oM + CS Reference Noeadil

Mince

Seribble

SYSTEM MAP for Release 2.0
** indicates location of tab divider in binder

>

~lutro Lo Laimbda
ZewabdSP-Pius Commands

1iore are the binders and their contents:

BASICS:
**LMI Lambda Technical Summary
**1:M1 Lambda Ficld Service Manual
**NuMachine Installation and User Manual

‘RELEASE NOTES:
**Release 2.0 Overview & Notes
**Release 2.0 Inst & Conversion
**I2diting Lambda Site Files
**Tape Software & Streams
**Common' LISP Notes

%LISP 1: The LISP Machine Manual, Part 1

**Introduction .
Primitive Object. Types
Evaluation -
Flow of Contro}
Manipulating List Structure
**Symbols :
Numbers
Arrays
Strings
**Functions
Closures
Stack Groups
Locatives
Subprimitives
Arecas
**The Compiler
Macros
The LOOP Jteration Macro
**Delstruct

R

%’ LISP 2: The LISP Machine Manual, Part 2
y **Objects, Message Passing, and Flavors
**The 1/0 System,
Naming of Iiles
The Chaosnet
**Packages
Maintaining Large Systems
PProcesses .
Errors and Debugging
**How to Read Assembly Language
Querying the User
Initializations
Dates and Times .
Miscellancous Uselul Functions
**Indices

LMI
LIS 3:
**Introduction to the Window System

**The Window System Manual
FXTNALL Overview
f" ZMANL

LMi

QIs» oo
FZNMACE Introductory Manual

*FIMACS Referenee Minual
**NMince

. Thesc martiuals are part of your Lambda documentation. but are not part of a binder.

=

55

LMi

LMl
@3-)

UNIN 1 .
**NuMachine Release and Update Information
**NuMachine Operating System
**UNIX Programmer’s Manual, V. 1: Section 1
b Sections 2-8

M :
UNIN 2:UNIX Programmer's Manual, Vol. 2
**The UNIX Time-sharing System

UNIX for Beginners - Second Iidition
A Tutorial Introduction to the UNIX Text Editor
Advanced Editing On Unix
An Introduction to the UNIX Shell
Typing Documents on the UNIX System
A Guide to Preparing Documents with -ms
Thl- A Program to Format Tables
NROFF/TROFF User's Manual
A TROFF Tutorial .
**The C Programming Language Reference Manual
Recent Changes to C
Lint, A C Program Checker
Make A Program for Maintaining
Computer Programs
**UNIX Programming- Second Edition
A Tutorial Introduction to ADI3
Yace: Yet Another Compiler-Compiler
Lex-A Lexical Analyzer Generator
**A Vortable Fortran 77 Compiler
RATFOR-A Preprocessor for a
Rational Fortran
The M4 Maecro Processor
SEED--A Non-Interactive Text Editor
Awk- A Pattern Scanning and
Processing Language (2d. ed.)
DC- An Interactive Desk Caleulator
13C-An Arbitrary Precision
Desk-Calculator Language
An Introduction to Display Editing
with Vi
**The UNIX 1/0 System
On the Security of UNIX
Password Sccurity: A Case History

HARDWARE 1:
*NuMachine Technica)l Summary
**=<DU Monitor User's Manual
ShY General Deseription
**NMouse Manual
**1MI Printer Software Manual
**\'R-Series Monitor
729 Monitor

HARDWARI 2:
**Tape Drive
ik Drive
*FRermit

OPTIONS.
T varies according Lo options purchased)
}’I‘Uiﬁ;’_

Tnterhsy

ZMACS Introductory Manual

Sarah Smith

Published by LMI 6033 W. Century Bilvd. Los Angeles CA 90045
USA

This is a preliminary revised version of the ZMACS Introductory Manual. Since we are
still in the process of checking commands, they are not guaranteed to work. (Input is
appreciated.)

However, they are at least as reliable as those in the previous version of this manual.
And, we believe, the organization of this manual will make it easier to learn ZM. ACS.

Please help us to make LMI documentation work better for you! Send comments via
your customer dialup mail line to me (username SWRS) or by US Mail to:

Dr. Sarah Smith

Manager, Documentation
LMI

1000 Massachusetts Avenue
Cambridge MA 02139

USA

LMI Lambdal™ is a trademark of LISP Machine Inc.
ZETALISP-PLUS!™ is a trademark of LISP Machine Inc.

Copyright © 1984 LISP Machine Inc.

Introductory ZMACS

Table of Contents

Chapter 1 INTRODUCTION

1.1 History of ZMACS

1.2 Uses of ZMACS: Editing text
1.3 Uses of ZMACS: Editing in LISP
1.4 Combined functions

1.5 ZMACS Files Under UNIX

Chapter 2 ZMACS CONCEPTS

.1 Specifications of ZMACS

.2 Two Major Modes: LISP and Text
.3 Integration into ZetaLISP-Plus
.4 Windows, Files, and Buffers

NN

2.4.1 Windows
2.4.2 Files and Buffers
2.4.3 Versions

O O ARDW W NNNHE B

.5 Deletion, Copying, and Moving

.6 Interface with Code Evaluation and Other
System
Features

2.7 Notes on MINCE (ZMACS under UNIX)

Chapter 3 GETTING INTO ZMACS

[S .§)

3.1 Login
3.2 Entering ZMACS

O WO 0 I3

3.2.1 From a LISP Listener
3.2.1.1 Changing Modes between Text and LISP
3.2.2 By Switching Systems 9
3.2.3 With the Mouse : 10
3.2.4 By Listing Buffers 10
Chapter 4 ZMACS TUTORIAL 12
Chapter 5 BASIC ZMACS COMMANDS : 13

5.1 Basic Motion Commands 13

Introductory ZMACS

S.1.1 The Character and Word Level
5.1.2 The Line and Sentence Level

5.1.2.1 Commenting on the Line Level

'~ 5.1.3 Paragraph and Page Operations
5.1.4 Screen operations
5.1.5 Buffer Operations
Chapter 6 Numeric Arguments
Chapter 7 INSERTION AND DELETION

7.1 Insertion
7.2 Deletion

Chapter 8 MARKING, KILLING, AND UNDELETING
8.1 Marking
8.2 Killing, Moving, and Copying
8.3 Yanking

Chapter 9 SEARCHING AND REPLACING

9.1 Searching
9.2 Replacing

Chapter 10 CANCELING AND UNDOING

10.1 Canceling commands through CONTROL G

10.2 Undoing Drastic Changes

Chapter 11 PREFIX COMMANDS AND EXTENDED COMMANDS

11.1 Command Completion
Chapter 12 LISP COMMANDS

12.1 Motion Commands for LISP Code

12.2 Killing and Yanking S-Expressions

12.3 Parentheses, Marking and Moving S-expressions
12.4 Functions (HYPER Key Commands)

12.5 Compiling and Evaluating

12.6 Regions

12.7 Editing Definitions (Meta- P01nt)

12.8 Buffer Commands

Chapter 13 THE MOUSE
Chapter 14 GETTING HELP

25
25
27

27
28

29
30
31
32
32
33

34
35

Introductory ZMACS

14.1 On-line Documentation Commands 36
Chapter 15 INDENTATION AND TABS . 38
15.1 Indentation 38
15.2 TAB Indenting 38
15.3 Indentation Commands Involving Regions 39
15.3.1 Changing the TAB Stops . -40

15.4 Indenting with Spaces instead of Tabs | 40
15.5 LISP Indentation 41
Chapter 16 MORE USEFUL ZMACS FUNCTIONS 42
16.1 Case 42
16.2 Font Changes 42
16.3 Keyboard macros , 43
16.3.1 Defining Keyboard Macros 44
16.3.2 Saving Keyboard Macros 45

16.4 Minor Modes 45
16.5 Word Abbreviation . 46
16.5.1 Word Abbreviation Commands : 46
16.5.2 Creating a Word Abbreviation File 47

16.5.3 Other Useful Word Abbreviation Commands
48

Appendix A BASIC COMMAND SUMMARY _ 49

Introductory ZMACS

Chapter 1
INTRODUCTION

This manual is designed to introduce ZMACS, the LISP machine's
text editor. ZMACS participates fully in the global LISP
environment. It can be used for writing and editing English text
and for preparing, testing, and debugging LISP programs.

1.1 History of ZMACS

The precursor of ZMACS was EMACS, a powerful text editor
developed at the M.I.T. Artificial Intelligence Laboratory for
implementation on the DEC PDP-10 computer. EMACS is still widely
used and may well already be familiar to the reader. EMACS is
written in TECO, an earlier text manipulation language.

EMACS was modified for use on the LISP machine as EINE (a
self-referent acronym for "EINE is not EMACS"), which is written
in LISP. Further modification of EINE produced ZWEI ("ZWEI was
EINE initially"), a text manipulation language in which ZMACS
commands are implemented.

Preparation and editing of English text is a primary application
of ZMACS. Because of the importance of this capability, ZMACS
incorporates a far larger number and variety of commands than
most editors, including a full range of mouse manipulations. The
companion ZMACS REFERENCE GUIDE discusses all of these; this
guide covers the basics that ZMACS shares with other text
editors--the ones you will need first and are most 1likely to
use.

Introductory ZMACS

1.3 U ¢ ZMACS: Editing in LISP

ZMACS finds a second major application in the LISP environment:;
because ZMACS is fully integrated into the LISP world, it can be
used to prepare and develop LISP programs. Its special
capabilities allow it to:

- Monitor the compilation of programs

- Display errors

- Locate the definition of any LISP object.

Several types of interaction are possible between ZMACS and other
LISP Machine capabilities: '

- ZMACS can be used in combination with the LISP Listener and
the Inspector to create, evaluate, and debug code.

- ZMail, the LISP machine's electronic mail system, creates a
ZMACS buffer for the sending and receiving of messages, thus
providing full editing capacities for message transfer.

- ZMACS can be extended in LISP code.

1.5 ZMACS Files Under UNIX

While ZMACS itself exists for the LISP Machine, a subset of EMACS
is also available on UNIX. MINCE ('"MINCE is not complete EMACS")
is capable of handling ZMACS files crossloaded from the LISP
Processor; it will drive most formatters, including TEX and
MINCE's own associated formatter, SCRIBBLE. A dialect of MINCE,
configured to be compatible with ZMACS, including Scribble, is
available from LMI. 1

Introductory ZMACS

Chapter 2
ZMACS CONCEPTS

ZMACS handles some concepts in a way that may be different from
the text editor(s) you may be used to. Unless you . are already
familiar with EMACS, read this chapter to become familiar with
the concepts behind ZMACS.

2.1 Specificati ¢ ZMACS

ZMACS is a full-screen text editor, able to access any portion of
‘a buffer without the necessity for line searches.

It is by default in "insert mode"; that is, text typed in at a
point will insert itself within the file, rather than overwriting
previous text. When writing text (rather than LISP code), it
will also word wrap.

However, these are only defaults; ZMACS is fully customizable and
extensible by the experienced user.

ALL work on the LISP Processor is done in ZMACS; you need to
learn no other editor.

It is capable of recognizing the following divisions of text:
- Characters
- Strings
- Words
- Sentences
- Paragraphs

- Regions

Introduétory ZMACS

- Buffers

In LISP mode, it can also recognize LISP forms.

2.2 Two Major Modes: LISP and Text

Since ZMACS deals with both text and LISP code, ZMACS recognizes
two major '"modes", one for text, one for LISP. Some ZMACS
commands work in only one mode. If a command works in both
modes, it works the same way in both.

2.3 Int tion into ZetalLISP-PI

ZMACS is one of the "systems" of ZetalLISP-Plus, .like SYSTEM I
(the Inspector), SYSTEM Z (Zmail), SYSTEM K (Kermit), and so
forth. To change from one of the other ZetalISP facilities to
-ZMACS, simply type SYSTEM E (for "Editor"), and you will be
connected to a window into the ZMACS system. ! :

Conceptually ZMACS is designed to fit into the "systems"

environment of ZetallISP-Plus: That is, into the Window System.

Features such as windows and buffers allow ZMACS a robustness and
flexibility shared by no other editing system. ;

2.4.1 Windows

Windows access the facilities of ZetaLISP-Plus, which are grouped
together into systems. SYSTEM K, for instance, allows modem-type
transfer of data. SYSTEM L, the LISP Listener, evaluates LISP
code. SYSTEM I "1nspects" and debugs it. A system in operation
is called a '"process' because it processes data in a specific

-way. SYSTEM E, the edltor, ZMACS, is one of these processes.

\
" Windows get their name because the programmer can look through
them at a process. When they are open, data can be thrown
through them into a system that processes it. Windows are the
access route to systems, and processes take place in windows.

Introductory ZMACS

Physically, they look 1like rectangles on the screen--"windows"
again, into various facilities of ZetalLISP-Plus.

Through ZetaLISP windows, all facilities of the system are

visible and reachable. To wvisualize this, consider all of
Zetal.ISP-Plus as a factory. Each floor of this factory is
devoted to a different part of the = production
process--evaluation, transfer, editing, and so on. Looking

through different windows shows different processes.

Inside this factory, various production '"jobs" are being
completed. Some jobs are represented by individual files; some
are larger, and ZMACS will easily group files into larger job
lots such as directories and subdirectories or batches.

Files move through the ZetaLISP-Plus programming "factory", being
developed with the help of various systems. They are monitored
through the windows associated with each system (and through a
system, PEEK, designed specially to monitor). Directions about
them are alsoc given through the windows, and material relevant to
them enters and leaves.

2.4.2 Files and Buffers

At this point some confusion may be avoided by making some clear
distinctions between buffers and files. Files, semi-permanent
information stored outside the system environment, are not edited
per se. When you edit a file, it is copied into a buffer, a
temporary information storage facility within the active system
envirocnment.

Each buffer will have the same name as the file from which it was
copied. After ZMACS has copied your file into the buffer and you
have finished editing the temporary copy, ZMACS uses the edited
buffer to write out a new updated version of the file. This
process retains the old version of the file unlesss you delete
it. Version numbers, which are incremented with each update, are
part of the filename, and distinguish successive versions of your
files.

Note -- This applies to LISP only. UNIX does not save version
numbers. ‘

Each buffer has its own point, mark and associatd information.
Only one buffer can be selected at one time. When you select a
buffer, ZMACS calls it to the top of the stack on which all
existing buffers are kept. Initially the order of the buffers on
the stack is the order in which you have created them from the
file system. As you use the. stack, it will reflect the order of
their selection.

Introductory ZMACS

The use of buffers has special advantages for LISP programming.
This multiple buffer system allows a user to edit several files
simultaneously, either by toggling with the CTRL-META-L command
or by dividing the screen into multiple windows, to | view the

contents of several buffers simultaneously. In thlsi way, the
user can test LISP programs in the process of being edited
without needing to store untested changes in a file. LISP

functions can be defined directly out of a ZMACS buffer, allowing
the editing and testing of large programs without the need of
awkward file system operations.

2.4.3 Versions

ZMACS saves a version of your file every time it is asked to. It
does not discard any version unless told.

Versions are discarded in two ways. The current unsavep state of
any file is kept in a "buffer", which is a working copy of the
file. Any buffer memorializing a bad session state can simply be
deleted before it 1is saved. (The system will query you before

doing this.)

Saved ver51ons of flles can be deleted by version number This
is called '"purging'"--a necessary regular household chore in LISP.

2.5 Delet] Copyi ! Movi

In some editors, a deleted item is gone forever. ZMACS is much
more forgiving. Any deleted item of any significant s1ze--more
than a single letter--is saved in a "kill ring", a
special-purpose buffer. There is no limit on the maximum size of
a kill; it may be as large as an entire buffer. Any kill can be

;ev1ved not necessarily in its original place or its original
uf fer ‘

Thus deletion, copying, and moving are the same process in ZMACS.
Text can be copled onto the Kill Ring with or without deleting it
from its original spot. From the Kill Ring, it can be moved to a
new spot or a new buffer. Text can be copied from the Kill Ring
any number of times. The Kill Ring can be rotated to reach any
item on it. 1

The Kill Ring serves as a combined short-term storage and moving
facility in ZMACS.

Introductory ZMACS

Eeatures

Since all buffers and files are written in ZMACS, data keyed into
ZMACS can be manipulated by any system. It is standard procedure
to write LISP code in a ZMACS window, taking advantage of all the
editing features, then copy it to a LISP Listener, taking
advantage of the SYSTEM L evaluation features.

However, code can also be evaluated and compiled without leaving
SYSTEM E by using the commands CTRL-HYPER-C and CTRL-HYPER-E.

2.7 Notes on MINCE (ZMACS under UNIX)

Only a subsection of these facilities work under UNIX. In
particular:

- UNIX does not save successive versions; it overwrites.
Therefore, only one version of a file is saved under MINCE.
(Save other versions, if you need to, by giving them version
numbers "by hand" as part of the filename.)

- The Kill Ring in MINCE is only one item long.

- MINCE does not have a special LISP mode. It is preferable
to use ZMACS to edit LISP code.

For details, consult the MINCE MANUAL.

Introductory ZMACS

Chapter 3
GETTING INTO ZMACS

This chapter will teach you to get into the ZMACS system--and how
to get out again. It presumes that your machine has just been
warm-booted. If it hasn't been, do so before you start this
chapter: you will then be sure of your machine state. Review
booting procedures in Chapter 6 of the LMI LAMBDA FIELD SERVICE
MANUAL.

3.1 Login
Log onto the machine by typing: -

(login "username")
Note that you are in a LISP window and the parentheses enclose a
LISP function. Your username is quoted, so that it will not be
evaluated. This function will return the value

T

and your name will appear on the mode line at the bottom of the
screen.

3.2 Entering ZMACS
.You have a choice of four ways to enter a ZMACS buffer:
- From a LISP Listener;

- By switching systems:;

- With the mouse:

Introductory ZMACS

- By listing buffers.

3.2.1 From a LISP Listener
From a LISP Listener, type
| (ed)

You are now in a ZMACS window, looking at an empty ZMACS buffer.
The editor mode line will read

ZMACS (LISP) *Buffer-n* ‘
where n is the identifying number of the buffer.
Buffers are always created in LISP mode. LISP mode is indicated
by " (LISP)". :
3.2.1.1 Changing Modes between Text and LISP

Since we will work first with text and not with LISP, we will
switch major modes and go into another mode, Text Mode.

>>> 'I‘ype
META-X text <CR>

The notation " (Text)" will replace "(LiSP)" on the mode line,
indicating that you are now in Text Mode.

Type some text into this buffer:
I Like LISP!)

(You can get back into LISP Mode by giving the extended command
Meta-X Lisp Mode

Other major modes are available--for instance, TEX Mode, which is

like Text Mode but provides TEX delimiter matchlng

3.2.2 By Switching Systems

Go to a LISP window using the System key:

SYSTEM-L

Introductory ZMACS

- You can recognize the LISP Listener from which you entered the
Editor by the function " (ed)", the last item on the screen, which
you used to enter the Editor.
>>> Now return to the Editor.via

 SYSTEM-E
Your original buffer will reappear, with the text "I Like LISP!".
>>> Reenter the LISP window, this time with

CTRL-Z

CTRL-Z takes you back to the window you were in previously, which

in this case was a LISP window.

3.2.3 With the Mouse

Click R2 to call up the SYSTEM MENU.

]

Select the SELECT option by pointing at it and clicking L1.

- Select the Editor.
To get a second ZMACS buffer, type

SYSTEM CIRL-E

While the SYSTEM-E command scans the stack for an editor buffer,
SYSTEM CTIRL-E creates a new editor buffer, whether or not one
already exists. Note that this buffer has no text.
You now have two ZMACS buffers, representihg two different
editing processes. You can check this by listing the buffers you
have through one of the following procedures:

- Type in an editor window

Meta-X List Buffers

- Select the List Buffers option on the Editor Menu, as

described below.

3.2.4 By Listing Buffers

>>> Call up the EDITOR MENU. Click Rl with the mouse, and the
menu will pop up.

..lo_

Introductory ZMACS

Select the LIST BUFFERS option by pointing at it w1th the mouse
and clicking L1. A list of buffers will appear.

Select the buffer whose number you noted earlier, again by

pointing with the mouse and clicking Ll1. Your text will
reappear. ‘

ll

Introductory ZMACS

Chapter 4
ZMACS TUTORIAL

ZetaLISP-Plus offers an online ZMACS tutorial of basic ZMACS
- commands. You can get to the tutorial in either of two ways:

- Erom the LISP Listener, call the function
(teach-zmacs)

- From the editor, call the command
CIRL-META-X Teach Zmacs

That is, simultaneously hold down the CTRL, META and X keys
and then type

Teach Zmacs
The ZMACS Tutor introduces ZMACS in an interactive, "hands-on"

manner. The commands introduced in the Tutor are reviewed and
expanded in the next chapters.

12

Introductory ZMACS

Chapter 5
BASIC ZMACS COMMANDS

For the following exercises, put yourself into a buffer in Text
Mode and type some text in it.

5.1.1 The Character and Word Level

ZMACS recognizes four directions in which the cursor can move on
the screen: Back, Forward, to the Next line, and to the Previous
line. (For vertically oriented people, "next" and "previous" are
the same as "dowN" and "uP".) These directions are conveniently
bound to the four characters B, F, N and P.

Typing any of these four characters with the CTRL key will move
the cursor one character in the chosen direction. Typing B or F
with the META key will move the cursor one word backward or
forward.

>>>Try moving the cursor through your text: forward and backward,
upward and down. _

5.1.2 The Line and Sentence Level

ZMACS will move the cursor to the beginning and end of lines,
like most editors. CTRL-A moves the cursor to the beginning of
its current line; CTRL-E, to its end. (If you type to the end of
the line in both modes and the line wraps, CTRL-A takes you to
the beginning of the wrapped line.)

However, unlike most editors, ZMACS is also capable of

recognizing sentence breaks. META-A and META-E will move the
cursor to the beginning and end of its current sentence.

_13-

Introduétory ZMACS

5.1.2.1 Commenting on the Line Level

Besides the standard uP and dowN, CTRL-P and CIRL-N, ZMACS. allows
you to move up or down and add comments to your text. This is
mode-dependent; ZMACS will insert into your buffer whatever the
appropriate comment character is, and put your cursor there. To
add a comment to your Next or Previous 1line, type META-N or
CTRL-N. !

(To add a comment to the current 1line, type the appropriate
comment character.)

Note: If you want to add comments to your code, you should do it
in Editor mode. If you do it in a LISP Listener window, the
machine will discard your comments as it evaluates your code.

5.1.3 Paragraph and Page Operations
ZMACS requires a blank line between paragraphs. META-[and
META-] will move the cursor to the beginning or end of a

paragraph--that is, to the last or next blank line. !
‘CTRL—[and CTRL-] will move to the beginning and end of a page.

5.1.4 Screen operations

CTRL-V moves the cursor to the next screenful of text. (Try this
with a large file, such as the ZMACS Tutorial.) META-V moves the
cursor to the previous screenful of text. Screens are a little
less than the amount of text that will fit on a screen: for
convenience, there is an overlap of several lines. :

In a file with more than one screenful of text, CIRL-L moves the
line where the cursor is to the middle of the screen. | :
5.1.5 Buffer Operations

META-< (left arrowhead or left "brocket'") moves the cursor to the

beginning of its buffer. META-> moves it to the ‘end of its
buffer.

- 14 -

Introductory ZMACS

Chapter 6
- Numeric Arguments

Motion commands, and many other types of commands, may be given
numeric arguments. These are typed before the main command. A
numeric argument consists of a modifier key and a number, typed
immediately preceeding the command to be affected.. Any. of the
four keys, CTRL, META, SUPER, and HYPER, can be used. You may
either hold down the key as you type the number, or type CIRL-U,
then the number. Then type the command you want. For example,
to move forward 35 characters,

>>> Type either
CIRL-3, CTRL-5, CTRL-F
or
CTIRL-U 35 CIRL-F
The cursor should move forward 35 characters.

CTIRL-U by itself will cause the following command to be executed
four times. Successive CTIRL-U's have a multiplicative effect;
typing CIRL-U CTRL-U before a command will cause the command to
be executed 16 times.

Numeric arguments may be given for many commands, and some will
take negative as well as positive arguments--for instance, those
for moving up and down the stack. Toggle arguments often use a
positive numeric argument to equal "yes", a negative numeric
argument to equal "no". A negative argument is given by holding
down one of the modifier keys (CTRL, META, HYPER, or SUPER), then
typing the minus (hyphen) key, and then the number.

..15_

Introductory ZMACS

Chapter 7
INSERTION AND DELETION

7.1 Insertion

To insert text in standard Text Mode, simply move your cursor to
where you want the text and type it in. :

You can change to Overwrite Mode, in which text typed in destroys
the text "under" it, with the extended command

Meta-X Overwrite

Note that the notation " (overwrite)'" will now appear in the mode
line. For example, if the cursor is on the "w" in the word
"Overwrite" and you key in the word "right", the new word will
read 'Overrightwrite" in Text Mode. In Overwrite Mode it will
read "Overright".

Overwrite Mecde is a toggle command. It can be turned off by
‘calling it again:

Meta-X Overwrite

2.2 Deletion .

ZMACS deletes text in a group of any size, from one character
up. Small deletions are handled by CIRL and META commands. Most
of the small deletions can be yanked back with CTRL-Y if you
decide you didn't want to delete them after all. Here is a list
of deletion commands:

RUBOUT Deletes the character left of the cursor
CIRL-D Deletes the character under the cursor
META-RUBOUT Kills word left of cursor (CIRL-Y

yanks it back at cursor position)
META-D Kills word right of cursor (CIRL-Y yanks)

- 16 -

Introductory ZMACS

CLEAR INPUT Kills from beginning of line to cursor (CTRL-Y
yanks)
CTRL-K Kills from cursor to end of line (CTIRL-Y yanks)
CTRL-X RUBOUT Kills from beginning of sentence to
cursor (CTRL-Y yanks)

META-K ' Kills from cursor to end of
sentence (CTRL-Y yanks)
CTRL-X K Kills a buffer. The default is the

current buffer, but it gives you a choice.
META-X Delete File Deletes a file. The default is the
file corresponding to the current buffer.

Large deletions are explalned in the chapter called "Marking,
Killing, and Undeleting".

- 17 -

Introductory ZMACS

Chapter 8
MARKING, KILLING, AND UNDELETING

An important concept in ZMACS 1is the region. A region is any
area of text that you delimit by "marking” a beginning and end.
Marking regions allows you to kill, move, and copy them.

8.1 Marking

To set one end of the region to be marked, either type CTRL-SPACE
or click the middle mouse button once. Move the cursor forward
or backward until you reach the other end of the region. The
cursor position will mark the other end. The region is now ready
to be deleted, copied, or moved.

Some areas may be marked with keystroke commands. For instance:

META-@ Marks to end of word
META-1 Marks entire word cursor is on
META-H Marks entire paragraph cursor is on
CIRL-X CTIRL-P Marks entire page cursor is on
CTIRL-< Marks to beginning of file (does not
move cursor)
CTIRL-> Marks to end of file (does not move cursor)

Another way to mark a region is to push the left mouse button at
one end of the desired region, and hold it down while you move
the mouse to the end of the desired region. When the correct
region is marked, release the button.

All marking automatically underlines the marked text.

Clicking L1 (with the mouse) unmarks any marked region and moves
the cursor to the arrow position.

Clicking M1 (with the mouse) marks an entire word, no matter
which letter the cursor is over. '

-18_

Introductory ZMACS

8.2 Killi Movi i Copyi

When a region is marked and killed, it goes onto the "kill ring,"
a special-purpose ZMACS buffer.

One purpose of the "kill ring" is to temporarily hold recent
deletions, so that they can be reconsidered. The second purpose
is far more important: to move them. The most usual way of
moving text or code in ZetalLISP-Plus is through "killing" it at
its original location, moving the point to the desired new
location, and resurrecting the killed text at the new location.

Killed items can be any length so long as the length is more than
one letter (the kill ring does not save single-letter
deletions) . The default capacity of the kill ring used to - be
eight slots; as of System 98 this has been changed., and the kill
ring now contains the entire "kill history" of a session.

Items may be copied onto the kill ring without being deleted at
their original location.

An item may be copied from the kill ring more than once; this is
a useful feature when text is to appear at more than one
location.

Here are the basic commands for killing:

CIRL-W Puts a marked region onto the kill riné.

META-W Copies a marked region onto the kill ring without
erasing it at its original place.

8.3 Yanking
"Yanking" is the converse of killing. It retrieves text from the
kill ring. ' ‘

CIRL-Y Retrieves text at top of kill ring (moét recently
killed text)

META-Y Rotates the kill ring one up (retrieving

next-to-most recently killed text). You may call
this repeatedly, retrieving each previously

19

Introductory ZMACS

killed text, until you find the text you want.

Repeating META-Y will cycle through the kill ring. META-Y will
take a numeric argument.

Entire buffers can be killed with the command CTRL-X K. The whole
buffer then becomes an item on the kill ring.

..20_

Introductory ZMACS

Chapter 9
SEARCHING AND REPLACING

ZMACS offers the facility of searching for strings. It has two
"replace" facilities, allowing the global replacement of all
occurrences of a particular string, or querying you case by
case.

9.1 Searching

Searches in ZMACS are incremental and immediate; the program
searches for the first instance of your string as you enter it.
Your string will appear in the echo area. '

CTRL-S string Searches forward for s;zing. To move to the next
occurrence of string, retype CTRL-S.

CIRL-R string Searches backward for string. To move to the next
most recent occurrence of string, retype CIRL-R.

RUBOUT To move backwards by occurrence within your
search, hit RUBOUT until you arrive back at the
first occurrence of string. At that point RUBOUT
deletes .characters within string and
auto-searches for the shorter string.

ALTMODE Exits from search.

To make changes, exit from search. Then make changes in your
text. To search for the next occurrence of gtring, type CTIRL-S
twice (or CTRL-R twice, if you are searching backward). The
second call to CTRL-S- defaults to searching for the string you
last searched for.

>>> By using a key word, you can search your text for sections
that may require more work or updating of information. This is
particularly useful should you find yourself making changes in a
text that someone else has written.

_21-

Introduotory ZMACS

9.2 Replacing

CIRL-Y% stringl <RETURN> string2 <RETURN>
Replaces stringl with string2 throughout

META-% stringl <RETURN> string2 <RETURN>

Replaces some occurrences of stringl with
string2, querying each replacement

Type SPACE for "replace," RUBOUT for "don't replace." Terminate
with ALTMODE.

Pressing the HELP key after calling this command documents it
online.

_22-

Introductory ZMACS

Chapter 10
CANCELING AND UNDOING

10.1 Canceling commands through CONTROL-G

Any command requiring more than one keystroke can be aborted, at
any time before you have pressed the final key, by typlng CTRL-G.

10.2 Undoing Drastic C}

You may find that you have accidentally made a major change in
your buffer and you do not know what you have done or how to undo
it. The Undo command is an excellent alternative to panic.

META-X Undo, HYPER-CTIRL-U
Undoes the last '"do-able" command. It works on
the last reversible command made. It doesn't
matter if you have moved the cursor since the
last change.

Before Undo changes your buffer, it will prompt you with the kind
of change it plans to undo (i.e., kill, fill, case-convert,
etc.) and query you for permission to go ahead. Responding "Y"
will implement the Undo.

Remember that Undo will undo the last do-able change, whether or |
not it is what you intended. You should check the prompt before
answering "Y" or you may undo the wrong thing.

When the Undo is completed, you will see a message informing you
what has been done and what to do if you don't 1like it. For
instance, if the Undo has been performed on a Yank, you will see:
"Yank undone. Hyper -Control-U to undo more, Hyper-Control-R to
undo the Undo.

If you use HYPER-CTRL-U repeatedly, Undo will cycle back down the
stack of commands, undoing them one by one. This can be

_23..

Introductory ZMACS

unnerving. META-X Redo changes back each Undo, going back up the
stack. '

-24-

Introductory ZMACS

Chapter 11
PREFIX COMMANDS AND EXTENDED COMMANDS

ZMACS recognizes several forms of '"prefix" commands: that is,
commands using the control keys. Other systems have one prefix
key, the CONTROL key, or two, the CONTROL and ESCAPE keys. The
Lambda has four, CTIRL, META, SUPER and HYPER. The combination.of
four prefix keys, three mouse keys, and extended commands allows
complete customization of the ZMACS environment, without the fear
of ever running out of keys.

The CONTROL and META keys are used in combination with other keys
to produce simple single-stroke commands. But in combination
with X, they produce higher-level commands that can recognize
further command keys and even command phrases. CTIRL-X commands
-take one further character (either a CTIRL or non-CTRL key): they
are called '"character extended commands". META-X commands take a
further phrase and are called "named extended commands."

Many of the CTRL and META commands prompt for further information
such as a buffer name, a yes-no response, or a string. These
prompts are designed to be self-explanatory. If they cause any
difficulty, type

HELP C Gives online documentation for any command. You
must type in the command name at the prompt.

Type any key to remove this documentation and return to your
buffer.

11.1 Command Completion

The LISP machine can complete partial text commands that are
intelligible to it. After typing in a shortened form of a
command that the machine can recognize, you can ask it to
complete the command and/or execute it. You do this by typing
special keys to end the command. These are:

-25_

Introductory ZMACS

SPACE Completes the word you are typing and leaves it
displayed in the echo area, pausing to allow you
to type in the rest of the command.

ALTMODE Completes the rest of the command and leaves the
line displayed in the echo area, allowing Yyou
time to cancel the command. To call the command,
type RETURN.

END If the command is completable, completes it and
executes it.

RETURN Tries to complete the command and executes the
result, whether the completion was successful or
not. It's best to use END, which won't execute
if the command is not completed.

When you call the command and nothing happens, it's most likely
that the command name still isn't complete. Type HELP or CIRL-?
to see a list of the possible completions of what you have
typed.

Another handy command is CTRL-\. This 1lists alphabetically all
commands that contain any of the words in your partial command
name. For example, if your incomplete string is 'List Buffer",
and you type CTRL-\, you'll see a list of all commands containing
either the word "list" or the word "buffer'. This list is mouse
sensitive, so you can select a command with L1.

-26-

Introductory ZMACS

Chapter 12
LISP COMMANDS

LISP forms present problems different from text because of the
complexities of their nested subforms; a special set of commands
are implemented in the LISP environment to move Yyou accurately
through the intricacies of LISP syntax.

These forms will work only when you are in the "LISP Mode" of
ZMACS. You can tell you are in this mode when the Mode Line at
the bottom of your screen says '"ZMACS(LISP)". :
You can get into LISP Mode from Text Mode by typing

META-X lisp
and back to Text Mode by typing

META-X text

12.1 Motion Commands for LISP Code

CTRL-META-F Moves the cursor one or more s-expressions
forward

CTRL-META-B Moves the cursor one or more s-expressions
backward '

Note the analogy to the text motion commands CTRL-F, META-F,
CTRL-B and META-B. '

Motion up and down the 1list structure in LISP does not follow
exactly the model for 1line motion (CTRL-P and CTRL-N). The
commands are:

CTRL-META-D Moves the cursor forward and down one or more
levels of list structure

- 27 -

Introductory ZMACS

CTRL-META-U, CTRL-META-(
Either of these commands moves the cursor up and
backward one level of 1list structure. 1If called
inside of a string, moves back up out of that
string.

CTRL-META-), CTRL-META-)
Move the cursor forward and up one level of list
structure. If called inside of a strlng, move up
out of that string.

To summarize these last three commands:

CTRL-META-D forward and down
CTRL-META- (backward and up
CTRL-META-) forward and up

(There is no need for 'backward and down".)
CTRL-META-A, CTRL-META-{
Move the cursor to the beglnnlng of the current
defun (top-level LISP form)
CTRL-META-E, CTRL-META-]
Move the cursor to the end of the current defun
(top-level LISP form)
Note the analogy to the text moving commands META-A and META-E.
CTRL-META-R Reposition Window. This command repositions the

buffer, trying to display all of the current
defun on the screen.

12.2 Killi i Yanki S-F .
Killing s-expressions is ' analogous to killing 1lines and
sentences. The commands are:

CIRL-META-K Kills forward one or more s-expressions
CTRL-META-RUBOUTKills backward one or more s-expressions

CIRL-Y Yanks the s-expression back from the kill
buffer.

-28_

Introductory ZMACS

12.3 P] Marki i Moving S- .

META- (

META-)

CTIRL-META-@

CTRL-META-H

CTRL-META-T

Inserts a pair of parentheses around the cursor
position with the cursor between them. Then you
can write your S-expression without having to
remember to add a closing ")". It will already be-
balanced.

"Moves the cursor past the next close parenthesis,

")", and adjusts the indentation of the following
line

Sets the mark one s-expression from point. Use a
numeric argument to mark more than one
s-expression.

Puts point and mark around current defun -
(top-level LISP form).

Interchanges the S-expressions before and after
the cursor. With a positive argument, it takes
the S-expression to the left of the cursor and
moves it '"n" S-expressions forward. The reverse
is true with a negative argument: it takes the
S-expression to the left of the cursor and moves
it "n" S-expressions to the right. This command
saves you from having to mark S-expressions
before moving them. (The "T" in the command
stands for 'transpose".)

For example, assume you have a series of S-expressions:

abc (cursor) d e f)
Calling "CTRL-2 CTRL-META-T" will result in:
abdecf f

Calling "CTIRL-minus-3 CTRL-META-T on that result
will give you:

acbde f

_29-

Introductory ZMACS

12.4 Functions (HYPER Key Commands)

This group of commands, using the HYPER key, deal with the
definition of LISP functions. Most of these commands also work
in the LISP Listener. The commands that apply to regions default
to the current defun (top-level LISP form) if no region is

specified.

CTRL-HYPER-A

'CTRL-HYPER-C

CTRL-HYPER-D

CTRL-HYPER-E

CTRL-HYPER-S

CTRL-HYPER-V

Prints the argqument 1list of the function to the
left of the cursor.

Note: The function must already have been
defined. For example, if the function is a
regular piece of LISP code, it is already
defined. But, if it's a function defined by a
user, it must have been compiled for the LISP
machine to print its argument list.

Compiles the contents of the current region. If
there is no active region, it compiles the
top-level S-expression which the cursor is over.

Prints out brief documentation for the function
the 'cursor is over. The documentation will be
displayed in a temporary window. Type a space to
remove the window.

Evaluates the current region and returns the
value in the Echo area. If there is no current
region, it evaluates the top-level S-expression
the cursor is over.

Moves the cursor to the next occurrence of the
pattern specified. A numeric argument repeats
the 1last search n times. The pattern specified
must be a list. You are prompted for the pattern
in the Echo Area.

Prints information about the variable (not the
function) before the cursor. The information
includes:

- Whether or not the variable has been
declared special

- Whether it has a value

- 30 -

Introductory ZMACS

- Whether it has documentation put on - by
DEEVAR. If none of this information is
available, CTRL-HYPER-V 1looks for lookalike
symbols in other packages.

META-HYPER-D Prints the arguments and documentation for a

function. It prompts you for the function.
Typing a RETURN defaults to the function before
the cursor. You may also choose a function with

the mouse.

META-HYPER-E Evaluates the current region and types out the
result in a temporary window. Type a space to
- remove the window.

CTRL-META-HYPER-E _
Evaluates the current defun by turning DEEVAR's
into SETQ's.

For these commands, the SHIFT key can be used in place of the
HYPER key. The HYPER key, however, CANNOT ever be used in place
of the SHIFT key (since when you use the SHIFT key in place of
the HYPER, it works through the HYPER key). If you are working
in ZMACS and want to define a new use for the HYPER key, make
'sure you use the HYPER and not the SHIET key.

12.5 Compili i Evaluati

CTIRL-HYPER-C Compiles the contents of the current region. If
there 1is no current region, it compiles the
top-level S-expression that the cursor is over.

CTRL-HYPER-E Evaluates the current region in the Echo area.
If there is no current region, it evaluates the -
top-level S-expression the cursor is over.

META-HYPER-E Evaluates the current region and types out the
result in a temporary window. Type a space to
remove the window.

CIRL-META-HYPER-E

Evaluates the current defun by turning DEFVAR's
into SETQ's

31

Introductory ZMACS

12.6 Regions

These all work with the current top level expression (defun) if
there is no region marked. :

CTRL-EPSILON (Greek E) 4
Compiles the current region

-META-HYPER-E Evaluates the current region and types out the
result in the typeout window

CTRL-HYPER-C Compiles the contents of the current region. If
there is no current region, it compiles the
top-level S-expression that the cursor is over.

CTRL-HYPER-E Evaluates the current region in the Echo area.
If there is no current region, it evaluates the
top-level S-expression the cursor is over.

s * 2 s . s
-

A special type of command, "Meta-Point" or "Meta-Period", allows
you to edit function definitions. This type of command finds the
code containing a function's definition and puts it in an editor
buffer. Then you may edit it.

NOTE: Be careful with these commands. One of the greatest
advantages of LISP is its complete programmability: however, you
could easily redefine something to your disadvantage.

These commands are invaluable to users who wish to study source
code.

META-. Places the source code containing the definition
of the specified function in a buffer. You may
then edit that definition or just study it. It
prompts you for the function in the Echo Area.

CTRL-META-. Edits the definition of a key command or extended
command. It will prompt you with "Key whose
command to edit". Then you should type either a

key command or an extended command. Instead of
executing that command, the editor will place the

- 32 -

Introductory ZMACS

source code defining that command in an editor
buffer. Now you may either edit the definition
or just study it.

12.8 Buffer Commands

CTRL-META-X List Buffer Changed Functions
Lists any sections which have been edited in the
current buffer.

META X Sectionize Buffers
Reparses a buffer for definitions. That is, it
searches through the buffer for new functions and
saves them. Use this command when you have added
new functions to the file, so you can then use
META-. on them. (See the command META-. in the
previous section.) :

- 33 -

Introductory ZMACS

Chapter 13
THE MOUSE

The mouse greatly facilitates operations in both Text and LISP
modes. In most cases, the mouse functions are the same for both
modes. One major exception concerns marking regions with the
middle mouse button.

In both modes, the mouse button is an extremely efficient tool
for marking and manipulating regions. To review, you can mark a
region by positioning the cursor at one end of the region you
wish to mark. Then click and hold the left mouse button down
while moving the cursor to the other end of the region you wish
to mark. That region will now be marked by underlining (also
referred to as "highlighting"). Typing a CTRL-G will deactivate
‘the region. (See also the chapter 'Marking, Killing, and
Undeleting".) ’

The main difference in mouse functions between LISP and Text mode
is the middle mouse button function. In Text mode, the middle
mouse button recognizes words and in LISP mode it recognizes
atoms. (An atom is defined by its matched, bounding parentheses,
however long the expression.) In Text mode, clicking M2 marks
the word under the cursor: in LISP mode, clicking M2 marks an
atom. That is, clicking M2 over the middle of a LISP expression
hightlights it to the nearest set of matching parentheses. In
the case of nested expressions, placing the cursor on one of the
parentheses and pressing the middle mouse button will mark the
atom bounded by that parenthesis. Thus the middle mouse button
is an efficient debugging tool for checking the structure of LISP
codes. For example, you can use it to check matching
parentheses.

In either LISP or Text mode, pressing the middle mouse button at
the beginning or after the end of a line creates a region of the
line. The one exception to this is in Text mode. If a line
starts with blankspace, you can mark it with M2. If the 1line
starts with text, M2 will mark only the first word.

34

Introductory ZMACS

Chapter 14
GETTING HELP

The HELP key accesses the online-documentation system in ZMACS.
This is an invaluable tool for finding information.

HELP in ZMACS is a tree structure, based on a menu of possible
kinds of help you can get about the system. When you type the
HELP key, a prompt appears asking you to type one of nine keys,
each of which selects a particular HELP mode. The ninth key
listed is HELP. Selecting this HELP , that is, typing the HELP
key a second time, explains the other eight keys which you can
select to get help.

HELP prints its online documentation in a temporary window,
overlying the main window. To remove the temporary window, type
a space.

Here is a list of the first 8 keys under the HELP system.

<HELP> A Apropos. Displays a list of all functions
containing the given substring. It also tells
how to call each command in the list. It prompts
you with "Apropos. (substring)'". You must then

type in a substring.

This is an invaluable command for finding out
about existing commands. For example, type the
word '"buffer” and you'll see a 1list of all
commands with the word buffer in their name.

Apropos listings can also be generated using the
META-X command Apropos.

<HELP> C Displays the documentation for the key you type
next. This prompts you with "Document command”.

Multi-character commands such as Ctrl-X Ctrl-Z
may also be entered. '

<HELP> D Displays the documentation for a command by
name. It prompts you with "Describe command".
You must then type the name of the command at the
prompt.

_35..

Introductory ZMACS

<HELP> L Returns a history list of the last 60 commands
typed at the editor. Use this when you're
disoriented and want to see what commands you've
typed.

<HELP> U Undo. Undoes the last undoable command done in
the current buffer. The prompt will reflect the
type of command done and ask whether to undo it.
You must then answer "Y" or "N". It even allows
you to undo the undo!

<HELP> V Variable Apropos. Displays the values of
variables whose names contain the substring
specified.

<HELP> W Lists all characters that invoke a - given
command. It prompts you with "Where is?". You

must then type the command name.

<SPACEBAR> Repeats the previous HELP request. Allows you to
return to the same HELP option you just used,
instead of exiting HELP, and then starting over
by calling HELP and the same option again.

-Use the ABORT key to exit from HELP.

If you are in a special mode, you may see other options under
HELP. For example, if you call HELP while looking at a directory
you'll see the option "M". This option 1lists the special
directory commands.

<HELP> M This Help command is present only in special
modes such as DIRED. It prints a summary of the
commands in the directory editor. ,

14.1 On-line D tation C :

Several other commands give various kinds of on-line
documentation.

HYPER-CTIRL-D Displays brief documentation in the Echo area for
the function before the cursor.

HYPER-META-D Displays all the arguments and online
documentation for the function you specify. This
information is displayed in a temporary overlay.
window.

36

Introductory ZMACS

CIRL-=

CTRL-META-?

Prints information about the cursor location. In
the Echo area, it lists the cursor's x and vy
coordinates in octal. The x coordinate is
expressed in characters, pixels and columns. If
there is a region, it prints the number of lines
in it.

Is identical to HELP.

- 37 -

Introductory ZMACS

Chapter 15
INDENTATION AND TABS

15.1 Indentation

Besides the normal uses of indentation in text, indentation is
used in LISP mode to make the code easier to read. Each line of
code is indented according to its nesting. ZMACS allows for
indentation either with tabs or with spaces. A number of
different commands exist which allow you to manipulate tabs, for
example, some convert tabs to spaces and vice versa.

15.2 TAB Indenting

The simplest form of indenting is with the TAB key. While its
effect varies with the mode in use, in Text mode it indents to
the next tab stop. Tabs are set every 8 spaces, but can be
altered. In LISP mode, TAB adjusts the indentation of the
current line according to the nesting of the code,

TAB Depending on the mode you are in, either indents
the line or adjusts the indentation. In Text
mode, TAB indents to the next tab stop. In LISP
mode, TAB indents the current line according to
its nesting. A numeric argument indents 'n"

lines at once.

META-TAB Inserts a TAB character at the cursor point in
all modes. :

LINE Inserts a carriage return followed by a TAB in
Text mode. In LISP mode, LINE inserts a
carriage-return and removes any blankspaces
before the next character.

META-- Deletes the indentation at the front of the
current line and the preceeding carriage-return

- 38 -

Introductory ZMACS

and replaces them with a single space. No space
is inserted when the last character on the
previous 1line is a "(", or when the first
character on the line you're moving is a ")".

Giving this command a numeric argument, does the
same thing, only to the end of the current line
(instead of the beginning). The same exceptions

apply. :

META-- undoes the line break whether it was
produced manually or by Auto Fill.

META-\ Deletes all spaces and tabs around the cursor.
Call this command with your cursor in the
indentation at the beginning of a line and the
text will move flushleft.

META-M, CTRL-META-M
Positions the cursor at the first nonblank
character of the current line. The cursor can be
anywhere in the line when you call this command.

15.3 Indentation C is Involving Reg

ZMACS has special commands to enable you to use regions with
indentation commands. These are useful for changing the
‘positioning of blocks of text. You can use regions to indent
blocks of text.

CTRL-META-\ Changes the indentation of several 1lines at
once. Gives each line which begins in the region
the "usual" indentation by invoking Tab at the
beginning of the line. A numeric argument
specifies the indentation, and each 1line is
shifted left or right to conform. You must mark
a region before calling this command.

CTRL-X TAB, CTRL-X CIRL-I
Moves the entire region a specified number of
spaces to the right or left. You must mark the
region first. Then you must give the command a
numeric argument. A positive argument moves the
region n spaces to the left. A negative argument
moves the region n spaces to the right.

- 39 -

Introductory ZMACS

15.3.1 Changing the TAB Stops

META-X Edit Tab Stops '

Allows you to set the tab stops. ZMACS will pop

up an overlylng window which contains a row of
:'s". Each " indicates a tab stop. You may

now edit this row by moving around the colons

with the usual editing commands. When you return

to your text buffer, TAB will space accordlng to

the new tab stops (1n Text mode) .

With the default tab settings of every eight columns, the
overlying window of tab stops will look something like this:

1

2 : : :

3

4 123456789 123456789 123456789 123456789 123456789 1234.
5 0 10 - 20 - 30 40 50

except you will see only the colons. The numbers are added to
this example to indicate row and column numbers.

ZMACS normally uses both tabs and spaces to indent 1lines, and
displays tab characters using eight-character tab stops. It is
possible to change tabs to spaces and vice versa.

META-X Untabify Converts all tabs in a file to spaces

META-X Tabify META-X Tabify is the opposite of META-X Untabify.
It replaces spaces with tabs whenever possible,
that is, where there are at least three spaces,
in order to protect the breaks between sentences
from being turned into tabs. :

Introductory ZMACS

li;i_LlSE_lndenIaIiQn

As in the case of motion commands, LISP forms present special
problems, which indentation commands within the LISP environment
are designed to accommodate.

TAB

LINE

In LISP mode, TAB aligns the whole line according

- to its depth in parentheses, regardless of where

in the line the TAB is typed.

In LISP mode, LINE performs a carriage-return at
the <cursor and then indents the new line
according to its nesting.

META-~, CIRL-META-"

META-\

CTRL-META-Q

This command does the opposite of LINE. It
deletes the indentation at the front of the
current 1line and the preceeding carriage-return
and replaces them with a single space. No space
is inserted when the last character on the
previous line is a "(", or when the first
character on the line you're moving is a ")".

Deletes the indentation of a line. Use META-\
with the cursor anywhere in the beginning
whitespace of the line:; it deletes all spaces and
tabs around the cursor, moving the text
flushleft.

Indents the following top-level LISP form, no
matter how many lines it is composed of. Use
this to indent or re-indent some code that you've
been editing.

41

Introductory ZMACS

Chapter 16
MORE USEFUL ZMACS EUNCTIONS

16.1 Case

Place the cursor to the left of the word whose capitalization you
wish to change.

META-L Changes the following word to lower case

META-U Changes the following word to upper case

META-C Capitalizes the first 1letter of the following
' word

If you use one of these commands while in' the middle of a word,
it will work forward from the cursor, treating the letters
between the cursor and the end of the first word as the first
word.

Use negative numeric arguments with these commands to change the
case of the previous word.

Use both positive and negative numeric arguments to change the
case of more than one word in a direction. For example, to
lowercase the last four words before the cursor, type:

META <minus key> 4 L

16.2 Font Changes

ZMACS has commands to alter the font of a word or region. To use
different fonts in a file, you must set the fonts. You should
also 1list these fonts in the file's attribute list, the first
line of the file. First, you should list the fonts to see what
they are. Then you should set the fonts with the META-X SET
FONTS command. Then as you type your file, you can change the

- 42 -~

Introductory ZMACS

font of individual words or complete sections with the font
changing commands.

META-X List Fonts
Lists the defined fonts.

META-X Set FontsAllows you to set the fonts for a file. Each
font is bound to a number. Later, when you want
to change a word's font with META-J, you will see
the font's number.

META-J Changes the font of the previous or next word.
Fonts are specified by number. If you type
META-J with an argument, the argument will be the
number of the font which will be applied to the
previous word. As with underlining and the
META-_ command, if a font change command already
exists in the previous word, the font change will
be extended one word to the right. If you use
META-J with no argument, it will extend the last
font change one word forward. With a negative
argument, META-J moves the last font change
backwards one word.

CTRL-X J CIRL-X CTRL-J
Changes the font of a region. Its argument is
the font number, and with a negative argument
removes font changes within or adjacent to the
region. You must mark the region before using
this command.

CTRL-META-J Sets new default font.

(See the online TEACH ZMACS tutorial for more detail on fonts.)

16,3 Kevboard macros

Keyboard macros are user-defined "abbreviations." When you define
a keyboard macro you define a sequence of commands as a new
command. For example, to move backwards two lines and search for
the first new sentence in that line, the sequence of commands
would be:

CTRL-P CTRL-P CTRL-A META-E
If for some reason you had to do this often., you could make your

work with ZMACS more efficient by defining this sequence as a
keyboard macro. While most ZMACS commands are written in LISP

- 43 -

Introductory ZMACS

(see Section 1.1), keyboard macros are written in ZMACS command
language. While this makes them less powerful than other ZMACS
commands, it makes them easier to write.

16.3.1 Defining Keyboard Macros

In order to define a keyboard macro, you execute the series of
commands which comprises the definition. That is, you define a
keyboard macro by executing it for the first time. From then on,
you can repeat the series of commands by simply executing the
macro. The following extended commands allow you to define and
manipulate keyboard macros.

CTRL-X (Is the command to begin the definition of a
keyboard macro.

CTIRL-X) Terminates the definition of a keyboard macro.

CIRL-X E Executes the most recently defined Kkeyboard
macro. :

META-X View Kbd Macro :
Types out the keyboard macro you specify to the
prompt.

>>> This exercise will define a keyboard macro for the sequence
CTRL-P CTRL-P CTRL-A META-E.

1. Type
CTRL-X (

to begin the macro. The message '"Macro level:1" will
appear in the mode line.

2. Type the sequence of commands to constitute the macro:
CTRL-P CTRL-P CTRL-A META-E

3. As you type them, these commands will be executed. They
will also become part of the macro.

4. Type
CTIRL-X)
to end the definition of the macro.

5. To invoke the macro, type

- 44 -

Ihtroductory ZMACS

CIRL-X E

The CTRL-X E command will take numeric arguments, repeating the
macro the number of times you specify using CIRL-n CTRL-E.

16.3.2 Saving Keyboard Macros

To save a keyboard macro, you must give it a name. This process
will define it as a function. The command is:

META-X Name Last Kbd Macro

which will take the 1last keyboard macro defined,
turn it into a function and give it the name you
specify. Thereafter, you can invoke it by the
command META-X and the name. For example, if you
named your file "search", you would invoke it by
calling "META-X search". There is currently a
bug in calling the macro with this command, but
it does get named. You can still use the macro
name for other commands. '

META-X Install Macro
Installs the macro onto the key you specify to
the prompt. You should name the macro with
META-X Name Last Kbd Macro before doing ‘this.

META-X Deinstall Macro
Removes an already installed macro from its
specified key

Keyboard macros defined in this way are saved in a library,
which, when 1loaded will automatically redefine the keyboard
macro.

16.4 Minor Modes

Minor modes are optional modes which allow you to perform special
functions while in them. They are entered usually by calling an
extended command made of META-X and their mode name. Calling
this same command from within the mode also toggles out of that
mode, back to the previous mode. For example, to both enter and
leave Overwrite Mode, you would call the command "META-X
Overwrite Mode".

A few of the more useful minor modes are:

45

Introductory ZMACS

META-X OverwriteWhen you type in text in Overwrite mode, the
characters you type in replace the existing text
rather than pushing it over as in Text mode. To
leave Overwrite mode and return to the previous
mode, simply retype this command. It toggles you
“into and out of the mode.

META-X Word Abbrev Mode :

This mode is especially useful for text involving
any kind of complicated terminology. It allows
you to define self-expanding abbreviations. For
example, you can define the abbreviation '"spit"
for the phrase " Systems Programmer in Training".
Then as soon as you type 'spit" and a space,
ZMACS fills out the complete phrase. You may
toggle out of this mode by calling this command
again.

Use the HELP online documentation with the Apropos option to
generate a list of commands with the word "mode" in their name.
Type: HELP, "A" for Apropos, and the text string "mode". This
will introduce you to the many minor modes.

16.5 Word Abl {at

This section will describe the commands associated with word
abbreviation and take you through the creation and use of a word
abbreviation file.

16.5.1 Word Abbreviation Commands

META-X Word Abbrev Mode
’ This command toggles the Word Abbreviation Mode
on and off. When Word Abbrev Mode is on, -a
notification will appear on the mode line in the
same parenthesis that contains Text, Auto Fill
and other mode information.

META-X Make Word Abbrev
Defines the abbreviation for a 1long word or
phrase. Prompts you for both the phrase and the
abbreviation. Your abbreviation is automatically
saved into a word abbreviation file.

CTRL-META-X Save Word Abbrev File
Saves any changes in the word abbreviation file.

- 46 -

Introductory ZMACS

META-X Read Word Abbrev File '
This command works like the META-X Load Library
command, and loads the word abbreviation file you
specify as an argument into the word abbreviation
library.

16.5.2 Creating a Word Abbreviation File

>>> We will now create a file of word abbreviations pertinent to
ZMACS. The order of operations is: :

1. Turn on Word Abbreviation Mode using the command META-X
Word Abbrev Mode.

2. Create a new buffer in which to write your word
abbreviations. Type in the abbreviations, for example:

zx ZMACS

// Lisp

wb word abbreviation

zt the on-line ZMACS tutorial

3. When finish typing in your abbreviations, save this buffer
into a file with the command META-X Save Word Abbrev File.
Remember the name of this file so you can load it in
again.

4. Whenever you want to use the Word Abbrev mode, use the
command META-X Read Word Abbrev File to load the particular
abbreviation file you wish to use.

Go to the file you want to edit. Make sure you are in Word
Abbrev mode. You are now ready to use the word abbreviations.
Each time you type an abbreviation and the following space, ZMACS
will f£fill in the complete phrase. For this reason you should
- choose your abbreviations carefully, since the letters you choose
followed by a space will automatically produce the abbreviation,
whether you intend it or not.

To define an abbreviation while editing a file, use the command
META-X Make Word Abbrev

It prompts you for the abbreviation and the word or phrase it is

to stand for. The default filename for a word abbreviation file

is WORDAB.DEENS. To add the abbreviations you have created during

your text editing session, use the command

CTRL-META-X Save Word Abbrev File

- 47 -

Introductory ZMACS

which will save the new abbreviations into the current word
abbreviation file. ’

16.5.3 Other Useful Word Abbreviation Commands

META-X List Word Abbrev _
Lists the words and abbreviations in the
currently-loaded word abbreviation file

META-X List Some Word Abbrevs
Give this command an abbreviation as a string and
it will list the expansion. Given the expansion,
it will list the abbreviation.

Use the HELP online documentation and Apropos optlon to -generate
a list of commands containing the substring "Abbrev' Type HELP,

"A" for Apropos, and the text string '"abbrev". This will
introduce you to other word abbreviation commands.

48

‘ ' Introductory ZMACS

Appendix A
BASIC COMMAND SUMMARY

BY KEX:
<key> CONTROL-<key>

Beginning of line
Back char

Delete next char
End of line
Forward char

Quit, break

Kill to line end
Redisplay

Next line
Previous line
Quoted insert
Reverse search
Search forward
Transpose character
Forward screenful
Kill marked region

Yank most recent kill
ubout Delete previous char
Mark to file beginning
Mark to file end

CIRL-X Commands:
CTRL-X CTIRL-F
CTRL-X CTRL-S
CTRL-X F
META-X Commands:
META-X Replace String

META-X Auto Fill Mode
META-X Apropos

VAKX E<HNmOoYIZICtARQmMHOw»

Char. eXtended command

META-<key>

Beginning of sentence

Back word

Delete next word

End of sentence

Forward word

Fill Region

Kill to sentence end
Lowercase word
Down comment line

Up comment line

Reform paragraph

Move to screen edge

Center line

Transpose words

Back screenful

Copy marked region

Named eXtended command

Yank previous kill

Delete previous word

Move to file beginning

Move to file end

Finds file
Saves file
Sets fill column

Queries before replacing
Performs auto fill

Lists functions containing a

-49_

Introductory ZMACS

substring

META-X Overwvrite Toggles to overwrite mode

CTIRL-META Commands:
CTRL-META-L

BY LEVEL:

Character operations

CIRL-F
CIRL-B
RUBOUT
CTRL-D
CIRL-T

Word operations

META-F
META-B
META-RUBOUT

META-D

META-T
META-C
META-U
META-L

Line operations
CTIRL-P
CTIRL-N

CIRL-A
CIRL-E

CTRL-O
CTRL-X CIRL-O
CLEAR INPUT
CIRL-K
CTRL-X CIRL-T

Sentence operations

META-A
META-E

Shifts between files being
edited

Cursor forward one character

Cursor backward one character

Deletes the character left of the cursor
Deletes the character under the cursor
Transposes the character under the cursor
with the character immediately before
cursor

Cursor forward one word

Cursor backward one word

Kills word left of cursor (CIRL-Y

yanks it back at cursor position)

Kills word right of cursor (CTRL-Y

yanks it back)

Transposes words left and right of cursor
Capitalizes word to right of cursor
Uppercases word to right of cursor-
Lowercases word to right of cursor

Moves cursor to the previous line (same
position on line)

Moves cursor to the next line (same
position)

Moves cursor to beginning of current line
Moves cursor to end of current line
Inserts a carriage return

Closes up blank lines

Kills from beginning of line to cursor
Kills from cursor to end of line
Interchanges lines before and after cursor.

Moves cursor to beginning of sentence
Moves cursor to end of sentence

- 50 -

Introductory ZMACS

CTRL-X RUBOUT Kills from beginning of sentence to
cursor (CTRL-Y yanks)

META-K Kills from cursor to end of
sentence (CTRL-Y yanks)

Paragraph operations

- META-[: Moves to beginning of paragraph
META-] Moves to end of paragraph
META-H Marks current paragraph
META-Q Fills current paragraph

CIRL-n CTRL-X F Sets the fill column to n characters

Screen operations

CTRL-V Moves to next screen
META-V Moves to previous screen
CIRL-L Moves cursor position to screen center

CTRL-n CTRL-L Moves cursor position to n lines from
top of screen

Page operations

CTRL-Q CLEAR SCREEN Inserts a PAGE character
META CLEAR-SCREEN The same

Buffer operations

CIRL-X B Selects another buffer:; default is
previous buffer

CTRL-X CTIRL-B Displays a mouse-sensitive menu of
available buffers

CTRL-X K Kills a buffer; default is current one

CTRL-META-L Moves to most recently displayed buffer.
(Good for switching between two buffers.)

CTRL-X CTRL-W Saves the current buffer but allows you to
specify a filename that may differ from
the default ‘

File operations

CTRL-X CTRL-F Creates or finds a file

META-< Moves cursor to beginning of file
CIRL-< Marks to beginning of file (does not
move cursor)
META-> Moves cursor to end of file
CTRL-> Marks to end of file (does not move cursor)

CTRL-X CTRL-S Saves the current file
META-X Delete File Deletes a file. The default is the
file corresponding to the current buffer

- 51 -

Introductory ZMACS

SUMMARY OF MOTION COMMANDS

_ forward . backward beginning end

Character level CIRL-F CTIRL-B

Word level META-F META-B

Line level CTRL-N CTRL-P CTRL-A CTRL-E
Sentence META-A META-E
Paragraph META-] META- [META- ['META-]
Page CTRL-X] CTRL-X [CIRL-X [CTRL-X]
Screen ’ CIRL-V META-V

Buffer META-> META-< META-< META->

Try the command META-X Generaté Wallchart for 1listing various
types of commands. It will list several options. Select the
option "all" to generate a list of all keyboard commands. :

52

ZMACS Reference Manual

1915-0000

First Edition, System Version 99

June 1985

Richard Stallman

Published by LMI 1000 Massachusetts Avenue. Cambridge MA 02138 USA

Copyright © 1985 Lisp Machine Incorporated.

ZMACS Reference Manual _ i Summary Table of Contents

Summary Table of Contents

Introduction L L L e 3
1. The ZMACS Frame &t i i i e e e e e e e s e e e et e e e u 5
2. Characters, Commandsand Funetions 11
3. Invoking ZMACS L L it e 15
4. Basic Editing Commands . . . v vt e e e e e e e e e e e e 19
5. Basic Mouse Commands e e e e e e e e e e e e 23 -
6. Numeric Arguments b e e e e e e e e e e e e e e e e e e 27
7.TheMinibuffer e e e 29
8. Extended (Meta-X) Commands 35
9. Help & e 37
10. The Mark andtheRegion o o v oo, 39
11. Killingand Moving Text ¢ i i i v v v v i e e . 45
12. Undoing Changes & & ¢ ¢ v vt i b b e v v et e e e e e e e e e e 53
13. The Various Quantities Command 57
14. Controllingthe Display ¢« i @« i e e e e e e e e 59
15. Searching« « . . i i e e e e e e e e e e e e e e e e e e e 61
16. Commands for Fixing Typos« « . v v v v v v e e e e e 71
172FileHandling0 0o o s 75
18. Dired, the Directory Editor v v« v v v v e e e e e e . 91
19. Using Multiple Buffers 0 0 0 e e e e e 99
20. Multiple Windows L e e e e e e e e e e e e e e e e 109
21.MajorModes o0 e e e e e e e e e e e 113
22. Indentation e 115
23. Caseand Fonts i i e e e e e e e e e e e e e 119
24. Commands for Natural Languages 125
25. Editing LISP Code & v ¢ v i i et et e e e e e e e e e e e e e 135
26. Running and Testing LISPPrograms 153
27. ZtopMode e e e e e e e e e e e 171
28. Word Abbrevs L L L L L e e e e e e e e e e e e e e e e 175
29. Miscellaneous Commands 00t e e e e e e e e 179
30. Attributesin FilesandinBuffers00 .. 187
31, Customization & v L s i e e e e e e e e e e e e e e e e e e 191
32. Correcting Mistakes and ZMACSProblems 205
Glossary . v v . v i e 209
Command FunctionIndexo .. 223
Command CharacterIndex ¢ 0 v i i e e e e e e 229
LISP FunctionIndex e e e e e e e 233
Variable Index L L L e e e e e e e e e e e e e e e e e e e 235
ConceptIndex ¢ & ¢ v i i i i e e e e e e e e e e s e e e e e e 237

ZMACS Reference Manual il Summary Table of Contents

O

ZMACS Reference Manual ii Table of Contents

Table of Contents

Preface « ¢ i i v o v v i il e e e e e e e e e e e e 1
Introduction e 3
1. The ZMACS Frame 0 . 0 i i i e et et e e e e e e e e e 5

101 Pointl L] 1] - * L] + . - . L] - L] » L « 58 e e s 8 8 8 &8 & 8 & 2 » & 2 & > s s & ¢ 5

L2 Typeout . . & v v v v i ot e 5

1.3TheEchoArea e e e e e e e e 6

14 The ModeLine e e e e e e e e e e e e e e 7

1.5 Cursor Position Information 00000 0., 8
2. Characters, Commandsand Functions 11

2.1 LISP Machine Character Set e e e e e e e e e e 11

2.2 Multicharacter Commands 0000 e e e 11

2.3 Commands, Functions,and Variables 12

24ZWEL e 13
3. InvokingZMACS e e e e e e e e e e e e 15

3.1 ExitingZMACS e e e et e e e e e e e e e e e e e e 16
4. Basic EditingCommands00 000 e e e e e e 19

411Inserting Text 0 0 i o e 19

4.2 Changing the Location of Pomt e e 4 e e e e e e e e e e e e e e e e e e e 20

43Erasing Text v v v i et e e e e e e e e e e e e e e e e e e 21

44Files L L L e 21

45Help e e e e e e e e e 22

4.6 Blank Lines e 22
5. BasicMouse Commands « v v v v v v o b et e e e e e e e e e e e e 23

5.1 Cursor Motionand Regions 23

5.2 Killing and Yanking e e e e e e e e e e e e e e e e e e .24

53 Scrolling e 24

5.4 Mouse-Sensitive Typeout e e e e e e e e e e e e e e e e e 24

5.5 The EditorMenu e e e e e e e e e e e e e e e e e e 25

SOBArguments L . 0 e 25
6. Numeric Argumentst i e e e e e e e e e e e e e e e e 27
7. TheMinibuffer o o i e e e e e e e e e e e e e e e e e e 29

7.1 Completion e e e e e e e e e e e e e e e e c e .. 30

7.1.1 Matching for Completxon 32

7.2 Repeating Minibuffer Commands 33

8. Extended (Meta-X) Commands v v v v v v e e e e e e 35

ZIMACS Beforence Manual iv Table of Contents
9. Help e 37
10. The Mark and the Region « « « v v o o o v o v v v W 39
10.1 OperatingontheRegion, 40
10.2 Commands to Mark Textual Objects « « . s « .« .. 41
103ThePoint Pl« 0 o v o o e e e e e e e 41
104 NamedMarks e e e e e e e e e e e e e e 42
11. Killing and Moving Text e e e e e e e e e 45
1.1 Deletionand Killing« ¢ v v 0 s st e 4D
1M1 dDeletion L L L s e e e e e e e e e e e e e s e 45
11.1.2Killing by Lines «« .« . . o 00 e e s e e e e 46
11.1.3 Other Kill Commands e e e e e e e e e e e e e e e e 47
11.2Yanking e e e e e e e e e e e e e 48
1120 Appending Kills« ..o oo o e 48
11.2.2 Yanking EarlierKills e e e e e e e e 49
11.3 Other Ways of Copying Text « « « ¢ « o« s 0 v o v v s s 50
11.3.1 Accumulating Text« o e e e e 50
11.3.2 Copying Text Using Registers s e e e e e e e e e 51

12. Undoing Changes « & « v v« o « 4 v s b e a s e s s e e e e e s 53
13. The Various Quantities Command « -« - . . oo 57
14. Controllingthe Display « . « « o v v o o o o v o s e e e 59
15. Searching e e e e e e e e e e e e e a e h e e e e e e s 61
15.1 Searchingand Case e e e e e s e e e e e e e e 63
15.2 Nonincremental Search o o s e e s e e e 63
15.3 Word Search e e e e e e e e e e e S e e e e e e e e e e e 64
154 LISP Pattern Search e e e e e e e e 65
15.5 Replacement Commands o 00 e s e e e e e 65
155.1 Replace String« .« . . o o o 0o 0 e e e e e e 65
1552 QueryReplace o0 e e e e e e e e 66
15.6 Other Search-and-Loop Commands «+ .« o o o v o 68
15.7 Extended Search Characters s o v o a0 e 68
16. Commands for Fixing Typos « . ¢« ¢ o « . b |
16.1 Killing Your Mistakes s e e e e e e e e e e e e e 71
16.2 Transposing Text « « v o« ¢ 0 0 v 0 0 o o s e e e e e e 72
163 Case Conversion . . « « « « ¢ s o 0 o s 000 e 0 e e e e e e e 72
16.4 Checking and Correcting Spelling e e e e e e e e e e e 73
17. File Handling e e e e e e e e e e s e e e e e e e e 75
17.1FileNames e e e e e e e e e e e e e 75
17.2 Visiting Files e e e e e e e s s e e e e s C e e e e 76

II

i
'
i
1
i
i

ZMACS Reference Manual 4 Table of Contents
17.2.1 Visiting Multiple Files « o ... T8
173 Saving Files Vi e e e e e e e e e e e e e e e e e e e 79
17.3.1 Protection against Simultaneous Editing 80

174 RevertingaBuffer 0 0 0 e e e e e e e e 81
17.5 Listing a File Directory e e e e e e e e e e e e 82
17.6 Deleting and ExpungingFiles 82
17.6.1 Expungingand Undeletion 83
17.6.2 Deleting Old Versions v . i i e e e e e 84
177 Comparing Files« . L e e e e e e e e e 84
1771 Merging Files 0 e e e e e e e e e e 86
17.8 Miscellaneous File Operations 87
18. Dired, the Directory Editor ., C e e e e e e e e e e e e e e e e e e 91
18.1 Deleting Files with Dired 91
18.2 Dired Cursor Motion e e e e e e e e e e e 92
18.3 Displaying Other Directories 93
18.4 Operations on File Properties 93
18.5 Other File OperationsinDired 94
18.6 Immediate File OperationsinDired 95
18.7 Sorting the Dired Buffero 0. 96
18.8 Balancing Directories Interactively 96
19. Using Multiple Buffers e e e e e e e e e e e e e e 99
19.1 Creating and SelectingBuffers 99
19.2 Specifying a Buffer withaFileName 101
19.3 Miscellaneous Buffer Operations 102
194 KillingBuffers L L e s e e e e e e e e e 102
19.5 Operatingon Several Buffers 103
198Buffler Groups L e e e e e e e e e e e 104
19.6.1 Creating and Selecting Buffer Groups 104
19.6.2 Searching a Groupof Buffers, 106
19.6.3 Stepping Through aBuffer Group R (i 14
19.6.4 Buffer Groups and Sectionization e e e e 107

20. Multiple Windows e e e e e e e e e e e e e e e e e s 109
21. MajorModes00 e e e e e e e e e e e e 113
22. Indentation e e e e e e e e e e e e e e e v e o. . . 115
221 TabStops e e e e e e e e e e e e e e e e e 117
22.2 Other Styles of IndentingaLine 117
23. CaseandFonts L . e e e e e e e e e e e e e 119
23.1 Case Conversion Commands v v v i v v e 119
23.2F0onts e 120

ZMACS Reference Manual vi Table of Contents ‘
93.2.1 Specifying the List of FontS . « « « + v v v o v e e e e e e e e e 120 l
23.2.2 Specifying a Font fromthe List 121
23.2.3 Font-Change Commands v v v v vt w e e e e e e 122
2324 Fontsand Copying Text v i i 0 vt 123 i

24. Commands for Natural Languages 125

QAL Text MOde .« o o v v e e e e e e e e e e 125 ‘
24.2Words L e 126 ;
24.3Sentences 0 . bt e e e e e e e e e e e e e e e e e e e 127
244 Paragraphs L L L L L L e e e e s e e e e e e e e e e 128 .
245 Pages L . L o e 129 :
248 Filling Text L .. e e e e e e e e e e e e e e 130
24.7 Editing Text Formatter Directives 133 l

24.7.1 Font ChangeCommands00 133 '

25. Editing LISP Code o o v i e s s e e e e e 135 i

251 LISPMode e 135
25.2S-expressionsand Lists0 0000000000 . . 136
25.3Defuns . . . L . L . e 138 .
254 LISP Indentation 4 . 0 0 e e e e e e e e e e e e e e 139

25.4.1 Customizing LISP Indentation 140
25.5 Automatic Display Of Matching Parentheses 143
25.6 Manipulating Comments e e e e e e e e e e e e e e e L. 143

25.6.1 Multiple Lines of Comments 144 l

25.6.2 CommentingQut Code o 0o e e e e e 145

25.6.3 Double and Triple Semicolonsin LISP 146

25.6.4 Options Controlling Comments 146 l
25.7 Case Conventions for LISPCode oo 0. 147
25.8 Editing Commands Based on LISP Semanties 148
25.9 Editing Without Unbalanced Parentheses 149 !
25.10 Documentation Commandsfor LISPCode 150

26. Running and Testing LISP Programs 153 l

26.1 Sectionization e 153 ‘
26.2 Compiling LISPFiles o oo o000 o oo oo e e 157 /
26.3 LISP Compilation and Evaluation. 157 .
26.4 Compiler Warnings 0 00 e e e e e e e . 160
26.5 LISP Debugging Aidsin ZMACS 0., 161 e
26.6 Exploring the Flavor Hierarchy oo 164 .
26.7 Possibilities Lists« . . L 0 o s e e e e e e e e e e e 164
26.8 The Pateh Facility« v v o v v v v v v s e 165

26.8.1 Making Patches 000000 o s s e 166

26.8.2 Private Patches o 0o e e s e e e 169

ZMACS Reference Manual Vil Table of Contents
27. ZtopMode L L L e 171
28. Word Abbrevs e e e e ot e et e e e e e e e e . . 175
28.1 Defining Abbrevs L L e e e e e e e e e e 175
28.2 Expanding Abbrevs L L L oo e e e e e e e e e e e e e 176
28.3 Examining and Altering Abbrevs e e e e e e e e e e e e e e e 177
28.4 Saving Abbrevs L 000000 PO £
29. Miscellaneous Commands v 0 ittt e e e e e e e e e 179
201 Recursive Edits L s e e e e e e e e e e e e 179
20.2SendingMail L L L L L e e e e e e e e e e e e e e 179
29.3 Hardcopy Qutput e e e e e e e e e e e e e e 180
204 80rting L s e 181
29.4.1 Evaluating Expressions Interactively 182
29.5 Editing Assembly-Language Programs 183
29.6 Major Modes for Other Languages 184
20.7 Dissociated Press 0 0 o e e e e e e e e e e e e e e e 185
30. Attributesin FilesandinBuffers 00000 . 187
30.1 Commands Setting Buffer Attributes e e s e e e e e e 188
31. Customization o . 0 oL o h e e e e e e 191
3l.dMinorModes L L L e e e e e e e e e e e e e e e e 191
31.2Variables L e e e e e e e e e e e e e e e e e e 192
1.3Keyboard Macros 4 0 0 b e e e e e e e e e e e e e e e e e 195
3131 BasicUse e e e e e e e e e e e e e e e e 196
31.3.2 Naming and Installing Keyboard Macros 197
31.3.3 Nesting Macro Definitions 198
31.3.4 Executing Macros with Variations 198
31.4 Command Functions and Command Tables 199
3141 CommandFunctions « . v« 4 0 it h e e e e e e e e 199
31.4.2 Changing Comtabs from ZMACS« « v v ¢« « o v v v o 199
31.4.3 Meta-X Availability00 0000 oo oL 201
31.5TheSyntax Table v v v i v i v vt e e e 202
32. Correcting Mistakes and ZMACS Problems e e e e e e e e e e 205
32.1 Quitting and Aborting b e e e e e e e e e e e e e e e e 205
32.2 Dealing with ZMACS Trouble o o v v v v v v v o 206
32.2.1 Subsystems and Recursive Editing Levels 206
32.2.2 GarbageontheScreen o000 0w e 206
3223 Garbageinthe Text o .o oo o000 207
32.2.4 ZMACS Hungand Not Responding 207
Glossary b h e 209

ZMACS Reference Manual viii Table of Contents
Command Function .lndex 223
Command Character Index ¢ ¢ o v v v v v v v h o e v e e e e e e 229
LISP Function Index e e e e a e e e e e e e e e e e e e e 233
VariableIndex L L L e e e e e e e e e e e e e 235
Concept Index e 237

L |

ZMACS Reference Manual i

Preface

This manual documents the use and simple customization of the display ZMACS editor. The
reader is not expected to be a programmer. Even simple customizations do not require program-
ming skill, but the user who is not interested in customizing can ignore the scattered customization
hints.

This is primarily a reference manual, but can also be used as a primer. I recommend that
the newcomer first use the on-line tutorial TEACH-ZMACS. With it, you learn ZMACS by using
ZMACS on a specially designed file that describes commands, tells you when to try them, and then
explains the results you see. This gives a more vivid introduction than a printed manual.

On first reading, you need not make any attempt to memorize chapters one and two, which
describe the notational conventions of the manual and the general appearance of the ZMACS
display screen. It is enough to be aware of what questions are answered in these chapters, so
you can refer back when you later become interested in the answers. After reading chapter three
you should practice the commands there. The next few chapters describe fundamental techniques
and concepts that are referred to again and again. It is best to understand them thoroughly,
experimenting with them if necessary.

To find the documentation on a particular command, look in the index if you know what the
command is. Characters and command functions have separate indexes just for them.

ZMACS is a member of the Emacs editor family. There are many Emacs editors, all sharing
common principlés of organization. For information on the underlying philosophy of Emacs and the
lessons learned from its development, write for a copy of Al memo 519a, “Emacs, the Extensible,
Customizable Self-Documenting Display Editor”, to

Publications Department
Artificial Intelligence Lab
545 Tech Square
Cambridge, MA 02139

ZMACS Reference Manual 2

1
|
|
i
A
I

ZMACS Reference Manual 3 Introduction

Introduction

You are about to read about ZMACS, the LISP Machine version of the advanced, self-documenting]

customizable, extensible real-time display editor Emacs.

We say that ZMACS is a display editor because normally the text being edited is visible on the
screen and is updated automatically as youv type your commands. See chapter 1 [Screen], page 5.

We call it a real-time editor because the display is updated very frequently, usually after each
character or pair of characters you type. This minimizes the amount of information you must keep
in your head as you edit. See chapter 4 [Basic Editing], page 19.

We call ZMACS advanced because it provides facilities that go beyond simple insertion and
deletion: filling of text; automatic indentation of programs; viewing two or more files at once; and
dealing in terms of characters, words, lines, sentences, paragraphs, and pages, as well as expressions
and comments in several different programming languages. It is much easier to type one command

meaning “go to the end of the paragraph” than te find that spot with simple cursor keys or the
mouse.

Self-documenting means that at any time you can type a special character, the key, to
find out what your options are. You can also use it to find out what any command does, or to find
all the commands that pertain to a topic. See chapter ¢ {Help], page 37.

Customizable means that you can change the definitions of ZMACS commands in little ways.
For example, if you use a programming language in which comments start with ‘<*#*’ and end with
‘e#>’, you can tell the ZMACS comment manipulation commands to use those strings. Another
sort of customization is rearrangement of the command set. For example, if you prefer the four
basic cursor motion commands {up, down, left and right} on keys in a diamond pattern on the
keyboard, you can have it. See chapter 31 [Customization], page 191.

Extensible means that youv can go beyond simple customization and write entirely new com-
mands, programs in the LISP language. ZMACS is entirely written in LISP and can be replaced,
function by function, by each user during a session. Of course, this is true of the entire LISP Ma-
chine system, so it may not seem worth mentioning for ZMACS in particular. However, extensible
Emacs editors existed before the LISP Machine system. One can just as well say that the LISP
Machine is the first system that is entirely as extensible as an Emaecs editor.

ZMACS Reference Manual 4 Introduction

|
J
|
i
i
1
g
|

ZMACS Reference Manual 5 The ZMACS Frame

1. The ZMACS Frame

ZMACS uses a special type of window called a ZMACS frame. You can create a new ZMACS
frame in several ways, such as by typing Control-E, and each ZMACS frame is an
independent ZMACS editor.

The ZMACS frame is divided into several windows, each of which contains its own sorts of

information. The biggest window is the one in which you usually see the text you are editing—the
text of the selected ZMACS buffer (see chapter 19 [Buffers|, page 99).

1.1 Point

One position in the selected buffer is identified as point. This is where most ZMACS editing
commands act. Other commands move point through the text, so that you can edit at different
places in it.

A blinking rectangular block cursor in the text window shows you the location of point. While
the cursor appears to point at a character, point should be thought of as between two characters;
it points before the character that the cursor appears on top of. Sometimes people speak of “the
cursor” when they mean “point”, or speak of commands that move point as “cursor motion”
commands.

The width of the cursor changes to match the character that it is on top of. If that character
is a tab character, the cursor is normally the width of a space. However, if the variable zwei:*tab-
blinker-flag® is set to nil, the cursor when before a tab character covers all the horizontal space that
the tab character occupies. See section 31.2 [Variables], page 192.

1.2 Typeout

The text window can also display typeout. This is output from an editing command that is not
actually part of the text being edited; for example, the list of all ZMACS buffers produced by C-X
C-B (List Buffers). Typeout can be recognized because it appears sequentially starting at the top
of the screen, with a cursor visible at the end, and a horizontal line stretching across the window
just below the bottom line of typeout.

The typeout appears there for your information, but it is not part of the file you are editing,

ZMACS Reference Manual 8 The ZMACS Frame

and as soon as you type another command the typeout disappears and the text you are editing
comes back. If you want to make typeout go away immediately but not do anything else, you
can type a (SPACE). (Usually the command inserts a space character, but when there is
typeout on the window does nothing but get rid of the typeout.) There is always a cursor
at the end of the typeout, but this does not mean that point has moved. The cursor moves back to
the location of point after the typeout goes away. This is an example of a typeout window. These
are described in a chapter in the Window System Manual.

ZMACS allows you to divert typeout from one command to be inserted in the current buffer
instead, with the command M-X Execute Command Into Buffer. After giving this command (and
typing to terminate the command name, of course), type any ZMACS command, possibly
a multi-character command starting with C-X, M-X or C-Shift-X. The second command executes
normally except for inserting any typeout it would have done. Point is left after the inserted text,
and the mark is left before it (but not activated). See chapter 10 [Mark}, page 39.

Typeout is often mouse-sensitive: it does something if you click the mouse on it. See section 5.4
[Mouse Typeout], page 24.

1.3 The Echo Area

A few lines at the bottom of the screen compose what is called the echo area. It is used to
display small amounts of text for several purposes.

Echoing means printing out the commands that you type. ZMACS does not echo single-
character commands, and usually does not echo short commands, but if you pause for more than a
second in the middle of a multi-character command, then all the characters typed so far are echoed.
This is intended to prompt you for the rest of the command. Once the beginning of a command
has been echoed, all the rest is echoed as soon as it is typed; so either the entire command or none
of it is echoed. This behavior is designed to give confident users fast response, while giving hesitant
users maximum feedback.

If a command cannot be executed, it may print an error message in the echo area. Error
messages are accompanied by a beep or by flashing the screen. Also, any input you have typed
ahead is thrown away when an error happens.

Some commands print informative messages in the echo area. These messages look much like
error messages, but they are not announced with a beep and do not throw away input. Sometimes
the message tells you what the command has done, when it is not obvious from looking at the

/'

ZMACS Reference Manual

=3

The ZMACS Frame

text being edited. Sometimes the sole purpose of a command is to print a message giving you
specific information. For example, the command C-X = is used to print a message describing the
coordinates of point in the window and its line number in the text.

The echo area is also used to display the minibuffer, a window three lines tall that is used for
reading arguments to commands, such as the name of a file to be edited. When the minibuffer is in
use, its rectangular outline appears within the echo area. You can always get out of the minibuffer
by typing (ABORT). See chapter 7 [Minibuffer], page 29.

1.4 The Mode Line

The line above the echo area is known as the mode line. Usually it starts with ‘ZMACS (some-
thing)’; something is usually ‘Lisp’. When the mode line looks that way, you are at top level,
typing ZMACS commands to edit the current buffer. If the mode line does not look that way, you
are inside a minibuffer or a recursive edit.

If the mode line starts and ends with brackets, ‘[...]’, then you are in a recursive edit inside
of another command. The text in the mode line says what command. See section 29.1 [Recursive
Edit), page 179.

While you are supplying an argument in the minibuffer, the mode line contains a prompt which
explains what sort of text you should enter with the minibuffer, and possibly some information
on how to do so (such as, that completion is available, or that extended search characters may
be used, or that only can be used to terminate the argument). See chapter 7 [Minibuffer],
page 29.

At top level, the mode line serves to indicate what buffer and file is being displayed in the
selected window; what major and minor modes are in use; and whether the bufler’s text has been
changed. The top level mode line has this format:

ZNACS (major minor) * pos bfr (vrs) Macro-level: n

major is always the name of the major mode you are in. At any time, ZMACS is in one and
only one of its possible major modes. The major modes available include Fundamental mode (the
least specialized), Text mode, LISP mode, C mode, and others. See chapter 21 [Major Modes],
page 113, for details of how the modes differ and how to select one.

ZMACS Reference Manual 8 The ZMACS Frame

minor is a list of some of the minor modes that are turned on at the moment. ‘Fill’ means
that Auto Fill mode is on. ‘Atom’ means that Atom Word mode is on. ‘Abbrev’ means that
Word Abbrev mode is on. ‘Ovwrt’ means that Overwrite mode is on. ‘Electric Shift Lock’
and ‘Electric Font Lock’ indicate the minor modes of the same names. See section 31.1 [Minor
Modes|, page 191, for more information.

The star in the mode line means that there are changes in the buffer that have not been saved
on the file server. If the current buffer is not “modifed”, no star appears.

pos gives an indication of which part of the text is being displayed. An upward arrow is present
if there is text in the buffer before what appears at the top of the window. A downward arrow
appears if there is more text below the bottom of the window. Both arrows appear if there is more
text above and more text below.

bfr is the name of the currently selected buffer. Each buffer has its own name and can hold
a file being edited; this is how ZMACS can hold severai files at once. But at any time you are
editing only one of them, the selected buffer. When we speak of what some command does to “the
buffer”, we are talking about the currently selected buffer. Multiple buffers make it easy to switch
around between several files, and then it is very useful that the mode line tells you which one you
are editing at any time. See chapter 19 Buffers|, page 99.

‘Macro-level: n' appears only during the definition of a keyboard macro. n is the depth in
macro definitions, normaily 1. See section 31.3 [Keyboard Macros}, page 195.

The mode line is not the same thing as the wholine; the wholine is a feature of the LISP Machine
system in general and appears at the very bottom of the screen no matter what program is running.
The ZMACS meode line is a feature specifically of ZMACS, and appears inside the ZMACS frame,
above the echo area.

1.5 Cursor Position Information

If you are accustomed to other display editors, you may be surprised that ZMACS does not
always display the page number or line number of point in the mode iine. This is because the text
is stored in a way that makes it difficult to compute this information. Displaying them all the time
would be too slow to be borne. They are not needed very often in ZMACS anyway, but there are
commands to print them,

C-X = Print row and column of point, following character code, and line number.

i\ -

ZMACS Reference Manual 9 The ZMACS Frame

C-= Similar but omit line number for greater speed.

The command C-X = (Where Am 1) can be used to find out the column that the cursor is in,
and other miscellaneous information about point. It prints a line in the echo area that looks like
this:

X=(13 chars{104 pixels|13 columns] Y=53 Char=#0215 Line=2283(29%)

The ‘X’ value says how far the cursor is from the left margin, in three different ways: the number
of actual characters, the number of pixels, and the number of columns (which is the number of
pixels, divided by the width of a space in font A). The number of characters is often the same as
the number of columns, but they can differ when variable-width fonts or multiple fonts are used.

The ‘Y’ value is straightforward: it is the number of lines in the editor window above the cursor.
The ‘Char’ value is the octal code for the character that follows point. (The characters ‘#o0’ are
to remind you that the character code is in octal.) The ‘Line’ value is the number of lines in the
buffer above the line point is on, and the percentage following expresses it as a fraction of the total
number of lines in the buffer.

If there is a region, C-X = prints additional text saying how many lines are in the region.

The command C-= (Fast Where Am 1) is like C-X = except that it omits the line count. Counting
the lines can make C-X = slow if the text is not all in core. C-= is always fast.

ZMACS Reference Manual 10 The ZMACS Frame.

- -

ZMACS Reference Manual it Characters, Commands and Functions

2. Characters, Commands and Functions

In this chapter we introduce the terminology and concepts used to talk about ZMACS com-
mands.

2.1 LISP Machine Character Set

The LISP Machine uses an 8-bit character set, which offers 256 different character codes. Some
of these codes are assigned graphic symbols such ‘a’ and ‘=’; some have names, such as
and (BREAK); some are completely unassigned.

Any of the 256 possible character codes can appear in files and in ZMACS buffers. Graphic
characters in ZMACS buffers are displayed according to the current font. Nongraphic characters
that have names are displayed as a lozenge containing the name, except for (RETURN), which causes
a new line to start in the display, and (TAB), which produces a variable amount of whitespace.
characters in the text are informally called newlines. Unassigned codes display as a
lozenge containing the octal character code.

Keyboard command for ZMACS come from the same 256-character set (though the unassigned
codes cannot be typed on the keyboard), but each character can be modified by the four keys
(CONTROL), (META), and (HYPER). These are commonly abbreviated as ‘C~’, ‘M-’, ‘S-’ and
‘H-’ in the names of keyboard characters; thus, C-M-F stands for Control-Meta-F, an F typed with
and held down. Sixteen possible combinations of those keys, times 256 basic
character codes, make 4096 possible ZMACS commands. Most of these are not defined!

Alphabetic case makes a difference in ZMACS commands; C-Shift-P is not the same character
as C-P, and the two characters have very different meanings. However, the key is
ignored whenever (CONTROL), (META), (SUPER) or (HYPER) is held down.

2.2 Multicharacter Commands

Most of the characters on the keyboard are complete ZMACS commands in themselves, though
they may read arguments or ask questions when executed. The characters Control-X, Meta-X,
and C-Shift-X are different; any of them serves as just the first character of a multicharacter
command.

ZMACS Reference Manual 12 Characters, Commands and Functions

The character C-X is a prefix character, which means that it and next character typed combine to
make a two-character command. The various two-character combinations starting with Control-X
are defined independently and they are documented individually in this manual.

Meta-X introduces an extended command, which has a long name made of one or more English
words. Following N-X, you must type the command name, possibly using completion to abbreviate
it. See chapter 8 [Extended commands], page 35.

C-Shitt-X introduces a three-character command in which the second character specifies a kind
of operation (move forward, kill, convert to lower case, etc.) and the third character specifies how
large a textual unit to operate on (lines, words, characters, sentences, etc.) See chapter 13 [Various
Quantities], page 57.

2.3 Commands, Functions, and Variables

Most of the ZMACS commands documented herein are single characters or two-character se-
quences. But ZMACS does not directly assign meanings to characters. Instead, ZMACS assigns
meanings to command functions, and then gives characters their meanings by connecting them to
command functions. A command function has a command name, a name such as Down Real Line
containing capitalized words separated by spaces. It also has a definition which is a LISP program;
this is how the command function does what it does. The connections or bindings between com-
mand characters and command functions are recorded in various command tables (or comtabs).
See section 31.4 [Comtabs], page 199.

When we say that “C-N moves down vertically one line” we are glossing over a distinction
that is irrelevant in ordinary use but is vital in understanding how to customize ZMACS. It is
the command function Down Real Line that is programmed to move forward by characters. C-N
has this effect because it is connected to that command function. If you reconnect C-N to the
command function Forward Word then C-N will move forward by words instead. Reconnecting
command characters is a common method of customization.

In the rest of this manual, we usually ignore this subtlety to keep things simple. To give the
extension-writer the information he needs, we state the name of the function that really does the
work in parentheses after mentioning the command name. For example, we will say that “C-N
(Down Real Line) moves point vertically down,” even though the real truth is that the command
function Down Real Line is programmed to move point vertically down and C-N is initially set up
to invoke that function.

ZMACS Reference Manual 13 Characters, Commands and Functions

While we are on the subject of customization information that you should not be frightened
of, it’s a good time to tell you about variables. Often the description of a command will say,
“To change this, set the variable zwei:*mumble-foo®.” A variable is a name used to remember a
value. Most ZMACS variables exist just to permit customization: the variable’s value is examined
by some command, and changing the value makes the command behave differently. Until you are
interested in customizing, you can ignore this information. When you are ready to be interested,
read the basic information on variabies, and then the information on individual variables will make
sense. See section 31.2 [Variables|, page 192.

2.4 ZWEI

ZMACS is based the ZWEI editor system {Zwei Was Eine Initially). The name ZWEI refers to a
collection of LISP data structures and subroutines for doing editing; ZMACS is the specific program
that uses ZWEI to provide s facility for editing files. Two other programs, ZMail and Converse,
also use the ZWEI editing routines, for editing incoming mail and communicating interactively
with other users. At some time in the future, input editing in LISP Listeners may use another
interface to ZWEIL

ZMACS Reference Manual 14 Characters, Coromands and Funetions

ZMACS Reference Manual 15 Invoking ZMACS

3. Invoking ZMACS

Since ZMACS is a window-oriented program, the usual way to invoke it is to select the window
ZMACS uses (the ZMACS frame). This can be done by clicking on it with the rhouse, or using the
system menu'’s Select option, just as you might select any window. Since ZMACS is used so often,
there are other convenience methods of selecting the ZMACS frame:

Type (SYSTEM) E. This selects an existing ZMACS frame. If one ZMACS frame is
already selected, and there are others, this selects one of the others.

Type (SYSTEM) Control-E. This creates a new ZMACS frame and selects it.
Click on the system menu’s Edit option.

There are also LISP functions for invoking ZMACS:

ed arg Function
Selects a ZMACS frame that is awaiting a command, creating one if necessary, and then
uses arg as a directive to find some text to edit. arg may be

nil to leave selected whatever buffer happens already to be selected in that
ZMACS.

A file name string or pathname, to visit the specified file.

A symbol, to visit the LISP definition of that symbol as if the Meta-. command
were used (see section 26.1 [Sectionization), page 153).

t to create and select a new non-file buffer.

The symbol zwei:reload to cause ZMACS to reinitialize its data structure of
buffers. Since this causes all existing ZMACS buffers to be lost, it is a very
drastic last resort. If you find it necessary to do this, you can probably manage
to avoid losing your previous work by calling zwei:save-all-files first.

sweliedit-functions &rest functions Function
Selects a ZMACS frame that is awaiting a command and then creates a possibilities list
(see section 26.7 |Possibilities Lists|, page 164) containing the functions function so that the
command C-Shift-P can be used to find the definitions of those functions.

dired directory Function
Invokes the Dired subsystem of ZMACS. First it selects a ZMACS frame that is awaiting

ZMACS Reference Manual 16 Invoking ZMACS

a command, creating one if necessary. Then it executes M-X Dired on directory. See
chapter 18 [Dired], page 91.

malil &optional recipient text caII—editor—ahyway. Function
If two args are specified, mail just sends a message with no interaction. If either recipient or
text is nil, or if call-editor-anyway is non-nil, mail selects a ZMACS frame that is awaiting
a command and then executes C-X N in it. If either text or recipient was specified, it is
inserted into the buffer to be used when you eventually send the message. See section 29.2
[Mail], page 179.

call-editor-anyway may be a number; in that case, it is a character position within text,
saying where point should be positioned inside the mail sending buffer.

swel:load-flle-into-ZMACS file-name Function
Creates a ZMACS buffer and visits file file-name in it. The new buffer, once created, can be
selected in any ZMACS frame, but zwei:load-file-into-ZMACS does not affect any particular
ZMACS frame. It just makes the buffer available for selection later.

sweli:load-directory-into-ZMACS directory Function
Creates a new ZMACS Dired buffer and initializes it to describe directory directory. The
buffer is then available for selection in any ZMACS frame,

look for a ZMACS frame that is awaiting a command, it is safe to use them, or the debugger
commands Control-E or Control-N, inside a ZMACS frame. The crashed ZMACS frame will not
be used since it is not awaiting a command; therefore, some other ZMACS frame will be used,
possibly a newly created one. In any case, the state of the ZMACS frame being debugged will not

be wiped out.

3.1 Exiting ZMACS

In the LISP machine system, a window-oriented program does not really need a command to
exit. When you wish to use some other program, simply select another window. However, there
- are a few commands in ZMACS that do exit, by selecting the previously selected window.

c-Z Exit from ZMACS.
N-Z Compile the current buffer and exit from ZMACS.

ZMACS Reference Manual 17 Invoking ZMACS

C-N-2 Evaluate the current buffer and exit from ZMACS.

Exiting ZMACS is much like the 8 command for switching windows, but there is
one difference: 8 is executed immediately when you type it, but an exit command
such as C-Z does not do its work until ZMACS is ready for it. You can type ahead input following
an exit command, while ZMACS is doing work such as a compilation, and be sure that the further
input will not be read until ZMACS’s current activity is finished. With 8, you would
switch windows instantly and ZMACS’s activity would continue in the background; then you might
not be able to tell when it was finished.

See section 26.3 [Compile Text], page 157, for more information on compilation and evaluation
from ZMACS buffers, including the M-Z and C-N-Z commands.

ZMACS Reference Manual 18 Invoking ZMACS

- =l -

ZMACS Reference Manual 19 Basic Editing Commands

4. Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in a file.
If this material is new to you, you might learn it more easily by running the TEACH-ZMACS
learn-by-doing tutorial. (To do this, type Meta-X Teach ZMACS (RETURN).)

4.1 Inserting Text

To insert printing characters into the text you are editing, just type them. Except in special
modes, ZMACS defines each printing character as a command to insert that character into the
text at the cursor (that is, at point; see chapter 1 [Screen|, page 5). The cursor moves forward.
Any characters after the cursor move forward too. If the text in the buffer is ‘FOOBAR’, with the
cursor before the ‘B’, then if you type XX, you get ‘FOOXXBAR’, with the cursor still before the ‘B’.

To correct text you have just inserted, you can use (which runs the command function
named Rubout). deletes the character before the cursor (not the one that the cursor is
on top of or under; that is the character after the cursor). The cursor and all characters after it
move backwards. Therefore, if you type a printing character and then type (RUBOUT), they cancel
out.

To end a line and start typing a new one, type (running the command function Insert

Crs). operates by inserting a newline (a character) in the buffer. If point is in
the middle of a line, splits the line. Typing (RUBOUT) when the cursor is at the beginning
of a line rubs out the newline before the line, thus joining the line with the preceding line.

If you add too many characters to one line, without breaking it with a (RETURN), the line will
grow to occupy two (or more) lines on the screen, with a ‘!’ at the extreme right margin of all
but the last of them. The ‘1’ says that the following screen line is not really a distinct line in the
text, but just the continuation of a line too long to fit the screen. Sometimes it is nice to have
ZMACS insert newlines automatically when a line gets too long; for this, use Auto Fill mode (see
section 24.6 [Filling], page 130).

Direct insertion works for printing characters and space, but other characters act as editing
commands and do not insert themselves. If you need to insert a nongraphic character such as

ALTNODE), or (ABORT), you must quote it by typing Control~Q (Quoted Insert) first. There

are two ways to use it.

ZMACS Reference Manual 20 Basic Editing Commands

Control-Q followed by any non-graphic character (even (ABORT)) inserts that charac-
ter. .

Control-Q followed by three octal digits inserts the character with the specified char-
acter code. '

A numeric argument to C-Q specifies how many copies of the quoted character should be inserted.

In the ASCII character set, control characters are codes 0 through 37 (octal), and are named
after the characters with codes 100 through 137 (mostly letters). Thus, code 1 is ASCII control-A.
c-Q followed by a Control- letter inserts the character code for the ASCII control character for
that letter. Thus, C-Q C-A is equivalent to C-Q 0 0 1. This inserts a |, which is code 1 in the
LISP Machine character set, but is CTRL-A when stored on file servers that use ASCIL

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see section 1.1 {Point],
page 5). Here are a few of the commands for doing that.

C-A Move to the beginning of the line (Beginning Of Line).
C-E Move to the end of the line (End Of Line).
C-F Move forward one character (Forward).
C-B Move backward one character (Backward).
. C-N Move down one line, vertically (Down Real Line). If you start in the middle of one line,

you end in the middle of the next. From the last line of text, C-N creates a new line

and moves onto it.

c-P Move up one line, vertically (Up Real Line).

c-L Clear the screen and reprint everything (Recenter Window).

c-T Transpose two characters, the ones before and after the cursor (Exchange Characters).
N-< Move to the top of the buffer (Goto Beginning). With numeric argument n, move to n /10

of the way from the top. See chapter 6 [Arguments], page 27, for more information on
numeric arguments.

N-> Move to the end of the buffer (Goto End).

arg C-N-# Move to arg characters from the top of the buffer (Goto Character). See chapter 6
[Arguments], page 27, for information on how to type the argument arg. Given a
negative argument -arg, move to arg characters from the top of the buffer, counting
each newline as two characters. This is useful for going to a character position identified
by a program running on a PDP-10.

N

|

ZMACS Reference Manual 21 Basic Editing Commands

C-X C-N Set current column as goal column for C-N and C-P. Henceforth, those commands move
to this fixed column in the line moved to (Set Goal Column).

C-U C-X C-N
Cancel the goal column. Henceforth, C-N and C-P try to stay in the same column, as
usual.

4.3 Erasing Text

Delete the character before the cursor (Rubout).
c-D Delete the character after the cursor (Delete Forward).
c-K Kill to the end of the line (Kill Line).

You already know about the command which deletes the character before the cursor.
Another command, Control-D, deletes the character after the cursor, causing the rest of the text
on the line to shift left. If Control-D is typed at the end of a line, that line and the next line are
joined together.

To erase a larger amount of text, use the Control-K command, which kills a line at a time. If
Control-K is done at the beginning or middle of a line, it kills all the text up to the end of the
line. If Control-K is done at the end of a line, it joins that line and the next line.

See section 11.1 [Killing], page 45, for more flexible ways of killing text.

4.4 Files

The commands above are sufficient for creating and altering text in an ZMACS buffer; the more
advanced ZMACS commands just make things easier. But to keep any text permanently you must
put it in a file. Files are named units of text that are stored on computers called file servers. To
look at or use the contents of a file in any way, including editing the file with ZMACS, you must
specify the file name.

Consider a file named Jusr/rms/foo.bar residing on a Unix file server named plugh. To edit
this file, type the command C-X C-F and then give the file name plugh:/usr/rms/foo.bar as an
argument, ending it with (RETURN). ZMACS obeys by visiting the file: creating a buffer, copying
the contents of the file into the buffer, and then displaying the buffer for you to edit. You can make
changes in it, and then save the file by typing C-X C-8. This makes the changes permanent by

ZMACS Reference Manual 22 Basic Editing Commands

copying the altered contents of the buffer back into the file fusr/rms/foo.bar on the server. Until
then, the changes are only inside your ZMACS, and the file foo.bar is not changed.

To create a file, just visit the file with C-X C-F as if it existed. ZMACS will make an empty
buffer in which you can insert the text you want to put in the file. When you save your text with
C-X C-8, the file will be created.

Of course, there is a lot more to learn about using files. See chapter 17 [Files], page 75.

4.5 Help

If you forget what a command does, you can find out with the (HELP) character. Type
followed by ¢ and the command you want to know about. (HELP) can help you in other ways as
well. See chapter 9 [Help]|, page 37.

4.6 Blank Lines

c-0 Insert one or more blank lines after the cursor.

C-X C-0 Delete all but one of many consecutive blank lines.

When you want to insert a new line of text before an existing line, you can do it by typing the
new line of text, followed by (RETURN). However, it may be easier to see what you are doing if
you first make a blank line and then insert the desired text into it. This is easy to do using the
command €-0 (Customizers: this is the function Make Room), which inserts a newline after point
but leaves point in front of the newline. After C-0, type the text for the new line. C-0 F 0 0 has
the same effect as F 0 0 (RETURN), except for the final location of the cursor.

You can make several blank lines by typing C-0 several times, or by giving it an argument to
tell it how many blank lines to make. See chapter 6 [Arguments|, page 27, for how.

If you have many blank lines in a row and want to get rid of them, use the command C-X C-0
(the command function Delete Blank Lines). When point is on a blank line that is adjacent to
at least one other blank line, C~X C-0 deletes all but one of the consecutive blank lines, leaving
exactly one. With point on a blank line with no other blank line adjacent to it, the sole blank
line is deleted, leaving none. When point is on a nonblank line, C-X C-0 deletes any blank lines
following that nonblank line.

ZMACS Reference Manual 23 Basie Mouse Commands

5. Basic Mouse Commands

The mouse can be used tc move the ZMACS cursor, to scroll text in the window, and also to
kill, move or copy text.

5.1 Cursor Motion and Regions

Moving the cursor is done with [f.] Point moves to the nearest possible spot to where the mouse
is. (Remember that point can be located only next to a character that exists; it cannot be located
past the end of the text on a line.}

If you press ‘fi and move the mouse while holding the button down, you will mark a region.
Mark will be at the place where you pushed the button down, and point where you let go of the
button. As you move the mouse, the underlining changes to show you what region you will select.
If you click without moving the mouse, point and mark are set at the same place. See chapter 10
[Mark], page 39.

You can also mark a region using ﬂ Depending on the position of the mouse, and on the
ZMACS major mode, you can mark & word, line, sentence, or LISP expression.

At the beginning or end of a line, the entire line is marked {not including the following
newline).

At a parenthesis, the entire parenthetical grouping {including parentheses) is marked.
At a double-quate {**'}, the entire quotation or string is marked.

Anywhere else, the word or LISP symbol that point is in is marked. (LISP symbols are
marked in LISP mode and related modes).

If you move the mouse with the middle buttor held down, the underlined textual unit changes
as the mouse moves. When you release the mouse button, the text then underlined becomes the
new region. '

moves the mouse cursor instantaneously to where point is. This is useful if you wish to use

_ the mouse for editing operations in the vicinity of point, because you do not have to move the

mouse way across the screen to get there. Fi] has no effect on point or on the text being edited.

ZMACS Reference Manual 24 Baslc Mouse Commands

5.2 Killing and Yanking

Killing and yanking with the mouse are done with m This one command can kill or yank,
depending on circumstances. See section 11.1 [Killing], page 45.

o If there is a nonempty region, then its contents are copied into the kill history. This
is like the Meta-W command.

o If m is done a second time, with no other commands in between, then the region that
was saved the first time is now deleted from the text.

e In any other circumstances, the contents of the top of ‘the kill history are inserted in
the buffer at point. This is just like the C-Y command.

Note that the position of the mouse does not matter when @] is done. The effect of the command
depends only on point, the mark, and the kill history.

5.3 Scrolling

To scroll with the mouse, use the scroll bar at the left edge of the ZMACS window. Push
the mouse against the left edge of the window until the mouse cursor changes shape to a thick
up-and-down arrow. The standard scroll bar commands are available:

m moves the line the mouse is pointing at to the top of the window.
@ moves that line to the bottom of the window.
ﬂ moves the line at the top of the window down to where the mouse points.

ﬂ uses the position of the mouse down the side of the window to specify which part
of the buffer should be visible. The mouse at the top of the window means show the
start of the buffer; the bottom of the window means show the end of the buffer; 1/3
of the way down the window means show the text 1/3 of the way into the buffer.

Another way to scroll with the mouse is to push it against the top or bottom edge of the text
window, near the right edge. If the mouse cursor changes to a thick arrow, you have found the
right spot. As you push the mouse, the buffer scrolls one line at a time.

5.4 Mouse-Sensitive Typeout

Typeout often contains mouse-sensitive text that does something if you click the mouse on it.

ZMACS Reference Manual : 25 Basic Mouse Commands

This is implemented using the flavor tv:basic-mouse-sensitive-items; refer to the Window System
Manual for information on it. A mouse-sensitive text item displays a rectangular outline when the
mouse is inside it; this is how you can tell that you have found mouse-sensitive typeout.

Typically each mouse-sensitive item defines several operations; m performs one of them, the
one we expect you will use most often, while [ﬁ] pops up a menu of all the defined operations. When
the mouse is pointing at the item, the mouse documentation line at the bottom of the screen lists
all the available operations.

For example, each line in the list of buffers printed by C-X C-B is mouse-sensitive, and clicking
on it operates on the buffer described on that line. The most common operation is to select the
buffer; (L} does this. (R} brings up a menu containing both selection and other operations such as
killing and saving.

5.5 The Editor Menu

The command m in the text window invokes a pop-up menu of editor commands. Most of these
commands can be invoked with characters or extended commands also, and act no differently when
invoked with the menu.

5.6 Arguments

Commands that read the name of a LISP function using the minibuffer provide a special meaning
for m when the minibuffer is empty. All names of LISP functions in the text become mouse-sensitive
and are outlined when pointed at. ﬂ causes the LISP function name pointed at to be used as the
argument to the command. The mouse cursor changes to a thin arrow pointing straight upward
when this capability is available.

ZMACS Reference Manual 26 Basic Mouse Commands

----L_

ZMACS Reference Manual 27 Numeric Arguments

6. Numeric Arguments

Any ZMACS command can be given a numeric argument. Some commands interpret the argu-
ment as a repetition count. For example, giving an argument of ten to the C-F command (move
forward one character) moves forward ten characters. With these commands, no argument is
equivalent to an argument of one. Negative arguments are allowed. Often they tell a command to
move or act backwards.

Some commands care only about whether there is an argument, and not about its value. For
example, the command N-Q (Fill Paragraph) with no argument fills text; with an argument, it
justifies the text as well. (See section 24.6 [Filling], page 130, for more information on M-Q.)

Some commands use the value of the argument as a repeat count, but do something peculiar
when there is no argument. For example, the command C-K (Kill Line) with argument n kills n
lines, including their terminating newlines. But C-K with no argument is special: it kills the text
up to the next newline, or, if point is right at the end of the line, it kills the newline itself. Thus,
two C-K commands with no arguments can kill a nonblank line, just like C-K with an argument of
one. (See section 11.1 [Killing|, page 45, for more information on C-X.)

The simplest way to specify an argument is to type digits and/or a minus sign while holding
down the key, the key, the key, or the key, or any combination
of them. It is easiest to use the same combination of shift keys for the digits that you are going to
use for the command that follows; thus, Control-6 Control-N or Control-Meta-Minus Control-
MNeta-8 Control-Meta-U.

Another way of specifying an argument is to use the C-U (Universal Argument) command followed
by the digits of the argument. With C-U, you can type the argument digits without holding down
shift keys. To type a negative argument, start with a minus sign. Just a minus sign normally
means -1.

C-U followed by a character that is neither a digit nor a minus sign has the special meaning of
“multiply by four”. It multiplies the argument for the next command by four. Two such C-U's
multiply it by sixteen. Thus, C-U C-U C-F moves forward sixteen characters. This is a good way
to move forward “fast”, since it moves about 1/5 of a line in the usual size window and font. Other
useful combinations are C-U C-N, C~-U C-U C-N (move down a good fraction of a screen), C-U C-U
€-0 (make “a lot” of blank lines), and C-U C-K (kill four lines). With commands like M~Q that care
whether there is an argument but not what the value is, C-U is a good way of saying, “Let there
be an argument.” '

ZMACS Reference Manual 28 Numeric Arguments

A few commands treat a plain C-U differently from an ordinary argument. A few others may
treat an argument of just a minus sign differently from an argument of -1. These unusual cases
will be described when they come up; they are always for reasons of convenience of use of the
individual command.

ZMACS Reference Manual 29 The Minibuffer

7. The Minibuffer

The minibuffer is the facility used by ZMACS commands to read arguments more complicated
than a single number. Minibuffer arguments can be file names, buffer names, LISP function names,
ZMACS command function names, LISP expressions, and many other things, depending on the
command reading the argument.

The minibuffer appears in the echo area, with a rectangular outline. A blinking cursor appears
within it. The cursor in the editing window above stops blinking, because that window is no longer
selected. Above the minibuffer, the mode line displays a prompt describing what kind of argument
you should enter with the minibuffer, and how; and what defaults there are, if any. This is instead
of the usual contents of the mode line.

Usually, you will enter a minibuffer argument by typing the text and ending with (RETURN) or
(END). In some case, where multi-line arguments are expected, only can be used to exit; the
mode line always says so when this is so. When completion is available, these two characters both
exit but do other things differently; sce below. The mode line says when completion is available.

The command is defined, in the minibuffer, to get out of the minibuffer and cancel
the command for which you were supplying an argument. Control-G has the same eflect, if the
minibuffer is empty; if it is not empty, Control-G deletes its contents, so that one or two Control-G
commands has the same effect as (ABORT).

The minibuffer is a ZMACS buffer {albeit a peculiar one), and the usual ZMACS commands
are available for editing the text of an argument you are editing. You can even switch to another
window using C-X 0, and change the text there, before returning to the minibuffer to submit the
argument. You can kill text in another window, return to the minibuffer window, and then yank
the text to use it in the argument. But you cannot use any commands that need the minibuffer
while the minibuffer is in use; recursive minibuffers are not allowed. Also, you cannot switch buffers
in the minibuffer window, even with a command like C-M-L that does not use the minibuffer itself.
The minibuffer and its window are permanently attached. You can switch buffers using C-N-L or
mouse clicks in other windows while the minibuffer is active, however.

Often there is a default argument which is used if you type without inserting any
text. The prompt line says what the default is. The command C-Shift-Y (Yank Default String)
inserts the text for the default into the minibuffer so you can use it with modifications. C-Shift-Y
is defined this way only in the minibuffer.

Histories are kept for many kinds of minibuffer arguments. For example, all buffer name ar-

ZMACS Reference Manual 30 , The Minibuffer

guments go on one history, all file name arguments go on another, and all LISP function name
arguments go on yet another history. The contents of the appropriate history can be yanked into
the minibuffer with C-M-Y (Yank Previous Input). Numeric arguments can be used to refer to earlier
entries in the history, as with C-Y, and M-Y can be used to move around in the history. C-M-0
C-N-Y prints a list of the recent elements in the history. See section 11.2 [Yanking|, page 47. C-M-Y
is defined this way only in the minibuffer.

You can also yank the last string that C-8 searched for. To do this, type C-Shift-S (Yank
Search String). C-Shift-8 is defined this way only in the minibuffer.

m when the mouse is pointing at a non-completing minibuffer window exits the minibuffer, just

like (END).

7.1 Completion

Often, the minibuffer provides a completion facility. This means that you type enough of the
argument to determine the rest, based on ZMACS’s knowledge of which arguments make sense,
and ZMACS visibly fills in the rest, or as much as can be determined from the part you have typed.

When completion is available, certain commands-—(ALTMODE), (END), (RETURN), and (SPACE)—

are redefined to complete an abbreviation present in the minibuffer into a longer string that it
stands for, by matching it against a set of completion alternatives provided by the command
reading the argument. The word ‘completion’ appears in parentheses at the right hand edge of
the mode line when completion is available.

For example, when the minibuffer is being used by Meta-X to read the name of a ZMACS
extended command, it is given a list of all available ZMACS extended command names to complete
against. The completion characters match the text in the minibuffer against all the command
names, find any additional characters of the name that are implied by the ones already present in
the minibuffer, and add those characters to the ones you have given.

Here is a list of all the completion commands, defined in the minibuffer when completion is
available.

Complete the text in the minibuffer as much as possible.
Complete the text in the minibuffer but don’t add or fill out more than one word.
Submit the text in the minibuffer as the argument, possibly completing first as de-

ZMACS Reference Manual 31 The Minibuffer

scribed below.
C-(RETURN)

Submit the text in the minibuffer as the argumént, with no completion.
Complete the text in the minibuffer as much as possible, and if the result is an exact
match, submit it as the argument.

c-? Print a list of all possible completions of the text in the minibuffer. If there is only
one, some documentation of it may also be printed. The possible completions are
mouse-sensitive; clicking ‘f‘ on one of them chooses it as the argument and exits the
minibuffer immediately.

c-/ Print a list of all completion alternatives containing any one or more of the words in
the minibuffer. They are mouse-sensitive like the completions €-? prints.

Completion is very hard to explain but easy to understand once vou have seen it in operation.
If you type Meta-X a t (SPACE), the second looks for an alternative (in this
case, an extended command name) whose first word starts with a and whose second word starts
with f. There is only one such command name: Auto Fill Mode. So the ‘a’ is changed to ‘Auto’
and the ‘2’ is changed to ‘Fi11’. So at this point the minibuffer contains ‘Auto Fill . If you type
another Space, it inserts the word ‘Mode’, since that is the only possible third word that makes a
valid extended command name.

The command performs completion much like (SPACE), but it does not stop at the
end of a word. It adds on as many words or parts of words as it can determine from what you

have typed. If you type Meta-X a £ (ALTMODE), (ALTMODE) not only extends the ‘a’ to
‘Auto’ and the ‘¢’ to ‘Fill’, it adds the word ‘Mode’ immediately.

The command which exits the minibuffer also does completion just like (ALTMODE). If your
input completes to a unique alternative, exits the minibuffer. If your input is an abbreviation
for two different alternatives, or is not an abbreviation for any, then just beeps, and the
minibuffer remains displayed so you can correct your input and try (END) again.

There are three different ways that the command can work in completing minibuffers,
depending on how the argument will be used.

Strict completion is used when it is meaningless to give any argument except one of the
known alternatives. For example, when C-X K reads the name of a buffer to kill, it is
meaningless to give anything but the name of an existing buffer. In strict completion,
refuses to exit if the text in the minibuffer does not complete to an exact
match,

Permissive completion is used when any string whatever is meaningful, and the list

ZMACS Reference Manual 32 The Minibuffer

of completion alternatives is just a guide. For example, when C-X C-F reads the
name of a file to visit, any file name is allowed, in case you want to create a file.
In permissive completion, takes the text in the minibuffer exactly as given,
without completing it.

Reluctant completion is used only by C-X B to read the name of a buffer to switch to.
In this case, attempts to match the text in the minibuffer as an abbreviation
for a buffer name. If it matches, the buffer name matched is used as the argument.

If it does not match, the first just beeps, but if you type again

immediately after, it uses the text as present in the buffer as the argument. The
character C~(RETURN) can be used to force exiting without even trying completion.

(SPACE) and C-/ are not available for completion of file names. This is because file names are
completed by file servers, not by ZMACS.

Two mouse commands are different when the mouse is pointing at a completing minibuffer: ﬂ

and ﬂ ﬂ has the same effect as typing (RETURN). m pops up a menu containing a list of possible
completions of the text already in the minibuffer, so that you can then use the mouse to choose

one. Choosing from the menu exits the minibuffer immediately, returning the chosen completion.

7.1.1 Matching for Completion

When text in the minibuffer is to be matched against a completion alternative, both are first
broken up into words. Each successive word of the minibuffer text must match the beginning of
the corresponding word of the completion alternative, in order to make that alternative a possible
completion.

Once all the possible completions of the minibuffer text are found, they are compared word by
word. In each word, all the characters common to the beginnings of all the possible completions
become the completion result.

Most completion commands insert the entire completion result into the minibuffer in place of
the existing text. This has the effect of inserting any characters that are uniquely determined by
the characters already there.

works differently. It inserts only as many words of the completion result as there were
word separators in the minibuffer already (including the just inserted). The result is that
each time you type a (SPACE), only one word is added to the minibuffer. The characters
you type match the spaces in the completion alternative you are abbreviating.

ZMACS Reference Manual 33 The Minibuffer

7.2 Repeating Minibuffer Commands

Every command that uses the minibuffer at least once is recorded on a special history list,
together with the values of the minibuffer arguments, so that you can repeat the command easily. In
particular, every Meta-X command is recorded, since M-X uses the minibuffer to read the command
name.

c-x

Re-execute a recent minibuffer command.
N-Shift-Y

Re-execute a different command instead.

c-X (Repeat Mini Buffer Command) is used to re-execute a recent minibuffer-using
command. With no argument, it repeats the last such command. A numeric argument larger than
one specifies an earlier command to repeat.

The previous command is repeated as if you had typed it again; but each time it needs to read
an argument using the minibuffer, the minibuffer starts out containing the same text that was
supplied the last time the command was run. If you want to use the same argument as before, exit

immediately with or as appropriate; otherwise, edit the argument first.

If c-x begins repeating a command other than the one you intended, you can switch
to an earlier command by typing M-Shift-Y (Pop Mini Buffer History). It cancels the command
being repeated and starts repeating the previous one in the history. With a numeric argument, it
can move any number of commands; a negative argument moves to more recent commands.

N-Shift-Y has another use. If a command reads more than one argument using the minibuffer,
N-Shift-Y backs up to the previous minibuffer argument, giving you a chance to alter it and
proceed again.

Cc-U 0 C-X prints a list of the previous minibuffer commands now remembered.
Each one is preceded by a number giving its position in the list—the argument you would have to
give to C-X to repeat that command. You can also repeat any of those commands by
clicking (€} on the line that describes it.

ZMACS Reference Manual 34 The Minibuffer

ZMACS Reference Manual 35 Extended {Meta-X} Commands

8. Extended (Meta-X) Commands

Not all ZMACS commands are of the one or two character variety you have seen so far. Other
commands are invoked by long names composed of English words, such as Auto Fill Mode or Fill
Long Comment. This is because the long names are easier to remember, for commands that are
not used often. The commands with long names are known as extended commands because they
extend the set of two-character commands. This chapter tells more about how to type extended
commands in general. Individual extended commands are documented throughout the manual.

Extended commands are also called M-X commands, because they consist of Meta-X (Extended
Command) followed by the name of the extended command. M-X reads the command name using the

minibuffer. Terminate the command name with (RETURN). For example, the extended command
Fill Long Comment can be invoked by typing

N-X Fill Long Comment

ZMACS uses the minibuffer for reading input for many different purposes; on this occasion the
mode line, which is just above the box, changes to display the string ‘Extended command:’ as a
prompt to tell you that on this occasion your input is the name of an extended command. See
chapter 7 [Minibuffer], page 29, for full information the features of the minibuffer.

Abbreviated command names are allowed, because completion: is provided from the set of all
possible extended command names. See section 7.1 [Completion], page 30.

If while in the minibuffer you change your mind about issuing an extended command, type

(ABORT). This makes the minibuffer disappear and cancels the M-X command. It leaves you at top
level, with ZMACS ready to read a new command.

Some extended commands can use numeric prefix arguments. Simply give the Meta-X command
an argument and Meta-X will pass it along to the function that it calls. The argument appears in
the prompt while the command name is being read.

Normally, when describing an extended command, we omit the (RETURN). After all, it is just
a command to exit the minibuffer, and you could alternatively accomplish that using or
C-(RETURN). We mention the only when there is a need to emphasize its presence, such
as when describing a sequence of input that contains an extended command and arguments that
follow it.

ZMACS Reference Manual 36 Extended {Meta-X) Commands

Recall that every ZMACS command invokes a command function that has a multi-word com-
mand name. In an extended command, you type the command name itself to say which command
function you want to run. Thus, we speak of the command M-X Save A}l Files which runs the
command function Save All Files. However, not all command functions are available through M-X.
The comtabs control which are available. See section 31.4 [Comtabs], page 199.

----t-

ZMACS Reference Manual _ 37 Help

9. Help

ZMACS provides extensive self-documentation features which revolve around a single character,

(HELP). At any time while using ZMACS, you can type the character to ask for help.

If you type in the middle of a multi-character command, it often tells you about what
sort of thing you should type next. For example, if you type M-X and then (HELP), it tells you how
to use the minibuffer and what command names are available. If you are in the minibuffer entering
an argument to a command, prints information on how to use the minibuffer and on the
command that is reading the argument.

But normally, when it’s time for you to start typing a new command, offers you several
options for asking about what commands there are and what they do. It prompts with a string

Help. Options are C,D,L,A,U,V,W, <Space>, <Help>

and you should type one of those characters. Typing at this time prints a description of
what the options mean. The ones you are likely to need are described here.

The most basic options are € and D. C describes the meaning of

a character or sequence of characters; type it followed by a command sequence, and it prints the
documentation of the command function that command sequence runs. D is similar but
reads the name of a command function. Thus, both C M-F and D Forward Word
print something like “Moves forward by words.”

A more complicated sort of question to ask is, “What are the commands for working with files?”
For this, type A tile (RETURN), which prints a list of all command names that contain
‘2ile’, such as Save All Files, Find File, and so on. With each command name appears a brief
description of how to use the command, and what character sequence you can currently invoke it
with. For example, it would say that you can invoke Save File by typing C-X C-8. A stands for
‘Apropos’; A runs the ZMACS command function Apropos, which does something analogous
to the LISP function apropos.

Because Apropos looks only for functions whose names contain the string that you specify,
you must use ingenuity in choosing substrings. If you are looking for commands for killing back-
wards and A Kill Backwards doesn’t reveal any, don’t give up. Try just ‘kill’, or just
‘backwards’, or just ‘back’. Be persistent. Pretend you are playing Adventure.

ZMACS Reference Manual 38 Help

Here is a set of Apropos strings that covers many classes of ZMACS commands, since there
are strong conventions for naming the standard ZMACS commands. By giving you a feel for the
naming conventions, this set should also serve to aid you in developing a technique for picking

Apropos strings.

character, line, word, sentence, paragraph, region, page, bufler, screen, window, file,
dir, beginning, end, case, mode, forward, backward, next, previous, up, down, search,
kill, delete, mark, fill, indent, change.

If something surprising happens, and you are not sure what commands you typed, use (HELP
L. L prints the last 60 command characters you typed in. If you see commands that you
don’t know, you can use C to find out what they do.

To find out about the other options, type (RELP). That is, when the first (HELP
asks for an option, type to ask for assistance.

ZMACS Reference Manual 39 The Mark and the Region

10. The Mark and the Region

There are many ZMACS commands that operate on an arbitrary contiguous part of the current
buffer. To specify the text for such a command to operate on, you set the mark at one end of it,
and move point to the other end. The text between point and the mark is called the region, and is
underlined on the screen. You can move point or the mark to adjust the boundaries of the region.
It doesn’t matter which one is set first chronologically, or which one comes earlier in the text.

After creating a region, normally you will issue a command that operates on the region. Most
such commands clear out or deactivate the mark. Once this happens, there is no mark, and no
region, and no underlining, until you set the mark again. However, the former location of mark
is still remembered, and you can reactivate it with C-X C-X if you want to use the same region
again. Most commands that change the text also deactivate the region even if they do not use it;
this includes typing text to insert it. C-G and also deactivate the region.

Some commands that insert large amounts text, such as M-X Insert Buffer, position the mark
at one end of the inserted text but do not activate it. They do not create a region, but they make
it easy to select the text just inserted as a region if you want to do so.

Here are some commands for setting the mark:

C-(SPACE) Set the mark where point is.

c-@ The same.

C-X C-X Interchange mark and point.

N-Q Set mark after end of next word. This command and the following three do not move
point.

c-N-Q@ Set mark after end of next LISP expression.

c-< Set mark at beginning of buffer.

c-> Set mark at end of buffer.

M-H Put region around current paragraph.

C-N-H Put region around current LISP defun.

C-X H Put region around entire buffer.

C-X C-P Put region around current page.

For example, if you wish to convert part of the buffer to all upper-case, you can use the C-X
C-U command, which operates on the text in the region. You can first go to the beginning of the
text to be capitalized, type C-(SPACE) to put the mark there, move to the end, and then type C-X

ZMACS Reference Manual 40 The Mark and the Region

C-U. Or, you can set the mark at the end of the text, move to the beginning, and then type C-X
C-U. C-X C-U's command function is Uppercase Region, whose name signifies that the region, or
everything between point and the mark, is to be capitalized.

The most common way to set the mark is with the C-(SPACE) command (Set Pop Mark). This
sets the mark where point is. Then you can move point away, leaving the mark behind.

The command C-X C-X (Swap Point and Mark) puts the mark where point was and point where
the mark was. The extent of the region is unchanged, but the cursor and point are now at the
previous location of the mark. C-X C-X is useful when you are satisfied with the loeation of point
but want to move the mark; do C-X C-X to put point there and then you can move it. A second
use of C-X C-X, if necessary, puts the mark at the new location with point back at its original

location.

When the mark is deactivated, you can use C-X C-X to reactivate it. It moves point to the
inactive location of the mark, and sets an active mark at the former location of point. A second
use of C-X C-X puts point back at its original location, with the formerly inactive mark now active.

Switching buffers also clears out the mark. Each buffer remembers individually its former mark
location, so that C-X C-X always resurrects the current buffer’s last region.

10.1 Operating on the Region
Once you have created an active region, you can do many things to the text in it:

Kill it with C-W (see section 11.1 [Killing], page 45).

Undo changes in it with C-Shift-U (see chapter 12 [Undo], page 53).

Save it in a register with C-X X (see section 11.3.2 [Registers], page 51).

Save it in a buffer or a file (see section 11.3.1 {[Accumulating Text], page 50).
Convert case with C-X C-L or C-X C-U (see section 23.1 [Case], page 119).

Change fonts in it with C-Shift-J or M-Shift-J (see section 23.2 [Fonts|, page 120).
Compile it as LISP with C-Shift-C (see section 26.3 [Compile Text], page 157).
Kill comments in it with C-M-; (see section 25.6 [Comments|, page 143).

Fill it as text with M-G (see section 24.6 [Filling|, page 130).

Print hardcopy with N-X Hardcopy Region (see section 29.3 [Hardcopy], page 180).
Indent it with C-X or C-M-\ (see chapter 22 {Indentation], page 115).

ZMACS Reference Manual 41 The Mark and the Region

Sort it in various ways (see section 29.4 [Sorting], page 181).

10.2 Commands to Mark Textual Objects

There are commands for placing the mark on the other side of a certain object such as a word
or a list, without having to move there first. M-@ (Mark Word) puts the mark at the end of the
next word, while C-N-@ (Mark Sexp) puts it at the end of the next LISP expression. C-> (Mark
End) puts the mark at the end of the buffer, while C-< (Mark Beginning) puts it at the beginning.
These characters allow you to save a little typing or redisplay, sometimes.

Other commands set both point and mark, to delimit an object in the buffer. M-H (Mark
Paragraph) moves point to the beginning of the paragraph that surrounds or follows point, and
puts the mark at the end of that paragraph. M-H does all that's necessary if you wish to indent,
case-convert, or kill a whole paragraph. C-M-H (Mark Defun) similarly puts point before and the
mark after the current or following defun. C-X C-P (Mark Page) puts point before the current page
(or the next or previous, according to the argument), and mark at the end. The mark goes after
the terminating page delimiter (to include it), while point goes after the preceding page delimiter
(to exclude it). Finally, C-X H (Mark Whole) sets up the entire buffer as the region, by putting
point at the beginning and the mark at the end.

Two variables control how the extent of the region is displayed when it is active. zwei:*region-
marking-mode* specifies whether to underline the text in the region or highlight it with reverse
video. The value of the variable is either :underline or :reverse-video. zwei:*region-right-marking-
mode® controls what to do with the space after the end of a line when the region extends beyond.

‘Anything but nil means to underline or highlight that space; nil means to leave it blank. The

defaults are :underline and nil.

10.3 The Point Pdl

Several commands record the location of point in case you wish to move back to that place
later. For example, C-(SPACE) does this, in addition to setting the mark. Whenever the location
of point is saved in this way, the string ‘Point Pushed’ is displayed in the echo area.

The recorded locations go on the point pdl, which is just a list of saved point locations, kept
most recent first. To return to the last saved location, use C-U C-(SPACE). This moves point to
the last saved location and puts that saved location at the end of the list. Repeated use of C-U
C-(SPACE) therefore touches on each of the saved locations in turn, and eventually repeats.

ZMACS Reference Manual 42 The Mark and the Region

There is only one point pdl, used in common by all buffers. So C-U C-{§PACE) can take you
back to a previously selected buffer.

Many commands that can move long distances, such as M=< (Gote Beginning) and C-M-A (Begin-
ning Of Defun), save the location of point before moving. This is to make it easier for you to move
back later. Searches sometimes record the old point; it depends on how far they move. You can tell
that a search has done this because it prints ‘Point Pushed’ when exited. The variable zwei:*auto-
push-point-option® specifies how many lines a search must move before pushing the previous value
of point.

The variable zwei:*auto-push-point-notification® specifies the string to use to say when point has
been pushed. ‘Point Pushed’ is its default value.

The variable zwei:*point-pdl-max® is the maximum number of entries to keep in the point pdl.
If that many entries exist and another one is pushed, the last one in the list is discarded. At any
time, repeating the command C-U C-(SPACE) circulates through the limited number of entries that
are still retained.

10.4 Named Marks

In addition to the point pdl, which attempts to record automatically recent point locations
you might wish to return to, ZMACS provides commands with which you can record locations in
registers and return to them after any amount of time. The name of a register is a single graphic
character (letter, digit or punctuation). A location saved in a register is also called a named mark.

C-X 8 r Save location of point in register r.

C-X J r Jump to the location saved in register r.

To save the current location of point in a register, choose a name r and type C-X 8 r. (C-X
8§ runs the command function Save Position In Register.) The register r retains the location thus
saved until another C-X 8§ command is used to save a different location into that register.

The command C-X J r (Jump to Register Position) moves point to the location recorded in
register r. The register is not affected; it continues to record the same location. You can jump to
the same position using the same register any number of times.

Registers can also be used to hold text; each register can hold both & saved location and a saved

ZMACS Reference Manual 43 The Mark and the Region

text string, independently. See section 11.3.2 [Registers], page 51.

N-X List Registers prints a list of all registers that you have used, giving for each one the text
it contains (or ‘[ENPTY)’ if none) and the location recorded in it, if any. The text is summarized
by showing only the beginning or the end, with text in the middle, and any leading or trailing
whitespace, replaced by dots. The location is shown by displaying the text surrounding it, with
‘|- in the middle indicating where the location is.

ZMACS Reference Manual 44 The Mark and the Region

----r-

ZMACS Reference Manual 45 Killing and Moving Text

11. Killing and Moving Text

Killing means erasing text and copying it into the kill history, from which it can be retrieved
by yanking it.

The commonest way of moving or copying text with ZMACS is to kill it and later yank it in one
or more places. This is very safe because all the text ever killed is remembered, and it is versatile,
because the many commands for killing syntactic units can also be used for moving those units.
There are also other ways of copying text for special purposes.

There is only one kill history for the entire LISP Machine system; all buffers use the same
one, so you can kill text in one buffer and yank it in another buffer. All editors use it, including
ZMACS, ZMail, Converse, and the input editor used in LISP Listener windows. So you can move
text between windows by killing in one window and yanking in another.

11.1 Deletion and Killing

Most commands that erase text from the buffer save it so that you can get it back if you change
your mind, or move or copy it to other parts of the buffer. These commands are known as kill
commands. The rest of the commands that erase text do not save it; they are known as delete
commands. The delete commands include C-D and Rubout, which delete only one character at a
time, and those commands that delete only spaces or newlines. Commands that can destroy signif-
icant amounts of nontrivial data generally kill. The commands’ names and individual descriptions
use the words ‘kill’ and ‘delete’ to say which they do. If you do a kill or delete command by
mistake, you can use the C-Shift-U (Quick Undo) command to undo it (see chapter 12 [Undo],
page 53).

11.1.1 Deletion

c-D Delete next character.
RUBOUT) Delete previous character.
N-\ Delete spaces and tabs around point.
c-\ Delete spaces and Labs around point, leaving one space.

C-X €-0 Delete blank lines around the current line.

ZMACS Reference Manual 46 Killing and Moving Text.

N- Join two lines by deleting the intervening newline, and any indentation following it.

The most basic delete commands are C-D (Delete Forward) and (Rubout). C-D deletes
the character after point, the one the cursor is “on top of”. Point doesn’t move. deletes
the character before the cursor, and moves point back. Newlines can be deleted like any other
characters in the buffer; deleting a newline joins two lines. Actually, C-D and aren’t
always delete commands; if given an argument, they kill instead, since they can erase more than
one character this way.

The other delete commands are those that delete only formatting characters: spaces, tabs and
newlines. N-\ (Delete Horizontal Space) deletes all the spaces and tab characters before and after
point. C-\ {Just One Space) does likewise but leaves a single space after point, regardless of the
number of spaces that existed previously (even zero).

C-X C-0 (Delete Blank Lines) deletes all blank lines after the current line, and if the current
line is blank deletes all blank lines preceding the current line as well (leaving one blank line, the
current line). M-~ (Delete Indentation) joins the current line and the previous line, or the current
line and the next line if given an argument, by deleting a newline and all surrounding spaces,
possibly leaving a single space. See chapter 22 [Indentation], page 115.

Several of these commands deal with blanks. The variable zwei:*blanks® tells ZMACS which
characters to consider blank; its value is a list of characters. By default, the characters in the list
are space and tab. Some other commands deal with “whitespace”, which includes newlines. The
variable zwei:*whitespace-chars® tells ZMACS which characters are whitespace; initially, they are
space, tab, newline and backspace.

11.1.2 Killing by Lines

c-K Kill rest of line or one or more lines.

Kill text on current line up to point.

The simplest kill command is C-K (Kill Line). If given at the beginning of a line, it kills all
the text on the line, leaving it blank. If given on a blank line, the blank line disappears. As a
consequence, if you go to the front of a non-blank line and type two C-K’s, the line disappears
completely.

More generally, C-K kills from point up to the end of the line, unless it is at the end of a line.

----r-

ZMACS Reference Manual 47 Kiliing and Moving Text

In that case it kills the newline following the line, thus merging the next line into the current one.
Invisible spaces and tabs at the end of the line are ignored when deciding which case applies, so if
point appears to be at the end of the line, you can be sure the newline will be killed.

If C-K is given a positive argument, it kills that many lines and the newlines that follow them
(however, text on the current line before point is spared). With a negative argument, it kills back
to a number of line beginnings. An argument of -2 means kill back to the second line beginning,.
If point is at the beginning of a line, that line beginning doesn’t count, so ¢-U - 2 C-K with point
at the front of a line kills the two previous lines.

C-K with an argument of zero kills all the text before point on the current line. (CLEAR-INPUT
(Clear) does the same thing.

11.1.3 Other Kill Commands

c-w Kill region (from point to the mark).
N-D Kill word.
N-(RUBOUT

Kill word backwards.
c-x |

Kill back to beginning of sentence.
N-K Kill to end of sentence.
C-N-K Kill s-expression.

c-N- (RUBOUT)

Kill s-expression backwards.

A very general kill command is C-W (Kill Region), which kills everything between point and the
mark. With this command, you can kill any contiguous sequence of characters, if you first set the
mark at one end of them and go to the other end.

Other syntactic units can be killed: words, with M-(RUBOUT) and M-D (see section 24.2 [Words],
page 126); s-expressions, with C-M-(RUBOUT) and C-M-K (see section 25.2 [Lists|, page 136); and
sentences, with C-X (RUBOUT) and M-K (see section 24.3 [Sentences!, page 127).

The mouse can also be used to kill. See section 5.2 [Mouse Killing], page 23.

ZMACS Reference Manual 48 Kithng acd Moving Text

11.2 Yanking

Yanking is getting back text that was killed. The usual way to move or copy text is to kill it
and then yank it one or more times.

c-Y Yank last killed text.
N-Y Replace re-inserted killed text with the previously killed text.
N-W Save region as last killed text without actually killing it.

C-N-W Append next kill to last batch of killed text.

All killed text is recorded in the kill history, a list of blocks of text that have been killed. There
is only one kill history for the entire LISP Machine system; all buffers use the same one, so you can
kill text in one buffer and yank it in another buffer. All editors use it, including ZMACS, ZMail,
Converse, and the input editor used in LISP Listener windows. So you can move text between
windows by killing in one window and yanking in another.

The command C-Y (Yank) reinserts the text of the most recent kill. It leaves the cursor at the
end of the text. It sets the mark at the beginning of the text but does not activate it; as a result,
there is no region when the C-Y command is finished, but the region can be set around the yanked
text, with C=X C-X. See chapter 10 [Mark], page 39.

C-U C-Y leaves the cursor in front of the text, and the inactive mark after it. This is only if the
argument is specified with just a C-U, precisely. Any other sort of argument, including C-U and
digits, has an effect described below (under “Yanking Earlier Kills”).

If you wish to copy a block of text, you might want to use M-W (Save Region), which copies the
region into the kill history without removing it from the buffer. This is approximately equivalent
to C-W followed by C-Y, except that M-W does not mark the buffer as “modified” and does not
temporarily change the screen.

The mouse can also be used to yank. See section 5.2 [Mouse Killing|, page 23.

11.2.1 Appending Kills

Normally, each kill command pushes a new block onto the kill history. However, two or more
kill commands in a row combine their text into a single entry, so that a single C-Y command gets
it all back as it was before it was killed. This means that you don't have to kill all the text in one

ZMACS Reference Manual 49 Killing and Moving Text

command; you can keep killing line after line, or word after word, until you have killed it all, and
you can still get it all back at once. (Thus we join television in leading people to kill thoughtlessly.)

Commands that kill forward from point add onto the end of the previous killed text. Commands
that kill backward from point add onto the beginning. This way, any sequence of mixed forward and
backward kill commands puts all the killed text into one entry without rearrangement. Numeric
arguments do not break the sequence of appending kills. For example, suppose the buffer contains

This is the first
line of sample text
and here is the third.

with point at the beginning of the second line. If you type C-K M-2 M-(RUBGUT) C-K, the first
C-K kills the text ‘line of sample text’, M-2 M-(RUBOUT) kills ‘the first' with the newline
that followed it, and the second C-K kills the newline after the second line. The result is that
the buffer contains ‘This is and here is the third.' and a single kill entry contains ‘the

first(RETURN)line of sample text(RETURN)'--all the killed text, in its original order.
p

If a kill command is separated from the last kill command by other commands (not just numeric
arguments), it starts a new entry on the kill history. But you can force it to append by first typing
the command C-N-W (Append Next Kill) in front of it. The C-M-W tells the following command, if it
is a kill command, to append the text it kills to the last killed text, instead of starting a new entry.
With C-N-W, you can kill several separated pieces of text and accumulate them to be yanked back
in one place,

11.2.2 Yanking Earlier Kills

To recover killed text that is no longer the most recent kill, you need the Meta-Y (Yank Pop)
command. The M-Y command should be used only after a C-Y command or another M-Y. It takes
the text previously yanked and replaces it with the text from an earlier kill. So, to recover the text
of the next-to-the-last kill, you first use C-Y to recover the last kill, and then use M-Y to replace it
with the previous kill.

You can think in terms of a “last yank” pointer which points at an item in the kill history. Each
time you kill, the “last yank” pointer moves to the newly made item at the front of the history.
C-Y yanks the item that the “last yank” pointer points to. M-Y moves the “last yank” pointer to a
different item, and the text in the buffer changes to match. Enough M-Y commands can move the
pointer to any item in the history, so you can get any item into the buffer. Eventually the pointer

ZMACS Reference Manual 50 Killing and Moving Text

reaches the end of the history; the next M-Y moves it to the first item again. (Wrapping from the
end to the beginning like this is allowed only when the variable zwei:*history-yank-wraparound® is
non-nil, but that is the default.)

N-Y can take a numeric argument, which tells it how many items to advance the “last yank”
pointer by. A negative argument moves the pointer toward the front of the history.

Once the text you are looking for is brought into the buffer, you can stop doing M-Y's and it will
stay there. It's just a copy of the history item, so editing it in the buffer does not change what's in
the history. As long as no new killing is done, the “last yank™ pointer remains at the same place
in the kill history, so repeating C-Y will yank another copy of the same old kill.

C-Shift-U (Quick Undo) undoes a sequence of C-Y and M-Y's all at once: it deletes the yanked
text. See chapter 12 [Undo], page 53.

If you know how many M-Y’'s it would take to find the text you want, you can yank that text
in one step using C-Y with a numeric argument. C-Y with an argument greater than one restores
the text the specified number of entries back in the kill history. Thus, C-U 2 C-Y gets the next
to the last block of killed text. It is equivalent to C-Y M-Y. C-Y with a numeric argument sets the
“last yank” pointer to the entry that it yanks. The argument normally counts relative to the most
recent kill, ignoring the previous “last yank” pointer. However, if the variable zwei:*history-rotate-
if-numeric-arg®* is non-nil, the argument counts from the “last yank” pointer.

To view the kill history, do C~Y with argument zero. The variable zwei:*history-menu-length*
specifies how many history elements this should show; the default is 20.

11.3 Other Ways of Copying Text

Usually we copy or move text by killing it and yanking it, but there are other ways that are
useful for copying one block of text in many places, or for copying many scattered blocks of text
into one place.

11.3.1 Accumulating Text

You can accumulate blocks of text from scattered locations either into a buffer or into a file if
you like.

- e

*----r-,-

ZMACS Reference Manual , 51 Killing and Moving Text,

C-X A Append region to contents of specified buffer.

N-X Insert Buffer
Insert contents of specified buffer into current buffer at point.

N-X Append To File .
Append region to contents of specified file, at the end.

N-X Prepend To File
Append region to contents of specified file, at the beginning.

To accumulate text into a buffer, use the command C-X A buffername (Append To Buffer), which
inserts a copy of the region into the buffer buffername, at the location of point in that buffer. If
there is no buffer with that name, one is created. If you append text into a buffer that has been
used for editing, the copied text goes into the middle of the text of the buffer, wherever point
happens to be in it.

Point in that buffer is left at the end of the copied text, so successive uses of C-X A accumulate
the text in the specified buffer in the same order as they were copied. If C-X A is given an argument,
point in the other buffer is left before the copied text, so successive uses of C-X A add text in reverse
order.

Strictly speaking, C-X A does not always append to the text already in the buffer; but if C-X
A is the only command used to alter a buffer, it does always append to the existing text because
point is always at the end.

You can retrieve the accumulated text from that buffer with M-X Insert Buffer; this too takes
buffername as an argument. It inserts a copy of the text in buffer buffername into the selected
buffer. You could alternatively select the other buffer for editing, perhaps moving text from it by
killing or with C-X A. See chapter 19 [Buffers], page 99, for background information on buffers.

Instead of accumulating text within ZMACS, in a buffer, you can append text directly into a
file with the command M-X Append To File, taking filename as an argument. It adds the text of
the region to the end of the specified file. M-X Prepend to File adds the text to the beginning of
the file instead. The file is changed immediately on the file server. These commands are normally
used with files that are not being visited in ZMACS. Using them on files that ZMACS is visiting
can produce confusing results, because the text inside ZMACS for those files will not change.

11.3.2 Copying Text Using Registers

When you want to insert a copy of the same piece of text frequently, it may be impractical to

ZMACS Reference Manual 52 Killing and Moving Text

use the kill history, since each subsequent kill moves the piece of text farther down on the history.
It becomes hard to keep track of what argument is needed to retrieve the same text with C-Y. An
alternative is to store the text in a register with C-X X (Put Register) and then retrieve it with C-X
G (Get Register).

C-X X r Copy region into register r.
C-X G r Insert text contents of register r.

N-X List Registers
Print list of registers used, and their contents.

C-X X rstores a copy of the text of the region into the register named r. r is a single graphic
character; it is not allowed to use (CONTROL), {(META), etc. Given a numeric argument, C-X X
deletes the text as well.

P

C-X G rinserts in the buffer the text from register r. Normaily it leaves point before the text
and places the mark after, but with a numeric argument it puts point after the text and the mark
before.

These registers are the same as used for recording locations, but each register can hold both
text and a location. Storing new text does not affect the recorded location, and vice versa. See
section 10.4 [Named Marks|, page 42.

N-X List Registers prints a list of all registers that you have used, giving for each one the text
it contains (or ‘[EMPTY]’ if none) and the location recorded in it, if any. The text is summarized
by showing only the beginning or the end, with text in the middle, and any leading or trailing
whitespace, replaced by dots. The location is shown by displaying the text surrounding it, with
‘=|=' in the middle indicating where the location is.

i

-

ZMACS Reference Manual 53 "~ Undoing Changes

12. Undoing Changes

ZMACS in the MIT LISP Machine system has the most powerful facility known for undoing
changes to the text. No change or sequence of changes is too drastic to be undone.

Each ZMACS buffer records all the changes that have been made in it, on its undo list. This
contains a sequence of undo entries, each deseribing how to undo one change to a contiguous portion
of the buffer. Often several commands are recorded in one undo entry, and some commands (such
as Query Replace) can make many undo entries.

C-shift-U

Undo one batch of contiguous changes.
C-Shift-R

Redo one batch of undone changes.

N-X Discard Undo Information
Forget the undo list.

N-X Print Modifications
Print all lines changed since file was visited.

The command C-Shift-U (Quick Undo), when there is no region, undoes the changes recorded
by the last undo item and removes that item from the list. It moves point to the beginning of the
undone change, ensuring that you can see the effects.

Each buffer has a redo list that is much like the undo list. Undoing a change makes an entry
on the redo list saying how to undo the undoing. The command C-Shift-R (Quick Redo) undoes
the last entry on the redo list; that is to say, it redoes the last change undone (not counting those
already redone). Redoing makes a new entry on the undo list, so that the redone change can be
undone again with C-Shift-U.

You can think of C-Shift-U as taking the text back into the past, and C-Shift-R as returning
toward the present. If the buffer was “unmodified” before a change was made, it is marked as
“unmodified” after that change is undone. When all the recorded changes have been undone, the
buffer text is the same as it was when it when it was first created, or when it was last saved.

It is safest to redo a change just after you undo it. If you undo a change, make other changes,
and then try to redo, some of the intervening changes might be lost as the text is returned to the
state it was in before the undo. Because of this, C-Shift-R asks for confirmation if any other
changes (except for other undoing and redoing) have been made since the last undo.

ZMACS Reference Manual 54 Undoing Changes

If you notice that a buffer has been modified accidentally, the easiest way to recover is to type
C-Shift-U repeatedly until it refuses to go any farther. At this time, all the modifications you
made have been cancelled. If you do not remember whether you changed the buffer deliberately,
type C-Shift-U once, and when you see the last change you made undone, you will remember why
you made it. Then type C-Shift-R to make the change again if you wanted it. Another way to find
out what you have done to thef buffer in the current session is to type M~-X Print Modifications,
which prints (as typeout) all the lines in the current buffer that have been changed in any way
during the current session. '

You are not limited to undoing the last change you made. If there is an active region, C-Shift-U
undoes the last change in that region, even if other subsequent changes have been made outside
the region. For example, to undo the last change made in a particular LISP function, go to that
function, type C-M-H to put the region around it, and then type C-Shift-U. C-Shift-U leaves the
region in effect and does not move point, so it can be repeated to undo several changes in the same
region.

C-Shift-U when there is a region can undo only the last change that is entirely within the
region. If there is a more recent change that was partly inside and partly outside the region, then
you cannot undo anything in this region. If the two changes do not actually overlap, then by
moving point or the mark you can find a smaller region that contains the change you wish to undo
and does not overlap the other change. Then C-Shift-U will work. If the two changes do overlap,
you cannot undo the earlier one without undoing the later one first. This is a good thing, because
overlapping changes are not independent, and undoing them in the wrong order would produce
incorrect results.

Each entry in the undo list or the redo list identifies the kind of editing operation that made
the changes it records. For example, the M-Q command (Fill Paragraph) always makes its own undo
entry, which says it is for a “Fill”. Undoing this entry prints ‘Fill undone’. Yanking always makes
a separate undo entry, but yank-pop operations (M-Y) are grouped together with the original yank.

Most ZMACS commands do not create their own undo-list entries. These commands are classi-
fied as “small changes” and are grouped into “small change” entries. These changes are grouped in
order to increase the amount of distance you cover with each C-Shift-U command. If the variable
zwei:*undo-save-small-changes® is set to nil, small change commands are not recorded for undoing.
Now that the undo facility works reliably, there is little reason to turn off such saving.

A small change command adds to an unfinished small change undo-list entry if the new change
is adjacent to the change already recorded by the entry. For example, inserting two characters
next to each other in the text is undone as one operation, even if other commands that do not

-

ZMACS Reference Manual 55 Undoing Changes

modify the text intervene in time. If a small change commmand cannot add to an existing entry,
it starts a new small change entry. This always happens if the last existing entry is not a small
change entry.

Each undo entry or redo entry uses a couple of relocating buffer pointers. Editing on a line that
has many relocating buffer pointers is slowed down by the need to relocate them. As a result, a
long editing session can build up enough undo entries to cause noticeable delays. For this reason,
it is sometimes useful to forget the undo list and give up the ability to undo any changes made
so far. This can be done explicitly with the command M-X Discard Undo Information. It also
happens automatically when you save a buffer. This automatic action can be disabled by setting
the variable zwei:*discard-undo-info-on-saving®* to nil. Then undo information is never discarded
except when you request it explicitly.

ZMACS Reference Manual 56 Undoing Changes

ZMACS Reference Manual 57 The Various {Juaniities Command

13. The Various Quantities Command

ZMACS recognizes many kinds of syntactic units (characters, words, lines, pages, etc.) and
knows several operations to perform on those units (moving, killing, marking, case changing, etc.)
Most ZMACS commands are single characters that specify at once the type of syntactic unit to
operate on and what to do with it; for example, Control-F specifies forward motion over units of
characters. These commands are quick in use but are a lot to remember. An alternative that is
easier to remember is the C-Shift-X command (Various Quantities), which allows you to specify
the operation with one character and the syntactic unit with another. Using C-Shift-X if you
remember ten subcommands for operations such as forward or backward motion or killing, and ten
subcommands for textual units such as characters, words and lines, you can do a hundred different
things.

The first character you type after C-Shift-X should specify the operation to perform. Then
you should type another character specifying the textual unit to operate on. For example, C-3 C-
Shift-X U 8 converts three sentences after point to upper case, since U means “convert to upper
case” and 8§ means “sentences”.

Here is a table of the allowed operation subcommands.

Move forward.

Move backward.

Kill forward.

Rub out (kill backward).
Exchange.

Set mark beyond.
Convert to upper case,
Convert to lower case.
Save on kill history.

Copy (save, then yank a second copy).

N O O " C & X ™ X W W

Reverse.
Here are the allowed textual unit subcommmands.

c Characters.
L Lines.
L} Words (see section 24.2 [Words), page 126).

ZMACS Reference Manual 58 The Various Quantities Command

Sentences (see section 24.3 [Sentences|, page 127).
Paragraphs (see section 24.4 [Paragraphs|, page 128).
S-expressions (see section 25.2 [Lists|, page 136).

(

) Lists (see section 25.2 [Lists|, page 136).

A Atoms. Like operating on s-expressions except that parentheses are ignored, so only
the atoms are counted. This is like what the word commands do in Atom Word mode
(see section 31.1 [Minor Modes|, page 191), but this interface is available regardless of
mode.

D Defuns (see section 25.3 [Defuns|, page 138).

(CLEAR-SCREEN
Pages (see section 24.5 [Pages|, page 129). Note that (CLEAR-SCREEN) is the same
character as (PAGE).

H The whole buffer.

A numeric argument to C-Shift-X says how many of the specified textual unit, before or after
point, should be operated on. A negative argument reverses the direction of scan, away from point.
This is necessary if you wish to operate on text before point with an operation other than moving
point. or killing.

The “reverse” operation is interesting only if given a numeric argument larger than one (or
less than -1). It reverses the ordering of the textual objects it is operating on. For example, C-6
C-Shift-X Z W reverses the six words following point.

The “copy” operation, when given a numeric argument n, finds n of the specified textual unit
and copies them all as one block. It makes only one copy.

The “exchange” operation treats its numeric argument like the exchange commands. See sec-
tion 16.2 [Transposition], page 72.

Numeric arguments are meaningless with H for “whole buffer”, and certain operations such as
“exchange” are also meaningless with it.

|
I
|
1
I

\

\l

ZMACS Reference Manual 59 - Controiling the Display

14. Controlling the Display

Since only part of a large buffer fits in the window, ZMACS tries to show the part that is likely
to be interesting. The display control commands allow you to ask to see a different part of the
text. This is also known as scrolling.

If a buffer contains text that is too large to fit entirely within a window that is displaying the
buffer, ZMACS shows a contiguous section of the text. The section shown always contains point.
As you change the text, ZMACS always tries to keep the same position in the text at the top of
the window. A new position moves to the top of the window only if this is necessary to keep point
visible, or if you request it explicitly with a display control command.

C-L * Clear window and redisplay, putting point at a specified vertical position.
Clear entire screen and redisplay all windows.

c-v Scroll forwards (a windowful or a few lines).

N-V Scroll backwards.

N-R Move point to the text at a given vertical position within the window.

C-N-R Shift the LISP function in which point is located onto the screen.

The basic display control command is C-L (Recenter Window). In its simplest form, with no
argument, it clears the entire selected window and then redisplays it after scrolling the text so that
point is centered vertically.

C-L with a positive argument repositions text to put point the specified number of lines down
from the top. An argument of zero puts point on the very top line. Point does not move with
respect to the text; rather, the text and point move rigidly on the screen. C-L with a negative
argument puts point that many lines from the bottom of the window. For example, C-U - 1 C-L
puts point on the bottom line, and C-U - 6 C-L puts it five lines from the bottom. C-L with an
argument does not clear the window; it moves the bits on the screen as appropriate to speed up
redisplay.

CLEAR-SCREEN) (Complete Redisplay) is a more drastic way to clear everything and redisplay.
It the entire screen and redisplays every window on it--not just ZMACS. It does not change the
position of the text in the window, however.

The serolling commands C-V and M-V let you move the whole display up or down a few lines.
C-V (Next Screen) with an argument shows you that many more lines at the bottom of the window,

ZMACS Reference Manual 62 Searching

another C-8 to move to the next occurrence of the search string. This can be done any number of
times. If you overshoot, you can cancel some C-8's with (RUBOUT). ‘

After you exit a search, you can search for the same string again by typing just C-§ C-S: one
C-8 command to start the search and then another C-8 to mean “search again”.

If your string is not found at all, the echo area says ‘Failing I-Search’. The cursor is after
the place where ZMACS found as much of your string as it could. Thus, if you search for ‘FO0T’,
and there is no ‘FOOT’, you might see the cursor after the ‘FOC’ in ‘FOOL’. At this point there are
several things you can do. If your string was mistyped, you can rub some of it out and correct
it. If you like the place you have found, you can type or some other ZMACS command
to “accept what the search offered”. Or you can type €-G, which removes from the search string
the characters that could not be found (the ‘I’ in ‘FO0T’), leaving those that were found (the ‘FOQ’
in ‘FOOT’). A second C-G at that point cancels the search entirely, returning point to where it was
when the search started.

The €-G “quit” command does special things during searches; just what it does depends on
the status of the search. If the search has found what you specified and is waiting for input, C-G
cancels the entire search. The cursor moves back to where you started the search. If C-G is typed
when there are characters in the search string that have not been found—because ZMACS is still
searching for them, or because it has failed to find them—then the search string characters that
have not been found are discarded from the search string. With them gone, the search is now
successful and waiting for more input, so a second C-G will cancel the entire search.

To search for a special character such as (BREAK) or (ABORT), you must quote it by typing
C-Q first. This function of C-Q is analogous to its meaning as a ZMACS command: it causes the

following character to be treated the way a graphic character would normally be treated in the
same context.

The character at any time during an incremental search cancels the entire search
instantly and moves point back to where the search started.

You can change to searching backwards with C-R. If a search fails because the place you started
was too late in the file, you should do this. Repeated C-R’s keep looking for more occurrences
backwards. A C-8 starts going forwards again. C=R’s can be rubbed out just like anything else. If
you know that you want to search backwards, you can use C-R instead of C-§ to start the search,
because C-R is also a command (Reverse Incremental Search) to search backward.

.
l\

ZMACS Reference Manual 63 Searching

15.1 Searching and Case

All sorts of searches in ZMACS normally ignore the case of the text they are searching through;
if you specify searching for ‘FO0’, then ‘Foo’ and ‘f0o’ are also considered a match. If you do
not want this feature, set the variable zwei:*alphabetic-case-affects-search® to nil. See section 31.2
[Variables], page 192.

15.2 Nonincremental Search

ZMACS also has a conventional nonincremental search command, which requires you to type
the entire search string before searching begins. To get this command, type C-S (ALTMODE).

The basic way to use nonincremental search is to type a string to search for, followed by
(ALTNODE). At this time, the search is done, and point moves if the search string is found. If the
string is not found, point does not move, but. the search is terminated anyway. exits
nonincremental search whether or not a string is found.

Control characters have special meanings while the nonincremental search argument is being
read. Only C-8 and C-R cause any immediate action. The others just change the details of what
will be done when searching takes place.

(ALTMODE)

Search right away, move point if something is found, then unconditionally exit from
searching.

c-B When the search is done, search forward from the beginning of the buffer.

c-D Take the string to search for from the history of recent search strings.

C-E When the search is done, search backward from the end of the buffer.

C-F When the search is done, if the location found is off the screen, reposition the window
with point at the top (rather than centered as usual).

c-G Quit the search command; return to top level. No search will be done.

c-L Redisplay the screen. This has no effect on what kind of search will be done or on
what string will be searched for.

c-Q Quote the next character; include it in the search string even if it is special.

C-R Reverse the direction in which the searching will be done.

c-8 Search right away for the search string specified so far; then remain inside nonincre-

mental search, so that more searching can be done.

ZMACS Reference Manual 64 Searching

c-U Cancel all the characters specified so far for the search string.

c-v When searching is done, accept only matches surrounded by word delimiter characters.
c-w When searching is done, do word search (see below).

c-Y Append the previous search string, from the search string history, to the currently

specified search string.
RUBOUT) Cancel the last character of the search string.

Some of the special characters affect the kind of searching to be done, others (including graphic
characters) change the string to be searched for, while others (C-S and (ALTMODE)) search for the
search string already specified, in the manner already specified.

All kinds of searches make entries on the search string history, and incremental search can use
the latest entry on the history (when you type C-8 C-8 to search for the previous search string),
but only nonincremental search allows you to access previous entries on the search string history.
You do this using C-D repeatedly. Each C-D gets the previous entry on the history. This is not
annoying to do, since no searching happens until you type C-8 or (ALTMODE).

c-s starts out by invoking incremental search, which is specially programmed to
invoke nonincremental search if the argument you give it is empty. (Such an empty argument would
otherwise be useless.) However, nonincremental search is a ZMACS command function in its own
right (String Search) and you could connect it directly to a command key. The command function
Reverse String Search also exists. It searches backward in the buffer unless directed otherwise.

15.3 Word Search

Word search searches for a sequence of words without regard to how the words are separated.
More precisely, you type a string of many words, using single spaces to separate them, and the string
can be found even if there are multiple spaces or newlines between the words. Other punctuation
such as commas or periods must match exactly. This is useful in conjunction with documents
formatted by text formatters. If you edit while looking at the printed, formatted version, you
can’t tell where the line breaks are in the source file. With word search, you can search without
having to know this,

Word search is a special case of nonincremental search and is invoked with C-S (ALTMODE) C-W.
This is followed by the search string, which must always be terminated with (ALTMODE) or (END).
Being nonincremental, this search does not start until the argument is terminated.

|
1
1
i
i
|
|

i
|
|
I
|
i

ZMACS Reference Manual 65 Searching

You do not even have to type each word in full, in a word search. An abbreviation is good
enough. Word search finds the first occurrence of a sequence of words whose beginnings match the
words of the argument.

15.4 LISP Pattern Search

The command C-Shift-8 (LISP Match Search) searches for a list that matches a pattern. The
pattern is a fragment of LISP code, which may contain parentheses that need not be balanced.
Most characters in the pattern must match exactly, though differences in whitespace are allowed
in places where it has no effect on the meaning of LISP code. Two pattern elements are special:
‘ss’ matches any s-expression, and ‘...’ matches any sequence of s-expressions.

For example, to find the next if that has an else-clause, use

(if s *x »s _)

as the argument to C-Shift-S. It matches a list whose first element is if and which has at least
three more elements.

A negative numeric argument to C-Shift-S specifies searching backwards in the buffer. An
empty pattern argument means to use the previous pattern.
15.5 Replacement Commands

Global search-and-replace operations are not needed as often in ZMACS as they are in other
editors, but they are available. In addition to the simple Replace String command function, similar
to that found in most editors, there is a Query Replace command function, which asks you, for
each occurrence of the pattern, whether to replace it.

15.5.1 Replace String
c-% Replace every occurrence of string with otherstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command €-% (Replace String)
with the two arguments ‘foo’ and ‘bar’. Replacement occurs only after point, so if you want to

ZMACS Reference Manual : 66 : Searching

cover the whole buffer you must go to the beginning first. All occurrences up to the end of the
buffer are replaced, except that if a numeric argument is given, only that many occurrences are
replaced. The number of replacements done is printed when the command finishes,

If the arguments to Replace String are in lower case, it preserves case when it makes a re-
placement. Thus, a lower case ‘foo’ is replaced by a lower case ‘bar’, ‘FO0’ is replaced by ‘BAR’,
and ‘Foo’ by ‘Bar’. If upper case letters are used in the second argument, they remain upper
case every time that argument is inserted. If upper case letters are used in the first argument,
the second argument is always substituted exactly as given, with no case conversion. Likewise,
if the variable zwei:*case-replace-p* is set to nil, replacement is done without case conversion. If

zwei:*alphabetic-case-affects-search® is set to nil, case is significant in matching occurrences of ‘foo’ -

to replace.

15.5.2 Query Replace

K-%
N-X Query Replace
Replace some occurrences of one string with another string.
N-X Query Replace Last Kill
Replace some occurrences of last killed string with current region contents.
N-X Query Exchange
Replace each of two string with the other.

N-X Multiple Query Replace
Replace each of several strings with its own replacement string.

M-X Multiple Query Replace From Buffer
Similar, taking arguments from a ZMACS buffer.

If you want to change only some of the occurrences of ‘£00’, not all, then you cannot use an
ordinary Replace String. Instead, use M-% (Query Replace). This command finds occurrences of ‘foo’
one by one, displays each occurrence and asks you whether to replace it. A numeric argument to
Query Replace tells it to consider only occurrences of ‘foo’ that are bounded by word-delimiter
characters.

The things you can type when you are shown an occurrence of ‘00’ are:
to replace the ‘foo’ with ‘bar’. This preserves case, just like Replace String, provided

zwei:*case-replace® is non-nil, as it normally is.
RUBOUT) to skip to the next ‘foo’ without replacing this one.

ZMACS Reference Manual 87 Searching

. to replace this ‘oo’ and display the result. You are then asked for another input
character, except that since the replacement has already been made, (RUBOUT) and
are equivalent.

to exit without doing any more replacements,
to replace this ‘f0o’ and then exit.

! to replace all remaining occurrences of ‘f0o’ without asking again.

to go back to the location of the previous ‘oo’ (or what used to be a ‘f00’), in case
changed it by mistake. This works by popping the point pdl, possible because Query
Replace pushes point onto the point pdl each time an occurrence of ‘foo’ is found.
C-R to enter a recursive editing level, in case the ‘foo’ needs to be edited rather than just
replaced with a ‘bar’. When you are done, exit the recursive editing level with
and the next ‘200’ will be displayed. See section 29.1 Recursive Edit], page 179.

c-¥ to delete the ‘£00’, and then start editing the buffer. When you are finished editing
whatever is to replace the ‘2o0’, exit the recursive editing level with and the
next ‘foo’ will be displayed.

c-L to redisplay the screen and then give another answer.

If you type any other character, the Query Replace is exited, and the character executed as a
command. To restart the Query Replace, use C-X (ALTMODE), which repeats the Query Replace
because that used the minibuffer to read its arguments. See section 7.2 [Repetition], page 33.

Often you may decide to replace one string with another after making the change in one place.
In such a case, N-X Query Replace Last Kill may be useful. It replaces interactively like Query
Replace but does not use the minibuffer to get the strings to search for and replace with. The last
killed string is used as the string to search for, and the current contents of the region when the
command is given become the string to replace it with. »

A useful related command is M-X Multiple Query Replace, which reads any number of pairs
of arguments terminated by an empty argument, and takes each pair of arguments as a string
to replace followed by what to replace it with. The buffer is searched repeatedly for the next
occurrence of any of the strings to replace; if the user says to replace it, it is replaced with its
corr&spémding replacement string. A special case of this is M-X Query Exchange, which reads two
arguments, searches for both, and replaces each with the other.

N-X Multiple Query Replace From Buffer is another way tc do a multiple query replace. It
does the same work as M-X Multiple Query Replace but reads its arguments differently: it reads
the name of a ZMACS buffer that should contain text describing the replacements to be made.
The buffer should contain two LISP strings on each line, with a space in between. The first string
is a string to search for, and the second is what to replace it with. Here is an example of text

ZMACS Reference Manual 68 Searching

specifying three replacements:

*foo" “bar"
*old" "new"
"obsolete" "current"

15.8 Other Search-and-Loop Commands

Here are some other command functions that find occurrences of a string. They all operate
from point to the end of the buffer.

N-X List Matching Lines
Print each line that follows point and contains a match for the specified string. A
numeric argument specifies the number of context lines to print before and after each
matching line; the default is none. The lines of output are mouse-sensitive; click ﬂ on
one of them to move point to the text line described by that line of output.

N-X Count Occurrences
Print the number of matches following point for the specified string.

N-X Delete Non-Matching Lines
Delete each line that follows point and does not contain a match for the specified string.

N-X Delete Matching Lines
Delete each line that follows point and contains a match for the specified string.

15.7 Extended Search Characters

Many commands that search for substrings are not limited to exact match. When giving the
argument, you can specify extended search characters, which give the effect of regular expres-
sions. Regular expression operators are specified by typing two-character sequences that start with
Control-H. (C-H has this definition only in the minibuffer and only when extended search charac-
ters are allowed.) All ordinary characters in the argument stand for themselves, requiring exact
match.

The minibuffer prompt line says ‘(Extended search characters)’ at the far right whenever
extended search characters are allowed as input.

Here are the allowed C-H sequences:

I

ZMACS Reference Manual 89 Searching

C-H &

C-H A

C-H C-A Any of these inserts the infix operator character (AND). A line must contain a match
for each of ‘foo’ and ‘bar’ in order to match ‘foo(AND) bar’. Thus, ‘to(AND)of’ matches
any line that contains ‘te’ and also contains ‘of’.

C-Hv

C-H C-0 Either of these inserts the infix operator character (OR). A match for ‘foo(OGR)bar’ is
anything that matches either ‘foo’ or ‘bar’.

C-H -

C-H -

C-H C-N Any of these inserts the prefix operator character (NOT). A match for ‘(NOT)b’ is

anything that does not match ‘b’. has tight binding, so it applies only to the
following character, unless it is followed by an expression bracketed with and
CLOSE).

C-H

C-H A

C-H -

C-H C-X
C-H »

This inserts the extended search character (WHITESPACE), which matches any whites-

pace character.

This inserts the extended search character (ALPHABETIC), which matches any alpha-
betic character.

This inserts the extended search character (DELIMITER), which matches any delimiter
character.

This inserts the extended search character (ANY), which matches any character.

This inserts the prefix operator character (SOME). ‘(SOME)b’ matches any sequence
of zero or more matches for ‘b'. has tight binding, so it applies only to the
following character, unless it is followed by an expression bracketed with and
(CLOSE).

These insert the extended search grouping characters and (CLOSE). An ex-
tended search pattern surrounded by and (CLOSE) matches the same thing it
would match without them, but it can serve as a unit as an argument to a preceding

ZMACS Reference Manual 70 : Searching

- @ -

ZMACS Reference Manual 71 Commands for Fixing Typos

16. Commands for Fixing Typos

In this chapter we describe the commands that are especially useful for the times when you
catch a mistake in your text just after you have made it, or change your mind while composing
text on line.

RUBOUT) Delete last character.
N-(RUBOUT

Kill last word.
c-X -
Kill to beginning of sentence.
c-T Transpose two characters.
C-X C-T Transpose two lines.
c-XT Transpose two arbitrary regions.
N-- N-L Convert last word to lower case. Meta-- is Meta-minus!
N-- N-U Convert last word to all upper case.
N-- N-C Convert last word to lower case with capital initial.
N-» Fix up omitted shift key on digit.
N-$ Check and correct spelling of word.

16.1 Killing Your Mistakes

The (RUBOUT) command is the most important correction command. When used among graphic
(self-inserting) characters, it can be thought of as canceling the last character typed.

When your mistake is longer than a couple of characters, it might be more convenient to

use M-(RUBGUT) or C-X (RUBOUT). M-(RUBGUT) kills back to the start of the last word, and C-X
kills back to the start of the last sentence. C-X is particularly useful when
you are thinking of what to write as you type it, in case you change your mind about phrasing.
N-(RUBOUT) and C-X save the killed text for C-Y and M-Y to retrieve. See section 11.2
[Yanking], page 47.

N-(RUBOUT) is often useful even when you have typed only a few characters wrong, if you know
you are confused in your typing and aren’t sure exactly what you typed. At such a time, you
cannot correct with except by looking at the screen to see what you did. It requires less
thought to kill the whole word and start over again.

ZMACS Reference Manual 72 Commands for Fixing Typos

16.2 Transposing Text

The common error of transposing two characters can be fixed, when they are adjacent, with

the C-T command (Exchange Characters). Normally, C-T transposes the two characters on either

side of point. When given at the end of a line, rather than transposing the last character of the
line with the newline, which would be useless, C-T transposes the last two characters on the line.
So, if you catch your transposition error right away, you can fix it with just a C-T. If you don’t
catch it so fast, you must move the cursor back to between the two transposed characters. If you
transposed a space with the last character of the word before it, the word motion commands are a
good way of getting there. Otherwise, a reverse search {C-R) is often the best way. See chapter 15
[Search], page 61.

To transpose two lines, use the C-X C-T command (Exchange Lines}. M-T (Exchange Words)
transposes words and C-N-T (Exchange Sexps) transposes s-expressions.

A more general transpose command is C-X T (Exchange Regions). This transposes two arbitrary
blocks of text, which need not even be next to each other. To use it, set the mark at one end of
one block, then at the other end of the block; then go to the other biock and set the mark at one
end, and put point at the other. In other words, point and the last three locations on the point pdl
delimit the two blocks. It does not matter which of the four locations point is at, or which order
the others were marked. C-X T transposes the two blocks of text thus identified, and relocates
point and the three marks without changing their order.

16.3 Case Conversion

A very common error is to type words in the wrong case. Because of this, the word case-
conversion commands M-L, M-U and M-C have a special feature when used with a negative argument:
they do not move the cursor. As soon as you see you have mistyped the last word, you can simply
case-convert it and go on typing. See section 23.1 [Case], page 119.

Another common error is to type a special character and miss the shift key, producing a digit
instead. There is a special command for fixing this: M-* (Upcase Digit), which fixes the last digit
before point in this way (but only if that digit appears on the current line or the previous line.
Otherwise, to minimize random effects of accidental use, M=* does nothing). Once again, the cursor
does not move, so you can use M=% when you notice the error and immediately continue typing.
This command is most useful for changing ‘8’ to ‘*’,

ZMACS Reference Manual 73 Commands for Fixing Typos

16.4 Checking and Correcting Spelling

To check the spelling of the word before point, and optionally correct it as well, use the command
N-$ (Correct Word Spelling). This command sends the word to a SPELL server for correction. The
SPELL server is a program running on another machine, contacted via the Chaos net.

If the SPELL server recognizes the word as a correctly spelled one {although not necéssarily the
one you meant!), ¥-$ prints ‘Found it’ in the echo area, or possibly ‘Found it because of root’
if the specified word is recognized as a derivative of root.

If the server cannot at all recognize the word, M~$ prints ‘Couldn’t find it'.

If the server finds that the word is not correct but is close to some correctly spelled words, M-$
gives you the option of choosing one of them as a replacement. The list of suggested replacements
is printed on top of the current window, as typeout. You should then type one of these characters:

Exit and make no changes.
R Replace the word with a new word that you will enter via the minibuffer.

AB, ... Replace the word with the first, second, etc. suggested possibility in the list.

If you elect to replace the word, you are asked whether to do a Query Replace to replace any or
all occurrences of the misspelling throughout the buffer. Answer Y or N. See section 15.5 | Query
Replace], page 65.

When you use M-$, point need not be immediately after the word you want to correct; it can be
in the middle, or following any word-separator characters after the end of the word. Note that the
major mode you are using affects which characters are word separators. See section 31.5 [Syntax
Table], page 201.

It may be that no machine accessible at your site provides a spell server, or that all the machines
that have them are down. In this case, N-$ just prints a message in the echo area to inform you
of this fact.

ZMACS Reference Manual 74 Commands for Fixing Typos

ZMACS Reference Manual 75 File Handling

17. File Handling

The basic unit of stored data is the file. Each program, each paper, lives usually in its own
file. To edit a program or paper, the editor must be told to examine the file and prepare a buffer
containing a copy of the file’s text. This is called visiting the file. Editing commands apply directly
to text in the buffer; that is, to the copy inside ZMACS. Your changes only appear in the file itself
when you save the buffer back into the file.

In addition to visiting and saving files, ZMACS can delete, copy, rename, and append to files,
and operate on file directories.

17.1 File Names

Most ZMACS commands that operate on a file require you to specify the file name. (Saving
and reverting are exceptions; the buffer knows which file name to use for them.) File names are
specified using the minibuffer. There is always a default file name that will be used if you type
just (RETURN), entering an empty argument. Normally the default file name is the name of the file
visited in the current buffer; this makes it easy to operate on that file with any of the ZMACS file

commands. If the current buffer is a Dired buffer, the defaultfile name is the file on the current
line.

File names are made up of six components: the host, device, directory, name, type and versxon
Here are some examples, for various file server types:

OZ :KANSAS: <L.SYS>QFCTNS .LISP

Here OZ is the host (a Twenex host), KANSAS the device, <L.SYS> the directory, QFCTNS the

name, and LISP the type. (The type component is conventionally used to indicate what kind of
data the file holds; this file is a LISP program.) The version is not specified explicitly, which means
that the latest version will be used.

PREP: /u/rms/gnu/gnu. tasks

Here PREP is the host (a Unix host). there is no device name as Unix does not support them,
[u/rms/gnu/ is the directory, gnu is the name, and tasks is the type. Unix does not support
versions, and there is only one version of any file.

ZMACS Reference Manual 76 File Handling

When you specify a file name, you can specify it completely by giving all the components. (The
version would still be omitted, usually, since normally you want to look at the latest version and
save new versions.} You can also omit some of the components; then they are taken from the
default file name. For example, if the default is OZ:KANSAS<L.SYS>QFCTNS.LISP and you want
to visit OZ:KANSAS<L.SYS>EVAL.LISP, it is sufficient to type C-X C-F EVAL (RETURN); the other

components you want come from the defaults.

The default file name is shown in the mode line while a file name is being read, so that you can
see which components it is necessary for you to specify and which ones will default to the values
you want.

Note that if you specify the name component but not the type component, ZMACS uses the
conventional type for LISP programs on the host you are using, rather than the type component
from the default file names. Also, if you specify the name but not the version, the default for the
version is always “newest version”.

See the chapter on pathnames in the LISP Machine Manual for more information on pathname
compouents and their defaulting.

Another way you can use the default file name with some modification is to yank it into the
minibuffer and edit it into the name you want. To yank it, use C-Shift-Y (Yank Default String).
Edit with ordinary ZMACS commands and then submit the result with (RETURN).

ZMACS keeps a history of the file names you have specified previously. To yank from this list,
type C-N-Y (Yank Previous Input). Numeric arguments can be used to refer to earlier entries in
the history, as with C-Y, and M-Y can be used to move around in the history. An argument of
zero causes a list of the recent elements of the history to be printed. See section 11.2 [Yanking],
page 47. C-N-Y is defined this way only in the minibuffer.

Completion is another tool that makes it easier to specify long file names. It allows you to
use an abbreviation that specifies uniquely one of the existing files. See section 7.1 [Completion],
page 30.

17.2 Visiting Files

C-X C-F Visit a file.
c-X C-V Visit a different file instead of the one visited last.

-—-r-‘

ZMACS Reference Manual 77 File Handiing

N-X Find File No Sectionize
Visit a file but do not sectionize it (scan it for function definitions).

M-X Find File Background
Visit a file, but meanwhile continue editing.

N-X Find System Files
Visit all the files that make up a system.

Visiting a file means copying its contents into ZMACS where you can edit them. ZMACS
makes a new buffer for each file that you visit. We say that the buffer is associated with the file
that it was made to hold. ZMACS constructs the buffer name from the file name by permuting
its elements so that the ‘name’ and ‘type’ components come first. For example, a file named
goo:/usr/rms/ZMACS.tex would get a buffer named ‘ZMACS.tex /usr/rms goo:’.

Since the current buffer name always appears in the mode line, you can tell instantly from it
which file you are editing. If the file is on a file system that supports multiple versions, the current
version number (of the version that ZMACS last read or saved) appears inside parentheses after
the buffer name.

The changes you make with ZMACS are made in the ZMACS buffer. They do not take effect
in the file that you visited, or any place that lasts past the current LISP Machine session, until
you save the buffer. Saving the buffer means that ZMACS writes the current contents of the buffer
into its associated file. See section 17.3 [Saving], page 79.

If 2 buffer contains changes that have not been saved, the buffer is said to be modified. This is
important because it implies that some changes will be lost if the buffer is not saved. The mode
line displays a star before the buffer name if the current buffer is modified. '

To visit a file, use the command C-X C-F (Find File). Follow the command with the name of
the file you wish to visit, terminated by a (RETURN). Any file name components that you do not
specify are taken from the default file name, which is displayed in the mode line while you are
entering the file name argument, so that you can tell which components you can safely omit.

The file name to find is a standard minibuffer argument (see chapter 7 [Minibuffer], page 29) and

completion is available with and (see section 7.1 [Completion], page 30). While
in the minibuffer, you can abort the C-X C-F command by typing (ABORT).

If the C-X C-F command completes successfully, it prints a message in the echo area giving the
truename and size of the file visited. By this time, it has created a new buffer containing a copy
of the text of the visited file, and selected that buffer for editing.

ZMACS Reference Manual 78 File Handling

If you visit a file that is already in ZMACS, it does not make another copy. It selects the
existing buffer containing that file. However, before doing so, it checks that the file itself has not
changed since you visited or saved it last. If the file has changed, a warning message is printed.
See section 17.3.1 [Simultaneous Editing|, page 80.

What if you want to create a file? Just visit it. ZMACS prints ‘(New File)’ in the echo area,
but in other respects behaves as if you had visited an existing empty file. If you make any changes
and save them, the file is created. But if the variable zwei:*find-file-not-found-is-an-error* is non-nil,
visiting a nonexistent file is an error. Then the only way to create a file is to make a buffer with
C-X B and then save it in the desired file. It is hard to imagine why anyone would want this
inconvenience, but apparently some people do.

If you visit a nonexistent file unintentionally (because you typed the wrong file name), use the
C-X C-V (Find Alternate File) command to visit the file you wanted. C-X C-V is similar to C-X C-F,
but it kills the current buffer, and is allowed only after you have visited a nonexistent file and
made no changes in it.

Normally ZMACS sectionizes a file when it is read in. This means scanning the lines of the file
to find the beginning of each LISP function, or each section of a manual, and so on. In some cases,
such as when you are examining an old version of a file and want ZMACS to use the latest version
to find any function defined in the file, you may wish to prevent sectionization. To do this, use the
command M-X Find File No Sectionize instead of C-X C-F to visit the file. See section 26.1
[Sectionization], page 153.

"The command M-X Find File Background visits the specified file like C-X C-F, but does not
wait for visiting to be finished. Instead, you can continue to edit the file you were editing, while the
new file is visited by a background process. A notification is printed when the file is fully visited,
but your editing is not interrupted. From that time on, you can select its buffer with C-X B.

If the variable zwei:*find-file-early-select® is non-nil, the buffer created for a newly visited file is
selected and displayed as soon as enough of the file has been read to fill the window. But you still
cannot begin editing until the entire file has been read.

17.2.1 Visiting Multiple Files

There are two commands in ZMACS for visiting a group of files all at once: specify a file name
pattern containing wild cards in C-X C-F, use N-X Find System Files. You can also do this with
Dired; See chapter 18 [Dired], page 91.

----r-

ZMACS Reference Manual 7% File Handling

If the argument to C-X C-F uses wildcards, it finds the list of all file names that match the
pattern and visits the files one by one.

N-X Find System Files reads the name of a system-—a collection of files that make up one
program-—and visits each of the souce files in the system. Systems are declared using defsystem;
see the chapter “Maintaining Large Systems” in the LISP Machine Manual for information on
them.

17.3 Saving Files

C-X C-8 Save the current buffer in its associated file.
N-~ Forget that the current buffer has been changed.
C-X C-W Save the current buffer in a specified file, and associate them.

N-X Save All Files
Save any or all buffers in their associated files.

N-X Set Visited File Name
Associate the current buffer with a file,

When you wish to save the file and make your changes permanent, type C-X C-8 (Save File).
After saving is finished, C-X C-8 prints a message such as

Written: PREP:/u/rms/.emacs -- 431 characters

giving the truename and size of the file written. If the selected buffer is not modified (no changes
have been made in it since the buffer was created or last saved), saving is not really done, because
it would be redundant. Instead, C-X C-8 prints a message in the echo area saying

(No changes need to be written.)

The command M~-X Save All Files can save any or all modified buffers. First it asks, for each
modified buffer, whether to save il. These questions appear as typeout, overlying the buffer text,
and should be answered with Y or N. After all questions have been asked, the buffers you have
approved are all saved.

If you have changed a buffer and do not want the changes to be saved, you should take some
action to prevent it. Otherwise, each time you use N-X Save All Files you are liable to save it

ZMACS Reference Manual 30 File Handling

by mistake. One thing you can do is type M-~ (Not Modified), which clears out the indication that
the buffer is modified. If you do this, none of the save commands will believe that the buffer needs
to be saved. (If we take ‘=’ to mean ‘not’, then Meta~" is ‘not’, metafied.) You could also use Set
Visited File Name (below) to associate the buffer with a different file name, one that is not in use for
anything important. Alternatively, you can undo all the changes made since the file was visited or
saved, by reading the text from the file again. This is called reverting. See section 17.4 [Reverting],
page 81. You could also undo all the changes by repeating the undo command C-Shift-U until it
refuses to go any farther.

N-X Set Visited File Name alters the name of the file that the current buffer is visiting. It
reads the new file name using the minibuffer. It can be used on a buffer that is not visiting a file,
too. The buffer’s name is changed to correspond to the file it is now visiting in the usual fashion
(unless the new name is in use already for some other buffer; in that case, the buffer name is not
changed). Set Visited File Name does not save the buffer in the newly associated file; it just alters
the records inside ZMACS so that, if you save the buffer, it will be saved in that file. It also marks
the buffer as “modified” so that C-X C-8 will save.

If you wish to associate the buffer with a different file and save it right away, use C-X C-W (Write
File). It is precisely equivalent to Set Visited File Name followed by €-X C-S. C-X C-S used on a
buffer that is not associated with a file has the same effect as C-X C-W; that is, it reads a file name,
associates the buffer with that file, and saves it there. The default file name in a buffer that is not
visiting a file is made by combining the buffer name (as the name component of the pathname)
with the other components taken from the last file-visiting buffer that was current.

If ZMACS is about to save a file and sees that the date of the latest version on disk does not
match what ZMACS last read or wrote, ZMACS notifies you of this fact, because it probably
indicates a problem caused by simultaneous editing and you must correct it.

17.3.1 Protection against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and then
both save them. If nobody were informed that this was happening, whichever user saved first would
later find that his changes were lost. ZMACS cannot prevent users from editing simultaneously,
but it always warns at least one of the users (the one who saves last) that he is about to lose. If
he takes the proper corrective action at this point, he can prevent a problem.

Every time ZMACS saves a buffer, it first checks the last-modification-date of the existing file
on disk to see that it has not changed since the file was last visited or saved. If the date does not

ZMACS Reference Manual 81 : File Handling

match, it implies that changes were made in the file in some other way, and these changes are
about to be lost if ZMACS actually does save. To prevent this, ZMACS prints a warning message
and asks for confirmation before saving. Occasionally you will know why the file was changed
and know that it does not matter; then you can answer ‘yes’ and proceed. Otherwise, you should
cancel the save with and investigate the situation.

The first thing you should do when notified of simultaneous editing is list the directory with
C-X C-D (see section 17.5 [Directory Listing], page 81). This will show the file’s current author.
You should attempt to contact him to warn him not to continue editing. Often the next step is to
compare the file against the text in your buffer with M-X Source Compare Changes. M-X Source
Compare Merge may be useful in preparing a version of the file containing both your changes and
the changes newly installed in the file. See section 17.7 [Source Compare], page 84.

Simultaneous editing checks are also made when you visit with C-X C-F a file that is already
visited. This is not strictly necessary, but it can cause you to find out about the problem earlier,
when perhaps correction takes less work. -

17.4 Reverting a Buffer

If you have made extensive changes to a file and then change your mind about them, you can
get rid of them by reading in the previous version of the file. To do this, use M=X Revert Buffer.
You must specify the name of the buffer to revert, as an argument, using the minibuffer. Typing
just specifies the current buffer. Having to type this additional acts as a kind

of confirmation.

N-X Revert Buffer keeps point at the same distance (measured in lines) from the beginning
of the file. If the file was edited only slightly, you will be at approximately the same piece of text
after reverting as before. If you have made drastic changes, the same value of point in the old file
may address a totally different piece of text.

A reverted buffer is marked “not modified” until another change is made.

Some kinds of buffers whose contents reflect data bases other than files, such as Dired buffers,
can also be reverted. For them, reverting means recalculating their contents from the appropriate
data base. Buffers created randomly with C-X B cannot be reverted; M-X Revert Buffer reports
an error when asked to do so.

ZMACS Reference Manual 82 File Handling

17.5 Listing a File Directory

File servers classify files into directories. Of the six standard pathname components, the host,
devide and directory components together identify a specific file directory, and the name, type and
version components identify one file in the directory. '

A directory listing is a list of all the files in a directory. ZMACS provides directory listings in
brief format (file names only) and verbose format (sizes, dates, and authors included).

N-X List Files
Print a brief directory listing,.

C-X C-D Print a verbose directory listing.

To print a brief directory listing, use M-X List Files. It accepts a file name pattern (optionally
including wild cards) using the minibuffer, then lists all file names that match the pattern. To print

a verbose listing, use the command C-U C-X C-D (Display Directory, given a numeric argument with

C-U). It works the same, except that it displays a full line of information for each file listed.

C-X C-D with no numeric argument prints a verbose directory listing of files related to the one
you are visiting. Files are considered related if their names are the same except for the type and
version components.

Each entry in a directory listing is mouse-sensitive. A box appears around the entry when the
mouse is positioned properly to select it. When this is so, m causes the identified file to be visited
in ZMACS. m pops up a menu with which you can visit the file, load it (assuming it is a file of
LISP code or a compiled QFASL file), or compare its contents against the latest version of the
same file (see section 17.7 [Source Compare}, page 84).

You can request that ZMACS commands that operate on files automatically display a directory
listing describing files related to the one operated on. The variable zwei:*auto-directory-display®
controls this. Its permissible values are nil (the default; no automatic display), :read (automatic
display after read operations), :write (automatic display after write operations), and t (automatic
display after either read or write operations).

17.6 Deleting and Expunging Files

Once a file is created, it exists forever unless it is deleted. You must delete files that are no

ZMACS Reference Manual 83 File Handling

longer needed, in order to reclaim their disk space for new files. However, deleting a file that will
be needed later can be a disaster. Both file servers and ZMACS provide various features to assist
you in deleting useless files without danger of deleting useful ones.

N-X Delete File
Delete one file, or files that match a wildcard pattern.

N-X Undelete File
Undelete one file, or files that match a wildcard pattern.

N-X Expunge Directory
Really erase all deleted files in a directory.

N-X Reap File
Delete old versions of one file.

N-X Clean Directory
Delete old versions of each file in a directory.

The basic ZMACS command for deleting files is M-X Delete File. It accepts a file name
pattern (optionally including wild cards) using the minibuffer, and deletes all the files that match
the pattern. If a single file name is specified, it is deleted and a message is printed in the echo area
to report completion:

Deleted: 0Z:<RMS>F00.BAR.5

If wildcards were specified, N-X Delete File prints a list of the actual files that match, and
asks for confirmation before proceeding to delete the files.

17.6.1 Expunging and Undeletion

On some file servers, deleting a file does not really erase it, but marks the file as “slated for
erasure”. Deleted files are actually erased when the containing directory is expunged. To do this,
use N-X Expunge Directory. The directory to expunge must be specified as an argument using
the minibuffer; the default is the directory of the currently visited file.

Instead of expunging deleted files, you can undelete them using the command M-X Undelete
File. It is used just like M-X Delete File.

Unix, Multics and ITS file servers erase files immediately on deletion. M-X- Expunge Directory
and N-X Undelete File give errors when used on files on these types of servers.

ZMACS Reference Manual 84 File Handling

17.6.2 Deleting Old Versions

The normal course of editing constantly creates new versions of files (if you are using a file
server that supports multiple versions; all except Unix and Multics do). If you don’t eventually

delete the old versions, you will waste lots of disk space. ZMACS has commands that make it easy
to delete the old versions.

M-X Reap File and M-X Clean Directory are convenient ways to do the usual thing: keep
only the two (or other number) most recent versions.

N-X Reap File reads a file name pattern using the minibuffer, and operates on all files that
match the pattern. The default pattern selects all files that are the same as the visited file except for
type and version number. For each sequence of file versions, M-X Reap File finds which versions
are consecutive with the latest version, decides to keep the latest two versions, and offers to delete
all the rest. With a single Y or N, you choose to delete them or retain them. Individual versions
whose “don’t reap” bits are set (see section 18.4 [Dired Props|, page 93) are omitted from the list
offered and are never deleted by M-X Reap File.

Any file whose type is a member of the list zwei:*temp-file-type-list* is also offered for deletion
regardless of version number, unless its “don’t reap” bit is set.

The variable zwei:*file-versions-kept* determines how many of the most recent versions are

normally kept. Normally its value is 2. If a numeric argument is given to M-X Reap File, it
specifies how many versions to keep.

N-X Clean Directory is like M-X Reap File except that it applies (by default) to all the files
in the same directory as the visited file. The two commands differ only in the default file name
patterns; if you specify a file name pattern, you get the same results from either command.

For complete flexibility to delete precisely the files you want to delete, you can use the Dired
package. See chapter 18 [Dired], page 91.

17.7 Comparing Files

Source Compare is a ZMACS facility for comparing two files (or ZMACS buffers), saying which
lines have to be replaced or changed to transform one file into the other. Here is an example of
the output Source Compare produces for particular input.

¢

---—T-

ZMACS Reference Manual 85 ' - File Handling

Contents of buffer foo:
foo
bar
lose
this
is
a
test

Contents of buffer bar:

foo
bar
lose
this
vas
not
a

test

Output from Source Compare:
;Source Compare of Buffer foo and Buffer bar on 5/29/86 20:16:37
s¢ss Buffer foo, Line #4
is
a
*#ssx Buffer bar, Line #4
vas '
not
a
SESARRERRRERESS

The general way to run Source Compare is with M-X Source Compare. You must specify two
files-or-buffers, by name. First, type F if the first file-or-buffer is a file, or B if it is a buffer. Then,
in the minibuffer, enter the name of the file or buffer. Then type F or B for the second file-or-buffer,
followed by its name. In the above example, comparing buffers named ‘oo’ and ‘bar’, you would

type

N-X Source Compare B foo B bar

The results of the comparison are normally printed as typeout. To get them in a buffer, use
M-X Execute Command Into Buffer first. See section 1.2 [Typeout], page 5.

One special case of Source Compare is handled conveniently by M-X Source Compare Changes.
No arguments are needed, because this command always compares the current buffer with the file
visited in it. It shows you what changes you have made in editing this buffer. If the buffer and the

ZMACS Reference Manual 86 ¥ile Handling

file match exactly, the buffer’s modified-flag is cleared.

Source Compare can also be invoked with the = command in Dired (see chapter 18 [Dired),
page 91) or BDired (see section 18.8 [BDired], page 96).

17.7.1 Merging Files

Source Compare can also be used to combine two similar files interactively, resulting in a file
that resembles one of the original files here, the other one there, as you wish. This is done with
N-X Source Compare Merge. It reads arguments specifying which files or buffers to compare, like
M-X Source Compare, and then reads the name of a buffer to put the merged output into.

Typically this command is used when two people have independently changed one program or
document, in order to create a version with both of their changes. Source Compare can only tell
where the files differ; in cannot tell which file's version is preferable. The user directing the merge
operation must tell it this.

The first stage of merging takes place without interaction. It places merged text in the specified
buffer for output. Lines that are common to the two input files are copied only once to the output.
Where the input files differ, the output shows both versions, like the output from M-X Source
Compare. Here is what it would look like for the sample buffers shown above:

~ foo
bar
lose
this
sss MERGE LOSSAGE *%=*
s»* Buffer foo HAS:
is
sss Buffer bar HAS:
was
not ‘
sss END OF MERGE LOSSAGE *#=*
a
test

The second stage of merging is to ask you what should be done for each run of differences
between the two inputs. M~-X Source Compare Merge displays the runs of differences in sequential
order through the file, and for each one asks you to type a character to specify an action. This is
somewhat like Query Replace. Your alternatives are:

ZMACS Reference Manual 87 ' File Handling
1 Take the first input file’s version of these lines.
2 Take the second input file’s version of these lines.
RUBOUT) Take neither version of these lines.
. Take both version of these lines, without the header lines (the lines containing aster-
isks).
I Take both version of these lines, and leave the header lines there.

After typing one of these commands, you have a chance to confirm it, retract it, or edit the

results. Type to confirm and move to the next set of differences. Type to
retract; the text returns to its previous state and you are asked once again what to do with these
differences. Type Control-R to edit the text with a recursive edit; type to exit the recursive
edit and continue merging.

These additional options are available as alternatives to 1, 2, I, * and (RUBOUT):

Control-R .
Enter recursive edit. You can alter the text shown, then type to return to M-X
Source Compare Merge. Then you must tell it once again what to do with this set of
differences. is often what you want, then. See section 29.1 [Recursive Edit],
page 179.

Control-L
These have their usual meanings for redisplaying the screen. They do not tell M-X
Source Compare Merge what to do with the latest set of differences, so it asks you
again.

Like I, but you do not need to confirm, and have no chance to change your mind.

Process this set of difference and all following differences with no further interaction.

You must type a second input character saying how to process them:

11 Take the first input file’s version of each difference.

12 Take the second input file's version of each difference.

s Take both version of each difference, without header lines.
11 Take both version of each difference, with header lines.

Once each set of differences has been processed with one of these commands, the buffer of
output is resectionized, and merging is finished.

17.8 Miscellaneous File Operations

ZMACS Reference Manual 88 File Handling

ZMACS has extended commands for performing many other operations on files.

N-X View File allows you to scan or read a file by sequential screenfuls without waiting for
the time required to read the entire file intc ZMACS. It reads s file name argument using the
minibuffer. After opening the file, it reads and displays one window full. You can then type
to scroll forward one window full, or (VERSTRIKE) {chosen by analogy to the Backspace

key on other systems) to scroll back. Those are the only commands available for moving around in -

the file being viewed; any other character exits View File and returns to the usual editing context.
View File reads more of the file only as necessary to obey scrolling commands.

M-X Print File makes a hardcdpy of the specified file, using the I,ISP function hardcopy-file
with just the file name as argument. See section 29.3 [Hardcopy!, page 180.

MN-X Insert File inserts the contents of the specified file into the current buffer at point,
leaving point unchanged before the contents and an inactive mark after them. See chapter 10
[Mark], page 39.

N-X Insert File No Fonts is like M-X Insert File except that it discards font change in-
formation found in a multi-font file. See section 23.2 [Fonts], page 120.

N-X Write Region To File is the inverse of M-X Insert File: it copies the contents of the
region into the specified file. M-X Append to File adds the text of the region to the end of the
specified file, and N-X Prepend to File adds it to the beginning.

Files of LISP code can also be loaded into the LISP world or compiled. See section 26.2 [Compile
File], page 157.

N-X Rename File reads two file names old and new using the minibuffer, then renames file old as
new. Both names can be file name patterns containing wildcards: in this case, all the files matching
old are renamed to names constructed according to new. See the operation :translate-wild-pathname
in the LISP Machine Manual for the rules used in doing this. If old contains wildcards, M-X Rename
File prints a list of all the renamings to be done and asks for confirmation before doing any.

N-X Copy File works just like M-X Rename File, but copies the files old to the files new.
Copying a file requires deciding whether to treat it as a binary file or a text file. M-X Copy
File guesses this from various information such as the file name type component and whether
the file appears to be a QFASL file. It is usually right, but if necessary you can specify this
information explicitly by using the command M-X Copy Text File or M-X Copy Binary File
instead. Normally, all copy commands preserve the author’s name and creation date; that is, the

----f-

ZMACS Reference Manual 89 File Handling

new files receive the same author and date as the old files. A numeric argument to any of the copy
command prevents this; then the new file receives the current date, and you as the author.

N-X Create Link is a command for creating a symbolic link. It reads the name for the new
link and the name to link to. Only some file servers support symbolic links.

N-X Create Directory creates a new file directory with the specified name.

File servers record for each file various file properties, including the creation date, last mod-
ification date, author, and others. File properties are independent of the contents of the file.
M-X Change File Properties allows you to change various file properties of the specified file.
It presents a choose-variable-values window that shows the values of all alterable file properties.
Click on the property value that you wish to change, then type in a replacement value. Click on
DDone to put the changes into effect, or [JAbort to cancel them; either one returns to ZMACS
editing.

Most of the commands in this section use the visited file name as the defaults for file name
arguments. Those that read two file name arguments use the first file name specified as the defaults
for the second one.

However, the commands for copying the region to a file or inserting a file's contents use a
different set of defaults, called the aux defaults. Each of these commands defaults its argument
based on the aux defaults, and then sets the aux defaults to the file that was specified. So the
default for each miscellaneous file command is the file used in the previous miscellaneous file
comnmand.

ZMACS Reference Manual 20 , File Handling

---‘-%-

----r-

ZMACS Reference Manual 91 Dired, the Directory Editor

18. Dired, the Directory Editor

Dired makes it easy to delete, compile or visit many of the files in a single directory at once.
It makes a ZMACS buffer containing a listing of the directory. You can use the normal ZMACS
commands to move around in this buffer, and special Dired commands to operate on the files.

There are two ways to invoke Dired. M-X Dired is the general way; it accepts a file name
pattern in the minibuffer and lists all files that match the pattern. The fast way is C-X D (1R
Dired). With no argument, it invokes Dired listing all the files in the current default directory.
With just C-U as argument, it lists all files related to the default file name (matching except for
type and version number).

Once invoked, Dired creates a buffer containing a listing of the specified files and selects the
buffer for editing. You can switch between this buffer and other ZMACS buffers freely, using
C-X B and all the other usual commands. Whenever the Dired buffer is selected, certain special
commands are provided that operate on files that are listed. The Dired buffer is “read-only”, and
inserting text in it is not useful, so ordinary printing characters such as D and X are used as Dired
commands. Most of these commands operate on the file described by the line that point is on.
Some commands perform operations immediately; others “mark” the file to be operated on later.

Most Dired commands that operate on the current line's file also treat a numeric argument a
repeat count, meaning to apply to the files of the next few lines. A negative argument means to
operate on the files of the preceding lines, and leave point on the first of those lines.

18.1 Deleting Files with Dired

The primary use of Dired is to mark files for deletion and then delete them.

D, ¢-D, K, C-K
Mark this file for deletion, or remove a mark for undeletion.

U Remove marks on this line, or mark a deleted file for undeletion. v
RUBO Remove marks on previous line, moving point to that line; or mark a deleted file there
for undeletion.
X Operate on files as requested by their marks.

H Mark old file versions for deletions.

You can mark a file for deletion by moving to the line describing the file and typing D, C-D, K,

ZMACS Reference Manual 92 Dired, the Directory Editor

or C-K. The deletion mark is visible as a ‘D’ at the beginning of the line. Point is moved to the
beginning of the next line, so that several D commands mark several files for deletion.

The files are marked for deletion rather than deleted immediately because deletion is dangerous
on file servers that erase deleted files immediately. Until you direct Dired to delete the marked
files, you can remove deletion marks using the commands U and (RUBOUT). U works just like D, but
removes marks rather than making marks. moves upward, removing marks; it is like U
with numeric argument automatically negated.

If the directory is on a file server that supports undeletion, the directory may contain files
already deleted but not yet expunged. Such files are indicated with ‘d’, in lower case, at the
beginning of the line. ‘d’ is not a mark indicating a requested operation; it is an indication of the
file’s current status. For deleted files, deletion is not possible, but undeletion is. Therefore, on
a deleted file, the D and U commands play the opposite of their usual roles: U marks the file for
eventual undeletion, putting in a mark visible as a ‘U’ at the beginning of the line, and D removes
this mark, replacing the ‘U’ with the ‘d’ status-indicator. '

To delete the marked files, type X. This command performs all the file operations requested
by marking files, but first prints a complete list of what will be done to which files, and asks for
confirmation. You may type Y, E, N or Q. Y means to go ahead and perform the deletions and other
operations. E is similar but afterward expunges the directories that deleted files are contained in,
so that the files are really erased. E is offered only if the files are on a file server that does not
erase files until they are expunged. N returns to editing the Dired buffer without performing any
of the operations. Q returns to editing some other buffer, the most recent one selected before the
Dired buffer was. Use Q if you change your mind about using Dired at all.

The H command marks many files for deletion, based on their version numbers. H looks at the
current line’s file and all the other listed files differing only in version number and type; it marks
all older versions for deletion using the same criteria as M-X Reap File (see section 17.6 [Deleting
Files|, page 82). C-U H operates on all the files in the Dired buffer in this way.

18.2 Dired Cursor Motion

All the usual ZMACS cursor motion commands are available in Dired buffers. Some special
purpose commands are also provided.

Move down one line.

N - . Move down to next file with many versions.

----t-

ZMACS Reference Manual 83 Dired, the Directory Editor

! Move down to next file not backed up on tape.

For extra convenience, in Dired is a command similar to C-N. Moving down a line is
done so often in Dired that it deserves to be easy to type. (RUBOUT) is often useful simply for
moving up.

The command N moves down to the next file that has more than zwei:*file-versions-kept* versions
(by default, this is 2 versions). The command ! moves down to the next file whose ‘1’ flag (“not
backed up on tape”) is set. The ‘!’ is visible in the file’s line, before the creation date.

18.3 Displaying Other Directories

Most file servers have a hierarchy of directories. For example, if angel is a Unix file server, the
directory angel:/Imi/rms is contained in the directory angel:/Imi and might contain the directory
angel:/imi/rms/bin. Dired provides commands for moving around in the directory hierarchy.

< Invoke Dired on superior directory.
E Invoke Dired on subdirectory described on current line.
) Include in (or, remove from) this Dired buffer the contents of the subdirectory described

on the current line,

The < command invokes Dired on the containing directory of the one you are currently looking

at. In this example, it would be equivalent to N-X Dired angel:/1lmi/ (RETURN). The

same effect for a subdirectory can be obtained with the E command, if point is on the line describing
the subdirectory. These commands create a new Dired buffer for each directory.

The 8 command is used to include the contents of a subdirectory under the line that describes
the subdirectory. This makes one Dired buffer display multiple directory levels. The files in the
subdirectory can be marked and operated on together with the files in the original directory.

If a subdirectory’s files are displayed, the 8 command on the subdirectory’s line removes its files
from the display. Any request marks on those files are forgotten.
18.4 Operations on File Properties

File servers record for each file various file properties, including the creation date, last modifica-

ZMACS Reference Manual 94 Dired, the Directory Rditor

tion date, author, and others. File properties are independent of the contents of the file. Each file
can also have attributes, which are part of the contents of the file, but assigned a special standard
interpretation. See chapter 30 [Attributes|, page 187. Dired provides commands for working with
both properties and attributes. They all apply to the file described by the line point is on.

€ Complement this file’s “don’t delete” bit. If the file has this bit, any attempt to delete
it gets an error.

s Complement this file’s “don’t supersede” bit. If the file has this bit, any attempt to
‘create a later version of it gets an error.

$ Complement this file's “don’t reap” bit. If the file has this bit, various automatic old-
version deletion programs including M-X Reap File and the Dired command H will
never delete this file. Automatic deletion programs on the file server should also be
designed to respect this bit.
Change any or all properties of this file.

. Display the attribute list of this file.

The “don’t delete”, “don’t supersede” and “don’t reap” bits are three standard file properties
that many, but not all, file servers support. The characters ‘@', ‘#’ and ‘$’, respectively, appear
in the file's line, just before the creation date, to indicate that the file has these properties. The
same characters are used as commands to set or clear the bits.

The . command presents a choose-variable-values window with which you can alter any of the
alterable properties of the file. Each file server has its own rules for which kinds of properties you
can alter.

The , command prints the attribute list of the current line’s file. For a text file, this is the
information in the attribute line. For a QFASL file, this is a copy of the attribute list of the
source file, stored in encoded format. In the case of a QFASL file, , also prints the compilation
information, whoch says who compiled the file, when, where, and from which source version.

There is no command in Dired to alter a file's attribute list. Since the attribute list is part of
the file’s contents, altering it is done by editing the file.

18.5 Other File Operations in Dired

A Mark this file for later application of a LISP function.
F Mark this file to be visited later.

----r-

ZMACS Reference Manual 95 Dired, she Directory Editor

P Mark this file to be printed later.

The A, F and P commands mark files for various operations, much the same way the D command
marks files for deletion. All the requested operations take place when the X command is given.

Marking a file to apply a LISP function may seem obscure, but it is very versatile, because
nearly anything can be done to whichever set of files you select. If you have marked any files with
A, the X command reads the name of a LISP function to invoke, using the minibuffer. This function
will be called once for each marked file, with the file’s pathname object as the sole argument. For
example, if the function compile-file is specified, each of the marked files is compiled. This is so
useful that it is the default, used if you type just (RETURN). You can even type a lambda-expression.
This way you can cause any LISP program to be run for each A-marked file.

Files marked for printing are printed using hardcopy-file, with all arguments except the file name
defaulted.

The various kinds of Dired marks are exclusive. For example, marking a file for printing removes
any mark for deletion, visiting, or function application. Also, the U and (RUBOUT) commands get
rid of any kind of mark except a ‘U’ (undelete) mark.

18.6 Immediate File Operations in Dired
Some file operations in Dired take place immediately when they are requested.

c Copies the file described on the current line. You must supply a file name to copy to,
using the minibuffer.

E Visits the file described on the current line. It is just like typing C-X C-F and supplying
that file name. If the file on this line is a subdirectory, E actually causes Dired to be
invoked on that subdirectory. Note that you can also request files to be visited later
using the F command.

C-Shift-E
Like E, but creates another window within the ZMACS frame and displays the file's
buffer in that window. The Dired buffer remains visible in the first window. See
chapter 20 {Windows|, page 109.

L Loads the file described on the current line, as LISP code, using the function load. If
the file does not contain LISP source code or compiled LISP code, you will get bizarre
results.

ZMACS Reference Manual 96

to, using the minibuffer.

In addition, most ZMACS commands for operating on files, when used in a Dired buffer, use

the file name listed on the current line as the default file name.

18.7 Sorting the Dired Buffer

When you invoke Dired, it creates a buffer sorted in the usual manner for directory listings:
increasing alphabetically by file name. Dired provides commands to sort the directory by other

file parameters:

M-X Sort Increasing Creation Date
Sort by creation date, oldest files first.

N-X Sort Decreasing Creation Date
Sort by creation date, newest files first.

N-X Sort Increasing Reference Date
Sort. by last reference date, less recently used files first.

M-X Sort Decreasing Reference Date

Sort by last reference date, most recently used files first.

N-X Sort Increasing Size
N-X Sort Decreasing Size
Sort files by size.

N-X Sort Increasing File Name
Sort in the same order normally used.

N-X Sort Decreasing File Name
Sort in the opposite of the usual order.

If files are already marked for operations when sorting is done, the marks move with the files.

18.8 Balancing Directories Interactively

{ired, the Directory Editor

Renames the file described on the current line. You must supply a file name to rename

View the file described on this line using M=X View File. Viewing a file is less flexible
than editing it, but allows you to see the beginning of the file without waiting for the
whole file to be read by ZMACS. See section 17.8 [Other File Operations], page 87.

- Compare the file described on this line against the most recent version of the file, using
N-X Source Compare. See section 17.7 [Source Compare], page 84.

----t-

ZMACS Reference Manual 97 Dired, the Directory Editor

Bdired-—Balance DIRectories EDit—provides a way to compare the contents of two file direc-
tories, possibly on different machines, and copy files between them.

BDired reads two directory names using the minibuffer, then reads the contents of the directories
and matches up corresponding file names. Then it creates a BDired buffer, which is like two Dired
buffers concatenated, one for each directory.

The main thing BDired lets you do to a file is transfer it from the directory it is in to the other
directory. Files marked for transfer have a ‘T’ at the beginning of the line. Initially, every file
name that is found in one directory and not the other has a ‘T’ mark. It is easy to remove many of
the marks at once using the U command with a large numeric argument. Here is a list of BDired
commands:

T Mark the current line’s file to be transferred to the other directory (the one it is not
already on).

Mark the current line’s file to be printed using hardcopy-file.
Rename the current line’s file to a new name specified using the minibuffer.

Copy the current line's file to a new name specified using the minibuffer.

c O o v

Cancel any marks for transfer or printing on the current line; if there is none, move
up one line and cancel one there.

RUBOUT) Move up one line and cancel any marks for transfer or printing on that line.

Move down vertically.

The above commands use a numeric argument as a repeat count. The U command with no
argument chooses an argument of 1 or -1 based on a heuristic; but, if given an explicit numeric
argument, it always goes in the direction specified by the argument.

Compare the current line’s file against the latest version of the file using Source Com-
pare. See section 17.7 [Source Compare|, page 84.

Perform all requested transfers and printouts, then “exit” BDired by switching to
another buffer.

L

“Exit” by switching to another buffer, without doing any transfers.

ZMACS Reference Manual 98 Dired, the Directory Editor

----L-

ZMACS Reference Manual 99 Using Multiple Buffers

19. Using Multiple Buffers

The text you are editing in ZMACS resides in an object called a buffer. Each time you visit a
file, a buffer is created to hold the file’s text. Each time you invoke Dired, a buffer is created to
hold the directory listing. Each time you send a message with C-X M, a buffer is created to hold
the text of the message.

At any time, in one ZMACS frame, one and only one buffer is selected. It is also called the
current buffer. If the ZMACS frame contains multiple windows, then each window can have a
chosen buffer; but at any time only one of the windows is selected within the ZMACS frame, and
its chosen bufler is the selected buffer. Often we say that a command operates on “the buffer” as if
there were only one; but really this means that the command operates on the selected buffer (most
commands do).

‘Each buffer has a name, which can be of any length, and you can select any buffer by giving its
name. Most buffers are made by visiting files, and their names are derived from the files’ names
by permuting the components. A newly started ZMACS frame has a buffer named ‘*Buffer-n*’
where n is an integer numeral. The name of the currently selected buffer is visible in the mode
line when you are at top level.

Each buffer records individually what file it is associated with, whether it is modified, and what
major mode and minor modes are in effect in it. Any ZMACS variable can be made local to a
particular buffer, meaning its value in that buffer can be different from the value in other buffers.
See section 31.2 [Variables], page 192. '

Each ZMACS frame is a separate editor in most respects, but all ZMACS frames share the
same set of buffers. Having created a buffer in one ZMACS frame, you can select it for editing in
another. This is very important.

19.1 Creating and Selecting Buffers

C-XB Select or create a buffer.
C-N-L Select another buffer, rotating through several recently selected ones.
Cc-X C-N-L

Like C-M-L but remembers the last numeric argument explicitly given it.
C-X C-B List the existing buffers.

ZMACS Reference Manual 100 Using Multiple Buffers

To select the buffer named bufname, type C-X B bufname (RETURN). This is the command
Select Buffer with argument bufname. Because completion is provided for buffer names, you can
abbreviate the buffer name. Most often the buffer name begins with the name component of a
file name. Unless you have visited two files with the same name component, the name or an
abbreviation for it is enough to identify a buffer for C-X B or any other command that reads a
buffer name. See section 7.1 [Completion], page 30. An empty argument to C-X B specifies the
previously selected buffer.

Each ZMACS window records a buffer selection history, which contains a list of all the buffers
known to ZMACS, ordered with the buffers most recently selected in that window coming earlier
on the list. The command C-M-L (Select Previous Buffer) uses this history to cycle through two or
more recently selected buffers.

The simplest case is C-M-L without a numeric argument: this selects the next-to-last selected
buffer. Repeated use with no other intervening buffer-selecting commands alternates between two
buffers.

When C-N-L is given a positive numeric argument n, it selects the nth most recently selected
buffer. If this command is repeated, it cycles through all of the last n buffers selected. A negative
argument -n cycles through the same set of buffers in the opposite order. This selects the next-to-
last sclected buffer regardless of the value of n, but it alters the record of recently selected buffers
in a peculiar way: it puts the buffer being deselected into the n’th place. |

C-U 1 C-N-L selects the next-to-last selected buffer but puts the buffer being deselected at the

end of the list. Repeating this command cycles through all the buffers known to ZMACS. C-U -

1 C-N-L also cycles through all known buffers, but in the opposite order.

The command C-X C-M-L (Select Default Previous Buffer) does the same thing as C-M-L when
an explicit numeric argument is given. Without an argument, it differs by using the last argument
explicitly given it. C-X C-M-L with just a minus sign as an argument uses minus the last argument
explicitly given it. C-M-L, by contrast, always uses 2 as an argument if none is given.

To print a list of all the buffers that exist, type C-X C-B (List Buffers). Each buffer’s name,
major mode, and file version number are printed. ‘*’ at the beginning of a line indicates the buffer
is “modified”. If several buffers are modified, it may be time to save some with M-X Save All
Files (see section 17.3 [Saving], page 79). ‘+’ indicates a buffer that is associated with a new file,
one that does not exist but will be created if you save. ‘=’ indicates a read-only buffer; these are
usually buffers made by Dired or similar commands. Here is an example of a buffer list:

ZMACS Reference Manual 101 Using Multiple Buffers

Buffers in ZWEI:

Buffer name: File Version: Major mode:

+ foo.bar /lmi/rms/ ANGEL: (LISP)

s lose [1 Line] (LISP)
ZMACS.LISP#> L.ZWEI; DJ: (634) -(LISP)
sBuffer-is [1 Line] (LISP)
debug trace [1 Line] : (LISP)

* #Definitions» (7 Lines] (Possibilities)

+ means new file. +* means buffer modified.

Note that the Unix file has no version number, and the non-file buffers give the number of lines
instead of a version number.

‘Each line in the buffer list is mouse-sensitive. When the mouse is properly pointing at a line,
a box appears around it; then m selects the buffer described by that line, and m pops up a menu
containing several useful buffer operations, mostly commands described in this chapter.

" Most buffers are created by visiting files, but you can also create a buffer explicitly by typing
C-X B bufname (RETURN) (RETURN). This is the same as above, with an extra (RETURN), which is
needed because the minibuffer refuses to accept a nonexistent buffer name on the first (RETURN).
This makes a new, empty buffer that is not associated with any file, and selects it for editing. Such
buffers are used for making notes to yourself. If you try to save one, you are asked for the file name
to use. The new buffer’s major mode is determined by the value of zwei:*default-major-mode* (see

chapter 21 [Major Modes], page 113.

Note that C-X C-F, and any other command for visiting a file, can also be used to sw:tch buffers.

See chapter 17 [Files], page 75.

19.2 Specifying a Buffer with a File Name

Whenever ZMACS uses the minibuffer to read a ZMACS buffer name, you have the option of
specifying a file name instead. ZMACS will visit the file if that has not already been done, and
then use the file’s buffer.

To do this, you must first type C-Shift-F. This character, in the minibuffer, is specially defined
to read a file name, visit the file, and then use the file’s buffer.

ZMACS Reference Manual 102 Using Maltiple Buffers

19.3 Miscellaneous Buffer Operations

C-X C¢-Q Toggle read-only status of buffer.

M-X Rename Buffer
Change the name of the current buffer.

A buffer can be read-only, which means that commands to change its text are not allowed.
Normally, only buffers made by subsystems such as Dired are read-only. If you wish to make
changes in a read-only buffer, use the command C-X C-Q (Toggle Read Only) It makes a read-only
buffer writable, and makes a writable buffer read-only.

M-X Rename Buffer changes the name of the current buffer. Specify the new name as a
minibuffer argument. There is no default.

The commands C-X A (Append To Buffer) and M-X Insert Buffer can be used to copy text
from one buffer to another. See section 11.3 [Copying], page 50.

19.4 Killing Buffers

After you use ZMACS for a while, you may accumulate a large number of buffers. You may '

_then find it convenient to eliminate the ones you no longer need. There are several commands
provided for doing this. |

c-X X Kill a buffer.

N-X Kill Some Buffers
Offer to kill each buffer, one by one.

C-X X (Kill Buffer) kills one buffer, whose name you specify in the minibuffer. The default, used
if you type just in the minibuffer, is to kill the current buffer. If the current buffer is
killed, you must specify the name of another buffer to select instead. The last buffer on the buffer
selection history serves as a default for this. The killing does not actually take place until you
have typed the new buffer name, so this serves as a kind of confirmation. If the buffer being killed
is modified (has unsaved editing) then you are asked whether to save it first.

The command M~X Kill Some Buffers asks about each buffer, one by one. An answer of Y
means to kill the buffer. Killing the current buffer or a buffer containing unsaved changes asks for
additional information or confirmation like Kill Buffer.

il St

ZMACS Reference Manual 103 Using Muitiple Buffers

19.5 Operating on Several Buffers

There are several ZMACS commands that present a list of all ZMACS buffers and allow you to
specify various operations to be performed on them.

N-X Kill Or Save Buffers
Present menu of buffers to save, kill, compile or clear modification flag of.

N-X Buffer Edit
Present editor buffer describing existing buffers, in which you can specify operations
to be performed on them.

The easiest way to get a menu of buffers to operate on is to print a list of them with C-X
C-B, and then request an operation by clicking the mouse on a buffer name. This provides many
alternatives for operating on a buffer, but it usually does not allow you to do more than one thing,
because the first thing you do will probably redisplay the screen and make the buffer list go away.
This section describes other ZMACS commands are provided that aliow you to queue up requests
for several operations on various buffers.

If you like to use a window-oriented interface and choose operations with the mouse, use the
command H-X Kill Or Save Buffers. It displays a multiple choice window with a line for each
ZMACS buffer (though you may need to scroll it to see all the buffers, if there are many), containing
four choice-boxes for saving the buffer, killing the buffer, marking the buffer unmodified, and
recompiling the buffer’s associated file (offered for LISP source files only). Saving is initially selected
for all modified file-visiting buffers.

Click on a choice box to select that operation, or to cancel a selection already made. Un-
modifying is not allowed together with saving or killing, but aside from that any combination of
operations is allowed. Finally, click on the [BDone box to perform all selected operations, or click
on the [[JAbort box to return to editing and perform no operations. You can also return to editing
by typing C~(ABORT).

If you like to use ZMACS editing to specify operations to be performed, use M-X Buffer Edit,
a sort of “Dired for buffers”. This command creates and selects a ZMACS buffer containing
one line for each previously existing ZMACS buffer. You then move around in the buffer using
normal ZMACS cursor motion commands, and request operations on buffers by typing commands
that apply to the current line. There are four kinds of operations you can request for the buffer
described on the current line:

1. Kill the buffer. Type K to request this. The request shows as a ‘K’ on the line, before

ZMACS Reference Manual 104 Using Multipie Buffers

the buffer name. If the buffer is modified, this also makes a save request, which shows
up as an ‘S'. :
2. Save, revert or write the buffer, or clear its “modified” flag. Only one of these op-
" erations is allowed. They are requested by the commands 8§, R, W and ~; the same
- characters appear in the line as marks to indicate that the operations have been re-
quested. The W operation requires a file name argument that specifies the file to write
‘into (using Write File); this file name appears in the line after the buffer name.
3. Print the buffer. Type P to request this. The request shows as a ‘P’ on the line, before
> the buffer name, '
4. Select the buffer. The command to request this is . (period), and the request is
indicated by a period before the buffer name. As only one buffer can be selected, the
. command clears the period marks from all other lines.

All the operation-requesting commands move down a line.

The command U cancels any request (except selection) for the current line, and moves down;
(RUBOUT) does so for the previous line, and moves up to it. The command N cancels any 1/O
request. (save, revert, write or unmodify) but not kill, print or select requests.

To perform the operations requested, type Q. This ends by selecting the buffer marked with the
period.

All that M-X Buffer Edit does directly is create and select a suitable buffer. Everything else
described above is implemented by specially redefined editing commands provided for that buffer.
One consequence of this is that you can switch from the Buffer Edit buffer to another ZMACS
buffer, and edit it. You can reselect the Buffer Edit buffer later, to perform the operations already
requested, or you can kill it, or pay no further attention to it.

19.6 Buffer Groups

A buffer group or tag table is a set of buffers, with an ordering. Grouping several related files,
such as the source files of one program, makes it possible to search or replace through all the files
with one command.

19.6.1 Creating and Selecting Buffer Groups

ZMACS Reference Manual ' 105 Using Muitiple Buffers

Several buffer groups can exist, but only one is selected; all the commands to search the buffers
in a group use the selected group. The commands to create a buffer group also select it. Buffer
groups have names and you can reselect an existing one by specifying its name.

N-X Select All Buffers As Tag Table
Make a buffer group of all existing ZMACS file-visiting buffers, and select it.

N-X Select Some Buffers As Tag Table
Make a buffer group of some existing ZMACS file-visiting buffers, querying buffer by
buffer, and select it.

N-X Select System As Tag Table
Make a buffer group of all source files of a system, and select it.

N-X Visit Tag Table
Read a tag table file, make a buffer group of all source files it mentions, and select it.

N-X List Tag Tables
List the names of all the buffer groups.

N-X Select Tag Table
Select a buffer group by name.

N-X Select All Buffers As Tag Table creates and selects a buffer group containing all the
existing ZMACS buflers that are associated with files. It receives a generated unique name. A
numeric argument, tells this command to read a string and then consider only buffers whose names
contain the string.

N-X Select Some Buffers As Tag Table is similar, but queries about each buffer to find out
whether to include it in the buffer group. In addition to Y or N, you can answer F, which means to
make the buffer group using the buffers you have already said yes to, and not ask you about any
others. '

N-X Select System As Tag Table creates and selects a buffer group containing all the source
files in a specified system (see the chapter “Maintaining Large Systems”, in the LISP Machine
Manual, for information on what a system is). Since perhaps not all of those files have been visited
in ZMACS yet, some of the buffers “in” this group may not exist yet. They are virtual members
of the buffer group. If you proceed to search or replace through all the buffers in the group, these
virtual members will be converted to real members (by visiting the appropriate files) as they are

needed.

N-X Visit Tag Table reads in a tag table file and creates and selects a buffer group containing
all the source files mentioned in the tag table file. For source files not yet visited, virtual members
are made. The tag table file’s name is used as the buffer group’s name. a Tag table file describes

ZMACS Reference Manual 106 Using Muiltiple Buffers

all the definitions in several program files, and is made with the tools TAGS (on Twenex) or etags
(on Unix). '

N-X List Tag Tables prints a list of all defined buffer groups, giving the name of each group

and the buffers/files that belong to it. N-X Select Tag Table reads the name of a buffer group
and selects that one.

19.6.2 Searching a Group of Buffers

N-X Tags Search
Search for the specified string within buffers in the selected group.

N-X Tags Query Replace
Perform a Query Replace within buffers in the selected group.

M-X Tags Multiple Query Replace
Perform a Query Replace within buffers in the selected group.

“N-X Tags Multiple Query Replace From Buffer
Perform a multiple Query Replace from the contents of the specified buffer

c-. Restart one of the commands above, from the current location of point.

N-X Tags Search searches the buffers of the selected group, one by one, for a specified string.
Extended search characters can be used in the string (See section 15.7 [Extended Search], page 68).
Search starts at the beginning of the first buffer in the group and continues with additional buffers
until a match is found. At that time, the buffer containing the match is selected and point is put
after the match. The previous location of point is pushed on the point pdl.

Virtual members of the group (files not yet visited) are visited when it is time to search them.

Having found one match, you probably want to find all the rest. Type €C-. to resume the M-X
Tags Search, searching the rest of the current buffer, followed by the remaining buffers of the

group.

N-X Tags Query Replace performs a single Query Replace through all the buffers of the group,
in their proper order. It reads a string to search for and a string to replace with, just like ordinary
N-X Query Replace. It searches much like M~-X Tags Search (sorry, no extended search characters
allowed) but repeatedly, processing matches according to your input. See section 15.5 [Replace|,
page 65, for more information on Query Replace.

ZMACS Reference Manual 107 -~ Using Multiple Buffers

It is possible to get through all the buffers in the group with a single invocation of M-X Tags
Query Replace. But since any unrecognized character causes the command to exit, you may need
to continue where you left off. C-. can be used for this. C-. resumes the last buffer group search
or replace command that you did.

N-X Tags Multiple Query Replace and M-X Tags Multiple Query Replace From Buffer
are buffer group variants of the single-buffer-searching commands M-X Multiple Query Replace
and N-X Multiple Query Replace From Buffer. See section 15.5 [Replace], page 65.

19.6.3 Stepping Through a Buffer Group

If you wish to process all the buffers in a group, but M-X Tags Search and M-X Tags Query
Replace in particular are not what you want, you can use M-X Next File.

N-X Next File
Select the next buffer in the selected buffer group.

C-U N-X Next File
With a numeric argument, regardless of its value, select the first buffer in the group.

19.6.4 Buffer Groups and Sectionization

Various commands operate on particular sections in all the buffers in the selected buffer group.
See section 26.1 [Sectionization], page 153.

N-X Tags Search List Sections
List sections containing specified string in buffers in the selected group.

N-X Tags Edit Changed Sections

Edit any modified sections in buffers in the selected group.
N-X Tags List Changed Sectioms

List any modified sections in buffers in the selected group.
M-X Tags Evaluate Changed Sectionms

Evaluate any modified sections in buffers in the selected group.
N-X Tags Compile Changed Sections

Compile any modified sections in buffers in the selected group.

N-X Tags Add Patch Changed Sections
Add to current patch file any modified sections in buffers in the selected group.

ZMACS Reference Manual 108 Using Muitiple Buffers

M-X Tags Search List Sections searches the buffers in the group like Tags Search; for each
match, it records the section that the match occurred in. Finally, the names of the sections found
are printed, and a possibilities list is made containing them all. You can use this to visit the
sections one by one, later. See section 26.7 [Possibilities Lists], page 164.

The other commands in this section operate on the changed sections in the buffers of the
group. These commands have variants that operate on the changed sections of one buffer, or
of all buffers. The Tags variant is midway in scope between those two. For example, M-X Tags
List Changed Sections operates on more buffers than does ¥-X List Buffer Changed Sec-
tions (which scans only the current buffer), but fewer than does M~X List Changed Sections
(which scans all buffers).

N-X Tags List Changed Sections and M-X Tags Edit Changed Sections set up a possibil-
ities list containing all the changed sections. See section 26.7 [Possibilities Lists], page 164.

ZMACS Reference Manual 109 : Muitiple Windows

20. Multiple Windows

You can split a ZMACS frame into two ZMACS windows, which can display parts of different
buffers, or different parts of one buffer. You may have more than two windows, but most of the
commands are designed for splitting into two windows.

c-X 2 Start showing two windows. If already doing so, just select the other window.

c-Xx 3 Show a second window but leave the first one selected.

c-X 0 Switch to the Other window (O, not zero).

c-X 1t Show only one window again.

c-X 8 Show two windows, both displaying the current buffer, with the top window just big
enough to show the current region. '

c-X 4 Find a buffer, file or LISP function in the other window.

c-x - Make the selected window bigger, at the expense of the other(s).

C-N-V Seroll the other window.

N-X Split Screen
Show several windows, with contents specified using a menu.

When multiple windows are being displayed, each window has a ZMACS buffer designated for
display in it. The same buffer may appear in more than one window; if it does, any changes in its
text are displayed in all the windows where it appears. But the windows showing the same buffer
can show different parts of it, because each window has its own value of point.

At any time, one of the ZMACS windows within the frame is the selected window within the
frame; the buffer this window is displaying is the current buffer. The cursor in this window blinks
(provided the ZMACS frame is selected); the cursors in the other ZMACS windows are nonblinking.
Commands to move point affect the value of point for the selected ZMACS window only. They
do not change the value of point in any other ZMACS window, even one showing the same buffer.
The same is true for commands such as C-X B to change the selected buffer; they affect only the
selected window.

The mode line describes the status of the selected window only. When there are multiple
windows, each window has a label, a line of text just above the bottom edge, which states the
name of the buffer displayed in the window. When there is only one window, it has no label,
because in this case it would give no more information than the mode line does.

Once you have used two windows in a ZMACS frame, the frame always remembers both of
them. If you change back to using the entire frame for a single window, the other window is kept

ZMACS Reference Manual 110 Muliipie Windows

dormant. If you resume displaying two windows again, the other window comes back with its
former contents. '

The command C-X 2 (Two Windows) begins displaying two windows within the ZMACS frame.
Assuming that you give this command at a time when you have only one window, that window
shrinks to the top half of the frame, while the other window appears below and becomes selected.
If this is the first time you have used two windows in this ZMACS frame, the other window starts
out displaying the same buffer as the first one, with the same value of point. But once the two
windows exist, switching buffers or moving point in one of them does not affect the other.

To select the other window, use C-X 0 (Other Window). That is an O, not a zero, C-X 0 is
actually a more general command: when you are using more than two windows, it selectes the
window beneath the one now selected; or the one at the top, if the lowest one is now selected. If
given a numeric argument, it moves the selection that many windows down.

The €-X 3 (View Two Windows) command is like C-X 2 except that it does not change the
selected window. That is, it makes a second window appear, but the old one remains selected. C-X
2 is equivalent to C-X 3 C-X 0. C-X 3 is equivalent to C-X 2 C-X 0, but C-X 3 is much faster.

The selected window can be scrolled using the usual scrolling commands (see chapter 14 [Dis-
play], page 59), and each window can be scrolled using its own scroll bar. In addition, the command
C-M-V (Scroll Other Window) scrolls the window beneath the selected one in cyclic order (so in the
bottommost window it operates on the topmost one). It works just like C-V, but operates on a
different window. C-N-V is very useful when you are editing in one window while using the other
just for reference. '

To return to viewing only one window, use the command C-X 1 (One Window). One of the
windows expands to fill the whole ZMACS frame, and the others become dormant. There are
various options to control which window remains visible. If C-X 1 is given an argument, as in C-U
C-X 1, then it is always the selected window. Otherwise, what happens depends on the variable
zwei:*one-window-default®. It has these values: '

:current Keep the selected window. This is the default.

:other Keep the uppermost nonselected window.
upper Keep the uppermost window.
lower Keep the lowermost window.

In any case, a window displaying compiler warnings will not be chosen for retention by €-X 1
with no argument. :

l

ZMACS Reference Manual 11} : Muitiple Windows

C-X 0 is meaningful when viewing only one window, if you have used two windows at some
time in the past. It displays the other, dormant window, making the previously displayed window
dormant. If there is one visible window before C-X 0, there is again one visible window afterward,
but it is the other window.

C-X 2and C-X 3divide the ZMACS frame equally among the two windows. You can redistribute
screen space between the windows with the C-X * (Grow Window) command. It makes the currently
selected window get one line bigger, or as many lines as is specified with a numeric argument.
With a negative argument, it makes the selected window smaller. The division of space between
the windows is remembered after C-X 1 and comes back when the next C-X 2 is done.

Another way to divide the frame unevenly into two windows is C-X 8 (Two Windows Showing
Region). A region must exist when this command is used. It displays the region in the upper
window, making that window exactly big enough to show the whole region (unless the region is
too big for that); and displays the same buffer in the lower window, selecting that window. You
can then edit elsewhere in the buffer using the lower window, while the specified region remains
visible above for your reference.

A convenient “combination” command for viewing something in the other window is C-X 4
(Modified Two Windows). With this command you can ask to see any specified buffer, file or tag
in the other window. Follow the C-X 4 with either B and a buffer name, F or C-F and a file name,
or T or . and a section name (the name of a LISP function, variable or whatever; see section 26.1
[Sectionization), page 153) This selects the other window and displays there the buffer that you
specified, such as the buffer containing the specified file. If there is already another window, it is
used; otherwise, a second window is made and used.

ZMACS Reference Manual 112 Multiple Windows

ZMACS Reference Manual 113 ' Major Modes

21. Major Modes

ZMACS has many different major modes, each of which customizes ZMACS for editing text of
a particular sort. The major modes are mutually exclusive, and eack buffer has one major mode at

any time. The mode line normally contains the name of the current major mode, in parentheses.
See section 1.4 [Mode Line|, page 7.

The least specialized major mode is called Fundamental mode. This mode has no mode-specific
redefinitions or variable settings, so that each ZMACS command behaves in its most general man-
ner, and each option is in its default state. For editing any specific type of text, such as LISP code
or English text, you should switch to the appropriate major mode, such as LISP mode or Text
mode. :

Selecting a major mode changes the meanings of a few commands to become more specifically
adapted to the language being edited. Most commands remain unchanged; the ones that usually
change are (TAB), (RUBOUT), and (LINEFEED). In addition, the commands that handle comments
use the mode to determine how comments are to be delimited. Many major modes redefine the
syntactical properties of characters appearing in the buffer. See section 31.5 [Syntax], page 201.

The major modes fall into three major groups. LISP mode, Macsyma mode, TECO mode,
MIDAS mode, PL.1 mode and C mode are for specific programming languages. Text mode is for
editing straight English text, and Tex mode and Bolio mode are for text intended to be passed to
text formatters TEX and Bolio. The remaining major modes are not intended for use on user’s files;
they are used in buffers created for specific purposes by ZMACS, such as Dired mode for buffers
made by Dired (see chapter 18 [Dired], page 91), and Mail mode for buffers made by M-X Mail.

Selecting a new major mode is done with an M~X command. From the name of a major mode,
add ‘ Mode' to get the name of a command function to select that mode. Thus, you can enter
LISP mode by executing M-X LISP Mode.

When you visit a file, usually the file name’s type component tells ZMACS to select a major mode
automatically. For a file of generic type :lisp, such as TWX:<RMS>FOO.LISP or unx:/u/rms/foo.l,
ZMACS automatically puts the buffer in LISP mode. The correspondence between file types and
major modes is set by the variable fs:*file-type-mode-alist*, whose elements look like (type . mode-
keyword). type is a type component, either a string or a generic type keyword such as :lisp, :text
or :doc. mode-keyword is a keyword that identifies a major mode---lisp, :text, :fundamental, and
so on. Often type and mode-keyword are the same.

You can specify which major mode should be used for editing a certain file by putting a Mode

ZMACS Reference Manual 114 Major Modes

attribute in the file’s attribute list. For example,

i~s-Node: Lisp;-*-

tells ZMACS to use LISP mode. An explicit Mode attribute overrides any assumptions based on
the file's type.

If a file's Mode attribute is not the name of a ZMACS major mode, the file can still be visited, but
the default major mode is used and an error is reported. You can translate such Mode attributes
into major modes that ZMACS does have, using the variable zwie:*major-mode-translations®. Each
element of this variable looks like (spec-mode-keyword . use-mode-keyword). Thus, (:scribe . :text)
as an element of this list says to use Text mode for a file whose Mode attribute is ‘Scribe’.

When a file is visited that does not specify a major mode to use, or when a new buffer is created
with C-X B, the major mode used is that specified by thef variable zwei:*default-major-mode*, which
is normally :lisp for LISP mode. If zwei:*default-major-mode®* is nil, the major mode is taken from
the previous selected buffer.

Most programming language major modes specify that only blank lines separate paragraphs.
This is so that the paragraph commands remain useful. See section 24.4 {Paragraphs|, page 128.
They also cause Auto Fill mode to use the definition of to indent the new lines it creates. This
is because most lines in a program are usually indented. See chapter 22 {Indentation}, page 115.

ZMACS Reference Manual 115 indentation

22. Indentation

Indent “appropriately” in a mode-dependent fashion.

M-(TAB) Insert a tab character.
Perform followed by (TAB).

M- Merge two lines. This would cancel out the effect of (LINEFEED).

C-N-0 Split line at point; text on the line after point becomes a new line indented to the same
column that it now starts in.

N-0 Indent a new line after this one, or indent this line, to column determined by point.

M-N Move (forward or back) to the first nonblank character on the current line.

N-1 Indent to tab stop. In Text mode, does this also.

C-N-\ Indent several lines to same column.

C-X (TAB) Shift block of lines rigidly right or left.

Most programming languages have some indentation convention. For LISP code, lines are
indented according to their nesting in parentheses. The same general idea is used for C code,
though many details are different. For assembler code, almost all lines start with a single tab, but
some have one or more spaces as well.

Whatever the language, to indent a line, use the command. Each major mode defines
this command to perform the sort of indentation appropriate for the particular language. In LISP
mode, (TAB) aligns the line according to its depth in parentheses. No matter where in the line
you are when you type (TAB), it aligns the line as a whole. In MIDAS mode, inserts a tab,
that being the standard indentation for assembly code. PL1 mode knows in great detail about the
keywords of the language so as to indent lines according to the nesting structure.

In Text mode, runs Tab To Tab Stop, which indents to the next tab stop column. This
command is available as M-I in all modes. You can set the tab stops with M-X Edit Tab Stops.

If you just want to insert a tab character in the buffer, you can use M-(TAB) (Insert Tab) or C-qQ
(TAB).

ZMACS normally uses both tabs and spaces to indent lines. If you prefer, all indentation can
be made from spaces only. To request this, set zwei:*indent-with-tabs* to nil.

For English text, usually only the first line of a paragraph should be indented. So, in Text mode,

ZMACS Reference Manual 116 indentation

new lines created by Auto Fill mode are not indented. LISP mode and other program editing modes
tell Auto Fill mode to indent new lines by setting the variable zwei:*space-indent-flag® to t.

To move over the indentation on a line, do Meta-M or C-M-M (Back To Indentation). These
commands, given anywhere on a line, position the cursor at the first nonblank character on the
line.

To insert an indented line before the current line, do C-A C-0 (TAB). To make an indented line
after the current line, use C-E (LINEFEED).

C-N-0 (Split Line) moves the text from point to the end of the line vertically down, so that the
current line becomes two lines. C-N-0 first moves point forward over any spaces and tabs. Then it
inserts after point a newline and enough indentation to reach the same column point is on. Point
remains before the inserted newline; in this regard, C-M-0 resembles C-0.

M-0 (This Indentation) is a command for making a new indented line after the current line or
altering the indentation of the current line. The amount of indentation it inserts is enough to
reach the column point was in before the M-0 command.

N-0 Inserts a new line after the current line, empty aside from enough indentation to reach
the column that point was in before the M-0. Point moves to the end of the new line.

N-0 N-0 N-0 with a numeric argument adjusts the indentation of the current line so that it
reaches to the column point was in before the MN-0. Point moves to the end of that
indentation; thus, it remains in the same spot on the screen (or close to it, if variable
width fonts are in use) as the text changes.

To join two lines cleanly, use the Meta-"~ (Delete Indentation) command to delete the indentation
at the front of the current line, and the line boundary as well. They are replaced by a single space,
or by no space if at the beginning of a line or before a ‘)’ or after a ‘(. To delete just the
indentation of a line, go to the beginning of the line and use Meta-\ (Delete Horizontal Space),
which deletes all spaces and tabs around the cursor.

There are also commands for changing the indentation of several lines at once. Control-Meta-\
(Indent Region) gives each line that begins in the region the “usual” indentation by invoking
at the beginning of the line. A numeric argument specifies the indentation, and each line is shifted
left. or right so that it has exactly that much. C-X (Indent Rigidly) moves all of the lines in
the region right by its argument (left, for negative arguments). The whole group of lines move
rigidly sideways, which is how the command gets its name.

ZMACS Reference Manual 117 : indentation

22.1 Tab Stops

For typing in tables, you can use Text mode’s definition of (TAB), Tab To Tab Stop. This
command inserts indentation before point, enough to reach the next tab stop column. If you are
not in Text mode, this function can be found on M-I anyway.

Set the tab stops using N-X Edit Tab Stops, which allows you to edit some text that defines
the tab stops. When you are finished changing the text, type (END), which exits from M-X Edit
Tab Stops and makes the changed tab stops take effect. It also returns you to your previous
editing.

Here is what the text representing the tab stops looks like for ordinary tab stops every eight
columns.

The second line contains a colon or period at each tab stop. Colon indicates an ordinary tab,
which fills with whitespace; a period specifies that characters be copied from the corresponding
columns of the first line above it. Thus, you can tab to a column automatically inserting dashes or
periods, ete. It is your responsibility to put in the first line the text to be copied. In the example
above there are no periods, so the first line is not used, and is left blank.

Normally, a tab character in the buffer is displayed as whitespace that extends to the next
display tab stop position, and display tab stops come at intervals equal to eight spaces in the
first (or only) font. (How the character tab in the bufler is displayed has nothing to do with the
definition of the character as a command.) The number of spaces per tab is controlled by
a file attribute, the Tab Width attribute (see chapter 30 [Attributes], page 187). For example, if a
file’s attribute line contains ‘Tab Width: 10’ then display tab stops will come ten space-widths
apart for that file. This is useful for displaying files brought from other operating systems whose
normal tab stop spacing is not eight. The command M-X Set Tab Width can be used to change
the display tab width (in space-widths) of any buffer at any time.

22.2 Other Styles of Indenting a Line

There are several ZMACS commands that indent the current line in particular ways. Some of
these are connected to character commands in certain major modes.

ZMACS Reference Manual 118 indentation

M-X Indent Under
Indent to match last occurrence of specified string.

N-X Indent Relative
Indent to an indentation point in the previous line.

M-X Indent Nested
Indent to a previously used indentation level.

NM-X Indent Under reads a string using the minibuffer and then indents to match a previous
by occurrence of that string in the buffer. It searches back line by line for a line for an occurrence
of the string that is farther from left margin than point currently is. The beginning of that match
is the place to indent under. It deletes all whitespace from around peint and then indents to that
column.

N-X Indent Relative indents at point based on the previous line (actually, the previous
nonempty line.) It inserts whitespace at point, moving point, until it is underneath an inden-
tation point (the end of a sequence of whitespace) in the previous line. The end of the previous
line counts as one.

If point is aiready indented farther than all the indentation points in the previous line, the
whitespace before point is deleted and then the first indentation point then applicable is used.

If no indentation point in the previous line is applicable in any case, then M-X Tab To Tab
Stop is used instead. The same thing is done if a numeric argument is given. This is so that if a
major mode defines as M-X Indent Relative, it is still easy to use M-X Tab To Tab Stop.

N-X Indent Nested is intended for editing code in languages for which ZMACS cannot tell
where levels of nesting begin and end. It alters the indentation on the current line, regardless of
where point is on the line, and point remains fixed in the text of the line. Normally, it indents to
match the previous line that is not a comment.

A numeric argument greater than 1 means that the line should be indented at a previous nesting
level. Nesting levels are defined by scanning backwards, line by line; each time a line is found that
is indented less than all the following lines, that is a different nesting level. (Lines containing
just comments and whitespace are ignored.) Thus, M-2 M-X Indent Nested would indent to the
nesting level just outside the one previously in use.

ZMACS Reference Manual 119 \ {Case and Fonis

23. Case and Fonts

In ZMACS, each character can be in any of the available fonts, just as each letter can be
upper case or lower case. In programs just as in English text, there are conventions for the use of
case and fonts to emphasize the information conveyed by the characters themselves. The ZMACS
commands for manipulating case and fonts are designed to work with these conventions.

23.1 Case Conversion Commands

ZMACS has commands for converting either a single word or any arbitrary range of text to
upper case or to lower case. There are also case conversion commands specifically for LISP code
(see section 25.7 |Lisp Case], page 146).

N-L Convert following word to lower case.
N-U Convert following word to upper case.
N-C Capitalize the following word.

C-X C-L Convert region to lower case.

C-X C-U Convert region to upper case.

The word conversion commands are the most useful. Meta-L (Lowercase Word) converts the word
after point to lower case, moving past it. Thus, successive Meta-L commands convert successive
words. Meta-U (Uppercase Word) converts to all capitals instead, while Meta-C (Uppercase Initial)
puts the first letter of the word into upper case and the rest into lower case. All these commands
convert several words at once if given an argument. They are especially convenient for converting
a large amount of text from all upper case to mixed case, because you can move through the text
using N-L, M-U or M-C on each word as appropriate, occasionally using M-F instead to skip a word.

When given a negative argument, the word case conversion commands apply to the appropriate
number of words before point, but do not move point. This is convenient when you have just typed
a word in the wrong case. You can give the case conversion command and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to the part
of the word that follows point. This is just like what Meta-D does. With a negative argument, it
applies only to the part of the word before point.

The other basic case conversion commands are C-X C-U (Uppercase Region) and C-X C-L (Low-
ercase Region), which convert, everything between point and mark to the specified case. Point and

ZMACS: Reference Manual 120 {lase and Fonts

mark do not move.

23.2 Fonts

ZMACS supports muitiple fonts within one file, both for English text and for LISP programs.
Each ZMACS buffer records a list of fonts that can be used in it. When you visit a file, the
file's buffer’s list of fonts is determined from the file’s Fonts attribute (see chapter 30 [Attributes],
page 187). You can also specify it explicitly with the M-X Set Fonts command.

Each character in the buffer contains a font number, which identifies a font in the list by its
position in the list. There are several commands to change the font of characters already in the
buffer. You can also specify which font should be used for newly inserted text.

23.2.1 Specifying the List of Fonts

ZMACS records a list of font names for each buffer. In the simplest case, the list is empty.
This means that the buffer does not specify fonts; the characters in the text do not contain font
numbers, and ZMACS displays all of them using the current default font for window display. If
the font list is not empty, then the buffer is a multi-font buffer, and each character in it contains
a number specifying a font from the list. If a character specifies “the third font”, then it is always
displayed using the font that is the third in the list.

Usually, you specify fonts for a file with a Fonts attribute, as in

;s -#-Mode: Text; Fonts: TR10, HL1O, TR10I;-*-

which specifies three fonts. When ZMACS visits the file, it sets the file’s buffer’s font list according
to the file's Fonts attribute. If a file has no Fonts attribute, ZMACS makes a buffer for it that does
not specify a font. Buffers created with C-X B, and those made for special purposes such as Dired,
also normally do not specify fonts.

You can also set a buffer’s font list explicitly with the command M-X Set Fonts. Using the
minibuffer, enter zero or more font names separated by commas (and optionally spaces as well).
Specifying no font names makes a non-multi-font buffer. This command asks you whether to
modify the Fonts attribute in the attribute line to match the list you have just entered. Doing this
is a way of changing the file’s font list “permanently” (assuming you save the file with the changes

-—--r-

ZMACS Reference Manual 121 Case and Fonts

in its attribute list). If you decline to change the attribute line, the new font list is necessarily
“temporary”; it applies to the current editing session only.

In addition to the font list, you may wish to specify the Vsp attribute, which says how many
blank pixels to leave between lines. By default it is 2, which looks good with the default font, but
larger fonts may require larger Vsp values. The Vsp attribute can be set with ‘Vep: number;’ in
the attribute line or with the M-X Set Vsp command. See chapter 30 [Attributes], page 187.

You may have wondered what happens if you use Set Fonts to specify a list of four fonts in
a buffer that contains characters that claim to be in the fifth font. The answer is that these
characters continue to remember their font number, but are displayed using the last font in the
font list as long as the list is too short.

The font list can also be changed by editing the text, if you copy in text from other buffers that
uses other fonts, or if you specify a font by name. If such activity requires the use of a font not
already in the font list, it is added at the end of the list, and you must say whether to make the
change permanent in the file’s Fonts attribute.

You can print a list of all available font names with M-X List Fonts. The font names are
mouse-sensitive; use m on a name to print a sample of a font, which shows what all the characters
in the font look like. The command M-X Display Font can also be used to print a sample of a
font; use the minibuffer to specify the font name.

23.2.2 Specifying a Font from the List

‘Once you have specified the list of fonts to work with, each time you use a font-change command
you must specify one of the fonts from the list.

The simplest form of font specification is a letter: ‘A’ for the first font in the list, ‘B’ for the
second, and so on. This assumes you remember the order of the fonts in the list, which normally
you will. For example, M~J B means to convert the word after point to font B, the second font in
the list.

You can also click m on any character of text in the same buffer, to specify that character's
font. m presents a menu with an entry for each of the fonts in the list.

The most general way to specify a font is to type (ALTMODE), which brings up a minibuffer in
which you can specify a font by name. If the font is not already in the font list, it is added at the

ZMACS Reference Manual i22 Case and Fonts

end; when this happens, you are asked whether to modify the file’s Fonts attribute to include the
new font.

23.2.3 Font-Change Commands

c-Jfr Change the character after point to font f.
N-J I Change the word after point to font f.
C-N-J [Specify the font for newly inserted text to f.
c-xXc-Jf
C-Shift-J f
Change the characters in the region to font f.
M-Shift-] f g
Change all characters in the region that are presently in font finto font g.

M-X Electric Font Lock Mode
Enable or disable automatic insertion of LISP comments in font B.

At any time when a multi-font buffer is selected, ZMACS identifies one font as the current font.
Its font-letter and name appear in the mode line. This font is used for all text inserted in the
buffer, except for text that carries its own font information. In particular, it is used for text that

you type in.

To select a current font, use the command C-M-J f (Change Default Font), where f is a font
specification. ‘

The simplest commands for changing the font of text already in the buffer are C-J f (Change
Font Char) and M-J f(Change Font Word). These move point by characters or words, changing all
the characters moved over into font f. If these commands are given several times in succession
(nothing but numeric arguments intervening), only the first one reads a font specifier f. The
following commands use the same font as the first one.

A more general command to change the font of text is Change Font Region, which you can
invoke as C-Shift-J for C-X C-J f.

You can also change the font of selected characters with M-Shift-J f g (Change One Font
Region). In this command you specify two fonts; then, throughout the region, each character in
the first font is changed to the second. Characters in other fonts are not affected. You could use
this, for example, to change all the italic characters in one paragraph into bold face.

----r-

ZMACS Reference Manual 123 {Case and Fonts

Electric Font Lock mode is a minor mode in which text that you type in goes in font B when
inside a LISP comment, and in font A otherwise. When this mode is in use, you cannot insert text
in any font except A and B, though you can change text already in the buffer to other fonts. Use
the command N-X Electric Font Lock Mode to turn this mode ou or off. See section 31.1 [Minor
Modes|, page 191. '

23.2.4 Fonts and Copying Text

When you copy text from one multi-font buffer to another, each character’s font is preserved
by name. If a character was in font TR10 in the original buffer, it remains in font TR10 in the
buffer it is copied into. This can require adding the font TR10 to the font list of that buffer.

When text is copied from a fontless buffer into a multi-font buffer, it is put into the current
insertion font.

When text is copied into a fontless buffer, its font information is discarded.

ZMACS Reference Manual 124 {isse and ¥Fonts

ZMACS Reference Manual 125 Commands for Natural Languages

24. Commands for Natural Languages

The term text has two widespread meanings in our area of the computer field. One is, data
that is a sequence of characters. Any file that you edit with ZMACS is text, in this sense of the
word. The other meaning is more restrictive; it is, a sequence of characters in a human language
for humans to read (possibly after processing by a text formatter), as opposed to a program or
commands for a program.

Human languages have syntactic/stylistic conventions that can be supported or used to advan-
tage by editor commands: conventions involving words, sentences, paragraphs, and capital letters.
This chapter describes ZMACS commands for all of these things. In addition, there is a major
mode, Text mode, which customizes ZMACS in small ways for editing a file of human language
text. There are also commands for filling, or rearranging paragraphs into lines of approximately
equal length, and for automatic manipulation of text formatter commands.

The commands for moving over and killing words (see section 24.2 [Words}, page 126), sentences
(see section 24.3 [Sentences], page 127) and paragraphs (see section 24.4 [Paragraphs|, page 128)
are are primarily intended for natural-language text, but are very often useful in editing programs
also.

24.1 Text Mode

Editing files of text in a human language ought to be done using Text mode rather than LISP
or Fundamental mode. Invoke M-X Text Mode to enter Text mode. In Text mode, Tab runs the
function Tab To Tab Stop, which allows you to use arbitrary tab stops set with M-X Edit Tab
Stops (sce section 22.1 [Tab Stops|, page 117). Features concerned with comments in programs
are turned off except when explicitly invoked. The syntax table is changed so that periods are not
considered part of a word, while apostrophes, backspaces and underlines are.

Text mode is sometimes used on machine-parsable data bases are whose syntactic conventions
are enough like those of English for it to be useful. But often these data bases are unlike actual
text in that the division of the data base into lines has semantic significance; filling the data base
would make it incorrect. Since many users like to turn on Auto Fill mode automatically whenever
they use Text mode, it is vital to be able to stop them from doing this on data bases that can’t
handle it. This is done with a Nofill attribute (see chapter 30 [Attributes], page 187). Its function is
to tell zwei:auto-fill-if-appropriate that Auto Fill mode should not be used (see section 24.6 [Filling],
page 130).

ZMACS Reference Manual 126 Commands for Naturai Languages

24.2 Words

ZMACS has commands for moving over or operating on words. By convention, they are all
Meta- characters.

N-F Move Forward over a word.
N-B Move Backward over a word.
MN-D Kill up to the end of a word.
M- (RUBOUT
Kill back to the beginning of a word.
N-Q Mark the end of the next word.
N-T Transpose two words; drag a word forward or backward across other words.

Notice how these commands form a group that parallels the character based commands C-F,

C-B. C-D, C-T and (RUBOUT). M-Q is related to C-@, which is an alias for C-(SPACE).

The commands Meta-F (Forward Word) and Meta-B (Backward Word) move forward and back-
ward over words. They are thus analogous to Control-F and Control-B, which move over single
characters. Like their Control- analogues, Meta-F and Meta-B move several words if given an
argument. Meta-F with a negative argument moves backward, and Meta-B with a negative argu-
ment moves forward. Forward motion stops right after the last letter of the word, while backward
motion stops right before the first letter.

Meta-D (Forward Kill Word) kills the word after point. To be precise, it kills everything from
point to the place Meta-F would move to. Thus, if point is in the middle of a word, Meta-D kills
just the part after point. If some punctuation comes between point and the next word, it is killed
along with the word. If you wish to kill only the next word but not the punctuation before it,
simply do Meta-F to get the end, and kill the word backwards with Meta-(RUBOUT). Meta-D takes
arguments just like Meta-F.

Meta-(RUBOUT) (Backward Kill Word) kills the word before point. It kills everything from point
back to where Meta-B would move to. If point is after the space in ‘FO0, BAR’, then ‘F00, ' is
killed. If you wish to kill just ‘FO0’, do Meta-B Meta-D instead of Meta-(RUBOUT).

Meta-T (Exchange Words) moves the cursor forward over a word, dragging the word preceding
or containing the cursor forward as well. A numeric argument serves as a repeat count. Meta-T
with a negative argument has the opposite effect of Meta-T with a positive argument; it drags the
word behind the cursor backward over a word. An argument of zero is special: M-0 M-T exchanges

----r-

ZMACS Reference Manual 127 Commands for Natural Languages

the word at point (surrounding or adjacent to it) with the word at mark. In any case, the delimiter
characters between the words do not move. For example, ‘FO0, BAR’ exchanges into ‘BAR, F00’
rather than ‘BAR F00,’.

To operate on the next n words with an operation that applies between point and mark, you can
either set the mark at point and then move over the words, or you can use the command Meta-@
(Mark Word) which does not move point, but sets the mark where Meta~F would move to. It can
be given arguments just like Meta-F.

Note that if you are in Atom Word mode and in LISP mode, all the word commands regard an
entire LISP atom as a single word. See section 31.1 [Minor Modes], page 191.

The word commands’ understanding of syntax is completely controlled by the syntax table.
Any character can, for example, be declared to be a word delimiter. See section 31.5 [Syntax],
page 201.

24.3 Sentences

The ZMACS commands for manipulating sentences and paragraphs are mostly Meta~ com-
mands, so as to parallel the word-handling commands.

N-A Move back to the beginning of the sentence.
N-E Move forward to the end of the sentence.
N-K Kill forward to the end of the sentence.

c-X

Kill back to the beginning of the sentence.

The commands Meta-A and Meta-E (Backward Sentence and Forward Sentence) move to the
beginning and end of the current sentence, respectively. They were chosen to resemble Control-A
and Control-E, which move to the beginning and end of a line. Unlike them, Meta-A and Meta-E if
repeated or given numeric arguments move over successive sentences. ZMACS considers a sentence
to end wherever there is a *.’, ‘?” or ‘!’ followed by the end of a line or two spaces, with any
number of ‘)’, ‘1’, **", or ‘*’ characters allowed in between. A sentence also begins or ends wherever
a paragraph begins or ends.

Neither N-A nor N-E moves past the newline or spaces beyond the sentence edge at which it is
stopping.

ZMACS Reference Manual 128 Coromands for Natural Languages

Just as C-A and C-E have a kill command, C-X, to go with them, soc M-A and M-E have a
corresponding kill command M-K (Kill Sentence) which kills from point to the end of the sentence.
With minus one as an argument it kills back to the beginning of the sentence. Larger arguments
serve as a repeat count. ’

There is a special command, €-X (Backward Kill Sentence} for killing back to the be-

ginning of a sentence, because this is useful when you change your mind in the middle of composing

text. This is the analog for sentences of (CLEAR-INPUT) for lines.

24.4 Paragraphs

The ZMACS commands for manipulating paragraphs are also Meta~ commands.

N-(Move back to previous paragraph beginning.
N-] Move forward to next paragraph end.
N-H Put point and mark around this or next paragraph.

Meta-[(Backward Paragraph) moves to the beginning of the current or previous paragraph,
while Meta-] (Forward Paragraph) moves to the end of the current or next paragraph. Blank lines
and text formatter command lines separate paragraphs and are not part of any paragraph. Also,
an indented line starts a new paragraph.

In major modes for programs (as opposed to Text mode), paragraphs begin and end only at
blank lines. This makes the paragraph commands continue to be useful even though there are no
paragraphs per se.

When there is a fill prefix, then paragraphs are delimited by all lines that don’t start with the
fill prefix. See section 24.6 [Filling], page 130.

When you wish to operate on a paragraph, you can use the command Meta-H (Mark Paragraph)
to set the region around it. This command puts point at the beginning and mark at the end of the
paragraph point was in. If point is between paragraphs (in s run of biank lines, or at a boundary),
the paragraph following point is surrounded by point and mark. If there are blank lines preceding
the first line of the paragraph, one of these blank lines is inciuded in the region.

Thus, for example, M-H C-W Kkills the paragraph around or after point.

----t-

--_-—r-

ZMACS Reference Manual 129 Commands for Natural Languages

The precise definition of a paragraph boundary is controlled by the variables zwei:*paragraph-
delimiter-list®, zwei:*text-justifier-escape-list* and zwei:*page-delimiter-list*. The value of each of
these variables is a list of characters. The first character of a line is tested for membership in each
of the three lists.

If the first character is a member of zwei:*paragraph-delimiter-list*, then the line either separates
paragraphs (if that character is also a member of zwei: *text-justifier-escape-list*) or is the first line
of a paragraph. For example, ‘@’ is a member of both lists, so that lines starting with ‘@’ separate
paragraphs, but is a member of zwei:*paragraph-delimiter-list* only, so that lines starting
with start new paragraphs and are part of those paragraphs.

If the first character of a line is a member of zwei:*page-delimiter-list®, the line is a page delimiter

line, and is treated also as separating paragraphs just as a blank line does. See section 24.5 [Pages|,
page 129.

24.5 Pages

~ Files are often thought of as divided into pages by the character (PAGE). For example, if a file
is printed on a line printer, each page of the file, in this sense, will start on a new page of paper.
Many editors make the division of a file into pages extremely important. For example, they may be
unable to show more than one page of the file at any time. ZMACS treats a character just
like any other character. It can be inserted with ¢-Q (because (CLEAR-SCREEN)
is the keyboard name for (PAGE)), or deleted with (RUBOUT) (RUBOUT). Thus, you are free to paginate your
file, or not. However, since pages are often meaningful divisions of the file, commands are provxded
to move over them and operate on them.

C-X C-P Put point and mark around this page (or another page).
c-X [Move point to previous page boundary.

c-x] Move point to next page boundary.

C-XL Count the lines in this page.

The C-X [(Previous Page) command moves point to immediately after the previous page delim-
iter. If point is already right after a page delimiter, it skips that one and stops at the previous one.
A numeric argument serves as a repeat count. The C-X] (Next Page) command moves forward
past the next page delimiter.

The C-X C-P command (Mark Page) puts point at the beginning of the current page and the
mark at the end. The page delimiter at the end is included (the mark follows it). The page

ZMACS Reference Manual 130 Commands for Natural Languages

delimiter at the front is excluded (point follows it). This command can be followed by C-W to kill
a page that is to be moved elsewhere. If it is inserted after a page delimiter, at a place where C-X
) or C-X [would take you, then the page will be properly delimited before and after once again.

A numeric argument to C-X C-P is used to specify which page to go to, relative to the current
one. Zero means the current page. One means the next page, and -1 means the previous one.

The C-X L command (Count Lines Page) is good for deciding where to break a page in two. It
prints in the echo area the total number of lines in the current page, and then divides it up into
those preceding the current line and those following, as in

Page has 96 (72+25) lines
Notice that the sum is off by one; this is correct if point is not at the front of a line.

A line is considered a page separator if its first character is a member of the list zwei:*page-
delimiter-list®. The next page begins just after the first character on the line. Page separator lines
are also considered paragraph separators.

24.6 Filling Text

With Auto Fill mode, text can be filled (broken up into lines that fit in a specified width) as
you insert it. If you alter existing text it may no longer be properly filled; then explicit commands
for filling can be used.

N-X Auto Fill Mode
Enable or disable Auto Fill mode.

? t In Auto Fill mode, break lines when appropriate.
N-Q Fill paragraph.
N-G Fill region as one paragraph.
N-S Center a line.

Entering Auto Fill mode is done with M=X Auto Fill Mode. You can see that Auto Fill mode
is in effect by the presence of the word ‘Fill’ in the mode line, inside the parentheses. Auto

--—--m-

----r-

ZMACS Reference Manual 131 Commands for Natural Languages

Fill mode is a minor mode, turned on or off for each buffer individually. See section 31.1 [Minor
Modes], page 191.

In Auto Fill mode, lines are broken automatically at spaces when they get longer than the
desired width. Inserting characters into the middle of a line can move text from the end of
that line into the following line. Line breaking and rearrangement takes place only when you type

(SPACE), (RETURN), or one of ‘. 1?". If you wish to insert one of these characters without permitting

line-breaking, quote it with C~-Q. Alternatively, C-0 inserts a newline without line breaking.

Auto Fill mode works well with LISP mode, because when it makes a new line in LISP mode it
indents that line with (TAB). If a line ending in a comment gets too long, the text of the comment
is split into two comments.

The set of characters that trigger line-breaking in Auto Fill mode is controlled by the variable
zwei:*auto-fill-activation-characters®, whose value is a list of characters.

- Auto Fill mode does not refill entire paragraphs, however, just one or two lines. So editing in the
middle of a paragraph can result in a paragraph that is not correctly filled. To refill a paragraph,
use the command Meta-Q (Fill Paragraph). It causes the paragraph that point is inside, or the one
after point if point is between paragraphs, to be refilled. All the line-breaks are removed, and then
new ones are inserted where necessary. M-Q can be undone with C-Shift-U. See chapter 12 [Undo],
page 53.

Meta-Q uses the same criteria as Meta-H for finding the bounds of a paragraph, and always
fills one complete paragraph. See section 24.4 [Paragraphs|, page 128. For more control, you can
use Meta-G (Fill Region) which refills everything between point and mark. Meta-G recognizes only
blank lines as paragraph separators.

Paragraph filling inserts double spaces after certain characters when they appear at the end of
a line. The variable zwei:*fill-extra-space-list* controls this; its value is a list of characters that
warrant an extra space. By default, they are ‘.?1’.

A numeric argument to N-G or M-Q causes it to justify the text as well as filling it. This means
that extra spaces are inserted to make the right margin line up exactly at the fill column. Extra
spaces are removed by M-Q or M-G with no argument.

The command Meta-8 (Center Line) centers the current line within the current fill column. With
an argument, it centers several lines individually and moves past them.

ZMACS Reference Manual 132 Commands for Natural L.anguages

The maximum line width for filling is in the variable zwei:*fill-column®. Its value is actually
in pixels, not characters. This is because ZMACS can use variable-width fonts, and calculates
line widths for filling using the actual widths of the characters on the line. The easiest way to
set zwei:*fill-column® is to use the command C-X F (Set Fill Column). With no argument, it sets
zwei:*fill-column* to the current horizontal position of point. With a numeric argument, it uses
that as the new fill column. If it is greater than 200, it is regarded as a number of pixels, otherwise
as a number of characters (to be multiplied by the width of a space in font A).

To fill a paragraph in which each line starts with a special marker (which might be a few spaces,
giving an indented paragraph), use the fill prefix feature. The fill prefix is a string that ZMACS
expects every line to start with, and that is not included in filling. It is stored in the variable
zwei:*fill-prefix®.

To specify a fill prefix, move to a line that starts with the desired prefix, put point at the end
of the prefix, and give the command C-X , (Set Fill Prefix). That'’s a period after the C-X. To turn
off the fill prefix, specify an empty prefix: type C-X . with point at the beginning of a line.

When a fill prefix is in effect, the fill commands remove the fill prefix from each line before
filling and insert it on each line after filling. In Auto Fill mode, also inserts the fill prefix
~on any new line. Lines that do not start with the fill prefix are considered to start paragraphs,
both in N-Q and the paragraph commands; this is just right if you are using paragraphs with
hanging indentation (every line indented except the first one). Lines that are blank or indented
once the prefix is removed also separate or start paragraphs; this is what you want if you are
writing multi-paragraph comments with a comment delimiter on each line.

A special command is provided for filling paragraphs within multi-line comments: M-X Fill
Long Comment. It applies to the line point is on and all comment lines consecutive with it. All
the comment delimiters are removed, the text is filled as one or more paragraphs according to its
contents, and comment delimiters are put back on each line. A generalized comment delimiter for
LISP code can include any number of semicolons followed by any number of spaces. The lines to
be filled are compared to find the longest generalized comment delimiter that all the lines share;
this is then used as a temporary fill prefix.

Many users like Auto Fill mode and want to use it in all text files. Execute the following LISP
expression, perhaps in your init file, to cause Auto Fill mode to be turned on whenever Text mode
is entered:

(setq zwei:text-mode-hook ’zwei:auto-fill-if-appropriate)

ZMACS Reference Manual 133 Commands for Natural Languages

There is one exception: Auto Fill will not be turned on if the file has a Nofill attribute. Give
such attributes to files that use Text mode but should not be filled. See chapter 30 [Attributes],
page 187.

24.7 Editing Text Formatter Directives

ZMACS has commands for manipulating text-formatter font-change directives. These com-
mands do not produce any sort of font changes in the text file itself; they insert or move characters
in the text that direct text formatters to output font changes.

N-# Change text formatter output font for previous word, or next word.

c-X & Change text formatter output font for the region.

24.7.1 Font Change Commands

The commands for text formatter font changes work with the text formatters R, Bolio and
BoTeX. A font change is assumed to be.of the form ‘edigit’, meaning select font digit, or ‘e*’,
meaning return to the previously selected font. ‘¢’ is ASCII CTRL-F.

M-8 (Change Font Word) is a command to change the font of a word. Its action is rather
complicated to describe, but that is because it tries to be as versatile and convenient as possible
in practice,

If you type N-# with an argument, the previous word is put into the font specified by the
argument. Point is not changed. This means that, if you want tc insert a word and put it in a
specific font, you can type the word, then use M-# to change its font, and then go on inserting.
The font is changed by putting ‘edigit’ before the word and a ‘e’ after.

If you type M-# with no argument, it takes the last font change {either ‘edigit’ or ‘e*’, whichever
is closer) and moves it one word forward. What this implies is that you can change the font
of several consecutive words incrementally by moving after the first word, issuing M-# with an
argument to set that word’s font, and then typing M-# to extend the font change past more words.
Each M-8 advances past one more word.

N-# with a negative argument is the opposite of M-# with no argument; it moves the last font
change back one word. If you type too many M-#’s, you can undo the extra ones this way. If you

ZMACS Reference Manual 134 Cowmmands for Natural Languages

move one font change past another, one or both are eliminated, so as to do the right thing. As a
result, M-Ninus M-# cancels out the effect of a M-# with an argument. Try it!

You can also change the font of a whole region by putting point and the mark around it and
issuing C-X # (Text Formatter Change Font Region), with the font number as argument. €-X # with
a negative argument removes all font changes inside or adjacent to the region.

ZMACS Reference Manual 135 Editing LISP Code

25. Editing LISP Code

ZMACS has many commands designed to understand the syntax or even the semantics of LISP,
to speed editing of LISP programs. These commands can

Move over or kill balanced expressions (see section 25.2 [Lists], page 136).

Move over or kill top-level balanced expressions, known as defuns (see section 25.3
[Defuns), page 138).

Show how parentheses balance (see section 25.5 [Matching|, page 143).

Insert, kill or align comments (see section 25.6 [Comments|, page 143).

‘ollow the usual conventions for indentation of LISP code (see section 25.4 [LISP
Indentation], page 139).

Follow popular conventions for use of upper and lower case letters in LISP code (see
<undefined> |LISP Case, page <undefined>).

Display the documentation of the LISP functions called by the program and global
variables it uses (see <undefined> [LISP Documentation], page <undefined>). -

Transform certain LISP constructs into other semantically equivalent ones (see <undefined >}

[LISP Semantics], page <undefined>).

The commands for words, sentences and paragraphs are very useful in editing LISP code even
though their canonical application is for editing natural language text. Most LISP symbols contain
words; sentences can be found in strings and comments. Paragraphs per se are not present in LISP
code, but the paragraph commands are useful anyway, because LISP mode defines paragraphs to
begin and end at blank lines. Judicious use of blank lines to make the program clearer will also
provide interesting chunks of text for the paragraph commands to work on. See chapter 24 [Text],
page 125.

25.1 LISP Mode

LISP programs should be edited in LISP mode. In this mode, is defined to indent the
current line according to the conventions of LISP programming style. It does not matter where in
the line (TAB) is used; the effect on the line is the same. The function that does the work is called

Indent For LISP. (LINEFEED), as usual, does a and a (TAB), so it moves to the next line
and indents it.

As in most modes where indentation is likely to vary from line to line, (RUBOUT) is redefined
to treat a tab as if it were the equivalent number of spaces (the command function Tab Hacking

ZMACS Reference Manual 136 Editing LISP Code

Rubout). This makes it possible to rub out indentation one column at a time without worrying
whether it is made up of spaces or tabs. Control-{(RUBOUT) does the ordinary type of rubbing out,
which rubs out a whole tab at once.

Paragraphs are defined to start only with blank lines so that the paragraph commands ean be
useful. Auto Fill mode, if enabled in LISP mode, indents the new lines that it creates. Comments
start with *;’. If Atom Word mode is in effect, then in LISP mode the word-motion commands
regard each LISP atom as one word.

25.2 S-expressions and Lists

C-N-F Move Forward over s-expression.

C-N-B Move Backward.

C-N-K Kill s-expression forward.
C-N-(RUBOUT
Kill s-expression backward.
C-M-U Move Up and backward in list structure.
C-M-(The same.
C-N-) Move up and forward in list structure.
C-N-D Move Down and forward in list structure.
C-N-N Move forward over a list.
C-N-P Move backward over a list.
C-N-T Transpose s-expressions.
C-N-@ Put mark after s-expression.

By convention, ZMACS commands that deal with balanced parentheses are usually Control-
Meta- characters. They tend to be analogous in function to their Control- and Meta- equivalents.
These commands are usually thought of as pertaining to LISP, but can be useful with any language
in which some sort of parentheses exist (including English). :

To move forward over an s-expression, use C-M-F (Forward Sexp). If the first significant character
after point is an ‘(’, C-M~-F moves past the matching ‘)’. If the character begins an atom, C-M-F
moves to the end of the atom. If the first character is a ")’, C-M-F just moves past it. (This last
is not really moving across an s-expression; it is an exception that is included in the definition of
C-N-F because it is as useful a behavior as anyone can think of for that situation.)

ZMACS Reference Manual 137 Editing LISP Code

The command C-M-B (Backward Sexp) moves backward over an s-expression; it is like C-M-F
with the argument negated. If there are any prefix characters (singlequote, backquote and comma,
in LISP) preceding the s-expression, C-M-B moves back over them as well.

C-N-F or C-N-B with an argument repeats that operation the specified number of times; with a
negative argument, it moves in the opposite direction.

The s-expression commands ignore comments completely if used when point is not inside a
comment. Within a comment, they parse the text of the comment as if it were LISP code. In
order to tell properly where comments start, they do all parsing forward and always start from
the beginning of the defun. Moving backward is done by parsing forward until the starting point,
meanwhile always remembering the beginning of the last s-expression that finished.

The s-expression commands can also tell whether point is inside a string. If it is, they parse the
text inside the string as if it were LISP code, but refuse to move outside the string. From outside,
the string counts as a single s-expression.

The list commands move over lists like the s-expression commands but skip blithely over any
number of other kinds of s-expressions (symbols, strings, etc). They are C-M-N (Forward List) and
C-N-P (Backward List).

Killing an s-expression at a time can be done with C-M-K and C-M-(RUBOUT) (Kill Sexp and
Backward Kill Sexp). C-N-K kills the characters that C~-M-F would move over, and C-M-(RUBOUT
kills what C-N-B would move over.

C-M-F and C-M-B stay at the same level in parentheses, when that's possible. To move up one
(or n) levels, use C-N-(or C-N-) (Backward Up List and Forward Up List). C-M-(moves backward
up past one containing ‘{’. C-M-) moves forward up past one containing ‘)’. If used when point is
inside a string, these commands move out of the string and no farther. A positive argument serves
as a repeat count; a negative argument reverses direction of motion and also requests repetition.
C-N-U is another name for C-N-(. ' '

To move down in list structure, use C-M-D (Down List). It is nearly the same as searching for a

((1.

A somewhat random-sounding command that is nevertheless easy to use is C-M-T (Exchange
Sexps), which drags the previous s-expression across the next one. An argument serves as a repeat
count, and a negative argument drags backwards (thus canceling out the effect of C-M-T with a
positive argument). An argument of zero, rather than doing nothing, transposes the s-expressions

ZMACS Reference Manual i38 Editing LISP Code

at the point and the mark.

To make the region be the next s-expression in the buffer, use C-M-@ (Mark Sexp) which sets
mark at the same place that C-M-F would move to. C-M-@ takes arguments like C-M-F. In particular,
a negative argument is useful for putting the mark at the beginning of the previous s-expression.

The list and s-expression commands’ understanding of syntax is completely controlled by the
syntax table. Any character can, for example, be declared te act like an open parenthesis. See
section 31.5 [Syntax|, page 201.

25.3 Defuns

C-N-[, C-N-A

Move to beginning of defun.
C-N-), C-N-E

Move to end of defun.

C-N-H Put region around whole defun.

In ZMACS, a list at the top level in the buffer is called a defun. The name derives from the fact
that most top level lists in a LISP file are instances of the special form defun, but any top level list
counts as a defun in ZMACS parlance regardless of what function it calls.

The commands to move to the beginning and end of the current defun are C-M-[(Beginning Of
Defun) and C-N-] (End Of Defun). Alternate names for these two commands are C-M-A for C-M-[
and C-N-E for C-N-].

If you wish to operate on the current defun, use C-M-H (Mark Defun) which puts point at the
beginning and mark at the end of the current or next defun. For example, this is the easiest way
to get ready to move the defun to a different place in the text.

ZMACS assumes that any open-parenthesis found in the leftmost column is the start of a defun.
The LISP Machine compiler usually makes the same assumption in order to detect parenthesis
errors early. Therefore: never put an open-parenthesis at the left margin in a LISP file
unless it is the start of a top level list. If, for example, you want to have an open-parenthesis
at the left margin inside a string, put an escape character (backsiash in Common LISP, slash in
traditional syntax) in front of it; this has no effect on the contents of the string but it keeps the
open-parenthesis away from column zero.

ZMACS Reference Manual 139 Editing LISP Code

In the remotest past, the original Emacs found defuns by moving upward a level of parentheses
until there were no more levels to go up. This always required scanning all the way back to the
beginning of the buffer, even for a small function. To speed up the operation, Emacs was changed
to assume that any ‘(" (or other character assigned the syntactic class of opening-delimiter) at the
left margin is the start of a defun. This heuristic is nearly always right and avoids the costly scan.
ZMACS uses the same convention.

25.4 LISP Indentation

The best way to keep LISP code properly indented (“ground”) is to use ZMACS to re-indent
it when it is changed. ZMACS has commands to indent properly either a single line, a specified
number of lines, or all of the lines inside a single s-expression.

C-N-(TAB) Re-indent line according to parenthesis depth.

In LISP mode, same as C-M-(TAB).

Equivalent to (RETURN) followed by (TAB).
C-(TAB) Indent current line to a different plausible place.
C-N-Q Re-indent all the lines within one list.
C-M-\ Re-indent all lines in the region.

N-X Stack List Vertically
Indent list after point, one element per line.

The basic indentation function is Indent for LISP, which gives the current line the correct
indentation as determined from the previous lines’ indentation and parenthesis structure. This
function is normally found on C-M-(TAB), but when in LISP mode it is placed on as well
(Use Meta-(TAB) or C-Q to insert a tab). If executed at the beginning of a line, it leaves
point after the indentation; when given inside the text on the line, it leaves point fixed with respect
to the characters around it.

When entering a large amount of new code, use (LINEFEED) (Indent New Line), which is equiva-
lent to a followed by a (TAB). In LISP mode, a (LINEFEED) creates or moves down onto

a blank line, and then gives it the appropriate indentation.

C-(TAB) (Indent Differently) is useful for lines where the canonical LISP indentation is undesir-
able, perhaps because it fails to bring out the semantics most clearly. This command chooses a
different plausible place in the previous line to indent under. Each time it is used, it tries the next

ZMACS Reference Manual 140 Editing LISP Code

possibility, in a cyclic order, of all the plausible ones.

indents the second and following lines of the body of an s-expression under the first line
of the body; therefore, if you alter the indentation of one of the lines yourself, then will
indent successive lines of the same list to be underneath it. This is the right thing for functions
that indents unaesthetically. '

When you wish to re-indent code that has been altered or moved to a different level in the list
structure, you have several commands available. You can re-indent a specific number of lines by
giving the ordinary indent command ((TAB), in LISP mode) an argument. This indents as many
lines as you say and moves to the line following them. Thus, if you underestimate, you can repeat
command to indent additional lines.

You can re-indent the contents of a single s-expression by positioning point before the beginning
of it and typing Control-Meta-Q (Indent Sexp). The line the s-expression starts on is not re-
indented; thus, only the relative indentation with in the s-expression, and not its position, is
changed. To correct the position as well, type a before the C-M-Q.

Another way to specify the range to be re-indented is with point and mark. The command
C-N-\ (indent Region) applies to every line whose first character is between point and mark.
In LISP mode, this does a LISP indent.

M-X Stack List Vertically operates on the list that starts after point. It inserts newlines
between the elements of the list, then indents all the lines of the list the way C-M~Q would do.

25.4.1 Customizing LISP Ihdentation

The indentation pattern for a LISP expression can depend on the function called by the expres-
sion. For each LISP function, you can choose among several predefined patterns of indentation, or
define an arbitrary one with a LISP program.

The standard pattern of indentation is as follows: the second line of the expression is indented
under the first argument, if that is on the same line as the beginning of the expression; otherwise,
the second line is indented zwei:*lisp-indent-lone-function-offset* columns beyond the beginning of
the function name. Each following line is indented under the previous line whose nesting depth is
the same.

If the variable zwei:*lisp-indent-offset* is non-nil, it overrides the usual indentation pattern for

—-———— = g =

ZMACS Reference Manual 141 Editing LISP Code

the second line of an expression. Such lines are always indented zwei:*lisp-indent-offset®* more
columns than the containing list.

If a list’s first element is not thought to be a function, either because the first element is peculiar
or because its context suggests that it is a clause in a cond or similar construct, its second line is
indented right under the beginning of the first clement.

The standard pattern is overridded for certain functions. Functions whose names start with def
always indent the second line by zwei:*lisp-defun-indention® extra columns beyond the beginning of
the function name.

An even more specific override mechanism is zwei:*lisp-indent-offset-alist®. This is an alist whose
elements map function names (symbols) into offset-specs; each element has the form

(function . offset-spec)

An oﬂset—speé is usually a list of the form

(arg-numberl offsetl arg-number2 offset2 ...)

This means that a line starting with argument number arg-numberl should be indented offsetl
spaces beyond the where the function name starts. Lines starting with later arguments are treated
the same way, until the argument number gets large enough for the next arg-number to apply.
Arguments are numbered starting at zero. For example, the element for multiple-value-bind is

(multiple-value-bind 1 3 2 1)

which means that the argument zero (the list of variables) gets no special treatment, argument
one is indented three spaces more than the function name, and arguments two and following are
indented only one space more than the function name. (Argument zero is conventionally placed
on the same line as the function name.) The resulting indentation style looks like this:

(multiple-value-bind (x y z)
(intern string)
(print x)
(print y)
z)

ZMACS Reference Manual 142 Editing LISP Code

Any macro m whose argument list uses &body is automatically given an entry on zwei:*lisp-
indent-offset-alist® of the form '

(m first-body-arg-number 1)

so that arguments before the body are indented using the standard indentation pattern for function
calls, but the body arguments have a fixed indentation. Usually the result of this is to make the
non-body arguments stand out.

~ offset-spec may also be a symbol that has a function definition. This symbol is called as follows
to compute the indentation for function:

(funcall offset-spec defun-start-bp indented-line-bp
last-unmatched-openparen-bp last-complete-sexp-start-bp
width-of-space-in-pixels function)

offset-spec can return three values. Only one of them should be non-nil, as they are three ways
to specify the same information. If the first value is non-nil, it should be a buffer pointer; this
line is indented to start under the column of that pointer. If the second value is non-nil, it is the
indentation to use, in spaces. If the third value is non-nil, it is the offset to use (beyond the column
the function name starts in). This feature is used for prog and tagbody.

ZMACS knows that certain special forms (and macros), such as let and cond, have arguments
that are not expressions. Two variables inform ZMACS of the names of these special forms.
zwei:*cond-clause-superiors® is a list of special forms whose arguments should be indented as cond
clauses. zwei:*indent-not-function-superiors* lists the constructs whose arguments fail to be expres-
sions for other reasons. Its elements look like this:

function The first argument to function is not an expression.

function-name argnum
Argument number argnum of function is not an expression,

function-name argnum offset
Argument number argnum of function is not an expression, and the second line of that
argument should be indented with offset offset within the argument.

function-name argnuml offset] argnum?2 offset2 ...
Argument number argnuml of function is not an expression, and the second line of
that argument should be indented with offset offsetl within the argument. Likewise
for argnum?2 and offset2. An offset may be t; then it says nothing about how to indent

ZMACS Reference Manual 143 Editing LISP Code

within the argument.

function-name t offset
All arguments of function are not expressions, and the second line of each argument
should be indented with offset offset within the argument.

25.5 Automatic Display Of Matching Parentheses

The ZMACS parenthesis-matching feature is designed to show automatically how parentheses
match in the text. Whenever point is located after a right (closing) delimiter, the matching left
(opening) delimiter blinks. Whenever point is located before a left, delimiter, the matching right
delimiter blinks.

Automatic matching is useful only when the other end of the list is on the screen. C-) (Show
List Start) is useful for seeing the beginning of the list before point when that is not on the screen.
It prints some of the text within the beginning of the list in the echo area.

This feature is available for languages other than LISP. It may apply to characters other than
parentheses. For example, in C, braces and square brackets are used in the same fashion. ZMACS
knows which characters to regard as matching delimiters based on the syntax table, which is set
by the major mode. See section 31.5 [Syntax], page 201.

Two variables control parenthesis match display. zwei:*lash-matching-paren® turns the feature
on or off; nil turns it off, but the default is t to turn match display on. zwei:*flash-matching-paren-
max-lines® specifies how many lines to search to find the matching parenthesis. If the match is not
found in that far, scanning stops.

The features described here help to indicate how parentheses balance locally. To localize
parenthesis errors within a file, the first step is to use N~X Find Unbalanced Parentheses. Sece
<undefined> [LISP Debug|, page <undefined>.

25.6 Manipulating Comments

The comment commands insert, kill and align comments. There are also commands for moving
through existing code and inserting comments.

N-; Insert or align comment.

ZMACS Reference Manual 144 Editing LISP Code
Cc-; The same.

C-N-; Kill comment on current line. With region, kill comments in region.

c-X ; Set comment column.

C-X C-; Put a comment starter in front of each line of the region, or delete the comment

starters.
N-N Move to Next line and insert comment.
N-P Move to Previous line and insert comment.
M-(LINEFEED)

The same.

The command that creates a comment is Meta-; or Control-; (Indent for Comment). If there
is no comment already on the line, 2 new comment is created, aligned at a specific column called
the comment column. The comment is created by inserting whatever string ZMACS thinks should
start comments in the current major mode. Point is left after the comment-starting string. If the
text of the line goes past the comment column, then the indentation is done to a suitable boundary
(usually, a multiple of 8 spaces in font A).

Meta-; can also be used to align an existing comment. If a line already contains the string
that starts comments, then M-; just moves point after it and re-indents it to the right column.
Exception: comments starting in column 0 are not moved.

Even when an existing comment is properly aligned, M-; is still useful for moving directly to
the start of the comment.

C-N-; (Kill Comment) kills the comment on the current line, if there is one. The indentation
before the start of the comment is killed as well. If there does not appear to be a comment in the
line, nothing is done. To reinsert the comment on another line, move to the end of that line, do
C-Y, and then do M-; to realign it.

To kill many comments, set up a region and then use C-M-;. It kills all the comments in the
region.

25.6.1 Multiple Lines of Comments

If you wish to align a large number of comments, give Meta-; an argument, and it indents what
comments exist on that many lines, creating none. Point is left after the last line processed (unlike
the no-argument case).

ZMACS Reference Manual 145 editing LISP Code

When adding comments to a long stretch of existing code, the commands M~N (Down Comment
Line) and N-P (Up Comment Line) may be useful. They are like C-N and C-P except that they
do a C-; automatically on each line as you move to it, and delete any empty comment from the
line as you leave it. Thus, you can use N-N to move down through the code, putting text into
the comments when you want to, and allowing the comments that you don't fill in to be removed
because they remained empty.

If you are typing a comment and find that you wish to continue it on another line, you can use
the command Meta-(LINEFEED) (Indent New Comment Line), which terminates the comment you
are typing, creates or gobbles a new blank line, and begins a new comment indented under the old
one. When Auto Fill mode is on, going past the fill column while typing a comment causes the
comment to be continued in just this fashion. Note that if the next line is not blank, a blank line
is created, and the continuation goes on that line. By comparison, M-N would create a continuation
comment on the next existing line of code.

A special command is provided for filling paragraphs within multi-line comments: M-X Fill
Long Comment. It applies to the line point is on and all comment lines consecutive with it. All
the comment delimiters are removed, the text is filled as one or more paragraphs according to its
contents, and comment delimiters are put back on each line. A generalized comment delimiter for
LISP code can include any number of semicolons followed by any number of spaces. The lines to
be filled are compared to find the longest generalized comment delimiter that all the lines share;
this is then used as a temporary fill prefix. See section 24.6 [Filling], page 130.

25.6.2 Commenting Out Code

C-X C-; (Comment Out Region) is used for making non-comment text into comments, or vice
versa. This is unlike the other comment commands, which attempt to have no effect on text outside
of comments.

C-X C-; with no numeric argument inserts a comment start string at the beginning of each
nonblank line that starts in the region. This includes lines that already start with comment start
strings; they wind up with two (or one more than they had) comment start strings. C-U C-X C-;
deletes one comment start string from the beginning of each line starting in the regidn. It cancels
the eflect of a prior C-X C-; with no argument. Other positive numeric arguments specify the
number of copies of the comment starter to insert on each line; negative ones specify the number
of copies to delete from each line.

Another way to comment out LISP code is to put it inside a ‘#]...|# construct. Just insert

ZMACS Reference Manual 146 Hditing LISP Code

‘81’ in front of the unwanted code and ‘|#’ after. ‘#|...|# constructs may be nested.

25.6.3 Double and Triple Semicolons in LISP

In LISP code there are conventions for comments that start with more than one semicolon.
Comments that start with two semicolons are indented as if they were lines of code, instead of at
the comment column. Comments that start with three semicolons are supposed to start at the left
margin. ZMACS understands these conventions by indenting a double-semicolon comment using
(TAB), and by not changing the indentation of a triple-semicolon comment at all. (Actually, this
rule applies whenever the comment starter is a single character and is duplicated).

25.6.4 Options Controlling Comments

The comment column is stored in the variable zwei:*comment-column®*. You can set it to a
number explicitly; note that the value is in pixels, not characters. Alternatively, the command C-X
; {Set Comment Column) sets the comment column to the column point is at. C-U C-X ; sets the
comment column to match the last comment before point in the buffer, and then does a Meta-;
to align the current line’s comment under the previous one.

Many major modes supply default local values for the comment column. Otherwise, if you
change the variable itself, it changes globally (for all buffers) unless it has been made local in the
selected one. See section 31.2 [Variables|, page 192.

The string recognized as the start of a comment is stored in the variable z2wei:*comment-start?®,
while the string used to start a new comment is kept in zwei:*comment-begin®. This makes it
possible, for example, for you to have any ‘;’ recognized as starting a comment but have new
comments begin with ; #* .

In some languages, comments require a specific ending delimiter. The major modes for these
languages set the variable zwei:*comment-end® to that string (normally it is nil). However, few
commands do anything with the comment end string.

The value of zwei:*comment-round-function® is a LISP function that is used to compute where
to align a comment on a line whose text extends past the comment column. This function is called
with one argument, the horizontal position (in units of pixels) after the last non-blank non-comment
text on the line, and it should return the horizontal position at which the comment should start
(also in pixels). ‘

ZMACS Reference Manual 147 Editing LISP Code

25.7 Case Conventions for LISP Code

Some people like to write LISP symbols in upper case, while others write them in lower case. It
makes no difference to the LISP system. But text in strings is case-sensitive, and people generally
want the text in comments to follow the conventions of their own language regardless of the
convention used for the code. ZMACS provides special facilities for converting the LISP code from
upper case to lower, or vice versa, without affecting the case-sensitive parts of the text.

N-X Uppercase Lisp Code In Region

Convert region to upper case, except for strings, comments and quoted characters.

N-X Lowercase Lisp Code In Region

Convert region to lower case, except for strings, comments and quoted characters.

N-X Electric Shift Lock Mode
Enable or disable automatic insertion of LISP symbol names in upper case.

M-X Set Lowercase
Set the current buffer’s Lowercase attribute.

A popular case convention for LISP code is to write all LISP symbols in upper case, but use
mostly lower case for comments. Electric Shift Lock mode makes it automatic to insert text to
follow this convention. Turn this mode on or off for the current buffer using the command M-X
Electric Shift Lock Mode; the words ‘Electric Shift-Lock’ appear in the mode line when

the mode is in effect. Electric Shift Lock mode is a minor mode; See section 31.1 [Minor Modes],
page 191.

When Electric Shift Lock mode is turned on, you can type lower case text and it is converted
automatically to upper case provided it is in a syntactic context where its case does not matter.
Specifically, characters inside LISP strings and comments, and characters inside escape constructs
(within vertical-bar groupings or following the single-character escape) are not converted. Qutside
of these contexts, each letter that you type is case-flipped: if you type it as lower case, it is inserted
as upper case, and vice versa. (If the variable zwei:*electric-shift-lock-xors* is set to nil, all letters
are converted to upper case.) Electric Shift Lock mode applies only to text that is inserted due

to the input of self-inserting characters. It has no effect on text that is yanked, read from files,
copied from registers, ete.

Here is an example of code typed using Electric Shift Lock mode, without ever pressing the

key:

(DEFUN SQUARE (X) ;function to do squaring

ZMACS Reference Manual 148 Editing LISP Code

“return x times x"
(* X X))

' If you customarily use this case convention, you may wish to have Electric Shift Lock mode
in effect whenever you edit LISP code. You can do this by executing the LISP expression

(setq zwei: lisp-mode-hook ’‘zwei:electric-shift-lock-if-appropriate)
in your init file.

If you prefer to write LISP code in lower case, you do not need any special assistance instead of
Electric Shift Lock mode. However, you might wish to prevent other users from turning Electric
Shift Lock mode on automatically when editing a file that is primarily lower case. To do this,
give the file a Lowercase attribute. A non-nil Lowercase attribute tells zwei:electric-shift-lock-if-
appropriate not to do anything for that file. The command M-X Set Lowercase can be used to set
this attribute for the current buffer or the current file. See chapter 30 [Attributes], page 187.

There are special commands for converting LISP code from primarily upper case to primar-
ily lower case. These change the case of LISP symbol names (in which case is ignored), but do
not change letters inside strings, comments or vertical-bar groupings, or letters following slashes.
The commands are M-X Uppercase Lisp Code In Region and M-X Lowercase Lisp Code In
Region; both apply to the text in the region. Neither point nor mark should be inside a string, or
the command will not funetion properly. They may be inside comments, though.

25.8 Editing Commands Based on LISP Semantics

The commands in this section transform LISP code based on the semantic relationships among
certain important LISP special forms.

C-N-& Convert cond to and, or or if; or vice versa.
C-N-$ Convert old-style do to new-style or vice versa.

N-X Query Replace Let Binding
Replace variable with the value it is initialized to.

C-N-& (Frob Lisp Conditional) changes an and or an or or an if into a cond construct, or vice
versa. The innermost applicable construct containing point is transformed.

i
|
I
)
i

E v
N i

ZMACS Reference Manual 149 fditing LISP Code

After changing a cond into something else, point is left just before the close-parenthesis that
terminates the construct. After changing to a cond, point is left at the end of the cond clause, just
before the ‘)’ that ends the cond clause. In such a situation, use to indent a new line
for another form within the clause, or N-) to add a new cond clause. If an or or and with more than
two arguments is changed to a cond, by default all but the last become part of a cond-condition,
and only the last one becomes the consequent in the cond. A numeric argument to C-M-& specifies
how many of the last arguments to put into the cond’s consequent.

C-N-& can transform a cond only if it has one clause, or two clauses where the second one starts
with t. It refuses to act on other sorts of cond.

C-N-$ (Frob Do) converts an (obsolete) old-style do into a new-style do. New-style do’s (at least
eight years old by now) are the only kind legal in Common LISP. An old-style do looks like this:

(do var initform stepform endtest
body...)

and its equivalent using new-style do is

(do ((var initform stepform))
(endtest nil)
body...)

N-X Query Replace Let Binding eliminates a let-variable by replacing it by its initial value.
To use this command, first position point inside the let binding for the variable you want to
eliminate. The binding itself is removed from the let, and then Query Replace is used to replace
the variable by its initial value throughout the body of the let.

25.9 Editing Without Unbalanced Parentheses

N-(Put parentheses around next s-expression(s).
N-) Move past next close parenthesis and re-indent.
C-N-Shift-K
Delete innermost surrounding pair of matching parentheses.
C-N-Shift-F
Move innermost close parenthesis forward across s-expressions.

ZMACS Reference Manual 150 Editing LISP Code

C-N-Shift-B
Move innermost open parenthesis backward across s-expressions.

The commands M- ((Make ()) and M-) (Move Over) are designed to facilitate a style of editing
that keeps parentheses balanced at all times. M-(inserts a pair of parentheses, either together
as in ‘()’, or, if given an argument, around the next several s-expressions, and leaves point after
the open parenthesis. Instead of typing (F 0 0), you can type M-(F 0 0, which has the same
effect except for leaving the cursor before the close parenthesis. Then you would type M-), which
moves past the close parenthesis, deleting any indentation preceding it (in this example there is

none), and indenting with (LINEFEED) after it.

C-M-Shift-K (Delete ()) cancels the effect of M-(by deleting the innermost set of matching
parentheses surrounding point. With argument n, it deletes the parentheses n levels out.

C-M-Shift-F (Grow List Forward) moves the close parenthesis of the list surrounding point,
forward across n s-expressions, where n is the numeric argument (default 1). A negative numeric
argument moves it backward across s-expressions. This has the effect of moving elements into
the end of the list or out of it. To make the results more visible, the mark is set after the close
parenthesis moved, and activated to make an underlined region.

C-M-Shift-F with argument n can always be canceled out by a repetition of the same command
with argument -n.

C-N-Shift-B (Grow List Backward) works similarly but moves the open parenthesis that begins
the list surrounding point. With a positive argument, it moves the open parenthesis backward,
thus adding elements to the list.

M-X Reverse Following List reverses the order of the elements in the list that starts after
point, by deleting them all and reinserting them. Thus, (a b (foo bar)) is changed to ({foo bar) b
a). Point does not move. There may be an atom between point and the beginning of the list to be
reversed. ’

25.10 Documentation Commands for LISP Code

As you edit LISP code in ZMACS, various commands are available for you to find out about
the functions and variables you wish to use in the code.

C-Shift-A

\
3 N .

~ N-X Arglist

ZMACS Reference Manual 151 Editing LISP Code

Print argument names of function being called around point.
C-8hift-D
- Print argument names and documentation string of function being called around point.

Print argument names of any function.
N-X Long Documentation

Print argument names and documentation of any function.
C-Shift-v

Print documentation and other info on variable name at point.

- C-Shift-A (Quick Arglist) prints, in the echo area, the argument names and lambda-list key-
words belonging to the function called in the innermost expression aroud point. This gives essen-
tially the same information that the LISP function arglist would return as a list. If the function
returns multiple values and contains a values declaration to name them, their names are printed
as well, with an arrow to separate them from the arguments. For example, with point after
‘(intern ', C-Shift-A prints something like

INTERN: (SYM &OPTIONAL PKG) — (SYMBOL ALREADY-IN-FLAG PKG-FOUND-IN)

The command C-Shift-D (Quick Documentation) is similar but also prints the documentation

~ string of the function being called. There is usually not room for this in the echo area, so both

argument names and documentation appear as typeout, overlying part of the editing window.

If you wish to specify a function to see the argument names or documentation for, you can insert
a call to the function into the buffer and then use C-Shift-A or C-Shift-D, or you can use one of
the commands N-X Arglist or N-X Long Documentation. These commands use the minibuffer to
read the name of the function to document. A function name can also be selected from a ZMACS
window with the mouse, using rf.], while the mouse cursor is pointing straight up (which happens
when the minibuffer is empty). C-U C-Shift-D is equivalent to M-X Long Documentation.

C-Shitt-V (Describe Variable At Point) prints documentation about a variable It first prints
whether the symbol has a global value or is void, and then says whether the symbol is globally
special, and, if so, which file contains the definition (defvar or alternative). If the variable has a
documentation string, that is printed starting on the following line.

ZMACS Reference Manual 152 Editing LISP Code

ZMACS Reference Manual 153 Running and Testing LISF Programs

26. Running and Testing LISP Programs

The previous chapter discusses the ZMACS commands that are useful for making changes in
LISP code. This chapter deals with commands that assist in the larger process of developing and
maintaining LISP programs.

You can use ZMACS to compile and load your LISP program in order to test it (see section 26.2
[Compile File], page 157). You can also recompile individual functions after you change them
(see section 26.3 [Compile Text|, page 157). If compilation produces warnings, even compilation
not done in ZMACS, special ZMACS commands can be used to find the functions that the warn-
ings are about (see section 26.4 [Warnings|, page 160). Other commands assist in debugging (see
<undcfined> {LISP Debug|, page <undefined>).

ZMACS knows which lines of text correspond to each LISP function, so it can find the source
code for any function specified by name. It also knows which functions you have changed the text
of, and can recompile just the changed functions.

26.1 Sectionization

When ZMACS visits a file, it scans the text of the file line by line, dividing the file up into
groups of lines that are semantic units. These groups of lines are called sections, and the process
of finding them is called sectionization.

What constitutes a unit depends on the language that the file is written in (actually, on the
major mode); in LISP code, a unit starts with a line that starts with an open-parenthesis, which
means, if you follow the standard conventions for formatting LISP code, that each top-level LISP
expression in the file is a unit. In major modes for editing input for text formatters, a unit begins
with each text formatter command line that appears to define a section (or chapter, subsection,
etc.) for the table of contents.

Every section is given a name. If possible, the name of a semantically meaningful object defined
by the text of the section is used as the section name. This is done in LISP code when the LISP
expression in the section is a function definition, variable definition, flavor definition, etc. If no
name suggests itself directly from the text, a name is generated; it contains the file name, a number
to make the section unique, and an indication of the kind of text in the section. In LISP mode,
the name of the function called by the expression in the section is used for this.

ZMACS Reference Manual 154 Running ang Testing LISP Programs

Meta-. Move point to the definition of the specified function, variable, flavor, or anything else
that is the name of a section.

N-X List Sections
Print list of all sections in a specified buffer.

M-X List Buffer Changed Sections
Print list of all changed sections in current buffer. Prepare to move to them, one by
one, with C-Shift-P.

N-X Edit Buffer Changed Sections
Find all changed sections in current buffer. Move to the first one, and prepare to move
to the others, one by one, with C-Shift-P.

N-X List Changed Sections
N-X Edit Changed Sections
Like the previous two commands but look through all buffers.

N-X Tags List Changed Sections

M-X Tags Edit Changed Sections
Like the previous two commands but look through all the buffers in the current buffer
group.

N-X Tags Search List Sections ;
Look through all buffers in the current buffer group and print a list of all sections
whose text contains a specified string.

M-X Find File No Sectionize
Find file but do not sectionize its buffer.

N-X Sectionize Buffer
Recalculate sections of current buffer from seratch.

Sections make possible the Meta-. command (Edit Definition), which moves point to the begin-
ning of the definition of a specified LISP function, variable, flavor, etc. For example, Meta-. read
finds and displays the definition of the LISP function read, while Meta-. tv:window
finds and displays the definition of the flavor tv:window. Both system definitions and
your own can be found using Meta-..

Meta-. reads an argument with the minibuffer, interpreting it as a symbol or function spec, and
then finds the sections whose names match or suitably resemble the argument. It also looks for
files not yet visited whose names appear in the :source-file-name property of the symbol or function
spec: they are visited and sectionized, then their matching sections are found. These operations
are not done all at once. The various leads are made into a possibilities list, and possibilities are
tried until one matching section is found and displayed. Most likely this shows you the text you
want. If it does not, use Meta-. with a numeric argument to see the next possibility. Repeating
this will eventually show all the possible defining sections for the original argument.

'
"

i
|
'
|
i
1

ZMACS Reference Manual 155 Running and Testing LISP Programs

Neta-. pushes the previous location of point onto the point pdl so you can return there easily.
See section 10.3 [Point Pdl|, page 41.

There are special features to make it easier to specify the argument for Meta-., or any other
ZMACS command whose argument is expected to be (usually, at least) the name of a LISP function.

1. A default argument is shown in the prompt; type just to use the default. The
default is normally the name of the function called by the smallest LISP expression
containing point.

In a few cases, a different default is chosen. For example, if the innermost expression
calls defun, the function being defined is used as the default rather than defun.

2. The characters (ALTMODE), (SPACE) and perform completion on the argument.
Note that only names of sections already known to ZMACS are available for comple-

tion. Names that could be found by visiting other files automatically are not known.

3. The mouse can be used to select an argument. If the minibuffer is empty, the mouse
cursor has the shape of an arrow pointing straight up; this means that all function
names in ZMACS buffers are mouse-sensitive. Clicking on one selects it as the argu-
ment.

When the minibuffer is not empty, the mouse has its usual cursor shape and its usual
commands. These can be useful too; for example, they can be used to mark a region
and copy it into the minibuffer.

A related command is C-N-. (Edit ZMACS Command), which reads a ZMACS command and then
finds the source code for the command function that it is connected to. For example, C-M~-, M-F
visits the ZMACS source file COMA.LISP and moves point to the LISP function com-forward-word.
C-N-. N-X Find File visits the source file ZMACS.LISP and moves point to the LISP function

com-find-file.

The simplest thing you can do with sections is list their names. M-X List Sections prints a
list of all the section names of a buffer, whose name you must specify using the minibuffer. The
names printed are mouse-sensitive; click m on one of them to move point to that section. This
pushes the old value of point on the point pdl (see section 10.3 [Point Pdl], page 41).

You ean print a list of sections whose text has been changed, using M-X List Buffer Changed
Sections. This applies to the current buffer. The section names printed are mouse-sensitive. In
addition, a list of all the changed sections is established as the current possibilities list. This means
that the C-Shift-P command can be used to move point to the next one of these sections. See
section 26.7 [Possibilities Lists|, page 164. The command M-X Edit Buffer Changed Sections is
like M-X List Buffer Changed Sections except that it moves point to the first of the sections

ZMACS Reference Manual 156 Running and Testing LISPF Programs

and does not print their names. You can find the rest of the changed sections with C-Shift-P.

The word “changed” is actually vague: changed since when? You can use a numeric argument
to N-X List Buffer Changed Sections to say since when. No argument, or an argument of 1,
selects sections changed at any time since the file was visited. This is the most inclusive criterion
for “changed” sections. An argument of 2 says to list only sections changed since the last time
the buffer was saved. This shows sections whose text does not match the latest version of the file.
An argument of 3 says to list only sections changed since the last time their text was evaluated or
compiled. This shows sections whose text does not match the definitions in the LISP environment.

Other similar commands apply to several buffers at once. M-X Edit Changed Sections and M-
X List Changed Sections look in all buffers that have sections. M-X Tags Edit Changed Sec-
tions and M-X Tags List Changed Sections look in all buffers visiting files in the current buffer
group. All four take numeric arguments to specify “changed since when”.

There are also commands to do things to the text of changed sections. You can add them
to the current patch (see section 26.8 [Patches|, page 165), evaluate them or compile them (see
section 26.3 [Compile Text|, page 157).

Note that if you make a change to the text in a section and then undo it with C-Shift-U, the
section is still considered “changed”. It would be preferable to cancel the “changed” indication
when the changes are undone, but it is hard to implement this.

Another way to find a list of interesting sections is with M-X Tags Search List Sections. It
searches buffers in the current buffer group for sections whose text contains a specified string. See
section 19.6 [Buffer Groups|, page 104, for information on this.

In some cases, you may not want ZMACS to sectionize a file. For example, if you visit an old
version of a LISP program, you might want Meta-. to ignore it, and look in the current version
instead for any functions defined in that file. Or the file may contain text that does not fit the usual
conventions for its major mode, and would produce nonsensical sections. To prevent sectionization,
use the command M-X Find File No Sectionize instead of C-X C-F to visit the file. If ZMACS
strongly suspects that it should sectionize the file after all-—for example, if you do Meta-. on a
function that is expected to be in that file —it will offer to sectionize the file then.

If ZMACS is wrong about the sections in a buffer, you can fix them with M-X Sectionize
Butfer. The most likely reason ZMACS would be wrong is that you have changed the major
mode. The criteria for where sections start and what their names are depend on the major mode,
but selecting a new major mode in a buffer does not automatically recompute the buffer’s sections.

ZMACS Reference Manual 157 Running and Testing LISP Programs

You do not need to use M-X Sectionize Buffer just because you have changed the buffer’s
text. ZMACS automatically rescans changed lines in order to detect any changes in the proper
grouping of lines into sections; it does this every time you give a command that uses the section
structure in any way.

26.2 Compiling LISP Files

In the LISP Machine system, compilation and loading of LISP code is done with the functions
compile-file and load. These operations do not really have anything to do with editing, but there
are ZMACS commands to request them. The default file name for these commands is always the
visited file name,

N-X Compile File
Compile the specified LISP source file into a QFASL file.
N-X Load File
Load the specified LISP source file or QFASL file.
N-X Compile And Load File
Compile the specified LISP source file into a QFASL file, unless the corresponding

QFASL file exists already and is more recent than the source; then load the QFASL
file.

You can also request compilation of files from the menu offered by M-X Kill Or Save Buffers
(see chapter 19 [Buffers|, page 99), or in Dired using the A command (see chapter 18 [Dired),
page 91).

26.3 LISP Compilation and Evaluation

ZMACS can evaluate or compile LISP expressions directly from the ZMACS buffer, functions
compiled in this way are immediately redefined in the LISP world.

C-Shift-E

Evaluate the current region, or the defun around or following point.
M-Shift-E

Similar, but print values as typeout, useful if you expect a lot of output.
C-M-Shift-E

Like C-Shift-E, but always reinitializes variables mentioned in defvar forms.

ZMACS Reference Manual 158 Running and Testing LISP Programs

C-Shitt-C

Compile the current region, or the defun around or following point.
C-N-Shift-C

Microcompile the current region, or the defun around or following point.
N-X Evaluate Buffer

N-X Compile Buffer
Evaluate or compile the entire buffer.

N-Z Compile entire buffer, then exit ZMACS.
C-N-2Z Evaluate entire buffer, then exit ZMACS.

N-X Compile Buffer Changed Sections
N-X Compile Changed Sections
N-X Tags Compile Changed Sections
Compile 2ll changed sections in one or more buffers,

N-X Evaluate Buffer Changed Sections
N-X Evaluate Changed Sections
N-X Tags Evaluate Changed Sections
Evaluate all changed sections in one or more buffers.

Here “Evaluating” means that the expression is read with read and then passed to eval. “Com-
piling” in this case means that, if the LISP object returned by read is a call to defun or another
function-defining special form or macro, a compiled function definition is installed rather than an
interpreted one. “Compilation” of an expression other than a function definition is the same as
evaluation.

ZMACS evaluation and compilation commands can apply to an arbitrary region, a single func-
tion definition, an entire buffer, or to all the changed definitions in one or more buffers. Normally
you will load an entire program initially, either by compiling entire buffers or by loading files; then
you will recompile individual LISP functions as you change them, or else change several and them
ask to recompile all the changed ones,

All LISP reading and printing for these commands is done according to the syntactic attributes
(Readtable, Package and Base) of the current buffer, unless the LISP code that is run binds or sets
the relevant global variables (zwei:*read-base®, etc.). See chapter 30 [Attributes|, page 187. During
evaluation, zwei:*standard-output® is set to print typeout, overlying the text display in the editing
window, and zwei:*standard-input® is defined to echo its input as typeout.

The most general and basic evaluation/compilation commands are C-Shift-E (Evaluate Region)
and C-Shift-C (Compile Region). If there is a region in effect, these commands act on the entire text
of the region. Otherwise, the commands apply to the text of the defun {top-level LISP expression)

i
|
i
i
|
I

!

ZMACS Reference Manual 159 Running and Testing LISP Programs

containing or following point. This implies that, after editing the definition of a LISP function, you
can install the changed definition in the LISP world by typing simply C-Shift-E or C-Shift-C.
(You might as well use C-Shift-C and compile it; interpreted functions are much slower, and have
few advantages even for debugging.) See section 25.3 [Defuns|, page 138.

C-8hift-E and C-Shift-C have one peculiar effect when there is no region: if the expression
evaluated is or expands to a call to defvar, it does not evaluate normally. Normally, defvar sets the
variable it defines only if the variable is void. When called from C-Shift-E and C-Shift-C, defvar
sets the variable unconditionally. This is exactly what you want, if you alter the initial value in a
defvar form and then evaluate that form.

Similar to C-Shift-C is the command Control-Meta-Shift-C (Microcompile Region). Its only
difference is that, after compiling a function definition, it goes on to microcompile the function.
C-8hift-C microcompiles a function only if it contains a suitable declaration saying that it should
always be microcompiled.

Two commands similar to C-Shift-E are M-Shift-E (Evaluate Region Verbose) and C-M-Shift-
E (Evaluate Region Hack). M-Shift-E differs by printing the values as typeout rather than in the
echo area. This is useful if you expect the values to be large and really care about the values.
C-N-Shift-E differs by always reinitializing variables for which defvar forms are found, even if
used with a region.

The commands N-X Compile Buffer and N-X Evaluate Buffer are similar to the above com-
mands, except that they operate always on the entire buffer. They do not treat defvar specially. M-Z
(Compile And Exit) and C-M-Z (Evaluate And Exit) operate on the entire buffer and then continue
to deselect the ZMACS frame and select the previously selected window. (This is what “exiting”
means in the context of the LISP Machine, where switching programs means switching windows.)

Through the miracle of sectionization, ZMACS can remember which lines of the buffer belong
to which LISP function; such a group of lines is called a section. See section 26.1 [Sectionization],
page 153. ZMACS can additionally remember which sections have had their text altered since
their last evaluation or compilation. Based on this information, it can evaluate or compile only the
changed sections of a buffer. All the sections in a file are considered “unchanged” when the file
is visited, and compiling or evaluating the full text of a section with any ZMACS command also
marks it as “unchanged”. A section becomes “changed” when any modification is made in its text.

The command M-X Compile Buffer Changed Sections compiles the text of each section of
the current buffer that has changed since it was last compiled or evaluated and contains a definition
form. Definition forms include function definitions, variable definitions, macro definitions, flavor

ZMACS Reference Manual 160 Running and Testing LISP Programs

definitions, and so on. Non-definition forms are not executed, on the assumption that they may
perform more drastic side-effects and possibly should not be executed twice. The command M-
X Evaluate Buffer Changed Sections is similar, but evaluates function definitions rather than
compiling them. A numeric argument to either command means to query about each changed
section before operating on it.

Other versions of the Changed Sections commands apply to more than one buffer. M-X Tags
Compile Buffer Changed Sections and M-X Tags Evaluate Buffer Changed Sections apply
to all the buffers of LISP code in the current buffer group. See section 19.6 [Buffer Groups],
page 104. N-X Compile Changed Sections and M-X Evaluate Changed Sectionms apply to all
buffers of LISP code that exist in ZMACS.

26.4 Compiler Warnings

The LISP Machine compiler keeps a data base of compiler warnings, organized first by file
name and then by function name within the file. Both file compilation and compilation from
editor buffers use it, Each compilation discards from the data base any previous warnings that
are obsolete. ZMACS can use the compiler warnings data base to display the pending warnings
and find the functions that they apply to. See the section “Using Compiler Warnings” in the LISP
Machine Manual for more information on the compiler warnings data base, including how to save
warnings in a file and reload them for editing in a later session.

N-X Edit Warnings
Begin editing warnings of any or all of the files that have pending warnings. You are
asked, for each file, whether to include it.

M-X Edit File Warnings
Begin editing warnings for one file, whose name you specify.
M-X Edit System Warnings
Begin editing warnings for all files in one system, whose name you specify.
C-Shift-w
Show the following warning and the function that it is about.
M-Shift-w
Show the previous warning and the funetion that it is about.

M-X Insert Warnings
Insert a list of all pending warnings of all files into the buffer at point.

N-X Insert File Warnings
Insert a list of all pending warnings of one specified file into the buffer at point.

- ey o

oy’

ZMACS Reference Manual 163 Running and Testing LISP Programs

While you are editing the pending warnings, the ZMACS frame is split into a small window at
the top which displays one function’s set of warnings, and a larger window below which displays
the text of that function. Type C-Shift-W (Edit Next Warning) to move to the next function
that has warnings; both windows move. Type M-Shift-W (Edit Previous Warning) to move to the
previous function with warnings. The upper window’s size is adjusted automatically to hold as
many warnings as the function has, but there is a maximum size. If one function has too many
warnings, they will not all fit in that maximum. Then you can use C-M-V to scroll the upper
window to scroll through of the function’s warnings.

To begin editing the pending warnings, you must specify which files' warnings you want to edit.
Type M-X Edit File Warnings to edit the warnings of one file only; you specify the file with the
minibuffer, and the file name defaults to the visited file’s name. Type M-X Edit System Warnings
to edit the warnings of all the source files in one system; you specify the system name with the
minibuffer, and it defaults to the system that the visited file belongs to. For complete generality,
type N-X Edit Warnings, which lists all the files for which warnings are recorded and asks, one
by one, which ones you wish to process.

Once ZMACS knows which files you want to edit the warnings of, it creates a buffer containing
a list of the currently pending warnings of those files, and then displays the first function listed
and its warnings. You can then move to the next function with C-Shift-W. When you are done
editing warnings, type C~-X 1 to remove the warnings window from display in the ZMACS frame.

You can correct the functions that got warnings, and recompile them, while editing the warnings,
and this immediately removes them from the compiler warnings data base (or adds new warnings,
if you make a mistake), but the buffer containing the warning list does not change until another
N-X Edit Warnings or similar command is given. There is only one buffer of warnings in ZMACS,
and each use of N-X Edit Warnings reinitializes it and starts at the beginning of it.

26.5 LISP Debugging Aids in ZMACS

M-X Find Unbalanced Parentheses
Scan entire buffer for mismatches.

N-X Where Is Symbol

List packages containing a symbol name (using LISP function where-is).
N-X List Matching Symbols

List LISP symbols matching specified pattern.

M-X Trace
Trace a LISP function.

ZMACS Reference Manual 162 Running and Testing LISP Programs

N-X Disassemble
Print disassembly of a compiled LISP function.

N-X Macro Expand Expression

N-X Macro Expand Expression All
Read the LISP expression following point, apply macroexpand or macroexpand-all to it,
and print the results.

N-X List Callers

N-X List Object Users
Print names of all LISP functions that refer to a symbol. Set up possibilities list of
them also.

N-X Edit Callers
M-X Edit Object Users
Similar, but don’t print, and immediately visit the first possibility (caller).

M-X Multiple Edit Object Users
N-X Multiple Edit Callers
N-X Multiple List Object Users
N-X Multiple List Callers
List or edit all functions referring to any of several symbols.

N-X Find Unbalanced Parentheses is the easiest way to check a file of LISP code for mis-
matches. It scans the entire current buffer and stops at the first place where a parenthesis appears
to be missing. This is done automatically whenever a LISP mode buffer is saved if the variable
zwei:*check-unbalanced-parentheses-when-saving® is set non-nil. (It is nil by default.)

N-X Where Is Symbol is an interface to the LISP function where-is. It reads a string using
the minibuffer and prints a list of LISP packages that contain symbols by that name. It also says
which packages inherit each of the symbols.

N-X List Matching Symbols searches one or all packages for symbols that satisfy a predicate (a
LISP function). The predicate is called repeatedly with one argument, a symbol, and the symbol
is mentioned in the list if the predicate returns non-nil. With no numeric argument, M-X List
Natching Symbols searches the current package. With C-U as argument, it searches all packages.
With C-U C-U as argument, it reads a package name using the minibuffer and searches only that
package. Example: with no numeric argument and boundp as the predicate, it prints a list of all
symbols in the current package whose values are not void.

M-X Trace reads a function name using the minibuffer, and traces that function. The function
name is defaulted and can be selected with the mouse, as in Meta-.. M-X Trace pops up a menu
with which you can select trace options, which go to construct a call to the LISP function trace.

i
i
2
i
1
i
'

/ ‘
- Mk Ay SR PN A o

ZMACS Reference Manual 163 Running and Testing LISP Programs

You can see the trace call change in a window below the menu as you select options. Eventually,
select LJAbort or EJDo it. C-U M-X Trace trac:s the function immediately, bypassing the menu
step and using defaults {or all trace options.

N-X Disassemble reads a function name using the minibuffer, and prints a disassembly of that
function, which should be compiled LISP. The function name is defaulted and can be selected with
the mouse, as in Meta~..

You can debug the expansion of LISP macros using N-X Macro Expand Expression. This reads
the expression following point, passes it to macroexpand, to expand macro calls at the top level of
that expression, and prints the result. The similar command M-X Macro Expand Expression uses
macroexpand-all, which expands all macro calls found within the expression.

N-X List Callers scans all the functions in the LISP world and records which ones refer to
a specified symbol, whose name is read with the minibuffer. Normally only functions that are
definitions of symbols in the current package are scanned. (The current package is controlled by
the Package attribute; see chapter 30 [Attributes], page 187) C-U as an argument says to search all
packages. C-U C-U says to read the name of a package with the minibuffer and search only that
one.

N-X List Object Users is like M-X List Callers only faster. It works from a precomputed
data base. Initially the data base contains information on the files of the LISP Machine system.
The function si:analyze-all-files adds the files you have loaded to the data base so that M=X List
Object Users will include them. This command always covers all packages, it being fast enough
to do so.

Both N-X List Object Users and N-X List Callers print mouse-sensitive function names,
so that you can visit the source code for the definition of any of them by clicking m on it. In
addition, they set up possibilities lists containing all the names found. enabling you to visit the
definitions one by one using C-Shift-P. See section 26.7 [Possibilities Lists], page 164.

N-X Edit Object Users and M-X Edit Callers, which move immediately to the definition of
the first caller, also exist.

Since it is as quick to all find the users of several symbols as it is to find all the users of one,
multiple commands are provided to find the users of several symbols at once. Their names are
N-X Multiple List Callers, etc. These commands use the minibuffer to read the symbols; enter
each symbol as a separate minibuffer argument. Enter an empty argument to mark the end of the
arguments. This says that the command should proceed.

ZMACS Reference Manual 164 Running and Testing LISF Programs

26.6 Exploring the Flavor Hierarchy

This section describes the ZMACS commands for printing information about flavor definitions
in effcet in the LISP world. All the flavor names and method function specs that they print are
mouse-sensitive; click m on one to visit the source code for its definition.

N-X List Combined Methods
List all the methods that play a part in handling a specified operation on a specified
flavor. This includes inherited methods.

N-X List Methods
List all methods defined, on whatever flavor, for a specified operation.

N-X List Flavor Components
List all the component flavors of a specified flavor.

N-X List Flavor Dependents
List all the flavors that depend on a specified flavor.

N-X List Flavor Direct Dependents
List all the flavors that depend directly on a specified flavor.

M-X List Flavor Methods
List all methods defined on a specified flavor, not including inherited ones.

N-X Edit Combined Methods
N-X Edit Methods
N-X Edit Flavor Components
M-X Edit Flavor Dependents
M-X Edit Flavor Direct Dependents
N-X Edit Flavor Methods
Similar, but immediately visit the first flavor or method in the list.

N-X Describe Flavor
Print everything there is to know about a specified flavor.

Each of these commands except N-X Describe Flavor sets up a possibilities list containing all
of the flavors or methods in the list. This allows you to visit each of the flavors, or each of the
methods, one by one with the C-Shift~P command. See section 26.7 [Possibilities Lists|, page 164.
With the Edit commands, the possibilities list is the only way you can see the names of, or visit
the source code for, flavors or methods aside from the first one.

26.7 Possibilities Lists

1
!
i
i
i
i
i

l

ZMACS Reference Manual 165 Running and Testing LISP Programs

A possibilities list is a list of functions, flavors, or whatever, which ZMACS sets up so that you
can look at the source code for each one, as you are ready for them. For example, the command
functions List Flavor Components and Edit Flavor Components create a possibilities list containing
all the component flavors of a specified flavor. After either of them, you can use C-Shift-P (Go
To Next Possibility) repeatedly to visit the source code for the next flavor in the list.

C-Shift-P
Visit text specified by the next possibility in the current possibilities list.

List Flavor Components, and other such commands whose names start with List, prints a mouse-
sensitive list of all the objects it has found. Edit Flavor Components, and other such commands
whose names start with Edit, immediately performs C-Shift-P automatically to visit the first
flavor; the first time you type C-Shift-P explicitly, you visit the second one.

The current possibilities list, and all previous ones you have made, live in the ZMACS bufler
named *Possibilities*. Each possibilities list occupies a separate page, with the most recently
created ones coming first in the buffer. Each possibility is described by a line. Your current
possibilities list and “place” in it are indicated by point: point at the beginning of a line means
that line is next; point at the end of the line, that that line has been done and the following
possibility-line is next. C-Shift-P takes successive possibilities by moving point to the end of the
line that it uses.

You can use the possibilities out of order, or go back to an possibilities list, by selecting the
buffer *Possibilities* and moving point to the beginning of the next possibility you want to use.

26.8 The Patch Facility

The patch facility allows a system maintainer to manage new releases of a large system and
issue patches to correct bugs. It is designed to be used to maintain both the LISP Machine system
itself and applications systems that are large enough to be worth loading up and saving on a disk
partition.

Since it is very inconvenient to load a large system each time it is to be used, often LISP bands
containing the system are saved. This means that a bug that is fixed will remain in the saved bands
even after the files have been recompiled. This problem can be solved by putting fixes into patch
files, files of incremental changes that are loaded into previously saved LISP bands each time they
are booted.

ZMACS Reference Manual 166 Running and Testing LISP Programs

A patch file contains the Patch File attribute in its attribute list. See chapter 30 [Attributes],
page 187. The effect of this attribute is that when the file is loaded there will be no warning about
redefining functions or variables previously defined in other files. After all, the purpose of a patch
file is to do just that. In fact, each piece of text in a patch file says which source file the text
was patched from; when the patch file is loaded, the definitions are recorded as coming from that
source file rather from the patch file itself.

Each patchable system has a major version number which is incremented from time to time

when it is recompiled. Each major version has a series of patch files, given sequential minor version
numbers, which contain the changes that have been patched since that major version was created.
A given LISP band containing a system loads only the patches for the major version that it contains;
patches for earlier major versions are not needed, since the changes they contain were presumably
included in the original files for the current major version. See the section “The Patch Facility” in
the LISP Machine Manual for more information on patchable systems and loading patches.

Patches are made with special ZMACS commands, usually by copying text out of the source
file after you change it. Each patch must be associated with a specific patchable system, and had
better contain changes only to the source files of that system. You must specify the patchable
system name when you start the patch file.

;

26.8.1 Making Patches

During a typical maintenance session on a system you will make several edits to its source files.
The ZMACS patch commands can be used to copy these edits into a patch file so that they can be
automatically incorporated into the system to create a new minor version. Edits in a patch file can
be modified function definitions, new functions, modified defvar and defconst forms, or arbitrary
forms to be evaluated, even including load of new files.

N-X Start Patch
Begin editing a patch file.
N-X Add Patch
Copy region or current defun to patch file being edited.

N-X Add Patch Changed Sections
N-X Add Patch Buffer Changed Sections
N-X Tags Add Patch Changed Sections
Copy changed sections of one or more buffers into patch file being edited.

N-X Finish Patch
Install the patch file being edited for users to load and save.

ZMACS Reference Manual 167 Running and Testing LISP Programs

N-X Finish Patch Unreleased
Install the patch file being edited for users to test but not save.

N-X Release Patch
Permit users to save a patch file previously finished but not released.

N-X Resume Patch
Start editing an existing patch file.

N-X Cancel Patch
Eliminate a patch file from the patch data base.

The first step in making a patch is to start it. At this stage you must specify which patchable
system you are making a patch for. Then you add one or more pieces of code from other source
files to the patch. Finally you finish the patch. This is when you fill in the description of what
the patch does; this description is what load-patches prints when it offers to load the patch. If you
have any doubts about whether the patch will load and work properly, you finish it unreleased;
then you can load it to test it, but no bands can be saved containing the patch until you explicitly
release it later.

It is important that any change you patch should go in a patch for the patchable system to which
the changed source file belongs. This makes sure that nobody loads the change into a LISP world
that does not contain the file you were changing—something that might cause trouble. Also, it
ensures that you never patch changes to the same piece of code in two different patchable systems’
patches. This would lead to confusion because there is no constraint on the order in which patches
to two different systems are loaded.

Starting a patch can be done with N-X Start Patch. It reads the name of the system to patch
with the minibuffer. M-X Add Patch also starts a patch if you are not already editing one, so an
explicit N-X Start Patch is needed only infrequently.

N-X Add Patch adds the region (if there is one) or the current defun to the patch file currently
being constructed. If you change a function, you should recompile it, test it, then once it works
use N-X Add Patch to put it in the patch file. If no patch is being constructed, one is started for
you; you must type in the name of the system to patch.

A convenient way to add all your changes to a patch file is to use M-X Add Patch Changed
Sections or M-X Add Patch Buffer Changed Sections. These commands ask you, for each
changed function (or each changed function in the current buffer), whether to add it to the patch
being constructed. If you use these commands more than once, a function that has been added to
the patch and has not been changed since is considered “unchanged”.

ZMACS Reference Manual 168 Running and Testing LISP Programs

The patch file is constructed in an ordinary ZMACS buffer. If you mistakenly M-X Add Patch
something that doesn’t work, you can select the buffer containing the patch file and delete it. Then
later you can N-X Add Patch the corrected version.

While you are making your patch file, the minor version number that has been allocated for
you is reserved so that nobody else can use it. If two people are patching a system at the same
time, they do not both get the same minor version number.

After testing and patching all of your changes, use M-X Finish Patch to install the patch file
so that other users can load it. This compiles the patch file if you have not done so already
(patches are always compiled). It also asks you for a comment describing the reason for the patch;
load-patches and print-system-modifications print these comments. If the patch is complex or it
has a good chance of causing new problems, you should not use M-X Finish Patch; instead, you
should make an unreleased patch.

A finished patch can be released or unreleased. If a patch is unreleased, it can be loaded in the
usual manner if the user says ‘yes’ to a special query, but once it has been loaded the user will be
strongly discouraged from saving a band. Therefore, you still have a chance to edit the patch file
and recompile it if there is something wrong with it. You can be sure that the old broken patch
will not remain permanently in saved bands.

To finish a patch without releasing it, use the command M-X Finish Patch Unreleased. Then
the patch can be tested by loading it. After a sufficient period for testing, you can release the patch
with N-X Release Patch. If you discover a bug in the patch after this point, it is not sufficient
to correct it in this patch file; you must put the fix in a new patch to correct any bands already
saved with the broken version of this patch.

It is a good principle not to add any new features or fix any additional bugs in a patch once
that patch is finished; change it only to correct problems with that patch. New fixes to other bugs
should go in new patches.

You can only be constructing one patch at any time. M-X Add Patch automatically adds to the
patch you are constructing. But if you use the command M-X Start Patch while constructing a
patch, you are given the option of starting a new patch. The old patch ceases to be the one you are
constructing but the patch file remains in its editor buffer. Later, or in another session, you can go
back to constructing the first patch with the command M-X Resume Patch. This commands asks
for both a patchable system name and the patch version to resume constructing. You can simply
save the editor buffer of a patch file and resume constructing that patch in a later session. You
can even resume constructing a finished patch; though it rarely makes sense to do this unless the

ZMACS Reference Manual 169 Running and Testing LISP Programs

patch is unreleased.

If you start to make a patch and change your mind, use the command M-X Cancel Patch. This
deletes the record that says that this patch is being worked on. It also tells the editor that you
are no longer constructing any patch. You can undo a finished (but unreleased) patch by using
M-X Resume Patch and then M-X Cancel Patch. If a patch is released, you cannot remove it from
saved bands, so it is not reasonable to cancel it at that stage.

26.8.2 Private Patches

A private patch is a file of changes that is not installed. It is loaded only by explicit request
(using the function load). A private patch is not associated with any particular patchable system,
and has no version number.

N-X Start Private Patch
Begin editing a patch file that will not be installed for all users.

To make a private patch, use the editor command M-X Start Private Patch. Instead of a
patchable system name, you must specify a file name to use for the patch file; since the patch is
not to be installed, there is no standard naming convention for it to follow. Add text to the patch
using N-X Add Patch and finish it using M-X Finish Patch. There is no concept of release for
private patches so there is no point in using N=-X Finish Patch Unreleased. There is also no data
base recording all private patches, so M-X Start Private Patch will resume an existing patch, or
even a finished patch. In fact, finishing a private patch is merely a way to write a comment into
it and compile it.

Once the private patch file is made, you can load it like any other file.

ZMACS Reference Manual 170 Running and Testing LISP Programs

ZMACS Reference Manual 271 Ztop Mode

27. Ztop Mode

7top Mode enables ZMACS to serve the purpose of a LISP Listener, with editing capability on
both previous input and previous output. Ztop uses a ZMACS buffer as a typescript that records
the LISP expressions that you evaluate, the input that they read while executing, the output that
they print, and the values they return. Text can be copied into the Ztop buffer from other ZMACS
buffers used as input there; it can also be copied from input or output earlier in the Ztop buffer.
Nothing is ever deleted from the Ztop buffer unless you do so explicitly; therefore, the Ztop buffer
comes to contain a typescript of the entire session.

N-X Ztop Mode
Put current buffer in Ztop mode.

N-X Select Last Ztop Buffer
Select. a buffer that is in Ztop mode, creating a new buffer if no such buffer exists.

M-X Require Activation Mode
Tell Ztop not to activate input on self-inserting characters.

In Ztop mode, activate input.
C-N-Y In Ztop mode, copy previous input at end of buffer for resubmission.

(ABORT) In Ztop mode, abort the program that is executing, if it is reading input.

M-(ABORT) In Ztop mode, abort the program that is executing all the way to top level, if it is
reading input.

To begin using Ztop, make a buffer with C-X B bufname (RETURN) (RETURN) and put it in Ztop
mode with M=X Ztop Mode. Alternatively, use M-X Select Last Ztop Buffer, which selects an
existing Ztop buffer or creates a new one. Now you are ready to enter LISP expressions to be
evaluated. Note that two characters are needed when creating a buffer. It is often useful
to split the ZMACS frame into two windows, select the Ztop buffer in one of them, and use the
other for editing source files.

To evaluate an expression with Ztop, move to the end of the Ztop buffer and insert the text of
the expression. Ztop can tell automatically when you have typed a complete expression, just as
a LISP Listener can; as soon as you have done so, the expression is evaluated, and its values are
printed as text into the Ztop buffer. After the values are printed, Ztop is ready for you to insert
another expression.

For example, if you go to the end of the Ztop buffer and type (cons ‘'a 'b), the expression

will be evaluated immediately and the output (a. b) will be inserted. This

leaves point at the end of the buffer, so you can immediately type another expression.

ZMACS Reference Manual 172 Zuop Mode

The input in Ztop mode is not restricted to LISP expressions. If your LISP expression calls a
program that reads input in some other language, that input too is read through the Ztop buffer.
This is just like the way LISP Listener windows work. Specifically, *terminal-io* in the program
is an editor stream through which input is read out of the Ztop buffer and output is inserted into
the buffer. Printing values of expressions is a special case of output to *terminal-io®; it is the effect
of the LISP listen loop calling prini. Aside from editing, any sequence of text that works in the
LISP Listener works the same way in Ztop, except for programs that use graphics operations such
as :draw-line on *terminal-io®. Ztop does not support these.

Both input and output in the Ztop buffer use a buffer pointer called the I/O pointer. Input
advances the [/O pointer over characters already in the buffer. If the program needs to read input
and the 1/0O pointer is at the end of the buffer, the program waits until you insert more text
after the I/O pointer. Qutput is inserted into the buffer at the I/O pointer, advancing the pointer
beyond it so that the output will not be mistakenly read as the next input. The result is that
input and output ultimately are in logical order in the Ztop buffer: the output from an expression
appears after that expression, and before the next expression, even if the following expression was
inserted before the output was printed.

As long as point is at the end of the Ztop bufler, any text you insert is passed to the program
(LISP listen loop, or other) after each self-inserting character you type. Therefore, the [/O pointer
keeps up with the end of the buffer. However, until a complete expression or other unit of input
has been typed, you can still rub out the input.

If a program that reads single-character commands, such as the debugger, is invoked using
Ztop, the commands of this program override those of ZMACS. Thus, Control-E would be taken
as the debugger command to edit the definition of the function of the current frame, rather than
as the ZMACS command to move to the end of the line. But this is true only if point is at the end
of the buffer, and only as long as the single-character command is valid. For example, if in the
debugger you type at least one character of a LISP expression, the debugger ceases to be interested
in single character commands. As a result, these characters regain their normal ZMACS meanings.

If you move point away from the end of the Ztop buffer, or if you yank or insert in any way
except by typing text, execution becomes dormant. The 1/O pointer is moved back to the beginning
of the current expression, and becomes visible as a blinking I-shape. You can edit the text after
the I-blinker; when the text is finally used as input, it will be used in the changed form. However,
this cannot happen until you do something to activate input again. You can also edit the text
before the I-blinker, but that text will not be used as input unless it is copied to a place after the
I-blinker.

_----r-

ZMACS Reference Manual 173 Ztop Mode

Normally, the way to activate is to move point to the end of the buffer and type a self-inserting
character. Type or (RETURN), if you have no reason to insert meaningful text. Activation
causes the I-blinker to disappear. If the input now forms a complete expression, it will be executed
immediately; otherwise, you must insert more input, and you have further opportunity to edit the
input.

Another way to activate Ztop when it is dormant is to type (END) (Finish Ztop Evaluation). This
moves point to the end of the buffer and activates. If there is an active region when is typed,
the text of the region is copied to the end of the buffer before activating input. This implies that
that text will be read as input.

Require Activation mode is a minor mode that can be used along with Ztop mode. It causes
to be the only way to activate Ztop input if it becomes dormant. In Require Activation
mode, you can still enter input without using as long as point remains at the end of the
buffer and nothing else is done to make Ztop dormant; but once Ztop is dormant, it stays dormant
until is typed. The command M-X Require Activation Mode toggles Require Activation
mode; with numeric argument, it turns the mode on if the argument is positive, off otherwise.

C-N-Y (Ztop Yank Input History) can be used in Ztop mode to yank previous units of input.
A “unit of input” here means the largest piece of text within which you can still rub out. Ztop
remembers each unit of input in a history, as well as in the Ztop buffer itself, and C-M-Y yanks from
this history. Thus, just C-N~-Y yanks the most recent previous input unit, C-M-Y with a numeric
argument n yanks the n’th from last input unit, and M-Y can be used to replace one yanked input
unit with a previous one until you find the one you wanted. See section 11.2 [Yanking], page 47.

ABORT) and M-(ABORT) are defined in Ztop mode as commands that abort the program execu-
tion when they are read. The result is that these characters have effectively the same behavior as
they do when typed at a LISP Listener,

Setting the Ztop buffer’s current package in ZMACS using Set Package automatically informs
the program that is reading from Ztop to use the new package. Conversely, setting the current
package by executing a program (such as, calling pkg-goto) informs ZMACS to change the Ztop
buffer’s current package. See chapter 30 [Attributes], page 187.

Ztop works by running the LISP listen loop in a specially created stack group, and glvmg it a
*terminal-io® stream that uses ZMACS as the input editor.

ZMACS Reference Manual 174 Ztop Mode

ZMACS Reference Manual 175 Word Abbrevs

28. Word Abbrevs

A word abbrev is a word that changes (expands), if you insert it, into some different text.
Abbrevs are defined by the user to expand in specific ways. For example, you might define ‘oo’
as an abbrev expanding to ‘find outer otter’. With this abbrev defined, you would be able to
get ‘find outer otter’ into the buffer by typing £ o o (SPACE).

Abbrevs expand only when Word Abbrev mode (a minor mode) is enabled. Disabling Word
Abbrev mode does not cause abbrev definitions to be forgotten, but they do not expand until
Word Abbrev mode is enabled again. The command M-X Word Abbrev Mode toggles Word Abbrev
mode; with a numeric argument, it turns Word Abbrev mode on if the argument is positive, off
otherwise. See section 31.1 [Minor Modes], page 191.

Abbrev definitions can be mode-specific—active only in one major mode. Abbrevs can also have
global definitions that are active in all major modes. The same abbrev can have a global definition
and various mode-specific definitions for different major modes. A mode specific definition for the
current major mode overrides a global definition.

Word abbrevs can be defined interactively during the editing session. Lists of abbrev definitions
can also be saved in files and reloaded in later sessions. Some users keep extensive lists of abbrevs
that they load in every session.

28.1 Defining Abbrevs

C-X + Define an abbrev to expand into some text before point.
C-X C-A Define an abbrev available only in the current major mode.

N-X Make Word Abbrev
General way to define an abbrev.

N-X Kill Global Word Abbrev -
Remove global definition of an abbrev.

N-X Kill Mode Word Abbrev
Remove mode-specific definition of an abbrev.

M-X Kill All Word Abbrevs
After this command, there are no abbrev definitions in effect.

The usual way to define an abbrev is to enter the text you want the abbrev to expand to, _
position point after it, and type C-X + (Add Global Word Abbrev). This reads the abbrev itself

ZMACS Reference Manual 176 Word Abbrevs

using the minibuffer, and then defines it as an abbrev for one or more words before point. Use
a numeric argument to say how many words before point should be taken as the expansion. For
example, to define the abbrev ‘foo’ as mentioned above, insert the text ‘find outer otter’ and

then type C-U 3 C-X + £ o o (RETURN).

If there is a region, that is used as the expansion for the abbrev that is defined.

The command C-X C-A (Add Mode Word Abbrev) is similar, but defines a mode-specific abbrev.
Mode specific abbrevs are active only in a particular major mode. C-X C-A defines an abbrev for
the major mode in effect at the time C-X C-A is typed.

M-X Make Word Abbrev is a general way of defining abbrevs. A numeric argument says to
make a global abbrev; otherwise, a mode-specific abbrev for the current major mode is defined.
The expansion and then the abbrev are read separately using the minibuffer.

To change the definition of an abbrev, just add the new definition. The old definition is replaced
automatically. To remove an abbrev definition and leave none, so that the word is no longer an
abbrev, use M-X Kill Mode Word Abbrev or M-X Kill Global Word Abbrev. You must choose
the command to specify whether to kill a global definition or a mode-specific definition for the
current mode, since those two definitions are inependent for one abbrev.

M-X XKill All Word Abbrevs removes all the abbrev definitions there are.

28.2 Expanding Abbrevs

An abbrev expands whenever it is present in the buffer just before point and a self-inserting
punctuation character ((SPACE), (COMMA), etc.) is typed. Most often the way an abbrev is used is
to insert the abbrev followed by punctuation.

Abbrev expansion preserves case; thus, ‘foo’ expands into ‘find outer otter’; ‘Foo’ into ‘Find
outer otter’, and ‘FO0’ into ‘FIND OUTER OTTER'.

These two commands are used to control abbrev expansion:

N-' Separate a prefix from a following abbrev to be expanded.

- C-X U Undo last abbrev expansion.

ZMACS Reference Manual 177 Word Abbrevs

You may wish to expand an abbrev with a prefix attached; for example, if ‘cnst’ expands into
‘construction’, you might want to use it to enter ‘reconstruction’. It does not work to type
recnst, because that is not necessarily a defined abbrev. What does work is to use the command
M-' (Word Abbrev Prefix Mark) in between the prefix ‘re’ and the abbrev ‘cnst’. First, insert ‘re’.
Then type N-*; this inserts a minus sign in the buffer to indicate that it has done its work. Then
insert the abbrev ‘cnst’; the buffer now contains ‘re-cnst’. Now insert a punctuation character
to expand the abbrev ‘cnst’ into ‘construction’. The minus sign is deleted at this point, because
N-* left word for this to be done. The resulting text is the desired ‘reconstruction’.

If you actually want the text of the abbrev in the buffer, rather than its expansion, you can
accomplish this by inserting the following punctuation with C-Q. Thus, foo C-Q - leaves ‘foo~’in
the buffer.

If you expand an abbrev by mistake, you can undo the expansion (replace the expansion by the
original abbrev text) with C-X U (Unexpand Last Word). C-Shift-U can also be used to undo the
expansion; but first it will undo the insertion of the following punctuation character!

28.3 Examining and Altering Abbrevs

N-X List Word Abbrevs
Print a list of all abbrev definitions.

N-X List Some Word Abbrevs
Print all abbrev definitions where the abbrev or expansion contains a given string.

N-X Edit Word Abbrevs
Edit a list of abbrevs; you can add, alter or remove definitions.

The output from M-X List Word Abbrevs looks like this:

PRN: 0 "parentheses"
FOO: (LISP) 5 *"Find outer otter"

The word at the beginning is the abbrev; the word in parentheses is the name of the major mode
it is in effect for, or absent for a global definition. The number that appears is the number of times
the abbrev has been expanded. ZMACS keeps track of this to help you see which abbrevs you
actually use, in case you decide to eliminate those that you don’t use often. The string at the end
of the line is the expansion.

ZMACS Reference Manual 178 Word Abbrevs

N-X List Some Word Abbrevs is a sort of apropos for abbrevs. It prints a list of definitions
like N-X List Word Abbrevs, but includes only abbrevs that contain a specified string, or whose
expansions contain that string.

N-X Edit Word Abbrevs allows you to add, change or kill abbrev definitions by editing a list
of them in a recursive edit. The list has the same format described above. After making changes
as you like, type to exit the recursive edit and put the changes into effect, or type
to exit the recursive edit and ignore the editing you did in it {no abbrev definitions are changed).
See section 29.1 [Recursive Edit], page 179.

28.4 Saving Abbrevs

N-X Write Word Abbrev File
Write a file describing all defined word abbrevs.

N-X Read Word Abbrev File
Read such a file and define abbrevs as specified there.

N-X Define Word Abbrevs
Define abbrevs from buffer.

N-X Insert Word Abbrevs
Insert all abbrevs and their expansins into the buffer.

N-X Write Word Abbrev File reads a file name using the minibuffer and writes a description
of all current word abbrev definitions into that file. The text stored in the file looks like the output
of N-X List Word Abbrevs, sans the header line.

N-X Read Word Abbrev File reads a file name using the minibuffer and reads the file, defining
word abbrevs according to the contents of the file.

These commands are used to save word abbrev definitions for use in a later session.

The commands N-X Insert Word Abbrevs and M-X Define Word Abbrevs are similar to the
previous commands but work on text in a ZMACS buffer. M-X Insert Word Abbrevs inserts text
into the current buffer before point, describing all current word abbrev definitions; M-X Define
Word Abbrevs parses the entire current buffer and defines abbrevs accordingly.

ZMACS Reference Manual 17¢ Miscellanecus Comimands

29. Miscellaneous Commands

This chapter contains several brief topics that do not fit anywhere else.

29.1 Recursive Edits

A recursive edit is a situation in which you are using ZMACS commands to perform arbitrary
editing while in the middle of another ZMACS command. For example, when you type C-R inside
of a Query Replace, you enter a recursive edit and can change the current buffer.

Exiting the recursive edit means returning to the unfinished command, which continues exe-
cution. For example, exiting the recursive edit requested by C-R in Query Replace causes query
replacing to resume. Exiting is done with (END).

You can also abort the recursive edit. This is like exiting, but the unfinished command is
immediately aborted, and you end up at top level. See section 32.1 [Quitting], page 205.

The text being edited inside the recursive edit need not be the same text that you were editing
at top level. It depends on what the recursive edit is for. Edit Tab Stops is one example of a
command function that enters a recursive edit on text (the tab stop buffer) which is different from
what you were editing at top level.

29.2 Sending Mail
You cannot currently read mail with ZMACS, but you can send mail.
C-X N Begin composing a message to send.

The command C-X M (Mail) creates a buffer named *Mail-n* and initializes it with the skeleton
of an outgoing message. This is the beginning of the process of using ZMACS to send a message.
The rest of the process is to fill in the addressees, subject and text of the message, and then type

(END) to send it.

The line in the buffer that says

ZMACS Reference Manual 180 Miscellaneous Commands

-~Text follows this line--

is a special delimiter. Whatever follows it is the text of the message; the headers precede it. The
delimiter line itself does not appear in the message.

Header fields you can use include ‘To’, ‘From’, ‘Subject’ and ‘CC’. They look like this:

To: rms@mc
CC: mly@mc, rg@oz
Subject: The ZMACS Manual

‘Subject:’ can be abbreviated ‘S:’.

Because the mail composition buffer is an ordinary ZMACS buffer, you can switch to other
buffers while in the middle of composing mail, and switch back later (or never). You can be
composing several messages at once, because each use of C-X M makes a new *Mail-n* buffer for a
new n. Old *Mail-n* buffers are reused only if their messages have been sent.

ZMail templates can be used when sending mail in ZMACS. Each template defined is an ex-
tended command and can be invoked with M-X. Also, you can specify a template to be invoked
automatically. The value of the variable zwei:*default-ZMACS-mail-template®, if non-nil, is taken to
be a template to invoke as soon as a mail buffer is initialized for C-X M. The value of zwei:*default-
ZMACS-bug-template® is used likewise in buffers made by M-X Bug. Refer to the ZMail Manual for
more information on templates.

29.3 Hardcopy Output

N-Shift-P (Quick Print Buffer)
Print hardcopy of the current buffer.

N-X Print Buffer
Print hardcopy of a specified buffer.

N-X Print All Buffers :
Ask about each buffer, and then print hardcopy of the chosen buffers.

N-X Print Region
Print hardcopy of the contents of the region.

M-X Print File

ZMACS Reference Manual 181 .- Miscellanecus Commands

Print hardcopy of the specified file.

The ZMACS hardcopy commands, except for M-X Print File, all use hardcopy-stream to print
the specified text out of the buffer or buffers. They differ only in deciding what text to print.
M-X Print File uses hardcopy-file instead. All the commands default all arguments except the file
name or stream, and the name to put on the header page.

When a multi-font buffer is printed, the hardcopy device will, if it knows how, choose its fonts
based on the fonts used in the buffer. Printing a file does the same thing based on the file’s Fonts
and Vsp attributes, if it has them. See chapter 30 {Attributes], page 187.

29.4 Sorting

There are several commands to divide the region into sort records and rearrange them in
alphabetical order. They differ in how the sort records are defined.

N-X Sort Lines
Sort the region line by line.
M-X Sort Paragraphs
Sort the region paragraph by paragraph.
N-X Sort Pages
Sort the region page by page.
Keuh oa pd
N-X Sort Via -Kbd-Macros
Use user-specified keyboard macros to divide the region into sort records.

N-X Sort Lines takes each line in the region as a sort record. The lines are rearranged into
alphabetical order, but not otherwise changed. M-X Sort Paragraphs similarly takes each para-
graph in the region as a sort record. Paragraph-separating lines, such as blank lines, accompany
the following paragraph to its final position, but are ignored when comparing the text of two
paragraphs. See section 24.4 [Paragraphsj, page 128.

N-X Sort Pages is like the previous two commands, but has some peculiarities that go with
the need for an explicit page delimiter character to start a new page. Every page except the last
one must end with a page delimiter character, but the last page ends at the end of the region
with or without a page delimiter. If the last page does not end with a delimiter and moves to
a different position as a result of sorting, a page delimiter character is inserted to terminate it,
and the page delimiter is deleted from the end of whichever page winds up last. See section 24.5
[Pagesi, page 129.

ZMACS Reference Manual 182 Miscellaneous Commands

Ke\jboﬂ‘&
N-X Sort Via Jébd- Macros is a very general sort command that could be used to sort by lines,

paragraphs, pages or other units of text. To use it, consider the region as divided up into sort
records, each of which contains a sort key. Each region is moved as a unit to its ﬁn&l position, but
only its sort key is used to determine that position. Use of M-X Sort Via-&bd Macros requires
you to tell it how to find the sort key in a sort record, and how to find the end of the sort record.
You do this with three keyboard macros:

A macro that, given point at the beginning of a sort record, positions point at the
beginning of the record’s key.

A macro that, given point at the beginning of the sort key, positions point at the end
of the key.

A macro that, given point at the end of the sort key, positions point at the end of the
containing record.

After you have entered all three macros, the region is divided up into records, which are then
rearranged. See section 31.3 [Keyboard Macros|, page 195. End each macro with C-X) as usual.

An example of using this command is

Kayveard
N-X Sort Via ¥bd Macros (RETURN) C-X) C-N C-X) C-X)

which has the same effect as M~X Sort Lines (assuming that both ends of the region are at the
beginnings of lines). Each sort records’s key begins at the beginning of the record, and the key
and the record end at the start of the next line.

29.4.1 Evaluating Expressions Interactively

M- (ALTMODE
Read an expression using the minibuffer, then evaluate it.

N-X Evaluate Into Buffer
Similar, but insert the text of the value into the buffer before point.

N-X Evaluate And Replace Into Buffer
Evaluate and delete the expression after point, inserting value instead.

Enter a read-eval-print loop, using typeout for output and for echoing input.

N- (ALTMODE) (Evaluate Mini Buffer) reads a LISP expression using the minibuffer, and evaluates
it, printing the value in the echo area. Since it is often useful to make the expression more than

ZMACS Reference Manual 183 Miscellaneous Commands

one line long, is defined to insert newlines as it does at top level. You must terminate
the expression with (END).

M-X Evaluate Into Buffer works much like M-(ALTMODE), but “prints” its value(s) into the
current buffer, inserting the text before point. A newline is inserted before each value. A numeric
argument to this command causes output printed by the expression on zwei:*standard-output* to
be inserted in the buffer as well. Such output precedes the values in the buffer.

N-X Evaluate And Replace Into Buffer reads the LISP expression in the buffer following
point, and evaluates it. On successful evaluation, it deletes the text of the expression that was
read, and inserts the value in its place.

(BREAK) (running the command function Break) invokes a break loop, a read-eval-print loop like
that in the LISP Listener window. It runs as a subroutine of ZMACS, using the ZMACS typeout

window for both input and output. Type or to get back to ZMACS.

All LISP reading and printing for these commands is done according to the syntactic attributes
(Readtable, Package and Base) of the current buffer, unless the LISP code that is run binds or sets
the relevant global variables (zwei:*read-base®, etc.). See chapter 30 [Attributes], page 187. During
evaluation, zwei:*standard-output® is set to print typeout, overlying the text display in the editing
window, and zwei:*standard-input® is defined to echo its input as typeout.

29.5 Editing Assembly-Language Programs

MIDAS mode is designed for editing programs written in the MIDAS assembler. It is suitable
for many other assemblers as well. To select it, use M-X Midas Mode.

In MIDAS mode, comments start with ‘;’, and ‘<’ and ‘>’ have the syntax of parentheses, as do
square brackets and curly braces. In addition, there are five special commands that understand
the syntax of instructions and labels. These commands are:

C-M-N Go to Next label.
C-N-P Go to Previous label,

C-N-A Go to Accumulator field of instruction.
C-N-E Go to Effective Address field.
c-N-D Kill next word and its Delimiting character.

ZMACS Reference Manual 84 Miscellaneous Commands

Two other commands that behave slightly differently in MIDAS mode are

M-{ Move up to previous blank line.

N-] Move down to next blank line.

Any line that is not indented and is not just a comment is taken to contain a label. The label is
everything up to the first whitespace (or the end of the line). C-M-N (Go to Next Label) and C-M-P
(Go to Previous Label) both position the cursor right at the end of a label; C-M-N moves forward
or down and C-N-P moves backward or up. At the beginning of a line containing a label, C-M-N
moves past it. Past the label on the same line, C-M-P moves back to the end of it. If you kill a
couple of indented lines and want to insert them right after a label, these commands put you at
just the right place.

C-N-A (Go to AC Field) and C-M-E (Go to Address Field) move to the beginning of the accumulator
(AC) or effective address fields of a PDP-10 instruction. They always stay on the same line, moving
either forward or backward as appropriate. If the instruction contains no AC field, C-M-A positions
to the start of the address field. If the instruction is just an opcode with no AC field or address
field, a space is inserted after the opcode and the cursor left after the space. In PDP-11 programs,
C-M-A moves to the first operand and C-M-E moves to the second operand.

Once you’ve gone to the beginning of the AC field you can often use C-M-D (Kill Terminated
Word) to kill the AC name and the comma that terminates it. You can also use it at the beginning
of a line, to kill a label and its colon, or after a line's indentation to kill the opcode and the
following space. This is very convenient for moving a label from one line to another. In general,
C-N-D is equivalent to M=-D C-1 C-D, since the numeric argument causes C-D to save the character
it kills on the kill history.

The M-[and M-] commands are not, strictly speaking, redefined by MIDAS mode. They go up
or down to a paragraph boundary, as usual. However, in MIDAS mode the criterion for a paragraph
boundary is changed by setting the variable zwei;*paragraph-delimiter-list* to nil (see section 24.4
{Paragraphs|, page 128) so that only blank lines (and page boundaries) delimit paragraphs. So,
N-[moves up to the previous blank line and M-] moves to the next one.

29.6 Major Modes for Other Languages

MACSYMA mode redefines the syntax of words and s-expressions in an attempt to make it
easier to move over MACSYMA syntactic units. is defined to run the command function
Indent Nested. Also, the syntax of MACSYMA comments is understood.

ZMACS Reference Manual 185 Misecelianeous Commands

PL1 mode is for editing PL1 code, and causes to indent an amount based on the previous
statement type. The body of the implementation of PL1 mode is in the library PL1, which is
loaded automatically when necessary.

C mode is for editing C code. It assumes that indentation levels in the code are 8 columns
apart, so just inserts a tab character. The syntax of C comments is understood.

29.7 Dissociated Press

M-X Dissociated Press is a command for scrambling a file of text either word by word or
character by character. Starting from a buffer of straight English, it produces extremely amusing
output. The input comes from a ZMACS buffer; you must specify the input buffer name using
the minibuffer. Dissociated Press prints its output as “typeout”; it does not change the contents
of the bufler. However, you can route the output into a buffer, using M-X Execute Command Into
Buffer, if you wish to record it permanently. See section 1.2 [Typeout], page 5.

Dissociated Press operates by jumping at random from one point in the buffer to another. In
order to produce plausible output rather than gibberish, it insists on a certain amount of overlap
between the end of one run of eonsecutive words or characters and the start of the next. That is, if
it has just printed out ‘president’ and then decides to jump to a different point in the file, it might
spot the ‘ent’ in ‘pentagon’ and continue from there, producing ‘presidentagon’. Long sample texts
produce the best resuits.

A positive argument to M-X Dissociated Press tells it to operate character by character, and
specifics the number of overlap characters. A negative argument tells it to operate word by word
and specifies the number of overlap words. In this mode, whole words are treated as the elements to
be permuted, rather than characters. No argument is equivalent to an argument of two. For your
againformation, the output is only printed on the screen. The file you start with is not changed.

Dissociated Press produces nearly the same results as a Markov chain based on a frequency
table constructed from the sample text. It is, however, an independent, ignoriginal invention.
Dissociated Press techniquitously copies several consecutive characters from the sample between
random choices, whereas a Markov chain would choose randomly for each word or character. This
makes for more plausible sounding results.

It is a mustatement that too much use of Dissociated Press can be a developediment to your real
work. Sometimes to the point of outragedy. And keep dissociwords out of your documentation, if
you want it to be well userenced and properbose. Have fun. Your buggestions are welcome.

ZMACS Reference Manual 186 Miscellaneous Commands

----r-

ZMACS Reference Manual 187 Attributes in Files and in Buffers

30. Attributes in Files and in Buffers

The LISP Machine system defines file attributes which are part of the contents of a text file or
QFASL file and provide various information on how to process the file correctly. Some attributes
are used whenever text from the file is read by the LISP reader; they specify such things as the
input radix to use for integers, the package to use for LISP symbols, and the dialect of LISP syntax
(Common LISP or traditional). ZMACS must refer to these attributes in order to work properly
when reading LISP expressions from a ZMACS buffer. Other attributes such as the Mode attribute
exist solely to tell ZMACS the right way to edit the file.

The attributes of a text file are recorded in the first nonblank line of the file, in text between
the first and second occurrences of the string ‘-*-' on that line. If the first nonblank line does not
contain such text, the file's attribute list is empty. This line is called the attribute line. Here is an
example of one:

+:: =%~ Mode:LISP; Package:ZWEI; Readtable:T; Base:8 -x*-

This attribute line says that the file should be edited in LISP mode, read should use the readtable
named t (traditional ZetaL.ISP syntax), symbols should be interned in package ZWEI, and integers
read in octal unless the text specifies otherwise. The semicolons at the beginning are not part of
the attribute list; they are present to prevent the attribute list from being taken as LISP code
when the file is loaded.

A ZMACS buffer also has an attribute list, and can have an attribute line to specify it. Usually,
the attributes of the buffer are the same as the attributes of the file that was visited in it, because
they are based on the same text in the attribute line. However, they need not always remain the
same during the editing session, as explained below.

Certain attributes are so important that ZMACS must give them values in each buffer even if
they are not specified. They are the attributes Package, Base and Readtable. The defaults come
from the variables zwei:*default-package®, zwei:*default-base® and zwei:*defauit-readtable*. The last
two of these are set up automatically from the global values of zwei:*read-base® and zwei:*readtable*
the first time you switch to a ZMACS frame after cold booting.

Here are the most common attributes:

Mode Specifies the major mode for ZMACS to use in editing the file.
Base Specifies the default radix for integers. While in ZMACS, the variables zwei:*read-base*

ZMACS Reference Manual 188 Avtributes in Files and in Buffers

and zwei:*print-base* are always set to the current buffer’s default radix.

Package Specifies the default package for symbols. While in ZMACS, zwei:*package® is always
set to the current buffer’s default package.

Readtable Specifies the syntax for LISP expressions. The value of the attribute is the name

of a standard readtable; typically t for the traditional ZetaLISP syntax readtable or
common for the Common LISP readtable. While in ZMACS, zwei:*readtable* is always
set to the current buffer’s choice of readtable.

Lowercase Specifies whether LISP code text in this file should be expected to be in lower case. This
affects the function electric-shift-lock-if-appropriate. See section 23.1 [Case|, page 119.

Nofill Specifies that Auto Fill mode should not be used on this file, even by users who turn
on Auto Fill mode automatically. This should be used in files that will be edited in
Text mode but whose line breaks are semantically significant. See section 24.6 [Filling],

page 130.

Fonts Specifies the fonts to display this file in. See section 23.2 [Fonts|, page 120.

Vsp Specifies the spacing, in pixels, between the bottom of one line and the top of the next
line.

Backspace If non-nil, specifies that ZMACS should let characters cause actual over-
printing on the screen when displaying this file.

Tab Width Specifies the number of columns (space-widths in font A) between the tab stops used
for displaying tab characters in this file.

Patch File If non-nil, specifies that it is ok for this file, when loaded into the LISP world, to
redefine functions and variables defined in other files.

The attribute list of a ZMACS buffer is stored within ZMACS as a LISP property list inside
the data structure (an instance) for the buffer. ZMACS commands that depend on attributes refer
to this list. Editing the attribute line in the buffer does not immediately change the recorded
attribute list; thus, changing the line to say ‘Base: 11;’ once the buffer exists does not have any
effect on the reading of integers in that buffer.

If you wish ZMACS to obey changes you have made in the text of the attribute line, use the
command M-X Reparse Attribute List. This regenerates the LISF property list from the text,
so that all attributes change to match the new text.

30.1 Commands Setting Buffer Attributes

The attributes of a ZMACS buffer are normally based on the file’s attribute list, but sometimes
it is useful to give them different values with the following commands.

-—---t-

----f-

ZMACS Reference Manual 189 Attributes in Files and 10 Buffers

M-X Set Base

N-X Set Patch File
N-X Set Fonts

N-X Set Backspace
N-X Set Vsp

N-X Set Tab Width
N-X Set Lowercase
N-X Set Nofill

Set the corresponding attribute in the current buffer.

N-X Set Package
Set the Package attribute. This command works a little differently from the others.

N-X Set Readtable
Similar, for the Readtable attribute

N-X Set Common Lisp
Another way to set the Readtable attribute.

The above commands, except for the last three, all work alike except for which attribute is set.
The command first reads the new value of the attribute, using the minibuffer. This has the same
format as it would have in the attribute line, except for M-X Set Fonts, where you give just font
names with spaces in between. The ZMACS buffer attribute value is then set.

Finally, the command asks whether the attribute line text should be changed in the correspond-
ing way. If you are making, or unmaking, a temporary change- such as, if you want to see how
the text appears with a different tab width-—you should answer N to this question. If you intend
to affect the processing of the same file in future editing sessions, answer Y.

The commands M-X Set Package, which sets the Package attribute, works a little differently
from the other commands. The value of the Package attribute must be the name of an existing
package. If the argument you give is not the name of an existing package, M-X Set Package can
create such a package to make the argument valid, but first you must type twice to
exit the minibuffer; then you must confirm with ‘yes’. Then comes the usual question of whether
to change the text of the attribute line, and finally an unusual question: should the buffer be
resectionized, so that LISP functions and variables will be known to Meta-. in the new package
instead of the old? Most of the other attributes do not affect sectionization.

M-X Set Readtable sets the Readtable attribute, and works like M-X Set Package, since the
Readtable attribute affects sectionization and must be the name of a defined system readtable.

The two readtables normally used are the traditional ZetaLISP readtable and the Common

ZMACS Reference Manual 19G Attributes in Files and in Buffers

LISP readtable. The command M-X Set Common Lisp makes it easy to specify either of these
two. It reads an argument in the minibuffer; the string nil means to use the traditional ZetaLISP
readtable and any other string means to use the Common LISP readtable. The command proceeds
from there like M-X Set Readtable.

N-X Update Attribute List alters the attribute line in the current buffer according to the
current values of the buffer attributes as set previously with the other commands in this section.

ZMACS Reference Manual 191 {Justomization

31. Customization

This chapter talks about various topies relevant to adapting the behavior of ZMACS in minor

ways.

31.1 Minor Modes

Minor modes are options that you can use or not. For example. Auto Fill mode is a minor mode
in which Spaces break lines between words as you type. All the minor modes are independent of
each other and of the selected major mode. Most minor modes say in the mode line when they are
on; for example, ‘Fi11’ in the mode line means that Auto Fill mode is on.

Append Mode to the name of a minor mode to get the name of a command function that
turns the mode on or off. Thus, the command to enable or disable Auto Fill mode is called M-X
Auto Fill Mode. These commands are usually invoked with M-X, but you can connect them to
characters if you wish. With no argument, the function turns the mode on if it was off and off if it
was on. This is known as toggling. A positive argument always turns the mode on, and an explicit
zero argument or a negative argument always turns it off.

Some minor modes are turned on or off whenever you change to a new major mode. The variable
2wei:unsticky-minor-modes® contains a list of minor modes to clear, and zwei:*initial-minor-modes*
contains a list of modes to set. In both lists, a minor mode is represented by a symbol in package
ZWEI, such as zwei:electric-shift-lock-mode. By default, no minor modes are set automatically;
Electric Shift Lock mode, Electric Font Lock mode and Return Indents mode are cleared.

Any newly created buffer copies some minor modes from the buffer that was current at the time
of its creation. These are controlled by the variable zwei:*transfer-minor-modes®*, whose value is a
list of minor modes to copy. By default, Atom Word mode, Word Abbrev mode and Emacs mode
are transferred to new buffers. Note that it is futile to transfer a minor mode that is unsticky, as
it will most likely be cleared immediately when the new buffer’s major mode is set up.

Auto Fill mode allows you to enter filled text without breaking lines explicitly. ZMACS inserts
newlines as necessary to prevent lines from becoming too long. See section 24.6 [Filling], page 130.

Electric Shift Lock mode allows you to insert LISP code in upper case without having to use

the shift key or (CAPS LOCK) key. See <undefined> [LISP Case], page <undefined>. Electric Font
Lock mode automatically puts comments into font B and other text into font A. See section 23.2

ZMACS Reference Manual 192 Custornization

[Fonts|, page 120.

Atom Word mode causes the word-moving commands, in LISP mode, to move over LISP atoms
instead of words. If you like to use segmented atom names like FOOBAR-READ-IN-NEXT-INPUT-
SOURCE-TO-READ, then you might prefer not to use Atom Word mode, so that you can use M-F
to move over just part of the atom, or C-M-F to move over the whole atom. If you use short
names, you might like Atom Word mode. In any case, the s-expression motion commands can be
used to move over atoms.

Overwrite mode causes ordinary printing characters to replace existing text instead of shoving
it over. It is good for editing pictures. For example, if the point is in front of the ‘B’ in ‘FOOBAR’,
then in Overwrite mode typing a G changes it to ‘FOOGAR’, instead of making it ‘FOOGBAR’ as usual.
Also, in Overwrite mode, is changed to turn the previous character into a space instead
of deleting it.

Word Abbrev mode allows you to define abbreviations that automatically expand as you type
them. For example, ‘wam’ might expand to ‘word abbrev mode’. See chapter 28 {Abbrevs|,
page 175, for full information.

In Emacs mode, the characters (ALTMODE) and (CONTROL-C) are defined as prefix characters
meaning “Meta” and “Control-Meta-". This is for compatibility with Emacs on ITS.

Return Indents mode exchanges the meanings of (RETURN) and (LINEFEED). In this mode, -
LINEFEED) just inserts a newline and indents. See chapter 22 [Indentation], page 115. -

31.2 Variables

ZMACS uses many variables internally, and has others whose purpose is to be set by the user
for customization. ZMACS variables are actually LISP variables, symbols in the package ZWEL.
They can in fact be accessed or changed from LISP programs like any other variables in the LISP
Machine system. But the commands discussed in this section are specifically intended for operating
on the ZMACS variables intended for users to change. Most of those variables are documented in
this manual, and appear in the Variables Index.

One example of such a variable is zwei:*fill-column®, which specifies the position of the right
margin (in pixels from the left margin) to be used by the fill commands. The package prefix zwei:
is omitted most of the time when describing variables in this manual, since it applies to all of the
ZMACS variables.

----L-

----r-

ZMACS Reference Manual 193 Customization

N-X Describe Variable
Print the value and documentation of a ZMACS variable.

N-X Set Variable
Change the value of a variable.

N-X List Variables
Print a list of all ZMACS variables.

N-X Variable Apropos
Print a list of some ZMACS variables.

N-X Make Local Variable
Make a ZMACS variable have a local value in the current, buffer.

N-X Kill Local Variable
Make a ZMACS variable use its global value in the current buffer.

N-X List Local Variables
List the ZMACS variables local in the current buffer.

ZMACS variables, following the convention for LISP variables, contain all upper case letters
that can be written in LISP code either in upper or lower case, and that appear in lower case in
documentation (example: zwei:*fill-column®). The ZMACS commands for managing variables refer
to the name in a different syntactic form, obtained by removing the asterisks, converting hyphens
to spaces, and upcasing the first letter of each word (example: Fili Column).

To examine the value of a single variable, use M-X Describe Variable, which reads a variable
name using the minibuffer, with completion. It prints both the value and the documentation of
the variable.

M-X Describe Variable Fill Column

prints something like

Fill Column: 676 pixels (72 spaces in current font, plus O pixels)
Width in pixels used for filling text.

The easiest way for the beginner to set a named variable is to use M~X Set Variable. This
reads the variable name with the minibuffer, prints a description just like M-X Describe Variable,
and then reads a new value using the minibuffer. When the value is read, the minibuffer starts
out containing the text for the current value. This makes it easy to set the variable to a slightly
different value. If you want to specify a completely different value, use C=K to kill the text initially

ZMACS Reference Manual 194 Customization

supplied. For example,

N-X Set Variable Fill Column C-K 576

sets zwei:*fill-column® to 576.

ZMACS knows which type of value each of its advertised variables should have. M-X Set Variable
describes the expected type in the prompt when it asks for the new value, and it checks the value
for validity.

Some ZMACS variables have lists of characters as their values——actual LISP lists, like (#/space
#/tab). The commands in this section print their values as strings, and Set Variable expects

string-like syntax for the new value.

To print a complete list of all variables, do M-X List Variables. With a numeric argument,
it prints the documentation of each variable, as well as the name and the value. To print only
some variables, use M-X Variable Apropos, which reads a string argument and prints only vari-
ables whose names contain that string. (Extended search characters are allowed; see section 15.7
[Extended Search], page 68)

If you want to set a variable a particular way each time you use ZMACS, you can use the LISP
function setq in your LISPM.INIT file.

Any variable can be made local to a specific ZMACS buffer. This means that its value in that
buffer is independent of its value in other buffers. The variables that major modes typically set are
always local in each ZMACS buffer; this is why changing major modes in one buffer has no effect
on other buffers. Every other ZMACS variable has a global value which is in effect in all buffers
that have not made the variable local.

M-X Make Local Variable reads the name of a variable and makes it local to the current
buffer. Further changes in this buffer will not affect others, and further changes in the global value
will not affect this buffer.

M-X Kill Local Variable reads the name of a variable and makes it cease to be local to the
current buffer. The global value of the variable henceforth is in effect in this buffer.

N-X List Local Variables prints a list of all variables that have been made local to the

-—--—L-

-’----

ZMACS Reference Manual i95 Customization

current buffer using N-X Make Local Variable. This does not include the few variables that are
always local in every buffer.

31.3 Keyboard Macros

A keyboard macro is a command defined by the user to abbreviate a sequence of other com-
mands. For example, if you discover that you are about to type C-N C-D forty times, you can speed
your work by defining a keyboard macro to do ¢~-N C-D and calling it with a repeat count of forty.

Cc-Xx (Start defining a keyboard macro.

c-X) End the definition of a keyboard macro.
C-XE Execute the most recent keyboard macro.
C-U ¢-X (

Re-execute last keyboard maero, then add more commands to its definition.

c-X Q Ask for confirmation when the keyboard macro is executed.

N-X Name Last Kbd Macro
Give a permanent name (for the duration of the session) to the most recently defined
keyboard macro.

€ Call macro specified by name.

N-X Install Macro
Connect a sequence of command characters to a keyboard macro.

N-X Install Mouse Macro
Connect a sequence of command characters (usually a mouse click character) to a
keyboard macro, and arrange to move point to the mouse position before executing
the macro.

N-X View Kbd Macro

Print the sequence of command characters that make up the definition of a keyboard
macro.

Keyboard macros differ from ordinary ZMACS commands, in that they are written in the
ZMACS command language rather than in LISP. This makes it easier for the novice to write them,
and makes them more convenient as temporary hacks. However, the ZMACS command language

is not powerful enough as a programming language to be useful for writing dnything intelligent or
general. For such things, LISP must be used.

You define a keyboard macro while executing the commands that are the definition. Put
differently, as you are defining a keyboard macro, the definition is being executed for the first

ZMACS Reference Manual 196 Customization

time. This way, you can see what the effects of your commands are, so that you don’t have to
figure them out in your head. When you are finished, the keyboard macro is defined and also has
been, in effect, executed once. You can then do the whole thing over again by invoking the macro.

31.3.1 Basic Use

To start defining a keyboard macro, type the C-X (command (Start Kbd Macro). From then
on, your commands continue to be executed, but also become part of the definition of the macro.
‘Macro level: 1' appears in the mode line to remind you of what is going on. When you are
finished, the C-X) command (End Kbd Macro) terminates the definition (without becoming part
of it!). For example

C-X (M-F foo C-X)
defines a macro to move forward a word and then insert ‘foo’.

The macro thus defined can be invoked again with the C-X E command (Call Last Kbd Macro),
which may be given a repeat count as a numeric argument to execute the macro many times.
C-X) can also be given a repeat count as an argument, in which case it repeats the macro that
many times right after defining it, but defining the macro counts as the first repetition (since it
is executed as you define it). So, giving C-X) an argument of 4 executes the macro immediately
3 additional times. An argument of zero to C-X E or C-X) means repeat the macro indefinitely

(until it gets an error, or you type C-(ABORT).

If you wish to repeat an operation at regularly spaced places in the text, define a macro and
include as part of the macro the commands to move to the next place you want to use it. For
example, if you want to change each line, you should position point at the start of a line, and
define a macro to change that line and leave point at the start of the next line. Then repeating
the macro will operate on successive lines.

After you have terminated the definition of a keyboard macro, you can add to the end of its
definition by typing C-U €-X (. This is equivalent to plain C-X (followed by retyping the whole
definition so far. As a consequence it re-executes the macro as previously defined.

To examine the definition of a keyboard macro, use M-X View Kbd Macro. Supply as an ar-
gument the name previously given to the macro with M-X Name Last Kbd Macro, or supply an

empty argument (type just (RETURN)) to view the last macro defined.

ZMACS Reference Manual 197 {lustomization

31.3.2 Naming and Installing Keyboard Macros

If you wish to save a keyboard macro for longer than until you define the next one, you must
give it 2 name or install it on a command sequence. To give the macro a name, use M~-X Name
Last Kbd Macro. This reads a name as an argument using the minibuffer and defines that name
to execute the macro. Names for macros look like command function names-—words separated by
spaces—but are a separate name space; use of a name for a macro does not conflict with its use
as the name of a command function.

Another way to define and name a macro is to type M name (RETURN). This is like
C-X (except that the macro automatically gets the name name as soon as you finish defining it.

To call the macro named name, type C name (RETURN).

Installing a keyboard macro on a command sequence makes it most convenient to use. To do
this, use N-X Install Macro. You must answer several questions:

1. Give the name (assigned using M-X Name Last Kbd Macro) of the macro you want to
use, or supply an empty argument to use the last macro defined.

2. Type the character command (or sequence starting with C-X) that you wish to redefine.
Sequences starting with M-X are not handled.

3. Confirm the macro name and character sequence with Y. Take this opportunity to
check that the command sequence being defined is correct. If you redefine an important
character such as (RUBOUT) or M-X, further use of ZMACS can be very painful.

4. Specify how globally the character should be redefined: either W for just in this window
(this ZMACS frame), Z for every ZMACS frame, or A for all ZWEI-based editors
including ZMail and Converse.

For example,

M-X Install Macro (RETURN) (RETURN) Hyper-Q Y Z

connects the last macro defined to the character Hyper-Q in every ZMACS frame.

Install Macro actually works just like Define Character except that you specify a defined macro
name rather than a command function name,

ZMACS Reference Manual 198 Customization

Mouse clicks such as m or Meta-m can be defined to run macros using install Macro, but unless
the macro runs a command that looks at the mouse position (which is unlikely), its execution will
be based on the location of point at the time the mouse is clicked and not on the mouse cursor
location. However, the command M-X Install Mouse Macro can also be used. It works like M-X
Install Macro except that it arranges specially for point to move to the mouse position before
the macro definition is executed.

You can define a keyboard character with Install Mouse Macro, if you want to have a keyboard
command whose meaning depends on the position of the mouse.

31.3.3 Nesting Macro Definitions

You can define a macro within another macro; this is useful for making nested loops of com-
mands. The inner macro will be defined and then repeatedly used on each iteration of the outer
macro. To do this, just use the C-X (and C-X) commands within the definition of a macro. For

example,

C-X (Foo C-X (bar C-U 10 C-X) . C-U B C-X)

defines an inner macro repeated ten times, to insert ten copies of * bar’, for each time through the
outer macro. The result is to insert

Foo bar bar bar bar bar bar bar bar bar bar.
Foo bar bar bar bar bar bar bar bar bar bar.
Foo bar bar bar bar bar bar bar bar bar bar.
Foo bar bar bar bar bar bar bar bar bar bar.
Foo bar bar bar bar bar bar bar bar bar bar.

It is also possible to call a macro by name or by a character command in the definition of
another macro.
31.3.4 Executing Macros with Variations

Using C-X Q (Kbd Macro Query), you can get an effect similar to that of Query Replace, where
" the macro asks you each time around whether to make a change. When you are defining the
macro, type C-X Q at the point where you want the query to occur. During macro definition, the

ZMACS Reference Manual 199 {Customization

C-X Q does nothing, but when the macro is invoked the C-X Q reads a character from the terminal
to decide whether to continue.

The special answers are (SPACE), (RUBOUT), (CLEAR-SCREEN), and C-R. Any other character
terminates execution of the keyboard macro and is then read as a command. means to
continue. (RUBOUT) means to skip the remainder of this repetition of the macro, starting again
from the beginning in the next repetition. (CLEAR-SCREEN) clears the screen and asks you again
for a character to say what to do. C-R enters a recursive editing level, in which you can perform

- different editing each time through the macro. When you exit the recursive edit using (END), you

are asked again how to continue with the keyboard macro. If you type a (SPACE), the rest of the
macro definition is executed. It is up to you to leave point and the text in a state such that the
rest of the macro will do what you want.

31.4 Command Functions and Command Tables

This section deals with the comtabs which define the connections between character commands
and command functions, and say how you can customize these connections.

31.4.1 Command Functions

A command functions is a LISP function with a few extra pieces of information. Like every
LISP function, a command function has a LISP function name, a LISP symbol whose name usually
contains upper case letters and dashes, and starts (by convention) with the word com. Command
functions also have command names, as explained above. The command name is normally com-
puted from the LISP function name by removing the word com, changing dashes to spaces, and
capitalizing each word. Thus, the function name com-down-real-line gives the command name Down
Real Line.

Command functions are defined with a special macro zwei:defcom which computes a command
name from the function name and records it on the property list of the function name.

31.4.2 Changing Comtabs from ZMACS

The connections between characters and command functions are recorded in data structures
called comtabs or command tables. Each ZMACS frame has its own comtab. There is also one
comtab shared by all ZMACS frames; the individual frame’s comtabs all inherit from this one.

ZMACS Reference Manual 200 Customization

Yet another comtab is common to all ZWEI-based editors (see section 2.4 [ZWEI], page 13). The
ZMACS comtab inherits definitions from this one. (The whole truth is more complicated that this,
but this explains the effects you see from the commands described here.)

To alter the comtab of the current ZMACS frame, use M-X Define Character. You must
answer several questions:

1. Give the command name of the command function you want to use. Completion is
available,

2. Type the character command (or sequence starting with C-X) that you wish to redefine.
Sequences starting with M-X are not handled.

3. Confirm the macro name and character sequence with Y. Take this opportunity to
check that the command sequence being defined is correct. If you redefine an important
character such as (RUBOUT) or M-X, further use of ZMACS can be very painful.

4. Specify how globally the character should be redefined: either W for just in this window
(this ZMACS frame), Z for every ZMACS frame, or A for all ZWEI-based editors
including ZMail and Converse.

For example,

N-X Define Character Forward Word Super-F Y W
would define Super-F to move forward a word, like Meta-F, in this ZMACS frame only.

Mouse commands can also be defined this way. The (CONTROL), (META), (SUPER) and (HYPER)

keys can be used with the mouse click to increase the number of different mouse commands you

can have. For example,

M-X Define Character Forward Word Meta- {L} Y [2

defines clicking ﬂ with (CONTROL) held down to move the cursor forward a word, in all ZMACS
frames. Generally the mouse position is not used by such commands. For example, Forward Word
moves by words starting from the previous position of point; it does this when invoked by M-F, and
it does the same thing if invoked by Meta—ﬂ. The command functions used to define the standard
ZMACS mouse commands look at the mouse position because they are specially programmed to
do so.

ZMACS Reference Manual 203 Customizaiion

N-X Define Character can be used to redefine characters already defined. To make a character
undefined, use M-X Undefine Character.

An alternative interface is M=-X Install Command. It works like M-X Define Character, except

that it expects the name of a LISP function rather than a ZMACS command function name. For
example,

M-X Install Command zwei:com-forward-word Super-F

has the same effect as the previous example.

The command M-X Install Macro also modifies the comtab. See section 31.3 [Keyboard
Macros], page 195.

In LISP code, such as in LISPM.INIT files, the way to modlfy the comtab is to call zwei:set-
comtab. Refer to the self-documentation of that function.

31.4.3 Meta-X Availability

Not all command functions in ZMACS can be invoked with Meta-X at any time. The comtabs
that connect characters to command functions also specify exactly which command functions you

can call using Neta-X. There are three possible reasons why a command might not be made available
for M-X:

1. It is connected to a one or two character command. With a few exceptions, command
functions connected to characters are not normally made available through Meta-X.
This is to make command completion work better.

2. It is experimental, or we are not sure it is worth recommending

3. It is not meaningful to use it in the current context. For example, it may be one of the
commands designed for use in Dired, which assume that the current buffer is a Dired
buffer. In Dired, these commands are connected to characters. Outside of Dired, they
are meaningless and could even cause trouble if they were used.

Occasionally it is useful to invoke a command by name which is not on the Meta-X lists in the
current comtabs. This can be done using Control-Meta-X (Any Extended Command). This is used
just like Meta-X, except that it ignores the comtabs; it accepts any ZMACS command name.

ZMACS Reference Manual 202 Customization

31.5 The Syntax Table

All the ZMACS commands that parse words or balance parentheses are controlled by the syntax
tables. There are two syntax tables, one defining the word syntax of each character and one defining
the list syntax of each character.

By changing the word syntax, you can control whether a character is considered a word delimiter
or part of a word. By changing the list syntax, you can control which characters are parentheses,
which ones are parts of symbols, which ones are prefix operators, and which ones are just ignored
when parsing s-expressions.

Each buffer has its own pair of syntax tables, and changes in the syntax made in one buffer
(such as when a new major mode is selected) do not affect other buffers.

The syntax tables are not always stored as vectors of length 256, but you can understand their
functionality by thinking of them that way.

The word syntax of a character has only two possible alternatives: word-alphabetic and word-
delimiter. These are constants whose values are zero and one. The list syntax of a character has
several alternative values, all small integers. These symbols are constants whose values are the
numbers found in the syntax table:

list-alphabetic
This character is a symbol constituent.

list-delimiter
This character separates things but has no other significance.

list-slash This character quotes the following character.

list-double-quote
This character starts a grouping terminated by another of the same character.

list-single-quote
This character is part of whatever expression follows it.

list-close This character acts like a close parenthesis.
list-open This character acts like an open parenthesis.

list-comment
This character starts a comment.

list-colon This character ends a package prefix.

When a character has the syntax of an open parenthesis, that means that the character is taken

ZMACS Reference Manual 203 Customization

to be the beginning of a parenthesized grouping when expressions are being parsed. Thus, any
number of different expression-starting characters can be handled.

The syntax list-single-quote means that the character becomes part of whatever object follows
it, whether symbol or list, and can also be in the middle of a symbol, but does not constitute
anything by itself if surrounded by whitespace.

A character of syntax list-slash causes itself and the next character to be treated as alphabetic.

A string quote is one that matches in pairs. All characters inside a pair of string quotes are
treated as alphabetic except for the character quote, which retains its significance, and can be used
to force a string quote or character quote into a string.

A comment starter is taken to start a comment, which ends at the end of the line, suppressing
the normal syntax of all characters between. Only the list and s-expression commands use the
syntax table to find comments; the commands specifically for comments have other variables that
tell them where to find comments.

ZMACS Reference Manual

204

Customization

ZMACS Reference Manual 205 Correcting Mistakes and ZMACS Problems

32. Correcting Mistakes and ZMACS Problems

If you type an ZMACS command you did not intend, the results are often mysterious. This
chapter tells what you can do to cancel your mistake or recover from a mysterious situation.
ZMACS bugs and system crashes are also considered.

32.1 Quitting and Aborting

Cc-G Abort one stage. Cancels a partially typed command, or erases minibuffer text, or gets
out of the minibuffer, but never more than one of these at a time.

Full abort. Cancels any partially typed command, and gets out of the minibuffer if in
one. Also gets out of recursive edits.

C-(ABORT) Stop an executing command instantly. Does not exit minibuffers or recursive edits.

There are three ways of cancelling commands that are not finished executing: partial abort

with C-G, full abort with (ABORT), and instant stop with C-(ABORT).

Partial abort with C-G can cancel several kinds of things. Each use of C-G performs one action,
the first applicable one, from the following table.

partial command

Prefix characters or numeric arguments constitute partially-typed commands. €-G
cancels all of them.

incremental search, not successful

In an incremental search that has not finished searching for all the argument characters

supplied, or that has failed to find them, C-G cancels characters in the search argument,
that have not been found.

incremental search, successful
In an incremental search that has found all the specified search string, C-G cancels
the search: it moves point back to the starting point of the search and terminates
searching.
region If a region is active, C-G makes it inactive.
minibufler text
When in the minibuffer and the minibuffer is not empty, C-G deletes the text in it.
empty minibuffer
In an empty minibuffer, C-G exits the minibuffer and cancels the command that was
using the minibuffer to read an argument.

ZMACS Reference Manual 206 Correcting Mistakes and €MACS Problems

recursive edit
Within a recursive edit (such as inside Edit Tab Stops), C-G throws back to top level,
cancelling the command for which the recursive edit was being done.

C-G does only one of these things each time it is used: if you type C-U 6 C-X in a minibuffer
containing text and with an active region, it takes four C-G commands to get back to top level.
The first one cancels the argument and C-X; the second cancels the region, the third deletes the
text, and the fourth gets out of the minibuffer.

Full abort with (ABORT) is like several C-G commands. It performs all the applicable actions
from the above table, one by one, until top level is reached. Only one (ABORT) is needed to reach
top level.

C-(ABORT) for aborting a running program instantly is a standard LISP Machine feature, avail-
able also in ZMACS. It cancels an executing ZMACS command, but does not exit from any com-
mand level (minibuffer or recursive edit).

32.2 Dealing with ZMACS Trouble

This section describes various conditions that can cause ZMACS not to work, or cause it to
display strange things, and how you can correct them.

32.2.1 Subsystems and Recursive Editing Levels

Recursive editing levels are important and useful features of ZMACS, but they can seem like
malfunctions to the user who does not understand them.

If the mode line starts with a bracket ‘[’, you have entered a recursive editing level. To get

back to top level, type (ABORT).

32.2.2 Garbage on the Screen

If the data on the screen looks wrong, the first thing to do is see whether the text is really

wrong. Type (CLEAR-SCREEN), to redisplay the entire screen. If it appears correct after this, the
problem was entirely in the previous screen bit map.

'ZMACS Reference Manual 207 Correcting Mistakes and ZMACS Problems

32.2.3 Garbage in the Text

If shows that the text is wrong, try undoing the changes to it using C-Shift-U
until it gets back to a state you consider correct.

32.2.4 ZMACS Hung and Not Responding

If ZMACS does not respond to commands, type C-E. If the LISP Machine itself is
still running, this makes and selects a fresh ZMACS frame. Just continue editing with the new one
and ignore the old one. The new ZMACS frame will initially show a new empty buffer, but you
can switch to any of the old buffers in it.

gloss.tex

ZMACS Reference Manual 208 Correcting Mistakes and ZMACS Probiems '
gloss.tex '

ZMACS Reference Manual 209 lossary

Glossary

Abbrev An abbrev is a text string which expands into a different text string when present in
the buffer. For example, you might define a short word as an abbrev for a long phrase
that you want to insert frequently. See chapter 28 {Abbrevs|, page 175.

Aborting Aborting means canceling a partially typed command or getting out of a temporary
special situation (such as a minibuffer (q.v.) or recursive edit (q.v.)). The commands
and C-G are used for this. See section 32.1 [Quitting], page 205.

Accumulator
Some of the special Zmacs commands for editing assembler language code are de-
signed to operate on the accumulator field of an instruction. See section 29.5 [MIDAS],
page 183.

Activation of the Mark
When an active mark is set, an underlined region exists, and commands can operate
on the region. When the mark is not active, nothing is underlined, and no command
operates on the region; commands that are defined to require a region are not valid
then. See chapter 10 [Mark], page 39.

Activation in Ztop
Activation in Ztop means telling Ztop to allow the input already inserted to be read
by the program. If the I-blinker is visible, it means that Ztop input is now dormant
(q.v.), and will not be processed unless you activate. See chapter 27 [Ztop], page 171.

Address Some of the special Zmacs commands for editing assembler language code are designed
to operate on the address field of an instruction. See section 29.5 [MIDAS], page 183.

(ALTMODE) is a character, used to end incremental searches and to request completion
(q.v.) in the minibuffer (q.v.).

Atom Word mode
Atom Word mode is a minor mode. When it is enabled, the Zmacs commands for
operating on words treat a whole Lisp atom as a word. See section 31.1 [Minor Modes],
page 191.

Attribute Line
The attribute line in a file or buffer is the first nonblank line, provided that it contains
the string ‘-#-'. This line specifies the attributes (q.v.) of the file or buffer. See
chapter 30 [Attributes], page 187.

Attributes
Attributes are properties belonging to the contents of a file or buffer, saying how to
edit, load, compile or print the text. For example, the Fonts attribute says which fonts

to use to display the text in Zmacs or to print it on a hardcopy device. See chapter 30
[Attributes], page 187.

gloss.tex

ZMACS Reference Manual 210G Glossary

Auto Fill mode
Auto Fill mode is a minor mode in which text that you insert is automatically broken
into lines of fixed width. See section 24.6 [Filling|, page 130.

Balance Parentheses
EMACS can balance parentheses manually or automatically. Manual balancing is done
by the commands to move over balanced expressions (see section 25.2 [Lists|, page 136).
Automatic balancing is done by blinking the parenthesis that matches one next to point,
(see section 25.5 [Matching Parens|, page 143).

Blank Lines
Blank lines are lines that contain only whitespace. Zmacs has several commands for
operating on the blank lines in the buffer.

Buffer The buffer is the basic editing unit; one buffer corresponds to one piece of text being
edited. You can have several buffers, but at any time you are editing only one, the
‘selected’ buffer, though two can be visible when you are using two windows. See
chapter 19 {Buffers], page 99.

Buffer Group
A buffer group is an ordered collection of buffers which is specified to Zmacs so that
you can search or replace through all of them with a single command. See section 19.6
[Buffer Groups], page 104.

Buffer Selection History
Each Zmacs window has a buffer selection history which records how recently each
Zmacs buffer has been selected in that window. Each window’s buffer selection history
contains all the Zmacs buffers there are, but the ordering of the buffers differs from
window to window. See chapter 19 [Buffers|, page 99.

C- ‘C’ in the name of a character is an abbreviation for Control. See chapter 2 [Characters!,
page 11.
C-M- ‘C-M-’ in the name of a character is an abbreviation for Control-Meta. See chapter 2

[Characters], page 11.

Case Conversion
Case conversion means changing text from upper case to lower case or vice versa. See
section 23.1 [Case|, page 119, for the general purpose commands for case conversion.
See section 25.7 [Lisp Case], page 146, for commands for case conversion of Lisp code
in particular.

Changed Sections
A section is changed if its text has been changed since some previous time. Various
Zmacs commands operate on only the changed sections of one or more buffers. See
section 26.1 [Sectionization|, page 153.

Characters
Most Zmacs commands are single characters that take effect immediately. See chap-

gloss.tex

ZMACS Reference Manual 211 Glossary

ter 2 [Characters), page 11.

Command

A command is a character or sequence of characters which, when typed by the user,
fully specifies one action to be performed by EMACS. For example, X and Control-
F and Meta-X Text Mode are commands. See section 2.3 [Commands],
page 12. Sometimes the first character of a multi-character command is also con-
sidered a command in its own right: M-X Text Mode is a command (an
extended command), and M-X is also a command (a command to read a function name
and invoke the function). See chapter 8 [Extended Commands], page 35.

Command Function
A command function is a Lisp function specially arranged to be able to serve as a
Zmacs command definition. When you type a character command in Zmacs, it is
looked up in the comtab (q.v.) to find the command function it is connected to; then
that command function is executed to produce the editing effect of the character you
typed. See section 2.3 [Comnmands]|, page 12.

Command Name
A command name is the name assigned by Zmacs to a command function. In an
extended command, you invoke a command function by typing the command name.
See section 2.3 [Commands|, page 12.

Command Table
See “Comtab”.

Comments
A comment is text in a program which is intended only for humans reading the pro-
gram, and is marked specially so that it will be ignored when the program is loaded
or compiled. EMACS offers special commands for creating and killing comments. See
section 25.6 [Comments|, page 143.

Compilation
When you edit a Lisp program with Zmacs, you can compile the changed code from
the Zmacs buffer. See section 26.3 [Compile Text], page 157. You can also compile
from source files with Zmacs (see section 26.2 [Compile File|, page 157).

Completion
Completion is what EMACS does when it automatically fills out an abbreviation for
a name into the entire name. Completion is done for minibuffer (q.v.) arguments,
when the set of possible valid inputs is known; for example, on extended command
names, buffer names, and file names. Completion occurs when (ALTMODE), (SPACE) or
is typed. See section 7.1 [Completion], page 30.

Comtab The comtab is the data structure that records the connections between command
characters and the command functions that they run. For example, the comtab con-
nects the character C-N to the command function Down Real Line. See section 31.4

gloss.tex

ZMACS Reference Manual 212 Glossary

[Comtabs|, page 199.

Connected
A one- or two-character command in EMACS works by calling a command function
(q.v.) which it is connected to. Customization often involves connecting a character to
a different command function. The connections are recorded in the comtab (q.v.). See
section 2.3 {Commands], page 12.

Continuation Line
When a line of text is longer than the width of the screen, it is takes up more than one
screen line when displayed. We say that the text line is continued, and all screen lines
used for it after the first are called continuation lines. See chapter 4 [Basic Editing],
page 19.

Control Control is the name of a modifier bit which a command character may have. It is
present in a character if the chara: ter is typed with the key held down.
Such characters are given names that start with Control-. For example, Control-A is
typed by holding down (CONTROL) and typing A. See chapter 2 [Characters], page 11.

Control-Character
A Control character is a character which includes the Control bit.

Control-X Command
A Control-X command is a two-character command whose first character is the prefix
character Control-X. See section 2.2 [Multicharacter Commands], page 11.

Current Buffer
The current buffer in Zmacs is the Zmacs buffer on which most editing commands
operate. You can select any Zmacs buffer as the current one. See chapter 19 [Buffers],
page 99.

Current Font
When editing a multi-font buffer, the current font is the one in which newly inserted
text will go.

Current Line
The line point is on.

Current Paragraph
The paragraph that point is in. If point is between paragraphs, the current paragraph
is the one that follows point. See section 24.4 [Paragraphs]|, page 128.

Current Defun
The defun that point is in. If point is between defuns, the current defun is the one
that follows point. See section 25.3 [Defuns|, page 138.

Cursor The cursor is the rectangle on the screen which indicates the position called point (q.v.)
at which insertion and deletion takes place. The cursor is part of the window system,
which Zmacs uses to do its display. Often people speak of “the cursor” when, strictly
speaking, they mean “point”. See chapter 4 [Basic Editing], page 19.

gloss.tex

ZMACS Reference Manual 213 Glossary

Customization
Customization is making minor chasges in the way EMACS works. 1t is often done by
setting variables (see section 31.2 [Variables], page 192) or by reconnecting commands
(see section 31.4 [Comtabs], page 199).

Default Argument
The default for an argument is the value that will be assumed if you do not specify
one. When the minibuffer is used to read an argument, the default argument is used
if you just type (RETURN). See chapter 7 [Minibuffer], page 29.

Default File Name
When a file name arguments is specified, any file name components that you do not
specify are taken from the corresponding components of the default file name. In
Zmacs, the default file name is normally the name of the file visited in the current
buffer. See the chapter on Pathname s in the Lisp Machine Manual for more information
on file name defaulting.

Defun A defun is a list at the top level of list structure in a Lisp program. It is so named
because most such lists are calls to the Lisp function defun. See section 25.3 [Defuns],
page 138.

Deletion Deletion means erasing text without saving it. EMACS deletes text only when it is
expected not to be worth saving (all whitespace, or only one character). The alternative
is killing (q.v.). See section 11.1 [Killing], page 45.

Deletion of Files
Deletion of a file means erasing it from the file system. See section 17.6 [Deleting Files],
page 82.

Directory
Files in a file server are grouped into file directories. See section 17.5 [Directories|,
page 81.

Dired Dired is the Zmacs facility that di-plays the contents of a file directory and allows
you to “edit the directory”, performing operations on the files in the directory. See
chapter 18 [Dired], page 91. .

Dormant When Ztop input is dormant, the program is not allowed to read it. This happens if
you move point away from the end of the Ztop buffer. The program can read input
again if you activate input (q.v.). See chapter 27 [Ztop|, page 171.

Echo Area
The echo area is the bottom three lines of the screen, used for echoing the arguments to
commands, for asking questions, and printing brief messages (including error messages).
See section 1.3 [Echo Area], page 6.

Echoing Echoing is acknowledging the receipt of commands by displaying them (in the echo
area). EMACS never echoes single-character commands; longer commands echo only
if you pause while typing them. :

gloss.tex

ZMACS Reference Manual 214 Glossary

Electric Shift Lock Mode
Electric Shift Lock mode is a minor mode in which letters in Lisp code are automat-
ically converted to upper case when not quoted and not in strings or comments. See
section 25.7 [Lisp Case|, page 146.

Electric Font Lock Mode
Electric Font Lock mode is a minor mode in which Lisp comments are automatically
put into font B, and the actual Lisp program into font A. See section 23.2 [Fonts],
page 120.

Error Messages
Error messages are single lines of output printed by Zmacs when the user asks for
something impossible to do (such as, killing text forward when point is at the end of
the buffer). They appear in the echo area, accompanied by a beep.

Exchanging
See “transposition”.

Expunging
Expunging is an operation performed on file directories. On some file servers, deleted
(q.v.) files are not really erased until the directory (q.v.) containing them is expunged.
See section 17.6 [Deleting Files|, page 82.

Extended Command
An extended command is a command which consists of the character Meta-X followed
by the command name (really, the name of a command function (q.v.)). An extended
command requires several characters of input, but its name is made up of English
words, so it is easy to remember. See chapter 8 [Extended Commands], page 35.

Extended Search
Extended search characters let you specify a pattern rather than an exact string as the
target to search for in certain Zmacs commands. See section 15.7 [Extended Search],
page 68.

File Attributes
See “Attributes”.

File Directory
See “Directory”.

File Properties
File properties are information attached to a file by the file server, aside from the text of
the file. Different file servers implement different properties; typically they include the
creation date and the name of the file’s author. File properties in general are discussed
in the section “Accessing Directories” in the Lisp Machine Manual. See section 18.4
[Dired Props|, page 93, for Zmacs commands for working with file properties.

Fill Prefix
The fill prefix is a string that should be expected at the beginning of each line when

gloss.tex

ZMACS Reference Manual 215 Glossary

filling is done. It is not regarded as part of the text to be filled. See section 24.6
[Filling], page 130.

Filling Filling text means moving text from line to line so that all the lines are approximately
the same length. See section 24.6 [Iilling], page 130.

Fonts A font is a set of images that can be used to display characters of text. A single Zmacs
buffer can use several fonts to display the characters in it. See section 23.2 [Fonts],
page 120.

Font Attribute
The Font attribute of a buffer or file says which fonts to use for displaying that buffer
or file. See chapter 30 [Attributes|, page 187. See also “attributes”.

Global The global value of a variable (q.v.) applies to all buffers except those which have their
own local values of the variable. See section 31.2 [Variables], page 192.

Global Substitution
Global substitution means replacing one string by another string through a large
amount of text. See section 15.5 [Replace], page 65.

Graphic Character
Graphic characters are those assigned pictorial images rather than just names. These
include letters, digits, punctuation, and spaces; they do not include or
(RUBOUT). In Zmacs, typing graphic characters inserts those characters. See chap-
ter 4 [Basic Editing], page 19.

Grinding Grinding means reformatting a program so that it is indented according to its structure.
See chapter 22 [Indentation], page 115.

H- H- in the name of a character is an abbreviation for (HYPER), one of the modifier keys
that can accompany any character. See chapter 2 [Characters], page 11.

Hardcopy
Hardcopy means printed output. Zmacs has commands for making printed listings of
files or of text in Zmacs buffers. See section 29.3 [Hardcopy|, page 180.

You can type the character at any time to ask what options you have, or to
ask what any command does. See chapter 9 [Help), page 37.

Hyper Hyper is the name of a modifier bit which a command character may have. It is
present in a character if the character is typed with the key held down. Such
characters are given names that start with Hyper~. For example, Hyper-Q is typed by
holding down and typing Q. See chapter 2 [Characters]|, page 11.

Indentation
Indentation means blank space at the beginning of a line. Lisp and other programming
languages have conventions for using indentation to illuminate the structure of the
program, and Zmacs has special features to help you set up the correct indentation.
See chapter 22 [Indentation], page 115.

gloss.tex

ZMACS Reference Manual “i6 Glossary

Insertion Insertion means copying text into the buffer, either from the keyboard or from some
other place in the Lisp Machine.

Justification
Justification means adding extra sp:ces to lines of text to make them come exactly to
a specified width. See section 24.6 |i-illing|, page 130.

Keyboard Macros
Keyboard macros are a way of defining new Zmacs commands from sequences of exist-
ing ones, with no need to write a L.i:p program. See section 31.3 [Keyboard Macros|,
page 195.

Kill History
The kill history is where all text you have killed is saved. You can reinsert any of the
killed text for the rest of the session; this is called yanking (q.v.). See section 11.2
[Yanking], page 47.

Killing Killing means erasing text and saving it on the kill history so it can be yanked (q.v.)
later. Most EMACS commands to crase text do killing, as opposed to deletion (q.v.).
See section 11.1 [Killing], page 45.

Label A label is a line of text inside the top or borrom edge of a window saying what the
window is for. Zmaes windows have labels when there is more than one ina Zmacs
frame. See chapter 20 {Windows|, page 109.

List A list is, approximately, a text string beginning with an open parenthesis and ending
with the matching close parenthesis. Zmacs has special commands for many operations
on lists, because they are useful in editing Lisp code. See section 25.2 [Lists], page 136.

Local Variable
A local value of a variable (q.v.) applies to only one buffer. See section 31.2 [Variables],

page 192.

M- M- in the name of a character is an abbreviation for (META), one of the modifier keys
that can accompany any character. See chapter 2 [Characters], page 11.

M-X N-X is the character which begins an extended command (q.v.). Extended commands

have come to be known also as “M-X commands”, and an individual extended command
is often referred to as “M-X such-and such”. See chapter 8 [M-X], page 35.

Mail Mail means messages sent from one user to another through the computer system.
Zmacs has commands for composing and sending mail, but to read mail you must use
ZMail. See section 29.2 [Mail], page 179.

Major Mode S
The major modes are a mutually cxclusive set of options each of which configures
EMACS for editing a certain sort of text. Ideally, each programming language has its
own major mode. See chapter 21 [Major Modes], page 113.

Mark The mark points to a position in the text. It specifies one end of the region (q.v.),
point being the other end. Many commands operate on all the text from point to the

gloss.tex

--—--r-

ZMACS Reference Manual 217 Glossary

mark. See chapter 10 [Mark]|, page 39.

Message See “mail”.

Meta Meta is the name of a modifier bit which a command character may have. It is present
in a character if the character is typed with the key held down. Such characters

are given names that start with Meta-. For example, Meta-< is typed by holding down

and typing < (which itself is done by holding down and typing ,). See
chapter 2 [Characters], page 11.

Meta Character
A Meta character is one whose character code includes the Meta bit.

Microcompilation
Microcompilation is compiling Lisp code into Lisp Machine microcode. It is mentioned
here because Zmacs has a command to microcompile a Lisp function. See section 26.3
[Compile Text), page 157.

Minibuffer
The minibuffer is the window that appears when necessary inside the echo area (q.v.),
used for reading arguments to commands. See chapter 7 [Minibuffer], page 29.

Minor mode
A minor mode is an optional feature of EMACS which can be switched on or off
independently of all other features. Each minor mode has an extended command to
turn it on or off. See section 31.1 [Minor Modes|, page 191.

Mode line
The mode line is the line just above the echo area (q.v.), used for status information.
See section 1.4 [Mode Line], page 7.

Modified Buffer
A buffer is modified if its text has been changed since the last time the buffer was saved
(or when it was created, if it has never been saved).

Moving Text
Moving text means erasing it from one place and inserting it in another. This is done
by killing (q.v.) and then yanking (q.v.).

Named Mark
A named mark is a register (q.v.) in its role of recording a location in text so that you
can move point to that location. See section 10.4 [Named Marks|, page 42.

Newline characters (q.v.) terminating lines of text are called newlines. See chapter 2
[Characters|, page 11.

Numeric Argument
A numeric argument is a number, specified before a command, to change the effect of
the command. Often the numeric argument serves as a repeat count. See chapter 6
[Arguments], page 27.

gloss.tex

ZMACS Reference Manual 218 Glossary

Overwrite Mode
Overwrite mode is a minor mode. When it is enabled, ordinary text characters replace
the existing text after point rather than pushing it to the right. ‘

Page A page is a unit of text, delimited by characters coming at the beginning of
a line. Some Zmacs commands are provided for moving over and operating on pages.
See section 24.5 [Pages|, page 129.

Paragraphs
Paragraphs are the medium-size unit of English texi. There are special Zmacs com-
mands for moving over and operating on paragraphs. See section 24.4 [Paragraphs],
page 128.

Parsing We say that EMACS parses words or expressions in the text being edited. Really, all
it knows how to do is find the other end of a word or expression. See section 31.5
[Syntax], page 201.

Patches Patches are files containing corrections to previous compiled versions of large Lisp
programs, made to be loaded in on top of the old version in order to bring it up
to date. The section “The Patch Facility” in the Lisp Machine Manual discusses
patches thoroughly. See section 26.8 [Patches], page 165, for information on the Zmacs
commands used to create patch files.

Point Point is the place in the buffer at which insertion and deletion occur. Point is consid-
ered to be between two characters, not at one character. The terminal’s cursor (q.v.)
indicates the location of point. See chapter 4 [Basicl, page 19.

Point Pdl
The point pdl is used to hold severai recent previous locations of point, just in case
you want to move back to them. See section 10.3 [Point Pdlj, page 41.

Possibilities List
A possibilities list is text in a Zmacs buffer that records several Lisp functions or buffer
sections that a previous Zmacs command picked out for you to look at at your leisure.
See section 26.7 [Possibilities Lists], page 164.

Prefix Character
A prefix character is a command whose sole function is t¢ introduce a set of multi-
character commands. Control-X (q.v.) is a prefix character. See section 2.2 [Multi-
character Commands], page 11.

Prompt A prompt is text printed to ask the user for input. Printing a prompt is called prompt-
ing. Zmacs prompts always appear in the echo area (q.v.). One kind of prompting
happens when the minibuffer is used to read an argument {see chapter 7 [Minibuffer|,
page 29); the echoing which happens when you pause in the middle of typing a multi-
character command is also a kind of prompting (see section 1.3 [Echo Areal, page 6).

Quitting Quitting is synonymous with aborting (q.v.), in Zmacs terminology. See section 32.1
[Quitting], page 205.

gloss.tex

----L-

ZMACS Reference Manual 19 Glossary

Quoting Quoting means depriving a character of its usual special significance. It is usually done
with Control-Q. What constitutes special significance depends on the context and on
convention. For example, an “ordinary” character as an EMACS command inserts
itself; so in this context, a special «haracter is any character that does not normally
insert itself (such as (RUBOUT), for -xample), and quoting it makes it insert itself as
if it were not special. Not all contcxts allow quoting. See chapter 4 [Basic Editing],
page 19.

Read-only Buffer
A read-only buffer is one whose text you are not allowed to change. Normally Zmacs
makes buffers read-only when they contain text which has a special significance to
Zmacs; for example, Dired buffers. ee chapter 19 [Buffers], page 99.

Reaping Reaping means deleting (q.v.) old versions of a file to recover disk space. See sec-
tion 17.6 [Deleting Files], page 82.

Recursive Editing Level
A recursive editing level is a state in which part of the execution of a command involves
asking the user to edit some text. This text may or may not be the same as the text
to which the command was applied. The mode line indicates recursive editing levels
with square brackets (‘[’ and ‘]'). See section 29.1 [Recursive Edit], page 179.

Redisplay
Redisplay is the process of correcting the image on the sereen to correspond to changes
that have been made in the text being edited. See chapter ! [Screen], page 5.

Region The region is the text between point (q.v.) and the mark (q.v.), at times when the
mark is active. At such times, the cxtent of the region is indicated on the screen by
underlining. Many commands operate on the text of the region. See chapter 10 [Mark],
page 39.

Registers Registers are named slots in which text or buffer positions can be saved for later
use. See section 10.4 [Named Marks|, page 42, for saving positions; See section 11.3.2
[Registers], page 51, for saving text in registers.

Replacement
See “global substitution”.

is the character that separates lines of text. It is also a Zmacs command to
insert a into the text. It is also used to terminate most arguments read in
the minibuffer (q.v.). See chapter 2 [Characters|, page 11.

(RUBOUT RUBOUT) is a character used as a command to delete one character of text. See
chapter 4 [Basic Editing], page 19.

S- 8- in the name of a character is an abbreviation for (SUPER), one of the modifier keys
that can accompany any character. See chapter 2 [Characters|, page 11.

S-expression ,
An s-expression is the basie syntactic unit of Lisp in its textual form: either a list, or

gloss.tex

ZMACS Reference Manual 220 Glossary

Lisp atom. Many Zmacs commands operate on s-expressions. See section 25.2 |Lists],
page 136.

Saving Saving a buffer means copying its text into the file that was visited (q.v.) in that
buffer. This is the way text in files actually gets changed by your Zmacs editing. See
section 17.3 [Saving], page 79.

Scrolling Scrolling means shifting the text in the Zmacs window so as to see a different part of
the buffer. See chapter 14 [Display!, page 59.

Searching
Searching means moving point to the next occurrence of a specified string. See chap-
ter 15 [Search|, page 61. '

Section A section is a portion of a Zmacs buffer used for one Lisp expression (or similar things
in other languages). See section 26.1 {Sectionization|, page 153. ‘

Sectionization
Sectionization is the process or technique of dividing a Zmacs buffer into sections (q.v.).

Selecting Selecting a buffer means making it the current (q.v.) buffer. See chapter 19 [Buffers|,
page 99.

Self-documentation
Self-documentation is the feature of EMACS which can tell you what any command
does, or give you a list of all commands related to a topic you specify. You ask for
self-documentation with the character. See chapter 9 [Help|, page 37.

Sentences
Zmacs has commands for moving by or killing by sentences. See section 24.3 [Sen-
tences|, page 127,

Simultaneous Editing
Simultaneous editing means two users modifying the same file at once. Simultaneous
editing if not detected can cause one user to lose his work. Zmacs detects all cases
of simultaneous editing and warns the user to investigate them. See section 17.3.1
[Simultaneous Editing], page 80.

Sorting Sorting, in connection with Zmacs, means alphabetization. See section 29.4 [Sorting],
page 181. '

Source Compare
Source Compare is the facility in Zmacs that compares two files or buffers, either telling
you what parts of them differ or merging the two. See section 17.7 [Source Compare|,
page 84.

String Substitution
See “global substitution”.

Super Super is the name of a modifier bit which a command character may have. It is
present in a character if the character is typed with the key held down. Such

gloss.tex

ZMACS Reference Manual 221 Giossary

characters are given names that start with Super-. For example, Super-Q is typed by
holding down and typing Q. See chapter 2 [Characters], page 11. '
Syntax Table
The syntax table tells EMACS which characters are part of a word, which characters
balance each other like parentheses, etc. See section 31.5 [Syntax], page 201.
Tag Table
Obsolete name for a buffer group (q.v.).

Text Two meanings (see chapter 24 [Text], page 125):

Data consisting of a sequence of characters. The contents of a Zmacs buffer
are always text in this sense.

Data consisting of written human language, as opposed to programs, or
following the stylistic conventions of human language.

Top Level
Top level is the normal state of EMACS, in which you are editing the text of the file
you have visited. You are at top level whenever you are not in a recursive editing level
(q.v.) or the minibuffer (q.v.), and not in the middle of a command. You can get back
to top level by aborting (q.v.).

Transposition -

Transposing two units of text means putting each one into the place formerly occupied
by the other. There are Zmacs commands to transpose two adjacent characters, words,
s-expressions (q.v.) or lines (see section 16.2 [Transposition], page 72).

Typeout Typeout is a message, printed by an EMACS command, which overwrites the area
normally used for displaying the text being edited, but which does not become part of
the text. Typeout is used for messages which might be too long to fit in the echo area
(q.v.). See section 1.2 [Typeout|, page 5.

Undoing Undoing means making your previous editing go in reverse, bringing back the text that
existed earlier in the editing session. See chapter 12 [Undoj], page 53.

Variable A Zmacs variable is a Lisp variable defined as part of Zmacs so that, by changing
the value of the variable, you can adapt the behavior of Zmacs to your needs. All
the Zmacs variables are listed in the variables index in this manual. See section 31.2
[Variables], page 192, for information on setting variables.

Visiting Visiting a file means loading its contents into a buffer (q.v.) where they can be edited.
See section 17.2 [Visiting], page 76.

Whitespace
Whitespace is any run of consecutive formatting characters (space, tab, newline, and
backspace). The variable *whitespace-chars® tells Zmacs which characters to regard
as whitespace.

Window Zmacs uses windows to do its display on the screen. In particular, each Zmacs frame
' (q.v.) contains one or more Zmacs windows, each of which can display one buffer at

gloss.tex

ZMACS Reference Manual 222 Glossary

any time. See chapter 1 [Screen], page 5, for basic information on how Zmacs uses
the screen. See chapter 20 [Windows|, page 109, for commands to control the use of
windows within the Zmacs frame.

Word Abbrev
Synonymous with “abbrev”.

Word Search .
Word search is searching for a sequence of words, considering the whitespace between
them as insignificant. See section 15.3 [Word Search], page 64.

Yanking Yanking means reinserting text previously killed. It can be used to undo a mistaken
kill, or for copying or moving text. See section 11.2 [Yanking], page 47.

Zmacs Zmacs is the program used for editing files on the Lisp Machine.

Zmacs Window ; :

A Zmacs window is a window that displays the current contents of one Zmacs buffer.

Most often a Zmacs frame contains one Zmacs window, but it can contain two, or
possibly more. See chapter 20 [Windows|, page 109.

Zmacs Frame
The Zmacs frame is a window, containing several panes, in which Zmacs does all of its
screen display. The Zmacs window, the mode line, and the echo area are all panes of
the Zmacs frame. See chapter 1 [Screen], page 5.

Ztop Ztop is a Zmacs facility that allows input and output for the Lisp listen loop and other
stream-oriented programs to be done through a Zmacs buffer. This allows editing of

both input and output, and keeps a_permanent typescript of them, which you can save
in a file. See chapter 27 |Ztop), page 171.

ZWEI ZWEI is the Lisp Machine editing system. Programs in this system include Zmacs (for
editing files), ZMail (for editing incoming mail), and Converse (for editing interactive

messages to and from other logged-in users).

ZMACS Reference Manual 223 Command Function Index

I Command Function Index
A CClemr e e 45
l Add Global Word