SCALD II User's Manual
(SCALD-2) |

Thomas M. McWilliams, Jeffrey B. Rubin,
L. Curtis Widdoes, and Steven Correll

Table of Contents

1 What SCALD does and why

L1
12

The Structure of SCALD
How to use this manual

2 How to use D (the Graphics Editor)

N

1

¥

Preliminaries

Commands for mampulating drawmg files
221 Getting and saving drawings

222 Initializations

223 Finishing a drawing

224 Looking for errors .
Commands for Body Mode
Commands for Point Mode
Commands for Set Mode
Commands for Edit Mode

Using Alter Submode to Edit Text
Defining and Using Editor Macros

3 A guided tour of D

3.1
82
33
34
35
36
37
38
3.9

Running the program
Initializing the workspace
Positioning Bodies

Drawing lines .
Putting text on your drawmg
Editor macros

Using sets

Final touches to your drawmg
Creating a body template

3.9.1 Getting started

3.92 Drawing the box

39.3 Ornaments

394 Defining pins

39.5 Creating body text

3.10 Making a menu file

4 How to use the macro expander

41

42 General Rules for the macro expander language
43 Inventing Bodies to Represent Macros .

Typical design procedure

13
13
14
15
15
17
19
21

27
29

31

32
34
37
42
52
59
61
62
83
63
65
65
87
69
70

73
75

77
79

44
45
46

4.7
43
4.9

43.1 Body Parameters
432 Pin parameters

How the macro expander binds bodis to drawmgs

Inventing Signal Names

Putting together a signal name

46.1 <Negation> .

462 <Class Name><Simple Name>
46.3 <Timing Assertion>

464 <Assert Low>

46.5 <Bit Subscripts>

466 <Wire Delay> .
46.7 <Timing Evaluation Directive>
483 <Scope>

4869 <Multiplier> :

48.10 <Version> . . .
46.11 Constants as Signal Names
46.12 Text Substitutions

46.13 Sundry Details About Nammg Signals
Matching Signals with Bodies

Fictitious Bodies . .
How to construct the Termmal Fﬂe

410 Running the Macro Expander

411

The Macro Expander Listing

8 A Guided Tour of a SCALD Macro

8 How to use the timing verifier

6.1

8.2
6.3

6.4
6.5

Theory of operation

8.1.1 Circuit Period .
8.12 Value system for signals
6.1.3 Combinational function
Defining chips .
Preparing input for the venfier
6.3.1 Wire delays .
6.32 Assertions on Signals
6.3.3 Evaluation Directives
8.34 Correlations

Input and output files for the dmmg venﬁer
A timing verifier example

7 The layout program

7.1

Preparing instructions for the layout program
7.1.1 The DATE statement

Table of Contents

79
83

2882

90
90

93
93

93

a5

8883

1
104
106
110
112
113

121

Y]
3

128
129
129
130
132
137
137
137

139 -

140
142
144

149

150
154

Table of Contents

712
7.1.3
7.14
7.1.5
7.16

8 References

The WITH statement
The assignment statement
The PLACE statement
The BIND statement
The CHIP statement

9 Implementation information

9.1 Format of the WDP file

10 Index

155
157
161
163
165

167
169
169

173

1 What SCALD does and why

SCALD (the acronym stands for “structured computer-aided logic design system”) cuts the cost and
time required to design logic. It does this by letting the logic designer express ideas as naturally as
possible, and by eliminating as many errors as possible—through consistency checking, simulation,
and timing verification—before the hardware is built.

This manual describes SCALD II, intended for use in the design of the S-1 Mark IIA processor.
The original version, SCALD I, was used in the design of the S1 Mark I processor.

Designing hardware with SCALD is in many respects analogous to programming in a high level
language. First, the designer uses a graphics editor to draw logic circuit diagrams on a CRT screen,
just as a progammer would use a text editor to compose a source program. The diagrams form a
hierarchy in which general, high level drawings are defined in terms of more specific, lower level
drawings, just as the top level procedures in a well structured program call more specific, low level
procedures. (Actually, each drawing represents a macro which can be replicated as often as necessary
within the design.)

Then the designer feeds the drawings to the SCALD macro expander, which translates the logical
design into a detailed pAysical design just as a compiler would translate source language into
machine code. In the process, the macro expander can find many errors by checking syntax and

design rules.

The designer then uses the SCALD layout programs and physical design programs to map the
output of the macro expander onto actual circuit boards, just as a programmer uses a linker and
loader to map the compiler-generated code onto the actual computer hardware. And, just as a
programmer can use a symbolic debugger to find runtime errors, the designer can use the SCALD
simulator and timing verifier to check the behavior of the hardware before building it.

Ultimately SCALD produces tapes and listings that permit assembly of a prototype either
automatically or by hand. ‘

2 1 What SCALD does and why

SCALD brings to hardware the top-down design principles that programmers have adopted for
software. At the top level of a well-structured program, a programmer does not deal with loops and
branches and assignments, but with two or three procedures that divide the program’s task logically
into major subtasks. Similarly, at the top level of a digital circuit designed with SCALD, the
designer does not deal with gates and signal polarity and fanout, but with two or three functional
blocks that divide the circuit’s task logically into ma jor subtasks. .

Each of the major blocks is then defined in terms of other blocks, and each of those in terms of still
other blocks, and so on, forming the hierarchy. Successive definitions become increasingly specific,
until finally the iowest level drawings correspond to actual integrated circuits. Those integrated
circuits are themselves defined in terms of a few primitive logic elements—gates, flxp-ﬂops,
multiplexers, adders, and so on—to permit simulation. -

This approach to logic design has a number of advantages. (Readers who are already convinced
should skip the following sales pitch and start with Section 1.1.) Some of them stem from the
hierarchical structure, others from the basic use of a computer to automate the task, and still others
from specific features in the SCALD programs.

Advantages of hierarchical structure-In hardware design as in programming, a top-down
approach lets the mind tackle the most important and far-reaching questions first, deferring the rest.
At any point, the designer confronts a manageable number of decisions. Structured design makes it
easier to apportion work among a group of designers, since splitting the task into subtasks along
functional lines provides a set of relatively independent chunks of work. Structured design makes it
easier for a newcomer or outsider to understand the design by progressing from a general overview
toward fine details.

Some advantages of top-down design apply uniquely to hardware. In a design requiring many

individual drawings, structure reduces the confusion caused by wires running from one drawing to
the next on the basis of paper size rather than meaning.

Further, structured designs are subject to less trauma as technology advances. The upper levels of
the hierarchy tend to be general enough that they remain independent of the specific technology or
logic family the designer uses. And as circuit packages come to hold increasing amounts of logic, the
bottom level of the hierarchy may simply vanish because each frequently-used macro which was
formerly defined in terms of a network of a dozen integrated circuits can be implemented with a
single gate array chip. :

Advantages of automation—-Other advantag'es resuit simply because SCALD maintains the design
on a computer in machine-readable form.

® It imposes uniform conventions on the design team.

® The computer’s normal procedures handle mundane concerns like sharing drawings
between designers, archiving old drawings, placing drawings in safekeeping, and so forth.

1 What SCALD does and why 3

® The designs are readilyk available to programs for simutation, error-checking, cost
estimating, parts counting, and so forth.

@ Handling post-design changes by computer makes it more likely they'll be systematic and
well documented.

Advantages of SCALD itself~The SCALD family of programs provides a number of specific
services to make design easier.

® A timing verifier and logic simulator help test the design before constructing it
® Semiautomatic layout and automatic routing speed construction.

® Extensive error-checking reduces the number of bugs before construction even begins.
For example, SCALD checks the assertion level of signals against the expected inputs to
each functional block; it finds a source for the inverse of a signal when needed; it lets the
designer specify rules to handle fanout problems automatically; and it checks for undefined
signals, unconnected signals, outputs tied together unintentionally, and undefined inputs.

4 1 What SCALD does and why

1.1 The Structure of SCALD

SCALD itself is, as hinted earlier, a family of programs rather than a single program, making it
easier to aiter the 'system to suit different needs. For example, changes in the graphics input
hardware affect only the graphics editor. Changes in the wiring technology employed affect only the-
packager programs. :

For portability, all programs except the graphics editor and system-dependent utilities are written in
PASCAL, and generally allow configuration for varying memory usage.

SCALD divides into a logical design system (programs which apply regardiess of the technoiogy
used to implement the design) and a physical design system (programs which implement the logical
design using a particular technology). '

Important parts of the logical design system are:

D, the graphics editor-This program lets the designer define macros by drawing networks
of logic elements on a CRT display using a special keyboard or a light pen. One of its
outputs is a file listing all the logic elements and the connections among them.

Macro expander-This program takes in the logical design (a set of hierarchical macros
defined by graphics editor drawings) and transforms it into the first stage of the physical
design, outputting a set of actual IC functions and a list of the connections among them.

Alternatively, for simulating the design before construction, this program can further
expand the actual IC functions into the logical primitives which the simulator works with.

Logic simulator-Using a typical value for the logic delays, this program simulates the
design. In the case of a processor, it can even run small programs to check the processor’s
ability to execute various instructions.

Timing verifier~This program takes into account a range of logic delays, from minimum
to maximum, along with timing skews. It checks all the combinations of timing and signal
paths necessary to assure that the design meets worst case timing constraints.

Unlike the simulator, it does not fully simulate the network; it concerns itself with whether
a signal is true or false only to the degree necessary to determine the interval within which
that signal is stable. This division of labor between the simulator and verifier allows
SCALD to assure a thorough simulation of large designs in a reasonable time. ~

Important parts of the physical design system are:

Layout-Within constraints specified by the designer, this program automatically positions
parts on circuit boards. .

Packager-This group of programs routes wires among parts on the circuit boards,

11 The Structure of SCALD 5

calculates waveforms of signals propagating along those wifes, and manages post-design
changes.

6 1 What SCALD does and why

1.2 How to use this manual

This edition of the manual covers the graphics editor, macro expander, and layout program, but not
the packager programs.

In some cases it gives two different views of the same material: a “How-to” section with a concise
description, followed by a “Guided tour” through illustrative (that is, biatantly contrived) exampies.

Installation-dependent information such as how to start a program running tends not to appear at
all Information of interest to those modifying the programs rather than to those using them, such as
the formats of files, appears in appendices. :

2 How to use D (the Graphics Editor)

This chapter is an abridged description of D, the graphics editor, describing a minimal subset of
commands needed to create drawings for SCALD. For a description of many more commands, see
the SUDS manual listed in Section 8.

2.1 Preliminaries

Terminology—We will assume use of the Stanford keyboard, which has keys labelled CONTROL,
META, TOP, and SHIFT. This keyboard operates differently from that of either a typewriter or
an ASCII computer terminal:

Pressing a key without holding any shift key gives the lower case version of the bottom symbol
printed on the key.

Pressing a key while holding SHIFT gives the upper case (capital) version of the bottom symbol, not
the top symbol as it would on a typewriter. If the symbol in question isn’t a letter and thus can’t be
capitalized, then SHIFT has no effect.

Pressing a key while holding TOP gives the top symbol printed on the key.

Holding CONTROL or META in addition to some other combination of keys affects the flavor of
the character but not its identity. For example, holding SHIFT changes “a” to "A”; but hoiding
META in addition merely produces a special version of "A® which the program regards as a
command, not some entirely new character. Generally, CONTROL gives the weaker or more
ordinary version of that command while META gives a stronger or. more exotic version.

We'll use the following notation throughout this manual:

8 2 How to use D (the Graphics Editor)

w(character> says to hold down CONTROL while pressing the <character>
A<character> says to hold down META while pressing the <character>
«S¢character> says to hold down both CONTROL and META while pressing the <character>

(The program never requires use of the characters “«” or “8” themselves, so there’s no danger of
confusion; throughout this document they always represent the CONTROL and META keys.)

When using D, latch the SHIFT LOCK key down to avoid having to lean on the SHIFT key
constantly, thus freeing all ten fingers to manipulate SHIFT, TOP, CONTROL, and META.

Whenever the program expects a multiple character string—the name of a file or logic element, for
example—it permits use of the DEL key to backspace and erase mistakes.

The commands that consist of a character with META and/or CONTROL heid down will,
however, execute immediately, giving you no chance to use DEL. If, as a result of the command, the
program then prompts for additional information, the ALT key will generally abort the command;
otherwise, you must simply figure out a way to undo the resuits of the command.

Files, libraries, and bodies—The program stores drawings in files with names of the form
“<name>DRW?™. At the top of the screen, it constantly displays an equation “J=<name>” which teils
the name of the file (if any) that it is currently editing.

In the most general sense, the program can do two things: it can develop templates for “bodies”, and
it can draw circuits by first drawing bodies based on those templates and then connecting lines
between those bodies. For SCALD’s purposes, a body generally represents either a macro or a logic
primitive such as a gate or adder. A drawing generally defines a macro in terms of additional bodies
* connected together. g

The templates for bodies hide in the background until the designer either uses a template to place a
body in a drawing or enters a special mode (Edit mode) capable of creating or modifying body
templates.

When editing a drawing, the program operates on a copy of the drawing in a special area called a
workspace. A particular drawing file can be copied into the workspace in three distinct ways:

1. The first drawing file copied in after clearing the workspace becomes the one named in
the “3=" line. ' ’

2. (One rarely uses this feature) If you copy in any additional drawing files, their body
templates are added to the repertoire of templates in the workspace, and their drawings
become sets of elements superimposed on your existing drawing, just like the sets you
yourself can create as described in Section 2.5. You may then move those sets around and

2.1 Preliminaries 9

add them to the existing drawing.

8. If you bring in a drawing file as a library, its body templates are added to the repertoire
of templates in the workspace, but its drawings (if any) are not used. There is nothing
special about a file used to hold libraries of body I:emplar.es; any drawing can look like a

tibrary if brought in as one. ‘

Other files—-The program can produce two other files corresponding to “<name>DRW”™:
“<name>.PLT" is useful for making a paper copy of the drawing, and “<name>.WD" is a list of
bodies and interconnections which ultimately becomes the input to the SCALD macro expander.

Moving the cursor-The program will always display (though sometimes at the very edge of the’
screen) a set of crosshairs which serves as the cursor. Four keys above the RETURN key move it
incrementally to the left, to the right, up, and down:

Left
Right
Up
Down

- e ee? PN

(On some keyboards, the sequence is “T]\ /* instead; in any case, no matter what is marked on them,
use the four keys immediately above the RETURN key, and associate the directions with fingers
rather than with the markings on the keys.)

These are obviously intended to be convenient, not mnemonic; since you will probably use them
more heavily than any others, it's easy to become accustomed to placing four fingers over them
without looking at the keyboard or thinking about the symbols on the keys.

Holding down various shift keys multiplies the distance these keys cause the cursor 1o move:

CONTROL x2
META x4
TOP x16

Using several shift keys at once multiplies the factors. Holding down both CONTROL and
META, for example, multiplies the fundamental cursor motion by 8. :

Enlargement, reduction, and moving the paper-When the program starts, it shows a x16
enlargement of the “paper” it will draw on. That is a convenient scale for seeing everything clearly,
but the entire paper will not fit on the screen at once, so the screen acts as a sort of “window”
through which you view the drawing. |

To move the paper to see a different part of it through this window, use the “t*, “I”, *3”, and “<”
characters. Typing such a character once moves the drawing by 1/8 of the window dimension. As
with the cursor, the CONTROL key multiplies this motion by 2 and the META key by 4. (The

10 2 How to use D (the Graphics Editor)

TOP key isn't available as a multiplier in this case, because it is needed to obtain any of those
characters in the first place.)

As the paper moves, the cursor sticks to it until the cursor hits the edge of the screen. You can.
continue to move the paper further in that direction, but the cursor will remain at the edge of the
screen until you move the paper in a different direction. If you move the paper far enough, you'll
reach its edge and see a line representing the perimeter (assuming the SHOWBOX feature
described in Section 2.22 is enabled).

You can aiso reduce and enlarge the paper to see more or less of it through the screen, but this is
inconvenient because the text remains the same size while the bodies and lines shrink and grow.
The “x” key reduces, the “e” key enlarges, and once again CONTROL and META multiply the.
effect. '

If part of the drawing spills off the edge of the paper, the X PICCEN” command (Section 2.2.2)'
will recenter it, but the system automatically recenters the drawing anyway just before plotting a
hard copy of it. If the centered drawing won't fit on the paper, however, the plot will clip it at the

edges

Modes—At any time, the program is in one of several major modes, each of which may have one or
more submodes. Only certain modes and submodes are essential to drawing circuits for SCALD. To~
describe bodies one uses edit mode; to draw circuits with them one switches back and forth among
body mode, point mode, and set mode. The top line of the screen will always contain “MODE="
followed by one or two letters. The first letter generally tells the current mode and the second the
current submode.

The program begins in body mode. The following commands change back and forth among body,
point, and set modes:

afB Select body mode (MODE=B)
afP Select point mode (MODE=P)
aBsS Select set mode (MODE=S)

Many commands work equally well in any mode, others don’t, and still others mean slightly different
things in different modes. Unless noted otherwise, assume the commands given here work in any
mode. ‘

Attaching the cursor and moving ob jects-When the program enters body, point, or set mode, the
cursor is detached from all objects so it may move at will without affecting the drawing. The
program will superimpose a large flashing letter on the ob ject of the appropriate type—a body if it
is in body mode, a point in point mode, or a set in set mode—which is closest to the cursor.
Attaching the cursor to that object forces the object to follow wherever the cursor moves. The
following commands accorhplish this:

«M Move the cursor to the object and attach the cursor to it. The large flashing

2.1 Preliminaries 11

letter identifying the ob ject will vanish.

«AM Move the object to the cursor and attach the cursor to it The large flashing
letter identifying the ob ject will vanish.

<SPACE> Detach the cursor from the object. The large flashing letter identifying the -
ob ject will reappear.

It’s not critical to understand them, but the large flashing letters do convey meanings:

B Body

P Point

PL Point with line(s) v

TL Line (and usually a point, too) with text

PA Point to which you may attach a line. On a body,
this is usually an input or output pin

PLA Same as PA, but there’s aiready a line attached

BT Body text

BTP Body property name/text pair

Extended commands—A special set of commands beginning with “X” sets options and performs
functions without regard to mode. When you see a command in this chapter described like this:

X CLEAR

it means that after you type “X" the program will type "WELL?" and wait for you to put in the
remainder of the command ("CLEAR” in that example). Since operating systems supporting the
graphics editor generally offer “typeahead” (that is, they will save up characters if you happen to
produce them faster than a program can use them), it's usually safe to type the entire string without
waiting for the “WELL?". '

In addition, you may combine these extended commands. The following example

X
WELL? EW,.CLEAR

shows how to perform "X EW” and “X CLEAR” together. Note that the program executes them in
the order specified, so this would (with considerably more kindness than one has any right to expect
from a machine) save the workspace before clearing it '

Text-The graphics editor provides two kinds of text: simple text and property name/text pairs.
Text is usually associated with a point or body, and thus appears, disappears, and moves around
whenever the point or body does. To deal with a piece of text, move the cursor close to it and give
the appropriate command as described later in this chapter. Property name/text pairs give an
additional means of access, 2 name associated with the text. Because the name is merely an access

12 2 How to use D (the Graphics Editor)

key, it’s invisible on the drawings.

The editor distinguishes between text created as part of the drawing and text that is copied from a
body template. Though the editor provides a mode that can manipulate both kinds, we won'’t"
discuss that because you won't need to use it. Throughout the modes we'll describe, template text is
sacrosanct: because you didn’t type it in, you can'’t touch it. A -default property name/text pair is
semi-sacrosanct: you can replace its text completely, and thereafter you can edit the replacement, but
you can't edit the default text. :

22 Commands for manipulating drawing files 13

22 Commands for manipulating drawing files

221 Getting and saving drawings

X CLEAR

«<W

X GETLIB

X TITLE

X PAGE

X PROJECT

X EW

Clear the workspace, deleting drawings and body definitions but not macros.
This also resets the editor to MODE=B, LEVEL=0, SCALE=16, and
3=<nothing>.

Bring in a new drawing file. (The program will prompt for the name.) If the
workspace is clear, the new file becomes the “3=" file; otherwise, it becomes a set
within the existing drawing. Specifying “3" as the new file clears the remembered
name (the “I=" feature) at the top of the screen.

Save the workspace into a drawing file and change the “3=" line, if necessary, to
point to that file. (The program will prompt for the name. If the “3=" already
shows the filename, reply “3* and the drawing will automatically go back into
that file, which is a lot safer than attempting to retype the name.)

List all body templates in the workspace (both bodies described in this drawing
file and those described in any libraries you are using).

Get a file and use it as a library. The program will prompt for the filename.
Once a particular drawing knows about a certain library, it will remember it, so
you need not repeat the command the next time you edit that drawing.

Invent a title for the drawing. (The program will prompt for the first line of the
title and then for the second.) The title is a label that appears at the bottom of
the drawing, and is quite distinct from the name of the file containing the
drawing.

The SCALD programs do not require it, but for documentation purposes you
may paginate drawings. This command prompts for SHEET (the current page
number) and OF (the total number of pages). The numbers appear in the form
“Page X of Y™ at the bottom of the printed version of the drawing.

Specify which project the drawing belongs to. (SCALD does not require this, but
you may wish to partition your design into projects, with a certain number of
macros in each project. If you do, SCALD will print the project name on listings
to help you mentally sort macros into categories.)

Identical with “xW™ followed by “3". ' It's a good idea to use this command
periodically as you edit, just as insurance against a system crash.

14

X EP

X EL

2 How to use D {the Graphics Editor)

Write a plot file called “<name>.PLT™ based on this drawing, provided the “I="
line contains a name.

Write a wirelist file called “<name>.WD” based on this drawing, provided the
“3=" line contains a name. '

22.2 Initializations

We recommend using the following commands to set up initial conditions in the program. The most
painless approach is to make them into an editor macro called INIT as explained in Section 2.
Then create a dummy drawing with nothing in it but the INIT macro. To create a new drawing (as
opposed to editing an existing one), make it a practice always to start by clearing the workspace and
bringing in the dummy.

X -LOCS

X BOARD

X SHOWBOX

X PICCEN

X UNDERLINE

Disables the displaying of a feature that SCALD doesn’t use.

Sets a number of characteristics that in general don’t matter to SCALD. The
program will prompt for the board type, and you should reply “DECPC".
Consistency throughout all your drawings in this respect will spare you countless
annoying, but harmless error messages.

Tells the graphics editor to provide a border around the drawing similar to those
conventionally used for engineering drafting. Boxes attached to the border have
room for the title, date, site, engineer’s name, signature of approval, and so on.
Aside from the title, SCALD needs none of these, though it will print page
numbers and project names on its output listings for documentation purposes.
Various “X” commands (explained in the SUDS manual) exist to specify each of
these items. Paper plots show the entire border, but on the screen, all that
appears is a simple rectangle defining the “edge” of the “paper”.

The program will prompt for the type of box, the drawing scale, and the plot
scale. Reply "A 16/1". :

Centers the drawing within the box provided by “X SHOWBOX". This is
primarily a convenience, since the program whicti produces a paper copy of the
drawing centers it within the SHOWBOX anyway.

Positions signal names so that signal wires always go under them, not at the end
of them. .

222 Initializations 15

X DIAMONDS Engineering drafting is afflicted with one great unanswerable question: when two
lines cross, are they meant to connect? The DIAMONDS option causes D to
supply a diamond at the intersection point whenever the lines are indeed meant
to connect, but only on the copy of the drawing that gets plotted on paper.

The program will also ask now whether to plot a diamond whenever only three
lines connect. Answer "Y”. (Terminology gets confusing here. What looks like
two lines crossing and connecting is, as far as D is concerned, a matter of four
lines—two pairs of colinear segments. And what looks like one line meeting
another in a “T” may, in some cases, be three discrete segments in the eyes of the

program.)

2.2.3 Finishing a drawing

When you are satisfied with a drawing and plan to make a paper copy, we recommend using the
following commands, which prepare it for plotting and clear the workspace in preparation for the
next drawing. We use a macro called PLOT (Section 2.8 explains macros) to perform them
automatically. ‘

X SCALE Prompts for the scale of the drawing. Reply “16”.

X -DEFPIN,
EW.EP,CLE Described individually elsewhere.

2.2.4 Looking for errors

The following command looks for errors which occur when lines appear connected on the graphics:
display screen, but are not connected from the point of view of the program.

X DANGLE Mark all dangling points. Once they’re marked, you can enter point mode and
use “xF” repeatedly to move the cursor from one marked point to the next.

A dangling point is one which:

1. Has no lines or text associated with it (in which case you should delete the
point), ar :

16

2 How to use D (the Graphics Editor)

2. Has two colinear lines associated with it (in which case you should, within
point mode, type “8D” to delete the point and merge the lines), or

3. Has exactly one line associated with it but no text (in which case you should
label the point with some text), or

4. Has text but no line (in which case you should either supply one or more lines,
or delete the point and its text), or

5. Lies atop another point {in which case you should type “@A”. The program
will put a star atop the twin points and ask, “This one?” Reply “Y” and the
program will combine the points. -

23 Commands for Body Mode 17

2.3 Commands for Body Mode

In body mode, all the commands implicitly refer to bodies in the drawing itself. They can create a
copy of a body based on a specified body template and place the new copy in the drawing; they can
move a body about, delete a body, rotate a body, or label a body.

Typically one first draws bodies in this mode and then switches to point mode to connect lines |
between them.

«P Place a new copy of a body at the cursor position, leaving the cursor attached to
it. (The program will prompt for the body name.)

oD Delete the body closest to the cursor.

«Y Create or replace the text of a property name/text pair for the body closest to the
cursor. The command works whether the text came from a body template or
from one of the commands that let you type in text. The program will prompt
for the property name and, if it does not already exist, will establish a new one.
Then it will prompt for a text to go with the property name. That text may be
any string, including embedded blanks and using the character “o” to break the
string across multiple lines. To replace an existing property text rather than to
create a new property name/text pair, the “3Y™ command is safer.

- AY Replace the text for an existing property name/text pair. (This command works
 just like "xY”, but requires you to type only enough of the property name to
identify the property unambiguously. In addition, this command won’t create a
new property if you happen to mistype the old property name.)

«C Rotate the body closest to the cursor by 90 degrees counterclocxwise. After
rotating it 360 degrees, the program will replace it with its mirror image.

«AY Enter text/property submode for the body closest to the cursor, showing
*MODE=BT" at the top of the screen. This submode of body mode lets you
manipulate text or properties of that body by attaching and detaching the cursor,
moving the cursor, and issuing commands. Until you attach the cursor, a large
flashing letter or letters will identify the text or property closest to the cursor.

This mode will not alter text derived directly from a body template, but only text
you have created or replaced yourself.

Note that everything you do within propertyitext submode of body mode applies to
the body that was closest to the cursor on entering the submods. Once inside the
submode, moving the cursor to another body doesn’t alter this; before working
with the properties or text or another body, you must get out of the submode,
move the cursar to the other body, and get back in.

18

2 How to use D (the Graphics Editor)

The following commands apply to text/property submode (while the “8Y”, and
‘«Y” commands for body mode work equally well within text/property submode,
it's a bad idea to use them here because if you forget which body the cursor was
closest to when you entered the submode, you can easily create a piece of text that
appears within one body but belongs to another as far as the graphics editor is
concerned): :

«D Delete the property or text closest to the cursor but belonging
to the current body

«<SA Use Alter submode to edit the text or property text closest to-
the cursor but belonging to the current body. You will see
“MODE=BA” at the top of the screen. Note that this
command cannot change text obtained directly from a body
template. Only after you have used “aY”, “8Y”, or "«T" to
replace or produce text can you use “xBA” to alter it.

«AB Return to normal body mode.

24 Commands for Point Mode 19

24 Commands for Point Mode

While point mode does deal with points, its principal use is to create lines by drawing between
points. The commands in point mode which explicitly create or delete a point are used far less than
those which draw lines, implicitly creating points as they do so.

«P

«D

«T

<A

Create a point at the current cursor position. -

Delete the point at the current cursor position, along with any lines or text .
associated with that point. If two or more points coincide, the program deletes
whichever it likes. (If the point is really a pin on a body, the program deletes
lines and text associated with the point, but not the point itseif.)

Like “3T", but doesn’t provide offset.

Label the point closest to the cursor with text and offset the text if necessary to
make it pretty. (The program will prompt for text) You may use the “o”
character to separate the text into muitiple lines.

Delete the text (if any) labelling the point closest to the cursor.

Use Alter submode to edit the text, if any, labelling the point closest to the
cursor. You will see “"MODE=PA” at the top of the screen.

Starting at the point closest to the cursor, draw a perpendicular line toward the
line closest to that point. The program will place a star on the line it proposes to
connect to and will ask you to confirm the command.

Draw a blinking line or pair of lines connecting the cursor with the point closest
to it. (The program wants to avoid slanted lines, so if necessary it will use two
perpendicular lines, one vertical and one horizontal). These lines are temporary
and will stretch and contract to follow the cursor wherever it goes. As the cursor
travels, the program puts a star on its current favorite “point of attachment” (that
is, the point to which it will extend the lines automatically if you so choose.)

The command leaves you in a line-drawing submode of point mode, from which
you can issue the following commands:

ALT> Delete the blinking line(s) and return to ordinary point mode.

<SPACE> If there are two lines blinking, swap them. In other words, if
the program previously chose to go from the point to the
cursor by drawing first horizontally and then vertically, it will
now draw first vertically and then horizontally.

* If only one line is blinking, make it permanent by creating a

2 How to use D (the Graphics Editor)

new point at the end. If two lines are blinking, make the one
furthest from the cursor permanent by creating a new point at
their intersection. Once it is permanent, the line stops
blinking.

In either case, leave the program in line-drawing mode so
that blinking lines continue to follow the cursor.

Extend the blinking line(s) as necessary to reach the current
favorite point of attachment (that is, the point marked with a
star) and then make the lines permanent.

2.5 Commands for Set Mode 21

25 Commands for Set Mode

Set mode manipulates groups of bodies and lines; it duplicates, moves, or deletes the entire group as

a single entity.

SPACPD,
+, <ALT>, and -

«D

These work more or less as described under point mode in Section 2.4, but are
used to draw a box around a group of bodies and points. The two important
differences are that you must use “-" to close the box, and that the lines of the
box will continue to flash after you've used “+” to make them permanent. Then
the box will vanish and the bodies and points become members of a set, which
you can manipulate as a single entity, attaching the cursor to it, moving it,

-deleting it, and so on. The program will flag the bodies and points with large

flashing “B” and “P” characters to indicate they’re members, and will place a
flashing “S” at the center of the set. When you attach the cursor, all the flashing
letters vanish, and when you detach it, they reappear.

Release all members of the set which is closest to the cursor. The points and
bodies still exist, but don’t belong to the set.

Delete all members of the set which is closest to the cursor. The points and
bodies no longer exist, so various lines and text associated with them must
vanish too.

22 2 How to use D (the Graphics Editor)

2.6 Commands for Edit Mode

Edit mode creates body templates, which you typically put into libraries and use to create bodies for
drawings. This mode differs from point, body, or set mode in certain basic ways. First, the drawing
temporarily hides in the background while you create or modify the template. Second, you must type
a specific command to leave edit mode before switching to one of the other modes.

Edit mode performs three functions: drawing vectors to represent the body, defining pins on the
body, and labelling the body and pins with text. For each function, there is a particular submode:
insert submode, grab-body submode, pin submode, and text/property submode.

When inside edit mode but not inside any of these su‘bmodes, the program will place a star at the
point on the body closest to the cursor. Resist the temptation to treat this like the star that appears:
in normal point mode; to draw the body you must use insert submode.

«SE Enter edit mode. “MODE=E" will appear at the top of the screen. The program
will prompt for the name of the body template to be edited and, if that template
doesn’t already exist, will create a new one.

While edit mode creates and modifies body templates, it does not delete them.
Instead, the command “X DELTYP”, which may be used only outside of edit
mode, will ask you for a body name and then delete that body’s template along
with all occurrences of that body in your drawing.

«E Leave edit mode and return to body mode. (You may safely do this even from
within one of the submodes of edit mode.) Note that if bodies derived from the
template just edited exist in the drawing, the changes are reflected in the
drawing immediately. In particular, deleting pins can cause havoc because lines
formerly attached to them will vanish.

oI Enter insert submode within edit mode so as to draw vectors to make the body
template. “MODE=EI" will appear at the top of the screen. Within this mode the
commands resemble those used in point mode to draw lines; they are just similar
enough to instill a false sense of confidence.

When you enter this submode, the cursor is resting at the point which will be the
“arigin” for the body—that is, the point the cursor will move to when you attach
it to the body, and the point upon which the program will superimpose the
flashing "B* when appropriate. By convention, we draw a body so its origin is at
the upper ieft, though nothing in the program requires this.

From the origin, proceed to draw visible and invisible vectors forming a single
path around the body. Provided it is not invisible, the vector you are currently
working with will appear a bit brighter than the others.

These vectors must form a single path. To make three lines meet at a point, for

26 Commands for Edit Mode

23

example, you must draw through the point, then use an invisible vector to
backtrack to it, and finaily start a new visible vector headed outward from the
point. Trying to attach the cursor to the intersection of two vectors and then
moving the cursor to. start a new vector will either overlay two visible vectors or
move the intersection point without creating a new vector at all

Here are the commands allowed within insert .submode:

olt

ol=

<RUBOUT>

<SPACE>

End the pending vector (if any) and start a visible vector that
will follow the cursor wherever it goes.

End the pending vector (if any) and start an invisible vector.
that will follow the cursor wherever it goes.

End the pending vector (if any) and move the cursor back
along the path of vectors, toward the origin. Each time you
press <RUBOUT>, the cursor travels the length of the
preceding vector and lands at its starting point. The vectors
on either side of that starting point appear extra bright
(unless they’re invisible), and if you move the cursor using the
up/down/right/left keys, the vectors will stretch to follow it.

When <RUBOUT> causes the cursor to reach the origin, it
stops there, and further use of <KRUBOUT> has no effect.

Just like <RUBOUT>, but moves the cursor forward along
the path of vectors, away from the origin. Its a good idea to
use <RUBOUT> and <SPACE> to travel the path, checking
for any duplicate or unwanted vectors, before leaving edit
mode. If it takes two <RUBOUT>s to pass a.certain point, for
example, then you have inadvertently placed a zero length
vector there, and should delete it.

Delete a vector.

If the cursor lies at a point on the path with one vector
preceding it and another following it, this command deletes
the preceding vector and stretches the following one to take its
place, maintaining an unbroken path.

If the cursor lies at the last point on the path, this command
deletes the vector preceding it and makes the previous point
into the last point on the path.

If the cursor les at the origin, then this command deletes the

2 How to use D (the Graphics Editor)

first vector on the path and moves the cursor to the next
point. This becomes the first point on the path, but doesn’t
change the origin—though <RUBOUT> will not move the
cursor back to the origin, the origin is still there.

AL End the pending vector (if any), leave insert mode, and return
to normal edit mode.

Grab a copy of an existing body template and add it at the cursor position to the

body template being edited. The program will ask for that body’s name.

“MODE=EG"” will appear at the top of the screen. For example, this command

allows you to define a diamond or “bubble” body template and grab that body,
whenever necessary to show that a pin expects its signal to assert low.

The new body arrives with the cursor attached, and you can move it by moving
the cursor. The following commands are valid within this submode:

<SPACE> Detach the cursor from the new body, incorporate it into the
body template being edited, and return to normal edit mode.
Once detached, the cursor cannot be reattached; attempting to
do so will put you into insert submode, dealing with its path
of vectors.

The reason will become clear if you enter insert submode and
use <SPACE> and <RUBOUT> to travel the path; the
program has aiready converted the new body into a series of
vectors inside the path.

<ALT> Delete the body just grabbed and return to normal edit mode.
«O Rotate the body just grabbed, exactly as yﬁu would in body
mode.

Enter pin submode within edit mode. “MODE=EP” will appear at the top of the
screen. Within this submode, use the cursor as you would within ordinary point
mode to attach to pins, move them around, delete them, and so on. Important
commands within this mode are: -

«P) Create a pin at the cursor position. The program will ask for
a pinname (actually, this “name” must begin with a number.)
To create an invisible duplicate of a pin for bus-through
purposes, end the name with “/B”: thus, a pin called 1" and a
pin called “1/B” are electrically identical though physically
they appear in two separate places on the body.

26 Commands for Edit Mode 25

X DEFPIN

X -DEFPIN

(You can actually create pins outside of pin submode, but it’s
a disorderly sort of practice since you must then get into pin
submode to do anything else with them.)

«D Delete the pin closest to the cursor.
ALT> Leave pin submode and return to normal edit mode.

Display the pinname next to each pin, within edit mode and in the normal
drawing modes. It's handy to turn this feature on while working with pins within
edit mode, but one customarily turns it off in the normal drawing.

Don’t display the pinname next to each pin.

Enter text/property submode within edit mode. “MODE=ET"” will appear at the
top of the screen. Here you can label the body with text, create properties for the
body or for pins, attach the cursor to text or properties, move them around with
the cursor, delete them, alter them, and so on. Important commands within this
submode are:

«T Create text at the cursor position. Such text merely labels the
body, as a sort of comment that has no more significance to
SCALD than does the shape of the body itself.

oY Create or replace the text of a property name/text pair just as
in normal drawing modes.
AY Replace the text for an existing property name/text pair just

as in normal drawing modes.

You can actually use «T, oY, and 8Y in edit mode without
getting into text/property submode, but that’s a disorderly sort
of practice since you must then get into the submode to do
anything else with the text you've created.

«D Delete the text or property name/text pair closest to the
[91:4 ' Kill the text or property closest to the cursor. If it's simple

text, this deletes it If it's a property name/text pair, this
doesn't delete it, but simply hides the text so it doesn’t appear
when you use the body in a drawing. This is handy because it
allows you to label pins as SCALD requires while avoiding
clutter on simple bodies, such as gates, where the purpose of
each pin is understood by convention.

ALT>

2 How to use D (the Graphics Editor)

If you use aK by mistake on a property, the only way to undo
the damage is to delete the property in question and create it
anew. :

Use Alter submode to edit the property or text closest to the
cursor. “MODE=EA” will appear at the top of the screen.

Leave text/property submode and return to normal edit mode.

2.7 Using Alter Submode to Edit Text 27

27 Using Alter Submode to Edit Text

Alter submode is a text editor into which you may momentarily descend from within a drawing
mode or submode. When you leave aiter submode, you return to whatever you were doing before. If,
for example, you were in the text/property submode of body mode when you decided to aiter
something, you'll be back in text/property submode when you return.

Invoking alter submode from point mode edits the text associated with the point closest to the
cursor, or creates text if that point has none.

Invoking alter submode from a text/property submode edits the text closest to the cursor. If that text
is part of a property name/text pair, then alter mode affords you the side benefit of finding out the
property name associated with that text, whlch is otherwise invisible.

Within alter submode, the program displays the text with the “o” character indicating any point at
which the text breaks into muitiple lines. Underneath the text, an L-shaped line serves as a pointer.

In the list of commands that follows, <-> indicates that placing “-" before the command reverses its
operation—backward instead of forward or forward instead of backward. <n> indicates that placing
a digit in front of the command causes it to repeat itseif the specified number of times.

«SA Enter alter submode.
<ALT> _ Leave alter submode.
<->n><SPACE> Move the pointer forward one character.

<->a<RUBOUT> '
Move the pointer backward one character.

<><nd8<char> Move the pointer forward past the next occurrence of character <char>. If
<char> doesn’t occur, leave the pointer at the end of the text. With <->, the
pointer will move backward and come to rest before the character, or at the
beginning of the text if the character doesn’t occur.

<<m>D Delete the character to the right of the pointer.

<>Xn>K<char> Delete characters to the right of the pointer up to and including the next
occurrence of <char>. If <char> doesn’t occur, leave the pointer at the end of the
text without deleting anything.
With <->, the program will delete characters to the left of the pointer through
the next occurrence of the character. If the character doesn’t occur, the pointer

will land at the beginning of the text without deleting anything.

1 Insert text at the pointer position. The program will prompt you by asking

28 2 How to use D (the Graphics Editor)
“INSERT TEXTe«". Type the characters you want to insert and press
<RETURNDb. (To put a carriage return inside the text, use the “o” character.)

<R Replace characters. Equivalent to a “<-><n>D” command followed by an “T”
command.

2.8 Defining and Using Editor Macros 29

2.8 Defining and Using Editor Macros

To speed repetitive tasks, you can collect together into an editor macro any set of commands you
could have performed individually. Such a macro can even define or use another macro. Note that
editor macros, which are convenient ways to reduce the amount you must type, are quite different
from SCALD macros, which are drawings representing functional blocks of circuitry.

Macros are not associated with particular drawings, but rather with the session at the editor.
Clearing the workspace doesn't delete them, and saving a drawing doesn’t necessarily save them
unless the X SMACRO"” command described later is in effect.

The macro commands actually need oniy begin with “«” when used within a macro definition;
outside, the “«” is optional

Note that after you type the initial “¢” for any of the following commands, the program will print
“<” to prompt for the rest of the command. The “x; C* command will also print “TYPE MACRO
NAME?" to prompt for the <id>.

As you enter and exit macros, the number to the right of “LEVEL=" at the top of your screen will
keep track of their nesting. If LEVEL is 0, no macros are pending.

P Define a temporary, unnamed macro. After you type “x P”, each command you
type will execute within the drawing and also become part of the macro. This
will continue until you use “x; S” to abort the macro or “x; R” to call it repeatedly.
After executing the proper number of times, the macro vanishes.

S Abort all macros currently pending. This is the command to use when you're
inside one or more levels of macros and realize you've made a mistake or lost
track of the situation.

o R<num> Stop adding commands to the current macro, end it, and execute it the number
of times specified by <num>. That number should include the first execution,
which for “« P* or “x; M™ has already taken place within the drawing. For
example, “a; R4” will execute the macro three additional times.

o M<id> Like “a; P”, this begins by executing commands as it collects them into a macro
and ends by executing the entire macro enough addirional times to satisfy the
closing “c; R® command. But it also gives the macro the name <id> so you can
call it again with “«; C”.

The name "INIT” gives a macro two special properties that make it useful for
initializing various aspects of the program. First, the program will save this
macro in the “<name>DRW™ file along with the drawing whether or not the "X
SMACRO" command is in effect. Second, it will execute the macro automatically
when you bring the file into your workspace.

30

oy Cdd>

o; AL D

X SMACRO

X -SMACRO

X DMACRO

X MACRO

2 How to use D (the Graphics Editor)

If, for example, you want to set the scale to “x17” whenever you begin a drawing
but don’t want to have to remember to use the “«” command, create a macro
called INIT containing that command.

Call the macro named <id> and execute it the number of times specifed by the
“x; R” command used to close the macro when you originally defined it.

This command puts a counter inside a macro. It is valid anywhere inside a
macro definition——even partway through a string of characters. Every time the
macro executes, the “x; A” expression replaces itself with the text representing a
number, starting with the number <s> and incrementing by <i>.

Associated with each macro is a flag telling the program whether that macro
should be saved in the drawing file whenever you perform a “aW” or “X EW”
command.

When you bring in a drawing file that contains a macro, or when you use such a
drawing file as a library, you acquire the macro and retain it, even if you clear
your workspace, until you leave the program or use the “X DMACRO”
command to get rid of it.

This command asks you for a macro name and sets the flag for that particular
macro. ‘

Clears the flag for a particular macro, thus telling the program not to save the
macro in the drawing file when you use °X EW” or “aW”.

Deletes a macro from the work area. (The program will prompt for the name of
the macro.)

Lists all macros associated with this editing session.

31

3 A gwded tour of D

This section proceeds step by step through an entire session with the graphics editor, showing how
to create a typical drawing. It makes a number of assumptions which—if true—will make it much
easier to learn to use the program:

We assume you're using a Stanford keyboitd, whose distinguishing features are shift keys
labeiled "TOP”, “CONTROL”, and "META”. If not, consult a friendly local wizard, or

refer to the SUDS manual mentioned in Section 8, for the conversion procedure.

We assume you know, or can find out from a friendly local wizard, how to start the
program running at your installation.

We assume someone has aiready described and placed in libraries called “SIMLB” and
“STDLB” the bodies your drawing will need, and that they've given you a blank drawing
called “BLANK? that initializes the appropriate options for you.

We ask you to assume the complete drawing was revealed to you in some mysterious flash
of insight, so we can concentrate on the graphics editor, and postpone discussion of the
SCALD language.

Before you start, you should read the first few pages of the preceding chapter—Section 2.1 shouid be

plenty.

In the examples that follow, we use italic type for the characters you produce and normal type for
the characters the computer produces. We use “x” and “8" as explained in Section 2.1, and use
<ALT> to represent the key labelled "ALT" or "ALTMODE”; <SPACE> to represent the space bar;
and <RETURNS> to represent the key marked "RETURN™. .

82 3 A guided tour of D

3.1 Running the program

Get the program running by whatever means, fair or foul, your local wizards have taught you. You
should see something similar to Figure 3-1. The program devotes most of the screen, below the
*MODE=" line, to your drawing. On the bottom quarter of the screen it superimposes the
character-by—character dialog between the program and the keyboard. Soon you’ll probably find
yourself focusing on the drawing rather than the characters you type, since the drawing is a lot more
fascinating, and it will seem as if your fingers control the image directly. When the keys don’t seem
to be working, however, you can often tell from the character-by-character dialog what's wrong.

MOOE=" __,| moDE-B SCALE=16 LEVEL=@ =

LINE

CURSOR \

X
CHARACTER-BY-
CHARACTER —| #
. INTERACTION
Figure 3-1

An empty screen

The top line shows you're in body mode ("MODE=B") with scale set to 16, no macros pending
("LEVEL=0"), and no file brought into your workspace("3="). Throughout the rest of the chapter,
we’ll show only the drawing portion of the screen, leaving the top line implicit.

To get accustomed to moving the cursor, place the four fingers of your right hand on the keys
marked T”, “T°, 4", and “/* above the RETURN key. Press with your index finger and you should
see the cursor move left. The long finger should make the cursor move right. The next finger
should move the cursor up, and the little finger should move it down.

Experiment with holding down the shift keys—CONTROL, META, and TOP—first by themselves
and then in combination—to make the cursor move further with each keystroke. With CONTROL
alone, it should move twice as far as it does without any shift key; with META, four times as far;
with TOP, 16 times as far. With CONTROL, META, and TOP together, it should whiz across
the screen 128 times as far as it does with none of the shift keys. .

Practice moving the cursor around till you feel bored or comfortable with it Soon, you will

$.1 Running the program 33

automatically associate the four fingers with the four directions, without thinking about the keys
they’re pressing.

i« 3 A guided tour of D

3.2 Initializing the workspace

Before you can start drawing, you need to initialize certain options and to gather bodies from the
libraries.)

At our instailation, we keep around a drawing called “BLANK?” whose function is to bring in bodies
from a library and to call an INIT macro which performs without toil or strain on your part the
initializations covered in Section 2.2.2. Remember that, as explained in Section 2.1, “8” means you
should hold down the META key while you press the succeeding character. Thus, the command for
bringing in a new drawing is written “AI” and stands for “META I™:

=81 FILENAME? BLANK

READING BLANK.DRW MK2,S11]
LIBRARY STOLB.DRU [MK2,S11]

PLOT

INIT

LEAVING MACRO LEVEL 1

The reply from the program (which may vary slightly from that shown here indicates that the it
found the file you wanted (BLANK[MK2S1]), brought in one of the libraries you’ll need bodies
from (STDLB{MK251]), and carried in with it a couple of macros. Among the macros was INIT,
which is unique in that it executes as it enters your workspace, performing the initializations you
need.

To list the bodies you received use of through that deal, use the “aL” (remember—~"CONTROL L")
command:

el
STDLB.DRUW (MK2, 511
800 3u0 SW0 R8MERGED SMERGEQD

{(and so0 on...)

You'll need bodies from a second library, too, so bring the drawing SIMLB into your workspace as a
library:

=X

WELL?GETLIB

GETLIB)

LIBRARY FILENAME?SI/MLB
LIBRARY SIMLB.DRW[MK2,S1]

INIT

Now if you try *«L” again, you'll see a lot more bodies:

2ol

32 Initializing the workspace 35

SIMLB.DRUW K2, S11

2AND0 2 AND S ORO 40ORO 30RO SOR 4 OR
{(and 80 ‘on...)

STOLB.DRW (MK2,S1]

800 30 SW0 R8MERGED 8MERGED

(and so on...)

Before you draw anything, it's not a bad idea to write your workspace into a file, just to get the file
established. Since the “I=" in the header makes it clear that the program has no idea what you
want to call the file, you'll have to tell it. For this example, we want to call the file “10016™:

= WFILENAME?10016
WRITING 18@16.0RW (MK2,51]

Notice that the top line of the screen now says “3=10016[MK25S1]". The program now remembers
which file it is dealing with, so from now on you can use a shortcut to save your workspace into that
file without your having to retype the filename:

=X

WELL?EWRITE

EWRITE

FILENAME?10016

WRITING 18016.DRU MK2,S1]

We won't mention it, but it’s a good idea to use the command periodically—just after yoi.l’ve done
something particularly difficult, or just before you leave the keyboard to answer the telephone or a
call from nature—so that even if your computer system crashes, you won't lose all of your work.

) 3 A guided tour of D

qo.0.0.6] # - ® G Rs
s m

Aud e

Tonare ¥ o> &

2.4.3.4.5.0

x
N

IORI.E,
w04 3.8
- " - oRAT=e.®
e Qo ox r e PETER
. 1 o s ra>
- wnR2S, [- o
D <06 ®
L g
x om .
ra> N
x ® J TN
Figure 3-2

Our goal is a drawing like this

This seems a good time to take a look at Figure 3-2, which shows the drawing we will practice upon.
It is the definition of an ECL 10016 IC in terms of the primitive bodies that the SCALD logic
simulator understands. We’ll split the work up systematically: first position all the bodies, then
draw lines between them, and finally add text.

33 Positioning Bodies 37

3.3 Positioning Bodies
To position bodies in your drawing, you must get into body mode, and to do that you should type
t V¥ Y.

(Of course, this isn’t necessary this time, because you were already in body mode by virtue of having
just started to run the program, but the command will prove useful in the future.)

Whereas the commands we’'ve shown you so far apply more or less anywhere in the program, you'd
better assume that the ones that follow will live up to our promises for them only within the proper
mode. For example, in body mode the “xP” command we're about to introduce places bodies, but it
has an entirely different effect in point mode.

Let’s start with the body called “MIN PULSE WIDTH" at the top of the drawing. Each body has a
short location parameter below its name; in this case, it’s “P1”, s0 we can refer to the body as MIN
PULSE WIDTH at P! to distinguish it from the copy of MIN PULSE WIDTH at P2 on the right
side of the drawing. To place a copy of a body at the cursor, type:

*PTYPE BOOY NAME
MIN PULSE WIDTH
SEARCHING FCR MIN PULSE WIOTH IN SIMLB.DRW (MK2,S1]

and presto, you'll see the body before you, with the cursor at its top left corner. The cursor happens
to be attached to the body—that’s always the case when you first place 2 body—so that wherever you
move the cursor, the body will follow. Try it.

MIN PULSE WIDTH
I X

HIGH=Q. 23
LOW «3.9

Figure 3-3
Your first body, with cursor detached

To detach the cursor, press <SPACE>. You'll immediately see a big flashing “B” atop the body
(Figure 3-3). Now ry moving the cursor, and observe that the body doesn't follow. There are two
ways to reattach the cursor. “@M™ moves the cursor to the body and reattaches it, while “sGM™ moves
the body to the cursor and reattaches it Once reattached, you can once again move the body by
moving the cursor, and then detach the cursor by pressing <SPACE>.

8 8 A guided tour of D

This sort of thing works throughout body mode. Once you have more than one body on the screen,
the program operates on the body closest to the cursor; it alone will have the flashing "B”.
Experiment with moving this body until you feel jaded, then put the body back near the center of
the screen and detach the cursor by pressing pressing <SPACE>, but leave the cursor in position on-
the body.

Let’s place the body SETUP HOLD CHK in location S2 next. Move the cursor to the right by one
CONTROL-TOP. (That is, while holding down both CONTROL and TOP, make one stroke
with your long finger to move the cursor to the right) Now place the body, whose name is, as far as
the program’s concerned, simply “SETUP HOLD"™:

=ocPTYPE BODY NAME
SETUP HOLD
SEARCHING FOR SETUP HOLD IN SIMLB.DRUW MK2,S1]

Now detach the cursor from the body by pressing <SPACE>.

Why did we emphasize that you should move the cursor by one CONTROL-TOP? Obviously it
doesn’t make any difference to the final circuit where you place a body. Conventionally, however, it’s
considered good drawing style to place bodies so that the lines connected to them lie a uniform
distance apart. And it’s considered better to use a few large increments than several assorted small
ones.

There are two reasons for this. First, uniform spacing makes it easier to apply editor macros to
reduce repetitive typing, as you'll see later in the chapter. Second, it just plain takes fewer keystrokes
to get from one body or line to another when they're CONTROL-TOP apart rather than a TOP
plus a META pilus a CONTROL apart.

Unfortunately, this empyrean goal of style is tough for a beginner to achieve, particularly because
one can’t always tell precisely where on a body the program will want to attach a particular line. Just
keep the goal in mind as you position the bodies, and comfort yourself with the knowledge that you
can always move things around later to repair any irregularities you cause now.

Next, place a REG RS body at position R1, right under the previous body. To do this, first type a
space to detach the cursor from the previous body, then move it down by a META plus a TOP,
(first hold down META and move the body, then hold down TOP and move it agam) and then
place the new body:

2« PTYPE BODY NAME
REG RS
SEARCHING FOR REG RS IN SIMLB.DRU

Because this body is narrower than the previous one, it's not centered beneath it (Figure 3-4), so
move it to the right by one CONTROL before you type a space to detach the cursor (Figure 3-5).

33 Positioning Bodies

MIN PULSE WIDTH
I +X

HIGH=2.9;
LOW =2.9

Figure 3-4

Third body off center

MIN PULSE WIDTH
1 X

HIGH=0. 2;
LOW =2.8

Figure 3-5

SETUP HOLD CHK
+X

-

SETIUP=0.9;
HOLD =2.9

CcK

xXB
R REG RS
S +X

I DELAY= T

0.9,0.9,0.0

- CK
AN

Third body centered and cursor detached

39

Moving the paper—Before you proceed to place the rest of the bodies in your drawing, there are a

40 3 A guided tour of D

few loose ends to clear up.

Sooner or later, for example, you're going to run out of room on the screen. Fortunately, the “paper”
you're drawing on is much larger than the screen; at any time, you effectively look through the.
screen at a small area of it. To move the paper to the right, press the “5” key (you'll have to use
TOP to produce this character). Do this repeatedly until the bodies you've drawn disappear. Keep
doing it, and pretty soon a vertical line will emerge from the left side of your screen, representing the
left edge of the paper.

Now press the “<" key repeatedly until your bodies come back onto the screen. You can use “t” and
“4® similarly to move the drawing up and down.

You aiready know how to move a body around if you accidentally put it in the wrong place—simply
bring the cursor close to it, use the “aM™ or “«8M” command to attach the cursor, and move the
body by moving the cursor. You also need o know how to get rid of a body entirely if you need to.
First move the cursor so it's closer to that body than to any other (the big flashing B will appear
atop the potential victim) and then type “aD”.

Now go ahead and position the rest of the bodies. Some of them are pretty obvious—the adder is
called “ADDER?”, the multiplexer is called “2 MUX?” and the gate is called “4¢ OR"—but others are a
little tricky. The parameter list at the lower right corner needs a body called “PAR”, and the two
Y-shaped gizmos at the lower left which look like lines are actuaily bodies called “W2MERGE".
When you finish placing bodies, your drawing should look something like Figure 3-6.

3.3 Paositioning Bodies

s wow e a0 ox
4 = ot
OO 1
4 0.8 e
‘ @D 0.9
o
A - 6.0
E’|> "t e
T o
|8
L w08
" - ORAV-S. ¢
s 1D oK ‘
L
T 4 R
> WL, 07 g : 3
4 HAD o8
x
Figure 3-6

All the bodies

41

12 8 A guided tour of D
3.4 Drawing lines

In the graphics editor, as in high school geometry, any two points define a line, and therefore you
must get into point mode to draw lines:

% 8P

At the top of the screen, you'll now see “MODE=P”, and the flashing “B” on the nearest body will
vanish. Instead, you'll see a flashing letter “P” or string of letters beginning with “P” atop the nearest
point. Try moving the cursor around; you'll see letters hop from one point to another.

Every pin on a body provides a point you may connect to, and you will create points implicitly as
you draw lines between them. Whereas geometry tells us that points are everywhere—lines consist of
an infinite number of them side by side, and planes consist of giant smorgasbords of points spread
out endlessly—the graphics editor takes a more manageable view: aside from the points provided
free with bodies for the purpose of attaching lines, points exist only where you explicitly or
implicitly create them. Like geometry, however, it will let you put two points in the same spot,
usually to your own distress.

You’re about to learn three different ways to create a line: drawing from one existing point to
another, drawing from an existing point into midair, and drawing from an existing point to the
closest point on an existing line. Those three techniques will cover every situation you'll encounter in
this drawing, and in just about any other.

Point to point-First, let's try a line from pin “T” on the multiplexer at M1 to pin “I" on the
“SETUP HOLD CHK” body at S2.

’!

the cursor close enough to pin “T” on body M1 so you see a big “PA” flashing

(Figure 3:7).

3.4 Drawing lines 43

]
D RALSE MEDTN| TP NALD OK
1 3 t Lo o
HDOLS.07 oehe. 8 4
U «0.8 LM -0.0 W O
D 8.0

2 M

o v
MOVE CURSOR CLOSE TO TYPE + TO START LINES. TYPE + TO SOLIDIFY FIRST
STARTING POINT OF LINE MOVE CURSOR SO BEND IS LINE.

IN RIGHT PLACE

4 5
vw maag wED™ - a0 ox rrBe masE wTD™M
T o o T -x
D=0, 0 ==X I, 8
LOM «0.0 ' NP, & [T R R
: WAD «0.9
1 x
1
]
1]
1}
MOVE CURSOR SO SECOND AFTER MAKING SURE THE
BEND IS IN THE CURSOR IS CLOSE ENOUGH
RIGHT PLACE ‘ SO THE STAR IS ATOP THE

END POINT, PRESS -

Figure 3-7
Drawing a line from point to point

44 3 A guided tour of D

Now press “+” and you'll see a flashing line or lines from the cursor to pin "T”. Try moving the
cursor around; the lines will stretch and move to follow it wherever it goes. If the cursor happens to
be directly in line with pin “T™ vertically or horizontally, you'll see a single line, but otherwise the
- program draws two lines intersecting at a right angle, so as to avoid having to draw a sloping line
between the pin and the cursor.

With the cursor positioned so you see two flashing lines, try pressing <SPACE>. Every time you do
8o, the lines will trade places. The program tries to guess whether the vertical or horizontal should
come first—it knows, for example, that lines customarily attach to bodies perpendicularly—but
sometimes it isn’t too bright, and you must then use <SPACE> to help it along.

Now position the cursor so that the first bend in the line is where you want it, and type *+”. The
flashing line attached to pin “T" will stop flashing; you’ve just made it a fixed, permanent line and
implicitly created a point at the end where it intersects the other line.

Now try moving the cursor and you'll see a second right angle, with an additional flashing line
helping to follow the cursor wherever it goes. In general, every time you press “a+” in this
line-drawing submode within point mode, you solidify the oldest flashing line and make it possible
to add a new flashing line at the cursor.

While you'’re in this mode, you'll see a star flashing atop the point which is closest to the cursor but
also eligible to have a line attached to it. Move the cursor close enough to pin “I” so that the star
appears on that pin, type a space if necessary to put the second bend in the line roughly where you
want it, and type “a-" (or just “-"). In one fell swoop, the program will extend the flashing lines to
reach the star, attach them to that point, make them permanent, and free the cursor to move without
dragging any lines around behind it.

And that, in essence, is the technique for drawing a line between two existing points. Move the
cursor close to one point and type “x+” to get a pair of stretchable, flashing lines. Move the cursor
around, and whenever you need a new flashing line, type “x+” to solidify the oldest flasher and give
you an additional one. When you get the last pair of flashing lines you need, make sure the cursor is
close enough to the destination point that the star appears atop it, and type “a-" to finish the job.

The line from pin “CK” on the body at S2 to the unnamed pin at the top of the body at R1 is even
easier, since it has no bends. Move the cursor close to pin “CK” so that “PA” flashes atop the pin.
Press “a+” to start the flashing lines. Move the cursor close enough to the unnamed pin that the star
appears atop it (you’re probably so close that the star is aiready there) and press “x-" to finish it off.

Correcting mistakes in lines-To get rid of a line, you simply'delete the points that define it.
Fortunately, the program is intelligent about this. When you delete an ordinary point in midair, it
vanishes together with all the lines attached to it, but when you delete a point that represents a pin
on a body, only the line vanishes; the pin remains intact for future use.

If you discover a mistake while jou're still drawing the line, press <ALT> to escape. The flashing
lines will vanish, leaving the cursor free. With the cursor free, you simply move it close enough to

3.4 Drawing lines 45

the point you want to zap so that large flashing letters appear over that point, and then type “aD”.

To illustrate this, let’s deliberately draw a line from pin “F” on the adder to pin *0” (rather than pin
“1") on the multiplexer. Move the cursor close to pin “F” so “PA” flashes above it, and type “a+" to
get stretchable lines. When you have the first bend where you want it, type “a+” again. Move the
cursor close enough to pin “0” that the star appears atop the pin, and type “«-" to finish off the line.

Now that you've successfully committed a bilunder, how do you undo it? Notice that you want to
wipe out both the horizontal line attached to pin “0” and the vertical line, because the latter is longer
than it should be. The easiest way to blow both of them away at once is to delete their point of
intersection. So move the cursor close enough to that point so that large letters “PL” flash above it
(Figure 3-8) and then type “«D”. Both lines (and the point at which they intersect) will vanish.

$ A guided tour of D

X
'
A « 8.8 R « 6.0 ORAr « 6.8 l
'4‘v Iﬂ.ﬂ
MOVE THE CURSOR CLOSE TYPE CONTROL D TO MOVE THE CURSOR CLOSE
TO THE INTERSECTION GET RID OF THEM TO THE REMARINING LINE
OF THE TWO LINES
YOU WANT TO DELETE
4 5
_— - -
gsmﬁ m T UOQM-TO_CMTE
BEGIN A NEW PRIR THE JOB..
OF LINES...
Figure 3-8

Correcting an erroneous line

3.4 Drawing lines 47

To finish repairing the damage, proceed as you would when drawing from body to body, but use
the end of the line that's dangling in midair as the starting point. Move the cursor close to it so
“PL" appears over the point, type “x+" to start flashing lines, type a space if necessary to get the
bend to go in the proper direction, bring the cursor close enough to the “1” pin to place the star over
that pin, and type “a-" to finish. .

Just for practice, draw the two remaining point-to-point lines: the line from the adder to the upper
MERGE body and the line from the body at S1 to the other MERGE body. Each is easy compared
with the lines we just finished, because neither has any bends; in fact, the instant you type *a+” to
start the line, the star will probably appear on the destination point so you can type “x-" to finish it.
Don't try to draw lines from the register to the body at P1, or to the body at P2; we'll use other
techniques for those. When you're finished, the drawing shouid look like Figure 3-9.

EDeD. 03
i -850
" w:.b“ * L1
>__, i g aom
WIS, & L
L oD 4.8
(-3
Figure 3-9

After finishing the point-to-point lines

Point-to-midair lines-When a line originates at an existing point but terminates in midair, you
must use a second, slightly different technique to draw it. To illustrate, let’s draw the line that begins
at pin “S” on the multiplexer at M1 and ends with the label “-PE[0.5]" at the left edge of the
drawing. :

(You may need to use the “»” key to shift the entire paper to the right so you have room to work.)

48 ‘ $ A guided tour of D

The first part of the procedure will look familiar. Move the cursor close enough to pin “S” so that
the letters “PA” flash atop it (Figure 3-10). Type “x+" to get a pair of flashing lines, and move the
cursor down until the bend is in the proper place. Then move the cursor to the left until the
horizontal line is the length you want.

1 2 3
x -4 D
MOVE CLRSOR SO TYPE + TO TYPE + TO
PR FLASHES GET FLASHING SOLIDIFY FIRST
ABOVE PIN... LINES... LINE...
4 5 6

X
TYPE « TO NOW, TO GET
SOLIDIFY SECOND RID OF NeEW .. .PRESS ¢<ALT>
LINE... FLASHING LINES... 4
Figure 3-10

Drawing from a point to midair

Now type “x+” once to solidify the vertical line, and again to solidify the horizontal one. Actually,
you've just created two new stretchable, flashing lines from the left endpoint to the cursor. But since
the cursor is atop the endpoint, you don't see them. Move the cursor a bit (try it) and there they are.

To get rid of those unwanted flashing lines, simply press <ALT>, rub.bing them out and freeing the
cursor. .

Now you know how to create a point-to-midair line. Note that you've implicitly created two points:
one where the two segments of the line intersect, and another at the endpoint in midair. That agrees
with what we said earlier: once you're inside this line-drawing submode, every time you use “x+" you

3.4 Drawing lines 49

solidify a line and create a point at the end of it, too. This has two implications. First, if you ever
decide to delete the segment that ends in midair, you must make sure to delete the midair endpoint.
You can get the line to vanish by deleting its other endpoint, but that will leave an unused (and
invisible) point in midair.

Second, you must not use <ALT> in place of "x-" to finish up a point-to-point (body-uo—body)vline
even if you have the cursor t!irectly atop the destination point, becase it will create a second point
atop the existing destination point.

Just for practice, draw the rest of the point-to-midair lines: the two attached to pins “T” and "R” of
the register at R1, the one atached to pin “0” of the multiplexer at M1, the one attached to pin “A”
of the adder, the four attached to the merge bodies, the one attached to pin “CK” of the body at S1,
the one to the right of gate G1, and the one from pin “I” of the body at P2 to the endpoint labelled
*CK /P". That’s an impressive enough list, so for now don’t bother to draw any of the four lines to
the left of gate G1. When you'’re finished, the drawing should look like Figure 3-11.

-
" LI o e v o
H x
ees.0 1
LOM 2.0 nae.e:
HAD 0.8
o
1
i
™
n v ns
s
Tooare ¥
0.0.0.0.0.0
» %
* anx
mar - a0 w

ORAYe
| 88.080.9
L

r =
x
|
.
*

g

Figure 3-11
Drawing with point-to-midair lines finished

Point-to-line lines--The third and last way to draw a line is to go from an existing point to the
closest spot on an existing line, and to connect to the line by creating a new point there. (Thus, this
is not the way to connect a new line to a bend on an existing line; because a bend always provides
an existing point, you would use the point-to-point technique for that.)

50 $ A guided tour of D

To illustrate, let’s draw a line from pin “I" of the body at P1 to the horizontal line below it. As you
may suspect, the opening moves will be the same as those you've used for the last two kinds of lines;
only the endgame is different.

Move the cursor close encugh to pin “I" so that “PA” flashes above the point, and type “x+” to get a
pair of stretchable, flashing lines. Move the cursor and, if necessary, type a space to put the bend"
where you want it, and then move the cursor down close to the place on the existing line where
you'd like to connect the new lines. Type “8A”. The program will put a star on the line where it
plans to make the new connection (Figure 3-12) and ask you whether that’s the right place:

®B8ATHIS ONE?
Answer “Y" and the program will complete the connection; answer “N” and the program will decide

not to connect the lines, giving you a chance to move the cursor closer to the precise spot where
you'd like the connection befare you try again.

M ALIE WD
:'"" ' m:-o:
' i 8.8
‘ X
+—
Figure $-12

Connecting a line to an existing line

For practice, draw the two remaining point-to-line lines: one from the “CK" pin of the register at
R1 to the line below it, and the other from the °I" pin of that register to the line to the left of it.
When you're finished, the drawing should look like Figure 3-13.

3.4 Drawing lines

! e
00.0.00.0
o

N

Figure 3-18
Drawing with (almost) all lines

»

51

52 3 A guided tour of D

3.5 Putting text on your drawing

The text you'll add to your drawings belongs to either of two categories: signal names and body

parameters.

Signal names~Before you can add signal names, the program must be in point mode. (It is probably
already in point mode if you've been following these instructions, but if not, type “x3P".)

Typically, you put text on a line near a point where the line ends in midair. To illustrate, let’s label
the line at the lower left corner of the drawing. First, move the cursor close enough to the midair
point that “PL" flashes atop the point. Type:

*ATTEXT?
CK P

And that’s all there is to it

If you make a mistake, simply repeat the command and retype the text; the new version will replace
the oid.

For practice, move the cursor upward and label the line above that one:

AT TEXT?
CE

and move the cursor upward once again to label the next line, too:

sBTTEXT?
PE

This works fine so long as the signal names are short and you are a fairly good typist. When both
of those conditions cease to be true and the probability of making an error every time you retype the
signal name to correct an error therefore approaches unity, it’s lucky that the graphics editor
provides for you a simple text editor.

This text editor is called aiter submode. To 1Ilustrate its use, let’s deliberately put the wrong text on
the fourth line up from the lower left corner:

*ATTEXT? .
NOW IS THE TIME

Now type “aBA™ to enter alter submode, which will show you the text plus a pointer, a horizontal
line under the characters which bends upward at its right end to mark the current editing position.
On the screen, you'll see the text you're editing in large letters at the top and the characters you type
in small letters near the bottom. To make the following discussion more compact, we'll act as if they

appeared together on alternate lines:

35 Putting text on your drawing 53

%o R A
_NOUW IS THE TIME

To move the pointer forward to the next occurrence of a character, type “S” followed by the
character (with no intervening <KRETURN>). It will stop just beyond that character:

%5

-M
NOW IS THE TIME

To move the pointer backward to the previous occurrence of a character, type "-S” followed by the
character. It will stop just in front of that character. :

-
%
«E
NOW IS THE TIME

In addition, you can type a space to move the pointer forward one character at a time or a
<RUBOUT> to move it backward one character at a time. To delete characters to the right of the
pointer, type the number you'd like to delete, followed by “D™:

=2
2D

NOW IS THTIME

To delete characters to the left of the pointer, use a negative number instead:

-
2
=D
NOW IS TIME

To insert characters at the pointer, type I followed by the characters you'd like to insert, ending with
a2 <RETURND>: ‘ :

*IINSERT TEXT?SUPPER
NOW 1S SUPPERTIME

There are a number of other, more powerful commands within Alter submode, some of which are
described in Section 2.7, but the ones you just saw should suffice for now. After you've eradicated
the damage we just did and you feel satisfied with the resuit, press the <ALT> key to leave aiter
submode and return to point mode: '

54 $ A guided tour of D

=4

=D

NOW IS SUPPER

-

%]

x3

=D

=/INSERT TEXT?-PE[0.5)] |
-PE[8.5]

x<ALT>

Just for practice, put text on the rest of the signal lines that end in midair, using aiter submode if
you find it helpful in correcting mistakes. When you finish, the drawing should look like Figure
3-14.

s P
" RS v uMP WD OK
t -
e, 1
LM ~t.@ e
oD «1.0
x
0.0.0.6] # ! -
Xe.00.4] » o ns
L S, 1 T
omAre
2.0, 3.4 5.0
Y W) X
DRAY - 6.0
THp » o
-
oo
o " d
L - ey
s |reme ma s szome
: "
L -el.E,
U %8
ey
- " a omAnS.e
1 s *ad
NP2, g o . o
{ HOLD «0.6 4
o L
orE L
x . | Ted> N
WL N

Figure 3-14
Drawing with (almost) all signals labelled

Text for bodies—-The text you see on a body can be either of two kinds: simple text which, like a
signal name, consists of a string of characters at a particular place; or the text portion of a property
name/text pair, a piece of text which has an invisible name that you can use to access it.

On your drawings, however, you'll need to deal only with property namejtext pairs. Usually the

3.5 Putting text on your drawing 55

body comes to you from the library with these name/text pairs already created. To change one, you
simply ask for it by name and tell the program what to use for the text. Sometimes, you have to
create the property name/text pair yourself.

For most bodies, you'll deal with three properties:

SIZE usually appears above the body name and arrives from the library set to “XB”.
You'll want to change it to reflect the number of bits the body is supposed to
deal with, such as "4B".

LOC usuaily appears below the body name and arrives from the library set to “+X".
You'll want to change it to the location code which, as mentioned earlier, helps
differentiate between multiple occurrences of the same kind of body in one
drawing: something like “G7" or “A2". '

VAR is additional information about the body for later use by SCALD. It can begin
with “DELAY=" or “SETUP=" or “‘HIGH=" followed by a series of numbers.

To illustrate, let’s start with a body for which all three property name/text pair already exist, but
need changu: the one at the lower left corner of the drawing.

To work with body text, you must first get into body mode by typing “«@B”. You will see
“MODE=B" on the top line of your screen. :

Now move the cursor close enough to the body at the lower left corner of the drawing so that a
large “B” flashes atop it. Now when you ask to work with a particular property, the program knows
it must be a property associated with that body.

First, you must change the “XB” to "2B”. As we just explained, this is doubtless the property called
“SIZE", so type the following command to replace the text associated with that property name

*QYPROPERTY NAME (ENOUGH TO UNIQUELY SPECIFY IT)?
SIZE

SIZE

NEW TEXT?

2B

You'll see the “X® magically change to a “2". Actually, the program tolerates shortcuts when you type
the property name. Since no other property begins with “S”, you could have typed “S® instead of
“SIZE". Notice that the program echoed “SIZE". If you do get into the habit of using this shortcut,
it’s not a bad idea to check the echo to make sure you really get the property you want. If not, you
can escape from the command by pressing the <ALT> key.

Now do the same sort of thing for the “LOC” property:

56 3 A guided tour of D

=AYPROPERTY NAME (ENUUGH. TO UNIQUELY SPECIFY IT)?

Loc
Loc

NEW TEXT?
s1

and magically the “+X” will change to an “S1”. Finally, change the “VAR” property, noting that you
use the “e” character instead of the <RETURN> key to break the text across two lines:

*AYPROPERTY TEXT (ENOUGH TO UNIQUELY SPECIFY IT)?
VAR

YAR

NEW TEXT?

SETUP=25,HOLD «0.5

If you make a mistake, simply repeat the command and type the text again, correctly. The new

version will replace the old.

Sometimes you'll have to create a property nameftext pair for yourself. On this drawing, a good
example is the PAR body, where each signal name in the list requires a separate property. To
create these, move the cursor over toward the word PARAMETER in the lower right corner and
place it where you'd like the center of the first name, “I<0:3>", to be. The name you give to each
property isn't important, but by convention we use “0%, “1”, and so on. Type the following command
to Create a new property name/text pair:

#YPROPERTY NAME?
0

NEW PROPERTY, TEXT?
1<0:3>

Now move the cursor down by a CONTROL and create the next property:

#ocYPROPERTY NAME?
1

NEW PROPERTY, TEXT?
(0] 4 '

The “xY” command will actually edit an existing property if the name you give has already been
used, so it's a good idea to make sure the program prints “NEW PROPERTY" as those examples
showed. If not, you can escape from the command by pressing the <ALT> key.

If you mistype a piece of text, you can simply repeat the command and retype it correctly. If you
create a property you don't want, or if you inadvertently put a property in the wrong place, you must
get into text/property submode of body mode to repair the damage.

3.5 Putting text on your drawing 57

To illustrate, suppose there’s something wrong with the “CK” text. First, make sure the cursor is
close enough to the PARAMETER body so that “B” flashes above it. Type “xBY” and you'll see
“MODE=BT" on the top line of the screen, indicating you're in the submode. Now as you move the
~ cursor around, you will see large letters flash atop whichever property is closest to the cursor. Move
it so that the letters are atop “CK" and type “xM” to attach the cursor to that property. Now
wherever the cursor moves, the property will follow. Try it. When you have that property in an
appropriately ridiculous place, press <SPACE> to detach the cursor. Now move the cursor and you'll
see that the property no longer follows it.

You may also use alter submode on a property once you’re within text/property submode. Simply
move the cursor close enough so that the big letters flash above the text you want to edit, and type
“@BA”. Then you can proceed as you did when editing signal names. When you press the <AI.T>
key to leave alter submode, you'll find yourself back in text/property submode as you were before. .

Suppose you want to get rid of the property altogether. Make sure the cursor is close enough that
the big flashing letters are atop our intended victim, and type “xD” to vaporize it. Now that you're
finished playing, type “x@B” to return to ordinary body mode.

You should observe two important limitations about body text/property submode. First, you can edit
and delete only the text that you yourself have created or at least replaced, not text that arrived
along with the body from the library. For example, you cannot edit a SIZE property that still has its
original "XB”, but you can edit it once you have replaced that "XB” with “2B”. Second, everything
you do within the submode applies to the body that was closest to the cursor when you entered that
submode. The program will let you move the cursor to another body while you’re still within
text/property submode, but before you can deal with properties associated with that body you must
get out of the submode and back in again.

Now that we've enticed you into destroying the perfectly good “CK” property you just created,
practice your property creating and replacing skills by completing the properties for the rest of the
drawing. When you're finished, the drawing should look like Figure 3-15.

3 A guided tour of D

o v -
e L] MNP 1D OK
! ey
resvys .

L a0 anre.e:
D 4.0

Reaeg o L

" -
2
L wep e
) Tmare ¥
' 000000
o
..
A v
xo T o~
"B 0
vy
mAvse
TR
eom
x P

Figure 3-15
Drawing with body text finished

38 Editor macros 59

3.6 Editor macros

By now you are no doubt wondering why we have postponed so long drawing the four lines to the
left of gate G1. ’

The reason is that they’re an excellent way to demonstrate the use of graphics editor macros to
eliminate repetitive typing. If you were to draw those four lines and label them in the obvious
fashion, you would wind up doing almost exactly the same thing four times in a row.

An editor macro lets you draw and label one line, and then tell the program to repeat the process
three additional times for you.

To see how it works, get into paint mode by typing “x@P”. Move the cursor close enough to the top-
diamond so that “PA” flashes above the diamond, type “xM™ to attach the cursor to that point, and
press <SPACE> to detach it The attaching and detaching simply assures that the cursor is really

directly atop the point; precise alignment is important when you're using macros.

To begin the macro, type “x;P” (use the CONTROL key on the %" but not on the “P”). From now
on, each command you type will execute, changing the drawing; but the program will also save each
command into the macro for future use. On the top line of the screen, you'll see “LEVEL=1",
showing that you're one level deep inside a macro. If you get confused or make a mistake while
inside the macro, type “x;S” to escape. You can then delete whatever the macro has done so far and
start gver. -

Type “+” to start a line, move the cursor left by one TOP, and type “+” to solidify the line. Then
press the <ALT> key to finish off the line.

Type “8T" to label the midair end of the line with its signal name. Now we have a slight problem:
the signal name ought to be slightly different for each line we want the macro to draw. The first
line represents bit 0, the second represents bit 1, and so on. Fortunately, the program’s macro facility
provides a “GA”™ command that puts a counter in the middle of the macro for you. The first number
after the “A" gives the initial value for the counter, and the second number gives the increment.
Thus, the part of the macro that creates text will look like this:

sSTTEXT?
T L<et;

«A0
END ;A
o>

Now move the cursor down by a CONTROL and right by 2 TOP. That puts it back where it was
when we started the macro, except that it's now on the second diamond rather than the first. Now
we want to stop adding commands to the macro and to have the program repeat the commands
three additional times to produce a total of four lines. To accomplish this, type “xR4” and press
<RETURN>. You'll see three more lines appear below the one you just drew. On the top line of
the screen, “LEVEL=0" shows you that you're no longer inside the macro.

80 3 A guided tour of D

Now that you've used it, the macro vanishes. Section 2.8 explains several other useful macro
commands, including one which allows you to create 2 macro that remains after you've used it, but
for now this should suffice.

3.7 Using sets 81

3.7 Using sets

As you'll discover if you try, the program is very obliging about patching up the damage that occurs
when you move a body that has signals attached to it Often it manages to stretch lines and
introduce bends carefully enough that the result is still pretty.

When you want to move a group of objects including one or more bodies and one or more points
and one or more lines, however, you can avoid this interobject stretching by defining a sez that
includes the ob jects, and then moving the entire set together.

To illustrate this, let’s move gate G1 around a bit. First, get into set mode by typing “afS”. On the
top line of the screen you'll see “MODE=S".

Now the strategy is to draw a box around the part of the drawing you want to move (in this case,
encompassing the lines cconnected to the inputs of gate G1 in addition to the gate itself). Every
body and point inside the box belongs to the set, and if both endpoints of a line are inside the box
then effectively the line belongs, too.

Move the cursor to the spot you'd like to become the upper left corner of the box and type “a+” to
start a line. Move the cursor to the right until the line is long enough and type “a+” to make the line
permanent. (In set mode, by contrast with point mode, the line won’t stop flashing when you do this.)
Move the cursor downward until the right side of the box is long enough and type “a+” again.
Move the cursor left until the bottom of the box is long enough and type “x+” again. Finally, move
the cursor up to complete the box and this time type “x-" to finish it off. (Actually, the program
offers you a shortcut. After you've drawn the first two sides, you can simply type “x+a~" without
moving the cursor and the program will complete the third and fourth sides for you.)

As soon as you complete the box, a big flashing letter will appear atop each point or body in the set,
and a big flashing “S” will appear near the center of the set. Type “aM” to attach the cursor to the
set. Now try moving the cursor; you'll see the entire set move with it. As with individual points and
bodies, you press <SPACE> to detach the cursor and leave the set where it is. You can then go
define another set elsewhere in the drawing; within set mode, as within body or point mode,
commands always refer to the set closest to the cursor.

Once the cursor is detached you can delete the set definition by typing “«D”. This doesn’t delete any
points or bodies, but merely releases them from membership in the set. Typing “6D” (don't try it!)
deletes each point and body belonging to the set closest to the cursor.

When you're tired of playing with sets, you can type “aSB” to return to body mode or “aBP” to
return to point mode.)

82 3 A guided tour of D

3.8 Final touches to your drawing
Just a few steps remain before your drawing is finished.

Because it’s 50 easy to place one point atop another, the program provides a command to check for -
this and other fauits. Type “x8P” to get into point mode, and then type: :

xX
WELL?DANGLE
DANGLE

If the program tells you “NO MATCHES FOUND?”, congratulations—it found no errors. Otherwise,
press “aF” and the program will place the cursor atop the first error. Section 2.2.3 explains possible -
errors and the usual solutions. After you correct the first one, type “aF” to move the cursor to the
next (if any), and so on until typing “xF” ceases to move the cursor.

‘When you think you've fixed them all, try the “X DANGLE” command again, just to be sure.

Now the drawing is fine as far as the graphics editor is concerned. You must give it a title so that
SCALD knows what body this drawing defines. Type:

*X

WELL?TITLE

TITLE

NEW TITLE LINE 1710016
NEW TITLE LINE 2?S/ZE=4B

ally, write the files that hold the drawing, allow you to plot it on paper, and provide a wiring li

""l ~a 1)

Itimate use by SCALD:

¥

=X
WELL?EW, EP, EL, CLE

You've finished the drawing. In the next section of this chapter, you'll learn how to describe a body
to represent the drawing.

3.9 Creating a body template ‘ 83

3.9 Creating a body template

Now that you’'ve drawn the definition of an ECL 10016 IC, you need a template for a body that you
can use in your drawings to represent that IC and invoke its definition. In a realistic situation, you'd
probably add the template for this body to an existing library, perhaps one called “E10K”; and then
place the body on a menu drawing, perhaps one called “E10K 17, that shows people what bodies are
available from that library. But since this is the first body template you've created, we’ll assume you
want to create a brand new library file and menu file.

3.9.1 Getting started

First, imagine that a flash of inspiration tells you that the body should look like Figure 3-16. Now
clear your workspace and perform a few necessary initializations to establish the file “E10K” which
will become your library:

=X

WELL?-LOCS

-L0CS

X

WELL?BOARD

BOARD

BOARD TYPE?DECPC

=W

FILENAME?EIOK

WRITING £18K.D0RW (MK2,S511

=X

WELL?GETLIB

GETLIB

LIBRARY NAME?ST DLB
LIBRARY STOLB.DRWIMK2,S11

64 3 A guided tour of D

PIN NAME = 28 PIN NG E = 3.8 PIN NAME = 27
PROP NAME = 7L

\\‘ j/ |/ PROP TEXT = TC

TC
X8
PIN NAME = 1 10016 PIN NAME = 6
PROP NOME = | ——> |I «X 7| €——— PROP NAE = 6
PROP TEXT = I : PROP TEXT= T
K o pe oNTE
. N
A N
PIN NOME = 2 / \
PROP NAME = 2
PIN NRME = 5
PIN NOE = 3 | PINNAE = 4 (ROF TEXT = CNTE
PROP NAME = 3 PROP NAME = 4L+
PROP TEXT = R PROP TEXT = PE
Figure 3-18

This is what you want to create

Body templates are hidden in the background of a file, entirely separate from the drawing portion
of the file, if indeed there is one. To create or edit a body template, you enter Ediz mode, in which

tha 4 3 mev ’ ?
the drawing vanishes temporarily. Of course, you won’t notice this because you haven't started a

drawing in this workspace (and you probably never will since it’s supposed to be used as a library).
Type: _

*< BETYPE BODY NAME?
10016
NEW BODY.

On the top line of your screen youll see “"MODE=E". At the center of the screen you'll see the
familiar cursor. The initial position of the cursor is special because it will become the origin of the
body. When, in the process of making a drawing, you attach the cursor to a body, it moves to the
origin; and when you detach the cursor, the flashing letter “B” appears atop the origin. By
convention, though nothing in the program demands it, we always draw a body so the upper left
corner is the origin.

Within edit mode, four submodes let you perform four different tasks: add or insert lines to define
the body shape, grab bodies from elsewhere to add to this one, create pins to which you can connect
signals, and label the body and pins with text.

39.1 Getting started 65

3.9.2 Drawing the box
First, get into insert submode by typing “«I”. You'll see "M ODE=EI" on the top line of the screen.

Now we want to draw lines. Edit mode is deceptively similar to point mode, but with two important
differences. First, you're not drawing lines between existing points, but creating a series of brand
new vectors. Some of the vectors are visible and others are invisible, but each starts where the
previous one leaves off. Second, the program is perfectly willing to let you draw slanted lines, and
thus doesn’t bother with pairs of lines at right angles as it does in point mode.

Type “a+” to start a visible vector and move the cursor to the right by TOP. Type “x+" a second
tme to finish that vector and begin another, and move the cursor down by TOP. Type “a+” a
third time to finish that vector and begin a third, and move the cursor left by TOP. Finally, type
“x+" a fourth time and move the cursor back up to the origin by TOP.

To finish off that fourth vector without starting another, press <ALT>. You'll find yourself out of
insert submode and back in plain edit mode.

Actually, there was no need to get out of insert submode just then, because we're about to draw more
vectors, but we wanted to illustrate the use of <ALT>, which is the only way to end a vector without
starting a new one.

3.9.3 Ornaments

That produced a fine box, but we’re missing the triangle that represents the clock input, and the
three diamonds that represent inputs and outputs that assert low. Once you've drawn the outline of
your body there are two ways to add details to it: use invisible vectors to skip around, or grab bodies
from elsewhere. '

Based on your experience with the program so far, you might guess you could move the cursor to
the point at which you'd like to add something, enter insert submode, and start using the cursor to
draw vectors. If you try that, however, you'll find that the cursor hops back to the origin on its way
into the submode. The program insists that a body consist of a single path of vectors, so the only
way to add to the body is to follow the path to its end and append vectors there. If you want to go
back to a point along the path, you must go to the end of the path and append an invisible vector
that jumps back to the desired point.

66 3 A guided tour of D

Type “«I” to enter insert submode again. The cursor will appear at the origin. Now press <SPACE>
repeatedly. The cursor wiil travel one vector’s iength along the path every time you do so. When it
stops moving and the drawing doesn’t even blink at <SPACE>, you've reached the end of the path
and can add more vectors.

Invisible vectors—To start an invisible vector, type “x-". Now move the cursor downward by TOP
and to the right by a single unit (that is, an unshifted keystroke), and it will rest where the left edge
of the triangle should be (Figure 3-17).

(ENLARGED) TYPE ‘
STARTING WITH CLRSOR CONTROL - AND . TYPE CONTROL +

AT ORIGIN... " SKIP TO LOWER LEFT ?1%@”"9@
CORNER. . . : STEP...
4 5 6
e . TYPE <ALT>

TYPE CONTROL +,
MOVE CURSOR DOWN
1 AND RIGHT 1...

THEN MOVE CURSOR
RIGHT 1 STEP...

AND SKIP TO RIGHT
TO BEGIN NEXT
ORNAMENT.

Figure 3-17
_A closeup view of drawing the triangle

To draw the left slant, type “x+", move the cursor up by a single unit and to the right by a single
unit. To draw the right slant, type “a+”, move the cursor down by a single unit and to the right by a

single unit.

Obviously, one couild now skip to the point at which the first diamond should appear, and draw it

39.3 Ornaments 67

in the same fashion. But there’s an easier way, so press <ALT> to leave insert submode.

Grabbing bodies from elsewhere-The easier way is to grab a copy of an existing body and add it
to this one. Suppose that one of your libraries contains a body called DIAMOND which is useful
for indicating that a pin asserts low.

To grab it, move the cursor so it rests on the bottom line of the box, five CONTROLs from the
lower left corner. Then type:

*cGTYPE BODY NAME
DIAMOND
SEARCHING FOR DIAMOND IN STOLB.DRMW [MK2, S1]

First you'll see “MODE=EG” appear on the top line of the screen and then you'll see the diamond
appear at the cursor position. The cursor is actually attached so that the diamond will follow it
wherever it goes. Experiment with moving it. When you have the diamond back where it belongs,
press <SPACE> to release the cursor. The diamond will become part of the body, and you will find
yourself back in normal edit mode.

To add the next diamond, move the cursor to the proper position and use the “«G” command again.
Finally, move up to the top line and add the third and last diamond. '

3.9.4 Defining pins

Corresponding to the seven inputs and outputs listed under PARAMETERS in the drawing we just
made, the body has seven labelled pins. In addition, it has two invisible "bus-through” pins at the
top. Pin “2/B”, for example, is identical electrically with pin 2, as if any signal you connect to pin 2
travelled underneath the body and reemerged on the opposite side (Figure 3-18).

68 3 A guided tour of D

o o

V. .A
o l L dke]
o) Q
T i

BUS-THROUGH PINS

LET US DRAW THIS... ... 70 REPRESENT THIS.

Figure 3-18
Using bus-through pins

To define the pins, type “«BP” to enter pin mode. You'll see "MODE=EP” on the top line of the
screen. Ordinarily we don’t want pin numbers on drawings, because they represent unneeded clutter,
but until you have a chance to create labeis near the pins, pin numbers make it easier to find the
pins, so type:

X

WELL?DEFPIN
DEFPIN

As you create each pin, you will have to supply its pin number (which the program refers to as a
“pin name™). To begin, move the cursor to the midpoint of the left side of the box and type:

*oPPIN NAME?!

Now move the cursor down to the bottom line of the body, directly under the apex of the triangle,
and type:

*«<PPIN NAME?2

Continue until you’ve created all the pins. If you make a mistake, move the cursor to the erroneous

3.9.4 Defining pins 69

pin, type “xD” to delete it, and then use “xP” to create it anew.

When you're finished, hide the pinnames once again so they won’t clutter your drawings:

X
WELL?-DEFPIN
-DEFPIN

Press <ALT> to leave pin submode and return to plain edit mode.

3.9.5 Creating body text

The last step in describing your body is to create a property name/text pair for each of the pins,
plus a few pairs for the body as a whole. Type “a8T" to enter text/property submode. You will see
“MODE=ET” on the top line of the screen. Within this submode you can create, aiter, delete, and
move text for a body template just as you would edit text in ordinary body mode or body text
submode for the drawing as a whole.

Each visible pin has a property name/text pair associated with it. To begin, move the cursor to the
center of the area where you'd like the label for pin 1, “I", to appear. Create a property name/text
pair :

xotY

PROPERTY NAME?

1

NEW PROPERTY, TEXT?
1

Now move the cursor to the spot where you'd like the label for pin 4, "PE” to appear. As Figure
3-18 shows, the property name for this pin is more elaborate. We'll postpone explaining the reason
until chapter 4, but note that the difference is important to SCALD:

zocY

PROPERTY NAME?

4Lx -
NEW PROPERTY, TEXT?
PE

For the sake of practice, create the property name/text pairs for the rest of the visible pins—R, CK,
CNTE, T, and TC. When you're finished, the body should look like Figure 3-19.

70 3 A guided tour of D

Qo
TC
I T
K R PECNTE
o

Figure 3-19

Body with all pin properties

As you've probably guessed, the “XB” in the middle of the body is the text of property SIZE and
the “+X” is the text of property LOC. The name of the body, “10016", is the text of a property
called MNAME. For each of these, position the cursor to the center of the place you'd like to put
the text and use “xY” to create the property. Remember that if you make a mistake, you can
proceed as we did with properties in the drawing as a whole: attach the cursor to the one you want
to correct and either move it, delete it, or use alter submode to edit it.

When you're satisfied with the text, the body is done. Press <ALT> to escape from text/property
submode and return to normal edit mode. Then type “¢E” to escape from edit mode.

Now save the file and clear your workspace:

xX

WELL?EW, CLE

EWRITE

WRITING E18K.DRW[MK2,51]
CLEAR

3.10 Making a menu file

If you were to plot the library file *E10K” which you just created, you'd see nothing. You've
described the body “10016”, but you won’t see it until you use it in a drawing. It turns out to be
convenient to put the body templates in one file for use as a library and to put a rogues’ gallery of
their portraits in another file for use as a menu.

Now that your workspace is clear, type the following to create a new file “E10K1” to serve as a

3.10 Making a menu file n

menu:

*ot W :

FILENAME?EI0X!

WRITING E18K1.DRW[MK2,S1]

xX

WELL?-LOCS, GETLIB, SHOWBOX
-L0CS

GETLIB

LIBRARY NAME?EI0K

SHOWBOX

Al6]1

Now move the cursor to an appropriate point--near the upper left, for example--and place a copy .
of body “10016” in the drawing:

x<PTYPE BODY NAME
10016
SEARCHING FOR 108816 IN E18K.DRW[MK2,S1]

Press <SPACE> to detach the cursor from the body. In this case, it's obvious what name to use
when you want to fetch a copy of the body from the library: 10016. Sometimes, however, the name
of the body may differ from the text of the MNAME parameter that appears on the body, so it’s a
good idea to put the name above the body on the menu drawing. To do this, move the cursor to an
appropriate place near the body and create some text:

®cTTEXT?
10016

In a realistic case, you would fill the menu with many different bodies belonging to the ECL 10K
family, but since you have defined only one so far, save the file and you’re finished:

*X
WELL?EW, EP, CLE

And that’s the end of the tour. Congratulations. You have made a drawing to define ECL IC
10016, a body template to represent it, and a menu drawing to advertise its existence to the world.

3 A guided tour of D

73

4 How to use the macro expander

Like the graphics editor, the SCALD macro expander deals with bodies and the lines connecting

A body represents a logic element, and the pins on the body to which you may connect signals
represent inputs and outputs.

A line between bodies represents a signal, whose characteristics are determined partly by the bodies
it connects and partly by the name, if any, used to label it on the drawing.

A body may represent a macro—a functional block which must be expanded into the logic elements
that comprise it—in which case an additional drawing must exist to define it in terms of other
bodies connected with signals. Or a body may represent a terminal--a fundamental, irreducible logic
element—in which case the program looks for entries in a special text file called the TERM file (or
terminal file), which describes the body’s inputs and outputs.

Visually, connecting a line from one body to another with the graphics editor “feeds” the signal from
the output of one body to the input of the other. Effectively, this calls the two macros, using the
output parameter of one macro as the input parameter of the other. The task of the SCALD macro
expander is to replace each body which represents a macro with the set of bodies and signals which
define that macro. Because a macro may be defined in terms of additional macros, the program
repeats the process until it obtains a network of bodies and signals in which all the bodies are
terminals. '

Exactly what constitutes a terminal depends on whether you want to obtain a wirelist for actually
building a prototype, or whether you simply want to simulate the logical design. When building a
prototype, you regard a macro as a terminal if it corresponds to an actual IC or chip to be used in
the prototype. By using a TERM file containing entries for these chips, the macro expander
produces a list of chips and interconnections for use by the SCALD physical design system.

When simulating a design, however, you define each IC or chip with a drawing that uses only

74 4 How to use the macro expander

logical primitives—that is, idealized gates, adders, latches, multiplexers and so on—-which the

macro expander can expand the design past the IC or chip level, producing a network of logic
primitives for use by the SCALD simulator and timing verifier. (The behavior—the truth or state
table—of each logical primitive is built into the simulator and verifier.)

Thus, the choice between an IC terminal file and a primitive terminal file determines the operation
of the macro expander.

Incidentally, SCALD has no trouble dealing with an IC or chip which contains several copies of a
particular logic function—a quad latch or dual flip-flop, for example. In such a case, the body
representing that terminal, the entries for it within the IC terminal file, and the drawing defining
the terminal in terms of logical primitives all pertain to a single copy of the function. A file called
CHIPS {(which alsc contains electrical characteristics of the IC inputs and outputs) takes care of
telling the physical design system that it can obtain multiple copies of the function from a single
package.

41 Typical design procedure 75

4.1 Typical design procedure

The remainder of the chapter is full of rules for the syntax of bodies and signals that makes up the
input language for the SCALD macro expander. Those rules may make better sense after an
outline of the typical procedure for designing a large project with the macro expander:

1. For each kind of IC to be used in the design, make entries in the IC Terminal File.

2. If you will want to simulate the design, make a drawing for each IC that defines it in
terms of the logical primitives—adders, gates, and so on--available in the graphics editor
library “SIMLB”. (These primitives are sufficiently general to apply regardless of the
actual Togic technology used to implement the design, though the numbers for timing will
of course vary) If the IC contains multiple units in one package—a quad latch, for.
example--the drawing should define a single unit. '

3. Develop a graphics editor library containing a body template for each of the ICs. The
S-1 Mark II designers, for example, developed a library called “E10K” containing bodies
representing ECL 10K parts. Note that the body template for a multiple-unit IC should
represent a single unit.

Since body templates are invisible until used to place bodies in drawings, it helps to make
one or more menu drawings for each library. A menu drawing simply shows each IC
available in the library, and next to it gives the proper name for its macro. SCALD itseif
doesn’t use these menus, but they aid designers in picking out the proper bodies to use.
For the ECL 10K library, for example, the menu drawings are called “E10K 17, “E10K2”,
and so on.

4. Now define any macros expected to be used frequently throughout the design, invent
body templates for them, and place those bodies in a library so designers can find thern
easily. As work progresses, designers can add new templates as needed.

For example, the S~-1 Mark II design frequently uses vision registers, registers with
auxiliary logic that accesses the register contents for diagnostic purposes. Placing in a
library a set of body templates representing vision registers makes it as easy for a designer
to incorporate one of them as it is to design with an ordinary register.

5. Now the designers can start at the top level of the machine and proceed hierarchically
down toward the bottommost, detailed level. At each level, the designer makes a drawing
by connecting signals between bodies representing macro calls and/or terminals. The
designer can obtain bodies for the terminals from the templates in the library described
above. For a body representing a macro call, the designer must invent a body template and
then make a further drawing defining that body in terms of additional bodies; thus the
process recurs.

6. SCALD does not consider the top level drawing in the hierarchy as a special case, so to
start the macro expansion process, someone must invoke that drawing through a macro

7% 4 How to use the macro expander

call. The usual approach is to make a dummy drawing of the “universe” consisting of
appropriate drivers and receivers attached to a single body representing the entire design.
When it comes time to lay out hardware to implement the machine, simply allocate the
contents of this drawing to a separate circuit board which never actually gets built.

While this outline suggests proceeding hierarchically from the top level of the design toward the
bottom, SCALD is actually quite flexible in this respect. If it becomes obvious at some point that the
design calls for additional types of ICs or that some functions occur so frequently that it is worth
repackaging them as standard macros, it is quite easy to change these aspects.

It is possible to expand the upper levels of the design to check for syntax errors and design rule’
violations even if the lower levels are not finished——simply ignore the errors generated by the
missing drawings. Simiiarly, it is possibie to expand a subsection of the design—a subtree within
the hierarcy—without expanding the design, simply by concocting a dummy “universe” file that calls
the topmost drawing of the subsection rather than the topmost drawing of the entire design.

42 General Rules for the macro expander language 71

4.2 General Rules for the macro expander language

Expressions—Wherever the macro expander accepts an integer, it will generally accept an expression
instead. The expression syntax is that of a subset of PASCAL, which includes the following
operators (where “0” indicates the highest precedence):

Symbol Meanin Precedence
NOT Logical NOT 0
- Unary minus 0
+ Unary plus 0
% Muttiplication 1
/ Integer division 1
MOD Modulo 1
AND Logical AND 1
+ Addition 2
- Subtraction 2
OR Logical OR 2
- Equals 3
<> Not equals 3
<= Less than or equal to 3
>= Greater than or equal to 3
> Greater than 3
< Less than 3

Parentheses override precedence as usual in Algebra.

When the macro expander needs to convert a logical value to an integer, it treats “FALSE” as 0 and
“TRUE"as 1. When it needs to convert an integer to a logical value, it treats “0” as false and
anything else as "TRUE". Thus, the following example evaluates to either “SIGNAL<0:5>" or
- “SIGNAL<1:5>™

SIGNAL<ASIZE=15:5>

Note that within a bit subscript (Section 4.6.5), which normally uses “<” and “>” as brackets, you
must parenthesize an expression that uses “>” to mean “greater than”, or the macro expander (which
parses with limited lookahead) will think it has reached a right bracket:

SIGNAL<{ASIZE>15):5>

Throughout the the macro expander language, integers can end in *X” (for “times”) or "B” (for
*bits”) to improve readability; thus *5B” and “5X” are the same as “5”.

Signal, pin, and macro names-While most programming languages prohibit blanks or spaces
within identifiers, the macro expander permits them in signal names, pin names, and macro names.
And while most languages require identifiers to begin with an alphabetic character, the macro
expander permits digits. Thus, it’s perfectly legal to use the kind of multiple word signal names and

78 4 How to use the macro expander

numeric part names that designers are accustomed to:

P SEQUENCER
PARITY CHECK INHIBIT
54L5181
CLK ENABLE

This freedom is possible because the graphics editor, with its “text” and “property” features, takes
care of specifying where one chunk of text begins and ends, so the macro expander does not need to
reserve blanks for use in delimiting such chunks. .

In general, the macro expander deletes leading and trailing blanks in names, and reduces several
consecutive blanks to a single blank. ‘

As noted in chapter 2, the graphics editor also allows the use of the “6” character to split a piece of
text across two lines. It converts that character to a blank before sending the text to the macro
expander, however.

4.3 Inventing Bodies to Represent Macros 79

4.3 Inventing Bodies to Represent Macros

Parameters—A SCALD macro accepts two kinds of parameters. Pin parameters represent signal
inputs and outputs, while body parameters specify some general characteristics of the macro.

Now, most programming languages match actual parameters (the values or variables you plug into a
macro or procedure) with formal parameters (the dummy arguments that specify what inputs and
outputs the macro wants to see) strictly by their position in a list. The macro expander, by contrast,
matches actual parameters with formal parameters by name; whenever you feed a parameter to a
macro, you implicitly or explicitly state the name of the formal parameter you're dealing with. The
property name/text feature of the graphics editor helps accomplish this.

For a pin parameter, the pinname points to a property name, and the text paired with that property
name gives the formal parameter name.

For a body parameter, the property name holds the formal parameter name and the property text
holds the actual parameter. Thus, to set the SIZE body parameter to “14B” for a particular macro,
use the graphics editor to create or modify the property named SIZE and then specify “14B” as the
property text.

4.3.1 Body Parameters

By convention, SCALD macros have up to five standard body parameters; whereas signal
parameters are invented by the designer and vary from one macro to another, body parameters are
concepts built into the macro expander which govern the way it expands each macro. Body
parameters are somewhat unusual in that some of them have an initial value which wiii appear in
the drawing until you supply a value. .

MNAME Actually not a parameter, but rather the name of the macro. To find the
definition of the macro, the macro expander will search for a drawing with this
name in the first line of its title (It may also use a selection equation as
explained in Section 4.4.)

SIZE Basically, an integer specifying how many times the macro should occur. This is
useful for creating several independent copies of a macro—for example, to
generate 38 copies of a flip-flop to build a register to store data from a 36 bit
bus, set SIZE to 36. ' ‘

A more precise explanation is that the macro expander invokes any macro
repeatedly in a loop using a special counter variable X", which starts at
X FIRST, increments by X STEP, and quits at SIZE-1. You can set X FIRST
and X STEP using the DEFINE list described later in this chapter.

TIMES

4 How to use the macro expander

X FIRST defaults to 0. X STEP defaults to | if SIZE is 1, but otherwise you
must (as a safety feature) explicitly set X STEP. Failing to do so produces an
error message and sets X STEP equal to SIZE.

The variable *X” is available for use within the macro definition, and will be -
replaced with successive loop-counter values when the macro expander expands
and replicates the macro.

The initial value of SIZE is "XB”, deliberately chosen to be nonnumeric and
therefore invalid so that the system will produce an error message if you forget to
specify a size.

An integer telling the macro expander toc invcke the macro repeatedly te obtain
multiple copies, and then to tie together the corresponding inputs on all the
copies while leaving the outputs independent. This is useful as shown in Figure
4-1 when you'd like several different gates to produce the same signal because a
single gate doesn’t have enough fanout capability. If not specified, the TIMES
parameter defaults to 1. If TIMES is 0, the macro expander ignores the body
instead of expanding it.

%

~
.
*3

3
DEBLAY-8.0

| amo 2
=

i

*3

5

I
3

.. .PRODUCES
THREE OUTPUTS

SETTING TIMES = #3...

Figure 4-1
The body TIMES parameter

When the macro expander invokes a macro repeatedly due to the TIMES

43.1 Body Parameters 81

LOC

VAR

parameter, it sets a special variable called TIMES to a different value on each
invocation, starting at 1 and incrementing by 1. You may use this variable to
distinguish one invocation from another if you wish.

Within a drawing, every body must have a unique alphanumeric location label;
the actual labels don’t much matter, but conventionally we label gates as G1, G2,
G3.. and registers as R1, R2, R3.. and so on. It’s quite safe to use the same label
for two bodies in two different drawings. (These labels are used internally by
the macro expander to make local signal names unique when the same macro is
invoked in two or more places. Section 4.6.13 recites the details).

The initial value for LOC is “+X”, a deliberately invalid choice which will
produce an error if you forget to specify a location.

This parameter passes information through the SCALD macro expander to the
logic simulator and timing verifier. Its exact purpose varies from one body to
another—sometimes it specifies setup and hold requirements and other times it
specifies delays—but by convention the initial value will always be something like
“DELAY=" or “SETUP=" which explains what the parameter is for.

Figure 4-2 shows two versions of the same body, first exactly as it comes from the library, with
parameters set to initial values; and then with values specified by a user.

82 4 How to use the macro expander

X8 4B
R REG RS R REG RS
S +X S R?

I peray= T I omar= T
.0, 0.0, 0.0 1.5,2.2 3.7
K K
A AN
BODY PARAMETERS: BODY PARAMETERS:

INITIAL UALLES USER VALLES

Figure 4-2
Body parameters

Note that while the property names (that is, the formal parameter names) don’t api)ear explicitly on
the drawings, the graphics editor will identify any of them within Alter submode as explained in
Section 2.7. :

One point concerning SIZE and TIMES deserves mention. When you use these parameters on a
terminal macro, the physical design system will ultimately generate the specified number of copies of
the macro’s function.

But when you use these parameters on a nonterminal macro, the definition of the macro determines
whether replication actually occurs. If a signal inside the definition has its number of bits expressed
in terms of SIZE and TIMES, or if a body has its own SIZE and TIMES parameters expressed in
terms of SIZE and TIMES, then replication will take place. Otherwise, a signal or body inside the
definition is a constant, independent of SIZE and TIMES.

A good analogy is a procedure in a high level language which accepts an integer parameter and
then doesn’t use that parameter anywhere in its body. Only when the procedure uses a parameter
does it have an effect.

432 Pin parameters 83

4.3.2 Pin parameters

The graphics editor always associates a “pinname” (atmally a number) with each pin on a body. For
each pin, the macro expander requires a property name/text pair that ties the pinname to the
corresponding signal parameter name.

If the body in question is a terminal, then by convention each pinname should be the number of the
corresponding pin on the actual IC. (If there are multiple units within one IC, use the pin numbers

for the *first” unit—the one that has the lowest numbered pin. The CHIPS file will take care of o

mapping the remaining units onto the first.) If the body represents a macro, the numbering can be
arbitrary, but each pin must have a unique number.

The property name/text pair for a pin is derived from the pinname. For the property name, start
with the pinname and append an “L” if the corresponding signal parameter inside the macro asserts
low (see Section 4.6.4). Then append a “%” if the pin has a diamond or “bubble” on it, telling the
macro expander to check to be sure that any signal connected to this pin invokes low.

The property text should include the <Class>, <Simple Name>, and <Timing Spec> portions of the
signal parameter name. Essentially, it should be identical with the version of the signal name that
appears in the parameter list (Section 4.6.8) but without the */V” appendage or <Bit Subscripts>.
Figure 4-3 is an example.

84 4 How to use the macro expander

PINNAME = 3
SIGNAL NAME = LR L P
PROPERTY NAME = 3L
PROPERTY TEXT = CLR

&
CLR
XB
PINNARME = 2
CO%i:ER SIGNAL NAME = T<@:SIZE-1> P
T PROPERTY NAME = 2
: PROPERTY TEXT = T~
CK
PINNAME = 1

SIGNAL NAME = CK L P
PROPERTY NAME = 1L
PROPERTY TEXT = CK

Figure 4-3
Pin properties

Removing the "L” from the property text and putting it in the property name allows the property
text to label the pin on drawings; the “L” is customarily omitted in such labels.

Why have a separate “x” to tell the signal checker that the signal asserts low when you already have
an “L™? Because the macro’s internal notions about the signal polarity may have nothing to do with
the outside world. Consider the case of an AND gate which could just as well be represented as an
OR gate for inputs and outputs that assert low. A single macro defines both gates equally well, but
as Figure 44 shows, one body expects its inputs to assert low and the other doesn’t.

432 Pin parameters

PROPERTY NAME = 12 DELAY=2.9 PROPERTY NAME = 9%

PROPERTY TEXT = 10 PROPERTY TEXT = T
2 AND
+X
PROPERTY NAME = 13 PROPERTY NAME = 15L
PROPERTY TEXT = It PROPERTY TEXT = T
PROPERTY NAME = 12% DELAY=0.0 PROPERTY NAME = ©
PROPERTY TEXT = IO PROPERTY TEXT = T
2 AND
+X
PROPERTY NAME = 13 PROPERTY NAME = 15L#
PROPERTY TEXT = I1 PROPERTY TEXT = T
Figure 44

Gates for high and low assertion

85

86 4 How to use the macro expander

4.4 How the macro expander binds bodies to drawings

When the macro expander encounters a macro body in a drawing, it takes the text from the
property MNAME and looks for a drawing with that text in the first line of its title.

Note that two other names exist and thereby confuse the issue. The body template itself has a name
which the graphics editor recognizes when you ask to place a copy of that body in a drawing. The
file containing the drawing that defines a body has a filename by which the computer operating
system recognizes it. Neither of those names has anything to do with the process of finding which .
drawing to use to expand a macro.

(There are good reasons for that. Keeping the body name separate from the macro name permits
multiple bodies to have the same MNAME and thus the same macro definition: for example,
consider again a gate which can be either an AND gate which expects its signals to assert high'or
an OR gate which expects them to assert low. The macro expander can use two different bodies
called “2 AND” and “2 ANDO” (the latter looking suspiciously like an OR) to represent the same
function. And keeping the drawing filename out of the picture makes SCALD less dependent on
the operating system.)

If the macro expander finds more than one file with the same name in the first line of the title, it
then goes to the second line of the title in each file and evaluates it as a selection equation. It uses the
drawing for which the selection equation evaluates to “TRUE".

This is handy because in many cases you will want to implement a function differently depending
on some parameter such as (for example) the size. If the number of bits you're generating parity for
is 12 or less, for example, you may want to use one circuit but if it’s greater than 12 you’ll want to
use another. By putting a selection equation like "SIZE<=12" on the second title line of one drawing
and an equation like “SIZE>12” on that of another, you can accomplish this.

Of course, you must invent these selection equations so that for each value of SIZE you expect to
use, the equation inone and only one drawing evaluates to TRUE. :

A typical selection equation is a function of one of the macro body parameters—SIZE, TIMES, or
YAR-—but can in general be any expression. If you provide only one drawing to define a given
macro, leave its second title line blank and the expander will always select that drawing.

45 Inventing Signal Names 87

4.5 Inventing Signal Names

Not every signal need have a name. If, for example, a signal originates at one body and terminates
at another within the same drawing, the macro expander can infer from the characteristics of the
output and input pins everything it needs to know about the signal: its width in bits, its assertion,
and so on. '

But attaching a name to a signal--which, within the graphics editor, merely requires attaching text
to a point along the line that represents the signal-—can provide additional information: wire delay,
clock skew, and so on.

And sometimes the macro expander requires a name for a signal--when, for example, the signal is
an input or output parameter; or when the signal should be made global so other drawings can refer
to it. ‘

Concatenation—-To combine several different signals into one multiple-bit signal, use “” between
their names to indicate concatenation. The signa! whose name is leftmost provides the most
significant bits:

HIGHBYTE : MIDDLEBYTE : LOWBYTE

Conditional signals—To make a signal name depend on an expression, use an IF/THEN/ELSE
construct. If the expression is true, the macro expander uses the name following the word THEN,
but otherwise it uses the name following the word ELSE. The quotation marks shown in the
following example are required:

"IF" SIZE<8 *THEN" FIRSTBYTE "ELSE" -FIRSTBYTE
Do not omit the ELSE part, and do not nest the IF/THEN/ELSE construct.

| Comments-—-Everything following a %” in a signal name becomes a comment. Thus, when you use
concatenation or IF/THEN/ELSE, you're allowed only one comment:

RIGHT
CA : OR : WA ; Pacific states
"IF" FLAKY “THEN" CA “"ELSE" WA : OR ; A pointed comment

WRONG
CA 3 Far out : WA 3 Far up : OR ; Far gone

33 4 How to use the macro expander

4.6 Putting together a signal name

Wholly apart from concatenation or IF/THEN/ELSE, an individual signal name consists of a series
of individual pieces strung together, each of them describing some aspect of the signal

The syntax of a signal name is:

<Name> ::=
<Negation>
<Signal Class>
<Simple Name>
<Timing Assertion>
<Assert Low>
<Bit Subscript>
<kire Deiay>
<Timing Evaluation Directive>
<Scope>
<Multipliers>
<Yersion>

Not all of the information is meaningful to the macro expander; the <Timing Assertion>, <Wire
Delay>, and <Timing Evaluation Directive>, for example, are included for the benefit of the timing
verifier. All the components except the <Simple name> are optional, and the last five may appear in
any order. Thus, a rather elaborate example of a name is:

~SHAKESPEARESHAMLET.C1-2,3-4 L <B:6:2,4:8> [2.5,3.718A /M x(SIZE) /18

CLocK

In order to persuade the macro expander that two signals are the same, the <Signal Class>, <Simple
Name>, and <Timing Assertion> pieces must be identical, character for character. Other pieces of
the name may or may not appear in various places in a drawing. We’ll proceed to talk about the
various pieces of syntax, one by one.

4.6.1 <Negatiom>

To invert a signal without indicating that it asserts low, put a minus sign at the front of the
subname:

DECODE 1

46.1 <Negation> 89

~-DECODE 1

Contrast this with the use of <Assert Low>, described later in this chapter, which requires that the
pin receiving the signal have a “bubble” or “diamond” indicating that it expects a signal that asserts
low.

If a signal is generated by a gate with the complementary -outputs. then the macro expander
recognizes that the inverse of the signal is available, too, and will allow you to use that inverse in
the drawing without explicitly connecting a line to the inverse output of the gate.

The absence of “-” implicitly indicates the uninverted form of the signal. Note that putting a “+” in
front of a signal name creates an entirely different signal name; a plus sign is not a superfluous
symbol.

A “-" inverts each individual bit of a multiple-bit signal.

4.6.2 <Class Name><Simple Name>

Within <Class Name> and <Simple Name>, you may use alphabetic characters, digits, “+”, “-", “(",
and “)” as you wish, though you should be prudent about it: if you put a “-” at the front of the
name, for example, the macro expander will think it's a <Negation> rather than an innocent
character in the name.

Similarly, if a <Simple Name> ends in “L”", and there is no <Timing' Assertion>, the macro

expander interprets the “L” to mean “<Assert Low>" as described later in this chapter.
And if there’s no <Class Name> and the <Simple Name> consists of nothing but digits *0” and *1”
then the signal is a binary constant as described in Section 4.6.11.

<Class Name> is a sort of prefix, consisting of a string of the characters just mentioned, followed by
“8$”, which you can attach to each member of a family of signal names, making it easy to pick them
all out of the crowd. If signals “DECODE INST", “SHIFT LEFT”, and “SKIP” are all part of a
functional block called “ARITH BOX?", for example, you might want to make that clear by using
"ARITH BOX?" as a signal class: '

ARITH BOXS$DECODE INST
-ARITH BOX$SHIFT LEFT
ARITH BOXSSKIP

<Simple Name> is just a name made up of the legal characters listed a few paragraphs ago:

90 4 How to use the macro expander

W
)
2BY4
MANY MANY MANY. WORDS

4.6.3 <Timing Assertion>

This specifies the time varying behavior of the signal. It's useful for documenting the expected .
behavior of signals entering and leaving a functional block. In addition, it lets the timing verifier
check a subsection of the design even if the entire design is not complete; the verifier can use the -
<timing assertion> on an input instead of evaluating the unfinished circuitry that will eventually
feed that input. : '

When the macro expander parses a signal name, it does not actually regard the <timing assertion>
as separate from the <simple name>. Only the timing verifier recognizes the <timing assertion> as
anything more than a few additional characters in the name. The exact syntax of a <timing
assertion> appears in Section 6.3.2.

4.6.4 <Assert Low>

To indicate that a signal asserts low, place “L” after the <timing assertion>. Note that in the
- absence of the timing assertion, the L” will follow the signal name, reducing to the conventional
notation: '

MULTIPLICAND READY L
CLK .C1-2, 3-4 L

Note also that if a gate has complementary outputs, the macro expander recognizes that the output
and its inverse both exist, and will allow you to refer to both even if you connect a line and invent a
signal name for only one. ‘

The distinction between the “-" preceding a signal name and the “L” following it is important. Each
indicates inversion, but only “L” indicates that the signal asserts low. Thus, a signal with “L” implies
that the pin receiving the signal musz have a *bubble” or “diamond”, as Figure 4-5 shows.

46.4 <Assert Low> 91

" mares tRAT-e.0 . tELAT-e.0 taLAv-e.0
A IOePE L A -STGOE

290 2n0

G O " G * x
DRAT-.0 haitlingd CELAYS. 8 cmAT-e.e
2mo 2a0
ox > O ox Q O
WRONG ’ , RIGHT
Figure 4-5

Assertion checking

Two special techniques tell the system precisely how to check assertions. First, to regard a signal as
asserting low without actually inverting it, use both “-” and “L”. The effect is that of using neither
“-” nor “L”, except that the system will check to make sure all receiving pins have bubbles (Figure
4-6).

DELAY=0.0

o R -SIGNAME L \
O 2 R

QO

Figure 4+-6
Assertion checking without inversion

Second, to flout the convention that a signal originating at a pin with a bubble asserts low and a
signal originating at a pin without a bubble asserts high, use a fictitious body called a “NOT?”; see
Section 4.8.

92 4 How to use the macro expander

4.6.5 <Bit Subscripts>

Bit subscripts tell the macro expander that a signal consists of one or more bits of a multiple-bit
signal—that is, a bus.
The macro expander accepts either one- or two-dimension:

single bits out of multiple-bit signals:

ONE DIMENSION
TWO DIMENSIONS<G, 3>

Either or both subscripts can specify a range of bits, which the macro expander processes in row
ma jor order. Thus, the following two examples specify identical three-bit signals:

MULTI BIT<8:2>
MULTI BIT<@>:MULTI BIT<1>:MULTI BIT<2>

And likewise, the following two examples specify identical four-bit signals:

TWO D<1:2,5:6>
TWO D<1,5>:TWD D<1,B>:TWO D<2,55: TWO D<2,8>

Either or both subscripts may also specify a step-size for the range of bits. Thus, the following
example includes bits from the fourth through the tenth, incrementing by 3:

ONE D<4:18:3>
ONE D<4>:0NE D<7>:0NE D<18>

A single bit signal name--one without any bit subscripts—is by default the same as a signal name
with both subscripts zero. Thus, the following three examples are identical:

LONE BIT
LONE BIT<8>
LONE BIT<g,8>

4686 <Wire Delay> a3

4.6.6 <Wire Delay>

For any input signal to a body, you may specify a wire delay or range of delays within square
brackets:

POP LI6.8]
CK12.5:3.7]

See Section 6.3.1 for details.

4.6.7 <Timing Evaluation Directive>

When several signals feed into a gate, the timing verifier ordinarily uses the individual timing
assertions for each of the inputs in determining the output. But sometimes you may want it to ignore
certain aspects of the other inputs when propagating one of them through the circuitry. For details
on the syntax for doing this, see Section 6.3.3.

4.6.8 (Scope>

The scope of a signal is the environment within which the macro expander recognizes that
particular signal by name. Within a macro namé you can specify either of two scopes: “/P” for
parameters or “/M"” for module-specific signals.

Parameters—If a signal is a formal parameter, then its name is really just a stand-in for the name of
whatever signal is used as the actual parameter when the macro is invoked. Thus, it’s “hidden” from
the world outside the macro; you can use the same name inside another macro and no conflict will
result. After all, signal parameters and pin labels are the same thing, and for example it’s
understood that when a counter and a shift register both have a pin labelled “CLK?”, the two pins
are nevertheless distinct from each other.

By convention, when a parameter is “common”—that is, when it requires only a one-bit signal even
when its body gets replicated due to the SIZE parameter—we give its signal a name ending in “C”™:
“CLRC”, "INHIBC”, and so on.

94 4 How to use the macro expander

To provide extra error-checking, the macro expander requires that each drawing that defines a

macro contain a PARAMETER list giving the name of each parameter.

To create a PARAMETER list, add to the drawing a fictitious body (typically one keeps a template
for it in a graphics editor library) called PAR, which has no visible lines or pins, but whose

MNAME is PAR and whose main purpose in life is to support property name/text pairs. For each
parameter signal name, create a body property name/text pair. By convention, we name the
properties “1%, 27, “3”, and so on (but it doesn’t matter). Each property text should contain the
<Signal Class>, <Simple Name>, <Timing Assertion>, and <Bit Subscripts>, if any, from the signal
name. Omit all other pieces of the name. List either a signal or its inverse, but not both; including
either automatically declares both. (For ECL, the timing verifier will benefit if <Assert low> is
included in the parameter list where appropriate, though the macro expander deces not require this.) -

If a signal parameter is an output, append */V” to its name. Do this only in the parameter list, not in
the drawing as a whole. (This tells the macro expander which signals to tie together when the
TIMES body parameter, described in Section 4.3.1 causes it to duplicate a macro). '

Module-specific signal-Like a parameter, a module-specific signal is “hidden” from the outside
world; the macro expander regards it as distinct from any other signals with the same name in other
macros. In addition, the macro expander creates a different incarnation of it every time the macro is
invoked.

As a safeguard against accidents, a module-specific signal name must not duplicate that of any
signal that is global to the macro. You cannot by creating a module-specific signal name dethrone a
global name that your macro would - otherwise recognizee To see whether a particular
name—ALPHA, for example—is allowed to be module-specific inside a particular macro, simply
ask, “If the signal had some other name, would ALPHA always be meaningless and undefined,

every time the macro gets called?” If the answer is “yes”, then it’s safe to use the name ALPHA.

Global signals—-Any signal which lacks “/P” or “/M” is global. Ordinarily, a global signal is visible
from within every macro; throughout the entire design, every reference to its name means the same
signal.

Thus if you call a macro several times, the corresponding global signals in every invocation of the
macro all get connected together. And if you use the same global signal name in two different
macros, both those signals get connected together.

A feature called DECLARE creates nested scopes similar to those found in many high -level
programming languages. If ybu place a global signal name in a DECLARE list inside a macro, the
macro expander creates a different incarnation of that signal every time the macro is invoked. In
addition, while that incarnation is *hidden” from other macros in general, it’s visible throughout the
subtree of this macro—that is, within this macro call and also throughout all the circuitry resulting
from the macros which it calls in turn.

A signal declared in a macro is local and hidden as far as the caller of that macro is concerned, but

46.8 <Scope>

global and visible as far as all of the callees of the macro are concerned.

This is similar to the dynamic nesting of scope found in languages like LISP.

To create the DECLARE list, add to the drawing a fictitious body (available from a graphics editor
library) called DECL. This works just as the PARAMETER list does: create a body property
name/text pair for each signal name in the list; name the properties “17, “2”, “3”, and so on; and put
the <Class Name>, <Simple Name>, and <Timing Assertion> portion of each signal name in a
property text. List either a signal or its inverse, but not both. The “/V” rule doesn’t apply to the

DECLARE list

4.6.9 <Multiplier>

To guard against errors and to help enforce design rules concerning fanout capability, the macro

expander requires the designer to specify very explicitly how to interconnect bodies.

To feed the output of a gate into three different inputs, a conventional schematic would show

something like Figure 4-7.

LATCH LATCH LATCH
1 T I T I
EN EN EN
2 AND
__.___/
Figure 4-7

Conventional schematic

But the macro expander makes it easy to replicate a logic element without drawing multiple copies
of it, simply by setting the SIZE parameter of the corresponding body to the desired number of

copies. Thus, on first thought, one might try to draw something like Figure 4-8.

9% 4 How to use the macro expander

=
LATCH
LS
I oetar- 7
@.0,0.0 0.0
DELAY=0.0 e
2 AND
63
——J

Figure 4-8
Wrong way

However, that would generate an error because the macro expander knows the gate generates a
one-bit signal but, because of its definition, the “I” input of a three bit latch requires a three bit
signal. The solution is to eliminate the line connecting the gate to the latch. Instead, give the output
of the latch a name—"A”, for example—-and use that name along with a “x3” multiplier to feed the
input of the latch (Figure 4-9).

38
LATCH
SOURCE*3 . L5 T
DELAY=
0.0,0.0,0.0
DELAY=0.0
EN
2 AND
63 SOURCE
Figure 4-9

Correct way

46.9 <Multiplier> Q97

The multiplier effectively concatenates the signal to itself the specified number of times. Thus,
“Ax3” is equivalent to "A:A:A”. A multiplier will concatenate multiple bit signals, too, so the
following examples are equivalent:

B<1:5>x3
B<1:55>:B<1:5>%B<1:5>

The value for <Multiplier> may be any expression, but it must begin with “x”. If the value is 0, the
macro expander creates a zero-width signal by concatenating no bits.

Note that using a multiplier does not increase the number of gates that drive a signal; to automate
the entire issue, make the TIMES parameter on the gate a function of the SIZE parameters on all
logic elements driven by the gate.

4.6.10 <Version>

Using the TIMES parameter to duplicate a logic element as explained earlier in this chapter
automatically generates multiple physical output signals for each logical output signal shown and
labeled on the drawing. The ability to gather a handful of similar physical signals and deal with
them as one logical signal is a particular advantage of the macro expander. The macro expander
itself, however, must deal individually with the physical signals, and thus needs a unique name for
each one for use in preparing wirelists and so on. It derives these names by placing a slash and a
version number after the name you invent.

Ordinarily, these versions need not concern you until it actually comes time to build the prototype.
If you ever do need to specify a particular version during the design phase, however, you can do so
using the same syntax:

MULTIVERSION SIGNAL /8
MULTIVERSION SIGNAL /1
MULTIVERSION SIGNAL /2

Note that although the macro expander uses numbers, you may place any alphanumeric string after
the slash provided it cannot be confused with the <scope> portion of the name.

You can, in fact, use the <Version> option as a general-purpose qualifier on a signal name, for
whatever purpose you wish.

A signal name may accumulate multiple version numbers as one macro calls another. The macro
expander concatenates the version numbers, separated by dots, with the version contributed by the

98 4 How to use the macro expander

highest level macro at the right:

A SIGNAL /2.3.1

4.6.11 Constants as Signal Names

Naming a signal “1” or *0"indicates that it is permanently TRUE or FALSE—a binary constant
rather than a variable. Putting a row of “1”s and “0”s together concatenates them just as the *”.

operator would. Thus, the following examples are equivalent:

19118
1:9:1:1:2

Essentially the only valid options to apply to a binary constant are <Negation>, <Assert Low>, and
<Multiplier>. A “-” preceding such a constant or an “ L” following it applies to all the bits,
inverting each one. Note that the <Multiplier> doesn’t multiply the numbers, but rather concatenates
each individual bit with itself the specified number of times. Thus “101 %*4” is the same as:

1:1:1:1:90:9:8:8:1:1:1:1

not “101:101:101:101” or “10110100".

4.6.12 Text Substitutions

Within a drawing, you can provide a list of text substitutions or abbreviations to be used
throughout that drawing.

Effectively, these are “text macros”, but we'll call them “substitutions” to avoid confusion with
drawing macros. Each substitution rule should look like “A=B”, where A is the abbreviation and B
is its meaning. The abbreviation must be a single word (that is, embedded spaces are forbidden) but
its meaning may be any string of characters including leading or embedded blanks.

To define text substitutions, you use a DEFINITION list similar to the PARAMETER and
DECLARE lists described in Section 46.8. Add to your drawing a fictitious body called DEF
(usually one keeps a template for it in a graphics editor library) and give it a property name/value
pair for each substitution rule. The properties are unimportant (by convention one uses “1” as the
first name, “2” as the second, and so on) but each value should give a substitution rule in the form

46.12 Text Substitutions a9

"A=B":

OEFINE
LOWBYTE=8:15
HIGHBYTE=8:7

Except inside the <Bit Subscript> portion of a signal name, you must surround an abbreviation
with " characters. This is a safety feature to prevent destruction of a signal name that happens to
contain one of these abbreviations within an otherwise innocent word.

(A more precise explanation is that the entity within the macro expander which scans signal names
operates in two states, either looking for abbreviations to expand or not looking for them. When it
gets to the beginning of the signal name, it enters the not-looking state. Each “\” toggles the state.
Thus, you could place a single ‘" before the first abbreviation in a name and leave the scanner in
the same state until the end. But it's safer and prettier to turn it off again with another %\”
immediately after the abbreviation.

When the scanner reaches the beginning of the bit subscript part, it enables text substitutions. If it
encounters a \” within the bit subscript, it will actually turn substitutions off.)

Substitutions are illegal in the first line of the title of a drawing.

The text substitutions defined in the previous example would cause the macro expander to expand
the following signal names as shown:

TOP OF STACK<HIGHBYTE> %--> TOP OF STACK<8:7>
TOP OF STACK<LOWBYTE> ==> TOP OF STACK<8:15>

The scope of an abbreviation-The definition of an abbreviation takes effect throughout the
drawing containing the definition, and throughout any macros called from that drawing, unless
those macros themselves override it by redefining the same abbreviation. Thus, the DEFINE list
implements dynamic scope similar to that of the LISP language and the macro expander’s own
DECLARE feature.

Special variables—As mentioned earlier, when you call a macro with SIZE set to a value other than
1, the macro expander executes an implicit loop from X FIRST to SIZE-1 by X STEP. The
variables X FIRST and X STEP default to 0 and 1 respectively, but a macro can use the DEFINE
list to set them to any desired values during its own evaluation. This has no effect, however, on
their value during evaluation of any macros which it calls in turn.

100 4 How to use the macro expander

4.6.13 Sundry Details About Naming Signals

The material in this section will interest the serious user of the macro expander, but the casual
reader may skim it without loss.

The PATH mechanism—-When you use “/M” to make a signal module-specific, or when you use the
DEFINE list to create a local scope for a signal, the macro expander must find a way to generate
multiple, distinct signal names from each of the names you invent. It accomplishes this by prefixing
the signal name with various paths.

A path is a route from the root of a tree to a particular node you're interested in. You can visualize
the process of expanding macros as a tree, where each node represents the invocation of a macro,
and the father of a node is whoever called the macro. You can derive a unique name for a
path—and thereby for a particular node—by tracing the chain of macro calls from the root (topmost
macro in your design) to the node you're interested in, making a list of the LOC body parameters of
all the macro calls in the chain.

Thus, when the macro expander wants to make a unique incarnation of a “/M” name (or of a global
name mentioned in a DECLARE list) for a particular invocation of a macro, it simply prefixes the
name with the path (in parentheses) to the node that represents that invocation.

Suppose a module called GAMMA has a module-specific signal called “MINE /M”. In Figure 4-10,
the invocation of GAMMA at the lowest level of the tree will have a signal named
Y¥A1B1 GI)MINE /M” while the other invocation of GAMMA will have a signal named
A1 GI)MINE /M". '

46.13 Sundry Details About Naming Signals 101

ALPHA
LOC = A1
BETA GAMA
LOC = B1 LOC = G1
GAMMA DELTAR
LOC = G LOC = D1
Figure 4-10

Macro expansion tree

When the SIZE parameter causes the macro expander to replicate a macro, the special variable X is
different for each copy. Since the macro appears only once in the drawing, there’s only one value of
LOC for all the copies. To distinguish them, the macro expander appends a “«”, followed by the
value of X, to the LOC value of each copy for which X is not 0. Thus, if X FIRST=0 and
X STEP=1 and SIZE=2, then a body at location Sl in the drawing will generate three bodies as
locations S1, Sl«l, and S1s2.

(Incidentally, the macro expander follows a similar convention to distinguish multiple copies
resulting from the TIMES body parameter. It appends a “+” followed by a number to each copy
after the first, so that a body at location S2 with TIMES set to 3 generates three bodies with
_ locations S2, S2+1, and S2+2. If a location has both a TIMES and a SIZE appendage, the TIMES
appendage comes first.)

The PATH text abbreviation—Ordinarily, such path construction is transparent. But the macro
expander makes the feature available to the designer, too, by providing a special predefined text
abbreviation “PATH”. When you use “PATH?” (inside most of the signal name, of course, you'll
have to write \PATH\ as you would with any abbreviation) in a signal name, the macro expander
will automatically substitute a parenthesized path for it during macro expansion. |

DOWN THE PRIMROSE \PATH\
becomes

DOWN THE PRIMROSE (G3 M1 R7)

102 4 How to use the macro expander

Obviously, it’s a good idea to place paths in the middle or at the end of signal names so there’s no
confusion between them and the ones the system adds for module-specific signals.

How is the PATH feature useful? Suppose you want to be able to access any register in your design
from a special piece of diagnostic hardware to aid in field servicing. You can hide this extra
complexity by providing a special macro called REGISTER which automatically generates the
proper circuitry. Each incarnation of this macro will need a pair of signals connecting it to the
diagnostic hardware. Giving the macro extra input and output parameters for the diagnostic signals
makes it more complicated to draw. But using globals poses a problem because each incarnation of
the macro needs a set of globals with unique names.

The solution is to use global signals but include PATH in each global name so that all incarnations -
of the macro will use the same global name—with a unique path name attached to the end of it
When the design is finished, these global signals will produce error messages because no hardware
exists to generate them, and you can then design the diagnostic hardware specifically to generate the
signal names that appear in these error messages.

Naming Unnamed Signals—When the designer does not name a signal, the macro expander always
derives an internal name for the signal. For each pin the signal connects to, the macro expander
constructs a possible name by taking the LOC parameter of the pin’s body, then appending a “%”,
next appending the signal parameter name from the property text field, and finally tacking on “ L”
if there’s a “x” in the property name for that pin:

<body LOC>%<signal parameter name>
Then it alphabetizes this list of possible names and uses the one that appears first.

When an unnamed signal connects to a body which has no LOC parameter, the macro expander
doesn’t construct a possible name for that connection. If that leaves the macro expander with no
possible names to choose from, then it will reluctantly construct a name of the form:-

X<number>%<signal parameter name>
followed by “ L” if the signal invokes low. Then it alphabetizes these and selects the first.

Synonyms--Putting two names on the same signal is perfectly legitimate so long as the names don't
conflict on matters like timing or the number of bits the signal represents. The macro expander
considers such names to be synonyms.

When the signal in question has multiple bits, the macro expander matches the individual bits of
one name with those of the other in row major order. Thus if signal A:B:C is synonymous with
signal Z<0:2>, then A is the same as B<0>, B the same as Z<1>, and C the same as Z<2>. If signal
X<0:3> is synonymous with Y<0:1,0:1>, then X<0> is the same as Y<0,0>, X<1> the same as Y<0,1>,
X <2> the same as Y<1,0>, and X<3> the same as Y<1,1>.

46.13 Sundry Details About Naming Signals 103

XB
N BIT REXUERSFL ot S
' DEFINED AS...
INC@:SIZE-1:1> AP OUT¢SIZE-1:8:-1> /P
OR
INGX> AP OUT¢ SIZE-X-1> /P
Figure 4-11
Bit reversal

Figure 4-11 shows two different ways to reverse the bits of a bus usinglsyn'onyms. The first uses a
step size of -1 in the bit specification, while the second uses the special variable X which the macro
expander increments from X FIRST through SIZE-1 as it expands any macro.

104 4 How to use the macro expander

4.7 Matching Signals with Bodies

Just as programming languages demand that actual parameters match formal parameters in terms of
data type and number, so the macro expander demands that signals match body pins in terms of
assertion level and number of bits. '

As mentioned earlier, if a signal has the ® L” (<Assert Low>) option, you may connect it only to pins
which have diamonds. If a signal asserts high, then you may connect it only to pins which don’t
have diamonds.

Similarly, the number of bits that a signal name represents must match the number of bits that a
body pin represents. It’s not always apparent from the outside of a body which pins represent
multiple bits, as the Figure 4-12 shows. '

4B
CONTRIVED
EXAMPLE

+X

CK

Figure 4-12
Common pins

The CK input of this register is a one-bit signal or common pin, since a single clock suffices for
multiple cells of the register; the I input and T output are four-bit signals, since they are a function
of size. The parameter list inside the drawing that defines the macro determines this by specifying
CK independent of SIZE and by dimensioning I and T to have the number of bits specified by
SIZE:

CcK
1<B:S1ZE-1>
T<B:S51ZE-1>

Reconciling bits—-the macro expander deals with vectors and arrays of bits in row major order.
That is, whenever it processes the bits it travels through an array from the Oth bit to the highest

4.7 Matching Signals with Bodies 105

order bit, varying the rightmost subscript most rapidly.

When a multiple-bit signal connects to a multiple-bit input on a body, the only requirement is that
the number of bits in the signal matches the number of bits in the input. The means of arranging
the multiple bits or multiple inputs into a vector or array doesn’t matter; in effect, the system
converts the pins into a vector (a one-dimensional array) using row-ma jor order, converts the signal
bits into a vector using row-major order, and connects the two vectors bit by bit.

Obviously, this works most neatly when the pins and signals comprise arrays with precisely the same |
dimensions. But using arrays with like numbers of elements but different dimensions (connecting a
2x6 array of signal bits to a 3x4 array of pins, for example) is permitted also.

Similarly, concatenation always decomposes various signals into vectors (that is, one dimensional
arrays) of bits if necessary before “glueing” them together. The decomposition takes place in row
major order as just explained.

106 4 How to use the macro expander

4.8 Fictitious Bodies

el

Along with ali the bodies that eventualiy resuit in semiconductors and wiring, macro expander
drawings also use bodies that denote no hardware whatsoever, but convey information to the macro
expander and router.

Not--As mentioned earlier, a NOT body allows you to flout assertion—checking conventions for a

particular signal. On one side of the NOT body, the signal is considered to assert high and on the
other to assert low, as Figure 4-13 shows.

CELAY=S.¢ ueLAre. @ tELare.0 ceLAT-e.0
240 5 2 %o S 20 j—-—?"——' nd
oELAT~e.8 omar-e.e omar-e.e onAr-s.e

* *
@, J & J & @ QO
WRONG RIGHT
Figure 4-13

g S

U_:_ o RTAT L .
smg NU 1 DOAIES

Slash—A vertical or horizontal slash has no effect, but makes clear the number of bits on a bus

(Figure 4-14).

48 Fictitious Bodies 107

368
R REG RS 3¢
? R3 T / 2¢5: 40>
DELAY= / ’
0.2,8.9,9.0
CcK
/36
Y<4:3P /
Figure 4-14
Slash body

Merge-Using the “” operator to combine individual signal names as explained earlier in this
chapter can leave a lot of ugly unconnected lines. A prettier means to the same end is to use a
fictitious body called a “MERGE", which joins the lines representing two or more signals. The signal
on the branch marked “H” supplies the high order bits, the signal on the branch marked “M” (if

any) supplies the middle order bits, and the signal on the branch marked “L” supplies the low order
bits (Figure 4-15).

DRLAYS.0 DRLAY-S.8
% ﬁ
o x
DRLAT-e.0 ’ DELAY=S. 9
2 a0 u:bc 2 %0 " u:v.bq
* a1 evGews |, * % j m .y
oRLAT. -
- 0.0.¢.6. 0.0 — (o.m.o o
RLAT..0 Lo AY-S.0 : L]
o (39
Figure 4-15

Three way merge

108 4 How to use the macro expander

You can similarly use a reverse MERGE to split a multiple-bit signal and feed pieces of it to
various destinations (Figure 4-186).

 caRAre.e
L2

2 20
X

;
5

s

{2;

ox

Figure 4-16
Reverse merge

Sign Extension-To widen a signal by replicating the sign bit, use the body shown in Figure 4-17.
That example would convert SIGNAL<0:3> into SIGNAL<0>x5:SIGNAL<1:3> and call the result
WIDESIGNAL<0:7>. MNAME is the property that provides the text “4 TO 8”".

A‘ . v
SIGNAL<@: 3> 4708 WIDESIGNAL<@: 2> '

— =

Figure 4-17
Sign extension

Wire-Or-As mentioned earlier, the macro expander does its level best to prevent you from
connecting outputs together accidentally. If you truly intend to connect two signals, you must use a
WIRE-OR body to do so. Unlike an actual OR, the WIRE-OR implies no hardware, but simply
connects the signals. Bodies exist for positive and negative assertion (Figure 4-18).

48 Fictitious Bodies

o O

109

WIRE
OR
«X

WIRE WIRE
OR OR
+X +X

Figure 4-18
Wire-Or bodies

Comment, Par, Def, Decl~-The PAR, DEF, and DECL bodies were mentioned in sections 4.6.8 and
46.12. The COMMENT body works similarly, allowing you to attach to it body text which appears
on your drawing as a comment and has no effect on the macro expander.

110 4 How to use the macro expander

4.9 How to construct the Terminal File

As mentioned earlier in the chapter, there are two kinds of terminal files: an actual IC terminal file
for use when generating wirelists for the router, and a primitive terminal file for generating input to
the simulator. When you run the macro expander program, you tell it which file to use.

The format of the terminal file is the same in either case: a series of entries listing the inputs and
outputs of the macro.

On any particular line of the file, anything to the right of a ™” is a comment. Otherwise, the entries
appear in free format, each ending with a semicolon.

Here’s a typical entry:

PARITY GEN 109168 [SIZE=3] (1920168,1) IA<8:8>, IB<B:8>, ZA /V,
ZB /¥, CL /V;

The individual items in the entry are:

® The name of the macro representing the actual IC (which should exactly match the name
of the drawing that defines that IC and the macro body that represents it). In the
preceding example, the name is “PARITY GEN 100160”.

® An optional expression like “SIZE=9" which serves as a selection equation similar to that
of the second line of a drawing title. You can make multiple entries in the terminal file for
a given IC, and the macro expander will choose from them the entry whose selection
equation evaluates to TRUE. (In the terminal file, it’s permissable for none of the
equations to evaluate to TRUE, in which case the macro expander will decide that it
hasn’t reached the definition of an actual IC after all, and will go search for a drawing to
expand. This is handy, for example, when you want to use an actual IC when SIZE is
small enough but cascade several ICs when SIZE is too large.)

If it appears, this optional expression must be enclosed in square brackets.

® A pair of items inside parentheses: the chip name followed by the number of copies of the
same function within each IC. Typically, the chip name is simply the manufacturer’s part
number. SCALD allows you to use an elaborate macro name during the logical design
phase, translating it into the actual part number for use during the physical layout and

prototyping.

® The names of the input and output signal parameters for the macro, separated by commas.
Each name should include the desired <Class>, <Simple Name>, <Timing Assertion>, and
<Bit Subscript> parts. List either the uninverted or the inverted form of a signal, but not
both. If a signal is an output, append a “/V” to the name.

49 How to construct the Terminal File 111

For a logical primitive, each parameter name must match the corresponding one built into
the SCALD logic simulator. For either an actual IC or a logical primitive, each parameter
name must match that in the property text field for the corresponding pin of the body
definition, except that the property text field will lack the <Assert Low> and <Bit
Subscript> portions of the name.

Note again that the entry for each macro ends with a semicolon.

112 4 How to use the macro expander

4.10 Running the Macro Expander

Once all the drawings are prepared, using the macro expander is simply a matter of running the
program and specifying all the files it needs.

First you must run the WDPR program to translate binary files from the graphics editor into a form
that the macro expander can read. It will ask you for the name of a "WD input file” {the one you
want to convert) and a “WDP output file” (the one it will put the conversion into) When it’s
finished, it will print “Done.” and ask you for a new pair of names, again and again till you abort it.

To run MAGC, the macro expander itself, first prepare a file containing nothing but the word
“END”, which you’ll use to terminate input to the expander.

Then run the program. It will ask for the following files:
MACLST--The file into which the program writes its listing.

MACEXP-~The file into which the program writes the list of bodies and connections resulting from
the macro expansion, which will serve as the input to the next phase of SCALD.

TERM-The TERM file from which the program reads parameters of terminal bodies.
WDP-Tell the program the names of the files produced by the WDPR program for the individual

drawings. The macro expander will ask again and again for FILEO until you give it the file
containing only “END”.

4.11 The Macro Expander Listing 113

4.11 The Macro Expander Listing

The macro expander produces an extensive listing. We'll discuss the individual phases of the listing
in order of appearance, showing an example of each phase. The examples are occasionally distorted
somewhat to squeeze within the width of the page, or to illustrate additional features of the
program.

Progress report—This gives a dutiful account of the program’s activities:

READING TERMINAL BODY DEFINITIONS
FINISHED RERDING TERMINAL BODY DEFINITIONS
READING MACRO DEFINITIONS STRRTED
FINISHED RERDING MACRO DEFINITIONS

Undefined macros—A list of each macro you failed to define, along with the name of the macro
which attempted to call it. Despite these errors, the program expands the design as far as it can;
connections to undefined macros are simply missing from the output file.

To help you find macro definitions in the listing, the program assigns a number to each macro that
does have a definition, according to the order in which you supplied the macro names to the
program. Thus in the following example, “93" is the number assigned to macro “FORMAT
CONTROL".

UNDEF INED MACRO(S):

"DUAL 1 OF 4 DECODE 188178L “ CALLED. FROM “FORMAT CONTROL #93*

"INT FP SUBTRACT “ CALLED FROM "INT FP R-B #183*

®INT FP ADDER ® CALLED FROM “"RND NORN #111*

“l88i72 ® CALLED FROM ™1 OF &8 DECODE 188178 #143"
"188178 ® CALLED FROM "1 OF 8 DECODE 188178L #144"
"NOBY hUX ¥ CALLED FROM "ABOX #148"

“MOBY MUX “ CALLED FROM "ABOX #149"

Alphabetic macro list-The names—as given by the MNAME property and by title line 1—of all
the nonterminal macros that are defined, in alphabetic order. Again, each macro’s number follows its
name.

The column marked “CALLS” gives the number of static calls on the macro: the number of times it
appears in somebody else’s definition, rather than the number of times it actually occurs once the
expansion takes place. For example, suppose a macro called POPULAR appears once in the
definition for macro ALPHA and twice in the definition for macro BETA. Static calls on
POPULAR total 3 even if ALPHA gets used 36 times and BETA never gets used at all.

The column marked “FILE” gives the project name (see Section 2.2.1 for details), if any, followed by
a dot and the name of the file holding the drawing for this macro. Sometimes several different
drawings may define a given macro; in that case, the *macro portrait™ phase of the listing (described

114 4 How to use the macro expander

later on) gives all of their names, but only the first of them appears here.

SEQ CALLS FILE NACRO DEFINITIONCRLPHABETICALLY ORDERED)
1 8 LOK.17881(MK2,51] 1 OF 8 DECODE 188178 #143
2 2 LOWN.17880[MK2,S1] 1 OF 8 DECODE 188178l #£144
3 2 LONW. 187CHP [NK2,S1] 188187 CHP #142
4 22 180112.188112{MK2,51] 188112v #81
5 3 LOW.188RDD (NK2, 511 ‘ 18 BIT ADDER 188K #85
8 4 RCNMPY.23X18RINK2,511 18X18 RECODE MPY #79

Readin-ordered macro list—Identical with the precediné list, but with the macros appearing in the
order in which you supplied their names to the program. :

Terminal body list-A list of terminal macros—that is, the macros at the very end of the chain of -
expansions, which cannot themselves be expanded. If you are going to use the logic simulator, these
will be logical primitives; otherwise, they'll be macros representing actual integrated circuits.

For each macro, the CALLS column gives the number of static calls upon that macro, the
TERMINAL BODY column gives the macro name corresponding to the MNAME property or to
title line 1, and the CHIP NAME column gives the chip name that will be used by subsequent
programs in the SCALD family. (The terminal file tells SCALD which chip name to use for each
terminal macro; see Section 4.9 for details).

SEQ CRLLS CHIP NRNE TERMINAL BODY

1 57 18g@1el 180181

2 74 180182 188182

3 1 HNB7871H 2560 RAN MB7871H

4 3 180183 2X8 BIT RECODE MPY 188183
5 7 188179 CARRY LOOK-AHERD 188179

Terminal portrait—For each terminal macro, the program provides a detailed description. First the
program prints the MNAME of the macro and the number assigned to the macro. Then it prints
the number of static calls upon the macro, and the filenames and MNAMEs of all the other macros
which called it.

After the MNAME of each caller, the program prints the caller’s number, and the values of
parameters LOC and SIZE which the caller used in invoking this terminal macro. (The program
omits the SIZE parameter here if SIZE=1.)

Following the list of callers, the portrait shows the formal parameters for the terminal macro, just as
they appear in the terminal file.

In the example below, for instance, macro “CARRY LOOK-AHEAD 100179", whose identifying
number is 69, was called four times by macro *72 BIT CARRY OUT ADDER”, whose number is
118. The drawing defining macro 118 is in file COA[MK25S1] which belongs to project COA.

411 The Macro Expander Listing : 115

Since the program didn’t print the SIZE parameter, COA must have invoked this terminal macro
with SIZE=1. It did so at locations C1, C2, C3, and C4.

The macro’s parameters are “CO+2468 L<0:3> /V”, “PG L<0:7,0:1>", and “CI L".

TERMINAL: CARRY LOOK-RHERD 188179 NUMBER 69

CALLED 7 TINES FROM: COR.CORIMK2,S11 72 BIT CRRRY OUT ADDER #118(L0CaC2)
. COR.COAMK2,S1] 72 BIT CRRRY OUT RODER #118(L0CaCl)
COR.COAINK2,S11 72 BIT CARRY OUT ADDER #118(L0C=C4)
COR.CORINK2,S1] 72 BIT CARRY OUT ADDER 2118(L0C=C3)

LOW.188ADD[MK2,S11 18 BIT ADDER 188K #85(LOC=CLR)

LOW.36BRDD(MK2,S11 36 BIT AODER 188K #84(LOC=CLAL)

LOW.36BADD[MK2,S11 36 BIT ADDER 188K #84(LOC=CLA2)

PARAMETER C0+2468 L<8:3> /V, PG L<8:7,8:1>, CI L

Macro portrait-A detailed description of an individual non-terminal macro.

The program first prints the macro MNAME and identifying number. In the following example, the
name is HW MPY RND NORM and the number is 106.

Then it lists all files which define the macro; elsewhere in the listing, only the first of these
filenames will appear. (Typically one would encounter multiple files because each file has a different
selection equation as explained in Section 4.4, not because a macro definition won't fit in a single
file) For each file, the program prints the project name (explained in Section 2.2.1) followed by a
dot and the actual name of the file. In the example, a single file called HWRNI1[MK2,51] in project
HWMRN defines the macro.

Next the program gives the number of static calls on this macro and lists each of the callers; for
details, see the preceding explanation of the terminal portrait. In the example, macro 106 is called 4
times by macro “HW ADDER ROUNDER".

Next it lists the formal parameters of the macro, just as they appear in the PAR body inside the
macro’s definition.

Next the program lists each of the synonyms—signals which have more than one name-~within the
macro’s definition. In the example, for instance, signal %1% is the same as
MUXO0Z0:MUX0%1:MUX0%2. (Evidently, this resulted from using a MERGE to concatenate three
unnamed signals into one.)

116 4 How to use the macro expander

Next the program lists all of the text substitutions given in the DEFINE body inside the macro’s
definition. In the example, X STEP is defined to be "1”. Next the program prints a list of the
synonyms that result when a fictitious SLASH body splits one signal into two identical pieces within
the drawing that defines the macro. In the example, for instance, a 9 bit wide signal from the body
at LOC=TG apparently got interrupted, forcing the macro expander to invent two synonymous
names, %27 and TG%T, instead of just one.

Finally, the program prints one entry for each of the macros called by this macro. At the left of the
entry is the LOC parameter for the call. To the right of that is a paragraph beginning with the
macro MNAME and number. If the SIZE parameter for the call is not 1, it appears in parentheses
following the macro number. Then the program prints a list of formal/actual parameter pairs, also
in parentheses. '

If the macro being called is a terminal, a “%” appears in front of its name; if it’s undefined, a ?”
appears in front of its name.

If, from the caller’s viewpoint, a formal parameter asserts low (in other words, the pin corresponding
to that parameter has a diamond), a “x” appears after its name in the parenthesized list. If the
caller did not supply a signal for a particular formal parameter (in other words, left a pin
unconnected in the drawing), then the formal/actual parameter pair will look like

FORMAL = ,
instead of
FORMAL = ACTUAL,

In the following example, for instance, the macro calls another macro "HW EXP” with LOC=EXP
and SIZE=1 (we know that because no size appears on the listing). The macro expander connects
signal EXPZEXP to formal parameter EXP, signal EXPZOVFL UNFL L to formal parameter
OVFL UNFL Lx, and so on. Formal parameter OVFL UNFL Lx asserts low, as shown by the “x”
following its name. The macro also calls “100171", which is a terminal macro as shown by the “x”
preceding its name, with LOC=MUXO0 and SIZE=6B, and so on.

When a macro lacks one of the features just described, the program omits the corresponding portion
of the profile. Thus, if a macro contains no text substitutions or synonyms, the DEFINE and
SYNONYM portions of the profile would not appear at all

NACRO: HW MPY RND NORM NUMBER 188
FILES: 1/1 HUWNRN.HURNL[MK2,S1]

CALLED 4 TIMES FROM: HWADDRND.HWRDDRIMKZ,S1] HW ADDER ROUNDER #112(LOC=RN3)

411 The Macro Expander Listing 117

HUADDRND . HUADDR (NK2,51]1 HW RDDER ROUNDER #112(LOC=RN2)
HWRDORND.HWRDOR (NK2,511 HW RDDER ROUNDER #112(LOCsRN1)
HURDDRND. HUADDR [MK2,51) HW ADDER ROUNDER #112(LOCsRN®)

PARAMETER T«<B8:26>/V, CTRL, I<HWBUS>

SYNONYHN 21% = NUXBZ8:MUXBX1:NUX8X2
227 = NUX1X8:MUX1X1:MUX1%2

SLASH (SIZE=9)%2Z = TGXT
(S1ZE«18) %1% = EXPXEXP
(SIZE=1) TGZINT OVFL L = RNXOVFL L
(SIZE=B)EXPXOVFL UNFL L = TGXFP OVFL UNFL L

DEFINE X STEP= 1§
MRCROS CALLED

EXP HW EXP #187 (EXP = EXPXEXP, OVFL UNFL L# = EXP%OVFL UNFL L,
I = I<HUEXP>/P ;HERE AT START OF A2)

nuxe $188171 #68(SIZE=EB) (T Lz = , 8 « NUXBXE, 1 = MUX8ZL,
2 = HUXEX2, 3 « 836, 5 « EXPONENT OFFSET<8:1>/H,
T = T<8:5>/P, OF Ls = MPY HM SEL ENR R3.C3 L)

nuxi 2188171 #3(SIZE=3B) (T Lz = , 8 = NMUXiXB, 1 « MUXiZl,
2 = NUX122, 3 = 823, S = EXPONENT OFFSET<8:1>/M,
T = T<24:265>/P, OFE Ls = NMPY HU SEL ENA R3.C3 L)

RN RND NORM #111 (EXP = EXPONENT OFFSET<@:1>/M, OVFL L% = RNXZOVFL L,
T = T<B:235>/P, I = I<HWFRAC>/P ;HERE RT START OF R3,
CTRL = CTRL/P)

16 H4 TAG MODIFIER #1838 (T = TGXT, INT OVFL Ls = TGXINT OVFL L,

FP OVFL UNFL Ls = TGXFP OVFL UNFL L,
I « I<HRTRG>/P ;HERE AT START OF A3)

Expansion trace-As it processes your design, the program prints a line of text every time it
expands a macro. Up to now, the listing has dealt with the static structure of the macro hierarchy;
this part of the listing traces all the dynamic calls. The left half of each line describes the path
(defined in Section 4.6.13) leading to that particular macro call, and the right describes the call.

118 4 How to use the macro expander

To describe the call, the macro expander prints the level of the call—that is, how deeply the call is
nested—the name of the macro it’s expanding, the value of the special variable X (as described in
Section 4.3.1, the macro expander uses X to count from X FIRST to SIZE in increments of
X STEP, determining how many times it will replicate a given macro), and the value of the SIZE
parameter used in this call.

In the following example, the first line represents the expansion of the body at location ABOX.
This occurs at level 1, and involves a macro called “ABOX” whose number is 149. X is 0 during
this call, so the expansion produces a single copy of ABOX. The parameter SIZE is 1.

The second line shows that the program expanding the body at location 1AM within the macro at
location ABOX. This one is a terminal called “100171” whose number is 68. Again, X=0 and.
SIZE=1.

The third line shows the program expanding the body at location 1AM2 within the macro at
location ABOX, and so on.

The next interesting expansion occurs several lines later in the original listing, so our example skips
the boring part. Look at the line immediately following the skip. Here you can see what happens
when the loop from X FIRST to SIZE produces ,fnore than one copy of a macro during a single
expansion. The fourteen lines following the skip alternate between macro 129 at level 6 and
terminal macro 58 at level 7. The first instance of macro 129 occurs with X=0, the second with X=8,
the third with X=16, and so on; we can infer that X runs from X FIRST=0 to SIZE=48 with an
increment of X STEP=8.

MACRO EXPANSION PASS 1

(ABOX) LEVEL: 1 MACRC: ABOX 2148 (X=g,SIZE=L)

(RBOX 1RNMI) LEVEL: 2 TERMINAL: 188171 288 (X=8,SIZ2Ea182)

(RBOX 1RNM2) LEVEL: 2 TERMINAL: 188171 #88 (Xa8,S1ZE=182)

(RBOX 1hM1) : LEVEL: 2 TERMINAL: 188171 #68 (X=8,SIZE=182)

(RBOX 1MM2) LEVEL: 2 TERMINAL: 188171 #68 (X=8,SI2E=182)

(RBOX 1MULTFU) LEVEL: 2 HACRO: MULTIPLIER FCN UNIT 2158 (X=8,5IZEal)

(RBOX 1MULTFU HWRR) LEVEL: 3 MACRO: HW ADDER ROUNDER #112 (X=8,S1ZE=1)

(RBOX 1MULTFU HHRR AMB) LEVEL: 4 MACRO: INT FP A-B 2183 (X=8,SIZE=l)

(RBOX 1MULTFU HWRAR ANB MOD8) LEVEL: 5 MACRO: R+B TRG MODIFIER #114 (X=8,SIZE=1)
<hare ue skip a feu lines to avoid monotony>

(RBOX 1MULTFU HKRR ANB V8 R) LEVEL: 8 MACRO: SHIFT REG CLR 188141 #1239 (X=8,SIZ2E=54)

(ABOX 1NMULTFU HWAR ANB V8 R R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #58 (X=8,SIZE=l)
(RBOX 1MULTFU HWAR AMB V8 R#8) LEVEL: 6 MACRO: SHIFT REG CLR 188141 #1239 (X=8,SI12Ex54)
(ABOX 1MULTFU HUAR ANMB V8 R#8 R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #S8 (X=8,SIZExl)
(RBOX 1MULTFU HWAR AMB V8 R#£18) LEVEL: & MACRO: SHIFT REG CLR 188141 #129 (X=16,SIZE=54)
(RBOX 1MULTFU HWAR RANB VBVRIIS R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #S8 (Xa8,SIZE=1)
(RBOX LMULTFU HUAR RMB V8 R#24) LEVEL: 8 NACRO: SHIFT REG CLR 188141 #123 (X=24,SIZE=54)
(ABOX IMULTFU HWAR AMB VO R#24 R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #S8 (X«8,SI1ZE=l)
(ABOX 1MULTFU HWAR RMB V@ R#32) LEVEL: 6 MACRO: SHIFT REG CLR 188141 2129 (X=32,S5IZE=54)

4.11 The Macro Expander Listing 119

(RBOX 1MULTFU HWAR AMB V@ R#32 R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #58 (X=8,SIZE=l)

(RBOX 1NMULTFU HUAR AMB V@ R#4©) LEVEL: 6 MACRO: SHIFT REG CLR 188141 #1239 (X=48,512Es54)
(ABOX IMULTFU HUWAR ANMB V@ R#48 R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #S8 (X«=8,SIZE=l)

(RBOX LNMULTFU HUAR AMB V8 R¥48) LEVEL: © MACRO: SHIFT REG CLR 180141 #1239 (X=48,S12E=S4)
(RBOX 1MULTFU HWAR AMB V8 R#48 R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #58 (X=8,S51ZEal)

(RBOX 1MULTFU HWAR APB) LEYEL: 4 NMARCRO: INT FP R+B 2184 (X=8,S1ZE=l)

Chip counts~For each nonterminal macro, the program tells you the names and numbers of all the
terminals that it requires. This includes terminals it uses indirectly--that is, by calling other
nonterminals which in turn use the terminals—as well as the terminals that appear directly in this
macro’s definition. And the totals for a particular macro represent all cails on that macro throughout
the system, not just a single invocation. '

This is useful for estimating the cost of any particular part of the design. And the listing for the
highest-level macro in your design will, by definition, give totals for all chips used throughout the

design.

Note that these totals count each invocation of a terminal macro, even when one actual IC
containing multiple sections can provide several copies of a macro.

SUMMARY OF TOTAL CHIPS USED BY ERCH MACRO
HACRO: 18X18 RECODE MPY NUHBER 79

CHIPS TYPE
38 188117
188 188183

144
MACRO: PARTIAL PRODUCT SHIFTER NUMBER 88

CHIPS TYPE
4 188182
4 188188

Error summary-—At the end of the listing, the macro expander prints the number of errors found
throughout all passes of the program. The actual messages are printed in various phases of the
listing.

120

4 How to use the macro expander

121

5 A Guded Tour of a SCALD Macro

If you followed the guided tour of the graphics editor in Section 3, you are now no doubt sick of the
drawing that defines macro 10016. But you are also no doubt very familiar with it, so it seems like
the best locale for a guided tour of the aspects of 10016 that relate to the macro expander language
itself. :

This time, we won't try to take you step by step through the thought process of the guy who made
the drawing originally but instead will let you wander around enjoying the sights while we offer

random comments.

Figures 5-1 and 5-2 give a reprise of the drawing and the body respectively.

122

5 A Guided Tour of a SCALD Macro

o "': uIo™ TP HAD OK
1 2
HIGHna. 0, .
L0 =48 NP2 8,
LD «1.0
x
Ne.60.4] # -
e e e
s m
TR »
Imare 7
. 2.6,2.4,5.0
> » x
ORLAT - .8
*a> & N
D4 ULSE MID™H
oK~ 1)
NIGh1.G,
LOM =2.5
Fe[e.5]
= " =N, :o ox caar-e.e
% T PRRFTETER
1 s 4o 10>
¢!
- =L, Tus [o
. HOLD 4.5 L L e a
x LA
o L
x - 1 T0nr N
TLN
Figure 5-1

The drawing

5 A Guided Tour of a SCALD Macro

PIN NAME = 2/8B

PIN NAME = {

PROP NAME = | ——>

PRCP TEXT = I

PIN NAME = 2
PROP NAME = 2
PROP TEXT = CK

PIN NAME = 3
PROP NAME = 3
PROP TEXT = R

PIN NAME = 3/8

xB
10016
+X

R PE CNTH

AN

PIN NAME = 4 -

PROP TEXT = PE

Figure 5-2
The body

123

PIN NOME = 7
PROP NAME = 7L+
PROP TEXT = TC

PIN NAME = 6
PROP NAME = 6
PROP TEXT= T

PIN NAME = 5
PROP NAME = GLw
PROP TEXT = CNTE

PROP NAME = 4L+

The drawing’s mission in life is to describe a four bit binary counter in terms that the SCALD
simulator can understand. The counter has a clock input CK and a four bit paraliel output T, as
you would expect. It also has a reset input R, a count enable input CNTE, a four bit parallel input
L, a parallel load enable PE, and a terminal count TC which goes low when T reaches 15 decimal.

The various inputs and outputs work together like this:

CNTEL PEL

»$n X
» ooon

T e

R I e

CK

Function
Load parallel
Count

Hold

Reset

Now one way to represent such a counter is to cascade four master-slave flip flops and a bunch of
gates. But that way madness lies, because while the manufacturer provides such a representation on

124 - 5 A Guided Tour of a SCALD Macro

the data sheet, the data sheet parameters don'’t deal with it on such a microscopic basis. Rather, they
simply describe the setup and hold times for the various clock and enable signals, plus the delay

from the time the device is clocked until all outputs have responded.

An easier representation of a counter is an adder which adds one to its outputs every time a clock
pulse occurs (Figure 5-3), which is basically the approach that the drawing takes.

. DELAY = 8.0
T<B:3 g\ . o
48 LATCH
>QDDER 1 L1 T T¢CQ: D
) F DELAY=
Al 2.9,3.6,5.02
0001
CK

Figure 5-3
A simple view of a counter

The extra bodies and signals in the actual drawing serve either to represent extra functions like TC
and PE, or to specify setup, hold, and delay times. ,

For example, the data sheet specifies that you must set up PE or CE 2.5 ns before CK and hold
them 0.5 ns after CK; the body in the lower left corner informs the simulator of this.

The data sheet specifies that the delay between CK and T is 2.0 ns minimum, 3.6 ns typical, and 5.0
ns maximum; the VAR parameter on register R1 expresses this. The delay from R to T is 4.0 ns
typical, so a delay of 0.0,0.6]" on the R signal itself added to the 3.6 ns typical delay on register R1
achieves this.

The drawing illustrates a few intimate details of SCALD syntax, too. For example, we want the
adder to add the CNTE signal to the outputs so that the counter counts when CNTE is high and
holds when CNTE is not. That’s fine, but the macro expander will not let you apply a one bit signal
like CNTE to a four bit body like the adder, so you must use a MERGE body to concatenate the
three bit binary constant signal “000” to CNTE.

When the outside world asserts PE, the signal goes low, so we want the low state of PE to select the
0 input of our multiplexer and thereby choose the parallel inputs I. But using PE L would cause
problems because the multiplexer’s S input has no diamond, so we use -PE instead: same signal as

5 A Guided Tour of a SCALD Macro 125

the PE L which the outside world sees, but no diamond required.

Note that you must use a bit of care in a case like this: the macro expander will permit you to use
PE rather than -PE or PE L in your drawing even though the outside world gives you only PE L,
but if you carelessly omit the “-” or “L”, the macro expander will invert the signal for you for free,
either by finding an inverted form in the outside world or by permuting inputs to the multiplexer.

The first line of the title indicates that this drawing is a candidate to define any body whose
MNAME parameter is “10016”. The second line, however, makes it a successful candidate only if
the body’s SIZE parameter is 4. If you use this body with SIZE set to some other value, you'l
presumably have another drawing with “10016” as the first line of its title, which cascades enough
four bit units to make up the required size.

126

5 A Guided Tour of a SCALD Macro

127

6 How to use the timing verifier

The timing verifier reads the output of the macro expander and checks for timing errors using
knowledge of the minimum and maximum propagation delays of the circuit components, their
set-up and hold times, minimum pulse width constraints, and wire delays.

An important feature permits verification of individual modules instead of the entire design. This
permits the program to execute on computers with limited memory size, allows errors to be
discovered daily, before they can propagate through the design, and helps estimate a machine’s cycle
time before the design is complete. ‘

The verifier gets information about the design from- several different sources:

For each terminal body—that is, each actual IC function—used in the design, the designer
must provide a macro definition in terms of logical primitives. These primitives describe
the timing constraints of that terminal body.

Within the logical design of the machine, the designer may estimate wire delays for certain
critical signals as part of the signal names. "

The designer may optionally make assertions about the timing of a particular signal,
incorporating them in the signal name.

The designer may specify how to evaluate the timing of certain gates by incorporating
directives in signal names.

After the physical design system lays out the parts and routes wires, it provides wire delay
information, based on chip electrical characteristics and actual wire lengths, for all signals.

This section will first explain the theory behind the verifier, then explain how to define chips in
terms of logical primitives, and finally explain how to use wire lengths, assertions, and evaluation
directives in a design.

128 6 How to use the timing verifier

6.1 Theory of operation

Within synchronous sequential circuits, most signals can change only during particular parts of the
clock period. For example, it may be possible for a particular signal to change only during the
second half of the clock cycle, provided all of the components making up the system are within their
timing specifications. B

Consider a register that can be clocked only at a particular time within the clock period. The output
of the register can change only during a short time after it is clocked, so it is guaranteed to be stable
for the entire clock period except around the point at which it is clocked. The output of a gate
driven from this register can then be changing only during a period of time determined by its
propagation delay and when the output of the register is changing.

Determining when within the clock period a given signal may be changing and when it is stable is
the key step for the timing verifier. Once this has been done, it is relatively easy to check all of the
timing constraints placed on the circuit. For instance, to check the set-up and hold times on a
register, the timing verifier need only determine whether its input could be changing at a time when
it might be clocked.

If the timing of the circuit never depended on the values of signals, but merely on when they were
changing or stable, the timing verifier would be very simple. Clock signals have a value which is
periodic, and have the same value every cycle, so they are easy to handle. The signals which are
difficult to treat are those whose vaiues affect the circuit timing, and which have different values
during different cycles of the circuit. For example, a control signal which determines whether a
register is clocked during a given cycle affects whether the output of the register might change that
cycle. If the circuit relies on the register not changing every cycle, then the timing verifier must do
case analysis to keep from generating false error messages. This requires the timing verifier to
check the type of cycle when the control signal is true, and to check the type of cycle when it is false.
This could be a time-consuming process, but in practice is not, because most signals have a
“worst-case” state. For example, the worst case for most registers is to assume that they are clocked
every cycle. Only in those situations where both the clocked and unclocked cases need to be checked
separately does the timing verifier have to compute both of them. In those cases, the timing verifier
remembers the values of all the signals which are not affected by the signal which is sub ject to case
analysis, and thus has to recompute only the signals which change with the signal being analyzed.

The designer must specify which signals require case analysis and list the cases; most circuits have
proven to contain fairly few such signals.

Basically, the timing verifier then takes the first case, calculates when each signal in the system could
be changing, and checks for violation of timing constraints for that case. It then goes on to the next

6.1 Theory of operation 129

case, recomputing only the signals which are different from those in the first case, and checking for
any possible timing errors. It repeats this process for all of the cases.

6.1.1 Circuit Period

The circuit being verified must contain one basic clock, whose period is specified to the timing

verifier. If different parts of the circuit run at different clock rates, then the period specified to the

timing verifier is the least common multiple of the clock periods. For example, for a processor
whose instruction unit has a period of 30 nsec and whose execution unit has a period of 15 nsec the

designer would specify a 30 nsec period to the timing verifier. Within the circuit, clock signals may

occur at any phase within the basic period.

6.1.2 Value system for signals

At any instant, each and every signal has one of seven values:

Value Meanin

0 false, or 0

1 true, or 1

S or STABLE signal is stable, not changing

C or CHANGE signal may be changing

R or RISE signal is going from zero to one
F or FALL signal is going from one to zero
U or UNKNOWN initial value used for all signals

The value of a signal over the clock period is represented by a linked list, each node of which
specifies a value and the duration of that value. The sum of the durations of all the nodes in the
list must equal the period of the circuit being analyzed.

When a signal propagates through a gate or wire where it is delayed by a variable amount of time,
then skew is added to the signal, representing the uncertainty in when the signal will subsequently
change. This skew is maintained separately in the representation of the signal to preserve
information about the width of pulses in the signal, in order to avoid bogus timing errors asserting
that minimum pulse width requirements have not been met. If two or more changing signals are
combined, the skew then cannot be simply represented separately. It is therefore incorporated into
the signal representation by using the CHANGE, RISE, and FALL values.

130 6 How to use the timing verifier

6.1.3 Combinational function

The following tables define the INCLUSIVE-OR (OR), EXCLUSIVE-OR (XOR), AND,
CHANGE (CHG), and NOT functions for the seven-value logic system used in the timing verifier.

ACRB

a
|

©
-
(72}
()
0
M
c

CTNIIONF- e~

= b o b ek s b
cTnaaowme—=w
oo
cOoOD—D0
cTnooMe-—mn
ccccarc

>
o >
12

a
xR @
[y
w
(]
o]
m
c

CTNOONF ¢

oOeEODR®
cnuon-e
chnumoOounns
coaonns
COUVODDIN
cToomms
cccccaonm

>

XOR

B~ 9

as]
-
w
)
oo
-n
c

CMNIONF &>

cnIIOnESN
/TN
cOoOOOnny
cOO0O0O0n0
cOOo0mDoD
coooOxm
cccccccac

6.1.3 Combinational function 131

A CHG B
AB—-»BISCRF-'U
% S § s C C C U
1 S § s CcCcCcC¢cC U
S S §s s C CC U
C c cccecocu
R c C cCCcCTCuUu
F c cccrcecu
] Uu u U u u uu
NOT A

A__

il 1

1 8

S S

C C

R F

F R

U u

The output of the CHANGE function has the value CHANGE if any of its inputs are changing;
otherwise it has the value STABLE. It is a useful function in modeling complex combinational
logic, where the actual function being performed is not important to the verification process.
Common examples are in the modeling of parity trees and adders, for which the timing verifier
cares only when the outputs of these circuits are changing, not for their actual value.

132 6 How to use the timing verifier

6.2 Defining chips

As Section 4 explained, the macro expander operates in either of two modes, depending on which
TERM file it uses. It can expand the design into a network consisting of macros which represent
chiptypes, or it can expand one level further, replacing each chiptype with a network of logxcal
primitives which describes the function and timing of the chxptype

To produce input for the timing verifier, the macro expander must run in the latter mode, and
therefore the designer must provide a drawing for each chiptype, defining that chiptype in terms of
the logical primitives shown in Figure 6~1. (This is actually a subset of the primitives; logic
simulation can use additional kinds not shown here.)

Delay-~Most of the bodies have associated with them a string beginning “DELAY=0.0". This is the
body parameter called VAR (represented in the graphics editor as a property name/text pair whose

name is VAR and whose text is that string). When using these bodies in a drawing, the designer

usually replaces the “0.0” with a delay expressed in nanoseconds, or a pair of delays (minimum and

maximum) separated by a comma, or a trio of delays (minimum, typical, and maximum) separated

by commas. Regardless of the number of zeros in the initial DELAY string for a particular body

template, any body can accept one, two, or three delay paramters.

Minimum pulse width-The body called MIN PULSE WIDTH accepts a single bit input and
checks that the pulses at that input exceed specified widths. The VAR parameter for this body is a
string, initially set to “HIGH=0.0, LOW =0.0", which specifies in nanoseconds how long the input
must remain high and how long it must remain low to avoid error.

Setup and hold check—~The body whose body name is SETUP HOLD and whose macro name is
SETUP HOLD CHK accepts an input (whose width is dictated by the SIZE parameter) at pin “I”

and a commen (one-bit) clock signal at “CK”. Its VAR parameter specifies in nanoseconds the
minimum setup and hold times for those inputs with respect to the rising edge of that clock.

The body whose body name is SETUP RISE HOLD FALL and whose macro name is SETUP
RISE HOLD FALL CHK works in similar fashion, but checks the setup time with respect to the
rising edge of the clock and the hold time with respect to the falling edge.

CHANGE gates—-The gates whose names include “CHG” strip away information about the actual
values—high or low—of their inputs. Their outputs have instead the two states STABLE and
CHANGING. This simplifies the definition of the timing of complex functions for which
knowledge of the exact logical operation is unnecessary.

AND, OR, and XOR gates—These operate in obvious fashion.
Latches and registers—Each of these accepts an input at pin “I” and an output at “T”; the SIZE
parameter dictates the width of those inputs and outputs. The *CK” (clock), “EN” (enable), “R”

(reset), and "S” (set) pins are common (each accepts a one-bit signal).

The first kind of register has only “CK” and “I” inputs, and cHanges its output on the rising edge of

6.2 Defining chips 133

“CK”. The output of the register will be set to the “"CHANGE” state between the time determined
by the minimum and maximum delays of the register following the rising edge of "“CK”. Unless the
T” input is a true or false during the rising-edge of the “CK” input, the output will be set to the
“STABLE" value for the rest of the cycle; otherwise, it will be set to the value of the *I” input.

The second kind of register has asynchronous “S” and “R” inputs in addition to the “I” and “CK”
inputs. If the “S” (or "R”) input is one, then it sets (or resets) the output of the register after the
specified propagation delay.

The output of the first latch merely follows the “I” input when the “EN” input is high, and is stable
for the remaindér of the cycle. The second latch has additional asynchronous “S” and “R” inputs,
which set or clear the latch when the “EN” input is low, after the specified propagation delay.

Multiplexers—Each of these bodies accepts an input at each of the numbered pins and an output at
“T”; the SIZE parameter dictates the width of those inputs and outputs. The “S” input is
common—one bit wide for the 2 MUX, two bits wide for the 4 MUYX, and three bits wide for the
8 MUX.

If the select lines are changing, the output of a multiplexer is changing. If the select lines are stable
but their value is not known, the output is the worst case of all the inputs. If the select lines have a
known value, the output reflects the appropriate input. A change in the select lines or the input
propagates to the output with the specified delay.

Note that these primitives are deliberately idealized, so it may take more than just a primitive latch
to model accurately a real latch, and more than. just a primitive multiplexer to model a real
multiplexer, and so on. In particular, the primitives provide the same delay from each input to the
output. If the real part exhibits different delays—if, for example, the “SET” input of a latch
propagates to the output more rapidly than does the data input—-then the definition must use a
buffer at the slower input to increase its delay.

134

LATOH =5 SENP HOD
) - -
LATOM ~s SETU® HOLD O
X £3 4 3
eare T T oare T b4 -
8.0,8.8,0. NP8, 0:
s.00.0 0.€0.0 0.0 el guepe
™ % o
LATOH Re "G ®3 SETUP RTSE HOLD FRLL
] -)
R LATCH RS R MG RS SETU® RI9€
: X LA LD Pl O
T T T 4 ot
DELRTe DELAT=
o.0,9. .8, ETUP-9.0;
0. 0.0.8.0 9.0.0.0,0.¢ D a.e
™ X x

@ Mx

/

e.0,8.9,9.0

o W 2 U N -

\

Figure 6-1

6 How to use the timing verifier

R WO

RE;

v
jv.i

Timing verifier logical primitives

Figures 6-2 and 6-3 provide two examples showing how to define the timing of a chip using these

primitives.

Figure 6-2 shows the definition of a 10145A, a 16-word RAM. Figure 6-3 shows the definition of
a 10158, a 2-input multiplexer. The 10145A example models only timing, not logic function, thanks

8.2 Defining chips 135

to the CHANGE gates, which strip away information about logic state. The model for the 10158, on
the other hand, is an accurate model, which could be used to do full logic simulation. For the 10158,
the model of its complete logical operation is necessary to verify timing constraints in many circuits.

Ieos2E-1> A

HRD ==1.8 101 S1IZE- 1> X STEP « SIZE [
L

s L
MO

SETUP HLD O TWUSLZE- &
cs

o> o
o '
T T o

Figure 6-2
A 10145A 16-word RAM

"3
i <
g

s

136

PRRYETER CEFDE FENFRCTUER
O SIZE-1> X STEP = SI2E "
1¢9:S12E- >

S
Teor $TI2E-1»

S GSIZE-1> A

14Q1ST2E-1> #

Figure 6-3
A 10158 2-input multiplexer

6 How to use the timing verifier

6.3 Preparing input for the verifier 137

6.3 Preparing input for the verifier

Assertions, estimated wire delays, and evaluation directives are all incorporated in the names of
signals in the drawings that make up the design (not in the drawings that define individual chips).

6.3.1 Wire delays

To specify a wire delay for a particular input signal, the designer must name the signal and include
a <wire delay> after the <bit subscript> part (if any), as described in Section 4.5. Expressed in
nanoseconds, this consists of either a single value or a pair of values (minimum and maximum,
respectively) separated by a colon. In either case, enclose the delay in square brackets:

SHORT WIRE L<@:7>{1.8]
LONG WIRE [48.7]
INDETERMINATE WIRE<@:35>(1.8:48.7]

If the timing verifier is using wire delay information from the router based on actual wire lengths, it
ignores these specifications.

In traversing the macro expansion tree, the timing verifier associates each predicted wire delay with
the input which the signal feeds but not with the output that generates the signal, thus assuring that
a single delay does not affect the network twice. As a result, placing a wire delay specification on a
signal which is an output parameter of a macro definition has no effect.

632 Assertions on Signals

Assertions serve two purposes. Before a design is complete, the designer can isolate one module and
place timing assertions on all the inputs and outputs of that module; the verifier will then use those
assertions to take the place of the timing information it would otherwise obtain from the circuitry
surrounding that module. Within a module or complete machine, the designer can place timing
assertions on any signal for documentation purposes, and to convey to the timing verifier additional
requirements that he or she wishes to impose; the verifier will then issue warnings if the assertions
are not at least as generous as the actual timing—even if the actual timing is not strictly erroneous.

When it comes time to integrate separately verified modules into a complete machine, the macro
expander automatically checks to see that the assertions on the outputs of one module match the
assertions on the corresponding inputs of another. It considers an assertion to be part of a signal
name, so two otherwise identical names with different assertions represent two different—and
incompatible--signals.

138 6 How to use the timing verifier

If the timing of a signal is not defined by preceding circuitry or by an assertion, then the verifier
assumes the signal is always stable; thus, one need not place assertions on input signals whose timing
is not of interest. ' ‘

The <timing assertion> part of a signal name appears after the <simple name> as mentioned in

Section 4.5 and consists of a string beginning with a period. The syntax is:

<timing assertion> 1:= <clock assertion type>
<value specification> <skew specification> |
<clock assertion type> <value specification> |
<stable assertion type> <value specification>

<clock assertion type> ::=C | P

<stable assertion type> ::= S

(1]
oo

= <time range> |
<time range> , <value specification>

<value specification>

<time range> t:m <time> | <time> - <time>
<time> t:= <real numbers>
<gskew specification> 1= (<minus skew> , <plus skew>)

<minus skew>

o
oo
[]

<negative real or zero>

<plus skeuw> <positive real or zero>

e
o0
]

For a clock signal, a typical <timing assertion> is:
XYZ .C4-6 L

which says that the signal goes from high to low at time 4, and from low to high at time 6. (Each
time unit represents a fraction of the cycle time; when you run the verifier program, you specify the
number of units in a cycle. This convention keeps the assertions independent of the duration of the
cycle time)) The signal:

XYZ P2-3,5-6

is high from 2 to 3 and from 5 to 6, and is low for the rest of the clock cycle. If a single time is
given instead of a range, then a time interval of one clock unit is assumed. For example,

6.3.2 Assertions on Signals 138

XYZ P2,
is equivalent to the previous signal.

For clock signals, the “C” and “P” assertions are both useful, the only difference being the default
skew used when none is explicitly given. Skew is generated by variations in the delay from the
clock generator to different parts of a large digital system, due to varying wire lengths and buffer
propagation delays. In a large digital system, these variations can become large enough to degrade
performance unacceptably. To reduce this skew, the shorter clock paths can have additional delay
deliberately inserted into them. Because the delays in a clock distribution system may vary between
successive implementations of a design, in many cases it must be ad justed by hand, by using some
type of ad justable delay for each of the clock lines. Using this technique, the skew can be reduced
below some designer-specified amount. A “P” assertion assures the verifier it can rely upon such
ad justments; a “C” assertion does not.

For a control or data signal, use the “S” assertion, which specifies whether the signal is stable or
changing, but not its actual value. For example, the name:

XYZ L] 84-8

says that the signal is stable from time 4 to time 8, and may be changing during the rest of the cycle.
Note that an “S” assertion never specifies a skew.

6.3.3 Evaluation Directives

Evaluation directives tell the timing verifier how to evaluate certain gates. They can also specify the
exact point in a circuit at which a precision clock is ad justed to reduce skew.

As mentioned in Section 4.5, an <evaluation directive> follows the <wire delay> in a signal name. It
consists of “&” immediately followed by a string of letters. The first letter in the string refers to the
logical primitive (ordinarily a gate) immediately following the signal, the second refers to the second
level of gating following the signal, and so on.

The following letters are permitted:

w Zero the wire delay going into the gate that this evaluation directive refers to.
Z Zero the wire delay going into the gate and the delay of the gate itself.
A When this signal is asserted, make sure all other inputs to the gate are stable. If

so, operate as if the directive were *I": ignore the other inputs and base the
timing of the gate’s output solely on that of this signal If not, issue an error

140 6 How to use the timing verifier

message.

I Ignore the other inputs of the gate and base the timing of its output solely on
that of this signal. ‘

H This directive is equivalent to applying the "A” and “Z” directives together at a
single level

6.3.4 Correlations

When the operation of a network relies on known correlations between clock signals, the timing
verifier must be told the correlations or it will generate spurious errors. Consider the two examples
in Figure 6-4, each driven by a clock exhibiting plus or minus 2 nsec skew. The first example
represents an authentic timing error because if the clock arrives at register R1 2 nsec before it
arrives at register R2, the input of R2 will be changing as the clock rises. The timing verifier sees
the second case no differently, but in reality no error can occur because the input and output of the
latch are governed by exactly the same clock. No matter how great the skew, the changing output
cannot propagate back to the input to conflict with the rise of the same clock pulse that caused the
changing output.

P = .
Ao AT LATOL
u) u
Logare 7 Ymare T Tomare T
0.0.0.0,0.8 0.0,0.0,0.0 0.0.0.0, 0.0
o™ ™ ™
K24 6B -2 D xCa -2

Figure 64
Uncorrelated and correlated clocks

To solve the problem, add to the signal called *T /M” a wire delay sufficient to eclipse the clock
skew. To make clear that this delay is meant to convey a correlation rather than to suggest a lengthy

6.3.4 Correlations 141

wire, it is customary to define a text substitution called CORR and use 1t as the delay:

T /MI\CORR\]

142

6 How to use the timing verifier

6.4 Input and output files for the timing verifier

The verifier accepts the following input files:

MACEXP

OPTION

WIRES

This is the output data from the macro expander.

This file contains a set of real-number equates specifying various options and

parameters. A typicai OPTION file might look like:
CycleTime=50.9;
ClocklUnits=6.25;
ClockSkeu=5. 83
PrecClockSkeu=1.9;
MaxWDs |l ay=2.9;
MinkDe | ay=8. 8;

CycleTime is the length in nsec of the least common multiple of all clock periods
in the network.

ClockUnits is the length in nsec of one of the time units used in the <timing
assertion> syntax. Usually CycleTime is evenly divisible by ClockUnits, though
this is not a requirement.

ClockSkew is the default skew used when a clock signal bears no timing assertion
or bears a “C” assertion with no skew specified. In the preceding example, the

default skew is ~5 to +5 nsec.

PrecClockSkew is the default skew used when a “P” timing assertion specifies

that a clock is precision adjusted but does not specify the resulting skew. In the

preceding example, the default skew for precision clocks is -1 to +1 nsec.

MaxW Delay and MinW Delay are the wire delay values in nsec used when a
signal name does not specify a wire delay. In the preceding example, defaulting
the wire delay would have the same result as specifying “[0:2T".

Produced by the physical design system router program, this file provides wire
delays based on actual wire lengths and chip electrical characteristics. If this
information is not yet available, provide a file containing the word “END;” and
the verifier will use the wire delay estimates specified within signal names.

The timing verifier produces the following output files:

TIMLST

This is a listing of timing errors plus a listing of each signal along with a
description of its behavior versus time.

6.4 Input and output files for the timing verifier 143

LCROSS This is a cross reference of local signal names.
GCROSS This is a cross reference of global signal names.
BCROSS This is a listing of signals which for various reasons appear to be “dangling”.

These are not necessarily errors, but might be conscious omissions by the
designer.

144 6 How to use the timing verifier

6.5 A timing verifier example

Figure 6-5 shows a sample SCALD macro consisting of a 16-word by 32-bit RAM, a 32-bit
register, a 2-input 'multiplexer and several gates. It illustrates the use of assertions, evaluation
directives, and predicted wire delays in signal names. It in turn calls several more macros, the two
most interesting of which appeared earlier as Figures 6-2 and &-3.

The assertion on the signal “W DATA .S0-6<0:31>" says that it is stable from time 0 to time 6,
allowing the verifier to check the timing of this circuit without knowing how the signal is generated.
The assertion on the clock signal “CK .P2-3 L” says that it is low between times 2 and 3, and high
for the rest of the cycle. The signal “ADR<0:3> [0.0:6.0]” states that the 4 address wires on the
RAM can be between 0.0 and 6.0 nsec long.

The clock signal “CK .P2-3 L” is being ANDed with the control signal “WRITE S0-6 L” to
generate a write-enable pulse for the RAM array. If the data is stable every cycle during the period
in which the RAM is to be written, then the most efficient way to check for timing errors is just to
analyze the case in which the signal “WRITE .S0-6 L” enables a write operation. The “&«H”
directive shown at the end of the clock signal says to ignore the value of the “WRITE S0-6 L”
signal, allowing the clock signal always to propagate through the gate. In addition, it says the timing
specified by the clock signal is to be ad justed so that it refers to the time at which the output, rather
than the input, of the gate changes. The “&H” directive also specifies to check that the control
signal “WRITE .S0-6 L” is stable while the clock is asserted, to ensure that the write will be either
solidly enabled or solidly disabled.

The “&Z” directive on the signal “CK .P0-4”" states that the clock timing refers to the time at which
the output of the gate changes.

6.5 A timing verifier example 145

=8
16 g
191458
W ONTA . 99-&@: 31 REF% 8 31> 10176 T QITRIT 81 31>
— R v U 2

Z3 S TN
101657
WRITE .$0-6 L 0 Gt E

Figure'6-5
Example to be verified

The first step in verifying the timing is to run the macro expander to expand the design into logical
primitives. Then run the timing verifier, which processes the MACEXP file generated by the macro
expander. It generates a listing (somewhat condensed here to fit the page) which begins with a
play-by-play description of its operation:

Reading wire list ...
8 error(s) detected

Doing cross reference listing ...

Initializing signals .
8 error(s) datected
Doing timing analysis ...
Clrcuit evaluation completed
Total number of svaluation passes: 6

Total number of events processed: 28

146 ’ 6 How to use the timing verifier

Next the listing shows setup, hold, and pulse width errors:
Setup, Hold, and Minimum Puise WHidth srrors

Setup time error; Setup Time = 3.5, Hold Time = 1.8
CK INPUT = UE 9:8.8, R:11.5, 1:15.5, F:17.8, 8:21.8
DATR INPUT = ARDR §:8.8, C:8.5, S:11.5, C:25.5, S:36.5

Setup time error; Satup Time = 2.5, Hold Time = 1.5
CK INPUT = REG CLK R:9.8, 1:3.8, F:24.8, 8:28.8, R:48.8
DATR INPUT = RAN S:8.8, C:5.8, S:22.5, €:38.8, S:47.5

Because of the long wire specified on the signai “ADR<0:3> {0.0:6.0]", two set-up time errors occur.
The first error message shows the address inputs to the RAM becoming stable at 11.5 ns, just as the
write enable (WE) signal starts rising. Since the RAM requires a setup time of 3.5 nsec, the wire
delay on the address signal must be reduced to 2.5 nsec to eliminate the error. The second error
message shows the data output of the RAM becoming stable at 47.5 nsec and the clock starting to
rise at 49.0 nsec, giving only 1.5 nsec of setup time instead of the required 2.5 nsec.

Next it prints a list of signal values:

Values of all signais

ADR<9:3> S:8.8, C:8.5, S:5.5, C:25.5, S:38.5

CK .P8-4 R:8.8, 1:1.8, F:24.8, 8:28.8, R:43.8 (constant value)
CK .P2-3 9:8.8, R:11.5, 1:13,5, F:17.8, 9:19.8 (constant vaiue)
€K .Pé-8 . . . - F:8.8, 9:1.8, R:24.8, 1:26.8, F:49.2 (constant valus)
OUTPUT<B:31> . . $18.8, C:8.5, S:7.5

RAM<8:31>. . . . $:8.8, C:5.8, 5:28.5, C:38.8, S:45.5
RERD ADR .34-9<8:3>. . $:8.8, C:8.3, $:25.8

REGCLK R:8.8, 1:1.8, F:26.8, 8:26.8, R:48.8
U DATR .58-5<@:31> . . 5:8.8, C:37.5

ME 8.8, R:11.5, 1:13.5, F:17.8, 8:19.8
MRITE .58-8 . . . 8:8.8, £:37.5

WRITE AOR .S8-8<8:3> . 8:8.8, C:37.5

In that listing, “S” stands for “stable”, “C” for “changing”, “F” for “falling”, “R” for “rising”, “U” for
“unknown”, “1” for the high state and “0” for the low state. Consider the first signal in the list,
"ADR<0:3>". Because the timing is identical for all four of its bits, the listing describes them all in
one line. The signal is stable at time 0 (the beginning of the cycle), changes from 0.5 nsec to 5.5 nsec,
remains stable until 25.5 nsec, changes from 25.5 nsec until 30.5 nsec, and finally remains stable from
30.5 nsec until the end of the cycle.

Next it prints a list of signals whose timing failed to fall within the limits set by assertions. (These
are signals for which the designer specified assertions even though the verifier could calculate their

6.5 A timing verifier example 147

timing without those assertion. The verifier thus calculates the timing independently and uses the
assertions as a check.) This example has no such errors, but a typical one might look like the
following example, which gives the signal name including the assertion, followed by the calculated
timing: :

Signais not meeting their stable assertions

OC MODIFIED 18 .S6-12 5:8.8, C:23.8, S:28.6

1-SEQ USING SR .55-18 5:0.9, C:18.8, S:31.5
Finally, the listihg shows how much storage the program used. This is useful when running the
verifier on computers with limited address spaces, because it helps predict when a design is about to
grow so large that it must be split into modules which can be verified individually:

Ail done

Storage summary:

Racord Name Number Used Total Bytes

Value 418 4392
ValueBase 125 2588
ValueHead 128 1448
Signal 17 888
Det 35 1828
Calllst 13 468
PrimDat 23 3864
Parfirr 35 148
Calilstlrr 248 992
StringChe 527 527
Str i11 1332
SortSighrr . 14 58

18811

148

6 How to use the timing verifier

149

7 The layout program

Starting with the circuitry established by the macro expander plus a set of instructions from the
designer, the SCALD layout program positions chips on circuit boards. The program is
semiautomatic: for best results, the designer specifies how to lay out important or complicated
macras, but lets the program do the routine part of the job automatically.

Thus the program requires three inputs: a circuit description from the macro expander, two files
called CHIPS.LAY and CHPTYP.LAY (derived from the CHIPS file by another part of the
SCALD physical design system) which describe the chips themselves, and a file of instructions from
the designer. It puts out a listing, a file of runs for use by the SCALD router, a file of unconnected
signals for error-checking, and a file describing the position of each chiptype laid out.

To avoid confusion, this chapter will use ‘location’ to mean the label generated by the graphics
editor and used by the macro expander to indicate wuere within a drawing a particular macro lies.
A location is simply an identifying string such as “G1” or *"M8". It will use ‘position’ to indicate
where upon a board a particular macro or chip lies. A position is a set of coordinates on a circuit
board. In fact, the main task of the layout program is to map a set of locations onto a set of chips at
specified positions.

150 | 7 The layout program

7.1 Preparing instructions for the layout program

To give instructions to the layout program, the designer creates a file containing a sort of program
that consists of statements, analogous to the statements of a high level language like PASCAL or
FORTRAN. : '

Context-The layout program starts at the top level of the macro expansion tree and works
downward toward the most primitive elements. Similarly it starts at an initial board position and
works onward from there. At any time, the program works within a context, consisting of the
location label for a particular macro call, plus a board position. All of its work takes place relative to
that macro call and that position. '

Position~Several of the statements use identical syntax for position. A position can specify four
elements or ‘coordinates’: a board, a column of chips on that board, a row of chips on that board,
and a section within the chip at that row/column. Most of the statements allow the designer to
default one or more of these elements.

Specifying board, row, and column pinpoints exactly one socket, and sockets are all equivalent as far
as the layout program is concerned; within the constraints imposed by the instructions from the
designer, the program will map chips onto sockets in whatever fashion minimizes wire lengths. (The
layout program treats a socket as if it were a point to be placed at a certain coordinate position.
Other programs in the physical design system know the true size of each socket, how many pins it
has, whether it is interchangeable with sockets at other coordinate positions on the board, and so
forth. They worry about checking to make sure sockets don't overlap each other, and so forth.)

The section coordinate, on the other hand, indicates a functional unit within a chip and thus
depends on the chiptype, as we will explain later. For now, regard the section as simply another

coordinate. Similarly, we will postpone the question of chips that require more than one socket.

Boards, columns, and rows have integer numbers beginning at 1. Sections have names, given to
them by the CHIPS.LAY and CHPTYP.LAY files, which consist of an optional alphabetic string
followed by a number—A(Q’, for example, or 'SG12’, or just ‘7. To identify a board, precede its
number with ‘aB’; for a column, precede its number with ‘@C’; for a row, ‘aR’. For a section, precede
the alphabetic/numeric name with ‘@S’. The following specifies board 5 row 16 column 12 section
Al

eB5 eR16 eCl12 eSAl
The following specifies row 12 column 5 within the current board:

eR12 &CS
More commonly, however, the designer will—by omitting the ‘@’--specify position relative to the
current context. If the program is already working with board 3, for example, then ‘B1’ indicates

board 3 (the current board), ‘B2’ indicates board 4, ‘B2’ indicates board 5, and so on. In a section
name, the numeric part is taken relative to that of the context while the alphabetic part (if any) is

7.1 Preparing instructions for the layout program 151
absolute. If the program is already working with section A3, for example, then ‘SAQ’ indicates
section A3 (the current one), ‘SA I’ indicates section A4, and so on.
For example, if the current context is ‘@B5 aR16 @C12 @SBY’, then the following:

R4 C6
actually indicates board 5, row 19, column 17 section B1.
A simple rule: given the context and a set of context-relative coordinates, determine the position by
adding each relative coordinate to the corresponding context coordinate and then subtracting 1 (for
board, row, or column) or 0 (for section).
Some layout program statements require a list of positions separated by commas, such as:

Ris C12, R18 C13, R16 Cl4, R16 C15, R1B6 C16
To abbreviate this, one can use an implied loop by specifying the initial value for the loop and the
number of times the loop should execute (not the final value of the loop as in many programming
languages). The following example steps from C12 through C16:

€(12,9
and thus is equivalent to:

c12,C13,C14,C15,C16

An optional step size increments or decrements the loop by any desired integer. The following
example steps from C12 through C16, incrementing by 2:

€(12,3,2)
and thus is equivalent to:

ClZ,CM,ClS
Ordinarily the order of the board, column, row, and section specifications doesn’t matter. When you
use more than one of these implied loops, however, the loops nest, with the rightmost loop

incrementing most rapidly. The following examples are thus equivalent:

R(1,2) C(1,2)
R1 Ci, R1 C2, R2 C1, R2 C2

but different from the following two, which are likewise equivalent:

1582 7 The layout program

C(,2) R(1,2)
R1 C1, R2 C1, R1 C2, R2 C2

An implied loop for section names looks like this:
SA(8,4,2)

which is equivalent to:
SAB, SAZ, SA4, SAB

Locations—-As mentioned before, a location is simply the label designer chose to identify a particular
macro call to the macro expander. (originally, the text field of the LOC property name/text pair for
the body that calls the macro). The designer needs to keep in mind three additional details.

First, when the SIZE parameter causes multiple invocations of the same macro call, the macro
expander appends a ‘¢’ and a number to each invocation after the first. Thus, a body for which
LOC=G5 and SIZE=3 results in locations called G5, G5¢2, and G5e3.

Second, when the TIMES parameter causes multiple invocations of the same macro call, the
expander appends a ‘+’ and a number to each invocation after the first. The TIMES suffix precedes
the SIZE suffix, if any, so that the last invocation of a body with LOC=G8, SIZE=3, and TIMES=2
would be called ‘G6+2#3'. (SCALD customarily deals with these invocations alphabetically, so SIZE
varies faster then TIMES as the macro expander steps through the two-dimensional matrix of calls
resulting from such a body.)

Third, when more than one drawing defines a macro, the expander prefaces each location with the
page number of the drawing. Thus, a body for which LOC=G5 would result in location 1G5 if it
lay on page 1 of the drawing, location 2G5 if it lay on page 2, and so on.

Chiptypes-Many ICs contain several functions inside one package. The layout program recognizes
an entity called a chiptype which embodies that concept.

Defined by the CHIPS.LAY and CHPTYP.LAY files, each chiptype is a collection of one or more
terminal macros within a single unit which the layout program can place on a board. Such a
chiptype contains one or more sections, each corresponding to one terminal macro.

An ECL 10105 chip, for example, contains two 2-input OR/NOR gates and one 3-input OR/NOR
gate. The macro expander need know nothing about this. Simply use two different macros to
represent the two different kinds of gate: for example, one macro called 10105A to represent a
2-input OR/NOR gate and another called 10105B to represent a 3-input OR/NOR gate. The
CHIPS.LAY and CHPTYP.LAY files must then tell the layout program that a chiptype called
10105 will provide two 10105A’s (in sections ‘A0’ and ‘A I') and one 10105B (in a section called ‘BO").

Some chiptypes are a good deal simpler, of course. The chiptype 10016 corresponds to exactly one

7.1 Preparing instructions for the layout program 153

terminal macro, likewise called 10016, and its only valid section is ‘0. Chiptypes can also be a good
deal more complicated. The designer may choose to combine a number of ICs on a small printed
circuit board and plug that circuit board into a socket on the main circuit board. If so, the layout
program treats the entire printed circuit board as a chiptype even though its complexity may far
exceed that of a commercially available IC package.

Whereas each board position (specified by means of the board, row, and column .coordinates
mentioned earlier) represents a single socket, chiptypes require varying pinouts. Some, like the 10105
or 10116, correspond to 16 pin DIPs. Others have fewer than 16 pins. Some may very well occupy
more than one socket position on the board. '

The layout program deals only with the position of each chiptype, ignoring its physical size. But an
overview of how SCALD handles the problem may make things clearer.

Suppose you want to use a 24 pin DIP IC package on a circuit board whose sockets accept only 16
pin DIPs. In physical terms, one must plug the 24 pin package into an adaptor, a small printed
circuit board with a 24 pin socket on one side and two 16 pin plugs on the other, designed to fit two
ad jacent 16 pin sockets on the main board. In logical terms, the CHIPS file read by other physical
design system programs specifies a logical ‘adaptor’ for each chiptype, describing the number and
arrangement of 16 pin sockets which that chiptype requires. A simple IC like the 10105 or 10116
needs no physical adaptor, and its logical adaptor simply maps the pins straight through.

(A chiptype must occupy an integral number of sockets. This limitation would be significant only
for SIP terminator packages, two of which will fit side by side within a DIP socket, but the SCALD
router assigns terminators automatically anyway, so they do not concern the designer.)

The CHIPS file also specifies the X-Y coordinates of the pin corresponding to each input or output
signal of each section (that is, terminal macro) within a given chiptype. And it specifies ‘hidden’
connections within a chiptype: section inputs and outputs connected to each other but not brought
out to the input/output pins of the chiptype.

The position for a chiptype that occupies more than one socket is that of the upper left corner of the
area it occupies (viewed from the chip side of the adaptor). The layout program itself does not
guard against one multiple-socket chiptype overlapping another, but other physical design system
programs will detect such errors later in the SCALD design process.

Though the CHIPSLAY file specifies a default chiptype for each terminal macro, the CHIP
statement (Section 7.1.6) can override this.

154 7 The layout program

7.1.1 The DATE statement

To help document the layout, the designer may include a DATE statement at the beginning of the
file of instructions, giving the date and the designer’s initials. The layout program will pass this
string along to subsequent programs in the SCALD physical design system. (Actually, the statement
will in general accept any string of characters not including “”):

DATE 9-0ct-79 UBR;
WITH =x;
WITH C3;
G5 = R1 C5 S1;
M4 -« R1 C8 S1;
END;
END;

7.12 The WITH statement 155

7.1.2 The WITH statement

A WITH statement establishes a context within which other statements work. Every WITH
statement must pair with an END statement; the context it establishes applies to every statement
between the matching WITH and END.

The simple form of the WITH statement specifies a single location—in other words, specifies a
particular macro call— and causes the statements within its scope to work within the context of that
macro. The following example operates on macro calls G5 and M4 within the context of (that is,
within the expansion of) macro cail C3:

WITH C3;
GS = Rl C5 S1;
M4 = R1 CB Si;
END;

Commonly, the instructions for a layout program will nest WITH statements. Each WITH statement
descends one level deeper into the macro expansion tree, and concatenating the WITH statement
locations one by one creates a patk that completely and unambiguously describes the context (that is,
the particular macro call) within which the innermost statements work. In the following example, the
innermost statements - deal with the macro calls ‘whose paths are (Cl1 G2 Al#6 G5) and
(C1G2AI#TM3)

WITH C1;
WITH G2;
WITH Al#g;
G5 = Rl C5 S1;
END;
WITH Al#7;
M3 =« R2 CB Si;
END;
END;
END;

Because the topmost level of the macro tree—the macro representing the entire design—never gets
called by any other macro, it has no location name. Thus, the first WITH statement in any layout
program must use the special symbol %’ to indicate the topmost level of the design. Other statements
may precede this initial WITH (provided they do not require a context in which to
operate—statements which actually cause the program to place chips on boards always require a
surrounding WITH to tell them what part of the design to work on) but its matching END must be
the last statement of the program:

SET XYZ = 15;
WITH *x;
WITH Al;
G2 = R2 CB S1;

156 7 The layout program

G7 = R2 C6 S1;
D

i S g

END;

Specifying position~-Any WITH statement may include an AT clause, specifying a position relative
to that of the previous WITH context. The program starts at position ‘@B1 @C1 eR1 @S0’, 5o in the
following example the innermost statement operates in a context whose macro call path is (G4 A8)
and whose position is board 3, row 17, column 7:

WITH = AT R3 C2; .
COMMENT Now we’re at board 1 row 3 column 2;
WITH G4 AT B3 RS C2;
COMMENT Now we’re at board 3 row 7 column 3;
WiTH AB AT R11 Cas .
COMMENT Now we’re at board 3 row 17 column 6;
G5 = R1 C2 S8;
END;
END;
END;

If a WITH statement doesn’t include an AT clause, then the context inside that WITH has the
same position as the context enclosing it. Note that while intervening layout statements may have
altered the position at which the program is working, a WITH statement ignores them, goes back to
the previous WITH statement, and alters the context position relative to it. Thus the innermost
context is identical in the following two examples:

HITH %3 WITH %
WITH G1 AT R16 C7; WITH G1 AT R16 C7;
M5 = R2 Cl;
WITH G5 AT RS; WITH GS AT RS;
M6 = Rl Cl; M6 = R1 Cl;
END; END;
END; END;
END; END;

Because the AT clause specifies a single position, the notation for an implied loop is illegal within it.

7.1.3 The assignment statement 157

71.3 The assignment statement

An assignment statement tells the layout program to place a particular piece of circuitry at a
particular position on a board. In its simplest form, it consists of a location name for a terminal
macro (that is, a macro which maps directly to a single section of a chiptype), the name of a
chiptype, an ‘=’ symbol, and a position. The board, row, and column coordinates of the position
are—unless they contain ‘a’—interpreted relative to the context of the enclosing WITH statement.
Any omitted coordinate defauits to that of the enclosing context. Thus, the following example places
macro call C7 on the board specified by the context, at the column specified by the context, one row
beyond the row specified by the context, and at the third ‘B’ section of the chiptype:

C7 = R2 C1 SB2;

Note that the position in an assignment statement is not relative to that of a previous assignment
statement.

If a terminal macro has its SIZE or TIMES body parameter set to a number larger than one, then
that macro will require multiple chiptype sections and thus multiple positions on the board. If, for
example, macro C7 had SIZE set to 3, the designer must give a list of positions, one for each
invocation of the macro. Either of the following examples would accomplish this:

C7 = R2 C1 SB(8,3);
C7 = R2 C1 sB8, SBl, SB2;

An entire subtree at once-If the designer specifies the location of a nonterminal macro call, the
layout program will automatically expand that macro call to obtain a list of terminal macro calls, and
will then lay out each of the terminal macro calls. In other words, the program will traverse the
subtree resulting from a nonterminal macro.)

In such a case, the assignment statement must give a list of positions to the right of the ‘=’ sign, one
position for each terminal macro resulting from the expansion, and taking into account the multiple
copies of a terminal that result from SIZE or TIMES parameters that exceed 1. In the following
example, the macro at location C6#2 (which is itself the second invocation of macro C8, resulting
from the SIZE parameter being greater than one) expands to produce five different terminals, and
thus requires a list of five positions:

Ce#2 = R1 C1, R1 C3, R1 C5, R2 C1, R2 C3;

The list of positions must contain at least one position for each terminal resulting from the
expansion, but may contain more. The layout program will simply ignore the extra positions rather
than using them up or leaving them empty. This makes it easier to use the loop notation to simplify
a list. The following assignment statement has precisely the same effect as the preceding example,
even though it specifies an extra position:

Ce#2 = R(1,2) C(1,3,2);

158 7 The layout program

When the layout program expands the subtree of a macro for you, it does so predictably. After
expanding the subtree into a list of terminal macros, it sorts the list in alphabetic order by path
name. (These path names are identical with those that appear in the output listing from the macro
expander except that a blank space appears immediately before the closing parenthesis of the path
to prevent the parenthesis from spoiling the alphabetizing.)

Inversion~Certain chiptypes allow you to use the complementary form of some of their inputs
simply by rearranging connections. With a muitiplexer, for example, simply rearranging the data
inputs permits use of complemented (assert low) forms of the select lines.' This is particularly
important with ECL logic families which typically provide both true and complemented forms of
gate outputs; using both outputs effectively doubles the fanout capability of the gate.

Provided the CHIPS.LAY file describes the required signal rearrangement, the assignment
statement permits the designer to choose whether (o use true or complemented connections for any
particular instance of a given chip. Simply add a %/’ to the end of the assignment statement, followed
by a list of ‘H’ and ‘L’ letters:

Ce#2 = R(1,2) C(1,3,2) /HLHHL;

Every time it positions a chip on the board, the layout program looks at the next letter in the H/L
list. An ‘H’ tells it to connect the chip according to the drawing that defines that chip, and an L’
tells it to rearrange the inputs to use complemented inputs.

Two shortcuts make the H/L list easier to use. First, placing a number immediately after a letter is
equivalent to repeating the letter that number of times, so the following two examples have the same
effect:

Ce#2 - R(1,2) C(1,3,2) /HLHHHL;
Ce#2 = R(1,2) €(1,3,2) / HL H3 L;

Second, if the layout program exhausts the H/L list before positioning all the chips, it returns to the
beginning and reuses the list as many times as necessary {just as, in FORTRAN, a WRITE
statement which exhausts its FORMAT list reuses the list). Thus, if the H/L list repeats a pattern,
the designer need write only one cycle of the pattern:

ce#2 = R(1,3) C(1,3,2) /HLHHLHHLH;
Ce#2 = R(1,3) €(1,3,2) / HL H;

If the H/L list is too long, the layout program simply ignores the extra letters.
Versions—As explained in Section 4.3.1, the macro expander provides any macro call with a
parameter called TIMES which allows the designer to obtain multiple copies of that macro with

their respective inputs tied together and their respective outputs left independent.

Within the drawings, the designer need not distinguish among these independent outputs: a single

7.1.3 The assignment statement 159

line and a common name represent all of them. The macro expander does, however, derive a unique
name for each actual output by appending to the common name a '/’ followed by a number.

When laying out circuitry automatically with the PLACE statement, the designer need not specify
which version to connect to which input, because the physical design system router program handles
this detail. But with the assignment statement, the designer may either leave the decision to the
router or state explicitly which version of a multiversion output to connect to each possible
destination.

To specify this, use a colonstring which gives a signal name and a list of version numbers, one for
each macro call in the subtree. The following example connects version 2 (of whatever signal is
appropriate) to input pin ‘CNT ENBL’' of the first macro in the subtree, version 1 to the
corresponding pin of the second macro in the subtree, and version 3 to the corresponding pin of the
third macro in the subtree:

C5 = R(1,3) CS5 SB :CNT ENBL = 2, 1, 3;

Note that the signal name must be an input, never an output. If the statement uses an H/L list, the
colon string may either follow or precede it.

As with the H/L list, the program permits shortcuts. If the version list is not long enough, the
program rereads it; if the list is too long, it ignores the latter part. To repeat a version, append a ¥’
followed by the number of repetitions desired. For example, the following two assignments are
identical:

C6 = R(1,7) CS S8
C6 = R(1,7) C5 sB

CNT ENBL = 1, 2, 2, 3, 3, 3, 3;
CNT ENBL = 1, 2%x2, 3%4;

Note that the program expects to read from the list one version number for each macro in the
expansion, whether or not the macro in question actually has an input pin with the specified name,
and whether or not the macro is a terminal. To ‘skip over’ macros which do not have a particular
input, omit the version number but include the appropriate repetition factor. Thus, the following
example skips over the first macro and the last three macros in the subtree:

C7 = R(1,8) C6 S8 : PRESET = x1, 1x2, 2x2, *3;

This ability to skip over certain macros in the expansion is also useful when a subtree contains two
different kinds of macro calls with the same input signal name, where one set of calls needs version
specifications and the other set does not.

It is possible for the macro expander to produce a signal name with multiple versions, one after
another. To cope with this situation in the colon string, specify the versions in the proper order,

separated by dots:

C8 = R(1,4) C4 S8 :CLEAR = 1.2x2, 1.1x2;

160 7 The layout program

If more than one input signal requires version specifications, simply use muitiple colon strings in any
order:

C3 = R(1,8) C4 SB :CNT ENBL = 1x4, 2x4 :CLEAR = 2.2x2, 2.1x2;

Adding drive capability during layout-By including a TIMES expression in parentheses after the
location label, the designer can override the TIMES parameter used for that macro call during
macro expansion. This is useful for adding extra drive capability. Like the macro expander TIMES
parameter, this feature replicates the macro, ties together the corresponding input signals of the
resulting copies of the macro, and leaves the output signals independent, assigning a different
version number to each output.

The list of sections in the assignment statement must be large enough to take into account these
extra copies of the macro.

The following example produces three copies of the macro at location C7 and assigns them new
location labels C7, C7+1, and C7+2:

C7[x3] = R2 C1 SB(2,3)

The layout program permits this TIMES expression only with terminal macro calls.

7.1.4 The PLACE statement 161

7.1.4 The PLACE statement

Whereas the assignment statement lays out chips manually, the PLACE statement lays them out
automatically. While the assignment statement dictates exactly where to put each macro, the
PLACE statement allows the program to rearrange the chips (through pairwise interchanges) among
the specified positions in an attempt to minimize wirelengths.

The place statement specifies a list of location labels and positions. The positions may include board,
row, and column but not section:

PLACE G5, M6, AZ», R2 WITHIN B2 R(1,5,2) C(5,12);

If the list of positions is larger than it need be, the program will simply allow itself extra freedom in
placing chips anywhere within the set of positions.

As with the assignment statement, if the macro call designated by a location label is a nonterminal,
the program automatically expands the macro to obtain a list of terminal macros. In other words, it
lays out the entire subtree resulting from that macro call.

Combining automatic and manual layout-Using a %’ instead of a list of locations tells the PLACE
statement to lay out automatically all macros within the current context for which there are no
assignment statements. In the following example, the program expands macro call G6, lays out calls
M4 and Rl according to the assignment statements, and lays out the remainder of the subtree
resulting from G6 automatically:

WITH GB;

M4 = RS C7 S8;

Rl = RS C7 S1;

PLACE % WITHIN RS C(8,3) S(8,1)
END;

The layout program does not actually perform assigment and PLACE statements in order. Instead, it
performs all manual layout throughout the design and then all automatic layout. Thus the automatic
layout algorithm can minimize the length of wires between manually-positioned and
automatically-positioned chips along with that of the wires within the automatic areas.

As a result, assignment statements may actually occur either before or after the PLACE statement.
In addition, the list of locations {or the subtree of a location) given to a PLACE statement may
include some macro calls specified in manual layout statements elsewhere; PLACE will process only
the macro calls which are not positioned manualiy.

Chiptypes of varying sizes--Because the layout program will rearrange the chips anyway, the order
of positions within the list does not matter. But the ‘resolution’ of positions does matter: if each chip
is two rows tall and one column wide, for example, the positions in the list should be two rows apart.
Or, for another example, if each chip is three rows tall and two columns wide, the positions should
be three rows apart and two columns apart. Otherwise, because the layout program deals only with
the upper left corner position of each chip and not with the actual size of the chip, chips may

162 7 The layout program

overlap.
If a particular macro expands to require chiptypes of varying sizes, there are several solutions: '

@ Specify positions far enough apart to accomodate the largest chiptype, wasting some board
space on the smaller chiptypes.

@ Use the BIND statement to group macros into ‘super-chiptypes’ which are then all
identical in size and shape. '

® Use multiple PLACE statements to force the}layout program to segregate the chiptypes by
size into different areas.

® Take 3 chance, hoping that none of the chiptypes overlap, and later replace the PLACE
statement with assignment statements if they do.

7.1.5 The BIND statement 163

7..5 The BIND statement

The BIND statement aids the PLACE statement by pointing out patterns and symmetries that the
automatic layout algorithm might otherwise miss. Ordinarily, the PLACE statement maps terminal
macro calls onto chiptype sections in alphabetic order by pathname, without attempting to optimize
section assignments or exploit symmetries. The BIND statement, however, allows the designer to
group together in one chip the terminal macro calls which logically belong together.

A BIND statement applies to every PLACE statement within the scope of the enclosing WITH
statement, even if the BIND actually appears followmg the PLACE.

The BIND statement takes the form:

BIND <location> = <list of sections> # <list of chiptypes>
& <iist of instances>

The <location> names a macro call. If the macro is not a terminal, the layout program will expand it
as usual in alphabetic order by path name.

The <list of sections> includes a section for each terminal macro resuiting from the <location>
specified. Its syntax is identical with that described for the list of sections within the assignment
statement, and may list more sections than necessary.

The <list of chiptypes> is a series of chiptype names separated by commas.

The <list of instances> is a series of names invented by the designer and separated by commas. Each
name must consist of one or more letters, digits, or +’ and -’ characters.

For each terminal macro call in the subtree of <location>, the layout program will read the next
section from <list of sections>, the next chiptype from <list of chiptypes> and the next instance name
from <list of instances>. It maps that call onto the specified section of the specified chiptype, which
will be shared with all other macro calls having the same instance name.

The following example binds the first and third macro calls within the subtree of RA to sections 0
and 1 of one instance (called ‘M 1’) of chiptype 94550, binds the second and fifth to sections 0 and 1
of another instance (called ‘M2’) of chiptype 94550, and binds the fourth and sixth calls to sections
A0 and BO of an instance (called ‘W?2") of chiptype 20021:

BIND RA = S@, SO, 81, SAg, 81, sSee@
#34558, 94558, 34558, 20021, 34558, 20021
&M, M2, M1, Wz, Mz, W2;

Using various shortcuts makes the statement easier to write but harder to read:

BIND RA = S8, S8, S1, SA8, S1, SBO
#94558«3, 20021, 84558, 28821

164 7 The layout program

aM1, M2, M1, W2, M2, U2;

‘Obviously, it’s easy to violate the rules when writing a BIND statement. A particular instance name
must not pair with two different chiptypes; each section name must be valid for the corresponding
chiptype; and the chiptype and instance lists must not be too short (though they may be too iong).

That example suggests that chiptype 20021 may well have additional sections (A1 and B1, perhaps),
not mentioned in this BIND statement. Additional BIND statements can, by referencing common
instance names, access sections within the same chips that this BIND statement uses. Thus, one
would expect to see another BIND statement referencing sections A1 and Bl of instance W2 of
chiptype 20021. Two BIND statements which share instances in this manner must be within the
scope of one common PLACE statement, but they can be in different WITH contexts beneath it.

all the sections available in that chiptype, the remainder are available for the PLACE statement to
use in laying out locations not involved in any BIND statement.

One additional shortcut exists for specifying chiptypes. Omitting the chiptype but including the
repetition factor is equivalent to specifying the default chiptype. Thus, if 94550 is the default
chiptype for each of the macro calls referencing it in the previous example, then a simpler way to
write the BIND statement would be:

BIND RA = S8, SB, S1, SA®9, S1, SB@
#%3, 28821, x1, 28021
&M1, M2, M1, W2, M2, uz;

BIND statements are not compatible with manual layout. If a particular macro call appears in a
manual layout statement, don’t attempt to bind it. If a particular macro call appears in a BIND
statement, don’t attempt to lay it out manually. The program will flag any such errors.

7.1.6 The CHIP statement 165

7.1.6 The CHIP statement

Provided a macro is being laid out manually, the CHIP statement can override the default chiptype
for a terminal macro call by specifying a particular chiptype at the board position which that macro
will occupy.

For example, if location X4 is a call on a terminal macro, the following pair of statements piaces it
five rows and two columns beyond the current context and forces it to use chiptype 20023:

CHIP 28823 = RS C2;
X4 = R5 C2;

Provided the designer knows which macro calls result from a nonterminal macro, the CHIP
statement can specify chiptypes for them as well. If location X8 is a call on a nonterminal macro
which expands so as to place terminal G7 at the second column from its starting position, then the

following pair of statements forces G7 to use chiptype 19711:

CHIP 139711 = RS Cé4;
X6 = RS C2;

A single CHIP statement can dictate a number of different positions:
CHIP X7 = RS C2, R7 C1, B2 R1 C1;

The CHIP statement may precede or follow an assignment statement.

166

7 The layout program

167

8 References

1. A manual providing compliete information on D, the graphics editor, is kept in a file on the SAIL
computer system at Stanford University. D is one piece of a package of programs called SUDS
(Stanford University Drawing System), so the manual includes information on other programs (such
as one for PC board layout, for example) which don’t pertain to SCALD.

Since the manual hasn’t been published, you must either sign on to the SAIL computer system to
read it, or have someone with access to SAIL print a copy for you. The filename is
SUDS.RPH[UP,DOC]

2. These papers describe the philosophy behind SCALD. Because they deal with SCALD I, an
earlier version, some details may differ from those you’ve read about here.

Mcwilliams, T. and Widdoes, L., SCALD: Structured Computer-Aided Logic Design.
Lawrence Livermore Laboratory Report UCRL-80950, March 1978.

———, The SCALD Physical Design Subsystem. Lawrence Livermore Laboratory Report
UCRL-80951, March 1978.

168

8 References

169

9 Implementation information

9.1 Format of the WDP file

Each WDP file gives the macro expander the equivalent of the information in one drawing
produced by the graphics editor D—loosely speaking, the definition of a single macro. The file is
organized by lines. If column 1 is not blank, the line should contain either the keyword “END” or
the keyword "NUL”. “END?” signifies the end of a list of elements, and “NUL” signifies a null text
string on a line. Blank lines are ignored. The format of the file is as follows:

MName

Selection
equation

PageOf

FileName

Section

The name of the macro being defined; identical with title line 1 in a drawing

generated by the graphics editor D.

This is title line 2 in a drawing generated by D.

Each drawing bears a page number in the form “Page x of y”, strictly for
documentation. The WDP file expresses this as “x/y”

The name of this file; strictly for documentation.

Project name; strictly for documentation.

For each macro called from this drawing, include the following:
MName Name of the macro being called.

For each body parameter, include the following pair of lines:

170

Body parameter

value

9 Implementation information

The formal parameter name of a body
parameter, such as “LOC” or “SIZE”. This
corresponds to the name portion of a
property name/text pair in D.

The value of the formal parameter just

~ named. This corresponds to the text

portion of a property name/text pair in D.

At the end of the list of body parameter names and values, include:

END This terminates the list of body parameters.

For each signal parameter, include the following pair of lines:

PinName

Signal

The formal parameter name for a signal;
this corresponds to the “pinname” in D

The actual signal name for that parameter;
this is the name of the signal connected to
the pin in question.

At the end of the list of pinnames and signal names, include:

END This terminates the list of pinnames
END This terminates the list of called macros
END This terminates the file

An example of a WDP file is:

ADDER 18181
(SIZE < 5)
1/1
ADDER.DRW
AGDERS

18181 ;CALL MACRO 12181
LocC 3PASS IT LOC PROPERTY WITH VALUE A

A

SIZE +PASS IT A SIZE PROPERTY WITH VALUE 4B

4B

9.1 Format of the WDP file 171

END
A ;PASS PARAMETER "A" THE SIGNAL "A<B:SIZE-1> /P"
A<@:SI1ZE-1> /P
B sPASS
B<@:SIZE-1> /P
F
F<@:S1ZE-1> /P
END sEND OF MACRO CALL
END +END OF MACRO DEFINITION
END $END OF FILE

12

9 Implementation information

10 Index

A, evaluation directive, 139.
Abbreviations, in macro expander, 98.
Adaptors, in layout program, 153.

Alt key, 8.

Alter submode, in graphics editor, 27.
AND function, in timing verifier, 130.
AND, logical primitive, 132.

Assert low, in layout program, 158.
Assert low, in macro expander, 90.
Assertion checking, in timing verifier, 146.
Assertions, in timing verifier, 137.

Assignment statement, in layout program, 157.

Automatic layout, 161.

BCROSS file, in timing verifier, 143.
BIND statement, in layout program, 163.
Binding, in macro expander, 86.

Bit subscripts, in macro expander, 92.
Board coordinate, in layout program, 150.
Body mode, in graphics editor, 17.

Body parameters, in macro expander, 79.

Body templates, creating, in graphics editor, 22.

Body templates, described, 8.

Boolean constants, in macro expander, 98.
Case analysis, 128.

CHANGE function, in timing verifier, 130.
Change gates, in timing verifier, 132.

CHANGE state, for signals in timing verifier, 129.

CHG function, in timing verifier, 130.
Chip counts, on macro expander listing, 119.
CHIP statement, in layout program, 165.

173

174

Chips file, described, 74.

Chips, defining them for timing verifier, 132.
CHIPS.LAY file, in layout program, 148.
Chiptype, in layout program, 152. '
Chiptype, overriding default, 165.
CHPTYP.LAY file, in layout program, 149.
Circuit period, 129.

Class name, in macro expander, 89.

Clear workspace, in graphics editor, 13.

Clock period, 129.

Clock period, in timing verifier, 142.

Clock skew, 129.

Clock skew in timing assertion, 139.

Clock skew, in timing verifier, 142.

Clock timing assertion, 139.

Colonstring, in layout program, 159.

Column coordinate, in layout program, 150.
Combinational functions, in timing verifier, 130.
Comment body, in macro expander, 109.
Comments, in macro expander, 87.

Common pins, in macro expander, 93.
Complementary outputs, in layout program, 158.
Complementary outputs, in macro expander, 90.
Concatenating signal names, in macro expander, 8.
Conditional signal names, in macro expander, 87.
Constant signals, in macro expander, 98.
Context, in layout program, 150.

Control key, 7.

CORR text substitution, 140.

Correlations, in timing verifier, 140.

Cursor, in graphics editor, 9.

Cycle time, 129.

Cycle time, in timing verifier, 142.

D, description of, 4.

D, guided tour, 31.

D, use of, 7. _

Dangling points, in graphics editor, 15.

DATE statement, in layout program, 154.
Declare list, in macro expander, 94.

Define list, in macro expander, 98.

Defining chips for timing verifier, 132.

Del key, 8.

DELAY parameter, in timing verifier, 132.
Drawing library, 8.

Drawings, manipulating in graphics editor, 13.

10 Index

10 Index

Dynamic scope, in macro expander, 94.
Edit mode, in graphics editor, 22.

END statement, in layout program, 155.
Enlargement, graphics editor, 9.

Error messages, macro expander, 113.
Errors, in timing verifier, 146.

Evaluation directive, in timing verifier, 139.
Expressions, in macro expander, 77.
Extended commands, graphics editor, 11.

FALL state, for signals in timing verifier, 129.

Files, formats of, '169.

Files, input and output to timing verifier, 142.
Flashing letters, in graphics editor, 11.
Gates, logical primitives, 132.

GCROSS file, in timing verifier, 143.
Global signals, in macro expander, 93.
Graphics editor, description of, 4

Graphics editor, guided tour, 31.

Graphics editor, use of, 7.

Guided tour, graphics editor, 31.

Guided tour, macro expander, 121.

H, evaluation directive, 140.

H/L list, in layout program, 158.

Hold time checking, in timing verifier, 146.
Hold time checking, primitive for, 132.

I, evaluation directive, 140.

IC terminal file, definition, 73.

IF/THEN construct, in macro expander, 87.

Inclusive OR function, in timing verifier, 130.

Initializations, in graphics editor, 14.
Inversion of signals, in layout program, 158.
Keyboard, Stanford, 7.

Latch, logical primitive, 132.

Layout program, description of, 4.
Layout program, use of, 148.

LCROSS file, in timing verifier, 143.
Letters, flashing in graphics editor, 11.
Library, graphics editor, 8.

Lines, drawing in graphics editor, 19.
Listing, from timing verifier, 145.
Listing, macro expander, 113.

LOC parameter, in macro expander, 81.
Location labels, in layout program, 149.
Logic simulator, description of, 4.

Logic states, for signals in timing verifier, 129.

175

175 10 Index

Logical design system, 4.

Logical primitive, 73.

Logical primitives, used in timing verifier, 132.
MACEXEP file, 112.

MACEXTP file, in timing verifier, 142.
MACLST file, 112.

Macro expander, description of, 4.

Macro expander, guided tour, 121.

Macro expander, how to run the program, 112.
Macro expander, listing, 113.

Macro expander, use of, 73.

Macro, description, in macro expander, 73.
Macros, graphics editor, 29.

Macros, text, in macro expander, 98.

Menu drawings, in macro expander, 75.

Merge body, in macro expander, 107.

Meta key, 7.

MIN PULSE WIDTH, 132

Minimum pulse width checking, logical primitive, 132.
MNAME parameter, in macro expander, 79.
Modes, graphics editor, 10.

Module-specific signals, in macro expander, 93.
Multiplexer, logical primitive, 133.

Multiplier, in macro expander, 95.

Musg, logical primitive, 133.

Name syntax, in macro expander, 77.
Negation, in macro expander, 83.

NOT body, in macro expander, 106.

NOT function, in timing verifier, 130.
OPTION file, in timing verifier, 142.

OR function, in timing verifier, 130.

OR, logical primitive, 132.

Packager, description of, 4

Paper, moving in graphics editor, 9.
Parameter list, in macro expander, 94.
Parameter signals, in macro expander, 93.
Parameters, in macro expander, 79.

Path name, in macro expander, 100.

Period, clock, 129. ’

Period, clock, in timing verifier, 142.

Physical design system, 4.

Pin parameter syntax, in macro expander, 83.
Pin parameters, in macro expander, 79.
Pinname, use in macro expander, 83.

PLACE statement, in layout program, 161. :

10 Index

Point mode, in graphics editor, 19.

Position, defined, in layout program, 149.
Position, syntax for, in layout program, 150.
Precedence of operators, in macro expander, 77.
Precision clock timing assertion, 139.
Precision clock, in timing verifier, 139.
Primitive terminal file, definition, 73.
Primitives, logical, used in timing verifier, 132.
Propagation delay, in timing verifier, 132.
Pulse width checking, in timing verifier, 146.
Reduction, graphics editor, 9.

Register, logical primitive, 132.

RISE state, for signals in timing verifier, 129.
Row coordinate, in layout program, 150.

S-1 Mark ITA, L

SCALD [L

Scope, in macro expander, 93.

Screen, graphics editor, 32.

Section coordinate, in layout program, 150.
Selection equation, in macro expander, 88.
Set mode, in graphics editor, 21.

Setup checking, in timing verifier, 146.

Setup time checking, primitive for, 132.

Shift key, 7.

Sign extension body, in macro expander, 108.
Signal class name, in macro expander, 89.
Signal constants, in macro expander, 98.
Signal name syntax, in macro expander, 87.
Signal names, in macro expander, 77.

Signal parameter, in macro expander, 93.
Signal parameters, in macro expander, 79.
Signal times expression, in macro expander, 95
Simple name, in macro expander, 89.

SIZE parameter, in layout program, 152.
SIZE parameter, in macro expander, 79.
SIZE parameter, in path name, 101.

Skew, 129,

Skew, in clock timing assertion, 139.

Skew, in timing verifier, 142.

Slash body, in macro expander, 106.

Socket, in layout program, 150.

Stable signal timing assertion, 139.

STABLE state, for signals in timing verifier, 129.

Stanford keyboard, 7.
States, for signals in timing verifier, 129.

177

178 10 Index

Storage requirments, timing verifier, 147.
Synonyms, in macro expander, 102,

TERM file, 112.

Terminal file, 112

Terminal file, how to construct, 110.

Terminal file, in macro expander, 73.

Terminal, description, in macro expander, 73.
Terminals, on macro expander listing, 114.

Text substitution macros, in macro expander, 98.
Text, editing in graphics editor, 27.
Text/property submode of body mode, in graphics edltor 17.
TIMES body parameter, in layout program, 152.
TIMES body parameter, in macro expander, 80.
TIMES expression, in layout program, i60.
TIMES parameter, in path name, 101.

Times signal expression, in macro expander, 95.
TIMES variable, in macro expander, 80.
Timing assertion, in macro expander, 90.
Timing assertions, in timing verifier, 137.
Timing evaluation directive, in macro expander, 93.
Timing verifier, description of, 4.

Timing verifier, how to use, 127.

Timing verifier, input and output files, 142.
Timing verifier, theory of operation, 128.
TIMLST file, in timing verifier, 142.

Top key, 7.

Undefined macros, on listing, 113.

defir 1g, 113
Universe drawing, in macro expander, 75.
UNKNOWN state, for signals in timing verifier, 129.
Unnamed signals, in macro expander, 102.

Values, for signals in timing verifier, 129.

YAR body parameter, in timing verifier, 132.

VAR parameter, in macro expander, 81.

Version, in macro expander, 97.

Versions, in layout program, 158.

W, evaluation directive, 139.

WDP file, format of, 169.

WDPR program, 112.

Wire delay estimate, in timing verifier, 137.

Wire delay, in macro expander, 93.

Wire delay, in timing verifier, 142.

Wire OR body, in macro expander, 108.

WIRES file, in timing verifier, 142.

WITH statement, in layout program, 155.

X commands, graphics editor, 11.

10 Index

X FIRST variable, in macro expander, 79.

X FIRST variable, scope of, 99.

X STEP variable, in macro expander, 79.
X STEP variable, scope of, 99.

X variable, in macro expander, 80.

XOR function, in timing verifier, 130.
XOR, logical primitive, 132.

Z, evaluation directive, 139.

179

Notice

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Department of Energy, nor any of their
employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would
not infringe privately-owned rights. S

Reference to a company or product name does not imply
approval or recommendation of the product by the University
of California or the US. Department of Energy to the
exclusion of others that may be suitable.

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180

