
SPECIAL REPORT ON MINICOMPUTER SYSTEMS

LISP MACHINES
COME OUT
OF THE LAB
No longer restricted to the research lab, artificial intelligence
is becoming increasingly attractive to commercial users
thanks to computer architectures designed to support
the Lisp language.

by Nlache Creeger

Artificial intelligence, defined as the science of en­
abling machines to reason, make judgments, and
even learn, is often seen as a field whose practical
benefits will be realized only at some future date.
This is not entirely true. Artificial intelligence
researchers have already contributed to the devel­
opment of such techniques as timesharing, net­
working, and window systems-a part of the
commercial computing world. However, a power­
ful software tool developed by the artificial intel­
ligence community, the Lisp language, is just
beginning to make an impact outside of the
research labs.

The Lisp language deals with the complex and
unpredictable data characteristic of the artificial
intelligence (AI) field. It permits large, powerful
programs that traditional programming techniques
cannot handle to be written, tested, and modified.
However, traditional computers (such as Digital
Equipment Corp's systemlO or VAX, and similar
machines), cannot support Lisp so that it can
become an efficient tool for commercial use. As a
result, the power and productivity of the language

Mache Creeger is director of marketing at LISP
Machine Inc, 3916 S Sepulveda Blvd, Culver City,
CA 90230, where he is responsible for sales and
marketing of the company's Lambda machine.
Mr Creeger holds a BS and MS from the University
of Maryland.

have remained in the research lab, where function­
ality, rather than speed, is the major consideration.

An efficient Lisp implementation requires an
architecture optimized for the structure of the
language, as well as very high storage capacity. In
addition, Lisp must be integrated with other com­
puting environments to eliminate the need for an
all-at-once changeover from present software and/
or hardware. Such a machine offers a program­
ming environment that provides substantial pro­
ductivity increases for the development of a range
of software systems, as well as an evolutionary
means of bringing "intelligence" to existing com­
puter systems.

Lisp and the commercial world
While this potential should make it attractive to

software developers and system integrators in the
commercial world, the lack of appropriate hard­
ware for the language has kept it in the research
labs. Before the development of the first Lisp
machines at the Massachusetts Institute of
Technology (MIT) in the 1970s, Lisp implementa­
tions ran on mainframes. Since the architecture of
these machines was optimized for numeric lan­
guages such as Fortran, much of the Lisp environ­
ment was in software, thereby imposing substantial
overhead on program execution. The applicative
and recursive nature of Lisp requires an environ­
ment that efficiently supports stack computations
and function calling.

In addition, Lisp's memory requirements
exceeded even the capacities of these large

COMPUTER DESIGN/November 1983 207

computers. Frequent stops for garbage collection
made execution slow. Methods used to implement
data-typing imposed another handicap. Lisp is a
weakly typed language, meaning that functions
can deal with a number of different data types (eg,
fixed and floating point numbers) through a pro­
cess called coercion, where a function recognizes
the kind of data object it is dealing with and reacts
accordingly. Traditional memory organizations
require this process to be handled in a number of
inefficient ways. Devoting fixed areas of memory
to specified types causes memory fragmentation;
other devices required extensive software over­
head. Other problems were the language's poor
arithmetic capabilities, since overcome by better
compilers and hardware support, and its "stand­
alone" nature. Because it was developed for use as
a research tool by individuals or small groups, it
did not integrate well into more traditional multi­
user computing environments.

Lisp machine design
To illustrate how Lisp machine design over­

comes these handicaps, consider the Lambda
Machine from LISP Machine Inc. It is a lineal
descendant of the original MIT Lisp machine, the
CONS, which required mainframe support to
operate. This machine was superseded by the
CADR, which was later brought to the marketplace
by LISP Machine Inc. The CADR was a personal,
networked computer for programmers developing
large, complex software systems. Drawing heavily
on design experience gained from the CADR, the
Lambda adds Lisp-oriented enhancements to the
advanced high performance NuBus, also devel­
oped at MIT. Combining the Lambda processor
with the NuBus architecture produces a modular,
expandable Lisp machine with multiprocessor

2 08 COMPUTER DESIGN/November 1983

MULTIBUS INTERFACE

• • • • •
ETWORK I TERF CE

MEMORY -PROCESSOR -ADDITIONAL PROCESSORS

Fig 1 In a tnditional bas design
(left), a specific CPU is the center of
the system, and any other
processors are subsidiary. In
contnst, the NuBas architecture
(right) is centered on the bus Itself,
permitting multiple processon to
share system control.

capabilities. The Lambda offers an integral
Multibus, Ethernet-II networking, and the Lisp
Machine Lisp/ Zeta Lisp operating environment.

NuBus's device-independent architecture, origi­
nally developed at MIT's Laboratory for Computer
Science and now supported by Texas Instruments,
centers on a 32-bit bus with a 37 .5M-byte/ s peak
transfer rate. Important aspects are its ability to sup­
port multiple processors and the architectural flexi­
bility furnished by the system diagnostic unit (SDU) .
Both of these distinguish it from traditional architec­
tures (Fig 1).

Traditional bus architectures center on a single
processor, with major subsystems arrayed around
a specific central processing unit (CPU) . In contrast,
the NuBus is a communication-centered design that
allows rapid interchange of data between a variety
of devices within a 40-byte address space. Input/
output (110), interrupt, and memory signals are ini­
tiated uniformly over the bus, and transactions are
based on a "master/ slave" concept: any given device
may control the bus and address another device as
a slave for that transaction. A simple handshake pro­
tocol used between master and slave enables modules
with different speeds to communicate. This arrange­
ment allows a variety of processor combinations to
be used.

NuBus architecture handles five functional classes
of signals. Four card-slot identification signals assign
a unique physical location to each of 16 boards, so
that any system module can occupy any board loca­
tion; no dual-inline package switches, jumpers, or
special backplane wiring are necessary. Six control
signals-CLOCK, RESET, START, and ACKNOWLEDGE
for data transfers, and two transfer mode (TM)
signals for type of transfer-perform all control
functions. Modes include 8- , 16- , and 32-bit (full­
word) transfers as well as block transfers of up to

16 words. Thirty-two signals carry a 32-bit address
at the beginning of each clock cycle, and 32 bits of
data in the remainder of each cycle. Five signals con­
trol bus arbitration, and two indicate system parity
and parity validity.

Multiprocessor operations
Two elements of this high speed bus design are

particularly important for supporting multiprocessor
operations : the memory mapped interrupt scheme,
and the distributed bus arbitration logic that governs
the master/slave relationships among devices. There
are no interrupt lines on the NuBus. Instead, inter­
rupts are accomplished by write transactions into
memory addresses monitored by the interrupted pro­
cessor. Any memory location may be specified as
an interrupt address for any processor. This tech­
nique specifies interrupt priorities in software by
memory mapping the priority level of each interrupt,
thus eliminating the difficulties otherwise encoun­
tered in systems using multiple processors with dif­
fering interrupt schemes.

Arbitration occurs each time control is transferred
between bus masters, and is independent of data
transfers . The winner of the arbitration controls the
bus until an arbitration is won by another device,
but control is not transferred until the losing bus
master completes any current data transfer. The dis­
tributed bus arbitration logic provides fair band­
width sharing between processors by organizing
devices on the bus into logical groups. When several
devices simulianeously request the bus, the highest
priority device gains control, but no device can ini­
tiate new bus requests until all devices in the group
have acquired the bus. This prevents high priority
processors from starving those with lower priority.

A bus master that acquires the bus is automatically
the highest priority device within its group; thus it
can accomplish an undivided set of data transfers
by continually arbitrating for, and winning, the bus.
If no other processor requests the bus, the current
bus master may continually initiate data transfers
without rearbitrating for the bus each time. This

21 0 COMPUTER DESIGNINovember 1983

31-BIT NUBUS

DISPLAY
CONTROLLER

VIDEO
DISPLAY

KEYBOARD

SYSTEM
DIAGNOSTIC

UNIT

SMD
DISK

CONTROLLER

DISK DRIVE

scheme speeds up processing by relieving a bus
master of unnecessary arbitration overhead.

The NuBus's modularity and device independence
comes from the SDU. This 8088-based board serves
both as an architectural supervisor and as a smart
diagnostic front end. Upon power-up, the SDU
verifies bus integrity, identifies boards in the system
from the contents of a small read only memory
(ROM) on each board, and configures the system
accordingly. It tests each board, signals the presence
of any defective modules, and then boots the system.
The sou stores system configuration information in
a nonvolatile battery-backed complementary metal
oxide semiconductor random access memory (CMOS
RAM) and can dynamically change the system con­
figuration on command. Two RS-232 serial ports
serve either for remote diagnostics or as general
purpose serial ports. The SDU is also the system
clock source. Fig 2, a block diagram of the Lambda
machine, illustrates the sou's importance in system
control and configuration.

The SDU also serves as the NuBus interface with
the Multibus . The Multibus allows the Lambda to
interface with numerous peripherals and board-level
products. The two buses operate independently
except during bus conversions, which are accom­
plished through a hardware mapping scheme that
requires no participation by the 8088 processor. The
Multibus's entire IM-byte address space appears as
one continuous block in the 40-byte NuBus address
space. Conversion from NuBus to Multibus is trans­
parent; a NuBus processor can access data or execute
a program from Multibus memory. Conversion from
Multibus to NuBus is accomplished by a page­
mapping scheme that uses the upper 10 bits of the
Multibus address to reference a page-mapping table.

The 22-bit page-frame number obtained from the
map is concatenated with the lower 10 bits of the
Multibus address to yield a 32-bit NuBus address.
Interrupts originating in the Multibus are mapped
into NuBus interrupt addresses by the 8088 pro­
cessor; interrupts from NuBus to Multibus are writ­
ten by the NuBus to an addressable latch on the

ETHERNET-II
INTERFACE

Fig 2 An overview of the Lambda
illustrates the machine's flexibility.
System organization can be
changed dynamically under control
of the sou, which also controls the
Multibus and Ethernet-II interfaces.

A SCRAlCHPADI
DtSPAlCH
MEMORY

VIRTUAL
TO PHYSICAL

MICllO·
PllOGIAll
COUllltR

llAP

Fig 3 The Lambda's Lisp processor consists of four boards (not outlined in this diagram). Clockwise from
the top left are the memory interface board, which interacts with the NuBus; the data paths board, where
data manipulation takes place; the control memory board, which contains the microcode functions; and the
random gates board, which includes several control and diagnostic functions.

sou, which creates the appropriate Multibus inter­
rupt. If both buses request each other simultane­
ously, the sou prevents deadlock by giving priority
to the slower Multibus-to-NuBus transfer, since
NuBus-to-Multibus transfers can be rescheduled
faster.

Another important aspect is Lambda's Ethernet-II
interface, which executes the Advanced Research
Projects Agency network (ARPANET) Transmission
Control Protocol/Internet Protocol (TCP/ IP). This
interface facilitates resource sharing and interuser
communication, easing the task of integrating a Lisp
machine into an existing system. The Ethernet-II
interface is controlled by another 8088-based board
that provides the hardware interface and handles all
network control protocols (NCPs). This frees the
processor(s) from the overhead usually associated
with NCPs, making protocol updates simpler and
less time consuming.

Other hardware elements enhance NuBus opera­
tion. Memory boards in the NuBus system are self­
contained memory controllers that support block
transfers and error correction and logging. The

21 2 COMPUTER DESIGN/November 1983

memory holds 39-bit words: 32 bits of data and 7
bits of error-correction code. The video display
system supports a high resolution (800 x 1024) display
with two IM-bit video buffers (useful when screen
updates should not be seen), onboard logical func­
tions, and a keyboard-mouse interface. Rounding
out the generic aspects of the architecture are a disk
controller that can handle four storage module
device (SMD) drives, a 470M-byte Winchester disk
drive, and a card cage with 21 slots: 13 for NuBus,
5 for Multibus, and 3 for either.

The Lisp processor
Four boards, utilizing high speed Schottky

transistor-transistor logic (TTL) devices and com­
municating through a private bus on the back­
plane, constitute the Lisp processor. This general
purpose 32-bit microprogrammable processor pro­
vides efficient pipelined execution of complex
order codes. Although its optimal function is inter­
preting the Lisp compiler's bit-efficient 16-bit
order code, the processor easily adapts to high
level language execution as well as to specific

The Lisp language

The Lisp (List processing) language deals with arbitrary
symbols - that can represent any concept-rather
than numbers . The basic Lisp data structures are the
atom and the CONS node . An atom, as its name indi­
cates , is a data object that cannot be further broken
down . A CONS node is a data structure that consists
of two fields , each holding a pointer to another Lisp
data object , which in turn may be an atom, another
CONS node, or any other Lisp object, such as a string
or an array. Any number of CONS nodes may be linked
together to form data structures of arbitrary size and
complexity; such structures prove ideal for handling
unpredictable data such as natural-language repre­
sentations . The list is one of the most important
forms these complex data structures can take-hence
Lisp 's name.

Each Lisp atom has associated with it a property
list, which gives additional information about the
atom, including the atom 's value (if it is a variable).
its print name (a pointer to its character representa ­
tion in memory), or any other property the program­
mer assigns . For instance, an atom that is an English
word might have as a property its part of speech, its
phonetic representation , or even its connotations .

Part (a) of the Figure illustrates Lisp's data struc­
ture . It represents a simple list - (THROW (THE BIG RED)
BALL) - made up of six linked CONS nodes (the double
squares) and seven atoms (each word in the list) . NIL
is a special atom used to mark the end of a list or
sublist . This Lisp construct contrasts with a Fortran
array shown in (b) containing the same list . In the For­
tran array, parentheses indicate the beginning and end
of sublists .

The Lisp list structure offers several advantages. For
example, if a single sublist-such as "THE BIG RED " -
appears in many lists, it need be represented in
memory only once, and pointers in each main list can
reference it . Moreover, the elements of a list need not
be adjacent to each other within memory, allowing
efficient use of storage space. Furthermore, elements
can be easily added to or deleted from a list without
affecting other data elements-only pointers need be
changed. In contrast, many elements in a Fortran array
must be moved up or down when one is inserted or
deleted . In addition , Lisp allows sublists to be skipped
during searches of main lists; as a result, Lisp can
process large lists much faster and more efficiently
than Fortran .

Productivity advantages stem from Lisp's func­
tionally based programming style, its runtime nature ,
and its extensive editing and debugging facilities . In
contrast to traditional programming, where a great
deal of time is spent merely specifying application
parameters that may not be fully known until the pro­
gram is finished , a Lisp programmer can have a
program up and running very quickly . It then can be
modified to suit the needs of end users based on their
actual experience with the software . As an example
of Lisp's productivity enhancements, LISP Machine
Inc devised a sophisticated Lisp-based CAD system
that it in turn used to design its Lambda machine. The
CAD system was completed in less than two man­
years ; if designed with traditional programming
methods, completion would have required an esti ­
mated 50 to 100 man-years.

Lisp programs consist of a group of functions , in
contrast to traditional languages, which consist largely
of sequential instructions and attendant subroutines .

2 1 4 COMPUTER DESIGN/November 19B3

Lisp is thus a naturally modular language , and pro ­
grammers can readily break down a function into
many easily handled subtasks, or smaller functions .
Lisp is highly recursive, allowing a function to call
itself . This is a useful feature when a subtask is iden­
tical to the main task .

The language can either run interpretively or be com­
piled . In the interpretive mode, Lisp functions and data
have the same structure ; therefore, functions can
manipulate or even create other functions . In modern
Lisp machines , every bit of software , from the oper­
ating system to the editing and debugging utilities, is
written in Lisp and can thus be easily customized to
suit a programl"'ler ' s needs . For example, a program­
mer can design applications software that creates a
function in data-structure form, submits that structure
to the system Lisp compiler (which is itself a Lisp pro-

THROW
(

THE
BIG
RED

)
THE BIG RED NIL BALL

(a) (b)

gram). and then automatically executes the resulting
compiled program as part of the applications software .

Lisp's runtime nature, which stems from its dynamic
storage allocation and link-edit features , eases pro­
gram generation by allowing programmers to defer
decisions regarding the form of the final program . In
contrast to tradit ional programming languages , Lisp
does not require a declaration of required storage prior
to writing the program . New storage is allocated dur­
ing program execution as the program requires it.
When the system senses that an area of memory can
no longer be accessed by a program (eg, when a
sublist's pointers are deleted from the ma in list) , the
inaccessible storage is automatically reclaimed and
made available for new allocation through a process
called garbage collection.

In addition , Lisp programs do not require a separate
link-editing phase during compilation. Instead , func ­
tions are linked at run time and therefore can be easily
changed even after compilation . Program modifica­
tions involve editing only those functions affected by
the change and recompiling them-there is no need
to recompile and link-edit the entire program.

Since Lisp has been the language of choice in the
artificial intelligence field for many years , a powerfu l
set of editing and debugging tools have been
developed for it . Using such tools , a programmer can,
for example, concurrently observe program source and
execution, retrieve and modify any function , and
recompile the modified function back into the program
with very few keystrokes. Furthermore, because all
of the programming utilities are written in Lisp, they
can be easily incorporated into an applications pro­
gram through Lisp's dynamic-linking capability. For
example , the Lambda's Lisp Machine Lisp/Zeta Lisp
environment includes an extensive window system,
implemented by a message-passing feature called
Flavors . This window system can be easily modified
to serve as a user friendly interface for an applications
program .

applications that rely on certain macroinstructions,
which can be microcoded for faster execution. Main
data paths of the processor are shown in Fig 3.

Four boards centralize related areas of the Lisp
environment. Briefly, the data paths (DP) board
contains the arithmetic logic unit (ALU), dispatch
logic, scratchpad memories, and associated registers.
The control memory (CM) board incorporates
microcode functions and associated logic, and the
microinstruction stack. The memory interface (MI)
board, a NuBus master, contains cache, cache state
machine, location counter, and diagnostic logic.
Responsible for relations between the Lisp processor
and the NuBus system, its operation is especially
important for multiprocessor applications. Finally,
the random gates (RG) board holds the macro­
instruction decoder, statistics counter, history RAM,
clock, matrix multiplier, and a slave NuBus diag­
nostic interface.

The Lisp processor's data paths are 32 bits wide:
24 bits for data and 8 bits for data-typing and other
operations, giving the Lambda 67M bytes of address
space (224 4-byte words). A 40-bit enhancement
(planned for early next year) will expand the address
space to 21.50 bytes. Since the number of bits used
for data-typing will remain the same, little or no
reprogramming will be necessary.

In addition to its large address space, the Lambda
uses a technique known as CDR-coding to reduce
storage demands of list structures by almost 50%,
making the address space seem even larger. CONS
(constructor) nodes (see the Panel) cannot be inserted
into a list compressed by this technique. However,
since the processor automatically reexpands the
CDR-coding when the list is accessed for modifica­
tion, the technique is transparent to the user.

Processor design aspects
Data are passed to and from the Lisp processor

under control of the cache state machine, a special­
ized high speed processor. Using NuBus block­
transf er capability, the cache state machine manages
memory accesses in a look-ahead/look-behind mode
based on the principle of set-local operations, or
locality. Presuming that the next word to be accessed
is nearby the last word requested, the machine trans­
fers an entire block (up to 16 words) centered on the
requested word into the cache.

To avoid the problem of one processor interfering
with another's data and resulting inaccuracy of the
data buffered in a processor's cache, the NuBus is
monitored continuously. The cache state machine,
in combination with the master interface, constantly
checks the NuBus to determine whether any other
processor is writing into a location represented in
the cache. If so, it invalidates that location, thus
both assuring reliable data and avoiding the need
for cache sweeping-a fragile and unreliable method
of cache verification.

Memory access occurs through a 2-level virtual
paging system that employs three virtual-to-physical
address maps to map 24-bit virtual addresses into
addresses within physical memory in the ·NuBus.
This paging implementation also supports an effi­
cient garbage-collection algorithm, which reclaims
static-memory areas less often than more volatile
areas, thereby consuming less processing time.

The system's vectored interrupt system gives each
device an address space in the interrupt slot, and
assigns an address in software to each type of inter­
rupt. Each interrupt's status is stored in a RAM,
which is scanned to see if any device has requested
an interrupt. When an interrupt request is found,
scanning stops, thus preventing interrupts from
being lost (new interrupts are still stored). No other
interrupt is noted until the current one is serviced
and cleared. Provision for both fast and slow inter­
rupts provides a flexible interrupt environment.

Associated with the interrupt machine is the slave
interface to the NuBus, used largely for diagnostic
purposes. It communicates with the diagnostic logic.
This logic includes a 4K x 16-bit microprogram­
history RAM that holds the control memory
addresses of the last 4096 microinstructions executed.
For debugging, the system can be manually halted.
It can also be programmed to halt in the event of
a specified error or other condition, such as the exe­
cution of a given instruction a set number of times.
At the time of the halt, the system's state is saved
with no loss of information: the machine state is
exactly as it was during the execution of the instruc­
tion that initiated the halt.

Diagnostic logic can then be used for unclocked
transactions to trace machine state, or can single­
step the system with user-generated clocks to track
down possible timing problems. In combination with
software debugging facilities, these diagnostic
capabilities enable programmers to easily pinpoint
and correct problems from the largest programs to
the user-written microcode. The RG board also con­
tains a high speed 16 x 16 matrix multiplier. This
greatly speeds array referencing as well as simple
arithmetic.

A macroinstruction program counter holds the
address of the next macroinstruction to be executed.
Since two consecutive instructions are usually used,
two macroinstructions are fetched concurrently,
packed into a single 32-bit word, and placed into
the macroinstruction register. Macroinstruction
decoding hardware allows a transfer to the appro­
priate microcode subroutine in a single operation,
saving a significant amount of processing time.

Processor pipelining and virtual control store
operation are governed by the microprogram counter
and its associated logic. The logic tracks the options
available when making or returning from a micro­
instruction subroutine call. This tracking prepares
the machine for rapid execution of the next

COMPUTER DESIGN/November 1 983 2 1 5

