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1 Introduction

The S-1 Mark IIA uniprocessor is the second generation of a pipelined vector and scalar processing
computer with a virtual address space of 929 thirty-six bit words, addressable in quarterwords, and
a physical address space of 9%2 singlewords. This manual describes its native mode instruction set
and an assembler for that instruction set.

While a Mark IIA uniprocessor can operate alone or as part of a multiple-instruction-stream
multiple-data-stream (MIMD) multiprocessor, this manual deals only with single processor
operation. It also avoids implementation-dependent details like instruction timing and numerical
values corresponding to opcode mnemonics.

Section 1 presents an overview of the architecture. Section 2, which assumes knowledge of the
material in Section 1, divides the native mode instructions into groups, preceding each group with
architectural details pertaining to that group. Section 3 describes the FASM assembler, but one can
understand the assembly language examples in the previous sections without having read this
description.
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1 Introduction

The remainder of the manual uses the following conventions for the sake of conciseness (the reader
may want to skim these now and read them carefully only after encountering them in the text):

Radices

a..b

{a,b,c,d}

M[x]

R[x]

RO..R31

XY

X<nmd>

Throughout the text, numbers appear in radix 10 unless otherwise noted. In the
assembly language examples, numbers appear in radix 8 unless they include
decimal points, which indicate they are in radix 10.

stands for the integers or elements from a through b inclusive.
represents some one of a, b, ¢, or d.

represents the contents of memory at quarterword address x. Context should
make clear whether this is a quarterword, halfword, singleword, or doubleword.

represents the contents of the registers at location x. Again, context should make
clear whether this is a quarterword, halfword, singleword, or doubleword.

refer to the 32 singlewords in the register space (see Section 1.2.%).

denotes a field (that is, a series of consecutive bits) named “Y” within a memory
location or register named “X”.

denotes a field within X beginning at bit n and ending at bit m. X<n> represents
the nth bit of X. We number the most significant (“leftmost”) bit of a singleword
“0” and the least significant bit “35”. Sometimes, when we talk about an
individual field within a word, we will number the bits starting at the leftmost
bit within the field itself.

OP1, OP2, S1, S2, DEST

SIGNED(X)

UNSIGNED(X)

represent the result of evaluating the operand field of an instruction—-that is, the
register, memory location, or constant specified by the operand field rather than
the operand field itself. Thus, for example, OD2 refers to the second operand
field within an XOP instruction while OP2 refers to the register, memory
location, or constant specified via that field.

means that X is a two’s complement integer.

means that X is an unsigned integer, where all bits (including the most
significant) contribute to the magnitude.

ZERO_EXTEND(X)

says to extend the precision of X by attaching zeroes to the left of it.
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SIGN_EXTEND(X)

says to extend the precision of X by attaching copies of the sign bit of X to the

high-order end of X.

LOW_ORDER(X), HIGH_ORDER(X)
designate the least-significant and most-significant portion of X, respectively.
When context does not make clear how much of X to include, we will state the
precision explicitly. ‘

Address The term "address” means a virtual address unless stated otherwise.
T vs In the pseudo-pascal code which illustrates some of our instructions, we use “xx”

to indicate exponentiation, since the symbol “1” is means something else in the
FASM assembler.

I This is an example of an example. I

L |

[}

n addition, the assembly language examples use two constructs which may not immediately be clear.

First, we use “<>” instead of %)” brackets to parenthesize expressions, indicating the precedence of
operators.

Second, when the operand of an instruction consists of one or more values separated by “ marks
and enclosed in square brackets, the assembler places those values in consecutive singlewords in
memory and uses as the instruction operand the address of the first of those singlewords. Thus, the
following examples have essentially the same effect:

OSPACE
Fs 128
256
512
10828
ISPACE
PUSHADR SP,F
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and:

ISPACE
PUSHADR SP, [128 ? 256 ? 512 ? 1828]

These data literals are discussed in section 3.3.4. Notice that square brackets are also used in the
syntax for indexing in the architectural addressing modes explained in section 1.6.5:

MOV.S.S RTA, (R7)FBRGD [RTBI
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12 Words, Memory, and Registers

1.2.1 Words

The fundamental “word” in the S-1 native mode architecture is called a singleword, and is 36 bits
long. Bits within a singleword are numbered from 0 upward, beginning at the most significant bit.

Many instructions access data in any of four different precisions--quarterword (QW), halfword
(HW), singleword (SW), or doubleword (DW)--with equal ease.

8 35
High Order Minl
Low Order MIn+4]
36 71

Doub l enord

Singleword

%) 17 18 35
Two hal fuords

2 89 17 18 26 27 35
Four quarterwords

Which precision a particular instruction deals with is either implicit in the instruction--the DJMPZ
instruction, for example, always compares singlewords—or indicated by tacking a modifier onto the
instruction name. For example, the notation “ADD.{Q,H,S,D}” means that

ADC.Q
adds quarterwords while

ADD.D

adds doublewords.

Unless otherwise specified, instructions address memory in terms of quarterwords regardless of the
precision they deal with. For example, the first singleword in memory lies at address 0, the second
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lies at address 4, the third iies at address 8, and so on. Quai terwuids within a halfwoid, singleword,
or doubleword have increasing addresses from left to right. Thus if a quarterword and a
singleword have the same address, then the quarterword is the high order (most significant, or
leftmost) quarterword of the singleword. Similarly, the more significant singleword in a doubleword
has the lower address.

Halfwords and singlewords must be aligned: the address of a halfword must be a multiple of 2 or
an ALIGNMENT_ERROR hard trap will occur. Similarly, the address of a singleword must -
always be a multiple of 4.

Any two consecutive singlewords can constitute a doubleword (though some implementations of the
architecture may access a doubleword more efficiently if it is aligned on true doubleword
boundaries, so that its address is a multiple of 8).

From now on, we use the term “word” interchangeably with “singleword” and refer to “anyword”
when any of the four precisions is acceptable.

122 Memory

The processor has a physical address space of 2% singlewords (quarterword addressable). At any
time there are four (possibly) different virtual address spaces, one for each level of protection, called
rings.

We use the term ADDRESS(X) to mean the virtual address of X and PHYSICAL_ADDRESS(X)
to mean its physical address.

More precisely, ADDRESS(X) is a singleword in the form of a pointer, as described in Section 1.8.1:
a five-bit tag field, one of whose purposes is to specify a ring, followed by a 31-bit address field
which can address any quarterword in an entire 981 quarterword space. Thus, ADDRESS(X)
specifies both a tag and a quarterword address.

The architecture permits one to regard a virtual address space as a set of segments instead of a
single vector of quarterwords, and thus an address may specify three coordinates: a ring, a segment
and a quarterword address within that segment. The 31-bit address field specifies both the segment
and the address within the segment.

The rings are numbered O .. 3, with ring 0O the topmost in the hierarchy. A ring can be protected
against improper access on the part of a ring which lies below it in the hierarchy. In addition, the
processor establishes a level dividing the rings. Those above the level are privileged while those
below the level are not. Another term for unprivileged execution is user mode. Certain instructions
are called “privileged” because attempting to execute them in user mode causes a
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PRIVILEGE_VIOLATION hard trap (Section 1.9.6).

123 General Purpose Registers

An unprivileged process can access a single register file, a set of general purpose registers equivalent
to 32 singlewords of memory. As with memory, instructions can access quarterword, halfword,
singleword and doubieword entities within the registers, and they always address the registers in
terms of quarterwords. The alignment rules that apply to memory also apply to the registers.

The architecture actually provides sixteen different register files numbered 0 through 15. When in
privileged mode, the processor can access various register files and can choose which file is to be
used by a particular unprivileged process.

Placing a *%” in front of an address tells the assembler to access the register space instead of
memory. For example, an instruction which refers to “Z4” will access the fifth quarterword in the
register space (if it is dealing in quarterwords) or the third halfword (if it is dealing in halfwords),
and so on. The registers act as a circular list, so %0 follows %Z127. Thus, for example, the eight
quarterwords from %124 through %3 can constitute one doubleword.

Because one most often manipulates the registers as singlewords, the remainder of this manual will
use the notation “R0” to represent the singleword at register address %0, “R1” to represent the
singleword at register address %4, and so on up to “R31”. Within the assembler, one can easily define
the symbols “R0” through “R31” to have this meaning.

Certain register addresses have advantages over the rest while others have restrictions.

Indexing: Registers RO, R1, and R2 cannot be used as base registers for the “pseudoregister”
addressing mode, which is explained further in Section 1.6.3.

Program counter: Register R3 has a dual identity. When an instruction uses R$ as the base for an
address calculation (see Section 1.6.3), it accesses the program counter instead of R$ itself. When an
instruction uses R3 in any other way, it accesses the true R3. There is no connection between the
value in R3 and the value of the program counter; one particular usage of R3 within the addressing
modes is simply defined to give the program counter instead.

Vectors: Certain vector instructions use R0, R1, and R2 to point to operands. When we use these
registers in this fashion, we call them SR, SR1, and SR2 respectively. Register R3 is also used to
specify the lengths of vectors, and is then called SIZEREG.

RTA and RTB: Registers R4 and R6 are in a sense “easier” to access than the rest, and are named
RTA and RTB respectively. For example, a three-operand instruction cannot in general access three
different registers--but it can do so if the destination register is either RTA or RTB (Section 1.5.2).
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When an instruction accesses RTA as a doubleword, it obtains both R4 and R5; we often refer to
R5 as “RTA1”. Similarly, we often refer to R7 as “RTB1”.

Stack frame and closure pointers: One of the subroutine calling mechanisms provided by the
architecture maintains stack frames by using register R29 as a closure pointer (called CP) and R30
as a frame pointer (called FPXSection 2.11).

Stack pointer: Traps, interrupts, and subroutine calling instructions all use an upward-growing
stack in memory to store return addresses and other context information. (“Upward-growing” means
that pushing an item increases the address of the top of the stack.) R31 serves as the stack pointer
for this particular stack, and is called SP. SP points to the first free location on the stack. (The
instruction set makes it easy to use other registers or even memory locations as stack pointers to
implement additional stacks for other purposes, as described in Section 2.10. But when we talk about
“the stack” rather than “a stack”, we mean the stack whose pointer is register SP.)

The table below summarizes the uses of the registers.

Register Special characteristics

RO..R2 Cannot be base for pseudoregister mode;
used as SRO, SR1, SR2 by vector instructions

R3 When used as base gives program counter instead;
also used to specify vector length

R4, R5 RTA area

R6, R7 RTB area

R8 .. R27 None

R29, R30 Closure and frame pointers, CP and FP

R31 Subroutine stack pointer, SP
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1.3 Program Counter
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file) containing a pointer to the instruction in memory that is currently being executed. Because
instructions consist of singlewords aligned on singleword boundaries, the contents of the PC must
always be a multiple of four. When an instruction contains multiple words, the PC continues to

point to the first of them throughout the execution of that instruction.

Some operations refer to PC_NEXT_INSTR, which is the value the program counter will have for
the following instruction in memory. A subroutine call, for example, places PC_NEXT_INSTR on
the stack as its return address.

One can consider the PC to have a tag specifying the ring number used to fetch instructions. This
ring is called the ring of execution. Any attempt to alter the contents of PC--a jump, call, or return

e bl . an e s 1. e - 3m Py PR EP% P g ) RN PR B DU o PR 1 [+
instruction, for ex impie——is :n.ibjct.t to the vaiiaatioin uhv:Cmﬁg described in Section 1.8.2.
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1.4 Processor and User Status Registers

PROCESSOR_STATUS, the processor status, is an internal register (not part of any general
purpose register file) which contains a number of fields affecting the behavior of the processor as a
whole. Instructions which access this register are privileged. The following table and paragraphs
describe briefly the purpose of each field; details generally appear elsewhere in this document.
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EMULATION
VMM

PRIVILEGED

RING_ALARM

REGISTER_FILE

PRIORITY

TRACE_ENB

Purpose
EMULATION

VMM

PRIVILEGED
RING_ALARM
REGISTER_FILE
PRIORITY
TRACE_ENB
TRACE_PEND
CALL_TRACE_ENB
CALL_TRACE_PEND
UNMAPPED_MODE
FLOW_TABLE
Reserved

FLAGS

Determines which instruction set the processor currently executes.
EMULATION=0 gives the native mode described in this document.

Enables virtual machine mode, in which attempting to execute any privileged
instruction and certain user mode instructions causes a trap.

Any ring whose number is less than or equal to PRIVILEGED is privileged.

When the processor fetches an instruction, if the PC specifies a ring whose
number is greater than RING_ALARM, the RING_ALARM_TRAP hard trap
occurs. This permits deferral of an event until a critical inner ring operation
completes.

Determines which —of the sixteen register files is currently available to
unprivileged processes. See Section 2.14.

Determines what priority an interrupt must have in order to interrupt the
processor. See Section 1.10. ‘

If this bit is on at the beginning of an instruction, TRACE_PEND is set at the
end of the instruction—-in other words, setting this bit enables trace traps for

subsequent instructions, and the trap effectively occurs after each of those
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instructions. Clearing this bit permits one final trap after the instruction which

does the clearing. See Section 111

TRACE_PEND If this bit is on at the beginning of an instruction, the processor traps before
executing the instruction. Ordinarily, instead of manipulating TRACE_PEND
directly, one manipulatess TRACE_ENB and allows it to manage
TRACE_PEND.

CALL_TRACE_ENB
Analogous to TRACE_ENB, this bit enables a separate trap for tracing
instructions which call subroutines and return from them. Section 1.11 details the
behavior of the trap and Section 2.11 enumerates the instructions to which it

applies.

CALL_TRACE_PEND
Analogous to TRACE_PEND, this bit applies only to instructions that call a
subroutine or return from one.

UNMAPPED_MODE
Causes the processor to bypass the usual virtual-to-physical mapping scheme

and instead to use 31-bit addresses to access the first 2°° quarterwords of
physical memory. The processor ignores tags and does not check segment bounds.
This mode is useful for starting up a system or for simple diagnostics which run
without a general purpose operating system.

FLOW_TABLE Enables one of four flow tables, each of which can contain 256 entries. While
enabled, a flow table acts as a FIFO list of the PC values for the 256 most
recently fetched instructions.

Reserved The effect of attempting to set these bits is undefined.

FLAGS This field is available for use by software.

USER_STATUS, the user status, is an internal register (not part of any general purpose register

file) containing fields which affect the processor’s behavior for a particular user or process.

Instructions which access this register can execute in user mode.

The following table shows the position of the fields within register USER_STATUS.



12 1 Introduction

Bits Purpose

0 CARRY

1..2 FLT_OVFL_MODE
3..4 FLT_UNFL_MODE
5..6 FLT_NAN_MODE
7 INT_OVFL_MODE
8 INT_Z_DIV_MODE
9..13 FLT_RND_MODE
14 FLT_OVFL

15 FLT_UNFL

16 FLT_NAN

17 INT_OVFL

18 INT_Z_DIV

19..23 INT_RND_MODE
24 UINT_OVFL_MODE
25 UINT_OVFL

26 .. 31 Reserved

32..35 FLAGS

The fields which deal with integer arithmetic (CARRY, INT_OVFL, UINT_OVFL, INT_Z_ DIV,
INT_OVFL_MODE, UINT_OVFL_MODE, INT_Z DIV_MODE, and INT_RND_MODE are
described in Section 2.1 and the fields which deal with floating point arithmetic (FLT_OVFL,
FLT_UNFL, FLT_NAN, FLT_OVFL_MODE, FLT_UNFL_MODE, FLT NAN_MODE, and
FLT_RND_MODE) are described in Section 2.2.

The effect of attempting to set the reserved bits is undefined.

The FLAGS field provides software-definable bits whose purpose is not specified by the
architecture.
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1.5 Instruction Formats

The heart o
Opcode: An opcode tells the processor what operation to perform--an ADD, an AND, a MOV, or
whatever. In addition, the architecture uses the 12-bit opcode field of an instruction word to encode
modifiers which are represented by a dot followed by one of several possible choices. For example,
the ADD instruction comes in four different flavors: ADD.Q deals with quarterwords, ADD.H with
halfwords, ADD.S with singlewords, and ADDD with doublewords. In this manual,
“ADD.{Q,H,S D}” denotes a choice of these four flavors. Similarly, the SHFA instruction actually
uses two different opcodes to incorporate its modifier: SHFA.LF for a left shift and SHFART for a
right shift.

If an instruction takes more than one modifier, the order of the modifiers is significant. If one
modifier refers io the first operand and the other to the second, the modifier for the first operand
comes first. For example, MOV.S.Q converts a quarterword to a singleword whereas MOV.QS

converts a singleword to a quarterword.

The mapping of the “virtual” opcodes shown in this manual onto actual, numerical opcode values is
implementation dependent. In particular, if two virtual opcodes have the same effect-—or can be
made to have the same effect by swapping the order of their operands--an implementation may
choose to map them to a single actual opcode.

Operands: Most instructions specify operands by means of an operand descriptor (OD), a 12-bit field
that can indicate a constant, a register, a memory location anywhere within the 93! quarterword
address space, or indexed addressing using some combination of constants, registers, and memory.

Sometimes the OD itself suffices to encode the operand--a small constant or a register, for example.
Such an operand is called a short operand or SO. Obviously, more elaborate operands require more
than twelve bits, so frequently an operand descriptor will tell the processor to use a word following
the instruction as an extended word (EW). Such an operand is called a long operand or LO. Note
that “long” and “short” refer to the length of the addressing mode, not to the length——quarterword,
halfword, and so on--of the operand itself.

Thus, a two-operand instruction with operand descriptors OD1 and OD2 could require a
singleword in memory if each descriptor specifies a short operand (that is, the 12-bit field can
completely describe the operand):

8 11 12 23 24 35
OPCODE 0D1 0D2

Both operands fit inside ODs

or would require two consecutive singlewords in memory if, for example, the second of the operands
is an LO and thus calls for extended addressing:



11 12 23 24

1 Introduction

35

OPCODE

0D1

0D2

Extended word for 002

OD?2 calls for extended word

or would require three consecutive singlewords in memory if both operands called for extended

* addressing:

8

11 12 23 24

35

OPCODE

001

Extended word for 0D2

Extended word for 0D1

Both operands call for extended words

Note that when both extended words are present, the one used with ODZ2 occurs first.

The processor logically evaluates all operands, including extended addressing if necessary, before
executing the instruction and before updating the program counter. The order of operand

evaluation is undefined.

The preceding examples all showed the most common format for the initial singleword of an
instruction: an opcode and two operand descriptors. In all, however, there are five different formats,
called XOP, TOP, HOP, SOP, and JOP. We will first explain the formats and then explain how
an operand descriptor and extended word combine to encode an operand.
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1.5.1 Two-address Format (XOP)

XOP 0D1 0D2
8 11 12 23 24 35

XOP Format

Typically a two-address instruction evaluates operand descriptors OD1 and OD?2 to obtain operands
OP1 and OP?2 respectively, then reads from OPZ2, performs the specified operation, and writes into
OPI. "

Unless otherwise noted, if an XOP instruction uses only one operand then it uses OD1 and requires
that the field used to encode OD2 be zero, or an OPERAND_NOT _REQUIRED hard trap will
occur. If an XOP instruction uses no operands, the fields for both OD1 and OD2 must be zero, or
that trap will occur. The FASM assembler automatically handles these cases. If an instruction uses
neither operand, FASM sets both fields to zero. If you write only one operand and the instruction
needs only one, FASM sets the unused OD field to zero. If the instruction needs two, FASM uses
the same operand twice.

For example, FASM emits the same code for the following two instructions because the INC
instruction requires two operands:

INC COUNT,COUNT ; COUNT := COUNT + 1
INC COUNT ; COUNT := COUNT + 1

The following example uses INC more flexibly:

3 COSTPLUSL := COST + 1

The RUS instruction requires only one operand, so providing two would be an error:
RUS RTA 3 RTA := USER_STATUS

When an XOP instruction stores results in both operands, it stores OP2 first {see the example under
the EXCH instruction in Section 2.6).
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ToP T

0D1

002

% 9108 11 12

TOP Format

23 24

35

A typical three-address instruction operates on data from two operands and deposits the result in

the third.

Because not enough bits are available to provide three operand descriptor fields, a TOP contains
only two, OD1 and OD2. A two-bit field called “T” describes how the instruction uses those two
operands and what it uses for the third.

If we use “TOP” to represent the operation performed by any particular TOP instruction, then we
can use the following equation to represent the effect of the instruction:

DEST := S1 TOP S2

The “T” field determines which operands to use for DEST, S1, and S2 according to the following

table:

DEST S1 S2

OP1 OP2

OPI RTA OP2
RTA OP1 OP2
RTB OP! OP2

0
o

FASM automatically sets “T”. The following are all legal combinations:

ADD X,X,Y

ADD X,RTA,Y
ADD RTAX,Y
ADD RTB,X,Y

we we we ws

If X,Y,Z, and RTA are all distinct
messages:

ADD X,Y,Z H
ADD X,Y,Y H
ADD X,Y,X 3

X=X+ Y (T field =
X :=RTA + Y (T field
RTA := X + Y (T field
RTB := X + Y (T field

8)

1)
2)
3)

, the following examples are illegal and FASM will give error

Il legal
1llegal
11legal
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This special ability to specify RTA and RTB via the T field does not preclude specifying RTA or
RTB as ordinary operands inside the descriptors OD! and OD2, however. The following examples

are therefore perfectly correct:

ADD RTB, X,RTA ;s RTB := X + RTA (T field = 3
3 and OP2 = RTA)

ADD X,RTA,RTB ;s X := RTA + RTB (T field =1
; and OP2 = RTB)

Reverse form: The T field of a TOP instruction provides asymmetric features: it can specify that
the first operand (S1) is either RTA or identical with the destination {(DEST), but it cannot do the
same for the second operand (S2). The asymmetry would handicap non-commutative instructions
like those for subtraction and division, so such instructions generally have reverse forms that swap

1 and S2. The name of a reverse form instruction is that of the normal form with a “V” appended.

If we use “TOP” to represent the operation performed by any particular reverse form, then we can
use the following equation to represent the effect of the instruction:

DEST := 52 TOP S1

The instruction SUBYV, for example, is the reverse form of the TOP instruction SUB:

SUB X,RTA,Y ;3 X :=RTA - Y
SUBY X,RTA,Y ; X :=Y - RTA
SuB X,Y s X=X -Y
suBv X,Y s Xi=Y - X

Without SUBYV, subtracting RTA from Y and storing the result in X would be impossible in a
single instruction:

suB X,Y,RTA s Illegal

A reverse form swaps the precisions of the operands as well as their order in the expression that
describes the instruction. If, for example, the normal form of an instruction expects S1 to have twice
the precision of S2, then the reverse form expects S2 to have twice the precision of S1. If the normal
form uses a single operand from S2 and a pair from S1, the reverse form uses S1 and a pair from
S2.

Short form: If only two operands appear, FASM will use the first one as both S1 and DEST. Thus
the following pairs of instructions are equivalent:
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ADD X,X,Y s X=X+ Y
ADD X,Y s Xi=s X + Y
SuBv X, X,Y s X =Y - X
SuBv X, Y s Xe=Y - X

When an ordinary TOP instruction stores more than two results, it stores S2 before S1 and Sl
before DEST. When a reverse form TOP instruction stores more than two results, it stores S1 -
before S2 and S2 before DEST. Any unused OD field must be set to zero; the assembler does this
automatically.
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1.5.3 HOP Format

HOP B J
8 67 35

HOP Format

A single instruction, SJMP, uses this format to jump to a location relative to the current program
counter. The processor uses the “J” field as an unsigned displacement, expressed in singlewords.

™ adArgce ~olerilatiom $hvn e mpmizn AP 0 e Avaanda e wimil .
The address calculation “wraps around” if it exceeds the maximum address:

GOTO (PC+4xSIGNED(J)) MOD (2%%31)

Thus the instruction can actually jump to any singleword in a virtual address space. To jump
backward, the instruction merely uses a ] field large enough to cause the address calculation to wrap

around.

In practice, the assembly language programmer simply provides a label for the branch destination
and lets the assembler calculate the ] field.
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1.5.4 Skip (SOP) Format

SoP SKP 001 0D2
8 78 11 12 23 24 35

SOP Format

Generally a SOP instruction compares two operands and, depending on the result, branches relative
to the current program counter. The term “skip” has a broader meaning here than in many
architectures; the destination of the branch can be any location within -8 .. 7 singlewords of the
program counter (which is, as defined in Section 1.3, considered to point to the first word of the skip
instruction itself).

The SOP field tells the processor what condition to test for, the SKP field tells it where to branch,
and operand descriptors OD1 and OD2 can specify two operands to be compared. The following
statement describes a typical SOP instruction:

IF OP1 SOP OP2 THEN GOTO PC+4%SIGNED (SKP)

To use a SOP instruction in FASM, simply provide a label for the skip destination. The assembler
will automatically subtract the current location to compute the offset.

s If X is greater than Y, swap them
SKP.LEQ X, Y,NOSWAP
 EXCH X,Y
NOSWAP: ...

Omitting the label is the same as skipping the next instruction. Thus, the following example has the
same effect as the previous one:
s If X is greater than Y, swap them
SKP.LEQ X,Y
EXCH X, Y
NOSWAP: ...
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1.5.5 Jump (JOP) Format

JoP @ oDl T ooz
e 12 11 12 23 24 35
JOP 1 o001 J
2 12 11 12 23 24 35
JOP Format

Jump instructions generally perform an operation on a piece of data and then branch. The JOP
field is the opcode and ODI1 is an operand descriptor that specifies the operand OP1.

When bit 11 (called the “PR” bit) is 1, the processor performs a relative jump. The “J” field is a
signed offset that permits branching to any singleword location within -2048 . . 2047 singlewords of
the current location. (By definition, the program counter points to the JOP instruction itself while
the processor interprets the instruction.) The processor adds “J” to the PC to obtain a jump
destination, or JUMPDEST.

When bit 11 is 0, the processor performs an absolute jump. It evaluates operand descriptor OD2
and, if necessary, an extended word to obtain the JUMPDEST, allowing direct, indirect, or indexed
addressing—but sometimes costing an extra word of memory to do so. If OD2 specifies a register or
constant, an ILLEGAL_REGISTER_OPERAND or ILLEGAL CONSTANT_OPERAND hard

trap occurs.

The FASM assembler decides automatically whether to use an absolute or relative JOP; simply
provide it with a branch destination label:

JMPZ.GTR.S X, AWAY ; IF X .GT. 8 THEN GOTO AWAY

Specifying a more complicated operand for the JUMPDEST--the contents of a register, for
example--forces FASM to emit an absolute jump:

JMPZ.GTR.S X, (R16)8 ; IF X .GT. B THEN GOTO (the
s+ address found in R16)

Onmitting the jump destination label in FASM has the same effect as jumping past the following
instruction. Thus the next two examples are equivalent:
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JMPZ.EQL.S A,F
EXCH.S A,B

e

JMPZ.EQL.S A
EXCH.S A,B

1
1

Introduction
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1.5.6 Vector Instructions

g he same format as XOP instructions. OD1 and ODZ are operand
descriptors which may specify either scalars or vectors, depending on the particular instruction.
Negative or zero vector lengths cause a vector instruction to process no data. No attempt to calculate
the operand addresses is made. Therefore, no spurious page faults, access violations, or segment
bounds violations will occur.

A vector is simply a series of consecutive scalars which must lie in memory, not in the registers.
When a series of consecutive scalars may lie in either memory or the registers, we call it a block.
Unless noted otherwise, vector instructions obtain from register R3--also called SIZEREG--the
length of the vectors they operate on. SIZEREG expresses lengths in terms of elements, not
quarterwords. Thus, for example, SIZEREG=100 indicates the vectors are 200 quarterwords long if
the current instruction operates on halfwords or 800 quarterwords if the current instruction operates
on doubiewords.

When an instruction uses OD1 to specify a vector, it evaluates OD1 to obtain OP1, regards OP1 as
the first element of the vector (not a pointer to the vector) and assumes the remaining elements
follow OP1 in memory. The same is true of OD2. Thus, when we refer to “the vector x” we mean
the vector whose first element is x.

When a vector instruction needs more than two operands, it uses registers RO, R1, and R2--also
called SRO, SR1, and SR2 respectively--as pointers to the additional vectors in memory.

Unless otherwise noted, the result of a vector operation is undefined if a source operand and a
destination operand overlap (unless they coincide).

Many vector instructions permit the user to choose by means of a {SR,OP1} modifier whether to put
the result back into OP1 or into an arbitrary vector pointed to by the appropriate SR register.

At the beginning of the description of each vector instruction, to the right of the name of the
instruction, a symbolic equation describes its operands. For example, the following means that a
vector operand and a scalar operand produce a vector result:

V:=VS$

while the following means that two vector operands produce two scalar results:

§$S:=VV
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1.6 Operand Descriptors

This section explains the capabilities of the operand descriptors referred to in the preceding
instruction formats. Note that some operands are specified through operand descriptors and others
are not. For example, the relative jump version of the JOP format uses an operand descriptor called
OD1 to specify operand OP1 while it uses a field called J--which does not obey the rules for an
operand descriptor-—to specify the jump destination. The fields which are not operand descriptors
have already been described under each of the instruction formats.

1.6.1 Subfields of an Operand Descriptor

As mentioned earlier, operands which are specified by operand descriptors belong to two classes. If
an operand fits inside an OD, we call it a short operand (SO); if it requires an extended word (EW),
we call it a long operand (LO). Note that “long” and “short” refer to the complexity of the
addressing mode, not to the precision of the operand: a short operand may, for example, be a
quarterword, halfword, singleword, or doubleword.

A 12-bit operand descriptor field is generally partitioned into three subfields called ODX,
OD.MODE, and OD.F:

MOBE F
g1 56 11

The sole exception occurs when the four high-order bits of OD.MODE are all zeros, in which case

o~ A

the low-order bit of OD.MODE joins the OD.F fieid to form a fieid called CDREG:

X\i{e REG
g 1 45 11

When X=1 the OD requires an EW, and that EW can be partitioned in three ways, depending on
the value encoded in the OD:
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CONSTANT

"] 35
Constant EW

TAG ADDR

g 45 35
Simple-base EW

TAG | REG DISP

B 45 918 35
Complex-base EW

1.6.2 Constant Operands

Any operand descriptor can specify a constant, though particular instructions may prohibit them.
For example, operand descriptor OP1 of a MOV.S.S instruction can encode a constant, but the
instruction will encounter an ILLEGAL_CONSTANT_OPERAND hard trap because storing into
a constant is illegal. Similarly, it is illegal for an instruction to attempt to obtain ADDRESS(x) if x is
a constant.

The assembler interprets an expression preceded by “#” as a constant. The assembler will encode
the constant as compactly as possible. Constants in the range -32 .. 31 will fit in SO format while
the LO format accommodates up to 36-bit signed constants:

ADD.S A,#-5 3 -5 would become an SO constant
ADD.S A,H#TABLESIZE ; Illustrates the use of expressions
ADD.S A,#<TABLESIZE-1> as constants

Bracketing the number or expression with “[]” symbols forces FASM to use the LO format even if
the constant is small enough to fit in the SO format. This makes it possible to use a symbolic
debugger to patch the constant to a larger value later on, and guarantees that the size of the code
emitted will not vary with the size of the constant:

ADD.S A,#[-5]
ADD.S A,#[TABLESIZE-11
ADD.S A,#[126125183113]

(Note that because a “#” precedes them, the square brackets here do not denote assembly literals.)
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The precision of an instruction is inherent in the opcode, not the operands, so a constant in either
SO or LO format is ordinarily converted from a 36-bit entity to the desired precision at execution
time, either reducing precision by discarding high-order bits or increasing precision by extending
the sign bit.

If an instruction calls for doubleword precision, however, it is possible to specify different
conversions. Putting “0 ?” in front of the constant but within the brackets sets the high-order half
of the doubleword to zero and the low-order half to the constant. Putting “? 10” after the constant -
but within the brackets sets the high-order half of the doubleword to the constant and the
low-order half to zero:

A 1= 777777777777777777777777 octal
A := 009008000880777777777777
A := 7777777777770800600080608

MOV.D.D A,#[-1] $
MOV.D.D A,#[1@ ? -11 H
MOV.D.D A,#(-1 ? '0] :

Note that these conversions are not available unless the instruction calls for doubleword precision.
For any other precision, it is possible to encode these conversions in the OD format, but the
processor will convert the constant in the ordinary manner--by discarding high-order bits or
extending the sign bit.

Indexed constants: This operand format specifies a 36-bit signed constant and a
singleword-aligned register. It adds the value in the register to the constant, converts the sum to the
precision of the instruction by either discarding bits or extending the sign, and uses the result as a
constant operand. Note that the addition ignores integer overflow, and that specifying R3 accesses
register R3 rather than the program counter:

s one instruction...

ADD.S RTA,RTA,#[41 (RTB) ; RTA := RTA + RTB + 4
s versus two...

ADD.S RTA,RTA,RTB : RTA := RTA + RTB
ADD.S RTA, #4 s+ RTA := RTA + &

s (x+1)x(x-1) or %211
MULT.S RTA,#I[1] (RTA),#[-11(RTA) ; RTA := (RTA + 1) % (RTA - 1)
s or RTA := RTAZ - 1
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Symbol Meaning

sC -32..31

Ic 235 9%

ar 0 step 4 until 124

SHORT OPERAND CONSTANTS

NOTATION

short constant
long constant
aligned register

(If the constant is too big, the assembler automatically uses the LO form)

0D Format

FASM notation

#sc

Evaluation

8C

LONG OPERAND CONSTANTS

g1

EE

[
(R

B

SC

FASM notation Evaluation 0D Format EW Format
g1 56 11 %] 35
#licl SIGNED(ic) 1} 2 1 le
#0108 ? Icl ZERO_EXTEND(ic) (1] 2 2 Ilc
#llc ? 18] | cx2%x%36 11 2 3 lc
#licl (Zar) SignExtend{lc) 1} 2 32+ar /4 lc
+Rlar]
Figure 1-1

Constant Operand Formats

1.6.3 Short Operand Variables

The SO format can denote two kinds of variable: a register or a location in memory accessed as a

pseudoregister.

Registers: The SO format can access any quarterword address within the register space, sub ject to
the usual rules for alignment of entities larger than a quarterword. Specifying register R3 accesses
register R3, not the program counter.
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ADD.S RTA, %8. Add contents of singleword at reg %8
{third singleword in registers) to RTA
Add contents of quarteruord at register
%11 to RTA (due to misalignment, ADD.H,
ADD.S, or ADD.D would be illegal)

[llustrates the use of expressions

ADD.Q RTA,%11.

“e we we we we vwe

ADD.H RTA, %<COUNTER+2>

Pseudoregisters: In itself, pseudoregister addressing provides a compact means of specifying a -
memory location. The name pseudoregister arises because the more elaborate addressing modes
described in Section 16.5 incorporate this pseudoregister mode to give a memory location the same
capabilities as a register.

Pseudoregister addressing uses a singleword-aligned register to point to an address in memory and
provides a quarterword offset to select an anyword in the vicinity of the address pointed to. The
offset must lie in the range -128 . . 124 and be divisible by 4.

The register serves as a base pointer——an important concept throughout all the memory addressing
modes. Its upper 5 bits serve as the tag which, among other things, specifies the desired ring. Its
lower 31 bits contain an address. The concept of a base pointer is additionally important because it
determines the meaning of register R3. When one uses R3 as a base pointer, one obtains the
program counter instead of R3 itself. And last of all, the base pointer determines the segment in
which an operand lies (Section 1.7.2). The first term of every memory addressing calculation is
considered a base pointer, and a singleword fetched from memory to serve as an indirect address is
considered a base pointer also.

As for pseudoregister addressing in particular, note that while the register containing the base
pointer must be singleword-aligned, the alignment of the entity it points to is governed only by the
precision of the instruction. Thus, for a halfword instruction, the register must point to an aligned
halfword. Similarly, the actual operand obtained by adding the offset to the pointer must be
aligned properly for the precision of the instruction.

As an example of pseudoregister addressing, let VSP be a register used to point to an
upward-growing stack of parameters and variables in memory. Pseudoregister mode makes it easy to
access variables relative to the top of the stack:
ADD.S (VSP) -4, %7 Add 7 to top singleword on stack

{for upuard-grouwing stack, pointer
indicates next free location)

Swap top two singlewords of stack
Compare top singleuword with fifth

EXCH.S (VSP)-8., (VSP)-4
SKP.EQL.S (VSP)-28., (VSP)-4

“ W we we ws  we

singleword

As another example, suppose that register R7 contains a tagged pointer to a Pascal record structure.
Pseudoregister addressing can access components of that record:
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MOV.S.S RTA, (R7)4 ;
MULT.S RTB, (R7), (R7)8 :

’

As Section 16.4 explains, one of the LO addressing

29

move second word of record to RTA
RTR gets product of first and

third words

modes has the same syntax as the

pseudoregister mode, and permits a larger offset. The assembler automatically uses the LO format if

the desired offset is too large.

NOTATION
Symbol  Meanin
r 0..127 register
pr 12 step 4 until 124 pseudoregister base
sao -128 step 4 until 124 short aligned offset
Rlx] Contents of register location x
M(x] Contents of memory location x
Blx] Evaluate x as a base pointer;

(don’t use x as an address from which to fetch something);
if x=R3 use PC instead

SHORT OPERAND VARIABLES

FASM notation Evaluation 0D Format
1456 11
%r RIrl] g} 8 r
{%pr) sao MBIR[prl]+saocl ‘ Bl pr/& sao /4
Figure 1-2

Short Operand Formats

1.6.4 Long Operand Variables

Long operand variable formats use the extended word alone to encode various memory address

computations.

Fixed-base: This mode uses a 31-bit field to specify a base address in memory. (The tag is implicitly
that of the ring in which the instruction is executing; no field is provided to encode a tag explicitly.)
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One may either use the entity at that address as the operand, or treat it as a new base pointer for

indirect addressing:
MOV.S.S RTA,AVAR

MOVP.P.A APTR,AVAR
MOV.S.S RTA,APTRe

.
1
.
?
.
14
.
’

Copy the singleword at

memory location AVAR to RTA

Make APTR point to AVAR

Address AVAR indirectly through APTR

Variable-base: This mode uses a singleword-aligned register as a base pointer (that is, it has a tag
in its upper 5 bits and an address in its lower 31 bits.) The computation adds a 26-bit signed offset
to the address field of the pointer. One may use the resulting address either to fetch the operand or
to fetch a new base pointer which in turn specifies the operand:

MOV.H.H RTA, (R7)1808.

MOV.Q.Q RTA, (R7)1

MOVP.P.A (R7)1908.,AVAR
MOV.S.S RTA, (R7)1008.e

* we we we ws we we we

-s -

-e

Copy to RTA the hal fword

which is 1888 quarteruords above the
quarteruword pointed to by R7

The assembler automatically uses the
LO format here because the SO
pseudoregister format requires the
offset to be a multipie of 4

Make (R7)1888. point to AVAR

Address AVAR indirectly through

the pointer at (R7)10080.
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NOTATION
Symbol Meanin
ar 0 step 4 until 124 aligned register
la 0..2%1 long address
sd 225 925 short displacement
MIx] Contents of memory location x
Rlx] Contents of register location x
Bix] Evaluate x as a base pointer;'

(don’t use x as an address from which to fetch something);
if x=R3 use PC instead

LONG OPERAND VARIABLES

FASM notation Evaluation 0D Format EW Format
g1 56 11 a 45 918 35

la MB{lall] 1] 2 %} 4,.7 la

| ae@ MIBIMIB[Iallll 1] 2 %] 2,3,8..11 la
(%ar) sd MIBIR[arl]l+sd] 1] 2 2 28..23 lar/f4] sd
(%ar) sde MIBMIBIR[arl]l+sdl]] 1] 2 g 24..27, lar/4] sd

30..31
Figure 1-3

Long Operand Variable Formats

165 Combined Long and Short Operand Variables
These addressing modes use both the short operand and the extended word to encode memory
address calculations. In each case, one may choose to use a pseudoregister in place of one of the

registers involved in the address calculation, thus nesting one calculation inside another.

In their most general form, these calculations sum three terms: a base pointer, an offset, and an index
(though not every term need always appear) after shifting the index:

(BASE POINTER)OFFSET[INDEXI'SHIFT
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Unless otherwise mentioned, the base pointer is a singleword pointer (that is, it has a tag in the
upper five bits and an address in the lower 31 bits.) The offset and index values are added to the
31-bit address using modulo 23! arithmetic. This means that the sum cannot overflow into the tag
field, and that when the offset is 31 bits long, one may regard it either as a signed value or as an
unsigned value that “wraps around” the virtual address space.

The shift moves the index 0, 1, 2, or 3 bits leftward (multiplying it by 1, 2, 4, or 8) so that the index
can effectively represent a number of quarterwords, halfwords, singlewords, or doublewords. (For
example, because the architecture always addresses memory in terms of quarterwords, singlewords
are 4 addresses apart rather than 1 address apart. To step through a table of singlewords, one must
either increment the index by 4 each time--which is usually inconvenient--or use the built-in shift
feature to multiply by 4.) If omitted, the shift defaults to 0.

The modes which provide indexing permit indirect addressing either before the indexing operation:
(BASE POINTER)OFFSETe[INDEXITSHIFT
or afterward:
(BASE POINTER)OFFSET[INDEX]TSHIFTe
In the first case, the calculation adds the offset to the base pointer, obtains a new base pointer from
the resulting address, and adds the index to the new base pointer to find the operand. In the second,
the calculation adds both the offset and the index to the base pointer, obtains a new base pointer
from the resulting address, and uses that base pointer to find the operand. When indirection

follows the indexing operation, the shift must be either 0 or 2.

Based: This mode uses a base pointer (which can be either a singleword-aligned register or a
singleword memory location specified by means of pseudoregister addressing) and a 31-bit offset.

MOVP.P.A (R7)-4,F ; Make the singleword at (R7)-4
s point to F
MOV.S.S RTA, ({(R7)-4)108. ;s Move to RTA the singleword
: which lies 180 quarteruords above
;s F
MOVP.P.A ((R7)-4)198.,AVAR ; Make F+188 point to AVAR
MOV.S.S RTA, ({(R7)-4)108.e ; Use that pointer to address AVAR

s indirectly

Based-indexed: This mode uses a base pointer (which can be either a singleword-aligned register or
a singleword memory location specified by means of pseudoregister addressing), a 26-bit signed
offset, and a singleword-aligned register for indexing. Indirect addressing is possible either before or
after the indexing operation:
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Move to RTA the quarterword
obtained by using R7 as a base

MOV.Q.Q RTA, (R7)109. [RTBI]

we  we

pointer to memory, adding a
188-quar terword offset to the
pointer, and offsetting further
by the value found in RTB
Similar to the previous example,
but use as the base pointer the

MOV.Q.Q RTA, ((R7}-4)188. [RTB]

singleword specified by
pseudoregister (R7)-4

Similar to the previous example,
but multiply the index register by
2 since we are addressing hal fuords

In any of the previous three

MOV.H.H RTA, {((R7)-4)100. [RTB111

MOV.Q.Q RTA, (R71188.a@lRTR1
examples, one may use the offset to
find a neu base pointer, indirect
address through it, and then use
the index register as a further
offset

Alternatively, one may choose to
use the singleword obtained by the

MOV.H.H RTA, (R7)180. [RTB]12e

indexing operation as an indirect

WO WS ME Ve B MR We WE We Ve WE WE we We We wWe wb we we we ee

addressing pointer.

Fixed-based-indexed: This mode provides a 31-bit base address and an index (which can be either
a singleword-aligned register or a singleword in memory specified by a pseudoregister). Because the
31-bit base address provides no means of encoding a tag, the tag is implicitly that of the ring in
which the instruction is executing. One may choose indirection either immediately before or
immediately after the indexing operation.

Move to RTA the quarterword found

by using BPTR to point to memory and the
value stored in RTB as an offset from
that location

Like the previous example, but multiply
the index by & since we are dealing wWith

MOY.Q.Q RTA,BPTRIRTBI

MOV.D.D RTA,BPTR [RTB113

doub | eunords

Shous the use of pseudoregister

(R7)-4 as the index

Use the singleword at BPTR as an indirect
address pointer and index from the location

MOV.Q.Q RTA,BPTRI(R7}-4]
MOV.Q.Q RTA,BPTRe [RTBI
to which it points

Similar to the first example, but use the
singleword located by the indexing oper-

MOV.Q.Q RTA,BPTRIRTBle

WS Me  WE We We We We W wWE wWe wWe we we we ws

ation as an indirect address pointer
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Register-based-indexed: This mode provides a singleword-aligned register as the base pointer, a
26-bit signed offset, and an index (which may be either a singleword-aligned register or a
singleword in memory specified by a pseudoregister). One may choose indirection either preceding
or following the indexing operation.
MOV.Q.Q RTA, (R7)188. [(R8) -4] Move to RTA the quarterword found

by using R7 to point to memory, adding

an offset of 100. to the address given

in R7, and then adding as an additional
offset the value stored in the singleword
specified by pseudoregister (R8)-4

Like the initial example, but multiply

we we we we we we

MOV.S.S RTA, (R7)100. [{R8)-4112
the index by 4 because we are

we wo we

dealing with singlewords
MOV.Q.Q RTA, (R7)108.e[(R8)-4] : Indirection preceding indexing
MOV.Q.Q RTA, (R7)1009. [(R8)-4112e ; Indirection following indexing

To illustrate the usefulness of a combined short and long operand variable addressing mode,
consider the following fragment of a Pascal procedure:

YAR

I: INTEGER; TABLE: ARRAY [5..3]1 OF INTEGER;
BEGIN
FOR I := 5 T0 9 DO

TABLE (1] := I3

To construct the operand for TABLE[I], assume first that FP is a register pointing to the beginning
of the stack frame for the procedure, and that the TABL’th byte in the stack frame points to the
memory location which would be the Oth element of TABLE if TABLE had a Oth element. The
following operand would specify that pointer:

(FP)TABL
and the following operand would specify that fictional Oth element:

(FP)TABLe

If VI is the byte offset from the beginning of the stack frame to variable I, then the following
indexes to find the Ith element of TABLE. Note the use of a shift to access singlewords properly:

(FP)TABLe[(FP)VIIT2
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The entire loop might look like this:

MOV.S.5 (FP)VI,#5
LOOP: MOV.S.S (FP)TABLel[(FP)VII“*2, (FP)VI
ISKP.LEQ (FPIVI,#3.,L00P

(We assume VI and TABL are not too large to fit within this operand format, and that the value of
I is not used again following the loop.) :
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Meaning

Contents of memory location x
Contents of register location x
Evaluate x as a base pointer

(if x=R3 use PC instead)

NOTATION
Symbol Meanin Symbol
ar 0 step 4 until 124 MIx]
pr 12 step 4 until 124 R[x]
sao -128 step 4 until 124 B[x]
la 0..2%0
1d 930 9% sh
sd 925 925 ssh

COMBINED LONG AND SHORT OPERAND VARIABLES

Substitute either of these short operands . ..

EASM Notation

%ar
(%pr) sao

... for “SO” in the
FASM notation

(S0) Id

(S0) Ide

(S0) sd [4ar1tsh
(50) sde [%ar] fsh
(S0) sd [%ar]tsshe
}a[S0]11sshe
1a[S0]1sh

| a@ [SO1 1sh
(%ar) sd [S0]1sh
(%ar) sde [SO] fsh

(%ar) sd [SO] *sshe

0..3
Oor?2

Combined Long and Short Operand Variable Formats

Evaluation 0D Format
81456 918 11

Rlarl 11 8] ar/b 1Y)

MIBIR (prll+saol 1} pr/s sao f4

following:

Evaluation EW Format
"] 45 918 35
MIBISOI+idi B id
MIBIMIBISOl+!dl]] 1 Id
MIB (S0} +sd+R [ar] x2%xsh] 12+sh |ar /4| sd
M[B [MIBISO] +sdl 1 +R [ar] 16+sh Jlar/4| sd
*2%ksh]
MIBIMI[B (SO] +sd+R [ar]x2xxsshl]] 28+sshf2|ar /4| sd
MIBIMIB[Ial+S0%2xxssh]]] 2+ssh /2 la
MIB [ia] +S0x2xxsh] 44sh la
MBIMIBL1alll+SOx2xxsh] 8+sh la
MIB IR [arl]+sd+S0x2xxsh] 28+sh |ar /4| sd
MIBMIBIRIarl]l+sdl] 24+sh  |ar /4| sd
+50%2%xsh]
MIBIMIBI[R[ar]]+sd 38+sshf2}ar /4| sd
+S0%2%xsshl 1]
Figure 1-4
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1.6.6 NEXT Versus FIRST/SECOND

Certain instructions are defined to deal not just with an operand but also with elements that follow
that operand in memory. '

Vector instructions are an important example. If the first element of a vector is x, we use the
terminology “NEXT(x)” to describe the element which follows x in memory and has the same
precision as x. Thus, if the first element of a vector is F, then the second element is NEXT(F), the
third element is NEXT(NEXT(F)), and so on. The elements are handled independently, so no
special alignment rules govern them.

Certain other instructions deal with pairs of elements: the operand and the single element following
that operand. For example, the CMAG instruction computes the magnitude of a complex number,
where OP? is the real part of the complex number and the entity following OP2 is the imaginary
part. In these cases, we use the terminology “FIRST(x)” and “SECOND(x)” to describe the operand
x and its successor. If the precision of the instruction is quarterword or halfword, then the two
elements must align together to form a single entity of twice that precision.

Operands described in terms of NEXT also differ from those described in terms of
FIRST/SECOND with respect to constants.

When an operand described in terms of NEXT is a constant, the instruction replicates the constant
to provide the required number of elements, each having the precision specified by the instruction.
The VTRANS instruction, for example, copies one vector to another, so the following sets each
element of vector A to 7:

YTRANS.S.S ARRAY, #7

When an operand x described in terms of FIRST/SECOND is a constant and the precision of the
instruction is quarterword, halfword, or singleword, the instruction expands the constant to twice
that precision, uses the high order half as FIRST(x), and uses the low order half as SECOND((x).
(When expanding a singleword constant to a doubleword, it observes the special constant addressing
modes for doing so.) For instance, the BNDSF.RTA.B instruction is an XOP which sets RTA true
or false depending on whether OP2 lies within the bounds specified by FIRST(OP1) and
SECOND(OP1), so the following example:

BNDSF.RTA.B.S #[!@ ? 71,A
will test to see whether A lies within the range 0 .. 7 and set RTA accordingly.

When an operand x described in terms of FIRST/SECOND is a constant and the precision of the
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instruction is doubleword, the instruction replicates the constant to provide FIRST{x) and

SECOND(x). Thus, for example,

BNDSF.RTA.B.D #(!8 ? 71,A

will test to see whether A lies between 7 and 7.

1.6.7 Forbidden Operand Formats

Certain combinations of bits in the OD and EW formats do not constitute legal addressing modes.
The processor interprets these as invalid long operands, causing a RESERVED_ADDRESS_MODE

hard trap:

00 Format
g1 656

EW Format
%] 4 5

Forbidden Operand Formats

1] 2 4 .. 31 any

1] 2 '] g ..1 any

11 2 2 12..19 any

1] 2 2 28..29 any
Figure 1-5
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1.7 Virtual to Physical Address Translation

T Adwnoo Fen % i e i
T'he address tran 1-bit virtual addresses onto 34-bit physical addresses,

providing both segmentation and paging. 1
ring, which may overlap.

provides four different virtual address spaces, one per

1.7.1 Paging

The paging mechanism permits a virtual address space to be mapped onto widely scattered pieces of
physical memory, eliminating problems of memory fragmentation in a multiprogramming system. It
facilitates demand paging by recording whether a page has been accessed or altered. and by
trapping on any attempt to access a page that is absent from memory. And it permits one to restrict
the right to read, write, or execute each individual page.

A page is 4096 quarterwords long. We thus say that the constant LOGPAGESIZE is 12. Because a
single virtual address space may contain as many as 219 pages, it is evident that the page mapping
tables may themselves need to be paged.

In fact, the address translation mechanism has four different steps. Instead of a giant page table 219
entries long, it uses many little page tables each 16 entries long, so not every page table need be in
memory at once. Taken together, the 16 pages pointed to by one page table make up a segmentito.

215

A giant table called a Descriptor Segment contams a pointer to each of the (at most) page tables

for each of the 4 virtual address spaces—-or 27 page tables in all. If the Descriptor Segment were
wired permanently into memory, an address reference would require two translations: one to find the
proper page table and another to find the proper page. But the Descriptor Segment itself is
composed of pages grouped into segmentitos, so an address reference first requires two translations
to find the appropriate point in the Descriptor Segment, and then two more translations to find the

target address.

Figure 1-6 traces the entire process. A register called the Descriptor Segment Pointer (DSEGP) holds
the 34-bit physical address of the first word of the Descriptor Segmentito Table. Because the
Descriptor Segment points to (at most) four sets of 215 segmentitos and each pointer requires 8
quarterwords, the Descriptor Segment never exceeds 920 quarterwords. That translates into a
maximum of 16 segmentitos, which means at most 16 entries (called Segmentito Table Entries, or
STEs) in the Descriptor Segmentito Table. The 2-bit number of the ring being accessed together
with the first 2 bits of the virtual address select one entry from the 16 in the Descriptor Segmentito
Table. In turn, that entry points to the physical address of the first word of a Descriptor Page
Table, which has an entry (called a Page Table Entry, or PTE) for each of the 16 pages comprising
that segmentito. Bits 2..5 of the virtual address select one entry from the 16 in that particular
Descriptor Page Table, which points to one page of the Descriptor Segment itself.
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The Descriptor Segment, of course, contains nothing but pointers to segmentitos that make up the 4
virtual address spaces. In fact, this page of pointers is identical in form to the Descriptor Segmentito
Table, except that it has more entries and the entries point to pages inside one of the virtual address
spaces instead of inside the Descriptor Segment. Thus, we have labeled it a *Target Segmentito
Table” (Note, however, that the page shown is probably only one of many pages of segmentito
pointers required to describe the entire ring, and that the Descriptor Segment is a continuous list of
such pointers, not a separate table for each ring.) Bits 6 .. 14 select one STE from this table, which
points to the physical address of the first word of a Target Page Table, which has an entry for each
of the 16 pages comprising that segmentito.

Bits 15.. 19 of the virtual address select one PTE from that page table, which points to the
physical address of the first word of a page. Lastly, bits 19.. 30 of the virtual address select a
quarterword from that page.

Using less than the full mapping: One need not use the entire mapping structure provided. Any
segmentito or page table entry may be null, either because the corresponding segmentito or page is
absent from memory or because the virtual address space in question is smaller than the maximum
allowable size.

Overlapping virtual address spaces: It is possible to make part or all of different virtual address
spaces overlap, simply by making some of their STE or PTE entries point to the same physical
memory. Some operating systems have customarily placed user and executive together in one address
space, providing protection by restricting access to particular pages. To achieve such operation with
this architecture, one may simply arrange the entries in the Descriptor Segmentito Table to point to
the same set of Descriptor Page Tables for each ring, thus mapping all four rings onto the same
physical memory and reducing the size of the mapping tables by roughly a factor of four.
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Virtual Address
Ring# Desériptor address Target address
e 1 @ l 56 30
DSegmentito# | DPage#
] 12 5
Descriptor
_____ Segmentito Table
OSEGP p—
B 33 (4*R?ng#+
DSegment i to#}%80W
J Descriptor
Page Table
STE > n
DPage#x4Q0
)
PTE
Translated TSegmentito# | TPage# | Offset
Descriptor
Address 6 14 15 18 19 38
Target
Segmentito Table
(1 page of the
descriptor segment)
TSegmenIito#*SON
J Target
Page Table
STE ———> n
TPage#x400
y
PTE
L 7
%] 21 22 33

Physical address

Figure 1-6
Virtual-to-physical address translation
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1.7.2 Segmentation

One can view a virtual address space as a set of segments, so that the address for any particular
entity consists of a pair of coordinates: the segment number and the offset from the beginning of the -
segment. If an index or offset causes an address calculation to exceed lower or upper segment
bounds, an OUT_OF_BOUNDS hard trap occurs.

Segments can vary in size, consisting of one or more segmentitos, but a segment must obey three
rules: the number of segmentitos in the segment must be a power of two, the segmentitos must be
consecutive within the virtual address space (which means simply that the pointers to them must be
consecutive in the descriptor segment) and the virtual address of the beginning of the segment must
be an integer multiple of the size of the segment.

Those three rules make it easy to check segment bounds. Given any virtual address known to be
within a segment, plus the size of the segment, the processor can determine whether a second,
“suspect” address lies within the same segment merely by comparing the upper 19-x bits of the
81-bit addresses (where x is the base 2 logarithm of the number of pages in the segment, a number
which we refer to as LOGSEGSIZE).

As a result, the processor need not maintain an explicit table of segment boundaries. Instead, the
pointer to each segmentito merely contains a field giving the size of the segment containing that
segmentito.

As an example, assume we know some address x lies within a particular segment, and we know the
segment contains 8 (23) segmentitos. To see whether an address y lies in the same segment, first
discard the 12 low order bits of x and y, which merely represent varying addresses within a page;
because a segment must start and end on segmentito boundaries and thus page boundaries, we need
merely check that the suspect address lies on a permissable page, without worrying about where
within the page it lies. But then we can discard an additional 4 low order bits from each of x and y
because they merely represent varying addresses within a segmentito; given that a segment must start
and end on segmentito boundaries, we need merely check that the suspect address lies on a
permissable segmentito, without worrying about where within that segmentlto it lies. Finally, we can
discard an additional 3 bits just because the size of the segment is 98 segmentitos. Those 3 bits must
be zero for the first of the 8 segmentitos in order for the segment to start on an integer multiple of
its size, and as a result they must equal 7 for the last of the 8 segmentitos. Since the 3 bits can have
any value from O to 7 and still lie within the segment, we need not worry about them, either. The
remaining bits should be identical for every legal address within the segment, so we compare the
remaining bits of x and §. Only if they match did the two original addresses lie within the same
segment. "
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Segment bounds checking: Every memory address calculation begins with a base pointer,
establishing which segment is being addressed. The ruie for bounds checking is simpiy that a
memory access must lie within the same segment as the previous base pointer. Thus, the base pointer
plays the role of address x in the previous example, and the actual operand being accessed serves as

Y.

When an address calculation involves indirection, the indirect pointer must lie within the same
segment established by the base. But the pointer then establishes a new base, possibly in a different
segment, and subsequent memory accesses must lie within the same segment as the new base,

Bounds checking occurs only on actual memory accesses, so it is permissable for an offset to reach
outside the segment bounds provided a subsequent indexing operation brings the calculation back
within bounds before the access occurs.

1.7.3 Segmentito and Page Table Entries

Segmentito table entries: Each STE is a doubleword (shown in Figure 1-7) with the following
fields:

VALID If this bit is set, the page table for this segmentito is in memory and the processor
uses the remainder of the doubleword as described. Otherwise, the segmentito is
absent, the processor ignores the rest of the doubleword and software may use it
as desired. Attempting to access an absent segmentito causes a
SEGMENTITO_FAULT hard trap (or, if the segmentito is part of the
descriptor segment, a DSEG_SEGMENTITO_FAULT hard trap).

PTA Singleword physical address of the corresponding page table.

WB Write bracket. Attempting to write into this segmentito from a ring (or, more
formally, with a validation level) greater than WB causes an
READ_WRITE_BRACKET _FAULT hard trap.

EB Execute bracket. Attempting to execute this segmentito from a ring (or, more
formally, with a validation level) greater than EB causes an
EXECUTE_BRACKET _FAULT hard trap. Note that a cross-ring call via the
instruction CALLX and the gate mechanism (Section 1.9.5) is not considered an
attempt to execute the called segmentito, and is thus exempt from EB restrictions.

RB Read bracket. Attempting to read this segmentito from a ring (or, more formally,
with a validation level) greater than RB causes an
READ_WRITE_BRACKET FAULT hard trap.



1 Introduction

Specifies access modes as defined later in this section for all pages in this
segmentito.

Specifies the size of the segment that contains this segmentito, expressed as a
base 2 logarithm of the number of pages in the segment (for example, SIZE=8
indicates the segment contains 28 pages, which is ot segmentitos). SIZE must not
be less than 4 (2% pages, or 1 segmentito) or greater than 19 (219 pages, or 918
segmentitos, or an entire 2 ! quarterword address space.)

Reserved for use by software.

134 35 8 12 34 56 7 1112 16 17 27 28 35

PTA WB EB RB ACCESS| SIZE FLAGS

44
ACCESS
SIZE
FLAGS
8
VYALID
8

134 3536 3738 3948 41 42 43 47 48 52 53 63 64 71

Figure 1-7
Segmentito table entry format

Page table entries: Each PTE is a singleword (shown in Figure 1-8) with the following format:

VALID

USED

MODIFIED

FLAGS

ACCESS

PAGENO

If this bit is set, implying that this page is in memory, the processor uses the
remainder of the singleword as described here. Otherwise, the page is absent
and the software may use the remainder of the singleword as desired.
Attempting to access an absent page causes a PAGE_FAULT hard trap.

If VALID=1, this bit indicates the page has been accessed. (More precisely, the
processor sets this bit when it brings into the map cache (Section 2.13) the
mapping information for this page.)

If VALID=1, this bit indicates the page has been modified. (More precisely, the
processor sets this bit when it marks the corresponding map cache entry to show
that the page has been written into.)

Reserved for use by software.

Specifies access modes for this page as defined later in this section.

The 22 high order bits of the physical address of this page.
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FLAGS|VALID| USED |MODIFIED]ACCESS PAGENO
g 3 4 5 6 7 11121314 35
Figure 1-8

Page table entry format

Access modes: The access permitted for a particular page is the logical AND of the ACCESS fields
in the STE and the PTE for that page. They permit an operating system to mark a page for
read-only access, write-only access, execute-only access, or any combination of reading, writing, and
execution. An instruction which is fetched from a memory location which does not have execute
access will cause an INSTRUCTION_ACCESS_VIOLATION. An instruction which attempts to
access 3 memory location in violation of read and write access bits will cause an
DATA_ACCESS_VIOLATION hard trap. (Of course, the attempted access must pass the checking
defined by the RB, EB, and WB fields in the STE, too.) Within each ACCESS field, the bits have

the following meanings:

WRITE_PERMIT
Instructions may alter this segmentito/page.

EXECUTE_PERMIT
A process may execute instructions fetched from this segmentito/page

READ_PERMIT Instructions may read from this segmentito/page.

IO_PAGE I/O instructions may address this page, but ordinafy instructions may not. Note
that the WRITE_PERMIT and READ_PERMIT bits determine whether the
I/O instructions can write or read this page.

SHARED This bit provides advice to the hardware which can improve multiprocessor
performance, but which is not necessary for correctness. It has no effect unless the
page is writable. For a writable page, reading a location from memory ordinarily
causes the hardware to demand from the crossbar read/write access to that
location. If the SHARED bit is 1, however, reading a location causes the
hardware to demand only read access, though a subsequent attempt to write that
location will then demand read/write access.

WRITE_PERMIT |EXECUTE_PERMIT |READ_PERMIT] I0_PAGE |SHARED
%] 1 2 3 4

Figure 1-9
Bits in ACCESS field
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1.8 Rings and Protection
The uniprocessor architecture provides three principal kinds of protection.

The first, specified in the PRIVILEGED field of the PROCESSOR_STATUS register as
mentioned earlier, determines the rings from which privileged instructions may be fetched for
execution.

The second, discussed in the preceding sections, applies to privileged and non-privileged '
instructions alike, and to all four rings: unless otherwise noted, the architecture provides segment
bounds checking (which prevents a memory address calculation from erroneously exceeding the
boundaries of a segment) and access mode checking (which controls the ability of any instruction to
read, write, or execute a particular page).

A third kind of protection allows “downward” accesses (in which an instruction executing in a given
ring reaches into a less protected ring to access an operand) but forbids “upward” accesses (in which
an instruction reaches into a more protected ring). This involves a process called validation, which
checks the TAG field of a pointer and alters it or, if necessary, invokes a BAD_ADDRESS_TAG or
BAD_ADDRESS_TAG hard trap to protect more protected (lower-numbered) rings against
forbidden accesses from less protected (higher-numbered) rings. There are two kinds of validation:
address validation occurs when a pointer is used in addressing an operand or specifying a jump
destination; and pointer validation occurs when a pointer is itself an operand (usually when the
pointer is being moved from one place to another). The following sections discuss the pointer
format, address validation, and pointer validation.

1.8.1 Pointer Format

As mentioned earlier, the pointers that serve as the base for most memory address calculations and
all indirect references incorporate both a TAG field and an ADDRESS field (Figure 1-10). Pointer
tags play an important role in dynamic linking, in memory accesses from one ring to another, and in
calls from one ring to another.

Though the architecture also features self-relative pointers and byte pointers, the word “pointer” by
itself in this manual will always mean a tagged pointer with the format shown in Figure 1-10.

TAG ADDRESS

Figure 1-10
Pointer Format
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Various values of the TAG field have the following meanings:

Tag

0

Meaning

Fault. Any attempt to use a pointer with a fault tag will cause either a
BAD_POINTER_TAG or a BAD_ADDRESS_TAG depending on the mode of

usage.

Gate. As explained in Section 1.9.5, the CALLX instruction can use a pointer
with a gate tag to implement a procedure call from one ring to another. Any
attempt to reference memory through a gate pointer will cause a
BAD_ADDRESS_TAG hard trap. If a BASEPTR or VALIDP instruction
attempts to operate on a gate pointer it will fail with a BAD_POINTER_TAG
hard trap. The MOVP instruction may, however, move such a pointer.

NIL. If an instruction attempts to use this pointer to reference memory a
BAD_ADDRESS_TAG hard trap will result. If the BASEPTR or VALIDP
instruction attempts to operate on this pointer, a BAD_ADDRESS_TAG hard
trap occurs. The MOVP instruction may, however, move this pointer. A
language translator such as LISP, Pascal, or PL/I may use this pointer to
implement the NIL or NULL construct.

Self-relative. ~ The address field of the pointer is a signed, quarterword
displacement giving the offset of the referenced location relative to the location
containing the pointer. When such a pointer is used, it is treated as if it where a
pointer to the addressed location. When stored in a non-self- relative pointer,
the result will have a ring-tag for the validation level of the location holding the
self-relative pointer. A self-relative pointer and the location that it addresses
must be in the same segment, otherwise, an OUT_OF_BOUNDS hard trap
occurs. Since it must be in memory, if a pointer with a self-relative tag is found
in a register, an ILLEGAL_RELATIVE_POINTER trap occurs. Also, if a
self-relative pointer is used as the base pointer in an addressing mode, a
BAD_ADDRESS_TAG trap occurs.

Ring 0 tag. An instruction which references memory through this pointer will
attempt to access the specified ADDRESS within the ring 0 address space. If
such a reference (for any ring tagged pointer) would cause a validation error a
BAD_ADDRESS_TAG hard trap will occur. If, during pointer validation, a
MOYVP instruction tries to alter any ring tag a BAD_POINTER_TAG hard
trap will result. Both forms of ring validation are explained in section 1.8.2

Ring 1 tag. An instruction which references memory through this pointer will
attempt to access the specified ADDRESS within the ring 1 address space.
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6 Ring 2 tag. An instruction which references mernory through this pointer will
attempt to access the specified ADDRESS within the ring 2 address space.

7 Ring 3 tag. An instruction which references memory through this pointer will
attempt to access the specified ADDRESS within the ring 3 address space.

8..30 User tag. An instruction which references memory though this pointer will
attempt to access the specified ADDRESS within the same ring from which it
obtained the pointer {(more precisely, it will access memory using as the initial
validation level the validation level derived in fetching the pointer; see Section
1.8.2) Because these 23 tags are equivalent architecturally, software may use
them for its own purposes, such as encoding the data type of the entity being
addressed.

31 Fault. This behaves exactly like a tag of zero. Because all but the
largest-magnitude positive and negative integers will have either 0 or 31 in the
tag field, assigning special meanings to tags of 0 and 31 increases the likelihood
that the erroneous use of a random singleword as a pointer will be detected as an
error.

1.8.2 Address Validation

The address validation that occurs during operand or jump destination evaluation applies to two
classes of pointers: those with TAG values in the range 4 .. 7, which are called ring pointers; and
those with TAG values in the range 8 .. 30, which are called user pointers. (One frequently refers
to ring tags and user tags in a similar fashion.).

An instruction or pointer is “trusted” by the ring from which it is fetched, and by higher-numbered
rings. Address validation enforces two rules. First, an instruction cannot access a ring unless the
instruction and each pointer used in computing the address are trusted by that ring. Second, an
instruction cannot access a location unless the instruction and each pointer used in computing the
address of that location are trusted by the ring specified by the EB, WB, or RB field——whichever is
appropriate——of the STE (Section 1.7.3) for the segmentito containing that location.

Because the architecture allows virtual address spaces to overlap, it is imprecise to say that an
instruction, pointer, or operand “lies within a ring”. The page containing the instruction, pointer, or
operand may lie within multiple rings. For an instruction, we refer instead to the “ring of execution”,
meaning the ring specified by the PC in fetching the current instruction. For a pointer or operand,
we refer to the validation level, an internal value derived by the addressing mechanism which
specifies which ring number to use in accessing the desired entity.

Using those terms, here is the algorithm for address validation:



1.8.2 Address Validation 49

~ vacban

= ~lanricrny initinliza
10N medhnanisim initiai

=
A LG,

2. Each time the calculation handles a pointer, it uses the validation level and the tag to derive a
new validation level:

a. If the tag is a ring tag and the ring number is less than the validation level, a
BAD_ADDRESS_TAG hard trap occurs.

b. If the tag is a ring tag and the ring number is greater than or equal to the validation
level, the new validation level is the ring number.

c. If the tag is a user tag, the validation level is uiichanged.

Note that the validation level can never decrease, because that would allow access to a more
protected ring.

Of course, an attempt to access memory is also subject to checking specified by the ACCESS fields
in the STE and PTE entries, and to that specified by the WB, EB, and RB fields in the STE entry:
the validation level derived in computing the address must be less than or equal to that specified by
the WB, EB, or RB field—-whichever is appropriate.

To illustrate the rule that an instruction cannot use a pointer to access a ring which is more
protected than the ring of execution, suppose the following instruction executes in ring 1:

MOV RTA,(R7)100.e

The initial validation level is therefore 1. The address calculation first uses R7 as its base pointer.
If R7 contains a pointer with a ring 2 tag and an address F, then the calculation proceeds legally
because 2>1, and the validation level increases to 2. Next the calculation fetches an indirect pointer
from address F+100 within the virtual address space of ring 2. Suppose that pointer has a tag of 1
and an address of B. Because | is less than the current validation level, a hard trap occurs—even
though the instruction itself is executing in ring 1 and could have accessed location B in ring 1
directly. In this fashion, the cross-ring access mechanism prevents a pointer which is only trusted to
the level of ring 2 from exploiting the capabilities of a more trusted instruction executing in ring 1.

To illustrate the additional checking provided by the EB, WB, and RB fields in the STE entry,
suppose that ring 1 and ring 2 are mapped to the same physical memory. If address F lies in a
segmentito for which the WB field in the segmentito is | and the RB field is 2, then either of the
following instructions can execute in ring I:

MOVSS RTAF
MOV.SS FRTA
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(Recall from Section 1.6.4 that the tag for the operand “F" is implicitly that of the ring in which the
instruction executes.) The first instruction can execute in ring 2 as well, because RB=2. But the
second instruction will trap if it executes in ring 2, because WB=1. In this manner, one can give the
executive read/write access to a segmentito while limiting the user to read-only access.

1.8.3 Pointer Validation

By itself, the address validation mechanism discussed in the previous section is not sufficient to
protect lower-numbered rings against mischief from higher-numbered rings. The ring number used
to fetch a pointer helps determine its validation level, so simply moving the pointer from a
higher-numbered ring to a lower-numbered one could give it additional capabilities.

For example, a user executing in ring 3 might construct a pointer to data in ring 0 and then pass
the pointer as the address of a parameter to an operating system routine executing in ring 0, thereby
deceiving the operating system into accessing, on behalf of the user, data which is forbidden to the
user.

Therefore, whenever one moves a ring pointer or user pointer, it undergoes a second kind of
validation, called pointer validation, which alters its tag or, if necessary, traps to avoid giving the
pointer additional privileges. This validation is built into an instruction called MOVP, which
should be used in place of MOV whenever one moves a pointer. If a pointer is moved implicitly—-if
it is passed from one ring to another via a register, for example--the recipient must deliberately
validate it using the VALIDP instruction.

Pointer validation involves two steps:

1. If the pointer is in a register, the initial validation level is the number of the ring of
execution. If the pointer is in memory, set the initial validation level to equal the address
validation level derived in fetching it from memory.

2. Use that validation level to derive a new tag:

a. If the tag is a ring tag and the validation level is greater than the number of
the ring specified by the tag, invoke the BAD_POINTER_TAG hard trap
(because this pointer wants to access a more protected ring than the one from
which it was obtained).

b. If the tag is a ring tag and the validation level is less than or equal to the
number of the ring specified by the tag, preserve the tag (because this pointer

wants to access a less protected ring than the one from which it was obtained).

c. If the tag is a user tag and the validation level equals the number of the ring
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of execution, preserve the tag. {Because the pointer was obtained from the ring
of execution, it cannot possibly be moving to a more protected ring. Moving it to
a less protected ring is harmless; at worst, if the pointer is fetched from that ring
and used for indirection, it will appear to point to a less protected entity than it

did before.)

d. If the tag is a user tag and the validation level is greater than the number of
the ring of execution, replace the tag with the ring tag corresponding to the
validation level (the pointer may be moving to a more protected ring than the
one from which it was obtained, so make the latter explicit).

To illustrate these rules, suppose a user routine called USER, executing in ring 3, has called an
operating system routine called EXEC, executing in ring 0. USER has constructed a ring pointer
called BAD, located in ring 3 but pointing to ring 0, and has passed in regisier R0 a pointer to
BAD. (For the moment, we will assume the pointer in RO is correct and trustworthy.) EXEC
executes the following instruction to move BAD into a location called TRUSTED within ring O:

MOVP.P.P TRUSTED, (R@)

The processor first calculates the address of BAD, using the address validation algorithm. The
address validation level starts at 0, the ring of execution, and becomes 3, the ring number specified

by the pointer in RO.

Once the instruction has addressed BAD, the pointer validation algorithm starts with 3, the
validation level derived during the address calculation, and examines the tag field of BAD itself,
which is a ring tag for ring 0. Because 0 is less than 3, the MOVP instruction traps.

Suppose instead that BAD is a user pointer. This time, when EXEC attempts to move it to
TRUSTED, the processor first calculates the validation level as 3, and then moves BAD to
TRUSTED. Because the validation level is greater than the ring of execution, the processor replaces
the user tag with the ring tag for ring 3. No error (and thus no trap) occurs.

But suppose instead that the pointer passed in register RO is itself bad—-that is, USER has
constructed it to point to data in ring 0. The validation level of a pointer located in register 0 and
pointing to ring O is in fact 0, so no trap will occur when EXEC addresses memory through RO.
Even if EXEC is suspicious and attempts to move the pointer from R0 to TRUSTED before using
it, the validation level still matches the ring tag, so no trap occurs:

MOVP.P.P TRUSTED,R®
MOVP.P.P TRUSTED, TRUSTEDe

That illustrates the importance of using the VALIDP instruction to validate a pointer generated by
an untrustworthy process and passed to a trustworthy routine through a register. Provided a called
routine applies VALIDP properly to every pointer passed in a register, it is protected completely
because the validation mechanisms will prevent violations by any other pointers inside structures
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passed to it.

1.8.4 Validation on JOP instructions

The validation mechanisms discussed in the preceding sections apply in a special fashion to -
absolute-addressing JOP instructions (that is, jump, call, and return instructions in which the PR

bit is not 1). The PC is itself a pointer whose ring tag defines the current ring of execution. So

such instructions effectively perform a MOVP to store the new value into it. In general, if such an

instruction attempts to move a NIL or gate tag pointer to the PC, a BAD_ADDRESS_TAG trap

occurs; when such an instruction moves a pointer which has a user tag, it converts the tag to that of

the current ring of execution.

These pointer validation mechanisms prevent an instruction executing in a higher-numbered ring
from calling a routine located in a lower-numbered ring. Because such calls are needed to permit
user code to obtain operating system services, the architecture provides two mechanisms that
circumvent the validation scheme in a controlled fashion: the TRPEXE instruction, discussed in
section 1.9.4, and the CALLX instruction with gates, discussed in section 1.9.5.
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1.9 Traps, Interrupts, and Gates

Traps and interrupts signal the processor to change its context temporarily and deal with an
exceptional situation. Traps usually result from errors, while interrupts are usually invoked by
external devices in need of 1/O service. The mechanism described here is also used by the TRPEXE
and TRPSLF instructions and gate calls to change to a more privileged context such as the
operating system kernel. For ease of exposition the word trap will often be used in a generic sense
to refer to all conditions which are handled with this mechanism. When used in a specific context it
will be used in conjunction with a modifier such as Aard trap or TRPEXE trap.

For each type of trap which may occur, a series of singlewords in memory called a trap wvector
provides information on handling the trap. The processor obtains new state information from the
vector, pushes its previous state onto a stack, and branches to a trap handler address specified by
the vector.

{(Conventions vary on whether “vector” applies to the group of singlewords pertaining to a particular
trap, or to the group of groups pertaining to all traps. We will always use “vector” to refer to the
series of singlewords for a particular trap, and will use “set of vectors” to refer to the consecutive
vectors for the different traps of the same type.)

There are several classes of traps:

® Traps which can be handled by a process at its own level of privilege. These include soft
traps caused by errors such as divide by zero.

® Traps caused by the TRPSLF instruction which can also be handled at the same level of
privilege.

@ Traps caused by the TRPEXE instruction, which are in effect calls to the executive.

® Traps caused by a CALLX instruction which uses gate-tagged pointers to make cross-ring
calls (Section 1.9.5).

® Traps which must be handled by privileged code. These include hard traps caused by
errors, such as page faults.

® Interrupts from I/O devices, all of which must be handled by privileged code.

® Interrupts from internal processor counters such as the real time clock.
Each type of trap has its own new processor state and set of vectors. A register called the trap
descriptor block pointer (TDBP) contains the 34-bit physical address of a series of singlewords

containing ordinary tagged pointers, each of which points to the first singleword of a trap descriptor
block entry:



54 1 Introduction

Singleword Points to trap descriptor biock eniry for:
0 Ring O soft traps

1 Ring 1 soft traps

2 Ring 2 soft traps

3 Ring 3 soft traps

4 Ring 0 TRPSLF traps
5 Ring 1 TRPSLF traps
6 Ring 2 TRPSLF traps
7 Ring 3 TRPSLF traps
8 Ring 0 TRPEXE traps
) Ring 1 TRPEXE traps
10 Ring 2 TRPEXE traps
11 Ring 3 TRPEXE traps
12 Ring 0 gate calls

13 Ring 1 gate calls

14 Ring 2 gate calls

15 Ring 3 gate calls

16 Hard traps

17 Interrupts from I/O

18 Interrupts from counters

The trap descriptor block entries contain the new context information that the processor loads
before handling the trap as well as a pointer to the set of vectors for each of the traps of the type
covered by the trap descriptor block entry. Each entry has the following format:

Maximum Index (word @)
New PROCESSOR_STATUS {word 1)
New PROCESSOR_STATUS Mask {word 2}
New USER_STATUS {word 3)
New SP or Zero (word &)
Pointer to Set of Vectors (word 5)
reserved (word 6)
reserved {(word 7}
8 35

Note that a trap descriptor block entry may lie in any desired ring, and may point to a set of vectors
in any ring that can be accessed from the ring containing the trap descriptor block entry. The set of
vectors may in turn point to handlers in any ring which can be accessed from the ring containing
the vectors. The trap descriptor block entry and the set of vectors for ring 3 soft traps may, for
example, lie in ring 2 even though ring 3 cannot access ring 2; but the handlers must lie in ring 2 or
ring 3, because ring 2 cannot access rings Oor 1.
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Each set of vectors is an array of doublewords having the following format:

New PC in pointer format (uord 8)
New CP or Zero (word 1)

1.9.1 How the Processor Responds to a Trap
When the processor responds to a trap, it follows these steps:

1. First determine a pair of numbers: the trap type and the trap index. The trap type indicates that
the trap is a soft trap, TRPSLF, or a TRPEXE and what ring it came from, or that it is a gate call
into a specific ring, or that it is a hard trap, an I/O interrupt or a counter interrupt. The trap
index indicates within each trap type which particular TRPSLF, soft trap, hard trap, I/O memory
number, counter, TRPEXE, or gate is meant.

The trap index for soft traps are enumerated in section 1.9.3. The trap index for TRPSLF and
TRPEXE instructions comes from the value of the modifier 0..63 on the instruction. The
destination ring and trap index for gate calls comes for the gate-tagged pointer, which is described
in section 1.9.5. The indices for hard traps are enumerated in section 1.96. The index for an /O
interrupt is the number of the 1/O memory that generated the interrupt. The use of I/O memories
is further described in section 1.10. The counters are described in section 1.9.9.

2. Locate the Trap Descriptor Block entry for this trap by adding the trap type times 32 bytes to
the Trap Descriptor Block Pointer. If the trap index is greater than word 0 of the TDB entry, then
abort the trap sequence and take a TRAP_INDEX_TOO_BIG hard trap. Note that a -1 in this
word will effectively disable all traps of that type.

3. Next we begin to build an array of temporary locations which will ultimately be written on the
stack. In word O write the trap index. In word 1 write the PROCESSOR_STATUS. In word 2
write the USER_STATUS. In word 3 write the PC. In word 4 write PC_NEXT_INSTR. Skip
words b and 6 for now. In word 7 write the size (in words) of the instruction state. In words 8
through 8+S-1 write the INSTRUCTION_STATE. In words 8+S through 8+S+P-1 write the
parameters of the trap. Skip word 8+S+P for now.

This the format of the stack entry which contains the information pushed on the stack:
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— Trap Index (word 9)
old PROCESSOR_STATUS or Zero {(word 1)
old USER_STATUS or Zero (word 2)
old PC (word 3)
old PC_NEXT_INSTR (word 4)
old SP (word 5)
old CP (1ord B)
INSTRUCTION_STATE_SIZE (S} | (word 7)
INSTRUCTION_STATE (S words) (word 8:8+5-1)
PARAMETER_AREA (P words) (word 8+5:8+5+P-1)
Pointer to word 8 {(word 8+5+P)
SP> 8 35

Top of stack

4. Regardless of any other considerations, load the new PROCESSOR_STATUS from word 1
under mask of word 2 of the TDB entry. Loading under mask means to load only those
PROCESSOR_STATUS bits whose corresponding bit positions are one in the mask.

5. In word 5 of the temporary stack array write the CP register. (We are now using the register file
specified by the PROCESSOR_STATUS that was loaded under mask in step 4.) In word 6 write
the SP register.

6. If word 4 of the TDB entry is non-zero then write it into the SP register.

7. Write the SP register into word 8+S+P of the temporary array.

8. Load word 3 of the TDB entry into USER_STATUS.

9. Locate the trap vector by indexing off of word 5 of the TDB entry by the trap index (as a
doubleword index).

10. Validate word O of the trap vector. Set the PC to the resulting address and the ring of
execution to the output validation level. If word 1 of the trap vector is non-zero, load it into the
CP register.

11. If the ring of execution is not privileged then zero word 1 of the temporary stack array.

12. Push the temporary stack entry onto the stack pointed to by SP, leaving SP pointing to the first
word after the pushed array.

INSTRUCTION_STATE SIZE is the number of singlewords occupied by the
INSTRUCTION_STATE portion of the stack entry. If it is zero, then INSTRUCTION_STATE
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does not appear at all. INSTRUCTION_STATE itself stores instruction-dependent and
implementation-dependent information required for restarting the instruction that was in process
when the trap occurred. Some instructions are said to be interruptable, meaning that interrupts can
occur during their execution. A vector arithmetic instruction, for example, may encounter a trap or
interrupt part way through the processing of the vector. INSTRUCTION_STATE would, in such
" a case, contain the information needed to proceed with the remainder of the vector after handling
the trap. In many cases it would be incorrect to start over at the beginning of the instruction.

PARAMETER_AREA contains information about the cause of the trap, and varies in content and
size from one trap to another. The programmer may infer the size of this area in any particular
instance by examining the last word in the stack entry pushed by the trap. The use of the
PARAMETER_AREA by soft traps is described in section 1.9.3 and by hard traps in section 1.9.6.
TRPSLF and TRPEXE traps use the PARAMETER_AREA for the description of their operand
as degcribed in section 194 A gate call will put one word in the PARAMFETFER_ARFA, namely
the gate pointer. Interrupts do not use the PARAMETER_AREA.

19.2 Returning from Traps

To return from a trap the RETS.{R,A} instruction is used. OP2 is not used and must be zero. The
address of OP1 is the address of the stack entry made by the trap. The processor state is restored
from this information.

Ordinarily, with the R (Retry) modifier, the RETS instruction is used to repeat the instruction that
was in progress when the trap occurred (that is, the instruction at the PC stored in the stack entry).
Whereas the A (Abort) modifier causes RETS to skip to the following instruction.

However, if the instruction that was in progress is interruptable--a vector arithmetic instruction, for
example--and the instruction state in the stack entry is non-zero, RETS.R reprocesses the
unfinished element of the vector whereas RETS.A skips that element and proceeds with the next.

Since all instructions may safely be restarted whenever they can be interrupted the R modifier is the
correct one to use whenever it is undesireable to have a trap disturb the normal instruction
sequence. However, it is sometimes necessary to alter the normal flow of operations. For example,
after a divide by zero soft trap, one may choose to skip that instruction (or operation of a vector
instruction), and in this case the RETS.A instruction is proper.

This is not a privileged instruction. If the ring of execution is not privileged then the old
PROCESSOR _STATUS in the stack entry is ignored and the PROCESSOR_STATUS is
unchanged.

If the ring of execution is privileged and if the instruction state is non-zero, then the A modifier
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will cause RETS.A to set the TRACE_PEND bit to match the TRACE_ENABLE bit in the old
PROCESSOR_STATUS and the CALL TRACE PEND bit to match the saved
CALL_TRACE_PEND bit. This is what the instruction would do if it were allowed to finish
normally; thus, aborting an instruction does not erroneously disable tracing. The upshot of this
behavior is that flow tracing will step through the instructions of a user trap handler such as for a
TRPSLF, but will be unaffected by a trap to privileged code such as for a hard trap that returns
with a RETS.A.

1.9.3 Soft Traps

As mentioned earlier, soft traps are those which can be handled without increasing the level of
privilege.

Soft traps supply the following information within the PARAMETER_AREA pushed onto the SP
stack:

DESTINATION_ADDRESS {word 8+5)
UNSTORED_RESULT (4 words) {word 8+5+1)
Operand 1 (2 words) (word 8+S+5)
Operand 2 (2 words) (word 8+5+7)
(word 8+5+P, P=9)

8 35

If the destination operand is a memory location, DESTINATION_ADDRESS is a standard pointer
with tag and address fields. If the destination is a register, then DESTINATION_ADDRESS gives
zero (fault) as its tag and the register address (in terms of quarterwords) as its address.

UNSTORED_RESULT is the result that would have been stored in the destination address if no
trap had occurred. If it is an integer, it is sign-extended to be four singlewords long, with the most
significant portion in the singleword having the lowest address. If it is a floating point value, it
appears in the following format, where “S” is the one-bit sign and “-S” is the hidden bit (Section
22.1).



1.9.3 Soft Traps 59

EXP {word 8+5+1}

§1S1-S MANT (high-order) (word 8+S+2)
MANT (word 8+5+3)

MANT (! ou-order) (word 84+5+4)

{word 84+S+5)

8 35

*Operand 1” and “Operand 2" are the values of the source operands, sign-extended as necessary to
be doublewords. If the instruction has only one operand aside from the destination, then “Operand
2” is undefined.

Soft traps include:

0: NO_FAULT No fault has occurred. This trap never occurs; it is defined simply so that
software can use the value “0” to encode the absence of a trap.

I: FLT_OVFL_TRAP
Floating point overflow occurred with FLT_OVFL_MODE=0.

2: FLT_UNFL_TRAP
Floating point underflow occurred with FLT_UNFL_MODE-=0.

3: FLT_NAN_TRAP
The floating point result was not a valid number and FLT_NAN_MODE-=0.

4: INT_OVFL_TRAP
Integer overflow occurred in a signed arithmetic instruction and
INT_OVFL_MODE-=0.

5: INT_Z_DIV_TRAP
Integer division by zero occurred and INT_Z_DIV_MODE=0.

6: BOUNDS_TRAP
The BNDTRP instruction found its argument out of bounds.

7: FFT_TOO_LONG
An FFT instruction was required to operate on a vector whose size exceeded the
maximum for this implementation.
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8: LOST_PRECISION
An instruction such as FSIN or FCOS would deliver an imprecise result because
its source operand is much larger than 1.

9: ILLEGAL_MATRIX_DIMENSION
The INTRAN or TRANSP insruction tried to use a number of rows or columns
that is not a multiple of 8 (for doublewords) or 4 (for singlewords) or 2 (for
halfwards).

10: TAG_TRAP The TAGTRP instruction found that the specified bit of the pointer field is 0.
11: UINT_OVFL_TRAP

Integer overflow occurred in an unsigned arithmetic instruction and
UINT_OVFL_MODE-=0.

194 TRPSLF and TRPEXE Traps

The TRPSLF and TRPEXE instructions effectively let the user add a number of software-defined
instructions to the instruction set. Simply assign a trap vector number to each new instruction and
provide a corresponding trap handler routine to implement the instruction. The trap handler is
provided with access to the instruction’s two operands.

The TRPSLF and TRPEXE opcode modifier selects one of 64 trap vectors each of which may
specify a handler address. Each of the two operands is evaluated as a normal XOP and produces a

singleword code and a doubieword whose content depends on the code:

code = 0. The operand was an ordinary address. The high word of the doubleword is the address
of the operand in pointer format.

code = 1. The operand was a register. The register number is in the high word of the doubleword.
code = 2. The operand was a constant. The doubleword is the constant.

The processor puts these six words in the trap parameter area on the stack in the following order:
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Operand 1 Code (uiord 848}
Operand 1 (2 words) {word 8+45+1)
Operand 2 Code {ord 8+5+43)
Operand 2 (2 words) (word 8+5+4)
g ac {(word 8+4S4P, P=G)

This allows simuiation of most XOP-like instructions. It doesn’t lend itself to simulation of jump-
or skip-like instructions.

19.5 Cross-ring Calls

To simplify the user interface to the operating system, it is desirable to make the mechanism for
calling operating system procedures appear identical with the mechanism for calling external
procedures in general

To achieve this, the architecture provides an instruction called CALLX, a special kind of pointer
called a gate pointer, and a vector of entry points called gates. When the CALLX instruction
employs a ring or user pointer to specify the called procedure, it cannot--due to the validation
mechanism described in Section 1.8.2--call a procedure in a lower-numbered ring. When the

PATT VY inmotvirsti 1 3 it i i 3 i
LLX instruction employs a gate pointer, however, it invokes the trap mechanism which permits

calling a routine in a lower-numbered ring, but sub jects the call to some protective mechanisms.

Thus, the only difference between calling an ordinary external procedure and calling an operating
system procedure is in the TAG field of the pointer used to link to the procedure.

The gate pointer is used to determine the destination ring and gate index. The usual pointer
ADDRESS field is redefined, so the format of a gate pointer is the following:

TAG=1 Reserved| RING INDEX
2 4 5 15 16 17 18 35

A typical operating system would rely on address validation checking to prevent higher-numbered
rings from calling or jumping into lower-numbered rings arbitrarily; a user wishing to call into a
privileged ring would have to use the gate mechanism. (If the operating system mapped itself into
the same address space as the user, it would additionally use the STE.EB execute bracket
mechanism to prevent the user from calling operating system routines except via gates.)
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1.9.6 Hard Traps
Unless otherwise specified hard traps do not use the PARAMETER_AREA. Hard traps are:

0: NO_FAULT No fault has occurred. This trap never occurs; it is defined simply so that
software can use the value *0” to encode the absence of a trap.

Virtual address translation errors: These hard traps are caused by the virtual to physical address
translation process that is described in detail in section 1.7.

I: DSEG_SEGMENTITO_FAULT
The VALID field in the STE for a segmentito within the descriptor segment is
zero, implying the required segmentito is not present in memory. The parameter
area contains a pointer giving the virtual address being referenced.

2: DSEG_PAGE_FAULT
The VALID field in the PTE for a page within the descriptor segment is zero,
implying the required page is not present in memory. The parameter area
contains a pointer which is the virtual address being referenced.

3: SEGMENTITO_FAULT
The VALID field in the STE for a target segmentito is zero, implying the
required segmentito is not present in memory. The parameter area contains a
pointer giving the virtual address being referenced.

4: PAGE_FAULT
The VALID field in the PTE for a target page is zero, implying the required
page is not present in memory. The parameter area contains a pointer which is
the virtual address being referenced.

5: INSTRUCTION_ACCESS_VIOLATION
A word was fetched from the instruction cache that did not have execute permit
access. The saved PC gives the virtual address that did not have access.

6: DATA_ACCESS_VIOLATION
A reference was made to either the data cache or an I/O memory and
insufficient access was available for the reference. The parameter area contains
two words which describe the error. The first is a pointer giving the virtual
address being referenced, including the ring. The second word contains two bits
(right justified and zero filled) which specify the type of reference. The two bits,
MSB and LSB, respecively specify that a read and/or a write reference was made
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to the data cache. The actual type of the fault must be determined by comparing

the effective access field of the virtual address {see section 1.7.3 for details on

how the effective access is calculated) with the two bits specifying the type of
reference.

7: EXECUTE_BRACKET_FAULT

An instruction was fetched from a segment whose execute bracket was too low.
The saved PC specifies the virtual address which faulted. '

8: READ_WRITE_BRACKET_FAULT

A data cache reference was outside the read or write bracket for that segment.
The parameter area contains two words. The first is the last base pointer used
in the effective address calculation (that is, if you indirect to a second pointer
and the second pointer get the fault, it will be that pointer which will appear
here). The second word contains four bits of information right justified and
zero filled. The two least significant bits are the validation level of the address
computation. The upper two bits specify the type of reference that was being
made. The MSB is set if a read is being attempted and the LSB is set if a write
reference is being made. This information combined with the effective access
field for the reference (see section 1.7.3 for details on how the effective access is
calculated) can be used to determine the specific error that occured.

9: OUT_OF_BOUNDS

10-11:

Accessing an operand would have violated segment bounds checking. The
parameter area contains two words the first is the base pointer used in
calculating the referencing address and the second word is the effective address
of the reference.

Reserved.

Pointer errors: The following two faults result from references through pointers. See section 1.8 for

more details.

12: BAD_POINTER_TAG

A MOVP or BASEPTR instruction tried to manipulate a pointer with a fault or
reserved tag, or a BASEPTR instruction attempted to reference a NIL or gate
tagged pointer, or in the course of pointer validation, a MOVP instruction, tried
to alter a ring tag. The parameter area will contain the pointer which caused the
fault, and a second word containing the validation level for the pointer.

13: BAD_ADDRESS_TAG

An address was encountered, during the preperation of an operand, that had a
gate, NIL, fault or relative pointer tag, or whose validation level was in error.
The parameter area contains two words. The first is the last base pointer used
in the effective address calculation (that is, if you indirect to a second pointer
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and the second pointer get the fault, it will be that pointer that will appear here).
The second word contains four bits of information right justified and zero filled.
The two least significant bits are the validation level of the address computation.
The upper two bits specidy the type of reference that was being made. The
MSB is set if a read is being attempted and the LSB is set if a write reference is
being made.

14: ILLEGAL_RELATIVE_POINTER
A relative pointer was encountered in a register.

15: Reserved.
Illegal Instruction Traps:

16: ILLEGAL_INSTRUCTION
The instruction opcode is undefined.

17: PRIVILEGE_VIOLATION
A privileged instruction was encountered while in user mode.

18: RESERVED_ADDRESS_MODE
An OD and/or its associated EW has an undefined value. The parameter area
will contain an singleword integer whose value is 1 or 2 indicating which OD
was in error.

19: OPERAND_NOT_REQUIRED
An instruction was encountered that is defined not to use an operand but the
corresponding OD field is not zero. The parameter area will contain a
singleword integer whose value is 1 or 2 indicating which OD field was not zero
and should have been.

20: ILLEGAL_REGISTER_OPERAND
An instruction specified a register as an operand, but a register is not allowed in
this context. The parameter area contains a singleword whose value is 1 or 2
indicating which operand was at fault.

21: ILLEGAL_CONSTANT_OPERAND
An instruction specified a constant operand, but a constant is not allowed in this
context. The parameter area contains a singleword whose value is 1 or 2
indicating which operand was at fault.
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22-23: Reserved.
Bad Data Format Traps:

24: ALIGNMENT_ERROR
An operand was not properly aligned. The parameter area contains a singleword
integer whose value is 1 or 2 indicating which OD was in error.

25: ILLEGAL_BYTE_PTR
The position or offset field of a byte pointer was invalid. The illegal byte
pointer returned in the parameter area. If the byte pointer is an immediate byte
pointer it will appear in the parameter area as a regular byte pointer but tag and
address will form a NIL pointer.

26: ILLEGAL_SHIFT_ROTATE
The bit count for a shift, rotate, or bit reversal instruction was outside the

permitted range for the instruction in question. The parameter area contains two
words, the first is an integer specifying the precision, in bits, of the operand
being shifted. This is the upperbound on the magnitude of the shift count. The
second word is the invalid shift count.

27: ILLEGAL_REGISTER
One of the privileged register access instructions specified a register or register
file number out of range. The parameter area will contain two words the first
containing the register file being addressed and the second containing the
number of the register being referenced.

28: ILLEGAL_COUNTER
One of the performance counter referencing instructions refered to a
non-existent counter. The parameter area contains the singleword number of the

counter that was referenced.
29-31: Reserved.

Debugging Traps: The machine provides several traps to aid in debugging. For more details on
how address break points work see section 2.16. For more information on how trace, call trace and
ring alarm traps work, see the description of the PROCESSOR_STATUS register in section 1.4

32: INSTRUCTION_BREAK_POINT
The processor fetched an instruction from one of the addresses enabled in the
Instruction Break Point List. The old PC field of the stack entry is the address
that caused the trap.
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83: DATA_BREAK_POINT

The processor fetched an operand from an address enabled in the Data Break
Point List. The parameter area contains two words. The first is the virtual
address being referenced. The second is a two bit field, right justified, zero
filled, which specifies the type of the reference. If the MSB is set a read
reference was attempted; if the LSB is set a write reference was attempted. Both
bits may be set.

84: TRACE_TRAP

The TRACE_PEND bit in PROCESSOR_STATUS is set.

35: CALL_TRACE_TRAP

The CALL_TRACE_PEND bit in PROCESSOR_STATUS is set.

86: RING_ALARM_TRAP

87-39:

The ring of execution exceeded the RING_ALARM field of the
PROCESSOR_STATUS.

Reserved.

Bad User or Processor Status Traps:

40: ILLEGAL_PROCESSOR_STATUS

An illegal processor status was loaded by some means. The parameter area
contains the illegal processor status. The processor status saved in the trap area
is the status before the failed attempt to load a bad processor status.

41: ILLEGAL_USER_STATUS

An illegal user status was loaded by some means. The parameter area contains
the illegal user status. The user status saved in the trap area is the status before
the failed attempt to load a bad user status.

42: ILLEGAL_TRACE_PEND

An instruction (such as SWITCH or RETS) is attempting to resume execution of
an interruptable instruction which was left unfinished due to a trap. The
PROCESSOR_STATUSTRACE_PEND  bit is set. Because the
TRACE_PEND bit could not have been set at this point in the execution of the
interruptable instruction, this indicates that privileged code must have
erroneously set the bit some time between the interrupting of the instruction and
the attempt to resume execution. The trap occurs on the instruction which
attempts to transfer control back to the interruptable instruction, not on the
interruptable instruction itself.
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43: ILLEGAL_PRIORITY
The WIPND instruction specified a priority level outside the range 0. . 31.

44-45: Reserved.
Trap Mechanism Traps:

46: TRAP_INDEX_TOO_BIG
A trap occured where the trap index was larger than the maximum index
specified in the trap descriptor block entry. The parameter area has two words
the first is the trap type, and the second is the trap index that was too big. See
section 1.9.1 for a description of trap types and trap indices.

47: Reserved
Memory System Traps:

48: ILLEGAL_IOMEM
An I/O reference to an I/O memory was illegal because the virtual address

presented as an operand to the I/O instruction mapped to an illegal I/O memory
number. The first word of the parameter area is the virtual address that
mapped to an illegal I/O memory number. The second word contains the illegal
I/O memory number.

1.9.7 Interrupts

There is one interrupt vector for each I/O memory associated with the processor. Interrupts do not
push any PARAMETER information within the stack entry. Interrupts are described further in
Section 1.10.

1.9.8 Recursive Traps

When a trap attempts to push information onto the SP stack, a hard trap may occur due to stack
overflow, a page fault, an access violation, and so on.

If the original trap was not a hard trap, the SP is left at its original position preceding the soft trap
while the hard trap occurs. If the handler for the hard trap solves the stack problem and returns
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with a RETS.R instruction, the operation which caused the sofl Lrap s resias ied and presumably the
original trap will recur, this time completing without encountering a hard trap.

While the processor is trying to locate the trap vector for a trap it may encounter a translation or
pointer error. In the case of all traps except a hard trap this will be converted into a trap of the
appropriate type. This will allow for instance, the ring 3 soft trap descriptor block entry to be in
paged user memory.

In either of these cases, however, if the original trap was a hard trap, the processor will halt. The
front end processor must take appropriate action, since this situation indicates a serious operating
system failure. ’

199 Performance Counter Interrupts
Instructions for manipulating the processor’s performance counters are described in section 2.15.

A counter interrupts whenever its value goes from negative to positive. Thus to generate an
interrupt in 15000 machine cycles, counter number one should be set to ~15000. The processor will
increment this every cycle and when it overflows from -1 to zero it will generate an interrupt from
counter one. The precise allotment of counter functions to counter numbers is implementation
dependent, but the architecture will define counter zero to be a monotonically increasing count of
machine cycles. With the appropriate initial setting and multiplication factor this counter’s value
can be converted to a high resolution wall time clock. Counter one is also defined to count machine
cycles, but is allocated for generating real time interrupt, by setting it to the desired negative value.
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1.10 Input/output

gne or more /O memories, each of which is
A\ L s aAd ’ ‘-t“‘\‘ll i "ll‘ 11 l-)

An S-1 processor perfo
shared between the rocessor and an I/O processor (IOP). The architecture places few
constraints on the IOP, which might be a commercially available minicomputer or specially designed
hardware. Similarly, the architecture does not dictate how to use the memory to control devices, or
how many devices to control through each memory. Instead, these details are determined by the

IOP and by the device handler software within the S-1 processor.

[75]
P
TS e

An I/O memory appears to the S-1 processor as one or more pages of 36-bit singlewords. The IOP
itself may have a much different memory format, because both the hardware and the [JO
instructions themselves can provide transformations between the S-1 processor memory format and
that of the IOP.

g4 .

For proper operation, the S-1 processor must set the IO_PAGE bit within the ACCESS field of
each of the STEs and PTEs corresponding to an I/O memory page. This permits I/O instructions to
access the page and prevents non-1/O instructions from accessing it. The S-1 processor must also set
the READ_PERMIT and WRITE_PERMIT bits to grant the access desired. The RB and WB
fields in each STE entry will also restrict access to I/O pages.

Each 1/O memory has a unique number in the range 0 .. 2181 (Ina multiprocessor system, the
numbers are unique throughout the system, and an attempt by a uniprocessor to refer to an I/O
memory not connected to that uniprocessor causes an ILLEGAL_IOMEM hard trap.) When an I/O
instruction addresses an operand on an I/O page, the usual virtual-to-physical address translation
occurs, and the resulting physical address provides the I/O memory number and the address within

that I/O memory:

Physical Address

0115181 33

2] 15 ] 17
[ /0 Memory Number Offset Within I/0 Memory

A vector I/O transfer performs this translation once for the first element of the vector. It obtains
succeeding elements from succeeding I/O memory locations, without translating their virtual
addresses, even if those elements lie on different pages which might specify different I/O memories
or even main memory. If the length of the vector causes it to overrun the end of the I/O memory,
the result is undefined.

Each I/O memory has one interrupt whose number is the same as that of the I/O memory, an
ENABLE bit which is controlled by the S-1 processor, and a priority ranging from 1 .. 31, which is
controlled by the associated IOP. The S-1 processor itself can have a priority ranging from 0 .. 31
specified by the PRIORITY field in PROCESSOR_STATUS. When an interrupt occurs, the S-1
processor traps through the interrupt vector corresponding to the IfO memory number only if the
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ENABLE bit is true and the priority of the memory is greater than that of the S-1 processor.
Otherwise, the interrupt remains pending until those conditions become true.

If multiple interrupts satisfy those conditions at once, the S-1 processor services them in descending
order of priority. When multiple interrupts have the same priority, the S-1 processor services them
in a consistent order, but the order is implementation-dependent.

Note that setting the S-1 processor priority to 0 permits every I/O memory to interrupt, while setting
it to 31 prevents any I/O memory from interrupting.

Section 1.9 explains how the processor reacts to an 'interrupt, obtaining a new context from the trap
descriptor block entry for I/O interrupts and pushing its old context onto the SP stack. Note that the
PRIORITY field in the new PROCESSOR_STATUS obtained from the interrupt vector is
ignored. Instead, the processor priority is set to match the priority level of the interrupt and, unless
otherwise altered, remains at that level until the interrupt handler returns and restores the old
PROCESSOR_STATUS.

1.10.1 I/O Memory Translation

The I/O processors used with the S-1 need not have 9-bit bytes. Regardless of its own rules about
byte size, each IOP is connected to the I/O memory so that each byte in the IOP maps onto a byte
in the I/O memory (with zero-padding or truncation as need be), and so that as the byte address
within the IOP increases, the address of the corresponding byte within the I/O memory likewise
increases.

Thus, moving character data between the IOP and the S-1 requires no special treatment.

Moving wider pieces of data between the S-1 processor and an IOP having 8-bit bytes requires the
shifting of bits, and may also require reordering of bytes if the two processors disagree on that issue
(eg., MSB first in the S-1 versus LSB first in the 1I0P).

For IOPs with 8-bit bytes, the I/O instructions offer the translations shown in the following
illustration. You can think of the words on the left as being in the I/O memory and those on the
right as being in the S-1 main memory, although the translations are also available with instructions
that move data within the main memory of the S-1. Bits marked “0” are ignored at the source and
set to zero at the destination.
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—READING—
«LRITING—

Q, H, S, D: 8-bit data, MSB or LSB first
(Though the illustration shows an entire singleword, the precisions Q, H, S, and
D move one, two, four, and eight bytes subject to the usual alignment rules.)

8] A (8| B [B] C B8] D |e|B8] A gl B %] C |@ D
1 8 1817 1326 28 35 1 8 19 17 18 26 28 35

MSBI16: 16-bit data, MSB first

Bl A 8| B |B8] C |8 D |e| B A B 2 C D
1 8 1817 1826 28 35 2 919 17 28 27 28 35

LSB16: 16-bit data, LSB first

B8] A |@| B (8| C |8 D |« B B A 8 D C
1 8 1817 18926 28 35 2 918 17 28 27 28 35

MSB32: 32-bit data, MSB first

8] A B8] B |8 C B8] D [|e %] A B C D
1 8 1817 1326 28 35 4 11 12 1928 27 29 35

LSB32: 32-bit data, LSB first

9] A |8 B 8] C |8 D |e ] D C B A
1 8 1817 1826 28 35 4 1112 1928 2728 35

B: Pack 9-bit S-1 bytes into 8-bit IOP bytes

(This translation is used only for purposes (such as storing S-1 words on a disk having
8-bit bytes) where the ordering of bytes does not matter so long as a read operation undoes
any reordering performed by a write operaton. Thus, there is no LSB-first form.)
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1.11 Instruction Execution Sequence

The architecture divides the effect of an instruction into two halves operand evaluation and
chitecture divides the effect of an instruction into two halves, rang aluation and

ope evalu
instruction execution, and requires that the processor behave as if operand evaluation were complete

before instruction execution begins.

Thus, unless otherwise stated, all operands required for execution are prefetched--that is, all address
computations (including indirection) are done and all source operands are available before the
operation specified by the instruction is performed and before results are stored.

The second half, the instruction execution sequence, consists of the following steps:

1. Process interrupts: If an interrupt is pending and has sufficient priority, trap through
the appropriate interrupt vector to the specified interrupt handler. On returning from the
interrupt handler, start at the beginning of step ! again, so that if further interrupts are

pending, they will also be serviced.

2. Process trace traps and clear the TRACE_PEND bit: If the TRACE_PEND bit in
PROCESSOR_STATUS is 1, set TRACE_PEND to 0 so that traps encountered in step 3
do not cause the instruction to be traced redundantly, and invoke the TRACE_TRAP
handler. Next, if the CALL_TRACE_PEND bit in PROCESSOR_STATUS is 1, set
CALL_TRACE_PEND to O so that traps encountered in step 3 do not cause the
instruction to be traced redundantly, and invoke the CALL_TRACE_TRAP handler.
Finally, if either handler was invoked, restart the instruction-execution sequence at step 1.

3. Process pre-operation traps: If any other traps (such as page faults or illegal memory
accesses) that can be detected prior to the operation specified by the instruction are
pending, invoke the appropriate trap handlers. On returning from the last trap handler,
restart the instruction-execution sequence at step 1.

4. Save TRACE_ENB and CALL_TRACE_ENB: Save the values of the TRACE_ENB
and CALL_TRACE_ENB bits internally.

5. Operation: Perform the specific operation defined for this instruction, after first
examining the instruction state. Some lengthy instructions--vector instructions, for
example—are said to be interruptable. This means that an interrupt can suspend execution
during step 5, saving the state of the instruction execution on the SP stack in
INSTRUCTION_STATE as described in Section 1.9. Thus, if the instruction is known to
be interruptable, and INSTRUCTION_STATE indicates the instruction is in such a state
of suspended execution, step 5 will pick up where execution left off; otherwise, step 5 will
start from the beginning.

When an instruction is interrupted in the fashion just described, the processor proceeds to
execute the instructions of the trap handler, following this sequence for each one. On
returning from the trap handler, the processor reencounters the interrupted instruction,
and begins processing it again from step 1. Only when the processor reaches step 5 and
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interrogates INSTRUCTION_STATE does it become clear that this is the resumption of
a suspended instruction.

6. Process post-operation traps: If any traps (such as arithmetic overflow) resulted from
step 5, invoke the appropriate trap handlers.

7. Set TRACE_PEND and CALL_TRACE_PEND: If the value of TRACE_ENB saved
in step 4 is 1, set TRACE_PEND to 1. Thus, if tracing was enabled when this instruction
commenced or if this instruction itself sets TRACE_PEND during step 5, a trace trap will
occur on the following instruction even if the following instruction disables tracing.

Similarly, if the value of CALL_TRACE_ENB saved in step 4 is 1, and the instruction
just executed in step 5 was a call or return (Section 2.11 defines these), then set

CALL_TRACE_PEND to 1.

8. Clear the instruction state.
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2 Instruction Set

This section describes the S-1 native mode instruction set. For conciseness, it assumes familiarity
with the architecture as described in Section 1; for example, instead of explicitly stating the number
and types of operands for each instruction, it simply classifies each instruction as an XOP, TOP,
HOP, SOP, or JOP. Similarly, it avoids restating again and again the rules given in Section 1 for
vector operands.
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2.1 Integer Arithmetic

Signed integer arithmetic instructions interpret their operands--whether quarterwords, halfwords,
singlewords, or doublewords--as two's complement data. For any given precision, we call the largest
positive integer MAXNUM and the negative integer with the largest magnitude MINNUM.

Precision MINNUM MAXNUM

Quarterword ~ -256 255

Halfword -131 072 181 071

Singleword -34 359 738 368 34 359 738 367

Doubleword -2 361 183 241 434 822 606 848 2 361 183 241 434 822 606 847

The unsigned integer data type uses no sign bit, making all bits of the word available for
representing magnitude. Thus, whereas a signed quarterword ranges from -8 t0 281, an unsigned
quarterword ranges from 0 to 99 We call the largest positive unsigned integer UMAXNUM.

The primary difference between the signed and unsigned arithmetic is in the treatment of overflow.
We define separate overflow traps and bits for signed and unsigned arithmetic.

2.1.1 Integer Arithmetic Exceptions

Inside the USER_STATUS register, four bits called CARRY, INT_OVFL (signed integer
overflow), UINT_OVFL (unsigned integer overflow), and INT_Z_DIV (integer division by zero)
record the side effects or exceptions that occur during integer arithmetic. INT_OVFL,
UINT_OVFL and INT_Z_DIV are sticky—-that is, integer arithmetic operations may set them but
never clear them, so once one of these bits is set it remains set until explicitly cleared by
manipulating USER_STATUS. CARRY is not sticky; instructions which affect CARRY will clear
it if they do not set it.

CARRY Carry-out or borrow-in from integer arithmetic.

INT_OVFL Signed integer overflow (that is, the result is greater than MAXNUM or the
result is less than MINNUM).

UINT_OVFL Unsigned integer overflow (that is, the result is greater than UMAXNUM or the
result is less than zero).

INT_Z_DIV Integer division by zero.

For example, the following three instructions set CARRY, INT_OVFL, and INT_Z_DIV:
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INC.S RTA, #-1 : -1+1 invokes CARRY
INC.S RTA,#1[377777,,777777]1 ;3 MAXNUM+1 invokes INT_OVFL
RECIP.S RTA s Remainder (RTA/8) invokes INT_Z_ DIV

Three additional fields called INT_OVFL_MODE, UINT_OVFL mode and INT_Z_DIV_MODE
tell the processor how to respond to the INT_OVFL and INT_Z DIV exceptions
respectively--whether to trap or what to use as the result of the arithmetic operation which
encountered the exception. (Note that setting one of the exception bits by manipulating
USER_STATUS will not produce the specified response; the bit must be set by integer arithmetic):

INT_OVFL_MODE
0 Invoke INT_OVFL_TRAP soft trap without storing a result.
1 Retain as many low-order bits of the result as will fit in the operand (9
bits for quarterwords, 18 for halfwords, etc.)

UINT_OVFL_MODE
0 Invoke UINT_OVFL_TRAP soft trap without storing a result.
1 Retain as many low-order bits of the result as will fit in the operand (9
bits for quarterwords, 18 for halfwords, etc.)

INT_Z_DIV_MODE
0 Invoke INT_Z_DIV_TRAP soft trap without storing a result.
1 Use 0 as the result.

212 CARRY Algorithm
To determine whether a particular instruction sets CARRY, evaluate the following formula. XI,
X2, and X3 are the values shown for that instruction in the following table, and C_IN is the state of
CARRY at the beginning of the instruction:

CARRY = (X1<@ A X2<B) v [(X1<B v X2<8)} A (X1+X2+X3 = 8}1]

In the following table, “~” means one’s-complement; and “~1” is the two’s-complement of 1.
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Instruction X1 X2 X3
ADD S1 S2 0
ADDC S1 S2 C_IN
SUB S1 -~52 1
SUBV -S1 S2 1
SUBC S1 =82 C_IN
SUBCYV -S1 S2 C_IN
INC 1 OP2 0
(ie, CARRY:=1 if OP2 = -1)
DEC -1 oP2 0
(ie, CARRY:=1if OP2 <> 0)
NEG 0 -~0OP2 1
(ie, CARRY:=1 if OP2 = 0)
NEGC 0 -OP2 C_IN
ABS 0 -OP2 1
(only if OP2 is negative)
UADD S1 S2 0
USUB S1 ~S2 1
USUBY -S1 S2 1

VBADD sets CARRY according to the last addition (ie, the addition involving the first,
high-order elements of the vector operands) VBSUB, VBSUBV, and VBNEG behave in the
analogous fashion.

2.1.3 Integer Rounding Modes

Integer rounding occurs during division, modulus, and conversion from a real number to an integer
under control of the INT_RND_MODE field of the USER_STATUS register. Using the
WRNDMD.INT instruction, it may be assigned any of the rounding modes explained in section
225 (which describes the rounding modes in the context of floating point numbers); however, any
instruction which uses INT_RND_MODE, resets it to diminished-magnitude. This permits you to
select an unusual rounding mode which remains in effect only until the end of the next instruction
which invokes rounding.
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2.1.4 Integer exceptions during vector instructions

When an integer arithmetic instruction can affect CARRY, the corresponding vector instruction (if
any) leaves CARRY in an undefined state. When an integer arithmetic instruction can -affect
INT_OVFL, the corresponding vector instruction will leave INT_OVFL set to the logical OR of the
settings for each of the scalar operations it performs.

2.1.5 Integer Arithmetic Instructions
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ADD Integer add
ADD . {QH.S,D} TOP
VADD . {SR,OP1}. {H,S.D} VaVV

Purpose: ADD performs DEST:=S51+52. VADD adds each element of vector OPl to the
corresponding element of vector OPZ, storing the result either back in vector OP1 or in the vector -
pointed to by SRO.

Restrictions: None
Exceptions: CARRY, INT_OVFL
Precision: For the scalar instruction, S1, $2, and DEST each have the precision specified by the

modifier. For the vectar instruction, each element of each vector has the precision specified by the
modifier.

I Carry is set by the following instruction. Note that 777 has the signed interpretation -1 and the I
unsigned interpretation 2%-1:

L

ADD.Q RTA, #333,#777 +RTA: =332 (QW) I
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ADDC Integer add with carry

ADDC . {Q,H,S,D} TOP
Purpose: DEST:=51+S2+CARRY

Restrictions: None

Exceptions: CARRY, INT_OVFL

Precision: S1, S2, and DEST all have the precision specified by the modifier.

o . ..
I Carry is set after the execution of the first instruction, and cleared atter the secona: l

ADD.Q RTA, #666,#777 ;RTA: =665 (QW)
ADDC.Q RTA,RTA, #1 ;RTA: =667 (QW)

Assume INT<OVFLMODE is set not to trap. The following adds two “quadruple-word”
integers at X and Y represented as a pair of DWs with the low-order DW having the higher
address. The result is stored in X and X+8:

ADD.D X+8.,Y+8.
ADDC.D X,Y

Similarly, suppose that NUM 1 and NUMZ are two blocks of singlewords, each of length N (N22)
and representing an N-word integer, with lower-order words having higher addresses. These
can be added and the result stored in an (N+1)-word block NUMS3 in this manner:

MOV.S.S RTB, #<N-1> sRTB counts words
ADD.S RTA,NUM1 [RTB142,NUM2 [RTB112 sadd |low-order words
MOV.S NUM3+4x1 [RTBI*2,RTA ;store iow-order result

LOOP: ADDC.S RTA,NUML-4x1 [RTB]112,NUM2-4%1 [RTB142 ;add next words plus carry
MOV.S.S NUM3IRTBI142,RTA sstore next word
DJMPZ.GTR RTB,LOOP ;0JMPZ does not alter carry!
CMPSF.LSS.S RTA,NUML, #0 sproduce sign-extension of
CMPSF.LSS.S RTB,NUMZ2, #0 s+ NUML and NUMZ2

I ADDC.S NUM3,RTA,RTB sproduce high-order result l
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SuB Integer subtract
SUB . {QH.S.D} TOP
SUBV . {Q,H,S,D} TOP
VSUB . {SR,OP1}. {H,S,D} V:i=VV
VSUBV . {SR,0P1} . {H,S,D} VvV

Purpose: SUB computes DEST:=51-82; SUBV computes DEST:=52-S1. VSUB and VSUBYV are
the vector equivalents of SUB and SUBV respectively; they both put the result either back into
OP1 or into the vector pointed to by SRO.

Restrictions: None
Exceptions: CARRY, INT_OVFL

Precision: For the scalar instructions, S1, S2, and DEST each have the precision specified by the
modifier. For the vector instructions, each element of each vector has the precision specified by the
modifier. '

This example subtracts 1 from -1 to obtain -2. After execution, CARRY is set, INT_OVFL is
unchanged, and RTA contains -2:

SUB.S RTA,#-1,#1 sRTA:=-2 |
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SUBC ' Integer subtract with carry
SUBC . {QHS,D} TOP
SUBCV . {Q,H,S,D} TOP

Purpose: SUBC computes DEST:=S1-52-1+CARRY; SUBCYV computes DEST:=S2-SI—1+CA_RRY.
Restrictions: None
Exceptions: CARRY, INT_OVFL

Precision: S1, S2, and DEST all have the precision specified by the modifier.

Let X and Y be two pairs of DWs representing a long integer with the low-order DW having l
the lower address. The following sets X to the difference of X and Y:

SuB.D X,Y
SUBC.D X+8.,Y+8.

L
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MULT Integer multiply

MULT . {QH,S,D} TOP
Purpose: MULT computes DEST:=LOW_ORDER(S1%S2).

Restrictions: None

Exceptions: INT_OVFL

Precision: For the scalar instruction, S1, S2, and DEST all have the precision specified by the
modifier.

I INT_OVFL is set by the following instruction which multiplies 333 octal by 3, giving a |
" result——1221 octal--which is larger than can fit in nine bits:

l MULT.Q RTA,#1(3331,#3 ;RTA: =221 (QW)

_
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MULTL Integer multiply long, long result

MULTL . {Q,H,S} TOP
Purpose: DEST:=S1xS2

Restrictions: None

Exceptions: None

Precision: S1 and S2 have the same precision as the modifier. DEST has a precision twice that of
the modifier and must be aligned accordingly.

The following instruction does not set INT_OVFL since the result fits in a halfword:

MULTL.Q RTA,#[3331,#3 ;RTA:=081221 (HW)
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UADD Unsigned integer addition

UADD . {QH,5,D} TOP
Purpose: DEST := S1 + $2, where the operands are unsigned numbers.

Restrictions: None

Exceptions: UINT_OVFL occurs if the true result exceeds the precision of the destination.

Precision: S1, $2, and DEST all have the precision specified by the modifier.

I The following forms the sum of the two constant operands. Since the true result is greater than
29—1, the CARRY and UINT_OVFL bits are set. RTA is assigned the low order bits of the
result.

L

UADD.Q RTA,#777,#4 s+ RTA := 3 I
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USUB Unsigned integer subtraction
USUB . {QH.S,D} TOP
USUBV . {QH,S,D} TOP

Purpose: USUB computes DEST:=S$1-82, and USUBV computes DEST:=S2-S1, where the operands
are unsigned numbers. '

Restrictions: None

Exceptions: UINT_OVFL occurs if the true result is less than zero.

Precision: S1, S2, and DEST all have the precision specified by the modifier.

l—;;le following computes the difference of the two constant operands. Since the true result is less

than zero, the CARRY anc UINT_OVFL bits are set. RTA is assigned the low order bits of
the result.

I USUB.Q RTA, #4,#777 ;s RTA := § |
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UMULT Unsigned inleger multiply

UMULT . {QH,S,D} TOP
Purpose: DEST:=LOW_ORDER(S1%S2)

Restrictions: None '

Exceptions: UINT_OVFL occurs if the true result exceeds the precision of the destination.

Precision: $1, 52, and DEST all have the precision specified by the modifier.

‘ The following instruction puts the low order QW of the unsigned square of 99-1in RTA. This l
value is the low-order nine bits of 2‘8—2l°+1, that is, 001. Since the full result is greater than
9%_1, INT_OVFL is also set:

| UMULT.Q RTA,#777,#777 (QW) I
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UMULTL Unsigned integer multiply, long result

UMULTL . {Q,H,S} TOP
Purpose: DEST:=S 1%S2

Restrictions: None

Exceptions: None

Precision: S1 and S2 have the same precision as the modifier. DEST has a precision twice that of
the modifier and must align accordingly.

| The following instruction puts the unsigned square of 291 in RTA. This value is
218910, 1—that is, 776001:

L

UMULTL.Q RTA,#777,#777 ; RTA:=7760801 (HW) I
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RECIP, MDIV, MDIVH Integer division and modulus
RECIP . {QH,S.D} XOP
MDIV . {FL,US} . {QH.5.D} XOP
MDIVH . {FL,US} . {Q,H.S,D} TOP
URECIP . {QH.S,D} XOP
UMDIV . {QH,S,D} XOP
UMDIVH . {QH,S,D} TOP

Purpose: Integer division and modulus are accomplished with combinations of these instructions.
We will describe in detail the RECIP, MDIV, and MDIVH instructions, which perform signed
arithmetic. The URECIP, UMDIV, and UMDIVH instructions are the corresponding instructions
for unsigned arithmetic. In the descriptions, *Precision” represents 9, 18, 36, or 72 bits, according to
the {Q,H,S,D} modifier:

The RECIP instruction computes a scaled reciprocal with an error e such that 0 <= abs(e) < 1. OP2
has the precision of the {Q,H,S,D} modifier. OP1 becomes a fixed-point fraction, twice the precision
of the {QH,S,D} modifier, whose binary point lies between bits 2 and 3. Thus -4 <= OP1 < 4

OP1 := (2 %% (2 % <Precision> - 3) / OP2) - ¢

The MDIV instruction is used following a RECIP instruction and preceding an MDIVH instruction
when both integer division and modulus are desired. It takes in OP2 the fixed-point fraction
generated by RECIP, multiplies it by OP1, and undoes the scaling so as to put into RTA the result
of an integer division and to put into RTB a partial result which MDIVH can operate on. OP2
and RTB have twice the precision of the {QH,S,D} modifier. OPl and RTA have the same
precision as the {QH,S D} modifier. If the {FL,US} modifier is FL, the instruction uses the floor
rounding mode. If the {FL,US} modifier is US, it uses the rounding mode from the
INT_RND_MODE field of the USER _STATUS register, and resets resets that field to
diminished-magnitude rounding; this permits you to select a particular rounding mode which
remains in effect for a single operation and then returns to the standard mode (treating all numbers
as integers):

RTA = Round(OP1 % OP2/ 2 %% (2 % <Precision> - 3));
RTB := OP1 x OP2 - (RTA x (2 %% (2 x <Precision> - 3)));

The MDIVH instruction performs the “first half” of the MDIV instruction, taking in S2 the
fixed-point fraction generated by RECIP (or as the intermediate result of an MDIV instruction),
multiplying it by S1, and undoing the scaling so as to put into DEST the result of an integer
division. DEST and S1 have the precision of the {QH,S,D} modifier. S2 has twice the precision of
the {Q,H,S,D} modifier. The {FL,US} modifier serves the same purpose as it does in MDIV:

DEST := Round(S1 % S2 / 2 xx (2 % <Precision> - 3));
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URECIP is similar to RECIP, but 0 < aebs{e) <= 1, and the binary point lies to the left of bit 0 of the

double-nrecision result, so that 0 <= OP1 < |

Uow CTPPATLASIULE oW, SU LRL Y = 01 S 1.

QP1 := (2 %% {2 % <Precision>) / OP2) - ¢
UMDIYV is similar to MDIV, but all operands are unsigned and only the floor rounding mode is
appropriate. Note that UMDIV.D is precisely an unsigned multiply of doubleword 0P2 times

quadword OP], storing a six-word result into the registers starting at RTA:

RTA := Floor(OP1 x OP2/ 2 %xx (2 % <Precision>));
RTB := OP1 x OP2 - (RTA % 2 %x (2 % <Precision>));

UMDIVH is similar to MDIVH, but all operands are unsigned and only the floor rounding mode is
appropriate:

DEST := Floor(S1 x S2 / 2 %x (2 % <Precision>));
Restrictions: None

Exceptions: INT_OVFL can occur with the signed instructions; INT_Z_DIV can occur with both
the signed and unsigned instructions.

Precision: See the discussion under “Purpose”.

| To obtain both integer division and modulus using the Floor rounding mode: l

20

RECIP.S RTB,DIVISOR ; RTB is DW
MDIV.FL.S DIVIDEND,RTB ; RTA := DIVIDEND DIV DIVISOR
MDIVH.FL.S RTB,DIVISOR,RTB

s RTB := DIVIDEND MOD DIVISOR

.

To obtain both integer division and modulus using any desired rounding mode (note that in
this sequence, you should apply the desired rounding mode to the MDIV instruction but not to
the MDIVH instruction, which should use the Floor rounding mode in order to obtain the
correct modulus):

RECIP.S RTB,DIVISOR ; RTB is DU
WANDMD. TMP <RNDMODE>
MDIV.US.S DIVIDEND,RTB ; RTA :
MDIVH.FL.S RTB,DIYISOR,RTB

s RTB :

DIVIDEND DIV DIVISOR

DIVIDEND MOD DIVISOR
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To obtain integer division, using the Floor rounding mode:

RECIP.S RTA,DIVISOR ; RTA is DM
MDIVH.FL.S RTA,DIVIDEND,RTA
s+ RTA := DIVIDEND DIV DIVISOR

To obtain integer division, using any desired rounding mode:

RECIP.S RTA,DIVISOR s RTA is DU
WRNDMD. TMP <rounding mode> ’
MDIVH.US.S RTA,DIVIDEND,RTA
s+ RTA := DIVIDEND DIV DIVISOR

One advantage of these sequences of instructions in comparison with explicit DIV and MOD
instructions is that whenever DIVISOR is constant, the RECIP operation (which is by far the

most expensive one) can be done at compile time:

MDIVH.FL.S RTA, [HRECIP36 ? LRECIP361,DIVIDEND

RTA := DIVIDEND DIV 36. uhere the
concatenation of HRECIP36 with
LRECIP36 is the doubleword value
which RECIP X,36. would compute —_l

.
’
°
’
K
’
.
’

L
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INC Integer increment

INC . {Q,H,S.D} XOpP

Purpose: OP1:=OP2+1

Restrictions: None

Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

F‘T‘le following adds one to RTB and stores the result in RTA. _—I
INC.S RTA,RTB  ;RTA:=RTB+1

If the source and destination are identical, ADD is preferable from a performance standpoint:

I ADD.S RTA, #1 ;RTA: =RTA+1 |
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DEC Integer decrement

DEC . {QH,S,D} XOop

Purpose: OP1:=OP2-1

Restrictions: None

Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

I—T;le following subtracts one from A and puts the result in B: —.I
DEC.S B,A 1Br=A-1

If the source and destination are identical, SUB is preferable from a performance standpoint:

‘ SuUB.S B,#1 ;B:=B-1 I
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TRANS Signed integer translate
TRANS . {QH,SD}. {Q,H,S,D} XOp
VTRANS . {QHS,D} . {QHS.D} Vi=v

Purpose: TRANS copies a signed integer from OP2 to OP1, converting its precision if necessary by
sign-extending or by discarding high order bits. '

VTRANS performs TRANS on individual elements of vector OP2 and stores the result in vector
OPI1. If the source and destination vectors have the same precision, the vectors may overlap; the
instruction guarantees not to alter any element of the source until it has copied that element to the
destination.

If the source vector's precision exceeds that of the destination vector, the two vectors may be
identical, but must not otherwise overlap.

If the source vector’s precision is less than that of the destination vector, the two vectors may not
overlap at all.

Restrictions: None
Exceptions: INT_OVFL

Precision: OP1 has the precision of the first modifier and OP2 has the precision of the second
modifier.

I The second instruction illustrates the sign-extension of TRANS:

L

MOV.H.Q RTA, #-1 sRTA: =888777 (HW)
TRANS.H.Q RTA, #-1 sRTA:=777777 (HW) l
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NEG Integer negate
NEG . {Q,H,S,D} Xop
VNEG . {H,S,D} VaV

Purpose: For NEG, OP Li=two’s-complement(OP2).

VNEG performs NEG on each element of the vector beginning with OP2 and stores the results in
the vector beginning with OP1.

Restrictions: None
Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

| The following negates the value in RTA: |

NEG.S RTA sRTA:=-RTA

This piece of code jumps to TWOPOWER if the non-negative singleword integer in HUNOZ
is an exact power of two (where zero is considered to be such a power):

NEG.S RTA, HUNOZ s RTA: =-HUNOZ
ANDCT.S RTA,HUNOZ s RTA: = (-RTA) AHUNGZ
JMPZ.EQL.S RTA, TWOPOWER ; jump if RTA now is zero

The BITCNT instruction can be used to do the same thing if zero is not to be considered a

I power of two. I
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NEGC
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Integer negate with carry

NEGC . {QH,S,D}

Purpose: OP l:=one’s-complement(OP2) + CARRY.
Restrictions: None

Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

The following negates a quadword integer in R8:

NEG.D R8,R8 ; negate low order part
NEGC.D R12,R18 ; negate high part

XOP

|
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ABS Integer absolute value
ABS . {QHS,D} Xopr
VABS . {H,S,D} V=V

Purpose: For ABS, OP 1:=abs(OP2).

VABS performs ABS on each element of the vector beginning at OP2 and stores the results in the
vector beginning at OP 1.

Restrictions: None
Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

The following takes the absolute value of RTB and puts it in RTA:

ABS.S RTA,RTB  ;RTA:=|RTB|
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MIN Integer minimum
MIN . {QH.S.D} TOP
VMIN . {SR,OP1}. {H,S,D} V:i=VV

Purpose: MIN stores in DEST the smaller of the signed integers S1 and S2.

VMIN performs MIN on a series of pairs: one element from the vector beginning with OP1 and the
corresponding element of the vector beginning with OP2. If the first modifier is OP1, results go
back into the vector beginning with OP1; if it is SR, they go into the vector pointed to by SRO.

Restrictions: None
Exceptions: None

Precision: For MIN, operands S1, S2, and DEST all have the precision specified by the {Q,H,S,D}
modifier. For VMIN, the elements of each vector have the precision specified by the {H,S,D}
modifier.

The following sets RTA to 0 if RTA is positive:

MIN.S RTA,RTA,#8
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MAX Integer maximuin
MAX . {QH,S,D} TOP
VMAX . {SR,OP1}. {H,S,D} V:i=VV

Purpose: MAX places in DEST the larger of the signed integers S1 and S2.

VMAX performs MAX on a series of pairs: an element from the vector beginning with OP1 and
the corresponding element of the vector beginning with OP2. If the first modifier is OP1, the
instruction stores the results back into the elements of vector OP; if the modifier is SR, it stores the
results into the vector pointed to by SRO.

Restrictions: None
Exceptions: None

Precision: For MAX, S1, $2, and DEST all have the precision specified by the {Q,H,S,D} modifier.
For VMAX, the elements of each vector have the precision specified by the {H,S,D} modifier.

I The following sets RTA to 100 if RTA is less than 100: |
MAX.S RTA,RTA, #1001

Suppose that A and B are two byte pointers. Then the following instruction puts in RTA the
byte pointer which indicates the byte starting higher in memory than the other; or, if they start
at the same bit, whichever points to the longer byte. (This is a consequence of the representation
of byte pointers--see Section 2.9). Similarly, all D-precision integer comparison
instructions—such as MIN.D, CMPSF.D, SKP.D, etc--can be used to compare byte pointers in
this fashion:

I MAX.D RTA,A,B sRTA := pointer to higher byte I
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LMINMAX Lengthwise integer minimum and maximum

LMINMAX . {HS,D} §$8:=V
Purpose: Select the minimum and maximum elements of a vector of signed integers whose first
element is OP1. Put the minimum in RTA and the maximum in RTB. If the vector length is zero
or negative RTA will be set to MAXNUM and RTB will be set to MINNUM.

Restrictions: None

Exceptions: None

Precision: RTA, RTB, and each element of vector OP1 have the precision of the modifier.

-

The following sets RTA to -4 and RTB to I6:

MOV.S.S SIZEREG, #7

I LMINMAX.S [7 ? 12, ? -2 ? -4 ? 8. ? 16. ? 31 ,
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ADDSUB Integer add-and-subtract
ADDSUB . {QH,S,D} XOP
ADDSUBYV . {QH,S,D} XOP
VADDSUB . {Q,H,S,D} VV=VV
VADDSUBV. {Q,H.S.D} VV=VV _

Purpose: ADDSUB computes the sum and difference of a pair of integers:

TEMP := OP1 + OP2;
OP2:= OP1 - OP2;
OP1 := TEMP;

ADDSUBY reverses the roles of OP1 and OP2 on input:

TEMP = OP2 + OPI;

OP2:= OP2 - OPJ;

OP1:= TEMP;
VADDSUB and VADDSUBYV perform the analogous operations on successive elements of vectors.
Restrictions: None

Exceptions: CARRY, INT_OVFL

Precision: OP1, OP2, and each element of each vector have the precision specified by the modifier.

Compute the sum and difference of 4 and &

|

MOY.S.S RTA, 4
MOV.S.S RTB,5

‘ ADDSUB.S RTA,RTB ; RTA:=3; RTB:=-1 l
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2.2 Floating Point Arithmetic

2.2.1 Floating Point Data Format

Floating point data can occur in three of the four standard precisions: halfword, singleword, or
doubleword. The floating point representation is made up of three fields: SIGN, EXP, and MANT.

SIGN| EXP MANT

g 1 656 17
Halfword floating point format

SIGN EXP MANT

g 1 910 35
Singleword floating point format

SIGN EXP MANT

g 1 15 16 71
Doubleword floating point format

SIGN is 1 if the floating point number is negative.

EXP is the exponent, expressed in excess-16 format in halfword precision, excess-256 format for
singleword precision, or excess-16384 format for doubleword precision. If SIGN is 1 (that is, the
number is negative, EXP is one’s complemented.

MANT represents only part of the true mantissa of the number; to obtain the entire mantissa,
concatenate the sign bit, a hidden bit, a binary point, and the MANT field and treat as a 2’s
complement number:

<SIGN><hidden bit>.<MANT>

The result of concatenating these fields is a two’s complement number. This number is always
normalized to obey the following:

1 < mantissa < 2
or
-2 < mantissa < -1

As a result, <hidden bit> and SIGN are always opposites, and it is possible to omit <hidden bit>
from the floating point representation and infer its value from that of SIGN.
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To summarize: if the sign is zero, the number is:

<entire mantissa> x 2 (<exponent> - <excess>)

whereas if the sign is one, the number is:

'
<entire mantissa> % 2 (one’s complement(<exponent>) - <excess>)

Converting to floating point format: While the FLOAT instruction automatically converts an
integer to floating point format, the following description of an algorithm for doing so may help
make the format clear:

1. Set the SIGN field of the floating point version to 0.

2. Muttiply a copy of the number by 2%, where you choose x so the result is greater than or
equal to 1 but less than 2. Set the EXP field to (-x+16) for a quarterword, (-x+256) for a
singleword, or (-x+16384) for a doubleword.

3. Starting with the most significant bit of the original number, discard bits until you
encounter the first 1-bit. Discard it, too. Place the remaining bits into the MANT field,
left-justified.

To convert zero to floating point format, set the entire word to O (zero is an exceptional case).

To convert a negative integer to floating point format, take its absolute value and represent that
according to the steps just given for positive integers. Then take the two's complement negation of
the entire floating point representation, without regard to format.

(For the skeptical, here is an outline for a proof that two's-complement negation works correctly on
floating point numbers. If MANT <> O then no carry from the two’s-complement operation can
reach the EXP field, since it will be absorbed by the right-most, non-zero MANT bit. Therefore,
the EXP field will be one’s-complemented. If MANT = 0 then there are three cases. Case 1: The
floating point number was originally negative. The mantissa was, therefore, -2.0 and the floating
point number was -2°XPOMeNt*1  when this number is two's—complemented, the MANT field is still
zero but the EXP field is two’s-complemented. The mantissa becomes 1 and the carry from the
fraction has increased the exponent by one. This gives 1xgeXponenttl o gexponent+l ihe negative
of the original number. Case 20 The floating point number was originally zero. The
two's-complement of zero is zero. Case 3: The floating point number was originally positive. The
mantissa was, therefore 1 and the floating point number was ]*2exponent- When this number is
two's—complemented, the MANT field is still zero but the EXP field is two’s complemented. The
mantissa becomes -2.0 and the carry from the fraction has decreased the exponent by one. (It
increased the EXP but decreased the one’s-complement of the EXP). This gives _(2~0)*2exponent—l
or _2exponent, the negative of the original number.)
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Here are a few examples of the floating point format for halfwords:

Halfword 10.0

SIGN=0

EXP=-(-3)+16= 19=238

MANT=(hidden 1)010 000 000 0002=20008
Result: 232 0008

Halfword -10.0
Two’sComplement(232 000g)=546 0004

Halfword 3.14156

SIGN=0

EXP=-(-1)+16=17=2 l8

MANT=(hidden 1)100 100 100 0102=44428
Result: 214 4‘128

2.2.2 Integrity of Floating Point Arithmetic

105

The architecture specifies that floating point arithmetic will be performed so that the following

equalities hold for all floating point values A and B:

A+0.0=A
A+B=B+A
~«{-A)=A
A+(-B)=A-B=—(B-A)
Ax1.0=A
AxB=BxA
Ax0.0=0.0 unless A is NAN
~AxB)=(-A)xB

2.2.3 Floating Point Exception Values

Besides zero, five floating point numbers have special meanings.
number with the greatest magnitude (in a given precision) is called OVF (overflow).

The positive floating point
The

two’s—complement of OVF is called MOVF (minus overflow). The smallest positive floating point
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number is called UNF (underflow). The largest negative floating point number is called MUNF
(minus underflow). The floating point number with the sign bit set to 1 and all other bits set to 0 is
called NAN (not a number); all floating point instructions consider it illegal.

OVF, MOVF, UNF, MUNF, and NAN correspond to side effects or exceptions that occur during
floating point arithmetic. One happy consequence of the floating point format is that each of the
special floating point values has the same bit representation as an easily recognizable integer, as the
following table shows:

Name Meaning Integer with identical
- bit representation
OVF Positive overflow MAXNUM
MOVF  Negative overflow MINNUM + 1 (ie, -MAXNUM)
UNF Positive infinitesimal +1
MUNF  Negative infinitesimal -1
NAN Indeterminate ("not MINNUM

a number”)

The range of values representable in the three floating point precisions is approximately the
following:

Precision Underflow Overflow Digits
Halfword 158 x 1070 6.55 x 10 391
Singleword 863 % 10778 116 x 1077 813
Doubleword 841x 107493 119x 101%%2 1716

2.2.4 Comparing Floating Point Values

Another happy consequence of the floating point format is the ability to compare floating point
numbers as if they were signed integers, without decoding the format. Thus, the architecture does
not need a separate set of test and branch instructions for floating point numbers (although it does
provide such instructions to enhance performance).

Integer comparisons will treat the floating point exception values in an intuitively reasonable
fashion, too. For example, they will treat MUNF as greater than any other negative value but less
than zero. The only exception is NAN, which will be treated not as an illegal value but as a value
that is less than any other floating point value.

Every integer which is not identical with a floating point special symbol is identical with a legal
floating point value. For example, the following table expresses in octal the integers corresponding to
certain halfword floating point values:
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OVF 377777 octal
Maximum legal positive value 371776
Minimum legal positive value 000002
UNF 000001
Zero 000000
MUNF 117771
Maximum legal negative value 111776
Minimum legal negative value 400002
MOVF 400001
NAN | 400000

225 Floating Point Rounding Modes

During floating point operations, rounding of the result may be necessary. The FIX instruction
includes a modifier that specifies how it rounds; all other floating point instructions which round
their results do so according to the field FLT _RND_MODE in the USER_ST ATUS register.
Instructions RRNDMD.FLT and WRNDMD.FLT (Section 2.2) read and write that field.

Let F be the magnitude of the difference between a true floating point result, R, and the greatest
representable floating point number N which is less than or equal to R, expressed as a fraction of
the least-significant representable bit of R. The bits of FLT_RND_MODE have the following
functions (reversals of rounding direction accumulate):
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Bit Yalue Lttect
0 0 Round as specified by FLT_RND_MODE<I:4>
1 Reserved.
1 0 If F <> 0, round as specified by FLT_RND_MODE<2:4>
else deliver R exactly.
1 If F = 1/2 then round as specified by FLT_RND_MODE<2:4>
else round to the floating point number nearest to R.
2 0 Round toward negative infinity.
1 Round toward positive infinity.
3 0 No effect.
1 If the least significant bit of the mantissa of N is one,
reverse the rounding direction.
4 0 No effect.
1 If and only if R is negative, reverse the rounding direction.

Various combinations of the above bits provide a variety of rounding modes. Some of the more
common modes are:

FLT _RND_MODE (octal Function

0 Floor

1 Diminished magnitude

4 Ceiling

5 Augmented magnitude

12 Stable

14 Half rounds toward positive

infinity (PDP-10 FIXR)
15 Approximate PDP-10

FLTR rounding

Inexact rounding: Certain instructions exhibit inexact rounding--that is, the uncertainty in their
rounding behavior slightly exceeds the uncertainty specified for floating point computations in
general. The list of instructions which exhibit this characteristic is implementation dependent.
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2.2.6 Floating Point Exception Handling

In the USER_STATUS register, four bits record “side effects” or exceptions by floating point
arithmetic operations: '

FLT_OVFL Floating point overflow (that is, the result of the instruction is greater than or
equal to OVF or less than or equal to MOVF).

FLT_UNFL Floating point underflow (that is, the result of the instruction is less than or
equal to UNF and greater than or equal to MUNF, but not equal to zero).

FLT_NAN Floating point result is “not a number” (NAN).

These bits are “sticky”--that is, floating point instructions may set them but not clear them, so once a
bit is set it will remain set until explicitly cleared via manipulation of USER_STATUS.

In the following example, the first instruction sets FLT_OVFL, the second sets FLT_UNFL, and the
third sets FLT_NAN:

FSUBY.H RTA, #9, # (4800011 s OP2 is MOVF to begin with
FSC.H RTA, #(0100001 ,#-1 ; Result too small to represent
FOIV.H RTA,#8 s Division by 8 is undefined

In addition to these exception bits, USER_STATUS contains fields called FLT _OVFL_MODE,
FLT_UNFL_MODE, and FLT_NAN_MODE which tell the processor how to react to FLT_OVFL,
FLT_UNFL, and FLT_NAN exceptions respectively. (Note that setting an exception bit by
manipulating USER_STATUS will not invoke the specified behavior; the bit must be set during
floating point arithmetic):

FLT_OVFL_MODE<0:1>

0 Invoke FLT_OVFL_TRAP soft trap without storing a result.

1 If the result was positive, use OVF as the result; if it was negative, use
MOYVTF as the result.

2 Retain the sign and mantissa but replace the EXP field with a
wrapped-around exponent.

3 Undefined. Attempting to set this value in the user status register

causes an ILLEGAL_USER_STATUS hard trap.
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FL1T_UNFL_MODE

0
1

FLT_NAN_MODE
0
1
2,3

<:i>
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Invoke FLT_UNFL_TRAP soft trap without storing a result.

If the result was positive, use UNTF as the result; if it was negative, use
MUNF as the result.

Retain the mantissa and sign of the result, but replace the EXP field
with a wrapped-around exponent.

Use floating point 0.0 as the result.

Invoke FLT_NAN_TRAP soft trap without storing a result.

Use NAN as the result.

Undefined. Attempting to set these values in the user status register
causes an ILLEGAL_USER_STATUS hard trap.

2.2.7 Propagating Floating Point Exceptions

If either operand of a floating point instruction is one of the exception values, the instruction
propagates the exceptional condition according to a precisely defined algorithm.

The tables in this section describe the standard propagation algorithm for all operations. (The
algorithm is implemented in tables in RAM within the S-1 processor, so a front end processor could
dictate a different algorithm if desired.)

In the tables, X and Y are assumed to be “ordinary” positive floating point numbers--that is, greater

o~ v —

PR s et

than UNF and iess than OVF--which do not in themseives invoke exceptions.

Unary operations

A FNEG (A) FABS (A) FIX(A) FTRANS (A)
#OVF | OVF OVF INT_OVFL MOVF
MUNF UNF UNF ) MUNF
UNF MUNF UNF 2 UNF
OVF MOVF OVF INT_OVFL OVF
NAN NAN NAN INTZOVFL NAN
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Addition (A+B)

A B—
*QVF

-X

MUNF

")

UNF

X

OYF
NAN

Multiplication (A+B)

A B—
%DVF

-X

MUNF

2

UNF

X

OVF

NAN

Division (A /B)

A B—
ﬁDVF

=X

MUNF

B

UNF

X

avF

NAN

MOVF  -Y MUNF %] UNF Y OvF NAN
MOVE  MOVF MOVF MOVF MOVF MOVF NAN NAN
MOVE  -X-Y -X -X -X -X+Y OVF NAN
MOVE  -Y MUNF MUNF 2 Y OVF NAN
MOVF  -Y MUNF %] UNF Y OVF NAN
MOVE  -Y 8 UNF UNF Y OVF NAN
MOVF  X-Y X X X X+Y OvVF NAN
NAN ay OYF OvF OVF OvVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN
MOVF  -Y MUNF %] UNF Y OvF NAN
QVF OvF NAN 8 NAN MOVF MOVE NAN
ave XY UNF a MUNF —XokY MOVF NAN
NAN UNF UNF g MUNF MUNF NAN NAN
] ) 2 ] 2 8 2 NAN
NAN MUNF MUNF %) UNF UNF NAN NAN
MOVE  -XxY MUNF %] UNF XxY DVE NAN
MOVF  MOVF NAN B NAN OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN
MOVF  -Y MUNF 2} UNF Y OvF NAN
NAN OVF OVE NAN MOVE MOVF NAN NAN
UNF X/Y OVF NAN MOVF -X/Y MUNF NAN
UNF UNF NAN NAN NAN MUNF MUNF NAN
8 %) 2 NAN 2 ] %) NAN
MUNF  MUNF NAN NAN NAN UNF UNF NAN
MUNF  -X/Y MOYE NAN OVFE X/Y UNF NAN
NAN MOYF MOVF NAN OvVE OvE NAN NAN
NAN NAN NAN NAN NAN NAN NAN NAN
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The rules for the remaining instructions are simple enough to state without using additional tables:

FSUB

FMAX, FMIN

FSC

The algorithm behaves as if the processor applied FNEG to the second argument

and then performed FADD.

If either argument is NAN, the result is NAN. Otherwise, the algorithm
considers MOVF<-X<MUNF<0<UNF<X<OVF for any unexceptional positive
number X.

The exponentiation portion of the instruction FSC or FSCV is effectively done
in infinite precision and will not produce an exception; the subsequent
multiplication follows the rules given in the tables.
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2.2.8 Floating point exceptions during vector instructions

A vector floating point instruction affects these bits in USER_STATUS as would a loop which
applied the corresponding scalar floating point instruction to the elements of the vector(s) in order.

2.2.9 Floating Point Arithmetic
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FADD Floating point add
FADD . {HS,D} TOP
VFADD . {SR,OP1} . {H,S,D} Vi=VV

Purpose: FADD computes DEST:=S1+S82. VFADD adds each element of OP1 to the corresponding
element of OP2 and stores the result either back into OP1 or into the vector pointed to by SRO.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: For the scalar instruction, Si, 52, and DEST ali nave the precision specified by the
modifier. For the vector instruction, each element of each vector has the precision specified by the
modifier.

l The first instruction adds 1.0 to RTA. The second instruction doubles RTA; alternatively, I
FMULT, FSC, or FDIV might be used:

FADD.S RTA,#1[1.81]
FADD.S RTA,RTA ;RTA: =2.8xRTA; FSC RTA,#1 is preferable |

L
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FSuB Floating point subtract
FSUB . {HS,D} TOP
FSUBV . {H,S,D} TOP
VFSUB . {SR,OP1} . {H,S,D} Vi=VV
VFSUBYV . {SR,OP1} . {H,S,D} V:=VV

Purpose: FSUB calculates DEST:=S1-S2. FSUBV calculates $2-S1. VFSUB and VFSUBYV are the
analogous vector instructions; they both put the r}esult either back into OP1 or into the vector
pointed to by SRO.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: For the scalar instructions, S1, $2, and DEST all have the precision specified by the
modifier. For the vector instructions, each element of each vector has the precision specified by the
modifier.

The following subtracts a floating point value of one from RTA:

FSUB.S RTA,#I[1.0] ;RTA: =RTA-1.09
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FMULT Floating point multiply
FMULT . {H,S,D} TOP
VFMULT . {SR,OP1} . {H,S,D} V:=VV

Purpose: FMULT computes DEST:=S1xS2. VFMULT multiplies each element of OP1 by the
corresponding element of OP2 and stores the result either back into OP1 or into the vector pointed
to by SRO.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN
Precision: For the scalar instruction, S1, $2, and DEST all have the precision specified by the

modifier. For the vector instruction, each element of each vector has the precision specified by the
modifier.

I The following instruction doubles the value in RTA. Alternatively, FSC, FADD, or FDIV l
might be used:

l FMULT.S RTA,#[2.01] ;RTA: =RTA%2.2 '
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FMULTL Floating point multiply, long result

FMULTL . {H,5} TOP

Purpose: DEST:=S1xS2. Note that the long result format will have more than twice as many
mantissa bits as either operand.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. (These can occur only if one of the operands
was a floating point exception value to begin with. The operation of multiplication itself cannot
overflow or underflow because DEST has such a large exponent field.)

Precision: S1 and S2 have the same precision as the modifier. DEST has precision twice that of the
modifier and must align accordingly.

p—

The following instruction will place in RTA all significant bits of the square of X:

FMULTL.S RTA,X,X s RTA: =Xx%2
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FDIV Floating point divide
FDIV . {H,S,D} TOP
FDIVV . {H,S,D} TOP
VFDIV . {SR,OP1}. {H,S,D} Vi=VV
VFDIVV . {SR,0OP1} . {H,S,D} V:=VV

Purpose: FDIV computes the floating point quotient, S1 divided by S2, and stores it in DEST.
FDIVYV swaps the roles of S1 and S2.

VFDIV divides each element of the vector beginning with OP1 by the corresponding element of the
vector beginning with OP2 and stores the results either in the vector pointed to by SRO (if the
modifier is SR) or back into the vector beginning with OP1 (if the modifier is OP1).

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: For FDIV and FDIVV, S, S2, and DEST all have the precision specified by the
modifier. For VFDIV, the elements of all three vectors have the precision specified by the modifier.

——

The following instruction doubles the value in RTA. Alternatively, FADD, FMULT or FSC
might be used:

FDIV.S RTA,#18.5] ;RTA:=RTA/8.5=2. 8xRTA

H H v IARESTY
I— a—
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FRECIP Floating point reciprocal
FRECIP . {H,S,D} XOP
VFRECIP . {H,S,D} XOP

Purpose: OP1 := 1.0 / OP2. In most implementations, FRECIP offers higher performance than
FDIV but inexact rounding. '

VFRECIP is a vector version of FRECIP. Assuming that "i" increments by the precision of the
modifier, they compute:

FOR i:= 0 TO SIZEREG-1 DO
OPI1[i]:= 1.0 / OP2[i]

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: OP1 and OP2 have the same precision as the modifier.

pret—— B

The following instruction reciprocates 2.0:

FRECIP.S RTA,#2.8 ; RTA := 8.5
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FDIVL Floating point divide, long dividend
FDIVL . {H,S} TOP
FDIVLV . {H,S} TOP

Purpose: FDIVL divides S by S2 in floating point and stores the result in DEST.
FDIVLYV, the reverse form, divides S2 by S1 instead.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: For FDIVL, S2 and DEST have the precision of the modifier. S1 has precision twice
that of the modifier and must align accordingly.

For FDIVLYV, S1 and DEST have the precision of the modifier and S2 has twice that precision

, The following uses a doubleword 1.0 to reciprocate a singleword in RTA. Note that this is ,
NOT the same constant that would be used for FDIV:

I FDIVL.S RTA,#[200808,,8 ? !8]1,RTA ; RTA:=1.8 (DW) / RTA l
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FSC Floating point scale
FSC . {H,S,D} TOP
FSCV . {H,S,D} TOP

Purpose: DEST := S1 % 952 51 is a floating point number and S2 is a signed integer.

FSCV computes the floating point number S2 % 951 where S2 is a floating point number and Sl is
a signed integer.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. (FLT_OVFL and FLT_UNFL are not set
during the exponentiation, which is done with unlimited precision.)

Precision: For FSC, $1 and DEST have the same precision as the modifier and $2 is a singleword.
For FSCV, $2 and DEST have the precision of the modifier and Sl is a singleword.

The following instruction may be used to double the value in RTA. Alternatively, FADD, |
FMULT, or FDIV might be used:

FSC.S RTA,#1 ;RTA: =RTA*2xx (1) =2. 8xRTA °

u _
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FIX Convert floating point to fixed (integer)
FIX . {QH.SD}. {HS.D} XOP
VFIX . {H,S,D}. {H,S,D} =

Purpose: FIX converts the floating point number specified by OP2 into an integer and stores it in
OP1. VFIX converts each element of the vector beginning with OP2 to an integer and stores the
result in the corresponding element of the vector beginning with OP1.

These instructions use the rounding mode given in the INT_RND_MODE field of the
USER_STATUS register, and then reset it to diminished-magnitude rounding.

For YFIX, if the two vectois have equal precision, they may overlap. If the precision of the source
vector exceeds that of the destination, the two vectors may be identical but must not otherwise
overlap. If the precision of the destination vector exceeds that of the source, the two vectors must not
overlap at all. Violating these rules produces undefined results.

Restrictions: None
Exceptions: INT_OVFL
Precision: For FIX, OP1 has the precision of the second modifier and OP2 has the precision of the

third modifier. For VFIX, the elements of OP1 have the precision of the first modifier and the
elements of OP2 have the precision of the second.

I The following converts a floating point value in RTA into an integer using floor rounding.

IAn.. -3

WRNDMD. INT #8
FIX.US.S.S RTA,RTA

L _
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FLOAT Convert to floating point
FLOAT . {HS,D} . {QH.S,D} Xop
VFLOAT . {H,S,D} . {QH,S,D} V:=VS$S

Purpose: FLOAT converts the integer OP? into a floating point number in OP1:
OP1 := FLOAT(OP2);

VFLOAT converts each element of vector OP2 into a floating point number, multiplies it by a
floating point scaling factor in RTA, and stores the result in the corresponding element of OP1:

FOR I:= 0 TO SIZEREG DO
OPI[I]:= RTA x FLOAT(OP2[I])

If the two vectors have the same precision, they may overlap. If the precision of the source vector
exceeds that of the destination vector, the two vectors may be identical but may not otherwise
overlap. If the precision of the destination vector exceeds that of the source, the vectors must not
overlap. Violating these rules produces undefined results.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. (Provided you use the scalar instruction or set
RTA=1.0 when using the vector instruction, the only possible exception is FLT_OVFL, and it can
occur only on FLOATH.S and FLOAT.H.D; for all other conversions, the floating point format
can express the corresponding integer with--at worst—only the loss of the least significant bits.)

Precision: OP1 has the precision of the first modifier. OP2 and RTA have the precision of the
second modifier.

| The following converts an integer to a floating point number without scaling: |

FTRANS.S.S RTA, #[1.08]
FLOAT.S.S FLOATING, INT

The following converts a halfword integer to a halfword floating point number, scaling it so that
overflow cannot occur:

FTRANS.H.H RTA, #10.125]

I FLOAT.H.H FLOATING, INT |
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FTRANS Floating point translate
FTRANS . {H,S,D} . {H,S,D} XOP
VFTRANS . {H,S,D} .{H,S,D} V=V

Purpose: FTRANS copies a floating point number from OP2 to OP1, converting its precision if
necessary. '

VFTRANS performs FTRANS on individual elements of vector OP1 and stores the result in vector
OP2. If the source and destination vectors have the same precision, the vectors may overlap; the
instruction guarantees not to alter any element of the source until it has copied that element to the
destination.

If the source vector’s precision exceeds that of the destination vector, the two vectors may be
identical, but must not otherwise overlap.

If the source vector’s precision is less than that of the destination vector, the two vectors may not
overlap at all.

In some implementations FTRANS.S.S will offer better performance than MOV.S.S when operating
on floating point data because a series of floating point instructions permits the processor to
maintain the data in an internal format that is easier to handle.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. If OP?2 has no greater precision than OP],
then these can occur only if OP2 is one of the floating point exception values.

Precision: OP2 has the precision of the second modifier. OP1 has the precision of the first
modifier.

l The following illustrates the precision alteration possible with FTRANS. The exact values
produced  will, in general, depend on the rounding mode defined in
USER_STATUSFLT_RND_MODE:

L

FTRANS.S.D RTA, #[200000,,8 ? 18] ; Funny constant is 1.8 DW |
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FSELECT Floating point conditional move

FSELECT {RTARTB}. {HSD} TOP

Purpose: This instruction selects one of two values to be stored into the destination based on a flag
in RTA or RTB. That is, it performs: IF {RTA,RTB} <> 0, then DEST := S2 else DEST := S1.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. These can occur only if OP2 is one of the
floating point exception values.

Precision: OP1 and OP2 have the precision of the modifier; the RTx operand is a singleword.
|| The following shows to select one of two values for a variable depending on a condition. |I

CMPSF.LEQ.S RTA,I,J IFT <=J ...
FSELECT.RTA.S.S RTA,R,S 3 ... THEN P := S ELSE P := R

I FTRANS.S.S P,RTA |
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FNEG Floating point negate
FNEG . {H,S.D} XOP
VFNEG . {H,S,D} V=V

Purpose: FNEG negates the floating point number in OP2 and stores the result in OP1. VFNEG
performs NEG on each element of the vector beginning at OP2 and stores the results in the vector
beginning at OP1.

The difference between NEG and FNEG is that FNEG handles floating point exceptions.
Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: OP1 and OP2 have the same precision as the modifier.

| These examples show how floating point exceptions are propagated by FNEG. I
FNEG.H RTA, #-1 ;RTA: =MUNF, signal FLT_UNFL
FNEG.H RTA,#677777 ;RTA: =0VF, signal FLT_OVFL

| FNEG.H RTA, #400000 ;RTA:=NAN, signal FLT_NAN l
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FABS Floating point absolute value
FABS . {H,S,D} Xop
VFABS . {HS,D} VeV

Purpose: FABS takes the floating point absolute value of OP2 and stores it in OP1. In comparison
with ABS, FABS handles floating point exceptions.

VFABS performs FABS on each element of the vector OP2 and stores the results in the vector
OP1. :

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: OP1 and OP2 have the same precision as the modifier.

I These examples show how the uses of FABS and ABS on floating point numbers differ. l

ABS.H RTA,#([-1] sRTA:=-1, no side effects
FABS.H RTA, #[-11 sRTA: =MUNF, signal FLT_UNFL
ABS.H RTA,#[3777771 +RTA: =MAXNUM, no side effects

FABS.H RTA, #[377777] sRTA:=0VF, signal FLT_OVFL
ABS.H RTA, # [-4000800] ;RTA:=NAN, signal INT_OVFL
I FABS.H RTA, # [-4028000] +RTA:=NAN, signal FLT_NAN I
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FMIN Floating point minimum
FMIN . {H,5,D} TOP
VFMIN . {SR,OP1}. {H,S,D} Vi=VV

Purpose: FMIN places in DEST the smaller of the floating point numbers S1 and S2. The primary
difference between MIN and FMIN is that FMIN properly propagates the floating point exception
values.

VFMIN performs FMIN on a series of pairS: an element of the vector beginning with OP1 and the
corresponding element of the vector beginning with OP2. If the first modifier is OPI, the results go
back into the elements of vector OP; if it is SR, they go into the elements of the vector pointed to
by SRO.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: For FMIN, S1, S2, and DEST all have the precision specified by the {H,S,D} modifier.
For VFMIN, the elements of vector OP1, vector OP2, and the vector pointed to by SRO all have the
precision specified by the {H,S,D} modifier.

This instruction sets RTA to the smaller of X and 43.0:

FMIN.S RTA,X,#[43.8]
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FMAX Floating point maximum
FMAX . {H,S,D} ' TOP
VFMAX . {SR,0OP1}. {H,S,D} V:=VV

Purpose: FMAX places in DEST the larger of the floating point numbers S1 and S2. The primary
difference between MAX and FMAX is that FMAX properly propagates the floating point '
exception values.

VFMAX performs FMAX on a series of pairs: an element of the vector beginning with OP1 and
the corresponding element of the vector beginning with OP2. If the first modifier is OP1, the results
go back into the elements of vector OP1; if it is SR, they go into the elements of the vector pointed
to by SRO.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN
Precision: For FMAX, S1, S2, and DEST all have the precision specified by the {H,S,D} modifier.

For VFMAX, the elements of vector OP1, vector OP2, and the vector pointed to by SRO all have
the precision specified by the {H,S,D} modifier.

l This sequence of instructions takes the number F and “clips” it to be within the window of |
[0.0,1.0]:

FMAX.S RTA,F,#98.9 slarger of F and 8.8 to RTA
S F,RTA #1.8

semailer of that and 1.8 to F

vy . -|
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FSQR Square
FSQR . {H,S,D} Xop
VFSQR . {H,S,D} V=V

Purpose: Compute the square of a floating point number:
OP1 := OP2 x OP2
VFSQR performs FSQR on each element of vector OP2 and places the results in vector OP1.
Restrictions: None
Exceptions: FLT_OVL, FLT_UNFL, FLT_NAN

Precision: Both OP1 and OP2 have the precision specified by the modifier.

p——

The following leaves the square root of 625.0 in RTA:

FSQR.S RTA,#25.08 ; RTA := 625.8
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FADDSUB Floating point add and subtract
FADDSUB . {H,S,D} XOP
FADDSUBV . {HS,D} XOP
VFADDSUB . {HS,D} VViVV
VFADDSUBV . {H,S,D} VV:i=VV

Purpose: FADDSUB computes the sum and difference of a pair of floating point numbers:
TEMP = OP1 + OP%;
OP2:= OP1 - OP2;
OPI1 := TEMP;
FADDSUBY computes:
TEMP := OP1 + OP2;
OP2 := OP2 - OP1;
OP1 := TEMP;
VFADDSUB and VFADDSUBYV perform the analogous operations on vectors.
Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN.

Precision: OP1, OP2, and each element of each vector have the precision specified by the todifier.

I Compute the sum and difference of 4.0 and 5.0 |

MOY.S.S RTA,4.8
MOY.S.S RTB,5.8

! FADDSUB.S RTA,RTB s RTA:=9.8; RTB:=-1.9 I
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2.3 Complex Arithmetic

ord compl
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a either signed integer or
floating point format. A complex number actually consists of two consecutive integers or floating
point numbers; the one at the lower memory or register address is the real part and the one at the

higher address is the imaginary part.

For scalar complex numbers, the real and imaginary parts must align to form a single entity of twice
the precision. Thus, a halfword complex number occupies two halfwords or one singleword (and
must align as a singleword).

For vectors, alignment is unnecessary. The first integer or floating point number in the vector is
considered real, the second is considered imaginary, the third is considered real, and so on.
SIZEREG must contain the number of complex entities in the vector, not the number of individual
integers or floating point numbers in the vector. Thus, if the precision of a vector of compiex
numbers is “S” and SIZEREG=n, the vector contains 2n singlewords.

REAL PART Minl
IMAGINARY PART M In+41]

Figure 2-1
A singleword complex number
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CADD Complex add
CADD . {H,S} TOP
FCADD . {H,S} TOP

Purpose: CADD adds complex integers and FCADD adds complex floating point numbers:

FIRST(DEST):=FIRST(S1) + FIRST(S2); (x Real part %)
SECOND(DEST):=SECOND(S1) + SECOND(S2); (x Imaginary part %)

Restrictions: None

Exceptions: CARRY and INT_OVFL for the integer instruction; FLT_OVFL, FLT UNFL and
FLT_NAN for the floating point instruction.

Precision: DEST, S1, and S2 obey the precision and alignment rules for complex numbers.

The following leaves in RTA and RTA1 the sum of the complex numbers 4+i5 and 3+il2.

CADD.S RTA, (4 ? 5],(3 ? 12.] ; RTA := 7; RTAL := 17.
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csuB Complex subtract
CSUB . {H.S} TOP
CSUBYV . {H,S} TOP
FCSUB . {H.S} TOP
FCSUBV . {HS} TOP

Purpose: CSUB subtracts complex integers and FCSUB subtracts complex floating point numbers:

FIRST(DEST):=FIRST(S1) - FIRST(S2); (x Real part x)
SECOND(DEST).=SECOND(S1) - SECOND(S2); (% Imaginary part x)

CSUBY and FCSUBY reverse the roles of S! and S2.
Restrictions: None

Exceptions: CARRY and INT_OVFL for the integer instructions; FLT_OVFL, FLT_UNFL and
FLT_NAN for the floating point instructions.

Precision: DEST, S1, and S2 obey the precision and alignment rules for complex numbers.

| The following leaves in RTA and RTA1 the difference of the two complex numbers 4+i5 and I
$+i12.

CSuB.S RTA,[4 ? 51,[3 ? 12.1 ; RTA :=1; RTAl := -7

_ —
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FCMULT Complex multiply
FCMULT . {H,S} TOP
VFCMULT . {SR,OP1} . {H,S} Vi=VV

Purpose: FCMULT multiplies complex floating point numbers:

FIRST(TEMP):=FIRST(S1) x FIRST(S2) -
SECOND(S1) ¥ SECOND(S2); (x Real part x)
SECOND(TEMP).=FIRST(S1) x SECOND(S2) +
SECOND(S1) x FIRST(S2); (x Imaginary part x)
DEST:=TEMP;

VFCMULT multiplies the vector at OP1 with the vector at OP2, putting the results either back
into OP1 or into to the vector pointed to by SRO.

Restrictions: None
Exceptions: FLT_NAN, FLT_OVFL, and FLT_UNFL

Precision: For the scalar instruction, DEST, S1, and S2 obey the precision and alignment rules for
complex numbers; for the vector instruction, OP1 and OP2 obey the precision rules for complex
vectors.

The following leaves in RTA and RTAI the result of multiplying the complex numbers 4.0+i5.0 |
and 3.0+i12.0:

FCMULT.S RTA, (4.8 ? 5.9],[3.8 ? 12.8] ; RTA := -48.8; RTAl := 63.0 l
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FCDIV Complex divide
FCDIV . {H,S} TOP
FCDIVV . {HS} TOP
VFCDIV . {SR,OP1}. {H,S} V=VV
VFCDIVV . {SR,OP1}. {H,S} V:=VV

Purpose: FCDIV divides complex floating point numbers (using additional precision internally to
avoid overflow):

FIRST(TEMP) := (FIRST(S1) x FIRST(S2) + SECOND(S1) x SECOND(S2)) /
(FIRST(S1) %% 2) + (SECOND(S2) xx 2);

SECOND(TEMP) := (SECOND(S1} x FIRST(S2) - FIRST{S1} x SECOND{(S2)} /
(FIRST(S1) %% 2) + (SECOND(S2) xx 2);

DEST := TEMP;

FCDIVYV swaps the roles of SR1 and SR2.

VFCDIV divides the vector at OP1 by the vector at OP2, putting the result either back into OP1
or into the vector pointed to by SRO. VFCDIVV divides OP2 by OPI, putting the results either
back into OP1 or into the vector pointed to by SRO.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: For the scalar instructions, DEST, S1, and S2 obey the precision and alignment rules for
complex numbers. For the vector instructions, OP1 and OP2 obey the precision rules for complex
vectors.

P

The following leaves in RTA and RTA1 the result of dividing the complex numbers 4.0+i5.0
and 3.0+i12.0:

FCOIV.S RTA,#(4.0 ? 5.81,[3.8 ? 12.8] ; RTA:=0.47; RTA1:=8.22 I
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CNEG Complex negate
CNEG . {H,S} XOP
FCNEG . {H,S} XOr

Purpose: CNEG negates a complex integer and FCNEG negates a complex floating point number:

FIRST(OP1):=two’s-complement(FIRST(OP2));
SECOND(OP l):=two’s-complement(SECOND(_OP?));

Restrictions: None

Exceptions: CARRY, INT_OVFL for the integer instructions; FLT_OVFL, FLT_UNFL,
FLT_NAN for the floating point instructions.

Precision: OP1 and OP2 obey the precision and alignment rules for complex numbers.

The following leaves in RTA and RTA1 the result of negating the complex number 4+i5:

CNEG.S RTA, [4 ? 5] s RTA := -4; RTAl := -5;
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VCCONJ Complex con jugate
VCCON] . {H S} ViV
VFCCON] . {H,S} ViV

Purpose: VCCON ] computes the conjugate of a vector of complex integers while VFCCON]
computes the con jugate of a vector of complex floating point numbers: '

FOR i:= 0 TO SIZEREG-1 DO
BEGIN
FIRST(OPI1[i]) := FIRST(OP2[il)
SECOND(OP1[i)) := two’s complement(SECOND(OP2[i]));
END;

Restrictions: None

Exceptions: CARRY, INT_OVFL for the integer instruction, FLT_OVFL, FLT_UNFL,
FLT_NAN for the floating point instruction.

Precision: OP1 and OP2 obey the precision rules for complex vectors.

I The following computes the complex conjugate of 25 complex integers; SOURCE is a vector of I
50. singlewords, and so is RESULT:

MOV.S.S SIZEREG, #25.

| VCCONJ.S RESULT, SOURCE I
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FCMAG Complex magnitude
FCMAG . {H,S} Xop
VFCMAG . {H,S} ViV

Purpose: This computes the magnitude of a floating point number:
OP1 := SquareRoot(FIRST(OP2) %x 2 + SECOND(OP2) xx 2)

VFCMAG is a vector version of CMAG. The destination vector OP1 contains half as many
quarterwords as the source vector OP2, and thus SIZEREG (consistent with the rule for complex
vector instructions) can be thought of as either the number of {halfwords, singlewords} in the
destination or the number of complex entities in the source.

Restrictions: None

Exceptions: INT_OVFL for the integer instructions; FLT_NAN, FLT_OVFL, and FLT_UNFL for
the complex instructions.

Precision: For the scalar instructions, OP1 has the precision of the modifier while OP2 obeys the
precision and alignment rules for a complex entity of that precision. For the vector instructions, OP1
is a vector having the precision of the modifer and OP2 is a vector of complex entities of that
precision.

The following finds the length of the hypotenuse of a right triangle whose sides have lengths of
3 and 4

FCMAG.S RTA, [3,8? 4,81 ; RTA := 5.8
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CMAGSQ Complex magnitude squared
CMAGSQ . {H,S} XOP
FCMAGSQ . {H.S} XOP
VCMAGSQ . {H,S} 2
VFCMAGSQ . {H.S} V=

Purpose: Compute the square of the scalar magnitude of a complex number.

CMAGSQ regards the complex number as a pair of signed integers, while FCMAGSQ regards it as
a pair of floating point numbers.:

OPi := FIRST(OP2)%xZ + SECOND{OPZ)xx2

VCMAGSQ and VFCMAGSQ are vector versions of CMAGSQ and FCMAGSQ,. Assuming that
“” increments by the precision of the modifier, they compute:

FOR i:= 0 TO SIZEREG-1 DO
OP1[i] := FIRST(OP2[2xi)xx2 + SECOND(OP2[2xiT)xx2

Restrictions: None

Exceptions: INT_OVFL (for CMAGSQ and VCMAGSQ), FLT_NAN, FLT_OVFL, and
FLT_UNFL (for FCMAGSQ and VFCMAGSQ)

Precision: For CMAGSQ and FCMAGSQ, OPI1, FIRST(OP2), and SECOND(OP?) have the
precision specified by the modifier. FIRST(OP2) and SECOND(OP2) must align together to form
an entity having twice that precision.

For VCMAGSQ and VFCMAGSQ), the elements of all three vectors have the precision specified by
the modifier.

e ]

The following finds the sum of the squares of 3 and 4:

CMAGSQ. S RTA, [3 ? 4] ; RTA := 25
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FSQRT Square root
FSQRT . {H,S,D} XOP
VFSQRT . {H,S,D} =V

Purpose: Compute the principal square root in floating point: OPl:=SquareRoot{(OP?2).

VFSQRT performs FSQRT on each element of vector OP2 and places the results in vector OP 1.
The implementation is guaranteed to be ‘monotonic—-that is, if x2y then SQRT(X)ZSQ_RT(y).
Attempting to take the square root of a negative number invokes FLT_NAN, which will result in
either a FLT_NAN_TRAP soft trap or NAN, depending on the setting of USER_STATUS.
Restrictions: None

Exceptions: FLT_NAN

Precision: Both OP1 and OP2 have the precision specified by the modifier.

The following leaves the square root of 25 in RTA:

FSQRT.S RTA,#25.8 ; RTA :=5.0
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FLOG Floating point logarithm (base 2)
FLOG . {HS,D} XOP
VFLOG . {H,S,D} Vv

Purpose: FLOG computes the base 2 logarithm of OP2 and stores the result in OP1. The results
are guaranteed to be monotonic—-that is, if x2y then FLOG(x)2FLOG(y). '

VFLOG performs FLOG on each element of OP2 and places the result in the corresponding
element of OP1.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. Taking the logarithm of a non-positive
number invokes FLT_NAN, resulting in either NAN or a FLT_NAN_TRAP soft trap, depending

on the setting of USER_STATUS.

Precision: OP1 and OP2 have the precision specified by the modifier.

I The following leaves RTA set to the base 2 logarithm of 32: l

FLOG.S RTA,#32.0 ; RTA := 5.0

Using the rule that logyz = log,z / logob, the following instructions compute the base 10
logarithm of 1000.0:

FLOG.S RTB,#18.9 ; RTB := base 2 log of 10.9
FLOG.S RTA,#1098.9 3 RTA := base 2 log of 19998.9

l FDIV.S RESULT,RTA,RTB ; RESULT := 3.8 |
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FEXP Floating point exponential (base 2)
FEXP . {HS.D} XOP
VFEXP . {H,S,D} Vi=

Purpose: Raise 2.0 to a power: FEXP computes OP 1:=2.0xxOP2. VFEXP performs FEXP on each
element of OP2 and places the result in the corresponding element of OP1. The results are
guaranteed to be monotonic--that is, if x2y then FEXP(x)2FEXP(y).

Restrictions: None

Exceptions: FLT_NAN, FLT_OVFL, FLT_UNFL

Precision: OP1 and OP2 have the precision specified by the modifier.

I Using the rule that xxxy = 2xx(y x log2x), the following raises 81.0 to the power 0.25: I

FLOG.S RTA,#81.8
FMULT.S RTA, #8.25 RTA := 8.25 x FLOG(81.9)

l FEXP.S RTB,RTA s RTB := 3.0 |
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FSIN Floating point sine
FSIN . {H,S,D} XOP
VFSIN . {H,S,D} ViV

Purpose: FSIN computes OP1:=Sine(OP2). OP2 specifies the angle in cycles--that is, a “1.0"
corresponds to 360 degrees or 2xPI radians.

VFSIN performs FSIN on each element of OP2 and places the result in the corresponding element
of OP1L.

Restrictions: None
Exceptions: FLT_NAN

Precision: Both operands have the precision specified by the modifier.

| The following computes the sine of an angle expressed in degrees: I
MOV.S.S ANGLE,#398.8 s 30 degrees
FDIV.S RTA,ANGLE, #3608.0 ; convert to cycles

| FSIN.S RTA s RTA := 8.5 I
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FCOS Floating point cosine
FCOS . {H,S,D} XOoP
VFCOS . {H,S,D} V=V

Purpose: FCOS computes OP1:=Cosing({OP2). OP?2 specifies the angle in cycles—-that is, a “1.0”
corresponds to 360 degrees or 2xPI radians. '

VFCOS performs FCOS on each element of OP2 and places the result in the corresponding element
of OP1. |

Restrictions: None
Exceptions: FLT_NAN

Precision: Both operands have the precision specified by the modifier.

l The following computes the cosine of an angle expressed in degrees: I
MOV.S.S ANGLE,#68.0 ; 60 degrees
FDIV.S RTA,ANGLE, #360.0 ; convert to cycles

I FCOS.S RTA s RTA := 0.5 '
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FSINCOS Floating point sine and cosine

FSINCOS . {H,S,D} XOP

Purpose: Computes FIRST(OP 1):=Cosine(OP2) and SECOND(OP 1):=Sine(OP2). OP2 specifies the
angle in cycles—-that is, a “1.0” corresponds to 360 degrees or 2xPI radians.

Note that because the cosine appears in the first anyword of the pair and the sine in the second, the
result can be used as a complex number.

Restrictions: None
Exceptions: FLT_NAN

o~ T

Precision: FIRST(OP1), SECOND(OP1), and OPZ have the precision specified by the modifier.
FIRST(OP1) and SECOND(OP1) must align together to form an entity having twice that precision.

I The following computes both the sine and the cosine of an angle expressed in degrees; I

MOV.S5.S ANGLE, #60.9 ; B9 degrees
FDIV.S RTA,ANGLE,#368.8 s convert to cycles
FSINCOS.S RTA s+ RTA := 9.866...; RTAl := 8.5

L |
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FATAN Floating point arctangent
FATAN . {H,S,D} TOP
FATANYV . {H,S,D} TOP
VFATAN . {SR,OP1}. {H,S,D} V:=VV

Purpose: FATAN computes DEST:=Arctangent(S1/S2). Expressing the tangent as a qhotient
instead of a single value allows the instruction to determine the correct quadrant for the result,
which lies between -0.5 and 0.5 inclusive. Multiplying the result by 2%PI yields a value in radians.

FATANY, the reverse form, swaps the roles of S1 and S2.

VFATAN performs FATAN on each pair of elements, one from vector OP1 and the other from
vector OP2, and places the result in the corresponding element of either vector OP1 or the vector
pointed to by SRO, depending on the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier is OP1} THEN
OPI[ik=Arctangent(OP 1[i]OP2[i])
ELSE
SRoOe[i}=Arctangent(OP1[iJJOP2[i])

Restrictions: None
Exceptions: FLT_NAN

Precision: All three operands have the precision specified by the {H,S,D} modifier.

The following computes an arctangent in degrees:

FATAN.S RTA,#1.08,#1.0
FMULT.S RTA,#360.0 + RTA := 45.8 degrees
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VF2DSsQ, VF3DsQ Vector 2- or 3-dimensional distance squared
VF2DSQ . {SR,OP1} . {H,S,D} V:=VV
VF3DSQ . {SR,OP1} . {HS,D} Vi=VVV

Purpose: Compute the sum of squares of a series of coordinate pairs or triples.

VF2DSQ deals with coordinate pairs, where the vector beginning with OP1 holds the first
coordinate of each pair and the vector beginning with OP2 holds the second. Depending on the
first modifier, these instructions put the result back in vector OP1 or in the vector pointed to by’
SRO.

FOR i:=0 TO SIZEREG-1 DO
IF {modifier is OP1} THEN OP1[il:=OP 1[i]xx2 + OP2[i]xx2

" Py o | | O N 1. . ¢
ELSE SROeli}=OP [iJ«x2 + OP2[i}xx2

VF3DSQ deals with coordinate triples, where the vector beginning with OP1 holds the first
coordinate of each triple, the vector beginning with OP2 holds the second, and the vector pointed to
by SRO holds the third. Depending on the first modifier, these instructions put the result back in
vector OP1 or in the vector pointed to by SR1.

FOR i:=0 TO SIZEREG-1 DO
IF {modifier is OP1} THEN OPI1[i}:=OP 1[i]x*2 + OP2[ilxx2 + SROe[ilxx2
ELSE SR1e[i}=OP 1[i}xx2 + OP2[ilx*2 + SROe[i}xx2));
Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, and FLT_NAN

Precision: Each element of each vector has the precision specified by the second modifier.

l The following example illustrates the use of V2DSQ; |
MOV.S.S SIZEREG, #3 ; Specify length of vectors
MOVP.P.A SR@,RESULT ; Set up SR8 to point to result

VF20SQ.SR.S [1.8 ? 2.8 ? 3.81, (4.8 ? 5.8 ? 6.0]

l ; RESULT now holds [17.8 ? 29.8 ? 45.01] l
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VF2DIS, VF3DIS Vector 2- or 3-dimensional distance
VF2DIS . {SR,OP1} . {H,S,D} V:=VV
VF3DIS . {SR,OP1} . {H,5,D} Vi=VVV

Purpose: Compute the square root of the sum of squares for a series of coordinate pairs or triples.

VF2DIS operates on coordinate pairs, where the vector beginning with OP! contains the
coordinate of each pair and the vector beginning with OP2 contains the second. Depending on the
first modifier, the resulting vector goes back into OP1 or into the vector pointed to by SRO.

FOR i:=1 TO SIZEREG-1 DO
IF {modifier is OP 1} THEN
OPI[i}=SquareRoot(OP 1[ilxx2 + OP2[ilx%2)
ELSE
SROe[il:=SquareRoot(OP 1[ix*2 + OP2[i]x%2)

VF3DIS operates on triples, with the vector beginning at OP1 containing the first coordinate of
each triple, the vector beginning at OP2 containing the second, and the vector pointed to by SRO
containing the third. Depending on the first modifier, the result goes back into the vector starting at
OP1 or into the vector pointed to by SR1:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier is OP1} THEN
OPI1[i]=SquareRoot(OP 1[ilx*2 + OP2[i}xx2 + SROe[i}xx2)
ELSE
SR le[i]:=SquareRoot{OP 1[ilkx2 + OP2[i}x¥2 + SROe[i}xx2)

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, and FLT_NAN

Precision: Each element of each vector has the precision specified by the second modifier.

l_g:ppose X_DISP and Y _DISP represent a drawing as a series of line segments, describing each
segment as a pair of displacements in the X and Y directions from the endpoint of the preceding
segment. The following program fragment converts this data to represent each segment as an
angle and magnitude:

; Obtain a vector of angles
MOY.S5.S SIZEREG, #9
NEXT:  FATAN.S RTA,X_DISPI[SIZEREG]42Y_DISP [SIZEREGI 12
MOY.S.S ANGLE [SIZEREGI42,RTA
ISKP.LSS SIZEREG,LENGTH,NEXT
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L

YF2DSQ.0P1.S X_DISP,Y_DISP

.
’

we

2 Instruction Set

Now SIZEREG = iengin of vectiur

s X_DISP becomes a vector

of magnitudes

|
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VFDOT Dot product

VFDOT . {H,$,D} 8:=VV
Purpose: Compute the dot product of two vectors:

RTA:=0;
FOR i:=0 TO SIZEREG-1 DO
RTA:=RTA + OPI[i] % OP2[i]

To avoid overflow and underflow problems, the processor accumulates the sum with as much
precision as it can, regardless of the {H,S,D} modifier. If that modifier is “H”, the result goes into
RTA as a singleword, and if the modifier is “5”, RTA is a doubleword. If the modifier is “D”,
however, the result is still a doubleword.

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, and FLT_NAN.

Precision: The elements of each vector have the precision specified by the modifier. RTA has twice
that precision unless the modifier is D, in which case RTA is a doubleword.

Suppose that singleword vector V contains the results from sampling a voltage waveform at 100
Hz for one second. The following computes the RMS voltage:

MOV.S5.S SIZEREG, #188. s Put iength in SIZEREG
VFDOT.S Vv,V ; Sum of squares
FDIV.D RTA,#198.9 ; Mean

l FSGRT.D RTA,RTA ; Root |
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FCONV Convolution

FCONV . {H,S,D} V:=VV

Purpose: “Sort of” convolve two vectors, OP1 and OP2. The vector starting at OP1 is assumed to
be at least as long as the vector starting at OP2. SRI is the length of the OP2 vector and
SIZEREG is the length of the result vector. If N is the length of the OP1 vector, then the following
holds: SIZEREG=N-SR1 + 1. The assumption that the OP1 vector is no shorter than the OP2
vector gives N2SR1 = SIZEREG>0. To do a “reaj” convolution of two vectors, say A i and Bi of
lengths N, and Ng (N AZNB) respectively, simply build a new vector A” which is the original vector
A with NB zeros concatenated before and after A, and a new vector B’ which is a end-for-end
reversed copy of B. Then do a FCONV with OPl1=A’, OP2=F’, SR1=Ng, and with SIZEREG =
(NB -1+ N, + NB—I) -Ng+1=N, +Ng-L

FOR i=0 TO SIZEREG-1DO
BEGIN
SROe[il=0;
FOR j=0 TO SR1-1 DO
SROe[il:=SR0eli] + OP2[j] x OPI[i + jl
END;

Restrictions: None.
Exceptions: FLT_OVFL, FLT_NAN

Precision: SR1 and the elements of each of the vectors have the precision specified by the modifier.
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FRFLT2 Second order recursive filter

FRFLT?2 . {H,S,D} V=V

Purpose: Apply a second order recursive filter to the vector whose first element is OP2 and leave
the results in the vector whose first element is OP1. The instruction obtains the coefficients of the
filter from the five element vector pointed to by SRO. The result is actually two elements shorter
than SIZEREG indicates, since it begins at OP1[2] instead of OPI1[0]. The user must initialize the
first two elements of the OP1 vector to start the recursion properly.

FOR i:=0 TO SIZEREG - 3 DO
OP 1[i+2}:=SR0e[0] x OP1[i]
+ SROe[1] x OPIii+1i]
+ SRO0e[2] x OP2[i]
+ SRO0e[3] x OP2[i+1]
+ SRO0e[4] x OP2[i+2]

Restrictions: None
Exceptions: FLT_OVFL, FLT _UNFL, and FLT_NAN

Precision: The coefficients and the elements of each vector have the precision specified by the
modifier.

l The following example filters the signal in vector SENSE_IN: I

MOVP.P.A SR@,COEFFICIENTS s Pointer to five coefficients
FTRANS.D.D RESULT, [1.73476 ? 1.73476]
s Initialize the recursion

MOV.S.S SIZEREG, #1000. ; Specify length of SENSE_IN

I FRFLT2.S RESULT,SENSE_IN I
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INTRAN In-place square matrix transpose

INTRAN . {HS,D} V=V

Purpose: Transpose a square two-dimensional matrix without moving the matrix to a different area
of memory. (The TRANSP instruction can operate on a matrix which is not square, but must move
the matrix to a new, non-overlapping area of memory as it does so.) '

OP1 is the first element of the matrix, which must be stored in row major order (second subscript
varying more rapidly than the first). R3 gives the number of rows (which is, of course, the same as
the number of columns) in the matrix, and must be a multiple of 8 for halfword precision (or a
multiple of 4 for singlewords, or a multiple of 2 for doublewords).

Restrictions: None

Exceptions: ILLEGAL_MATRIX_DIMENSION

Precision: Every element of the matrix has the precision specified by the modifier. R3 is a
singleword.

I To transpose the following matrix: I

g1 2 3
4 5 6 7
8 9 1911
12 13 14 15

one could use the INTRAN instruction like this:

DSPACE
Expressions separated by "?" assemble

s successive singlewords in memory
FOURBY: ?7217?22723247257286727728
218?211 2127?13 ?2 14 ? 15

w

ISPACE
INTRAN.S FOURBY, #4.
Now FOURBY = 8?2 4 28 2122?21?25 7?9?13

I 227262127214 ?23?277?2117?215 l

- we
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TRANSP Matrix transpose

TRANSP . {H,S,D} V=V

Purpose: Transpose a two-dimensional matrix, moving it to a different, non-overlapping area of
memory in the process. (The INTRAN instruction transposes a matrix without moving it, but
requires that the matrix be square.)

The instruction expects the matrix to be stored in row major order with its first element at OP2.
The result of the transposition appears in row major order with its first element at OP1.

Registers RO and R1 respectively specify the number of rows and columns in the source matrix.
Registers R2 and R3 specify the number of colurmns o ighore belween each row in the source and
destination matrices respectively. To transpose an entire matrix, one sets R2 and R3 to zero; to
transpose a submatrix, one sets R2 and R3 to skip over the columns that lie outside the submatrix.

The number of rows (and the number of columns) in the source matrix must be a multiple of 8 for
halfword precision (or 4 for singlewords, or 2 for doublewords.)

Restrictions: None
Exceptions: ILLEGAL_MATRIX_DIMENSION

Precision: All elements of the source and destination matrices have the precision specified by the
modifier. RO, R1, R2, and R3 are singlewords.

I To transpose the following matrix:
61 2 3
4 5 6 7

use the TRANSP instruction like this:

3 Assume the matrix is stored as a series of doublewords
3 in the following order: 81 23 456 7

ISPACE
MOV.S.S R@, #2 s+ Number of rous
MOV.S.S R1, #4 s Number of columns
MOV.S.S R2,#@ ; Do not skip anything

MOV.S.S RS, #9

TRANSP.D NEWPLACE, TWOBY4
The result is a series of doublewords in the follouwing
order: 8 4152637

-
’
[
y
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As an example of how to use R2 and R3 to transpose a submatrix, suppose we have the
following matrices (in Pascal notation):

VAR A: ARRAY [8..ARous, 8..ACols-11 OF INTEGER;
B: ARRAY I[8..BRous, 8..BCols-11 OF INTEGER;

and we want to transpose the submatrix of A whose origin is A[Ax,Ay] and whose size is SRows
by SCols, storing the result in the submatrix of B whose origin is B[Bx,Byl. Assuming the
submatrices are proper (that is, they truly fit within A and B) we can use the following
instructions:

MOV.S.S RO, #SRous s Number of rous in submatrix
MOV.S.S R1,#SCols
MOY.S.S R2,#ACols
SuUB.S R2,#SCols

Number of columns in submatrix

-e

Skip (ACo!s-SCols) columns betueen
source rows

-e  we

MOV.S.S R3,#BCols

SUB.S R3,#SCols Skip (BCols-S5Cols) columns betueen

-e we

dest rous

MOY.S RTA,AY
ARRIND.RTA AX, ACOLS
MOVP.P.A RTA,A[RTAI?2

MOV.S RTB,BY
ARRIND.RTB BX,BCOLS
MOVP.P.A RTB,BI[RTB11Z
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FMATMUL Matrix multiply

FMATMUL . {H,S,D} =VV

Purpose: Multiply two 2-dimensional matrices stored in memory in row major order. OP1 is the
first singleword of a 9-singleword block which describes the two source matrices and the destination
matrix.

I

o
=t
[«

Meaning |
Number of rows in source matrix 1

Number of columns in source matrix 1

Number of columns in source matrix 2

Number of columns to skip between rows of source matrix 1
Number of columns to skip between rows of source matrix 2
Number of columns to skip between rows of destination matrix
Pointer to origin of source matrix 1

Pointer to origin of source matrix 2

Pointer to origin of destination matrix

O 3D Ot W N = O

The third, fourth, and fifth elements of the OP1 block are used when multiplying submatrices. To
multiply entire matrices, one ordinarily sets these to zero.

Like VFDOT, FMATMUL accumulate results internally in the greatest feasible precision regardless
of the precision of the result.

Restrictions: OP 1 may not be a register or constant.
Exceptions: FLT_NAN, FLT_OVFL, and FLT_UNFL (for FMATMUL)

Precision: Every element of each matrix has the precision specified by the modifier. OP1 is the first
element of a block of 9 singlewords.

| The following example multiplies the two matrices shown and stores the result in matrix D: I

A= 1.8 2.9 3.9 B=1.8 2.9
3.8 2.8 1.9 3.8 3.8
2.0 1.9
MOV@S.S PBLOCK, #2 s+ Rous in source matrix 1
MOV.S.S PBLOCK+4, #3 s Columns in source matrix 1
MOV.S.S PBLOCK+8.,#2 ; Columns in source matrix 2

MOV.S.S PBLOCK+12.,#8
MOV.S.S PBLOCK+16.,#8
MOV.5.5 PBLOCK+28.,#@
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MOVP.P.A PBLOCK+24.,A : Pointer to source matrix 1
MOVP.P.A PBLOCK+Z28.,B ;s Pointer to source matrix 2
MOVP.P.A PBLOCK+32.,D s Pointer to destination matrix

FMATMUL.S PBLOCK

As an example of how to multiply submatrices, assume we have the following matrices (in Pascal
notation):

YAR A: ARRAY [@..ARows-1, 8..ACols-1] OF REAL;
B: ARRAY [B..BRows-1, 8..BCols-11 OF REAL;
D: ARRAY [8..DRous-1, @..0Cols-11 OF REAL;

and that we want to multiply the submatrix whose origin is at A[Ax,Ay] with the submatrix
whose origin is at B[Bx,By], storing the result in D[Dx,Dy]. The submatrix of A has R rows by
S columns and the submatrix of B has S rows by T columns. Assuming further that the
submatrices are proper (that is, they fit inside the corresponding matrices), we can use the
following code:

MOV.S.S DESC,R
MOV.S.S DESC+4%1,S
MOV.S.S DESC+4%2,T
SUB RTA,ACols,S
MOV DESC+4x3,RTA
SUB RTA,BCals,T
MOV DESC+4x4,RTA
SUB RTA,DCols, T
MOV DESC+4x5,RTA

MOV RTA, Ay
ARRIND.RTA ACols, Ax
MOVP.P.A DESC+4%6,A [RTAI*2

MOV RTA,By
ARRIND.RTA BCols,Bx
MOVP.P.A DESC+4x7,B[RTAI2

MOV RTA,Dy

ARRIND.RTA DCols,Dx
MOVP.P.A DESC+4%8,DIRTAIA2

| FMATMUL.S DESC
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FFT In-place complex FFT and inverse FFT
CFFT . {HS} e
FCFFT . {H,S} VeV
CFFTV . {H,S} ViV
FCFFTV . {H,S} Ve

Purpose: Compute the fast Fourier transform (FFT) or inverse fast Fourier transform of a vector of
complex numbers.

CFFT and FCFFT compute the FFT, with CFFT operating on complex signed integers and FCFFT
on complex floating point numbers.

CFFTV and FCFFTV compute the inverse FFT, with CFFTV operating on complex signed
integers and FCFFTV on complex floating point numbers.

For all four instructions, OP1 designates the first element of the vector to be transformed. In each
case, the instruction puts its results back into the original source vector. The number of elements in
the vector must be a power of 2; R3 contains that power (i. e, the base 2 logarithm of the number of
elements). If R3 is not positive, the instruction leaves the vector untouched.

If the source vector exceeds the maximum allowable length, an FFT_TOO_LONG soft trap occurs.
(This limit is implementation-dependent; see Section 4.2) If desired, one can provide a software
trap handler that operates transparently to the user on vectors of arbitrary size, transforming a
lengthy vector by repeatedly applying the instruction to subvectors.

The last step of the FFT algorithm is a “scrambling” operation which swaps elements of the vector
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector
where indices range from 0 to 15, this scrambling would swap element 12 with element 3 because
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambling
would swap element 1 with element 8, and so on.) Because this step represents a considerable
fraction of the time required for the total FFT, the architecture does not incorporate it in the FFT
instructions themselves, but provides a separate instruction called BADREYV to perform it.

Similarly, “scrambling” is the first step of the complete inverse FFT algorithm, but it is omitted from
the inverse FFT instructions, which expect their source arrays to be scrambled.

Thus, a complete FFT would require the CFFT instruction (for example) followed by the BADREV
instruction. A complete inverse FFT would require the BADREV instruction followed by (for
example) the CFFTYV instruction.

Providing a separate instruction for swapping elements saves time in many applications where one
wants to transform a signal, operate on it, and transform it back. Because the FFT instructions
produce a scrambled result and the inverse FFT instructions expect a scrambled input, one can
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simply omit to unscramble and rescramble between them--provided the operations that take place
between the FFT and inverse FFT instructions preserve the scrambled order.

Restrictions: None

Exceptions: INT_OVFL, (for CFFT and CFFTV), FLT_OVFL, FLT_UNFL, and FLT_NAN (for
FCFFT and FCFFTV), FFT_TOO_LONG

Precision: Every element of the vector has the precision specified by the modifier. R3 is a
singleword.

| Consider a simple filtering operation where one transforms the input signal, multiplies it by a |
vector of selected filter coefficients, and transforms it back. One could write:

MOVP.P.A R@,0UTPUT
CFFT.S INPUT,LOGSIZE
BADREY.D INPUT,LOGSIZE
MOV.S.S SIZEREG,SIZE
V"XY".SR.S INPUT,COEFFIC
BADREY.D OUTPUT,LOGSIZE

CFFTY.S OUTPUT,LOGSIZE
BADREV.D COEFFIC,LOGSIZE

MOYP.P.A R@,0UTPUT
CFFT.S INPUT,LOGSIZE
V"XY".SR.S INPUT,COEFFIC

CEETV § QUTPUIT | NGSIZE

Wi E 1V eTd Wil Wi g Wi b

But by scrambling the coefficient vector itself (an operation which need be performed only once
no matter how many signals are to be passed through the same filter),

BADREV.D COEFFIC

one can remove both BADREV operations from the preceding sequence:

MOY.S.S R3,LOGSIZE sDefine number of elements in vector
MOVP.P.A RTA,COEFFIC ;s Point to scrambled coefficients
CFFT.S INPUT ;s FFT

Y"SX".S OUTPUT, INPUT ; Filter using scrambled coefficients
CFFTY.S OUTPUT : Inverse FFT

The following example uses the FCFFT, BADREV, and INTRAN instructions together to
perform a two-dimensional FFT:
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;2DFFT - Two dimensional complex FFT
s halfuord floating point
s Transform complex 20 array whose origin is in ORG
3Size of array is 2xxLOGSIZE by 2%x0GSIZE

.
’

; Called via JSR PC,2DFFT

20FFT:

2dfft2:

L

MOY.S.S R3,LOGSIZE

SHF.LF.S RTA,#1,L0GSIZE

MOV.S.S ESIZE,RTA
SHF.LF.S SIZE,RTA,#2
MOVP.P.P T,0RG
MOV.S.S RTA,ESIZE

: FCFFT H (T)

BADREY.S (T)

ADD.S T,SIZE
DJMPZ.GTR RTA,2dfftl
MOV.S.S R3,ESIZE
INTRAN.S (ORG),ESIZE
MOVP.P.P T,0RG
MOY.S.S RTA,ESIZE
MOV.S.S R3,LOGSIZE
FCFFT.H (T)

BADREV.S (T)

ADD.S T,SIZE
DJMPZ.GTR RTA,2dfft2
MOV.S.S R3,ESIZE
INTRAN.S (ORG),ESIZE
RETSR PC, (SP)

sDefine number of elements in vector

;Get number of rows (and columns)

;1Save number of elements in rows and columns
;Convert to halfuord complex size and save
sInitialize row pointer to first rou

sLoop counter

;Transform 2 rou

sUn-bit-reverse this rou

1Step to next rou

sLast row?

s Transpose array

sTransform a column
iUn-bit-reverse this column
+Step to next column

sLast column?

; Transpose array back

sReturn I
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BADREV In-place bit address reversal

BADREV . {§,D} Vi=V

Purpose: Within a vector, swap each pair of elements whose addresses represent bit-reversals of
each other. The instruction is primarily useful in conjunction with the FFT and inverse FFT
instructions.

The last step of the FFT algorithm is a “scrambling” operation which swaps elements of the vector
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector
where indices range from 0 to 15, this scrambling would swap element 12 with element 3 because
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambling
would swap element 1 with element 8, and so on.)

OPI is the first eilement of the vector to be scrambied; the instruction puts the resuits back into the
same vector. The number of elements in the vector must be a power of 2. R3 specifies that power
(or, in other words, the base 2 logarithm of the number of elements). If R3 is not positive, the
instruction leaves the vector untouched.

Restrictions: None
Exceptions: None

Precision: The elements of the vector all have the precision specified by the modifier. R3 is a
singleword.

AT YT P, [} .

v . a4 P € . » ] Anh ¥4 PR P R
INOLE inat wnen one uses DADRKLY L0 Loipiele daf

operation, the precision mus wice |I
that of the FFT instruction because the vector in question contains complex numbers and thus
each data point comprises two values:

e Lo e
L VT L

CFFT.S SIGNAL,LOGSIZE
| BADREY.D SIGNAL,LOGSIZE

]
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QPART Quicksort partition inner loop

QPART | V=V

Purpose: Pipelined processors must predict with considerable accuracy whether conditional branch
instructions will alter the flow of control, or execution speed suffers. Because sorting algorithms
usually contain unpredictable conditional branches, the architecture provides an instruction to
perform the inner loop of the Quicksort algorithm, eliminating branches.

OP1 is a pointer to the first element of a vector of records and OP2 is a pointer to the last record in
the vector. Each record consists of a singleword key followed by a singleword of data (typically a
pointer to a larger amount of data).

RTA contains a partitioning value.

The instruction rearranges the elements of the vector, segregating them into two groups so that all
the records in one group have keys exceeding RTA and all the records in the other have keys less
than or equal to RTA. Within each group, the records may still be disordered (though in moving
records about to achieve the segregation, the instruction does attempt to order them locally); the
instruction guarantees merely to partition the vector into two groups relative to the value in RTA.

When the instruction finishes, the first part of the vector contains the group of records with keys
less than or equal to RTA (the “lower partition”), and OP2 points to the last record in that group.
OP1 points to the next record, which is the first record in the group whose keys exceed RTA (the
“upper partition”). RTA contains a code that reports the status of the two partitions:

The lower partition is sorted, but the upper one is not.
The upper partition is sorted, but the lower one is not.
Both partitions need sorting. The upper has fewer records.
Both partitions need sorting. The lower has fewer records.
Both partitions are sorted.

B N - O

In simplified form, the instruction does the following:

Before

Not sorted by key
6P1 OPQ

After
Keys<RTA Keys>RTA

0p2 3p1




164

Restrictions: None

Exceptions: None

2 Instruction Set

Precision: Each element of the vector is a pair of singlewords, the first serving as a key and the
second as data which the instruction moves along with the key. RTA is a singleword.

The following example illustrates how to
algorithm:

; Quicksort
; Called via: JSR #-1,QUICKSORT
On entry :

-e

use QPART to implement the complete quicksort I 4

H LOW - pointer to first record of array to be sorted

s

ITo RIS P BN

IGH must immediatel foll
Y

- f P
H 8 TO1 10W

s On exit :

HIGH - pointer to last record of array to be sorted

N
U J

3 Array between LOW and HIGH is completely sorted

QUICKSORT:

MOYP.P.A SP, (SP)18
QuUICK1: SuUB.S RTB,HIGH,LOW
SHFA.RT.S RTB, #4

SEXCH.D (LOW), (HIGH)
SEXCH.D (LOW)B[RTB113, (HIGH)
SEXCH.D (LOW), (LOW}B[RTBI*3
MOV.S.S RTA, (LOWYB[RTBI13
MOv.D.D (SP)-19,L0W

QPART LOW,HIGH

JMPA QUICKZ [RTAI13

QUICK2: sDispatch table.

;Reserve space to save HIGH and LOW
s later on

sCalculate size of array - 8

;sGet half the size

s+ {in doublewards)

sSwap the first, last, and middle

s Wwords of the array as necessary

; s0 first<middle<iou

:Partition array around middie’s value
sSave high and lou pointers

:Do the partitioning

sDispatch to correct routine

sIt is important that all sections (except the last)

s be two words long

sSort upper half only => tail recursion

MOY.S.S HIGH, (SP)-4
JMPA QUICK1

sSort lower half only => tail recursion

MOV.S.S LOW, (SP)-18
JMPA QUICK1
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EXCH.S HIGH, (SP) -4

IMOI A ST SO OOT
SJIIFA WULULAODUN

:Sort louer then upper => full recursion
EXCH.S LOW, (5P)-18
JMPA QUICKSORT

sAll sorted
MOVP.P.A SP, (SP)-18 sDiscard the HIGH and LOW just saved
MOV.D.D LOW, (SP)-18 sRestore previous HIGH and LOW
sI1f LOW is the ~1 value pushed by the JSR that invoked the quicksort,
;s we're finished, so return to the caller. Otherwise, tail recursion
s continues sorting.
JMPZ.GEGQ.S LOW,QUICK] sTaili recursion

l RET (SP) -4, (SP) sDiscard -1 and return to original caller l
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VBADD Vector bignum addition

VBADD . {SR,0OP1} Vi=VV

Purpose: VBADD allows the efficient implementation of bignum addition. Bignums are
implemented as a vector of doublewords, which represents a two’s-complement integer 72%xSIZEREG
bits long. This instruction adds the bignums starting at OP1 and OP2. The initial carry-in is '
taken from the CARRY flag in the user status the the carry-out of the addition if left in the
CARRY flag at the end of the operation. The actual sequence of doubleword additions is done
starting at the end of the OPl and OP2 vector, since the additions are most convenient to do
starting with the least significant bits.

A more precise description is:

VAR
CARRY: 0..1; (x From USER_STATUS x)
OP|,
OP2,
DEST: ARRAY[0.SIZEREG-1] OF 0.2%x72-1;
TMP: 0.2xx73-1

BEGIN
FOR I:= SIZEREG-1 DOWNTO 1
DO BEGIN

TMP = A[I] + B[I] + CARRY;
DESTI[I]:= TMP MOD 2xx72;
CARRY := TMP DIV 2xx72;
END;

END;

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are vectors of doublewords.

| The following sequence illustrates the use of VBADD to add two bignums: I
A: BLOCK 126x18 ; addend
B: BLOCK 186x18 ; addend
AB: BLOCK 206%18 ; sum
SR@=%4x%0

STZEREG=%4%3
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BIGADD: ADD SIZEREG, 78 sclear carry flag (any register will do)

MOVY.S.S SIZEREG, #1022 ; load SIZEREG
MOVP.P.A SR@,AB
VBADD A,B

LB—IGADZ: 13 188%72. BIT SUM IN AB
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VBMULT Vector bignum multiply

VBMULT Vi=VV

Purpose: VBMULT allows the efficient implementation of bignum multiply. Bignums are
implemented as a vector of doublewords, which represents a twos-complement integer 72xSIZEREG
bits long. This instruction multplies the bignum starting at OP2 by the 72 bit number in RTA and
accumulates this intermediate product in the bignum starting at OP1. The doubleword carry out is
returned in RTA. It has the significance of the doubleword before the beginning of OP2.

Sign correction information necessary to allow multiplying two signed bignums is taken from RTB.
The sign bit of RTB is the sign correction for RTA, and the sign bit of RTBI1 (i.e. R7) is the sign
correction for OP2.

A more precise description is:

VAR
Ar -2wx71..2%x7]1;
TMP: -2%%x143..2%%143-1;
CIN: =2xx71..2%x%71;
OP1l: ARRAYIB..SIZEREG-11 OF @..2%x72-1;
0P2: ARRAYI[Q..SIZEREG-11 OF @..2%x72-1; (% Except that OP2[@1 is really
signed, i.e. -2%x71..2%x71-1 x)

BEGIN
A := RTA:RTAL; {(x Double word multiplier %)
IF RTB <« 8 THEN A := A+l; {(x Where A is large enough that
this can’t overflow %)
(x This is for sign correction %)
IF RTB1 < 8 THEN CIN := A (x Sign correction for OP2, the
ELSE CIN := 8; multiplicand %)
FOR I := SIZEREG-1 DOWNTO 1
DO BEGIN
TMP := A x OP2I[I] (x Signed % Unsigned x)
+ CIN
+ OP1I111;
OP1II1 := TMP MOD 2%x72;
CIN := TMP DIV 2x%72;
END;
TMP := A % 0P21[Q] (x Signed % Signed x)
~ +CIN
+ 0P1([81;

OP1[@] := TMP MOD 2%x72;
RTA:RTAL := TMP DIV 2%x72;
END;
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Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are vectors of doublewords. RTA is a doubleword. RTB and RTBI are
singlewords.

I—?;e following sequence illustrates the use of VBMULT to multiply two bignums: _—I
A: BLOCK 186x18 smultiplicand
B: BLOCK 188x10 smultiplier
AB: BLOCK 288x10 sproduct
SIZEREG=%4x%3
[=%4x8.
J=%4x%3,

BIGMUL: MOV.S.S SIZEREG, #1060 ; load SIZEREG
MOV I,#108-1

MOV J, #1808
VINI.D AB+190x18,#0 sinitialize the least significant half of
MOV.D.D AB-18[J113,#0 sresult plus one extra word
MOV.D.D RTB, #8 sclear sign bits of RTB & RTB1
BIGMUl: MOV.D.D RTA,BILI113 sget multiplier
VBMULT ABL[J113,A sdo most of the work
ADD.D AB-181[J1%3,RTA ssave the carry out in next "digit"
0OJMPZ.LEQ J,BIGMUZ2 :that was the last "digit"

JMPZ.D.GEQ ABILJ113 ;s8ign extend result if negative

MOV.D.D AB-1@[J143,?2-1
MOV.S.S RTB,BI1]143 scopy sign correction for next iteration
DJMPA 1,BIGMUL sget index of next multiplier "digit"

BIGMUZ: ;; 288x%72. BIT PRODUCT IN AB
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VBNEG Vector bignum negation

VBNEG V=V

Purpose: VBNEG allows the efficient implementation of bignum negation. Bignums are
implemented as a vector of doublewords, which represents a twos-complement integer 72xSIZEREG
bits long. This instruction negates the bignum starting at OP2 and puts the result into OP1. The
initial carry-in is taken from the CARRY flag in the user status the the carry-out of the negation if
left in the CARRY flag at the end of the operation. The actual sequence of doubleword negations is
done starting at the end of the OP1 and OP2 vector, since the negation is most convenient to do
starting with the least significant bits.
A more precise description is:
VAR

CARRY: 0.1; (x From USER_STATUS x)

OP],

OP2: ARRAY[0.SIZEREG-1] OF 0.2%x72-1;

TMP: 0.2%xx73-1

BEGIN
FOR I := SIZEREG-1 DOWNTO 1
DO BEGIN

TMP := -OP2[I] - 1 + CARRY;
OPI[I] := TMP MOD 2x%%72;
CARRY := TMP DIV 2%x72;
END;

END;

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are vectors of doublewords.
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2.5 Chained Vectors

These instructions perform arithmetic on vectors, often combining two or more operations. This
results in faster execution not only because it reduces the number of instructions the processor must
fetch—-a single multiply-and-add instruction can take the place of a multiplication followed by an
addition, for example--but also because the processor can use its adder and multiplier in parallel.

Because the mnemonics for chained vector instructions explain themselves, and because the
arithmetic operations are logical extensions of those for scalars, this section will not describe each
instruction in detail.

Each mnemonic consists of a V followed by up to two letters defining the data type and then an
equation within quotation marks:

V<data type>"<equation>"
For <data type>, a “CF” indicates complex floating point, a “C” alone indicates complex signed
integer, and “F” alone indicates floating point. If <data type> is missing, the instruction deals with
signed integers.
Within the equation, “X”, “Y”, and “Z” are the first, second, and third source vectors while “S” and
“R” are the first and second source scalars. As in algebra, concatenating variables indicates
multiplication.
Thus, for example, the instruction:

VF"X+5Y".0P1

perf orms the operation:

FOR i:=8 TO SIZEREG-1 DO
OP1(il:=0P1Cil + RTA % OP2[i]
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Two Vector Operands and One Scalar

$+X, §-X, §X
V"S+X" . {H,S,D} V:=VS
VF"S+X" . {H,5,D} V:=VS
FOR i:=0 TO SIZEREG-1 DO OPI[i}=RTA + OP2[i]
V"S-X" . {H,S,D} V:=VS
VF"S-X" . (H,5,0} V:=VS

FOR i:=0 TO SIZEREG-1 DO OPI[i}=RTA - OP2[i]

VF"SX" . {H,S,D} V:=VS§
FOR i:=0 TO SIZEREG-1 DO OPI1{i}=RTA x OP2[i]

173
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Three Vector Operands and One Scalar

X+SY, SX+Y, SY-X, SX-Y, SX+SY, SX-SY, S+XY, S-XY

VF"X+SY" . {SR,0P1} . (H,S,D} V:=VVS

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OP1[i}=OP1[i] + RTA % OP2[i]
ELSE SR0e[i}=OP1[i] + RTA x OP2[i]

VF"SX+Y" . {SR,OP1} . {H,S,D} V:=VVS§S

FOR i:=0 TO SIZEREG-1 DO '
IF {modifier OP1} THEN OPI1[i1=RTA x OPI[i] + OP2[i]
ELSE SR0e[i}=RTA x OPI1[i] + OP2[i]

VF"SY-X" . {SR,0P1}. {H,S,D} V:=VVS

FOR =0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}=RTA % OP2[i] - OP1[i]
ELSE SRO0e[i}=RTA x OP2[i] - OPI1[i]

VF"SX-Y" . {SR,0P1}. {H,S,D} V:=VVS

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}=RTA x OPI[i] - OP2li]
ELSE SR0e[i}=RTA x OP1[i] - OP2[i]

VF"SX+SY" . {SR,0P1}.{H,S,D}  V:=VVS

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}=RTA x (OP1[i] + OP2[i])
ELSE SRO0e[i}=RTA x (OP1[i] + OP2[i})

VF"SX-SY" . {SR,0P1} . {H,S,D}  V:=VVS

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i1=RTA x (OP1li] - OP2i))
ELSE SRO0e[i}=RTA x (OP1[i] - OP2li})

VF"S+XY" . {SR,0P1} . {H,S,D} V:=VVS

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}=RTA + (OP1[i] x OP2[i])
ELSE SRO0e[i}=RTA + (OPI[i] x OP2[i])

VF"S-XY" . {SR,0P1} . {H,S,D} V:=VVS

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}:=RTA - (OP1[i] x OP2[i])
ELSE SROe[il=RTA - (OPI1[i] x OP2[i])

2 Instruction Set
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Two Vector Operands and Two Scalars

S+RX
VF"S+RX" . {H,S,D} :=VSS
VFC"S+RX" . {H,S} V:=VSS

FOR i:=0 TO SIZEREG-1 DO OPI1[i}=RTA + RTB x OPY[i]
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Four Vector Operands

X+YZ

VF"X+YZ" . {SR,0P1}. {H,S,D} V:=VVV

FOR =0 TO SIZEREG-1 DO
IF {modifier OP 1} THEN OP1[i}=OP1li] + OP2[i] x SRO0e{i]
ELSE SR le[i}=OP1[i] + OP2[i] x SROeli]
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2.6 Data Moving
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MoV Logical move

MOV . {QHS,D} . {QHS,D} ). (0] 4
Purpose: OP1:=OP2. If OP2 has greater precision than OP1, the low-order bits of OP2 are used.
If OP2 has smaller precision than OP], it is zero-extended to the left. This is best thought of as a
“logical” or “unsigned” move operation. No condition bits (eg., carry or integer overflow) are
affected. Note that the TRANS instruction can be used to perform sign-extended or truncated

integer moves.

It is preferable to use FTRANS rather than MOV on floating point numbers, because the former
will execute faster on most implementations.

Restrictions: None
Exceptions: None

Precision: The two modifiers specify the precisions of OP1 and OP2 respectively.

| The following copies the low-order QW of RTA into the high-order QW: |
MOV.Q.Q RTA,RTA+3

The next example shows how MOV extends an integer with zeroes rather than sign bits:

MOV.H.Q RTB,#-1 ; RTB := 888777 octal
TRANS.H.G-RTB,#-1 ; RTB = 777777 octal

° _
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SELECT Move conditionally

SELECT {RTA,RTB} . {QH.SD,P} TOP

Purpose: This instruction selects one of two values to be stored into the destination based on a flag
in singleword RTA or RTB. That is, it performs: IF {RTA,RTB} <> 0, then DEST := S2 else
DEST :=S1.

If the modifier for OP2 is “P”, a pointer move is performed according to the description of

MOVP.P.P; otherwise, a logical move is performed. To move floating point numbers, it is
preferable to use FSELECT because it will be faster on most implementations.

Restrictions: None
Exceptions: None

Precision: The two modifiers specify the precisions of OP1 and OP2 respectively; the RTA or RTB
operand is a singleword.

l The following shows how to conditionally alter the value of a variable. ,

CMPSF.GEQ.S RTA,B,C s IFB<C ...
SELECT.RTA.S.S A, #3 $ ««« THEN A := 3 |
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MOVMQ Move many quarterwords

MOVMQ,. {2 .. 82, 64} XOP

Purpose: Moves a block of quarterwords beginning with OP2 into the block of quarterwords
beginning with OP1, so that OP1:=OP2, NEXT(OP1):=NEXT(OP2), and so on. The modifier
specifies how many quarterwords to move. If the source and destination regions overlap, the result '
is undefined. Unlike vector instructions, MOVMQ can access the registers. Constant arguments are
not permitted.

Restrictions: None
Exceptions: None

Precision: This instruction deals with quarterwords for both source and destination precisions.

The following copies the three high-order QWs from RTA into RTB:

MOVMQ.3 RTB,RTA
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MOVMS Move many singlewords

MOVMS . {2.82} XOop
Purpose: Moves a block of singlewords beginning with OP2 into the block of singlewords beginning
with OP|, so that OP1:=OP2, NEXT(OP1):=NEXT(OP2), and so on. The modifier specifies how
many singlewords to move. If the source and destination regions overlap, the result is undefined.
Unlike vector instructions, MOVMS can access the registers. If OP2 is a constant its value will be
spread through the specified range of locations.

Restrictions: None

Exceptions: Nune

Precision: This instruction deals with singlewords for both source and destination precisions.

I The following saves all the registers from RTA onward in a block starting at SAVEBK: |

MOVMS.28 SAVEBK,RTA

The following clears the registers:

MOYMS.32 R, #9 I
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VINI Vector initialize

VINI . {QH,S,D} V=S
Purpose: Initialize each element of a vector OP1 to match the scalar OP2.

Restrictions: None

Exceptions: None

Precision: The elements of the vector OP1, like the scalar OP2, have the precision specified by the
modifier.

The following stores in each element of A the value in RO:

VINI.S A,R8
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VREV Vector reverse

VREV . {QHS.D} V=V
Purpose: Reverse a vector end-for-end by swapping the first element with the last, the second
element with the next-to-last, and so on. OP?2 is the first element of the source vector and OP1 is
the first element of the destination. Either OP1 and OP2 must be identical or the two vectors must
not overlap at all; otherwise, the result of the instruction is undefined.

Restrictions: None

Exceptions: None

Precision: The elements of the two vectors have the precision specified by the modifier.

| The following stores in DOWN the reverse of the vector in UP: I

MOV.S.5 SIZEREG,#5
VTRANS.S.S UP,[1 2 2 23 ? 4 ? 5]

l VREV.S DOWN,UP ; DOWN :=5, 4, 3, 2, 1 |
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EXCH Exchange
EXCH . {QH,S,D} XOP
VEXCH . {QH,S,D} V=V

Purpose: EXCH exchanges OP1 with OP2; VEXCH exchanges vector OP1 with vector OP2.
Restrictions: None
Exceptions: None

Precision: OP1 and OP2 each have the precision specified by the modifier.

| The following swaps RTA and RTB: l

EXCH.S RTA,RTB

One can contrive a situation where the result depends on two rules: the processor prefetches
operands, and XOP instructions store OP1 after storing OP2:

MOV.S.S RTA,#5
MOV.S.S RTAL,#6
MOV.S.S RTB,#7
EXCH.D RTA,RTAl ; RTA:=6; RTAl:=7; RTB:=6

s (first RTAl:=5 and RTB:=B; then

RTA:=6 and RTA1l:=7)

—
L
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SEXCH, USEXCH Signed and unsigned sorted exchange
SEXCH . {QH,S,D} Xop
USEXCH . {Q,H,S,D} XOP

Purpose: If OP1 > OP2 then exchange OP1 with OP2. The instruction requires read and write
access to both OP1 and OP2 even if the inequality is false and no exchange takes place. SEXCH
treats the operands as signed integers, whereas USEXCH treats them as unsigned integers.
Restrictions: None

Exceptions: None

Precision: OP1 and OP2 each have the precision specified by the modifier.

—
The following swaps RTA and RTB only if RTA > RTB:

SEXCH.S RTA,RTB
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SLR Save and load register

SLR.{0. 124 step 4 } XOP

Purpose: Loosely speaking, the instruction saves the contents of the register specified by the modifier
in OP1 and then loads that register with OP2.

More precisely, note that the processor prefetches operands and that XOP instructions store into
OP1 last. Thus SLR effectively does the following:

TEMPL:=Rn
TEMP2=OP2
Rn:=TEMP?2

OP1:=TEMP]1

As illustrated below, one can contrive situations where this behavior makes a difference.
Restrictions: None
Exceptions: None

Precision: All operands involved are singlewords. The modifier must be a multiple of 4 within the
range 0. . 124

|-_TT1e first instruction moves RTA into RTB and zeros RTA. The second and third instructions
show what happens when one of the operands is the register specified in the instruction. The
fourth shows what happens when the operands are the same.
SLR.RTA RTB,#8 ;RTB:=RTA, RTA:=08
SLR.RTA RTA,F ;essentially a NOP
(TMPR: =REG; TMP2:=0P2; REG:=TMP2; OP1l:=TMPR)
(TMPR: =RTA; TMP2:=F; RTA:=TMP2; RTA:=TMPR)

.
’
.
?

SLR.RTA F,RTA effectively MOV F,RTA

(TMPR: =RTA; TMP2:=RTA; RTA:=TMP2; F:=TEMPR)

.
*
.
14

SLR.RTA F,F effectively EXCH RTA,F

s (TMPR:=RTA; TMP2:=F; RTA:=TMP2; F:=TMPR)

L ]
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SLRADR Save and load register with address

SLRADR . {0 .. 124 step 4 } XOP

Purpose: Loosely speaking, the instruction saves in OP] the register specified by the modifier and
then loads the register with ADDRESS(OP?2) in the same manner as MOVP.P.A does.

Because the processor prefetches operands, and because XOP instructions store into OP1 last, it is
more precise to say that:

TEMPL:=Rn
MOVP.P.A Rn,OP2
OPI:=TEMPI

As illustrated below, one can concoct examples where this behavior makes a difference.
Restrictions: OP2 must not be a register or constant.
Exceptions: None

Precision: All operands involved are singlewords. The modifier must be a multiple of 4 in the range
0..124

The first instruction moves RTA into RTB and puts ADDRESS(F) in RTA. The second shows I
what happens when the first operand is the register specified in the instruction. The third

shows what happens when the operands are the same.

SLRADR.RTA RTB,F sRTB: =RTA, RTA:=ADDRESS (F)
SLLRADR.RTA RTA,F seffectively a NOP

s (TMP:=REG; REG:=ADDRESS{0P2); OPl:=TMP)
:+ (TMP:=RTA; RTA:=ADDRESS(F)}; RTA:=TMP)

I SLRADR.RTA F,F ;same as MOV F,RTA; MOVP.P.A RTA,F I
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ARRIND Array index

ARRIND {AL.AR}. {RTA,RTB} XOP
Purpose: These instructions are used to accumulate array indices into one of RTA or RTB. With
the “AL” modifier, the computation performed is: RTx := (OP1 x RTx) + OP2. With the “"AR”
modifier, RTx := (OP1 x OP2) + RTx is performed. '
Restrictions: None

Exceptions: None

Precision: All operands are singlewords.

I . .
Given the following program fragment:

|

VAR

I, J, K: INTEGER;

TABLE: ARRAY [0..2, @..4, 9..6]1 OF INTEGER;
BEGIN

TABLE [T, J,K1:=25;

Either form of the instruction could be used to calculate the subscript in the assignment
statement. Using the left associative form:

MOV.S.S RTA,I X =

ARRIND.AL.RTA #3,J s % 3= (i%3) + j
ARRIND.AL.RTA #5,K 3 % 1= ((ix3) + j)x5) + k
MOV.S.S TABLE [RTA142, #25. s+ TABLE[x] := 25

Using the right associative form:

MOV.S.S RTA,I
ARRIND.AR.RTA #15,J x 1= (i%15) + j
ARRIND.AR.RTA #5,K x t= {ix15) + (j*5) + k
MOV.S.S TABLE [RTA]1*2, #25. : TABLEDx] := 25

X = |

we wo we

L |
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MoOvVP Move pointer

MOVP . {P,R}. {PA} XOr
Purpose: Move pointer, optionally transforming it.

This instruction transforms and moves pointers, performing checks to validate the integity of the
pointers. It verifies that ring-tagged pointers do not lie in a ring less privileged than they address,
and that the pointers do not have fault tags, which normally indicate that the pointer is
uninitialized. Self-relative pointers are converted to ring-tagged pointers as they are moved.

The modifier for OP2 specifies how to obtain the pointer value to store, and the modifier for OP1
specifies the format in which the pointer is to be stored.

If the OP2 modifier is “P”, then the value is the operand itself. If the pointer has a ring tag, it is
validated according to the rules of Section 1.8.3, possibly invoking the BAD_POINTER_TAG hard
trap. If the pointer has a user, NIL or gate tag, then the pointer and tag are preserved. If the
pointer has a self-relative tag, then it is converted to a ring-tagged pointer having the address of
the referenced location. Note that this must be in the same segment as OP2, or an
OUT_OF_BOUNDS hard trap will occur. A self-relative pointer is illegal if it appears in a
register. Any other tags cause a BAD_POINTER_TAG hard trap.

If the OP2 modifier is “A”, then the value is the virtual address of the operand.

If the OP1 modifier is “P”, then the value derived from OP? is stored.

If the OP1 modifier is "R”, then the value derived from OP2 is stored as a self-relative pointer.
Note that this must be an address in the same segment and ring as OP1. The operand must not be

a register or a ILLEGAL_REGISTER_OPERAND hard trap occurs.

Thus there are four cases:

MOVP.P.P Move one pointer value to another. This may be used to convert a self-relative
pointer to non-self-relative format.

MOVP.P.A Store the address of OP2 in a pointer.
MOVP.R.P Convert a pointer to a self-relative pointer.
MOVP.R.A Store the address of OP2 in a self-relative pointer.

Restrictions: None

Exceptions: BAD_POINTER_TAG, OUT_OF_BOUNDS, ILLEGAL_REGISTER_OPERAND



190 2 Instruction Set

Precision: Operands corresponding to an “A” modifier have no alignment requirements; in all other
cases, the operands are singlewords

The following makes register RO point to location DATA:

MOVP.P.A R@,DATA
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SETTAG Set pointer tag

SETTAG TOP

Purpose: Set DEST <0:4> to $2<0:4>, and DEST<5:35> to S1<5:35>. The effect is to manufacture a
pointer using the tag of S1 and the address of S2.

Restrictions: None
Exceptions: None

Precision: All operands are singlewords.

romes— S —

The following example changes the tag of the pointer, P, to a NIL tag.

SETTAG P, #940000000908
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VALIDP Validate pointer

VALIDP XOpP

Purpose: Validate the pointer OP1 with respect to the ring containing OP2. The address for OP2
is computed following the usual address validation rules, but OPZ2 itself is not actually fetched.
Then, OP1 is validated using the validation level of OP2 instead of that of OP1. If the tag of 4
OP1 is a ring tag and the number of the ring is less than the validation level of OP2, a
BAD_POINTER_TAG trap occurs; if the tag of OP1 is a fault, gate or NIL tag, a
BAD_POINTER_TAG trap also occurs. |

Sections 1.8.2 and 1.8.3 describe the address and pointer validation mechanisms.
Restrictions: None
Exceptions: None

Precision: Both operands are singlewords.

Suppose a process executing in ring 3 has called a routine executing in ring 1, passing it a
parameter in register R27. The routine in ring 1 could use the return address saved on the
stack—-which by definition specifies the caller’s ring of execution--to assure that the pointer in
R27 is trustworthy. That return address is within the stack entry pushed by CALLX during the
gate crossing (Section 19.5) at (SP)-6x4:

VALIDP R27, (SP)-bx4

|
L |
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BASEPTR Base pointer

BASEPTR XOop

Purpose: Store in OP1 a pointer to the beginning of the segment containing OP2. (The instruction
stores ADDRESS(OP2) in OP1 and then sets to zero the low order LOGSEGSIZE+LOGPGSIZE
bits of OP1, where LOGSEGSIZE is the base 2 logarithm of the number of pages in the segment
and LOGPGSIZE is the base 2 logarithm of the number of quarterwords in a page; see 1.7 which
describes paging and segmentation.)

Restrictions: None
Exceptions: None

Precision: Both operands are singlewords.

Make BP point to the beginning of the segment containing the following instruction:

BASEPTR BP, .
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SEGSIZE Segment size

SEGSIZE Xor

Purpose: Store in OP1 the size in quarterwords of the segment containing OP2. The value stored
is rounded up to an even multiple of segmentito sizes, e.g. 16x1024%4 quarterwords.

Restrictions: None
Exceptions: None
Precision: OP1 is a singleword; OP2 requires only quarterword alignment.

Assign the size of the segment containing the PC to S.

SEGSIZE S, .
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RMW Read/modify/write

RMW TOP
Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system) DEST:=S1 and then S1:=S2. (More precisely, because the processor prefetches
operands and because TOP instructions store DEST last, this instruction makes a temporary copy of
S1, stores $2 in S1, and then stores the copy into DEST.)

Other atomic instructions are MOVCSF and MOV CSS.

Restrictions: None

Exceptions: None

Precision: S1, $2, and DEST are all singlewords.

I The following illustrates the use of RMW to implement a test-and-set lock for interprocessor
communication. The lock is a singleword flag which is -1 if some processor has seized the lock
and O if the lock is free:

SEIZE: RMW RTA,LOCK, #-1 ;attempt to seize lock
JMPZ.NEQ.S RTA,SEIZE sbusy-wait if someone else has it
sdo ... if lock was zero (now I have it)

I FREE: MOY.S.S LOCK, #9 ;jrelease the lock l
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MOVPHY Move physical address

MOVPHY XOpP
Purpose: OP1:=PHYSICAL_ADDRESS(OP2).

Restrictions: Illegal in user mode.

Exceptions: If accessing the source operand of MOVPHY through the virtual address translation
process would cause an addressing trap, that trap will occur even though MOVPHY deals with

physical addresses.

Precision: OP1 and OP2 are singlewords; OP2 must not be a constant or register.

The following loads RTA with the physical address of F:

MOVPHY RTA,F sRTA: =PHYSICAL _ADDRESS (F)
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RPHYS, WPHYS Read/write physically addressed location
RPHYS Xop
WPHYS Xor

Purpose: RPHYS reads into OP1 the singleword contents of a memory location whose physical
address is specified by the 34 low order bits of R3. WPHYS writes OP1 into a memory location
whose address is specified by the 34 low order bits of R3.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a singleword. R3 is a singleword whose 34 low order bits are a physical address.
OP2 is unused.

The following moves SOURCE to DESTINATION even if the mapping tables are changed l
following the first two instructions:

MOVPHY R3, SOURCE
MOVPHY R2,DESTINATION
RPHYS RTA

EXCH.S R3,R2

l WPHYS RTA

L
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MOVMEM Move to/from memory, bypassing cache
MOVFMEM . {N,C} . {1,16} XOpr
MOVTMEM . {N,C} . {1,16} Xor

Purpose: These implementation-dependent instructions exist for use by memory diagnostics.

MOVFMEM reads a block of words directly from memory beginning with OP2, bypassing the
cache, and writes them to a block beginning with OP1, using the cache. MOVTMEM reads from
OP?2, using the cache, and writes directly to OP1, bypassing the cache.

If the first modifier is N (for “no correction”), the instruction copies each singleword along with its
associated error—correction bits into a doubleword, right-justified with leading zeros, instead of
applying the error correction algorithm. If the first modifier is C (“correction”), the instruction copies
source singlewords into destination singlewords, applying the correction algorithm and then
discarding the error-correction bits.

The second modifier specifies the length of the source block in singlewords. Note that it offers a
choice of 1 or 16, not the subrange 1.. 16.

Restrictions: Illegal in user mode. Neither operand may be a constant. The operand which bypasses
the cache may never be a register, and the operand which uses the cache may not be a register if the
second modifier is 16.

Exceptions: None

Precision: For MOVFMEM, OP2 is the first element of a block of {1,16} singlewords, and must be
aligned to a {1,16} singleword boundary. If the first modifier is “N”, OP1 is the first element of a
block of {1,16} doublewords; otherwise, OP1 is the first element of a block of {1,16} singlewords. For
MOVTMEM, the precision requirements are reversed.

l The following example copies a block of 16 singlewords into a block of 16 doublewords, I
revealing the error-correction bits:

I MOVFMEM.N.16 DEST,SOURCE

L |
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2.7 Skip, Jump, and Comparison
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Skip instructions branch within a short range while jumps branch anywhere in the 231 quarterword
address space.
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Many skips or jumps occur only if a condition specified by a modifier to the instruction is true. An
arithmetic condition (ACOND) can be any of the following :

ACOND = {GTR,EQL.GEQ,LSSNEQ,LEQ}
These correspond to the conditions >, =, >=, < <>, <= respectively.
The SKP instruction may use a logical condition (LCOND) as well. The LCONDs are:
LCOND = {NON,ALLANY,NAL}

These correspond to the logical conditions that relate two operands (say OP1 and OP2) as shown in
the table below. Here OP?2 is considered to be a mask whose “1” bits select bits of OP1 to be tested.

Moadifier Condition Meanin

NON (OP1 AOP2) =0 If no masked bits are 1
ALL (oné’s-complement(OP1) A OP2) = 0 If all masked bits are 1
ANY (OP1 AOP2) <> 0 If any masked bit is 1
NAL (oné’s-complement(OP1) A OP2) <> 0 If not all masked bits are 1

Combining the ACONDs and the LCONDs gives the arithmetic and logical conditions
(ALCONDs):

ALCOND = {GTR,EQL,GEQ,LSSNEQLEQNON,ALLANY NAL}

Note that jump instructions are sub ject to the pointer validation described in section 1.8.4 when they
modify the PC.
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SKP ‘ Skip on condition

SKP . {GTR.EQLGEQLSSNEQLEQNONALLANY,NAL} . {QH.S.D} ~ SOP

Purpose: If OP1 condition OP2 (whére condition is taken from the first modifier) is true, control is
transferred to the specified location that is within -8 . .7 singlewords of the current PC. If the
comparison is false, control is transferred to the next instruction. ’ '

Restrictions: None
Exceptions: None

Precision: The precision of OP1 and OP? is specified by the second modifier.

The following instructions compute the function "IF RTA is Odd THEN BEGIN I
RTA:=3%xRTA+1 END; RTA:=RTA/2" repeatedly while RTA>1. Note that FASM determines

the SW offset automatically from the JUMPDEST operand:

THREEN:
SKP.LEQ.S RTA,#1,DONE _
SKP.NON.S RTA,#1,RTAEVN ;skip if RTA has an sven integer

MULT.S RTA,#3 smultiply by three

ADD.S RTA,#1 ;add one - result must be even,
RTAEVN: ; so fall into even case

SHFA.RT.S RTA,#1  sthis is better than QUD RTA,#2

JMPA THREEN

l-_[liNE: '... . __-l
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ISKP Increment, then skip on condition

ISKP . {GTR,EQL.GEQ,LSSNEQ,LEQ} | SOP

Purpose: OP1:=OP1+1. CARRY is not affected. Then if OP1 ACOND OP2 (where
ACONDe{GTR,EQL,GEQ,LSSNEQ,LEQ}), control is transferred to a location that is within
-8..17 singlewords of the current PC. If the comparison is false, control is transferred to the next
instruction.

Restrictions: None
Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: OP1 and OP2 are both singlewords.

' The following is a typical loop of the form, "FOR =M TO N DO ..". The inner part of the |
loop must not exceed 8 singlewords when assembled:

MOV.S.S I,M
LOOP:

I ISKP.LEQ I,N,LOOP |
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DSKP Decrement, then skip on condition

DSKP . {GTR,EQLGEQ,LSSNEQ,LEQ} SOpP
Purpose: OP1:=OP1-1. CARRY is not affected. Then if OP1 ACOND OP?2 is true (where
ACONDe{GTR,EQL,GEQ,LSSNEQLEQ}), control is transferred to a location that is within
-8 .. 7 singlewords of the current PC. If the comparison is false, control is transferred to the next
instruction.

Restrictions: None

Exceptions: INT_OVFL may be set by the decrementing operation.

Precision: OP1 and OP?2 are both singlewords.

l_'_l";le following instructions search an array of N singlewords starting at TABLE for the largest
index I such that TABLE[IJ=I. Assume that TABLE[0] contains 0 to ensure loop termination,
and that N singlewords follow this entry. In the following, I must be a register. Note that since
the loop is one instruction long the singleword skip offset is zero. The "-4" added to the base
address TABLE compensates for the fact that the address calculation occurs before the
decrementation operation, but the skip condition is tested after the decrementation operation. In
turn, "N+1" is used instead of "N" in the initialization to compensate for this compensation:

MOV.S.S I,#<N+1>
LOOP:  DSKP.NEQ I, <TABLE-4>[11%2,L00P I
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JMP Jump on condition

JMP . {GTR.EQL.GEQ,LSS,NEQ,LEQ} Jop

Purpose: If FIRST(OP1) ACOND SECOND(OP1) is true (where ACONDe{GTR, EQL, GEQ,
LSS, NEQ, LEQ}), control is transferred to the location specified by JUMPDEST. If the condition
is false, control is transferred to the next instruction.

Restrictions: None
Exceptions: None
Precision: FIRST(OP 1) and SECOND{(OP i) are both singiewords.

The following loop searches down a chain of pointers for a specified tail pointer FPTR. Let P
be a register and HEAD the address of the first link in the chain. Note that NEXT(P) is
implicitly used by this routine to hold the comparison operand:

MOV.D.D P,#<[HEAD ? FPTRI1> sinitialize P and NEXT(P)
s (this is an assembler |iteral
s+ Whose address becomes a constant)

LOOP:  MOV.S.S P, {P)

JMP.NEQ P,LOOP |
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JMPZ, FUMPZ Jump on condition relative to zero
JMPZ . {GTR,EQLGEQLSSNEQLEQ} . {QH,S.D} JOP
FJMPZ . {CTR.EQLGEQLSSNEQLEQ} . {HS,D} JoP

Purpose: If OP1 ACOND O is true (where ACONDe{GTR, EQL, GEQ, LSS, NEQ, LEQ}), control
is transferred to the location specified by JUMPDEST. If the condition is false, control is
transferred to the next instruction. JMPZ tests integer/logical values, whereas FJMPZ tests floating
point values.

While floating point values.may be tested with the integer instructions, F JMPZ is to be preferred
because it checks for the special floating point symbols and may be faster on some implementations.

Restrictions: None
Exceptions: In the case of F JMPZ, the FLT_NAN soft trap may occur.

Precision: OP1 has the precision specified by the second modifier.

l By using the indexed constant addressing mode (Section 1.6.2), a programmer can use the JMPZ I
instruction to compare thé contents of a register against any integer constant, not just against
zero. For example, the following jumps to AWAY iff RTA<lL

‘ JMPZ.LEQ.S #[-11 (RTA), AUAY I
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JMPA Jump always

JMPA Jop
Purpose: Jump unconditionally to JUMPDEST. For a simple jump to a label, the SJMP
instruction is often more compact, but JMPA allows indexing and indirect addressing, usually at the
expense of an extra singleword.

Restrictions: None

Exceptions: None

Precision: None

| The following instruction jumps to the RTA-th address stored in a list of indirect pointers that
begins at JVECTS:

L

JMPA JYECTS [RTAI1M2e
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IJMP Increment, then jump on condition

IJMP . {GTR,EQLGEQLSS,NEQ,LEQ} jop

Purpose: FIRST(OP 1)}=FIRST(OP1)+1. CARRY is not affected. Then if FIRST(OP1) ACOND
SECOND(OP1) is true (where ACONDe¢{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to
the location specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Restrictions: None
Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords.

hat'd

I The following is a typical loop of the form, “FOR =M TO N DO ...". The inner part of the I

loop may be any length when assembled:

MOV.D.D I, M ? NI +M,N are assembly |iterals
LOOP:

I [JMP.LEQ T,L00P I
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IJMPZ Increment, then jump on condition relative to zero

IJMPZ . {CTR,EQL,GEQ,LSSNEQ,LEQ} JOP
Purpose: OP1:=OPl1+1. CARRY is not affected. Then if OP1 ACOND 0 is true (where
ACONDe{GTR,EQL,GEQ,LSS,NEQILEQ}), control is transferred to the location specified by
JUMPDEST. If the condition is false, control is transferred to the next instruction.

Restrictions: None

Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: OP1 is a singleword.

The following increments N and jumps to AWAY if N=0:

IJMPZ.EQL N, AWAY
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IJMPA Increment and jump always

IJMPA JOop
Purpose: OP1:=OP1+1. CARRY is not affected. Jump unconditionally to JUMPDEST.
Restrictions: None

Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: OP1 is a singleword.

! The following is an extremely inefficient way to add RTA into RTB, assuming that integer |
overflow traps are disabled. However, it shows off the I]JMPA instruction:

LOOP: DSKP.EQL RTA,#-1 sdecrement RTA; skip next instruction if -1
l IJMPA RTB,LOOP sotherwise increment RTB and loop I



2.7 Skip, Jump, and Comparison 209

DJMP Decrement, then jump on condition

DJMP . {GTR,EQL,GEQ,LSSNEQ,LEQ} JoP
Purpose: FIRST(OP1):=FIRST(OP1)-1. CARRY is not affected. Then if FIRST(OP1) ACOND

SECOND(OP1) is true (where ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to
the location specified by JUMPDEST. If the condition is false, control is transferred to the next

instruction.
Restrictions: None
Exceptions: INT_OVFL may be set by the decrementing operation.

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords.

The following is a typical loop of the form, "FOR =M DOWNTO N DO..". The inner part of l
the loop may be any length when assembled:

MOV.D.D I, M ? NI sM,N are assembly literals
LOOP:

I DJMP.GEQ I,LO0P |
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DJMPZ Decrement, then jump on condition relative to zero

DJMPZ . {GTR,EQL,GEQ,LSS.NEQ,LEQ} jop
Purpose: OP1:=OPi-1. CARRY is not affected. Then if OP1 ACOND 0 is true (where
ACONDe{GTR,EQ_L,GEQ,LSS,NEQ,LEQ}), control is transferred to the location specified by
jUMPDEST. If the condition is false, control is transferred to the next instruction.
Restrictions: None

Exceptions: INT_OVFL may be set by the decrementing operation.

Precision: OP1 is a singleword.

rr— ————

The following decrements N and jumps to AWAY if N=0:

DJMPZ.EQL N, AWAY
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DJMPA Decrement and jump always

DJMPA Jop
Purpose: OP1:=OP1-1. CARRY is not affected. Jump unconditionally to JUMPDEST.
Restrictions: None

Exceptions: INT_OVFL may be set by the decrementing operation.

Precision: OP1 is a singleword.

The following decrements N and jumps to AWAY:

DJMPA N, AlAY
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SJMP Simple jump

SJMP HOP
Purpose: Unconditionally jump anywhere in the address space.

The HOP format performs a PC-relative jump using a 29 bit unsigned displacement field. Because
the address calculation “wraps around” if it exceeds the maximum virtual address, it can reach any
singleword in the virtual address space. No segment bounds checking occurs.

While SJMP never occupies more than 1 singleword, it allows only a direct memory address
reference. One must use JMPA for any other addressing mode, such as indexing or indirect
addressing.

Restrictions: None

Exceptions: None

Precision: None

Go to CRUNCH:

SJMP CRUNCH
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MOVCSF, MOVCSS Move conditionally, skip on failure/success
MOVCSF . {QH,S,D} SOP
MOVCSS . {Q,H,S,D} Sop

Purpose: For MOVCSF, IF OP1=OP2 THEN OP1:=R3 ELSE GOTO DEST.
For MOVCSS, IF OP1=0OP2 THEN BEGIN OPI1:=R3; GOTO DEST END.

In a muiltiprocessor system, these instructions are atomic (that is, they finish work on OP1 before
any other processor can alter that operand). Another atomic instruction is RMW.

Restrictions: None
Exceptions: None

Precision: OP 1, OP2, and R3 have the precision specified by the modifier.

| Singleword LOCK represents a lock, which holds -1 if unlocked and 0 if locked. The following I
sequence seizes the lock, using busy-waiting if the lock is not free:

Seize the lock stored in location LOCK.
MOV.S.S R3, #-1 sPrepare the value -1 to be stored.
LOOP: MOVCSF.S LOCK,#9,L00P ;Store -1 when LOCK holds 8.

[ X
LR

The following code sequence atomically turns on bit 35 of word FOl

s3; Turn on bit 35 of word FO1.

LOOP: MOV.S.S RTA,FB1 sPick up a copy of the former value of F@1.
OR.S R3,RTA,#2 sTurn on bit 35, creating the new value in R3.
MOVCSF.S F@1,RTA,LOOP ;Store the new value if the value has not

schanged since we began.

The following code sequence leaves in R3 a unique number; no two callers will ever be returned
the same number even if they run this routine simultaneously from different processors. The
location UNIQUE holds a number, whose value is increased by one atomically to get the new
unique value.

333 Return a unique value in R3 (well, until the counter wraps).

LOOP: MOV.D.D RTA,UNIQUE ;Get the old value of UNIQUE.
ADD.D.D R3,RTA,#1 sThe new value should be one greater.
MOYCSF.D UNIQUE,RTA,LOOP ;Store the new value if the value

sof UNIQUE has not changed in the meantime.
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The following code sequence atomically adds a new element to a singly linked list. The pointer
to the first list element is stored in location HEAD; the first word of each element contains a

pointer to the next element. Register R$ contains a pointer to a new element to be added to the
head of the list.

133 Add the element in R3 to the list.

LOOP: MOV.S.S RTA,HEAD ;Pick up the pointer to the former first
selement of the list.
MOY.S.S (R3),RTA ;Make the new element point to it.

MOVCSF.S HEAD,RTA,LOOP ;Store the new pointer if the old one

‘ shas not changed. I
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CMPSF, UCMPSF, FCMIPSF Compare and set flag
CMPSF . {GTR,EQL,GEQ,LSSNEQ,LEQ} . {Q,H,S,D} TOP
UCMPSF . {GTR,EQL,GEQ,LSSNEQ,LEQ} . {Q,H.S,D} TOP
FCMPSF . {GTR,EQL.GEQ LSS,NEQ,LEQ} . {H,S,D} TOP

Purpose: If S1 condition S2 then DEST := -1 else DEST := 0, where condition is the first modifier.
CMPSF performs a two's complement signed comparison; UCMPSF performs an unsigned
comparison, and FCMPSF compares floating point numbers.

While floating point values can be compared using integer/logical comparisions, FCMPSF should be
used in preference to CMPSF to obtain checking for the special floating point symbols. FCMPSF
may aiso be faster on some impiementations.

Restrictions: None

Exceptions: In the case of FCMPSF only, the FLT_NAN soft trap may occur.

Precision: S1 and S2 have the same precision as the modifier. DEST is a singleword.

Let X, Y, and Z be singlewords, with Y=NEXT(X). The following code implements setting l

RTA to X if Z20 and to Y otherwise. It uses indexing rather than a conditional jump or skip.
Such use of indexing can often make more effective use of instruction pipelining than jumping
or skipping:

CMPSF.GEQ.S RTA,Z,#
MOV.S.S RTA,YIRTAI42 s indexing with flag result

CMPSF.LSS can be used to produce an extended-sign word for a number. TRANS or
FTRANS can be used to sign-extend a number to one of the four standard precisions, but this
trick is useful in dealing with numbers of very large precision:

CMPSF.LSS.S RTA,NUM,#8 ;all bits of RTA get the sign bit of NUM

Though instructions CMPSF.{NON,ALL,ANY,NAL} do not exist, their effect can be obtained
by an AND or ANDCT followed by a CMPSF.EQL or CMPSF.NEQ;

ANDCT.S RTA, ARG1, ARG2 ; this behaves as would the fictional
l CMPSF.EQL.S RTA, #@ ; instruction CMPSF.ALL RTA, ARG1, ARG2 ’
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BNDSF Bounds check and set flag

BNDSF . {RTA,RTB} . {BML101} . {QH,S,D} XOp

Purpose: Check OP2 against a set of bounds determined by the second modifier together with OP1I.
If OP is within bounds then RTA := -1 else RTA := 0.

The second modifier specifies the following bounds checks:

Modifier Meaning

B (“both™) FIRST(OP1) < OP2 < SECOND(OP1)
Mi -1 < OP2 < OPI

0 0 < OP2 < OPI

1 1 < OP2 < OPI

The BNDSF instruction lacks some of the modifiers available on the BNDTRP instruction because
they would duplicate the operation of the CMPSF instruction.

Restrictions: None

Exceptions: None

Precision: OP2, RTA or RTB have the precision of the third modifier; OP1 has the precision of
the third modifier except in the “B” case; there, FIRST(OP1) and SECOND(OP1) must each have

the precision of the third modifier, and must align together to form a single entity with twice that
precision.

| This is a typical use of BNDSF: |

BNDSF.RTA.9.S LIMIT,X s 8 < X s LIMIT ?
Even if the lower bound is not 0, 1, or -1, one can still use the indexed constant addressing mode
to scale OP2 and thereby avoid using the more elaborate “B” mode, provided the lower bound is

indeed a constant:

BNDSF.RTA.8.S #<LIMIT-3>,#[-31 (X) ; 3 < (X) s LIMIT
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One can use constant addressing modes to obtain other limits if the limits are both constant.
This makes use of the rule that a singleword instruction which expects a FIRST/SECOND
operand pair will expand a constant to twice the specified precision and use half for the FIRST
part and half for the SECOND part:

L

BNDSF.RTA.B.S #ILIMIT 2 '@1,X ; #LIMIT <X <@ 7? |
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BNDTRP Bounds check and trap

BNDTRP . {BMLOLNEQEQLGEQ,GTR,LSS,LEQ} . {Q,H,S,D} XOpr

Purpose: Check OP2 against a set of bounds determined by the first modifier together with OP1,
and cause a BOUNDS_TRAP soft trap if it is not within bounds.

The modifier specifies the bounds check as follows:

Modifier Trap occurs when: '
B (*both™) —~(FIRST(OP1) < OP2 < SECOND(OP1))
Mli -(-1 < OP2 < OPI)
0 -(0 < OP2 < OP1)

1 {1 < OP2 < OP1)
NEQ OP2 <> OPI

EQL OP2 = OPI

GEQ OP2 >= OPI

GTR OP2 > OP1

1SS OP2 < OP1

LEQ OP2 <= OP1

Restrictions: None
Exceptions: None

Precision: OP2 has the precision of the second modifier; OP1 has the precision of the second
modifier except in the “B” case; there, FIRST(OP1) and SECOND(OP1) must each have the
precision of the modifier, and must align together to form a single entity with twice that precision.

This is a typical use of BNDTRP to test that an array index is within bounds:

BNDTRP.8.S LIMIT,X s @ <= X <= LIMIT ?
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STRCMP String compare

STRCMP . {RTA,RTB} Xor

Purpose: Consider OP1 and OP2 to be blocks of quarterwords—-in other words, strings of
characters--whose quarterword length is specified by SIZEREG. Signed comparison is used, and
each quarterword character is compared separately. The result of the comparison is computed as
shown in the following table and is stored inte {RTA,RTB}. The result values are designed to have
two useful properties. First, the result (as a signed integer) bears the same relation to zero that
STRING]1 does to STRING?2. Second, the value can be used as an index into the string no matter
what the result, because indexing arithmetic “wraps around” the address space.

Neither string may lie in the registers, but if one string is a constant, that constant will be replicated
SIZEREG times.

Condition Result

STRINGI1 = STRING2 0

STRING1 > STRING2 n

STRINGI < STRING2 -2%%n (ie. MINNUM:+n)
(n is the position of the first character to differ indexing
from 1)

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are quarterword blocks, not vectors, and thus may designate registers.
RTA and RTB are single words.

| The following sets RTA to the result of comparing the eighty-character blocks at X and Y.I

MOV.S.S SIZEREG, #88.
STRCMP.RTA X,Y

Because the constant operand gets replicated to match the length of the string, the following tests
whether STRINGA is entirely blank:

MOV.S.S SIZEREG, #88.
STRCMP.RTA STRINGA, #48

The following illustrates a more general sort of comparison. Assume that XLENGTH contains
the length of a string beginning at X and YLENGTH that of string at Y. For the purposes of
this comparison we will imagine that appended to the two strings are infinitely many imaginary
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characters defined to be “less than” all real characters. We will then define the result of the
comparison as the result of a STRCMP performed on these extended strings. (This definition is
similar to that used in some high-level languages):

MIN.S RTA,XLENGTH, YLENGTH
MOV.S.S SIZEREG,RTA
INC.S RTB,RTA

STRCMP.RTA X,Y

JMPZ.NEQ.S RTA, DONE
SKP.NEQ.S XLENGTH, YLENGTH
JMPA DONE ‘

MOV.S.S RTA,RTB

SKP.LEQ.S XLENGTH, YLENGTH, DONE
OR.S RTA, #<4000808, ,0>

;set RTA to minimum real length

;save one greater in RTB for
sunequal case

sdo comparison

sdifference found

sdone if strings are equal length

+RTB is index of "imaginary"
scharacter

;set high-order bit if necessary

sor DIBYT RTA,#1,#1 to save a word!
sRTA contains result
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SKPTAG Test pointer tag and skip

SKPTAG sop

Purpose: Test bit $2<S1<0:4>>. If it is 1, then control is transfered to a location that is within
-8 . . 7 singlewords of the PC.

Restrictions: None
Exceptions: None

Precision: All operands are singlewords.

Skip if the pointer has a fault tag.

SKPTAG P, #408000000028,BADPTR




222 2 Instruction Set

JMPTAG Set pointer tag

JMPTAG . {1.. 30,.RING,FAULT} . {EQLNEQ} Jop
Purpose: Jump to JUMPDEST if OP1<0:4> matches (EQL), or does not match, (NEQ) the specified
tag. If the modifier is one of 1. .30, then OP1<0:4> must exactly equal the tag. If the modifier is
RING, then a match occurs if OP1<0:4> is any ring tag (4 .. 7). If the modifier is FAULT, then
OP4<0:4> must be a fault tag (0 or 31).
Restrictions: None

Exceptions: None

Precision: OP1 is a singleword.

r— ——

The following branches to the location pointed to by P unless P is NIL.

JMPTAG.2.NEQ P, (P)B
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CMPTAGSF Check pointer tag and set flag

CMPTAGSF TOP
Purpose: If bit S2<S1<0:4>> is 1 then DEST := -1, else DEST := 0.

Restrictions: None

Exceptions: None

Precision: All operands are singlewords.

In the following example, set the flag in RTA if the pointer is not NIL.

CMPTAGSF RTA,P,#677777777768
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TAGTRP Check pointer tag

TAGTRP TOP
Purpose: If bit 52<S1<0:4>> is 1, then copy S1 to DEST; otherwise, a TAG_TRAP soft trap occuts.
Restrictions: None

Exceptions: None

Precision: All operands are singlewords.

In the following example, move the pointer, P, into RTA if P has a user tag in the range
12..16.

TAGTRP RTA,P, #0000740880000
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2.8 Shift, Rotate, and Bit Manipulation

These instructions all manipulate bits within a word, either by shifting, by rotating, or by
performing bitwise logical functions. Note that a left shift (or rotate) by N is equivalent to the
corresponding right shift {or rotate) by -N.



NOT Logical bit-wise NOT
NOT . {QH.S,D} Xor
VNOT . {H.S,D} VvV

Purpose: NOT computes OP 1:=(~OP2), where “-” signifies one’s complement

VNOT performs NOT on each element of the vector beginning with OP2 and stores the result in
the corresponding element of the vector beginning with OP1.

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 (or the elements of vectors OP1 and OP?2) have the same precision as the
modifier.

r—— ——

The following is an alternate to NEG RTA:

NOT.S RTA,#[-11 (RTA) ;RTA := -RTA
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AND Logical bit-wise AND
AND . {QH,S,D} TOP
VAND . {SR,OP1} . {H,S,D} ViVV

Purpose: AND computes DEST:=S1AS2.

VAND performs AND on each element of vector OP1 and the corresponding element of OP2. It

puts the results either back into vector OP1 or into the vector pointed to by SRO, depending on the
first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[il=OP1[i] A OP2]i]
ELSE SRO0e[il=OP1[i] A OP2[i]

Restrictions: None
Exceptions: None

Precision: For AND, S1, S2, and DEST all have the precision specified by the {QH,S,D} modifier.
For VAND, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

The following instruction illustrates the effect of AND:

AND.Q RTA,#3,#5 ;RTA: =1 (QW)
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ANDTC Logical bit-wise AND true/complement
ANDTC . {QH,S,D} TOP
VANDTC . {SR,OP1}. {H,S,D} V=VV

Purpose: DEST:=SIA(-82). Note that the “TC” in ANDTC means “True-Complement” and refers
to the fact that S1 and one’s—complement(S2) respectively are operands to the AND function. The '
reverse form of ANDTC is ANDCT, not ANDTCV.

VANDTC performs ANDTC on pairs of corresporiding elements in the vectors beginning at OP1
and OP2. It puts the results back into the vector OP1 or into the vector pointed to by SRO,
depending on the first modifier.
FOR I.=0 TO SIZEREG-1 DO
{modifier OP1} THEN OPI[i}=OP1[i] A (~OP2[i])
ELSE SR0e[i}=OP1[i] A (~OP2[i])

Restrictions: None
Exceptions: None
Precision: For ANDTC, S1, $2, and DEST all have the precision specified by the {QH,S,D}

modifier. For VANDTGC, the elements of the vectors all have the precision specified by the {H,S,D}
modifier.

l The following instruction illustrates the effect of ANDTC: I
ANDTC.Q RTA,#3,#5 ;RTA:=2 (QUW)

Suppose that MASK is a mask whose “1” bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a “field", and the contents of that field decremented as
an integer "in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows:

AND.S RTA,WORD, MASK +sRTA:=WORD with non-selected bits zeroed
SUB.S RTA,#1 szeroed bits propagate the borrow

AND.S RTA,MASK smask out non-selected bits

ANDTC.S WORD,MASK smask out SELECTED bits in WORD

' OR.S WORD,RTA smerge the tuo results I
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ANDCT Logical bit-wise AND complement/true
ANDCT . {QH.S.D} TOP
VANDCT . {SR,OP1}. {H,S,D} Vi=VV

Purpose: ANDCT computes DEST:=(-SI)AS2.  Note that the “CT” in ANDCT means
“Complement-True” and refers to the fact that one’s—complement(S1) and S2 respectively are
operands to the AND function. The reverse form of ANDCT is ANDTC, not ANDCTYV.

VANDCT performs ANDCT on pairs of elements from the vectors beginning at OP1 and OP2. It
puts the results back into the vector OP1 or into the vector pointed to by SRO, depending on the
first modifier.

FOR I=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OP 1[i}=(-OP1[i]) A OP2[i]
ELSE SRO0eli}=(~OP I[i]) A OP2Li]

Restrictions: None
Exceptions: None
Precision: For ANDCT, S1, S2, and DEST all have the precision specified by the {Q,H,S,D}

modifier. For VANDCT, the elements of the vectors all have the precision specified by the {H,S,D}
modifier.

The following instruction illustrates the effect of ANDCT:

ANDCT.Q RTA,#3,#5 ;RTA: =4 (QW)
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OR Logical bit-wise OR
OR . {QH,S,D} TOP
VOR . {SR,OP1}. {HS,D} V=VV

Purpose: OR computes DEST:=51v52.

VOR performs OR on pairs of elements from the vectors OP1 and OP?2, putting the results into
vector OP1 or the vector pointed to by SR, depending on the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OP1[i}=OP1[i] v OP2[i]
ELSE SRO0e[i}=OP1[i] v OP2[i]

Restrictions: None
Exceptions: None

Precision: For OR, S1, $2, and DEST all have the precision specified by the modifier {Q,H,S,D}.
For VOR, the elements of the vectors all have the precision specified by the modifier {H,S,D}.

r— —

The following instruction illustrates the effect of OR:

OR.Q RTA,#3,#5 ;RTA: =7 (QU)
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ORTC . Logical bit-wise OR true/complement
ORTC . {QH,S,D} TOP
VORTC . {SR,OP1}. {H,S,D} Vi=VV

Purpose: ORTC computes DEST:=S1v(-52). Note that the “TC” in ORTC means
“True-Complement” and refers to the fact that S1 and one’s-complement(S2) respectively are
operands to the OR function. The reverse form of ORTC is ORCT, not ORTCYV.

VORTC performs ORTC on pairs of elements of the vectors OP1 and OP?2, putting the results in
either vector OP1 or the vector pointed to by SR0, depending on the first modifier:

IF {modifier OP1} THEN OPI1[i}:=OP1[i] v (-OP2[i])
ELSE SRO0e[i}:=OP1[i] v (-OP2[i])

Restrictions: None
Exceptions: None

Precision: For ORTC, S1, $2, and DEST all have the precision specified by the second modifier.
For VORTGC, the elements of the vectors all have the precision specified by the second modifier.

The following instruction illustrates the effect of ORTC: |

ORTC.Q RTA, #3,#5 sRTA: =773 (QW)

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a "field", and the contents of that field incremented as
an integer "in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows:

ORTC.S RTA, WORD, MASK sRTA: =WORD with non-selected bits set to "1"

ADD.S RTA, #1 +"1" bits propagate the carry
AND.S RTA,MASK smask out non-selected bits
ANDTC.S WORD, MASK smask out SELECTED bits in WORD

I OR.S WORD,RTA smerge the two results l
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ORCT Logical bit-wise OR complement/true
ORCT . {Q,H,S,D} TOP
VORCT . {SR,OP1} . {H,S,D} V:i=VV

Purpose: ORCT computes DEST:=(-S1)vS2. Note that the “CT” in ORCT means
“Complement-True” and refers to the fact that one’s-complement(S1) and S2 respectively are
operands to the OR function. The reverse form of ORCT is ORTC, not ORCTYV.

VORCT performs ORCT on pairs of elements of vectors OP1 and OP2, putting the results either
in vector OP1 or in the vector pointed to by SRO, depending on the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}=(-OP1[i]) v OPlil
ELSE SROe[il=(-OP1[i]) v OP2[i]

Exceptions: None

Precision: For ORCT, S1, S2, and DEST all have the precision specified by the {Q,H,S,D} modifier.
For VORCT, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

g Sy

The following instruction illustrates the effect of ORCT:

ORCT.Q RTA,#3,#5 ;RTA: =775 (QW)
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NAND Logical bit-wise NAND
NAND . {Q,H,S,D} TOP
VNAND . {SR,OP1}. {H,S,D} Vi=VV

Purpose: NAND computes DEST:==(S1AS2).

VNAND performs NAND on pairs of elements of the vectors OP1 and OP2, putting the results
either in vector OP1 or in the vector pointed to by SRO, according to the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OP1[i}:=—(OP1[i]) A OP2[i]
ELSE SROe[il= {OP1li] A OP2[i})

Restrictions: None

Exceptions: None

Precision: For NAND, S1, 52, and DEST all have the precision specified by the {QH,SD}
modifier. For VNAND, the elements of the vectors all have the precision specified by the {H,S,D}
modifier.

]

The following instruction illustrates the effect of NAND:

NAND.Q RTA, #3,#5 ;RTA: =776 (QW)
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NOR Logical bit-wise NOR
NOR . {QH.SD} TOP
VNOR . {SR,OP1}. {H,S,D} V:i=VV

Purpose: NOR computes DEST:=~(S1v52), where “~” signifies one’s complement.

VNOR performs NOR on pairs of elements of the vectors OP1 and OP?2, putting the results either
in vector OP1 or in the vector pointed to by SRO, ac_cording to the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}=—~(OP1[i] v OP2[i])
ELSE SROe[il:=~(OP1[i] v OP2[i))

Restrictions: None
Exceptions: None

Precision: For NOR, S1, $2, and DEST all have the precision specified by the {QH,S,D} modifier.
For VNOR, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

The following instruction illustrates the effect of NOR:

NOR.Q RTA,#3,#5 sRTA: =778 (QW)
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XOR Logical bit-wise XOR
XOR . {Q,H.S.D} TOP
VXOR. {SR,OP1}. {H,S,D} =VV

Purpose: XOR computes DEST:=(S1A~(S2)) v (—(S1)AS2), where “~” represents the one’s complement
operation.

VXOR performs XOR on pairs of elements of the vectors OP1 and OP2, putting the results either
in vector OP1 or in the vector pointed to by SRO, depending on the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPIili}=ExclusiveOR{OP i[i],OP2{i])
ELSE SRoOe[il:=ExclusiveOR(OP 1[i],OP2[i))

Restrictions: None

Exceptions: None

Precision: For XOR, S1, S2, and DEST all have the precision specified by the {Q,H,S,D} modifier.
For VXOR, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

I The following instruction illustrates the effect of XOR: l
XOR.Q RTA, #3,#5 ;RTA: =6 (QW)

The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving
property of XOR))

XOR.S QUUX, ZTESCH
XOR.S ZTESCH, QUUX
XOR.S QUUX, ZTESCH l
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EQV Logical bit-wise equivalence
EQV . {QHSD} TOP
VEQV . {SR,OP1} . {HS,D} ViVV

Purpose: EQV computes DEST:=(S1AS2) v (~(S1)A(~S2)), where “=” represents the one’s complement
operation.

VEQYV performs EQV on pairs of elements of the vectors OP1 and OP?2, putting the results either
in vector OP1 or in the vector pointed to by SRO, accordmg to the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP1} THEN OPI1[i}=- =EQV(OPI1[ilOP2[i])

FLSE SRO@{i}:ﬁEQ"”nD 1H1OPINGN

\vl ALIJ A S R ¥ 4
Restrictions: None
Exceptions: None

Precision: For EQV, S1, 82, and DEST all have the precision specified by the {Q,H,5,D} madifier.
For VEQY, the elements of the vectors all have the precision specified by the {H,5,D} modifier.

| The following instruction illustrates the effect of EQYV: I

EQv.Q RTA, #3,#5 sRTA: =771 (QW)

The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving
property of EQV.)

EQV.S QUUX,ZTESCH
EQV.S ZTESCH, QUUX

| EQV.S QUUX,ZTESCH I
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SHFA Shift arithmetically
SHFA . {LF,RT}. {QHS,D} TOP
SHFAV . {LF.RT}. {Q,H,S,D} TOP
VSHFA . {LF,RT} . {HS,D} V:VS

Purpose: SHFA computes DEST:=S1 arithmetically shifted {left,right} by S2. Shifts to the (true) left
introduce “0” bits; shifts to the (true) right replicate the sign bit and discard bits shifted out the low
end. This is equivalent to a multiplication or division by a power of two, where it is understood
that such a division rounds towards negative infinity. Note that a left shift by S1 is equivalent to a
right shift by -S1. If the absolute value of S2 exceeds the width of the anyword being shifted, an
ILLEGAL_SHIFT_ROTATE hard trap occurs.

SHFAY swaps the roles of S1 and S2.

VSHFA performs SHFA on each element of the vector beginning at OP2 and stores the results in
the corresponding elements of OP1. RTA specifies how far to shift each element.

Restrictions: None

Exceptions: INT_OVFL on certain left shifts (the instruction behaves exactly as would a
multiplication by a power of 2)

Precision: For SHFA, S2 is a singleword, and DEST and S1 have the precision specified by the
second modifier.

For SHFAYV, S1 is a singleword, and DEST and S2 have the precision specified by the second
modifier.

For VSHFA, the elements of vectors OP1 and OP2 have the precision of the modifier and RTA is
a scalar singleword.

l The following two instructions illustrate the difference between SHF.RT and SHFART:

SHF.RT.Q RTA,#-1,#1 ;RTA: =377
SHFA.RT.Q RTA,#-1,#1 sRTA: =777

L _
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SHF Logical shift
SHF . {LF,RT}. {QH.S,D} TOP
SHFV . {LF,RT}. {Q,H.S,D} TOP
VSHF . {LF,RT} . {H,S,D} V:VS

Purpose: SHF computes DEST:=S1 logically shifted {leftright} by S2. Bits shifted in are “0” bits;
bits shifted out are lost. Note that a left shift by S2 is identical to a right shift by -S2. If the
absolute value of S2 exceeds the width of the anyword being shifted, an
ILLEGAL_SHIFT_ROTATE hard trap occurs.

SHFYV, the reverse form, behaves identically except that it swaps the roles and precisions of S1 and
S2.

VSHF performs SHF on each element of the vector beginning with OP2 and stores the results in
the corresponding elements of the vector beginning with OP1. RTA specifies the number of bit
positions by which to shift.

Restrictions: None

Exceptions: None

Precision: For SHF, S2 is a singleword; DEST and S1 have the precision specified by the second
modifier. For SHFV, S1 is a singleword; DEST and S2 have the precision of the second modifier.

For VSHF, RTA is a singleword; the elements of OP1 and OP2 have the precision specified by the
modifier.

The following shows the effect of a positive left-shift argument:

SHF.LF.Q RTA,#-1,#1 sRTA:=-2 (QW)
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DSHF Extended logical shift
DSHF . {LF,RT} TOP
DSHFV . {LFRT} TOP

Purpose: Just as a programmer can use the ADDC instruction repeatedly to add numbers of
arbitrarily great precision, the programmer can use the DSHF instruction repeatedly to shift an
arbitrarily long string of bits. Ordinary logical shift instructions are difficult to chain in this
fashion because they shift zeros into the word. DSHF solves the problem by shifting in bits from the
ad jacent word in memory instead.

More precisely, DSHFLF concatenates S1 and NEXT(S1), logically shifts the resulting double
precision entity left by 52 bits and stores in DEST the high order singleword {corresponding to Q,
H, or S precisions). DSHFRT logically shifts the entire entity right by S2 bits and stores in
NEXT(DEST) the low order singleword.

2|52 bits|e
S1 NEXT (S1)
L J DSHF.LF DEST,S1,S2

!

DEST

Careful use of DSHF even permits in-place shifting—-that is, leaving the result of the shifting in the
original memory locations: right shifts must start at the right end of the series of words, and long

feft shifts must start at the left end.
DSHFYV, the reverse form, swaps the roles of S1 and S2.
See also the vector instruction VDSHF.

Restrictions: DSHF S1 and DSHFV S2 may not be constants.

Exceptions: An ILLEGAL_SHIFT_ROTATE hard trap occurs if S2 is negative or exceeds the
width of the singleword being shifted or if S2 < 0.

Precision: For DSHF, operands S1, NEXT(S1), and DEST {or NEXT(DEST)) singlewords.
For DSHFV, the same is true except that the roles of S1 and S2 are swapped.

Suppose that a 30-word block of bits MARKERS is to be logically shifted in place three bits to
the left. While using VDSHF provides better performance, the following example illustrates the
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use of DSHF within an explicit loop:

MOV.S.S RTB,#@

LOOP:  DSHF.LF.S MARKERS[RTB112,#3
ISKP.LSS RTB, #29.,L00P
SHF.LF.S MARKERS+29.x4,#3

2 Instruction Set

;+RTB indexes MARKERS ieft to right
s produce one result word
;increment RTB and loop if < 29.
sdo last word in single precision

The same block of bits can be logically shifted three bits to the right as follows. Note that the
operation must proceed in the other direction within the block, ie. from right to left:

MOV.S.S RTB, #29.
LOOP:  DSHF.RT.S MARKERSIRTB1412, #3

DSKP.CTR RTB, #8,L00P

T e ilL 11H1LJy

SHF.RT.S MARKERS, #3

Tha camae hlark nf hite can
4 HT JSdilIC VIVLA UL Viko wail
| loop but changing the

sRTB indexes MARKERS right to left

s produce one result word

sdecrement RTB and loop if > 8

sdo last word in single precision

e grithmetically shifted three bits to the right by using the sam

h.
last SHF.RT instruction to SHFART.
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VDSHF Lengthwise vector logical shift

VDSHF . {LFRT} V:=VS

Purpose: Logically shift an arbitrarily long series of bits. OP2 is the first word of the source vector,
OP1 is the first word of the destination vector, SIZEREG gives the length of the vector in
singlewords, and RTA specifies how far to shift the bits. '

If the source and destination vectors overlap at all, they must coincide completely, or the result is
undefined. An ILLEGAL_SHIFT_ROTATE hard trap occurs if the absolute value of RTA is
greater than 36.

VDSHF.RT does niot alter the first word of the vecior, and VDSHF.LF does not aiier the iast word.
This allows the programmer to use a scalar shift or rotate instruction to finish the operation, and
thereby obtain a logical shift, arithmetic shift, or rotation. This also permits chaining of VDSHF
instructions.

This instruction accomplishes the same task as a loop that applies the scalar DSHF instruction to a
series of words, one at a time (see the example under the discussion of DSHF). For all but the
shortest series of bits, the vector version will execute more rapidly, but the scalar version gives a
choice of precisions.

Restrictions: None

Exceptions: An ILLEGAL_SHIFT_ROTATE hard trap occurs if the absolute value of RTA is
negative or greater than 36.

Precision: The elements of both vectors are singlewords in terms of alignment (though the

instruction can operate on larger sections of the vector to achieve greater speed). RTA and
SIZEREG are singlewords.

I This is a simple illustration of VDSHF and SHF combined to perform a logical shift: l
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MOV.S.S SIZEREG, #3 ; Length of vector is 3 singlenords
MOV.S.S RTA, #13. ; Shift by 13 bit positions
VTRANS.S.S SOURCE, (1,,2 ? 3,,4 ? 5,,6]

"a,,b" tells FASM to put a in

H the left halfuord, b in the right

we

VOSHF.LF DEST, SOURCE
SHF.LF.S <DEST-4x1> [SIZEREG] 42, <source-4x1>[SIZEREG]12,RTA

| s Result is [4,,6 ? &.,,18. ? 12.,,8] I
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ROT Logical rotate
ROT . {LF.RT}. {Q,H,S,D} TOP
ROTV . {LF,.RT}. {Q,H,S,D} TOP

Purpose: ROT computes DEST:=S1 rotated {left,right} by S2. Rotation introduces bits shifted out
of one end into the other end, so that no bits are lost. An ILLEGAL_SHIFT_ROTATE hard trap
occurs if S2 is negative or exceeds the width of the anyword being shifted.

ROTYV, the reverse form, rotates S2 left or right by S1 bits.

Restrictions: None

Exceptions: None

Precision: For ROT, S2 is a singleword. DEST and S1 have the precision specified by the second
modifier.

For ROTYV, S1 is a singleword; DEST and S2 have the precision of the second modifier.

The following illustrates a right rotation by a positive amount:

ROT.RT.Q RTA, #1,#1 sRTA: =488 (QW)
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BITRV Bit reverse
BITRV . {Q,HS,D} TOP
BITRVV . {QH,S,D} TOP

Purpose: BITRYV reverses the order of the S2 low-order bits of S1, and zero-extends the result into
DEST. An ILLEGAL_SHIFT_ROTATE hard trap occurs if S2 is negative or exceeds the word
width.

BITRVYV reverses the order of the S1 low-order bits of S?2 instead.

Restrictions: None

Exceptions: None

Precision: For BITRV, S1 and DEST have the same precision as the modifier. S2 is a singleword.

For BITRVYV, S2 and DEST have the precision of the modifier; S1 is a singleword.

The following reverses all nine bits of its operand:

BITRV.Q RTA,#I[1231,#3. ;RTA:=624 {(QW)
I _
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BITEX Bit extract
BITEX . {Q,H,S,D} TOP
BITEXV . {QH,S,D} TOP

Purpose: BITEX extracts the bits of S1 selected by the “1” bits of $2. It squeezes these selected bits
to the right, zero-extends them, and stores them into DEST. '

BITEXYV, the reverse form, swaps the roles of S1 and S2.
Restrictions: None
Exceptions: None

Precision: S1, S2, and DEST all have the precision specified by the modifier.

—
The following extracts alternate bits from the operand:

BITEX.Q RTA, #[765]1,#[525] ;RTA: =37 (QW)
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BITCNT Bit count
BITCNT . {QH,S,D} XOP
VBITCNT . {H,S,D} V=V
LBITCNT . {H,S,D} S:=V

Purpose: BITCNT computes OP L=number of “I’ bits in OP2. This instruction is useful for '
counting the number of elements in a Pascal set.

VBITCNT performs BITCNT on each element of the vector beginning at OP2 and stores the
results in the corresponding elements of the vector beginning at OP1.

LBITCNT counts all the “1” bits in all elements of the vector OP1 and stores the resulting total in

oA

singleword RTA. If the length of the vector is 0 or negative, the total returned will be zero
Restrictions: None
Exceptions: None

Precision: For BITCNT, OP1 is a singleword and OP2 has the same precision as the modifier. For
VBITCNT, the elements of vector OP1 are singlewords and those of OP2 have the same precision
as the modifier. For LBITCNT, RTA is a singleword and the elements of vector OP1 have the
precision specified by the modifier.

l The following sets RTA to -1 if RTA has odd parity, 0 otherwise: I

BITCNT.S RTA,RTA
AND.S RTA,#1
NEG.S RTA

The parity of an arbitrarily long block of bits can be obtained by using LBITNT. If TABLE is
a block of N singlewords, this code sets RTA (flat-style) if TABLE has odd parity:

MOV SIZEREG,N
LBITCNT.S RTA, TABLE
AND.S RTA,#1

NEG.S RTA

A non-zero integral power of two always has a two’s—complement representation with exactly one
bit set. Assuming that HUNOZ contains a positive singleword integer, this code jumps to
TWOPOWER if HUNOZ is an exact power of two:
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BITCNT.S RTA,HUNOZ ;RTA<1 if HUNOZ is a power of tuo
OJMPZ.EQL RTA, TWOPOWER ;5 jump to TWOPOWER if RTA-1 is zero

l If zero is to be considered a power of two, D JMPZ.EQL can be changed to D JMPZ.LEQ, |
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BITFST Bit number of first “1” bit
BITFST . {QH,S,D} XOP
LBITFST . {H,S,D} SuV

Purpose: For BITFST, if OP2=0 then OPl:=-1 else OP l:=bit number of the leftmost “I” bit in OP2.
This instruction is useful for finding the index of the first element of a Pascal set. ’

LBITFST finds the first “1” bit in vector OP1 and assigns it to RTA. If there are no “1” bits in
the vector or if the length of the vector is zero or negative, then -1 is assigned to RTA.

Restrictions: None
Exceptions: None

Precision: OP1 is a singleword. For BITFST, OP2 has the same precision as the modifier. For

LBITFST, each element of OP1 has the same precision as the modifier

TSLasavat alzikcd.

The following sets RTA to floor(log2(RTA)) with RTA assumed to be a non-zero unsigned I
singleword integer:

BITFST.S RTA,RTA
SUBV.S RTA, #35.

This piece of code constructs a byte pointer in (doubleword) RTA to the smallest byte containing
all the one-bits in HUNOZ:

BITFST.S RTA,HUNOZ snumber of leading ‘8"’ bits
BITRY.S RTALl,HUNOZ,#36. ;reverse HUNOZ into RTAl
BITFST.S RTAlL snumber of trailing **8’’" bits
ADD.S RTA1,RTA snumber of surrounding ‘‘@’’ bits
SUBY.S RTA1, #36. s length of smallest containing byte
MOV.H.S RTA1,RTA sput position in high hal fuord of RTAl
I__ MOVP.P.A RTA,HUNOZ ;make pointer to HUNOZ in RTA _—I
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2.9 Byte Manipulation

Bytes, byte pointers, and byte seiectors: A byte is simply a fieild of zero or more bits within a
singleword or doubleword. The native mode architecture does not tie the concept of a byte to the
representation of a character. Instead, it lets the programmer specify the position and width of a byte
by constructing a byte pointer:

@ 45 35
TAG ; ADDR

B 17 18 35

The TAG and ADDR fields compose a pointer (as described in Section 1.8.1), and are subject to the
validation checking described in Section 1.82. They must point to an aligned singleword in
memory--that is, ADDR must be a multiple of 4. The POSITION field gives the bit number
within the singleword or doubleword at which the byte begins, and must lie within the range 0. . 35
for singlewords or 0 .. 71 for doublewords. The LENGTH field gives the number of bits within
the byte, and must lie within the range 0 .. 36 for singlewords or 0 .. 72 for doublewords. If the
POSITION and LENGTH fields of a byte pointer violate any of those rules, an
ILLEGAL_BYTE_PTR hard trap occurs.

One useful consequence of the format for byte pointers is the ability to compare them as if they
were ordinary doublewords (provided that one knows the tag fields of the pointers match). The
comparison will reveal which byte is higher in memory or, if the two bytes begin at the same
position of the same word, which byte is longer.

There exist forms of the byte instructions to manipulate each of the following cases: a singleword
byte within an aligned singleword, a doubleword byte within an aligned doubleword, a singleword
byte within a pair of singlewords, and a doubleword byte within a triple of singlewords. The latter
two are called long byte instructions and may be substantially less efficient than the former for
which alignment is insured.

Immediate byte instructions use an operand to specify the singleword or doubleword containing a
byte, and thus can access a byte within a constant or register as well as in memory. They use a
simplified version of the byte pointer, called a byte selector, eliminating the TAG and ADDRESS
fields:

POSITION LENGTH
8 17 18 35

Special byte instructions handle the most general form of byte instructions where one has four
independent operands: a value (to load or store), the word(s) containing the byte, the position of the
byte, and the length of the byte. The BYTDSC/LXBYT and BYTDSC/DXBYT sequences act as
these four-operand forms using the register R3 as a temporary holding a byte selector.
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The architecture recognizes three types of bytes. A unsigned byte is an non-negative integer. When
extracted from memory, it is zero extended on the left to fit the destination. A signed byte is stored
in twos complement form. When extracted, it is signed extended on the left. A logical byte is
simply a sequence of bits (eg. a Pascal set) which is indexed by bit position from left to right.
When extracted, it is zero filled on the right to fit the destination.

The type of the byte is specified by the modifiers {R,A,L}:

R Unsigned, right-aligned
A Signed, right-aligned with sign extension
L Logical, left-aligned

Adjusting byte pointers: It is often useful to “ad just” a byte pointer: that is, to assume that it points
to one of a series of packed bytes, and to alter it to point to an earlier or later byte in the series. The
following algorithms show how to do so for three different means of packing. In each one, “Addr”,
*Pos”, and “Len” are the address, byte position, and byte length within the byte pointer which we are
ad justing; “S2” tells how many bytes forward (or, if it is negative, how many bytes backward) to
move the pointer. “DivNI” and “ModNI” are a division and modulus which round toward negative
infinity.

(x Adjust byte pointer continuously. Positions bytes one after
another without leaving any unused bits, and thus splitting
bytes across word boundaries uhere necessary. Assume Len <= 72
and (Len + Pos) <= 72. x)

PROCEDURE ADJBPC (VAR Addr, Pos, Len: INTEGER; S2: INTEGER);
VAR

BitOffset: INTEGER;
BEGIN
BitOffset := Pos + 52 % Len;
Addr := Addr + DivNI(BitDffset, 3B) x &;
Pos := ModNI (BitOffset, 36);
END (x ADJBPC %) ;

(% Adjust byte pointer, maintaining alignment. Skips bits at
high-order and/or lou-order ends of singleword to avoid
splitting a byte across a singleword boundary, but
maintains the same aiignment {that is, the same pattern
of bytes and skipped bits) in each singleword. Assume that
Addr, Pos, and Len specify a byte which does not cross a
singleword boundary. x}

PROCEDURE ADJBPA (VAR Addr, Pos, Len: INTEGER; S2: INTEGER);
VAR

Alignment, BytesPer, BytesPerWord: INTEGER;
BEGIN
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(%

Alignment := ModNI (Pos, Len);

BytesPer := DivNI{Pos, Len};

BytesPerlord := BytesPer + DivNI ((36 - Pos), Len);

Addr := Addr + DivNI((S2 + BytesPer), ButesPerlWord) x 4;

Pos := Alignment + ModNI ((S2 + BytesPer), BytesPerWord) x Len;

END (% ADJBPA x);

Adjust byte pointer to zero-bit. Position bytes so that the
high-order byte in each singleword begins at bit zero, and
no byte crosses a singleword boundary. All skipped bits thus
appear at the low-order end of the singleword. Assume that
Addr, Pos, and Len specify a byte which does not cross a
singleword boundary; if the entry values suggest a byte
packing scheme that is not zero-bit aiigned, impose zero-bit
alignment if S2 causes the new value to point to a

different singleword. x)

PROCEDURE ADJBPZ (VAR Addr, Pos, Len: INTEGER; S2: INTEGER);

BEGIN
BytesPerlord := DivNI (36, Len);
BytesBefore := DivNI (Pos, Len):
BytesAfter := DivNI ((38 - Pos), Len) - 1;
IF S2 >= @ THEN
BEGIN
BS := BytesAfter + 1 - BytesPerWord;
BytesLeftInWord := BytesAfter;
END
ELSE
BEGIN
BS := -BytesBefore;
BytesLeftInWord := BytesBefore;
END;
IF ABS(S2) > BytesLeftInWord THEN
BEGIN
Addr := Addr + DivNI((52 - BS), BytesPerlord) x 4;
Pos := ModNI((S2 - BS)}, BytesPerWord) x Len;
END
ELSE
BEGIN
(% Addr := Addr; x)
Pos := Pos + 52 x Len;
END;
END (x ADJBPZ x);
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To show the effect of the three different algorithms, assume that RTA is a byte pointer to an 8-bit
byte beginning at bit 2 of singleword MIn]. Executing each algorithm eight times with S2 = 1 will
cause it to point to eight successive bytes in memory, as shown in the drawings:

ADJBPC

ADJBPA

ADJBPZ
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LBYT Load byte from byte pointer
LBYT {R.AL}. {5,D} XOp
LBYTL {R,A,L}. {S,D} XOopr

Purpose: The instruction copies the byte specified by byte pointer OP2 and stores it, justified and
extended according to the first modifier, in OP1. '

Restrictions: None

Exceptions: In the case of LBYT, an ILLEGAL_BYTE_PTR occurs if the byte is not properly
aligned within a datum with the precision specified by the second modified.

Precision: OP1 has the precision specified by the second modifier. OP2 is a byte pointer.

I The following sets RTA to the exponent field of the singleword floating point number X (the l
exponent field is 9 bits wide and starts at bit 1 of the word):

l LBYT.A.S RTA, [TAG+X ? 1,,9. 1 \ l
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LIBYT Load byte using byte selector
LIBYT {R,AL}. {5,D} TOP
LIBYTL {R,A,L}. {S,D} TOP

Purpose: The instruction copies from S1 the byte specified by byte selector S2 and stores it, justified
and extended according to the first modifier, in DEST. '

Restrictions: None

Exceptions: In the case of LIBYT, an ILLEGAL_BYTE_PTR occurs if the byte is not properly
aligned within a datum with the precision specified by the second modified.

Precision: DEST has the precision specified by the second modifier. S1 has the same precision

LIBYT, and and extra singleword for LIBYTL. S2 is a singleword byte selector.

or

The following sets RTA to the exponent field of the singleword floating point number X (the |
exponent field is 9 bits long and starts at bit 1 of the word):

| LIBYT.A.S RTA,X,#11,,8.]
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LXBYT Load byte using special selector
LXBYT {R,AL}. {S,D} XOop
LXBYTL {R,A,L}. {S,D} Xorp

Purpose: The instruction copies from OP2 the byte specified by a byte selector in R3 and stores i,
justified and extended according to the first modifier, in OP1.

Restrictions: None

Exceptions: In the case of LXBYT, an ILLEGAL_BYTE_PTR occurs if the byte is not properly
aligned within a datum with the precision specified by the second modified.

Precision: OP1 has the precision specified by the second modifier. OP2 has the same precision in
the short form, or an extra singleword in the long form.

l The following loads the Ith element of a TABLE of 7 bit quantities into the high-order bits of I
RTA.

MULT RTA,I,#7 : get bit offset
MDIVH.FL.S RTA,RTA, [HRECIP36 ? LRECIP36]
; divide by 36 to separate word and
;s bit offsets
BYTDSC RTB, #7 s put byte selector in R3
LXBYTL.L.S RTA,TABLEIRTAI?2 ; load the byte l
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DBYT Deposit byte through byte pointer
DBYT {R,L}. {5,D} Xorp
DBYTL {R,L} . {8,D} XOP

Purpose: The instruction copies the appropriate number of bits from OP2 and stores them in the
byte specified by byte pointer OP1. The “R” form uses the low-order bits, while the “L” form takes
the high-order bits.

Restrictions: None

Exceptions: In the case of DBYT, an ILLEGAL _BYTE PTR hard trap will occur if the byte is
not aligned within the precision specified by the second modifier.

Precision: OP1 is a byte pointer. OP2 has the precision specified by the second modifier.

I The foliowing sets the mantissa of the singleword floating point number X to the twenty-six low ’I
order bits of RTA (the mantissa is 26 bits long and begins at bit 10:

I DBYT.R.S (TAG+X ? 18@.,,26.1,RTA

|
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DIBYT Deposit byte using byte selector
DIBYT {R,L} . {S,D} TOP
DIBYTL {R,L}. {S,D} TOP

Purpose: The instruction copies the appropriate number of bits from S1 and stores them in the byte
within DEST specified by byte selector S2. The “R” form uses the low-order bits, while the “L”

form takes the high-order bits

Restrictions: None

Exceptions: In the case of DIBYT, an ILLEGAL_BYTE_PTR hard trap will occur if the byte is
not aligned within the precision specified by the second modifier.

Precision: S1 has the precision specified by the second modifier. DEST has the same precision in
the short form and an extra singleword in the long form. S2 is a singleword byte selector.

The following sets the exponent field of the singleword floating point number in RTA to zero. I
(The exponent field is 9 bits long and begins at bit 1)

DIBYT.R.S RTA,#8,#I1,,9.]
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DXBYT Deposit byte using special byte selector
DXBYT {R,L} . {S,D} XOop
DXBYTL {R,L}. {§,D} Xop

Purpose: The instruction copies the appropriate number of bits from OP2 and stores them in the
byte within OP1 specified by a byte selector in R3. The “R” form uses the low-order bits, while the
“L” form takes the high-order bits.

Restrictions: None

Exceptions: In the case of DXBYT, an ILLEGAL_BYTE PTR hard trap will occur if the byte is
not aligned within the precision specified by the second modifier.

Precision: OP2 has the precision specified by the second modifier. OP1 has the same precision in
the short form and an extra singleword in the long form.

l The following stores the high-order bits of RTA into the Ith element of a TABLE of 7 bit
quantities:

MULT RTA,I,#7 ; get bit offset
MDIVH.FL.S RTA,RTA, [HRECIP36 ? LRECIP36]
s divide by 36 to separate word and
; bit offsets
BYTDSC RTB, #7 : put byte selector in R3
L— DXBYTL.L.S TABLE [RTA112,RTA ; store into the byte -—I
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BYTDSC Build special byte selector

BYTDSC Xor
Purpose: The instruction creates a byte selector in R3. OP1 is copied into the POSITION field and
OP?2 is copied into the LENGTH field. This is normally used in conjunction with the LXBYT
and DXBYT instructions to obtain a full four-operand form byte instruction. '
Restrictions: None

Exceptions: None

Precision: Both operands are singiewords.
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2.10 Stack Manipulation

A stack is specified by a pointer to its end. The architecture supports both stacks which grow
upward in memory toward higher addresses and stacks which grow downward in memory toward
lower addresses. Instructions which manipulate stacks generally specify either “UP” or “DN”
(meaning down) as a modifier, indicating the direction in which they consider the stack to grow.

For upward-growing stacks, the stack pointer specifies the next free singleword on the stack, so that '
a push operation first stores the item and then increments the pointer. For downward-growing
stacks, the pointer specifies the top item of the stack, so that a push operation first decrements the
pointer and then stores the new item.

It is possible to check that a push or pop operation does not overflow the area allocated to the stack
by using the segment bounds checking mechanism, descnbe in section 1.8.2. By using an entire

nt £ tarl oo
segment 10r a siack, the bounds of the Scsmv..nt define the li

operations perform regular address arithmetic to increment or decrement the stack pointer, an
OUT_OF_BOUNDS hard trap will occur on stack overflow. Note that in an upward-growing
stack, a trap occurs when a push stores into the last word of the segment. As a result, there is
always an unused word at the end of the segment. Conversely, in a downward-growing stack, a trap
occurs when popping the first word of the segment, and there must be a free word at the beginning
of the segment.

a ﬁl“l Qinro nnch nd nnon
< .“.u WAL pPuoin ang PP

Register R31 (called SP) specifies a particular upward-growing stack for implicit use by interrupts,
traps, and linkage instructions such as CALL, JSR and ALLOC. The instructions in this section
can operate on that stack, but can operate equally well on additional stacks specified by arbitrary
stack pointers.
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PUSH Push onto designated stack

PUSH . {UP,DN} . {QH,S,D} XOp

Purpose: Push OP2 onto the upward-growing or downward-growing stack designated by the stack
pointer OP1.

Restrictions: None
Exceptions: Performs bounds checking and tag validation on the stack pointer.

Precision: OP1 is a singleword; OP2 has the precision of the modifier.

The following pushes RTA on the stack designated by stack pointer SPL:

PUSH.UP.S SP,RTA
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POP Pop from designated stack

POP . {UP,DN}. {QHS D} Xor
Purpose: From the upward-growing or downward-growing stack designated by the stack pointer
OP1, pop the top value (whose precision is specified by the second modifier) and store that value in
OoP2. '
Restrictions: None

Exceptions: Performs bounds checking and tag validation on the stack pointer.

Precision: OP2 has the precision of the modifier; OP1 is a singleword.

v— e —m—

The following pops the top halfword on an upward-growing stack into RTA. SP is the
standard stack pointer.

POP.UP.H SP,RTA
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PUSHADR Push address onto designated stack

PUSHADR . {UP,DN} xXorp

Purpose: Compute a tagged pointer to OP2 and push that pointer onto an upward-growing or
downward-growing stack specified by stack pointer OP1.

Restrictions: None
Exceptions: Performs bounds checking and fag validation on the stack pointer.

Precision: OP1 is a singleword.

The following pushes a pointer to WHIRR onto the stack specified by a pointer at R25:

PUSHADR. UP R25,WHIRR
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2.11 Routine Linkage and Traps

These instructions provide call and return mechanisms for subroutines, coroutines and trap
handlers. (Additional instructions WTDBP and RTDBP, used to specify the locations for trap
vectors, appear in Section 2.14.)

The architecture provides several complete sets of call and return instructions with varying degrees
of sophistication. They include:

JSP, JMPRET Jump to and return from a simple subroutine without using the stack. JSP calls
the subroutine, saving the return address in a specified location. JMPRET is
used to indirect through that location to return.

JSR, ALLOC, RETSR, RET
Jump to and return from simple subroutines. JSR calls the subroutine, pushing
a single parameter on the stack; ALLOC may be used to save registers and
allocate space upon the stack; and RETSR returns from the subroutine, restoring
the parameter. Alternatively, RET returns but discards the parameter pushed by
JSR and, if desired, a number of words preceding it on the stack.

CALL, ENTRY, UNCALL
Call and return from an internal procedure, using a stack frame. CALL calls the
procedure, ENTRY builds the stack frame, and UNCALL returns from the
procedure, dropping back to the preceding stack frame.

CALLX, ENTRY, RETS, UNCALL
Call and return from an external procedure, using a stack frame. CALLX calls
the procedure and ENTRY builds the stack frame. If the call crossed a ring
boundary, the procedure returns with RETS.A rather than with UNCALL. See
Section 1.9.5 for details on cross ring calls.

TRPSLF, RETS Cause a trap to one of the vectors for the current address space, and return from
the corresponding trap handler. See Section 1.9.4 for details.

TRPEXE, RETS Cause a trap to the executive and return from the corresponding trap handler.
See Section 1.9.4 for details.

JCR Jump between coroutines without using the stack.

JMPCALL, JMPRET
These are simple jump instructions which are considered to be call and return
instructions for purposes of call tracing. JMPCALL may be used when a
compiler converts a tail-recursive call to a jump. JMPRET may be used when a
non-local goto is performed.
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LCALL, LCALLO, LCALLL LRETURN

Call and return from a2 LISP ¢
Call ang return from a 15k

Note call and return instructions are subject to the pointer validation described in section 1.8.4
whenever they modify the PC. In addition, the processor uses address arithmetic when it
manipulates the stack pointer. In other words, a JSR instruction simulates the following instruction:

MOVP.P.A SP,(SP)4
rather than:
ADD.SS SP,»4

On instructions like JSR which implicitly alter the stack pointer, the text will note that this can
cause traps due to segment bounds violation or pointer tag validation faults; on instructions like
ALLOC which explicitly evaluate an operand and move it to the stack pointer, the text will not
belabor the obvious.

The following instructions will invoke the CALL_TRACE_TRAP hard trap when the call tracing
mechanism in PROCESSOR_STATUS is enabled:

CALL
CALLX
JCR
JMPCALL
JMPRET
JSP

JSR

RET
RETS
RETSR
UNCALL

2.11.1 The Generalized Stack Frame Convention

All of the linkage instructions use the singleword register, R31, as stack pointer (SP). The
CALL/ENTRY/UNCALL family of instructions establish a stack frame convention which further
defines R29 to be a closure pointer (CP), defines R30 to be a frame pointer (FP), and defines a
specfic stack frame format.
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cp The closure pointer points to the stack frame for the procedure which is
immediately global to the one which is currently executing. In Pascal, this is the
procedure (or main program) inside which the currently executing procedure was
declared. This pointer establishes the static scope of a language.

FP The frame pointer points to the stack frame for the currently executing
procedure.

The format of the stack frame of an executihg procedure is shown below. Notice that the FP points
past a variable size header to the first word that may be occupied by program variables.

SP (before call) — SAVED CP (word -(n+5))
SAVED FP (word -(n+4))

RETURN ADDRESS (word -(n+3})

SP (after call) — (word -(n+2))

SAVE AREA (n words)

.

CcP (word -2}

FLAGS /SAVE_COUNT (n) {word -1)

FP > (word 8)
LOCALS

SP (after entry) —

The copy of CP located in word -2 points acts as a link in the display chain of the enclosing static
scopes. This copy is always at a fixed offset relative to the FP so that it can be found by procedures
at a deeper level of scope. When a procedure calls another, the value of the CP is saved on top of
the stack where it can be restored when the caliee returns.

The FLAGS/SAVE_COUNT word contains the number of words in the save area in the least
significant bits, bits 30 .. 35; the high order bits are zeroed on entry and may be used by the
program to contain special flags.

To illustrate the stack frame convention, consider the following fragment of a Pascal program:
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PROCEDURE A;
VAR Al, A2, A3;
PROCEDURE C;

YAR Cl1, C2, C3;
BEGIN
END (x C x);
PROCEDURE B;
VAR Bl, B2, B3;
BEGIN
Cs
END (x B %);
BEGIN
B;

LI Y

END (x A x);

Suppose that someone calls procedure A, which calls procedure B, which in turn calls procedure C.
We stop the processor some time after C begins to execute, but before it has called any further
procedure. Following the stack frame convention, Figure 2-2 shows the appearance of the stack.

The CALL and CALLX instructions push the caller’s CP, FP and return address onto the top of
the stack, and load the CP for the called routine. The ENTRY instruction allocates the stack frame,
saves a specified number of registers, and initializes the stack frame. UNCALL pops the stack,
returns from the called procedure and restores the caller’s CP and FP. Figure 2-2 gives an example
of the the instructions required for procedure B to call procedure C:

Within procedure B:
CALL CP,C
NI: ...

Call C, giving it the same
CP as B because both are
nested in A. The old CP, FP
and address of NI are pushed
onto the stack

“e we ws we we
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At the beginning of procedure C:
C: ENTRY.29 %8, (5P} 4%<29.+2+FrameSize> ;

<Code of procedure C>
MOVMS.29 %8, (FP)-4%<239.+2> :
UNCALL (FP) -4%<29.4+2+1>, (FP) -4%<23.+3+42>;

.
’

2 Instruction Set

Save the registers, the new CP
and the count; set FP to point
to the new frame at SP+4x(23.4+2),
and SP to the address of OP2
allocating the stack frame

restore the registers
Restore FP and CP, pop the stack
and return
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2.11.2 The LISP Stack Frame Convention

The stack frame format defined by the LISP environment is as follows:

LF.RETURN_VALUE
This is a singleword slot that is assigned the function return value upon return
from the function. It is at the top of the frame so that appears to be a value left
at the top of the stack.

LF.SPARE_PC  Used in esoteric cases of function returns.

LF.OLD_CP This contains the CP of the caller of the current function.

LF.OLD_FP This contains the FP of the caller of the current function

LF.RETURN_PC
This contains the return address within the calling function.

LF.FUNCTION This contains the CP of the current function.
LF.ARGS This is the base of the argument list for the current function.

In a LISP function, the FP points 32 singlewords past the start of the stack frame header. This
permits the maximum addressibility of data within the frame with short operand format addressing.

2.11.3 Routine Linkage Instructions
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CALL Call an internal procedure

CALL JoP
Purpose: Call an internal procedure, assuming the use of the standard stack frame. First, push CP,
FP and PC_NEXT_INSTR (the return address) onto the stack pointed to by SP. Then set CP to
OP1. Last, transfer control to JUMPDEST.

Restrictions: None

Exceptions: An OUT_OF_BOUNDS hard trap occurs if the instruction causes the SP to cross a
segment boundary.

Precision: OP1l is a singleword; OP2 is a jump destination.

I Suppose a procedure named C is declared within a procedure named B. The following sequence I
would call C from B:

MOVP.P.A R2,Parmlist s Pointer to parameters
CALL FP,FirstC s Call C., Use B’s FP as C’s
;: CP because C is nested

l— 3 Within B __J
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CALLX Call an external procedure

CALLX Xop

Purpose: Call an external procedure, assuming the use of the standard stack frame. If the pointer,
OP?, has a gate tag, perform a cross-ring call through a gate (see Section 1.9.5); otherwise, perform a
normal call. First, push CP, FP and PC_NEXT_INSTR (the return address) onto the stack pointed '
to by SP. Then set CP to OP1. Last, transfer to the location pointed to by OP2.

Restrictions: None

Exceptions: An OUT_OF_BOUNDS hard trap occurs if the instruction causes the SP to cross a
segment boundary.

Precision: OP1 is a singleword; OP2 is a pointer

Assume that a procedure has been passed as a parameter to the current routine, and that the two l
singlewords at (AP)0 are a pointer to the code for that procedure, followed by its closure pointer.
To invoke the procedure, the current routine would execute:

L

CALLX (AP)1x4, (AP)Bx4

_
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ENTRY Initialize a stack frame

ENTRY . {0 .. 32} Xop

Purpose: Initialize a standard stack frame. This pushes a specified number of words on the SP
stack, initializes the stack frame header, and ad justs the stack pointer to allocate space on the top of
the stack. |

More specifically, the instruction first moves a block of 0..32 singlewords (which may lie in
registers) starting with OP1 to the vector pointed to by SP (if the source and destination for this
move-operation overlap, the result is undefined). Following the block it stores, in order, the CP and
the count of the number of words in the block (equal to the modifier). Then, it sets FP to the
address of the word following the count word. This cstablishes the location of the new stack frame.
Last, it sets SP to the address of OP2. One typically chooses OP2 to be a location beyond the last
of the words moved, though this is not required.

Restrictions: None

Exceptions: An OUT_OF BOUNDS hard trap occurs if the instruction would cause the SP to
cross a segment boundary.

Precision: OP1 is a vector of singlewords, and OP2 must have singleword alignment.

The following sequence saves 8 registers starting at RTA, and initializes the stack frame.

ENTRY.R RTA, (SP)4%<8+2+4FrameSize>
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UNCALL Return from a call

UNCALL XOP
Purpose: Return from a procedure called by the CALL or CALLX instruction. CP:=OP 1[-2x4];
FP:=OP1[-1%x4]), SP:=ADDRESS(OP2); goto the location pointed to by OP1[0]. Under normal
usage, OP1 is the last word pushed by a CALL or CALLX instruction. When the stack is to be
popped, OP2 is the first word pushed, i.e. the old top of stack.
Use RETS.A, not UNCALL, to return from cross—rihg calls.

Restrictions: None

Precision: OP1 and OP2 are singlewords.

‘ The following sequence returns from a subroutine that saved eight registers on entry. |

_

MOVMS.8 RTA, (FP)-4x<8+2>
| UNCALL (FP)-4%<8+2+1>, (FP) -4%<8+2+3>
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JSR Jump to subroutine

JSR Jop

Purpose: Push first OP1 and then the return address onto the stack whose pointer is SP. Then
transfer to JUMPDEST.

Restrictions: None
Exceptions: Performs bounds checking and fag validation on the stack pointer.

Precision: All operands are singlewords.

l The following pushes RTA and ADDRESS(FO1) on the stack before Jjumping to BAZ:

JSR RTA,BAZ
Fal: . sreturn address

oP1
PC_NEXT_INSTR

Top of stack

Figure 2-3
JSR Save Area Format
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ALLOC Allocate space atop stack

ALLOC . {1 .. 32} XOP

Purpose: This instruction pushes a specified group of singlewords onto the SP stack (the one used
by the subroutine calling mechanism) and then adjusts the stack pointer, possibly allocating
additional space atop the stack. Typically it is used to save registers and make room for a stack
frame.

More specifically, the instruction first moves a block of 1.. 32 singlewords {(which may lie in
registers) starting with OP1 to the vector pointed to by SP (if the source and destination for this
move-operation overlap, the result is undefined). Then it effectively does a MOVP.P.A SP,OP2.

Thus, one typically chooses for OP2 to be a location beyond the last of the words moved, though
thic ic nat vroairir 1 th is a constant A'Ihc wil! sprea‘d its Va}ue thrcug‘\ fhn enorifiod

LIS A9 1L A Wil Cla. A1 N1 QA LULIOVAIIL, SR ELRuNT LR i) ar}u\.nll\,u

locations.

Exceptions: If ALLOC would cause SP to cross a segment boundary, an OUT_OF_BOUNDS hard
trap occurs.

Precision: OP1 and OP2 must be singlewords. OP1 is a block and can lie in the registers.

l The following saves all the registers and reserves an additional DW on the stack as well: |
ALLOC.32 R®, (SP) <4x%(48+2) >

Note that the modifier is a decimal number, but the numbers in the operands are octal. The
same instruction could be written:

l ALLOC.32 R@, (SP) <4%(32.+2)>
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RETSR Return from subroutine

RETSR Xor

Purpose: Return from a subroutine that was invoked by the JSR instruction. First the instruction
copies ADDRESS(OP2) into SP. Then it pops the first singleword (return address) from the stack
pointed to by SP and stores it in the PC. Then it pops the second singleword (typically the value of
OP1 placed there by the JSR instruction) and stores it in OP1.

To be sure that RETSR is the exact reverse of JSR, the programmer must use the same OPI1 in
both JSR and RETSR, and assure that OP2 in the RETSR instruction is the same memory location
that SP pointed to immediately after the JSR. If the subroutine does not alter SP, then OP2 should

be “SP)”; otherwise, the subroutine should save a stack marker and use it as OP2.
Restrictions: None
Exceptions: Performs bounds checking and tag validation on the stack pointer.

Precision: All operands involved are singlewords.

I The following code calls BAZ, which returns to FOl, saving and restoring RTA on the stack. |
Assume SP is the stack pointer:

JSR RTA,BAZ
FBl: cos sreturn here

BAZ: scalled routine
RETSR RTA, (SP)

Suppose that BAZ needs N words of temporary stack space while it is running. These words
can be allocated using the MOVP or ALLOC instructions, and the RETSR instruction can
automatically discard these words and pop the JSR save area as well:

BAZ: ALLOC.2 R8, (SP)<N+2>%4 ;save R8 and R9Y, and allocate N words
scalled routine
MOVMS.2 R8, (SP)-<N+2>%4 ;restore registers R8 and RY
I__ RETSR RTA, (SP) -<N+2>%4 ;pop stack and return from subroutine —J
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RET Return and pop parameters

RET XOp
Purpose: Return without restoring parameters. First the instruction makes SP point to OP2. Then
it copies one singleword (the return address) to the PC from the top of the stack pointed to by SP.
Then it makes SP point to OP1, thereby optionally popping and discarding the return address and
parameters (such as the one pushed onto the stack by the JSR instruction) as well.
Restrictions: None

Exceptions: Performs bounds checking and tag validation on the stack pointer.

Precision: All operands involved are singlewords.

The following returns from a previous JSR call, throwing away the operand previously pushed
on the stack by the JSR:

I RET (SP)-4,SP I
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TRPSLF Trap to self

TRPSLF . {0..63} Xop
Purpose: Trap to a routine in the current address space. The operation of TRPSLF is explained in
detail in Section 1.9.4; briefly, the modifier selects one of 64 trap vectors each of which specifies a
handler address. Each operand is evaluated as a normal XOP and passed to the handler in the
stack entry’s parameter area.

Restrictions: None

Exceptions: Performs bounds checking and tag validation on the stack pointer.

Precision: Unspecified

l The following causes a trap to the “number 0” trap routine in the current address space, passing |
to it the operands X and Y:

I TRPSLF.8 X,Y I
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TRPEXE Trap to executive

TRPEXE. {0..63} ).(0) 4

Purpose: Trap to an executive routine. The operation of TRPEXE is explained in detail in Section
1.9.4; briefly, the modifier selects one of 64 trap vectors each of which specifies a handler address.
Each operand is evaluated as a normal XOP and passed to the handler in the stack entry’s
parameter area. '

Restrictions: None

Exceptions: Performs bounds checking and tag validation on the stack pointer.

The following causes a trap to the “number 0” trap routine in the executive’s address space with

operands X and Y:

TRPEXE. 8 X,Y
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RETS Return from trap

RETS . {R.A} XOP

Purpose: This instruction is used to return from all traps, interrupts and gates. It is more fully
described in section 1.9.2. The entire trap mechanism is explained in section 1.9.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is a vector of singlewords.

| The following shows the return from a trap handler. The pseudoregister ((SP)-4)0 specifies the I
last word of the stack entry, which contains a pointer to the first word of the entry:

(code to handle the trap without altering SP)

I RETS.R ((SP)-4)89 I
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JCR Jump to coroutine

JCR XOP
Purpose: The instruction first exchanges OP1 (usually register SP) with OP2 (usually a memory
location holding a saved copy of the value of SP used by the other coroutine). Then it copies the
saved “return address” from NEXT(OP2), stores PC_NEXT_INSTR in NEXT(OP?), and branches
to the return address.

Restrictions: None

Exceptions: None

ot
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nvolved are singlewords.

When each of two coroutines has its own distinct stack, the JCR instruction transfers between
them without using either stack. Instead, it stores the stack pointer and program counter for the
currently inactive coroutine in two consecutive singlewords pointed to by OP2. In the following
example, let SAVEAREA be the first of those two singlewords. Then the following instruction
saves the stack pointer and PC for the current routine, sets up the stack pointer and PC for the
other routine, and branches to it.

| JCR SP,SAVE.AREA scall other coroutine i |
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JSP

283

Jump and save PC

JSp

Purpose: First OP1:=PC_NEXT_INSTR, then go to JUMPDEST.
Restrictions: None

Exceptions: None

Precision: OP1 is a singleword.

—
The following saves the return address in RO and calls PRSTR:

JSP R8,PRSTR

jop
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JMPCALL, JVIPRET ) Jump to call/return
JMPCALL jop
JMPRET joP

Purpose: These instructions are identical with the JMPA instruction, except that JMPCALL is
considered to be a call instruction and JMPRET is considered to be a return instruction when call
tracing is enabled.
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LCALL LISP function call

LCALL Xor
Purpose: Call a LISP function. This instruction saves the caller’s state, creates a new stack LISP

stack frame for the callee, and transfers to it.

frame header; OP2 is the location 32 singlewords past the actual header. Store CP, FP and
PC_NEXT_INSTR in LF.OLD_CP, LF.OLD_FP and LF.RETURN_PC, respectively; then set FP
to ADDRESS(OP2) to address the new frame. Finally, set CP to the contents of LF FUNCTION,
and fetch the new PC from the location addressed by this new CP.

The LCALLO and LCALL1 may be used for functions with zero or one argument, respectively.
Restrictions: None

Exceptions: None

Precision: OP1 and OP? are singlewords.

| The following sequence calls a LISP function with two arguments: I
ALLOC.5 #8, (SP)4x5 ; zero the header of the frame
PUSH SP,FUNCTION s push the CP of the function to call

PUSH SP, ARG1 ; push the arguments

PUSH SP, ARG2
LCALL #2, (SP)4%<32.-8> ; make the call |
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LCALLO LISP function call with no arguments

LCALLO XOor
Purpose: Call a LISP function with no arguments.

First, RTA := 0; this sets the call type and argument count for the call. Next initialize the stack
frame header; SP points to the start of the actual header. Zero LF.RETURN_VALUE and
LFSPARE_PC' Store CP, FP, PC_ NEXT_INSTR and OPl in LF.OLD CP, LFOLD_FP,
LFRETURN_PC and LF.FUNCTION, respectively. Allocate the new frame with FP := SP + 4x32
and SP := SP + 4«6 (using pointer arithmetic). Finally, set CP to OP1 and fetch the new PC from
the location addressed by this new CP.

Exceptions: An OUT_OF_BOUNDS hard trap occurs if SP is within 32 singlewords of a segment

b nund a‘ry

ny
UL

Precision: OP1 is a singleword.

The following sequence calls a LISP function with no arguments:

LCALL® FUNCTION
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LCALL1 LISP function call with one argument

LCALL1 XOopP
Purpose: Call a LISP function with one argument.

First, RTA := 1; this sets the call type and argument count for the call. Next initialize the stack
frame header; SP points to the start of the actual header. Zero LFRETURN_VALUE and
LFSPARE_PC. Store CP, FP, PC_NEXT_INSTR, OP! and OP2 in LFOLD_CP, LF.OLD_FP,
LFRETURN.PC, LFFUNCTION and LF.ARGS[0], respectively. Allocate the new frame with FP
= SP + 4%32 and SP := SP + 4x7 (using pointer arithmetic). Finally, set CP to OP1 and fetch the
new PC from the location addressed by this new CP.

Restrictions: None

Exceptions: An OUT_OF_BOUNDS hard trap occurs if SP is within 32 singlewords of a segment
boundary

Precision: OP1 is a singleword.

The following sequence calls a LISP function with one argument:

LCALL1 FUNCTION, ARG
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LRETURN LISP function return

LRETURN xor
Purpose: Return from a LISP function. This instruction restores the caller’s state.

OPl is LFSPARE_PC. Load R28 from LFSPARE_PC; CP from LF.OLD_CP; FP from '
LF.OLD_FP. Set SP to ADDRESS(OPI). Transfer to the location pointed to by
LF.RETURN_PC.

Restrictions: None

Exceptions: None

Precision: OP1 is a singleword.

The following returns from a LISP function called with LCALL, LCALLO, or LCALLL:

LRETURN (FP)-4x31
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2.12 Interrupts and I/O

The {B,Q,H,S} modifiers that appear on certain instructions refer to bitwise, quarterword, halfword,
and singleword translations, which are likewise explained in Section 1.10.
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IOR Read with I/O translation
IOR . {QH,S,D,LSBIG,MSBIB,LSBSZMSBS2} XOP
MIOR . {LSB16,MSB16,LSB32,MSB32} XOP
VIOR . {Q,LSBIB,MSBIG,LSBS2,MSB32,B} V=V
VPIOR . {Q,LSBlG,MSBlG,LSBS2,MSBS2,B} V=V
VMIOR . {LSB16MSB16,LSB32,MSB32,B} VeV
VMPIOR . {LSB16,MSB16,LSB32MSB32,B} V=V

Purpose: These instructions read data, performing the 1/O translations described in section 1.10.1.

IOR copies a scalar from OP2, which must lie in an I/O memory, to OP1, which must lie in main
memory, using the specified translation. MIOR is similar, but both its operands must lie in main
memory.

VIOR and VMIOR are analogous to IOR and MIOR, but operate on vectors instead of scalars.

VPIOR and VMPIOR are analogous to VIOR and VMIOR, but interpret OP1 as a physical
address rather than a virtual address.

Restrictions: For VIOR.B, SIZEREG must be a multiple of 8.
Exceptions: None

Precision: For the scalar instructions, modifiers {Q,H,S,D} indicate the precision of both operands,
modifiers {LSB16,MSB16} indicate that both operands are halfwords, and modifiers
{LSB32,MSB32} indicate that both operands are singlewords.

For the vector versions of these instructions, both operands are vectors of singlewords regardless of
the modifier, and SIZEREG indicates the number of singlewords in the destination (main memory)
vector {the "B" modifier can cause the destination vector to be shorter than the source vector).

| Assume BUFFER is a legitimate address on an I/O page. To read eighty characters from the l
I/O memory (starting at BUFFER) to a block in memory starting at IMAGE, the following
instruction sequence could be used:

MOV.S.S SIZEREG, #<88./4> ;set SIZEREG to eighty QUs

| VIOR.Q IMAGE,BUFFER ;do read l
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iIow Write with I/O translation
IOW . {Q,H,S,D,LSBI6 MSB16,LSB32,MSB32} XOP
MIOW . {LSB16,MSB16,LSB32,MSB32} XOop
VIOW . {Q,LSB16MSB16,LSB32,MSB32,B} VeV
VPIOW . {Q,LSB16, MSB16,LSB32, MSB32,B} V:=

VMIOW . {LSB16,MSB16,LSB32,MSB32,B} . V=V
VMPIOW . {LSB16,MSB16,LSB32,MSB32,B} V=V

Purpose: These instructions write data, performing the I/O translations described in section 1.10.1.
IOW copies a scalar from OP2, which must lie in main memory, to OP1, which must lie in an I/JO
memory, using the specified translation. MIOW is similar, but both its operands must lie in main
memory.

VIOW and VMIOW are analogous to IOW and MIOW, but operate on vectors instead of scalars.

VPIOW and VMPIOW are analogous to VIOW and VMIOW, but interpret OP2 as a physical
address rather than a virtual address.

Restrictions: For VIOW.B, SIZEREG must be a multiple of 8.

Exceptions: None

Precision: For the scalar versions of these instructions, the modifiers {QH,S,D} indicate the
precision of both operands, the modifiers {LSB16,MSB16} indicate that both operands are
halfwords, and the modifiers {LSB32,MSB32} indicate that both operands are singlewords.

For the vector versions of these instructions, both operands are vectors of singlewords regardless of

the modifier, and SIZEREG indicates the number of singlewords in the source vector (the "B"
modifier can cause the destination vector to be longer than the source vector).

I Assume BUFFER lies within an I/O page. To transfer the four characters “S-1!" into the l
IOBUF starting at BUFFER the following instructions could be used:

MOV.S.S SIZEREG, #<4/4> ;make vector 4 characters long
YIOW.Q BUFFER,#["S5-11"] sdo write

Because no translation is required the following instruction would work just as well:

| [OW.S BUFFER, ["S-11"] ;copy a singleword I
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IORMW 1/0 read/modify/write

IORMW TOP
Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system) DEST:=S1 and then $1:=52. (More precisely, because the processor prefetches
operands and because TOP instructions store DEST last, this instruction makes a temporary copy of
S1, stores S2 in S1, and then stores the copy into DEST.)

DEST and S2 must lie in main memory. S1 must lie on an 1/O page.
Restrictions: None

Exceptions: None

Precision: S1, $2, and DEST are all singlewords.

The following illustrates the use of IORMW:

IORMW RTA, #-1,L0CK
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INTIOP Interrupt I/O processor

INTIOP Xorp

Purpose: Interrupt the I/O processor connected to the I/O memory containing OP1, and pass OP2
to the 1/O processor as a parameter whose purpose is not specified by the architecture.

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are singlewords. OP1 must lie within an I/O page having
WRITE_PERMIT access.

Assume BUFFER lies within an I/O page. The following instruction will interrupt the /O
processor connected to the I/O memory containing BUFFER:

INTIOP BUFFER, #8
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WAIT Wait for interrupt

WAIT Xop

Purpose: Cause the processor to wait for an interrupt at the processor priority specified by OPIL.
Changing the priority indivisibly with the WAIT instruction eliminates the problem that would
occur if you intended to WAIT for an interrupt but in fact the interrupt occured after changing the '
priority but before executing the WAIT instruction.

Restrictions: Illegal in user mode.
Exceptions: If OP1 is not a valid processor priority an ILLEGAL_PRIORITY hard trap occurs.
Precision: OP?2 is unused.

The following instruction waits for an interrupt at priority 5:

WAIT #5




2.12 Interrupts and 1/O 295

RIEN Read interrupt enable

RIEN Xorp

Purpose: If interrupts are enabled for the I/O memory containing singleword OP2, then OP1 := -1
else OP1 := 0.

Restrictions: Tllegal in user mode.
Exceptions: None

Precision: OP1 and OP2 are both singlewords; OP2 must lie on an I/O page.

The following jumps to DISABLED if interrupts are not enabled for the I/O memory which I
contains TTYMUX:

L

RIEN RTA, TTYMUX
JMPZ.EQL.S RTA,DISABLED
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WIEN Write interrupt enable

WIEN Xopr

Purpose: If the low order bit of OP2 is “1”, enable interrupts for the I/O memory containing OP1;
otherwise, disable interrupts for that I/O memory.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 and OP?2 are both singlewords. OP1 must lie on an 1/O page.

The following enables all interrupis for the I/O memory containing TTYMU
14 p y 13

WIEN TTYMUX,#1
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RIPND Read interrupt pending

RIPND Xxor

Purpose: OP1 gets the priority level of the pending interrupt for the I/O memory containing OP2.
(OP1=0 indicates no interrupt is pending.)

Restrictions: Traps if the processor is in virtual machine mode.
Exceptions: None

Precision: OP1 and OP?2 are both singlewords. OP2 must lie on an I/O page.

e ] ——

The following sets RTA to the level of pending interrupt for the /O memory containing
TTYMUX:

RIPND RTA, TTYMUX
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WIPND Write interrupts pending

WIPND Xop

Purpose: If an interrupt is pending for the I/O memory containing OP 1, change the priority of the
interrupt to the level specified by OP2. If not, cause an interrupt with priority specified by OP2 on
behalf of the I/O memory containing OP1 (whether the interrupt occurs immediately or remains '
pending depends, as always, on the relative priority of the uniprocessor). If OP2=0, the instruction
effectively clears any pending interrupt for the /O memory in question.

Restrictions: Illegal in user mode.
Exceptions: If OP2 is not a valid level, an ILLEGAL_PRIORITY hard trap occurs.

Precision: OP1 and OP?2 are both singlewords. OP1 must lie on an I/O page.

The following clears any pending interrupt for the I/O memory which contains TTYMUX:

WIPND TTYMUX, #8
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2.13 Cache Handling

The S-1 uniprocessor has four caches: an instruction cache, a data cache, an instruction map cache,
and a data map cache. The first two hold recently used words from address spaces, and the latter
two hold recently used entries from the virtual-to-physical address mapping tables (described in
Section 1.7).

If the uniprocessor accesses memory to fetch an instruction, then that access involves the instruction
cache and the instruction map cache. If the access reads or writes a piece of data, then it involves
the data cache and the data map cache. If the ACCESS bits for a particular page specify
EXECUTE_PERMIT as well as READ_PERMIT or WRITE_PERMIT, then conceivably one
could, by alternately reading (or writing) a location and executing it, cause that location to appear in
both the instruction cache and the data cache; no problems need result. (In the more likely situation
where the ACCESS bits are used to enforce separation of instructions and data, such a situation
would not occur.)

In general, the caches employ a least recently used (LRU) algorithm to decide which cache residents
to evict to make room for new residents. Not every instruction causes its operands to be regarded as
used, however. 1/O instructions do not update the LRU status bits for their operands, for example,
since the data involved in an I/O operation is unlikely to be accessed repeatedly.

While the caches are usually invisible to software, instructions are provided to sweep them—-that is,
deliberately update main memory to reflect any changes in cache contents—-if this is felt to improve
performance. The cache sweeping instructions take ordinary operands which specify memory
location on the pages to be swept; the instructions implicitly examine the addresses of those operands
rather than the operands themselves to determine which pages to sweep.
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SWPIC Sweep instruction cache

SWPIC . {V,P} Xop
Purpose: Sweep the instruction cache by removing a vector of consecutive singleword residents
without writing them back to main memory. (Since access to an instruction page prevents writing,
the contents of the cache cannot differ from the corresponding portions of main memory.) OPI1is
the vector.

The {V,P} modifier tells the processor how to determine which locations are “consecutive”. In either
case, it first evaluates OP1 as it would for any ordinary memory reference. If the modifier is V, it
then sweeps the vector of words whose virtual addresses follow that of OP 1. If the modifier is P, it
sweeps the vector of words whose physical addresses follow that of OPL

Restrictions: Physical sweeps are legal only in privileged mode.

Exceptions: None

Precision: OP1 is a vector of singlewords. OP2 is unused.

l The following sweeps all instructions from START up to but not including the following |
instructions:

MOV.S.S SIZEREG, <.-START+3>/4  ;specify the length of the vector

| SWPIC.V START s sWeap cache I
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SWPDC Sweep data cache

SWPDC . {V,P}. {U,UK} XOP
Purpose: Sweep the data cache by writing a vector of consecutive singleword residents back to main
memory. If the second modifier is U, merely update main memory; if it is UK, update main memory
and then remove the specified residents from the cache (“kill” them). OP1 is the vector. '

The {V,P} modifier tells the processor how to determine which locations are “consecutive”. In either
case, it first evaluates OP1 as it would for any ordinary memory reference. If the modifier is V, it
then sweeps the vector of words whose virtual addresses follow that of OP1. If the modifier is P, it
sweeps the vector of words whose physical addresses follow that of OP1.

Restrictions: Physical sweeps are legal only in privileged mode.

Exceptions: None

Precision: OP1 is a vector of singlewords. OP2 is unused.

I The following updates the first 128 quarterwords in the address space, without removing them l
from the data cache (ie, not killing them):

MOV.S.S SIZEREG, #128. sspecify the vector length
I SWPDC.V.U @ ; sHeep cache I
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SWPIM, SWPDM, FLSHIM, FLSHDM Sweep/flush instruction/data map cache
SWPIM XOp
SWPDM : Xop
FLSHIM XOorP
FLSHDM XOor

Purpose: Sweep a map cache, removing one resident, or flush a map cache, removing all residents.

SWPIM removes from the instruction map cache the entry for the page containing OP1. SWPDM
removes from the data map cache the entry for the page containing OP1.

FLSHIM removes all entries from the instruction map cache. FLSHDM removes all entries from the
data map cache.

None of these instructions update main memory.
Restrictions: Illegal in user mode.
Exceptions: None

Precision: For SWPIM and SWPDM, OP1 is a singleword and OP2 is unused. For FLSHIM and
FLSHDM, OP1 and OP2 are unused.

| The following kills the instruction map entry for the first page in the user’s address space: |
SWPIM @

The following kills the data map entry for the page containing the memory location pointed to
by RTA:

| SWPDM (RTA) |
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2.14 Context (Map, Register Files, and Status Registers)

This section describes a number of instructions which an operating system can use to set up the
proper environment for a task. They manipulate the user and processor status registers, the multiple
sets of user registers, the mapping system, and the origin of trap, interrupt, and gate vectors. Sections
1.2.3, 1.4, 1.7, and 1.9 explain details of these features of the architecture.

Address Space IDs: In a multiprogramming environment, it is likely that various tasks will
alternately use the same virtual addresses but different mappings to the physical address space--in
other words, that the operating system could keep multiple tasks in various regions of physical
memory and switch between them by changing the virtual-to-physical address mapping tables. The
operating system would have to sweep the map caches before switching from one task to the next to
prevent the new task from being affected by mapping information left in the caches by the old one.
To obviate this time-consuming process, the operating system can specify via the SWITCH
instruction a different code, called an address space ID, for each task. The caching mechanism
combines this code with virtual address references made by that task, rendering them unique from
virtual address references made by other tasks. Thus, for example, a reference to virtual address
1000 in ring 3 with address space ID 5 is distinct from a reference to virtual address 1000 in ring 3
with address space ID 20; the mapping information for both of these may reside in cache
simultaneously and can provide two different address transformations. It is the responsibility of the
operating system never to specify the same ID for two different tasks which use the same address

space unless it sweeps the map caches between instances of the two tasks.

An address space ID must not be set to the value 0, which is reserved for use by the hardware.
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SWITCH Switch context

SWITCH XOop

Purpose: OP1 is a vector describing the state of a task to be run. The instruction loads the
appropriate internal registers with the information from this vector and resumes execution
(restarting an interrupted instruction if INSTRUCTION_STATE so demands.) '

The vector contains the following information:

Singleword  Information

DSEGP

Address space ID for ring 0
Address space ID for ring 1
Address space ID for ring 2
Address space ID for ring 3
PROCESSOR_STATUS
USER_STATUS

PC

SIZE of INSTRUCTION_STATE
INSTRUCTION_STATE

W 00 I D Ot W N = O

Address space IDs are explained in Section 2.14. The DSEGP is explained in Section 1.7.
Restrictions: Illegal in user mode. OP1 cannot be a register or constant.
Exceptions: None

Precision: OP1 is the first element of a vector of singlewords. OP2 is unused.

Start executing the task described in the vector beginning at NextTask:

SWITCH NextTask
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WASJMP Write address space and jump

WAS]MP Jop

Purpose: OP1 is a vector describing a particular mapping of four virtual address spaces onto the
physical address space. The instruction loads the DSEGP and address space IDs from this vector,
thereby causing the address translation mechanism to adopt this mapping, and resumes execution at
JUMPDEST (where JUMPDEST is translated according to the newly established mapping).

The vector contains the following information:

Singleword  Information

DSEGP

Address space ID for ring 0
Address space ID for ring 1
Address space ID for ring 2
Address space ID for ring 3

B W N = O

Address space IDs are explained in Section 2.14. Note that you must not set an address space ID to
0 since that value is reserved for use by the hardware.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is the first element of a vector of singlewords.

Tell the address translation mechanism to use the mapping specified by NewMap, and resume I
execution at NewProcess:

WASJMP NewMap,NewProcess
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RRFILE Read register file identity

RRFILE Xop

Purpose: OP 1:=PROCESSOR_STATUS REGISTER_FILE, right justified and padded with zeros.
This instruction tells which register file is in use.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

Set RTA to the number (in the range O .. 15) of the current register file:

RRFILE RTA
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WRFILE Write register file identity

WRFILE XOP

Purpose: PROCESSOR_STATUS REGISTER_FILE:=OP1. This instruction selects which register
file to use. If OP1 is not within the range 0 .. 15 an ILLEGAL_REGISTER hard trap occurs.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

e ——

Select register file number 2:

WRFILE #2
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WREGFILE Write register file

WREGFILE Xor

Purpose: OP1 is a singleword specifying a register file. The instruction copies vector OP2, which is
32 singlewords long, into that register file.

Restrictions: Illegal in user mode. OP2 cannot be a register.
Exceptions: If OP1 is outside the range 0 . .15, an ILLEGAL_REGISTER hard trap occurs.

Precision: OP2 is a vector of 32 singlewords. OP1 is a singleword.

Initialize register file 7 using 32 singlewords popped from the stack pointed to by ANSP: |

WREGFILE #7, (ANSP)<-32. %4>
MOVP.P.A ANSP, (ANSP) <-32. %4>
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RREG

2 Instruction Set

Read register

RREG

Purpose: OP?2 is a singleword specifying a register within a particular register file.

copies that register into OP1. The format of OP?2 is:

8 FILE | REGISTER
8 27 30 31 35

where FILE is in the range 0 .. 15 and REGISTER is in the range 0 .. 31
Restrictions: Illegal in user mode.
Exceptions: If OP2 is invalid, an ILLEGAL_REGISTER hard trap occurs.

Precision: Both operands are singlewords.

Copy the version of R4 in register file 7 into the current RTA:

RREG RTA, #<32.%7+4>

XOP

The instruction
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WREG Write register

WREG Xorp

Purpose: OP1 is a singleword specifying a register within a particular register file. The instruction
copies OP2 into that register. OP1 has the following format:

%] FILE | REGISTER
8 27 3@ 31 35

where FILE is in the range 0 .. 15 and REGISTER is in the range 0. . 31.
Restrictions: Illegal in user mode.
Exceptions: If OP1 is invalid, an ILLEGAL_REGISTER hard trap occurs.

Precision: Both operands are singlewords.

Copy the current register R3 into the version of register R3 in register file 7 (note that this
involves register 3, not the PC):

WREG #<32.%7+3>,R3
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RPS Read processor status

RPS Xopr
Purpose: OP 1:=PROCESSOR_STATUS

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

r— n—

The following copies PROCESSOR_STATUS into RTA:

RPS RTA
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WFSJMP Write full status and jump

WFSJMP Jor
Purpose: PROCESSOR_STATUS:=FIRST(OP1); USER_STATUS:=SECOND(OP1).

Restrictions: Illegal in user mode.

Exceptions: An ILLEGAL_PROC:ESSORﬁT ATUS or ILLEGAL USER_STATUS hard trap
will occur if an illegal value of PROCESSSOR_STATUS or USER_STATUS is specified,

respectively.

Precision: FIRST(OP1) and SECOND(OP1) are singlewords.

l The following sets PROCESSOR_STATUS to FIRST(NEWPST), sets USER_STATUS to
SECOND(NEWPST) and jumps to BRAZIL:

I WFSJMP NEWPST,BRAZIL ,
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RUS Read user status

RUS XOr
Purpose: OP1:=USER_STATUS. OP2 is unused.

Restrictions: None

Exceptions: None

Precision: OP1 is a singleword.

The following loads RTA from USER_STATUS:

RUS RTA
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JUS : Jump on selected user status bits

JUS . {NON,ALL ANY NAL} Jop

Precision: If USER_STATUS LCOND OP1 (where LCONDe{NON,ALLANY,NAL}) is true,
control is transferred to the location specified by JUMPDEST.

Restrictions: None
Exceptions: None

Precision: All operands concerned are singlewords.

Let ERRORS be a mask for several bits in USER_STATUS. The following jumps to ZIP if I
any of these bits are set:

JUS.ANY ERRORS, ZIP I
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JUSCLR Jump on selected user status bits and clear

JUSCLR . {NON,ALL,ANY,NAL} JOP

Purpose: OP1 is a mask for selecting bits from USER_STATUS. The instruction first tests those
bits using the condition specified by the modifier. Then it clears those bits. Finally, if the test yielded
true, the processor jumps to JUMPDEST. '

Formally:

TEMP:=USER_STATUS;

(% ~ represents one’s complement )
USER_STATUS:=USER_STATUSA(-OP1);

If TEMP {NON,ALL,ANY ,NAL} OPi THEN GOTO JUMPDEST;

Restrictions: None

Exceptions: An ILLEGAL_USER _STATUS hard trap will occur if clearing the specified bits
would produce an illegal value for USER_STATUS.

Precision: All operands are singlewords.

Let ZDIV be the mask for the INT_Z_DIV bit in USER_STATUS. The following jumps to I
YOW and clears this bit if it is set:

JUSCLR.ALL ZDIV,YOW

u |
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SETUS, SETPS Set specified user or processor status bits
SETUS Xop
SETPS Xor

Purpose: USER_STATUS:=(USER_STATUS AND NOT(OP2)) OR (OP1 AND OP2) (where
AND, NOT, and OR are bitwise operations). Note that an ILLEGAL_USER_STATUS,
ILLEGAL_PROCESSOR_STATUS hard trap will occur if an illegal value is specified. SETPS is
identical to SETUS but effects PROCESSOR_STATUS

Restrictions: SETPS illegal in user mode.
Exceptions: None

Precision: OP1 and OP2 are singlewords.

The following sets the low order bit in USER_STATUS:

SETUS #1,#1
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RRNDMD, WRNDMD Read/write rounding mode
RRNDMD . {INT,FLT} | XOP
WRNDMD . {INT,FLT} XOpP

Purpose: RRNDMD reads the rounding mode specified by the modifier into OP1. WRNDMD sets
the rounding mode specified by the modifier from the rightmost 5 bits of OP1; if OP1 contains bits
outside that field, the result is undefined.

The modifier has the following meaning:

INT USER_STATUS.INT_RND _MODE
FLT USER_STATUSFLT_RND_MODE

See Section 2.2.5 for a description of rounding modes.

Note that when the integer rounding mode is set, it stays in effect until the first instruction that uses
integer rounding (eg. MDIV or FIX). All such instructions reset the integer rounding mode to
diminished-magnitude.

Restrictions: None

Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

|The following jumps to ISFLOOR if floor rounding is specified byl
USER_STATUSFLT_RND_MODE. Otherwise, it selects ceiling rounding:

FLOOR=8

CEILING=4

RRNDMD.FLT RTA

SKP.EQL.S RTA, #FLOOR, ISFLOGR

I WRNDMD #CEILING I
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SETPRI Set processor priority

SETPRI XOp
Purpose: OP1 is set to the processor priority; then the processor priority is set to OP2.

Restrictions: None

Exceptions: Illegal in user mode.

Precision: OP1 and OP2 are singlewords.

= ——

The following sets the processor priority to 1 saving the old priority in RTA:

SETPRI RTA,#1
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WUSJMP Write user status and jump

WUSJMP JoP

Purpose: USER_STATUS:=OP1. Control is then transferred to the location specified by
JUMPDEST.

Restrictions: None

Exceptions: An ILLEGAL_USER STATUS hard trap will occur if an illegal value of
USER_STATUS is specified.

Precision: All operands concerned are singlewords.

The following sets the USER_STATUS to NEWUS and jumps to AWAY:

WUSJMP NEWUS, AWAY
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RTDBP, WTDBP Read and write TDBP
RTDBP XOP
WTDBP XOpP

Purpose: These instructions read and write the trap descriptor block pointer, the register which
specifies the origin of a table which in turn specifies the origins of each set of trap, interrupt, and

gate vectors.

RTDBP loads into OP1 the 34-bit physical address stored in TDBP. WTDBP loads into TDBP
the rightmost 34 bits of OP1.

The effect of altering the trap descriptor block without executing a WTDBP instruction is
undefined.

Restrictions: Illegal in user mode.
OP1 may not be a register or a constant (i.e. consider it to be a one word long vector).
Exceptions: None

Precision: OP1 is a singleword. WTDBP may not be a register or constant. OP2 is unused.

The following specifies that the trap descriptor block begins at the first singleword of physical
memory:

WTDBP [8] I
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2.15 Performance Evaluation

For details on the performance counters, see section 1.9.9.
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RCTR Read counter

RCTR Xop
Purpose: OP2 is a counter number. OP1 gets the contents of the counter specified by OP2.
Restrictions: None

Exceptions: None

Precision: OP1 is a doubleword. OP2 is a singleword.

The following sets RTA (DW) to the current real-time cycle count:

RCTR RTA, #9
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WCTR Write counter

WCTR XOP
Purpose: OP1 is a counter number. Write OP2 into the counter specified by OP1.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a singleword. OP2 is a doubleword.

The following zeros the real-time cycle counter:

WCTR #8,#0
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2.16 Program Debugging Tools

The processor has separate instruction and data breakpoint tables that provide a capability to trap
on references to 16 instruction addresses and 16 data addresses. It also has bit maps that can be
used to selectively enable these address breakpoints.

The processor also maintains four separate flow tables that record the addresses of the instructions
being executed. This provides a partial execution history of the program. The choice of flow table
is determined by PROC_STATUS.FLOW_TABLE. The tables hold up to 256 entries each.
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WIBPTM, WDBPTM Load break point masks
WIBPTM XOP
WDBPTM XOP

Purpose: These use the least significant 16 bits of OP1 as a mask to specify which entries in the
specified break point table are to be enabled. If bit N+20 of the mask is set, then a match against
table entry N causes a DATA_BREAK_POINT or INSTRUCTION_BREAK_POINT hard trap.
The LIBPTM sets the mask for the instruction break point table, LDBPTM, for the data break
point table.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a singleword.

| The following instructions disable the all address break point checking: I

WIBPTM #8

| WOBPTM #@ I



2.16 Program Debugging Tools 827

WIBPT, WDBPT Load breakpoint table
WIBPT XOop
WDBPT Xor

Purpose: WIBPT and WDBPT edit the instruction and data breakpoint tables, respectively. OP1
is a vector of doublewords describing the breakpoints to be defined. The number of entries in the
vector is given by SIZEREG (R3).

it f

The format of the entries is as follows:

8 345 35
RW ADDRESS
RNG BPT NO

2 345 23 38 33 34 35

The number of the breakpoint is given by BPTNO and may be in the range 0 .. 15.

The fields RNG and ADDRESS give the ring number and virtual address to be matched. The
address is significant only to singlewords, i.e. the low order two bits of the address are ignored.
Thus, a breakpoint set for a singleword matches a quarterword or halfword reference anywhere
within the singleword.

The R and W fields specify whether or not a trap is to occur on a read or write data reference; a
trap occurs if the bit is set. Note that if both bits are set, a trap only occurs on a reference that both
reads and writes the location--for example, in the RMW instruction or a TOP where DEST is S1.
In order to catch either a read reference or a write reference, it is necessary to have two separate
entries. The meaning of the R and W bits are undefined for WIBPT; they should be left zero.
Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a vector of doublewords; SIZEREG is a singleword.

l The following sequence sets three breakpoints. One is an instruction breakpoint; the other two l
are data breakpoints which catch any reference to a location.
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ITABLE:

DTABLE:

L

WIBPTM #9

WDBPTM #@

MOV.S.S SIZEREG,#1
WIBPT  ITABLE
MOV.S.S SIZEREG, #2Z
WDBPT  DTABLE

WIBPTM #90020801020008
WDBPTM #080000014980080

addr1+1 900008008000
P68028PBLYLRY
addr2+840000000008
2490000900800
addr2+82000000880080
2422008288824

we

e

turn off existing entries
load 1 instruction entry
load 2 data entries

turn on matching

addrl, ring3, instruction

addr2, ring2, read or urite

2 Instruction Set
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RFLTAB Read flow table

RFLTAB XOP

Purpose: This reads the contents of one of the four internal flow tables. OP1 is the start of the
table; OP2 gives the number of the flow table and must be in the range 0.. 3. The format of the
table is as follows: '

COUNT . {word 8}
INDEX {(word 1)
{word 2)
TABLE
(word 258)

COUNT gives the number of valid entries in TABLE. INDEX gives the index of the most recent
entry in the table; INDEX-1 points to the second most recent; and so on, wrapping around at the
Oth entry. Each entry in the table is a normal pointer with a ring tag.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a vector of singlewords; OP?2 is a singleword.

The following reads the flow table number 2.

RDFLTAB TABLE, #2
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ZFLCNT Zero flow table count

ZFLCNT XOP

Purpose: This empties the contents of one of the four internal flow tables. OP1 gives the number
of the flow table and must be in the range 0 . . 3.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is a singleword.

e ——

The following empties flow table number 3.

ZFLCNT #3
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2.17 Miscellaneous
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NOP No operation

NOP Xorp

Purpose: NOP may have operands, but it performs no operation and stores no result. It always
transfers control to the next instruction.

Restrictions: None
Exceptions: The operand addressing calculations are carried through; while the operands

themselves are not referenced, an invalid addressing mode will cause a
RESERVED_ADDRESS_MODE hard trap.

Precision: OP1 and OP2 may be any precision since they are not fetched.
l The following three instructions are, respectively, one, two and three word NOPs: I

NOP #9,#e
NOP #@, #1(0]
NOP #101,# (9]

L |
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HALT Halt this processor

HALT JoP

Purpose: Halt the processor. Execution continues at JUMPDEST when the halted processor
continues. HALT affects only the processor that executes it. OP1 is unused.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is unused

The first instruction continues at CONT; the second halts immediately upon continuation:

HALT CONT
HALT .

L _
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RPID Read processor identification number

RPID XOopP
Purpose: OP1:=PROC_ID

Restrictions: Traps if the processor is in virtual machine mode.

Exceptions: None

Precision: OP1 is a singleword. OP2 is unused

The following sets RTA to the processor ID number.

RPID RTA
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3 The FASM Assembler

8.1 Commands to invoke FASM

FASM is a cross-assembler which executes on the PDP-10 and emits code for the S-1 native mode
instruction set. To use it with the WAITS operating system at Stanford University, type:

R FASMZ; <output>, <listing>e<inputs>

<input> is the name of the file containing assembly source language. The file extension defaults to
“$1” if omitted.

<output> is the file FASM puts relocatable code into. The file extension defaults to “LDI” if
omitted.

dlisting> is the file FASM puts its listing into. If you omit the file extension, FASM assumes “LST”.
Alternatively, type the following and FASM will suppress the listing:
R FASM2; <output>e<input>

Or type the following and FASM will suppress the listing, putting relocatable code in a file whose
name matches that of <input> but whose extension is “-LDI™:

R FASM2Z;<input>

L

Or type the following and the program will prompt with “¢” and wait for the rest of the command
line.
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R FASMZ

It is possible to segment the input into several files. To assemble files IN1, IN2 and IN3, for
example, type:

R FASM2;0UT<IN1+IN2+IN3
or:
R FASM2;0UT<IN1, IN2, IN3
or create a file called IN containing the line “IN1+IN2+IN3” and then type:

R FASM2;0UTeeIN

A file which, like IN, contains part of the command line is an indirect file. Within an indirect file a
semicolon tells the program to ignore the rest of the line, including the carriage return and line feed.
This allows the command to extend over more than one physical line, as the following example
shows:

OUT«IN1+;
IN2+;
IN3

The first linefeed that is not ignored will cause the indirect file to be closed and command line
processing to continue from where the indirect file was called. An indirect file may also call another
indirect file (up to 10 levels).

Use the SNAIL commands LOAD and COMPILE to automatically run FASM and then optionally
call FSIM2. The /L switch may be used with SNAIL to force FASM to make a listing.
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3.2 Preliminaries

FASM makes three passes over the input file to do a good (but not perfect) job of substituting
relative- JOP instructions for generally bulkier absolute-JOP instructions. During the first pass,
FASM uses only absolute jumps, setting each label to the maximum possible value it wil! attain.
During the second pass, FASM replaces absolute jumps with relative ones where possible, provided
the jump destination is in instruction space only and not external. During the third pass, FASM
generates the code.

.,
Q.

Lab (SAIL) but wherever its syntax uses special characters from the SAIL set, it also accepts
substitutes from the standard ASCII set. This section will present both choices.

FASM accepts the superset of the ASCII character set used at the Stanford Artificial Intelligence

Because each page of S-1 memory can be marked EXECUTE_PERMIT, READ_PERMIT, and/or
WRITE_PERMIT, FASM maintains separate location counters controlled by the ISPACE,
DSPACE, XSPACE, IPAGE, and DPAGE pseudo-ops explained later.

Like any assembler, FASM processes statements, each of which may define a symbol, emit an S-1
instruction, or emit a dataword.

But unlike many assemblers, which simplemindedly parse lines looking for label, opcode, and
operand fields, FASM starts by scanning the text character by character, expanding macros. The
resulting strings go to the portion of the assembler that recognizes assembly language constructs.
Many of those constructs themselves (symbol definitions, literals, pseudo-ops, and so on) return
values just as functions in a high-level language do, so the programmer may embed them in
expressions with considerable flexibility.
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3.3 Expressions

The primary building block of a FASM statement is the expression. An expression is made up of
terms separated by operators with no embedded blanks. The simplest legal expression is a single
term with no operators.

Attributes: An expression may have one or more attributes. The possible attributes are: register,
instruction value (WVAL), data value (DVAL), and external value (XVAL). These attributes are
derived from the terms and operators that make up the expression.

A term in an expression may be a number, a symbol, a literal, a text constant or a value-returning
pseudo-op.

When it encounters an expression, FASM attempts to perform the indicated operations on the
specified terms. Sometimes, the value of a term is not available (for example, is undefined or is
external) at the time the expression is evaiuated. Sometimes this is permissibie and sometimes it will
cause an error. In the descriptions that follow it will sometimes be said that an expression must be
defined at the time it is evaluated.

3.3.1 Operators

The following are the valid operators along with their precedences. Each is binary unless marked
“(unary)”.

Purpose ASCII symbol  SAIL symbol Precedence
Addition + + 1
Subtraction - - 1
Muttiplication * * 2
Division / { 2
Bitwise OR ! v 3
Bitwise AND & A 3
Bitwise XOR * # 3

Power of 2 A T 4
Bitwise NOT - 5 (unary)
Plus + + 5 (unary)
Minus - -3 5 (unary)
Register % % 5 (unary)

attribute

%9

(Though FASM recognizes no ASCII equivalent for "=
“~X"” by writing “<-1#X>")

, the programmer can achieve the effect of
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ATB has the value of A shifted left (if B is

nositive) or ri
positive) or ri
The “&” symbol gives the term following it the register attribute (though context may override that
attribute; for example, a “45” in an expression inside a constant operand merely contributes an
integer “6” to the expression which then becomes a constant.)

Each operator has a precedence which is used to determine order of association. For operations
with the same precedence, association is to the left. Angle brackets <> (also known as brokets and
pointy brackets) may be used to parenthesize arithmetic and logical expressions. (Parentheses )"
themselves may not be used for this purpose because they are significant for expressing various
addressing modes) A parenthesized (or rather, broketed) expression may take more than one line, in
which case the value of the last line is used as the value of the expression. However, all the lines
are evaluated and then all the values are thrown out except for the last one. These evaiuations may

have side effects like defining symbols, or executing macros, etc.

3.3.2 Numbers

A string of digits is interpreted as a number. If a “” appears at the end of the number, FASM
assumes it is a decimal integer. If a “-” appears inside the number, FASM assumes it is a decimal
floating point number in singleword format. Otherwise, FASM assumes it is an integer in the
current radix, which defaults to base 8 (octal) but may be changed with the RADIX pseudo-op. A
singleword floating point number has digits on both sides of a decimal point and may be followed
by an E, an optional + or -, and a one or two digit exponent, which is assumed to be a decimal
number and should not have an explicit decimal point.

3.3.3 Symbols

A symbol is a one- to sixteen-character name made up from letters, numbers, and the characters “-”,
“ and ‘$". (A symbol may actually contain more than sixteen characters, but all characters after
the sixteenth are ignored.) Lower-case letters are permitted, but are considered to be the same as
the equivalent upper-case characters. A symbol must not look like a number; for example, 43. is an
integer and 0.1 is a floating point number, whereas 0.1, 1.E5, and 2.3E.5 are symbols (because they
do not quite qualify as floating point numbers).

Following the initial character of a symbol, one may enclose in quotation marks any characters
which would otherwise be forbidden. The quotation marks and the otherwise forbidden characters
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all become part of the symbol. For example, the first of the following two lines is an arithmetic
expression involving symbols “CAT”, “A”, and “DOG”, whereas the second is a single symbol
“CAT"xA-"DOG”™

CATxA-DOG
CAT"»A-"D0G

Symbols have values and attributes. The values are 86-bit numbers which are used in place of the
symbol when it appears in an expression. The attributes are: register, instruction value (IVAL),
data value (DV AL), half-killed, external value, and macro name.

If a symbol is a macro name, then instead of having a value, the symbol has a macro definition
associated with it. This macro definition is expanded when the symbol is seen under certain
circumstances and the expansion is used in place of the symbol in the expression. (See the section

Y SN ile A macea T ts] i
on macros for more details on macro definition and expansion.)

Predefined symbols: FASM recognizes certain symbols without requiring the programmer to define
them.

A lone dot represents the current location counter. 1t is either an IVAL or a
DVAL, depending upon whether ISPACE, DSPACE, IPAGE, or DPAGE is in
force. Its value is the quarterword address at which the next instruction or data
will be assembled. Its default attribute is IVAL and its initial value is O for a
relocatable assembly or 10000 octal for an absolute assembly.

RTA, RTB RTA and RTB represent %20 and %30 respectively, so their attribute is register.

8.3.4 Literals

A literal is any set of assembler statements enclosed in [ ] (called square brackets) and separated by
" “” or linefeeds. A literal directs the assembler to assemble the statements appearing inside the
square brackets and store them at some location other than the current location counter. If
embedded in an expression, the entire literal returns a value: the address at which the first
singleword of the literal is assembled. There are certain restrictions on just what may appear inside
a literal. Certain pseudo-ops are illegal inside of literals (see the section on pseudo-ops). Currently,
labels are not permitted inside a literal, although this may change in the future. The symbol “<” is
not affected by the fact that it is referenced from inside a literal. It will have the value it had at the
point where the literal was begun even though the literal may already have assembled some
statements.
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Just where the literal is assembled is determined by several factors. First it is determined whether
the literal is an instruction-space or a data-space literal. This is determined in the following
manner. If the next characters immediately after the [ that begins the literal are !I or 'D, then the
literal is an instruction-space or data-space literal, respectively. If not, then the literal will be an
instruction-space literal if it contains any opcodes. Otherwise it will be a data-space literal. All
instruction-space literals will be assembled starting at the current location counter when a LIT
pseudo-op is encountered while in instruction-space. A similar statement is true of the data-space

literals. Certain other pseudo-ops cause an implicit LIT to be done first.

One typical use of a literal is to move a doubleword from data memory into register space. The
following initializes %40 to the largest doubleword integer:

MOV.D.D %48,BIGNUM
NSPACE
BIGNUM: 377777,,-1
-1
ISPACE

but a more elegant way, using a literal, would be:

MOV.D.D %48, [377777,,-1 ? -11

Similarly, the following example uses %40 to index into a table of indirect pointers, perhaps to
implement a CASE statement in Pascal:

JMPA CTABL [%40]112e

DSPACE
CTABL: CASEB+TAG
CASE1+TAG
CASE2+TAG

ISPACE

but a literal expresses the same structure more compactly:

JMPA < [CASE@+TAG ? CASE1+TAG ? CASE2+TAGI > [%40]12e
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335 Text Constants

An ASCII text constant is enclosed in double-quotes and has the value of the right-ad justed ASCII
characters packed one to a quarterword. For example:

n ab L}

is the same as the number 141142¢. If more than four characters are specified, then only the value
of the last four will be used. If the trailing double-quote is missing, the assembler will stop
accumulating characters when it sees the end of line. The last four characters will be used in the
constant and no error message will be given.

A delimiter such as a space must precede a text constant so FASM does not consider it to be a
quoted portion within a symbol.

33.6 Value-returning Pseudo-ops

Some pseudo-ops generate values and may be used as terms in an expression. See the descriptions
of the individual pseudo-ops to learn what values they return.

33.7 Combining terms to make expressions

FASM determines the value of an expression simply by combining the values of the individual
terms according to the operators between them.

Determining the attribute of the expression is a bit more complicated, however.

When a symbol with the register attribute appears in an expression, then the entire expression has
the register attribute. At most one external symbol may appear in an expression. It does not matter
how it appears in the expression; it is assumed to be added in. This causes the expression to be an
XVAL. If an IVAL (DVAL) ever appears in an expression then the whole expression is an IVAL
(DVAL) with one exception. An IVAL (DVAL) minus an IVAL (DVAL) is no longer an IVAL
(DVAL). Note: in a relocatable assembly all relocation is done by addition of the I space or D space
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relocation or of an external symbol’s value. Therefore using the negative of an IVAL, DVAL or
external value will not have the right effect.

3.4 Statements

A statement can accomplish three things: define a symbol, emit an S-1 instruction, or emit a data
word.

How a statement is terminated will depend upon the exact type of statement. In general, a statement
is terminated with a linefeed, a o, a ?, or a semicolon that begins a comment. (The comment itself
terminates at the next linefeed. Some statements, like symbol definitions, can alse be terminated
with a space or a tab.

3.4.1 Symbol Definition

A symbol may be defined to have a specific value either with the assignment statement or by
declaring the symbol to be a label. The assignment statement has two forms:

SYMBOLeexpression or SYMBOL«<expression

An = may be used in place of a «. These statements define or redefine the symbol to have the
value of the expression. The expression must be defined at the time the assignment statement is
processed. Any attributes of the expression are passed on to the symbol (except for the half-killed
attribute). For example, if the expression has a register value, then the symbol is given the register
attribute. In addition if the second form is used (with two left-arrows) then the symbol will
additionally be given the half-killed attribute. This attribute is not used by the assembler but is
passed on to the debugger, where it means that the symbol should not be used in symbolic type-out.
It does not affect the ability to use the symbol for type-in.

A symbol may be declared to be a label by saying either of:
SYMBOL: or SYMBOL::

These both define the symbol to be equal to the location counter. The attributes of the location
counter are passed on to the symbol. The double colon (: :) causes the symbol to be half-killed.

It is legal to redefine a symbol’s value with an assignment statement but it is not possible to redefine
a label’s value or to define as a label any symbol that has previously had a value assigned.
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An assignment statement can itself be an expression and has the value of the expression to the right
of the arrows. Therefore it is possible to assign the same value to multiple symbols as follows:

AeBeele%l

which will define all of A, B and C to have the register value 1. An assignment statement is
terminated by almost any separator, including space and tab. Therefore it is possible to put more
than one assignment statement on one line, or to put an assignment statement on the same line with
other statements.

Note that while the text of this manual refers to registers with symbols that suggest their decimal
singleword numbers, it is necessary to define them with octal quarterword address:

R8%49

[ates

3.4.2 S-1 Instructions

An instruction is a statement that can cause the assembly of one, two or three singlewords. It is
made up of an opcode with modifiers followed by a list of operands.

3.4.21 Operands

(Throughout the following discussion, either “#” or “?” indicates a constant, and 9 [, “€ e D7,
and “[ ... I” are all equivalent pairs of brackets.)
In general, an operand may be any of the following:
Register or memory reference:
expression If the attribute of the expression is “register”, FASM interprets it as a

quarterword address in the registers; otherwise, FASM interprets it as a
quarterword memory reference. If an instruction requires a singleword
address, FASM derives it by dividing the value of the specified label
or expression by four. If an instruction requires a relative address,
FASM derives it by subtracting the current location counter from
whatever label or expression the programmer provides.
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General constant:

Hexpression

Pseudoregister:

345

If the expression is in the range -32 .. 31 (decimal) the assembler will
generate a short constant. If not, it will generate a long, sign-extended
constant. (It is dangerous to use an as yet undefined symbol in this
expression, because the assembler might decide to switch from one
length to the other, confusing the rest of the assembly.)

(register expression)expression

Long constants:

#cexpressiond
#lexpression]

#c!S o expressiono
#[!S ? expressionl

Any of these produces an LO constant (even if the number is small
enough to fit inside an SO) right justified with sign extended or
compressed as necessary.

#cexpression & !@>
#(expression ? 0]

Either of these produces an LO constant which, if the instruction using
it calls for a doubleword, is left justified and extended with zeroes. The
spaces around the “6” or ?” are optional.

#[!8 ? expression]
#c!B@ o expression>

Indexed constant:

Either of these operands produces an LO constant which, if the
instruction using it calls for a doubleword, is right justified and

LR

extended with zeroes. The spaces around the “»” or “?” are optional.

Hcexpressiono(register expression)
#cexpression>lregister expression]

# [expression] (register expression)

#[expression] [register expressionl]
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Operand descriptor:

lexpression

Long operand variable:

3 The FASM Assembler

An indexed constant adds a constant to the contents of a singleword
register. The register expression must lie in the range 0..124 and be
divisible by 4.

Intended primarily for patching, this generates an operand descriptor
(OD) that matches the low 12 bits of the result of the expression.
FASM does not check to be sure such an OD is legal, and does not
generate an extended word even if the OD calls for one.

(base)offset[index]?shift
cbasedoffset (index) tshift
baselindex]?shift
base (index)tshi ft

This is the general syntax for a long operand (LO) variable. The
processor computes the address as if by scanning the expression from
left to right. It starts with the contents of the memory location or
register specified by “base”. Then it adds “offset”, if any. Finally it
takes the contents of the memory location or register specified by
“index”, shifts it left by the number of bits specified by “shift”, and
adds it to the base-offset combination to obtain the address of the
operand.

If “@” appears after the entire phrase, indicating indirect addressing, the
processor interprets the operand as a pointer and uses it to fetch the
ultimate operand. If, on the other hand, the “e@” appears after the offset,
the processor uses the base+offset address to fetch a pointer from

memory, and indexes from it.

The LO variable addressing modes have space use the OD for a sort
of “nested” short operand (SO) variable, and they fall into three
categories based on how they use this SO variable: as the base, as the
index, or not at all.

DEFINITION OF TERMS:

SW_REG <RB .. R31>

LONG_DISP 31-bit signed displacement
LONG_ADDR 31-bit unsigned address
SHORT_DISP 26-bit signed displacement

SHIFT B .. 3bit left shift
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SHORT_SHIFT B or 2 bit left shift
INDEX_REG <R3 .. R31>
SF -32 .. 31

USING THE SO AS THE BASE:

(SW_REG)LONG_DISP

(SW_REG)LONG_DISPe

(SW_REG)SHORT_DISP [SW_REGIMSHIFT
(SW_REG)SHORT_DISPe [SW_REGI*SHIFT
(SW_REG) SHORT_DISP [SW_REG] *SHORT_SHIFTe

( (INDEX_REG) SF)LONG_DISP

{ (INOEX_REG)SFILONG_DISPe

( (INDEX_REG) SF)SHORT_DISP [SW_REGI *SHIFT
({INDEX_REG) SF) SHORT_DISPe [SW_REGITMSHIFT

( (INDEX_REG) SF)YSHORT_DISP [SW_REG] *SHORT_SHIFTe

USING THE SO AS THE INDEX:

LONG_ADDR [SW_REGIMSHIFT

LONG_ADDRe [SW_REGIMSHIFT

LONG_ADDR [SW_REGI*SHORT_SHIFTe
(SW_REG)SHORT_DISP [SW_REGI *SHIFT
(SW_REG) SHORT_DISPe [SW_REGIMSHIFT
(SW_REG)SHORT_DISP [SW_REG] *SHORT_SHIFTe

LONG_ADDR [ (INDEX_REG)SF11MSHIFT
LONG_ADDRe [ (INDEX_REG)SF1MSHIFT

LONG_ADDR [ (INDEX_REG) SF11SHORT_SHIFTe
(SW_REG)SHORT_DISP [ (INDEX_REG) SF11MSHIFT
(SW_REG) SHORT_DISPe [ (INDEX_REG) SFIMSHIFT
{SW_REG)SHORT_DISP [ (INDEX_REG}SF11SHORT_SHIFTe

NOT USING THE SO:

LONG_ADODR
LONG_AODRe

(SW_REG) SHORT_DISP
(SW_REG)SHORT_DISPe

347
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8.4.22 Opcodes and Modifiers

An opcode is built out of a base opcode name followed optionally by a “-” and an opcode modifier
and another “<” and another modifier, etc. The modifiers are standard as defined in the opcode
files. Numeric modifiers are in decimal without a decimal point.

It is also possible to use an already defined symbol as a modifier. For example, if A has been
defined by A«%4 then SLR.A assembles the same way as SLR.4 does. Note that an expression may
not be used in place of a modifier. For example, SLR.4+4 is not permitted in place of SLR.8 . Also
note that if there is a conflict between a legal modifier name and a symbolic value, the legal
modifier name will win. For example: '

Mleel
BNDTRP.M1.S XXX, YYY

will NOT be the same as:
BNDTRP.1.S XXX, YYY

because M1 is a legal modifier for BNDTRP and takes precedence over the lookup of the symbol
Ml

Modifiers should not be omitted from instruction opcodes, with one exception: a precision modifier
{Q, H, S, D} which is omitted will be assumed to be S. Modifiers should be written in the order
defined by the instruction descriptions.

The opcode must be separated from the operand list by spaces or tabs.

3.4.2.3 Instruction Types

There are several basic instruction types: XOPs, TOPs, SOPs JOPs, and HOPs. For the assembler,
they differ as to the number and interpretation of operands.

An XOP is (in general) a two-operand instruction. If no operands are given, then the instruction
must be one (eg. WAIT) which requires no operands, and the operand descriptors are set to zero.
If exactly one operand is given then, depending upon the specific instruction, either it is used for
both operands or the second operand is defaulted to be register zero (R0O). For example,
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INC COUNT

is equivalent to
INC COUNT, COUNT.

A TOP is a three-operand instruction, where one of the operands is restricted. Operands may be
written only in certain combinations indicated by a two-bit field called T within the instruction.
FASM automatically sets this field based on the operands specified by the programmer. If X and Y
represent two operands which are distinct from each other and from RTA and RTB, then there are
four possible combinations for the operands, as the following shows:

SUB X, X,V
SUB RTA,X,Y
SuUB X,RTA,Y
SUB RTB,X,Y

Other combinations, such as the following, are illegal:
ADD X, Y,RTA
If the programmer writes only two operands for a TOP, FASM repeats the first.

An SOP is a two-operand instruction with a skip destination. Both of the operands must be
present. The skip destination is written as if it were a third operand, and should be an expression
which evaluates to the quarterword address of the instruction that is to be skipped to. If the skip
destination is missing, then the instruction is assembled so as to skip over the next instruction,
however long it is. For example,

ISKP.GTR %1,#108,EXIT

assembles a conditional skip to the label EXIT. During the last pass of the assembly, the assembler
checks to see that the skip is within range. This means that the value of the skip destination
operand must be within -8 .. 7 singlewords of the location of the SOP. The difference in this
range is assembled into the SKP field of the instruction.

A JOP is a two-operand instruction, the second of which is the jump destination. If only one
operand is specified, then which operand it is assumed to be depends upon the exact opcode. Some
opcodes expect only one argument, in which case that argument is the jump destination (JMPA, for
example). The opcodes JSR and JCR expect one or two operands. If only one is supplied it is
assumed to be the jump destination. For other JOPs, if there is only one argument, it is assumed to
be OP1 and the jump is assembled to skip over the next instruction (just as for an SOP with an
omitted skip destination). The assembler will try its best to assemble the jump with the PR-bit on
(using relative addressing). It even takes a whole extra pass through the source file just for this.
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For example,
[JMPZ.NEQ %20,L00P
assembles a jump to location LOOP.

The only HOP instruction is SJMP, which expects a single operand, which should be a simple label
or expression that evaluates to the quarterword address of the jump destination. FASM subtracts
the current location counter from the operand value and divides by 4 to obtain the necessary
singleword relative address. While compact and useful for patching, this instruction lacks the
flexibility of the unconditional branch JMPA, which can use indexing or indirect addressing.

3.4.24 Data Words

An expression standing alone on a line (or, more precisely, an expression which by itself constitutes
a statement) causes FASM to emit a singleword containing the value of the expression.

-1 ;s A singleword with all bits set
%7+347. ; A singleword containing 354 decimal
NAMEx2 : A singleword containing twice the value

of the symbol NAME

If two expressions appear on either side of *,”, FASM emits a singleword with the left halfword set
to the first expression and the right halfword set to the second.

39,,7 ;A singleword with 38 in its left
s halfuord and 7 in its right halfuord

The following example illustrates a simple use of a literal. Because the literal itself returns the
address of the first word it emits, FASM generates four singlewords in all. At the next “LIT”
pseudo-op in data space it generates three singlewords containing 1, 2, and 4 respectively. At the
current location counter, it generates a singleword containing the value returned by the literal.

Ll

&N e
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3.5 Absolute and Relocatable Assemblies

An assembly is either absolute or relocatable. Initially it is assumed that the assembly is relocatable.
Certain things in the input file may cause the assembler to try to change its mind if it is not too late.
The pseudo-ops ABSOLUTE and RELOCA will force absolute and relocatable respectively. A
LOC will force absolute.

In a relocatable assembly, there is one instruction space and one data space. These spaces may be
interleaved in the input file (by use of the ISPACE, DSPACE and XSPACE pseudo-ops) but will
be separated into two disjoint spaces in the output. The data space will be output immediately after
the instruction space and it is up to the linker to further relocate it to begin on a page boundary (or
whatever).

Whenever a word is assembled, the attributes of the expressions involved in the assembly of that
word are passed on to the word itself. The assembler outputs instructions to the linker to relocate
every IVAL by adding to it the starting address of the instruction segment, and similarly for every
DVAL and the starting address of the data segment. Notice that this does not do the right thing for
the difference between an IVAL and a DVAL. This is because the assembler does not keep track
of whether the relocation should be positive or negative.

In an absolute assembly, no relocation is done. There may be multiple instruction and data spaces.
The pseudo-ops IPAGE and DPAGE cause the assembler to move the location counter to a new
page boundary and switch to the indicated space. The assembler output will contain multiple spaces
which occur in the same order as the IPAGE and DPAGE statements. The LOC pseudo-op may
be used to set the value of the location counter to any desired absolute address (with some
restrictions). It cannot be used to change spaces.

An IPAGE, DPAGE, or LOC pseudo-op may not be used in a relocatable assembly, and an
ISPACE, DSPACE, or XSPACE pseudo-op may not be used in an absolute assembly.
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3.6 Pseudo-ops

The following lists all the pseudo-ops in alphabetical order.

“ 9

If a “” appears in front of the pseudo-op here, then the “-” is mandatory; otherwise it is optional.
Certain pseudo-ops require a string of characters, denoted by @ text e. This indicates that FASM
regards the first character (other than a blank or tab) following the pseudo-op as the delimiter for
the beginning of the string, and looks for a matching character to delimit the end of the string.
Thus, for example, the foliowing produce identical strings:

ASCII "Now is the time"
ASCII ’Nouw is the time’
ASCII bNow is the timeb

ABSOLUTE

Forces the assembly to be absolute.

.ALSO, < conditionally assembled text > rest of program

.ELSE, < conditionally assembled text > rest of program

These pseudo-ops conditionally assemble the text in brokets depending upon the success or failure
of the immediately preceding conditional. There is an assembler internal symbol called .SUCC
which is set when a conditional succeeds and is cleared when one fails. .ALSO will succeed if
SUCC is set and .ELSE will succeed if it is clear. If a conditional succeeds, .SUCC is set both at the
beginning and at the end of the conditionally assembled text. This enables the inclusion of
conditionals within conditionals while using .ALSO or .ELSE following any outer conditional. For
example,

IFN A-B, <IFIDN <X>,<Y>,< ...>>
LELSE < (..>

Here, the .ELSE tests the success of the IFN A-B independent of whether the IFIDN succeeded or
failed.

ASCIl ¢ text ®

Assembles text as ASCII characters into consecutive quarterwords, padding the last used singleword
with zeros. This pseudo-op may cause more than one word to be assembled as long as it is not
enclosed in any level of brokets. However, the “value” of this pseudo-op is the value of the last
word it would assemble. So if it is used in an expression, the arithmetic applies only to the last
word. If it is enclosed in brokets, then all but the last word are thrown away. For example,
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1+ASCIT /ABCDEFG/

is the same as

ASCII /ABCD/
<ASCII /EFG/>+1

but not the same as

1+<ASCII /ABCDEFG/>
which is the same as

1+4ASCI1 /EFG/

ASCIIV ¢ text e
Is the same as ASCII except that macro expansion and expression evaluation are enabled from the
beginning of text as in PRINTV. "\", "*", and ™" may be used as in PRINTV.

ASCIZ 5 text e
Same as ASCII except that it guarantees that at least one null character appears at the end of the
string.

ASCIZV o text e
Is the same as ASCIIV except it does ASCIZ.

LAUXO <filename>

Prepares the file <filename> to receive auxiliary output. Auxiliary output can be generated with the
AUXPRX and AUXPRYV pseudo-ops. The auxiliary output file remains open until the next
AUXO or the end of the assembly is encountered. It is probably most appropriate to do the
AUXO during just one pass of the assembly. This can be done, for example by

[F3, <. AUXO MSG.TXT [P,PN]>

AUXPRX ¢ text e

The text is output to the auxiliary file. An error message is generated if no auxiliary file is open.

AUXPRV ® text @
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Is the same as AUXPRX except that macro expansion and expression evaluation are enabled from
the beginning of text as in PRINTV. "\", "*", and ™’ may be used as in PRINTYV.

BLOCK expression
Adds expressionx4 to the location counter. That is, the expression is the number of singlewords to
reserve. The expression must be defined when the BLOCK pseudo-op is encountered.

BYTE (sl1)bl1,b12,b13,... (s2)b21,b22,b23,...

The BYTE pseudo-op is used to enter bytes of data. The s-arguments indicate the byte size to be
used until the next s-argument. The b-arguments are the byte values. An argument may be any
defined expression. The BYTE pseudo-op may not evaluate to more than one word. The s-values
are interpreted in decimal radix. Scanning is terminated by either > or >, so a BYTE pseudo-op
may be used in an operand or in an expression. For example,

MOV A,#cBYTE (7}15,12>
MOV B, [1+<BYTE (7)15,12>]

COMMENT s text e
The text is totally ignored by the assembler.

DEFINE name argument-list
This pseudo-op is used to define a macro. See the section on macros for a description.

DPAGE
If the current space is instruction space, it does an implicit LIT, advances the location counter to the
next page boundary, and sets the space to data. If the current space is data, it merely advances to
the next page boundary. This pseudo-op may not appear inside of a literal or in a relocatable
assembly.

DSPACE

This is ignored if the current space is already data. Otherwise it switches to data space and restores
the location counter from the last value it had in data space. This pseudo-op may not appear inside
of a literal or in an absolute assembly.
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END expression

Indicates the end of the program. The expression, which may be omitted, is taken to be the starting
address. This pseudo-op may not appear inside of a literal. END forces an implicit LIT to be done
first for both instruction and data space. The expression must be defined when the END
pseudo-op is encountered.

EXTERNAL sym1, sym2, sym3, ...

This pseudo-op defines the symbols in the list to be "external” symbols. The symbols in the list
must not be defined anywhere in the program. Only one external reference may be made per
expression. The value of the external will be ADDED by the linker to the word containing the
expression regardless of the operation the expression says to perform on the external symbol.

IF1, <conditional ly assembled text> rest of program

IFN1, <conditional |y assembled text> rest of program

IF2 <conditional Iy assembled text> rest of program

IFN2, <conditional Iy assembled text> rest of program

IF3, <conditional Iy assembled text> rest of program

IFN3, <condi tional |y assembled text> rest of program

Assembles conditionally assembled text if the assembler is in pass 1, 2 or 3 for IF1, IF2 and IF3 or if
the assembler is not in pass 1, 2 or 3 for IFN1, IFN2, IFN3.

IFDEF symbol, <conditional ly assembled text> rest of program

IFNDEF symbol,<conditionally assembled text> rest of program

Assembles conditionally assembled text if the symbol is defined or not for IFDEF and IFNDEF
respectively.

IFE expr,<condi tionally assembled text> rest of program

IFN expr,<conditionally assembled text> rest of program

IFL expr,<conditionally assembled text> rest of program

IFG expr,<conditionally assembled text> rest of program

IFLE expr,<conditionally assembled text> rest of program

IFGE expr,<conditional ly assembled text> rest of program

Assembles conditionally assembled text if the condition is met. If the condition is not met, then the
program is assembled as if the text from the beginning of the pseudo op to the matching > were not
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present. For IFE the condition is “the expression has value zero,” for IFN it is “the expression has
non-zero value,” etc. In any case the expression must not use any undefined or external symbols.
The comma, < and > must be present but are “eaten” by the conditional assembly statement. In
deciding which is the matching right broket, all brokets are counted, including those in comments,
text and those used for parentheses in arithmetic expressions. Therefore one must be very careful
about the use of brokets when also using conditional assembly. For example, the following example
avoids a potential broket problem:

IFN SCANLSS, <
SKP.NEQ A, #"<" 3> MATCHING BROKET
JMPA FOUNDLESS

>;END OF IFN SCANLSS

The broket in the comment is used to match the one in double quotes so that the conditional

IFIDN <stringl>,<string2>,<conditional |y assembled text> rest of program

IFDIF <stringl>,<string2>,<conditionally assembled text> rest of program

These are text comparing conditionals. The strings that are compared are separated by commas and
optionally enclosed in brokets. If the strings are identical (different for IFDIF) then the text inside
the last set of brokets is assembled as for arithmetic conditionals.

IFB <string>,<conditionally assembled text> rest of program

IFNB <string>,<conditionally assembled text> rest of program

These text testing conditionals compare the one string against the null string. They are equivalent
to

IFIDN <string>,<>,< vv0 > ...
IFDIF <string>,<>,< .s. > ...

.INSERT <filename>
Starts assembiing text from the new file <filename>. When the end of file is reached in the new file,
input is resumed from the previous file. INSERTSs may be nested up to a level of 10.

INTERNAL syml, sym2, sym3, ...
Defines each symbol in the list as an “internal” symbol. This makes the value of the symbol
available to other programs loaded separately from the one in which this statement appears.
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IPAGE

If the current space is data space, it does an implicit LIT, advances the location counter to the next
page boundary and sets the space to instructions. If the current space is instructions, it merely
advances to the next page boundary. This pseudo-op may not appear inside of a literal or in a
relocatable assembly.

ISPACE

This is ignored if the current space is already instructions. Otherwise it switches to instruction space
and restores the locaticn counter from the last value it had in instruction space. This pseudo-op
may not appear inside of a literal or in an absolute assembly.

.LENGTH 5 text o
Has the value of the length of the string text. A CRLF counts as one character.

LIST
Increments listing counter. Listing is enabled when the count is positive. The count is set to one at
the beginning of each pass. XLIST is used to decrement the count.

LIT

Forces all literals in the current space (instruction or data) that have not yet been emitted to be
assembled starting at the current location counter. It has no effect on the literals in the “other”
space. This pseudo-op may not appear inside of a literal.

LOC expression
Sets the location counter to the specified quarterword address. May not appear inside of a literal or
in a relocatable assembly.

MLIST

Increments macro listing counter. Macro expansion listing is enabled when the count is positive.
The count is set to one at the beginning of each pass. XMLIST is used to decrement the count.
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PRINTV ¢ text e

Prints text on the console. It is identical to PRINTX except that macro expansion may occur within
the text. \,’, and ‘ may be used within the text as in macro arguments and expression evaluation.
See the section on special processing in macro arguments for an explanation of | and *’ processing.
Macro expansion is intially enabled at the beginning of text and may be disabled with \.

PRINTX & text e
Prints zext on the console.

.QUOTE 5 text
Legal only inside a macro definition. It allows the assembler to see zext without scanning it for a
DEFINE or a TERMIN.

RADIX expression
Sets the current radix to expression. The radix may not be set less than two.

RELOCA

Forces the assembly to be relocatable.

REPEAT expression, <body>

Assembles body concatenated with a carriage return expression many times. The expression must be
defined at the time the REPEAT pseudo op is encountered. The expression must be non-negative.
If it is zero, the body will not be assembled.

TERMIN

This pseudo-op is legal only during a macro definition. It is used to terminate a macro definition.
See the section on macros for a description.
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TITLE name other_text
Sets the title of the program to name. Everything else on the line is ignored.

XLIST
Decrements listing counter. Listing is enabled when the count is positive. The count is set to one at
the beginning of each pass. LIST is used to increment the count.

XMLIST
Decrements macro listing counter. Macro expansion listing is enabled when the count is positive.
The count is set to one at the beginning of each pass. MLIST is used to increment the count.

XSPACE
Has the effect of ISPACE if the current space is data and DSPACE if the current space is
instructions. This pseudo-op may not appear inside or a literal or in an absolute assembly.
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8.7 Macros

The FASM macro facility shows a strong resemblance to those of FAIL (the macro assembler for the
PDP-10 developed and used at the Stanford Artificial Intelligence Laboratory) and MIDAS (the
macro assembler for the PDP-10 developed and used at the M.LT. Artificial Intelligence
Laboratory), which are hereby acknowledged.

Macros are essentially procedures that can be invoked by name at almost any point in the assembly.
They can be used for abbreviating repetitive tasks or for moving quantities of information from one
part of the assembly to another (in fact even from one pass to another). Macro operation is divided
into two parts: definition and expansion.

The macro facility does differ in an important way from those of other assemblers, however. Macro
expansion in FASM is performed at the “read-next-character” level, whereas in most other
assemblers it is done at symbol lookup time during expression evaluation. Due to this difference,
macro expansion in FASM inherently produces “string” output rather than evaluated expressions as
is sometimes the case in other assemblers. Wherever a macro call is seen, the effect can be predicted
by substituting the body of the called macro in place of the call.

3.7.1 Macro Definition
Macros are defined using the DEFINE pseudo-op, which has the following format:

DEFINE macroname argumentl|ist
body of macro definition
TERMIN

This will define the symbol macroname to be a macro whose body consists of all the characters
starting after the CRLF that ends argumentlist and ending with the character immediately
preceding the TERMIN.

3.7.1.1 The Parameter List

Basically, the parameter list is a list of formal parameters for the macro. This is similar to the list of
formal parameters for a procedure in a “high” level language. The parameters are symbol names
and are separated by commas. The number of macro parameters must be in the range 0 .. 64. The
macro parameter list is terminated by either a ; (which begins a comment, as usual) or a CRLF.
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Each macro parameter has certain attributes associated with it. In FASM these attributes are
balancedness, gensymmedness, and parenthesizedness. From now on, it shall be said that a parameter
is or is not balanced, is or is not gensymmed, and that certain pairs of parentheses can or cannot
parenthesize a parameter. If a parameter is not balanced or gensymmed then it is said to be normal.

Parameter attributes are specified by enclosing a string of characters in double quotes preceding a
parameter in the parameter list. The attributes specified by that string are “sticky”; that is, they
apply to all following parameters until the next such string is specified. The characters B and G
may appear in the string to indicate that the parameter is to be balanced or gensymmed respectively.
There are four parenthesis pairs: (and ),[ and ], < and >, and { and }. Any of these characters may
appear in the string to indicate that that set of parentheses may be used to parenthesize that
parameter. One final thing that may appear in the string is a statement about the concatenation
character for the macro body. If the string '=e appears, where & is any character other than CRLF,
then o will be the concatenation character. If the string 0! appears, then there will be no
concatenation character. Only the last statement made in the parameter list about the concatenation
character will apply to the macro body.

At the beginning of the parameter list, the attributes have the following defaults: ! is the
concatenation character, parameters are neither balanced nor gensymmed, and any pair of
parentheses may be used to parenthesize a parameter. Whenever an attribute string is encountered,
the previous set of attributes are forgotten and the new one applies to future parameters until the
next string is specified.

Here are some examples of valid macro definition lines:

DEFINE MAC

DEFINE MACL1 A,B,C

DEFINE MACZ "!="" A,B, "G" C
DEFINE MAC3 "([B1)" A, "[@!" B

With these definitions, MAC has no parameters and has ! for the concatenation character. MACI
has three normal parameters A, B and C with ! for the concatenation character. MAC2 has two
normal parameters A and B and a gensymmed parameter C, and uses ’ as the concatenation
character. MACS3 has a balanced parameter A, for which () and [] can be used as parentheses, and
a normal parameter B, for which [] can be used as parentheses. MACS3 has no concatenation
character.

3.7.1.2 The Macro Body

The macro body begins at the character following the CRLF at the end of the DEFINE line and
ends with the last character before the matching TERMIN. Within the macro body, FASM replaces
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all delimited occurrences of formal parameters with a mark that indicates where the actual argument
should be substituted. Any character that is not a symbol constituent is considered a delimiter for
this purpose. The concatenation character is also considered a delimiter. However, the
concatenation character is deleted wherever it occurs and will not appear in the macro body
definition. The concatenation character is useful to delimit a formal parameter where, without the
concatenation character, the formal parameter would not have been recognized as such. For
example,

DEFINE MAC A,B,C
PUSH.UP.S SP,B
PUSH.UP.S SP,C
JSR A!RTN

TERMIN

If the arguments X, Y, and Z were substituted for the formal parameters A, B, and C, then the third
line would assemble as JSR XRTN. Without the concatenation character, it would always assemble
as JSR ARTN regardless of the actual value of the parameter A.

In addition to scanning for formal parameters in the macro body, FASM also scans for occurrences
of the names DEFINE and TERMIN. It keeps a count of how many it has seen so that it can find
the TERMIN that matches the DEFINE that began the macro definition. This allows a macro
body to contain a macro definition entirely within it. For example,

DEFINE MAC1 A
DEFINE MAC!A
TERMIN
TERMIN

defines a macro called MAC1 which contains a complete macro definition sequence within itself.

Note that FASM does not recognize either comments or text constants as special cases in its search
for DEFINEs, TERMINs and formal parameters. Therefore, the user must be careful when using
the words DEFINE and TERMIN in those places. They will be counted in order to find the
TERMIN that marks the end of the current definition. There is a pseudo-op called .QUOTE that
can be used if it is desired to inhibit FASM from seeing a DEFINE, TERMIN, or macro parameter
name. .QUOTE is like an ASCIZ statement in syntax, taking the first nonblank character after the
.QUOTE as a delimiter and passing all characters up to the matching delimiter through to the
macro definition. For example,

DEFINE MAC
show to put a .QUOTE /DEFINE/ in a comment

TERMIN
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will define MA C’s body to be

show to put a DEFINE in a comment

8.7.2 Macro Calls

A macro call occurs whenever a macro name is recognized in a context where macro calls are
permitted. When this happens, the macro call is processed in two distinct phases. The first is
argument scanning and the second is macro body expansion.

3.7.21 Argument Scanning

Argument scanning is the process of assigning text strings to the formal parameters of a macro.
These text strings come from the input stream. If a formal parameter is not assigned a string by the
call, then it is assigned the null string as its value, unless the argument is defined to be gensymmed.
In that case, the argument is assigned a six character string beginning with G and followed by 5
decimal digits which represent the value of an internal counter which is incremented before being
converted to a text string.

Argument scanning is performed for those macros that have formal parameters. If a macro does not
have any formal parameters, then the character that terminates the macro name is left to be
reprocessed after the macro expansion is complete, even if it is a comma.

If the macro has formal parameters, then how the argument scan is done depends on the character
immediately following the macro name. If it is a CRLF, then the argument scan is terminated and
all of the formal parameters are assigned the null string or are gensymmed as appropriate. The
CRLF is left to be reprocessed after the macro expansion is complete.

If the character following the macro name is a space or a tab, then all immediately following spaces
and tabs are thrown out. The entire sequence of spaces and tabs can be considered to be the macro

name delimiter.

If the character following the macro name is a {, then the macro call is said to be a parenthesized
call; otherwise it is a normal call. A parenthesized call differs from a normal call in the way
argument scanning is terminated. In a normal call, argument scanning is terminated by either
CRLF (or its surrogates, ? and o), semicolon, or the argument terminator for the last argument
(which may be a comma). If terminated by a CRLF or semicolon, the terminator is left to be
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reprocessed after macro expansion is complete. In a parenthesized call, only the matching ) can
terminate the call. The ) is not reprocessed after the macro expansion is complete. The following
paragraphs will describe the syntax of macro arguments and explain how they are terminated. The
phrase “. macro call terminator” refers to the character that terminated either the normal or
parenthesized call, as described in this paragraph.

3.7.2.2 Macro Argument Syntax

The first macro argument begins with the first character following either the ( that demarks a
parenthesized call or the macro name delimiter in a normal call. This character is looked at by
FASM to determine how to scan the argument.

If the first character is a left parenthesizing character that belongs to the set of characters that may
be used to parenthesize the argument that is being scanned (as determined by the character string in
force at the time this formal parameter was seen in the macro define line), then the argument is
taken to be all characters following that open parenthesis until, but not including, the matching
closed parenthesis. Any characters may appear between the parentheses. Only the particular type of
parentheses that enclose the argument are counted in finding the matching closed parenthesis. This
type of argument is called a parenthesized argument.

If the first character is a comma, then the argument is the null string; the comma is taken to be an
argument separator.

If the first character is a macro call terminator, then this argument and all further arguments are
not assigned strings. That is, if the arguments are gensymmed, they will be assigned unique
gensymmed strings, and if they are not gensymmed they will be assigned the null string.

If the first character is not one of the above, then argument scanning depends on whether the
argument is to be balanced or not. If the argument is not to be balanced, then the argument is
taken to be all characters from the first character until, but not including, a comma, CRLF (or & or
?), semicolon, or the macro call terminator. If the argument terminator is a comma, it is thrown out;
a macro call terminator, however, will be kept to terminate the macro call. If the argument
terminator is not a comma, then it is usually a macro call terminator. However, if the call is
parenthesized, a CRLF or semicolon will terminate the argument but nqgt the macro call. In this case
the remainder of the line (if the terminator was a semicolon) is ignored and the CRLF is thrown
out. Argument scanning continues on the next line. This allows the arguments of a parenthesized
call to take multiple lines; each CRLF acts as if it were a comma {with comments thrown out)
allowing the next line to continue supplying arguments.

If the argument is to be balanced, then all types of parentheses are treated the same. A count is
kept of the parenthesis level. If there are no unbalanced parentheses, then a comma or macro call
terminator will terminate the argument as if it were a normal argument. Also, if the parentheses are
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balanced, any close parenthesis will terminate the argument and the call. If itis a parenthesized call,
the close parenthesis must be a ) or an error is reported. If it is not a parenthesized call, the
parenthesis will be left to be reprocessed after the macro call is complete. In either case, the
remaining formal parameters are assigned the null string or gensymmed as appropriate.

8.7.2.3 Special Processing in Macro Arguments

Ordinarily, macro arguments are the quoted forms of the strings that appear between delimiters
within the macro call. However, it is possible to call a macro or even evaluate an expression within

a macro argument during the macro argument scan.

If a macro argument is not parenthesized, then the appearance of the character \ (backslash) in the
argument will enable macro calls to be recognized during the scanning of the macro argument. The
appearance of a second \ will again disable this feature. If a macro call is detected during this time,
then that new macro is expanded and its expansion appears as if it were written in line in the
macro argument that is currently being read. Every time a new macro call is seen and macro
argument scanning is started, the macro-in-argument recognition feature is disabled until re-enabled
by a\. The \ character itself is discarded.

Perhaps this will be clearer if explained in terms of the actual implementation. FASM maintains a
flag, called the \ flag, which when set enables macro expansion. This flag is pushed when a macro
name is recognized and initialized to be off at the beginning of the argument scan. It is
complemented every time a | is seen in the input. When the entire macro call has been scanned (but
expansion has not yet started) the \ flag is popped.

In fact, the \ flag has wider application than just in macro calls. It is also applicable at expression
evaluation time. Normally it is set during expression evaluation, thereby allowing macros to be
expanded. It is perfectly legal to use \ during expression evaluation to inhibit macro expansion.

There is a second feature, analogous to the \ feature, which allows the expression evaluator to be
called during a macro argument, or in fact even at expression evaluation time. If an expression is
enclosed within "*" and "*" characters, the expression evaluator is called upon to produce a value,
which may possibly be null, which is then converted into a character string of digits representing
that value in the current radix. The conversion always treats the value as a 36-bit unsigned integer.
A null value is converted to the null string. The surrounding singlequotes act in a similar way to
parentheses in arithmetic expressions, in that multiple lines may be used, but only the expression on
the last line is converted. This converted string is used in place of the singlequoted expression. As
in the case of \ this can occur in non-parenthesized macro arguments or in expression evaluation.
The singlequote characters themselves are thrown out.

Following are some examples of the use of these features:
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Xeel FBB*X’:  JMPA FOO1

will assemble as
F@oB1l: JMPA FoP1

If FOO was a macro name, it would have been expanded in the previous example. This could be
inhibited with:

\FBB\ ‘X’ : JMPA FBol

Next consider:

Xeel
DEFINE MAC
XeeX+1
X!TERMIN

FBa‘MAC’ :

will define the label F002 while incrementing X to be 2. The next time FOOMAC’: appears, the
label FOO03: will be generated.

It is sometimes useful to extract the value of a symbol in a macro argument before the macro call
changes that value:

DEFINE MAC A
BRR««BRR+1
AxBRR

TERMIN

MAC °‘BRR’

will call MAC with the current value of BRR. Without the singlequotes, the string BRR would be
passed to the macro and used where “A” appears, which is after BRR is incremented.
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4 The Mark IIA implementation

Implementation-dependencies belong in two categories: those which are not specified by the
architecture but instead left to the implementor, and those which vary from the definition of the
architecture.

4.1 Details about Performance Counters

Certain details of performance counters are not specified by the architecture, but are instead left to
the implementor. The following discussion applies to the Mark IIA implementation.

The interrupt priority of counter traps is 10000b (sixteen decimal). This is hardwired into the
machine.

There are 34 72 bit counters. All of them trap on overflow (from negative to positive). Counters 32
and 33 can count more than one tic per machine cycle.

Counter Purpose

0..3 Real-time (one tick per cycle)
4 Instructions

5..7 Reserved

8 Instruction map cache accesses
9 Instruction map cache misses
10 Instruction cache accesses

11 Instruction cache misses

12 Data map cache accesses

13 Data map cache misses

14 Data cache accesses



15
16
17

18 ..

32
33

31

Data cache misses
Conditional branches
Wrong branches
Reserved

FLOPS

Reserved

4 The Mark IIA implementation

Simultaneous (or nearly simultaneous) counter interrupts arrive as a single interrupt. If more than
one counter interrupts before the first interrupt is handled, the second gets merged with the first.
Only one of the interrupts is actually reported. The save area for traps and interrupts contains a
singleword which specifies which counter caused the interrupt, but the prudent handler may choose
to inspect all the other counters as well, in case merging has occurred.

The granularity of counter interrupts is about 64 cycles. For counters 32 and 33 it is two cycles.
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4.2 Variances from the architecture
The Mark IIA implementation varies in some respects from the description of the architecture:

1. Segment bounds checking does not occur when an instruction is fetched; in other words, the
instruction may cross a segment boundary. However, the hardware will always check that
EXECUTE_PERMIT is on for the page containing the first word of the instruction and the page
containing the singleword which lies two singlewords after it, regardless of the number of
singlewords occupied by the instruction and its operands.

2. The USED bit in a PTE may, as a result of wrong-branch evaluation in the pipeline, indicate
that a page was used when in fact it was not. A similar statement applies to the MODIFIED bit.

8. Attempting to take the FFT of a vector of more than 2% elements causes an FFT_TOO_LONG
soft trap.

4. Only the 11 low-order bits of address space IDs are significant. (The architectural prohibition
against setting an address space ID to O still holds.)

5. Instructions for which rounding is inexact guarantee their results are monotonic—that is, if x2y
then F(x)2F(y)--with an error that is less than or equal to 0.75 of the least significant bit of the
mantissa. Instructions for which rounding is exact guarantee an error less than or equal to 0.5 of the
least significant bit.

The following instructions exhibit inexact rounding:

FRECIP

FCMAG, VFCMAG
FSQRT, YFSQRT
FLOG

FEXP

FSIN

FCOS

FSINCOS

FATAN, FATANY
VF2DIS, VF3DIS
FCFFT, FCFFTV

6. RETS.A will not copy CALL_TRACE_PEND from the value of CALL_TRACE_ENB in the
saved PROCESSOR_STATUS. If one aborts a call or return instruction, one must intervene
anyway to patch up the control flow of the program, and one can explicitly reinvoke tracing.
RETS.A will handle TRACE_PEND as specified in section 1.9.2.

7. INTIOP will pass only the low-order byte of OP2 to the I/O processor.

8. All segmentito table entries (STEs) must be doubleword aligned. The DSEGP must be
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doubleword aligned; in other words, the three low-order bits must be zero.

9. Operand S2 of DSHF.RT must evaluate to an integer in the range O .. Precision - 1, where
"Precision” is 9 for the quarterword modifier, 18 for the halfword modifier, and 36 for the

singleword modifier.
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D 341

'1 341

%7

ABS . {QH,S,D} 98

ABS 78, 98, 126, 251
ABSOLUTE 351-352
absolute assembly 351
absolute jump 21
ABSOLUTE), in FASM 351-352
absolute-addressing 52
absolute-JOP 337
ACCESS 44-45, 49, 69, 299
access modes, defined 45

access modes, field in PTE 44
access mnrlm' fielde in STE 44

access modes, role in I/O 69

ACOND 199, 201-204, 206-207, 209-210

ACOND, defined 199

ADD . {QH,S,D} 80

ADDC . {QH,S,D} 81

ADDC 78, 81, 239

ADDR 25, 249

ADDRESS 6, 25, 46-48, 61, 187, 193, 249, 266,
274-275, 277, 285, 288, 327

address calculation 7, 19, 31, 42-43, 46, 49, 51,
63, 202, 212

ADDRESS field of pointer 46

address space 6

address space IDs 303

address space IDs, Mark IIA restriction 369

address translation 39

address translation, for I/O memory 69

address validation 48-51, 61, 192, 373

ADDRESS() notation 6

address, definition of 3

addressing modes 24

ADDSUB . {QH,SD} 102

ADDSUB 102

ADDSUBV . {QH,S,D} 102

ADDSUBYV 102

adjusting byte pointers 250

ALCOND 199

ALCOND, defined 199

ALIGNMENT_ERROR 6, 65

alignment of anywords 6

alignment of bytes 249

ALL (logical condition), defined 199

ALL 199-200, 215, 315-316

ALLOC . {1 .. 32} 276

ALLOC 260, 264-265, 276-277, 285

ALSO 352

ALSO, in FASM 352

AND . {QH,SD} 227

AND 13, 36, 45, 215, 227-229 231, 246, 317,
338

ANDCT . {QH,S,D} 229

ANDCT 96, 215, 228-229

ANDTC . {QH,S,D} 228

ANDTC 228-229, 231

ANY (logical condition), defined 159

ANY 199-200, 215, 315-316

arithmetic condition, defined 199

ARRIND 156, 158, 188

ARRIND {AL.AR} . {RTA RTB} 188

ASCII 337-338, 342, 352-353

ASCIIV 353

ASCIIV, in FASM 353
ASCIZ 353 369

4aIal OUU, OUL

ASCIZ, in FASM 353

ASCIZV 353

ASCIZV, in FASM 353

assignment statement 343

attributes, expression 338

attributes, macro parameter 361

attributes, symbol 340

augmented magnitude rounding mode 108

AUXO 353

AUXO, in FASM 353

AUXPRYV 353

AUXPRYV, in FASM 353

AUXPRX 353-354

AUXPRX, in FASM 353

backslash 365

backslash flag 365

BAD_ADDRESS_TAG 46-47, 49, 52, 63

BAD_POINTER_TAG 47, 50, 63, 189, 192

BADREV . {S,D} 162

BADREV 159-162

balanced macro argument, semantics 364

balanced macro parameter, syntax 361

base pointer, defined 28

buase pointer, in long operand addressing 32

base pointer, role in segment bounds checking
13

based addressing mode 32

based-indexed addressing mode 32

BASEPTR 47, 63, 193

BIGAD2 167

BIGADD 167

BIGMUI1 170

BIGMU2 170

BIGMUL 170

bignums (extended precision arithmetic) 166,
168-169, 171, 341

BIT 167, 170

bit manipulation instructions 225



bit-reversals 162

BITCNT . {QH,S,D} 246

BITCNT 96, 246-247

BITEX . {QH.SD} 245

BITEX 245

BITEXV . {QH,SD} 245

BITEXV 245

BITFST . {QH,S,D} 248

BITFST 248

BITRV . {Q.H.S.D} 244

BITRV 244, 248

BITRVV . {QH,SD} 244

BITRVV 244

BLOCK 166, 170, 354

BLOCK, in FASM 354

BNDSF . {RTARTB} . {BM1,0,1} . {QH,
S,D} 216

BNDSF 37-38, 216-217

BNDTRP . {B,M1,0,1 NEQEQL,GEQ,GTR,
LSS,.LEQ} . {QH,S,D} 218

BNDTRP 59, 216, 218, 348

BOUNDS_TRAP 59, 218

bounds checking (for segmentation), Mark IIA
exception 369

bounds checking, on segment 43

break point 325, 327

brokets, in FASM 339

BYTDSC 249, 255, 258-259

byte 34, 46, 55, 65, 70-71, 100, 248-259, 354,
369, 374

byte manipulation instructions 249

byte pointer, adjusting 250

byte pointer, format of 249

byte selector, format of 249

byte, defined 249

BYTE, in FASM 354

cache 44, 62-63, 198, 299-303, 367-368, 374

cache handling instructions 299

CADD . {H,S} 132

CADD 132

CALL_TRACE_ENB 10-11, 73-74, 369

CALL_TRACE_ENB, bit in PROCESSOR..
STATUS 11

CALL_TRACE_PEND 10-11, 58, 66, 73-74,
369

CALL_TRACE_PEND, bit in PROCESSOR.__
STATUS 11

CALL_TRACE_TRAP 66, 73, 265

CALL 260, 264-265, 267, 271, 274

call instructions, validation 52

call tracing, in PROCESSOR_STATUS 11

call tracing, instructions affected 265

caill tracing, Mark IiA impiementation limit
369

call tracing, role in instruction execution 73

calls across ring boundaries 61

CALLX 43, 47, 52-53, 61, 192, 264-265, 267,
272, 274

CARRY, algorithm for computing 77

CARRY, defined 76

ceiling rounding mode 108

CFFT . {H,S} 159

CFFT 159160, 162

CFFTV . {H,S} 159

CFFTYV 159-160

chained vector instructions 172

chaining 172-173, 175, 241, 374

closure pointer 8

closure pointer, defined 8

closure pointer, role in stack frame 266

CMAG 37, 138

CMAGSQ . {H,S} 139

CMAGSQ 139

CMPSF . {GTR,EQL,GEQ,LSS,NEQ,LEQ} .
{QH,S D} 215

CMPSF 81, 100, 124, 179, 215-216

CMPTAGSF 223

CNEG . {H,S} 136

CNEG 136

colon 343

comma 356, 360, 363-364

COMMENT 354

COMMENT, in FASM 354

comparison instructions 199

comparisons, on floating point 106

COMPILE 336

complex arithmetic 131, 133, 135, 137, 139,
374

complex conjugate 137

complex-base 25

compose 249

concatenation character, syntax 361

constant operands 25

constants 13, 25-26, 37, 239, 342, 345, 362,
375

constants, extending with FIRST() 37

constants, vectors of 37

context-switching instructions 303

convolution 152

coroutines 264, 282

coroutines, instructions for 264

cosine 145-146

counter instructions 322

counter interrupts 63

CP 8, 55-56, 265-274, 285-288



CRLF 357, 360-361, 363-364

cross-assembler 335

cross-ring 43, 49, 53, 61, 272, 274, 373

cross-ring calls 61

crossbar 45

CSUR . {H S} 133

CSUB 133

CSUBV . {H,S} 133

CSUBV 133

DATA_ACCESS_VIOLATION 45, 62

DATA_BREAK_POINT 66, 326

data breakpoints 325

data cache 299

data map cache 299

data moving instructions 177

data type encoding, defined 48

data-space 341

DBYT 256

DBYT {RL} . {S,D} 256

DBYTL 256

DBYTL {R,L} . {S,D} 256

debugging 25, 65, 325, 327, 329, 343, 374

DEC . {QH,S,D} 94

DEC 78, 94

DEFINE 354, 358, 360-363, 366

DEFINE, in FASM 354

DEFINEs 362

DEFINITION 346

descriptor segment pointer, defined 39

descriptor segment, defined 39

descriptors 13-15, 17, 20, 23-24, 348, 373

DESTINATION_ADDRESS 58

diagnostics 11, 198

DIBYT 220, 257

DIBYT {R,L} . {S,D} 257

DIBYTL 257

DIBYTL {R,L} . {S,D} 257

diminished magnitude rounding mode 108

diminished-magnitude 78, 90, 121, 318

DISP 25

DIV 91-92, 166, 168-169, 171

DJMP . {GTR EQL,GEQ,LSS,NEQ,LEQ} 209

DJMP 209

DJMPA 170, 211

DIMPZ . {GTR,EQL,GEQ,LSS,NEQLEQ}
210

DJMPZ 5, 81, 161, 170, 210, 247

DN 260-263

dot product 151

double-quote 342

doubleword constants 26

DPAGE 337, 340, 351, 354

DPAGE, in FASM 351, 354

DSEG _PAGE_FAULT 62

DSEG_SEGMENTITO_FAULT 43, 62

DSEGP 39, 41, 304-305, 369

DSEGP, defined 39

DSEGP, Mark [IA implementation limit 369

DSHF . {LFRT} 239

DSHF 239-241, 370

DSHF .RT, Mark IIA implementation limit 370

DSHFV . {LF,RT} 239

DSHFV 239

DSKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ} 202

DSKP 202, 208, 240

DSPACE 3, 154, 337, 340-341, 351, 354, 359

DSPACE, in FASM 351, 354

DTABLE 328

DVAL 338, 340, 342-343, 351

DVAL, in FASM 351

DXBYT 249, 258-259

DXBYT {R,L} . {S.D} 258

DXBYTL 258

DXBYTL {R,L} . {S,D} 258

EB 43-45, 48-49, 61

EB, field in STE 43

ELSE, in FASM 352

EMULATION 10

ENABLE 69-70

ENABLE bit, role in interrupts 69

END, in FASM 355

ENTRY . {0 .. 32} 273

ENTRY 264-265, 267-268, 273

EQL (arithmetic condition), defined 199

EQL 22, 28, 96, 199-204, 206-210, 215, 218,
222, 247, 295, 318

EQV . {QH,S,D} 236

EQV 236

error-correction 198

EW 13, 24-25, 27, 31, 36, 38, 64

EW, delined 13

exception handling, floating point 109

exception values, floating point 105

exceptions, integer arithmetic 76

exceptions, propagating floating point 110

EXCH. {QH,SD} 184

EXCH 15, 20, 22, 28, 165, 184, 186, 197, 235-
2356

EXEC 51

EXECUTE_BRACKET _FAULT 43, 63

EXECUTE PERMIT 45, 299, 337, 369

EXECUTE PERMIT access mode 45

execute bracket 43, 61, 63

execute bracket, field in STE 43

execution sequence of an instruction 73

EXIT 349



EXP 59, 103-105, 109-110

EXP, floating point 103

exponent 103-104, 109-110, 116, 253-254, 257,
339

exponential 143

exponentiation 3, 111, 120

expression, attributes 338

expression, broketed 339

expression, data value 338, 342

expression, external value 338, 342

expression, in FASM 338

expression, instruction value 338, 342

expression, register 338

extended word, defined 13

extended word, fields of 24

EXTERNAL 355

EXTERNAL, in FASM 355

F field, in operand descriptor 24

FABS . {H,S,D} 126

FABS 110, 126

FADD . {H,S,D} 113

FADD 111, 113, 115, 117, 120

FADDSUB . {H,S,D} 130

FADDSUB 130

FADDSUBV . {H,S,D} 130

FADDSUBYV 130

FAIL 360

FASM assembler, invoking 335

FASM2 335-336

fast fourier transform 159

FATAN . {H,S,D} 147

FATAN 147, 149, 369

FATANV . {H,SD} 147

FATANV 147, 369

fault tag, defined 47

FCADD . {H,S} 132

FCADD 132

FCDIV . {H,S} 135

FCDIV 135

FCDIVV . {H,S} 135

FCDIVV 135

FCFFT . {H,S} 159

FCFFT 159-161, 369

FCFFTV . {H,S} 159

FCFFTV 159-160, 369

FCMAG . {H,S} 138

FCMAG 138, 369

FCMAGSQ . {H,S} 139

FCMAGSQ 139

FCMPSF . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
. {H,S,D} 215

FCMPSF 215

FCMULT . {H,S} 134

FCMULT 134

FCNEG . {H,S} 136

FCNEG 136

FCONV . {H,SD} 152

FCONV 152

FCOS . {H,;S,D} 145

FCOS 60, 145, 369

FCSUB . {H,S} 133

FCSUB 133

FCSUBV . {H,S} 133

FCSUBV 133

FDIV . {H,S,D} 117

FDIV 109, 113, 115, 117-120, 142, 144-146,
151

FDIVL . {H,S} 119

FDIVL 119

FDIVLV . {H,S} 119

FDIVLV 119

FDIVV . {H,S,D} 117

FDIVV 117

novnD fiIraon
FEXP . {H,S,D} 143

FEXP 143, 369

FFT_TOO_LONG 59, 159-160, 369

FFT 59, 159-162, 369

FFT, Mark IIA restriction on vector length
369

FILE 310-311

FIRST 37-38, 132-139, 146, 203, 206, 209, 216-
218, 313, 373

FIRST() notation 37

FIX . {QHSD} . {HSD} 121

FIX 107, 110, 121, 318

fixed-base 29

fixed-base addressing mode 29

fixed-based-indexed 33

fixed-based-indexed addressing mode 33

FIMPZ . {GTR,EQL,GEQ,LSS,NEQLEQ} .
{H,S,D} 204

FIMPZ 204

FL 90-92, 255, 258

FLAGS 10-12, 44-15, 266, 269

FLAGS, field in PROCESSOR_STATUS 11

FLAGS, field in PTE 44

FLAGS, field in STE 44

FLAGS, in USER. STATUS 12

FLOAT . {H,SD}. {QHSD} 122

FLOAT 104, 122

FLOATING 122

floating point 12, 58-59, 78, 103-139, 141-147,
159, 161, 172, 178-179, 204, 215, 253-254,
256-257, 339, 374



floating point arithmetic 103, 105-106, 109,
112-113, 115, 117, 119, 121, 123, 125, 127,
129, 374

floating point comparisons 106

floating point data format 103, 105, 374

floating point exception handling 109, 374

floating point exception values 105-106, 123-
124, 127-128, 374

floating point exceptions, propagating 110

floating point overflow, defined 105

floating point rounding modes 107

floating point underflow, defined 105

FLOG . {H,S,D} 142

FLOG 142-143, 369

FLOOR 318

floor rounding mode 108

FLOPS 368

FLOW_TABLE 10-11, 325

flow tables 325

FLSHDM 302

FLSHIM 302

FLT_NAN_MODE 12, 59, 109-110

FLT_NAN_MODE, defined 109

FLT_NAN_TRAP 59, 110, 141-142

FLT_NAN 12, 109, 113-120, 122-130, 132-139,
141-149, 151-153, 157, 160, 204, 215

FLT_OVFL_MODE 12, 59, 109

FLT_OVFL_MODE, defined 109

FLT_OVFL_TRAP 59, 109

FLT_OVFL 12, 109, 113-120, 122-128, 130,
132-139, 142-143, 148-149, 151-153, 157,
160

FLT_OVL 129

FLT_RND_MODE 12, 107-108, 123, 318

FLT_UNFL_MODE 12, 59, 109-110

FLT_UNFL_MODE, defined 109

FLT_UNFL_TRAP 59, 110

FLT_UNFL 12, 109, 113-120, 122-130, 132-
139, 142-143, 148-149, 151, 153, 157, 160

FMATMUL . {H,S,D} 157

FMATMUL 157-158

FMAX . {H,SD} 128

FMAX 111, 128

FMIN . {H,S,D} 127

FMIN 111, 127-128

FMULT . {H,S,D} 115

FMULT 113, 115, 117, 120, 143, 147

FMULTL . {H,S} 116

FMULTL 116

FNEG . {H,S,D} 125

FNEG 110-111, 125

fourier transform 159

FP 8, 34-35, 265-274, 285-288

FPTR 203

frame pointer 8, 265-266

frame pointer, defined 8

frame pointer, role in stack frame 266

FRECIP . {H,S,D} 118

FRECIP 118, 369

FRFLT2. {H,S,D} 153

FRFLT2 153

FsC. {H,5,D} 120

FSC 109, 111, 113, 115, 117, 120

FSCV . {H,SD} 120

FSCV 111, 120

FSELECT 124, 179

FSELECT {RTA,RTB} . {H,S,D} 124

FSIM2 336

FSIN . {H,S,D} 144

FSIN 60, 144, 369

FSINCOS . {H,5,D} 146

FSINCOS 146, 369

FSQR . {HS.D} 129

FSQR 129

FSQRT . {H,S,D} 141

FSQRT 141, 151, 369

FSUB . {H,SD} 114

FSUB 111, 114

FSUBV . {H,SD} 114

FSUBV 109, 114

FTRANS . {H;SD} . {HSSD} 123

FTRANS 110, 122-124, 153, 178, 215

FUNCTION 270, 285-287

gate descriptor block, location of 53

gate pointer, fields within 61

gate tag, defined 47

gate vector format 55

gates, role in cross-ring procedure calls 61

general purpose registers 7

gensymmed macro parameter, semantics 363

gensymimed macro parameter, syntax 361

GEQ (arithmetic condition), defined 199

GEQ 165, 170, 179, 199-204, 206-207, 209-210,
215, 218

global 266

GOTO 19-21, 213, 316

GTR (arithmetic condition), defined 199

GTR 21, 81, 161, 199-204, 206-207, 209-210,
215, 218, 240, 349

half rounds toward positive 108

half-killed 340, 343

half-killed symbol 343

HALT 333

hard traps 53-55, 57, 62-63, 65, 67, 373

hard traps, defined 53

hidden bit 58, 103



hidden bit, floating point 103
hidden bit, in floating point format 103
HIGH_ORDER 3
HIGH_ORDER() notation 3
HOP 14, 19, 75, 212, 350, 373
HOP format 19

HOPs 348

1/0 69

1/O instructions 289

I/O memory translation 70
I/O memory, addressing 69
1/O memory, defined 69
I/O processor, defined 69
IF1 355

IF1, in FASM 355

IF2 355

IF2, in FASM 355

IF3 353, 355

IF3, in FASM 355

IFB 356

IFB, in FASM 356

IFDEF 355

IFDEF, in FASM 355
IFDIF 356

IFDIF, in FASM 356

IFE 355-356

IFE, in FASM 355

IFG 355

IFG, in FASM 355

IFGE 355

IFGE, in FASM 355

IFIDN 352, 356

IFIDN, in FASM 356

IFL 355

IFL, in FASM 355

IFLE 355

IFLE, in FASM 355

IFN 352, 355-356

IFN, in FASM 355

IFN1 355

IFN1, in FASM 355

IFN2 355

IFN2, in FASM 355

IFN3 355

IFN3, in FASM 355

IFNB 356

IFNB, in FASM 356
IFNDEF 355

IFNDEF, in FASM 355
1JMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ} 206
1IMP 206

IIMPA 208

IIMPZ . {GTR,EQL,GEQ,LSS,NEQ.LEQ} 207

1JMPZ 207, 350

ILLEGAL_BYTE_PTR 65, 249, 253-258

ILLEGAL_CONSTANT_OPERAND 21, 25, 64

ILLEGAL_COUNTER 65

ILLEGAL_INSTRUCTION 64

ILLEGAL_IOMEM 67, 69

ILLEGAL_MATRIX_DIMENSION 60, 154-155

ILLEGAL_PRIORITY 67, 294, 298

ILLEGAL_PROCESSOR_STATUS 66, 313, 317

ILLEGAL_REGISTER_OPERAND 21, 64, 189

ILLEGAL_REGISTER 65, 307-311

ILLEGAL_RELATIVE_POINTER 47, 64

ILLEGAL_SHIFT_ROTATE 65, 237-239, 241,
243-244

ILLEGAL_TRACE_PEND 66

ILLEGAL_USER_STATUS 66, 109-110, 313,
316-317, 320

illegal value, floating point 109

illegal value, in floating point format 105

implementation-dependent features 1, 57, 70,
159, 198, 367

INC. {QH,S,D} 93

INC 15, 77-78, 93, 220, 349

INDEX_REG 347

INDEX 31-32, 61, 329, 347

INDEX, field within gate pointer 61

index, in long operand addressing 32

index, role in segment bounds checking 43

INDEX-1 329

indexed constants 26

indexing 4, 7, 32-34, 43, 56, 205, 212, 215, 219,
350

indexing, restrictions on registers 7

indirect addressing 32

indirection 32-34, 43, 51, 73

inexact rounding 108, 118, 369

inexact rounding, Mark IIA spec 369

input/output - sec I/O

input/output instructions 289

INSERT, in FASM 356

INSTRUCTION_ACCESS_VIOLATION 45, 62

INSTRUCTION_BREAK_POINT 65, 326

INSTRUCTION_STATE_SIZE 56

INSTRUCTION_STATE 55-57, 73-74, 304

instruction breakpoints 325

instruction cache 299

instruction execution sequence 73

instruction formats 13

instruction map cache 299

instruction set 75

instruction state, used in traps 56

instruction tracing, bits in PROCESSOR_STATUS

10



instruction tracing, role in instruction execu-
tion 73

instruction, in FASM 344

instruction-dependent 57

instruction-execution 73

instruction-space 341

INT_OVFL_MODE 12, 59, 77

INT_OVFL_MODE, defined 77

INT_OVFL_TRAP 59, 77

INT_OVFL 12, 76-77, 79-85, 88, 91, 93-98,
102, 110, 121, 126, 132-133, 136-139, 160,
201-202, 206-211, 237

INT_OVFL, defined 76

INT_RND_MODE 12, 78, 90, 121, 318

INT_Z_DIV_MODE 12, 59, 77

INT_Z_DIV_MODE, defined 77

INT_Z_DIV_TRAP 59, 77

INT_Z_DIV 12, 76-77, 91, 316

INT_Z_DIV, defined 76

integer arithmetic 76

integer arithmetic exceptions 76

integer division by zero, defined 76

integer overflow, defined 76

INTERNAL 356

INTERNAL, in FASM 356

interrupt vector 67, 69-70, 73

interrupt vector format 55

interrupt-related instructions 289

interruptable instruction, defined 56

interruptable instruction, execution sequence
of 73

interrupts, role in instruction exccution 73

INTIOP 293, 369

INTIOP, Mark IIA implementation limit 369

INTRAN . {H,S.D} 154

INTRAN 60, 154-155, 160-161

I0O_PAGE 45, 69

IO_PAGE access mode 45

IO - see I/O

IOBUF 291

IOP 69-71

IOR . {QH,S,D,LSB16, MSB16,LSB32,MSB32}
290

IOR 290

IORMW 292

IOW . {QH,S,D,LSB16,MSB16,LSB32,MSB32}

291
IOW 291
IPAGE 337, 340, 351, 357
[PAGE, in FASM 351, 357
ISKP . {GTR,EQL,GEQLSS,NEQ,LEQ} 201
ISKP 35, 149, 201, 240, 349

ISPACE 3-4, 154-155, 337, 340-341, 351, 357,
359

ISPACE, in FASM 351, 357

ITABLE 328

IVAL 338, 340, 342-343, 351

LAY LAQN |4
lvnu lll ll‘\)lV{ 301

J field, in HOP format 19

JCR 264-265, 282, 349

JMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ} 203

JMP 203

JMPA 164-165, 200, 205, 212, 220, 284, 341,
349-350, 356, 366

JMPCALL 264-265, 284

JMPRET 264-265, 284

JMPTAG . {1.. 30,RINGFAULT} . {EQL,
NEQ} 222

JMPTAG 222

JMPZ . {GTR,EQL,GEQLSS,NEQ,LEQ} .
{QH,S,D} 204

IMPZ 21-22, 96, 165 170, 195 204, 220 295

JOP 14, 21, 24, 52, 75, 203-211, 222, 271, 275,
283-284, 305, 313, 315-316, 320, 333, 349,
373

JOP format 21

JOP instructions, validation 52

JOP, in FASM 349

JOPs 348-349

JSP 264-265, 283

JSR 161, 164-165, 260, 264-265, 275, 277-278,
349, 362

jump format 21

jump instructions 199

jump instructions, validation 52

JUMPDEST 21, 200, 203-211, 222, 271, 275,
283, 305, 315-316, 320, 333

JUMPDEST field in JOP format !

2
JUS . {NON,ALL,ANY NAL} 315
JUS 315

JUSCLR . {NON,ALL,ANY NAL} 316
JUSCLR 316

LBITCNT . {H,S,D} 246

LBITCNT 246

LBITFST . {H,S,D} 248

LBITFST 248

LBITNT 246

LBYT 253

LBYT {RAL}. {SD} 253

LBYTL 253

LBYTL {R,AL} . {S.D} 253

LCALL 265, 285, 288

LCALLO 265, 285-286, 288

LCALLI 265, 285, 287-288

LCOND 199, 315

1
1



LCOND, defined 199

LDBPTM 326

LDI 335

least-recently-used algorithm in caches 299

LENGTH, field in byte pointer 249

LENGTH, in FASM 357

LEQ (arithmetic condition), defined 199

LEQ 20, 35, 124, 170, 199-204, 206-207, 209-
210, 215, 218, 220, 247

LF 13, 161, 237-243, 270, 285-288

LIBPTM 326

LIBYT 254

LIBYT {R,AL} . {S,D} 254

LIBYTIL 254

LIBYTL {R,AL} . {S,D} 254

LIMIT 216-218

linkage instructions 264

LISP 47, 265, 270, 285-288, 374

LIST 357, 359

LIST, in FASM 357

LIT 341, 350, 354-355, 357

LIT, in FASM 357

literal, in FASM 340

LMINMAX . {H,S,D} 101

LMINMAX 101

LO 13, 24-27, 29-30, 345-346

LO, defined 13

LOAD 336

LOC 351, 357

LOC, in FASM 351, 357

location counter 340

LOCK 195, 213, 292

logarithm 42, 44, 142, 159, 162, 193

logical condition, defined 149

LOGPAGESIZE 39

LOGPGSIZE 193

LOGSEGSIZE 42, 193

LOGSIZE 160-162

LONG_ADDR 346-347

LONG_DISP 346-347

LONG 27, 31, 36

long operand variables 29

long operand, defined 13

LOST_PRECISION 60

LOW_ORDER 3, 84, 88

LOW_ORDER() notation 3

LOW 164-165

LRETURN 265, 288

LRU 299

LSB 62-64, 66, 70-71

LSB16 71, 290-291

LSB32 71, 290-291

LSS (arithmetic condition), defined 199

LSS 81, 149, 199-204, 206-207, 209-210, 215,
218, 240

LST 335

LXBYT 249, 255, 259

LXBYT {R,AL}. {S,D} 255

LXBYTL 255

LXBYTL {R,AL} . {S,D} 255

MAC 361-362, 366

macro 340, 353-354, 357-366, 375

macro-in-argument 365

macros, argument scanning 363

macros, argument syntax 364

macros, body 361

macros, calls 363

macros, defining 360

macros, parameter list format 360

MANT 59, 103-105

MANT, floating point 103

mantissa 103-104, 108-110, 116, 256, 369

map cache 299

mapping-related instructions 303

mathematical instructions 140

matrix 154-158

MAX . {QH,SD} 100

MAX 100, 128

maximum integer value 76

MAXNUM 76-77, 101, 106, 126

MAXNUM, defined 76

MDIV . {FL,US} . {QH,S,D} 90

MDIV 90-61, 318

MDIVH . {FL,US} . {QH,5,D} 90

MDIVH 90-92, 255, 258

MIDAS 360

MIN . {QH,S,D} 99

MIN 99-100, 127, 220

minimum integer value 76

MINNUM 76, 101, 106, 219

MINNUM, defined 76

MIOR . {LSB16,MSB16,LSB32,MSB32} 290

MIOR 290

MIOW . {1.SB16,MSB16,L.SB32,MSB32} 291

MIOW 291

miscellaneous instructions 331

MLIST 357, 359

MLIST, in FASM 357

MOD 19, 91-92, 166, 168-169, 171

MODE 24, 81

MODE field, in operand descriptor 24

modifer 138

modifer, in opcode 13

MODIFIED 44-45, 369

MODIFIED, field in PTTE 44

modifier, in opcode 5



modulus 78, $0-91, 250

MOV . {Q H,SD}. {QH,SD} 178
MOVO0S 157

MOVCSF . {QH,S,D} 213
MOVCSF 195, 213-214

MOVCSS . {QH,S.D} 213
MOVCSS 195, 213

move instructions 177

MOVF 105-107, 109-111

MOVF, defined 105

MOVFMEM . {N,C}. {1,16} 198
MOVFMEM 198

MOVMEM 198

MOVMQ . { 2 .. 32, 64} 180
MOVMQ 180

MOVMS . {2.. 32} 181

MOVMS 181, 268, 274, 277

MOVP . {P,R}. {P,A} 189
MOVPHY 196-197

MOVTMEM . {N,C} . {1,16} 198
MOVTMEM 198

MSB 62-64, 66, 70-71

MSB16 71, 290-291

MSB32 71, 290-291

MULT . {QH,S,D} 84

MULT 26, 29, 84, 200, 255, 258
multiprocessor 1, 45, 69, 195, 213, 292
multiprocessor, I/O memories in 69
multiprogramming 39, 303

MULTL . {QH,S} 85

MULTL 85

MUNF 106-107, 109-111, 125-126
M]x] 2

NAL (logical condition), defined 199
NAL 199-200, 215, 315-316

NAN 105-107, 109-111 125126 141-142
NAN, defined 105

NAND . {QH,S,D} 233

NAND 233

NEG . {Q.H,S,D} 96

NEG 78, 96-97, 125, 226, 246
negation 104, 171

NEGC . {Q.,I,S,D} 97

NEGC 78, 97

NO 327

[NON (logical condition), defined 199
NON 199-200, 215, 315-316

NOP 186-187, 332

NOR . {QH,S,D} 234

NOR 234

NOT . {QH,S,D} 226

NOT 119, 226, 317, 338, 347-348

not a number, fioating point 105, 109
NULL 47

OD 13, 15, 18, 24, 26-27, 29, 31, 36, 38, 64-65

346
OD, defined 13
OD1 13-17, 20-21, 23-24
OD2 2, 13-17, 20-21, 23
ODs 13, 24
OFFSET 31-32
offset, in long operand addressing 32

offset, role in segment bounds checking 43

OLD _CP 270, 285-288
OLD _FP 270, 285-288

one’s-complement 77, 97, 104, 199, 228-229,

231-232
onward 181
OPCODE 13-14
opcode, format of 13
opcode, in FASM 348
OPERAND _NOT_REQUIRED 15, 64
OPERAND 27, 29, 31, 36
operand descriptor, defined 13
operand descriptor, fields of 24
operand descriptors 24
operand descriptors, unused 15
operands, illegal formats of 38
operands, order of storing into 15, 18
operands, prefetching of 73
OR . {QH,SD} 230
OR 79, 213, 220, 228, 230-232, 317, 338
ORCT . {QH,S,D} 232
ORCT 231-232
ORCTYV 232
ORTC . {QH,S,D} 231
ORTC 231-232
ORTCV 231

NEQ (arithmetic condition), defined 199

NEQ 195, 199-204, 206-207, 209-210, 215, 218,
220, 222, 350, 356 overflow, floating point 109

NEXT 37, 149, 180-181, 203, 215, 239, 282, overflow, in integer arithmetic 76
373 OVF 105-107, 109-111, 125-126

NEXT() notation 37 OVF, defined 105

nil 47, 52, 63, 65, 189, 191-192, 222-223 OVFL 81

NIL tag, defined 47 PAGE FAULT 44, 62

NO_FAULT 59, 62 page table entries 43-45, 373

OUT_OF_BOUNDS 42, 47, 63, 189, 260, 271-
274, 276, 286-287



page table entry, format of 44

page table entry, used in address transiation
39

PAGENO 44-45

PAGENO, field in PTE 44

paging 39, 41, 193, 373

PARAMETER_AREA 56-58, 62

parameter area, for traps 57

parenthesized macro argument 364

parenthesized macro call arguments, continua-
tion 364

parenthesized macro parameter, semantics 364

parenthesized macro parameter, syntax 361

parity 246

PC_NEXT_INSTR 9, 55-56, 271-272, 275, 282-
283, 285-287

PC_NEXT_INSTR, defined 9

PC, defined 9

PDP-10 108, 335, 360

PDP-10 rounding modes 108

performance counters 68, 322, 367, 375

performance counters, number assignments 367

performance evaluation instructions 322

PHYSICAL_ADDRESS 6, 196

PHYSICAL_ADDRESS() notation 6

physical address space 6

pointer validation 46-47, 50-52, 63, 189, 192,
199, 265, 373

pointer, byte, format of 249

pointer, format of 46

pointer, meaning of tags 46

pointer, self-relative 189

pointy brackets, in FASM 339

POP . {UPDN}. {QH,S D} 262

POP 262

POSITION, field in byte pointer 249

PR 21, 52

PR bit in JOP format 21

PR bit, in FASM 349

PR-bit 349

PRINTYV 353-354, 358

PRINTYV, in FASM 358

PRINTX 358

PRINTX, in FASM 358

priority 10, 67, 69-70, 73, 294, 297-298, 319, '

367
PRIORITY 10, 69-70
priority, in PROCESSOR_STATUS 10
priority, role in interrupts 69
PRIVILEGE_VIOLATION 7, 64
privilege 6-7, 10, 46, 50, 53, 56-58, 61, 64-66,
189, 300-301
PRIVILEGED 10, 46

RIVILEGED bit iu PROCESSOR_STATUS
10

privileged mode 6

PROC_ID 334

PROC_STATUS 325

PROCEDURE 25(-251, 267

PROCESSOR_STATUS 10, 46, 54-58, 65-66,
69-70, 73, 265, 304, 306-307, 312-313, 317,
369

processor priority, in PROCESSOR_STATUS
10

processor status 10, 66, 303, 312, 317

processor status register 10

PROCESSSOR_STATUS 313

PRODUCT 170

program counter 7-9, 14, 19-21, 26-28, 282,
373

program counter, defined 9

program counter, dual identity of R3 7

propagating floating point exceptions 110

pseudo-ops 337-342, 350-355, 357-360, 362, 375

pseudo-pascal 3

pseudoregister 7-8, 27-34, 281, 345

pseudoregister addressing mode 28

pseudoregister mode, restriction on registers
for 7

pseudoregisters 28

PTA 43-44

PTA, field in STE 43

PTE 39-41, 44-45, 49, 62, 369

PTE, format of 44

PTE, used in address translation 39

PTEs 69

PUSH . {UP,DN} . {QH,S, U} 261

PUSH 261, 285, 362

PUSHADR . {UP,DN} 263

PUSHADR 3-4, 263

QPART 163-164

QUICKSORT 164-165

QUOTE 358, 362

QUOTE, in FASM 358, 362

R3, dual identity with program counter 7

radix 2, 339, 354, 358, 365

RADIX 339, 358

RADIX, in FASM 358

RB 43-45, 48-50, 69

RB, field in STE 43

RCTR 323

RDFLTAB 329

READ_PERMIT 45, 69, 299, 337

READ_PERMIT access mode 45

READ_WRITE_BRACKET_FAULT 43, 63

read bracket 43



read bracket, field in STE 43

REAL 131, 158

real 37, 53, 68, 78, 131-134, 152, 220

real-time 323-324, 367

real-time counters 322

RECIP . {Q.H,S.D} 90

RECIP 77, 90-92

reciprocal 90, 118-119

Tecursion — see recursion

recursion 153, 164-165

recursive traps 67, 373

REG 24-25, 186-187

REG field, in operand descriptor 24

REGISTER_FILE 10, 306-307

register file 7, 9-11, 56, 65, 306-311

register file manipulating instructions 303

register file, in PROCESSOR_STATUS 10

register-based-indexed 34

register-hbased-indexed addressing 34

registers, addressing mode for 27

relative jump 21

relative pointer 189

relative-JOP 337

RELOCA 351, 358

RELOCA, in FASM 351, 358

relocatable 335, 340, 342, 351, 354, 357-358,
375

relocatable assembly 351

relocation 342-343, 351

remainder 2, 7, 43-44, 57, 77, 364

REPEAT 358

REPEAT, in FASM 358

RESERVED_ADDRESS_MODE 38, 64, 332

RET 165, 264-265, 278

RETS . {R,A} 281

RETS 57-58, 66, 68, 264-265, 274, 281, 369

RETS instruction, returning from traps 57

RETS, Mark IIA implementation limit 369

RETSR 161, 264-265, 277

RETURN_PC 270, 285-288

RETURN_VALUE 270, 286-287

RETURN 266, 269

returning from traps, the RETS instruction
57

RFLTAB 329

RIEN 295

RING_ALARM_TRAP 10, 66

RING_ALARM 10, 66

RING 61, 222

ring alarm 10

ring of execution 9

ring tag, defined 47-48

RING, field within gate pointer 61

rings 6, 40, 46, 48, 50, 54, 61, 373
rings, role in protection mechanisms 46
rings, use in address translation 39
RIPND 297

RMS 151
RMW 195, 213, 327

RNDMODE 91

ROT . {LFRT} . {QH,S,D} 243
ROT 243

rotate instructions 225

ROTV . {LF,RT} . {QH,S,D} 243

ROTV 243

rounding modes 78-79, 107-108, 318, 374

rounding modes, floating point 107

rounding modes, integer 78

rounding, inexact 369

routine linkage instructions 264

RPHYS 197

RPID 334

RREG 210

RREGFILE 308

RRFILE 306

RRNDMD . {INT,FLT} 318

RRNDMD 107, 318

RTA, defined 7

RTA1L, defined 7

RTB, defined 7

RTBI1, defined 7

RTDBP 264, 321

RTN 362

RUS 15, 314

s-argument 354

s-arguments 354

s-values 354

S-X 173

S-XY 174

SAIL 337-338

SAVE _COUNT 266

SAVE 266, 269, 282

save area, for JSR instruction 275

save area, using stack frame 265

SCANLSS 356

SIECOND 37-38, 132-139, 146, 203, 206, 209
216-218, 313, 373

SECOND() notation 37

segment bounds checking, Mark IIA exception
369

segment size, field in STE 44

segmentation 39, 42-43, 193, 373

SEGMENTITO_FAULT 43, 62

segmentito 39-45, 48-50, 62, 194, 369, 373

segmentito table entries 43

H



segmentito table entry, used in address trans-
lation 39

segmentito, defined 39

segmentitos 39-40, 42, 44

SEGSIZE 194

SELECT 179

SELECT {RTARTB} . {QH,S,DP} 179

self-relative 46-47, 189

self-relative pointer 189

self-relative tag, defined 47

semicolon 336, 343, 363-364

SENSE_IN 153

separator 344, 364

SETPRI 319

SETPS 317

SETPS, defined 317

SETTAG 191

SETUS 317

SETUS, defined 317

SEXCH . {QH,S,D} 185

SEXCH 164, 185

CL 247

O oI

SHARED 45

SHARED access mode 45

SHF . {LF,RT} . {QHS D} 238
SHF 161, 237-238, 240-242

SHFA . {LF,RT}. {QH,SD} 237
SHFA 13, 164, 200, 237, 240
SHFAV . {LF,RT} . {QH,S,D} 237
SHFAV 237

SHFV . {LF,RT} . {QH,SD} 238
SHFV 238

SHIFT 31-32, 346-347

shift instructions 225

shift, in long operand addressing 32
SHORT _DISP 346-347
SHORT_SHIFT 347

short operand variables 27

short operand, defined 13
SIGN_EXTEND 3
SIGN_isXTEND() notation 3
SIGN 103-105 '

SIGN, floating point 103
sign-extending 95

SIGNAL 162

SIGNED 2, 19-20, 27

SIGNED() notation 2

simple-base 25

SIZE 44, 160-161, 304

SIZE, field in STE 44
SIZEREG, defined 23
SJMP 19, 205, 212, 350
skip format 20

SKP . {GTR,EQL GEQ,LSS NEQ,LEQ,NON,
ALL ,ANY NAL} . {QH,S,D} 200

SKP 20, 28, 100, 199-200, 220, 318, 349, 356

SKP, in FASM 349

SKPTAG 221

SLR. { 0. 124step 4 } 186

SLR 186, 348

SLRADR . { 0 .. 124 step 4 } 187

SLRADR 187

SNAIL 336

SO 13, 24-27, 30, 36, 315-347

SO, defined 13

soft traps 53-55, 57-59, 373

soft traps, defined 53

SOP 14, 20, 75, 200-202, 213, 221, 349, 373

SOP format 20

SOP, in FASM 349

SPARE _PC 270, 286-288

SQRT 141

square brackets, in FASM 340

square root 129, 141, 149

SR,0OP1; defined 23

SRO, SR1, SR2, defined 23

SR1 7-8, 23, 135, 148-149, 152, 176

stable rounding mode 108

stack entry format 56

stack frame convention, generalized 265

stack frame convention, LISP 270

stack frame format 266

stack frame, pointers for 8

stack limit, defined 260

stack manipulation instructions 260

stack overflow, during trap or interrupt 67

stack pointer, defined 8, 260

stacks 8, 260

START 300

statements, in FASM 337

status register instructions 303

STE 40-41, 43, 45, 48-49, 61-62, 69

STE, format of 43

STE, Mark IIA implementation limit 369

STE, used in address translation 39

STEs 39, 69, 369

sticky 76, 109, 361

sticky, defined 76

STRCMP . {RTA,RTB} 219

STRCMP 219-220

SUB . {QHSD} 82

SUB 17, 78, 82-83, 94, 156, 158, 164, 228, 349

SUBC . {QH,S,D} 83

SUBC 78, 83

SUBCV . {QH,S,D} 83



unused operand descriptors 15

upper-case 339

upward-growing 8, 28, 260-263

URECIP . {QH,S,D} %0

JRECIP 90-91

US 90-92, 121

USED 44-45, 369

USED, field in PTE 44

USER _STATUS 11, 15, 54-56, 76-78, 90, 107,
109, 112, 121, 123, 141-142, 166, 168, 171,
304, 313-318, 320

user mode 6

user status register 11

user status register, role in integer exceptions
76

user tag, defined 48

USEXCH . {QH,S,D} 185

USEXCH 185

USING 347

USUB . {QH,;S,D} 87

USUB 78, 87

USUBV . {QH,S,D} 87

USUBV 78, 87

V”§+X” {H,5D} 173
S-X” . {H,SD} 173

V2DbQ 148

VABS . {H,S,D} 98

VABS 98

VADD . {SR,0P1} . {H,S,D} 80

7ADD 80

VADDSUB . {QH,S,D} 102

VADDSUB 102

VADDSUBV . {QH,S,D} 102

VADDSUBV 102

VALID 43-45, 62

VALID, field in PTE 44

VALID, field in STE 43

validation level of pointer 50

validation level, in addressing 48

validation of addressing 48

validation of pointers 50

VALIDP 47, 50-51, 192

VALIDP, use of 50

VAND . {SR,OP1}. {H,S,D} 227

VAND 227

VANDCT . {SR,0P1} . {H,S,D} 229

VANDCT 229

VANDTC . {SR,OP1} . {H, S D} 228

VANDTC 228

VAR 34, 156, 158, 166, 168-169, 171, 188, 250-
251, 267

variable-base 30

variable-base addressing mode 30

variables 27-29, 31, 33, 35, 172, 260, 373
variables, combines long and short operand 31
variables, long operand 29

variables, short operand 27

VBADD . {SR,OP1} 166

VBADD 78, 166-167

VBITCNT . {H,5,D} 246

VBITCNT 246

VBNEG 78, 171

VBSUB . {SR,0P1} 168

VBSUB 78, 168

VBSUBV . {SR,0P1} 168

VBSUBV 78, 168

VCCONJ. {H,S} 137
VCCONJ 137
VCMAGSQ . {H,S} 139

VCMAGSQ 139

VDSHF . {LF RT} 241

VDSHF 239, 241-242

vector instructions 23

vector, defined 23

vector, for traps, interrupts, and gates 53
vector, size register for 23

vectors, using constants as 37

VEQV . {SR,OP1} . {HS,D} 236
VEQV 236

VEXCH . {Q.H,S,D} 184

VEXCH 184

VF 172-176

VEF”S+RX” . {H,S.D} 175

VF”S+X” . {H,SD} 173

VF”S+XY” . {SR.OP1} . {H,S,D} 174
VF7S-X” . {HS,D} 173

VF7S-XY” . {SR,OP1} . {H,S D} 174
VF”SX” . {HS,D} 173

VF”SX+SY" . {SR,0P1} . {H,S,D} 174
VF”SX+Y” . {SR OP1} . {H,S,D} 174
VF”SX-SY” . {SR,OP1} . {H,S,D} 174
VF”SX-Y” . {SR,OP1} . {H,S,D} 174
VF”SY-X” . {SR,OP1} . {H,S,D} 174
VF”X+5Y” . {SR.OP1} . {HS,D} 174
VF”X+YZ” . {SR,0P1} . {H,S,D} 176
VF2DIS . {SR,0P1} . {H,S.D} 149
VF2DIS 149, 369

VF2DSQ . {SR,0P1} . {H,S,D} 148
VF2DSQ 148, 150

VF3DIS . {SR,0P1} . {H,SD} 149
VEF3DIS 149, 369

VF3DSQ . {SR,0P1} . {HS,D} 148
VF3DSQ 148

VFABS . {H,S,D} 126

VFABS 126



SUBCV 78, 83

SUBV . {QH,S.D} 82

SUBV 17-18, 78, 82, 248

SUCC 352

SW_REG 346-347

SWITCH 66, 303-304

SWPDC . {V,P}. {UUK} 301

SWPDC 301

SWPDM 302

SWPIC . {V,P} 300

SWPIC 300

SWPIM 302

SYMBOL 343

symbol, attributes 340

symbol, data value 340

symbol, definition of 343

symbol, external value 340

symbol, half-killed 340, 343

symbol, instruction value 340

symbol, macro name 340

symbol, redefinition of 343

symbol, register 340

T field, in TOP format 16

TAG_TRAP 60, 224

TAG 25, 46-48, 61, 249, 253, 256, 341

TAG field of pointer, meaning of 46

TAGTRP 60, 224

tangent 147

TC 228, 231

TDB 55-56

TDBP 53, 321

term, in FASM 338

TERMIN 358, 360-362, 366

TERMIN, in FASM 358

TERMINs 362

TERMS 346

test-and-set 195

text constant 342

three address format 16

TITLE 359

TITLE, in FASM 359

TOP format 16

TOP, in FASM 349

TRACE_ENABLE 58

TRACE_ENB 10-11, 73-74

TRACE_ENB bit in PROCESSOR_STATUS
10

TRACE_PEND 10-11, 58, 66, 73-74, 369

TRACE_PEND bit in PROCESSOR_STATUS
11

TRACE_TRAP 66, 73

trace pending, trap for illegal case 66

trace traps, role in instruction execution 73

tracing, bits in PROCESSOR_STATUS 10

TRANS . {QH,S,D}. {QH,SD} 95

TRANS 95, 178, 215

TRANSP . {H,S,D} 155

TRANSP 60, 154-155

TRAP_INDEX TOO_BIG 55, 67

trap descriptor block entry 53-54

trap descriptor block pointer 53, 55, 321

trap vector format 55

trapping 39

traps, instructions for 264

traps, role in instruction execution 73

traps, Stack Entry format 56

TRPEXE . {0 .. 63} 280

TRPEXE 52-55, 57, 60-61, 264, 280, 373

TRPEXE trap mechanism 60

TRPSLF . {0.. 63} 279

TRPSLF 53-55, 57-58, 60-61, 264, 279, 373

TRPSLF trap mechanism 60

two address format 15

two's complement, used in integer arithmetic
{0

TXT 353

ty pe-in 343

ty pe-out 343

UADD . {QH,S,D} 86

UADD 78, 86

UCMPSF . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
. {QH,S,D} 215

UCMPSF 215

UINT_OVFL_MODE 12, 60, 77

UINT_OVFL_MODE, defined 77

UINT_OVFL_TRAP 60, 77

UINT_OVFL 12, 76-77, 86-88

UMAXNUM 76

UMAXNUM, defined 76

UMDIV . {QH,SD} 9%

UMDIV 90-91

UMDIVH . {QH,S,D} 90

UMDIVH 90-91

UMULT . {QH,S,D} 88

UMULT 88

UMULTL . {QH,S} 89

UMULTL 89

UNCALL 264-265, 267-268, 274

underflow, floating point 109

UNF 106-107, 109-111

UNF, defined 105

UNMAPPED MODE 10-11

UNMAPPED._MODE, bit in PROCESSOR_
STATUS 11

UNSIGNED() notation 2

UNSTORED_RESULT 58



VPIOW . {Q,LSB16,MSB16,LSB32 MSB32,
B} 201

VPIOW 291

'REV . {QH,S,D} 183

VREV 183

ve 2

VSHF . {LF,RT} . {H,S,D} 238

VSHF 238

VSHFA . {LFRT} . {H,S,D} 237

VSHFA 237

VSUB . {SR,0P1} . {H,S,D} 82

VSUB 82

VSUBV . {SR,0P1} . {H,S,D} 82

VSUBV 82

VTRANS . {QH,SD}. {QHS,D} 95

VTRANS 37, 95, 183, 242

VXOR . {SR,0P1} . {H,S,D} 235

VXOR 235

W 327

WAIT 204, 348

WAITS 335

WASJMP 305

WB 43-45, 48-50, 69

WB, field in STE 43

WCTR 324

WDBPT 327-328

WDBPTM 326, 328

WFSIMP 313

WIBPT 327-328

VIBPTM 326, 328

WIEN 296

WIPND 67, 298

WORD 228, 231

WPHYS 197

WREG 311

"WREORT E 309

YYRLLIUNIL Ly

WRFILE 307

WRITE_PERMIT 45, 69, 293, 299, 337
WRITE_PERMIT access mode 45
write bracket 43, 63

write bracket, in STE 43
write-only 45

WRNDMD . {INTFLT} 318
WRNDMD 78, 91-92, 107, 121, 318
WTDBP 264, 321

WUSJIMP 320

X_DISP 149-150

X field, in operand descriptor 24
XLIST 357, 359

XLIST, in FASM 359

XMLIST 357, 359

XMLIST, in FASM 359

XOP format 15

XOP, in FASM 348
XOR . {QH,S,D} 235

XOR 235, 338

XRTN 362

XSPACE 337, 351, 359
XSPACE, ia FASM 351, 355
XVAL 338, 342

ZERO_EXTEND 2, 27
ZERO_EXTEND() notation 2
ZFLCNT 330



VFADD . {SR,0P1} . {H,S,D} 113
VFADD 113

VFADDSUB . {H,$,D} 130
VFADDSUB 130

VFADDSUBV . {H,$,D} 130
VFADDSUBV 130

VFATAN . {SR,0P1} . {H,SD} 147
VFATAN 147

VFC 175

VFC"S+RX” . {H,S} 175
VFCCONJ . {H,S} 157
VFCCONJ 137

VFCDIV . {SR,0P1} . {H,S} 135
VFCDIV 135

VFCDIVV . {SR,OP1} . {H,S} 135
VFCDIVV 135

VFCMAG . {I1,S} 138

VFCMAG 138, 369

VFCMAGSQ . {H,S} 139
VFCMAGSQ 139

VFCMULT . {SR,OP1} . {H,S} 134
VFCMULT 134

VFCOS . {I1,S,D} 145

VFCOS 145

VFDIV . {SR,OP1} . {H,SD} 117
VFDIV 117

VFDIVV . {SR,0P1} . {ii,S,D} 117
VFDIVV 117

VFDOT . {H,S,D} 151

VFDOT 151, 157

VFEXP . {H,SD} 143

VFEXP 143

VFIX . {HSD}. {HSD} 121
VFIX 121

VFLOAT . {H,SD} . {QH,S,D} 122
VFLOAT 122

VFLOG . {H,S.D} 142

VFLOG 142

VFMAX . {SR,0P1}. {HIS,D} 128
VFMAX 128

VFMIN . {SR,0P1} . {H,S,D} 127
VFMIN 127

VFMULT . {SR,OP1} . {H,$D} 115
VFMULT 115

VFNEG . {HSD} 125

VFNEG 125

VFRECIP . {H,S,D} 118
VFRECIP 118

VFSIN . {H,SD} 144

VFSIN 144

VFSQR . {HS.D} 129

VFSQR 129

VFSQRT . {H,S,D} 141

VISQRT 141, 369

VESUB . {SR,0P1}. {H,S,D} 114

VFSUB 114

VFSUBV . {SR,OP1}. {H,S,D} 114

VI'SUBV 114

VFTRANS . {H,SD} .{H,S,D} 123

VFTRANS 123

VINI. {Q,1,5,D} 182

VINI 170, 182

VIOR . {Q LSB16,MSB16,LSB32,MSB32,B}
290

VIOR 290

VIOW . {Q,LSB16,MSB16,LSB32,MSB32,P}
201

VIiOW 291

virtual address space 6

virtual address translation 39

virtual machine mode 10

virtual-to-physical 11, 41, 69, 299, 303

VMAX . {SR,OP1} . {H,S,D} 100

VMAX 100

VMIN 99

VMIOR . {LSB16,MSB16,L.SB32,MSB32,B}
200

VMIOR 290

VMIOW . {LSB16,1{SB16,LSB32,M5B32,B}
291

VMIOW 291

VMM 10

VMPIOR . {LSB16,MSB16,LSB32,MSB32,B}
200

VMPIOR 290

VMPIOW . {LSB16 MSB16,LSB32 MSB32 B}
291

VMPIOW 291

VNAND . {SR,OP1} . {H.S,D} 233

VNAND 233

VNEG . {H,S,D} 96

VNEG 96

VNOR . {SR,OP1} . {H,S,D} 234

VNOR 234

VNOT . {H,S,D} 226

VNOT 226

VOR . {SR,OP1} . {H,S,D} 230

VOR 230

VORCT . {SR,0P1} . {H,S,D} 232

VORCT 232

VORTC . {SR,0P1} . {H,$,D} 231

VORTC 231

VPIOR . {Q,LSB16,MSB16,LSB32,MSB32,B}
290

VPIOR 290
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