
K Technical Manual

May 15, 2006

2

Prepared by James Rauen for GigaMos Systems, Inc.

Portions of this document were either written by or are based on technical notes
by Kent Hoult.

The information contained in this document is proprietary and confidential
property of GigaMos Systems, Inc. For GigaMos internal use only.

Chapter 1

Introduction

This is a preliminary draft of the K processor technical manual. It is intended
to describe the K processor from a system software programmer’s perspective.
It does not dwell on details of the various hardware implementations.

For a full hardware specification of the processor, consult the Falcon Processor
Design Specification by Kent Hoult and the actual board and chip schematics.

Please observe that any documentation or information about the K processor
(including this manual) is proprietary information belonging to GigaMos Sys-
tems, Inc.
James Rauen

Consultant

GigaMos Systems, Inc.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Editor’s Note

Revisions have been made to the following sections since the May 27th draft:

4.1 (and ff.) Clocks renamed to CPROC1, CPROC2, CMEM1, CMEM2.

4.3.1.3, 4.3.2 Enforced read wait after a write instruction clarified.

5.3.3 Reference to macro-link bit clarified, ”Opcode” column header renamed
to ”Instruction Format”

5.3.6 DT-HAIRY-NUMBER explained

5.4.2 Caption for ALU Immediate Instruction clarified

8.1 Reference to ”yellow alert” trap clarified.

12. ALU Opcodes documentation changes (SIGN, Q Register use)

Future versions of this draft will incorporate further revisions to this document.

—David Saslav

5

6 CHAPTER 2. EDITOR’S NOTE

Chapter 3

Notation Conventions

This chapter summarizes the notation conventions used in the manual.

3.1 Numbers

Hexadecimal quantities are preceded by ”#x”.

The contents of bit fields are always written in binary, without any qualifier.

All other numerical quantities are written in base ten.

3.2 Bit Fields

The bits of an N -bit word are numbered from 0 (the least significant bit) to
N − 1 (the most significant bit).

Bit fields are written in the form MSB:LSB, where MSB (written in base ten)
is the number of the most significant bit in the field and LSB (also written in
base ten) is the number of the least significant bit in the field.

7

8 CHAPTER 3. NOTATION CONVENTIONS

Chapter 4

Overview of the K
Architecture

4.1 History

The K machine is a high-speed processor heavily optimized to run Lisp. It was
originally designed at LMI (Lisp Machine, Incorporated) to run on two NuBus
or VME-bus boards. One board is devoted to processor functions, and the
other board is devoted to the on-board memory system. The NuBus boards
have undergone several small design modifications and are now in use at GSI.

A second design, placing the processor and memory system on chips instead
of boards, is currently taking place at GigaMos and SilicArt. The chip design
differs from the board design in several ways. Some of the differences are due
to the limited amount of space on the chips; several of the boards’ features have
been scaled down for this reason.

4.2 Board Set vs. Chip Set

The primary intention of this manual is to document the board set. Most of
the hardware references will specifically mention chips and signals which appear
on the processor board and memory board design sheets. Nevertheless, most of
the information in this manual should still be applicable to the chip set design.

9

10 CHAPTER 4. OVERVIEW OF THE K ARCHITECTURE

Here is a list (by no means exhaustive) of some of the differences between the
board and chip designs:

• The size of register frame memory has been reduced for the chip set. There
are 64 register frames in the chip set, compared to 256 in the board set.

• The arrangement of bits in the Processor Control, Processor Status, Mem-
ory Control and Memory Status registers has been changed.

• The instruction cache has been completely redesigned. The board set has
two fully associative sets and a special low core cache.

• The floating point ALUs have been eliminated from the chip set.

4.3 Processor Board

The processor board contains most of the actual processor hardware. This
includes the instruction cache, the register memory, the call hardware, and the
ALUs. Each of these features is documented in subsequent chapters.

4.4 Memory Board

The memory board contains the processor’s on-board memory. It also con-
tains hardware to help implement the virtual memory system, a volatility-based
garbage collector, the transporter, and traps.

Part I

Processor Board Hardware

11

Chapter 5

Timing

This chapter describes the K processor’s clocks and pipeline stages.

5.1 Clocks

The K processor uses four clocks for timing. Two of the clocks run at the
instruction rate, and the other two run at twice the instruction rate. Two of the
clocks can be stopped by the clock generator during memory waits, instruction
cache misses, and traps. The other two clocks run the memory system and never
stop. They will be referred to as follows:

1X 2X

---- ----

Processor - CPROC1 CPROC2

Memory - CMEM1 CMEM2

The phasing of the clocks is such that if the CPROC1 clock rises, then the
other three will rise at the same time. When the processor clocks stop, they will
always stop in the state with both of them low. Whenever the processor clocks
stop, it will always be for an integral number of 1X clock ticks. The following
timing diagram shows the relative timing:

__ __ __ __ _____

CPROC2_| |__| |__| |__| |______________| |_

_____ _____ _____

CPROC1_| |_____| |_________________| |_

__ __ __ __ __ __ __ _

CMEM2 _| |__| |__| |__| |__| |__| |__| |__|

_____ _____ _____ _____

CMEM1 _| |_____| |_____| |_____| |_

13

14 CHAPTER 5. TIMING

The nominal time for the current K processor 1X clock is 80 nanoseconds. All
four clocks are produced by the clock generator, which is a synchronous state
machine running on a 20 nanosecond clock.

The majority of the processor runs on the 1X clocks. Only a few sections need
the 2X times. The main uses are producing write enables to RAMs during the
first half of a clock tick and controlling the direction of the MFIO bus.

5.2 Pipeline

The K is a pipelined architecture. Instructions normally go through four stages
of execution: PC, IR, ALU, and OUTPUT. Some functional I/O ports act like
virtual fourth or even fifth stages of the pipeline. The only places where these
extra stages show up are in special OS internal routines for modifying special
registers, or loading/unloading the call hardware. In fact, for normal instruction
execution, only three of the four pipeline stages are visible.

5.2.1 Straight Line Execution

When executing a linear sequence of instructions, the pattern of execution is as
follows:

PC A program counter is produced from the PC incrementer. This PC is fed
to the instruction cache, and the specified instruction is fetched. If the
instruction isn’t in the cache, then the processor clock is stopped while a
line of four instructions are fetched.

IR The previously fetched instruction is loaded into the instruction register
for decoding. Any specified registers are accessed from the register RAM
using the current call hardware O, A, and R registers. The accessed left
and right sources are stored into the left and right data registers at the
end of the clock tick.

ALU The ALU gets the data from left and right registers and an opcode from
some IR bits that have been delayed by one clock tick. The ALU output
is loaded into the OREG at the end of this clock tick.

OUTPUT The OREG is written back to the register RAM during this tick.
The write happens early in the cycle, so the current IR cycle can read the
results from the RAM. The OREG data is also driven onto the MFIO bus
for functional destinations.

5.2. PIPELINE 15

5.2.2 Unconditional Branches and Jumps

Unconditional jumps and branches work by having the current IR bits select
the low IR bits as the PC source. The pipeline does exactly the right thing for
this case, and the next instruction loaded into the IR will be the one jumped
to.

5.2.3 Conditional Branches and Jumps

Conditional transfers are identical to the unconditional ones except that the
jump bit is used by the PC mux to control whether the IR or the PC incrementer
is used for the next address. The computation of the jump bit shows the pipeline
effect quite clearly. In order to test something and then do a conditional branch
on it, a three instruction sequence is required. However, for the second and
third instructions the ALU is free and may be used for other computations if
the compiler can schedule them in.

The first instruction will do an ALU op that produces some status to be
branched on. The second instruction will use its branch condition field to select
the condition. And the third instruction will be the actual conditional branch.
The IR stage must contain the conditional branch instruction at just the time
when the jump bit is at the OREG (effectively). Getting the compiler to make
use of the extra instructions can triple the machine performance in branch in-
tensive sections of code (such as COND handling).

5.2.4 Dispatches

These show a two stage offset in the pipe similar to conditional branches. A com-
puted PC must be in the OREG at the same time as the NEXT-PC-DISPATCH
field is in the IR. This occurs when the dispatch occurs two instructions after
the PC calculation.

5.2.5 Subroutine Calls

The timing for a subroutine call (all types) is identical to that of an uncondi-
tional jump. The only difference is that the call hardware saves the OPEN and
ACTIVE frame pointers, the current PC plus one, and the return destination
on the call stack when the instruction reaches the ALU phase.

16 CHAPTER 5. TIMING

5.2.6 Subroutine Returns

A subroutine return timing is the same as for unconditional jumps. When the
instruction is in its IR phase, the next PC selected is from the call stack. There
is a special restriction in the current call hardware implementation: two return
instructions cannot be executed consecutively. (The call stack needs one extra
tick to move its pointer, read the next entry, and have the next return PC to the
PC multiplexer early enough to use for the instruction cache). This is normally
handled by the compiler by inserting a NOP between a CALL and a RETURN
in the few cases where this occurs and a TAIL-CALL could not be used.

5.3 Functional I/O

Functional I/O occurs to and from registers on the MFIO bus. The bus timing
is as follows during normal cycles:

________________________ __

CPROC1 __| |________________________|

____ ________________________ ________________________ _

MFIO X Output Data from OREG X Input Data from FSRC X

---- ------------------------ ------------------------ -

This timing is altered during instruction cache misses to get the PC to the
memory system.

5.3.1 Functional Destinations

The output data is normally held on the inputs to functional destinations (by
a latch) until after the CPROC1 clock rises. This means that functional des-
tinations aren’t loaded until the end of the output stage (with certain special
exceptions).

VMA (with and without memory start)

The VMA is a transparent latch that will be made transparent during the output
phase on the MFIO when it is a destination. This will let it feed the memory map
with an address during the output phase. By the time the CPROC1 clock edge
rises, the map will have produced a physical address, it will have propagated
through the DRAM address buffers, and it will be setting up on the DRAM
address lines. This will let the RAS signal to the RAMs go active right after

5.3. FUNCTIONAL I/O 17

the clock edge (if a this was a start cycle), and the memory system decides the
cycle should start now.

RAMs

The various RAMs that are destinations will be written during the output phase
of the MFIO bus. These include the Garbage Collector RAM, the Transporter
RAM, the Call Stack RAMs, the Heap RAM, the Datatype RAM, and the
RETURN destination which will select a location in the register RAM.

The OPEN-ACTIVE-RETURN Destination

This destination actually loads a set of registers that will be loaded into OPEN,
ACTIVE, and RETURN at the end of the next clock tick. This extra step means
that these registers take one tick longer than most other functional destinations
to load. Therefore, the modified frame pointers should not be used to read data
until at least five ticks after the write instruction (for all CH- operations other
than CH-NOOP). CH-NOOP and all functional sources require only four ticks
between read and write operations.

After modifying the OPEN-ACTIVE-RETURN destination, four clock cycles
are required before using the O, A, or R register frames or using the OPEN-
ACTIVE-RETURN functional source. Five clock cycles are required before
performing any open, call, or return operations.

Modifying the OPEN-ACTIVE-RETURN Functional Destination

<write OPEN-ACTIVE-RETURN>

<NOP>

<NOP>

<NOP>

<Use O, A, or R register frames>

<perform open, call, or return operations>

5.3.2 Functional Sources

Functional sources are decoded during the IR phase of an instruction, and en-
abled onto the MFIO bus during the FSRC phase of a cycle. They are clocked
into the RIGHT register at the end of this cycle.

In general, a functional source that is read/write should not be read until at
least 4 ticks after the register was written. This time may differ for functional
sources that are slower than normal, such as OPEN-ACTIVE-RETURN.

18 CHAPTER 5. TIMING

Reading a Functional Source

<write functional_source>

<NOP>

<NOP>

<NOP>

<read functional_source>

A reference to a memory system functional source will cause the processor clocks
to stop until an active cycle is complete. This blocking will become effective
at the beginning of the output phase of an instruction with a memory start
destination. A memory source should not be referenced by the instruction im-
mediately after one that starts a cycle. The extra tick will give the memory
time to lock if necessary. Memory destinations may be consecutive, because
they follow the natural pipeline sequencing.

Chapter 6

Instruction Set

This chapter describes the instruction set of the K processor.

6.1 Introduction

A K machine instruction is 64 bits long. Machine instructions are stored in
memory with the word containing the low 32 bits occurring at an even numbered
address, followed by the word containing the high 32 bits.

A single instruction is capable of performing several different actions simulta-
neously. For example, an instruction might do an ALU operation and invoke
a call-hardware operation at the same time, or it might do a conditional jump
and a register move at the same time. The meaning of an instruction, therefore,
can be rather complicated.

6.2 Instruction Register (IR)

The Instruction Register is a 64-bit registered multiplexer which contains the
current instruction being executed. For details about how the IR is loaded, see
the Instruction Cache chapter.

19

20 CHAPTER 6. INSTRUCTION SET

6.3 Bit Fields

This section describes the different bit fields in K machine instructions. Not
all bit fields are used by all instructions, and some bit fields occur at different
places in different kinds of instructions. The next section describes how the bit
fields fit together to form valid instructions.

The bit fields listed in the Value columns of charts in this section are given from
most significant bit to least significant bit. A bit is ”set” if its value is 1 and
”reset” or ”not set” if its value is 0. The symbols listed in Abbreviation columns
are symbols recognized by the assembler.

6.3.1 Status Bit (Bit 63)

If this bit is set and bits 3:1 of the Memory Control Register are 010, executing
the instruction causes the statistics counter (a 32-bit counter) to be incremented.

6.3.2 Instruction Trap Bit (Bit 62)

This bit, if set, will cause a trap to occur before the instruction begins to execute.
(To the trap handler, it will appear that the instruction is about to execute,
but hasn’t yet.) This feature is used to implement fast dynamic linking (see the
chapter on linking). It is also used by the garbage collector to identify code in
oldspace.

6.3.3 X-16 Bit (Bit 61)

The X-16 bit is only used during dispatch operations. When X-16 bit is set in
a dispatch instruction, the bottom four bits of the dispatch address are zeroed.

In branch and jump instructions, bit 61 determines whether or not the branch/jump
is conditional or unconditional. If bit 61 is zero, the branch/jump is conditional.
If bit 61 is one, the branch/jump is unconditional.

6.3. BIT FIELDS 21

6.3.4 Instruction Format Field (Bits 60 to 58)

These three bits, along with the Next PC field (bits 57 to 56) and the Call
Hardware Operation field (bits 50 to 48), determine the type of the instruction.
The three fields are decoded by PALs to generate the control signals required for
the instruction. The instruction types are detailed in the Instructions section
below.

Instruction Format Next PC CH Op Instruction Type

12-bit Instructions:

X00 00 x0x Branch Instruction (no 100 call hw op)

X00 00 x1x Call-Z Instruction

X00 yy x0x ALU Instruction (yy not 00)

X00 01 x1x Call-Dispatch Instruction

18-bit Instructions:

X01 xx xxx ALU Immediate Instruction

24-bit Instructions:

010 00 x0x Jump Instruction (no 100 call hw op)

010 00 x1x Call Instruction

32-bit Instructions:

011 xx xxx 32-bit Immediate Instruction

110 xx xxx Floating Point ALU Instruction

111 xx xxx Floating Point Multiplier Instruction

For Instruction Format fields ending in 00 or 01 above, bit 60 is used for the
macro-carry bit. The macro-link bit is ALU-boxed.

The branch and jump instructions cannot be used with the RETURN Call
Hardware Operations (call hardware with instruction format 100).

6.3.5 Next PC (Bits 57 to 56)

This field tells where to get the new Program Counter from.

Value Abbreviation Meaning

00 Bits 23 to 0 of the IR

01 NEXT-PC-DISPATCH OREG (the ALU output)

10 NEXT-PC-RETURN Call Stack Return PC

11 NEXT-PC-PC+1 PC + 1 (increment the PC)

22 CHAPTER 6. INSTRUCTION SET

6.3.6 Boxedness of ALU Output (Bits 55 to 54)

The exact meaning of this field depends on what destination the ALU output
is being sent to.

When the destination is a register, this field designates how the box bit of the
ALU output will be calculated. This calculation also depends on the Box Mux
bit in the Processor Control Register. For normal operation, the Box Mux
bit is zero. The other mode (Box Mux bit = 1) is used by the call hardware
dump/restore software when it is reloading register frames.

When the destination is a functional destination in the memory system, this
field indicates the desired box bits of the MD and VMA registers. For details,
see the Transporter RAM chapter.

Other functional destinations don’t care about the box bit; in these cases, the
boxedness field is ignored.

Register Destinations - Normal Mode

This table shows how the ALU box bit is calculated during normal operation.

Value Abbreviation Meaning

00 BOXED-LEFT Use box bit of the left source

01 BOXED-RIGHT Use box bit of the right source

10 UNBOXED Make the output be unboxed

11 BOXED Make the output be boxed

Register Destinations - Reload Mode

This table shows how the ALU box bit is calculated during reload operations.

Value Abbreviation Meaning

00 OUTREG0 Use bit 0 of the ALU output

01 none Make the output be unboxed

10 UNBOXED Make the output be unboxed

11 BOXED Make the output be boxed

6.3. BIT FIELDS 23

Memory System Destinations

When writing to the VMA, any of the VMA-START-READ, or any of the
VMA-START-WRITE functional destinations, bit 54 of the IR is taken as the
VMA box bit.

When writing to the MD, any of the VMA-START-READ, or any of the MD-
START-WRITE functional destinations, bit 55 of the IR is taken as the MD
box bit.

6.3.7 Data Type Check (Bits 53 to 51)

This field determines what check, if any, should be made to the data types of
the ALU inputs. If the ALU inputs fail this test, a datatype trap is caused.

These data-type check cases are not hardwired into the processor; they are
downloaded at boot time. It is possible to change the data type checks by
changing the contents of the Datatype RAM. But you probably don’t want to.
The current definitions reside in K-SYS: K; FIRM-DEFINITIONS LISP.

Value Abbrev Another Abbreviation

000 DT-0 DT-NONE

001 DT-1 spare

010 DT-2 DT-HAIRY-NUMBER

011 DT-3 DT-BOTH-CHARACTER

100 DT-4 DT-RIGHT-ARRAY-AND-LEFT-STRUCTURE

101 DT-5 DT-RIGHT-LIST

110 DT-6 DT-BOTH-FIXNUM

111 DT-7 DT-BOTH-FIXNUM-WITH-OVERFLOW

Some details:

A DT-HAIRY-NUMBER is a number of any type other than DT-BOTH-FIXNUM
and DT-BOTH-FIXNUM-WITH-OVERFLOW.

In the DT-BOTH-CHARACTER case, a trap is caused unless the data type of
both the ALU inputs is $$DTP-CHARACTER.

In the DT-RIGHT-ARRAY-AND-LEFT-STRUCTURE case, a trap is caused
unless the data type of the left ALU input is $$DTP-STRUCTURE and the
data type of the right ALU input is $$DTP-ARRAY (and similarly for DT-
RIGHT-LIST and DT-BOTH-FIXNUM).

24 CHAPTER 6. INSTRUCTION SET

In the DT-BOTH-FIXNUM-WITH-OVERFLOW case, a trap is caused if either:

1. both ALU inputs do not have $$DTP-FIXNUM, or

2. the ALU operation overflows.

For further details, see the chapter on the Datatype RAM.

6.3.8 Call Hardware Operation (Bits 50 to 48)

This field determines what call-hardware operation the instruction will perform.
The eight possibilities are listed below. For further details, see the chapter on
the call hardware.

Value Abbreviation Meaning

000 CH-NOOP No operation

001 CH-OPEN Open a frame, preparing for a function call

010 CH-CALL Make a function call

011 CH-OPEN-CALL Do an OPEN and a CALL

100 CH-RETURN Return from function call

101 CH-TAIL-OPEN Open a frame, preparing for tail-recursive call

110 CH-TAIL-CALL Make a tail-recursive call

111 CH-TAIL-OPEN-CALL Do a TAIL-OPEN and TAIL-CALL

6.3.9 Destination (Bits 47 to 41)

This field determines where the output of the ALU is stored.

If bit 47 is zero, then output is stored in a register. Bits 46 and 45 tell which
frame to use: the current Open frame, the current Active frame, the current
Return frame, or the current Global frame. Bits 44 to 41 tell which register in
that frame to use. Note that the current Open, Active, and Return frames are
determined by the contents of the Open, Active, and Return registers, whereas
the current Global frame is determined by the Global Frame Number (bits 40
to 37 of the instruction).

If bit 47 is one, then output is sent to a functional destination. Functional des-
tinations include various special-purpose registers, RAMs, and memory system
requests. A list of functional destinations and their encodings appears in the
Functional I/O chapter.

6.3. BIT FIELDS 25

Value Meaning

000RRRR Register RRRR in the Open frame

001RRRR Register RRRR in the Active frame

010RRRR Register RRRR in the Return frame

011RRRR Register RRRR in the Global frame (determined by bits 40 to 37)

1XXXXXX Functional Destination XXXXXX

6.3.10 Global Frame Number (Bits 40 to 37)

These four bits select the global frame that the instruction uses. Any left-
source, right-source, or destination references in this instruction to ”global reg-
ister RRRR” will use the RRRRth register of this frame. Since there are only
four bits with which to select a global frame, the global frames are limited to
#x00 to #x0F.

Note that any particular instruction can only access one global frame. To per-
form an operation on registers in more than one global frame, several instruc-
tions must be used.

6.3.11 Jump Condition (Bits 36 to 34)

This field determines a test to perform on the ALU output. If the test succeeds,
and the next instruction is a conditional branch instruction, then the branch
will occur.

Value Test Abbreviations

000 BR-ALWAYS

001 JINDIR bit BR-JINDIR

010 Z BR-EQUAL, BR-ZERO

011 Z BR-NOT-EQUAL, BR-NOT-ZERO

100 (V XOR N) BR-NOT-GREATER-OR-EQUAL, BR-LESS-THAN,

BR-NEGATIVE

101 (V XNOR N) BR-GREATER-OR-EQUAL, BR-NOT-LESS-THAN,

BR-NOT-NEGATIVE

110 ((V XOR N) NOR Z)BR-GREATER-THAN, BR-NOT-LESS-OR-EQUAL,

BR-POSITIVE

111 ((V XOR N) OR Z) BR-LESS-OR-EQUAL

The JINDIR condition means to branch if the JINDIR bit is set. The JINDIR
bit is part of the Processor Control Register. It is used when exiting from trap
routines while restoring the state of the machine.

26 CHAPTER 6. INSTRUCTION SET

6.3.12 Byte Width (Bits 33 to 32)

The two bits in this field are directly wired to the Byte Width inputs of the AMD
29332 ALU. For details about how the Byte Width affects the ALU operations,
consult the 29332 documentation. Here is a summary of its effects:

ALU Byte Instructions

Some of the ALU operations (I believe the ones numbered from #x00 to #x5F)
are ”byte” operations. For these functions, this field determines what size
”bytes” the ALU operates on. In most cases, the ALU will treat its inputs
as 32-bit quantities. However, in certain cases (fixnum arithmetic, for instance)
the ALU performs 24-bit operations on its inputs. In other situations (manip-
ulating characters), the ALU considers only the lowest 8 bits of its inputs.

Value Abbrev Meaning

00 BW-32 32-bit ALU operation

01 BW-8 8-bit ALU operation

10 BW-16 16-bit ALU operation

11 BW-24 24-bit ALU operation

ALU Bit Instructions

The other ALU operations are called ”bit” operations. Such operations have two
additional arguments, a ”shift” field and a ”mask” field. For these instructions,
the Byte Width field indicates where the shift and mask arguments come from.

If bit 33 is zero, then the shift field is taken from bits 10:5 of the instruction. If
bit 33 is one, then the shift field is taken from the ALU’s internal shift register.
Note that the AMD documentation refers to the shift field as the ”position”
field.

If bit 32 is zero, then the mask field is taken from bits 4:0 of the instruction. If
bit 32 is one, then the mask field is taken from the ALU’s internal mask register.
Note that the AMD documentation refers to the mask field as the ”width” field.

6.3. BIT FIELDS 27

6.3.13 Right Source (Bits 31 to 25)

This field determines where the input to the right side of the ALU comes from.

If bit 31 is zero, then the input comes from a register. Bits 30 and 29 determine
which frame the register is taken from: Open, Active, Return, or Global. Bits
28 through 25 determine which register in that frame is used. This pattern is
identical to that of the Destination field (bits 47 to 41).

If bit 31 is one, then the input comes from somewhere else in the machine. This
is referred to as a ”functional source”. A table of functional sources and their
encodings appears in the Functional I/O chapter. In general, if bits 30 and 29
are both zero, the input comes from somewhere on the processor board. If either
bit 30 or bit 29 is one, then the input comes from somewhere on the memory
board.

Value Meaning

000RRRR Register RRRR in the Open frame

001RRRR Register RRRR in the Active frame

010RRRR Register RRRR in the Return frame

011RRRR Register RRRR in the Global frame (determined by bits 40 to 37)

1XXXXXX Functional Source XXXXXX

6.3.14 Left Source (Bits 24 to 19)

This field determines where the input to the right side of the ALU comes from.
The left source cannot come from a functional source; it must come from a
register. Bits 24 and 23 determine which frame the register is taken from:
Open, Active, Return, or Global. Bits 22 through 19 determine which register
in that frame is used.

Value Meaning

00RRRR Register RRRR in the Open frame

01RRRR Register RRRR in the Active frame

10RRRR Register RRRR in the Return frame

11RRRR Register RRRR in the Global frame (determined by bits 40 to 37)

28 CHAPTER 6. INSTRUCTION SET

6.3.15 ALU Opcode (Bits 18 to 12, or 31 to 25)

This field determines the ALU operation that the instruction uses. For details,
see the chapters on the ALUs and the ALU Opcodes, and the AMD 29332
documentation.

6.3.16 ALU Shift Field (Bits 10 to 5)

This field determines the ”shift” input to the ALU for bit operations. For
details, see the chapters on the ALUs and the ALU Opcodes, and the AMD
29332 documentation.

6.3.17 ALU Mask Field (Bits 4 to 0)

This field determines the ”mask” input to the ALU for bit operations. For
details, see the chapters on the ALUs and the ALU Opcodes, and the AMD
29332 documentation.

6.3.18 Return Destination (Scattered)

This field is used in call instructions. It indicates where the value returned by
the call should be placed:

Value Meaning

000RRRR Register RRRR in the current Open frame

001RRRR Register RRRR in the current Active frame

010RRRR Register RRRR in the current Return frame

011RRRR Register RRRR in the current Global frame (bits 40:37)

10XRRRR Register RRRR in a newly opened frame

11XRRRR Register RRRR in a newly tail-opened frame

6.4 Instructions

The instruction set of the K processor is limited to the following combinations
of the fields described above.

6.4. INSTRUCTIONS 29

6.4.1 ALU Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St Tr X Opcode Next Box DTP Call HW Destination Global Jump Byte

31 25 24 19 18 12 11 10 5 4 0

Right Source Left Source ALU X ALU ALU

This is the most common form of instruction. It can perform an arbitrary ALU
operation. The only legal combinations of X-16, Next PC, and Call Hardware
Operation are as follows.
X-16 Next PC Call HW OpFunction

0 11 000 Normal

0 11 001 Open

0 11 101 Tail-Open

0 10 100 Return from subroutine

0 01 000 Dispatch

0 01 001 Dispatch and Open

0 01 101 Dispatch and Tail-Open

1 01 000 Dispatch, zeroing low 4 bits of PC

1 01 001 Dispatch, zeroing low 4 bits of PC, and Open

1 01 101 Dispatch, zeroing low 4 bits of PC, and Tail-Open

”Open” and ”Tail-Open” are call hardware operations which allocate new reg-
ister frames.

subsection ALU Immediate Instruction group

(This instruction is not part of the Rev. 0 prototype version)

tex 63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St Tr X Opcode Next Box DTP Call HW Destination Global Jump Byte

31 25 24 19 18 17 0

ALU Left Source B Immediate

end tex end group

6.4.2 32-Bit Immediate Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St Tr X Opcode Next Box DTP Call HW Destination Global Jump XX

31 0

Immedate

30 CHAPTER 6. INSTRUCTION SET

The call hardware, X-16, and Next PC fields are subject to the same constraints
as for the ALU instruction.

6.4.3 Floating Point ALU Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St Tr X Opcode Next Box DTP Call HW Destination Global Jump XX

31 25 24 19 18 17 16 9 8 3 2 0

Right Source Left Source FPU Floating Point FPU FPU

The call hardware, X-16, and Next PC fields are subject to the same constraints
as for the ALU instruction.

6.4.4 Floating Point Multiplier Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St Tr X Opcode Next Box DTP Call HW Destination Global Jump XX

31 25 24 19 18 17 16 9 8 3 2 0

Right Source Left Source FPU Floating Point FPU FPU

The call hardware, X-16, and Next PC fields are subject to the same constraints
as for the ALU instruction.

6.4.5 Conditional Branch Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St TrCoOpcode NxPCBox DTP Call HW Destination Global Jump Byte

31 25 24 19 18 12 11 0

Right Source Left Source ALU Low Bits

This instruction performs a branch. If the Cond field (bit 61) is zero, then the
branch is conditional. The branch will take place if the jump condition tested
in the previous instruction succeeded. If the Cond field is 1, then the branch is
unconditional.

The only legal call hardware operations are 000 (NO-OP), 001 (OPEN), and
101 (TAIL-OPEN). The Next PC field must be 00.

This instruction can also perform any ALU operation which does not require
shift and mask fields.

6.4. INSTRUCTIONS 31

The high twelve bits of the target address are taken from the high twelve bits
of PC+1 (the next Program Counter). The low twelve bits are taken from bits
11:0 of the instruction. Therefore, a branch instruction can only branch to other
instructions in the same block of 212 instructions.

23 12 11 0

Target: Bits 23:12 of PC+1 Bits 11:0 of IR

6.4.6 Call-Z Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St Tr D Opcode NxPCBox DTP Call HW Destination Global DR Byte

31 25 24 19 18 12 11 4 3 2 0

Right Source Left Source ALU Address X DR

This instruction performs a call into low memory. The return destination is
taken from bits 61,36:34,2:0. The Next PC must be 00.

The only legal call hardware operations are 010 (CALL), 011 (OPEN-CALL),
110 (TAIL-CALL), and 111 (TAIL-OPEN-CALL).

This instruction can also perform any ALU operation which does not require
shift and mask fields.

The high twelve bits and the low four bits of the target address are zero. The
other eight bits come from bits 11:4 of the instruction.

23 12 11 4 3 0

Target: 0000 00000000 Bits 11:4 of IR 0000

6.4.7 Jump Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St TrCoOpcode NxPCBox DTP Call HW Destination Global Jump Byte

31 25 24 23 0

Right Source X Address

This instruction performs a jump. If the Cond field (bit 61) is zero, then the
jump is conditional. The branch will take place if the jump condition tested
in the previous instruction succeeded. If the Cond field is 1, then the jump is
unconditional.

The only legal call hardware operations are 000 (NO-OP), 001 (OPEN), and

32 CHAPTER 6. INSTRUCTION SET

101 (TAIL-OPEN). The Next PC field must be 00.

The target address is taken from bits 23:0 of the instruction.

This instruction also performs an ALU operation which passes the Right Source
to the Destination.

6.4.8 Call Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 32

St Tr D Opcode NxPCBox DTP Call HW Destination Global DR

31 25 24 23 0

Right Source D Address

This instruction performs a subroutine call operation. The call hardware oper-
ation (bits 50:48) must be one of 010 (CALL), 011 (OPEN-CALL), 110 (TAIL-
CALL), or 111 (TAIL-OPEN-CALL). Bits 61,36:32,24 specify the return desti-
nation (where the subroutine is supposed to put its result).

This instruction performs a subroutine call. The return destination is taken
from bits 61,36:32,24. The Next PC must be 00.

The only legal call hardware operations are 010 (CALL), 011 (OPEN-CALL),
110 (TAIL-CALL), and 111 (TAIL-OPEN-CALL).

The target address is taken from bits 23:0 of the instruction.

6.4.9 Call-Dispatch Instruction

63 62 61 60 58 57 56 55 54 53 51 50 48 47 41 40 37 36 34 33 32

St Tr D Opcode NxPCBox DTP Call HW Destination Global DR Byte

31 25 24 19 18 12 11 10 5 4 3 2 0

Right Source Left Source ALU X ALU X X DR

This instruction performs a subroutine call to an address computed by the
ALU during the last instruction. The return destination is taken from bits
61,36:34,2:0. The Next PC must be 01.

The call hardware operation must be one of 010 (CALL), 011 (OPEN-CALL),
110 (TAIL-CALL), or 111 (TAIL-OPEN-CALL).

6.4. INSTRUCTIONS 33

The X-16 bit, if set, causes the low four bits of the target address to be zeroed.

This instruction can also perform any ALU operation which does not require a
mask field.

34 CHAPTER 6. INSTRUCTION SET

Chapter 7

Program Counter

7.1 Introduction

The Program Counter is a 24-bit quantity. It addresses the current instruction
being executed. There is no explicit PC register; instead, the PC appears at
the output of a 4-way multiplexer. The details are described in the Hardware
section below.

7.2 Relation of PC to Virtual Addresses

The 24 bits of PC allow an address space of 224 64-bit instructions. This works
out to 225 32-bit words, exactly half of virtual memory space. Instructions are
only stored in the high half of virtual memory.

Since there are 32 bits at each virtual address, and an instruction is 64 bits
wide, each value of the PC must correspond to two virtual addresses. A PC
is converted into a pair of virtual addresses by these formulas: Address of low
word = 2PC + 225; Address of high word = 2PC + 225 + 1.

25 24 1 0

Address of low word: 1 24-bit Program Counter 0

Address of high word: 1 24-bit Program Counter 1

35

36 CHAPTER 7. PROGRAM COUNTER

7.3 Hardware

This section describes the hardware associated with the Program Counter.

7.3.1 PC Mux

The PC itself appears as the output of this 4-way, 24-bit multiplexer.

The four sources for the multiplexer are as follows. (0) PCINC, the output of
the PC incrementer. (1) The Return PC register from the call hardware. (2)
OUTREG, the ALU’s output register. (3) Bits 23:0 of the Instruction Register.

7.3.2 PC Incrementer (PCINC)

This is a registered 24-bit incrementer.

7.3.3 Delayed PC Incrementer

This is a 24-bit register. Its input lines are connected to PCINC; this effectively
delays PCINC for one clock tick.

7.3.4 Old PC Registers

The last two PC’s are kept in a pair of registers. These PC’s are needed to
correctly save and restore the machine state during trap entry/exit.

Chapter 8

Register Memory

This chapter describes the organization of the K processor’s general-purpose
registers.

8.1 Register Frames

The processor’s general purpose registers are organized into 256 register frames,
each of which contains sixteen 33-bit registers. The contents of each register are
arranged according to the formats outlined in the Storage Conventions chapter.

Sixteen of the register frames (those numbered from #x00 to #x0F) are reserved
as global frames. These frames are not affected by the various function call
operations performed by the call hardware. The other 240 local frames provide
fast storage for local variables, function arguments, and returned values.

8.2 Open, Active, and Return Frame Registers

At any particular time, the processor has access to three of the local frames.
These three frames are determined by the contents of three special-purpose 8-
bit registers: the Open Frame, Active Frame, and Return Frame registers. The
registers in these three frames may be used as sources or destinations for any
ALU operation. (See the Instruction Set chapter).

37

38 CHAPTER 8. REGISTER MEMORY

Normally, the contents of the Open Frame, Active Frame, and Return Frame reg-
isters are manipulated only by the call hardware. It is possible to directly read
and write their contents by accessing functional destination 1001010 (OPEN-
ACTIVE-RETURN). The only code which should write this destination is the
system software which sets up, dumps, and restores the call hardware.

The assembler provides a shorthand for referring to registers in the current
Open, Active, and Return frames. The sixteen registers in the frame addressed
by the Open Frame register are labeled O0, O1, and so on up to O15. Likewise,
the sixteen registers in the current active frame are labeled A0 through A15.
The sixteen registers in the current return frame are labeled R0 through R15.

8.3 Global Registers

The processor always has access to the sixteen global frames. Each instruction
contains a Global Frame Number field which designates which global frame the
instruction wants to use. The registers in this global frame may be used as
sources or destinations for any ALU operation.

8.4 Differences in Chip Set

Due to space limitations, there are only 64 register frames on the processor chip.
The high two bits of the Open Frame, Active Frame, and Return Frame registers
are ignored. There are still 16 global frames, leaving 48 frames for locals.

Chapter 9

Call Hardware

This chapter describes the K processor’s function call hardware.

9.1 Organization

The visible features of the call hardware include the call stack, which is used
to push and restore machine state during function call operations, and the free
frame heap, which keeps track of unused register frames.

The call stack is used to save and restore processor state during function call
operations. Each entry on the call stack represents, at least conceptually, the
Lisp Machine idea of a stack frame. When a function is called, an entry is pushed
to save the state of the caller; when a function returns, an entry is popped to
re-establish the state of the caller.

The free frame heap keeps track of the 256 register frames. It maintains (in
hardware) a list of which frames are currently in use and which frames are
currently unused. The heap hardware is also responsible for causing a “yellow
alert” trap (by asserting TRAP STACK OVF) whenever the call hardware is
about to run out of frames.

However, the hardware is not responsible for causing a trap when an underflow
is about to occur. Instead, it is the responsibility of the software to set up
the call hardware to regain control on underflow. This is achieved by replacing
the Return PC at the base of the call hardware stack with the PC of a special
routine. This routine will:

39

40 CHAPTER 9. CALL HARDWARE

• regain control when all frames have exited;

• read in the top section of the call stack from memory;

• branch to the Return PC originally found at the base of the hardware
stack.

9.2 Registers and Memory

9.2.1 Call Stack

The call stack is a stack on the processor board which has 256 entries. Each
entry consists of five fields: an Open frame number (8 bits), an Active frame
number (8 bits), a return PC (24 bits), a global frame number (4 bits), and a
return destination (7 bits). The call stack is implemented with five RAMs (one
for each field) which are addressed by an eight-bit Call Stack Pointer.

Call Stack Pointer (CSP)

This is an eight-bit up/down counter. It addresses the five RAMs which com-
prise the call stack. It can be read or written from bits 7:0 of the MFIO bus by
accessing functional destination 1001100.

Call Stack Open RAM

This is a 256 x 8-bit RAM which contains the open-frame portion of each call
stack entry. It is addressed by the CSP. The call hardware loads it with the
contents of the Previous Open Frame register during OPEN and OPEN-CALL
operations. The call hardware loads the Open Frame register with the contents
of the Call Stack Open RAM during RETURN operations.

Call Stack Active RAM

This is a 256 x 8-bit RAM which contains the active-frame portion of each call
stack entry. It is addressed by the CSP. The call hardware loads it with the
contents of the Previous Active Frame register during OPEN and OPEN-CALL
operations. The call hardware loads the Active Frame register with the contents

9.2. REGISTERS AND MEMORY 41

of the Call Stack Active RAM during RETURN, RETURN-NEW-OPEN, and
RETURN-NEW-TAIL-OPEN operations.

Call Stack Return Destination RAM

This is a 256 x 7-bit RAM which contains the return-destination portion of each
call stack entry. It is addressed by the CSP.

The call hardware loads the Return Destination RAM with the Return Destina-
tion field of the Instruction Register (IR) during CALL and OPEN-CALL oper-
ations. (Depending on the particular instruction, this is either bits 61,36:34,2:0
or bits 61,36:32,24 of the IR). The call hardware reads the Return Destination
RAM during RETURN operations.

The Return Destination RAM can also be read or written from the MFIO bus.
It appears as bits 30:24 of the MFIO bus when the RETURN-PC-RETURN-
DESTINATION (1001011) functional source/destination is accessed.

Call Stack Global Frame Number RAM

This is a 256 x 4-bit RAM which contains the return-immediate portion of each
call stack entry. It is addressed by the CSP.

The call hardware loads the Global Frame Number RAM with the Global Frame
Number field of the IR during CALL and OPEN-CALL operations. The RAM
can also be loaded with the four Miscellaneous bits in the Processor Control
Register.

For reasons unknown, this RAM is also occasionally referred to as the ”Call
Stack Return Immediate” RAM.

Call Stack Return PC RAM

This is a 256 x 24-bit RAM which contains the return-PC portion of each call
stack entry. It is addressed by the CSP.

The call hardware loads the Return PC RAM with the contents of the delayed-
incremented-PC register during CALL and OPEN-CALL operations.

42 CHAPTER 9. CALL HARDWARE

The processor can also read or write the Return PC RAM by using bits 23:0
of the MFIO bus, accessing the RETURN-PC-RETURN-DESTINATION func-
tional source/destination.

9.2.2 Free Frame Heap

The free frame heap keeps track of which local frames are currently being used
and which local frames are available for use. The heap is a 256 x 8 bit RAM
organized in the following manner:

+-----------------------+

| Extra Local Frames | FF

| for the dumper |

| . |

| . |

| . |

+-----------------------+

| (Global Frames) |

| . |

| . |

| . |

+-----------------------+

Initial HP -> | Local Frames in Use |

| . |

| . |

| . |

+-----------------------+

HP -> | Unused Local Frames |

| . |

| . |

| . | 00

+-----------------------+

The contents of the heap are always a permutation of the 256 frame numbers
(#x00 to #xFF). When the processor is booted, some of the boot code is re-
sponsible for setting up the Heap RAM. Each of the 256 entries in the Heap
RAM should contain a different value.

Heap Pointer (HP)

This is an eight-bit up/down counter. It is decremented during OPEN, OPEN-
CALL, and TAIL-OPEN operations. It is incremented during RETURN and
TAIL-CALL operations.

When the HP reaches zero, a ”yellow alert” (”heap empty”) trap is caused.
The handler for this trap is responsible for dumping out the contents of register

9.2. REGISTERS AND MEMORY 43

memory and rearranging the call hardware so that there is more available space.

The HP can be read and written by accessing functional source/destination
CALL-HP-SP (1011100).

9.2.3 Open, Active, and Return

The (eight-bit) Open, Active, and Return registers are modified during func-
tion call operations. These operations are implemented in hardware and are
described in one of the sections below. It is possible to directly change the
contents of the Open, Active, and Return registers by reading and writing a
functional source/destination, but there are very few cases where this is needed.

Open Frame Register (OF)

This is an eight-bit register whose contents identify the current Open frame. It
is clock enabled (i.e., a new value is loaded) only when an OPEN, OPEN-CALL,
TOPEN, or TOPEN-CALL operation is invoked, or when the OPEN-ACTIVE-
RETURN functional destination is written.

The Open register can be loaded from any of the following: (0) The open-frame
entry at the top of the call stack, (1) The Previous Open Frame register, (2)
The Return Frame register, or (3) The contents of the heap (addressed by HP).
The call hardware selects the source depending on the particular call hardware
operation.

The Open register can also be read and written from bits 23:16 of the MFIO
bus by accessing the OPEN-ACTIVE-RETURN functional source/destination.

The Previous Open Frame register is loaded with the contents of the Open
register at each clock tick. It is connected to the call stack open RAM and the
Open multiplexer. It is used for delayed writes to the call stack open RAM and
for undoing the previous call hardware operation in the event of a trap.

Active Frame Register (AF)

This is an eight-bit register whose contents identify the current Active frame.
It is clock enabled only when a call hardware operation needs to modify it, or
when the OPEN-ACTIVE-RETURN functional destination is written.

44 CHAPTER 9. CALL HARDWARE

The Active register can be loaded from any of the following: (0) The Open
Frame register, (1) The active-frame entry at the top of the call stack, (2) The
Return Frame register, or (3) The contents of the heap (addressed by HP).
The call hardware selects the source depending on the particular call hardware
operation.

The Active register can also be loaded from bits 15:8 of the MFIO bus by
accessing the OPEN-ACTIVE-RETURN functional source/destination.

There are two Previous Active Frame registers. Each is loaded with the contents
of the Active Frame register each clock tick. The output of one is used for
undoing the previous call hardware operation during traps, and the other is
used for delaying write data to the call stack RAMs.

Return Frame Register (RF)

This is an eight-bit register whose contents identify the current Return frame.
It is clock enabled only when a call hardware operation needs to modify it, or
when the OPEN-ACTIVE-RETURN functional destination is written.

The Return register can be loaded from either of the following: (0) The Active
Frame register, or (1) The Previous Return Frame register. The call hardware
selects the source depending on the particular call hardware operation.

The Return register can also be loaded from bits 7:0 of the MFIO bus by ac-
cessing the OPEN-ACTIVE-RETURN functional source/destination.

The Previous Return Frame register is loaded with the contents of the Return
Frame register at each clock tick. Its output is connected to the Return register
multiplexer.

9.3 Call Hardware Operations

There are eight call hardware operations. One of these operations (RETURN)
has three distinct forms, depending on the return destination, so there are ac-
tually ten operations available. Each operation is described below.

9.3. CALL HARDWARE OPERATIONS 45

9.3.1 NO-OP

Has no effect on the call hardware.

9.3.2 OPEN

The call hardware OPEN operation is used in preparation for a function call.
It pushes the current Open and Active frame numbers onto the call stack, so
that they can be restored after the function returns. It allocates a new Open
frame. Subsequent instructions should move the function’s arguments into the
Open frame registers, and then issue a call hardware CALL operation when the
code is ready to call the function.

In detail, these are the effects of a call hardware OPEN operation:

• Increment the call stack pointer (CSP)

• Load the Call Stack Active RAM (addressed by CSP) with the contents
of the Active Frame register.

• Load the Call Stack Open RAM (addressed by CSP) with the contents of
the Open Frame register.

• Load the Open Frame register with the contents of the Heap RAM (ad-
dressed by HP).

• Decrement the heap pointer (HP).

9.3.3 CALL

The CALL operation is used to execute a function call. It must be preceded by
a corresponding OPEN operation. It writes a return PC and the instruction’s
Return Destination field onto the call stack. It moves the contents of Open
Frame register into the Active Frame register.

In detail, these are the effects of a call hardware CALL operation:

• Move the contents of the Open Frame register into the Active Frame
register.

• Load the Call Stack Return PC RAM (addressed by CSP) with the con-
tents of the PCINC register.

46 CHAPTER 9. CALL HARDWARE

• Load the Call Stack Return Destination RAM (addressed by CSP) with
the Return Destination field of the instruction in IR.

• Load the Call Stack Global Frame Number RAM (addressed by CSP) with
the Global Frame Number field of the instruction in IR.

9.3.4 OPEN-CALL

The OPEN-CALL operation combines the effects of an OPEN and a CALL
operation. It saves time when calling a function with zero or one arguments.

9.3.5 RETURN

There are three different kinds of RETURN operations. They are distinguished
by the instruction’s Return Destination field:

RDest Return Type Where to put returned value

000RRRR NORMAL Register RRRR of the Open frame

001RRRR NORMAL Register RRRR of the Active frame

010RRRR NORMAL Register RRRR of the Return frame

011RRRR NORMAL Register RRRR of the Global frame

10XXXXX OPEN Register O0 of a new Open frame

11XXXXX TOPEN Register O0 of a new tail-open frame

RETURN (NORMAL)

The RETURN instruction discards the current Return frame by pushing it onto
the heap. It moves the contents of the Active Frame register into the Return
Frame register. Then it pops the Active Frame, Open Frame, Return PC, and
Return Destination off of the call stack. The Return PC is used to fetch the next
instruction if the PC multiplexer is set that way (as it usually is for a return
instruction). The Return Destination will be delayed until the OUTPUT phase,
and used as the destination at that time.

In detail, these are the effects of a normal call hardware RETURN operation:

• Increment the heap pointer (HP).

• Store the contents of the Return Frame register into the Heap RAM (ad-
dressed by HP).

9.3. CALL HARDWARE OPERATIONS 47

• Move the contents of the Active Frame register into the Return Frame
register.

• Load the Active Frame register with the contents of the Call Stack Active
RAM (addressed by CSP).

• Load the Open Frame register with the contents of the Call Stack Open
RAM (addressed by CSP).

• Configure the PC multiplexer to take the next PC from the Call Stack
Return PC RAM.

• Read the return destination from the Call Stack Return Destination RAM.
Configure the Destination logic to put the ALU output (one clock tick from
now) into this destination.

• Decrement the call stack pointer (CSP).

RETURN-NEW-OPEN

This operation combines the effects of a RETURN and an OPEN. The newly
opened frame is easy to allocate; instead of discarding the Return frame, as
RETURN does, RETURN-NEW-OPEN uses the old Return frame as a new
Open frame. The destination in this case will always be one of the registers in
the newly opened frame.

In detail, these are the effects of a call hardware RETURN-NEW-OPEN oper-
ation:

• Load the Open Frame register with the contents of the Return Frame
register.

• Load the Return Frame register with the contents of the Active Frame
register.

• Load the Active Frame register with the contents of the Call Stack Active
RAM (addressed by CSP).

• Configure the PC multiplexer to take the next PC from the Call Stack
Return PC RAM.

• Read the return destination from the Call Stack Return Destination RAM.
Configure the Destination logic to put the ALU output (one clock tick from
now) into this destination.

48 CHAPTER 9. CALL HARDWARE

RETURN-NEW-TAIL-OPEN

This operation combines the effects of a RETURN and a TAIL-OPEN. The
destination in this case will always be one of the registers in the newly tail-
opened frame.

In detail, these are the effects of a call hardware RETURN-NEW-TAIL-OPEN
operation:

• Load the Open Frame register with the contents of the Return Frame
register.

• Load the Return Frame register with the contents of the Active Frame
register.

• Load the Active Frame register with the contents of the Call Stack Active
RAM (addressed by CSP).

• Configure the PC multiplexer to take the next PC from the Call Stack
Return PC RAM.

• Read the return destination from the Call Stack Return Destination RAM.
Configure the Destination logic to put the ALU output (one clock tick from
now) into this destination.

• Decrement the call stack pointer (CSP).

9.3.6 TAIL-OPEN

The TAIL-OPEN (or TOPEN) operation is used in preparation for a tail-
recursive function call. Tail recursive call hardware operations do not affect
the call stack; there is no need to save any of the caller’s state. All that a
TAIL-OPEN operation has to do is obtain a fresh frame from the heap.

In detail, these are the effects of a call hardware TAIL-OPEN operation:

• Load the Open Frame register with the contents of the Heap RAM (ad-
dressed by HP).

• Decrement the heap pointer (HP).

9.3. CALL HARDWARE OPERATIONS 49

9.3.7 TAIL-CALL

The TAIL-CALL (or TCALL) operation executes a tail-recursive function call.
It must be preceded by a corresponding TAIL-OPEN operation.

In detail, these are the effects of a call hardware TAIL-CALL operation:

• Increment the heap pointer (HP).

• Store the contents of the Return Frame register into the Heap RAM.

• Load the Return Frame register with the contents of the Active Frame
register.

• Load the Active Frame register with the contents of the Open Frame
register.

9.3.8 TAIL-OPEN-CALL

The TAIL-OPEN-CALL (or TOPEN-CALL, or TOPEN-TCALL) operation
combines the effects of a TAIL-OPEN and a TAIL-CALL.

In detail, these are the effects of a TAIL-OPEN-CALL operation:

• Load the Open and Active Frame registers with the contents of the Return
Frame register.

• Load the Return Frame Register with the (previous) contents of the Active
Frame register.

50 CHAPTER 9. CALL HARDWARE

Chapter 10

Instruction Cache

The instruction cache is a direct access cache with two distinct sections. The
first 8K instructions correspond to PC locations 0 to 8191. This is the low-core
cache. Once it has been pre-loaded and enabled, it will never miss. Its purpose
is to provide fast execution of commonly used functions. These include the trap
entry/exit functions, the CALLZ functions, and whatever others are put here.

The top half of the cache is organized as 2048 lines of 4 instructions. When
enabled, this will be the general purpose cache for all code not in low core.

10.1 Cache Hits

If the low-core cache is enabled, then any access to a PC in the range 0 to 8191
will cause a cache hit. This range will cause a miss if the low-core cache is
disabled.

In the regular cache section, the high PC bits will be compared against the tag
memories. If they match, then a cache hit occurs, and the instruction will come
from the cache.

The tag RAM has a reset line that is connected to the normal cache enable
bit. When disabled, all of the tag bits are zeroed, making them invalid. When
enabled, they are loaded as each line is read in.

51

52 CHAPTER 10. INSTRUCTION CACHE

10.2 Cache Misses

When the cache misses, a line of data (four instructions) will be read from
memory. The normal timing for a cache load from local memory is as follows:

_ _ _ _ _ _ _ _ _ _ _ _ _ _

CMEM1 _| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |

_ _

CPROC1 |__| |

__

MISS _| |___

MFIO PC I0L I0H I1L I1H I2L I2H I3L I3H FS

__________ __________

RAS |__________________________________|

______________ __________

CAS |______________________________|

All of the items shown for the MFIO bus occur during the functional source half
of the clock cycle (CMEM1 low). The PC is transferred to the memory chip
during the first clock of the load cycle during the low half tick. This is the only
time data is transferred to the memory chip during this portion of the clock.
The other half tick is still used for the functional destination data as usual.

Chapter 11

ALUs

The processor’s main ALU is Advanced Micro Devices’ Am29332 Arithmetic
Logic Unit. For a complete specification of its behavior, consult the 29332’s
documentation. A summary of the ALU’s opcodes appears in the ALU Opcodes
chapter.

An ALU operation is determined by the ALU Opcode and Byte Width fields of
an instruction. Bit operations might also require the Shift and Mask fields.

The board set is also designed to use Weitek floating point hardware. However,
this design had to be abandoned because the state of the Weitek hardware
cannot be saved and restored during trap entry/exit.

The left and right inputs to the ALUs are determined by the Left Source and
Right Source fields of an instruction. The ALU output is registered in OREG,
the ALU output register.

53

54 CHAPTER 11. ALUS

Chapter 12

Datatype RAM

55

56 CHAPTER 12. DATATYPE RAM

Chapter 13

ALU Opcodes

This chapter describes each of the 128 opcodes available on the ALU. (Ref AMD
manual?)

Several abbreviations are used in the following chart. ”L” represents the left
source of the ALU. ”R” represents the right source of the ALU. ”Status” refers to
the ALU’s internal status register. ”Q” refers to the ALU’s internal Q register.
”Foo:Bar” means the 64-bit quantity whose high 32 bits come from Foo and
whose low 32 bits come from Bar. All shift instructions which use the Q register
use it as the low word.

A more detailed description of the stranger opcodes appears after the chart.

Value Abbreviation Description

#x00 SETL Zero extend left source

#x01 SETR Zero extend right source

#x02 SEX-R Sign extend left source

#x03 SEX-R Sign extend right source

#x04 PASS-STATUS Contents of Status register

#x05 PASS-Q Contents of Q register

#x06 LOAD-Q-L Load Q register from left source

#x07 LOAD-Q-R Load Q register from right source

#x08 NOT-L One’s complement left source

#x09 NOT-R One’s complement right source

#x0A NEG-L Two’s complement left source

#x0B NEG-R Two’s complement right source

#x0C PRIORITIZE-L Prioritize left source

#x0D PRIORITIZE-R Prioritize right source

57

58 CHAPTER 13. ALU OPCODES

#x0E MERGE-L Merge byte left into right

#x0F MERGE-R Merge byte right into left

#x10 L-1 Decrement left source by 1

#x11 R-1 Decrement right source by 1

#x12 L+1 Increment left source by 1

#x13 R+1 Increment right source by 1

#x14 L-2 Decrement left source by 2

#x15 R-2 Decrement right source by 2

#x16 L+2 Increment left source by 2

#x17 R+2 Increment right source by 2

#x18 L-4 Decrement left source by 4

#x19 R-4 Decrement right source by 4

#x1A L+4 Increment left source by 4

#x1B R+4 Increment right source by 4

#x1C LOAD-STATUS-L Load Status register from left source

#x1D LOAD-STATUS-R Load Status register from right source

#x1E Reserved

#x1F Reserved

#x20 SHIFT-DN-0F-L Right-shift L one bit, inserting 0

#x21 SHIFT-DN-0F-R Right-shift R one bit, inserting 0

#x22 Right-shift L:Q one bit, inserting 0

#x23 Right-shift R:Q one bit, inserting 0

#x24 Right-shift L one bit, inserting 1

#x25 Right-shift R one bit, inserting 1

#x26 Right-shift L:Q one bit, inserting 1

#x27 Right-shift R:Q one bit, inserting 1

#x28 SHIFT-DN-LF-L Right-shift L one bit, inserting link

#x29 SHIFT-DN-LF-R Right-shift R one bit, inserting link

#x2A Right-shift L:Q one bit, inserting link

#x2B Right-shift R:Q one bit, inserting link

#x2C SHIFT-DN-AR-L Right-shift L one bit, inserting sign

#x2D SHIFT-DN-AR-R Right-shift R one bit, inserting sign

#x2E Right-shift L:Q one bit, inserting sign

#x2F SHIFT-DN-AR-RQ Right-shift R:Q one bit, inserting sign

#x30 SHIFT-UP-0F-L Left-shift L one bit, inserting 0

#x31 SHIFT-UP-0F-R Left-shift R one bit, inserting 0

#x32 SHIFT-UP-0F-LQ Left-shift L:Q one bit, inserting 0

#x33 SHIFT-UP-0F-RQ Left-shift R:Q one bit, inserting 0

#x34 Left-shift L one bit, inserting 1

#x35 Left-shift R one bit, inserting 1

#x36 Left-shift L:Q one bit, inserting 1

#x37 Left-shift R:Q one bit, inserting 1

#x38 SHIFT-UP-LF-L Left-shift L one bit, inserting link

#x39 SHIFT-UP-LF-R Left-shift R one bit, inserting link

59

#x3A Left-shift L:Q one bit, inserting link

#x3B Left-shift R:Q one bit, inserting link

#x3C ZERO Zero

#x3D SIGN Sign (-1 if n=1; 0 otherwise)

#x3E OR Logical OR

#x3F XOR Logical XOR

#x40 AND Logical AND

#x41 XNOR Logical Negated XOR

#x42 L+R or R+L Add

#x43 L+R+C Add with carry

#x44 L-R Subtract right source from left source

#x45 L-R-C Subtract right from left with carry

#x46 R-L Subtract left source from right source

#x47 R-L-C Subtract left from right with carry

#x48 BCD correct L for partial sum

#x49 BCD correct R for partial sum

#x4A BCD correct L for partial difference

#x4B BCD correct R for partial difference

#x4C Reserved

#x4D Reserved

#x4E SDIV-FIRST Signed divide, first step

#x4F Unsigned divide, first step

#x50 SDIV-STEP Signed divide, intermediate step

#x51 SDIV-LAST1 Signed divide, last step 1

#x52 MP-DIV-STEP1 Multiprecision divide, inner loop first step

#x53 MP-SDIV-STEP3 Signed multiprecision divide, inner loop last step

#x54 Unsigned divide, intermediate step

#x55 Unsigned divide, last step 1

#x56 MP-DIV-STEP2 Multiprecision divide, inner loop interm. step

#x57 MP-UDIV-STEP3 Unsigned multiprecision divide, inner loop last step

#x58 REM-CORR Signed and unsigned remainder correction

#x59 QUO-CORR Signed quotient correction

#x5A SDIV-LAST2 Signed divide, last step 2

#x5B UMUL-FIRST Unsigned multiply, first step

#x5C UMUL-STEP Unsigned multiply, intermediate step

#x5D UMUL-LAST Unsigned multiply, last step

#x5E SMUL-STEP Signed multiply, intermediate step

#x5F SMUL-FIRST Signed multiply, first step

#x60 NB-SHIFT-AR-L N bit shift left source with sign fill

#x61 NB-SHIFT-AR-R N bit shift right source with sign fill

#x62 NB-SHIFT-0F-L N bit shift left source with zero fill

#x63 NB-SHIFT-0F-R N bit shift right source with zero fill

#x64 ROTATE-L N bit rotate left source

#x65 ROTATE-R N bit rotate right source

#x66 EXTRACT-BIT-LEFT Extract bit from left source

60 CHAPTER 13. ALU OPCODES

#x67 EXTRACT-BIT-RIGHT Extract bit from right source

#x68 SET-BIT-LEFT Set bit in left source

#x69 SET-BIT-RIGHT Set bit in right source

#x6A RESET-BIT-LEFT Reset bit in left source

#x6B RESET-BIT-RIGHT Reset bit in right source

#x6C SET-BIT-STAT Set bit in Status register

#x6D RESET-BIT-STAT Reset bit in Status register

#x6E ALIGNED-FIELD-NOT-RIGHTInvert field of right source

#x6F ALIGNED-FIELD-PASS-RIGHTTest a field of the right source

#x70 FIELD-NOT Insert non-aligned not-left into right

#x71 ALIGNED-FIELD-NOT-LEFT Insert aligned not-left into right

#x72 FIELD-PASS Insert non-aligned left into right

#x73 ALIGNED-FIELD-PASS-LEFTInsert aligned left into right

#x74 FIELD-OR Logical OR of non-aligned field of left into right

#x75 ALIGNED-FIELD-IOR Logical OR of aligned field of left into right

#x76 FIELD-XOR Logical XOR of non-aligned field of left into right

#x77 ALIGNED-FIELD-XOR Logical XOR of aligned field of left into right

#x78 FIELD-AND Logical AND of non-aligned field of left into right

#x79 ALIGNED-FIELD-AND Logical AND of aligned field of left into right

#x7A FIELD-EXTRACT-L Extract field from left source

#x7B FIELD-EXTRACT-R Extract field from right source

#x7C FIELD-EXTRACT-LR Extract field from L:R

#x7D FIELD-EXTRACT-RL Extract field from R:L

#x7E EXTRACT-BIT-STATUS Extract bit from Status register

#x7F Pass mask

13.1 Notes and Caveats

1. Not all of the opcodes are implemented in the assembler. The relevant
files are ORSON: FLEABIT.GENERATE; ASSEM LISP and K-SYS: K; ALU-
OPCODES LISP.

2. There is something funny about the order of the signed multiply instructions.

3. There is no last-step-signed-multiply instruction. Consulting the AMD man-
ual would probably be enlightening.

Part II

Memory Board Hardware

61

Chapter 14

Memory Board

This chapter is an overview of the memory board.

14.1 Overview

14.2 Memory Control Register

The Memory Control Register (MCR) is a 32-bit register. Its contents are used
as control lines for various parts of the memory board. The MCR may be read
or written by accessing functional source/destination 1100010.

All bits in the MCR are zeroed by a reset.

Bit(s) Meaning

31 Master Trap Disable (0 = no trapping, 1 = trap under other masks). See below.

30 Asynchronous Trap Enable (0 = disable, 1 = enable)

29 Overflow Trap Enable (0 = disable, 1 = enable)

28 Data Type Trap Enable (0 = disable, 1 = enable)

27 Synchronous Trap Enable (0 = disable, 1 = enable)

26 Single step on trap exit (0 = disabled, 1 = enabled)

25 Spare

24 Reset Tap Bit (0 = reset trap bit on, 1 = normal)

23:20 Undefined

19 DRAM Parity Error Flagging (0 = disable, 1 = enable)

63

64 CHAPTER 14. MEMORY BOARD

18 Boot PROM (0 = enabled, 1 = disabled)

17:16 Transporter RAM Mode Select

15 Use L or C valid/write-enable bits in map (0 = C bits, 1 = L bits)

14 Write Wrong Parity to DRAM (0 = normal parity, 1 = wrong parity)

13 16384 microsecond interrupt (0 = disable/reset request, 1 = enable)

12 1024 microsecond interrupt (0 = disable/reset request, 1 = enable)

11 I-Cache error clear (0 = disable/reset icache error traps, 1 = enable)

10:9 NuBus AD(1:0) bits for transfers

8 NuBus TM0 bit for transfers

7 LED 2 (0 = lit, 1 = unlit)

6 LED 1 (0 = lit, 1 = unlit)

5 LED 0 (0 = lit, 1 = unlit)

4 Statistics Source Polarity (0 = true, 1 = invert)

3:1 Statistics Counter Source (options listed below)

0 Statistics Counter Mode (0 = edge trigger, 1 = duration)

Note that bit 31 (Master Trap Disable) also sets/resets during trap exit/entry

Bits 3:1 determine the statistics counter source:

Value Source

000 I-cache hit

001 Processor memory cycle

010 Instruction Status Bit

011 Undefined

100 PC in high core

101 Undefined

110 Undefined

111 Undefined

14.3 Memory Status Register

The Memory Status Register (MSR) is a 32-bit register. It contains various
status bits from the memory board. The MSR may be read from functional
source 1100110.

Bit(s) Meaning

31:24 Undefined

23 Amount of memory installed (0 = 32 Meg, 1 = 16 Meg)

22 Autoboot jumper (0 = mastership external, 1 = go for it)

21 Memory Parity Error (0 = error, 1 = no error)

20:19 Undefined

18 MD Transport Trap (1 = MD read will cause transporter trap)

14.4. MEMORY BOARD HARDWARE 65

17 MD Page Trap (1 = MD read will cause read fault trap)

16 VMA Boxedness (0 = boxed, 1 = unboxed)

15 MD Boxedness (0 = boxed, 1 = unboxed)

14:13 Transporter Mode of Last Memory Cycle (see note)

12 Last Memory Cycle Type (0 = write, 1 = read)

11 Undefined

10:8 Nubus Bootstrap Mode (0 = normal, 1 = short reset, 2:7 = software)

7:4 ECO Jumper Number

3:0 Nubus Slot ID

Bits 14:13 – 00 = will write, 01 = no evcp, 10 = transport, 11 = no transport.
See the Transporter RAM chapter for details.

14.4 Memory Board Hardware

The MCR [Memory Board, Page 22] is implemented with four 74LS273 registers.
The four 74LS244 buffers are used for reading the MCR.

The MSR [Memory Board, Page 23] is implemented with four 74LS244 buffers.

66 CHAPTER 14. MEMORY BOARD

Chapter 15

Main Memory Access

This chapter describes how the processor interacts with the virtual memory
system.

15.1 Registers

The processor communicates with main memory via two 32-bit registers, the
Virtual Memory Address (VMA) and the Memory Data (MD). When the pro-
cessor wants to read or write data to main memory, it writes the appropriate
address into the VMA, and it reads or writes the data in the MD.

Like the registers in register memory, both the VMA and the MD have box bits.
However, these box bits do not behave like they do in register memory. When
the processor writes a word from register memory into the VMA or MD, the box
bit of that word is not loaded into the VMA/MD. Instead, the VMA/MD box
bit is taken from bit 54 of the instruction. (See the Instruction Set chapter).

However, their box bits are registered separately registered separately. They
are described in the Transporter RAM chapter.

15.2 Reading a Word from Memory

Reading a word from memory requires three instructions:

67

68 CHAPTER 15. MAIN MEMORY ACCESS

• Write the word’s address to one of the eight VMA-START-READ func-
tional destinations. The eight options allow the processor to choose one
of four transporter modes (discussed below) and to optionally set the low
bit of the address.

• Wait. This instruction can simply be a NOP, or it can do something else
useful that doesn’t read or write to the memory system.

• This instruction (and subsequent instructions, until the next memory sys-
tem operation) can read the desired word from the MD functional source.

Before the processor sees the data in the MD, the Transporter RAM gets to
look at it. Depending on which transporter mode was selected, the Transporter
RAM will cause a trap if there is something wrong with the data in the MD.
Here are the four transporter modes:

• No Transport: This mode should only be used when transporting un-
boxed data. No transporter trap will ever occur. (As a safety measure, if
the MD is boxed, using no-transport mode will cause a trap).

• Transport: This is the normal way to transport boxed data. A trans-
porter trap will occur if the MD includes a pointer into oldspace, if the
MD is a forwarding pointer, if the MD has an invalid data type, or if the
MD has data type $$DTP-UNBOUND.

• Visible EVCP: This mode is identical to Transport mode, except that
forwarding pointers are not trapped. Instead, the data containing the
forwarding pointer is left in the MD.

• Will Write: This mode is identical to Transport mode, except that
unbounds are not trapped. Instead, the data with data type $$DTP-
UNBOUND is left in the MD.

Note that the actual behavior of the Transporter RAM is not ingrained in the
hardware. It depends on the contents of the RAM, which are downloaded at
boot time. See the Transporter RAM chapter for more details.

The processor can force the low bit of the VMA to be 1 by using one of the
VMA-START-READ-CDR functional destinations instead of the corresponding
VMA-START-READ destination. When the processor knows that a pair of
words are stored at an even address in virtual memory, and it knows the address
of the first word, this option spares the processor the trouble of incrementing
that address. This operation is useful when reading CONS and COMPLEX
cells.

Here are the eight relevant functional destinations:

15.3. WRITING A WORD TO MEMORY 69

Value Abbreviation

1110000 VMA-START-READ-NO-TRANSPORT

1110001 VMA-START-READ

1110010 VMA-START-READ-VISIBLE-EVCP

1110011 VMA-START-READ-WILL-WRITE

1110100 VMA-START-READ-CDR-NO-TRANSPORT

1110101 VMA-START-READ-CDR

1110110 VMA-START-READ-CDR-VISIBLE-EVCP

1110111 VMA-START-READ-CDR-WILL-WRITE

15.3 Writing a Word to Memory

To write a word to memory, the processor has to write an address into the VMA
and the actual data into the MD. It can perform these operations in either order.
For example, here is how the processor would write a word, writing the VMA
first.

• Write the desired address to the VMA functional destination.

• Write the data to the MD-START-WRITE-NO-GC-TRAP or MD-START-
WRITE functional destination.

• (& how long does the processor have to wait before starting another mem-
ory operation?)

The alternative method is this:

• Write the data to the MD functional destination.

• Write the desired address to the VMA-START-WRITE-NO-GC-TRAP or
VMA-START-WRITE functional destination.

Here are the six relevant functional destinations:

Value Abbreviation

1101100 VMA-START-WRITE-NO-GC-TRAP

1101101 VMA-START-WRITE

1101110 MD-START-WRITE-NO-GC-TRAP

1101111 MD-START-WRITE

110100X VMA

70 CHAPTER 15. MAIN MEMORY ACCESS

110101X MD

There are two transporter modes for write operations, one which suppresses
traps and one which enables them.

• No GC Trap: This transporter mode should be used for writing unboxed
data.

• Transport: This transporter mode should be used for writing boxed data.

Again, note that the behavior of these modes depends on the contents of the
Transporter RAM.

Chapter 16

Traps

The K processor has a single entry point for all traps and interrupts (location
zero). Prioritizing of the trap causes is handled by software. When a trap
occurs, any instruction that has passed the commit point will be completed. All
others will be aborted and rerun after the trap return.

16.1 The Commit Point

Instructions have a logical point in their execution referred to as the commit
point. Before this point the instruction can be aborted, any side effects undone,
and then be re-run later.

Once the clock edge at the ALU/OREG boundary has occured, the commit
point has been passed. The instruction then cannot be stopped from writing its
destination.

16.2 Trap Entry

When a trap request occurs while traps are enabled, the processor clock that
was about to occur will be delayed by one cycle. The CMEM1 clock edge that
occurs wher the CPROC1 was about to occur will set the TRAP1 bit. This flag
indicates the first state of a trap entry.

71

72 CHAPTER 16. TRAPS

TRAP1 has multiple functions. It forces the PC to zero, the instruction cache is
forced to restart its instruction access (possibly going to memory if the low-core
cache is disabled), the call hardware will undo its previous function, the next
two destination writes will be aborted, and the clock enables on some interesting
registers will be turned off by the Trap State Machine (TSM).

16.3 Trap State Machine (TSM)

The TSM is a finite state machine that watches for certain PC values to occur,
and then disables or enables the loading of certain hardware registers. The TSM
wAtches for PCs in the range 0 to 31. This section of memory holds the trap
entry and exit code.

The TSM also has the trace trap bit and several feedback bits as inputs to allow
it to handle some special functions during trap exits.

16.4 Trap Entry Sequence

The following piece of assembly code is the instruction sequence that the TSM
expects to find at location zero:
(defafun trap ()

;; The hardware depends on this loaded at location 0.

;; Save the oreg, source doesn’t matter because pipeline

is shut off.

(alu setl gr::*save-oreg* r0 r0 bw-32 boxed-left)

;; Oreg clock comes on, we save the left alu input

(alu setl gr::*save-left* r0 r0 bw-32 boxed-left)

;; Left clock comes on, we save the right alu input

(alu setr gr::*save-right* r0 r0 bw-32 boxed-right)

;; Right clock comes on, we save the alu status

(alu pass-status gr::*save-status* r0 r0 bw-32 unboxed)

;; Alu clock comes on, we save the jump condition

(alu-field extract-bit-right gr::*save-jcond* r0

processor-status (byte 1. (+ 32. 17.)) unboxed)

;; Jump condition clock comes on, find out which trap went

;; off.

(alu-field field-and gr::*save-trap* gr::*trap-mask*

trap-register (byte 31. 0.) unboxed)

(alu prioritize-r gr::*trap-temp1* r0 gr::*save-trap*

bw-32 unboxed)

(alu-field set-bit-right gr::*trap-temp1* r0

gr::*trap-temp1* (byte 1. 5.) unboxed)

;; Save pc

(alu merge-r gr::*save-trap-pc* gr::*trap-dtp-code-5*

16.5. NORMAL TRAP EXITS (NON-MODIFYING) 73

trap-pc bw-24 boxed)

;; Save pc + 1, dispatch to trap handler

(alu merge-r gr::*save-trap-pc+* gr::*trap-dtp-code-5*

trap-pc+ bw-24 boxed next-pc-dispatch)

The registers mentioned in the code will be re-enabled just after they are saved,
thus allowing the processor to return to normal functionality as the sequence
proceeds.

16.5 Normal Trap Exits (Non-modifying)

A normal trap exit will completely re-execute the trapped instruction. Since
all of its side effects were undone when it was aborted, this doesn’t cause any
problem. The following instruction sequence is the normal trap exit code:
(defafun non-modifying-exit ()

;; The hardware depends on this loading at location 12.

;; Jump condition gets fed to magic flipflop.

(alu-field field-pass processor-control gr::*save-jcond*

processor-control (byte 1. 4.))

;; Restore status of trapped instruction, alu clock turns

;; off.

(alu load-status-r nop r0 gr::*save-status* bw-32)

;; Pipeline saved pc for returning.

(alu setl gr:*trap-temp1* gr::*save-trap-pc*

gr::*save-right* bw-32 boxed-left)

;; Pipeline saved pc+ for restarting dispatch

;; instructions.

(alu setl gr:*trap-temp1* gr::*save-trap-pc+*

gr::*save-right* bw-32 boxed-left)

;; Jump to trapped instruction, pipeline jump condition

;; for trapped jumps.

(alu setl gr:*trap-temp1* gr::*save-oreg* gr::*save-right*

bw-32 next-pc-dispatch br-jindir boxed-left)

16.6 Modifying Trap Exits

A modifying trap exit is a special exit used for datatype and overflow traps.
If the datatype trap is serviceable, then the effective result of the aborted in-
struction will be computed and put into GR:*SAVE-RIGHT*, The status will
be put into GR:*SAVE-STATUS*, and then the modifying exit code will be
run. This will have the effect of mostly re-executing the trapped instruction.
However, instead of the ALU result being written to the destination, the value
in the right register will be written instead (the ALU opcode will be forced
to PASS-RIGHT and the box code to BOXED-RIGHT). In addition, datatype

74 CHAPTER 16. TRAPS

traps will be suppressed during this instruction to prevent recausing the same
trap.

This all has the effect of allowing the trap routine to substitute a result for the
instruction. This is useful, for example, when adding two complex numbers.

The folowing is the non-modifying exit code sequence:
(defafun modifying-exit ()

;; The hardware depends on this loading at location 20.

;; Jump condition gets fed to magic flipflop.

(alu-field field-pass processor-control gr::*save-jcond*

processor-control (byte 1. 4.))

;; Restore status of trapped instruction, alu clock turns

;; off.

(alu load-status-r nop r0 gr::*save-status* bw-32)

;; Pipeline saved pc for returning. Right side clock shuts

;; off, save right gets caught.

(alu setl gr:*trap-temp1* gr::*save-trap-pc*

gr::*save-right* bw-32 boxed-left)

;; Pipeline saved pc+1 for dispatches.

(alu setl gr:*trap-temp1* gr::*save-trap-pc+*

gr::*save-right* bw-32 boxed-left)

;; Jump to trapped instruction, setup saved jump

;; condition.

(alu setl gr:*trap-temp1* gr::*save-oreg* gr::*save-right*

bw-32 next-pc-dispatch br-jindir boxed-left)

16.7 Diagnostic Trap Exits

This code sequence is used only for instruction cache diagnostics. It allows the
data in the cache to be read and held in the cache transceiver registers. It can
be read later for running cache diagnostics. This can also be used to force cache
locations to be accessed and loaded from memory (as in initializing the low-core
cache). The exit sequence proceeds only far enough to allow the cache to fetch
the desired instruction. Then the single step trap will return control to the trap
handler.
(defafun diagnostic-trap-exit ()

;; The hardware depends on this assembling at location 28.

;; It causes a trap to happen after the instruction fetch

;; but before the instruction register gets loaded. This

;; enables us to run icache diagnostics.

;; Dispatch to trap pc.

(alu setl nop gr::*save-trap-pc* gr::*save-right* bw-32)

;; This instruction can be ignored.

(alu setl nop gr::*save-trap-pc+* gr::*save-right* bw-32)

;; This just does a dispatch.

(move nop gr::*save-oreg* bw-32 next-pc-dispatch)

16.8. TRACE TRAPPING 75

16.8 Trace Trapping

The TSM handles the trace trap function. If the trace trap bit in the control
register is set when a trap exit sequence is executed, then the TSM will cause a
trap requested just after the trapped instruction has passed its commit point.

Note that some other trap can still come in before the commit point. However,
when that trap handler returns the trace trap will occur.

The trace trap will occur early in the case of the diagnostic exit since we want
to abort very early in the instruction.

16.9 Trap Vector Table

This is the 32-entry vector table that the trap entry code will branch to after
saving its registers. They correspond to the bits of the trap register.
(defafun trap-vector-table () ;;; at absolute location 32.

;; This "function" is actually a dispatch table.

trap-vector-reset ;Bit 31 - addr 32 - Highest priority

(jump reset-trap-handler ())

trap-vector-trace ;Bit 30 - addr 33

(jump trace-trap-handler ())

trap-vector-icache-parity ;Bit 29 - addr 34

(jump icache-parity-trap-handler ())

trap-vector-icache-nubus-err ;Bit 28 - addr 35

(jump icache-nubus-error-trap-handler ())

trap-vector-icache-nubus-timeout ;Bit 27 - addr 36

(jump icache-nubus-timeout-trap-handler ())

trap-vector-icache-page-fault ;Bit 26 - addr 37

(jump icache-map-fault-trap-handler ())

trap-vector-proc-mread-parity ;Bit 25 - addr 38

(jump memory-read-parity-trap-handler ())

trap-vector-proc-mread-nubus-err ;Bit 24 - addr 39

(jump memory-read-nubus-error-trap-handler ())

trap-vector-proc-mread-nubus-timeout ;Bit 23- addr 40

(jump memory-read-nubus-timeout-trap-handler ())

trap-vector-proc-mread-page-fault ;Bit 22 - addr 41

(jump memory-read-page-fault-trap-handler ())

trap-vector-proc-mread-transporter ;Bit 21 - addr 42

(jump memory-read-transporter-trap-handler ())

trap-vector-proc-mwrite-nubus-err ;Bit 20 - addr 43

(jump memory-write-nubus-error-trap-handler ())

trap-vector-proc-mwrite-nubus-timeout ;Bit 19- addr 44

(jump memory-write-nubus-timeout-trap-handler ())

trap-vector-proc-mwrite-page-fault ;Bit 18 - addr 45

(jump memory-write-page-fault-trap-handler ())

76 CHAPTER 16. TRAPS

trap-vector-proc-mwrite-gc ;Bit 17 - addr 46

(jump memory-write-gc-trap-handler ())

trap-vector-floating-point ;Bit 16 - addr 47

(jump floating-point-trap-handler ())

trap-vector-heap-empty ;Bit 15 - addr 48

(jump heap-empty-trap-handler ())

trap-vector-instruction-bit ;Bit 14 - addr 49

(jump instruction-trap-handler ())

trap-vector-datatype ;Bit 13 - addr 50

(jump datatype-trap-handler ())

trap-vector-overflow ;Bit 12 - addr 51

(jump overflow-trap-handler ())

trap-vector-spare11 ;Bit 11 - addr 52

(jump spare11-trap-handler ())

trap-vector-interrupt7 ;Bit 10 - addr 53

(jump debugger-trap-handler ())

trap-vector-interrupt6 ;Bit 09 - addr 54

(jump interrupt6-trap-handler ())

trap-vector-interrupt5 ;Bit 08 - addr 55

(jump interrupt5-trap-handler ())

trap-vector-interrupt4 ;Bit 07 - addr 56

(jump iop-trap-handler ())

trap-vector-interrupt3 ;Bit 06 - addr 57

(jump interrupt3-trap-handler ())

trap-vector-interrupt2 ;Bit 05 - addr 58

(jump interrupt2-trap-handler ())

trap-vector-interrupt1 ;Bit 04 - addr 59

(jump interrupt1-trap-handler ())

trap-vector-interrupt0 ;Bit 03 - addr 60

(jump interrupt0-trap-handler ())

trap-vector-timer-1024 ;Bit 02 - addr 61

(jump timer-1024-trap-handler ())

trap-vector-timer-16384 ;Bit 01 - addr 62

(jump timer-16384-trap-handler ())

trap-vector-spurious ;Bit 00 - addr 63

(jump spurious-trap-handler ()))

Chapter 17

Transporter RAM

This chapter describes the purpose and function of the transporter RAM.

17.1 Introduction

The Transporter RAM is a 4K x 4 RAM. Its purpose is to examine the data
type of anything that appears on the Memory Data (MD) bus, and cause a trap
if something is amiss. This decision is also based on the type of memory cycle
which caused the data to appear in the MD, and two control bits in the Memory
Control Register.

17.2 Input Lines

The contents of the Transporter RAM are set up at boot time. The contents
should probably not be altered unless the processor is being rebooted. The
input lines are connected to bits 7:4 of the MMFIO bus; the RAM is loaded
by cleverly setting up the address lines, then writing to functional destination
1100101. It requires a small amount of wizardry to set up the address lines at
boot time; see the function K-ADDRESS-TRANSPORTER-RAM in the JB:
KBUG; NEW-SPY-UTILITIES.LISP file for an example.

77

78 CHAPTER 17. TRANSPORTER RAM

17.3 Address Lines

There are twelve address lines. The top four are decoded from the boxedness
and functional destination fields of the relevant instruction. The middle two are
obtained from the Memory Control Register. The bottom six come from the
MD bus itself.

17.3.1 Boxedness (Bits 11 and 10)

Bit 11 is the negation of bit 54 of the most recent instruction which wrote to any
VMA-START-READ, VMA-START-WRITE, or VMA functional destination.

Bit 10 is the negation of bit 55 of the most recent instruction which wrote to
any VMA-START-READ, MD-START-WRITE, or MD functional destination.

Both of these bits are registered [Memory board, PREQ PAL]. They are updated
each time an appropriate functional destination is written.

17.3.2 Memory Cycle Type (Bits 9 and 8)

These two address lines depend on the transporter mode requested by the most
recent memory instruction. The last memory cycle type is registered [Mem-
ory board, PREQ PAL]. It is updated every time a VMA or MD functional
destination is written.

Last Memory Bit 9 Bit 8

Cycle Type (PMT1) (PMT0)

Read, no Transport 0 0

Read with Transport 0 1

Read, visible EVCP 1 0

Read, will write 1 1

Write (VMA), no GC trap 0 0

Write (VMA) 0 1

Write (MD), no GC trap 1 0

Write (MD) 1 1

These bits are represented with negative logic; they therefore appear negated
on the address lines of the Transporter RAM. These two (negative logic) bits
are also loaded into bits 14:13 of the MSR.

17.4. OUTPUT LINES 79

It is worth mentioning that a third bit is also registered by the PREQ PAL;
this bit is 0 if the last memory cycle type was a read operation and 1 if the
last memory cycle type was a write operation. This bit is also represented with
negative logic. (It is called PROCWRIT on the design sheets.) It is loaded
(also negated) into bit 12 of the MSR. The Transporter RAM ignores this bit.
However, it influences some decisions of the trap logic (described below).

17.3.3 MCR Bits (Bits 7 and 6)

Bits 7:6 of the Memory Control Register. Right now, the only value with any
meaning is 00. The other values may be needed when implementing the garbage
collector.

17.3.4 Data Type (Bits 5 to 0)

Bits 31:26 (the data type field) of the MD.

17.4 Output Lines

The Transporter RAM outputs four useful signals. Two of them (Trappable
Pointer and Box Error) have effect during memory writes. The other two have
effect during memory reads.

17.4.1 Trappable Pointer

During a memory write, if the trappable pointer line is asserted, a volatility
comparison takes place.

17.4.2 Trap if Old

Indicates that a trap should occur if bits 25:0 of the MD point into oldspace.

80 CHAPTER 17. TRANSPORTER RAM

17.4.3 Trap if New

Indicates that a trap should occur if bits 25:0 of the MD point into newspace.

17.4.4 Box Error

Forces a GC (Garbage Collector) trap.

17.5 Trap Logic

17.6 Contents of the Transporter RAM

For each combination of VMA box bit, MD box bit, data type, and control
mode, there are sixteen bits in the Transporter RAM. The sixteen bits are a
product of four transporter modes and four output lines. The modes, numbered
from 00 to 11, have different meanings for read and write operations. Two of
the output lines are used only during read operations, and two are used only
during write operations.

17.6.1 Read Operations

Eight of the bits affect read operations:
MODE OUTPUTS

+---------+---------+---------+---------+

00 No Transport | Ignored | Trap If | Trap If | Ignored |

| | New | Old | |

+---------+---------+---------+---------+

01 Transport | Ignored | Trap If | Trap If | Ignored |

| | New | Old | |

+---------+---------+---------+---------+

10 Visible EVCP | Ignored | Trap If | Trap If | Ignored |

| | New | Old | |

+---------+---------+---------+---------+

11 Will Write | Ignored | Trap If | Trap If | Ignored |

| | New | Old | |

+---------+---------+---------+---------+

17.6. CONTENTS OF THE TRANSPORTER RAM 81

17.6.2 Write Operations

Eight of the bits affect write operations. Note that there are two encodings for
each transporter mode. One encoding is used when the VMA is written before
the MD during a write operation; the other encoding is used when the MD is
written first. Since the order of writing the MD and VMA should not affect the
transporter’s behavior, it is very important that these outputs be the same for
both encodings.
MODE OUTPUTS

+---------+---------+---------+---------+

00 No GC Trap |Box Error| Ignored | Ignored |Trappable|

| | | | Pointer |

+---------+---------+---------+---------+

01 Transport |Box Error| Ignored | Ignored |Trappable|

| | | | Pointer |

+---------+---------+---------+---------+

10 No GC Trap |Box Error| Ignored | Ignored |Trappable|

| | | | Pointer |

+---------+---------+---------+---------+

11 Transport |Box Error| Ignored | Ignored |Trappable|

| | | | Pointer |

+---------+---------+---------+---------+

17.6.3 Patterns

It is always an error to read boxed data using the no-transport mode or write
boxed data using the no-gc-trap mode. Therefore, every transporter entry for
boxed data should cause a trap in these two situations. The first chart shows the
bit patterns which trap on illegal reads; the second chart shows the bit patterns
which trap on illegal writes.

OUTPUTS OUTPUTS

+---+---+---+---+ +---+---+---+---+

00 | | 1 | 1 | | 00 | 1 | | | |

+---+---+---+---+ +---+---+---+---+

01 | | | | | 01 | | | | |

+---+---+---+---+ +---+---+---+---+

10 | | | | | 10 | 1 | | | |

+---+---+---+---+ +---+---+---+---+

11 | | | | | 11 | | | | |

+---+---+---+---+ +---+---+---+---+

82 CHAPTER 17. TRANSPORTER RAM

17.7 Setting up the Transporter RAM

The Transporter RAM setup routines are in the file JB: K; TRANSPORTER-
RAM.LISP. The function LOAD-TRANSPORTER-RAM-DATA actually sets
up the Transporter RAM pattern. It makes repeated calls to the function
LOAD-TRANSPORTER-RAM-PATTERN, which takes six arguments: (1) The
VMA box bit, (2) The MD box bit, (3) The data type, (4) The transporter mode,
(5) The control mode from the MCR, (6) The value to load into the Transporter
RAM. Any of the first five arguments may be t, which acts as a wildcard.

The sixth argument is a four-digit binary number. From MSB to LSB, the bits
represent the values to place on the: (3) Box Error, (2) Trap if New, (1) Trap
if Old, and (0) Trappable Pointer output lines.

The default is to trap on anything unusual:
(load-transporter-ram-pattern t t t t t #b1111)

The following cases handle unboxed data. Unboxed data is indicated by the
VMA and MD box bits both being zero. Reading unboxed data should not
cause a trap in no-transport mode. Writing unboxed data should not cause a
trap in the two no-gc-trap modes.
(load-transporter-ram-pattern 0 0 t no-trans normal #b0000)

(load-transporter-ram-pattern 0 0 t vis-evcp normal #b0110)

The following pattern is used for Lisp values which do not contain pointers.
These include NIL, fixnums, and characters.
(load-transporter-ram-pattern t 1 vinc:$$dtp-nil no-trans normal #b1111)

(load-transporter-ram-pattern t 1 vinc:$$dtp-nil trans normal #b0000)

(load-transporter-ram-pattern t 1 vinc:$$dtp-nil vis-evcp normal #b1001)

(load-transporter-ram-pattern t 1 vinc:$$dtp-nil write normal #b0000)

The following pattern is used for Lisp values which contain pointers. These
include arrays, structures, hash tables, cons cells, symbols, bignums, rationals,
short floats, single floats, double floats, and complex numbers.
(load-transporter-ram-pattern t 1 vinc:$$dtp-bignum no-trans normal #b1111)

(load-transporter-ram-pattern t 1 vinc:$$dtp-bignum trans normal #b0011)

(load-transporter-ram-pattern t 1 vinc:$$dtp-bignum vis-evcp normal #b1011)

(load-transporter-ram-pattern t 1 vinc:$$dtp-bignum write normal #b0011)

Chapter 18

Garbage Collector (GC)
RAM

GC RAM ADDRESS IS MD(25:14)

83

84 CHAPTER 18. GARBAGE COLLECTOR (GC) RAM

Chapter 19

Spy Hardware

85

86 CHAPTER 19. SPY HARDWARE

Part III

Lisp Software

87

Chapter 20

Storage Conventions

This chapter defines the storage conventions used by the K processor for Lisp
objects.

20.1 Structure of Data Words

Words in the machine consist of 33 bits. The most significant bit (bit 32) is
referred to as the BOX bit. When zero, the other 32 bits of the word contain an
untyped 32 bit number. The only software which should explicitly manipulate
unboxed data is internal system routines.
32 31 0

0 Unboxed Data

When the box bit is set, the word is a typed LISP value. The most significant 6
bits (31:26) indicate the data type of the word. Bits 25:0 vary in meaning with
the data type. Very often, bits 25:0 are used as a pointer into virtual memory.
Hence, this field is often called the ”pointer” field.
32 31 26 25 0

1 Data Type Pointer

89

90 CHAPTER 20. STORAGE CONVENTIONS

20.2 Tables of Data Types

The six DTP (Data Type) bits can represent up to 64 distinct types. The
data type definitions currently reside in K-SYS: K; DATA-TYPES LISP. By
convention, data types 0 to 31 are visible data types. (They identify valid Lisp
objects.) Data types 32 to 63 are invisible data types used by the internal system
routines. This distinction is arbitrary and is not enforced by the hardware.

Data types 26 through 31 and 49 through 63 are currently unassigned.

20.2. TABLES OF DATA TYPES 91

20.2.1 Visible Data Types

DTP DTP

(Decimal) (Binary) Data Type

0 000000 $$DTP-NIL

1 000001 $$DTP-FIXNUM

2 000010 $$DTP-CONS

3 000011 $$DTP-SYMBOL

4 000100 $$DTP-BIGNUM

5 000101 $$DTP-SHORT-FLOAT

6 000110 $$DTP-SINGLE-FLOAT

7 000111 $$DTP-DOUBLE-FLOAT

8 001000 $$DTP-RATIONAL

9 001001 $$DTP-COMPLEX

10 001010 $$DTP-LOCATIVE

11 001011 $$DTP-UNBOXED-LOCATIVE

12 001100 $$DTP-COMPILED-FUNCTION

13 001101 $$DTP-CODE

14 001110 $$DTP-ARRAY

15 001111 $$DTP-STACK-GROUP

16 010000 $$DTP-INSTANCE

17 010001 $$DTP-LEXICAL-CLOSURE

18 010010 $$DTP-INTERPRETER-CLOSURE

19 010011 $$DTP-LEXICAL-ENVIRONMENT

20 010100 $$DTP-STRUCTURE

21 010101 $$DTP-CHARACTER

22 010110 $$DTP-EXTEND

23 010111 $$DTP-ENCAPSULATION

24 011000 $$DTP-HASH-TABLE

92 CHAPTER 20. STORAGE CONVENTIONS

20.2.2 Invisible Data Types

DTP DTP

(Decimal) (Binary) Data Type

32 100000 $$DTP-UNBOXED-HEADER

33 100001 $$DTP-SYMBOL-HEADER

34 100010 $$DTP-ARRAY-HEADER-SINGLE

35 100011 $$DTP-ARRAY-HEADER-MULTIPLE

36 100100 $$DTP-ARRAY-HEADER-EXTENSION

37 100101 $$DTP-EXTERNAL-VALUE-CELL-POINTER

38 100110 $$DTP-GC-FORWARD

39 100111 $$DTP-ONE-Q-FORWARD

40 101000 $$DTP-INDEXED-FORWARD

41 101001 $$DTP-INSTANCE-HEADER

42 101010 $$DTP-ARRAY-LEADER-HEADER

43 101011 $$DTP-UNBOUND

44 101100 $$DTP-HEADER-FORWARD

45 101101 $$DTP-BODY-FORWARD

46 101110 $$DTP-COMPILED-FUNCTION-HEADER

47 101111 $$DTP-STRUCTURE-HEADER

48 110000 $$DTP-HASH-TABLE-HEADER

20.3 Numbers

20.3.1 Fixnums

Fixnums have a data type of $$DTP-FIXNUM. Bits 23:0 of the pointer field
contain a 24-bit two’s complement value. Bits 25:24 are unused and should be
zero.

Fixnums have a range of −223 through 223 − 1.
32 31 26 25 24 23 0

1 000001 00 24-Bit Two’s Complement Value

20.3.2 Bignums

Bignums have a data type of $$DTP-BIGNUM. A bignum is a pointer to a
memory structure. The memory structure consists of a header word with data-

20.3. NUMBERS 93

type $$DTP-UNBOXED-HEADER and a pointer field containing the number
of words of storage used for the bignum data words. The words after the header
form an N-word two’s complement number stored least significant word first.
Bignum storage is allocated in structure space.

Bignums may use up to 218 words of storage for a number. The range of bignums
is −2223

to 2223 − 1. However, a bignum may not have a value in the fixnum
range (−223 to 223 − 1). If the result of a bignum operation lies in that range,
it must be converted to a fixnum.
32 31 26 25 0

1 000100 Pointer (P)

31 26 25 0

P → 100000 Number of data words (N)

P+1 → Least Significant Word

. . . Middle Words . . .

P+N → Most Significant Word

20.3.3 Rationals

Rational numbers consist of a numerator and a denominator. Each may be either
a fixnum or a bignum. A rational has a data-type of $$DTP-RATIONAL. The
pointer field points to a pair of words in memory which contain the numerator
and denominator. The storage for rationals is allocated in CONS space.
32 31 26 25 0

1 001000 Pointer (P)

31 26 25 0

P → Data Type Fixnum or Bignum (Numerator)

P+1 → Data Type Fixnum or Bignum (Denominator)

20.3.4 Complex

Complex numbers consist of a real and an imaginary part. Each may be of
any numeric type other than Complex. A complex has a data type of $$DTP-
COMPLEX. The pointer field points to a pair of words in memory, the real and
imaginary parts of the number. The storage for complex numbers is allocated
in CONS space.
32 31 26 25 0

94 CHAPTER 20. STORAGE CONVENTIONS

1 001001 Pointer (P)

31 26 25 0

P → Data Type Any number except Complex (Real Part)

P+1 → Data Type Any number except Complex (Imaginary Part)

20.3.5 Short Floating Point

Short floating point numbers have a data type of $$DTP-SHORT-FLOAT. The
pointer field contains the high order 26 bits of an IEEE single precision floating
point number. This includes a sign bit, an 8-bit excess 127 exponent, and a
17-bit mantissa.
32 31 26 25 24 17 16 0

1 000101 S Exponent Mantissa

20.3.6 Single Precision Floating Point

A single float value has a data-type of $$DTP-SINGLE-FLOAT. The pointer
field points to a memory structure introduced by an unboxed header ($$DTP-
UNBOXED-HEADER) whose pointer field contains a length of one. The data
word contains a single precision IEEE floating point number.
32 31 26 25 0

1 000110 Pointer (P)

31 26 25 0

P → 100000 00 00000000 00000000 00000001

P+1 → S Exponent Mantissa

31 30 23 22 0

20.3.7 Double Precision Floating Point

A double float value has a data type of $$DTP-DOUBLE-FLOAT. The pointer
field points to a memory structure introduced by an unboxed header ($$DTP-
UNBOXED-HEADER) whose pointer field contains a length of two. The first
data word contains the least significant part of an double precision IEEE float-
ing point number. The second word contains the most significant part of the
number.
32 31 26 25 0

20.4. UNBOXED STRUCTURES 95

1 000111 Pointer (P)

31 26 25 0

P → 100000 00 00000000 00000000 00000010

P+1 → Mantissa - Low

P+2 → S Exponent Mantissa - High

31 30 21 20 0

20.4 Unboxed Structures

Unboxed structures are used for storage of untyped non-array data in mem-
ory. Unboxed structures do not indicate what kind of data they are storing;
this is determined by the data type of the Lisp object which points to the un-
boxed structure. For exampes of data types which use unboxed structures, see
bignums, single floats, and double floats.

An unboxed structure is introduced by a word of type $$DTP-UNBOXED-
HEADER whose pointer field contains the number of data words following the
header. In the following chart, P is the pointer field of the Lisp object which
points to the unboxed structure.
31 26 25 0

P → 100000 Number of Data Words (N)

P+1 → First Unboxed Data Word

· · · More Unboxed Data Words

P+N → Last Unboxed Data Word

20.5 Characters

20.6 Conses

A cons has a data type of $$DTP-CONS. Its pointer field points to a pair of
words in memory, the car and cdr of the cons cell. The storage for conses is
allocated in CONS space.
32 31 26 25 0

1 000010 Pointer (P)

31 26 25 0

96 CHAPTER 20. STORAGE CONVENTIONS

P → Data Type Car

P+1 → Data Type Cdr

20.7 Arrays

Arrays have two related storage formats, simple arrays and hard arrays. Simple
arrays are one-dimensional arrays that are not adjustable, not displaced, and
do not have fill pointers or leaders. Hard arrays (also referred to as ”full” or
”multiple” arrays) can have up to seven dimensions, can be adjustable, can be
displaced, and can have leaders and fill pointers. Simple arrays are faster to
access and require less overhead for storage than do hard arrays.

All arrays consist of an array pointer of type $$DTP-ARRAY which points to
the header of the array. The header either has type $$DTP-ARRAY-HEADER-
SINGLE, for simple arrays, or $$DTP-ARRAY-HEADER-MULTIPLE, for hard
arrays. The array’s data begins in the word following the header. If the array
is hard, then there are more words of header information preceding the header
word in memory.
32 31 26 25 0

1 001110 Pointer (P) to Array Header

20.7.1 Array Element Types

The array header information contains a five-bit field called the ”Array Type”.
This number describes the types of elements the array can contain. In simple
arrays, this number is contained in bits 25:21 of the array header. In hard
arrays, bits 25:21 of the array header are 11111, and the array type is found in
bits 13:9 of the extension header.

Bits per Array Range or Type

Type Element Type of Elements

ART-Q 32 00000 Any Lisp object

ART-1B 1 00001 0 to 1

ART-2BS 2 00010 -2 to 1

ART-2B 2 00011 0 to 3

ART-4BS 4 00100 -8 to 7

ART-4B 4 00101 0 to 15

ART-8BS 8 00110 -128 to 127

ART-8B 8 00111 0 to 255

20.7. ARRAYS 97

ART-16BS 16 01000 -32768 to 32767

ART-16B 16 01001 0 to 65536

ART-32BS 32 01010 -2147483648 to 2147483647

ART-32B 32 01011 0 to 4294967296

ART-STRING 8 01100 Characters

ART-FAT-STRING 16 01101 Characters w/fonts

ART-SINGLE-FLOAT 32 01110 Single precision floats

ART-DOUBLE-FLOAT 64 01111 Double precision floats

ART-CONTROL-PDL ?? 11100 ??

ART-EXTRANEOUS-PDL ?? 11101 ??

ART-SPECIAL-PDL ?? 11110 ??

ART-HARD ?? 11111 In extension header

ART-Q

An ART-Q (array type 00000) array can store any Lisp object in each array
location. The elements of the array use one word of storage each.

The array type of ART-Q is 00000 as an optimization for array reference software
since this is the most common array type.

Bit array types

Bit arrays store either a signed or unsigned integer in each element. Types that
are smaller than a word have multiple elements packed into each word. The
element with the lowest array index is stored in the least significant bits of the
word. When a value is read by the @l[AREF] function, it is converted to a
fixnum (except for large 32 bit numbers, which are converted to bignums). The
signed bit array types are stored as two’s complement numbers.

Bit arrays have array types from 00001 to 01001.

Strings

There are two array types used for strings, ART-STRING (array type 01100)
and ART-FAT-STRING (array type 01101). Elements of ART-STRING arrays
are eight-bit characters. Elements of ART-FAT-STRING arrays are sixteen-bit
characters (they also allow font and bit information).

98 CHAPTER 20. STORAGE CONVENTIONS

ART-STRING arrays are stored like ART-8B arrays. However, data read out
is converted to a character instead of a fixnum. This array type is the Common
Lisp string type.

ART-FAT-STRING arrays are stored like ART-16B arrays. Data read out is
also converted to characters, but the high 8 bits are now converted into font
and bit information for the character.

Floating point

There are two types of floating point arrays, ART-SINGLE-FLOAT (array type
01110) and ART-DOUBLE-FLOAT (array type 01111). Both hold IEEE stan-
dard format floating point values. The ART-SINGLE-FLOAT arrays use one
word to store a number, whereas ART-DOUBLE-FLOAT arrays use two words
to contain a value. The least significant part of the double precision number is
stored in the first word, and the most significant part is stored in the second
word.

20.7.2 Format of Array Data

Depending on the array type, an array element can be anywhere from 1 bit to
64 bits long. In general, if there are N elements in an array, and each element
requires B bits of storage, the number of words in the array’s data will be
S = dNB/32e, where dxe represents the lowest integer greater than or equal to
x.

The elements are laid out in memory with lower indices corresponding to lower
memory locations. Within a word, lower array indices correspond to less sig-
nificant bits. Multidimensional arrays are arranged in row-major form. For a
detailed description of how these arrays are laid out, see Common Lisp, the
Language, pp. 286-298.

(& example?)

20.7.3 Simple Arrays

Simple arrays are one dimensional arrays (”vectors”) of any of the allowed array
types. They are not adjustable, not displaced, and do not have fill pointers or
leaders. A simple array has data type $$DTP-ARRAY (001110). Its pointer
field points to a header with data type $$DTP-ARRAY-HEADER-SINGLE

20.7. ARRAYS 99

(100010). Bits 25:21 of the header contain the array type. Bits 20:0 of the
header indicate the number of elements in the array.
32 31 26 25 0

1 001110 Pointer (P) to Array-Header-Single

31 26 25 21 20 0

P → 100010 ArType Number of elements (N)

P+1 → First Word of Array Contents

. . . Middle Words of Array Contents . . .

P+S → Last Word of Array Contents

20.7.4 Hard Arrays

Hard arrays have a more complicated format than do simple arrays. A hard ar-
ray has data type $$DTP-ARRAY (001110). Its pointer field points to a header
with data type $$DTP-ARRAY-HEADER-MULTIPLE (100011). The array’s
data follows the header. Additional array information appears in memory loca-
tions before the header. This additional information is introduced with a header
of data type $$DTP-ARRAY-HEADER-EXTENSION (100100), and it extends
from the array-header-extension header up to the array-header-multiple header.
32 31 26 25 0

1 001110 Pointer (P) to Array-Header-Multiple

31 26 25 0

P−K → 100100 Offset (K) to Main Header

Data Type Last Leader Word

· · ·
Data Type First Leader Word

000001 Number of Leader Words (FIXNUM)

000001 Displacement Offset (FIXNUM)

Data Type Displaced-To (ARRAY or LOCATIVE)

000001 Extent of Dimension J (FIXNUM)

· · ·
000001 Extent of Dimension 2 (FIXNUM)

P−1 → 000001 Additional Header Word (FIXNUM)

P → 100011 11111 Extent of Dimension 1

P+1 → First Word of Array Contents

· · ·

P+S → Last Word of Array Contents

100 CHAPTER 20. STORAGE CONVENTIONS

Extension Header Format

An array header extension has data type $$DTP-FIXNUM (000001). It has the
following format:

Bit(s) Meaning

31:26 Data Type field (000001)

25:23 Spare

22 Is the array adjustable? (0 = no, 1 = yes)

21 Does the array have a fill pointer? (0 = no, 1 = yes)

20 Is the array a named structure? (0 = no, 1 = yes)

19 Is the array displaced? (0 = no, 1 = yes)

18 Spare

17 Does the array have a leader? (0 = no, 1 = yes)

16:14 Number of array dimensions (J)

13:9 Array type. 11111 is an error.

8:4 Spare

3:0 Leader offset (L)

Fill Pointer

The fill pointer is a fixnum that indicates the number of words currently used
in an array. If present, it is part of the leader.

Displaced Arrays

Leaders

If the has leader bit is set then the array has an array leader. The offset from
the main header to the first word of the leader is in the leader-offset field.

20.8 Compiled Functions

A compiled function has a data type of $$DTP-COMPILED-FUNCTION (001100).
The pointer field points to a memory structure consisting of a $$DTP-COMPILED-
FUNCTION-HEADER (101110) whose pointer field contains the number of
instructions in the function. Following the header are six more words whose
purposes are described below.

20.8. COMPILED FUNCTIONS 101

The code pointer CP is computed from the PC according to the rule given in
the Program Counter chapter (CP = 2× PC + 225).
32 31 26 25 0

1 001100 Pointer (P) to Compiled Function Header

31 26 25 0

P → 101110 Number of Instructions in Function (N)

P+1 → Data Type Compiled Function Name

P+2 → Data Type Compiled Function Entry Points

P+3 → Data Type Compiled Function Local Refs

P+4 → Data Type Compiled Function Refs

P+5 → Data Type Compiled Function Length

P+6 → Data Type Compiled Function Code Pointer (PC)

31 26 25 0

CP−2 → 001100 Back Pointer to Compiled Function (P)

CP−1 → #x 7FFFFFFE

CP → First Instruction, Low Word

CP+1 → First Instruction, High Word

. . . More Instructions. . .

CP+2N−2 → Last Instruction, Low Word

CP+2N−1 → Last Instruction, High Word

20.8.1 Compiled Function Name

This is the first word after the function header. It is a symbol, the name of the
function.

20.8.2 Compiled Function Entry Points

This is the second word after the function header. It is a simple array containing
the entry point information.

All even locations in the vector contain the number of arguments required to
use this entry point. The odd locations contain the offset to the PC for the
corresponding entry point. There will be more than one entry point only if
optional arguments are used by the function.

102 CHAPTER 20. STORAGE CONVENTIONS

When the function takes a @l[&rest] argument, then the last even location
contains a negative fixnum. If you subtract this number from -1 you will get
the minimum number of arguments required to use this entry point.

20.8.3 Compiled Function Local Refs

This is the third word after the function header. It is a simple array containing
the local reference information. This is used to adjust the branch instructions
inside the function when loading it.

The local references are stored as pairs. The first location of each pair contains
the number of instructions to offset to the one to be adjusted.

The second location of the pair contains the number of instructions into the
function that the branch is to.

20.8.4 Compiled Function Refs

This is the fourth word after the function header. It is a simple array containing
the external reference information.

Each entry in the vector is a triple. The first word of the triple contains the
number of arguments that the function is calling with. The second word of
the triple contains the instruction offset to the call instruction. The third word
contains a symbol pointer to the function being referenced.

20.8.5 Compiled Function Length

This is the fifth word after the function header. It is a fixnum, the number
of instructions in the function. This is redundant with the information in the
function header word.

20.8.6 Compiled Function Code Pointer

This is the sixth word after the function header. It has data type $$DTP-CODE
and a PC in the pointer field. It points to the first instruction of the code before
entry point offsetting.

20.9. SYMBOLS 103

20.8.7 Instruction Back Pointer

The instruction just before the one that the code pointer points to contains a
special illegal instruction. The top 32 bits of this instruction are the ”magic
number” #x7FFFFFE and the low word contains a compiled function pointer
back to the compiled function structure for this function.

This is used to convert from a PC to a function pointer by scanning backwards
in memory from the PC until the illegal instruction is found, and then following
the pointer.

20.8.8 Changes to Format

The starting-address field has been eliminated; it and the code field were redun-
dant.

20.9 Symbols

A symbol pointer has the data type $$DTP-SYMBOL (000011). Its pointer
field points to a symbol structure in memory. The symbol structure contains
five words, which are described below.
32 31 26 25 0

1 000011 Pointer (P)

31 26 25 0

P → 100001 Pointer to Array Header of Print Name

P+1 → Data Type Value Cell

P+2 → Data Type Function Cell

P+3 → Data Type Package Cell

P+4 → Data Type Property List

20.9.1 Symbol Header

The first word of a symbol structure has the data type $$DTP-SYMBOL-
HEADER. Its pointer field points to an array header of an array containing
the print name of the symbol.

104 CHAPTER 20. STORAGE CONVENTIONS

20.9.2 Symbol Value

The second word of a symbol structure contains the value of the symbol. This
can be either a visible Lisp object or the special unbound object. The unbound
object is a word with a data type of $$DTP-UNBOUND whose pointer field
points to the beginning of the symbol structure.

20.9.3 Symbol Function

The third word of a symbol structure (the ”function cell”) contains the function
information for the symbol. Although it may contain any Lisp value, only the
following are valid:

Unbound

The function cell contains the unbound object. The symbol has no function or
macro definition.

Compiled Function

The function cell contains an object whose data type is $$DTP-COMPILED-
FUNCTION.

Interpreted Function

The function cell contains either an object whose data type is $$DTP-INTERPRETER-
CLOSURE or a list whose CAR is the symbol LISP:LAMBDA.

Compiled Macro

The function cell contains a cons cell whose CAR is the symbol LISP:MACRO
and whose CDR is a compiled function.

20.10. NIL 105

Interpreted Macro

The function cell contains a cons cell whose CAR is the symbol LISP:MACRO
and whose CDR is either an interpreter closure or a list whose CAR is the
symbol LISP:LAMBDA.

20.9.4 Symbol Package

The fourth word of a symbol structure is the symbol’s package. During the cold
and warm loads, before the package system is installed, this word is a string
which names the package. After the package system is installed, this word is
the actual package object.

20.9.5 Symbol Property List

The fifth word of the symbol strucure contains the property list of the symbol.

20.10 NIL

NIL is a word whose data type is $$DTP-NIL (000000) and whose pointer field
also contains all zeros. This makes it easy to test for NIL. Location zero in
memory contains a degenerate symbol structure for NIL. All of its words are
normal, except for the header. Both the header and value cell contain NIL (so
CAR and CDR of NIL give NIL). The SYMBOL-NAME function knows this
and handles the print name of NIL specially.
32 31 26 25 0

1 000000 00 00000000 00000000 00000000

20.11 T

T is a normal symbol. The only thing odd about it is that it has an absolute
location of five, and the SET function won’t let you change its value.

106 CHAPTER 20. STORAGE CONVENTIONS

20.12 Defstruct Structure Instances

A structure instance has the data type $$DTP-STRUCTURE. The pointer field
points to a memory structure introduced by a structure header. The structure
header has data type $$DTP-STRUCTURE-HEADER (101111). Its pointer
field contains the number of words in the structure, plus one for the name.
The first word after the header is a symbol, the name of the structure. The
subsequent words are the structure elements.
32 31 26 25 0

1 010100 Pointer (P)

31 26 25 0

P → 101111 Number of structure elements + 1 (N + 1)

P+1 → 000011 Name of Structure (SYMBOL)

P+2 → Data Type First Structure Element

· · ·

P+(N+1) → Data Type Last Structure Element

20.13 Undocumented So Far

Storage conventions for the following visible data types are either not docu-
mented or not established.

LOCATIVE, UNBOXED-LOCATIVE, CODE, STACK-GROUP, INSTANCE,
LEXICAL-CLOSURE, INTERPRETER-CLOSURE, LEXICAL-ENVIRONMENT,
EXTEND, ENCAPSULATION, HASH-TABLE.

Appendix A

List of Registers and Signals

Abbreviation Size (bits) Name/Function Section

AF 8 Active Frame 9.2.3

HP 8 Heap Pointer 9.2.2

IR 64 Instruction Register 6.2

MCR 32 Memory Control Register 14.2

MD 32 Memory Data 15.1

MSR 32 Memory Status Register 14.3

OF 8 Open Frame 9.2.3

OREG 33 ALU Output 11

PCINC 24 Incremented Program Counter 7.3.2

RF 8 Return Frame 9.2.3

VMA 32 Virtual Memory Address 15.1

107

108 APPENDIX A. LIST OF REGISTERS AND SIGNALS

Appendix B

Functional I/O

This appendix contains tables and descriptions of functional sources and desti-
nations.

B.1 Table of Functional Sources

Value Abbreviation Meaning

110100X VMA VMA Register

110101X MD MD Register

1100000 MEMORY-MAP Memory Maps

1100001 GC-RAM GC Ram

1100010 MEMORY-CONTROL Memory Board Control Register

1100011 MICROSECOND-CLOCK Microsecond Clock

1100100 ??? Statistics Counter

1100101 TRAP-REGISTER Trap Register

1100110 MEMORY-STATUS Memory Board Status Register

1001000 PROCESSOR-STATUS Processor Board Status Register

1001001 PROCESSOR-CONTROL Processor Board Control Register

1001010 OPEN-ACTIVE-RETURN Call Hardware: O, A, and R Registers

1001011 RETURN-PC-RETURN-DESTCall Stack (RPC, and Return Dest)

1001100 CALL-HP-SP Call Hardware: HP and CSP

1001101 TRAP-PC Trap PC - (PC Two Clocks Earlier)

1001110 TRAP-PC+ Trap PC Plus - (PC One Clock Earlier)

1000111 ICACHE-A-HI Read Cache A - Hi Data

109

110 APPENDIX B. FUNCTIONAL I/O

1000110 ICACHE-B-HI Read Cache B - Hi Data

1000101 ICACHE-A-LO Read Cache A - Lo Data

1000100 ICACHE-B-LO Read Cache B - Lo Data

1000011 TRAP-OFF Read Trap Enable and Disable

B.2. TABLE OF FUNCTIONAL DESTINATIONS 111

B.2 Table of Functional Destinations

Value Abbreviation

1000000 NOP, GUARANTEED TO DO NOTHING

1000001 RETURN-DESTINATION

1000010 NOP, WITH NO OVERFLOW TRAP (FOR COMPARES)

??????? RETURN

??????? RETURN-MV

1111000 VMA-START-READ-EARLY-NO-TRANSPORT

1111001 VMA-START-READ-EARLY

1111010 VMA-START-READ-EARLY-VISIBLE-EVCP

1111011 VMA-START-READ-EARLY-WILL-WRITE

1111100 VMA-START-READ-EARLY-CDR-NO-TRANSPORT

1111101 VMA-START-READ-EARLY-CDR

1111110 VMA-START-READ-EARLY-CDR-VISIBLE-EVCP

1111111 VMA-START-READ-EARLY-CDR-WILL-WRITE

1110000 VMA-START-READ-NO-TRANSPORT

1110001 VMA-START-READ

1110010 VMA-START-READ-VISIBLE-EVCP

1110011 VMA-START-READ-WILL-WRITE

1110100 VMA-START-READ-CDR-NO-TRANSPORT

1110101 VMA-START-READ-CDR

1110110 VMA-START-READ-CDR-VISIBLE-EVCP

1110111 VMA-START-READ-CDR-WILL-WRITE

1101100 VMA-START-WRITE-NO-GC-TRAP

1101101 VMA-START-WRITE

1101110 MD-START-WRITE-NO-GC-TRAP

1101111 MD-START-WRITE

110100X VMA

110101X MD (write)

1100000 MEMORY-MAP

1100001 GC-RAM

1100010 MEMORY-CONTROL

1100011 MICROSECOND-CLOCK

1100100 STATISTICS-COUNTER

1100101 TRANSPORTER-RAM

1001000 DATATYPE-RAM-WRITE-PULSE

1001001 PROCESSOR-CONTROL

1001010 OPEN-ACTIVE-RETURN

1001011 RETURN-PC-RETURN-DEST

112 APPENDIX B. FUNCTIONAL I/O

1001100 CALL-HP-SP

B.3 Functional I/O Encodings

B.3.1 Processor Status Register

The PSR is read-only.

Bit(s) Meaning

31:19 Undefined

18 Processor ALU BOXED bit

17 Processor D JUMP bit (active low)

16 Processor JUMP bit (active low)

15:13 Undefined

12:9 Return Destination Immediate

8:4 FPU Status Outputs

3:0 ECO jumper number

B.3.2 Processor Control Register

The PCR may be read or written to. All bits are zeroed by reset.

Bit(s) Meaning

31:24 Unimplemented

23:20 Undefined

19 Floating Point Trap Enable (0 = disabled, 1 = enabled)

18 Call Hardware Stack Overflow Trap Enable (0 = disabled, 1 = enabled)

17 Call Stack Load Control (0 = normal, 1 = call stack special load sources)

16:13 Stack Group Number (selects one of 16 call hardware heap/stack groups)

12:9 PCTL MISC, 4-bit field used for random things

8 PCTL DATA bit, 1-bit data source for some special functions

7 HALT bit (0 = run, 1 = halt processor)

6 Box Mux Mode (0 = normal, 1 = register reload mode)

5 Floating Point Status RAM Write Enable (0 = read, 1 = write)

4 J INDIR, indirect jump bit selectable by jump condition

3 Spare

2 ICACHE ZENBL, low core cache set (0 = reset/disable, 1 = enable)

1 ICACHE BENBL, B cache set (0 = reset/disable, 1 = enable)

0 ICACHE AENBL, A cache set (0 = reset/disable, 1 = enable)

B.3. FUNCTIONAL I/O ENCODINGS 113

B.3.3 Memory Status Register

The MSR is read-only.

Bit(s) Meaning

31:24 Undefined

23 Amount of memory installed (0 = 32 Mbytes, 1 = 16 Mbytes)

22 Autoboot jumper (0 = mastership external, 1 = boot automatically)

21 Memory Parity Error (0 = error, 1 = no error)

20:19 Undefined

18 MD Transport Trap (1 = MD read will cause transporter trap)

17 MD Page Trap (1 = MD read will cause read fault trap)

16 VMA Boxedness (0 = boxed, 1 = unboxed)

15 MD Boxedness (0 = boxed, 1 = unboxed)

14:13 Last Memory Cycle Type (see below)

12 Last Memory Cycle Type (0 = write, 1 = read)

11 Undefined

10:8 Nubus Bootstrap Mode (0 = normal, 1 = short reset, 2:7 = software)

7:4 ECO Jumper Number

3:0 Nubus Slot ID

Bits 14:13 —- 00 = will write, 01 = no evcp, 10 = transport, 11 = no transport.
See the Transporter RAM chapter for details.

B.3.4 Memory Control Register

The MCR is read-write. All bits are zeroed by a reset.

Bit(s) Meaning

31 Master Trap Disable (0 = no trapping, 1 = trap under other masks) See below.

30 Asynchronous Trap Enable (0 = disable, 1 = enable)

29 Overflow Trap Enable (0 = disable, 1 = enable)

28 Data Type Trap Enable (0 = disable, 1 = enable)

27 Synchronous Trap Enable (0 = disable, 1 = enable)

26 Single step on trap exit (0 = disabled, 1 = enabled)

25 Spare

24 Reset Trap Bit (0 = reset trap bit on, 1 = normal)

23:20 Undefined

19 DRAM Parity Error Flagging (0 = disable, 1 = enable)

18 Boot PROM (0 = enabled, 1 = disabled)

17:16 Transporter RAM Mode Select

15 Use L or C valid/write-enable bits in map (0 = C bits, 1 = L bits)

14 Write Wrong Parity to DRAM (0 = normal parity, 1 = wrong parity)

114 APPENDIX B. FUNCTIONAL I/O

13 16384 microsecond interrupt (0 = disable/reset request, 1 = enable)

12 1024 microsecond interrupt (0 = disable/reset request, 1 = enable)

11 I-Cache error clear (0 = disable/reset icache error traps, 1 = enable)

10:9 NuBus AD(1:0) bits for transfers

8 NuBus TM0 bit for transfers

7 LED 2 (0 = lit, 1 = unlit)

6 LED 1 (0 = lit, 1 = unlit)

5 LED 0 (0 = lit, 1 = unlit)

4 Statistics Source Polarity (0 = true, 1 = invert)

3:1 Statistics Counter Source (options listed below)

0 Statistics Counter Mode (0 = edge trigger, 1 = duration)

Bit 31 (Master Trap Disable) also sets/resets during trap exit/entry

Bits 3:1 determine the statistics counter source:

Value Source

000 I-cache hit

001 Processor memory cycle

010 Instruction Status Bit

011 Undefined

100 PC in high core

101 Undefined

110 Undefined

111 Undefined

B.3.5 GC/Transporter RAM

This functional destination is read/write.

Bit(s) Meaning

7 Transporter: Box Error

6 Transporter: Trap if not Oldspace

5 Transporter: Trap if Oldspace

4 Transporter: Trappable Pointer

3 GC: Quantum is in oldspace

2:0 GC: Quantum volatility

B.3. FUNCTIONAL I/O ENCODINGS 115

B.3.6 Trap Register

The trap register is read-only. It is loaded either on a trap or on a write to the
Memory Control Register.

Bit(s) Meaning

31 Reset

30 Single step trace trap

29 Instruction Cache - Parity Error

28 Instruction Cache - NuBus Error

27 Instruction Cache - NuBus Timeout

26 Instruction Cache - Map Fault

25 Processor Memory Read - Parity Error

24 Processor Memory Read - NuBus Error

23 Processor Memory Read - NuBus Timeout

22 Processor Memory Read - Map Fault

21 Processor Memory Read - Transport

20 Processor Memory Write - NuBus Error

19 Processor Memory Write - NuBus Timeout

18 Processor Memory Write - GC RAM

17 Processor Memory Write - Map Fault

16 Floating Point

15 Call Stack Overflow

14 Spare (zero)

13 Data Type

12 29332 ALU Overflow

11 Spare (zero)

10 NuBus Interrupt 7

9 NuBus Interrupt 6

8 NuBus Interrupt 5

7 NuBus Interrupt 4

6 NuBus Interrupt 3

5 NuBus Interrupt 2

4 NuBus Interrupt 1

3 NuBus Interrupt 0

2 1024 Microsecond trap

1 16384 Microsecond trap

0 Always zero

B.3.7 Memory Map

May be read or written. The Map RAM address is bits 25:10 of VMA.

Bit(s) Meaning

116 APPENDIX B. FUNCTIONAL I/O

31:12 Physical Address

11:8 Software Definable

7 Page in on-board memory

6:4 Page Volatility

3 Write Enable (C)

2 Valid (C)

1 Write Enable (L)

0 Valid (L)

B.3.8 Call Hardware (Open/Active/Return)

May be read or written.

Bit(s) Meaning

31:24 Unimplemented

23:16 Open Register

15:8 Active Register

7:0 Return Register

B.3.9 Call Hardware (Return PC, Return Destination)

Read-only.

Bit(s) Meaning

31 Spare

30:24 Return Destination

23:0 Return PC

B.3.10 Call Hardware Pointers (CSP, HP)

Read-write.

Bit(s) Meaning

31:16 Unimplemented

15:8 Heap Pointer (HP)

7:0 Call Stack Pointer (CSP)

Contents

1 Introduction 3

2 Editor’s Note 5

3 Notation Conventions 7

3.1 Numbers . 7

3.2 Bit Fields . 7

4 Overview of the K Architecture 9

4.1 History . 9

4.2 Board Set vs. Chip Set . 9

4.3 Processor Board . 10

4.4 Memory Board . 10

I Processor Board Hardware 11

5 Timing 13

117

118 CONTENTS

5.1 Clocks . 13

5.2 Pipeline . 14

5.2.1 Straight Line Execution 14

5.2.2 Unconditional Branches and Jumps 15

5.2.3 Conditional Branches and Jumps 15

5.2.4 Dispatches . 15

5.2.5 Subroutine Calls . 15

5.2.6 Subroutine Returns . 16

5.3 Functional I/O . 16

5.3.1 Functional Destinations 16

5.3.2 Functional Sources . 17

6 Instruction Set 19

6.1 Introduction . 19

6.2 Instruction Register (IR) . 19

6.3 Bit Fields . 20

6.3.1 Status Bit (Bit 63) . 20

6.3.2 Instruction Trap Bit (Bit 62) 20

6.3.3 X-16 Bit (Bit 61) . 20

6.3.4 Instruction Format Field (Bits 60 to 58) 21

6.3.5 Next PC (Bits 57 to 56) 21

CONTENTS 119

6.3.6 Boxedness of ALU Output (Bits 55 to 54) 22

6.3.7 Data Type Check (Bits 53 to 51) 23

6.3.8 Call Hardware Operation (Bits 50 to 48) 24

6.3.9 Destination (Bits 47 to 41) 24

6.3.10 Global Frame Number (Bits 40 to 37) 25

6.3.11 Jump Condition (Bits 36 to 34) 25

6.3.12 Byte Width (Bits 33 to 32) 26

6.3.13 Right Source (Bits 31 to 25) 27

6.3.14 Left Source (Bits 24 to 19) 27

6.3.15 ALU Opcode (Bits 18 to 12, or 31 to 25) 28

6.3.16 ALU Shift Field (Bits 10 to 5) 28

6.3.17 ALU Mask Field (Bits 4 to 0) 28

6.3.18 Return Destination (Scattered) 28

6.4 Instructions . 28

6.4.1 ALU Instruction . 29

6.4.2 32-Bit Immediate Instruction 29

6.4.3 Floating Point ALU Instruction 30

6.4.4 Floating Point Multiplier Instruction 30

6.4.5 Conditional Branch Instruction 30

6.4.6 Call-Z Instruction . 31

120 CONTENTS

6.4.7 Jump Instruction . 31

6.4.8 Call Instruction . 32

6.4.9 Call-Dispatch Instruction 32

7 Program Counter 35

7.1 Introduction . 35

7.2 Relation of PC to Virtual Addresses 35

7.3 Hardware . 36

7.3.1 PC Mux . 36

7.3.2 PC Incrementer (PCINC) 36

7.3.3 Delayed PC Incrementer 36

7.3.4 Old PC Registers . 36

8 Register Memory 37

8.1 Register Frames . 37

8.2 Open, Active, and Return Frame Registers 37

8.3 Global Registers . 38

8.4 Differences in Chip Set . 38

9 Call Hardware 39

9.1 Organization . 39

9.2 Registers and Memory . 40

CONTENTS 121

9.2.1 Call Stack . 40

9.2.2 Free Frame Heap . 42

9.2.3 Open, Active, and Return 43

9.3 Call Hardware Operations . 44

9.3.1 NO-OP . 45

9.3.2 OPEN . 45

9.3.3 CALL . 45

9.3.4 OPEN-CALL . 46

9.3.5 RETURN . 46

9.3.6 TAIL-OPEN . 48

9.3.7 TAIL-CALL . 49

9.3.8 TAIL-OPEN-CALL . 49

10 Instruction Cache 51

10.1 Cache Hits . 51

10.2 Cache Misses . 52

11 ALUs 53

12 Datatype RAM 55

13 ALU Opcodes 57

13.1 Notes and Caveats . 60

122 CONTENTS

II Memory Board Hardware 61

14 Memory Board 63

14.1 Overview . 63

14.2 Memory Control Register . 63

14.3 Memory Status Register . 64

14.4 Memory Board Hardware . 65

15 Main Memory Access 67

15.1 Registers . 67

15.2 Reading a Word from Memory 67

15.3 Writing a Word to Memory . 69

16 Traps 71

16.1 The Commit Point . 71

16.2 Trap Entry . 71

16.3 Trap State Machine (TSM) . 72

16.4 Trap Entry Sequence . 72

16.5 Normal Trap Exits (Non-modifying) 73

16.6 Modifying Trap Exits . 73

16.7 Diagnostic Trap Exits . 74

16.8 Trace Trapping . 75

CONTENTS 123

16.9 Trap Vector Table . 75

17 Transporter RAM 77

17.1 Introduction . 77

17.2 Input Lines . 77

17.3 Address Lines . 78

17.3.1 Boxedness (Bits 11 and 10) 78

17.3.2 Memory Cycle Type (Bits 9 and 8) 78

17.3.3 MCR Bits (Bits 7 and 6) 79

17.3.4 Data Type (Bits 5 to 0) 79

17.4 Output Lines . 79

17.4.1 Trappable Pointer . 79

17.4.2 Trap if Old . 79

17.4.3 Trap if New . 80

17.4.4 Box Error . 80

17.5 Trap Logic . 80

17.6 Contents of the Transporter RAM 80

17.6.1 Read Operations . 80

17.6.2 Write Operations . 81

17.6.3 Patterns . 81

17.7 Setting up the Transporter RAM 82

124 CONTENTS

18 Garbage Collector (GC) RAM 83

19 Spy Hardware 85

III Lisp Software 87

20 Storage Conventions 89

20.1 Structure of Data Words . 89

20.2 Tables of Data Types . 90

20.2.1 Visible Data Types . 91

20.2.2 Invisible Data Types . 92

20.3 Numbers . 92

20.3.1 Fixnums . 92

20.3.2 Bignums . 92

20.3.3 Rationals . 93

20.3.4 Complex . 93

20.3.5 Short Floating Point . 94

20.3.6 Single Precision Floating Point 94

20.3.7 Double Precision Floating Point 94

20.4 Unboxed Structures . 95

20.5 Characters . 95

20.6 Conses . 95

CONTENTS 125

20.7 Arrays . 96

20.7.1 Array Element Types . 96

20.7.2 Format of Array Data . 98

20.7.3 Simple Arrays . 98

20.7.4 Hard Arrays . 99

20.8 Compiled Functions . 100

20.8.1 Compiled Function Name 101

20.8.2 Compiled Function Entry Points 101

20.8.3 Compiled Function Local Refs 102

20.8.4 Compiled Function Refs 102

20.8.5 Compiled Function Length 102

20.8.6 Compiled Function Code Pointer 102

20.8.7 Instruction Back Pointer 103

20.8.8 Changes to Format . 103

20.9 Symbols . 103

20.9.1 Symbol Header . 103

20.9.2 Symbol Value . 104

20.9.3 Symbol Function . 104

20.9.4 Symbol Package . 105

20.9.5 Symbol Property List . 105

126 CONTENTS

20.10NIL . 105

20.11T . 105

20.12Defstruct Structure Instances . 106

20.13Undocumented So Far . 106

A List of Registers and Signals 107

B Functional I/O 109

B.1 Table of Functional Sources . 109

B.2 Table of Functional Destinations 111

B.3 Functional I/O Encodings . 112

B.3.1 Processor Status Register 112

B.3.2 Processor Control Register 112

B.3.3 Memory Status Register 113

B.3.4 Memory Control Register 113

B.3.5 GC/Transporter RAM . 114

B.3.6 Trap Register . 115

B.3.7 Memory Map . 115

B.3.8 Call Hardware (Open/Active/Return) 116

B.3.9 Call Hardware (Return PC, Return Destination) 116

B.3.10 Call Hardware Pointers (CSP, HP) 116

	Introduction
	Editor's Note
	Notation Conventions
	Numbers
	Bit Fields

	Overview of the K Architecture
	History
	Board Set vs. Chip Set
	Processor Board
	Memory Board

	I Processor Board Hardware
	Timing
	Clocks
	Pipeline
	Straight Line Execution
	Unconditional Branches and Jumps
	Conditional Branches and Jumps
	Dispatches
	Subroutine Calls
	Subroutine Returns

	Functional I/O
	Functional Destinations
	Functional Sources

	Instruction Set
	Introduction
	Instruction Register (IR)
	Bit Fields
	Status Bit (Bit 63)
	Instruction Trap Bit (Bit 62)
	X-16 Bit (Bit 61)
	Instruction Format Field (Bits 60 to 58)
	Next PC (Bits 57 to 56)
	Boxedness of ALU Output (Bits 55 to 54)
	Data Type Check (Bits 53 to 51)
	Call Hardware Operation (Bits 50 to 48)
	Destination (Bits 47 to 41)
	Global Frame Number (Bits 40 to 37)
	Jump Condition (Bits 36 to 34)
	Byte Width (Bits 33 to 32)
	Right Source (Bits 31 to 25)
	Left Source (Bits 24 to 19)
	ALU Opcode (Bits 18 to 12, or 31 to 25)
	ALU Shift Field (Bits 10 to 5)
	ALU Mask Field (Bits 4 to 0)
	Return Destination (Scattered)

	Instructions
	ALU Instruction
	32-Bit Immediate Instruction
	Floating Point ALU Instruction
	Floating Point Multiplier Instruction
	Conditional Branch Instruction
	Call-Z Instruction
	Jump Instruction
	Call Instruction
	Call-Dispatch Instruction

	Program Counter
	Introduction
	Relation of PC to Virtual Addresses
	Hardware
	PC Mux
	PC Incrementer (PCINC)
	Delayed PC Incrementer
	Old PC Registers

	Register Memory
	Register Frames
	Open, Active, and Return Frame Registers
	Global Registers
	Differences in Chip Set

	Call Hardware
	Organization
	Registers and Memory
	Call Stack
	Free Frame Heap
	Open, Active, and Return

	Call Hardware Operations
	NO-OP
	OPEN
	CALL
	OPEN-CALL
	RETURN
	TAIL-OPEN
	TAIL-CALL
	TAIL-OPEN-CALL

	Instruction Cache
	Cache Hits
	Cache Misses

	ALUs
	Datatype RAM
	ALU Opcodes
	Notes and Caveats

	II Memory Board Hardware
	Memory Board
	Overview
	Memory Control Register
	Memory Status Register
	Memory Board Hardware

	Main Memory Access
	Registers
	Reading a Word from Memory
	Writing a Word to Memory

	Traps
	The Commit Point
	Trap Entry
	Trap State Machine (TSM)
	Trap Entry Sequence
	Normal Trap Exits (Non-modifying)
	Modifying Trap Exits
	Diagnostic Trap Exits
	Trace Trapping
	Trap Vector Table

	Transporter RAM
	Introduction
	Input Lines
	Address Lines
	Boxedness (Bits 11 and 10)
	Memory Cycle Type (Bits 9 and 8)
	MCR Bits (Bits 7 and 6)
	Data Type (Bits 5 to 0)

	Output Lines
	Trappable Pointer
	Trap if Old
	Trap if New
	Box Error

	Trap Logic
	Contents of the Transporter RAM
	Read Operations
	Write Operations
	Patterns

	Setting up the Transporter RAM

	Garbage Collector (GC) RAM
	Spy Hardware

	III Lisp Software
	Storage Conventions
	Structure of Data Words
	Tables of Data Types
	Visible Data Types
	Invisible Data Types

	Numbers
	Fixnums
	Bignums
	Rationals
	Complex
	Short Floating Point
	Single Precision Floating Point
	Double Precision Floating Point

	Unboxed Structures
	Characters
	Conses
	Arrays
	Array Element Types
	Format of Array Data
	Simple Arrays
	Hard Arrays

	Compiled Functions
	Compiled Function Name
	Compiled Function Entry Points
	Compiled Function Local Refs
	Compiled Function Refs
	Compiled Function Length
	Compiled Function Code Pointer
	Instruction Back Pointer
	Changes to Format

	Symbols
	Symbol Header
	Symbol Value
	Symbol Function
	Symbol Package
	Symbol Property List

	NIL
	T
	Defstruct Structure Instances
	Undocumented So Far

	List of Registers and Signals
	Functional I/O
	Table of Functional Sources
	Table of Functional Destinations
	Functional I/O Encodings
	Processor Status Register
	Processor Control Register
	Memory Status Register
	Memory Control Register
	GC/Transporter RAM
	Trap Register
	Memory Map
	Call Hardware (Open/Active/Return)
	Call Hardware (Return PC, Return Destination)
	Call Hardware Pointers (CSP, HP)

