add.S
Add.S

RTA,$MAIN.+116,#5
RTA,$MAIN.+120
RTA,$MAIN.+124
RTA.SMAIN.+128
RTA,$MAIN.+132
RTA,$MAIN.+132
$MAIN.+116,RTA,$MAIN.+120

1+5
J+K
(l + 5) + (J + K}
(L+M)
load M
M+J
(L+M)+(M+J)
l = (I + 5) + (J + K) + ({L + M) + (M + J))

1+5
add J
add K
add L
add M
add M
add J aud store to l

In the above examples, the DEC 10 instructions allow only one operand to address memory.

Thus, the improvement in the optimized i:ode is quite significant. The S-1 instructions allow

both operands to address memory, and the effect of stack-height reduction is not as dramatic. In

the MIPS, the arithmetic instructions cannot have memory operands, and all memory references

require separate load instructions. Thus, the number of instructions in expression evaluation

will not be affected by stack-height reduction. However, stack-height reduction still benefits the

MIPS by reducing the number of registers required in expression evaluation.

Register allocation

Register allocation ou the intermediate code level can affect the underlying machine code

in many different ways:

1. By referencing variables in registers, it allows the use of the register direct addressing mode

without the need of extra load instructions generated by the code generators. The same is

true for stores to variables. The use of the register direct mode saves one memory cycle.

The number of instructions may or may not be affected depending on the machh1e and the

type of.operation.

128

6.5. EFFECTS OF THE OPTIMIZATIONS ON MAClllNE CODE

Example. In the DEC 10, the number of instructions is not .changed in the case of addition

because the code generator can use direct memory addressing. Register allocation only changes

the addressing mode:

ADD 3 ,PPSDAT+88 add I to register 3

ia changed to

ADD 3 ,4 add I in register 4 to register 3

In the MIPS, register allocation is especially effective because the arithmetic instructions cannot

reference operands in memory. The. expressions A + B is translated to:

ld IFP1n1t·104,r4
ld IFP1n1t-100,r5 .
add r4,r8

load A to r4
load B torli
A(Jl+B[JI

IC variables A and B have been allocated to registers, the two load instructions can be eliminated.

a
2. The positions of the load and store instructions to and from registers are optimized so that·

they do not occur at frequently executed program points. This optimization is effective

regardless of the machine characteristics.

3. Dy allocating i11dex variables in registers, it facilitates the code generators to use the indexed

or base addressing modes instead of performing straight additions in address expressions.

Each IIA operation in U·Code can be handled by the use of an indexed operand address_.

Exan:ple. In accessing an array element A[I], the DEC 10 code before register allocation- ia:

MOVEJ 2 , PPSDAT+88
ADD 2 ,PPSDAT+287
MOVE 4 ,0(2)

After register allocation, the code becomes:

MOVE 4 ,PPSDAT+88(1)

load adr(A)
adr(A)+I
load A[JI

load A(I) (I residing in register 1)

In the S-1, the code before register allocation for the statement "A[I] :• B[J]" is:

Shfa.Lf.S
Shfa.Lf .S
Mov.s.s

RTA,PPSDAT+300,12
RTB,PPSDAT+298,#2
PPSDAT+304(RTAJ,PP$DAT+340[RTBJ

load I and shift it by 2 bite
load J aad shift it b:r 2 bits
A(J) := B(J)

After register allocation, the entire statement cau be handled by one instruction, with I residing

in register R27 and J residing in register R28.

Mov.s.s PPSDAT+304(R27Jt2,PP$DAT+340[R28]t2

a
4. By allocating ·address variables in registers, it facilitates the ~se of the register-indirect

addressing mode or base addressing, possibly in conjunction with an index register.

129

6.5. E•'FECTS OF Tiii~ OPTIMIZATIONS ON MAClllNE CODE

Example. In the 68000, the base address in the indirect or indexed addressing mode is always

specified using~ address register. The instructions to load addresses into the address registers

prior to the uses of these addressing modes can be avoided if the address quantities have been

allocated in registers by the optimizer. (See the examples 011 induction expressions below.)

The effects of 3 and 4 depend on the availability of the respective addressing modes in the

machine. Since different machines provide different forms of addressing, the effects of register

allocation on addressing can vary widely among machines.

Common subexpressions

Common subexpression optimization eliminates duplicate computations occurring in the

program. Since redundant rode is l'Jiminated, this optimization is beneflcial regardless of the

machine characteristics. However, the values of the common subexpressions have to be saved at

their points of computation and re-loaded at their subsequent occurrences. Since each redundant

computation involves at least one memory referencet, the execution time saved is likely to be

greater than the cost for the saving and re-loading. The net speed-up depends on how much

the saved computation time exceeds the time for the saving and re-loading. If registers cannot

be used to save the contents,. the saving and re-loading to and from memory may exceed the .

computation time saved in the case of simple expressions. Thus, if the underlying machine does

not provide many registers, common subexpression elimination may not be very effective. This

saving and re-loading of the values of expressions also occurs in the case of the code motion of

expressions, but in that case, it is the movement of computations out of loops that is mostly

responsible for speeding up the execution time.

The optimizer detects redundancy among all expressions. In the case of address expres­

sions, however, the recognition of redundancy may or may not be beneficial, ilepending on the

machines. This is because it is possible to incorporate some address arithmetic into operand

addresses using special addressing modes. Examples of address arithmetic that can be handled

by special addressing modes are the indirect loads and indexing operations. In some cases,

special addressing modes can represent the same computations as entire address expressions. If

common subexpressions are recognized in address expressions that can be translated into spe­

cial operand addresses, the saving into temporaries may be more expensive than the redundant

address computations. If a common subexpression is nested inside a larger address expression,

the saving operation also prevents the collapse of the larger address expression into a single

operand address. Thus. common subexpression optimization in address expreFsions is not as

effective in machines with advanced addressing modes. But since not all address expressions can

f Otherwise, constant arithmetic will be performed by the optimizer.

130

6.5. EFFECTS OF THE OPTIMIZATIONS ON MAClllNE CODE

6.t into single operand addresses, comm~n subexpression optimization in address expressions is

still beneficial in many situations.

Example. The array reference A[I] can be translated· into a single operand address in the

DEC 10:

MOVE 10.PPSOA+88(6) load A(I), I in register 5

Even if the address computation of A[I] has been saved in an earlier occurrence, the re-use of

the saved value would not result in better code because indexed addressing is just as fast as

indirect addressing in the DEC 10:

MOVEI 8. PP$0A+88(5) llllftadr(A(JJ)

AOD 10,0(8) load A(I) 111ing addreu in register 8

a
Strength reduction

The optimization of strength reduction, associated with induction expressions in loops, can

bring about the following elfects on the underlying machines:

1. Expensive multiplication operations are replaced by additions, thus saving computation

time.

2. The computation of address expressions is moved out of loops and incremented each time

through the loop; this can be looked at as code motion of expressions that. contain induction

variables.

Example. Suppose the array reference A[I,J] ocrurs in a loop. The DEC 10 code for the

address computation is:

MOVE
IMULI
~VE
sos
MOVEI
ADD
MOVE

4 ,PPSDAT+20087
4 ,100
1 ,PPSDAT+20088
1 , 1
2 ,PPSDAT+-13(4
2 , 1
4 ,0(2)

load I
I times 100
load J
decrement J
load adr(A)
adr(A) +computed oll'aet
load A(l,J)

After optimization, the induction expression that computes the address of A[I,J] are moved

outside the loop. In the loop, the same array reference is replaced by:

MOVE 1 ,0(8)

where register 8.contllins the address of A[I,J]. Register 8 is incremented in the loop whenever

the induction variables I and J are incremented. tJ

131

6.5. En'ECTS OF THE OPTIMIZATIONS ON MACHIN!!: CODE

3. Registers are allocated to cont<ili: the address expressions that are moved, thus facilitating

the use of special addressing modes, especially the register-indirect addressing mode and

base addressing.

4. Because the optimizer introduces the increments of registers contcining address expres­

sions, it enables the code generators to make use of the autoincrement and autodecrement

addressing modes in machines where these addressing capabilities are available.

Example. Pascal FOR loop:

FOR I:=l TO 100 DO A[I]:=A[I]+B[I];

Original 68000 code:

$2:

movl

movl
asll
movl
movl
asll
movl
movl
asl 1
movl
movl
aodl
movl
addql
cmpl
jla

#t,pp$dat+1376

pp$dat+1376,d0
#2,dO
#ppSdat+572.aO
pp$dat+1376,d1
#2,dt
#pp$dat+572 ,at
ppSdat+1376,d7
#2,d7
lpp$dat+972,a6
atm(O,d1:L),d1
a58(0,d7:L),d1.
dl, a08(0, .dO: L)
#1.pp$dat+1376
#100,ppSdat+1376
$2

Optimized 68000 code:

$2:

Cl

moveq #1,d7
movl #pp$dat+576,a4
movl #pp$dat+976, a5

movl
addl
addql
cmpl
jle

a59+,d0
dO,a48+.
#1,d7
1100,d7
$2

I:= 1

load I
I times 4 to get offset in bytes
load adr(A)
load I
I times 4 to get offset in bytes
Joa<! adr(A)
load I
I times 4 to get offset in bytes
load adr(B)
load A(IJ
A[Ij+B[Ij
assign to A[Ij
increruent I
check !or loop termination

I:= 1
load adr(A)
load odr(B)

load B{Ij and increment adr(B(Ij)
add B[II to A[IJ and incrcment adr(A[IJ)
increment I
check for loop termination

The detection of the opportunitie!l to use autoincrement or autodecrement addressing, as _in

the above example, is limited to information that <:an be gathered within one basic block, since

code generl\tors rarely do global analysis of the program. If the reference and increment of an

address do not occur in the same basic block, the code generator may not be able to recognize

the opportunity.

132

6.6. Relation to Machine Characteristics

We now suinmarize how the relevant machine qualifications we mentioned in Section 6.3

influence the ways machines can benefit from the optimizations of UOPT.

Three-address machines can completely specify an arithmetic operation in one instruction.

Small common subexpression elimination may not be very useful to such machines, since a one­

instruction computation may be less expensive than the saving and re-loading of an identical

computation.

In one-address machines, stack height·reduction is extremely beneficial, because the number

of load instructions is minimized. In a stack height reduced, left-associative expression tree, only

a single load instruction is needed; other operands are added to the accumulator directly from

memory. In this case, the total number of instructions is equal to one plus the number of

operations involved in the expression.

Machines without the immediate addressing mode cannot benefit from constant propaga­

tion, since constants have to be stored and referenced from memory. Machines with register

indirect addressing benefit fr~m the allocation of address quantities in registers. The use of the.

autoincrement and autodecrement modes are also made possible by strength reduction. Ma­

chines with indexed and base addressing also benefit from register allocation. In machines with

multiple offset fields in these addressing modes, however, the optimization of address collapsing

may not have direct benefits since the constants to be combined could have originally occupied

the multiple offset fields.

Machines with non-orthogonal instruction sets usually exhibit a high degree of irregularity

or unpredictability in the ways they can benefit from machine-independent optimizations.

Machines with complex and powerful instruction sets usually do not benefit as much from

common subexpressions as reduced instruction-set machines. The primitive operations on the

intermediate code level do not map easily into the operations at the machine instruction level.

For machines in which one and only one operand field in arithmetic instructions can access

memory, stack height reduction is extremely useful, for the same re&ion as it is in the case

of one-address machines above. Whenever there are some operand fields in instructions that

cannot reference memory, register allocation is useful. For machines in which memory reference

is limited to only the load and store instructions, register allocation is especially beneficial.

These machines also benefit from stack height reduction because all variables that appear in

expressions have to occupy registers; the chatice of running out of registers is reduced, but the

total number of instructions will not be changed.

133

6.6. RELATION TO MACHINE CHARACTERISTICS

The characteristics of directly-executable language (DEL) machines differ widely with re­

spt.'Ct to the nature of the languages that they support. In the case of FOM, the level of the

machine code corresponds quite well with the level of ~-Code. Since the level of U-Codc is

not low, we do not anticipate much difficulty for other DEL's to make use of optimizat!ons

in U-Code. The instruction sets of DEL's arc usually quite orthogonal, and this en]umces the

usefulness of machine-independent optimizations to them.

6.7. Additional Remarks

From the comparison of optimization results on different machines in Section 6.4, and the

discussion of the differing effects of the various optimizations uu target mAchines in Section 6.5

and 6.6, we can reach an overall conclusion: the machine-independent optimizations- performed

by UOPT are beneficial f~r most real machines, but are slightly more effective in machines

with simple instruction Sf:ts and addressing formats, although there are exceptions with respect

to individual optimizations. To explain this, we introduce the concept of context-independent

optimizations and context-dependent optimizations. Both these qualifications are applied to

machine-independent optimizations. The optimizations mentioned in Section 6.5 that have dif­

fering effects on different machines are context-dependent optimizations, because their effective­

ness depends on the details of the machine code. The rest of the optimizations (e.g. dead code

elimination, constant arithmetic, c·ode motion, etc.) are context-independent optimizations,

because their effectiveness is independent of the machine characteristics. In machines with pow­

erful and complicated instmction sets and addressing modes, the code generation process is more

complex, because the code generator has to look for opportunities of using specific constmcts

in the instruction sets in order to fully utilize the capability provided by the machine. This

peephole optimization is highly machine-dependent, and interferes with the context-dependent

optimizations so that the latter's effects arc not so directly felt in the final machine code.

To bring the above remarks into better perspectives, we group the set of all possible opti­

mizations for a giv<m machine according to whether they are machine-independent or machine­

dependent. As shown in Fig. 6.6.1, the machine-independent optimizations are further divided

into two subsets corresponding to the context-independent and context-dependent optimizations.

The set of machine-dependent optimizations intersects with the context-dependent subset be­

cause the effects of the latter are masked by machine-dependent peephole optimizations. The

set of machine-independent optimizations is always the same, but the set of machine-dependent

optimizations varies among machines. A machine with a powerful instmction repertoire provides

greater opportunities for peephole optimization, and the set of machine-dependent optimizations

shown in Fig. 6.6.1 will correspondingly be larger; and when this set is larger, it is likely that

134

Contelt·independent

6.7. ADDITIONAL RBMARKS

Conlelt·depcndent

I
- - •:__ __ _,__Machine l

r: - :i
.I - _J

I 1..---r--Madlinc2

L _ _J

I\ Pmao~ Machin~den~
OpdmizaliC'lll .

Fig. 6.6.1 Possible optimizations in real-world machines

its in~tion with the context-dependent BUbset of machine-independent optimizations will

increase. Because of this larger area of intersection, a larger portion of machine-independent

optimizations is always performed in the code generation process, so that the impact of the

machine-independent optimizations on the object code is not as strongly felt as in machines

with simpler instruction sets.

Although a small part of the machine-independent optimizations can be obscured by the

code generation process, the optimizations performed by UO.PT can effectively reduce the run­

ning times of the object code in all the machines we have encountered. The preceding mea­

surements and evaluations have allowed us to conclude that our approach of portable, machine­

independent optimization is highly feasible in implementing production optimizers.

135

1. Conclusion

In this Chapter, we remark on the significance of this research, and put forth some sugges­

tions for further related work. ·

'l.1. Concluding· Overviews

This thesis work has dcmonsi;ated that a separate, self-contained optimizer that exists

independently of the &ont-ends and. back-ends is both feasible and beneficial. The optimizer

UOPT has a simple and clean interface with the front-ends and back-ends, and does not require

significant changes to target it to new machines. It has been proven to be highly effective on a

wide range of machines.

We believe that the intermediate code we used is a good compromise between completely

machine-independent intermediate forms, which often restrict the extent of optimization that

can be performed, and low-level pseudo-machine languages, which limit the types of machines

that can benefit from the machine-independent optimi11ations. Although U-Code is slightly

machjnc-dependerit, this machine dependence does not limit the portability or the machine­

independence of UOPT.

One of the greatest ohstades fadng the prospective compiler writer is the need to implement

various optimizations in his compiler. As a result of UOPT, an optimizer potentially exists for

any machine, on the condition that the compilation process uses U-Code as the intermediate

form.

Looking at the implementation aspect of UOPT, the novel global optimization framework

introduced in this thesis makes it possible to systematize, simplify and speed up a full range

of optimization processes. Some pr~viously separate optimizatiuus can now be performed con­

currently. We have addressed the problem of sequencing the various optimization phases for

maximal efficiency and best optimization results. All these are accomplished with an accompa­

nying reduction in implementation complexities. The global optimization methodology can be

followed by any other general-purpose optimizer.

In the area of register allocation, we.have dempnstrated that, using a few machine parame-.

ters, register allocation can be effectively and effidently pr.rformed in t.he machine-independent

context. Using a priority-based coloring algorithm, the traditional coloring problem can be

approached practically aud efficiently at the intermediate code level.

136

7.2. Suggestion& for Further Work

One of the main limitations to UOPT's optimizations has been the need to assume the worst

case at procedure calls regarding which variables are altered or referenced. Implementing inter­

procedural flow analysis will allow UOPT to pin-point the exact variables affected by procedure

calls. The analysis will involve an initial pass over the program that gathers and computes the

effects of each procedure. The information made available by the inter-procedural flow analysis

can then be supplied to UOPT when it performs global optimization.

Extensiom and additions to the optimizations performed in UOPT are possible. Among

these are the optimization of bounds-checking, optimizations aimed at reducing code size (e.g.

code hoisting) and the c~pability to allow UOPT to change the control flow constructs of ti>•. pro­

grams. Since these intera:=t with the optimizations already performed in UOPT, the conciseness

and ease of maintenance of UOPT may have to be compromised.

Register allocation in UOPT also provides opportunities for further enhancement, perhaps

at' the expense of more optimization running time in the register allocatiou phase. Currently,

code motion of the register-memory move instructions is performed after all register allocation

has taken place. In the global coloring phase, register allocation priorities are computed by .

assuming that the register-memory move instructions are at their fixed positions, and no account

is taken of the pos8ibility that these move instructions can be transferred later to better positions

to minimize the execution time cost. The algorithm could be made more exact if the possibility

of code motion to reduce cuoL is factored into the priority ordering.

Procedure parameters are commonly passed In registers. Optimizing the use of registers in

parameter pa.~sing is another possible c:xtension to register allocation in UOPT. The primary

purpose is to minimize the cost for the loading of parameters into registers before they are passed

and the saving of parameters into home locations at the entries to callees. Register assignments

to passed parameters should take into account the appearances of the parameters in the callees

and before the points of call in the callers.

The possibility of overlapping registers of different sizes has not been treated in UOPT.

Although such sit•tations have not appeared in the machines to which UOPT has been applied,

they do occur in other machines. It would be interesting to see how well the coloring algorithm

in UOPT can be adapted to such situations.

In the systems aspect, there are many other opportunities related to UOPT that can be

attempted. UOPT currently supports only Pascal and Fortran. It is po•sible to introduce ad­

ditional programming languages that are cmqpile<l via U-Code. Extensions to U-Code should

be minimized and reserved only for extreme cases. Specialized languages may display their

137

7.2. SUGGES'flONS FOR FURTHER WORK

own commonly-occurring optimization qpportunitics, and these languages can have their own

front-end optimizers that perform their own specialized optimization transformations and out­

put U-Code; UOPT can still be used to advantage as t~e general-purpose global optimizer in

the subsequent common optimization phase. Any extension to U-Code, or modification to.its

semantics, could entail changes in the optimizer itself. The extensions introduced should be

such that they do not aft'ect the optimizations already existing in UOPT.

To recognize the existence of other intermediate code for other programming languages and

code generators, UOPT can be re-implemented on other intermediate code. Although the inter·

mediate code may -affect the optimizations that can be performed, the optimization methodogy

in UOPT is somewhat independent of the intermediate code. Another possibility is to build

translators between U-Code and other intermediate forms supported by other programming

languages and code generators. This approach requires much less programming effort, although

there is more overhead in the compilation and optimization processes due to the existence of

multiple intermediate forms and the larger nmnber of phases in translation.

Lastly, it is also possible for specific installations to incorporate UOPT as a built-in com·

ponent in code generation. UOPT can be made the front part of a code generator. The code

generator uses UOPT as the module that inputs the intermediate code. After global optimiza­

tion, tlie code generator emits object code directly from the internal representations of UOPT.

Such an arrangement serves to eliminate the input/output overhead inherent in multi~pass com­

piling systems and can render greater code generation eJliciency without sacrificing modularity.

138

References

Aho72 A. V. Aho and J. D. Ullman, "Optimization of Straight Line t':ode," SIAM J. Com­
puting 1, 1, pp. 1-19.

Aho77 A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wet1ley, 1077.

Alle71 F. Allen and J. Cocke, "A Catalogue of Optimizing Transformations," pp. 1-30 of
[Rust72).

Alle75 F. Allen, "Bibliography on Program Optimization," IBM Research Report No. RC
5767, Dec. 1975.

Alle76a F. Allen and J. Cocke, "A Program Data Flow Analysis Procedure," Comm. ACM
19, 3, pp. 137-147.

Alle76b F. Allen, "An AnnotatP.d Bibliography of Selected Papers on Program Optimi­
zation," IBM Research Report No. RC 5889, March 1976.

Alle80 F. Allen et al., "The Experimental Compiling System," IBM J. Res. Develop. 4, 6
(Nov. 1980).

Alle81 F. Allen, J. Cocke and K. Kennedy, "Reduction of Operator Strength," pp. 79-101
of [Much81).

Amma75 U. Amman, K. Jensen, K. Nori, et al., "Pascal P Compiler Implementation Notes;"
ETH Zurich, 1975.

Ankl82 P. Anklam, D. Cutler, R. Heinen, Jr. and M. D. MacLaren, Engineering a Compiler
- VAX-11 Code Generation and Optimization, Digital Press, 1982.

Arsa79 J. J. Arsac, "Syntactic Source to Source Transforms and Program Manipulation,"
(;omm. ACM!!!!, 1 (January 1979).

Ausl82 M. Auslander and M. Hopkins, "An Overview of the PL.8 Compiler," ACM SIG­
PLAN Notices, 17, 6 (June 1982), (Proceedings of the SIGPLAN'B!! Symposium on
Compiler Construction),' pp. 201-207.

Bagw70 J. T. Bagwell, "Local Optimizations," SIGPLAN Notices 5, 7 (July 1970).

Beat74 J. C. Beatty, "Register Assignment Algorithm for Generation of Highly Optimized
Object Code," IBM J. Res. Develop., Jan. 74.

Bran82 W. C. Brantley and J. Weiss, "FOM: Principles of Operations," IDM Research ~
port, August 1982.

Bush79 R. Bush, "UASMINT: A U-Code Assembler and hiterpreter," S-1 Project Docu­
ment, Computer System Lab, Stanford Univcr~ity, June 1079.

139

Cast79

• REFERENCES

F. Castaneda, F. Chow, P. Nye, D. Sleator and G. Wiederhold, "PCFORT: A For­
tran to P-Code Translator," Computer System Lab Technical Report 160, Stanford
Univ~sity, January 1979.

Chai82 G. J. Chaitin, "Register Allocation and Spilling via Graph Coloring," ACM SIG·
PLAN Notices, 17, 6 (June 1982), (Proceedings of the SIGPLAN'82 Symposium on
Compiler Construction}, pp. 201-207.

Chow80 F. Chow; P. Nye and G. Wiederhold, "UFORT: A Fortran to U-Code Translator,"
Computer System Lab Technical Report 168, Stanford University, January 1980.

Chow83a F. Chow and M. Ganapathi, "~termediatc Languages in Compiler Construction -
A Bibliography," ACM SIGPLAN Notices, 18, 11 (Nov. 83), pp. 21-23.

Chow83b F. Chow, "Implemenation Manual for the U-Code Optimizer UOPT," Computer
System Lab Technical Note, Stanford University, December 1983.

Cock70

Cock77

Cock80

Davi80

Digi81

Frai79

Frei74

GanaSO

J. Cocke and J. T. Schwartz, Programming Languages and Their Compilers, Courant
Institute of Mathematical Sciences, New York University, April 1970.

J. Cocke and K. Kennedy, "An Algorithm for the Reduction of Operator Strength,"
Comm. ACM 20, 11, Nov. 77.

J. Cocke and P. Markstein, "Measurement of Program Improvement Algorithms," ·
Proc. IFIP Cong. '80, (Tokyo, Japan, Oct. 6-9, Melbourne, Australia, Oct. 14-17,
1980).

J. W. Davidson and C. W. Fraser, "The Design and Application of a Retargetable
Peephole Optimizer," ACM !Tan. Prog. Lang. Syst., Apra 198Q.

VAX Architecture Handbook, Digital Equipment Corporation, 1981.

D. J. Frailey, "An Intermediate Language for Source and Target Independent Code
Optimization," ACM SIGPLAN Notices 1..1, 8 (August 1979), (Proceedings of tile
SIGPLAN'79 Symposium on Compiler Construction}, pp. 188-200.

R. A. Freiburghouse, "Register Allocation Via Usage Counts," Comm. ACM 11, 11,
Nov. 74.

M. Ganapathi, "Retargetable Code Generation and Optimization using Attribute
Grammars," Ph.D. Thesis and Tech. Report 406, Computer Scienct~s Department,
University of Wisconsin - Madison, 1980.

Gana82 M. Ganapathi, C. N. Fischer and J. L. Hennessy, "Retargetable Compiler code Gen­

eration," ACM Computing Surveys, 14, 4 (Dec. 1982).

Gana84 M. Ganapathi and C. N. Fischer, "Attributed Linear Intermediate Representations
for Retargctable Code Generators,~ Software - Practice and Experience 14, 1, Jan·
uary 1984.

140

Gesc72

Grah80

Gyll79

Hail79

Harr75

Harr76

Hech73

• REFEltENCES

C. M. Geschke, "Global Program Optimizations," Ph.D. Thesis, Carnegie-Mellon
University, October 1972.

S. L. Graham, "Table-driven Code Generation," IEEE Computer, 19, 8 (August 80),
pp. 25-34.

H. C. Gyllstrom, R. C. Knippel, L. C. Ragland, K. E. Spackman, "The Universal
Compiling System," ACM SIGPLAN Notices, LS, 12 (Dec. 1070), pp. 64-70.

B. Hailpern and B. Hitson, "S-1 Architecture Manual," Computer System Lab Tech­
nical Report 161, Stanford University, January 1979.

W. Harrison, "A Class of Register Allocation Algorithms," IBM Research Report
No. RC 5342, March 27, 1975.

W. Harrison, "Formal Semantics of a Schematic Intermediate Language," IBM Re­
search Report No. RC 6271, November 1976.

M. S. Hecht and J. D. Ullman, "Analysis of a simple algorithm for global flow prob­
lems," Con/. Record, ACM Sympodium on Principles of Pr.ogramming Languages,
Boston, Mass., Od .. lW3, pp. 207-217.

Hcch77 M. S. Hecht, Data Flow Analysis of Computer Programs, American Elsevier, New
York, New York.

Henn82a J. L. Hennessy, "Symbolic Debugging of Optimized Code," ACM Tran. Prag. Lang.
Syst., 1982.

Henn82b J. L. Hennessy, "Pascal*: A Pascal.Based Systems Programming Language," Com­
puter System Lab Technical Note 174, Stanford University, September 1982.

Henn82c J. L. Hennessy, et al., "The MIPS Machine," Proc. Compean, IEEE, San Francisco,
Feb. 1982, pp. 2-7.

Henn83 J. L. Hennessy, et al., "Design of a High Performance VLSI Processor," Teclmical
Report 236, Computer System Lab, Stanford University, 1983.

Jens75 K. Jensen and N. Wirth, Pascal User Manual and Report, Springer Verlag, New
York, 1975.

John75

John77

Kenn76

R. K. Johnsson, "An Approach to Global Rcgh1ter Allocation," Ph.D. Thesis, De­
partment of Computer Science, Carnegie-Mellon University, December 1975.

S. C. Johnson, "A Tour through the Portable C Compiler," UNIX documentation,
Bell Telephone Laboratories, Murray Hill, N. J., 1977.

K. Kenn<?dy, "A Comparisor.. of Two Algorithms for Global Data Flow Analysis,"
SIAM J. Computing, 5, 1 (March 76), ·pp. 158-180.

141

Kild73

• REFERENCES

G. A. Kildall, "A Unified Approach to Global Program Optimization," Proc. ACM

Sympoaium on Principlea of Programming Languagea, 1973, pp. 194-206.

Kim78 J. Kim, "Spill Placement Optimization in Register Allocatiop for Compilers," IDM
Research Report No. RC 7251, August 8, 1978.

Knut71 D. E. Knuth, "An Empirical Study of Fortran Progr:mis," Software - Practice and

Ezperience 1, 2, pp. 105-.133.

Kom78 P. Komerup, D. B. Kristensen and O. L. Madsen, "Interpretation and Code Genera­
tion based on Intermcdia.te Languages,~ Report DAIMI PD-88, Matematisk Institut,
Aarhus UniversitPt, Danmark, May 1978.

Leve79 B. W. Leverett, "An Overview of the Production-Quality Compiler-Compiler Pro­
ject," Tech. Report CMU-CS-79-105, Carnegie-Mellon University, Febnlar)' 1979.

Leve81 B. W. Leverett, "Register Allocation in Optimizing Compilers," Ph.D. Thesis and
Technical Report CMU CS-81-103, Carnegie-Mellon University, February 1981.

Livi83 S-1 UniproceaaOf' Architecture, Lawrence Livermore Laboratory, University of Cali­
fornia, April 1983.

Love76 D. B. Loveman, "Program Improvement by Source to Source Transformation," Con/.
Record ·of the T/&ird ACM Sympoaium on Principlea of Programming Languages,

1976.

Mads76 0. L. Madsen, B. B. Krist~sen and J. Staunstrup, "Use of Design Criteria for
Intermediate Languageii," Report DAIMI PB-59, Matematisk Jnstitut, Aarhus Uni­
versitet, Danmark, August 1976.

Mint79 R. J. Mintz, G. A. Fisher and M. Sharir, "The Design of a Global Optimizer,"
ACM SIGPLAN Noticea, 1,/, 8 (August 1979), {Proceedinga of the SIGPLAN'79

Sympo&ium on Compiler Construction), pp. 226-234.

More79 E. Morel and C. Renvoise, "Global Optimization by Suppression of Partial Redun­
dancies," Comm. ACM !Je, 2 (February 1979).

More81 E. Morel and C. Renvoise, "Jnterprocedural Elimination of Partial Redundancies,"
pp. 160-188 of [Much81).

Moto80 MC68000 16-bit Micropr~,.,uof' UHf''s Manual, Motorola Inc., 1980.

Much81 S. S. Muchnick and N. D. Jones, Program Flow Analysis, Prentice-Hall, Inc., Engle­

wood Cliffs, New Jersey, 198~.

Nels79 P.A. Nelson, "A Comparison of Pasc:U Intermediate L1>:11guages," ACM SIGPLAN

Notice8, 1./, 8 (August 1979), (Proceedings of the SJGPLAN'79 Sym71osium on Com·
piler Construction), pp. 208-213.

142

Nye81

Nye83

Palm75

Perk79

Rust72

Scba73

Scbn73

Schw73

Site79a

Site79b

Stah76

Stan76

Stee61

Tane82

• RE~'EltENCES

P. Nye, "5-1 U-Code: An Intermediate Language for Pascal* and Fortran," S-1
Project Document PAIL-8, Computer System Lab, Stanford University, October

1981.'

P. Nye and F. Chow "A Transporter's Guide to the Stanford U-Code Compiler
System," Technical Report, Computer System Lab, Stanford University, June 1983.

R. C. Palm Jr., "A Portable Optimizer for the Language C," Master's Thesis, July
1975, Masachusetts Institute of Technology.

D. Perkins and R. Sites, "Machine-independent Pa.'ICal Code Optimization," ACM
SIGPLAN Notices, 14, 8 (A11gust 1979), {Proceedings of the SIGPLAN'W Sym­
po11ium on Compiler Construction), pp. 201-207.

R. Rustin (Editor), Design and Optimization of Compilers, Prentice-Hall, Engle­
wood Cliffs, N. J., 1972.

M. Schaefer, A Mathematical Theory of Global Program Optimization, Prentice-Hall,
Englewood Cliffs, N. J.

P. B. Schneck and E. Angel, "A Fortran to Fortran Optimizing Compiler," Computer
Journal, 16, 4, pp: 353-354. ·

J. T. Schwartz, "On Programming: An Interim Report on the SETL Project," Cou­
rant Institute of Math. Sciences, New York University, 1973.

R. L. Sites and D. R. Perkins, "Machine-indcp<mdent Register Allocation," ACM
SIGPLAN Notices, Vol. 14, Number. 8 {August 1970}, {Proceedings of the SIG­
PLAN'79 Symposium on Compiler Construction), pp. 221-225.

R. Sites et al., "Machine-independent Pascal Optimizer Project: Final Report,"
Technical Report UCSD/CS-79/038, University of California at San Diego, Novem­
ber 1979.

T. A. Standish, D. C. Harriman, D. F. Kibler and J. M. Neighbors, The Irvine
Program Transformation Catalogue, Dept. of Information and Computer Science,
University of California, Irvine, 1976.

"DEC System 10/20 Hardware Manual and FAIL," Stanford Artificial Intelligence
Lab Operating Note 75, November 1976.

T. B. Steel, Jr., "A First Version ofUNCOL," Proc. Western Joint Computer Con­
ference, AFIPS, 1961, pp. 371-378.

A. S. Tanenbaum, H. V. Staveren and J. W. Stevenson, "Using Peephole Optimiza­
tion on Intenm•diate Code," ACM Tran. Prog. Lang. Syst. ,/, 1 (January 1982).

143

Tane83

Wilh81

Wilk83

Wulf75

.• REFEl?ENCES

A. S. Tanenbaum, H. V. St~veren, E. G. Keizer and J. W. Stevenson, "A Practical
Tool Kit for Making Portable Compilers" Comm. ACM 26, 9 (September 1983), pp.
654-660.

R. Wilhelm, "Global Flow Analysis and Optimization in the MUG2 Compiler qen­
erating System," pp. 132-159 of [Much81j.

A. Wilk and W. Silverman, "OPTIMA - A Portable PCODE Optimizer," Software
- Practice and Experience, 19 (April 1983), pp. 323·-354·.

W. Wulf, R. K. Johnsson, C. B. Weinstock, S. 0. Hobbs and C. M. Geschke, The
Design of an Optimizing Compiler, American Elsevier, New York, N. Y.

144

Appendix A. Short Guide to U-Code

U-Code, a descendent of the P-Code intermediate language emitted by many Pascal com­

pilers, exists in two dilfcreut formats: a text format and a binary format. A U-Code inst.ruction

is represented in compiler programs as a record. In the binary format, these records are written

directly into files. As a result, the read-write process is faster, and the binary format files occupy

much less disk space.

U-Code can be thought of as the assembler language for a hypothetical U-machine. The

U-machine has the following components: ·

1. A stack for use in all expression evaluation.

2. A =ead-only storage area where instructions and string constants are kept.

3. A static storage area (memory type S) where global variables and Fortran own variables

are kept.

4. A set of registers (memory type R) where data items can be kept for fast accesses.

5. A memory stack divided ·into stack frames for the processing of procedure invocation. A ·

stack frame (or activation record) is pushed on top of the memory stack whenever a pro­

cedure is invoked. The stack frame contains parameters, local variables and compiler­

generatcd temporaries. Stack frame storage areas are either designated as memory type M

for local storage or memory type P for parameters.

6. A heap for dynamic allocation of data object~ at program execution time.

The Pascal and Fortran front-ends that output U-Code arc both one-pass compilers. U­

Code programs are organized into modules and procedures in the same order as they occur in

the source programs. In the following, we group the complete U-Code instruction set into classes

and give the syntax and a short description of each op-code. Information of particular use to

the optimizer is noted. The readers are referred to [Nye81] for a more complete definition of the

U-Code language.

1. Direct memory operations

I (op) {data type) {memory type) {block number) (address} {length)

where {op} is:

LOD - load onto stack.

STR - store from stack into memory.

145

APPENDIX A. SHORT GUIDE TO U-CODE

NSTR - same as STR but not popping item.

The length information is important in checking for storage interference in instructions that

access memory. When the memory type is M or P, the Yariable is local if the block number is

the same as the block number of the current procedure.

2. Constants

j LDC (data type) (length) {constant value)

I LCA (memory type) {length) {block number) {constant value)

j LOA (memory type) (block number) (address) (length) {base address)

LDP {static level) (block number) {procedure name)

LDC pushes a constant.value onto the stack. LCA pushes the address of a string constant

onto the stack. LOA pushes a constant address 0onto the stack. LDP pushes a procedure descriptor

onto the stack. In the LOA instruction, the base address together with the length field give'! the

range within which the result of the subsequent address computation will lie.

3. Unary operators

I (op) I
where {op) is:

CHKF - check if false.

CHKT - check if true.

CHKN - check if nil pointer.

I {op) (data type) j

where {op) is:

ABS- get absolute value.

CHKH- check upper bound.

CHKL- check lower bound.

NEG- negate.

NOT- boolean not.

ODD- check if odd number.

SQR- square root.

I (op} {data type) (integer value}

146

APPENDIX A. SHORT GUIDE TO U-CODE

where (op) is:

DEC - decrement.

INC - increment.

SGS - form singleton set.

I (op) (resultant data type) (original data type)

where (op) is:

CVT - convert type of top of stack item.

CVT2 - convert type of second .item on stack.

RND - round value of top of stack item.

I ADJ (data type) (offset) (length) I
ADJ adjusts the size of a set.

4- Binary operators

I (op) (data type) I
where (op) is:

ADD - addition •

.AND - boolean and.

DIF - set difference.

DIV - division.

EQV- equal.

GEQ - greater than or equal to.

GRT - greater than.

!OR - inclusive or.

LEQ - less than or equal to. ·

LES - less than.

MAI - maximum of two numbers.

MIN - minimum of two numbers.

MOD - remainder.

MPY - multiplication.

MUS - form a set of the elements in the given range.

NEQ - not equal.

SUB - subtrnction.

147

APPENDIX A. SHORT GUIDE TO U-CODE

XOR - exclusive or.

j IXA (data type) {unit size}

IXA computes the offset within an array by multiplying the subscript by the unit size of the

array and adding to the base address.

j (op) (data type} (length) I
where (op) is:

INT - set intersection.

UNI - set union.

I INN (data type) (check ftag)

INN checks set memberdhip of an element.

5. Indirect memory operations

I (op) (data type) (offset) (length)

where (op) is:

ILOD - load indirect.

ISTR - store indirect.

INST - non-destructive store indirect.

I (op) (memory type) (length)

where (op) is:

MOV - block move.

IEQU - indirect equal.

IGRT - indirect greater than.

IGEQ - indirect greater than or equal to.

ILEQ - indirect less than or equal to.

ILES - indirect less than.

INEQ - indirect not equal.

In each of these instructions, the range pf storage locations affected by the operation is

given by the LOA instruction that loadM the address argument.

148

APPENDIX A. SHORT GUIDE TO U-CODE

6. Labels

Q1abel) LAB {flag)

The flag indicates whether there is jump to the label from outside the current procedt!re.

If there is such a jump, the block marked by the label is included as an entry point.

1. Jumps

I {op) {label) I
where {op) is:

F JP - jump if falae.

TJP - jump if true.

UJP - unconditional.jump.

I GOOB {static level) {label) I
GOOB specifies a jump out of the current procedure to a nesting pro~edure.

RET causes control to return to the calling procedure.

j XJP {data type) {case label) (default label) {lower bound) {upper bound)

I (label) CUB (length) I
XJP and CLAB together implement the case statement.

8. Procedure calls

I CUP (data type) (block number} (name} (pop) (push}

I !CUP (data type} (pop) (push} I
I MST (level) j

I PAR (data type) (memory type} (block number} (address) {length}

CUP calls the procedure specified. !CUP calls the procedure whose descriptor is on top of

the stack. MST marks the stack prior to parameter passing in procedure calls. PAR specifies

the current item on the stack as a parameter to be passed in the upcoming call. Jn the CUP

instruction, UOPT c1m determine the level of the called procedure by table look-up using the

block number givcn in the instruction.

149

APPENDIX A. SHORT GUIDE TO U-CODE

9. Special operators

I DUP (data type} I
! POP (data type) I
I SWP {top data type} (second data type)

DUP pushes an extra copy of the top item on the stack. POP pops the stack top item. SWP

interchanges the top and second items on the stack.

10. Register operations

j REGS {action) (register class) (offset) (lcn\;th}

REGS appears at the beginning of each procedure to reserve the registers used by UOPT in

that procedure.

I (op) {data type) (memory type} (hiock number} (register offset) (length}

where {op) is:

RLOD - load register item on the stack.

RSTR - store item from top of stack to.register.

11. Non-executable instructions ·

I BGN (module name} (integer flag)

I STP (module name) I
BGN and STP mark the beginning and end of a U-Code module. One module usually corre­

sponds to a source program file.

j (name) ENT (data type} (static le!vcl} (block number) (pop) (push} (external flag)

j END (name) I
ENT and END mark the beginning and end of a procedure.

IBGNB I
IENDB I

BGNB and ENDB .together mark a range in the program code where the·stack does not fall

below its height at the positions of the BGNB and ENDB.

150

APl'l-:NDIX A. SUOllT GUIDE TO U-CODE

I LEX {level} {block number) I
LEX specifies the static levels and block numbers of the procedures that enclose the current

procedure. The nesting relationships among the procedures are determined according to the

LEX instructions.

I LOC {page number} {line number) {character count) I
LOC is used for reporting source program line numbers for debugging purposes.

I COMM {comment) I
COMM is for putting in comments in U-Code files.

I OPTN {option name) {integer) I
OPTN is for specifying a variety of compilation and optimization options.

I {name) EXPV {data type) {memory type) {block number) {address) {length) I
I {name) IMPV (data type) {memory type) (block number) {address) {length)

EXPV and IMPV specify the export and ilnport of variables.

I (name) DATA {number) I
I DEF (memory type) (length) I
I SDEF {block number) {length) j

DATA is for associating a name and a block number to a static data area. DEF defines the size

of the M or P memory area of the current procedure. SDEF d!!fines the size of a static memory

block.

I INIT {data type} (memory type} {block number) {first offset) (last olf~et} {length) (value)

I ZERO {data type) (memory type) {block number) (address) {length) I
INIT initializes the given storage area to the specified value. ZERO is for zeroing out the

area indicated.

I PLOD (data type) {memory type} {block number} {address) {length)

I PSTR {data type) {memory tyi>e) {block nu~uber} {address} {lcngtlt}

151

APPl~NDIX A. SHORT GUIDE TO U-COOI~

PLOD indicates the loading on the stack of a function result. PSTR indicates the storing of

parameters from the stack to their assigned locations at the entry point of a procedure.

152

Appendix B. Notes on programming Data Flow Analysis

Data Bow analysis plays a major role in the various global optimi?.~tions of UOPT. Since

data flow analysis constitutes a non-trivial part of the processing in global optimization, it is

necessary to do it as efficiently as possible.

The iterative algorithm is the simplest and most popular method to perform data Bow

analysis. The algorithm involves iterating through the nodes of the control flow graph applying

the appropriate data flow equation, until no more changes take place. When properly imple­

mented, the average number of iterations in the outermost loop of the algorithm required to

reach the final solution is around 3, and is seldom above 4 for well-structured programs. How­

ever, there arc details of implementation not directly evident in the algorithm itself which, if

not handled properly, can result in a substantial increase in the number of iterations required.

These implementation details are dependent on the nature of the data flow analysis performed.

Most of the data flow analyses in UOPT involve the simultaneous solution of an IN attribute

and an OUT attribute at the entries and exits respectively of the basic blocks. As an illustration,

we take Eq. (3.3.1) from Chapter 3:

Availability Systef!I:

{
FALSE

AVINi = n AVOUT;
jEPred(i)

The algorithm to compute AVIN and AVOUT is:

Algorithm Global Availability.

1. changed +- true;

2. WHILE changed DO

a. chc.nged +- false;

b. i +- graph head;

c. Repeat (i) - (vii) until i = last node;

(i) old +- AVIN,;

(ii) For each predecessor j of i. do

AVIN, +- AVIN; • AVOUT;;

(iii) IF old :f: AVIN; THEN changed+- true;

(iv) old+- AVOUT;;

153

if i is the entry block;

otherwise.
(3'3.1)

APPENDIX 3. NOTF..S ON PROGRAMMING DATA FLOW ANALYSIS

(v) AVOUT; +- AVLOC; + -iALTERED; • AVIN,;

(vi) IF .old-:/< AVOUT; THEN changed+- true;

(vii) i +- next node. (J

There are a number of ways· to minimize the number of iterations in the above algorithm:

1. The graph nodes should be put in depth-first ordering prior to executing the above algo­

rithm. This enables any change in the attribute of the current node to be immediately

propagated to its adjacent nodes.

2. If not all the bits of the bit vector are ?sed, masking the unused bits may also eliminate any

extra iterations required to propagate information in the unused bits. When the conjunction

operator is used, the unused bits should be initially set to 0. When the disjunction operator

is used, they should be initially set to 1. Using such masking, the values of the unused bits

will not change during the iterations.

3. If the propagation of information is in the forward direction, the loop of step 2c should

start from the head of the graph. If the propagation of information is in the backward

direction, this loop should start from the tail of the depth-first ordering. In the latter case,

step 2c(vii) becomes .

(vii) i +- previous node.

4. The relative positions of steps 2c(i)-(iii) and 2c(iv)-(vi) also depend on the direction of

information propagation. When propagation is in the forward direction, the positions are

as they appear above. When propagation is. in the backward diredfon, steps 2c(iv)-(vi)

should precede 2c{i)-(iii).

The arrangements of l, 3 and 4 above speed up the algorithm by following the actual

paths of information propagation as close as possible in performing the data flow operations.

By propagating information downstream immediately, it is unnecessary to wait for the next

iteration in the loop of step 2 whenever any change in the attribute of a node occurs.

11:;4

Appendix C. Hints on Writing. Programs that Cater to Optimization

Different programs exhibit dilf'er~nt amount of optimization opportunities. While optimiza­

tion opportunities are highly dependent on the nature of the programs, the ordinary programmer

can enhance the optimizability of his programs by adhering to some guidelines. Here, we give

a set of guidelines in writing Pascal and Fortran programs that can specifically enhance the

optimizations performed by UOPT. Most of the following points are also applicable to other

general-purpose optimizers. Some of these are due to the abscence of inter-procedural data llow

analysis in UOPT.

1. Variable declarations: Variables should be declared locally and used locally as much as

possible. This is because a pointer c_annot point to a local variable. Also, local variables

cannot be altered or ~cessed in calls to procedures not nested within the current one. In

Fortran, only the common blocks arc regarded as non-local storage.

2. Storage relationships: Storage overlaps caused by the use of equivalences (or variant

records in Pascal) or commons should be minimized. Storage overlaps may cause unneces­

sary storage interferences that obstruct code movement and the recognition of redundancies.

Equivalences also inhibit the allocation of variables in registers by UOPT.

3. Memory accesses: Up-level references and side elf'ects (assignments to non-local variables)

should be minimized. A pointer or a procedure call can interfere with an up-level memory

access.

4. Parameters: Parameters should be passed by value whenever possible. This serves to

suppress aliasing and si<lc cl!'ccts. An assignment· to a reference parameter potentially kills

many non-local variables. Values should be returned via the return values of functions.

(This rule does not apply to Fortran programs, which only allow passing by reference.)

5. Procedure declaration: Procedures should be declared at the saine level as much as

possible. In Fortran, this means not using statement ful!.ctions. When there are nesting11

among the procedures, procedures in down-level calls can access the local variables of the

callers via up-level references and side effects.

6. Pointers: The use of pointers should be minimized. Pointer accesses kill all non-local

variables, since the pointer can potentially point to any of them.

7. Loops: The programmers should stick to the use of standard loops provided in. the pro­

gramming languages. The compiler front-ends specifically compile the loops so that the

155

APPENDIX C. IllNTS ON WRITING PROGRAMS THAT CATER TO OPTIMIZATION

resultant control flow structures allow for code motion out of loops. Jumps into or out of

loops should be avoided. The programmer should not constnict his own loops using goto's.

156

Appendix D. What the Compiler Front-ends Should Do

UOPT assumes certain configurations in the input code that, if a<lhered to by the front·ends,

can greatly enhance the optimization tasks.

Dl. Pascal Front-end

1. Order of procedures: The order of the procedures in the U-Code file must correspond

to the order in which they are declared in the source program. UOPT needs to know the

level of the called procedures at the points of calls and, due to its one-pass nature, the level

of a callee is recorded only if its body has been processed earlier.

2. Identification of the main block: The main program should be appropriatt!ly identified

to the optimizer so that, when it is processing the body of the main block, it can treat

global static variables as local variables. Currently, the main block is always assigned block

number 1 by the Pascal front-end.

loop test j _

!

I loop header j

----+!

!

_ j loop test

loop tail

!---·

Fig. D.1 Recommended loop stmcture for WHILE and FOR loops

157

Dl. PASCAL 1''1toNT-END

3. WHILE and FOR loops: Decause UOPT does not alter the control flow structure of the

program, the front-ends must compile loop statements in the source programs into forms

that allow for code insertions in code motion. There have to be header nodes for the

placement of loop-invariant expressions in backward code motion, and tail nodes for. the

placement of assignments moved forward and out of the loops. The more usual WHILE loop

form of Fig. 3.6.8 does not accommodate code motion. For both WHILE loops and FOR loops,

the compiled control flow structure should be as shown in Fig. D.1. In this configuration,

the loop header and loop tail are formed by generating extra labels. In the unoptimized

program, these two nodes do not contain any code. During optimization, backward code

motion causes insertion of loop invariant expressions at the loop header, and forward code

motion moves redundant stores in the loop forward and inserts them at the loop tail. Note

that there is an increase in code space, since the loop termination condition appears twice.

But constant propagation followed by constant arithmetic can often eliminate the loop

entry test. (The REPEAT loop does not·require any special treatment for the purpose of

optimization.)

D2. Fortran Front-end

1. Static memory: All Fortran variables are own variables, and they must be allocated

static storage. Also, variables within a program unit ar.? not accessible from within other

program units. Variables in the common areas are to be treated as global variables instead,

since they are static and accessible from more than one program unit. Thus, the block

in which non-common variables arc allocated has to be identified to the optimizer so that

the optimizer can treat the variables there as local variables. Currently, this static block is

always assigned the block number 1 by the Fortran front-end.

2. The levels of procedures: There is no nesting of procedures in Fortran. However,

statement functions can access variables within the program units in which "the statement

functions are declared. The optimizer has to be able to distinguish statement functions

from other Fortran subroutines and functions because the static variables refercrn:ed within

~tatement functions are non-local variables. The Fortran front-end UFORT declares all

statement functions at static level 3. Except the main program unit, which is at level 1, all

other subroutines and functions are declared at level 2.

158

Appendix E. Examples of Optimized Code

In this appendix, we use a piece of Pascal source code as example anp compile this code for

the 6 target machines. The U-Code both before and after optimization by UOPT arc displayed.

For each of the 6 target machines, we list the object code generated from the unoptimized U­

Code followed by those generated from the optimized U-Code. This will serve to give a more

complete view of the elfects that the same optimizations on the intermediate code have on

different target machine code.

The example we use is the full extent of the loop that does bubble sort, taken from the

benchmark program Bubble used in Chapter 6. The Pascal source code is:

El. U-Code

top := 70;
WHILE top > 1 DO

BEGIN
1 := 1;
WHILE 1 < top DO

BEGIN
IF list[i] > list[i+1]

THEN Swap(list[il. list[i+1]);
i := 1+1
END;

top := top -· 1
END;·

The DEC 10 versions of U-Code arc given here. The procedure Swap has been copied

in-line by the procedure integrator PMERGE earlier. Note the allocation of various quantities

in registers in the optimized version.

Unoptimized
COMM top :• 70;

LOC 1 400
LOC L 36 70
CVT J L
STR J S 1 8280 36
COMM while top > 1 do
LOC 1 420
LOO J S 1 8280 36
LDC L 36 1
CVT J L
GRT J
FJP L4

l5 LAB 0

Optimized
I COMM ·-··BB 06
I COMM top :• 70;
/LOC 1 400
I COMM wh11t top > 1 do
I
I
I
I LOC 1 42 0
I COMM --·-BB 06
/l5 LAB 0
I LDC J 36 70
I STR J R 0 72 36
I COMM --·-BB 07
/L6 LAB 0

159

L6 LAB 0
COMM begin i :• 1;
LOC 1 43 0
LDC L 36 1
STR L S 1 8244 36
COMM while i < top do
LOC 1 44 0
LOO L S 1 8244 38
LOO J S 1 8280 36
CVT2 J L
LES J
FJP L7

LS LAB 0
L9 LAB 0

El. U·CODE

I COMM
I

begin i :• 1;

I LOC 43 0
I COMM
I

while i < top do

I
I LOC 1
I LDC J 36 1
I LOO J R 0 72 36
I LES J
I FJP L7
I COMM ----BB 08
/LS LAB 0
I LDC L 36 1

44 0

COMM begin if list[i] > list[i+l] I STR LR 0 0 36

LOC 46 0
LOA S 1 3096 2620 3132
LOO L S 1 8244 38
lXA L 36
LOO L S 1 8244 36
LDC L 36 1
ADO L
LOA S 1 3096 2620 3132
SWP A L
IXA L 36

I LOA S 1 3096 2620 3132
I LOO L R 0 0 36
I lXA l 36
I STR A R 0 38 36
I LOA S 1 3132 2620 3132
I LOO l R 0 0 36
I IXA L 38
I STR A R 0 144 36
I COMM ····BB 09
/L9 LAB 0
I COMM begin if list(i] >
ILOC 1 450
I LOO A R 0 36 36
I !LOO J 0 36
I NSTR J R 0 108 38
I LOO A R 0 144 36
I !LOO J 0 36
I NSTR J R 0 180 36
I GRT J
I FJP L10

list[i+l] tllen

ILOD J 0 36
I COMM --·-BB 10
I COMM swap(list[i], 1ist[i+1]);

SWP J A I
ILOD J 0 36 I
SWP J J I
GRT J I
FJP LlO
COMM swap(l ist(i], list[i+t])

I
I

LOC 46 0
COMM starting merge of call to
LOA S 1 3096 2520 3132
LOO L S 1 8244 36
IXA L 36
STR A M 1 0 36
LOO L S 1 8244 36
LDC L 36 1
ADD L
LOA S 1 3096 2520 3132
SWll' A L
IXA L 38
STR A M 1 36 36
COMM code start for BUBS01
COMM SWAP
OPTN TSOURCELOC 385
COMM begin t :• x;
LOC 1
LO~ AM1036
!LOO J 0 36
STR J S 1 8352 36

22 0

I LOC 1
BU I COMM begin t ·• x;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I LOC 1
I LOO J R 0 108 36
I STR J R 0 216 36
I COMM x :• y;

160

46 0

22 0

COMM x :• y;
LOC 1 23 0
LOO A M 1 38 38
ILOD J 0 38
LOO A M 1 0 38
SWP A J
ISTR J 0 33
COMM y :• t
LOC 1 24 0
LOO J S 1 8352 38
LOO A M 1 38 38
SWP A J
ISTR J 0 3B
OPTN TSYMLOC 0
COMM end;
LOC 1 26 0
COMM end of merged ca 11 to

LtO LAB 0
COMM i :• 1+1
LOC 1 50 0
LOO L S 1 8244 3B
LDC L3B1
ADD L
STR L S 1 8244 38
LOO L S 1 8244 3B
LOO J S 1 8280 38
CVTZ J L
LES J
TJP L9

L11 LAB 0
L7 LAB 0

COMM top :• top - 1

LOC 1 52 0
LOO J S 1 82BO 3B
LDC L 36 1
CVT J L
SUB J
STR J S 1 8280 38
LOO J S 1 8280 38
LOC L 3B 1
CVT J L
GRT J
TJP LB

L12 LAB 0
L4 LAB 0

El. U-CODE

I
I LOC 1 23 0
I LOO J R 0 180 38
I LOO A R 0 3B 38
I SWP A J
I ISTR J 0 3B
I COMM y :•
I
I LOC 1 24 0
I LOO J R 0 218 38
I LOO A R 0 144 3B
I SWP A J
I ISTR J 0 38
I COMM end;
I
I LOC 1 26 0

BU I COMM ----BB 11
/L10 LAB 0
I COMM :• i+l
I LOC 1 50 0
/ LOO A R 0 38 38
I LDC J 38 1
I CVT A J
I ADD A
I STR A R 0 3B 3B
I LOO A R 0 144 3B
I LDC J 3B 1
I CVT A J
I ADD A
I STR A R 0 144 38
I lDD L R 0 0 3B
I LDC L 36 1
I ADD L
I STR L R 0 0 36
I LOO L R 0 0 3B
I CVT J L
I LOO J R 0 72 3B
I LES J
I TJP L9
I COMM ----BB 12
/Llt LAB 0
I COMM ----BB 13
/L7 LAB 0
I COMM top :• top - 1
I LOC 1 52 0
I LOO J R 0 72 3B
I LDC J 38 1
I SUB J
I STR J R 0 72 38
I LOO J R 0 72 38
I LOC J 38 1
I GRT J
I TJP LB
I COMM ----BB 14
/L12 LAB 0.
I COMM ---·BB 16
/L4 LAB 0

161

E2. DEC 10

Unoptimized DEC 10 Code

$5
$6

$6
$9

-- 40/1 top :•.70:
MOVEM 1 , BUBSDA+230

-- 4211 while top >
CAIG 1 ,1
JRST $4

MOVEI 1 , 70

do

-- 43/1
MOVEI
MOVEM

-- 44/1
CAML
JRST

begin i :• •:
,1
,BUB$DA+229
while i < top do

1 ,8U8$DA+230
$7

El. U-CODE

•• 45/1 begin if list[i] > 11st[i+1] then
MOVE! , BUBSDA+86
ADD , BU8$0A+229
MOVE , BUB$DA+229
AOS ,2
MOVE ,0(1)
CAMG ,BU8$DA+86(2
JRST $10

:starting merge of call to BUB$01
•• 46/1 swap(list(i], list(i+t]):

MOVEI 4 , BUBSDA+86
ADD 4 , BUBSOA+229
MOVEM 4 ,2(FP).
MOVE 1 ,BUB$0A+229
AOS 1 , 1

:code start for BUB$01
;SWAP

MOVEI 2 ,8UB$DA+86(1
MOVEM 2 ,3(FP)

-- 22/1
MOVE 1 ,0(4)
MOVEM 1 ,BUBSDA+232

-- 2311
MOVE 1 ,0(2)
MOVEM 1 ,0(4)

-- 24/1
MOVE 2 ,BU8$DA+232
MOVEM 2 ,3(FP)8

:end of merged call to
: -- 25/1
$10

-- 50/1 i :• 1+1
AOS 0 ,BUBSDA+229
MOVE 1 ,BU8$0A+229
CAMGE 1 ,BU8$DA+230
JRST $9

$11
$7

-- 5211
sos
MOVE
CAI LE
JRST

$12
$4

top :• top - 1
0 ,BUB$0A+230
1 ,BUB$0A+230
1 , 1
$8

x :• y;

y :• t:

BU8$01

162

E2. DEC 10

Optimized DEC 10 Code

: -- 40/1 top :• 70;
: -- 4211 whil'e top > 1 do
SS

MOVEI
S8

• 70

; -- 43/1 begin :• 1:
: -- 44/1 while i < top do

sa

Sii

CAIG 7 .1
JRST S7

MOVEI
MOVEI
MOVEI

6 , 1
8 .BUB$DA+88(5
9 .BUBSOA+87(5

-- 46/1 begin if list[i] > list[i+l] then
MOVE 8 0 0(6)

. MOVE 1 ,0(8)
MOVE 10,0(9)
CAMG 1 ,0(9)
JRST $10

-- 48/1
-- 22/1

swap(list[i]. list[i+t]);
t :• x;

MOVE 11,8
.-- 23/1

MOVEM 10,0(8)
-- 24/1

MOVEM 11,0(9)
: -- 26/1
SlO

-- 50/1
MOVEI
MOVEI
AOS
CAMGE
JRST

$11
S7

8 • 1(8)
9 ,1(9)
0 ,6
5 ,7
$9

:• i+1

-- 5211
sos
CAI LE
JRST

top
0 • 7

: • top - 1

S12
$4

7 , 1
$8

E3. 68000

Uuoptimized 88000 Code

I 40 top :• 10:

x :·· y;

'I :• t:

movl #70.bubblesort$dat+1148
I 42 while top > 1 do

$5:
$8:
I 43

I 44

cmpl #1,bubblesort$dat+1148
jle $4

begin
movl
While
movl
cmpl

i :• 1;
#1,bubblesort$dat+1144
< top do
bubblesort$dat+1144,d0
bubblesort$dat+1148,d0

163

E3. 68000

jg• $7
$8:
$9:
I 45 begin if list[iJ > list[1+1] then

movl bubblesort$dat+1144,d0
asll #2,dO
movl #bubblesort$dat+572,a0
movl bubblesort$dat+1144,d1
addql #1,d1
asll #2 ,d1
movl #bubblesortSdat+572,a1
movl aO!J(O,dO:L),dO
cmpl al!J(O,d1:L),d0
Jl• $10

46 swap(list[iJ, list[i+l]):
movl bubblesort$dat+1144,d1
asll #2,dl
addl d1,a0
movl a0,a6!J(-4)
movl bubblesort$dat+1144,d0
addql #1,dO
asll #2,dO
addl dO,al
movl al.a69(-8)

22
movl a69(-4) ,ao
movl a09,bubblasort$dat+1158

23
movl a69(-8),a1
movl a19,a09

24
movl a69(-8),a0
movl bubblesort$dat+1156,a09

I 26
$10:
I 50 i : • i+l

addql #l,bubblesort$dat+1144
movl bubblasort$dat+ll44,d0
cmpl bubblesort$dat+1148,d0
jlt $9

$11:
$7:
I 52 top :• top - 1

subql #1,bubblesort$dat+1148
cmpl #1,bubblesort$dat+1148
jgt $6

$12:
$4:

Optimized 68000 Code

I 40 top :• 70;
I 42 while top > 1 do
$5:

moveq 170,d4
$6:
I 43 begin i :• 1;
I 44 whil a i < top do

cmpl #1,d4
jla $7

$8:
moveq #1,d3
movl d3,d0

164

E3. 68000

asll 12, dO
movl #bubblesortSdat+572,aO
lea ~09(0,dO:L),a4
movl d3, d1
asll 12,dt
11ovl #bu bbl esortSdat+.5 76, at
lea a19(0,d1:L),a6

$9:
I 46 begin if list[i] > 11st[i+1] then

48
22

I 23

24

I 25
Stll:
I so

$11:
$7:
I 52

$12:
$4:

movl a411,d6
movl a511,d8
cmpl d6,d5
jle $10

swap(list[i], list[i+t]):

movl d6,d7

movl d8,a411

llOYl d7,&511

addql
addql
addql
cmpl
jlt

top :•
subql
c11pl
jgt

i : • i+t
14,a4
14,&6
#1,d3
d4,d3
$9

top -
#1,d4
#1,d4
$6

E4. VAX

Unoptimized VAX Code

-- 40/1
movl

I -- 42/1
cmpl
jlaq

J:
_8:
, -- 43/1

movl
" -- 44/1

movl
cmpl
jgaq

_a:
_9:

top :• 70:
S70,bubblesort_dat+1148

while top > 1 do
bubb 1esort_dat+t148, St
_4

begin 1 :• t:
St.bubbles~rt_dat+1144

whfle ·I < top do
bubblesort_dat+1144,rt0
rtO, bubbl esort_dat+t 148
_7

, -- 45/1
add13
add12
add12
add13
1dd12

begin if 11st[i] > list(i+t] then
bubblesort_dat+1144,bubblesort_dat+lt44,rt0
rto,rto
Sbubblesort_dat+572,rt0
$1,bubblesort_~at+1144,r9
r9 ,r9

165

add12 r9 ,r9
add12 Sbubblesort_dat+672,r9
movl O(rlO) ,ra
movl O(r9),r7
cmpl r8 ,r7
jlaq _10

E4. VAX

•starting merge of call to BUBBLESORT$01
I •• 46/1 swap(list[i], list(i+t]):

addl3 bubblesort_dat+1144,bubblesort_dat+1144,r8
addl2 r6 ,r6
add12 $bubblesort_dat+572,r6
movl r6 ,·4(fp)
add13 $1,bubblesort_dat+1144,r6
addl2 r5 ,r6
addl2 r5 ,r5
addl2 $bubblesort_dat+572,r5

#coda start for HUBBLESORT$01
#SWAP

movl r6 ,·8(fp)
I •• 2211

movl •·4(fp),bubb1esort_dat+1158
I ·- 2311

movl •-a(fp), •·4(fp)
I •• 24/1

movl bubblesort_dat+1168,0·8(fp)
land of merged call to BUBBLESORT$01
I •• 25/1
_10:
I •• 60/1

incl
movl
cmpl
jlss

_11:
_7:
I •• 5211

dacl
cmpl
jgtr

_12:
_4:

i : • 1+1
bubblesort_dat+1144
bubb1esort_dat+1144,rt0
r10,bubblesort_dat+1148
_g

top : • top - 1
bubblesort_dat+1148
bubblesurt_dat+1148,$1
_8

Optimized VAX Code

I •• 40/1
I •• 4211
_6:

movl
_6:
II •• 4311
I •• 44/1

_8:

cmpl
jgeq

movl
add13
addlZ
add12
movl
addl3
addlZ
add12
movl

top :• 70;
while top > 1 do

$70,r7

begin i :• 1:
while i < top do

$1,r7
_7

$1,r5
r5 ,r6 ,r4
r4 ,r4
$bubblesort_dat+572,r4
r4 ,rs
r5 ,r& ,r3
r3 ,r3
Sbubblesort_dat+57G,r3
r3 ,r9

166

E4. VAX

_9:
I -- 46/t begin if list[1] > list[i+l] then

movl O(r8).ra
lllOVl O(r9),rtO
•ovl O(r8).r4
•ovl O(r9),r3
c•pl r4 ,r3
jleq _to

I -- 48/t swap(list[i], 11st[i+l]):
I -- 22/t

movl r8 ,r11
I -- 23/t

movl rt0,0(r8
I -- 24/t

movl r11,0(r9
-- 211/t
_to: 1 -- 0011

edd12 $4, re
addl2 S4,r9
inc:l r5
movl r5 ,r4
cinpl r4 , r1
jlsa _9

_11:
_7:

i : • i+l

I -- 62/t
dec:l
ClllP 1
jgtr

top :• top - 1

_12:
_4:

r7
r1 ,$1
_8

E5. MIPS

Note that the MIPS code generator incorporates the local optimization portion of UOPT,

so that local optimization is always performed.

Unoptimised MIPS Code
I -- 4011 top :• 70:
I -- 42/1 while top > t do

llOV 170 0 r1
st rt,FPinit+(-4)

LBUBB&:
L8U888:
I -- 4311 begin i :• t:

mov 11,rl
st r1,FPinit+(-5)

I -- 44/1 while i < top do
ld FPinit+(-4),rZ
bge lt,r2,LBU887

LBU888:
LBUBB9:
I -- 46/1 begin if 11st[1] > list[i+t] then

ld IFPinit-147,rl
ld FPinit+(-5),r2
ld [rl+r2],r3
ld #FPinit-148,r4
ld [r4+r2],r6
ble r5,r3,LBUBB10

I -- 48/1 swap(list[i], l1st[i+1]);

167

LBU8810:

add r4,r2,r6
st r6,-306[r15}
add r1,ri
st r2,-305[r15]
st r5,FPinit+(-Z)
st r3,0[r6]
st r5,0(r2]

,. __ 50/1 i :• 1+1

LBU8811:
LBUBB7:

ld FPinit+(-5),r1
add 11,rl
st r1.FPinit+(-6)
ld FPinit+(-4),rZ
blt r1,r2,Leueeg

I -- 52/1 top :• top -

LBUBB12:
LBUBB4:

ld FPinit+(-4),r1
sub 11,rl
st r1,FPinit+(-4)
blt 11,r1,LBUB86

Optimized MIPS Code

II -- 40/1 top :• 70;
I ·- 42/1 while top > 1 do .
LBUB85:

mov 170,r12
LBUBBS:
I ·- 43/1 begin 1 :• 1;
II -- 44/1 while i < top do

LBUBBB:

LBUBB9:

bge 11,r12.LBUBB7

mov 11,r14
ld IFPinit-148,rl
add r1,r14,r13
ld #FPinit-147.rZ
add r2,r14,r10

ES. MIPS

I -- 45/1 begin if 11st[i] > list[i+1] then
ld O[r13],r11
ld O[r10],r9
ble r11,r9,LBUBB10

I -- 46/1 swap(list[i], list(i+1]);
mov r11,r8
st r9, O[r13]
st r8,0[r10]

LBU8810:
' -- 50/1 :• 1+1

add 11,r13
add 11,rlO
add #1,r14
blt r14,r12,LBUBB9

LBUBBtl:
LBUBB7:
I -- 52/1 top :• top -

sub #1,rlZ
blt 11,r12,LBUBB6

LBUBB12:
LBUBB4:

168

EG. FOM

Unoptimized FOM Code

40/t top : • 70;
Addi kaa, 0, $C70, TOP

42/1 while top > 1 do
Gtl aka, TOP, 1, $T6
IfLF aa., $T6, L$4
Nop
Nop
Label
Label

43/1
Addi

4411
Ltl
lfLF
Nop
Nop
Lab al
Label

-- 46/1
Addi
Addi
Load.I
Addi
Addi
Addi
Load I

LS&
L$6

begin i :• 1;
kka, 0, 1, I

while i < top do
aaa, I, TOP, $T7
aa., $T7, L$7

L$6
L$9

begin
kas,

if list[i] > 11st(1+1]·then
-1,' LIST,

sas, , I,
sk., , 0
kaa, ·1, LIST, $T9
aka, I, 1, $T10
aaa, $T9, $T10, $T9
ak., $T9, 0

· GtI
46/1

Nop

qqa, Load lfLF aa., $T11, L$10
swap(list[i], list[1+1]);

Nop
Add I kas, -1, LIST,
Addi sas, I,
Addi ksa, 0, • T$1
Addi kas, -1, LIST,
Addi aka, I' 1, $Tt4
Addi sas, , $T14,
Addi ksa, 0, , T$2
Load I ak., T$1, 0
Acidl kqa, o, Load Load I ak., T$2, 0
Addi kqa, o, Load Stol ak., T$1, 0
Addi kaa, 0, T, T
Stol ak., T$2, 0
Label L$10

-- 60/1 1 :• 1+1
Addi aks, I, 1,
Addi ksa, 0, • I
LU aaa, I, TOP, $T17
IfLT aa .. $T17, L$9
Nop
Nop
Label L$11
Label L$7

5211 top : • top - 1
Sub I aks, TOP, 1,
Addi ksa, 0, , TOP
GU aka, TOP, 1, $T19
IfLT aa ... $T19, L$6
Nop
Nop

169

E6. FOM

Label LUZ
Label LS4

Optimized FOM Code
-- 40/t top :·· 70;
-- 42/1 wh11e top > 1 do

Label L$5
Addi kaa, 0, $C70, TOP .
Label LS6

43/1 beg1n 1 :• 1;
44/1 wh11e 1 < top do

LtI kaa, 1, TOP, $T5
IfLF aa., ST5, LS7
Nop
Nop
Label
Add I
Addi
Addi
Add I
Addi
Addi
Label

LS8
kke, 0, 1, I
kas, -1, LIST,
sas, g I,
ksa, o, , TS1
aas, LIST, l,
ksa, 0, , T$3.
LS9

45/1
LoadI
Addi
Addi
IfLF

begin if 11st[i] > list[i+l] than

48/1
Nop
Nop
Add I
Addi
Stol
Addi
Stol
Label

60/1
Addi
Addi
Addi
Addi
Addi
Add I
LU
IfLT
Nop
Nop
Label
Label

5211
Sub I
Add I
GU
IfLT
Nop
Nop
Label
Label

ak., TS!, 0
kqa, o, Load
kqa, O, Load

Load I
GU

aa., ST8, L$10
swap(list(i], 11st(i+t]);

kaa, 0, T$2, T
kaa, 0, T$4, T$4
ak., TSl, 0
kaa, 0, T~ T
ak., T$3, 0
LSlO

1
aks,
ksa,
aks,
ksa,
aks,
ksa,
aaa,
aa.*

LS11
LS7

:• 1+1
T$1, 1,
0, , TU
TS3, 1,
0, , T$3
I, 1,
0, , I
I, TOP, $T12
ST12, L$9

top:•top·l
aks, TOP, 1,
ksa, 0, , TOP
aka, TOP, 1, $T14
aa., ST14, LS6

LS12
L$4

ak., T$3, 0
aaa, T$2, T$4, ST8

170

E7. S-1

Unoptimized S=-1 Code

-- 40/1 top :• 70;
Mov.S.S BUBBL$DA+872,#70

-- 42/1 while top > 1 do
Skp.Gtr.S BUBBL$DA+872,#1
SJmp $4

$5:
$8:

-- 43/1
Mov .S.S

; -- 44/1
Skp.Lss.S
SJ mp

$8:
$9':

begin 1 :- 1;
BUBBL$DA+868,#1

while i < top do
BUBBLSDA+868,BIJB8!:.$DA+872
$7 .

ES. FOM

-- 46/1
Shfa.Lf.S
lnc.s
Skp.Gtr.S
SJ mp

begin if 11st(1J > list(1+1] then
RTA,BUBBL$DA+868,#2

-- 48/1
Shfa.u .s
Movp,P.A
lnc.s
Movp.P.A

-- 2211
Mov.s.s

-- 23/1
Mov.S.S

-- 24/1
Mov.s.s

; -- 26/1
$10:

-- 60/1
lnc.s
Skp.Geq.S
SJmp

$11:
$7:

-- 52/1
Oec.s
Skp.Leq.S
SJmp

$12:
$4:

RTB,BUBBL$DA+888
BUBBLSDA+296(RTA],BUBBLSDA+296(RTB]~2
$10

swap(11st(i], list(i+1]):
RTA,BUBBL$DA+868,#2
(FP)O,BUBBL$DA+296(RTA]
RTA,BUBBL$DA+868
(FP)4,BUBBLSDA+296(RTA]~2

BUBBL$DA+880,lFP)09

(FP)09,(FP)411

(FP)49,BUBBLSDA+BBO

j : • i+l
BUBBL$DA+868,BUBBL$DA+888
BUBBLSDA+868,BUBBLSOA+872
$9

top : • top - 1
BUBBL$0A+872,BUBBL$0A+872
BUBBLSDA+872,#1
$8

Optimized S-1 Code

; -- 40/1
; -- 4211
$5:

Mov.S.S
$6:

-- 43/1
; -- 44/1

Skp.Lss.S
SJmp

$8:
kov.S.S
Movp.P.A

top :• 70;
while top > 1 do

R24,#70

begin 1 :• 1:
while i < top do

#1,R24
$7

R22 ,#1
RZ3,BUBBL$DA+296(R22J~2

171

Movp.P.A
$9:

-- 45/1
Mov.S.S
Mov.S.S
Mov.S.S
Skp.Gtr.S
SJmp

-- 46/1
-- 2211
Mov.S.S

-- 23/1
Mov.s.s

-- 24/1
Mov.s.s

; -- 25/1
$10:

-- 50/1
Mov.S.S
Movp.P.A
Movp.P.A
Inc.s
Skp.Geq.S
SJ mp

$11:
$7:

-- 5211
Dec.s
Skp.Leq.S
SJ mp

$12:
$4:

E7. S-1

R26,BUBBL$DA+300[R22]~2.

begin if list[i] > 1ist[i+1) then
R25,(R23)0
RTA,(R23)0
R27, {R26)0
RTA,(R26)0
ua

swap(list[i], list[i+t]);

R28,R25

(R23)0,R27

(R26)0,R28

i : • i+l
RTA,{R26)0
R23,{R23)0[RTA]
R26,(R23)0[R26]
R2? ,R22
R22 ,R24
$9

top :• top -
R24,R24
R24,11
$6

172

