
SPECIAL REPORT ON MINICOMPUTER SYSTEMS 

LISP MACHINES 
COME OUT 
OF THE LAB 
No longer restricted to the research lab, artificial intelligence 
is becoming increasingly attractive to commercial users 
thanks to computer architectures designed to support 
the Lisp language. 

by Nlache Creeger 

Artificial intelligence, defined as the science of en­
abling machines to reason, make judgments, and 
even learn, is often seen as a field whose practical 
benefits will be realized only at some future date. 
This is not entirely true. Artificial intelligence 
researchers have already contributed to the devel­
opment of such techniques as timesharing, net­
working, and window systems-a part of the 
commercial computing world. However, a power­
ful software tool developed by the artificial intel­
ligence community, the Lisp language, is just 
beginning to make an impact outside of the 
research labs. 

The Lisp language deals with the complex and 
unpredictable data characteristic of the artificial 
intelligence (AI) field. It permits large, powerful 
programs that traditional programming techniques 
cannot handle to be written, tested, and modified. 
However, traditional computers (such as Digital 
Equipment Corp's systemlO or VAX, and similar 
machines), cannot support Lisp so that it can 
become an efficient tool for commercial use. As a 
result, the power and productivity of the language 
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have remained in the research lab, where function­
ality, rather than speed, is the major consideration. 

An efficient Lisp implementation requires an 
architecture optimized for the structure of the 
language, as well as very high storage capacity. In 
addition, Lisp must be integrated with other com­
puting environments to eliminate the need for an 
all-at-once changeover from present software and/ 
or hardware. Such a machine offers a program­
ming environment that provides substantial pro­
ductivity increases for the development of a range 
of software systems, as well as an evolutionary 
means of bringing "intelligence" to existing com­
puter systems. 

Lisp and the commercial world 
While this potential should make it attractive to 

software developers and system integrators in the 
commercial world, the lack of appropriate hard­
ware for the language has kept it in the research 
labs. Before the development of the first Lisp 
machines at the Massachusetts Institute of 
Technology (MIT) in the 1970s, Lisp implementa­
tions ran on mainframes. Since the architecture of 
these machines was optimized for numeric lan­
guages such as Fortran, much of the Lisp environ­
ment was in software, thereby imposing substantial 
overhead on program execution. The applicative 
and recursive nature of Lisp requires an environ­
ment that efficiently supports stack computations 
and function calling. 

In addition, Lisp's memory requirements 
exceeded even the capacities of these large 
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computers. Frequent stops for garbage collection 
made execution slow. Methods used to implement 
data-typing imposed another handicap. Lisp is a 
weakly typed language, meaning that functions 
can deal with a number of different data types (eg, 
fixed and floating point numbers) through a pro­
cess called coercion, where a function recognizes 
the kind of data object it is dealing with and reacts 
accordingly. Traditional memory organizations 
require this process to be handled in a number of 
inefficient ways. Devoting fixed areas of memory 
to specified types causes memory fragmentation; 
other devices required extensive software over­
head. Other problems were the language's poor 
arithmetic capabilities, since overcome by better 
compilers and hardware support, and its "stand­
alone" nature. Because it was developed for use as 
a research tool by individuals or small groups, it 
did not integrate well into more traditional multi­
user computing environments. 

Lisp machine design 
To illustrate how Lisp machine design over­

comes these handicaps, consider the Lambda 
Machine from LISP Machine Inc. It is a lineal 
descendant of the original MIT Lisp machine, the 
CONS, which required mainframe support to 
operate. This machine was superseded by the 
CADR, which was later brought to the marketplace 
by LISP Machine Inc. The CADR was a personal, 
networked computer for programmers developing 
large, complex software systems. Drawing heavily 
on design experience gained from the CADR, the 
Lambda adds Lisp-oriented enhancements to the 
advanced high performance NuBus, also devel­
oped at MIT. Combining the Lambda processor 
with the NuBus architecture produces a modular, 
expandable Lisp machine with multiprocessor 
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Fig 1 In a tnditional bas design 
(left), a specific CPU is the center of 
the system, and any other 
processors are subsidiary. In 
contnst, the NuBas architecture 
(right) is centered on the bus Itself, 
permitting multiple processon to 
share system control. 

capabilities. The Lambda offers an integral 
Multibus, Ethernet-II networking, and the Lisp 
Machine Lisp/ Zeta Lisp operating environment. 

NuBus's device-independent architecture, origi­
nally developed at MIT's Laboratory for Computer 
Science and now supported by Texas Instruments, 
centers on a 32-bit bus with a 37 .5M-byte/ s peak 
transfer rate. Important aspects are its ability to sup­
port multiple processors and the architectural flexi­
bility furnished by the system diagnostic unit (SDU) . 
Both of these distinguish it from traditional architec­
tures (Fig 1). 

Traditional bus architectures center on a single 
processor, with major subsystems arrayed around 
a specific central processing unit (CPU) . In contrast, 
the NuBus is a communication-centered design that 
allows rapid interchange of data between a variety 
of devices within a 40-byte address space. Input/ 
output (110), interrupt, and memory signals are ini­
tiated uniformly over the bus, and transactions are 
based on a "master/ slave" concept: any given device 
may control the bus and address another device as 
a slave for that transaction. A simple handshake pro­
tocol used between master and slave enables modules 
with different speeds to communicate. This arrange­
ment allows a variety of processor combinations to 
be used. 

NuBus architecture handles five functional classes 
of signals. Four card-slot identification signals assign 
a unique physical location to each of 16 boards, so 
that any system module can occupy any board loca­
tion; no dual-inline package switches, jumpers, or 
special backplane wiring are necessary. Six control 
signals-CLOCK, RESET, START, and ACKNOWLEDGE 
for data transfers, and two transfer mode (TM) 
signals for type of transfer-perform all control 
functions. Modes include 8- , 16- , and 32-bit (full­
word) transfers as well as block transfers of up to 



16 words. Thirty-two signals carry a 32-bit address 
at the beginning of each clock cycle, and 32 bits of 
data in the remainder of each cycle. Five signals con­
trol bus arbitration, and two indicate system parity 
and parity validity. 

Multiprocessor operations 
Two elements of this high speed bus design are 

particularly important for supporting multiprocessor 
operations : the memory mapped interrupt scheme, 
and the distributed bus arbitration logic that governs 
the master/slave relationships among devices. There 
are no interrupt lines on the NuBus. Instead, inter­
rupts are accomplished by write transactions into 
memory addresses monitored by the interrupted pro­
cessor. Any memory location may be specified as 
an interrupt address for any processor. This tech­
nique specifies interrupt priorities in software by 
memory mapping the priority level of each interrupt, 
thus eliminating the difficulties otherwise encoun­
tered in systems using multiple processors with dif­
fering interrupt schemes. 

Arbitration occurs each time control is transferred 
between bus masters, and is independent of data 
transfers . The winner of the arbitration controls the 
bus until an arbitration is won by another device, 
but control is not transferred until the losing bus 
master completes any current data transfer. The dis­
tributed bus arbitration logic provides fair band­
width sharing between processors by organizing 
devices on the bus into logical groups. When several 
devices simulianeously request the bus, the highest 
priority device gains control, but no device can ini­
tiate new bus requests until all devices in the group 
have acquired the bus. This prevents high priority 
processors from starving those with lower priority. 

A bus master that acquires the bus is automatically 
the highest priority device within its group; thus it 
can accomplish an undivided set of data transfers 
by continually arbitrating for, and winning, the bus. 
If no other processor requests the bus, the current 
bus master may continually initiate data transfers 
without rearbitrating for the bus each time. This 
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scheme speeds up processing by relieving a bus 
master of unnecessary arbitration overhead. 

The NuBus's modularity and device independence 
comes from the SDU. This 8088-based board serves 
both as an architectural supervisor and as a smart 
diagnostic front end. Upon power-up, the SDU 
verifies bus integrity, identifies boards in the system 
from the contents of a small read only memory 
(ROM) on each board, and configures the system 
accordingly. It tests each board, signals the presence 
of any defective modules, and then boots the system. 
The sou stores system configuration information in 
a nonvolatile battery-backed complementary metal 
oxide semiconductor random access memory (CMOS 
RAM) and can dynamically change the system con­
figuration on command. Two RS-232 serial ports 
serve either for remote diagnostics or as general 
purpose serial ports. The SDU is also the system 
clock source. Fig 2, a block diagram of the Lambda 
machine, illustrates the sou's importance in system 
control and configuration. 

The SDU also serves as the NuBus interface with 
the Multibus . The Multibus allows the Lambda to 
interface with numerous peripherals and board-level 
products. The two buses operate independently 
except during bus conversions, which are accom­
plished through a hardware mapping scheme that 
requires no participation by the 8088 processor. The 
Multibus's entire IM-byte address space appears as 
one continuous block in the 40-byte NuBus address 
space. Conversion from NuBus to Multibus is trans­
parent; a NuBus processor can access data or execute 
a program from Multibus memory. Conversion from 
Multibus to NuBus is accomplished by a page­
mapping scheme that uses the upper 10 bits of the 
Multibus address to reference a page-mapping table. 

The 22-bit page-frame number obtained from the 
map is concatenated with the lower 10 bits of the 
Multibus address to yield a 32-bit NuBus address. 
Interrupts originating in the Multibus are mapped 
into NuBus interrupt addresses by the 8088 pro­
cessor; interrupts from NuBus to Multibus are writ­
ten by the NuBus to an addressable latch on the 
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Fig 2 An overview of the Lambda 
illustrates the machine's flexibility. 
System organization can be 
changed dynamically under control 
of the sou, which also controls the 
Multibus and Ethernet-II interfaces. 
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Fig 3 The Lambda's Lisp processor consists of four boards (not outlined in this diagram). Clockwise from 
the top left are the memory interface board, which interacts with the NuBus; the data paths board, where 
data manipulation takes place; the control memory board, which contains the microcode functions; and the 
random gates board, which includes several control and diagnostic functions. 

sou, which creates the appropriate Multibus inter­
rupt. If both buses request each other simultane­
ously, the sou prevents deadlock by giving priority 
to the slower Multibus-to-NuBus transfer, since 
NuBus-to-Multibus transfers can be rescheduled 
faster. 

Another important aspect is Lambda's Ethernet-II 
interface, which executes the Advanced Research 
Projects Agency network (ARPANET) Transmission 
Control Protocol/Internet Protocol (TCP/ IP). This 
interface facilitates resource sharing and interuser 
communication, easing the task of integrating a Lisp 
machine into an existing system. The Ethernet-II 
interface is controlled by another 8088-based board 
that provides the hardware interface and handles all 
network control protocols (NCPs). This frees the 
processor(s) from the overhead usually associated 
with NCPs, making protocol updates simpler and 
less time consuming. 

Other hardware elements enhance NuBus opera­
tion. Memory boards in the NuBus system are self­
contained memory controllers that support block 
transfers and error correction and logging. The 
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memory holds 39-bit words: 32 bits of data and 7 
bits of error-correction code. The video display 
system supports a high resolution (800 x 1024) display 
with two IM-bit video buffers (useful when screen 
updates should not be seen), onboard logical func­
tions, and a keyboard-mouse interface. Rounding 
out the generic aspects of the architecture are a disk 
controller that can handle four storage module 
device (SMD) drives, a 470M-byte Winchester disk 
drive, and a card cage with 21 slots: 13 for NuBus, 
5 for Multibus, and 3 for either. 

The Lisp processor 
Four boards, utilizing high speed Schottky 

transistor-transistor logic (TTL) devices and com­
municating through a private bus on the back­
plane, constitute the Lisp processor. This general 
purpose 32-bit microprogrammable processor pro­
vides efficient pipelined execution of complex 
order codes. Although its optimal function is inter­
preting the Lisp compiler's bit-efficient 16-bit 
order code, the processor easily adapts to high 
level language execution as well as to specific 



The Lisp language 

The Lisp (List processing) language deals with arbitrary 
symbols - that can represent any concept-rather 
than numbers . The basic Lisp data structures are the 
atom and the CONS node . An atom, as its name indi­
cates , is a data object that cannot be further broken 
down . A CONS node is a data structure that consists 
of two fields , each holding a pointer to another Lisp 
data object , which in turn may be an atom, another 
CONS node, or any other Lisp object, such as a string 
or an array. Any number of CONS nodes may be linked 
together to form data structures of arbitrary size and 
complexity; such structures prove ideal for handling 
unpredictable data such as natural-language repre­
sentations . The list is one of the most important 
forms these complex data structures can take-hence 
Lisp 's name. 

Each Lisp atom has associated with it a property 
list, which gives additional information about the 
atom, including the atom 's value (if it is a variable). 
its print name (a pointer to its character representa ­
tion in memory), or any other property the program­
mer assigns . For instance, an atom that is an English 
word might have as a property its part of speech, its 
phonetic representation , or even its connotations . 

Part (a) of the Figure illustrates Lisp's data struc­
ture . It represents a simple list - (THROW (THE BIG RED) 
BALL) - made up of six linked CONS nodes (the double 
squares) and seven atoms (each word in the list) . NIL 
is a special atom used to mark the end of a list or 
sublist . This Lisp construct contrasts with a Fortran 
array shown in (b) containing the same list . In the For­
tran array, parentheses indicate the beginning and end 
of sublists . 

The Lisp list structure offers several advantages. For 
example, if a single sublist-such as "THE BIG RED " -
appears in many lists, it need be represented in 
memory only once, and pointers in each main list can 
reference it . Moreover, the elements of a list need not 
be adjacent to each other within memory, allowing 
efficient use of storage space. Furthermore, elements 
can be easily added to or deleted from a list without 
affecting other data elements-only pointers need be 
changed. In contrast, many elements in a Fortran array 
must be moved up or down when one is inserted or 
deleted . In addition , Lisp allows sublists to be skipped 
during searches of main lists; as a result, Lisp can 
process large lists much faster and more efficiently 
than Fortran . 

Productivity advantages stem from Lisp's func­
tionally based programming style, its runtime nature , 
and its extensive editing and debugging facilities . In 
contrast to traditional programming, where a great 
deal of time is spent merely specifying application 
parameters that may not be fully known until the pro­
gram is finished , a Lisp programmer can have a 
program up and running very quickly . It then can be 
modified to suit the needs of end users based on their 
actual experience with the software . As an example 
of Lisp's productivity enhancements, LISP Machine 
Inc devised a sophisticated Lisp-based CAD system 
that it in turn used to design its Lambda machine. The 
CAD system was completed in less than two man­
years ; if designed with traditional programming 
methods, completion would have required an esti ­
mated 50 to 100 man-years. 

Lisp programs consist of a group of functions , in 
contrast to traditional languages, which consist largely 
of sequential instructions and attendant subroutines . 
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Lisp is thus a naturally modular language , and pro ­
grammers can readily break down a function into 
many easily handled subtasks, or smaller functions . 
Lisp is highly recursive, allowing a function to call 
itself . This is a useful feature when a subtask is iden­
tical to the main task . 

The language can either run interpretively or be com­
piled . In the interpretive mode, Lisp functions and data 
have the same structure ; therefore, functions can 
manipulate or even create other functions . In modern 
Lisp machines , every bit of software , from the oper­
ating system to the editing and debugging utilities, is 
written in Lisp and can thus be easily customized to 
suit a programl"'ler ' s needs . For example, a program­
mer can design applications software that creates a 
function in data-structure form, submits that structure 
to the system Lisp compiler (which is itself a Lisp pro-
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gram). and then automatically executes the resulting 
compiled program as part of the applications software . 

Lisp's runtime nature, which stems from its dynamic 
storage allocation and link-edit features , eases pro­
gram generation by allowing programmers to defer 
decisions regarding the form of the final program . In 
contrast to tradit ional programming languages , Lisp 
does not require a declaration of required storage prior 
to writing the program . New storage is allocated dur­
ing program execution as the program requires it. 
When the system senses that an area of memory can 
no longer be accessed by a program (eg, when a 
sublist's pointers are deleted from the ma in list) , the 
inaccessible storage is automatically reclaimed and 
made available for new allocation through a process 
called garbage collection. 

In addition , Lisp programs do not require a separate 
link-editing phase during compilation. Instead , func ­
tions are linked at run time and therefore can be easily 
changed even after compilation . Program modifica­
tions involve editing only those functions affected by 
the change and recompiling them-there is no need 
to recompile and link-edit the entire program. 

Since Lisp has been the language of choice in the 
artificial intelligence field for many years , a powerfu l 
set of editing and debugging tools have been 
developed for it . Using such tools , a programmer can, 
for example, concurrently observe program source and 
execution, retrieve and modify any function , and 
recompile the modified function back into the program 
with very few keystrokes. Furthermore, because all 
of the programming utilities are written in Lisp, they 
can be easily incorporated into an applications pro­
gram through Lisp's dynamic-linking capability. For 
example , the Lambda's Lisp Machine Lisp/Zeta Lisp 
environment includes an extensive window system, 
implemented by a message-passing feature called 
Flavors . This window system can be easily modified 
to serve as a user friendly interface for an applications 
program . 



applications that rely on certain macroinstructions, 
which can be microcoded for faster execution. Main 
data paths of the processor are shown in Fig 3. 

Four boards centralize related areas of the Lisp 
environment. Briefly, the data paths (DP) board 
contains the arithmetic logic unit (ALU), dispatch 
logic, scratchpad memories, and associated registers. 
The control memory (CM) board incorporates 
microcode functions and associated logic, and the 
microinstruction stack. The memory interface (MI) 
board, a NuBus master, contains cache, cache state 
machine, location counter, and diagnostic logic. 
Responsible for relations between the Lisp processor 
and the NuBus system, its operation is especially 
important for multiprocessor applications. Finally, 
the random gates (RG) board holds the macro­
instruction decoder, statistics counter, history RAM, 
clock, matrix multiplier, and a slave NuBus diag­
nostic interface. 

The Lisp processor's data paths are 32 bits wide: 
24 bits for data and 8 bits for data-typing and other 
operations, giving the Lambda 67M bytes of address 
space (224 4-byte words). A 40-bit enhancement 
(planned for early next year) will expand the address 
space to 21.50 bytes. Since the number of bits used 
for data-typing will remain the same, little or no 
reprogramming will be necessary. 

In addition to its large address space, the Lambda 
uses a technique known as CDR-coding to reduce 
storage demands of list structures by almost 50%, 
making the address space seem even larger. CONS 
(constructor) nodes (see the Panel) cannot be inserted 
into a list compressed by this technique. However, 
since the processor automatically reexpands the 
CDR-coding when the list is accessed for modifica­
tion, the technique is transparent to the user. 

Processor design aspects 
Data are passed to and from the Lisp processor 

under control of the cache state machine, a special­
ized high speed processor. Using NuBus block­
transf er capability, the cache state machine manages 
memory accesses in a look-ahead/look-behind mode 
based on the principle of set-local operations, or 
locality. Presuming that the next word to be accessed 
is nearby the last word requested, the machine trans­
fers an entire block (up to 16 words) centered on the 
requested word into the cache. 

To avoid the problem of one processor interfering 
with another's data and resulting inaccuracy of the 
data buffered in a processor's cache, the NuBus is 
monitored continuously. The cache state machine, 
in combination with the master interface, constantly 
checks the NuBus to determine whether any other 
processor is writing into a location represented in 
the cache. If so, it invalidates that location, thus 
both assuring reliable data and avoiding the need 
for cache sweeping-a fragile and unreliable method 
of cache verification. 

Memory access occurs through a 2-level virtual 
paging system that employs three virtual-to-physical 
address maps to map 24-bit virtual addresses into 
addresses within physical memory in the ·NuBus. 
This paging implementation also supports an effi­
cient garbage-collection algorithm, which reclaims 
static-memory areas less often than more volatile 
areas, thereby consuming less processing time. 

The system's vectored interrupt system gives each 
device an address space in the interrupt slot, and 
assigns an address in software to each type of inter­
rupt. Each interrupt's status is stored in a RAM, 
which is scanned to see if any device has requested 
an interrupt. When an interrupt request is found, 
scanning stops, thus preventing interrupts from 
being lost (new interrupts are still stored). No other 
interrupt is noted until the current one is serviced 
and cleared. Provision for both fast and slow inter­
rupts provides a flexible interrupt environment. 

Associated with the interrupt machine is the slave 
interface to the NuBus, used largely for diagnostic 
purposes. It communicates with the diagnostic logic. 
This logic includes a 4K x 16-bit microprogram­
history RAM that holds the control memory 
addresses of the last 4096 microinstructions executed. 
For debugging, the system can be manually halted. 
It can also be programmed to halt in the event of 
a specified error or other condition, such as the exe­
cution of a given instruction a set number of times. 
At the time of the halt, the system's state is saved 
with no loss of information: the machine state is 
exactly as it was during the execution of the instruc­
tion that initiated the halt. 

Diagnostic logic can then be used for unclocked 
transactions to trace machine state, or can single­
step the system with user-generated clocks to track 
down possible timing problems. In combination with 
software debugging facilities, these diagnostic 
capabilities enable programmers to easily pinpoint 
and correct problems from the largest programs to 
the user-written microcode. The RG board also con­
tains a high speed 16 x 16 matrix multiplier. This 
greatly speeds array referencing as well as simple 
arithmetic. 

A macroinstruction program counter holds the 
address of the next macroinstruction to be executed. 
Since two consecutive instructions are usually used, 
two macroinstructions are fetched concurrently, 
packed into a single 32-bit word, and placed into 
the macroinstruction register. Macroinstruction 
decoding hardware allows a transfer to the appro­
priate microcode subroutine in a single operation, 
saving a significant amount of processing time. 

Processor pipelining and virtual control store 
operation are governed by the microprogram counter 
and its associated logic. The logic tracks the options 
available when making or returning from a micro­
instruction subroutine call. This tracking prepares 
the machine for rapid execution of the next 
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