PHYS. BRIEF 85-602

THE S-1 PROJECT:
Advancing the Digital Computing Technology Base
for National Security Applications

‘An Open House Presentation for
Members and Guests of the Navy and DoE Communities

Livermore. CA
11 April 1985

S-1 Technical Staff
Lawrence Livermore Nat’'l. Lab
(415)422—0758

Agenda

e Overview

e SCALD

e Mark lIA Architecture and Implementation
e Software Overview

e Current Status

e Architectural Studies

e AAP — Advanced Architecture Processor
e Advanced Electronic Packaging

e Laser Pantography Overview

Overview

Lowell Wood

S-1 Project History

e Formally commenced in FY '77 with ONR support
e Ab initio high performance emphasis and MIMD multiprocessor emphasis
e Tool-building and -using theme
e 6.2 support

e NAVELEX supervision commenced in FY '79
e Technology transfer to industry mandate
e SCALD | distribution
e First major user codes on Mark | system

e First multiprocessor-destined supercomputer (Mark IIA) completed construction in 1981
e SCALD Il distribution
e Commencement of CAD/CAM/CAE industry

e Billion bit high speed memory attached to Mark IIA in 1984
e Major user codes exercised on system

e Multi-user operating system and HOL support in FY '85
e Advances T&E support

The S-1 is a Computing Technology Development
Project Funded by the Navy and DoE

e Design System
e Widely applicable tool for rapid, low cost design
e Supports reimplementation to capture technology advances
e Conceptual basis of new CAE industry

e Uniprocessor Systems
e Combined signal processor and general purpose processor
e Highest performance implementation consistant with cost-efficiency

e Multiprocessor Systems
e Uniquely great throughput
e High reliability through automatically invoked redundancy
e Uniprocessor cost-effectiveness

e Software
e Support evaluation of uni- and multi-processor systems
e High level languages emphasized for transportability
e Multi-tasking, real-time operating system support

S-1 Family of Computer Systems

e Mark |
e 5300 ECL-10K chips
e Operational in 1979
e Vehicle for SCALD development

e Mark IIA
e 27,000 ECL-10K and ECL-100K chlps
e Operational in 1984
e Addresses DoD and DoE applications
e Available to outside users upon software installation

e AAP (Advanced Architecture Processor)
e Vehicle for advanced architecture packaging studies
e ECL-100K and semicustom ECL gate-arrays implementation
e High-density, water-cooled packaging
e Suitable for WSI implementation

e Mark V
e Wafer-scale integrated packaging
e Full military environmental compatibility
e Certifiably wartime rad-hard

SCALD

Mike Farmwald

SCALD System Overview

- ® Proven system for design of complex’ systems
o Used in design of S-1 family of computer
e Permits small design staffs

e Minimizes design and manufacturing errors

e Comprehensive automation of design process
e Inputs a graphics-based hierarchical design
e Verifies logical and electrical consistency
e Outputs instructions for automatic assembly and debugging
¢ Maintains up-to-date documentation

e Transferred to industry
e Over 200 sites have received LLNL release
® Dozen companies offering SCALD-like products

Conventional Logic Design

e Designers use one or a few fixed levels of abstraction
e Gates, flip-flops, and other available devices

e Computer-aided layout and wire-listing is often available
e Computer-assisted drawing is sometimes available

e Large computer developments typically cost > 100 man-years in
the design stage
e Amdahl
e Burroughs
e CDC
o IBM

e Design costs have usually been small fractions of total product
cost (high volume systems)

e Economic penalty is in technological obsolescence of marketed
systems
e Has become stiff only recently (LSI revolution)

e Industry is beginning to automate logic design

SCALD: The Fundamental Difference

e SCALD is a high-level hardware-language compiler
e Closely analogous to a high-level software-language compiler
e Inputs a high-level description
e Outputs hardware

e Arbitrary modules are designed
e Each in terms of a few other modules
e Relatively independently
e To communicate through well-defined interfaces

e SCALD advantages are:
e Increased understandability of resulting design
e Reducing design time
e Enhancing design correctness
e Facilitation of final documentation
- @ Increased changeability of design
e Increased computer-verifiability of design

COMPUTER AIDED LOG!C DESIGN VERSUS COMPUTER AIDED
“ROCGRAM DESIGN : : o -

S—1 Design System | Programming System

Graphics
console

Keyboard

Graphics
editor

Graphics
display

Expander > Compiler . -
Syntactic Syntactic -
errors Machine errors
code
> Debugger . >
Semantic Semantic
errors errors
Simulated or ' Numerical results

actual hardware

S-1 Project’s Philosophy of CAD/CAM Development

e Develop CAD/CAM systems in the immediate context of doing
design

e Only way to really understand what is needed

e What are bottlenecks in getting a large design done?

e Provides rapid feedback about effectiveness of various
algorithms

e Eliminates Tower-of-Babel-ism
e Only create capabilities that are needed to get job done

SCALD System Components

e Available

e Drawing system (external)
e Macro expander

e Compiles hierarchical desugn
e Timing verifier

e Checks for timing errors
e Logic simulator

e Interactive debugger for designs
e Packager

® Checks electrical rules

e Writes implementation tapes
e Micro debugger (MD)

~ @ Interactive debugger for hardware

e Micro assembler

e Produces binary mirocode from symbolic descriptions of

format and code

SCALD System Components (continued)

¢ Under development
e Test pattern generator
e Automated hardware diagnostics
e Placement and routing software
e Automated generation of PC, gate-arrays, WSI

EXAMPLE SCALD MACRO DEFINITION-SIMPLE PROCESSOR

EXT OUTPUT(XOUTPUT SIGN

EXT OUTPUT(9:36): C OUT /M+3: Z-6

\

REG ADR(0:3) /M

CONTROL
REG ADR

REG WRITE
ALUCTL

PROCESSOR |

CK.C34L 4 O
10105A

EGWRITEL/M 5 G1

ALU CTL(0:5) /M

CTL

MACRO: SIMPLE PROCESSOR

A
co 368
36BIT RES
ALY (fr0:38 Mmoot o] [EXT OUTPUT(0:35)
10181
R2
Ao CK
B A
M_S1
] o
5 "~
CK.C10-11 10110V REG CK BUF /M
7 3

G3

DECLARE OUTPUT SIGN

EXAMPLE SCALD MACRO DEFINITION—-PROCESSOR CONTROL

MICRO INSTR(0:22) /M

BR ADR(0:7) /M

BRANCH ALU /M

BRANCH NEG /M

REG ADR(0:3) /P

PARAMETER

REG ADR(0:3)

REG WRITE L

ALU CTL(0:6)

2660 RAM
. 6
EXT LOAD CS DATA(0:22) [Ay
R
A WE CS
o O
8BITCTR
. 10016
BR ADR(0:7) /M | T el
c
cK
cLocK A RPE
EXTRESE EXT LOAD CS WE L

BRANCH ALU /M AX MICRO INSTR(0:7) /M

10105A MICRO INSTR(8) /M

G2 2
BRANCH NEG /M : MICRO INSTR(9) /M
OUTPUT SIGN

G1 MICRO INSTR(14) /M

MACRO: PROCESSOR CONTROL

REG WRITE L /P

MICRO INSTR(15:20) /M

ALU CTL(0:5) /P

S-1 Design Statistics

Mark | Mark IIA
IC population (DIPs) 5500 25000
Drawings (pages) 280 1000
Design effort (person-years) 2 8
Scalar rate (MFLOPS) 1 } 8
Vector rate (MFLOPS) - 50

- HW f-p FFT- (MFLOPS) - | 250

- SCALD Timing Verifier

SCALD Timing Verifier Goals

e To verify all timing constraints in large synchronous sequential
digital systems

e To verify timing constraints early and throughout the design
cycle

e To be driven mainly from the design description

e Avoiding complex auxiliary files that the designer must
generate

e To verify as much as possible of the timing constraints in a
“value-independent” fashion

@ To minimize the number of cases that need to be tested
e To reduce CPU time

Timing Yerification in the SCALD System M

e Checks all timing constraints in large synchronous digital systems,
taking into account:

o Component timing properties
e Minimum and maximum propagation delays
e Set-up and hold constraints
o Minimum pulse width constraints

¢ Minimum and maximum interconnection delays
e User-specified limits |
e Values calculated -based on routing, capacitance, and

transmission line characteristics
o Additional designer-specified constraints

TIMING VERIFIER — SIGNAL VALUES _

Value

CTMIOWVW=0

Meaning

False

True

Stable

Changing

Rising edge

Falling edge

Undefined (Initial value)

Experience in Using Timing Verifier

e Provided daily feedback about timing errors as the S-1 Mark A design proceeded

e Meeting both minimum and maximum delays required a significant amount of work
e Typically two or three timing errors are introduced in a given day of design work
e With constant feedback, designers learned to make fewer timing errors

e During initial part of design, many errors would be made during a day's
work

e A number of circuits had to be entirely redesigned to meet worst-case timing
constraints

e To verify a section of logic consisting of 6357 chips
e Required 12 minutes of CPU time
e Executed on S-1 Mark | processor

e Comparable in performance to 370/168
e Required 6 Megabytes of memory

Conclusions

e The Timing Verifier allowed constant feedback to the designer with very little cost by the
designer

e Use of the Timing Verifier encouraged conventions which greatly improved design readability

e The system resulted in a significant reduction in design time
e When designing a new section, existing signals can be look up in a summary listing to
see when they are changing '
e Timing errors are found early in the design, before they have a chance to propagate
e A significant amount of time was saved by not needing to do as many hand
calculations while doing the design

e The system allowed a design to be done which executes faster
e By providing quick feedback about timing, the designh could be optimized for execution
speed more readily

SCALD Logic Simulator

SCALD Logic Simulator

e General purpose logic simulator

® Driven by SCALD logic drawings directly
e One data base used to construct, simulate, and timing venfy
design
e Eliminates possuble transcription errors
e Makes it easy to do simulation
e No large input file to generate by hand

Interactive Display-Oriented System

e Signals of interest are displayed on CRT
~ @ As the simulation is stepped along, values of displayed
signals are continuously updated
e Locations in memory arrays can also be displayed

e Can examine and deposlt in any signal value, register, or memory
location
e Has built-in loaders for micro-code and simulated main memory
e Loads micro-code assembled by the SCALD micro-code
assembler

Circuit Modeling

e Uses maximum delay on circuit elements
e Timing verifier is used to do worst-case timing analysis
e Greatly simplifies simulator not to have to worry about
timing analysis -

e Uses two-value system to model circuit

e Event driven circuit evaluation scheme
e Each event represents a bus of from 1 to N bits
e Can simulate a 36-bit bus as fast as a 1-bit bus

e Bus symmetries used to reduce memory requirements needed to
represent circuit
e Gives order-of-magnitude reduction in memory required

e High-level primitives greatly improve simulation speed

e Block compilation can result in 10-25x performance increases

Chip Definitions

e Given in SCALD Hardware Description Language in terms of
- primitive functions built into simulator
e Primitives can operate on arbitrary width buses

e Current simulator has 31 different primitives definitions built-in
e Different sizes of AND, OR, and XOR Gates
e Multiplexers (2, 4, 8, and 16-input types)
e N-word Memory Elements -
e Adders, ALU’s, Lookahead Units, Comparators, etc.
e Registers and Latches

Conclusions

e Taking advantage of bus symmetries can reduce memory
requirements and execution times by an order-of-magnitude

e Separating timing verification from logic verification simplifies
and speeds up both tasks

e Debugging with logic simulation seems to be at least twice as
fast as debugging the hardware without simulation

e Mark IIA hardware that was simulated worked essentially first
time
e Unfortunately, we did not simulate all of the Mark [IA

e Direct code generation and “block™ compilation of design can
improve performance by 10-25 x
e Results in same performance as expensive hardware logic
simulators

SCALD Microcode Debugger

What can MD do?

o Set and show CPU scan-logic (“vision”) registers
e Enable and disable CPU clocks

e Load and verify microcode

e Log CPU parity and memory ECC errors

e Load small bootstrap programs

MD is friendlier than an oscilloscope

e MD knows by name all the scan-logic registers, most
microstores, and many signals within the CPU

e MD displays the values of these on a terminal, updating them as
" the user single-steps the CPU

e The user can set breakpoints to occur when arithmetic
expressions involving these values change from true to false or

vice versa

[e taaedadeadstd .

i
1
i

S ek iaatasans
1104

| mlm

/.

W asd -a=
Bt

s A

/s
L

‘.

MD is versatile

e Information about the scan-logic is not frozen
e MD reads a file generated by the SCALD layout program
which describes the scan-logic
e Most changes in the hardware (e.g. ECOs) are reflected in
MD without requiring reprogramming

e The user can customize MD to fit the task at hand with:
e Command files
e Loops and conditional commands
e Display-formatting files

Mark lIA Architecture and Implementation

Mike Farmwald

Caneral Characteristics Lg

e Memory
o 36 bit words, uniformly addressable as quarter-, half-, single-, or
double-words
e 16 gigabyte physical address space reduces swapping
e 2 gigabyte uniformly addressed virtual address space makes
programming easier -
¢ Registers |
o 32 general purpose 36 bit registers
e 16 sets of such registers for fast context switching
o Separate status registers | -
o Processor-status for operating system interests
o User-status for user's interests (e.g. rounding mode)
o Segments of varying size
o Promote sharing of code
e Increase reliability due to intra-program bounds checks
o Hardware security mechanisms
e Provide four “rings” (concentric levels of privilege)
o Support simpler user-space/exec-space systems as well
o Validate arguments as well as calls themselves

Data Types

e Boolean (9. 18, 36 and 72-bit)
e Integer (9. 18, 36 and 72-bit)

e Floating-point
e Two's complement with hidden bit
e 18-bit (1-bit sign, 5-bit exponent, 12-bit fraction)
e 36-bit (1-bit sign, 5-bit exponent, 26-bit fraction)
e 72-bit (1-bit sign, 15-bit exponent, 56- bit fraction)
e Complete set of rounding modes
e Special symbols (e.g., infinity, not-a- number)

e Complex
e Pairs of integer or floating-point

e Vectors
e Floating-point, integer, complex or boolean

e Matrices
e Integer or floating-point

High Level Instructions

e Quick-sort inner loop

o Matrix operations
e Transposition, multiply

e Elementary functions
e Sin, log, sqrt

e Signal processing
e FFT, filtering, convolution

Vector Operations

o Optimal match of memory bandwidth with pipeline speed
e Through parallel use of Adder and Multiplier

e Complete set of operations for efficient coding

e Floating-point, integer, complex, and Boolean operations
supported |

e Mark llA does not have invisible chaining as Cray-1 does
e Implies user must explicitly chain, but |
e User benefits from chaining without fine-tuning the code as
is necessary on the Cray-1
e Can retain intermediate result at high precision internally

e Step-size of 1 element for all vector computations
e Generalized transpose for sparse vectors

Typical Vector Functions

e Floating-point square root

e Complex magnitude

e Lengthwise minimum and maximum
e Floating-point to integer conversion
e 3-dimensional distance calculation

e Bit-vector shift

e Integer 2nd order recursive filter

e Vector X(i) =S * [Y(i) + Z(i)]

Symbolic Processing Support

e 23 pointer types reserved for user-specified data structures
e Dispatch on pointer type
e User-specified argument pointer type-checking

e Rich set of addressing operations well-suited for accessing
symbolic types of data structures

e Multiple precision arithmetic intensively supported

e Mark IlIA uniprocessor estlmated rate of 5-20K logical
inferences/second

Interrupts and Input/Output @

e High performance
e Vectored interrupts, individually enabled and disabled
e 32 priority levels for interrupts and processor itself

e Adaptable
e Many |/O channels
e One peripheral processor per channel
e |/O channels are microcoded, can accommodate advancing
peripheral processor technology
e Peripheral processor and S-1 procesor
e Synchronize via interrupts
e Exchange control and data through shared memory
e Can map I/O memory into a user’'s space to improve
performance or to debug independently of the kernel
e |/O instructions translate data to interface an 8-bit world
with a 36-bit machine

Mark llA Processor Implementation Overview lg

e Major sections
e IBOX - Instruction and operand preparation umt
o ABOX - Arithmetic and vector processing unit

o Both units are pipelined

e 40 ns cycle time

o Maximum instruction issue rate of one three-word instruction
every other cycle

e Maximum computation pipeline rate of one calculation per cycle
per execution unit

o Maximum data throughput rate - 450 mllllon bytes/sec

o Maximum calculation rate - 250 million floating operations/sec

¢ Both units are heavily microcode-controlled
o Total of 2.7 million control store bits
o Total micro-word width of more than 1400 bits

Mark IIA Processor Functional Overview

N\
INSTRUCTION ibospidoonh
CRO€ OPERAND RBOX
QUELE
INSTRUCTION | - DATR CROE
DECO0E
M- SEQUENCER XTERAL 1.0

SITOUSYNOY BOX LOCAL METORY

Pipelining of Instruction Preparation/Execution

e Used to exploit parallelism in sequential instruction stream

e Instruction execution is like making cars
e Multiple instructions (cars) in pipeline (assembly line) at one time

e Instruction passes through these typical stops in pipeline
e Fetch instruction byte(s)
e Decode instruction and operand descriptors
e Calculate operand addresses
e Read source operands
e Execute instruction
e Store result operands

e What is limit of pipelining in speeding up instruction processing?
e Need for previously computed result |
e Indexing
e Source operands
e Conditional data-dependent branches

Value Prediction

e Indexing off of recently computed values causes pipeline interlock
e Instruction unit is forced to wait for result from execution
unit
e Pre-computing index values makes them instantly available and
avoids interlock

e Easy to predict simple instructions
e Move from cache, constant, or register to register
e Increment/decrement loop index and test
e Add/subtract small constant from array index

e Covers most commonly occurring indexing cases in compiled
code

e Always predicts correctly

Branch Prediction

e Branch prediction
e Predicting the outcome of a conditional branch before it is

executed

e Use opcode
e Always, never, normally, rarely branches

e Look at dynamic history for instruction: from given location
e What did instruction do last time it was executed?
e Assume history repeats itself, e.g., loops

e A simple scheme
e Decode RAM gives initial prediction for each opcode
e Store extra bit with each word in cache
e Says to use opposite strategy as given by decode RAM
e This scheme works for 98% of instructions executed for a
Pascal compilation on the S-1 Mark | processor

Pre-Decoding Instructions in Instruction Cache

e Allows for a shorter instruction pipeline

e Supports faster branching
e S5-1 Mark A can execute branch instructions in one cycle
e Pre-computed and stored in cache
e Length of instruction
- @ Branch offset if branch instruction
e Branch prediction bit

e Starting address for microcode which controls
operand address calculations

Add Functional Unit

e Four cycle latency

e Fully pipelined — a new result generated every «:ycle

e All precisions of integer or floating point add and subtract
e Simultaneous floating point add/subtract operation

e Half-word complex add and subtract

e Byte, boolean, shifts, rotaes, bit count, bit first, etc.

Multiplier Functional Unit

e Six cycle latency

e Half-word complex multiplication every cycle
e Single-word mu'ltiplicaﬁon every cycle

e Double-word multiplication every two cycles

e Single-word reciprocation or square root every cycle

&
Elementary Functions by Taylor Series

e Fully exploits Multiplier hardware features, e.g., pipelining
e Produces results of full architectural precision
» Table look-up in large, very fast RAMs for starting values

e Piecewise quadratic approximation to popular elementary
functions '

® Same speeds as multiplication (1 cycle) for
e Reciprocation
e Square root

 Twice multiplier latency (2 cycles) for
e Sine
e Cosine
e Arctangent
e Exponential
e Logarithm
e Error function

S=-1 Mark A Performance k\g

Execution times, expressed in cycles, are:
Vector pipeline time/Scalar pipeline time/Total execution latency

Single Precision Double Precision

(36 bits) (7 2bits)
Move (register to memory) NA/2/2 NA/2/2
Move (memory to register) 1/4/4 2/4/4
Integer add 1/2/4 2/2/4
Integer multiply 1/2/6 2/2/6
Shift 1/2/4 2/2/4
Load or deposit byte 1/2/4 2/2/4
Floating point add 1/2/4 2/2/4
Floating point multiply 1/2/6 2/2/6
Floating point reciprocate 1/2/6 3/14/18
Floating point square root 1/2/6 3/14/18
Floating point divide 2/8/12 4/14/18
Floating point logarithm 1/8/10 14/46/50
Floating point exponential 1/4/8 10/34/38
Floating point sine or cosine 2/16/20 14/38/42

Floating point arctangent 3/18/22 22/52/56

Lessons Learned in Mark lIA Development

. Packaging is as important as architecture

- Simulate absolutely everything before building anything
- Implementation must be 100% testable

. Design must be readily understandable

. Automate everything possible

- Verify architectural complexities are cost-efficient

Operational experience with S-1 Mark IIA

e We made, in retrospect, some poor implementation choices
e Serials 1 and 2 use 72 wire-wrap boards
e 2500 interboard cables
@ Air cooled
e Design was not 100% scan-testable

e This led to poor reliability and much longer (than expected)
debugging times

e We have learned from our mistakes

Software Overview

Jeff Broughton

S-1 Software Development

e Rationale for work |
~ @ Support test and evaluation by DoD, DoE
e Support development of design tools and future hardware
generations

e Requirements
e Permit transport/development of high-level language
programs | |
e Provide timesharing services
- Facilitate effective utilization of multiprocessor systems

e Major areas of work
e Programming languages
e Multiuser Operating System - Unix
e Advanced Operating System - Amber

Implicit Goals in S-1 Software Efforts

12

e Sharing
e Adhere to standards
e Promote use of library routines
e Capture existing software

e Portability
e Use high-level languages
e Use machine-independent programming techniques

e Productivity
e Presume people to be most expensive element
e Provide tools to automate chores
e Exploit excess capacity

e Durability
e Plan for future developments

Programming Languages; Supported

e Pascal
e Special extensions for systems programming
e Separate compilation for modular decomposutlon
e Exception handling

e FORTRAN
¢ FORTRAN-77 dialect
e LRLTRAN compatibility option
e FORTRAN-8x vector extensions (in development)
e Vectorization by preprocessor (in development)

o LISP
e Common LISP dialect (new DoD standard)
e Extensions for S-1 features and multiproces:sing

o 'C"
e Supports capture of Unix tools

Pastel

&

e Improved type definition
e Parametric types
e Explicit packing and allocation control
e Additional parameter passing modes

e Additional control constructs
e Set iteration
e Loop-exit form
e Return statement

e Module definition
e Exception handling

e General enhancements

e Conditional boolean operations
e Constant expressions

e Variable initialization

Algebraic Language Implementation

o High performance implementations facilitate use
o Instruction set tailored for HOLs
o Special hardware support for peculiar language features

o Standard optimizations routinely done
o Common subexpression elimination
¢ Code motion
o Inline procedure expansion
o Register allocation

o Certain optimizations are of special importance for S-1 systems
o Minimization of pipeline interlocks
o Vectorization
e Loop blocking

1ISP

o LISP Dialect

o Upward compatible with “Common LISP"
e Extensions to access S-1 features

o Implementation
o Interpreter, compiler and runtime written in LISP
o Efficient execution of numerical programs
o Special architectural support exploited

o Possible Applications
o Macsyma
o Artificial intelligence
o Program development

o Unique capabilities
e Memory/computation intensive applications
o Mixed symbolic/scientific applications
e Multiprocessor applications

fMultiuser Operating System - Unix l@

e Provides pr'ompt multi-user access to Mark IIA uniprocessors

o Simple uniprocessor timesharing executive
o Originally developed at Bell Laboratories for PDP-11s
o Transported to many architectures
¢ Unspecialized
o Does not exploit full capabilities of S-1 systems

‘o Aiiows immediate capture of DoD investment in Unix tool developments

Advanced Cperating System - Amber

Full functionality uni- and mulfi-processor‘ executive

Support a mix of applications in a modular fashion
¢ Real-time systems (e.g., signal processing) |
e Compute-bound problems (e.g., theater weather forecasting)
o Interactive use (e.g., program development)

Support full use of S-1 architectural features
o Large memory space
e Multiple processors
o Hardware redundancy

Support timely test and evaluation of S-1 systems
e Program development environment

¢ Classified/unclassified ARPANET access
o Extensibility to meet changing needs

- AMBER SECURITY FEATURES

e Access to all objects may be controlled
o Files, tasks, 10 devices are all protected uniformly
o Different operations controlled by different modes
¢ E.g. read/write/execute for files

¢ Discretionary access control
o Any individual may grant access to any other user or group
e "User" may mean person, program or task

e Procedural access control
e Limits object access to protected server task
o Allows implementation of complex protection policies

o Nondiscretionary access control
o Provides multilevel security partitioning
o Implementation being explored for later version of system

Amber Storage System Features

e Combines functions of file system and virtual memory

e Hierarchical directory structure
e Tree structure helps user organize information
e Long, mnemonic file names aids documentation
e Property lists store history information

e Files are represented as segments
e Segments may hold data, programs, text files, etc.
e Segments are mapped into the virtual memory and
referenced as normal program data |
e Shared segments provide simple, high-bandwidth
communication between different processes

Demand Paging

e Paging is invisible to the user

e Pages are copied directly between disk records and main memory
e They are copied in as a response to page faults
e They are removed by a kernel daemon task
e Page replacement works globally on all of main memory
e Approximation of least-recently-used algorithm is used for eviction

e This is not optimal for all applications
e Real-time response can be degraded by page faults
e Least-recently-used is not always a good policy
e Transaction processing requires assurance that updates have been completed

e Solutions
e User may temporarily “wire” pages into main memory
e User may give “hints” about their reference patterns
e User may request explicit updating to disk

Amber Multitasking Support

@ Multilevel scheduling

e Low level provides simple real-time mechanism
e Priority scheduling with round-robin queues
e Dedicated processor assignments
e Interrupt dispatching

e High level may implement complex pohcnes
e Resource allocation
e Load leveling on multiprocessor configurations

e Communication techniques
e Shared memory between tasks for direct communication
e Ada-style sharing of entire address space
e Added protection of sharing single segments
e Message channels for “network™ style data transmission

e Synchronization techniques
e Software interrupts
e Event notification

e Clock services
e Real- and CPU-time interrupts
e Time-outs on all event waits

Amber Reliability Features

o Dynamic reconfiguration of multiprocessor
e Able to operate with a portion of hardware configuration
o Able to change configuration while system operational
e Exploits hardware redundancy -

o Transaction processing in Storage System
e Maintains consistency in face of system failure
e Insures data integrity
o Provides for system restart without time consuming salvage

o Kernel design philosophy
e Modular structure, without hidden dependencies
e Strict locking hierarchy to avoid deadlocks
o Consistency checks of internal data bases
e Timeouts on all waits
o Extensive metering and logging
e Performance measurement
¢ Diagnosis of unusual conditions

Amber Program Development Environment

o Library packages provided
e File management
e Display management
e [nput line editing
e Command processor

@ Development tools
@ Pascal/[FORTRAN compilers
e Editor
e Interactive debugger
® Directory editor

e Unique programming services
e Object-oriented programming
e Garbage collection:
e Dynamic linking

Object-Oriented Programming in Amber

e Technique for writing flexible, durable software
e General solution to the “device independence” problem
e Runtime binding of functions to mechanism

e Message-passing approach
e Protocols define the generic functions to be performed
e Objects define the mechanisms they support
e Default mechanisms define functions in terms of simpler protocols

e Some protocols defined in Amber
e Serial 1/O - for raw, 8-bit serial communications
e Text I/O - for line at a time character input/output
e Display 1/O - for control of CRTs or windows
e Directories - for management of catalogs

e Implementation
- o Pastel library package called from protocol modules
e Functions are strongly-typed; objects are not

Dynamic Linking

e Linking performed on demand at runtime
e External reference causes trap
e Segment containing module is mapped in
e Program is restarted with actual address

o Program sharing without multiple copies of the object code
e Allows the development of interlocked subsystems
e Programs automatically get updated versions of subroutines
e Shares storage

e Aids in program development
e Promotes modular design methodologies
e Eliminates linking, shortening the debugging loop
e Allows versions of a module to be changed on-the-fly

e A static linker/loader is provided
e For use by stable subsystems
e For use by time critical programs
e For use in embedded applications requiring minimum support

2
B

\reessssse-
Plznz s ne
B sy
rerzenees |
[ol i e

|

g g

[| FEL —

Current Status

Jeff Broughton

S-1 Mark A Current Status

® Processors
e Serial 1 machine is operational
e Serial 2 machine runs some large programs
e Serial 3 logic element installation beginning
e Serial 4-6 construction commenced

e Peripheral Equipment
e Two 1/O Processors operational on each Mark IIA
e One 32 megaword Memory Box operational on each Mark IIA
e 1 Gigabyte disk storage installed on each Mark IIA

e Microcoding
e Scalar architecture essentially complete
e Operating system support complete
e Many vector instructions complete

S-1 Mark lIA Current Status (continued)

o Language software
e Pascal and “C” programs fully supported
e FORTRAN/LRLTRAN in “beta” test
e FORTRAN vectorizer ready for evaluation
o LISP system runs some programs, stand-alone

e Unix Operating System
e Kernel operational for time-sharing
e Compiler, editors, common utilities installed
e Reasonably stable |

e Amber Operating System
e Kernel operational
e Simple multi-user support
e System still in development

S-1 Mark llIA Current Status (continued)

e Large application codes transported to Mark lIA

e TIMI - Semiconductor physics modeling program
e Operational |
e SUNTAN - Atomic physics modeling program
e Operational
~ @ Synthetic Aperture Radar program
e Beginning evaluation

S-1 Mark A Near-Term Outlook

e Commencement of Test and Evaluation under Unix

e Immediate support for “C” applications
e Support for Pascal and FORTRAN will follow shortly

e Completion of initial release of Amber
e Shakedown continuing through end of spring
e Operational installation on Serial 2 Mark lIA
e Ongoing enhancements to Program Development Subsystem

e System available for remote use
@ Near-term terminal access via local hosts
o Near-term file transfer via local hosts

e Unix tape support in May
e Direct MILNET access by fall

e Establishment of user support function
e Coordinated through NAVELEX PMO

e
: :::f-?::?

.;....m.n

SSPRS

unnlls'll'“.,

Architectural Studies

Jeff Broughton

Applicability of Statistics

e Only use statistics from real programs that are “too slow”
e Some programs are already fast enough
e Command processors, editors and other existing highly
interactive programs
e |/O limited programs won't benefit from instruction-set
Improvements

e Toy programs and benchmarks may not be representative

e Need representative compiler
e Good register allocation
e Common subexpression elimination
e Code motion

Pl lyaAs i——ESSS

e

-

//

LINPACKD

e

SIM

nsTRucTIUN-concENfRaTION 50— 200 250 |

P IMPLE

300

Programs Measured

e Pascal compiler

o TEX text formatter

e SCALD Il logic simulator

e SCALD Il micro assembler

e PIMPLE hydrodynamics code

e LINPACK Argonne National Labs linear algebra benchmark

e 2D semiconductor physics simulation

Statistics-Gathering Methodology

- ® Need to make measurements without high overhead
e X 10 to x 100 for architectural simulation is incompatible
with measuring programs that are “too slow”

e Combine basic block execution counts from a program run with
basic block statistics from compile-time to determme overall
execution statistics

e About 25% overhead

e Optionally call subroutine for every memory reference
e Write trace files for later processing to determine cache
performance

e Can collect statistics for one architecture by running on another
e Pastel compiler used to insert measurements

Statistics as Architectural Guidelines E

e Use speedup/slowdown as primary criteria -
e For example, don’t omit an instruction used 1% of the time
if the cost of simulating it is 50-100

e If insignificant impact on performance, leave it out, unless zero
cost

e If significant performance gain possible, consider including
architectural support, at least for the time being

Cache simulation

* Did not look at instruction caches
* Expect instruction caches to perform better than data caches

- Simulation results include clearing cache every 100,000
references

- Data map cache
- roughly 10~* miss rates with reasonable design
* page size is impertant
- Data cache
* roughly 1-2% miss rates for compiler
* Thus 5-10% slowdown for 12 cycle memory

* roughly 10% miss rates for linear reference streams that
exceed cache size

* Thus 50% slowdown

'Pastel compiler map cache miss rate

7699232 memory references
Data map cachs size = 64 entries, page size = 1024 words

1 sets .0019

2seots .00069

4 sets .00047

Data map cache sizs = 128 entries, page size = 1024 words
1sets .00086

2sets .00043

4 sets .00042

Data map cache size = 256 entries, page size = 1024 words
1sets .00066

2sets .00042

4 sets .00042

Data map cache size = 512 entries. pags size = 1024 words
1sets .00042

2sets .00042

4 sets .00042

PIMPLE map cache miss rate

152657 memory references B
Data map cachs size = 64 entries, pege size = 1024 words

1sets .00027

2sets .00027

4 sets .00027

Data map cache size = 128 entrics, page size = 1024 words
1sets .00027

2 sets .00027

4 sets .00027

Data map cache size = 256 entries, page size = 1024 words
1sets .00027

2 sets .00027

4 sets .00027 |

Data map cache size = 512 entries, page size = 1024 words
1sets .00027

2 sets .00027

4 sets .00027

Pastel compiler data cache miss and writeback rate

7699232 memory references
Data cache size = 4096 words

4
2 sets 026 .37
4 sets .025 .38
Data cache size = 8192 words
4
2 sets 023 .39
4 sets .023 .39
Data cache size = 16384 words
4
2 sets 022 4
4 sets 022 4
Data cache size = 32768 words
4
2 sets 022 4
4 sets 022 41
.19 writes "

7843 different 16 word lines referenced

.018
016 .4

.015
014

.014
014

013
.013

.39

42
43

43
A4

45
45

.014
012

.0098
-.0087

.0085
.0082

0079
.0078

16

A1

16

45
47

16

A7
48

16

49
49

LINPACI{ Data Cache Miss and Write Back Rates

2.2 million memory reference
Data cache size = 4095 words

4 8 16

2 sets 0.16 .90 0.099 0.83 0.072 0.74

4 sets 016 .91 0.082 0.91 0.044 09
Data cache size = 8192 words

/ 4 8 16

2 sets 0.13 0.89 0.065 0.89 - 0.035 0.89

4 sets 013 0.9 0.066 0.89 0.035 0.9
Data cache size = 16384 words

| 4 8 16

2 sets 0.63 0.88 0.034 0.87 0.019 0.87

4 sets 069 0.86 0.037 0.86 0.021 0.86
Data cache size = 32768 words

- 4 8 16

2 sets 0.36 0.97 0.019 0.96 0.099 0.96

4 sets 0.36 0.97 0.018 0.97 0.095 0.97

0.33 writes

1397 different 16 word lines referenced

Some Results

e Number crunching programs are very different from system code
e Heavy use of indexing
e High fraction of floating point operations
e Large basic blocks
e Many instructions per procedure cail

e Conditional branches are important
e Indexing is important

e Procedure call cost is important for system code

Some results

Pastel TeX

Puzzie Micro*
Conditional branches
43% 16-23% 17% 13%
Basic block size .
2.2 3.5-4.5 3.9 5.3
Procedure size
180 35 40 34
.56% 2.9% 2.5% 2.9%
Register save/restore (6 registers max)
1.8% 6.3% 4.3% 4.2%
Arguments per call
- 1.7-21 .81 1.3
Load/stores
26% 38% 41% -
26% 44% 43% 56%

Load/store cost
25% 32-36% 31% 42%

Indexing
24% 3.5-9.5% 5.8% 6.1%
Bytes
0 2-5% 4.7% 8.5%
Flops |
0 .003% .026% 0

LogSim

1%
6

49
2%

6.7%

0

Pimple

Linpack 2dSemi**

7.4%
9.5

140
71%

4.4

- 35%

59%

46%

29%

34%

7.4%
7.9

470
21%

45%

79%

44%

29%

8.4%
7.8

300
.33%

31%

31%

18%

037%

31%

Mark A Performance Problems |

e Cycle time is too long
e Everything takes the same time

e Average scalar performance is 1/4-1/2 peak performance
- @ Statistical effects hurt
e Branch interlocks
e Data pipeline interlocks
e Cache-miss overhead

R

AAP — Advanced Architecture Processor

Mike Farmwald

AAP Design Goals

e Same fundamental goals as Mark lIA
e Provide high performance across many applications
e Numerical
e Symbolic (e.g.. artificial mtelhgence)
e Support modern software (e.g., virtual memory system)
e Explore multiprocessor effectiveness

e AAP design reflects some strategy changes

e Optimize most common functions

e Utilize multiple processors rather than vectors for high-end
numerical performance

e Stress scalar performance

e Tailor design to compact packaging

e Add special functional units for high performance specialty
applications

AAP Design issues

e Simplicity | .
e Minimize design/debug time (1-2 years)
e Reduce chip-count/increase reliability
e Reduce size/increase performance
e Reduce cost

~ o Improve manufacturability |
- @ Exploit semiconductor and packaging advances
e Increase functional modularity

e Permit subsetting and supersetting
e Support special functional units

e Near-term implementation technology
e ECL gate-arrays and MSI components
e High density PC cards
e Water cooling

e Wafer-scale implementation compatibility
- @ Design suitable for both PC and WSI

AAP Highlights

e Key design changes
e Shorter pipeline »
e 3-stage v. 11-stage pipeline
e Reduced cache-miss time
e 350 ns vs. > 1500 ns
e Faster interprocessor communication
e 100% automatic testability

e Improved components
e 2500/3500-gate ECL gate arrays
e Faster and denser ECL RAMs for cache/microstore
e 250K dynamic RAMs for memory

e Smaller package
e Single CPU is 24 inches X 24 inches X 6 mrhes
e Multiprocessor fits in a single cabinet

AAP Highlights (continued)

o Faster cycle time
e 30 ns v. 80 ns for simple operations
e Complex operations take multiple cycles

e Estimated performance
e 5 times a Mark IlA on unstructured codes
e 1/4 - 2 times a Mark llIA on vectorizable numeric codes

e Lower cost |
e Less than $150 K per CPU

AAP Dataflow Diagram

ADDRESS

MRITHNETY X

I CACHE

i

e ||
G FILE
|ree FoE
B
- PC 1 CACHE
P Jmc FILE ¢
A
| | BRANCH FLOATING
CONTROL POINT

P

[EXT WORLD
MEMORY

AAP Pipeline Diagram

1@, I1 | I2 | I3

lt“ INGTAUCTION CACHE READ REZSISTER FILES, I MEAD DATA CACHE 'Nll'l PIOULTS INTO l
PEZRFORAN BDESIRED OF, REIIBTEA FILES,
CHOOBE PC LOAD/INC MAITE DATA CACHE

Il IL 12 | I3

'Ilﬂl INSTRUCTION “CO'J READ NESISTER FILES, l RCAD DATA CACME | MRITE REBULTE INTO '
PEAYORN DESIRED OF, RESIBTER FILED,
CHOOSE PC LOAD/INC MRITE DATA CACHE

. 10 11, I2 | I3 |

| neap 2nsTRUCTION CacHd mEan mEezsTER rILes, | acan oara cacee lumite arsurs snve
PENORM DEBIRED OF,) RESISTER FILES,
CHOOSE PC LOAB/INC MRLITE BATA CACME

I 12 1=
. 10 11, I2 | I3
I-m INSTFUCTION CACHE READ REZEISTIN FILES. l READ DATA CACHE | NRITE RESBLLTE INTO

PERPOAN DEBINRED OF, RCGIVTER FILES,
CHOOSE £C LOAD/INC HAITE DATA CACHT

Memory System Goals

e Highest possible density
~ @ Same cooling technology as processor
e Hybrid adaptors

e Highest possible performance

e Bandwidth foremost |
e 8 byte wide input and output busses
e Pipelined |
e Massive parallelism: all RAMs can be cycled

simultaneously

e Latency is RAM-limited

e Local caches and pre-fetching provide low latency

Memory Board Organization

e Four banks per board

e Commands dispatched from input bus to appropriate
- memory bank

e One DW wide write data bus shared'by all bank
e Data from all banks arbitrated onto DW wide return bus

e Memory banks handle independent, simultaneous operations
e RAM cycle times are long compared to CPU cycle time
e Each bank cycles one entire cache line of 336 RAMs
e Seven hybrids per bank

RAM Hybrid Adaptors Look Like Huge ECL RAMs

e Each hybrid adaptor contains a 12-bit slice of each of the four
DWs

e 52 RAMs, 2 gate arrays, many bypass caps

e All inputs are ECL, two loads each (per hybrid adaptor)

e All outputs are ECL

e ECL/TTL conversion done by gate arrays on the hybrid adaptor
e All TTL RAM signals \{vill be confined to the hybrid adaptor

AAP Uniprocessor Performance

e [nstruction issue rate
e One instruction issued per 30 ns clock cycle
e Majority of instructions take one cycle to execute

e Peak performance 33 MIPS

e Cache miss fill time
e 12 clock cycles
e Processor continues when first word of line returned
e Automatic pre-fetching of next cache line

e Pipeline latency
e Load - 2 cycle
e Floating add - 2 cycles
e Multiply - 2 cycles
e Read processor status - 2 cycle

e Multiple cycle instructions
® Store byte - 2 cycles (only in special cases)
e Divide - 18 cycles (64-bit result)
e Kernel calls and traps - 5 cycles
o Interrupts - 6 cycles

AAP Multiprocessor Communication

e Multiprocessor appears to have a uniform global memory
e Each processor has a local memory
e Processors communicate to exchange non-local data

e Communication is by message passing
e Requests are forwarded neighbor-to-neighbor
e Each node is a small cross-bar switch
e Bidirectional ring is pipelined transport mechanism
o Multiple node hops possible in a single cycle

e Cache coherence is maintained
e Shared writes are broadcast
e Synchronization is done by a fast distributed locking mechanism

e Same mechanism used for other purposes
e Interprocessor messages
e Input/output

Testability Considerations

e Design will be 100% automatically testable
e No hidden state

e Verified prior to construction

o Each module independently testable
e Standalone in test rack
e In system via “Spy Bus”

Advanced Electronic Packaging

Howard Davidson

Properties

e Accepts standard MSI and gate array packages
e Maintains low junction temperatures

e High component density

e High interconnect density

e Quiet power distribution

Cold Plate Characteristics

e Water cooled flat plate heat exchanger
e 0.050 inches thick, photoetched and brazed construction
e 0.4 GPM per kw water flow

e Will hold 35 C junction temperatures

Interconnection Technology

e Flexible circuit interconnection
e Controlled impedance environment

e 990 signals and 990 grounds per board end

FLATPACK ADAPTOR

Printed VTT
resistor

Pin adaptive and
decoupling circuitry

Thick film
substrate

PRINTED CIRCUIT BOARD ASSEMBLY

Chip capacitor

Adaptor

Flatpack -

(a

PAGE ASSEMBLY

Intra-module
connection

Cooling plate-

” /—|.C.'S

/—Module frame

/—P. C. board

P

GOLD DOT FLEX STRIP CONNECTOR |9

Gold dot

_ connectors
work like this

Flex strip
connector

~

~~/ Gold dot

Mating pad
Dot line

Kapton
substrate

Reliability of Packaging

e Water cooling brings junction temperature from >100°C to
35°C
e Results in >100 X increase in chip lifetime
e Improved connector technology
e Using missile-grade connectors

e Hughes claims that Gold-Dot technology is most reliable
ever made -

@ Absence of fan-induced vibration reduces connector
wire-bond failures

e Redundancy in memory increases memory system MTBF
e Clean signal environment greatly reduces soft errors

Laser Pantography Overview

Bruce McWilliams

Approaches to Enhancing Supercomputer
Performance

* Increase the rate at which instructions are issued by:
* Decreasing cycle time

* Reducing memory access time

* Choose architectures and implementation specifically targeted for
intended application

Impact of Technology Improvements
on Supercomputer Speeds C

Cycle
time A
(ns)

12

I'/]f] T
/
2

Chip
package | ©
delays -

f

delays — gate delays |

100 ps gate delays

0
* * Technology i
CRAY-1 CRAY-XMP chnology improvements —»

(1976) (1984)

Requirements on Process for Wafer-Scale
Integration (WSI) of Supercomputers &

* Order-of-magnitude speed improvement requires a process that
* Supports compact integration of memory and logic units

* Allows implementation of a high performance technology

* Short-term solution proposed is development of hybrid
wafer-scale integrated circuits

Custom Architectures and Implementation for
Scientific Computing

* At least two orders of magnitude increase in performance for
wide variety of scientific computing applications

* Not practical unless:

* Computers can be designed at high level so that complexity
and effort is comparable to that of writing large modern
scientific modeling programs

* Rapid turnaround and moderate fabrication cost can be
realized for such systems

Computer-automated computer design and fabrication C

o >

12

/ High level system design engineer \

Long-Range Goals of Laser Pantography Project

* Wafer-scale integration of special-purpose computer architectures
with computer-automated design and fabrication

- Support 10? to 10*-fold gain in computation rate by making
possible efficient introduction of parallelism (special purpose
computer architecture)

* Allow short and affordable design completion-to-functioning
prototype intervals (acceptable execution times and cost)

|
Laser Pantography

Direct-write process for IC fabrication that uses a laser beam
focused directly on the wafer to induce local deposition or
removal of material by means of gas/surface chemical reactions.

-

Wafer

Direct-Write Laser Processes

There are two basic types of laser direct-write processes:
* Pyrolytic
* Photolytic

They have been used to locally:
* Remove material from a semiconductor substrate
* Deposit materials on substrates
* Semiconductors
* Dielectrics
* Metal
* Dope semiconductors

MOS Integrated Circuit Creation
by Laser Pantography

g 400-1000A4 Sio,,

/Z/‘ P-type Si substrate

———
Gate formation Define diffusion regions

NN

Initial wafer

SiH, + PH,

Form diffusion regions Interconnect transistors

Circuit equivalent

Reasons for Developing Laser Pantography

* Well-matched to modern CAD/CAM/CAE technologies

* Designs in computer memories automatically ‘pantographed’
onto wafers

* Lack of human participation supresses defects and increases
speed

* 15-20 minute custom wiring of 2500 gate array chip

* Day-scale multilevel patterning of entire 5 inch diameter wafer

* Entire supercomputer fabrication “overnight”

Reasons for Developing Laser Pantography

* Increased yield makes wafer-scale integration viable
- Start-to-finish processing in a sealed environment

* Maskless technology eliminates wet chemical processes, e.g.,
those involving photoresist

- Serial nature of process permits defect correction after
periodic in-process testing

Laser Pantography Current Status

* Process development is focused on interconnecting metal
structures for wafer-scale integration of gate arrays

* One level CMOS gate arrays interconnect process
approaching electrical characteristics available from best
conventional lithography

* Laser-written lines exhibit excellent surface morphology for
5.0-0.7 micron line widths

* Six minute wiring of 1000 gate CMOS circuits will be
possible once the new LP apparatus and software debugging
iIs complete

Polysilicon Interconnect Written by Laser
Pantcgraphy Processes

LP and Lithographically Patterned 31 Stage CMOS
Ring Oscillators Perform ldentically

Typical scope trace for 31 stage
ring oscillator with interconnect

fabricated by Lithography:

Typical scope trace for 31 stage
ring oscillator with interconnect

fabricated by Laser Pantography:

Time Required to Fabricate Circuits Using Laser
Pantography

* Experiments indicate VLSI circuits can be fabricated at a rate of
10* — 10°um? /sec

* A state-of-the-art VLSI circuit with 10° devices covers roughly
1.cm? (= 1082m?) of substrate:
VLSI circuit fabrication time |
area 108 um?

- (a4

processing rate 10% — 10°um?2/sec

= 103 — 10* seconds = 20 minutes — 3 hours

* A supercomputer would consist of < 102 such circuits. Thus:

supercomputer

.. - <30 — 300 hours
fabrication time™

Technology Being Developed for Wafer-Scale
Integration

. Equipment for fabrication and test of wafer-scale integrated
circuits

* LP process for fabrication of semicustom VLS| components
(e.g.. gate arrays)

* Hybrid wafer-scale packaging technology

* Multilevel metal interconnect structures for wafer-scale
integration circuits

Electrical test and Sputter deposition
inspection system system

Wafer transport
chamber

Laser
pantograph

Multilevel Metallization Scheme for
Hybrid Wafer-Scale Integrated Circuits T

Chip-to-silicon “PC
board’’ connection

Clock~+ Ground

Power
Transmission lines Signals
for chip-to-chip]\ \
interconnect -

\ -1—'-- 'r‘?

Wafer

i Chip-scale
interconnect
structures

Chip

Wafer-scale
interconnect structure

Chip-to-wafer connections

Strategy of LP Experimental Efforts r

- Early efforts concentrated on |aser fabrication of devices

* Present effort centers on refining direct-write processes for
multilevel metal interconnect of gate arrays

« Start with wafer covered with devices

* Direct-write processes are used to pattern insulator and
metal structures

* Bulk processes for deposition and etching incorporated into
fabrication process

* Long range plan is to refine complete set of laser processes for
full custom IC fabrication

Application of LP to Hybrid Wafer-Scale Packaging
Technology

* Unique feature of direct-write processes is its capability to write
3-D structures by using dynamic focus control

* This feature will be utilized to connect chips to the
wafer-scale interconnect structure

OxwE

	001
	002
	1-01_Overview
	1-02
	1-03
	1-04
	2-01_SCALD
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12_TimingVerifier
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18_LogicSimulator
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24_MicrocodeDebugger
	2-25
	2-26
	2-27
	2-27
	3-01_Mark_IIA_Architecture
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	4-01_Software
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01_CurrentStatus
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01_ArchitecturalStudies
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	7-01_AAP
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	8-01_AdvElectrPkg
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	9-01_LaserPantography
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22

