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Under the auspices of the U. S. Navy, we are designing and im-
plementing a multiprocessor (the S-1) with at least ten times the com-
putational power of the Cray-1. Our first step is to develop a general-
purpose uniprocessor with a performance level comparable to the
Cray-1; the multiprocessor will then be made up of 16 of these uni-
processors, sharing a main memory. The uniprocessors can be used
together for large problems or separately for several smaller
problems. To reduce average memory-access time, each uniprocessor
has a private cache memory. We have also developed a powerful
design system (SCALD) that supports extremely efficient structured
design of digital logic. Using advanced compiler and verification
techniques, SCALD can complete the details of a computer design

starting from a high-level specification.

Our S-1 Project has as its
general goal the development of
advanced digital processing
technology for potential application
throughout the U.S. Nawy. This
work involves the design and im-
plementation of extremely high-
performance general-purpose
computers.

The basic goals of the S-1
Project may be divided into
development-oriented and
research-oriented sets.

The primary development-
oriented goal is to establish
methods for faster design and im-
plementation of advanced digital
processors. Our approach to this
goal includes the development of a
design system that supports struc-
tured computer-aided logic design
and the development of automated
implementation and debugging
techniques.

A second development-oriented
goal is to provide prototype im-
plementations of highly cost-
effective digital processors against

which the Navy may measure com-
mercial offerings. We approach this
goal in three ways: by developing a
durable and extensible uni-
processor instruction-set architec-
ture (the S-1 Native Mode) that will
evolve in such a manner that the
developing software base is unaf-
fected by changes in the underlying
hardware, by designing a common
underlying hardware structure for a
class of cost-effective, high-
performance S-1 Uniprocessors,
and by developing a multiprocessor
architecture and implementation
that allows the S-1 Uniprocessors
to be used in a wide variety of ap-
plications, particularly those requir-
ing very large computing rates or
high operational reliabilities.

Our primary research-oriented
goal is to invent and evaluate in use



the concepts and languages
necessary to support practical,
high-level, general-purpose digital
logic design. A second goal is to
provide a practical multiprocessor
research environment, by im-
plementing multiprocessor
hardware with sufficient computing
capability to solve real problems of
interest to real users. At the same
time, we intend to implement and
evaluate a fundamental new mul-
tiprocessor architecture consisting
of a fully-connected network of in-
dependent processors, each with a
private, hardware-managed cache
memory. Finally, we must invent
and evaluate operating-system,
language, and hardware constructs
that will support the partitioning of
single large problems across multi-
ple independent processors.

The following sections divide dis-
cussion of the Project’s work
toward these basic goals into three
categories: S-1 Multiprocessors,
their constituent S-1 Unipro-
cessors, and the S-1 Design System
that supports the design of these
S-1 processors.

Multiprocessors

A multiprocessor is a network of
computers that concurrently ex-
ecute a number of independent in-
struction streams on separate data

streams while closely sharing main
memory. A multiprocessor design
offers significant advantages over a
uniprocessor design that provides
an equivalent computation rate.
The advantages result from the
modularity inherent in a mul-
tiprocessor architecture and can be
categorized as advantages of
reliability, economy, and size.

The advantage of reliability has
been validated by the very reliable
commercial systems that handle,
for example, banking transactions
and computer network
communications.! In a well-
designed multiprocessor system,
failure of a single module (for ex-
ample, a component uniprocessor,
a crossbar switch, or a memory
bank) does not entail failure of the
entire system. Indeed, the
operating system for the S-1 Mul-

tiprocessor (called Amber)is intend-

ed to detect such module failures
and automatically replace the func-
tion from the available complement
of reserve modules.

Advantages of economy occur
during both the design and the
construction phases. The design
cost per processing element is
reduced asymptotically to zero as
the processing element is
replicated. The economy during
construction is extremely important
for semiconductors, since the unit
replication cost of very large scale
integrated-circuit chips varies
nearly inversely with the replication

factor, except for a small additive
base cost.

Another economy is the poten-
tial reduction in the time between
the design of the system and the
delivery of the first operational unit.
By replicating a relatively simple
processing element many times
and using a regular interconnection
network, this time lag can be made
very small; it is virtually indepen-
dent of the processing power of the
total system. As a result, the
semiconductor technology used in
a properly designed multiprocessor
can be much more up to date than
the technology used in a more
complex processing structure. One
additional economy results from
the freedom of the multiprocessor
designer to choose the most cost-
effective uniprocessor element
structure, regardless of the process-
ing rate of the element.

Independent of these economic
advantages is the advantage of size.
Regardless of whether it is
economical to build arbitrarily
powerful uniprocessors, at some
point it becomes physically impossi-
ble (with state-of-the-art
technology). Multiprocessors,
however, because of their
modularity, can have larger
processing rates. This advantage of
multiprocessor structures is impor-
tant because maximal computing
rates will be necessary for certain
applications (numerical weather
prediction with its real-time con-
straints, for example) into the
foreseeable future.

S-1 Multiprocessors

We are developing a mul-
tiprocessor that computes at an un-
precedented aggregate rate on a
wide variety of problems. Figure 1
is an artist’s conception of the
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F’ﬁ The S-1 Mark IIA Multiprocessor system as it
@° might be assembled in a computer center.
The system includes 16 S-1 Mark IIA Uniprocessors (the
beige and blue booklike devices arranged in two rows of
8 each along the sides of the room), 16 main memory banks
(housed 4 each in the 2 blue cabinets on each side of the
room near the middle of the rows of Uniprocessors), 2
Crossbar Switches (the X-shaped devices in the middle of

the room) for transferring data between the Uniprocessors
and the main memory, and peripheral equipment at the far
end of the room, including disk drives, tape drives, printers,
and a control console. The main memory shown consists of
128 million bytes but is expandable up to 16 billion bytes.
The compact arrangement shown is not essential; the
Uniprocessors and the memory banks may be hundreds of
feet apart.




system. The S-1 Mark IIA Mul-
tiprocessor, to be implemented
with second-generation S-1
Uniprocessors, each about as
powerful as a Cray-1 computer, will
have a computation rate roughly
ten times that of the Cray-1. The
Cray-1, in turn, has a performance
two to four times greater than that
of the CDC 7600 and outperforms
all other existing computers in
general numerical computation
work.

Logical structure. A typical S-1
Multiprocessor consists of 16 in-
dependent, identical S-1 Uni-
processors. Figure 2 shows the
logical structure of the Mark IIA
Multiprocessor. All 16 unipro-
cessors are connected to main
memory through the S-1 Crossbar
Switch. Each of the 16 memory
banks can contain up to 1 billion
bytes of semiconductor memory.
Input and output are handled by
peripheral processors (for example,
LSI-11s); as many as eight can be
attached to each S-1 Mark IIA Uni-
processor. The Synchronization
Box is a shared bus connected to
each member uniprocessor; one of
its major functions is to transmit in-
terrupts and small data packets
from one uniprocessor to any sub-
set of other uniprocessors in order
to coordinate processing streams.
Each module in an S-1 Mul-
tiprocessor is connected to a
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diagnostics-and-maintenance
processor (an LSI-11) that allows
convenient remote display-oriented
maintenance and control of the
multiprocessor.

All 16 S-1 Uniprocessors can ex-
ecute independent instruction
streams on independent data
streams. Thus, all 16 uniprocessors
can cooperate in the solution of a
single large problem (for example,
by means of a Monte Carlo-based
algorithm, an increasingly popular
and easily partitioned approach to
physical simulation). The high-
bandwidth, low-latency inter-
processor communications
provided by the Crossbar Switch
facilitate the partitioning of physical
simulation problems with little ef-
ficiency loss, but the 16 uni-
processors can also process com-
pletely independent tasks, so that
each S-1 Uniprocessor might ser-
vice a different set of users.
Memory requests from the member
uniprocessors are serviced by 16
memory banks with an aggregate
maximum capacity of 16 billion
nine-bit bytes. Any processor can
uniformly access all of main
memory through the S-1 Crossbar
Switch. The programmer thus sees
a huge, uniform address space,
because each memory request
from each uniprocessor is decoded
by hardware in the Crossbar Switch
and sent to the appropriate
memory bank. The Crossbar
Switch has a maximum peak
bandwidth of more than 10 billion
bits per second when all its 16

channels are transferring data
simultaneously.

Cache memory. The design of
the S-1 Multiprocessor allows com-
ponent uniprocessors and memory
banks to be physically distributed
over distances that are limited only
by average bandwidth require-
ments (which degrade linearly with
increasing cable length). To reduce
the delays in accessing main
memory that result from long
cables, Crossbar-Switch transaction
time, and relatively slow (but highly
cost-effective) memory chips, each
member uniprocessor contains
private cache memories. These
caches automatically (that is,
without guidance from the
programmer) retain recently
referenced data and instructions in
a relatively small amount of
ultrahigh-performance memory, in
the expectation that those data will
be referenced again soon.
Whenever a reference to such a
retained datum or instruction is
made, the information is im-
mediately delivered directly from
the cache, thus eliminating the
need for a main-memory trans-
action. Although a similar efficiency
can be realized if main memory
contains a special high-speed area,
such a design places on every
programmer the burden of manag-
ing a variety of memory systems in
order to maximize the efficiency of
program execution.
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The presence of caches in a mul-
tiprocessor necessarily introduces
problems of cache coherence; that
is, each uniprocessor must be able
to read or write data in the other
caches without any observable
inconsistencies.2 Without a guaran-
tee of cache coherence, program-
ming of certain problems in a
cache-based multiprocessor would
be inconceivably difficult.

The caches of the member uni-
processors of S-1 Multiprocessors
are private in the sense that there
are no special communication
paths connecting the caches of one
uniprocessor with the caches of any
other uniprocessor; the cache
coherence problem is therefore es-
pecially challenging. To solve it, the
S-1 Multiprocessor includes a
design closely related to one in-
dependently proposed in Ref. 2. A
small tag is associated with each
16-word line in physical memory.
This tag identifies the only member
uniprocessor (if any) that has been
granted permission to retain (that
is, owns) the line with write access
and all the processors that own the
line with read access. The memory
controller allows multiple
processors to own a line with read
access but responds with a special



error flag when a request is
received to grant read or write
access for any line that is already
owned with write access or to grant
write access for any line that is
already owned with read access.
Any uniprocessor receiving such an
access-denial response is responsi-
ble for requesting (through a sim-
ple interrupt mechanism) that
other uniprocessors flush the con-
tested line from their private
caches. This procedure maintains
cache coherence dynamically, and
hence extremely efficiently, without
requiring any effort by the
programmer.

Error detection and correction.
For reliability, all single-bit errors
that occur in memory transactions
are automatically corrected, and all
double-bit errors are detected,
regardless of whether the errors oc-
cur in the switch or in the memory
system. For protection against
single-point failures, the S-1 Mul-
tiprocessor allows permanent con-
nection of multiple Crossbar
Switches that can be selected elec-
tronically; the S-1 Multiprocessor
can thus continue operating in the
event of a single-switch failure.
Furthermore, the Crossbar Switch
can be configured electronically to
keep a backup copy of every datum
in memory, so that failure of any

memory bank will not entail loss of
crucial data. Each input-output
peripheral processor may be con-
nected to input-output ports on at
least two uniprocessors, so failure
of a single uniprocessor does not
isolate any input—-output device
from the multiprocessor system. To
make maintenance easier, each
member uniprocessor, each
crossbar switch, and each memory
bank is connected to a diagnostic
computer that can probe, report,
and change the internal state of all
modules that it monitors, with very
high time and logic resolution.

S-1 Uniprocessors

We are developing a line of S-1
Uniprocessors to serve as the com-
putational nodes in the S-1 Mul-
tiprocessor. The first-generation
S-1 Uniprocessor (Mark I) has been
implemented and evaluated in
use,3 the second-generation
(Mark IIA) machine is under way,
and future generations (Mark III,
Mark IV, and Mark V) have been
planned in varying amounts of
detail. These generations of S-1
Uniprocessors vary greatly in per-
formance because of generation-
to-generation advances in
microcode, hardware structure,
and implementation technology.
However, all of them can conform
to an identical instruction-set
architecture, thereby making
software transportable from uni-
processors of any earlier genera-
tion to those of any later one.

Instruction-set architecture.
The instruction-set architecture of a
computer consists of those

principles of its operation that a
programmer without a stopwatch is
capable of observing; that is, it in-
cludes no timing information. The
complete hardware and microcode
structure that executes an
instruction-set architecture is called
the implementation. The im-
plementation of the S-1 Mark [IA
Uniprocessor has been designed to
allow high-speed emulation of
several existing instruction-set
architectures, including the DEC-
10 and Univac AN/UYK-7, in addi-
tion to the S-1 instruction-set
architecture (S-1 Native Mode).

It was apparent early in the S-1
Multiprocessor design that no ex-
isting instruction-set architecture
was suitable to serve as the S-1
Native Mode. Because then-
existing instruction-set architectures
had been designed under very dif-
ferent technology constraints than
those expected to apply to S-1
systems, they variously suffered
from address-space inadequacy, in-
sufficient operations-code space,
insufficient multiprocessing-
oriented features, or adverse im-
plications for high-performance im-
plementations.

In response to this situation, we
developed the S-1 Native Mode,
which is probably the most widely
reviewed high-performance com-
puter architecture ever developed.
Unlike the instruction-set architec-
tures of previous high-performance
computers (for example, the CDC
STAR-100 or the Cray-1), which
were developed by a few designers
working behind corporate
proprietary screens and were then
frozen, the S-1 Native Mode has
been analyzed, criticized, and
revised by scores of computer



scientists, engineers, and applica-
tion specialists in industry,
academia, and Government
throughout the country. It has
evolved over a period of three
years, during design, implementa-
tion, and operational evaluation of
the S-1 Mark I Uniprocessor
prototype and during design of the
S-1 Mark IIA Uniprocessor.

As a consequence of this un-
precedentedly extensive peer
review, the S-1 Native Mode is well
developed—it contains a large,
consistent set of features; it is highly
extensible—it can easily include
new features; it is general pur-
pose—it contains features for com-
piler and operating system ef-
ficiency as well as for arithmetic-
intensive and real-time applica-
tions; and it is carefully tuned—it
facilitates high-performance im-
plementations of S-1 Unipro-
cessors and S-1 Multiprocessors.

The S-1 Native Mode allows the
programmer to address uniformly,
without using base registers,

2 billion nine-bit bytes of main
memory, 288 times more memory
than the Cray-1 (although relatively
low-performance machines with
large address spaces have recently
appeared on the market). Indeed, it
was primarily to provide for ade-
quate address space that a 36-bit
work length was adopted for the
S-1 Native Mode.

Huge memories are crucial for
efficient solution of large problems,
such as three-dimensional physical
simulations and Monte Carlo-
intensive studies, which are of great
current interest in a wide variety of
applications that range from in-
compressible fluid flow studies to

acoustic ray tracing in highly
stratified media. The large memory
addressability of the S-1 Native
Mode essentially eliminates the
programming costs associated with
managing multiple types of com-
puter system storage (for example,
the SCM, LCM, drum, and disk
memory hierarchy of the
CDC 7600, to whose efficient
management major portions of the
careers of some programmers have
been addressed). Memory
technology has advanced so far
since the development of small-
address-space architectures such as
the CDC 7600, the DEC PDP-10,
and the IBM/360 that the current
production cost to the S-1 Project
of a 2-billion-byte main memory us-
ing 16K-bit memory chips is less
than $10 million; its long-term rate
of advance is so rapid that this cost
can confidently be expected to
decline by almost a factor of 2 each
year for the next several years.
Most software produced for S-1
systems will be written in high-level
compiled languages such as the
developing DOD standard
language, Ada. For ease of com-
piler writing and for rapid, efficient
execution of the compiled code,
these languages require certain
features in the underlying
instruction-set architecture. S-1
Native Mode is compiler-oriented:
it is designed to support high-level
languages in general, not one high-
level language in particular, and it
includes the full set of operators
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and addressing modes necessary
for a simple compiler to produce
efficient code. For example, S-1
Native Mode supports expression
evaluation with a unique type of
2.5-operand instruction that allows
the compilation of almost all forms
of arithmetic expressions without
using any move instructions
(instructions which simply move
data from one location to another
without performing logical or
arithmetic operations on them).
The extent of the compiler-
orientation of an instruction-set
architecture can be roughly
measured by counting the number
of instructions necessary to repre-
sent typical high-level language
programs. We have observed that
the CDC 7600 requires between
two and three times as many in-
structions to represent FORTRAN
programs as does the S-1 Native
Mode; the bulk of additional
CDC 7600 instructions are used in
addressing computations. An ex-
periment involving seven graduate-
student programmers in the Com-
puter Science Department at the
University of California, Berkeley,
showed that careful hand-coding of
the PDP-11 requires an average of
1.5 times as many instructions to



represent a variety of high-level
language programs as does the S-1
Native Mode. These and related
considerations lead us to assert that
no high-performance machine
available today has a more
compiler-oriented instruction-set
architecture than the S-1 Native
Mode.

The S-1 Native Mode contains
unprecedentedly comprehensive
floating-point semantics. Floating-
point numbers can be 18, 36, or 72
bits long, using 5, 9, and 15 bits,
respectively, to represent the expo-
nent of 2, and 13, 27, and 57 bits,
respectively, to represent the
signed fraction. The largest format
is upwards compatible with the
floating-point format of the Cray-1.
The 36-bit format was designed to
be the workhorse for virtually all
numerical applications. The 18-bit
floating-point format was specially
designed to support real-time
signal processing at many hundred
million floating-point operations
per second, but it can be highly
useful in any relatively low-
precision application where
processing speed is at a premium
(as, for example, in Monte Carlo
procedures).

Compared to conventional
floating-point representations, S-1
floating-point formats offer one ex-
tra bit of precision because the
high-order bit of the fraction is

determined from the sign and is
not explicitly represented. The S-1
Native Mode also allows floating-
point operations to be correctly
rounded in any of several different
rounding modes. For example,
stable rounding minimizes expect-
ed error, and diminished-
magnitude, augmented-magnitude,
floor, and ceiling roundings can be
used to measure the actual error
developed. The S-1 Native Mode
includes special floating-point sym-
bols (not-a-number, infinities, and
epsilons) which allow programs to
be created and exercised that will
not malfunction because of tran-
sient generation of quantities so
large or small that they cannot be
represented as ordinary numbers in
the computer. A computer
arithmetic system containing such
symbols is essential for efficient use
of human resources in developing
and using robust computer
programs.*

Pipelining of instructions.
Pipelining is exemplified by an
automobile production line, in
which a number of automobiles are
in production simultaneously, each
in a different stage of completion;
the time between completion of
construction of one automobile
and the next is roughly the delay of
a stage in the assembly line, rather
than the time required for a single
car to pass through the entire line.
A stream of instructions in a
pipelined computer implementa-
tion is processed in a very similar
fashion.

The S-1 Native Mode was
designed especially to facilitate

pipelined parallelism in the fetching
and decoding of instructions, the
associated fetching of instruction
operands, and the eventual execu-
tion of instructions. Pipelined
parallelism is a conceptually simple
type of parallelism that can result in
extremely high computer perfor-
mance levels. In general, designers
of advanced instruction-set
architectures for commercial com-
puters have given little considera-
tion to the implications of extensive
pipelining, because they have
developed those architectures with
medium- or low-performance im-
plementations in mind. Further-
more, pipelining has thus far been
used in modern computers
primarily in the execution of in-
structions, where it appears in the
streaming of vectors of operands
through pipelined arithmetic or
logical operation functional units.
S-1 Uniprocessors pipeline the
preparation and execution of in-
structions that specify both scalar
and vector operations. Every in-
struction proceeds through multi-
ple pipeline stages, including in-
struction preparation, operand
preparation, and execution. Some
stages of the pipeline, particularly
those dealing with operand address
arithmetic and instruction execu-
tion, necessarily have a wide variety
of functions, since the pipeline
must process a wide range of in-
structions. This variability in opera-
tion is effected through the exten-
sive use of microcode, an
architecture-defining, very low-level
program that precisely specifies the
operation of every pipeline stage.
The variability built into the
microcode-controlled pipeline
facilitates high-performance



emulation of other computers (for
example, the Nawy’'s Univac
AN/UYK-7). The S-1 MarkI and
Mark IIA Uniprocessors are the first
high-performance machines to in-
corporate instruction-preparation
pipelines fully controlled by writable
microcode.

Structure and performance.
Figure 3 shows the internal logical
structure of the S-1 Mark IIA Uni-
processor. The machine consists of
five microengines (extremely fast,
relatively special-purpose program-
mable controllers) operating in

parallel to provide high perfor-
mance. Four of the microengines
form the instruction pipeline, con-
sisting of the instruction-fetch,
instruction-decode, operand-
preparation, and arithmetic seg-
ments. Some segments are inter-
nally pipelined (a level of detail not
shown in Fig. 3). A single
microengine handles memory traf-
fic in parallel with the operation of
the instruction pipeline. A one-
processor system can be con-
figured by connecting an S-1
Mark IIA Uniprocessor directly to a
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memory controller; this requires
neither hardware nor microcode
changes.

During the design of the S-1
Mark I and Mark IIA pipelines, we
made significant advances in com-
puter technology. The Mark [ in-
troduced a new, simple branch-
prediction strategy to predict the
outcome of each test-and-branch
operation in an instruction stream
before its execution, thereby allow-
ing subsequent instructions to be
prepared without disruption. The
Mark I also refined the use of dual
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cache memories (one for instruc-
tions, one for data) to increase total
cache bandwidth. The Mark [IA
allows advance computation of
simple operations in early pipeline
stages; this technique minimizes idl-
ing of pipeline stages because a
computation (particularly, an
operand-address computation) de-
pends on some previous result.
The Mark IIA includes refined con-
trol mechanisms to coordinate the
operation of multiple pipeline
stages controlled by the indepen-
dent programmable microengines.
The S-1 Mark IIA also employs
vector operations to achieve high
performance. Vector operations
use multiple functional units in the
pipelined arithmetic module, to
achieve a peak computation rate
on the S-1 Mark I[IA Uniprocessor
of 400 million floating-point opera-
tions per second. Any fatal error
encountered during a vector opera-
tion results in a precise interrupt, so
the exact location of the error can
be determined by the error-
handling routine; this feature is
regrettably rare on existing high-
performance vector processors.
Status and plans. The S-1
Mark [ was developed to be a
prototype for evaluating the S-1
Native Mode and its advanced
hardware and to provide the
necessary computational resources

for the development of the S-1
Mark [IA hardware and software.
Only one S-1 Mark I has been
produced; it began operating late in
1977. Constituted of 5350 ECL-
10K integrated circuits, it was
designed to execute floating-point
arithmetic only in microcode
emulation and also contained a
severely reduced instruction-
preparation pipeline. On a small set
of floating-point-intensive scientific
benchmark codes written in Pascal,
the S-1 Mark | has been observed
to compute between 0.3 and 0.5
times as fast as the CDC 7600,
although the judicious use of hand-
coded routines in crucial inner
loops on the CDC 7600 was found
to increase that machine’s overall
performance relative to the Pascal-
programmed Mark [ to a speed ad-
vantage of fivefold, for our 16 000-
line physical simulation code. Con-
versely, the maximum execution
rate of the Mark I (10 million in-
structions per second), when com-
bined with the powerful addressing
modes and field-manipulating
features of the S-1 Native Mode
instruction-set architecture, permits
it to execute a variety of non-
floating-point-intensive codes
significantly more rapidly than does
the CDC 7600.

The second generation S-1 Uni-
processor, the Mark IIA, executes
the same instruction set (the S-1
Native Mode) as the Mark ], but it
has extensive hardware floating-
point and vector operation
capabilities. Its performance is ex-
pected to be comparable to that of

10

the Cray-1 on scientific problems
expressed in high-level languages
such as Ada, Pascal, and FOR-
TRAN, for just those applications in
which the single-word floating-
point format of the S-1 architecture
is as useful as the substantially
higher precision floating-point for-
mat of the Cray-1. The Cray-1 will
assuredly retain primacy in high-
precision, vector-intensive data
processing relative to near-term S-1
Uniprocessors, since this type of
computing capability cannot be
justified for present or readily fore-
seen Nawy applications, most of
which stress relatively low precision,
very high throughput data process-
ing.

Table 1 shows the performance
of the S-1 Mark IIA Uniprocessor
compared to the CDC 7600 and
the Cray-1 on several important
DOE benchmark miniprograms.
These miniprograms are represen-
tative of the full set used at LLL to
compare the performance of ad-
vanced scientific computers; they
accurately and concisely charac-
terize the computation-intensive
portions of extensive scientific code
at LLL. The S-1 Mark IIA Uni-
processor computes these
benchmarks at roughly the same
speed as the Cray-1 and almost
twice as fast as the CDC 7600. The
CDC 7600 rate was measured us-
ing an optimizing compiler first
available in 1974. The Cray-1 rates
are based on actual performance
measurements made in February,
1979, with a moderately mature
optimizing and vectorizing compiler
supplied by Cray Research, Inc.
Although the Cray-1 executes
more instructions per second than
the Mark IIA, many Cray-1 instruc-
tions are expended in overhead



computations. The S-1 results
assume the use of 36-bit floating-
point numbers, since high-precision
arithmetic is often not necessary in
LLL applications; however, neither
the CDC 7600 nor the Cray-1
provides a low-precision floating-
point format. For applications re-
quiring high precision, the Mark IIA
supports operations on the 72-bit
floating-point format at roughly half
the speed of operations on the 36-
bit floating-point format. For low-
precision applications, the Mark [IA
supports operations on the 18-bit
floating-point format at approx-
imately twice the speed of

operations on the 36-bit floating-
point format.
The S-1 Mark [IA Uniprocessor

is constituted of ECL-100K MSI cir-

cuits in performance-critical areas
and ECL-10K circuits elsewhere.
All Mark IIA circuits are standard,
commercially available products.
The transistor population of the
Mark [IA’s arithmetic unit alone is
greater than that of the entire cen-
tral processing unit of the Cray-1;
gate circuit densities within this
arithmetic unit are about 20 times
greater than those in the Cray-1
central processing unit. The

Mark IIA is in development at the
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present time; it is being packaged in
the folded form shown in Fig. 4
(shown unfolded on the cover).

The S-1 Mark Il is in an early
design phase. Like the Mark [ and
Mark IIA Uniprocessors, the
Mark Il executes the S-1 Native
Mode, but it is to be implemented
completely in commercially
available ECL-100K LSI circuits.
While it will not achieve a large per-
formance gain over the Mark IIA, it
will be physically more compact
because of its order-of-magnitude
greater logic gate density.

We are moving as rapidly as
possible toward using the

Tablle 1

Comparison of the performances of the S-1 Mark IIA Uniprocessor, the Cray-1, and the CDC 7600. Data
on Cray-1 and CDC 7600 taken from Ref. 5.

Computation rate, MFLOPS?

Mini- Mt S-1 Mark IIA Cray-1

program function Scalar® Vector® Scalar? Vector® CDC 7600

1 Hydro excerpt 91 59 9.3 71 53

2 Unrolled inner 11 74 88 47 6.6
product

3 Inner product 80 65 44 62 46

b Tridiagonal 75 15 7.6 7.6 4.0
elimination

7 Equation-of-state 13 46 12,6 80 7.3
excerpt

bAssumes no use of vector capability.
“Assumes full vectorization.

dObtained by turning off compiler vectorization.
¢Obtained by turning on full compiler vectorization.

MFLOPS stands for millions of floating-point operations per second.

11




technology of very large scale in-
tegrated circuits. The first genera-
tion presently planned to follow the
Mark III will express the entire
Mark Ill architecture on several
VLSI chips, at a performance level
at least as great as that of the
Mark IIL

S-1 Design System

The capabilities offered by
semiconductor technology for the
implementation of advanced com-
puter designs are rapidly outpacing
the capabilities developed for ar-
ticulating the conception of those
designs. To make best use of
rapidly improving semiconductor
technology, we have developed the
SCALD (Structured Computer-
Aided Logic Design) System.®

SCALD is a graphics-based
system for designing digital logic. It
inputs a high-level description of a
digital system and outputs
magnetic tapes that are used by
commercial automatic wire-wrap
machines to build the hardware.

The main advantage of using
SCALD is a drastic reduction in the
amount of time required to design
a large digital system. This reduc-
tion occurs because the designer
can express his design in the same

general level in which he thinks

about it, freeing him from the task
of actually drawing out all of the

details of the logic and creating a
wire list specifying its interconnec-
tion. Designs expressed in this high-
level notation become much more
comprehensible for all those who

have to work with them—for com-
puters, for computer designers, and
for maintenance engineers. By
reducing the amount of clerical
work required of digital logic
designers, SCALD reduces the
number of designers required to
execute a design project and the

[Fig.

The S-1 Mark IIA Uniprocessor. The package consists of iden-
tical pages. The pages unfold to expose all wire-wrap pins for
maintenance. Ambient air blows up through the centers of the pages to cool the
integrated circuits, which are mounted on the inside. Commercially available
power supplies are mounted in the cabinet base.
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communication overhead per
designer, thus increasing each
designer’s productivity and further
reducing the total designer require-
ments of the project. Manpower
savings well in excess of an order
of magnitude may be realized; such
savings have actually been
demonstrated in practice during
both the S-1 MarkI and Mark lIA
design efforts.

SCALD allows designs to be
recompiled rapidly when new in-
tegrated circuits become available;
such circuits may simply take the
place of low-level modules. Thus, a
designer can quite effectively use a
previous design to reduce his
design time on a new project,
thereby taking maximum advan-
tage of the exponential rates of ad-
vance in component density and
cost-effectiveness currently charac-
terizing the semiconductor in-
dustry. In practice, considerable
work may still be required to up-
date a design to incorporate recent
technology advances, but the re-
quired effort is likely to be much
less than if the design were not ex-
pressed hierarchically.

SCALD also facilitates designing
with very high accuracy, because
SCALD performs design verifica-
tion procedures that cannot be
done by a human. Not only can
SCALD verify syntactic details of
the design (for example, that every
gate input is connected to some
output), but it can also verify that
transmission lines are effectively

free from signal reflections; it can
certify that the logic networks
defined by the designer do not con-
tain timing errors, and it can
demonstrate by simulation that the
logical operation of the design is
correct.

Historically, logic design has
lagged far behind program design
in terms of the ideals of structured
design: that arbitrary modules be
specified, each in terms of a few
other modules, relatively indepen-
dently, and that they communicate
through well-defined interfaces.
Logic is still typically hand-drawn by
draftsmen; the specification
language consists of drawings of
the primitive logical elements
available from integrated-circuit
manufacturers and the physical
connections between those logical
elements. On the other hand,
typical modern programming
systems readily support the design
of arbitrary modules (that is,
routines), each in terms of a few
other routines, and allow the
specification of tightly structured in-
terfaces between those routines.
SCALD simply expresses these
performance-proven software-
engineering concepts in the world
of hardware design.

SCALD consists of a set of com-
puter programs. The Graphics

13
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Editor’ enters drawings directly into
a suitable computer, the Macro Ex-
pander compiles them, and the
Router embeds them in a physical
packaging system.

The Graphics Editor allows the
designer to edit drawings at a
graphics terminal and to print them
out. The designer may create a
library of shapes (macro bodies)
that are generally abstractions of
digital logic functions, though some
may represent physical parts
available from manufacturers. Each
macro body is linked by name to a
set of drawings, its macro defini-
tion. A macro is defined only once
but may be used in the drawings
any number of times. The designed
system is then made up by con-
necting these macro bodies by lines
indicating information flow. A
single line in a drawing represents
one or more signals (a signal vec-
tor) and may be named. Macro
bodies have parameters, including
parameter signal vectors. Names
on signal vectors include a timing
notation that allows SCALD to
verify automatically (using real or
estimated delays of wires and in-
tegrated circuits) that stated timing
constraints will actually be satisfied



by the digital logic when implemen-
ted in the specified physical
package.

Figure 5 shows a sample mid-
level drawing from the Mark IIA
design; it represents several thou-
sands of integrated circuits. The
drawing shows the Mark [IA data
cache and register file, operand
queues, alignment network,
arithmetic module, and connec-
tions between those elements. This
drawing represents the described
portion of the machine accurately,

in that hardware is automatically
built using the drawings as a
specification, but it is lacking in
detail and requires definitions of its
submodules for completeness.

The Macro Expander expands
the design to individual integrated
circuits by iteratively substituting
the appropriate macro definition
for each macro body in the
drawings. The Macro Expander
also verifies that designer-specified
timing constraints are satisfied. The
Macro Expander is largely

technology-independent and is
coded in transportable Pascal.
The Router reads an intercon-
nection list produced by the Macro
Expander and produces magnetic
tapes that permit the design to be
implemented by automatic and
semiautomatic commercial
machines. Extensive maintenance
and debugging documentation is
produced by the Router, which is
also coded in transportable Pascal.
SCALD was used to design the
S-1 Mark I and the S-1 Mark IIA.

PA D

PA END D

ROTATOR SEL

OPERAND DATA PATH AND ABOX

RESULT

Fﬁ A typical SCALD drawing from a middle
@O level of the S-1 Mark IIA Uniprocessor
design. This whole drawing defines a single block in a more
general diagram at the next higher level. Each of the blocks
in the drawing shown here is defined by a more detailed
drawing at the next lower level. Thus a hierarchy is es-
tablished that stretches from the most general abstraction

down to the individual components of the computer. Many of
these drawings can be used over and over again in the
design; they are drawn once and then simply recalled by
SCALD as needed. SCALD also generates a wiring list,
checks the design for mistakes and timing errors, and
produces taped instructions for automatic wiring machines.
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The Mark I design consisted of 211
high-level drawings (drawings used
only once in the design) and 144
low-level drawings (drawings used
several times). Low-level drawings
form an investment in the par-
ticular technology chosen for im-
plementation, since they have a
high probability of being used again
in subsequent designs. In contrast,
high-level drawings represent an in-
vestment in the particular architec-
ture being implemented and may
be reused to recompile that
architecture periodically into
current, more cost-effective im-
plementations. A total of two man-
years was expended in the Mark |
design work during an

elapsed period of one calendar
year.

Structured logic design consists
of extending to logic design the es-
sential power of the concepts and
tools developed for simplifying the
programming task; the savings in
human labor expended in design-
ing digital systems are potentially as
great as those resulting from the
use of compilers. Our experience
has shown that SCALD has made
the S-1 Mark I and Mark lIA
designs more understandable, thus
reducing the design efforts, enhan-
cing design correctness, and
facilitating generation of final
documentation. The designs them-
selves serve as major portions of
the final documentation because
they are so readily understood,;
thus, the need for expensive and
usually inaccurate post facto
documentation has been greatly
reduced. Furthermore, SCALD has
increased the mutability of these
designs; since macros are in-
herently isolated, changes in one
macro definition usually require
minimal changes in other parts of

the design. Finally, the imposition
of structure on the design and the
use of computational resources in
the verification task has resulted in
designs of an unprecedented level
of accuracy.

Summary

S-1 Project effort related to the
development of high-performance
computing machines is directed
toward three major areas: the S-1
Multiprocessor, the S-1 Unipro-
cessor, and the S-1 Design System.
S-1 Multiprocessors are rapidly ex-
tensible to very high powers and
large memory capacities at un-
iprocessor cost-effectiveness levels
and feature ultrareliable system
performance. The S-1 Uni-
processors are general-purpose,
emulation-oriented machines that
are powerful and highly cost-
effective and have advanced main-
tainability features. The S-1 Design
System supports highly automated,
general-purpose digital systems
design and provides extensive con-
struction and debug support of ad-
vanced computer systems.
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