

o

’ SYSTEM_ MAP for Releasec 2.0
** indicates location of tab divider in binder

These manuals are part of your Lambda documentation, but are not part of & binder.

Iuiro to Lambda
ZetallSP-Plus Commands

Here are the binders and their contents:

BASICS:
**LM] Lambda Technical Summary
**L.M} Lambda Ficld Service Manual
**NuMachine Installation and User Manual

ﬁ) RELEASE NOTES: .

**Release 2.0 Qverview & Notes
**Release 2.0 Inst & Conversion
**I2diting Lambda Site Files
**Tape Software & Streams
**Common LISP Notes

%’LISP 1: The LISP Machine Manual, Part 1

**Introduction
Primitive Objeet. Types
Evaluation
Flow of Control
Manipulating List Structure
**Svmbols
Numbers
Arravs
Strings
**Functions
Closures
Stack Groups
Locatives
Subprimitives
Areas
**The Compiler
Macros
" The LOOP lteration Macro
**Defstruct

% LIS 2: The LISP Machine Manual, Part 2
**Objects, Message Passing, and Flavors
**The 170 System
Naming of Files
The Chaosnet
**ackages
Maintaining Large Systems
Processes
Errors and Debugging
**1low to Read Assembly Language
Querying the User
Initializations
Dates and Times
Miscellancous Useful Functions
**Indices

LMI
LISP 3:
**Introduction to the Window System
**The Window System Manual
FEINIALL Overview
TUNALL

LMI

. @E-) EDITORS:

©N } TTANMACS Introductory Manual
**ZMACS Reference Manual
**NMince

% UNIN I:
**NuMachine Release and Update Information

**NuMachine Operating System
**¥UNIX Programmer’s Manual, V. 1: Section 1
x4 Sections 2-8

M :
UNIX 2:UNIX Programmer’s Manual, Vol. 2
**The UNIX Time-sharing System
UNIX for Beginners - Second Edition

A Tutorial Introduction to the UNIX Text Editor

Advanced Editing On Unix

An Introduction to the UNIX Shell
Typing Documents on the UNIX System

A Guide to Preparing Documents with -ms
Tbl- A Program to Format Tables
NRO¥FF/TROFF User's Manual

A TROFF Tutorial

**The C Programming Language Reference Manual

Recent Changes to C
Lint, A C Program Checker
Make- A Program for Maintaining
Computer Programs
**UNIX Programming-Sccond Edition
A Tutorial Introduction to ADB
Yace: Yet Another Compiler-Compiler
Lex- A Lexical Analyzer Generator
**A Portable Fortran 77 Compiler
RATFOR- A Preprocessor for a
Rational Fortran
The M4 Macro Processor
SED- A Non-Interactive Text Editor
Awk- A Pattern Scanning and
Processing Language (2d. ed.)
DC- An Interactive Desk Caleulator
BC-An Arbitrary Precision
Desk-Calculator Language
An Introduction to Display Editing
with Vi
**The UNIX 1/O System
On the Security of UNIX
Password Sceurity: A Case listory

Mi
HARDWARE 1:

**NuMachine Technieal Summary
**<PU Monitor User's Manual
S General Deseription
**Mouse Manual
**1.M! Printer Softwarc Manual
**VR-Series Monitor
.29 Monitor

@[E" JIARDWARE 2:
**Tape Drive

**Disk Drive”
**Kermit

LMI

@3’ OPTIONS.
Trvaries according o options purchased)
Prolog
Interlisp
Fortran Installation Mema
Seribhic
Fihernet Muliibye

Res Color System

e h
TR

LISP Machine Manual, Part 2
Sixth Edition, System Version 99
June 1984

Richard Stallman
Danie! Weinreb
David Moon

Distributed by LMI 6033 W. Century Blvd. Los Angeles CA 90045
USA

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory’s artificial intelligence
research is provided in part by the Advance Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research Contract number N00014-80-C-0505.

Fisp Machind Manual v , 401 + Objects, Message Passing, and [lavors

Zl Objccts Message Passmg, and Flavors

The object- uncmcd programming stylc uscd in the Smalltalk and Actor familics of languagcs
is available in Zetalisp and uscd by the Lisp Machine software system. lts purpose is to perform
- generic operations on objects. Part of its implementation is simply a convention ‘in procedure-
calling style; -part is a powerful language feature, called ¥lavors, for defining abstract objects.
'T'his chapter attempts to cxplain what programming with objects and with message passing mcans,
the various means of implementing these in /cmhsp and when you should use them. It assumes
no prior knowledge of any other languages. -

21.1 Objects

When writing a program, it is often convenient to model what the program does in terms of
objects, conceptual entitics: that can be likened to real-world things.. Choosing what objects to
“‘nrovide in a program is very important to the proper organization of the program. In.an object-
oriented design, specifying what objects exist is the first task in designing the system. In a text
cditor, the objects might be “picces of text”, “pointers into text”, and “display windows™. In an
clectrical design system, the objects might be “resistors”, “capacitors™, “transistors”, “wires”, and
“display windows”. After specifying what objects there are, the next task of the design is to
figure out -what operations can be performed on cach object. In the text cditor example,
operations on “pieces of text” might include inserting text and deleting text; operations on
“pointers into text” might include moving forward and backward; and operations on “display
windows™ might mcludc rcdlsplaymg the window and changing which “picce of text” the window
is -associated with.

In this model, we think of the program as being built around a sct of objects, cach of which
has a set of operations that can be performed on it. More rigorously, the program defines several
types of object (the cditor above has three types), and it can creatc many instances of each type
(that is, there can be many pieces of text, many pointers into text, and many windows). The
program defines a set of types of object and, for each type, a sct of operations that can be
~ performed on any object of the type. ‘ '

The new types may exist only in the programmer’s mind. For example, it is possible to think
of a disembodied property list as an abstract data type on which certain operations such as get
and putprop are defined. This type can be instantiated with (cons nil nil) (that is, by evaluating
this form you can create a new disembodied property list); the operations are invoked through
functions defined just for that purpose. The fact that disembodied property lists are really
implemented as lists, indistinguishable from any other lists, does not invalidate this point of view.
However, such conccptual data types cannot be distinguished automatically by the systcm one

cannot ask “is this objcct a disembodied property list, as oppused to an ordinary list”.

The defstruct for ship carly in chapter 20 defines another conceptual type. defstruct
automatically defines some opcrations on this object, the operations to access its clements. We
could define other functions that did uscful things with ship’s, such as computing their speed,
anglc of travel, momentum, or velocity, stopping them, moving them clsewhere, and so on.

PS:KL.MANDFI ,AVOR.TEXT.13_4 ' ' 8-JUN-84

S —

Modularity _ | | 402 ‘ - Lisp Machine Manual -

In both cases, we represent our conceptual object by one Lisp object. “the Lisp object we use
for the representation has structure and refers to other Lisp objects. In the disembodied property
list case, the Lisp object is a list of pairs; in the ship casc, the Lisp object is an array whose
details arc taken care of by defstruct. In both cases, we can say that the object keeps track of
an internal state, which can be examined and altered by the operations available for that type of
object. get cxamines the state of a property list and putprop alters it; ship-x-position
cxamines the state of a ship, and (setf (ship-x-position ship) 5.0) alters it. ' '

We have now scen. the essence of object-oriented programming. A conceptual object is
modeled by a single Lisp objeet, which bundles up some state information. For cvery type of
object, there is a set of operations that can be performed to examine or alter the state of the
- object. : '

21.2 Modularity

An important benefit of the object-oriented style is that it lends itsclf to a particularly simple
and lucid kind of modularity. If you have modular programming constructs and techniques
available, they help and encourage you to write programs that are casy to read and understand,
and so are more reliable and maintainable. Object-oriented programming lets a programmer
implement a uscful facility that presents the caller with a sct of external interfaces, without
requiring the caller to understand how the internal details of the implementation work. In other
words, a program that calls this facility can treat the facility as a black box; the program knows
what the facility's external interfaces guarantec to do, and that is all it knows.

For cxample, a program that uses disembodicd property lists never nceds to know that the
property list is being maintained as a list of alternating indicators and valucs; the program simply
performs the operations, passing them inputs and getting back outputs. ‘The - program only
depends on the external definition of these operations: it knows that if it putprop’s a property,
and doesn't remprop it (or putprop over it), then it can do get and be sure of getting back the
same thing it put in. The important thing about this hiding of the details of the implementation
is that someone reading a program that uses disembodied property lists nced not concern himself
with how they are implemented; he need only understand what they undertake to do. This saves
the programmer a lot of time and lets him concentrate his energics on understanding the program
he is working on. Another good thing about this hiding is that the representation of property lists
could be changed and the program would continue to work. For example, instcad of a list of
alternating clements, the property list could be implemented as an association list or a hash table.
Nothing in the calling program would change at all. ' :

The same is true of the ship example. The caller is presented with a collection of operations,
such as ship-x-position, ship-y-position, ship-speed, and ship-direction; it simply calls these
and looks at their answers, without caring how they did what they did. In our example above,
ship-x-position and ship-y-position would be accessor functions, defined automatically by
~ defstruct, while ship-speed and ship-direction would be functions defined by the implementor

of the shilp type. The code might look like this: ' '

PS:KLMAND>FI.AVOR.TEXT.134 8-JUN-84

-

isp Machine Manual o ’ 403 o Modularity

(defstruct (ship :conc-name) .
x-position '
y-position
x-velocity
y-velocity .
mass) '

(defun ship-speed (ship)
(sqrt (+ (~ (ship-x-velocity ship) 2)
(~ (ship-y-velocity ship) 2))))

(defun ship-direction (ship)
(atan2 (ship-y-velocity ship)
(ship-x-velocity ship)))

The caller need not know that the first two functions were structurc accessors and that the
sccond two were written by hand and do arithmetic. Those facts would not be considered part of
~ the black box characteristics of the implementation of the ship type. The ship type does- not
. guarantee which functions will be implemented in which ways: such aspects arc not part of the
contract between ship.and its callers. In fact, ship could have been written this way instead:

(defstruct (ship :conc-name)
x-position y
y-position
speed
direction
mass)

(defun ship-x-velocity (ship) ‘
(* (ship-speed ship) (cos (ship-direction ship))))

(defun ship-y—ve]ocity (ship)
(* (ship-speed ship) .(sin (ship-direction ship))))

In this second implementation of the ship type, we have decided to store the velocity in polar
coordinates instead of rectangular coordinates. This is purcly an implementation decision. The
caller has no idea which of the two ways the implementation uses; he just performs the
operations on the object by calling the appropriate functions.

"We have now created our own types of objects, whose implementations are hidden from the
programs that use them. Such types are usually referred to as abstract types. The object-oriented
style of programming can be used to create abstract types by hiding the implementation of the
operations and simply documenting what the operations are defined to do.

Some more terminology: the quantities being held by the clements of the ship structure are
referred to as instance variables. Each instance of a type has the same opcrations defined on it;
what distinguishes one instance from another (besides eq-ness) is the values that reside in its
instance variables. The example above illustrates that a caller of operations docs not know what
" the instance variables are; our two ways of writing the ship opcrations have different instance

PS:KLMAN>FLAVOR.TEXT.134 o : 8-JUN-84

~

' Modularity _ - o 404 - Lisp Machine Manual

variables, but from the outside they have exactly the same operations.

One nﬁight ask: “But what if the caller evaluates (aref ship 2) and notices that he gets back
the x velocity rather than the speed? ‘Then he can tell which of the two implementations were
‘used.™ T'his is true; if the caller were to do that, he could tell. However, when a facility is
implemented in the object-oriented style, only certain functions are documented and advertised,
the functions that arc considered to be operations on the type of object. 'The contract from ship
to its callers only -spcaks about what happens if the caller calls these functions. ‘The contract
makes no guarantees at all about what would happen if the caller were to start poking around on
his own using aref. A caller who does so is in error; he is depending on somcething that is not
specified in the contract. No guarantees were ever made about the results of such action, and so
anything may happen; indeed. ship may get reimplemented overnight, and the code that docs the
aref ‘will have a different effect entirely and probably stop working. This .cxample shows why the
~concept of a contract between a callee and a caller is important: the contract specifies the
interface between the two modules.

Unlike some other languages that provide abstract types, Zetalisp makes no attempt to have
the language automatically forbid constructs that circumvent the contract. This is intentional. One
reason for this is that the Lisp Machine is an interactive system, and so it is important to be able
to examine and alter internal state interactively (usually from a debugger). Furthermore, there is
no strong distinction between the “system”™ programs and the “user” programs on the Lisp
Machine: users. are allowed to get into any part of the language system and change what they
want to change. Another rcason is the traditional MIT Al Lab philosophy that opposes *“fascist”
restrictions which impose on the user “for his own good”. The user himself should decide what is
good for him. :

In summary: by defining a sct of opcrations and making only a specific set of external
entrypoints available to the caller, the programmer can create his own abstract types. These types
can be uscful facilitics for other programs and programmers. Since the implementation of the
type is hidden from the callers, modularity is maintained and the .implementation can be changed
easily. '

We have hidden the implementation of an abstract type by making its operations into
functions which the user may call. The important thing is not that they are functions—in Lisp
everything is done with functions. The important thing is that we have defined a new conceptual
operation and given it a name, rathér than requiring anyone who wants 10 do the operation to
write it out step-by-step. Thus we say (ship-x-velocity s) rather than (aref s 2).

Often a few abstract operation functions are simple enough that it is desirable to compile
special code for them rather than really calling the function. (Compiling special code like this is
often called open-coding.) The compiler is directed to do this through use of macros, substs, or
optimizers. defstruct arranges for this kind of special compilation for the functions that get the
instance variables of a structure.

When we use this optimization, the implementation of the abstract type is only hidden in a
certain sensc. 1t does not appear in the Lisp code written by the user, but docs appear in- the
compiled code. The reason is that there may be some compiled functions that usc the macros (or
whatever); cven if you change the definition of the macro, the existing compiled code will
continue to use the old definition. Thus, if the implementation of a module is changed programs

PS:<I.MAN>FLLAVOR.TEXT.134 - 8-JUN-84

Lisp Machine Manual , ' 405 | (‘uchcric()pcrulinns

that usc it may need to be recompiled. This is something we sometimes accept for the sake of
cfficiency. ' : .

In the present implementation of flavors, which is discussed below, there is no such compiler
incorporation of nonmodular knowledge into a . program, cxcepl when the :ordered-instance-
variables feature is uscd: sec page 427, where this problem is cxplained further. If you don't
use the ordered-instance-variables feature, you don’t have to worry about this.

21.3 Generic Operations

Supposc we think about the rest of the program that uscs the ship abstraction. It may want
to deal with other objects that arc like ship’s in that they arc movable objects with mass, but
unlike ships in other ways. A more advanced model of a’ ship might include the concept of the
ship's cngine power, the number of passengers on board, and its name. An object representing a
meteor probably would not have any of these, but might have another attribute such as how
much iron is in it. ' '

However, ‘all kinds of movable objects have positions, velocitics, and masses, and the system
will contain some programs that dcal with these quantities in a uniform way, regardless of what
kind of object the attributes apply to. For example, a picce of the system that calculates every
object’s orbit in space need not worry about the other, more peripheral attributes of various types
of objects; it works the same way for all objects. Unfortunately, a program that trics to calculate
the orbit of a ship needs to know the ship's attributes, and must therefore call ship-x-position
and ship-y-velocity and so on. The problem is that these functions won't work for mecteors.
There would have to be a second program to calculate orbits for meteors that would be exactly
the same, except that where the first one calls ship-x-position, the second one would call
meteor-x-position, and so on. This would be very bad; a great deal of code. would have to
exist in multiple copics, all of it would have to be maintained in parallel, and it would take up
space for no good reason. ’

What is needed is an operation that can be performed on objects of scveral different types. '

For each type, it should do the thing appropriate for that type. Such operations are called
‘generic operations. The classic example of generic operations is the arithmetic functions in most
programming languages, including Zetalisp. The + (or plus) function accepts integers, floats,
ratios and complex numbers, and perform an appropriate kind of addition, bascd on the data
types of .the objects being manipulated. In our cxample, we need a generic x-position operation
that can be performed on cither ship’s, meteor’s, or any other kind of mobile object represented
in the system. This way, we can write a single program to calculate orbits. When it wants to
know the x position of the object it is dealing with, it simply invokes the generic x-position
operation on the object, and whatever type of object it has, the correct operation is performed,
and the x position is returned. '

Another terminology for the usc of such generic operations has emerged from the Smalltalk
language: performing a gencric operation is called sending a message. The message consists of an
operation name (a symbol) and arguments. The objects in the program are thought of as little
people, who get sent messages and respond with answers (returned values). In the example above,
the objects are sent x-position messages, to which they respond with their x position. - '

PS:<L.MAN>F1.AVOR.TEXT.134 ‘. - -~ 8-JUN-84

Generic Operations in Lisp o 00 Iisp Machine Manual

Sending a- message is a way of invoking a function without specifying which function is to be
called. Instead. the data determines the function to use. ‘The caller specifies an operation name
and an’ object; that is. it said what operation to perform, and what object to perform it on. ‘the
function to invoke is found from this information. ‘ :

The two data used to figure out which function to call are the fype of the object, and the
name of the operation. ‘The same sct of functions are used for all instances of a given type, so
the type is the only attribute of the object used to figure out which function to call. The rest of
the message besides the operation is data which arc passed as arguments to the function, so the
operation is the only part of the message used to find the function. Such a function is called a
method. For cxample, if we send an x-position message to an object of type ship, then the
function we find is “the ship type's x-position mcthod”™. A method is a function that handles a
specific operation on a specific kind of object; this method handles messages named x-position to
objects of type ship. '

In our new terminology: the orbit-calculating program finds the x position of the object it is
working on by sending .that object a message consisting of the operation x-position and no
arguments. The returned value of the message is the x position of the object. If the object was
of type -ship, then the ship type's x-position mcthod was invoked; if it was of type meteor,
then the meteor type's x-position method was invoked. The orbit-calculating program just sends
the message, -and the right function is invoked based on the type of the object. We now have
truc gencric functions, in the form' of message passing: the same operation can mean different
things depending on the type of the object. :

214 Generic Operations in Lisp

, How do we implement message passing in Lisp? Our convention is that objects that receive
messages are always functional objects (that is, you can apply them to arguments). A message is
sent to an. object by calling that object as a function, passing the operation name as the first
argument and the arguments of the message as the rest of the arguments. Operation names are
represented by symbols; normally these symbols are in' the keyword package (sce chapter 27, page
636), since messages are a protocol for communication between different programs, which may
reside in different packages. So if we have a variable my-ship whose value is an object of type
ship, and we want to know its x position, we send it a message as follows:

(send my-ship :x-position)
To set the ship’s x position to 3.0, we send it a message like this:
(send my-ship :set :x-position 3;0)

It should be stressed that no new featurcs are added to Lisp for message sending; we simply
define a convention on the way objects take arguments. The convention says that an object
accepts messages by always interpreting its first argument as an opcration name. The object must
consider this operation name, find the function which is the method for that operation, and
invoke that function. ' -

PS:KLMANDF LAVOR.TEXT.134 ' : . 8-JUN-84

Lisp Machine Manual ' 407 ' Generic Operations in Lisp

send object ()p(’mlmn &rest arguments , .
Sends object a message with- vperation and argumcms as specified.. Currently send is
identical to funcall, but preferable when a message is being sent, just for clarity.

There are vague ideas of making send different from funcall if object is a symbol, list,
number, or other object that docs not normally handle messages when funcalled, but the
meaning of this is not cumplctcly clear.

lexpr-send 0[)](’(" operation &rest arguments '
Currently lexpr-send is the same as apply.

_ This raises the question of how message receiving works. The object must somchow find the -
right method for the message it is sent. Furthermore, the object now has to be callable as a
function. But an ordinary function will not do. We neced somcthing that can store the instance
variables (the internal state) of the object. We need a function with internal state; that is, we
nced a coroutine, ’ :

Of the Zctalisp features presented so far, the most appropriate is the closure (see chapter 12,
page 250). A message-receiving object could be implemented as a-closure over a set of instance
variables. The function inside the closure would have a big selectq form to dispatch on its first
argument. (Actually, rather than using closures and a selectq, you would probably use entities
(section 12.4, page 255) and defselect (page 236).)

While using closures (or cntitics) does work, it has several scrious problems. The main
problem is that in order to add a new operation to-a system, it is necessary to modify a lot of
code; you have to find all the types that understand that operation, and add a new clause to the
selectq.. The problem with this is that you cannot textually scparate thc implementation of your
new operation from the rest of the system; the mecthods must be interleaved with the other
operations for the type. Adding a new operation should only require adding Lisp code; it should
not requirc modifying Lisp code.

The conventional way of making generic operations is to have a procedure for cach operation,
which has a big selectq for all the typcs; this means you have to modify code to add a type.
The way described above is to have a procedure for each type, which has a big selectq for all
the operations; this means you have to modify code to add an operation. Neither of these has
the desired .property that extending the system should only require adding code, rather than
modifying code.

Closures (and entitics) are also somecwhat clumsy and crude. A far more strcamlined,
* convenient, and powerful system for crcating message-recciving objects exists; it is called the
flavor mechanism. With flavors, you can add a new mcthod simply by adding code, without
modifying anything. Furthermore, many common and uscful things are very easy to do with
flavors. The rest of this chapter describes flavors.

PS:KLLMAN>FLAVOR.TEXT.134 | 8-JUN-84

Simple Usc of Flavors 408 ' Lisp Machine Manual

2l 5 Slmplc Use of Flavors

A /Iavor in its simplest form, is a dcfinition of an- abstract type. New flavors arc created
with the defftavor special form, and methods of the flavor arc created with the defmethod special
form. New instances of a flavor. are created with the make-instance function. This scction
explains simple uses of these forms.

For an cxample of a slmplc usc of flavors, hcrc is how the ship cxample above would bc
implemented.

(deff]avor ship (x-position y-position
x-velocity y-velocity mass)

()

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (~ x-velocity 2)
(~ y-velocity 2))))

(defmethod (ship :direction) ()
(atan2 y- ve]oc1ty x-velocity))

The code above creates a ncw ﬂavor The first subform of the defflavor is ship, which is the
name of the new flavor. Next is the list of instance variables; they are the five that should be
familiar by now. The next subform is something we will.get to later. The rest of the subforms

~arc the body of the defflavor, and cach onc specifics an option about this flavor. In our
example, there is only one option, namecly :gettable-instance- -variables. This means that for.
each instance variable, a method should automatically be gencrated to return the value of that
instance variable. The name of the operation is a symbol with the same name as the instance
variable, but interncd on the keyword package. Thus, methods are created to handle the
operations :x-position, :y-position, and so on.

Each of the two defmethod forms adds a method to the flavor. The first one adds a handler
to the flavor ship for the operation :speed. The second subform is the lambda-list,. and the rest
is the body of the function that handles the :speed operation. The body can refer to or set any
instance variables of the flavor, just like variables bound by a containing let. When any instance
of the ship flavor is invoked with a first argument of :direction, the body of the second
defmethod is evaluated in an cnvironment in which the instance variables of ship refer to the
instance variables of this instance (the one to which the message was sent). So the arguments
passed to cli:atan are the the velocity components of this particular ship. The result of cli:atan
becomes the value returned by the :direction operation. '

Now we have seen how to creatc a new abstract type: a ncw flavor. Every instance of this
flavor has the five instance -variables named in the defflavor form, and the seven methods we
have scen (five. that were automatically gencrated because of thc :gettable-instance- -variables
option, and two that we wrote ourselves). The way to creatc an ‘instance of our new flavor is
with the make-instance function. Here is how. it could be used:

PS:<L.MANDFLAVOR.TEXT.134 | | §-JUN-84

| isp Machine Manual _ ’ 409 | ~ Simple Use of Flavors

(setq my-ship (make-instance ’ship))

This returns an object whose printed representation is # <SHIP- 13731210>. (Of course, the
value of the magic number will vary; it is just the object address in octal) The argument to
. make-instance is the name of the flavor to be instantiated. Additional arguments, not used here,
- are init options, that is, commands to the flavor of which we are making an instance, sclecting

optional features. "This will be discussed more in a moment. B

Examination of the flavor we have defined shows that it is quite uscless as it stands, since
there is no way to set any of the parameters. We can fix this up casily by putting the :settable-
instance-variables option into the defflavor form. This option tells defflavor to generate
methods for opcration :set for first argument :x-position. :y-position., and so on; cach such
- method takes one additional argument and scts the corresponding instance variable to that value.
It also generates methods for the operations :set-x-position, :set-y-position and so on: cach of-
these takes one argument and sets the corresponding variable.

Another option we can add to the defflavor is :inittable-instance-variables, which allows us
to initializc the values of the instance variables when an instance is first created. cinittable-
instance-variables docs not create any methods; instcad, it makes initialization keywords named
x-position, :y-position, etc., that can be used as init-option arguments o make-instance to
initialize the corresponding instance variables. The list of init options is sometimes called the init-
plist because it is like a property list. '

Here is the improved defflavor:
(defflavor ship (x-position y- pos1t1on
x-velocity y-velocity mass)
« §)
:gettable-instance-variables
:settable-instance-variables
tinittable-instance-variables)

All we have to do is evaluate this new defflavor, and the existing flavor definition is updated
and now includes the new methods and initialization options. In fact, the instance we generated a
while ago now accepts the new opcratmns' We can set the mass of the ship we created by
evaluating
A {send my- sh1p set—mass'3.0)

-or

(send my- sh1p :set :mass 3.0)
and the mass instance variable of my-ship is properly set to 3.0. Whether you us¢ :set-mass
or the general opcration :set is a matter of style; :set is used by the expansion of (setf (send
my-ship- :mass) 3.0).

If you want to play around with flavors, it is uscful to know that describe of an instance
tells you the flavor of the instance and the valucs of its instance variables. 1f we were to evaluate
(describe my-ship) at this point, the following would be printed:

PS:<L.MANDFLAVOR.TEXT.134 . 8-JUN-84

Simple Use of Flavors 410 - . Lisp Machine Manual

#<SHIP 13731210>, an object of flavor SHIP,
has instance variable valuves: -~

X-POSITION: void.
Y-POSITION: : void
X-VELOCITY: © . void
Y-VELOCITY: .. void
MASS: ' 3.0

Now that the instance variables arc ‘inittable, we can create another ship and initialize some of -
the instance variables using the init-plist. l.et’s do that and describe the result:

(setq her-ship (make-instance ’ship :x-position 0.0
:y-position 2.0
: :mass 3.5))

=> #<SHIP 13756521>

(describe her-ship)
#<SHIP 13756521>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 0.0
Y-POSITION: . 2.0
X-VELOCITY: void
Y-VELOCITY: void
MASS: 3.5

A flavor can also cstablish default initial values for instance variables. These default values are
used when a new instance is created if the values are not initialized any other way. The syntax
for specifying a default initial value is to replace the name of the instance variable by a list,
whose first clement is the name and whose sccond is a form to evaluate to produce the default

initial value. For example:

PSKKLMANDEFLAVOR.TEXT.134 | ' - 8-JUN-84

LvammmcMumml‘ ' - 411 o "Mnhmlmwms

(defvar sdefault-x-velocity* 2.0)
(defvar xdefault-y-velocitys 3.0)

(defflavor ship ((x-position 0.0)
' (y-position 0.0) :
(x-velocity *default-x-velocity*)
(y-velocity sdefault-y-velocitys)
mass) :
0
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

(setq another-ship (make- 1nstance >ship :x-position 3.4))
=> #<SHIP 14563643>

(describe another-ship)
‘#<SHIP 14563643>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 3.4
Y-POSITION: 0.0
X-VELOCITY: 2.0
Y-VELOCITY: 3.0

_MASS: ' void

x-position was initialized explicitly, so the default was ignored. y-position was initialized
from the default value, which was 0.0. The two velocity instance variables were initialized from
their default values, which came from two global variables. mass was not explicitly initialized
and did not. have a default initialization, so it was left void.

There arcvmany other options that can be used in defflavor, and the init options can be used
more flexibly than just to initialize instance variables;- full details are given later in this chapter.
But even with the small set of features we have seen so far, it is easy to write object-oriented
programs.

21.6 Mixing Flavors

Now we have a system for dcfining message-receiving objects so that we can have generic
operations. If we want to create a new. type called meteor that would accept the same generic
opcrations as ship, we could simply writc another defflavor and two morc defmethod’s that
looked just like those of ship, and then metcors and ships would both accept the same
operations. ship would have some more instance variables for holding attributes specific to ships
and some more methods for operations that are not gcncnc but are only defined for shlps the
same would be true of meteor : -

However, this would be a a wasteful thing to do. The same code has to be repeated in
several places, and several instance variables have to be repcated. The code now needs to be
maintained in many places, which is always undesirable. The power of flavors (and the name

PS:KLMANDFILAVOR.TEXT.134 8-JUN-84

- Mixing Flavors o , c - 412, ’. : Lisp Machine Manual

“flavors”) comes from the ability to mix several flavors and get a ncw flavor. Since the
functionality of ship and meteor partially overlap, we can take the common functionality and
“move it into its own flavor, which might be called moving-object. We would definc moving-

object the same way as we defined ship in the prcvmuq scction. Then, ship and meteor could
be defined like this; : :

(defflavor sh1p (engine-power number-of- passengers name)
(moving-object)
:gettable-instance-variables)

(defflavor meteor (pércent iron)
(moving-object)
1n1ttable instance-variables)

These defflavor forms use the sccond subform, which we ignored previously. The second
subform is a list of flavors to be combined to form the new flavor; such flavors are called
components. Concentrating on ship for a moment (analogous things arc truc of meteor), we see
that it has cxactly one component flavor: moving-object. It also has a list of instance variables,
which includes only the ship-specific instance variables and not the ones that it shares with
meteor. By incorporating moving-object, the ship flavor acquires all of its instance variables,
and so need not name them again. 1t also acquites-all of moving-object’s mcthods, too. So
with the new definition, ship instances still implement the :x-velocity and :speed operations,
with the same meaning as before. However, thé :engine-power operation is also understood
(and returns the value of the engine-power instance variable).

What we have done here is to takc an abstract type, moving-object, and build two more
specialized and powerful abstract types on top of it. Any ship or metcor can do anything a
moving object can do, "and cach also has its own specific abilities. This kind of building can
continue; we could define a flavor called ship-with-passenger that was built on top of ship,
and it would inherit all of moving-object’s instance variables and mcthods as well as ship’s
instance variables and methods. Furthermore, the second subform of defftavor can be a list of
several components, meaning that the new flavor should combine all the instance variables and
methods of all the flavors in the list. as well as the ones fhose flavors arc built on, and so on.
All the componcnts taken together form a big tree of flavors. A flavor is built from its
components, its components’ components, and so on. We sometimes use the term “components”
to mean the immediate components (the ones listed in the defflavor), and sometimes to mean all
the components (including the components of the immediatc components and so on). (Actually, it
is not strictly a tree, since some flavors might be components through more than onc path. It is
really a directed graph; it can even be cyclic.)

'The order in which the components are combined to form a flavor is important. The tree of
flavors is turncd into an ordered list by performing a top-down, depth-first walk of the tree,
including non-terminal nodes before the subtrees they head, ignoring any flavor that has been
encountered previously somewhere clse in the tree. For cxample, if flavor-1’s immediate
components arc flavor-2 and flavor-3, and flavor-2’s components arc flavor-4 and flavor-5,
and flavor-3's component was flavor-4, then the complete list of components of flavor-1 would
be: _ ‘ S

flavor-1, flavor-2, flavor-4, flavor-5; flavor-3
The flavors carlier in this list are the more specific, less basic ones; in our cxample, ship-with-

PS:KLLMANDFLAVOR.TEXT.134 ‘ » 8-JUN-84

Lisp Muchiné Manual o 443 : Mixing Flavors

passengers would be first in the list, followed by ship, followed by moving-object. A flavor is
always the first in the list of its own components. Notice that flavor-4 docs not appear twice in
this list. Only the first occurrence of a flavor appears: duplicates arc removed. (Fhe climination
of duplicates is done during the walk; if there is a cycle in the dirccted graph, it does not cause
a non-terminating computation.)

The set of instancc variables for the new flavor is the union of all the sets of instance
variables in all the component flavors. If both flavor-2 and flaver-3 have instance variables
named foo, then flavor-1 has an instance variable named foo, and any mcthods that refer to foo
refer to this same instance variable. Thus different components of a flavor can communicate with
one -another using shared instance variables. (Typically, only onc component ever scts the.
variable; the others only look at it.) The default initial value for an instance variable comes from
the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor system.
When a flavor is defined, a single function, called a combined method, is constructed for each
operation supported by the flavor. This function is constructed out of all the methods for that
operation from all the components of the flavor. There are many different ways that methods can
be combined; these can be selected by the user when a flavor is defined.. The user can also
create new forms of combination.

There arc several kinds of methods, but so far, the only kinds of methods we have seen are
primary methods. The default way primary methods are combined is that all but the carlicst one
provided are ignored. In other words, the combined method is simply the primary method of the
first flavor to provide a primary method. What this means is that if you arc starting with a flavor
foo and building a flavor bar on top of it, then you can override foo's mcthod for an operation
by providing your own method. Your method will be called, and foo's will never be called.

Simple overriding is often useful; for example, if you want to make a new flavor bar that is
just like foo except that it reacts completely differently to a few operations. However, often you
don’t want to completely override the base flavor's (foo’s) method; sometimes you want to add
some extra things to be done. This is where combination .of methods is used.

The usual way methods are combined is that one flavor provides a primary method, and other
flavors provide daemon methods. The idea is that the primary method is “in charge” of the main
business of handling the operation, but other flavors just want to keep informed that the message
- was sent, or just want to do the part of the operation associated with their own area. of
responsibility.

daemon methods come in two kinds, before and affer. There is a special syntax in defmethod
for defining such methods. Here is an cxample of the syntax. To give the ship flavor an after-
daemon mcthod for the :speed operation, the following syntax would be used:
(defmethod (ship :after. :speed) () body)

Now, when a message is sent, it is handled by a new function called the combined method.
The combined method first calls all of the before dacmons, then the primary method, then all the
after dacmons. Each method is passed the same arguments that the combined method was given,
. The returned values from the combined method arc the values returned by the primary method;
any values returned from the dacmons arc ignored. Before-dacmons arc called in the order that

PS:KLLMAN>FLAVOR.TEXT.134 : 8-JUN-84 -

Flavor FFunctions ' 414 ’ | isp Machine Manual

flavors arc combined, while after-dacmons are called in the reverse order. In other words, if you
build bar .on top of foo, then bar's before-dacmons run before any of tlmsc in foo, and bars
after-dacmons run after any of thosc in foo

The reason for this order is to keep the modularity order correct. If we create flavor-1 built
on flavor-2, - then it should not matter what flavor-2 is built out of. Our new before-dacmons
go before all methods of flavor-2, and our new after-dacmons go after all methods of flavor-2.
Note that if you have no daemons, this reduces to the form of combination described above. 'The
most. recently added component flavor is” the highest level of abstraction; you build a higher-level
object on top of a lower-level object by adding new components to the front. The syntax for
defining dacmon methods can be found in the description of defmethod below.

To make this a bit more clear, let's consider a simple example that is casy to play with: the
:print-self method. - The Lisp printer (i.c. the print function; scc scction 23.1, page 506) prints
instances of flavors by -sending them :print-self messages. The first argument to the :print-self
operation is a strcam (wc can ignore the others for now), and the receiver of the message is
supposed to print its printed representation on the stream. -In the ship example above,. the reason
that instances of the ship flavor printed the way they did is because the ship flavor was actually
built on top of a very basic flavor called vanilla-flavor; this component is provided automatically
by defflavor. It was vanilla-flavor's :print-self mcthod that was doing the printing. Now, if we
give ship its own primary mcthod for the :print-self operation, then that method completely
takes over the job of printing; vanilla-flavor’s method will not be called at all. However, if we
give ship a before-dacmon method for the :print-self operation, then it will get invoked before
the vanilla-flavor method, and so whatever it prints will appear before what vanilla-flavor prints.
So we can usc . before-dacmons to add prcﬁxcs to a printed rcprcscntatum similarly, after--
dacmons can add suffixes.

There are other ways to combine methods besides dacmons, but this way is the most
common. The more advanced ways of combining methods arc explained in a later section; see
scction 21.11, page 433. vanilla-flavor and what it does for you arc also explained later; see
scction 21,10, page 432. :

21.7 Flavor Functions

defflavor ' Macro
A flavor is defined by a form
(defflavor flavor-name (varl var2...) (flavl flav2...)
optl opi2...)
- flavor-name is a symbol which serves to name this flavor. It is given an si:flavor property
which is the internal data-structure containing the details of the flavor.

(type-of obj), where obj is an instance of the flavor named flavor-name, returns the -
symbol flavor-name. (typep obj flavor-name) is t if obj is an instance of a flavor, one of
whose components (possibly itsclf) is flavor-name.

varl, var2, etc. arc the names of the instance-variables containing the local state for this
flavor. A list of the name of an instance-variable and a default initialization form is also
acceptable; the initialization form is evaluated when an instance of the flavor is created if

PS:KIL.MANDFLAVOR.TEXT.134 _ 8-JUN-84

| isp Machine Manual 415 I“lavor I<unctions

ho other initial value for the variable is obtained. 1f no initialization is specified, the
variable remains void. '

flavi, flav2, etc. are the names of the component flavors out of which this flavor is built.
The features of those flavors arc inherited as described previously. '

optl, opi2. ctc. arc options; cach option may be cither a keyword symbol or a list of a
keyword symbol and arguments. ‘The options to defflavor are described in section 21.8,
page 424.

all-flavor-names Variable
A list of the names of all lhc_ﬂavors that have ever been defflavor'ed.

defmethod ' Macro
A method, that is, a function to handle a particular operation for instances of a particular
flavor, is defined by a form such as
(defmethod (flavor-name method-type -operation) lambda-list
Jorml form2...)

Sflavor-name is a symbol which is the name of the flavor which is to receive the method.
operation is a keyword symbol which names the operation to be handled. method-type is a
keyword symbol for the type of method; it is omitted when you are defining a primary
method. For some method- typcs additional information is expected. It comes after
operation. : ‘

The meaning of method-type depends on what style of method combination is declared for
this operation. For instance, if :daemon combination (thce default style) is in use, method
types :before and :after are allowed. See scction 21.11, page 433 for a complete
description of method types and the way methods are combined. '

lambda-list describes the arguments and. aux variables of the function; the first argument
to the method, which is the operation name itsclf, is automatically handled and so is not
included in the lambda-list. Note that methods may not have uncvaluated ("e)
arguments; that is, they must be functions, not special forms. forml, form2, etc. are the
function body; the value of the last form is returned.

The variant form ,

(defmethod (flavor-name operation) function)
where function is a symbol, says that Sflavor-name’s mcthod for operation is function, a
symbol which names a function. That function must take appropriate arguments; the first
argument is the operation. When the function is called, self will be bound.

If you redefine a method that is already defined, the old definition is replaced by the new

one. Given a flavor, an opcration name, and a method type, therc can only be one

function (with the exception of :case methods; see page 437), so if you define a :before -
dacmon method for the foo flavor to handle the :bar operation, then you replace the

previous beforc-dacmon; however, you do not affect the primary method or methods of

any other type, operation or flavor.

_PS:(L.MAN)FI;AVOR.'I‘EX'I‘._134 8-JUN-84

Flavor Functions ' 416 ‘ v Lisp Machine Manual

") .

‘The function spec for a method (see section 11.2, page 225) looks like:

(:method flavor-name operation¥- -or

(:method flavor-name method-iype operation) or

(:method flavor-name method-1ype operation suboperation)) : .
This is useful to know if you want to trace (page 738), brcakon (pagc 741) or advise
(page 742) a method, or if you want to poke around at the mcthud function itsclf, c.g.
disasscmble it (sce page 792).

make instance flavor-name init-optionl valuel init-option2 valuel..

Creates and returns an instance of the specified flavor. Arguments after the ﬁrst are
alternating init-option keywords and arguments to those keywords. These options are used
to initialize instance variables and to sclect arbitrary options, as described above. An :init
message is sent to the newly-crcated object with one argument, the init-plist. This is a
disembodied property-list containing: the init-options specified and those defaulted from the
flavor's :default-init-plist (however, init keywords that simply initialize instance variables,
and the corresponding values, may be absent when the init methods are called). make-
instance is an casy-to-call interface to instantiate-flavor, below.

If :allow-other-keys is used as an init keyword with a non‘nil value, this error check is
suppressed. ‘Then untecognized keywords are simply ignored. Fxample:

(make-instance 'foo :lose 5 :allow-other-keys t)
specifies the .init keyword lose but prevents an error should the keyword not be handled

instantiate-flavor flavor-name init-plist &optional send-init-message-p
. return-unhandled-keywords area
This is an cxtended version of make-instance, giving you more features. Note that it
takes the init-plist as an individual argument, rather than taking a rest argument of init
options and values.

The init-plist argument must be a disembodied property list; locf of a rest argument is
satisfactory. Beware! This property list can be modified; the properties from the default
init plist are putprop’ed on if not alrcady present, and some :init methods do explicit
putprop’s onto the init-plist. '

In the event that :init methods remprop propertics already on the init-plist (as opposed to
simply doing get and putprop), then the inir-plist is rplacd’ed. This means that the
actual supplicd list of options is modificd. 1t also means that locf of a rest argument does
not work; the caller of instantiate-flavor must copy its rest argument (c.g. with copylist);
this is because rplacd is not allowed on stack lists.

Do not use nil as the init-plist argument. This would mean to usc the propertics of the
symbol nil as the init options. 1f your goal is to have no init options, you must provide
a property list containing no propertics, such as the list (nil).

Here is the scquence of actions by which instantiate-flavor creates a new instance:

First, the specificd flavor's instantiation flavor: function (page 429), if it exists, is called to
determine which flavor should actually be instantiated. If there is no instantiation flavor
function, the specified flavor is instantiated. '

PS:<I.MAN>FLLAVOR.TEXT.134 : 8-JUN-84

1isp Machine Manual " . 417 ' ~ -+ Flavor Functions

If the flavor's method hash-table and other internal information have not been computed
or are not up to date, they are computed. This may take a substantial amount of time or
even invoke the compiler, but it happens only once for cach time you define or redefine
a particular flavor. :

Next, the instance itself is created. If the area argument is specified, it is the number of

an arca in which to cons the instance; otherwise the flavor's instance arca function is -
called to choose an arca if there is onc; otherwise, default-cons-area is used. Scc page

429, - ‘ :

‘Then the -initial values of the instance variables are computed. If an instance variable is
‘declared inittable, and a keyword with the same spelling as its name appears in inir-plist,
the property for that keyword is used as the initial value. o

Otherwisc, if the default init plist specifies such a property, it is evaluated and the value
is used. Otherwise, if the flavor definition specifics a default initialization form, it is
" evaluated and the value is used. The initialization form may not refer to any instance :
variables. It can find the new instance in self but should not invoke any operations on it
“and should not refer directly to any instance variables. It can get at instance variables
using accessor macros created by the -outside-accessible-instance-variables option

(page 427) or the function symeval-in-instance (page 423).

~If an instance variable does not get initialized cither of these ways it is left void; an :init
method may initialize it (sce below). _ ~ '

All remaining keywords and values specified in the :default-init-plist option to defflavor,
that ‘do not initialize . instance variables and arc not overridden by anything explicitly
specified in inir-plist are then merged into init-plist using putprop. The default init plist
of the instantiated flavor is considered first, followed by those of all the component flavors
in the standard order. ‘Sce page 425. '

Then keywords appearing in the init-plist but not defincd with the :init-keywords option
“or the inittable-instance-variables option for some component flavor are collected. If
the :allow-other-keys option is specified with a non-nil value (either in the original init-
- plist argument or by some default init plist) then these unhandled keywords are ignored.
If the return-unhandled-keywords argument is non-nil, a list of these keywords is returned
as the sccond value of instantiate-flavor. Otherwise, an error is signaled if any
-unrecognized init keywords are present. : -

If the send-init-message-p argument is supplied and non-nil, an :init message is sent to the
newly-created instance, with one argument, the init-plist. get can be used to extract
options from this property-list. Each flavor that needs initialization can contribute an :init
method by defining a daemon.

The :init methods should not look on the inir-plist for keywords that simply initialize
instance variables (that is, keywords defined with inittable -instance-variables rather than

iinit-keywords). The corresponding instance variables are already set up when the :init '
methods are called, and sometimes the keywords and their values may actually be missing
“from the init-plist if it is more cfficient not to put them on. To avoid problems, always

PS:<I.MAN>FLAVOR.TEXT.134 ' A - 8-JUN-84

Flavor Functions 418 : Lisp Machine Manual

refer to the instance vanahks themselves rather than lm)kmg for the init keywords that
initializc them. : '

sinit inir-plist ' Operation on all ﬂavor instances
This operation is implemented on d“ flavor instances. Its purposc is to cxamine the init
keywords and perform whatever initializations are appropriate. init-plist is the argument
that was given to instantiate-flavor, and may bc passed directly to get to cxaminc the
value of any particular init option.

The default definition of this operation does nothing. However, many flavors add :before
and :after dacmons to it

instancep object _
Returns t if object is-an instance. 'This is equivalent to (typep object 'instance).

“defwrapper _ Macro
This is hairy and if you don’t understand it you should skip it. :

Sometimes the way the flavor system combines the methods of different flavors (the
dacmon system) is not powerful enough. In that case defwrapper can be used to define a
macro that cxpands into code that is wrapped around the invocation of the methods. This
is best explained by an cxample; suppose you needed a lock locked during the processing
of the :foo operation on flavor bar, which takes two arguments, and you have a lock-
frobboz special-form that knows how to lock the lock (presumably it gencrates an
unwind-protect). lock-frobboz nceds to see the first argument to the operation; perhaps
that tells it what sort of operation is going to be performed (rcad or write).
(defwrapper (bar :foo) ((argl arg2) . body)
‘(lock-frobboz (self argl)
,body))
The use of the body macro-argument prevents the macro defined by defwrapper from
knowing the cxact implementation and allows several defwrapper’s from different flavors
to be combined properly.

Note well that the argument variables, arg? and arg2, are not referenced with commas
before them. These may look like defmacro “argument” variables, but they are not.’
Those variables are not bound at the time the defwrapper-defined macro is expanded and
the back-quoting is done; rather the result of that macro-expansion and back-quoting is
code which, when a message is sent, will bind thosc variables to the arguments in the
message as local variables of the combined method.

Consider another example. Suppose you thought you wanted a :before dacmon, but
found that if the argument was nil you nceded to return from processing thc message
immediately, without executing the primary method. You could write a wrapper such as
(defwrapper (bar :foo) ((argl) . body)
‘{cond ((null argl))
(t (print "About to do :FOO")

,body)))

PS:KLMAN>FLAVOR.TEXT.134 ' : 8-JUN-84

Lisp Machine Manual- o 419 Flavor FFunctions

Suppose you ‘need a variable for communication amoeng the dacmons for a particular
operation; perhaps the :after dacmons need to know what the primary method did, and it
is something that cannot be casily deduced from just the arguments. You might use an
instance variable for this, or you might create a special variable which is bound during
the processing of the operation and used free by the methods. '

(defvar scommunication#) -

(defwrapper (bar :foo) (ignore . body)

"(let ((*communications nil))
.body))

Similarly you might want a wrapper ‘that puts a catch around the processing of an
operation so that any onc of the methods could throw out in the event of an unexpected
condition. ' ' ‘

Like dacmon methods, wrappers work in outside-in order; when you add a defwrapper
to a flavor built on other flavors, the new wrapper is placed outside any wrappers of the

. component flavors. However, all wrappers happen before any dacmons happen. When
the combined method is built, the calls to the before-dacmon methods, primary methods,
and after-dacmon methods are all placed together, and then the wrappers are wrapped -
around them. Thus, if a component flavor defines a wrapper, methods added by new
flavors execute within that wrapper’s context.

:around methods can do some of the same things that wrappers can. Sec page 439. If
one flavor defines both a wrapper and an :around mcthod for the same operation, the
:around method is exccuted inside the wrapper.

By carcful about inserting the body into an internal lambda-expression within the
wrapper’s code. Doing so interacts with the internals of the flavor system and requires
knowledge of things not documented in the manual in order to work properly. It is much
simpler to use an :around mecthod instead. :

undefmethod (flavor [type] operation [suboperation)) Macro
(undefmethod (flavor :before :operation))
removes the method created by
(defmethod (flavor :before :operation) (args) ...)

To remove a wrapper, usc undefmethod with :wrapper as the method type.

undefmethod is simply an interface to fundefine (see page 241) that accepts the same
syntax as defmethod. '

If a file that used to contain a method definition is reloaded and if that method no longer

scems to have a definition in the file, the user is asked whether to undefmethod that

method. This may be important to enable the modified program to inherit the methods it

is supposed to inherit. If the method in question has been redefined by some other file,
- this is not done, the assumption being that the definition was merely moved.

PS:KILMAN>FLAVOR.TEXT.134 - 8-JUN-84

I"Iumr'I’liuctions - o 4200 , , Lisp Machine Manual -

undefflavor flavor .
Undefines flavor flavor. All methods of the ﬂavor are lost. ~flavor and all flavors that

dcpcnd on ll are no Tonger valid to instantiate.
If insmnccs of the discardcd definition cxist, they continue to use that definition.

self ’ o - ' _ ' Variable
When a. message is sent to an object, the variable self is automatically bound to that
object. for the benefit of methods which want to mdmpulatc the object itself (as opposed
to its instance variables). :

funcall-self opcration arguments... :

Texpr- funcall-self aperation arguments... hsl-of argwnenls
funcall-self is ncarly cquivalent to funcall with self as the first mgumcnt funcall-self
used to .be faster, but now funcall of self is just as fast. ‘Therefore, funcall-self is
obsolete. It should be replaced with funcall or send of self.

Likewisc, lexpr-funcall-self should be replaced with use of Iexpr-send to self.

funcall-with-mapping-table functier. mappmg-lab/e &rest argumenls
Applics function to arguments with sys:self-mapping-table bound to mappmg-table This
is faster than binding the variable yoursclf and doing an ordinary funcall, because the
system assumes that the mapping table. you specify is the correct one for function to be
run with. .However, if you pass the wrong mapping table, incorrect exccution will take

place.

This function is used in the code for combined methods and is also useful for the user in
:around methods (sce page 439).

lexpr-funcall-with-mapping-table junction mapping-table &rcst arguments
Applics fiunction to arguments using lexpr-funcall, with sys: self mapping-table bound to

mappmg-table

- declare-flavor-instance-variables (flavor) body... Macro
Sometimes it is useful to have a function which is not itself a method, but which is to be

called by methods and wants to be able to access the instance variables of the object seif.
The form
(declare-flavor-instance-variables (flavor-name)
(defun function args body...)) '
surrounds the function dcfinition with a peculiar kind of declaration which makes the
instance variables of flavor flavor-name accessible by name. Any kind of function
definition is allowed; it docs not have to use defun per se.

If you call such a function when seif’s value is an instance whosc flavor does not include
Sflavor-name as a component, it is an error.

Cleancr than using declare-flavor-instance-variables, becausc it does not involve
putting anything around the function definition, is using a local declaration. Put (declare
(:self-flavor flavorname)) as the first expression in the body of the function. For example:

PS:KILMAN>FLAVOR.TEXT.134 : 8-JUN-84

Lisp Machine Manual -+ o - 42] , - Flavor Iunctions

{defun foo (a b) .
(declare (:self-flavor myobject))
(+ a (* b speed)))

(where speed is an instance variable of the flavor myobject) is cqunvalcnt to
(declare-flavor-instance- var1ab1es (myobJect)
(defun foo (a b)

(+ a (* b speed))))

with-self-variables-bound body... Special form
Within the body of this special form, all of selfs instance variables are bound as spccials
to the values inside self. (Normally this is true only of those instance variables that arc
specificd in :special-instance-variables when self's flavor was defined)) As a result,
inside the body you can usc set, boundp and symeval, ctc., frecly on the instance
variables of self.

recompile-flavor ﬂavorname &opuunal single-operation (use-old-combmed—melhodst)

(do-dependents t) o
Updates the intcrnal data of the flavor and any ﬁavors that depend on it. If single-
operation is supplicd non-nil, only the methods for that operation are changed. The
system docs this when you define a new method that did not previously exist. If use-old-
combined-methods is t, then the cxisting combined method functions arc used if possible.
New ones are generated only if the -set of methods to be called has changed. This is the
default. If use-old-combined-methods is nil, automatically-generated functions to call
multiple methods or to contain code gencrated by wrappers are regencrated
unconditionally. If do-dependents is nil, only the specific flavor you specified is
recompiled. Normally all flavors that depend on it are also recompiled.

recompile-flavor affects only flavors that have already been compiled. Typically this
means it affects flavors that have been instantiated, but does not bother with mixins (see
page 431).

si:*dont-recompile-flavors®* | ' ’. Variable
If this variable is non-nil, automatic recompilation of combined methods is turned off.

If you wish to make several changes each of which will cause recompilation of the same
combined methods, you can use this variable to speed things up by making the
recompilations happen only once. Sct the variable to t, make your changes, and then set
the variable back to nil. Then use recompile- ﬂavor to rccompile whichever combined
methods need it. For example:

(setq si:«dont-recompile-flavorss t)

(undefmethod (tv:sheet :after :bar))

(defmethod (tv:sheet :before :bar) ...)

(setq si:+dont-recompile-flavors#* nil)

(recompile-flavor 'tv:sheet :bar)
tv:isheet has very many dependents; recompile-flavor even once takes painfully long It's
- nice to avoid spending the time twice,

PS:<ILMAN>FILAVOR.TEXT.134 v 8-JUN-84

Flavor Functions _ _ 422 Lisp Machine Manual

compile-flavor-methods fluvor. h - Macro
‘The form (compile-Havor-methods flavorname-1 flavor-name-2...), placed- in a file to be
compiled, directs the compiler to include the automatically-gencrated combined mcthods
for the named flavors in the resulting QIFASL. file, provided all of the necessary flavor
definitions have been made. Furthermore, all internal data structures necded to instantiate
the flavor will be computed when the QFASL file is loaded raLhcr than waiting until the
first attempt to instantiate it, :

This means that the. combincd mcthods get compiled at compile time and the data
structures get generated at load time, rather than both things happening at run time. This
is a very good thing, since if the the compiler must be invoked at run time, the program
will be slow the first time it is run. (The compiler must be called in any case if
incompatible changes have been made, such as addition or deletion of methods that must
be called by a combined method.)

You should only usc compile-flavor-methods for flavors that are going to be
instantiated. For a flavor that is never to be instantiated (that is, a flavor that only serves
to be a component of other flavors that actually do get instantiated), it is a complete
waste of time, cxcept in the unusual casc where those other flavors can all inherit the
combined methods of this flavor instead of cach one having its own copy of a combined
method which happens to be identical to the others. In this unusual case, you should use
the :abstract-flavor option in defflavor (page 428).

The compile-flavor-methods forms should be compiled after all of the information
needed to create the combined methods is available. You should put these forms after all
of the definitions of all rclevant flavors, wrappers, and mcthods of all components of the
flavors mentioned.

The methods used by compile-flavor-methods to form the combined methods that go in
the QFASL file are all those present in the file being compiled and all those defined in
the Lisp world.

When a compile-flavor-methods form is seen by the interpreter, the combined methods
are compiled and the internal data structures are generated.

get-handler-for object operation
Given an object and an operation, this returns the object’s method for that operation, or
nil if it has none. When object is an instance of a flavor, this function can be useful to
find which of that flavor's components supplies the method. If you get back a combined
method, you can usc the Meta-X List Combined Methods cditor command (page 444) to
find out what it does.

This is related to the :handler function spec (sce section 11.2, page 223).

It is preferable to use the gencric operation :get-handler-for.

PS:<L.MANDFLAVOR TEXT.134 : 8-JUN-84

I isp Machine Manual ’ 4 - Flavor Functions

flavor-allows-1init-keyword-p flavor-name I\(’ywmd 4
Returns non-nil if the flavor named flavor-name dlluws keyword in the init options when it ,.
is instantiated. or nil if it does not. The non-nil value is the name of the component
flavor that comribulcs the support of that keyword.

si:flavor-all-allowed-init-keywords flavor-name
Returns a list of all the init keywords that may be used in instantiating anvor-name

symeval-in-instance instance symbol &optional no-error-p
Returns the value of the instance variable symbol inside instance. 1f there is no such
instance variable, an crror is signaled, unless no-error-p is non-nil in which case nil is
returned.

set-in-instance instance symbol value
Scts the value of the instance variable symbol inside instance to value. If there is no such
instance variable, an crror is signaled.

locate-in-instance instance symbol
Returns a locative pointer to the cell inside mstance which holds the value of the instance

vanable named symbol.

describe- f‘lavor Sflavor-name
' Prints descriptive information about a flavor: it is sclf-cxplanatory. An important thing it
tells you that can be hard to figure out yourself is the combined list of component flavors;
this list is what is printed after the phrase ‘and dircctly or indirectly depends on’.

si:*flavor-compilations® ~ Variable
Contains a history of when the flavor mechanism invoked the compiler. It is a list;
clements toward the front of the list represent more recent compilations. Elements are
typically of the form
(function-spec pathname)
where the function spec starts with :method and has a mecthod type of :combined.

You may setq this variable to nil at any time; for instance before loading some files that
you suspect may have missing or obsolcte compile-flavor-methods in them.

sys:unclaimed-message (error) Condition
This condition is signaled whenever a flavor instance is sent a message whose operation it
does not handle. The condition instance supports these operations:

:object The flavor instance that received the message.
:operation The operation that was not handled.

:arguments The list of arguments t0 that operation

PS:KI.MAN>FLAVOR.TEXT.134 8-JUN-84

Delavor Options ' 424 . - Lisp Machine Manual

21.8 Defflavor Options

There are quitc a fow options to defflavor. They are all described here, although some are
for very specialized purposes and not of interest to most users. Each option can be written in two
forms; cither the keyword by itsclf, or a list of the keyword and arguments to that keyword.

Several of these options declare things about instance variables. These options can be given
with arguments which are instance variables, or without any arguments in which case they refer to
all of the instance variables listed at the top of the defflavor. 'This is nor necessarily all the
instance variables of the component flavors, just the ones mentioned in this flavor’s defflavor.
When arguments arc given, they must be instance variables that were listed at the top of the
defflavor: otherwise they are assumed to be misspelled and an crror is signaled. It is legal to
declare things about instance variables inherited from a component flavor, but to do so you must
list these instance variables cxplicitly in the instance variable list at the top of the defflavor.

:gettable-instance-variables
Enables automatic generation of mcthods for getting the values of instance varlablcs The
opcration name is the name of the vanable in the keyword package (i.c. it has a colon in

front of it).

Note that there is nothing special about these methods; - you could ecasily define them
yourself. This option generates them automatically to save you the trouble of writing out
a lot of very simple method definitions. (The same is true of mcthods defined by the
:settable-instance-variables option.) If you define a method for the same operation
name as onc of the automatically generated methods, the explicit definition overrides the

automatic one.

:settable-instance-variables
Enables automatic generation of methods for setting the values of instance variables. The
operation ‘name is “:set-’ followed by the name of the variable. All scttable instance
variables are also automatically made gettable and inittable. (See the note in the
description of the :gettable-instance-variables option, above.)

~ In addition, :case mecthods are generated for the :set operation with suboperations taken
from the names of the variables, so that :set can be used to set them.

sinittable -instance-variables
The instance variables listed as arguments, or all instance variables listed in this defflavor
if the keyword is given alone, arc made inittable. This means that they can be initialized
through use of a keyword (a colon followed by the namc of the variablc) as an mlt-optmn
argument to make-instance.

:special-instance-variables
The instance variables listed as arguments, or all instance variables listed in this defflavor
if the keyword is given alone, will be bound dynamically when handling messages. (By
default, instance variables arc bound lexically with the scope being the method.) You must
do this to any instance variablcs that you wish to be accessible through symeval, set,
boundp and makunbound, since they see only dynamic bindings.

PSKL.MAN>FLAVOR.TEXT.134 ' 8-JUN-84

Lisp Machine Manual S a2 - _ Defllavor Options

‘This should also be done for any instance variables that are declared globally special. If
you omit this, the flavor system docs it for you automatically when you instantiate the
flavor, and gives you a warning 10 remind you to fix the defflavor.

iinit-keywords _ ,
The arguments arc declared to be valid keywords to usc in instantiate-favor when
creating an instance of this flavor (or any flavor containing it). ‘The system uses this for:
error-checking: - beforc the system sends the init message, it makes sure that all the
keywords in the init-plist arc cither inittable instance variables or clements of this list. 1If
any is not recognized, an crror is signaled. When you write a :init method that accepts
some keywords, they should be listed in the :init-keywords option of the flavor.

If :allow-other-keys is used as an init keyword with a non-nil value, this crror check is
suppressed. ‘Then unrecognized keywords are simply ignored. '

:default-init-plist ‘
The arguments are alternating keywords and value forms, like a property list. When the
flavor is instantiated, these properties and values are put into the init-plist unless already
present. This allows onc component flavor to default an option to another component
flavor. The value forms arc only cvaluated when and if they are used. For example,
(:default-init-plist :frob-array
. (make-array 100))

would provide a default “frob array” for any instance for which the user did not provide
one explicitly.

(:default-init-plist :allow-other-keys t) |
prevents errors for unhandled init keywords in all instantiation of this flavor and other
flavors that depend on it.

‘required-init-keywords
The arguments are init keywords which are to be required cach time this flavor (or any
flavor containing it) is instantiated. An error is signaled if any required init keyword is
missing. '

:required-instance-variables :
Declares that -any flavor incorporating this one that is instantiated into an object must
contain the spccificd instance variables. An error occurs if there is an attempt to
instantiate a flavor that incorporates this one if it does not have these in its sct of instance
variables. Note that this option is not one of thosc that checks the spelling of its

- arguments in the way described at the start of this section (if it did, it would be useless).

Required instance variables may be frecly accessed by methods just like normal instance
variables. The difference between listing instance variables here and listing them at the
front of the defflavor is that the latter declares that this flavor “owns” those variables and
accepts - responsibility for initializing them, while the former declares that this flavor
depends on those variables but that some other flavor must be provided to manage them
and whatever features they imply,

:required-methods _
The arguments are names of operations that any flavor incorporating this onc must handle.
An crror occurs if there is an attempt to instantiate such a flavor and it is lacking a

PS:<L.MAN>FLAVOR TEXT.134 : 8-JUN-84

DefMavor Options 426 Lisp Machine Manual

method for onc of these operations. T'ypically this option appears in the defflavor for a
base flavor (sce page 431). Usually this is used when a base flavor does a (send self ...)
to send itself a message that is not handled by the base flavor itself; the idca is that the
base flavor will not be instantiated alone, but only with other components (mixins) that do
shandle the message. This keyword allows the error of having no handler for the message
to be detected: when the flavor instantiated or when complle flavor- methods is done,
mthcr than when the mlssmg operation is used.

requnred -flavors

T'he arguments arc names of flavors [Imt any flavor mcorpnmlmg this onc must include as
components, directly or indirectly. The difference between declaring flavors as required
and listing them directly as components at the top of the defflavor is that declaring
flavors 1o be required does not make any commitments about where those flavors will
appear in the ordered list of components; that is left up to whoever does specify them as
components. The purpose of declaring a flavor to be required is to allow instance
variables declared by that flavor to be accessed. [t also provides crror checking: an
attempt to instantiate a flavor that docs not include the required flavors as components
signals an error. Compare this with :required-methods and :required-instance-
variables. ’ . :

For an example of the use of required flavors, consider the ship example given earlier,
and suppose we- want to define a relativity-mixin which increases the mass depcndent on
the spced. We might write,
(defflavor relativity-mixin ()-(moving~object))
(defmethod (relativity-mixin :mass) () :
(/7 mass (sqrt (- 1 (~ (// (send self :speed)
sspeed-of-1lights)
2)))))
but this would losc because any flavor that had relativity-mixin as a component would get
moving-object right after it in its component list. As a basc flavor, moving-object
should be last in the list of components so that other components mixed in can replace its
methods and so that dacmon methods combine in the right order. relativity-mixin has no
business changing the order in which flavors are combined, which should be under the
control of its caller. . For example,
(defflavor starship ()
: ' (relativity-mixin long-distance-mixin sh1p))
puts moving-object last (inheriting it from ship).

So instcad of the definition above we write,
(defflavor relativity-mixin () ()
(:required-flavors moving-object))
which allows relativity-mixin's mcthods to access moving-object instance variables such as
mass (the rest mass), but does not specify any place for moving-object in the list of
components. :

It is very common to specify the base flavor of a mixin with the :required-flavors option
in this way.

iincluded-flavors _ _
The arguments are names of flavors to be included in this flavor. The . difference between

PSKILMAN>FLAVOR.TEXT.134 8-JUN-84

Iisp Machine Manual | 41 : © 7 DefMavor Options

declaring flavors here and declaring them at the top of the defflavor is that when
component flavors are combined, if an included flavor is not specificd as a normal
component, it is. inserted into the list of components immediately after the last component
to include it. ~Thus included: flavors act like defaults. 'The important thing is that if an
included flavor is specified as a component, its position in the list of components is
completely controlled by that specification, independently of where the flavor that includes
it appears in the list. :

iincluded-flavors and :required-flavors arc used in similar ways; it would have been
reasonable to use sincluded-flavors in the relativity-mixin example above. ‘The difference
is that when a flavor is required but not given as a normal component, an Crror is
signaled, but when a flavor is included but not given as a normal component, it is
automatically inserted into the list of components at a reasonable place.

:no-vanilla-flavor - :
Normally when a flavor is instantiated, the special flavor si:vanilla-flavor is included
_automatically at the end of its list of components. The vanilla flavor provides some
default methods for the standard operations which all objects are supposed to understand.
These include :print-self, :describe, :which-operations, and scveral other. operations.
Sec section 21.10, page 432. '

If any component of a flavor specifies the :no-vanilla-flavor option, then si:vanilla-flavor
is not included in that flavor. This option should not be used casually.

:default-handler :
The argument is the name of a function that is to be called to handle any operation for
which there is no method. Its arguments are the arguments of the send which invoked
the operation, - including the operation name as the first argument. Whatever values the
default handler returns are the values of the operation.

Default handlers can be inherited from component flavors. If a flavor has no default
handler, any operation for which there is no method signals a sys:unclaimed-message
€rror,

:ordered-instance- variables »
~ This option is mostly for esoteric internal system uses. The. arguments are names of
instance variables which must appear first (and in this order) in all instances of this flavor,
or any flavor depending on this flavor. This is used for instance variables that are
specially known about by microcode, and also in connection with the :outside-
accessible-instance-variables option. If the keyword is given alone, the argumcnts
default to the list of instance variables given at the top of this defflavor. '

Removing any of the :ordered-instance-variables, or changing their positions in the list,
requires that you recompile all methods that usc any of the affected instance variables.

:outside-accessible-instance-variables ‘
The arguments are instance variables which are to be accessible from outside - of this
flavor's methods. A macro (actually a subst) is defined which takes an object of this flavor
as an argument and returns the value of the instance variable; setf may be used to set-
the value of the instance variable. The namc of the macro is thc name of the flavor
concatenated with a hyphen and the namc of the instance variable. These macros are

PS:(L.MAN.>FI AVOR.TEXT.134 | 8-JUN-84

Deflavor Options ' : 428 ' Lisp Machine Manual

similar to the accessor macros created by defstruct (sec chapter 20, page 372.)

'This featurc works in two different ways, depending on whether the instance variable has
been declared to have a-fixed slot in all instances, - via the :ordered-instance-variables
option. ' : :

If the variable is not ordered, the position of its value cell in the instance must be
computed at run time. This takes noticcable time, although less than actually sending a
message would take. An error is signaled if the argument to the accessor macro is not an
instance or is an instance that does not have an instance variable with the appropriate
name. However, there is no error check that the flavor of the: instance is the flavor the
accessor macro was defined for, or a flavor built upon that flavor. This crror check would
be too expensive. : ‘ '

If the variable is ordered, the compiler compiles a call to the accessor macro into a
subprimitive which simply accesses that variable’s assigned slot by number. This
subprimitive is only three or four times slower than car. The only error-checking
performed is to make surce that the argument is really an instance and is rcally big enough
‘to contain that slot. There is no check that the accessed slot really belongs to an instance
variable of the appropriate name.

:accessor-prefix : . .
Normally the accessor macro created by the :outside-accessible-instance-variables
option to access the flavor f’s instance variable v is named fv. Specifying (:accessor-
prefix get$) causes it to be named get$v instead. ' o

:alias-flavor
Marks this flavor as being an alias for another flavor. This flavor should have only one
component, which is the flavor it is an alias for, and no instance variables or other
options. No methods should be defined for it.

- The effect. of the :alias-flavor option is that an attempt to instantiate this flavor actually
produces an instance of the other flavor. Without this option, it would make an instance
of this flavor, which might bechave identically to an instance of the other flavor. :alias-
flavor climinates the need for scparate mapping tables, method tables, ctc. for this flavor,

* which becomes truly just another name for its component flavor.

The alias flavor and its base flavor are also equivalent when used as an argument of
subtypep or as the sccond argument of typep: however, if the alias status of a flavor is
changed, you must recompile any code which uses it as the sccond argument to typep in
order for such code to function.

:alias-flavor is mainly uscful for changing a flavor’s name gracefully.

:abstract~flavor
‘This option marks the flavor as one that is not supposed to be instantiated (that is, is
supposed to be used only as a component of other flavors). An attempt to instantiate the

flavor signals an error.

PSIKLLMAN>FLAVOR.TEXT.134 . | 8-JUN-84

[isp Machine Manual S , - 429 Deflavor Options

It is sometimes uscful to do compile-flavor-methods on a flavor that is not going to be
instantiated, if the combined methods for this flavor will be inherited and shared by many
others. . :abstract-flavor tells compilé-flavor-methods not to complain about missing
required flavors, methods or instance variables. Presumably the flavors that depend on
this onc and actually are instantiated will supply what is lacking.

:method-combination
Specifies the method combination style to be used for certain operations. Each argument
to this option is a list (style order operation] operation2...). operationl, operation2, ctc.
are names of operations whose methods are to be combined in the declared fashion. siyle
is a keyword that specifies a style of combination; sce scction 21.11, page 433. order is a
keyword whose interpretation is up to siyle; typically it is cither :base-flavor-first or
:base-flavor-last. »

Any component of a flavor may specify the type of method combination to be used for a

_particular operation. If no component specifies a style of method combmatmn then the
default style is used, namely :daemon. 1f more than one component of a flavor specifies *
the combination style for a given operation, then they must agree on Lhc specification, or
clsc an error is signaled.

sinstance-area-function
The argument is the name of a function to be used when this flavor is instantiated, to
determine which area to crcate the new instance in. Use a function name rather than an
explicit lambda expression.
(:instance-area-function function-name)

When the instance arca function is called, it is given the init plist as an argument, and
should return an arca number or nil to usc the default. Init keyword values can be
accessed using get on the init plist.

Instance area functions can be inherited from componcnt flavors. If a flavor does not
have or inherit an instance arca function, its instances are created in default-cons-area.

sinstantiation- flavor-function _
You can define a flavor foo so that, when you try to instantiate it, it calls a function to
decide what flavor it should really instantiate (not necessarily foo). This is done by giving
foo an instantiation flavor function:
- (:instantiation-flavor-function fiunction-name)

When (make-instance 'foo keyword-args..) is done, the instantiation flavor function is
called with two arguments: the flavor name specified (foo in this case) and the init plist
(the list of keyword args). It should return the name of the flavor that should actually be
-instantiated.

Note that the instantiation ﬂavor function applics on]y to the flavor it is specified for. It
is not inherited by dependent flavors. ‘

run-time-alternatives

‘mixture
A run-time-alternative flavor defines a collection of similar flavors, all built on the same
base flavor but having various mixins as wcll. Instantiation chooses a flavor of the

PS:<L.MAN>FLAVOR.TEXT.134 . 8-JUN-84

Defllavor Options : 430 Lisp Machine Manual

collection at run time based on the init keywords specified, using an automatically
generated instantiation flavor function. ' : : '

A simple example would be
(defflavor foo () (basic-foo)
(:run-time-alternatives
(:big big-foo-mixin))
(:init-keywords :big))

Then (make-instance 'foo :big t) makes an instance of a flavor whose components are
big-foo-mixin as well as foo. But (make-instance 'foo) or (make-instance 'foo :big
nil) makes an instance of foo itsclf. ‘The clause (:big big-foo-mixin) in the :run-time-
alternatives says to incorporate big-foo-mixin if :big’s value is t, but not if it is nil.

‘There may be scveral clauses in the :run-time-alternatives. FEach one is processed
independently. Thus, two keywords :big and :wide could indcpendently control two
mixins, giving four possibilitics.
(defflavor foo () (basic-foo)
(:run-time-alternatives
“(:big big-foo-mixin)
(:wide wide-foo-mixin))
(:init-keywords :big))
It is possible to test for values other than t and nil. The clause
(:size (:big big-foo-mixin)

{:small. small-foo-mixin)

{nil nil)) _
allows the value for the keyword :size to be :big, :small or nil (or omitted). If it is nil
or omitted, no mixin is used (that’s what the second nil means). If it is :big or :small,
an appropriate mixin is used. This kind of clause is distinguished from the simpler kind
by having a list as its sccond clement. The values to check for can be anything, but eq
is used to compare them. :

The value of one keyword can control the interpretation of others by nesting clauses
within clauses. If an alternative has morc than two elements, the additional clements are
subclauses which are considered only if that alternative is selected. For example, the
clause
(:etherial (t etherial-mixin)
(nil nil
(:size (:big big-foo-mixin)
(:small smali-foo-mixin)
(nil nil))))

says to consider the :size keyword only if :etherial is nil.

:mixture is synonymous with :run-time-alternatives. It cxists for compatibility with
Symbolics systems, : :

:documentation
Spccifies the documentation string for the flavor definition, which is made accessible

PS:<I.LMANDFLLAVOR.TEXT.134 : 8-JUN-84

I isp Machine Manual _ . 431 Flavor Families

" through (documentation ﬂavomam(’ flavor).

This documentation can .be viewed with the describe-flavor function (sce page 423) or_
the editor’s Meta-X Describe Flavor command (scc page 443).

Previously this option expected two argumcnt%, a kcyword and a string. The keyword was
intended to classify the flavor as a basc flavor. mixin or combination. But no way was
found for this classification to serve a uscful purpose. Keyword are still accepted but no
longer recommended for usc.

21.9 Flavor Families
Ihc fol]owmg organization conventions arc recommended for progmms that usc flavors.

A base flavor is a flavor that defines a whole family of rcldtcd flavors, all of which have that
base flavor as a component. Typically the base flavor includes things relevant to the whole family,
such as instance . variables, :required-methods and :required-instance-variables declarations,
default methods for certain operations, :method-combination declarations, and documentation on
the general protocols and conventions of the family. Some basc flavors are complete and can be
instantiated. but most arc not instantiatable and merely serve as a base upon which to build other
flavors. The base flavor for the foo family is often named basic-foo.

A mixin flavor is a flavor that defines one particular fcature of an object. A mixin cannot be
instantiated, because it is not a complete description. Each module or feature of a program is
_-defined as a scparate mixin; a usable flavor can be constructed by choosing the mixins for the
desired characteristics and combining them, along with the appropriate base flavor. By organizing
your flavors this way, you keep separate features in separate flavors, and you can pick and choose
among them. Sometimes the order of combining mixins does not matter, but often it does,
because the order of flavor combination controls the order in which dacmons arc invoked and
. wrappers are wrapped. Such order dependencics should be documented as part of the conventions
of the appropriate family of flavors. A mixin flavor that provides the mumble feature is often
named mumble-mixin,

If you are writing a program that uses someone else's facility to do something, using that
facility’s flavors and methods, 'your program may still define its own flavors, in a simple way.
The facility provides a base flavor and a sct of mixins: the caller can combine these in various
ways depending on exactly what it wants, since the facility probably does not provide all possible

“useful combinations. FEven if your private flavor has exactly the same components as a pre-
existing flavor, it can still be uscful since you can use its :defauit-init-plist (scc page 425) to
select ‘options of its component flavors and you can define one or two methods to customize it
“just a little”. ‘

PS:<L.MAN>FLLAVOR.TEXT.134 ‘ 8-JUN-84

Vanilla Flavor | 3 Lisp Machine Manual

21.10 Vanilla Flavor

The operations described in this scction are a standard . protocol, which all message-recciving
objects are assumed to- understand. The standard methods that implement this protocol are - '
automatically supplied by the flavor system unless the user specifically tells it not to do so. These
methods are associated with the flavor sivanilla-flavor: '

- si:vanilla-flavor B ’ ' Flavor
: Unless you specify otherwise (wnh the :no- vanllla flavor option to defflavor), cvery
flavor includes the “vanilla™ flavor, which has no instancc variables but provides some

basic uscful methods.

:print-self stream prindepth- escape-p ' - Operation
" The object should output its printed-representation to a strcam. ‘The printer sends this
" message when it encounters an instance or an cntity. The arguments arc the strcam, the
current depth in list-structure (for comparison with prinlevel), and whether escaping is
enabled (a copy of the value of *print-escape®; sce page 514). sivanilla-flavor ignores
the last two arguments and prints somcthing like # <flavor-name octal-address>. The
Sflavor-name tells you what type of object it is and ‘the octal-address allows you to tell
different objects apart (provndcd the garbage collector doesn’t move them bchind your

back).

:describe a - Operation
The object should describe itsclf, printing a description onto the *standard-output*
strcam. - The describe function sends this message when it encounters an instance.
si:vanilla-flavor outputs in a reasonable format the object, the name of its flavor, and the

-names and valucs of its instance-variables.

:set keyword value . ' Operation
The object should set the internal value specified by keyword to the new value value. For
flavor ipstances, the :set operation uses :case method combination, and a method is
gencrated automatically to set each settable instance variable, with keyword being the
variable's name as a keyword.

:which-operations Operation
The object should return a list of the operations it can handle. si:vanilla-flavor generates
the list once per flavor and remembers it, minimizing consing and compute-time., 1f the
set of operations handled is changed, this list is regenerated the next time someonc asks

for it.

:oparation-handled-p operation _ Operation
operation is an opcration name. The object should return t if it has a handler for the
specificd opcration, nil if it does not.

:get-handler-for operation Operation
operation-is an opcration name. The object should return the method it uscs to handle
operation. 1f it has no handler for that operation, it should return nil. This is likc the
get-handler-for function (sce page 422), but, of course, you can use it only on objects
known to accept messages. :

PS:KLLMAN>FLLAVOR.TEXT.134 8-JUN-84

Iisp Machine Manual 433 Method Combination

:send-1f-handles operation &rest arguments _ ~ Operation
.operation is an operation name and arguments is a list of arguments for the operation. If
the object handles the operation, it should send itself a message with that operation and
arguments, and return whatever -values that message returns. If it doesn’t handle the
()perution it -should just return nil. i

:eva] inside- yoursalf jbnn . Operation
The argument is a form that is cvaluatcd in an cnvironment in which special variables

with the names of the instance variables are bound to the values of the®nstance variables.
It works to setg one of these special variables; the instance variable is modified. This. is
intended to be used mainly for debugging. '

:funcall-inside-yourself function &rest args - Operation
Sfunction is applied to args in an environment in which special variables with the names of
the instance variables are bound to the valucs of the instance variables. 1t works to setq
one of these special variables; the instance variable is modified. This is a way of allowing
callers to provide actions to be performed in an environment sct up by the instance.

:break : Operation
break is called in an cnvironment in which special variables with the names of the

instance variables arc bound to the values of the instance variables.

21.11 Method Combination

~ When a flavor has or inherits more than onc method for an operation, they must be called in
a specific sequence. The flavor system creates a function called a combined method which calls all
the user-specificd methods in the proper order. Invocation of the operation actually calls the
combined method, Wthh is responsible for calling the others.

- For example, if the flavor foo has components and methods as follows:

(defflavor foo () (foo-mixin foo-base))
(defflavor foo-mixin () (bar-mixin))
:before

(defmethod (foo :hack) ...)

(defmethod

(defmethod
(defmethod

(defmethod
(defmethod

_ (defmethod

(defmethod

(foo :after

(foo-mixin

(foo-mixin :

(bar-mixin
(bar-mixin

(foo-base
(foo-base

:hack)
;after

:hack). ..

:before
after

:before
thack)

-)

/
:hack)

<hack)

:hack)
-)

ced)
:hack)

..)

$)

)

then the combined method generated looks like this (ignoring many important details not related
to this issue):

PS:KILMANDFILAVOR.TEXT.134 8-JUN-84

Method Combination ’ 434 I isp Machine Manual

(defmethod (foo :combined :hack) (&rest args)

(apply #’(:method foo :before :hack) args)

(apply #°(:method foo-mixin :before :hack) args)

(apply #'(:method bar-mixin ;before :hack) args)

(multiple-value-progl '

' (apply #'(:method bar-mixin :hack) args)
(apply #'(:method foo-base :after :hack) args)
(apply #'(:method foo-mixin :;after :hack) args)
(apply #’(:method foo :after :hack) args))).

This cxample shows the default style of method combination, - the onc described in the
introductory parts of this chapter, called :daemon combination.. Fach stylc .of method
combination dcfines which method types it allows, and what they mcan. :daemon combination
accepts method types :before and :after, in addition to wniyped methods; then it crcates a
combined method which calls all the :before methods, only one of the untyped methods, and
then all the :after methods, returning the value of the untyped method.. The combined method is
constructed by a function much like a macro’s expander function, and the precise technique used
to create the combined method is what gives :before and :after their meaning.

Note that the :before mcthods are called in the order foo, foo-mixin, bar-mixin and foo-
base. (foo-base does not have a :before method, but if it had one that onc would be last.)
This is the standard ordering of the components of the flavor foo (see page 412); since it puts
the base flavor last, it is called :base-flavor-last ordering. The :after methods are called in the
opposite order, in which the base flavor comes first. This is called :base-flavor-first ordering.

Only one of the untyped mecthods is used; it is the one that comes first in :base-flavor-last
ordering. An untyped method used in this way is called a primary method.

Other styles of method combination define their own method types and have their own ways
of combining them. Use of another style of method combination is requested with the :method-
combination option to defflavor (scc page 429). Here is an cxample which uses :list method
combination, a style of combination that allows :list methods and untyped methods:

PS:<I.MANDFLAVOR.TEXT.134 : 8-JUN-84

1isp Machine Manual - ' 435 Method Combination

(defflavor foo () (foo-mixin .foo-base))
(defflavor foo-mixin () (bar-mixin))
(defflavor foo-base () ()
(:method-combination (:1ist :base-flavor-last :win)))

(defmethod (foo :1ist :win) ...)
(defmethod (foo :win) ...)

(defmethod (foo-mixin :1ist :win) ...)

(defmethod (bar-mixin :list :win) ...)
~ (defmethod (bar-mixin :win) ...)

(defmethod (foo-base :win) ...)
- yiclding the combined method

(defmethod (foo :combined :win) (&rest args)

- (1ist '
(apply #'(:method foo :1ist :win) args)

(apply #’(:method foo-mixin :list :win) args)

(apply #°'(:method bar-mixin :1ist :win) args)

(apply #'(:method foo :win) args) '

(apply #’(:method bar-mixin :win) args)

(apply #'(:method foo-base :win) args)))

“The :method-combination option in the defflavor for foo-base causes :ist mcthod
combination to be used for the :win operation on all flavors that have foo-base as a component,
including foo. The result is a combined method which calls all the methods, including all the
untyped methods rather than just one, and makes a list of the values they return. “All the :ist
methods are called first, followed by all the untyped methods: and within cach type, the :base-
flavor-last ordering is used as specified. 1f the :method-combination option said :base-favor-
first, the relative order of the :list methods would be reversed, and so would the untyped
methods, but the :list methods would still be called before the untyped oncs. :base-flavor-last
is more often right, since it means that foo’s own methods are called first and si:vanilla-flavor’s
methods (if it -has any) are called last.

A few specific method types, such as «default and :around, have standard meanings
independent of the style of method combination, and can be used with any style. They are
described in a table below. '

Here are the standardly defined method combination styles. -

:daemon The default style of method combination. All the :before methods are called,
: then the primary (untyped) method for the outermost flavor that has onc is called,
then all the :after methods are. called. - The valuc rctumed is the value of the
primary method.
:daemon-with-or
Like the :daemon method combination style, except that the primary method is

PS:<I.MANDFLAVOR.TEXT.134 | 8-JUN-84

“Method Combination . , 436 Lisp Machine Manual

wrapped in an :or special form with all :or mcthods. Multiple valucs can be
returned from the primary method, but not from. the :or methods (as in the or
special form). This produces code like the following in combined methods:
(progn (foo-before-method)
(multiple-value-progl
(or (foo-or-method)
(foo-primary-method))
(foo-after-method)))

This is uscful primarily for flavors in which a mixin introduces an alternative to
the primary method. Fach :or mecthod gets a chance to run before the primary
method and to decide whether the primary -method should be run or not; if any
:or method returns a non-nit value, the primary method is. not run (nor arc the
rest of the :or methods). Note that the ordering of the combination of the :or
methods is controlled by the order keyword in the :method-combination option.

:daemon-with-and

Like :daemon-with-or cxcept that it combines :and methods in an and special
form. 'The primary method is run only if all of the :and mcthods return non-nil
values. '

:daemon-with-override

:progn

or

:and

:append

Like the :daemon mcthod combination style, except an or special form is
wrapped around the entire combitied method with all :override typed methods
before the combined method. This differs from :daemon-with-or in that the
‘before and :after dacmons arc run only if none of the :override methods returns
non-nil. The combined method looks something like this:
(or (foo-override-method)
(progn (foo-before-method)
(foo-primary-method)
(foo-after-method)))

- Calls all the methods inside a progn special form. Only untyped and :progn
methods are allowed. The combined method calls all the :progn methods and
then all the untyped methods. The result of the combined method is whatever the
last of the methods returns,

Calls all the methods inside an or special form. This means that each of the
methods is called in turn. Only untyped methods and :or mcthods are allowed;
the :or methods arc called first. If a method returns a non-nil-value, that value is
returned and none of the rest of the methods are called; otherwise, the next
method is called. In other words, cach method is given a chance to handle the
message; if it doesn’t -want to handle the message, it can return nil, and the next
method gets a chance to try.

Calls all the methods inside an and special form. -Only untyped mecthods and
:and methods are allowed. The basic idea is much like :or; sec above.

Calls all the methiods and appends the values together. Only untyped mcthéds
and :append methods are allowed; the :append methods are called first.

PS:<1.MAN>FLAVOR.TEXT.134 | 8-JUN-84

1isp Machine Manual ' 487 Method Combination

:nconc Calls all the methods and nconc’s the valucs - together. Only untyped methods
and :nconc nethods arc aflowed, ctc. . :

dist . Calls all the methods and returns a list of their returned valucs. Only untyped
methods and :list methods are allowed, ctc. :

“iinverse-list . Calls each method with one argument; these arguments are successive clements of
the list that is the sole argument to the operation. Returns no particular value.
Only untyped methods and :inverse-list methods arc allowed, ctc.

If the result of a :list-combined operation is sent- back with an :inverse-list-
combined operation, with the same ordering and with corresponding method
definitions, cach component flavor receives the value that came from that flavor.

:pass-on Calls cach method on the values returned by the preceeding one. The values
returned by the combined method are those of the outermost call. The format of
the declaration in the defflavor is: S
-(:method-combination (:pass-on (ordering . arglist))
.. operglion-names) :

where ordering is :base-flavor-first or :base-flavor-last. arglist may include the
&aux and &optional keywords.

Only untyped methods and :pass-on mcthods are allowed. The :pass-on
methods are called first.

:case With :case mecthod combination, the combined method automatically does a
selectq dispatch on the first argument of the operation, known as the
suboperation. Mcthods of type :case can be used, and ecach onc specifies one
suboperation that it applies to. If no :case mcthod matches the suboperation, the
primary method, if any, is called. .

Example:
(defflavor foo (a b) () A
(:method-combination (:case :base-flavor-last :win)))

This method handles (send a-foo :win :a):
(defmethod (foo :case :win :a) ()

a)

This method handles (send a-foo :win ﬁa"’b):
(defmethod (foo :case :win :as*b) ()

(+ ab))
This method handles (send a-foo :win :something-else):
(defmethod (foo :win) (suboperation)
(1ist 'something-random suboperation))

:case methods are unusual in that one flavor can have many :case methods for
the same operation, as long as they are for different suboperations.

PS:KLL.MAN>FLLAVOR.TEXT.134 . , B - 8-JUN-84 .

Mcthod Combination By ‘ ' 438 | Lisp Machine Manual -

“The »suhnpcralions :which-operations, -operation-handled-p, :send-if-handles
and :get-handler-for arc all handled automatically based on the collection of

:case mcthods that are present.

"Methods of type :or arc also allowed. ‘They arc called just before the brimary
method, and if onc of them returns a non-nil value, that is the value of the -

operation, and no more methods are callcd.

Here is a table of all thc method types recognized by thc stdndard styles of mecthod

combination.

(no type)

before .
- :after

default

or
:and

:override

If no typc is given to defmethod, a primary method is created. This is the most

common type of method.

Used for the before-dacmon and after-dacmon methods used by :daemon method
combination.

If there are no untyped methods among any of the flavors bcing combined, then
_ the :default mcthods (if any) are treated as if they were untypcd If there are any
untyped methods, the :default methods are ignored.

Typically a basc-flavor (sce page 431) defines some default methods for certain of
the operations understood by its family. When using the default kind of method
combination these default methods are suppressed if another component provides a
primary method.

Used for :daemon-with-or and :daemon-with- and method combmatlon The
:or methods are wrapped in an or, or the :and methods are wrapped in an and,
together with the primary method, between the :before and :after methods.

Allows the features of :or method combination to be used together with- daemons.
If you specify :daemon-with-override method combination, you may use
:override methods. The :override methods are exccuted first, until one of them
returns non-nil. If this happens, that method’s value(s) are returned and no more
methods are used.. If all the :override methods return nil, the :before, primary
and :after methods are executed as usual.

In typical usages of this feature, the :override method usually returns nil and does
nothing, but in ecxceptional circumstances it takes over the handling of the
operation. _

:or, :and, :progn, :list, :inverse-list, pass-on, :append, :nconc.

‘case

Each of these methods types is allowed in the method combination style of .the
same name. In those mcthod combination styles, thesc typed mecthods work just
like untyped ones, but all the typed mcthods are called before all the untyped
ones. :

.case methods are used by :case method combination.

These method types can be used with any method combination style; they have standard
mcanings indepenident of the method combination style being used. :

PS:KLLMAN>FLAVOR.TEXT.134 : , 8-JUN-84

Lisp Machine Manual 439 : Mecthod Combination

:around - An :around mcthod is able to control when, whether and how the remaining

S methods arc executed. It is given a continuation that is a function that will
exccute ‘the remaining methods, and has complete responsibility for calling it or
not, and deciding what arguments to give it.” For- the simplest behavior, the
arguments should be the operation name - and operation arguiments that the
:around method itself received; but sometimes the whole purpose of the :around
method is to modify the arguments before the remaining methods see them. '

The :around method receives three special arguments before the arguments of the
operation itself: the continuation, the mapping-table, and the original-argument-
list. "The last is a list of the operation name and operation arguments. ‘'The
simplest way for the :around method to invoke the remaining methods is to do
(1expr-funcall-with-mapping-table
continuation. mapping-table :
original-argument-list)
In general, the continuation should be called with cither funcau with-mapping-
table or lexpr-funcall-with-mapping-table, providing the continuation, the
mapping-table; and the operation name (which you know because it is the same as
in the defmethod), followed by whatever arguments the remaining methods are
- supposed to see.

(defflavor foo-one-bigger-mixin () ())'

(defmethod (foo-one-bigger-mixin :around :set-foo)
(cont mt ignore new-foo)
(funca11 with- mapp1ng table cont mt :set-foo
(1+ new-fo00)))

is a mixin which modifies the :set-foo operation so that the value actually used in
it is one greater than the value specified in the message.

sinverse~around _
linverse~around methods work like :around methods, but they are invoked at a
different time and in a different order.

With :around methods, those of earlier flavor components components are
invoked first, starting with the instantiated flavor itself, and those of earlier
components arc invoked within them. :inverse-around methods arc invoked in
the opposite order; si:vanilla-flavor would come first. Also, all :around methods
and wrappers are invoked inside all the iinverse-around methods.

For example, the :inverse-around :init method for tv:isheet (a base flavor for all
window flavors) is used to handle the init keywords :expose-p and :activate-p,
which cannot be handled correctly until the window is entircly sct up. They are
handled in this method becausc it is guaranteed to be the first method invoked by
the :init operation on any flavor of window (becausc no component of tv:sheet
defines an :inverse-around mcthod for this opcration). All the rest of the work
of making a new window valid takes placc in this method’s continuation; when
the continuation rcturns, the window must be as valid as it will ever be, and it is

PS:{(LMAND>FLAVOR.TEXT.134 ’ : 8-JUN-84

~ Method Combination _ : 40 Lisp Machine Manual

ready to be exposed or activated.

:wrapper Used internally by defwrapper.

Note that if onc flavor defines both a wrapper and an :around mcthod for the
same operation, the :around mcthod is exccuted inside the wrapper.

:combined Uscd internally for automatically-gencrated combined methods.

‘The most common form of combination is :daemon. Onc thing may not be clear: when do
you ‘usc a :before dacmon and when do you use an :after dacmon? In some cases the primary
“method performs a clearly-defined action and the choice is obvious: :before :launch-rocket puts
in the fucl, and :after :launch-rocket turns on the radar tracking. '

In other cases the choice can be less obvious. Consider the :init message, which is sent to a
newly-created object. To decide what kind of dacmon to usc, we obscrve the order in which
dacmon methods are called. First the :before dacmon of the instantiated flavor is called, then
before dacmons of successively more basic flavors are called, and finally the :before dacmon (if
any) of the base flavor is called. Then the primary method is called. After that, the :after
dacmon for the base flavor is called, followed by the :after dacmons at successively less basic
flavors.

Now, if there is no interaction among all these: methods, if their actions are completely
independent, then it doesn’t matter whether you use a :before dacmon or an :after daemon. -
There is a difference if there is some interaction. The interaction we arc talking about is usually
done through instance variables; in general, instance variables are how the methods of different
component flavors communicate with each other. In the case of the :init operation, the init-plist
can be used as well. The important thing to remember is that no method knows beforchand.
which other flavors have been mixed in to form this flavor; a method cannot make any
assumptions about how this flavor has been combined, and in what order the various components
are mixed. '

This means that when a :before daemon has run, it must assume that none of the mcthods
for this operation have run yet. But the :after daemon knows that the :before dacmon for each
of the other flavors has run. So if one flavor wants to convey information to the other, the first
one should “transmit” the information in a :before daemon, and the sccond one should “receive”
it in an :after dacmon. So while the :before daemons are run, information is “transmitted”; that
is, instance variables get set up. Then, when the :after daecmons are run, they can look at the
instance variables and act on their values.

In the case of the :init method, the :before dacmons- typically sci up instance variables of the
object based on the init-plist, while the :after dacmons actually do things, relying on the fact that
all of the instance variables have been initialized by the time they are called.

The problems become most difficult when you are creating a network of instances of various
- flavors that are supposed to point to each other. For example, suppose you have flavors for
“buffers” and “streams”, and each buffer should be accompanicd by a strcam. If you create the
strcam in the :before :init method for buffers, you can inform the stream of its corresponding
buffer with an init keyword, but the stream may try sending messages back to the buffer, which
is not yet ready to be used. If you create the stream in the :after :init method for buffers, there

PS:<1.MAN>FLAVOR TEXT.134) | | 8-JUN-84

Lisp Machine Manual o : . 441, Implementation of Flavors

will be no problem with strcam creation, but some other :after :init methods of other mixins may
have: run and made the assumption that there is to be no stream. The only way to guarantee
success is to create the stream in a :before method and inform it of its associated buffer by
sending it a message from the buffer's :after :init mcthod. This scheme—creating associated
‘objects in :before mctheds but linking them up .in :after methods—often avbids‘ problems,
because all the various associated objects used by various mixins at Icast exist when it is time to
make other objects pomt to them. : :

Since flavors are not hicrarchically organized, thc notion of lcvclq of abstriction is nol Tigidly
applicable. - However, it remains a uscful way of thinking about systcms

21.12 lmplementation of Flavors

An object that is an instance of a flavor is implemented using the data type dtp-instance.
The representation is. a structure whose first word, tagged with dtp-instance-header, points to a
structure (known to the microcode as an “instance descriptor™) containing the internal data for the
flavor. The remaining words of the structure are value cells containing the values.of the instance
variables. The instance descriptor is a defstruct that appears on the siflavor property of the
flavor name. It contains, among other things, the name of the flavor. the size of an instance, the
table of methods for handling operations, and information for accessing the instance variables.

defflavor creates such a data structure for each flavor, and links them together according to
the dependency relationships between flavors. :

A message is sent to an instance simply by calling it as a function, with the first argument
being the operation. The microcode binds self to the object and binds those instance variables
that are supposed to be special to the value cells in the instance. Then it passes on the operation
and arguments to a funcallable hash table taken from the flavor-structure for this flavor.

"When the funcallable hash table is called as a function, it hashes the first argument (the
operation) to find a function to handle the operation and an array called a mapping table. The
variable sys:self-mapping-table is bound to the mapping table, which tclls the microcode how
to access the lexical instance variables, those not defined to be special. Then the function is
called. If there is only onc method to be invoked, this function is that method; othcrwise it is
an automatically-generated function called the combined method (sce page 413), which calls the
appropriate methods in the right order. If there are wrappers, they are incorporated into this
combined method. :

The mapping table is an array whose elements correspond to the instance variables which can
be accessed by the flavor to which the currently exccuting method belongs. - Each clement contains
the position in self of that instance variable. This position varies with the other instance variables
and component flavors of the flavor of self. '

Each time the combined method calls another method, it scts up the mapping table required
by that mecthod—not in gencral the same one which the combined mcthod itself uses. The
mapping tables for the called methods are extracted from the array leader of the mapping table
uscd by the combined method, which is kept in a local variable of the combined method’s stack
frame while sys:self-mapping-table is set to the mapping tables for the component methods.

PS:<L.MAN>FI.AVOR.TEXT.134 | 8-JUN-84

Implementation of Flavors ' 442 Lisp Machine Manual-

sys:self-mapping-table - S » Variable

Holds the current mapping table, which tells the running flavor method where in self to

find cach instance variable.

Ordered instance variables arc referred to directly without going through the mapping table.
This is a little faster, and reduces the amount of spacc nceded for mapping tables. 1t is also the

reason ‘why compiled code contains the positions of the ordered instance variables and must be

recompiled. when they change.

21.12.1 Order of Definition

'There is a certain amount of freedom to the order in which you do defflavor’s, defmethod’s,
and défwrapper's. 'This freedom is designed to make it casy to load programs containing complex
flavor structures without having to do things in a certain order. It is considered important that
not all the mcthods for a flavor need be defined in the same file. Thus the partitioning of a
program into files can be along modular lincs.

The rules for the order of definition arc as follows. |

Before a mc_:thod can be defined (with defmethod or defwrapper) its flavor. must have been
defined (with defflavor). This makes sense because the system has to have a place to remember
the method, and because it has to know the instance-variables of the flavor if the method is to be
compiled.

When a flavor is defined (with defflavor) it is not nccessary that all of its component flavors
be defined already. This is to allow defflavor’s to be spread between files according to the
modularity of a program, and to provide for mutually-dependent flavors. Methods can be defined
 for a flavor some of whose component flavors are not yet defined; however, in certain cases

_compiling those methods may produce a warning that an instance variable was declared special
(because the system did not realize it was an instance variable). If this happens, you ‘should fix
the problem and recompile. ' : '

The methods adtomatically gencrated by the :gettable-instance-variables and :settable-
instance-variables defflavor options (see page 424) are generated at the time the defflavor is
done. '

The first time a flavor is instantiated, or when compile-flavor-methods is done, the system
looks through all of the component flavors and gathers various information. At this point an error
is signaled if not all of the components have becn defflavor'ed. This is also the time at which
certain other errors are detected, for instance lack of a required instance-variable (see the

‘required-instance-variables defflavor option, page 425). The combined methods (see page 413)

are generated at this time also, unless they already exist.

After a flavor has been instantiated, it is possible to make changes to it. Such changes affect

all cxistit_lg instances if possible. This is described more fully immediately below.

PS:<I.MAN>FILAVORTEXT.134 - 8-JUN-84

I isp Machine Manual | : 43 Useful Editor Commands

21.12.2 Changinga ¥ lavor |

You can change anything about a flavor at any time. You can change the flavor's general
attributes by doing another defflavor with the same name. You can add or modify methods by
doing defmethod’s. 1f you do a defmethod with the same flavor-name, operation (and
suboperation if any), and (optional) method-type as an existing method, that method is replaced
by the new definition. You can remove a method with undefmethod (sce page 419).

‘These changes always propagate to all flavors that depend upon the changed flavor. ‘Normally
the system propagates the changes o all existing instances of the changed flavor and its dependent
flavors. However, this is not possible when the flavor has been changed so drastically that the old
instances would not work properly with the new flavor. This happens if you change the number.
of instance variables. which changes the size of an instance. It also happens if you change the
order of the instance variables (and hence the storage layout of an instance), or if you change the
component flavors (which can change scveral subtle aspects of an instance). The system does not
keep a list of all the instances of cach flavor, so it cannot find the instances and modify them to

~ conform to the new flavor definition. Instead it gives you a warning message, on the *error-
output* strcam, to the effect that the flavor was changed incompatibly and the old instances will
‘not get the new version. The system Jeaves the old flavor data-structure intact (the old instances
continuc to point at it) and makcs a new onc t0 contain the new version of the flavor. 1f a less
drastic change is made, the system modifies the original flavor data-structure; thus affecting the
old instances that point at it. However, if you redefine methods in such a way that they only
work for the new version of the flavor, then trying to use those methods with the old instances
won’t work. : -

21.13 Useful Ed‘ito'r Commands

This section bricfly documents some editor commands that are useful in conjunction with
flavors. :

Meta-. : _
" The Meta-. (Edit Definition) command can find the definition of a flavor in the same
way that it can find the definition of a function.

Edit Definition can find the definition of a method if you give it a suitable function spec
- starting with :method, such as (:method tv:sheet :expose). The keyword :method may
be omitted if the definition is in the editor already. Completion is available on the flavor
" name and operation name, as usual only for definitions loaded into the editor.

Meta-X Describe Flavor :

Asks for a flavor name in the mini-buffer and describes its characteristics. When typing
the flavor name you have completion over the names of all defined flavors (thus this
command can be used to aid in guessing the name of a flavor). The display produced is
mouse sensitive where there are names of flavors and of methods; as usual the right-hand
mouse button gives you a menu of editor commands to apply to the name and the left-
hand mouse button does one of them, typically positioning the editor to the source code
for that name.

- Meta-X List Methods
Meta-X Edit Methods

PS:<LMAN>FLLAVOR.TEXT.134 : 8-JUN-84

Useful Editor Commands . - ' 44 : - Lisp Machine Mhmml

Asks you for an operation in the mini-buffer and lists all the flavors that have a method
for that operation. You may type in the operation name, point (o it with the mouse, or
let it default to the operation of the message being sent by the Lisp form the cursor is
on. List Methods produces a mousc-sensitive display allowing you to cdit selected -
methods or just to sec which flavors have mcthods, while Edit Methods skips the display '
and proceeds d:rcctly to cditing. thc methods. -

r

As usual with this type of command, the cditor cnmnmnd Control-Shift-P advanccs the
editor cursor to the next method in the list, reading in its source file if nccessary. Typing
Control-Shift-P, while the display is on-the screen, cdits the first method.

n addition, you can find a copy of the list in the cditor buffer *Possibilities®. While in
that buffer, the command Control-/ visits the definition of thc method described on the
line the cursor is pointing at. :

These techniques of movmg through the ob_]ccts listed apply to all the fo]lowmg
- commands as well, ' _

Meta-X List Combined Methods

Meta- X Edit Combined Methods
Asks you for an operation name and a flavor in two mini- -buffers and lists all the methods
that would be called to handle that operation for an instance of that flavor.

List Combined Methods can be very uscful for telling what a flavor will do in response
to a message. It shows you the primary method, the dacmons, and the wrappers and lets
you see the code for all of them; type Controt-Shift-P to get to successive ones. Il

Meta-X List Flavor Components
Meta-X Edit Flavor Components
Asks you for a ﬂavor and lists or begins visiting all the flavors it depends on,

Meta- X List Flavor Dependents
~ Meta-X Edit Flavor Dependents :
Asks you for a flavor and lists or begins visiting all the flavors that depend on it.

Meta-X List Flavor Direct Dependents
Meta-X Edit Flavor Direct Dependents '
- Asks you for a flavor and lists or begins visiting all the flavors that dcpend direetly on it.

Meta-X List Flavor Methods
Meta-X Edit Flavor Methods
Asks you for a flavor and lists or begins visiting all the methods defined for that flavor.

" (This does not include methods inherited from its component flavors.)

PS:<L.MANYFIAVOR TEXT.134 : | " gJUN-84

Lisp Machine Manual .~ 445 ' ' ~ Property List Operations

21.14 Property List Operations

It is often uscful to associate a property list with an abstract object. for the same reasons that
it is ‘uscful to have a property list associated with a symbol. This section describes a mixin flavor
that can be used as a component of any new flavor in order to provide that new flavor with a
property list. For more details and examples, sce the general discussion of property Jists (section
5.10, page 113). The usual property list functions (get, putprop, ctc.) all work on instances by
sending the instance the corresponding message. : -

si:property-list-mixin Flavor
This mixin flavor provides the basic operations on property lists.

:get property-name &optional default ' Operation on si:property¥|ist—mixin
Looks up the object's property-name property. If it finds such a property, it returns the
value; otherwise it returns default '

:getl property-naine-list : Operation on si:property-list-mixin
Like the :get operation, cxcept that the argument is a list of property names. The :gefl
operation scarches down the property list until it finds a property whose property name is
one of the clements of property-name-list. 1t returns the portion of the property list
begining with the first such property that it found. If it docsn’t find any, it returns nil.

sputprop value property-name . Operation on si:property-list-mixin
Gives the object an properly-name property of value.
(send object :set :get property-name value)
also has this effect.

sremprop property-name Operation on si:property - list-mixin
Removes the object’s property-name property, by splicing it out of the property list. It
returns one of the cells spliced out, whose. car is the former value of the property that
was just removed. If there was no such property to begin with, the value is nil.

:get-location-or-nil property-name Operation on si:property-list-mixin
:get-location property-name Operation on si:property-list-mixin
Both return a locative pointer to the cell in which this object’s property-name property is
stored. If there is no such property, :get-location-or-nil returns nil, but :get-location
adds a cell to the property list and initialized to nil, and a pointer to that cell is rcturned.

:push-property value property-name . Operation on si:property-list-mixin
The property-name property of the object should be a list (note that nil is a list and an
absent property is nil). This operation sets the property-name property of the object to a
list whose car is value and whose cdr is the foxmer property-name property of the list.
This is analogous to doing
(push value (get object property-name))
Sce the push specnal form (page 88).

PS:<1.MAN>FLAVOR TEXT.134 | . 8-JUN-84

~ Printing Flavor Instances Readably 4“6 . Lisp Machine Manual

:prope r_ty-'li_s't N ' ‘ ' Operation on si:property--lisi—mixin'
Returns the list of alternating property names and valucs that implements the property list.

:property-l1ist-location Operation on si:property-list-mixin
Returns a locative pointer. to the cell in the instance which holds the property list data.

:set-property-list lix Operation on siproperty-list-mixin
Sets the list of alternating property names and values that implements the property list to-
list. So docs
(send object :set :property-list list)

~sproperty-list liss ’ Init option for si:property-list-mixin
This initializes the list of altcmalmg property names and values that implements the
propcrty list to /ist.

21.15 Printing Flavor Instances Readably

A flavor instance can print out so that it can be rcad back in, as long as you give it a :print-
self method that produccs a suitable printed representation, and provide a way to parse it. The
convention for doing this is to print as '

-#cflavor-name additional-data>
and make sure that the flavor defines or inherits a :read-instance mcthod that can parse the
additional-data and return an instance (sec page 527). A convenient way of doing this is to use
si:print-readably-mixin.

si:print-readably-mixin - -~ ~ Flavor
Provides for flavor instances to print out using the # c syntax, and also for reading things
that were printed in that way. '

:reconstruction-init-plist Operation on si:print-readably-mixin
When you use si:print-readably-mixin, you must define the operation :reconstruction-
init-plist. This should return an alternating list of init options and values that could be
passed to make-instance to create an instance “like” this onc. Sufficient similarity is
defined by the practical purposes of the flavor’s implcmentor.

21.16 Copying Instances

Many people have asked “How do I copy an instance?” and have expressed surprise when
told that the flavor system docs not include any built-in way to copy instances. Why isn't there
just a function copy-instance that creates a new instance -of the same flavor with all its instance
variables having the same values as in the original instance? This would work for the simplest use
of flavors, but it isn’t good cnough for most advanced uses of flavors. A number of issues are
raised by copying:

* Do you or do you not send an :init mcssage to the new ms(ance” If you do, what init-plist
options do you supply? -

* 0f the instance has a property list, you should copy the property list (c.g. with copylist) so
that putprop or remprop on one of the instances does not affect the properties of the other

PSKLLMAN>FLAVOR.TEXT.134 ’ R : 8-JUN-84

Lisp Machine Manual : 447 ' Copying Instances

instance. _
* |f the instance is a pathname, the concept of copying is not even meaningful. Pathnames are

interned, which mecans that there can only bc onc pathname ()b_]CCt with any given sct of
instance-variable valucs. '

Ve

* If the instance is a stream connccted to a nctwork, some of thc instance \drmblcs represent
an agent in another host clsewhere in the network. Should the copy talk to the same agent,
or should a new agent be constructed for it?

* If the instance is a stream connected to a file, should copying the stream make a copy of the
file or should it make another stream open to the same file? Should the choice depend on
p ; C dep
whether the file is open for input or for output?

In general, you can see that in order to copy an instance onc must understand a lot about
the instance. One must know what the instance variables mean so that the values of the instance
variables can be copicd if nccessary. One must understand what rclations to the external
environment the instance has so that new relations can be established for the new instance. One -
must even understand what the general concept ‘copy’ means in the context of this particular '
instance, and whether it means anything at all. - :

Copying is a generic operation, -whose implementation for -a particular instance depends on
detailed knowledge relating to that instance. Modularity dictates that this knowledge be contained
in the instance's flavor, not in a “general copying function”. Thus the way to copy an instance is
to send it a message, as in (send object :copy). It is up to you to implement the operation in a
suitable fashion, such as

(defflavor foo (a b ¢) ()
(:inittable-instance-variables a b))

(defmethod (foo icbpy) ()
(make-instance 'foo :a a :b b))

The flavor system chooses not to provide any default method for copying an instance, and
does not even suggest a standard name for the copymg message, because copying involves so
many semantic issues.

If a flavor supports the :reconstruction-init-plist operation, a suitable copy can be made by
. invoking this operation and passing the result to make-instance along with the flavor name. This
is because the definition of what the :reconstruction-init-plist operation should do requires it to
address all the problems listed above. Implementing this operation is up to you, and so is
making sure that the flavor implements sufficient init keywords to transmit any information that is
to be copied. Sce page 446, ' '-

PS:<L.MANSFLAVOR.TEXT.134 - . 8JUN-84

The 170 System - » _ - 448 L Lisp Machine Manual

22. The 1/0 System
['

Zctalisp ‘provides a powerful and flexible system for performing input. and output o peripheral
“devices. Device independent 1/0 is generalized in the concept of an 170 stream. A stream is a
source or sink for data in. the form of characters or integers; sources arc called input streams and
sinks arc called output streams. A strcam may be capable of use in cither dircction, in . which -
casc it is a bidirectional stream. In a fow unusual cascs, it is uscful to have a ‘strcam’ which
supports ncither input nor output; for example, opening a file with direction :probe returns onc
(page 583). Strcams on which characters are transferred are called character streams, and arc used
more often than binary streams, which usually transfer integers of type (unsigned-byte #n) for
some n. :

Streams automatically provide a modular separation between the program which implements
the stream and the program which uscs it, becausc streams obey a standard protocol. 'The stream
protocol is a special case is based on the general message passing protocol: a stream operation is
invoked by calling the strcam as a function, with a first argument that is a keyword and identifies
the 170 operation desired. (such as, :tyi to read a character) and additional arguments as that
operation calls for them. The strecam protocol consists of a particular sct of operation names and
calling conventions for them. It is documented in section 22.3, page 459.

Many programs do not invoke the strcam opcrations dircctly; instcad, they call standard 1/0
functions which then invoke stream operations. This is done for two rcasons: the functions may
provide useful services, and they may be transpoitable to Common Lisp or Maclisp. Programs
that use stream operations dircctly are not transportable outside Zetalisp. The 170 functions are
documented in the first sections of this chapter. -

The generality of the Zetalisp 1/0 stream comes from the fact that 170 operations on it can
invoke arbitrary Lisp code. For example, it would be very simple to implement a2 "morse code”
stream that accepted character output and used beep with appropriate pauscs to ‘display’ it. How
to implement a stream is documented in section 22.3.12, page 474, and the following sections.

The most commonly used streams are windows, which read input from the keyboard and
dispose of output by drawing on the screen, file streams, editor buffer streams which get input
from the text in a buffer and insert output into the buffer, and string streams which do likewise
with the contents of a string. T :

Ariother unusual aspect of Lisp 170 is the ability to input and output. gencral Lisp objects,
represented as text. These are done using the read and related functions and using print and
related functions. They are documented in chapter 23.

PS:<L.MAN>IOS.TEXT.247 ‘ ' ‘ 8-J UN-84

Lisp Machine Manual ' : .449 ' Input I‘'unctions

22.1 Input Functions

The input functions read characters, lines, or bytes from an input stream. This argument is
called srream. M omitted or nil,- the current value of *standard-input*. This is the “default
input stream”,” which in simple use reads from the terminal keyboard. If the argument is t, the
current value of *terminal-io* is used; this is conventionally supposed to access “the user’s
terminal™ and nearly always reads from the keyboard in processes belonging to windows,

If the strecam is an interactive one, such as the terminal, the input is cchoed, and functions
which read morc than a single character allow cditing as well. peek-char cchocs all of the
characters that were skipped over if read-char would havc echoed them; the character not
removed from' the stream is not echoed cither.

When an input strcam has no more data to return, it reports end of file. Each strcam input
operation has a convention for how to do this. The input functions accept an argument eof~option
or two arguments eof-error and eof-value 1o tell them what to do if end of file is encountered
instcad of any input. The functions that take two eof -arguments arc the Common Lisp ones.
For them, end of file is an error if eoferror is non-nil or if it is unsupplied. If eof-error is nil,
then the function returns eof-value at end of file.

The functions which have one -argument called eof-option are from Maclisp. End of file causes
an crror if the argument is not supplied. Otherwise, end of file causes the function to return the
argument’s value. Note that an eofoption of nil means to rcturn nil if the end of the file is
reached; it is not equivalcnt to supplying no eofoption.

'sys end of-file (error) ‘ o Condition
All errors signaled to report end of ﬁle possess this condition name.

The :stream operation on the condmon instance returns the strcam on which end of file
was reached.

22.1.1 String Input Functions

read-11ine &optional stream (eof-errorpt) eof-value ignore options
Reads a line of text, terminated by a Return. It returns the linc as a character string,

without the Return character that ended the line. The argument ignore must be accepted
for the sake of the Common Lisp specifications but it is not used.

- This function is usually used to get a line of input from the user. If rubout processing is
happening, then options is passed as the list of options to the rubout handler (sce section
22.5, page 500).

There is a second value, t if the line was terminated by end of file.

- PSKLMAND>IOS. TEXT.247 - o - 8-JUN-84

~ Input Functions 450 Lisp Machine Manual

readline &opu(mal siream — eof-option options
Like read-line but uscs the Maclisp convention for spccnfymg what to do dbOUl end of
file. ‘This function can take its first two arguments in the other order, for Maclisp
compatibility only; sce the note in section 22.1.3., page 451,

readline-trim &optmnal stream eof-option options
‘This is like readline except that lcadmg and trailing spdccs and tabs arc discarded -from
the value before it is returned.

readl 1ne—or-n1'| &optional stream eof-option options
Like readline-trim cxcept that nil is rcturned if the line is empty or all blank.

read-delimited-string &optional delimiter stream cof rubout-handler-options buffer-size

' Reads input from stream until a delimiter character is reached. then returns as a string all
the input up to but not including the delimiter. delimiter is cither a character or a list of
characters which all serve as delimiters. It defaults to the character End. stream- defaults
to the value of *standard-input®.

If eof is non-nil, then end of file on attempting to read the first character is an error.
Otherwise it just causes an empty string to be returned. End of file once at least one
character has been read is never an error but it does cause the function to rewurn all the
-input so far.

.

Input is done’using rubout handling and echoing if stream supports the :rubout-handier
operation. In this case, mboul-handler-opnons are passed as the options argument to that
operation.

bufffer-size specifies the size of string buffer to allocate initially.
The second value returned is t if input ended due to end of file.

The third value is the delimiter character which terminated input, or nil if input
terminated due to end of file. This character is currently represented as a fixnum, but
~ perhaps someday will be a character object instead.

22.1.2 Character-Level Input Functions

read-char &optional stream (eoferrorpt) eof-value
Reads a character from stream and returns it as a character object. End of file is an error
~ if eoferrorp is non-nil; otherwise, it causes read-char to return egf-value. This uses the
. tyi stream operation.

read-byte siream &optional (eof-errorpt) eof-value
Like read-char but returns an integer rather than a character Ob]CCt In strict Common
Lisp, only read-char can be uscd on charactcr strcams and only read-byte can be used
on binary streams.

PS:¢L.MANDIOS.TEXT.247 ~ | §-JUN-84

B

Lisp Machine Manual 451 Input Functions

read-char-no-hang &optional stream (cof-crrorpt) ecof-value
“Similar but returns nil immediately when no input is available on an intcractive strcam.
Uses the :tyi-no-hang stream operation (page 466).

unread-char char &optional stream ' : : _
Puts char back into stream so that it will be read again as the next input character. char
must be the same character that was read from stream most recently. It may not work to-
unrcad two characters in a row before reading again. Uses the tuntyi strcam operation
(page 461). '

peek-char peck-type &optional stream (eof-errorpt) eof-value
If peek-type is nil, this is like read-char cxcept leaves the character to be rcad again by
the next input operation.

If peek-type is t, skips whitespace characters and peeks at the first nonwhitespace
character. That character is the value, and is also left to be rercad.

_If peek-type is a character, reads input until that character is scen. That character is
unrcad and also returned. :

listen &optional stream
t if input is now available on stream. Uses the :listen operation (page 466). -

clear- input &optional siream
Discards any input now available on stream, if it is an interactive strcam. Uses the
:clear-input strcam operation (page 469).

22.1.3 Maclisp Compatibility Input Functions

These functions accept an argument eofoption to tell them what to do if end of file is
encountered instead of any input. End of file signals an error if the argument is not supplied.
Otherwise, end of file causcs the function to return the argument’s value. Note that an eofoption
of nil means to return nil if the end of the file is reached; it is not equivalent to supplying no
eof-aption.

The arguments stream and eofoption can also be given in the reverse order for compatibility
with old Maclisp programs. The functions attempt to figure out which way they were called by

~ . seeing whether cach argument is a plausible stream. Unfortunately, there is an ambiguity with

symbols: a symbol might be a stream and it might be an cof-option. If there are two arguments,
one being a symbol and the other being something that is a valid stream, or only one argument,
which is a symbol, then these functions interpret the -symbol as an eof-option instcad of as a
strcam. To force them to interpret a symbol as a stream, give the symbol an si:io-stream-p
property whose value is t. ' '

- PS:KI.MAN>IOS.TEXT.247 8-JUN-84

Input Functions ' " 45 o I.isp Machine Manual -

tyi &optional stream eof-option ’
" Reads one character from stream and returns it. ‘The character is cchoed if stream is
interactive, except that Rubout:is not cchoed. ‘The Control, Meta, clc. shifts ccho as C-,
M-, cc. - ' ' S

The :tyi stream operation is: preferred over the tyi function for some purposes. Note that '
it does not ccho. Sce page 46t ' '

(I'his function can take its arguments in the other order, for Maclisp compatibility only:
scc the note. above,) :

readch &optional streamn eof-option o : A

' Like tyi cxcept that instcad of returning a fixnum character, it returns a symbol whose
print name is the character. The symbol is interned in the current package. ‘This is just
Maclisp's version of character object. (This function can take its arguments in the other
order, for Maclisp compatibility only; sce the note above.) -

This function is provided only for Maclisp compatibility, since in Zectalisp never uses
symbols to represent characters in this way. ' '

tyipeek &optional peek-type stream eof-option . ,
This function is provided mainly for Maclisp compatibility; the :tyipeek strcam operation
is usually clearer (see page 461). -

What tyipeek does depends on the peek-type, which defaults to nil. With a peek-type of
nil, tyipeek returns the next character to be read from stream, without actually removing
it from the input stream. The next time input is done from stream the character will still

- be there; in general, (= (tyipeek) (tyi)) is t.

If peek-type is a fixnum less than 1000 octal, then tyipeek reads characters from stream
until it gets one cqual to peek-type. That character is not removed from the input stream.

If peek-type is t, then tyipeek skips over input characters until the start of the printed
representation of a Lisp object is reached. As above, the last character (the one that starts
an object) is not removed from the input stream. :

" The form of tyipeek supportcd by Maclisp in which peek-type is a fixnum not less than
- 1000 octal is not supported, since the readtable formats of the Maclisp reader and the
Zetalisp reader are quite different. - ‘ '

Characters passed over by tyipeek are echoced if stream is interactive.

PS:KI.MAND>IOS. TEXT.247 : 8-JUN-84

Lisp Machine Manual ' 453 - ' - Input Functions

22.].4 Interactive Input with l’rompting‘ -

prompt and-read fHpe-of-parsing format- slrmg &rest format-args
Reads some sort of object from *query-io*, parsing it according to I)p(’ of parsing, and
prompting by calling format using format-string and format-args.

nype-of-parsing is cither a keyword or a list starting with a keyword and continuing wnh a
. list of options and values, whose mcanings depend on the kcyword uscd.

Most keywords specify reading a line of input and parsing it in some way. The line can
be terminated with Return or End. Sometimes typing just End has a special meaning.

The keywords defined are

eval-sexp v
:eval-form This keyword dirccts prompt-and-read to accept a Lisp expression. It is
evaluated, and the value is returned by prompt-and-read.

If the Lisp cxpression is not a constant or quoted, the user is asked to
confirm the value it cvaluated to.

A default value can be specified with an option, as in

(:eval-sexp :default default)
Then, if the user types Space, prompt-and-read returns the defaull as
the first value and :default as the sccond value.

:eval-sexp-or-end

:eval-form-or-end
- Synonymously direct prompt-and- read to accept a Lisp cxpression or just
the character End. If End is typed, prompt-and-read rcturns nil as its
first value and :end as its second value. Otherwise, things proceed as for
:eval-sexp.

A default value is allowed, as in :eval-sexp.

:read
:expression Synonymously direct prompt-and-read to rcad an object and return it, -
with no evaluation.

:expressnon or-end ‘
Is like :expression except that the user is also a]lowcd to type Just End.
If he docs so, prompt-and-read returns the two values nil and :end.

:number Directs prompt-and-read to recad and return a number. It insists on
" getting a number, forcing the user to rub out anything clse. Additional
features can be specified with options:
(:number :input-radix radix :or-nil nil-ok-flag)
parscs the number using radix radix if the number is a rational. (By
default, the ambicnt radix is used). If nil-ok-flag is non-nil, then the user
is also permitted to type just Return or End, and then nil is returned.

PS:<L.MANDIOS. TEXT.247 8-JUN-84

[nput Functions ' 454 _’ ' Lisp Machine Manual

:decimal-number
:number -or-nil
:decimal-number-or-nil
Abbreviations for
' (:number :input-radix 10)
(:number :or-nil t)
(:number :input-radix 10 :or-nil t)

:date Dirccts prompt-and-read to rcad .a datc and time, terminated with:
Return or End, and return it as a universal time (sce page 777). It allows
scveral options: ‘ '

(:date :never-p never-ok :past-p past-required)
If past-required is non-nil, the date must be before the present time, or
the user must tub out and use a different date. 1f never-ok is non-nil, the
uscr may also type “never™; then nil is returned.

:date-or-never
past-date
:past-date-or-never
Abbreviations for
(:date :never-p t)
(:date :past-p t)
(:date :never-p t :past-p t)

.character = Dirccts prompt-and-read to read a single character and return a
' character object representing it.

:string - Directs prompt-and-read to read a line and return its contents as a
string, using readline. ' ‘

:string-or-nil Directs prompt-and-read to read a line and return its contents as a
string, using readline-trim. In addition, if the result would be empty, nil
is returned instead of the cmpty string.

:string-list Like :string-trim but regards the line as a sequence of input strings
scparated by commas. Each substring between commas is trimmed, and a
list of the strings is returned.

:keyword-list Like :string-list but converts cach string to a keyword by interning it in
the keyword package. The value is thercfore a list of keywords.

font-list Like :string-list but converts each string to a font name by interning it in
" the fonts package. The symbols must already exist in that package or the
~ user is required to retype the input.
:delimited-string :
Directs prompt-and-read to read a string terminated by specified
dclimiters. With '
(:delimited-string :delimiter delimiter-list
: :buffer-size size)
you can specify a list of delimiter characters and an initial size for the
buffer. The list defaults to (# \end) and the size to 100.

PS:<L.MANYIOS.TEXT 247 © §-JUN-84

Lisp Machine Manual _ ' 455 R o Input Functions

lhc work is donc by read dehmlted stnng (pdgc 450) The delimiters
and size are passed to that function. - - : -

:delimited~string - or-nil
like :delimited-string cxcept that nil is rctumcd mstcad of the empty
string if the first character read is a delimiter.

host Directs prompt-and-read to rcad a linc and interpret the contents as a
-network host name. The value returned is the host, looked up using
si:parse-host (page 576). An option is dcfined:
(:host :default default-name :chaos-only chaos-only)
If the line read is empty. the host named default-name is used. If chaos-
only is non-nil, - only hosts on the Chaosnet arc permitted input.

:host-list Like :host but regards the line as a sequence of host names separated by
commas. Each host name is lookcd up as in :host and a list of the
resulting hosts is returncd. -

:pathname-host '

Likc :host but uses fs:get-pathname-host to look up the host object
‘from its namec (page 577). Thus, you find hosts that can appear in
pathnames rather than hosts that arc on the network.

:pathname - Directs prompt-and-read to rcad a line and parse it as a pathname, .
merging it with the defaults. If the linc is cmpty, the default pathname is
used. These options are defined:

(:pathname :defaults defaults-alist-or-pathname
' :version default-version)
uses defaulis-alist-or-pathname as the defaults argument to fs:merge-
pathname-defaults, and default-version as the version argument to it.

:pathname-or-nil ‘
Is like :pathname, but if the user types just End it is interpreted as.
meaning “no pathname” rather than “use the default”. Then nil is
returned.

:pathname-list
Like :pathname but regards the line as a sequence of filenames separated
by commas. FEach filename is parsed and dcfaulted and a list of the
-resulting pathnames is returned.

fquery - Directs prompt-and-read to query the user for a fixed sct of alternatives,

using fquery. type-of-parsing should always be a list. whose car is :fquery

and whose cdr is a list to be passed as the list of opuons (fquery’s first

argument).

Example:

(prompt and-read ‘(:fquery
,format:y-or-p- options)
"Eat it? ")

is equivalent to :

(y-or-n-p "Eat it? ")

PS:<ILMAN>IOS.TEXT.247 : . 8-JUN-84

Qutput Functions - o 456 Lisp Machine Manual

This keyword is most uscful as a way to get to fquery when going
through an interface defined to call prompt-and-read.

22.2 Output Functions

‘These functions all take an optional argument called stream, which is where to send the
output. If unsupplied stream defaults to the value of *standard-output®. If stream is nil, the
value of *standard-output® (i.c. the default) is used. If it is t, the value of *terminal-io* is
used (i.c. the interactive terminal). This is all morc-or-less compatible with Maclisp, except that
instcad of the variable *standard-output* Maclisp has scveral variables and complicated rules.
FFor detailed documentation of streams, refer to section 22.3, page 459.

For print and the other cxpression output functions, sce scction 23.4, page 527.

-write-char char &optional stream

tyo char &optional stream - ,
- Outputs char to stream {using tyo) char may be an integer or a character object; in the
latter case, it is converted to an intcger before the :tyo. :

write-byte number &optional stream S ,
Outputs number to stream using :tyo. In strict Common Lisp, output to binary streams
can be donc only with write-byte and output to character strcams requircs write-char.
In fact, the two functions are identical on the Lisp Machine.

write-string string &optional stream &key (start 0) end
Outputs string (or the specified portion of it) to stream.

write-line stming &6ptiona]. stream &key (start0) end
- Outputs string (or the specified portion) to stream, followed by a Return character.

fresh-1ine &thional stream
Outputs a Return character to stream unless either
(1 noth_ingC has been output to stream yet, or
(2) the last thing output was a Return character, or '
(3) stream does not remember what previous output there has been.

This uses the :fresh-line stream operation. The value is t if a Return is output, nil if
nothing is output. '

- force- output &optional stream

Causes stream’s buffered output, if any, to be transmitted immediately. This uscs the.

:force-output strcam operation.

PS:KLL.MAND>IOS.TEXT.247 : ' 8-JUN-84

Lisp Muchinc Manual | . 457 ‘ Output Functions

finish- output &optional stream : :
Causes stream’s buffered output, if any, to be transmitted lmmcdmtcly, and waits uutll

- that is finished. Ihns uses the finish stream operation.

clear-output &optiunal siream :
Discards any output buffered in stream. 'This uses the :clear-output strcam operation.

terpri &optional stream :
Outputs a Return character to stream. 1t returns t for Maclisp compatibility. It is wise
not to depend on the value terpri returns.

cli:terpri &optional siream
Outputs a Return character to stream. Rcturns nil to meet Common Lisp specifications.
It is wise not to depend on the valuc cli:terpri returns.

The format function (sec page 483) is very useful for producing niccly formatted text. It can
‘do anything any of the above functions can do, and. it makes it casy to producc good “looking
messages and such. format can gencrate a string or output to a strcam.

stream-copy-until-eof from-strecam fto-stream &optional leader-size :
stream-copy-until-eof inputs characters from from-stream and outputs them to fo-stream,
until it reaches the end of file on the from-stream. For example, if x is bound to a
stream for a file opened for input, then (stream-copy-until-eof x *terminal-io®) prints
the file on the console.

If from stream supports the :line-in opecration and fo-stream supports the :line-out
opcration, then stream-copy-until-eof uscs those operations instead of :tyi and :tyo, for
greater efficiency. leader-size is passcd as the argument to the :line-in operation.

beep &optional beep-type (stream *terminal-io*)
This -function is intended to attract the user’s attention by causing an audible becp, or
flashing the screen, or something similar. If the stream supports the :beep operation,
then this function sends it a :beep message, passing becp-type along as an argument.
Otherwise it just causes an audible becp on the terminal. '

beep-type is a keyword which explains the significance of this beep. Users can redefine
beep to make different noises depending on the bccp type. The defined becp types are:

zwei:converse-problem
Used for the beep that is done when Converse is unable to send a

message.

zwei:converse-message-received
Used for the beeps done when a Converse message is received.

zwei:no-completion
Used when you ask for completion in the editor and the string does not
complete.

tv:notify Used for the beep donc when you get a notification that cannot be
printed on the selected window. :

PS:<1.MAN>IOS.TEXT.247 | 8-JUN-84

Output Functions . _ ' . 458 - Lisp Machine Manual

fquery - Used for the beep dunc by yes-or-no- p or by tquery with the :beep
option specified.

supdup:terminal-bell : : _ ,
Used for the beep rcqucstcd by thc rcmotc host bcmg used lhrough a
Supdup window.

nil Used whenever no other beep type apphcs
Ihc beep operation is dcscnbcd on page 467.

cursorpos &rest args
‘This function cxists primarily for Maclisp compatibility. - Usually it is preferable to send
the appropriate messages (sec the Window System manual).

cursorpos normally operates on the *standard-output* strcam; however, if the last
argument is a strcam or t (mcaning *terminal-io*) then cursorpos uses that strcam and

. ignores it when doing the operations described below. cursorpos only works on streams
that arc -capable of these opcrations, such as windows. A strcam is taken to be any
argument that is not a number and not a symbol, or that is a symbol other than mI with
a name more than one character long.

(cursorpos) => {line . column), thc current cursor position.

(cursorpos Ime colunm) moves the cursor to that posmon It returns t if it succeeds and
nil if it doesn’t. :

(cursorpos op) performs a special operation coded by op, and returns t if it succeeds
and nil if it doesn’t. op is tested by string comparison, it is not a kcyword symbol and
may be in any package.

Moves one space to the right,

Moves one space to the left.

Moves one line down.

Moves one line up.

Homes up (moves to the top left corner). Note that t as the last argument to
cursorpos is interpreted as a stream, so a stream must be specified if the t
operation is used. ' :

Home down (moves to the bottom left corner).

Advances to a fresh line. See the :fresh-line strecam operation.

Clears the window.

‘Clear from the cursor to the end of the window.

Clear from the cursor to the end of the line.

Clear the character position at the cursor.

‘b then k.

X R =0 O N N

PS:KLMANDIOS.TEXT.247 : - o 8-JUN-84

~ Lisp Machine Manual . 459 170 Streams

22.3 ‘I/O Streams

An I/0 stream, or just siream, is a sourcc and/or sink of characters or bytes. A sct of
operations is available with every stream; operations include things like “output a character” and
“input a character”. ‘The way to perform an operation on a stream is the same for all streams,
although what happens inside the stream is very different depending on what kind of a stream it
is. So all a program has to know is how to deal with strcams using the standard, generic
operations. A programmer creating a new kind of “stream only nceds to lmplemcnt the
dppmpndlc standard operations,

A stream is a message-receiving object. This means that it is something that you can apply to
arguments. The first argument is a keyword symbol which is the name of the operation you wish
to perform. ‘The rest of the arguments depend on what operation you are doing. Message-passing
and generic operations are cxplained in the flavor chapter (chapter 21, page 401).

Some strcams can only do input, some can only do output, and some can do both. Some
* operations arc only supported by some streams. Also, there are some operations that the stream
may not support by itsclf, but which work anyway, albeit slowly, because the stream default
handler can handle them. All strcams support the operation :which-operations, which returns a
list of the names of all of the opcrations that arc supported “natively” by the stream. (:which-
" operations itself is not in the list.)

-All input streams shpport all the standard input operations, and all output streams support all
the standard output operations. All bidircctional streams support both.

streamp object
According to Common Lisp, this rcturns t if object is a strcam. In the Lisp machine, a
stream is any object which can be called as a function with certain calling conventions. It
is theorctically impossible to test for this. However, streamp does return t for any of the
usual types of strcams, and nil for any Common Lisp datum which is not a strcam.

2231 Standard Streams

There are several variables whose values aré streams used by many functions in the Lisp
system. These variables and their uses are listed here. By convention, variables that are expected
to hold a strcam capable of input have names ending with -input, and similarly for output.
Those expected to hold a bidirectional strcam have names ending with -io. 'I‘he names with
“asterisks arc synonyms introduccd for the sake of Common Lisp.

standard-input® - ' Variable
standard-input ' Variable
In the normal Lisp top-level loop, - input is read from *standard-input* (that is, whatever
stream is the valuc of *standard-input*). Many input functions, mcludmg tyi and read,
take a strcam argument that defaults to *standard-input®.

PS:<I.MAN>IOS.TEXT.247 : ~ 8-JUN-84

170 Streams S 460 . : _ Lisp Machine Manual

sstandard-output® ‘ - Variable
standard-output : L e Variable
In the normal Lisp top-level loop, output is sent to *standard-output® (that is, "whatever -
stream is the value of *standard-output®). Many output functions, including tyo and

print, take a strcam argument that defaults to *standard -output*®.

*grror-output® _ » . Variable
error-output _ - Variable
The value of *error-output* is a strcam on which noninteractive error or warning
messages should be printed. Normally this is the same as *standard-output*, but
standard-output might be bound to a file and *error-output® left going to the

terminal,
debug-io | Variable
debug-1io . Variable

The value of *debug-io* is used for all input and output by the crror handler.
Normally this is a synonym for *terminal-io®. The value may be nil, which is- regarded
as cquivalent to a synonym for *terminal-io*. This feature is provided because users
often set *debug-io* by hand, and it is much casier to sct it back to nil afterward than
to figure out the proper synonym stream pointing to *terminal-io”*. :

query-1o - Variable

query-1io ' Variable
The valuc of *query-io* is a strcam that should be uscd when asking questions of the
user. The question should be output to this stream, and the answer read from it. The
reason for this is that when the normal input to a program may be coming from a file,
questions such as “Do you really want to delete all of the files in your dircctory??” should
be sent dircctly to the user, and the answer should come from the user, not from the
data file. *query-io® is used by fquery and related functions; sce page 769.

sterminal-io® o . Variable

terminal-io Variable
The value of *terminal-io* is the strcam that the program should use to talk to the user’s
console. In an interactive program, it is the window from which the program is being
run: 170 on this stream reads from the keyboard and displays on the screen. However,
in a background process that has no window, *terminal-io* defaults to a stream that
does not ever expect to be used. If it is used, perhaps by an error printout, it turns into
a background window and requests the user’s attention. '

*trace-output® ' ' | Variable
trace-output ' Variable

The value of *trace-output® is the stream on which the trace function prints its output.

*standard-input®, “*standard-output®, *error-output®, *debug-io*, *trace-output®, and
query-io arc initially bound to synonym strcams that pass all operations on to the strcam that
is the valuc of *terminal-io®*. Thus any operations performed on those strcams go to the
keyboard and screen.

PS:<LL.MAN>STREAM.TEXT.37 | - - 8-JUN-84

Lisp Much_inc Manual - ‘ 461 . ‘ 1/0 Slr‘éums

Most user programs should not change the value of *terminal-io*. “A program which wants
(for example) to divert output to a file should do so by binding the value of *standard-output®:
that way qucrics on *query-io*, dcbugging on *debug-io* and error messages sent to *error-
output* can still get to the user. by going through *terminal-io*, whlch is usually what is
dCbll‘C‘d

22.3.2 Standard Input Stream Opefations

:tyi &optional eof ' Operation on streams
The stream inputs onc character and returns it. For cxample, if the next character to be
rcad in by the strcam is a-'C’, then the form '
- (send s :tyi)
returns the value of #/C (that is, 103 octal). Note that the :tyi operation docs not ccho
the character in any fashion: it just does the input. The tyi function (scc page 452) docs
cchoing when reading from the terminal.

The optional eof argument to the :tyi operation tells the stream what to do if it gets to
‘the end of the file. If the argument is not provided or is nil, the strcam returns nil at
the end of file. Otherwise it signals a sys:end-of-file crror. Note that this is not the
same as the cof- -option argument to read, tyn and related functions.

The :tyi operation on a binary input stream returns a non-ncgative number, not
necessarily to be interpreted as a character. '

For some streams (such as windews), not all the input data are numbers. Some are lists,
called blips. 'The :tyi operation returns only numbers. If the next available input is not a
number, it is discarded, and so on until a number is reached (or end of filc is reached).

:any-tyi &optional eof Operation on streams
Like :tyi but returns any kind of datum. Non-numbers are not discarded as they would
be by :tyi. This distinction only makes a difference on strcams which can provide input .
which is not composcd of numbers; currently, only windows can do that.

:tyipeek &optional eof Operation on streams
Pecks at the next character or byte from the stream without discarding it. The next :tyi
or :tyipeek operation will get the same character. :

eof is the same as in the :tyi operation: if nil, end of file rcturns nil; otherwise, it
-signals a sys:end-of-file error. -

cuntyi char : Operation on streams ,
Unreads the character or byte char; that is to say, puts it back into thc input stream so
that the next :tyi operation will read it again. For cxample ’

(send s :untyi 120) :

(send s :tyi) ==> 120
This operatxon is used by read and any stream that supports :tyi must support :untyi as
wcll

PS:KLLMAN>STREAM.TEXT.37 ' | 8-JUN-84

170 Streams - o : o462 0 lisp Mnchinctvlzmual.

You are only allowed to wuntyi one character before doing a :tyi, and the character you
-untyi must be the last character read from the stream. ‘That is, :untyi can only be used

to back up onc character, not to stuff arbitrary data into the stream. You also can't

:untyi afier you have - pecked ahcad with :tyipeek since that does onc :untyi itsclf. Some

streams implement :untyi by saving the character, while others implement it by backing

up the pointer to a buffer.

:string-1in- eofoption siring &optional (start 0) end Operation on streans
Reads characters from the stream and stores them into the array string.. Many streams
can implement this far more cfficiently that repeated :tyi's. starr and end, if supplied,
delimit the portion of string to be stored into. 1f eofoption is non-nil then a sysiend-of-
file crror is signaled if end of file is reached on the strcam before the string has been
filled. If eofeption is nil, any number of characters before end of file is acceptable, even
no characters. :

If string has an drray lcadcr the - fill pomter is adjusted to start plus thc number of
characters stored into strmg

Two values are retumed the index -of ‘the next position in string to be filled, and a flag
that is non-nil if end of file was reached before smng was filled. Most callers do not
neced to look at either of these values.

string may be any kind of array, . not nccessarily a. string; this is uscful whcn reading
from a binary input stream.

:14ne-1n &optional leader Operation on streams
The stream should input one line from the mput source, and return it as a string with the
carriage return character stripped off. Contrary to what you might assume from its name,
this operation is not much like the readline function.

Many streams have a string that is used as a buffer for lines. If this string itself were
returned, there would be problems caused if the caller of the strcam attempted to save
the string away somewhere, because the contents of the string would change when the
next line was read in. In order to solve this problem, the string must be copied. On the
other hand, some streams don’t reuse the string, and it would be wasteful to copy it on
every :line-in operation. This problem is solved by using the leader argumcnt to :dine-in.
If leader is nil (thc default), the stream docs not bother to copy the string and the caller
should not rely on the contents of that string after the next operation on the stream. If
leader is t, the strcam doecs make a copy. If Jeader is a fixnum then the stream makes a
copy with an array leader leader elements long. (This is used by the cditor, which
represents lines of buffers as strings with additional information in- their array-lcaders, to
climinate an extra copy operation.)

If the stream reaches end of file while reading in characters, -it returns the characters it
has read in as a string and returns a sccond value of t. The cailer of the strcam should
therefore arrange to reccive the sccond value, and check it to sce whether the string
returned was a whole line or just the trallmg characters afier the last carriage return in the

input source.

PS:<L.MAN>STREAM.TEXT.37 | o 8-JUN-84

Lisp Muchil)c Manual : : 463 ’ |./0 Streams

This operation should be imp]cm‘cmcd by all input strcams whosc data are characters.

'str'lng 'I1ne in eof-option smng &optional (start 0) end Operation on streams
Reads characters, storing them in string, until siring is full or a Return character is read.
If input stops duc to a Return, the Return itself is not put in the buffer,

Thus, this operation is ncarly the same as :string-in, cxccpl that strmg in always kceps
going until the buﬁ‘cr is full or until end of file.

start and end, if supphcd. delimit thc portion of string to be stored into. If eofoption is
non-nil then a sys:end-of-file crror is signaled if end of file is rcached on the strcam
before the string has been filled. 1f eofoption is nil, any number of characters before end
of file is acceptable, even no characters.

If string has an array-leader, the fill pointer is adjustéd to start plus the number of
characters stored into string.

strmg may bec any kmd of array, not nccessarily a string; this is useful when readmg
from a binary input stream.
, Three values are returned:

(1) The index in string at which input stopped. This is the first index not stored in.

(2) tif input stoppcd due to end of file.

(3) tif the line is incomplete; that is, if a Return character did not terminate it.

:read-until-eof Operation on streams
‘Discards all data from the stream. until it is at cnd of file, or does anything ecise w1th the
same result.

:close &optional ignore ' Operation on streams

Releases resources associated with the stream, when it is not going to be used any more.
On some kinds of streams, this may do nothing. On Chaosnct streams, it closes the
Chaosnet connection, and on file streams, it closes the input file on the file server.

The argument is accepted for compatibility with :close on output streams,

22.3.3 Standard Output Stream Operations

1tyo char _ Operation on streams
The stream outputs the character char. For example, if s is bound to a stream, then the
form '

(send s :tyo #/B)
outputs a B to the stream. For binary output strcams, the argument is a non-negative
~number rather than specifically a character.

- PSiKLMAN>STREAM.TEXT.37 8-JUN-84

170 Streams ' I - 404 ' ' l,isp‘l\dzlchinc Manual

:fresh-11ne 3 ' ’ ' Operation on streams
Tells the stream- that lt should posmon itself at the beginning of a new line, If the stream
is alrcady at the beginning of a fresh line it should do nothing; otherwise it should
output a carriage return. If the strcam cannot tell whether it is at the bcgmnmg of a line,
lt should always output a carriage return, :

sstring-out (string 0) &optional- siart end - Operation on streams
Outputs the characters of string successively o stream. "This operation is provided for two
rcasons; first, it saves the writing of a loop which is used very often, and sccond, many
streams can perform this operation much more cfficiently than the cequivalent sequence of
‘tyo operations.

If start and end are not supplied, the whole string is output. Otherwise a substring is
output; start is the index of the first character to be output (defaulting to 0), and end is
onc greater than the index of the last character to be output (defaulting to the length of
the string). Callers need not pass these arguments, but all streams that handle :string-out
must check for them and interpret them appropriately.

:14ne-out srring &optional (start 0) end ‘ ‘ Qperation on streams
Outputs the characters of string successively to stream, then outputs a Return character.
start and end optionally specify a substring, as with :string-out. If the strcam doesn't
support :line-out itself, the default handler implements it by means of :tyo.

This operation should be implemented by all output strecams whose data are characters.

' -'close &optional/ maode Operation on streams

Closes the stream to make the output final if this is neccssary. The strcam becomes closed
and no further output opcrations should be performed on it. However, it is all right to
:close a closed stream. On many file server hosts, a file being written is not accessible to
be rcad until the output stream is closed.

This operation does nothing on streams for which it is not meaningful.

The mode argument is normally not supplied. If it is :abort, we are abnormally exiting
from the use of this stream. If the stream is outputting to a file, and has not been closed
already, the stream’s newly-created file is deleted; it will be as if it was never opened in
the first place. Any previously existing file with the same name remains undisturbed.

114 - Operation on streams

Indicates the end of data on an output stream. This is different from :close because
some devices allow multiple data files to be transmitted without closing. :close implies
:eof when the stream is an output stream and the close mode is not :abort.

~ This operation. does nothing on streams for which it is not mcaningful.

PS:KI.MAN>STREAM.TEXT.37 | _ 8-JUN-84

Lisp Machine Manual - L 465 1/0 Streams

22.34 Asking Streams Wh:il They Can Do

All strcams are supposcd to support certain opcmuons wlnch cnable a program usmg the
strcam to ask which operations arc available. :

:which-operations ' ' R ~ Operation on streams
Returns a list of operations handled natively by the stream. Certain operations not in the
list may work anyway, but slowly, so it is just as well if any programs that work with or
without them choose not to use them., ’

.

:which-operations itscif nced not be in the list.

:operation-handled-p operation - Operation on streams
Returns t if operation. is handled natively by the strcam: if operation is a member of the
:which-operations list, or is :which-operations. '

:send-1f-handles operation &rest arguments Operation on streams
Performs the operation operation, with the spcuﬁed arguments, only if the stream can
handle it. If operation is handled, - this is the samec as sending an operation message
directly, but if operation is not handled, using :send-if-handles avoids any error.

If operation is handled, :send-if-handles rcturns whatever values the exccution of the
operation returns. If operation is not handled, :send-if-handles returns nil.

:direction | Operation on streams
Returns :input, :output, or :bidirectional for a bidirectional stream.

There are a few kinds of streams, which cannot do cither input or output, for which the
:direction operation returns nil. For example, open with the :direction keyword specified
as nil returns a stream-like object which cannot do input or output but can handie certain
file inquiry operations such as :truename and :creation-date. :

: ch aracters ' . Operation on streams
Returns t if the data input or output on the strcam represent characters, or nil if they are
just numbers (as for a stream reading a non-text file). :

:element-type ' Operation on streams
Returns a type specified describing in principle the data input or output on the stream.
Refer to the function stream-element-type, below, which works using this operation. .

PS:KL.MAN>STREAM.TEXT.37 - 8-JUN-84

170 Streams 460 Lisp Machine Manual -

These functions for inquiring about streams are defined by Common Lisp. -

1nput stream p stream
-t if stream handles input operations (at least, 1f it hdndics tyi)

output-stream-p streaim
‘ t if stream handles output opcratmns (at least, if it handlcs :tyo).

stream element type stream
Returns a type specifier which describes, conceptually, the kind of data input from or
output to stream. ‘The value is always a subtype of integer (for a binary strcam) or a
subtype of character (for a character strcam). If it is a subtype of integer, a Common
Lisp program should usc read-byte (page 450) or write-byte (page 456) for 1/0. If it is .
a subtypc of character, read-char (page 450) or write-char (page 456) should be used.

The value returned is not intended to be rigidly accurate. It describes the typical or
characteristic sort of data transferred by the strcam, but the strcam may on occasion deal
with data that do not fit the type; also, not all objects of the type may be possible as
input or cven make sensc as output. For example, windows describe their. clement type
as character cven though they may offer blips, which are lists, as input on occasion. In
“addition, strcams which say they provide characters really return integers if the :tyi
operation is used rather than the standard Common Lisp function read-char.

22.3.5 Operations for Interactive Streams

The operations :listen, :tyi-no-hang, :rubout-handler and :beep arc intended for interactive
strcams, which communicate with the user. :listen and :tyi-no-hang arc supported in a trivial
fashion by other strcams, for compatibility.

:1isten Operation on streams
On an interactive device, the Iisten operation returns non-nil if there are any input
characters immediately available, or nil if there is no immediately. available input. On a
non-interactive device, the operation always returns non-nil except at end of file.

The main purpose of :listen is to test whether the user has hit a key, perhaps trymg to
Stop a program in progress.

:tyi-no-hang &optional eof Operation on streams
Just like :tyi except that it returns nil rather than waiting if it would be necessary to wait
in order to get the character. This lets the caller check cfficiently for input being available
and get the input if there is any.

ityi-no-hang is different from :listen because it reads a character.

Streams for which the question of whether input is available is not meaningful treat this
operation just like :tyi. So do Chaosnet file streams. Although in fact reading a character
from a file strcam may involve a delay, these delays are supposed to be insignificant, so
we pretend they do not exist.

PSKILM AN)S'I"R EAM.TEXT.37 - 8-JUN-84

Lisp Machine Manual . - 467 | | [/0-Streams |

:any-tyi-no- hang &uptlonal eof ()pcr(mon on streams
‘Like :tyi-no-hang but does not filter and discard input which is not numbers, 1t is
therefore possible to sce blips in the input stream. ‘The distinction matters only for input
from windows.

srubout-handler optiens function &rest args ' Operation on streams
This is supported by interactive bidirectional streams, such as windows on the terminal,
and is described in its own section below (see section 22.5, page 500).

:beep &optional - 1ype ' Operation on streams
‘T'his is supported by interactive streams. [t attracts the attention of the user by making an
audible beep and/or flashing the screen. beep-iype is a keyword sclecting among scveral
different beeping noiscs; scc beep (page 457) for a list of them.

22.3.6 Cursor Positioning Stream Operations

:read-cursorpos &optional (units :pixel) " Operation on streams
This operation is supported by all windows and some other streams. '

It returns two values, the current x and y coordinates of the cursor. It takes one optional
argument, which is a symbol indicating in what units x and y should be; the symbols
:pixel and :character are understood. :pixel means that the coordinates are measured in
display pixcls (bits), while :character means that the coordinates arc measured in
characters horizontally and lines vertically.

This operation and :ihcrement-cursorpos are used by the format ~T request (see page
487), which is why ~T doesn’'t work on all streams. Any stream that supports this
operation should support :increment-cursorpos as well.

"~ Some streams return a meaningful value for the horizontal position but always return zero
for the vertical position. This is sufficient for ~T to work.

:increment-cursorpos ' Operation on streams
x-increment y-increment &optional (umts :pixel)
Moves the stream’s cursor left or down according to the specified increments, as if by
" outputting an appropriate number of space or return.characters. x and y are like the
values of :read-cursorpos and units is the same as the wnits argument to :read-
_cursorpos »

Any stream which supports this operation should support :read-cursorpos as well, -but it
neced not support :set-cursorpos. ’

Moving the cursor with :increment-cursorpos differs from moving it to the same place

. with :set-cursorpos in that this operation is thought of as doing output and :set-
cursorpos is not. For example, moving a window’s cursor down with :increment-
cursorpos when it is near the bottom to begin with will wrap around, possibly doing a
MORE. :set-cursorpos, by comparison, cannot movc the cursor “down” if it is at
the bottom of the window; it can move the cursor explicitly to the top of the window,
but then no **MORE** will happen.

_PS:KL.MAN>STREAM.TEXT.37 o 8-JUN-84

170 Streams ' 468 | B Lisp Machine Manual

Some streams, such as those created by with-output-to-string, cannot implement
arbitrary cursor motion, but do implement this eperation, ‘

:set-cursorpos x . &optional (units :pixel) Operation on streams _
‘This opcration is supported by the same strecams that support :read-cursorpos. It sets
the position of the cursor. x and y arc like the values of :read-cursorpos and units is
the same as the wnits argument to :read-cursorpos.

:clear-screen : v ' - Operation on streams
Frases the screen arca on which this stream displays. Non-window strcams don’t support
this opcration. : :

There - are many other special-purpose stream operations for graphics. They are not
documented here, but in the window-system documentation. No claim that the above operations
are the most uscful subsct should be implied.

22.3.7 Operations for Efficient Pretty-Printing

grindef runs much more efficiently on strecams that implement the :untyo-mark and :untyo
opcrations.

:untyo-mark ' ' Operation on streams

This is used by the grinder (scc page 528) if thc output stream supports it. It takes no
arguments. The stream should return some object that indicates how far output has gotten

up to in the stream.

runtyo mark Operation on streams
This is used by the grinder (see page 528)-in conjunction with :untyo-mark. It takes one
argument, which is something rcturned by the :untyo-mark operation of the stream. The
stream should back up output to the point at which the object was returned. .

22.3.8 Random Access File Operations

The following operations are implemented only by streams to random-access devices,
principally files.

:read-pointer Operation on streams
- Returns the current position within the file, in characters (bytes in fixnum mode). For
text files on ASCII file servers, this is the number of Lisp Machine characters, not ASCII
characters. The numbers are different because of character-set translation.

:set-pointer new-pointer Operation on streams
Scts the reading position within the file to new-pointer (bytes in fixnum mode). For text
files on ASCII file scrvers, this docs not do anything reasonable unless new-pointer is 0,
because of character-set translation. Some file systems support this operation for input
strcams only.

PSKLMAN>STREAM.TEXT.37 _ 8-JUN-84

Lisp Machine Manual - 409 170 Strcams

:rewind ()pcmmm on sireams
‘This operation is obsolete. 1t is the same as :set-pointer with argumcm 710,

22.3.9 Buffered Stream Operations

:clear-input - ’ ‘ : Operation on streams
~ Discards any buffered input the stream may have. It does nothing on strcams for which it -
is not meaningful. . '

:clear-output o Operation on streams
- Discards any buffered output the strcam may have. It docs nothing on streams for which
it is not meaningful.

:force-output ' Operation on streams
This is for output strcams to buﬁ‘crcd asynchmnous devices, - such ‘as the Chaosnet.
:force-output causes any buffered output to be sent to the device. It does not wait for it
to completc; use :finish for that. If a strcam supports :force-output, then :tyo, :string-
out, and :line~out may have no-visible effect until a :force-output is done.

: This operation docs nothing on streams for which it is not meaningful.

f'ln'lsh o Operation on streams
- This is for output streams to buffered asynchronous devices, such as the Chaosnet. :finish
does a force-output, then waits until the currently pending 1/0 operation has been
completed.

This'_operatioh does nothing on streams for which it is not meaningful.

The following operations are implemented only by buffered input streams. They allow
increased cfficiency by making the stream’s internal buffer available to the user.

:read-input-buffer &optional eof Operation on streams
Returns three values: a buffer array, the index in that array of the next input byte, and
the index in that array just past the last available input byte. These values are similar to
the string, start, end arguments taken by many functions and strcam opcrations. If the
end of the file has been reached and no input bytes are available, this operation returns
nil or signals an error, based on the eof argument, just like the :tyi .operation. After
reading as many bytes from the array as you care to, you must usc the :advance-input-
buffer operation. .

:get-1input-buffer &optional egf : Operation on streams
This is an obsolete operation similar to :read-input-buffer. The only difference is that
the third. value is the number of significant elements in the -buffer-array, rather than a
final index. If found in programs, it should be replaced with :read-input-buffer.

PS:KL.MANSSTREAM.TEXT.37 - 8-JUN-84

- 1/0 Swreams A o 470 Lisp Machine Manual

:advance-1n put-buffer &optional new-pointer Operation on streams
If new-pointer is non-nil, it is the index in the buffer array of the next byte to be read. -
If new-pointer is nil, the entire buffer has been used up.

22.3.10 Obtaining Streams to Use

Windows arc one important class of strcams. Each window can be used as a strcam. Output
is displayed on the window and input comes from the keyboard. A window is created using
make-instance on a window flavor. Simple programs usc wmdows mlpllcnly Lhr(mgh *terminal -
io* and the other standard stream variables.

Also unpmtam arc file streams, which arc produced by the function open (scc page 582).
These read or wntc the contents of a file,

Chaosnet streams -are made from Chaosnct connections. Data output to the strcam gocs out
over the network; data coming in over the nctwork is available as input from the strcam. File
strcams that deal with Chaosnct filc servers are very similar to Chaosnct streams, but Chaosnet
streams can be used for many purposes other than file access. :

String streams read or write the contents of a string. They arc made by with-output-to-
string or with-input-from-string (sce page 473), or by make-string-input-stream or make-
string-output-stream, below. :

Editor buffer streams read or write the contents of an editor buffer.

The null stream may be passed to a program that asks for a stream as an argument. It
returns immediate end of file if used for input and throws away any output. The null stream is
the symbol si:null-stream. This is to say, you do not call that function to get a stream or use
the symbol’s value as the stream; the symbol itself is the object that is the stream.

The cold-load stream is able to do 1/0 to the keyboard and screen without using the window
system. It is what is used by the crror handler, if you type Terminal Call, to handle a
background ecrror that the window system cannot dcal with. It is called the cold-load strcam
because it is what is used during system bootstrapping, before the window system has been

loaded.

si:null-stream operation &rest argumenis
This function is the null stream. Like any stream, it supports various operations.” Output
operations arc ignored and input operations report end of file immediately, with no data.
Usage cxample:
(let ((+standard-output* ’si:null-stream))
(function-whose-output-I-dont-want))

si:cold-load-stream Constant
The one and only cold-load strcam. Usage example:
(let ((*query-io* si:cold-load-stream))
(yes-or-no-p "Clear all window system locks? "))

PS:KLLMAN>STREAM.TEXT.37 8-JUN-84

- Lisp Machine Manual | o 170 Strcams

with-open-stream (variable expression) body... E Macro
body is cxecuted with variable bound to the valuc of expression, which ought to be a
stream. On cxit, whether normal or by lhmwmg a :close message with argument :abort
is sent to the strcam.

'This is a generalization . of with-open-file, which is cquivalent to using with-open-
stream with a call to open as the expression. ’

with-open-stream-case (variable cxpression) clauses... "~ Macro
l.ike with-open-stream as far as opening and closing the. stream are concerned, but
instead of a simple body, it has clauses like thosc of a condition-case that say what to
do if expression docs or docs not get an crror. See with-open-file-case, page 580.

make-synonym-stream symbol-or-locative

make-syn-stream symbol-or-locative
Creates and returns a synonym strcam -(‘'syn’ for short). Any operations sent to this stream
are redirected to the strcam that is the valuc of the argument (if it is a symbol) or the
-contents of it (if it is a locative).

A synonym strcam is actually an uninterncd symbol whose function defnition is forwarded
to the function cell of the argument or to the contents of the argument as appropriate. If
the argument is a symbol, the synonym stream’s print-name is symbol-syn-stream;
otherwise the name is just syn-stream. Once a synonym strcam i$ made for a symbol, it
is recorded, and the same one is handed out again if there is another request for it.

- The two namcs for this function are synonyms too.

make-concatenated-stream &rest streams
Returns an input stream which will read its input from the first of streams until that
reaches its eof, then read input from the second of streams, and so on until the last of
streams has reached end of file. :

make-two-way-stream input-stream oulput-stream
Returns a bidirectional stream which passes input operations to input-stream and passes
output- operations to output-strewn. This works by attempting to recognize all standard
input operations; anything not recognized is passed to output-stream.

make-echo-stream input-stream output-stream
Like make-two-way-stream except that cach input character read via mput-stream is:
output to oulput-stream bcfore it is returned to the caller.

" make-broadcast-stream &rest streams
Returns a stream that only works in the output direction. Any output sent to this stream
is forwarded to all of the streams given. The :which-operations is the intersection of the
- :which-operations of all of the streams. The valuc(s) returned by a stream operation are
the values returned by the last siream in streams.

PS:KI.LMAN>STREAM.TEXT.37 ‘ ’ 8-JUN-84

I/(5 Streams 472 ‘ 1 isp Machine Manual

zwei:interval-stream interval-or-from-bp &optional to-bp in-order-p hack-fonts
Returns a bidirectional strcam that reads or writes all or part of an editor buffer. Note
that cditor buffer strcams can also be obtained from open by using a pathnamc whose
hnst ls ED, ED-BUFFER or ED-FILE (scc section 24.7.6, page 575).

‘The first three arguments specify the buffer or portion to be read or written. Either the
first argument is an interval (a buffer is one kind of interval), and all the text of that
interval is read or written, or the first two arguments arc two buffer pointers delimiting
the range to be rcad or written. ‘The third argument is used only in the latter case; if
non-nil, it tells the function to assume that the second buffer pointer comes later in the
buffer than the first and not to take the time to verify the assumption.

The stream has_only one poimcr inside it, used for both input and output. As you do
input, the pointer advances through the text. When you do output, it is inserted in the
buffer at the place where the pointer has rcachcd 'The pointer starts at the beginning of
the specified range.

hack-fonts tclls what to do about fonts. Its possible values are

t “The character ¢ is recognized as special when you output to the stream;
sequences such-as €2 are interpreted as font-changes. They do not get
inserted into the buffer; instcad, they change the font in which following
output will be inserted. On input, font change sequences are included to
indicate faithfully what was in the buffer.

ityo You are expected to rcad and write 16-bit characters containing font
numbers,
nil All output is inserted in font zero and font information is discarded in the

input you reccive. This is the best mode to use if you are reading or
otherwise parsing the contents of an editor buffer.

-sys:with-help-stream (siream options..) body... Macro
Exccutes the body with the variable stream bound to a suitable stream for printing a large
help message. If *standard-output* is a window, then stream is also a window; a
temporary window which fills the screen. Otherwise, stream is just the same as
*standard-output®. :

The purpose of this is to sparc the user the need to read a large help printout in a small
window, or have his data overwritten by it permanently. This is the mechanism used if
you type the Control-Help key while in the rubout handler.

options is a list of alternating keywords and values.

Jlabel The value (which is cvaluated) is used as the label of the temporary
window, if onc is uscd.

:width The value, which is not evaluated, is a symbol. While body is exccuted,
this symbol is bound to the width, in characters, available for the
message.

PS:<ILMAN>STREAM.TEXT.37 : ‘ 8-JUN-84

Lisp Machine Manual o s . 170 Streams

:height “'The value is a symbol, like the value after :width, and it is bound to the

height in lines of the arca available for the help message.
:superior “The value, which is cvaluated, spccifics the original strcam to use in
"~ deciding where to print the help message. ‘The default is *standard-
output*. : : B

22.3.11 String 170 Streams

The functions zlnd-Spccial forms in this scction allow you to creatc 1/0 streams that input
“from-or output to the contents of a string. ‘

make-string-input-stream smring &optional (siart0) end

‘ Returns a stream which can be used to rcad the contents of siring (or the portion of it
from index start to index end) as input. End of file occurs on reading past position end
or the end of string. ' !

make-string-output-stream &optional string
Returns an output stream which will accumulate all output in a string. If string is non-nil,
output is added to it with string-nconc (page 216). Otherwise, a new string is created
and used to hold the output.

get-output-stream-string swring-output-siream
Returns the string of output accumulated so far by a stream which was made by make-
string-output-stream. The accumulated output is cleared out, so it will not be obtained
- again if get-output-stream-string is called another time on the same stream.

with-input-from-string (var swring &kcy start end index) body... Macro
The form '
(with-input-from-string (var string)
body)

evaluates the forms in body with the variable var bound to a stream which reads
characters from the string which is the value of the form string. The value of the
construct is the valuc of the last form in its body.

If the start and end arguments are specified, they should be forms. They are evaluated at
run time to produce the indices starting and ending the portion of string to be read.

If the index argument is specified, it should be something setf can storc in. When body
is finished, the index in the string at which rcading stopped is stored there. This is the
index of the first character not read. If the entire string was read, it is the length of the
string. The value of index is not updated until with-input-from-string is exited, so you
can’t use its value within the body to sce how far the reading has gotten. Example:
(with-input-from-string
(foo "This is a test." :start (+ 2 2) :end 8 :index bar)
(readline))

returns " is " and sets bar to cight.

PS:KL.MAN>STREAM.TEXT.37 - : 8-JUN-84

170 Streams _ 474 L.isp Machine Manual

An older calling sequence which used positional rather than keyword arguments is still
accepted:
(with-input-from- stmng (var string mdcx end)

body)

The functions read-from-string and cli:read-from-string are convenient special cases of
what with-input-from-string can do.. Scc page 533.

with-output-to-string (var [string [index]}) body... ‘ Macro
This special form provides a variety of ways to send output to a string through an 10
strcam. i
(with-output- to string (var)
body)

cvaluates the forms in body with var bound to a strcam which saves the characters output
to it in a string. The valuc of the special form is the string.

{(with-output-to-string (var string) .
body)
appends its output to the string which is the value of the form string. (This is like the
string-nconc function; sce page 216.) The value rcturned is the value of the last form in’
the body, rather than the string. Multiple values arc not returned. s/ring must have a fill
pointer. 1If string is too small to contain all the output, adjust-array-size is used to
make it bigger.

(with-output-to-string (var string index)
body)

is similar to the above cxcept that index is a variable or setf-able reference which contains
the index of the next character to be stored into. It must be initialized before the with-
output-to-string and it is updated upon normal exit. The value of index is not updated
until- with~output-to-string returns, so you can’t usc its value within the body to see .
how far the writing has gotten. The presence of index means that string is not requlred
to have a fill-pointer; if there is one, it is updated on exit.

Another way of doing output to a string is to use the format facility (see page 483).

22.3.12 Implementing Streams
There are two ways to implement a stream: using defun or using flavors.

Using flavors is best when you can take advantage of the predefined stream mixins, including
those which perform buffering, or when you wish to define several similar kinds of streams that
can inherit methods from each other. :

, defun (or defselect, which is a minor variation of the technique) may have an advantage if
you are dividing opcrations into broad groups and handling them by passing them off to one or
more other strcams. In this case, the automatic operation decoding provided by flavors may get
in the way. A number of strcams in the system are implemented using defun or defselect for
historical reasons. It isn’t yet clear whether therc is any reason not to convert most of them to

PS:<L.MANDSTREAM.TEXT.37 . _ 8-JUN-84

isp Machine Manual o | 475 : 170 Streams

use flavors.

If you usc defun, you can use the stream default handler to implement some of the standard
operations for you in a default manner. If you usc flavors,” there are predefined mixins to do this
for you. ' o

A few streams arc individual objects, one of a kind. For cxample, there is only one null
strcam, and no nced for more, since two null strcams would behave identically. But most streams
are clements of a general class. For cxample, there can be many file streams for different files,
cven though all behave. the same w.ly There can also be multiple strcams reading from different
points in the same file,

If you implement a class of strcams with defun, then the actual strcams must be closures of
the function . you define, made with closure.

If you usc flavors to implement the streams, having a class of similar strcams comes naturally:
cach instance of the flavor is a strcam, and the instance variables distinguish one stream of the
class from another.

23.13 Implementing Streams with Flavors

To definc a stream using flavors, define a flavor which incorporates the appropriate predefined
strcam flavor, and then redefine those operations which are peculiar to your own type of stream.

Flavors for defining unbuffered streams:

si:stroeam Flavor
This flavor provides default definitions for a few standard operations such as :direction
and :characters. Usually you do not have to mention this explicitly; instead you use the
higher level flavors below, which are built on this one.

si:input-stream , Flavor
This flavor provides default definitions of all the mandatory input operations except :tyi
and :untyi, in terms of those two. You can make a simple non-character input stream by
defining a flavor incorporating this one and giving it methods for :tyi and :untyi.

si:output-stream Flavor
This flavor provides default dcfinitions of all the mandatory output opcrations except :tyo,
in terms of :tyo. All you need to do to define a simple unbuffered non-character output
strcam is to define a flavor incorporating this one and give it a method for the :tyo
" operation. :

si: b‘ldirectional stream Flavor
This is a combination of si: mput stream and si:output-stream. It dcfincs :direction to
return :bidirectional. To define a simple unbuffered non-character bidircctional stream,
build on this flavor and define :tyi, :untyi and :tyo. ’

PS:<LLMAN>STREAM.TEXT.37 : 8-JUN-84

/0 Streams .- | 476 : ~ Lisp Machine Manual

‘The unbuffered streams implement operations such as :string-out and :string-in by repeated
use of :tyo or :ityi. ' '

For greater cfficiency, if the stream’s data is available in blocks, it is better to definc a
buffered stream. You start with the predefined buffered stream flavors, which define :tyi or ‘tyo
themselves and manage the buffers for you. You must provide other operations that the system’
uscs 10 obtain the next input buffer or write or discard an output buffer. :

Flavors for defining buffered streams:

si:buffered-input-stream Flavor
‘I'his flavor is the basis for a non-character buffered input stream. 1t defines :tyi as well as
all the other standard input operations, but you must define the two operations :next-
" input-buffer and .discard-input-buffer, which the buffer management routings use.

:next-input-buffer " Operation on si:buffered-input-stream
In a buffered input strcam, this operation is uscd as a subroutine of the standard input
operations, such as :tyi, to get the next bufferful of input data. It should return three
values: an array containing the data, a starting index in the array, and an ending index.
For example, in a Chaosnct strcam, this operation would get the next packet of input
data and return pointers delimiting the actual data in the packet.

:discard-input-buffer buffer-array Operation on si:buffered-input-stream ’
In a buffered input stream, this operation is used as a subroutine of the standard input
operations such as :tyi. It says that the buffer management routines have used or thrown
away all the input in a buffer, and the buffer is no longer needed.

In a Chaosnet strecam, this operation would return the packet buffer to the pool of free.
packets. : '

$i:buffered-output-stream : : Flavor
This flavor is the basis for a non-character buffered output stream. It defines :tyo as well
as all the other standard output operations, but you must define the operations :new-
output-buffer. :send-output-buffer and :discard-output-buffer, which the buffer
management routines use. ’ '

:new-output-buffer Operation on si:buffered -output-stream
In a buffercd output stream, this operation is used as a subroutine of the standard output
operations, such as :tyo, to get an empty buffer for storing morc output data. How the
buffer is obtained depends on the kind of stream, but in any case this opcration should
return an array (the buffer), a starting index, and an ending index. The two indices
delimit the part of the array that is to be uscd as a buffer.

For example, a Chaosnet stream would get a-packet from the free pool and return indices
delimiting the part of the packet array which can hold data bytes.

PS:(L.M/\N)S'I'REAM.THX'fT.37 , 8-JUN-84

Lisp Machine Manual » | _' 477 _ _ 170 Strecams

:send-output-buffer o Operation on si:buffered-output -stream
buffer-array ending-index ' :
In a buffered output stream, this operation is used as a subroutine of the standard output
operations, such-as :tyo, to send the data in a buffer that has been completely or partially
filled. ’

ending-index is the first index in the buffer that has not actually been stored. This may
not be the same as the cnding index that was returned by the :new-output-buffer
operation that was used to obtain this buffer; if a :force-output is being handled,
ending-index indicates how much of the buffer is currently full. ‘

The method for this operation should process the buffet’s data and, if necessary, return
the buffer o a free pool.

:discard-output-buffer buffer-array Operation on si:buffered -output-stream
"~ In a buffered output stream, this operation is used as a subroutine of the standard output
operations, such as :clear-output, to frec an output buffer and say that the data in it
should be ignored. ' -

It should simply rcturn buffer-array to a free pool, if appropriate.

Some buffered output strcams simply have onc buffer array which they use over and over.
For such strecams, :new-output-buffer.can simply return that particular array cach time; :send-
output-buffer and :discard-output-buffer do not have to do anything about rcturning the buffer
to a free pool. In fact, :discard-output-buffer can probably do nothing.

si:buffered-stream . Flavor
This is a combination of si:buffered-input-stream and si:buffered-output-stream, used
to make a buffered bidirectional stream. The input and output buffering are completely
independent of cach other. You must define all five of the low level operations: :new-
output-buffer, :send-output-buffer and :discard-output-buffer for output, and :next-
input-buffer and :discard-input-buffer for input.

The data in most streams are characters. Character strcams should support cither :line-in or
sline-out in addition to the other standard operations.

si:unbuffered-1ine-input-stream | Flavor

This flavor is the basis for unbuffered character input streams. You nced only define :tyi
and :untyi,
si:11ne-output-stream-mixin Flavor

To make an unbuffered character output stream, mix this flavor into the onc you define,
together with si:output-stream. In addition, you must define :tyo, as for unbuffered
non-character streams,

PS:<LMAN>STREAM.TEXT.37 R - 8-JUN-84

I/OSlréums - R | 48 Lisp Machine Manual -

si:buffered-input-character-stream | Flavor
‘'This is used just like si:buffered-input-stream, but it also provides the :line-in operation
and makes :characters return t. '

si:buffered-output-character-stream ' Flavor
This is uscd just like si:buffered-output-stream, but it also provides the :line-out
operation and makes :characters rcturn t. S

si:buffered-character-stream - ' Flavor
This is used just like si:buffered-stream, but it also provides the :line-in and :line-out

“operations and makes :characters return t.

‘To make an unbuffered random-access stream, you nced -only define the :read-pointer and
:set-pointer opcrations ‘as appropriatc. Since you provide the :tyi or :tyo handler yoursclf, the
system cannot help you. ’

In a buffered random-access strcam, the random access opcrations must interact with the
buffer management. The system provides for this.

si:input-pointer-remembering-mixin Flavor
Incorporate this into a buffered input stream to support random access. This flavor defines
the :read-pointer and :set-pointer opecrations. If you wish :set-pointer to work, you
must provide a definition for the :set-buffer-pointer operation. You need not do so if
you wish to support only :read-pointer. ‘ :

;set-buffer-pointer new-poihler Operation on si:input-pointer-remembering-mixin
You must define this operation if you use si:input-pointer-remembering-mixin and want
the :set-pointer operation to work. :

This operation should arrange for the next :next-input-buffer opcration to provide a
bufferful of data that includes the specified character or byte position somewhere inside it.

The value returned should be the file pointer corresponding to the first character or byte
of that next bufferful.

si:output-pointer-remembering-mixin Flavor
Incorporate this into a buffered output stream to support random access. This mixin
defines the .:read-pointer and :set-pointer operations. If you wish :set-pointer to work,
you must provide definitions for the :set-buffer-pointer and :get-old-data operations.
You need not do so if you wish to support only :read-pointer.

:set-buffer-poi nte'r o ~ Operation on si:output-painter-remembering-mixin

new-pointer
This is the same as in si:input-pointer-remembering-mixin.

PS:KL.MAN>STREAM.TEXT.37 : ' ‘ 8-JUN-84

Lisp Machine Manual . P 479 ’ o | 170 Streams

:get-old-data . " Operation on si:output-pointer-remembering-mixin
buffer-array lower-output-limit
The buffer management routines perform this opcration whcn you do a :set- pointer that
is outside the range of pointers that fit in the current output buffer. They first send the
old buffer, then do. :set-buffer-pointer as described above to say where in the file the
next output buffer should come, then do :new-output-buffer to get the new buffer.
Then the :get-old-data operation is performed.

It should fill current buffer (buffer-array) with the old contents of the file at the
corresponding addresses, so that when the buffer is ceventually written, any bytes sklppcd
over by random access will retain their old values.

The instance variable si:stream-output-lower-limit is the starting index in the buffer of
the part that is supposed to be used for output. siistream-output-limit is the ending
index. The instance variable si:output- pomter base ls the file pmmcr corresponding to
the starting index in the buffer.

sf:file-stream-mixin ' Flavor
Incorporate this mixin together with si:stream to make a file probe stream which cannot
do input or output but rccords the answers to an enquiry about a file. You should
specify the init option :pathname when you instantiate the flavor.

You must provide definitions for the :plist and truename operations; in terms of them,
this mixin defincs the operations :get, :creation-date, and :info. :

si:input-file-stream-mixin | 4 ' Flavor
Incorporate this mixin into input strcams that are uscd to read files. You should specify
the file’s pathname with the :pathname init option when you instantiate the flavor.

In addition to the scrvices and reqﬁircmcnts of si:file-stream-mixin, this mixin takes care
of mentioning the file in the who-line. It also includes si:input-pointer-remembering-
mixin so that the :read-pointer operation, at least, will be available.

si:output-file-stream-mixin ' Flavor
This is the analogue of si:input-file-stream-mixin for output streams.
22.3.14 Implementing Streams Without Flavors

You do not nced to use flavors to implcment a stream. Any object that can be used as a
function, and decodes its first argument appropriately as an operation name, can serve as a
stream. Although in practice using flavors is as easy as any other way, it is educational to see
how to define streams “from scratch”.

We could begin to define a simple output stream, which accepts charactcrs and conses them
onto a list, as follows:

PS:KLLMAN>STREAM.TEXT.37 | ' 8-JUN-84

170 Slrcums_ | . 480 ' : Lisp Machine Manual

(defvar the-list nil)

(defun list-output-stream (op &optional argl &rest rest)
(ecase op . : :
(:tyo . ' R
(setq the-1list (cons argl the-list))) -
- (:which-operations '(:tyo))))

~ “This is an output stream, and so it supports the :tyo operation. All strcams must support
:‘which-operations. - :

‘The lambda-list for a strcam defined with a defun must always have onc required parameter
(op), one optional parameter (arg/), and a rest parameter (rest).

This definition is not satisfactory, however. It handles :tyo properly, but it does not handle
:string-out, :direction, :send-if-handles, and other standard operations.

The function stream-default-handler cxists to sparc us the trouble of defining all those
opcrations from scratch in simple streams like this. By adding one additional clause, we let the
default handler take care of all other operations, if it can.

(defun list-output-stream (op &optional argl &rest rest)
(selectq op .
(:tyo :
(setq the-list (cons argl the-1ist)))
(:which-operations ’'(:tyo))
(otherwise ' ' ,
(stream-default-handler #'1ist-output-stream
: op argl rest))))

If the opcration is not one that the stream understands (c.g. :string-out), it calls stream-
- default-handler.. Note how the rest argument is passed to it. This is why the argument list must
look the way it does. stream-default-handler can be thought of as a restricted analogue of
flavor inheritance. ' '

If we want to have only one stream of this sort, the symbol list-output-stream can be used
as the stream. The data output to it will appear in the global value of the-list. One more step
is required, though: : :

(defprop list-output-stream t si:io-stream-p)
This tells certain functions including read to treat the symbol list-output-stream as a stream
rather than as an end of file option. v L :

" If we wish to be able to create any number of list output streams, each accumulating its own
list, we must use closures: .

PS:<L.MANDSTREAM.TEXT.37 g 8-JUN-84

I isp Machine Manual - 481 170 Streams

(defvar the-stream nil . :

"Inside a 1ist output stream, holds the stream itself.")
(defvar the-list nil

"Inside a Tist output stream,
holds the 1list of characters being accumulated ")

(defun list-output-stream (op &opt1onal argl &rest rest)
(selectq op

(:tyo

‘(push argl the-list)))
{:withdrawal (progl the-Tlist (setq the-list nil)))
(:which-operations ’'(:tyo :withdrawal))
(otherwise '

(stream-default-handler the-stream

op argl rest))))

(defun make-list-output-stream ()
(1et ((the-stream the-1ist))
(setq the-stream
(closure ’(the-stream the- 11st)
'list-output-stream))))

We have added a new operation :withdrawal that can be used to find out what data has been
accumulated by a strcam. This is neccessary because we can no longer simply look at or sct the
global value of the-list; that is not the same as the valuc closcd into the stream.

In addmon we have a new variable the-stream which allows the function list- -output-
stream to know which stream it is serving at any time. This variable is passed to stream-
default-handler so that when it simulatcs :string-out by means of :tyo, it can do the :tyo’s to
the same strcam that the :string-out was done to. '

The same stream could be defined with defselect instead of defun. It actually makes only a
small difference. The defun for list-output-stream could be replaced with this code:

(defselect (list-output-stream list-output-d-h)
(:tyo (argl) ' -
(push argl the-1ist))
(:withdrawal ()
(progl the-1list (setq the-list nil))))

“(defun Tist-output-d-h (op &optional argl &rest rest)
(stream-default-handler the-stream op argl rest))

defselect takes care of decoding the operations, provides a definition for :which-operaiibns,
and allows you to write a scparate lambda list for each operation,

By comparison, the same strcam dcfined using flavors looks like this:

PS:<1.MAN>STREAM.TEXT.37 ' | _ 8-JUN-84

170 Streams o | 48 N Lisp Machine Manual

(deff]avor‘1ist—output-stream_((theflist nil))
(si:line-output-stream-mixin si:output-stream))

(defmethod'(1ﬁst-output—stream :tyo) (character)
(push character the-list)) o

(defmethod (1ist-outut-stream :withdrawal) () .
(progl the-list (setq the-list nil))) '

(defun make-list-output-stream ()
(make-instance ’'list-output-stream)) -

Here is a simple input strcam, which generates successive characters of a list.

(defvar ihe—]ist) ;Put your input list here
(defvar the-stream).
(defvar untyied-char nil)

(defun list-input-stream (op &optional argl &rest rest)
{selectq op
(:tyi .
(cond ((not (null untyied-char)) :
(progl untyied-char (setq untyied-char nil)))
((null the-list)
(and argl (error argl)))
(t (pop the-list))))
(:untyi
(setq untyied-char argl))
(:which-operations '(:tyi :untyi))
(otherwise '
(stream-default-handier the-stream
: op argl rest))))

(defun make-list-input-stream (the-1ist)
(let (the-stream untyied-char)
(setq the-stream
(closure '(the-list the-stream untyied-char)
*list-input-stream))))

The important things to note are that :untyi must be supported, - and that the stream must
check for having reached the end of the information and do the right thing with the argument to '
the :tyi operation.

stream-default-handler stream op argl rest '
Trics to handle the op operation on stream, given arguments of arg/ and the clements of
rest. The exact action taken for cach of the defined operations is explained with the
documentation on that operation, above.

PS:<L.MAN>STREAM.TEXT.37 o B ' © §-JUN-84

|isp Machine Manual o . 483 -~ Formatted Output

22.4 Formatted Output

There are two ways of doing general formatted output. Onc is the function format. The
other is the output subsystem. format uses a control string written in a special format specifier
language to control the output format. format:output provides Lisp functions to do output in
particular_ formats. ' : ' '

For simplc tasks in which only the most basic format specifiers arc nceded, format is casy to
usc and has the advantage of brevity. For more complicated tasks, the format specifier language
becomes obscure and hard o rcad. ‘Then format:output becomes advantageous because it works
with ordinary Lisp control constructs.

22.4.1 The Format Function

format destination control-string &rest args :
Produces formatted output. format outputs the characters of control-string, except that a
tilde (‘~’) introduces a directive. The character after the tilde, possibly preccded by prefix
parameters and modificrs, specifies what kind of formatting is desired. Most directives use
onc or morc clements of args to create their output; the typical directive puts the next
clement of args into the output, formatted in some special way.

The output is sent to destination. f destination is nil, a string is created which contains
the output; this string is returned as the value of the call to format. In all other cases
format rcturns no intcresting- value (generally it returns nil). If destination is a strcam, the
output is sent to it. If destination is t, the output is sent to *standard-output*. If
destination is a string with an array-leader, such as would be acceptable to string-nconc
(sce page 216), the output is added to the end of that string.

A directive consists of a tilde, optional prefix parameters separated by commas, optional colon
(") and atsign (‘@’) modifiers, and a single character indicating what kind of directive this is.
The alphabetic case of the character is ignored. The prefix parameters are generally decimal
numbers. Examples of control strings:

"~g" ; Thisisan S directive with no parameters.
"~3,4:0s" ; Thisis an S directive with two parameters, 3 and 4,
' 3 and both the colon and atsign flags.
"~ 48" ; The first prefix parameter is omitted and takes
; onits default value, while the second is 4.

format includes some extremely complicated and specialized features. It is not necessary to
understand all or even most of its fcatures to use format cfficiently. The beginner should skip
over anything in the following documentation that is not immediately useful or clear. The more
sophisticated features are there for the convenience of programs with complicated formatting
requirements. :

Sometimes a prefix parameter is usced to specify a character, for instance the padding character
in a right- or left-justifying operation. In this case a single quote ("' ") followed by the desired
character may be uscd as a prefix parameter, so that you don’t have to know the decimal numeric

PS:<I_.MAN)FI’)-FIO.TEX'I‘..24 | ' 8-JUN-84

li)ntﬁulcd Output : ' 484 . ' Lisp Machine Manual

values of characters in the character sct. For example, you can usc "~5'0d" instcad of
"~548d" (o print a decimal number in five columns with leading zeros. o

In place of a prefix parameter to a directive, you can put the lewer V, which takes an
argument from args as a parameter to the directive. Normally this should be a number but it
doesn’t really have to be. 'This feature allows variable column-widths and the. like. Also, you can
use the character # in place of a xpm'z'lmctcr:’ it represents the number of arguments remaining to
be processed. ' - -

Here are some relatively simple cxamples to give you the general flavor of how format is
used.
(format nil "foo") => "foo"
(setq x 5) -
(format nil "The answer is ~D." x) => "The answer is 5."
(format nil "The answer is ~3D." x) => "The answer is 5,
(setq y "elephant") :
(format nil "Look at the ~A!" y) => "Look at the elephant!"
(format nil "The character ~:@C is strange." #\meta-beta)
=> "The character Meta-pB (Greek-b) is strange.”
(setq n 3)
(format nil "~D item~:P found." n) => "3 items found."
(format nil "~R dog~:[s are~; is~] here." n (= n 1))
=> "three dogs are here."
(format nil "~R dog~:*~[~1; is~:;s are~] here." n)
' => "three dogs are here." '
(format nil "Here ~[~1;is~:;are~] ~:*~R pupp~:@P." n)
=> "Here are three puppies.”

The directives will now be described. arg will be used to refer to the next argument from
args. ' :

~A arg, any Lisp object, is printed without cscaping (as by princ). ~:A prints () if arg is
nil; this is uscful when printing something that is always supposed to be a list. ~nA
inscrts spaces on the right, if necessary, to make the column width at least n. The @
modifier causcs. the spaces to be inserted on the left rather than the right.
~mincol,colinc,minpad,padcharA is the full form of ~A, which allows claborate control
of the padding. The string is padded on the right with at least minpad copies of
padchar; padding characters are then inscrted colinc characters at a time until the total
width is at Icast mincol. The defaults are O for mincol and minpad, 1 for colinc, and
space for padchar. '

~S This is just like ~A, but arg is printed with escaping (as by prin1 rather than princ).

~D arg, a number, is printed in base ten. Unlike print, ~D never puts a decimal point
~after the number. ~nD uses a column width of n; spaces are inscrted on the left if

the number requires less than » columns for its digits and sign. If the number doesn’t

fit in n columns, additional columns are used as nceded. ~n,mD uses m as the pad

character instead of space. If arg is not a number, it is printed in ~A format and

decimal base. The @ modifier causes the number's sign to be printed always; the

default is only to print it if the number is negative. The : modifier causes commas to

PSKL.MAN>EFD-FIO.TEXT.24 : 8-JUN-84

Lisp Machine Manual’ ' o 485 “Formatted Output

be printed ‘between groups of three digits; the third prefix parameter may be used to
change the character used as the comma. Thus the most general form of ~D is
~mincol ,padchar,commacharD.

~0 ‘This is just like ~D but prints in octal instcad of decimal.

~X T'his is just like ~D but prints in hex instcad of decimal. Note that ~X used to have
a different meaning: print one or more spaces. Uses of ~X intended to have this
mecaning should be replaced with ~@T.

~B This is just like ~D but pi‘ims in binary instéad of decimal.

~w,d,k,ovfl pad F :
arg is printed in nonexponential ﬂodlmg pumt format, as in *10.5°. (If the magnitude
of arg is very large or very small, it is printed in ecxponential notation,) 'The
- parameters control the details of the formatting.

‘W is the total ficld width desired. 1f omitted, this is not constrained.

d is the number of digits to print after the decimal point. If d is omitted, it is
chosen to do a good job based on w (if specified) and the value of arg.

k is a scalc factor. arg is multiplied by (exp 10. k) before it is printed.

ol is a character to use for overflow. If arg is too big to print and fit the
~ constraints of ficld width, etc., and ovfl is specificd then the whole ficld is filled
with ovfl. If ovfl is not specified, arg is printed using cxtra width as nceded.

pad is a character to use for padding on the left, when the field width is specified
and not that many characters are really nceded.

If the @ modifier is used, a sign is p_'rinted even if arg is positive,

Rational numbers are converted to floats and then printed. Anything else is printed
with ~wD format.

w,d e,k,ovfl,pad,expt E
arg is printed in cxponentlal notation, as in ‘105e+2’. The parameters control the
details of the formatting.

w is the total field width desired. If omitted, this is not constrained.

dand k

control the number of mantissa digits and their arrangement around the decimal
point. d+1 digits arc printed. If k is positive, all of them are significant
digits, and the decimal point is printed after the first k of them. If k is zero
or negative, the first |k|+1 of the d+1 digits arc leading zeros, and the
decimal point follows the first zero. (This zero can be omitted if necessary to
fit the number in w characters.) So the number of significant figures is less than
d if k is ncgative,

The exponent pﬁntcd always compensates for any powers of ten introduced
according to &k, so 10.5 might be printed as 0.105e + 2 or as 1050.0e-2.

PSKLLMAN>FD-FIO.TEXT.24 ' - 8-JUN-84

~Formatted Output R - 486 : Lisp Machine Manual

“If d is omitted, the system chooscs chough significant figurcs to represent the
float accurately. If & is omitted, the default is one. '

e is the number of digits to use for the exponent. If it is not specified, however
many digits arc nccded arc used. - :

ovfl s the overflow character. If the exponent doesn't fit in e digits or the cntire
number does not fit in w characters, then if oyfl is specified, the ficld of w
characters is filled with ovfl. Otherwise more characters arc used as needed.

pad is a character to use for padding on the left, when the field width is specified
and not that many characters arc really nceded.

expt s a character to use to scparate the mantissa from the exponent. ‘The default is
e or s or f, whichever would be used in printing the number normally.

If the @ modifier is used, a sign is printed even if arg is positive.

~w,d,e,k,ovfl.pad,expt G

Prints a floating point number arg in cither ~F or ~E format. Fixed format is used if
“the absolute value of arg is less than (expt 10. d), and cxponential format otherwise.
(If d is not specified, it defaults based on the value of arg.) If fixed format is used,
e+2 blanks are printed at the end (where the cxponent and its separator and sign
would go, .in exponential format). These count against the width w if that is specified.
Four blanks are used if e is omitted. The diminished width available, d, ovff and pad
arc used as spcciﬁed. The scale factor used in fixed format is always zero, not k.

If exponential format needs to be used, all the paramctcrs arc passed to the ~E
directive to print the number.

Rational numbers are converted to floats and then printed. Anything else is printed
with ~wD format.

~$ ~rdig,Idig field padchar$ prints arg, a float, with exactly rdig digits after the decimal
point. The default for rdig is 2, which is convenient for printing amounts of money.
At least Idig digits are printed preceding the decimal point; leading zeros are printed if
there would be fewer than Idig. The default for Idig is 1. The number is right
justified in a ficld field columns long, padded out with padchar. The colon modifier
. means that the sign character is to be at the beginning of the field, before the
padding, rather than just to the Icft of the number. The atsign modifier says that the
sign character should always be output.

If arg is not a number, or is unreasonably large, it is printed in ~field,,,padchar @A
“format; i.c. it is princ’ed right-justificd in the specified ficld width.

~C (character arg) is put in the output. arg is treated as a keyboard character (see page
206), thus it may contain cxtra control-bits. These arc printed first by representing
them with abbreviated prefixes: °‘C-’ for Control, ‘M-' for Meta, ‘H-" for Hyper, and
‘S-* for Super. © :

With the colon flag (~:C), the names of the control bits are spelled out (c.g. ‘Control-
Meta-F’) and non-printing characters are represented by their names (c.g. ‘Return’)
rather than being output as themselves. The printing characters Space and Altmode are

PSILMANSFD-FIOTEXT24 o | ~ 8JUN-84

IS

L.isp Machine Manual - 487 : ' ' Formatted OQutput

also rcprcxcmcd as thcnr names, but afl others are prmlcd directly.

With both colon and atsign (@C) the colon-only format is printed, and then if the
character requires the Top or Greek (Front) shift key(s) to type it, this fact is.
mentioned (c.g. 'V (Top-U)’). This is the format used for telling the user about a key
he is expected to type, for instance in prompt mcssagcs

For all three of these formats, if the characlcr is a mousc character, it is prmtcd as
Mouse-, thc name of the button, ‘-°, and the number of clicks. ‘

With just an atsign (~@C), the charactcr is printed in such a way that the Lisp reader
can understand it, using ‘#\' or ‘#/°, depending on the cscaping character of
readtable (scc page 516).

~% Outputs a carriage return. ~n% outputs n carriage returns. No argument is uscd.
Simply putting a carriage return in the control string would work, but ~% is usually
used because it makes the control string look nicer in the Lisp source program.

~8& The :fresh-line operation is pérformcd on the output strcam. Unless the stream knows
_that it is already at the front of a line, this outputs a carriage return. ~n& does a
:fresh-line operation and then outputs n-1 carriage rcturns.

~| " Qutputs a page scparator character (# \page). ~n| docs this n times. With a :
modifier, if the output strcam supports the :clear-screen operation this dircctive clears
the screen, otherwise it outputs page separator character(s) as if no : modifier were
present. | is vertical bar, not capital L

~e Outputs a tilde. ~n~ outputs n tildes.

~<CR> Tilde immediately followed by a carriage return ignores the carriage return and any
whitespace at the beginning of the next line. With a :, the whitespace is left in place.
'With an @, the carriage rcturn is left in place. This dnrecuve is typically used when a
format control string is too long to fit nicely into one line of the program.

~* arg is ignored. ~n* ignores the next » arguments. ~:* “ignorcs backwards”; that is,
it backs up in the list of arguments so that the argument last processed will be
processed again. ~n:* backs up n\ arguments. ~n@* is absolute; it moves to
argument n (n = 0 specifies the first argument).

When within a ~{ construct (see below), the ignoring (in either direction) is relative to
the list of arguments being processed by the iteration.

~pP If arg is not 1, a lower-case ‘s’ is printed. (P’ is for ‘plural’) ~:P docs the same
~ thing, after doing a ~:*; that is, it prints a lower-case s if the last argument was not
1. ~@P prints ‘Y’ if the argument is 1, or ‘ies’ if it is not. ~:@P does the same

thing, but backs up first.

~T Spaces over to a given column. ~n,mT outputs sufficient spaces to move the cursor to
column n. If the cursor is alrcady past column n, it outputs spaces to move it to
column n+mk, for the smallest integer value k possible. n and m default to 1.
Without the colon flag, n and m arc in units of characters; with it, they are in units -
of pixels. '

PS:KLMAN>FD-FIO.TEXT.24 ' o » 8-JUN-84

Formatted Oumul ' o ‘ .. 488 o Lisp Machine Manual

Notc:- this operation morks properly ‘only on strecams that support the :read-cursorpos
and :increment-cursorpos stream opcrations (sec page 467). On other streams, any
~T operation simply outputs two spaces. When format is creating a string, ~T works
by assuming that the fiest character in the string is at the left margin. :

~@T simply outputs a spacc. ~rel T _simply outputs rel spaces. ~rel, period T
outputs rel spaces and thcn additional spaccs until it reaches a column which is a '
multiple of period. 1§ the output strcam docs not support :read- cursorpos then lt'
simply outputs rel spaces.

~R "~ ~R prints arg as a cardimal English number, c.g. four.. ~:R prints arg as an ordinal
number, c.g. fourth. ~@HR prints arg as a Roman numeral, c.g. IV. ~:@R prints arg
as an old Roman numecral, ¢.g. llll. '

~nR prints arg in radix #. The flags and any remaining parameters are used as for
‘the ~D dircctive. Indeed, ~D is the same as ~10R. The full form here is thercfore
~radix ,mincol ,padchar commacharR.

~? Uscs up two arguments, and processes the ﬁrst onc as a format control string using the
sccond one’s clements as arguments. Thus,
(format nil "~? ~D" "~0 ~0" '(4°20.) 9)
returns "4 24 9",

~@7? processes the following argument as a format control string, using all the
remaining arguments. Any arguments it docs not use arc left to be processed by the
format directives following the ~@? in the original control string.

(format nil "~@? ~D" "~0 ~0" 4 20. 9)
likewisc returns "4 24 9",

~sstr~« Performs the formatting specified by str, with indentation on any new lines. Each

time a Return is printed during the processing of str, it is followed by indentation
sufficient to line up underneath the place where the cursor was at the beginning of str.
For example,

(format t "Foo: ~8T~+~A~e" string)
prints sfring with each line starting at column 8. 1If strmg is (string-append "This is"
\return "the string") then the output is

Foo: This is

the string

~(str~) Performs output with casc conversion. The formatting specified by sir is done, with all
the letters in the resulting output being converted to upper or lower case according to
the modifiers given to the ~(command:

~(without modifiers
Converts all the letters to lower case.

o~y Converts the first letter of each word to upper case and the rest to lower case.’

~@(Converts the first letter of the first word to upper case, and all other letters to
lower case.

~;@(Converts all the letters to upper case.

PS:KL.MAN>EFD-FIO.TEXT.24 , ' 8-JUN-84

Lisp Machine Manual | 4 ' 489 ’ . ~ Formatted Output

~1(. Converts the first letter of the first word to upper case and docs ‘not change
anything else. If you arrange to gencrate all output in lower case cxcept for
“letters' that should be upper case regardless “of context, you can usc this
directive when the output appears at the bcgummg of a sentence, '
Example:
"~(FoO BaR~) ~:(FoO BaR~) ~@(FoO BaR~) ~:@(Fo0 BaR~)
~1(at the White Hart~)"
produces
foo bar Foo Bar Foo bar FOO BAR
At the White Hart

- ~[str0~;stri~;...~;strn~] '
This is" a sct of alternative control strings. ‘The alternatives. (called clauses) are
scparated by ~; and the construct is terminated by ~}. For example,

- "~[Siamese ~;Manx ~;Persian ~;Tortoise-Shell ~

~:;Tiger ~;Yu-Shiang ~Jkitty" :

The argth alternative is sclected; 0 sclects the first. If a prefix paramcter is given (i.e.
~n[), then the parameter is used instcad of an argument (this is uscful only if the
parameter is ‘#°). If arg is out of range no alternative is sclected. After the selected
alternative has been processed, the control string continucs after the ~}.

~[strO~;strl ~;... ~;strn ~:;default ~] has a decfauit casc. If the last ~; used to separate
clauses is instcad ~:;, then the last clause is an “eclse” clause, which is performed if no
other clause is selected. For example,
" "~[Siamese ~;Manx ~;Persian ~;Tiger ~
~;Yu-Shiang ~:;Bad ~] kitty"

~[~tag00,1ag01 ,...;str0~tagl0,tagl i ...;strl...~] allows the clauses to have cxplicit tags.
The parameters to each ~; are numeric tags for the clause which follows it. That
clausc is processed which has a tag matching the argument. If ~al,a2,bl,b2,..:; (note
the colon) is used, then the following clause is tagged not by single values but by
ranges of values a/ through a2 (inclusive), b/ through b2, etc. ~:; with no
parameters may be used at the end to denote a default clause. For example,
"~[~t+, 7= "%, " //;0perator ~'A,’Z,%a,"2:;letter ~
~'0,'9:;digit ~:;other ~]"

~:[false~;true~] sclects the false control string if arg is nil, and sclects the true control
_string otherwise. :

~@[true~] tests the argument. If it is not nil, then the argument is not used up, but
is the next one to be processed, and the one clause is processed. If it is nil, then the
argument is used up, and the clause is not processed. For example,
(setq »print-Tevel* nil *print-lengths §)
(format nil
"~@[»PRINT- LEVEL*-~D~]~@[*PRINT-LENGTHe=~D~]"
prinlevel prinlength)
=> " wPRINT-LENGTH#*=H"

PS:<L.MAN>FD-FIO.TEXT.24 S 8-JUN-84

~ Formatted Output _ : 490 | ‘ ~ Lisp Machine Manual

The combination of ~[and # is uscful, for cxample, for decaling with English
conventions for printing lists: » '
(setq foo "Items:~#[none~; ~S~; ~S and ~
' - ~S~i~R{~#[~1; and~] ~S~*,~}~].")
(format nil foo)
L => "Items: none."
(format nil foo 'foo)
: => "Items: F00."
(format nil foo 'foo ’bar)
. => "Items: FOO and BAR."
(format nil foo 'foo 'bar 'baz)
=> "Items: FOO, BAR, and BAZ."
(format nil1 foo ’'foo ’'bar ’baz ’quux) _
=> "Items: FOO, BAR, BAZ, and QUUX."

~; Scparates clauses in ~[and ~< constructions. !t is undefined clsewhere.

~] Terminates a ~[. It is undefined clsewhere.

~{str~} This is an iteration. construct. The argument should be a list, which is used as a set of
' ~arguments as if for a recursive call to format. The string sir is used repeatedly as the
control string. Each iteration can absorb as many clements of the list as it likes; if sir
uses up two arguments by itsclf, then two elements of the list get used up each time
“around the loop. If béfore any iteration step the list is empty, then the jteration is
terminated. Also, if a prefix parameter n is given, then there can be at most n
repetitions of processing of str. Here are some simple cxamples: ”
(format nil "Here it is:~{ ~8~}." "(a b c))
~ => "Here it is: A B C." :
(format nil "Pairs of things:~{ <~§,~8>~}." '(a 1 b 2 c 3))
=> "Pairs of things: <A,1> <B,2> <(,3>."

‘Using ~~ as well, to terminate st if no arguments remain, we can print a list with
commas between the clements:
(format nil "Elements: ~{~S~*, ~}." ’(a b c))
=> "Elements: A, B, C." '

~{str~} is similar, but the argument should be a list of sublists. At each repetition
step one sublist is used as the set of arguments for processing str; on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed. Example: ‘
(format nil "Pairs of things:~:{ <~§,~8>~}."
"((a 1) (b 2) (c 3)))

=> "Pairs of things: <A,1> <B,2> <(C,3>."
~@{sir~} is similar to ~{sir~}, but instead of using one argument which is a list,

all the remaining arguments are used as the list of arguments for the iteration.
Example: :

PS:KL.MAN>FD-FIO.TEXT.24 B 8-JUN-84

Lisp Machine Manual _ 491 - Formatted Output

(format nil "Pairs of things:~@{ <~S,~S>~}."
'al ‘b2 ’'c3) 4
=> "Pairs of things: <A,1> <B,2> <C,3>."

~:@{sir~} combines the features of ~:{str~} and ~@{sir~}. All the rcmaining
arguments arc used, and cach onc must be a list. On cach iteration the next argument
is used as a list of arguments to str. Example: . : ‘
(format nil "Pairs of things:~:@{ <~§,~S>~}."
. "(a 1) "(b2) *(c3))
=> "Pairs of things: <A,1> <B,2> <C,3>."

‘Ferminating the repetition construct with ~:} instead of ~3} forces sir to be processed
at least once cven if the initial list of arguments is null (however, it does not override
an cxplicit prefix parameter of zero).

If stir is cmpty, then an argument is used as sir. Tt must be a string, and precedes
_any arguments processcd by the itcration. As an ecxample, the following are
- cquivalent; :

(apply #'format stream string args)
(format stream "~1{~:}" string args)

This uses string as a formatting string. The ~1{ says it must be processed at most

once, and the ~:} says it must be processed at least once. Therefore it is processed

'cxactly once, using args as the arguments,

As another example, the format function itself uses format-error (a routine internal to
the format package) to signal error messages, which in turn uses ferror, which uses
format recursively. Now format-error takes a string and arguments, just like format,
* but also prints some additional information: if the control string in ctl-string actually
is a string (it might be a list—sec below), then it prints the string and a little arrow
showing where in the processing of the control string the error occurred. The variable
cti-index points one character after the place of the error.
(defun format-error (string &rest args)
(if (stringp ctl-string)
' (ferror nil "~1{~:}~U~VTI~%~3@T/"~A/"~%"
string args (+ ctl-index 3) ctl-string)
(ferror nil "~1{~:}" string args))) :
This first processes the given string and arguments using ~1{~:}, then tabs a variable
amount for printing the down-arrow, then prints the control string between double
quotes. The cffect is something like this:
(format t "The item is a ~[Foo~;Bar~;Loser~]." 'quux)
>>ERROR: The argument to the FORMAT "~[" command
" must be a number .
+ v :
"The item is a ~[Foo~;Bar~;Loser~]."

-~} " Terminates a ~{. It is undcfined elsewhcre.

~< ~mincol,colinc.minpad',padcharﬂexl~> justifies fext within a ficld at least mincol wide.
text may be divided up into segments with ~;—the spacing is evenly divided bctween

PS:<L.MANYFD-FIO.TEXT.24 : o : - 8-JUN-84

Formatted Output

- 492 |isp Machine Manual

- the text-segments. - With no modifiers, the leftmost text segment is left justified in the
ficld, and the rightmost text segment right justified; if there is only one, as a special
case, it -is right justified. The : modifier causes spacing to be introduced before the
first text segment; the @ modifier causes spacing to be added- after the last. Minpad,
default 0, is the minimum number of padchar (default space} padding characters to be
output between cach scgment. If the total width needed to satisfy these constraints is

greater than mincol, then mincol is adjusted upwards m colm(' increments. colinc

dcfwults to 1. mincol defaults to. 0. For cxample,
(format nil "~10<foo~;bar~>") => "foo bar"
(format nil "~10:<foo~;bar~>") => " foo bar"
(format nil "~10:@<foo~;bar~>") => " foo bar "
(format nil "~10<foobar~>") = " foobar"
(format nil "~10:<foobar~>") = " foobar"
(format nil "~10@<foobar~>") => "foobar - "
(format nil "~10:@<foobar~>") => " foobar "
(format nil "$~10,,, #<~3f~>" 2.5902) => "Fxxasxe2 59"

Note that exs may include format directives. The last cxample illustrates how the ~<
directive can be combined with the ~f directive to provide more advanced control over
the formatting of numbers. :

- Here are some examples of the use of ~~ within a ~< construct. ~~ is explained in
detail below, however the general idea is that it eliminates the segment in which it
appears and all following scgments if there are no more arguments.
(format nil "~15<~S~;~~~S~;~2~G~>" *f00)
=> " R FOO"
(format nil "~15<~S~;~*~S~;~~~§~>" *fo0 ’bar)
' - => "FOO BAR"
(format nil "~15<~S~;~ a8~ ;~2~5~>" *f00 *bar 'baz)
© => “FOO BAR BAZ"

The idea is that if a segment contains a ~~, and format runs out of arguments, it just
stops there instead of getting an error, and it as well as the rest of the scgments are
ignored.

If the first clause of a ~< is terminated with ~:; instead of ~;, then it is used in a
special way. All of the clauscs are processed (subject to ~~, of course), but the first
one is omitted in performing the spacing and padding. When the padded result has
been determined, then if it will fit on the current line of output, it is output, and the
text for the first clause is discarded. If, however, the padded text will not fit on the
current line, then the text segment for the first clause is output before the padded text.

. The first clause ought to contain a carriage return (~%). The first clause is always

PS:KL.M ANDFD-FIO.TEXT 24

processed, and so any arguments it refers to will be used: the decision is whether to

use the resulting scgment of text, not whether to process the first clause. If the ~:;

has a prefix parameter n, then the padded text must fit on the current line with n

character positions to spare to avoid outputting the first clause’s text. For example, the

control string _
Moy ~{~<~Bhy s ~1i; ~Seden Y A%

can be used to print a list of items separated by commas, without breaklng items over

8-JUN-84 .

Lisp Machine Manual o 493 , ~ Formatted Qutbul

line boundaries, and beginning -cach line with %' CThe prefix parameter 1 in ~1:
accounts for the widih-ot=the: comma which will follow the justified item if it is not
the last clement in the list, or the period if it is.” If ~: has a sccond prefix
parameter, then it is used as the width of the linc, thus overriding the natural line
width of the output strecam. To make the preceding cxample use a line width of 50,
onc would write - . '

"athy s ~{~<~byy ~1,80: e g A

If the sccond argument is not specificd, then format sees whether the stream handles
- the :size-in-characters message. If it docs, then format sends that message and uscs
~the first returned value as the line length in characters. If it _docsn’t, format uscs 72.
as the linc length. ' ‘

Rather than using this complicated —syntax, one can often call the function
_ format:print-list (scc page 495). : :

~> Terminates a ~<. It is undefined clsewhere.

~n This is an escape construct. If there arc no more arguments remaining to be processed,
then the immediately enclosing ~{ or ~< construct is terminated. If there is no such
enclosing construct, then the cntire formatting operation ‘is terminated. In ‘the ~< case,
- the formatting is performed. but no morc scgments arc processed before doing the
justification. The ~~ should appcar only at the beginning of a ~< clause, because it

aborts the cntire clause. ~~ may appcar anywhere in a ~{ construct.

If a prefix parameter is given, then termination occurs if the parameter is zero.
(Hence ~+ is the same as ~#~.) If two parameters are given, termination occurs if
“they are equal. If three are given, termination occurs if the second is between the
other two in ascending order. Of coursce, this is useless if all the prefix parameters are
constants; at least one of them should be a # or a V parameter.

If ~~ is used within a ~:{ construct, then it merely terminates the current iteration
~step (because in the standard case it tests for remaining arguments of the current step

only); the next itcration step COmMIMENCes immediately. To terminate the entire itcration
Process, use ~:i”. : '

~Q An escape to arbitrary user-supplied code. arg is called as a function; its arguments
are the prefix parameters to ~Q, if any. args can be passed to the function by using
~ the V prefix parameter. The function may output to *standard-output* and may look
at the variables format:colon-flag and format:atsign-flag, which are t or nil to reflect
the : and @ modificrs on the ~Q. For example,
_ (format t "~VQ" foo bar)
‘is a fancy way to say
(funcall bar foo) :
and discard the value. Note the reversal of order; the V is processed before the Q.

~\ This begins a directive whose name is longer than one character. The name is
terminated by another \ character. The following directives have names longer than
one character and make use of the ~\ mechanism as part of their operation. '

PS:<I.MAN>FD-FIO.TEXT.24 - | ‘ 8-JUN-84

FFormatted Output S 494 , . -I.isp Machine Manual

~\lozenged-string\
This is like ~A cxcept when output is 10 a wmdow in “which case the argument is
printed in a small font inside a lozenge.:

~\Iozenged -character\
This is like ~C except when output is toa wmdow in which case the argument is.
printed in a small font inside a lozenge if it has a character name, cven if it is a
formatting character or graphic character.

~\date\ 'This cxpects an argument that is a universal time (sce page 776), and prum it as a
' date and time using time:print-universal-date.

Example: '

(format t "It 1s now ~\date\" (get universal- t1me))

prints :

It is now Saturday the fourth of December, 1982' 4:00:32 am

~\time\ This cxpccts an argument that is a universal time (scc page 776), and prmts it ina
bricf format using time:print- -universal-time. .
Example: :
o (format t "It is now ~\t1me\" (get-universal- t1me))
prints ‘
’ It is now 12/04/82 04:01:38
~\datime\ S
This prints the current time and date. It does not usc an argument. It is equivalent to
using the ~\time\ dircctive with (time:get-universal-time) as argument.

~\time-interval\
~This prints a time interval measured in scconds usmg the function time:print-interval-

or-never.

Example:
(format t "It took ~\t1me intervall." 3601.)

prints
It took 1 hour 1 second,

You can define your own directives. How to do this is not documented here; read the code.
Names of user-defined dircctives longer than.one character may be used if they are enclosed in
backslashes (e.g. ~4,3\GRAPH\). :

(Note: format also allows control-string ta be a list. If the list is a list of one clement,
which is a string, the string is simply printed. This is for the use of the format: outfmt function
below. ‘The old feature wherein a more complex interpretation of this list was possible is now
considered obsolete; use format:output if you like using lists.)

A condition instance can also be used as the coritrol-string Then the :report operation is
“uscd to print the condition instance; any other arguments are ignored. This way, you can pass a
condition instance dircctly to any function that normally expects a format string and arguments.

PS:KILMAN>FD-FIO.TEXT. 24 | - 8-JUN-84

Lisp Machine Manual * 495 Formatted Output

format:print-11st destination element-formar list &optional separator start-line
lilde-brace-options _ ' '

This function provides a simpler interface for the specific purpose of printing. comma-

- separated lists with no list clement split across two lines: see the description of the ~:;
dircctive (page 492) to sce the more complex way to do this within format. destination -
tclls where to send the output: it can be t, nil, a string-nconc’able string, or a strcam,
as with format. - element-format is a format control-string that tells how to print cach
clement of lisr: it is used as the body of a ‘~{..~} construct. separator, which defaults
to "," (comma; space) is a string which goes after cach clement cxcept the last. format
control commands arc not reccommended in separator. start-line, which defaults to three
spaces, is a format control-string that is used as a prefix at the beginning of cach line of
output, cxcept the first. format control commands arc allowed in separator, but they
should not swallow arguments from list. tilde-brace-options is a string inserted before the .
opening ‘{"; it defauits to the null string, but allows you to inscrt colon and/or. atsign.
The linc-width of the strcam is computed the same way that the ~:; command computes

" it; it-is not possible to override the natural line-width of the stream. 7

i : ' '
PS:KLMAN>FD-FIO.TEXT.24 o ~ 8-JUN-34

Formatted Output o '_ g 49 Lisp Machine Manual

2242 The Output Subsystem

"l_hc‘ formatting functions associated with the format:output subsystem allow you to do
formatted output using Lisp-style control’ structure. 1Instcad of a directive in a format control
string, there is onc formatting function for cach kind of formatted output. ‘

*"The calling conventions of most of the formatting functions arc similar. ‘The first argument is
usually the datum to be output. ‘The sccond argument is usually the minimum number of
- columns to use. The remaining arguments are keyword arguments.

Most of the functions accept the keyword arguments padchar, minpad and tab-period. padchar
is a character. o usc for padding. minpad is a minimum number of padding characters to output
afier ‘the data. tab-period is the distance between allowable places to stop padding. To make the
meaning of fab-period clearer, if the value of 1ab-period is 5, if the minimum size of the ficld is
10, and if the value of minpad is 2, then a datm that takes 9 characters is padded out to 15

“characters. The requirement to usc at least two characters of padding means it can't fit into 10
characters, and the tab-period of 5 mcans the next allowable stopping place is at 1045 characters.
The default values for minpad and tab-period, if they are not specified, are zero and onc. The
default value for padchar is space. '

The formatting functions always output to *standard-output® and do .not require an
argument to specify the stream. The macro format.output allows you to specify the strecam or a
string, just as format docs, and also makes it convenicnt to concatcnatc constant and variable
output. ‘

format:output stream string-orform.. ' Macro
Makes it convenient to intersperse arbitrary output operations with printing of constant
strings. *standard-output* is bound to stream, and each string-or-form is processed in
succession from left to right. If it is a string, it is printed; otherwise it is a form, which
is evaluated for effect. Presumably the forms will send output to *standard-output®.

If stream is written as nil, then the ouiput is put into a string which is returned by
format:output. If stream is written as t, then the output goes to the prevailing value of
*standard-output®. Otherwise stream is a form, which must cvaluate to-a stream.

“Here is an example:. ‘
(format:output t "FOO is " (prinl foo) " now." (terpri))

Because format:output is a macro, what matters about stream is not whether it evaluates
to t or nil, but whether it is actually written as t or nil.

format:outfmt string-orform... . _ Macro
Some system functions ask for a format control string and arguments, to be printed later.
"If you wish to gencrate the output using the formatted output functions, you can use
format:outfmt, which produces a control argument that will eventually make format print
“the desired output (this is a. list whose one element is a string containing the output). A

call to format:outfmt can be used as the second argument to ferror, for example:

PS:KI.MAN>FD-FIO.TEXT.24 - , o 8-JUN-84

'I‘ Jisp Machine Manual _ 497 Formatted Cutput

v

~(ferror nil (format:outfmt "Foo is " (format:onum foo)
: " which is too large"))

. format:onum number &optional radix minwidth &key padchar mmpad mb -period signed
conmas
Outpuls number in base radix, -padding to at least minwidth. columns and obcymg the
- other padding options specified as described abovc

radix can bc a number, or it can bc ‘roman, engllsh or :ordinal. 'The default radix is
10. (dccnmdl)

If .slg,m’d is non-nil, a + sign is printed if the number is positive. If commas is non-nil,
a comma is printed cvery third digit in the customary way. These arguments are
meaningful only with numeric radices. -

format:ofloat number &optional n-digits force-exponential-notation minwidth &key padchar
minpad tab-period
Outputs number as a floating point number using n-digits digits. If force-exponential-
notation is non-nil, then an exponent is always used. minwidth and the padding options
arc interpreted as usual,

format:ostring swring &optional minwidth &key padchar 'minpad tab-period right-justify
Outputs string, padding to at least minwidth columns if minwidth is not nil, and obeying
the other padding options specified as described above.

Normally the data are left justified; any padding follows the data. If right-justify is non-
nil, the padding comes before the data. - The amount of padding is not affected.

The argument nced not really be a string. Any Llsp object is allowed, and it is output - -
with princ. :

format:oprint object &optional minwidth &key padchar minpad tab-period right-justify
Prints object, any Lisp object, padding to at least minwidth columns if mmw:dlh is not nil,
“and obcying the padding options specified as described above

“Normally the data are left justified; any padding follows the data. If right-justify is non-
nil, the padding comes before the data. The amount of padding is not affected.

The printing of the object is done with prin1.

. format:ochar character &optional style top-explain minwidth &key padchar minpad
tab-period

Outputs character in one of three styles, sclected by the style argument minwidth and the

padding options control padding as usual.

:read or nil The character is printed using #\ or #/ so that it could be read back
' in. ,
:editor Output is in the style of ‘Meta-Rubout’. Non-printing characters, and the

two printing characters Space and Altmode, arc represented by their
names. Other prmtmg characters arc printed dlrcctly

PSKLLMAN>ED-FIO.TEXT24 - 4 8-JUN-84

© Formatted Output ‘ B - 498 Lisp Machine Manual

brief - . Brief prefixes such as ‘C-" and ‘M-" arc uscd, rather than ‘Control-" or
‘Meta-". Also, character names are used only if there are meta bits
" present, : : '

lozenged ~The output is the same as that of (he :editor style, but If the character is

not a graphic character or if it has meta bits, and the strcam supports the
:display-lozenged-string operation, that operation is used instcad of
'string-out to print the text. On windows this operation puts the
character name inside a lozenge. :

csail ‘', “, ctc. are used to represent Control and Meta, and shorter names .
for characters arc also used when possible. Sce section 10.1.1, page 205.

top-explain is uscful with the editor. :brief and :sail styles. It says that any character
that has to be typed using the Top or Greek keys should be followed by an cxplanation
of how to type it. For example: ‘> (Top-K)' or ‘a (Greek-a)'.

format:tab mincol &key padchar minpad tab-period terpri unit
Outputs padding at lcast until column - mincol. 1t is the only formatting function that
bases its actions on the actual cursor position rather than the width of what is being
output. The padding options padchar, minpad, and tab-period arc obeyed. Thus, at least
the minpad number of padding characters are output even if that goes past mincol, and
once past mincol, padding can.only stop at a multiple of tab-period characters past
mincol. ’ :

In addition, if the terpri option is t, then if column mincol is passed, formatitab starts a
new line and indents it to mincol.

“The unit option specifics the units of horizontal position. The default is to count in units
of characters. If unit is specified as :pixel, then the computation (and the argument
mincol and the minpad and tab-period options) are in units of pixels.

format:pad (minwidth &key padchar minpad tab-period..) body... Macro
format:pad is used for printing several items in a fixed amount of horizontal space,
padding between them to use up any excess space. Each of the body forms prints one
item. The padding goes betwecen items. The entire format:pad always uscs at least
minwidth columns; any columns that the items don't nced arc distributed as padding
" between the items. If that isn’t cnough space, then more space is allocated in units
controlled by the fab-period option until there is enough space. If it's more than enough,
the excess is used as padding.

If the minpad option is specified, then at least that many pad characters must go between
each pair of items. = :

Padding goes only between items. If you want to ‘treat several actual pieces of output as
one item, put a progn around them. If you want padding before the first item or after
the last, as well as between the items, include a dummy item nil at the beginning or the
end. . ' '

PSKL.MAN>FD-FIO.TEXT.24 » | ‘ 8-JUN-84

* Lisp Machine Manual , . 499 ' Formatted Output

If there is only onc item, it is tight justificd. One item followed by nil is Icfi-justiﬁcd.
Onc item preceded and followed by nil is centered. ‘Thercfore, format:pad can bc used
to provide the usual padding options for a functio_n that docs not provide them itself.

format:plural number singular &optional plural : ,
- Outputs cither the singular or the plural form of a word depending on the value of
number. ‘The singular is used if and only .if mumber is 1. singular specifies the singular
form of the word. string-pluralize is used to compute the plural, unless plural is
cxplicitly specificd.

It is ofich useful for number to be a value returned by format:onum, which returns its
argument. For éxample: ‘

(format:plural (format:onum n-frobs) " frob")
prints "1 frob” or "2 frobs".

format:breakline linel print-if-terpri print-always... Macro
 Goes to the next line if there is not cnough room for something to be output on the
current line. The print-always forms print the text which is supposed to fit on the line.
Jinel is the column before which the text must end. If it doesn’t end before that column,
then format:breakline moves to the next line and exccutes the print-if-terpri form before
. doing the. print-always forms.

Constant strings arc allowed as well as forms for. print-if-terpri and print-always. A
constant string is just printed. :

To ‘go to a ncw line unconditionally, simply call terpﬁ.

Here is an example that prints the- elements of a list, separated by commas, breaking. lines
between elements when necessary.

- (defun pcl (1ist linel)
(do ((1 1list (cdr 1))) ((nu]l 1))
(format:breakline linel " "
(princ (car 1))
(and (cdr 1) (princ ", ")))))

PS:KLL.MAN>FD-FIO.TEXT.24 8-JUN-84

Rubout Handling : ' 500 | isp Machine Manual

22.5 Rubout Handling

The rubout handler is a feature of all- intcractive streams, that is, strcams that connect to
terminals. Its purpose is to allow the user to edit minor mistakes made during type-in. ‘At the
same time, it is not supposed to get in the way: input is to be scen by Lisp as soon as a
syntactically complete form has been typed. The definition of ‘syntactically complete form’
depends on the. function that is reading from the strcam; for read, it is a Lisp cxpression.

Some interactive streams (‘editing Lisp listeners’) have a rubout handler that allows input to
be edited with the full power of the ZWEI editor. (ZWEI is the general editor implementation
on which Zmacs and ZMail are based.). Most windows have a rubout handler that apes ZWE],
implementing about twenty common ZWEl commands. ‘The cold load stream has a simple rubout
handler that allows just rubbing out of singlc characters, and a few simple commands like clearing
the screen and crasing the entire input typed so far. All three kinds of rubout handler use the
same protocol, which is described in this section. We also say a lite about the most common of
the three rubout handlers..

[Eventually some version of ZWEI will be used for all strcams except the cold load stream}

The tricky thing about the rubout handler is the neced for it to figure out when you are all
done. 'The idea of a rubout handler is that you .can type in characters, and they are saved up in
a buffer so that if you change your mind, you can rub them out and type different characters.
However, at some point, the rubout handler has to decide that the time has come to stop putting
characters into the buffer and to let the function parsing the input, such as read, return. This is
called activation. The right time to activate depends on the function calling the rubout handler,
and may be very complicated (if the function is read, figuring out when onc Lisp expression has
been typed requires knowledge of all the various printed representations, what all currently-defined
reader macros do, and so on). ‘Rubout handlers should not have to know how to parse the
characters in the buffer to figure out what the caller is reading and when to activate; only the
caller should have to know this. The rubout handler interface is organized so that the calling
function can do all the parsing, while the rubout handler does all the handling of editing
commands, and the two are kept completely separate.

The basic way that the rubout handler works is as follows. When an input function that reads
characters from a stream, such as read or readline (but not tyi), is invoked with a strcam which
has :rubout-handler in its :which-operations list, that function “enters” the rubout handler. It
then goes ahcad :tyi'ing characters from the strcam. Because control is inside the rubout handler,
the strcam echoes these characters so the user can see what he is typing. (Normally echoing is
considered to be a higher-level function outside of the province of strcams, but when the higher-
level function tells the stream to enter the rubout handler it is also handing it the responsibility
for echoing.) The rubout handler is also saving all these characters in a buffer, for rcasons
disclosed in the following paragraph. When the parsing function decides it has enough input, it
returns and control “leaves” the rubout handler. This is the casy case.

If the user types a rubout, a throw is done out of all recursive levels of read, reader macros,
and so forth, back to the point where the rubout handier was entered. Also the rubout is cchoed
by erasing from the screen the character which was rubbed out. Now the read is tried over
again, re-reading all the characters that have not been rubbed out, not echoing them this time.
When the saved characters have been cxhausted, additional input is read from the user in the
usual fashion.

- PSKL.MAN>FD-FIO.TEXT.24 : 8-JUN-84

,I.i..\'|)vMiIChiliC. Manual S sl ' Rubout Handling

The effect of this is a complete scparation of the functions of rubout handling ‘and parsing,
while at the same time mingling the cxecution of these two functions in such a way that input is
always activated at just the right time. It does mean that the parsing function (in the usual case,
read and all macro-character definitions) must be prepared to be thrown through at any time and
should not Imvc non-trivial sidc-cffects, since it may be callcd muluplc times.

If an crror .occurs while inside the ruboui handler, the error. message is pnmcd and thcn
additional characters ar¢ rcad. When the user types a rubout, it rubs out the error message as
well as the character that caused the error, ‘The user can then proceed to type the corrected
expression; the input will be reparsed from the beginning in the usual fashion.

The-rubout handler based on the ZWEI editor interprets control characters in the usual ZWEI
way: as cditing commands, allowing you to cdit your buffered input.

'The common rubout: handler also recognizes a subsct of the cditor commands, including
Rubout, Control-F and Meta-F and others. Typing Help while in the rubout handler displays a
list of the commands. The kill and yank commands in the rubout handler use the same Kkill ring
as the cditor, so you can kill an cxpression in the editor and yank it back into a rubout handler
with Control-Y, or kill an-cxpression in the rubout handler with Control-K or Clear-input and
yank it back in the editor. The rubout processor also keeps a ring buffer of most recent input
strings (a separate ring for cach strcam), and the commands Control-C and Meta-C retricve from
this ring: just as Control-Y and Meta-Y do from the kill ring.

When not inside the rubout handler, and when typing at a program that uses control
characters for its own purposes, control characters are treated the same as ordinary characters.

Some programs such as the debugger allow the user to type ecither a control character or an
expression. In such programs, you are really not inside the rubout handler unless you have typed
the beginning of an expression. When the input buffer is empty, a control character is treated as
a command for the program (such as, Control-C to continue in the debugger); when there is
text in the rubout handler buffer,- the same character is trcated as a rubout handler command.
Another consequence of this is that the message you get by typing Help varics, being either the
rubout handler’s documentation or the debugger’s documentation.

To write a parsing function that reads with rubout handling, use with-input-editing.

with-input-editing (stream options) body.. ‘ Macro
Invokes the rubout handler on stream, if stream supports it, and then executes body.
body is executed in any case, within the rubout handler if possible. rubout-handler is
non-nil while in body if rubout handling is in use.

options are uscd as the rubout handler options. If alrcady within an invocation of the

“rubout_handler, options arc appended to the front of the options already in effect. This
‘happens if a function which reads input using with-input-editing, such as read or
readline, is. called from the body of another with-input-editing. The :norecursive
option can be used to cause the outer set of options to be completcly ignored even when
not overridden by new ones.

PSKLL.MANDIOS.TEXT.247 _ : : : 8-JUN-84

- Rubout Handling : : ' 502 - Lisp Machine Manual

body’s values arc returned by with-input-editing. body ought to read input from stream
and return a Lisp object that represents the input. It should have no nontrivial side
cffects aside from reading input from stream structure, as it may be aborted at any time it
~ reads input and may be cxccuted over and over. '

If the :full-rubout option is specified, and the user types some input and rubs it all out,
the with-input-editing form returns immediately. Sce :full-rubout, below. '

If a preemptive command is input by the user, with-input-editing rcturns immediately
with the valucs being as specified below under the :command and :preemptable options.

~ body is aborted from its call to the :tyi operation, and the input rcad so far remains in
the rubout handler editing buffer to be read later. ' : '

rubout-handler _ : ' Variable
If control is inside the rubout handler in this process, the valuc is the stream on which
rubout handling is being done. Otherwise, the value is nil,

:rubout-handler oplion& Sunction- &rest args ' Operation on streams
Invokes the rubout handler on the stream, with options as the options, and parscs by
applying function to args. with-input-editing uscs this opcration.

:read-bp ‘ Operation on streams
This operation may be used only from within the code for parsing input from this stream
inside the rubout handler. It returns the index within. the rubout handler buffer which.
parsing has reached.

:force-rescan : . Operation on streams
This operation may be uscd only from within the code for parsing input from this stream
inside the rubout handler. It causcs parsing to start again immediately from the beginning
of the buffer.

irescanning-p : Operation on streams
This operation may be used only from within the code for parsing input from this stream
_ inside the rubout handler. It returns t if parsing is now being done on input already in
the buffer, nil if parsing has used up all the buffered input and the next character parsed
will come from the keyboard.

Each option in the list of rubout handler options consists of a list whose first element is a
keyword and whose remaining clements are the arguments of that keyword. Note that this is not
the same format as the arguments to a typical function that takes keyword arguments; rather this
is an alist of options. The standard options are:

(:activation fh args...) A
Activate if certain characters are typed in. When the user types an
activation character, the rubout handler moves the cditing pointer
immediately to the end of the buffer and inserts the activation character:
* This immediately causes the parsing function to begin rescanning the
input. :

PS:<I.MANDIOS.TEXT.247 ' ' : © 8-JUN-84

|isp Machine Manual 503 - Rubout Handling

firis used to test characters for being activators. [t is called with an input
character as the - first arg (possibly a fixnum, possibly a character object)
and args as additional -args. 1f fi rcturns non-nil, the character is an
activation.. fh is not called for blips, ‘

After the parsing function has rcad the entire contents of the buffer, it
sces the activation character as a blip (:activation char numeric-arg) where
char is the character that activated and numieric-arg is the numeric arg that
was pending for the next rubout handler command. Normally the parsing
function will return at this point. Then the activation character- does not
~ccho. But if the parsing function continucs to read input, the activation
character cchoes and is inserted in the buffer. :

(:do-not-echo chars...)
Poor man's activation characters. -like :activation cxcept that the
characters that should activate arc listed explicitly, and the character itself
is returned to the parsing function rather than a blip. '

(full -rubout val)
If the uscr rubs out all the characters he typed, thcn control is returned
 from the rubout handler immediately. Two values are returned; the first
is. nil and the sccond is val. (If the user doesn’t rub out all the
characters, then the rubout handler propagates multiple values back from
the function that it calls, as usual) In the abscncc of this option, the
rubout handler would simply wait for more characters to be typed in and
would ignore any additional rubouts.

This is how the debugger knows to remove Eval: from the screen if you
type the beginning of a form and rub it all out.

(:pass-through charl char2...)
The characters charl, char2, etc. are not to be treated as special by the
" rubout handler. They are read as input by the parsing function. If the
parsing function docs not return, they can be rubbed out. This works
only for characters with no modifier bits.

(:preemptable value)

Makes all blips read as input by the rubout handler act as preemptive
commands. If this option is specified, the rubout handler returns
immediately when it reads a blip. It returns two values: the blip that was
read, and value. The parsing function is not allowed to finish parsing up
to a delimiter; instcad, any buffered input remains in the buffer for the
next time input is done. In the mean time, the prcemptive command
character can be processed by the command loop.

While this applies to all bhps, the blips which it is probably intended for
are mouse blips.

- (:command fi args...) -
Makes certain characters preemptive commands. A preemptive command
returns instantly to the caller of the :rubout-handler operation, regardless

PS:K<L.MAN>IOS. TEXT.247 ' : 8-JUN-84

Rubout Handling - s) ' - Lisp Machine Manual

of the input in the buffer, It returns two values: a list (:command char
numeric-arg) and the keyword :command. The parsing function is . not
allowed to finish parsing up to a dclimiter; - instcad, “any buffcred input
remains in the buffer for the next time input is donc. In the mcan time, -
the preemptive command character can be processed by the command .
loop.

‘The test for whether a character should be a preemptive command is done
using fir and args just as in :activation. : : :

(:editing-command (char doc)...) -
' Defines cditing commands to be exccuted by the parsing function itsclf. -
This is how gsend implements the Control-Meta-Y command. Each char
is such a command, and doc says what it does. (doc is printced out by the
rubout handler's Help command.) If any of these characters is rcad by the .
rubout handler, it is returned immediately to the parsing function
regardiess of where the cditing pointer is in the buffer. (Normal inserted
text is not returncd immediatcly when read unless the cditing pointer is at
the end of the buffer.)

The parsing function should not regard these characters as part of the

“input. There arc two rcasonable things that the parsing function can do
when it reccives one of the cditing command characters: print some
output, or force some input. -

If it prints output, it should invoke the :refresh-rubout-handler ‘
operation afterward before the next :tyi. This causes the rubout handler to
redisplay so that the input being cdited appears after the output that was
done. :

If the parsing function forces input, the input is read by the rubout
handler. This can be used to modify the buffered input gsend’s

Control-Meta-Y command works by forcing the yanked text as input.
" There is no way to act directly on the buffered input because different

implementations of the rubout handier store it in different ways.

(:prompt function)
(:reprompt function)
- When it is time for the user to be prompted, function is called with two
arguments. The first is a stream it may print on; the sccond is the
character which caused the need for: prompting, e.g. # \clear-input or

\clear-screen, or nil if the rubout handler was just entered.

The difference between :prompt and :reprompt is that the latter does not
call the prompt function when the rubout handler is first cntered, but
~only when the input is redisplayed (c.g. after a screen clear). If both
.options are spccified then :reprompt overrides :prompt except when the
rubout handler is first entered.

PS:<L.MANDIOS.TEXT247 : 8-JUN-84

| isp Machine Manual | 505 - * Rubout Handling

Sunction may also be a string. ‘Then it is simply printcd."

If the rubout hdndlcr is cxited with an empty buffer duc to the - full-
rubout uptmn whatever prompt was printed is crascd

(:initial-input string) :

Pretends that the user typed string. When the rubout handler is cntered,
string is typed out. ‘The user can input morc characters or rub out
characters from it. : '

(:initial-input-index index)
Positions the cditing pointer initially index characters into the initial input
string. Used only in company with with :initial-input.

(:no-input-save t)
Don’t save this batch of input in the input history when it is done. For
cxamplc; yes-or-no-p specifies this option. :

(:norecursivet) -
If this invocation of the rubout handler is within another one, the options
specified in the previous call should be completely ignored during this one.
Normally, individual options spccificd this time override the previous
scttings for the same options, but any of the prcvnous options not
individually. overridden are still in effect.

Rubout handlers handle the condition sys:parse-error if it is signaled by the parsing
function. The handling consists of printing the crror message, waiting for the user to rub out,
crasing the crror message, and parsing the input again. All errors signaled by a parsing function
that signify that the uscr's input was syntactically invalid should have this condition name. For
example, the crrors read signals have condition name sys:parse-error since it is is a consequence
of sys:read-error.

sys:parse-error (error) Condition
The condition name for syntax errors in input being parsed.

The- compiler handles sys:parse-error by proceeding with proceed-type :no-action. All '
signalers of sys:parse-error should offer this proceed type, and respond to its use by continuing
to parse, ignoring the invalid input. '

sys:parse-ferror format-string &rcst args
Signals a sys:parse-error ecrror, using format-string and args to print the error message.
The proceed-type :no-action is provided, and if a handler uses it, this function returns
nil. ‘

PS:<L.MANDIOS.TEXT.247 | 8-JUN-84

xpression Input and 0uiput _ A 506 . Lisp Machine Manual .

23. Expression Input and Output

People cannot deal dircctly with ‘Lisp objects, because the objects live inside the machine. In-
order to let us get at and talk about Lisp objects, Lisp provides a representation of objects in the
form of printed text; this is called the printed representation. This is what you have been sceing
in the cxamples throughout this manual. Functions such as print, prin1, and princ take a Lisp
object and send the characters of its printed representation to' a stream. These functions (and the
internal functions they call) are known as the printer. 'The read function takes characters from a
strcam, interprets them as a printed representation of a Lisp object, builds a corresponding object,
and rcturns it. - It and related functions are known as the reader. (Strcams arc cxplained in
section 22.3, page 459.) ’

For the rest of the chapter, the phrase ‘printed representation’ is abbreviated as ‘p.r.’

23.1 What the Printer Produces

" The printed representation of an object depends on its type. In this section, we consider each
type of object and explain how it is printed. There are several variables which you can set before .
calling the printer to control how certain kinds of objects print. They are mentioned where
relevant in this scction and summarized in the following section, but one of them is so important
it must be described now. This is the escaping feature, controlled by the value of *print-
escape®. :

Escaping means printing extra syntactical dclimiters and escape characters when necessary to
avoid ambiguity. Without escaping, a symbol is printed by printing the contents of its name; -
* therefore, the symbol whose name consists of the three characters 1, . and § prints just like the
floating point number 1.5. Escaping causes the symbol to print as |1.5| to differcntiate the two. |
is a kind of escape character; see page 516 for morc information on cscape characters and what
they mean syntactically. '

Escaping also involves printing package prefixes for symbols, printing double-quotcs or suitable
“dclimiters around the contents of strings, pathnames, host names, editor buffers, condition
. objects, and many other things. For example, without escaping, the pathname SYS: ‘SYS;

QCP1 LISP prints as exactly those characters. The string with those contents prints
. indistinguishably. With cscaping, the pathname prints as ' '
: #CFS:LOGICAL-PATHNAME "SYS: SYS; QCP1 LISP">
- and the string prints as "SYS: SYS; QCP1 LISP".

The non-escaped version is nicer looking in general, but if you give it to read it won't do
“the right thing. The escaped version is carcfully sct up so that read will be able to read it in.
Printing with cscaping is useful in writing cxpressions into files. = Printing without escaping is
useful ‘when constructing messages for the user. However, when the purpose of a message printed
for the user is to mention an object, the object should be printed with escaping:

PS:<I.MAN>RDPRT.TEXT.29 8-JUN-84

CVS .

Lisp Machine Manual - , 507 _ What the Printer Produces

Your output is in the file SYS: SYS;’ QCP1 _QFASL.

Expected pathname properties missing from
#cFS:LOGICAL-PATHNAME "SYS: SYS; QCP1 LISP">.

The printed representation of an object also may depend on whether Common Lisp syntax is
in use. Common Lisp syntax and traditional Zetalisp syntax arc incompatible in some aspects of
their specifications.” In order to print objects so that they can be read -back in, the printer needs -
to know which syntax rules the rcader will usc. This dccision is based on the current rcadtable:
the value of *readtable* at the time printing is done.

Now we describe how cach. type of object is standardly printed.

Integers:

For an integer (a fixnum or a bignum): the printed representation consists of
* a possible radix prefix | | '
* aminus sign, if 'thc number is negative
* the representation of the number’s absolute value

* a possible radix suffix.

“The radix used for printing the number’s absolute value is found as the value of *print-
base*. This should be cither a positive fixnum or a symbol with an si:princ-function property.
In the former case, the number is simply printed in that radix. In the latter case, the property is
called as a function with two arguments, minus the absolute value of the number, and the stream
to print on. The property is responsible for all' printing. If the value of *print-base* is
unsuitable, an error is signaled. :

A radix prefix or suffix is used if cither *nopoint is nil and the radix used is ten, or if
*nopoint is non-nil and *print-radix* is non-nil. - For radix ten, a period is used as the suffix.
For any other radix, a prefix of the form #radixr is used. A radix prefix or suffix is useful to
make sure that read parses the number using the same radix used to print it, or for reminding
the user how to interpret the number. ’

Ratios:

“The printed representation of a ratio consists of
* a possible radix prefix
* a minus sign, if the number is negative
* the numerator
* - a ratio delimiter

* the denominator

PS:<L.MAN>RDPRT.TEXT.29 ‘ - 8-JUN-84

What the Printer Produces IR o508 o ' ’vl.isp Machine Manual

If Common Lisp syntax is in use, the ratio delimiter is a slash (/). If traditional syntax is in
use, backslash (\) is used. ‘The numerator and denominator are printed according to *print-
base*. e o '

The condition for printing a rad:x prefix is the same as for integers, but a prefix #10r is.
used to indicate radix ten, mlhcr than a pcnod suffix.

Floating Point Numbers:

* a minus sign, if the number is negative .
* one or more decimal digits

* a decimal point

* one or more decimal digits

* an.cxponent, if the number is small enough or]argc enough to requirc onc. The exponent,
if present, consists of

*. 3 dclimiter, the letter e, s or f
* 3 minus sign, if the exponent is negative

onc to three decimal digits

The number of digits printed is just cnough to represent all the significant mantissa bits the
number has. Feeding the p.r. of-a float back to the rcader is always supposed to produce an
equal float. Floats arc always printed in decimal; they are not affected by escaping or by *print-
base*, and there are never any radix prefixes or suffixes.

The Lisp Machine supports two floating point number formats. At any time, one of them is
the default; this is controlled by the value of *read-default-float-format*. When a floating
point number whose format is not currently the default is printed, it must be printed- with an
exponent so that the exponent delimiter can specify the format. The exponcnt is introduced in
this case by f or s to specify the fonnat. To the reader, f specifies single-float format and s
spcc1ﬁes short-fioat format.

A floating point number of the default format is printed with no exponent if this looks nice;
namely, if this docs not require too many extra zeros to be printed before or after the decimal
point. Otherwise, an cxponent is prmted and is delimited with e. To the reader, e means ‘use
the default format’,

Normally the default float fdrmat is single-float. Therefore, the printer may print full size
floats without exponents or with e exponents, but short floats are always printed with cxponents
introduced by s so as to tell the reader to make a short float.

PS:<L.MAN>RDPRT.TEXT.29 : 8-JUN-84

| isp Machine Manual - S0 _ : What the Printer Produces

Complex Numbers:.

The traditional printed representation of a complex number consists of
* the real part
* a plus sign, if the lmdgmauy pdl‘t is positive
* the lmagmary part

* the letter i, prmtcd in lower case

If the imaginary. part is _ncgzuivc, the + is omitted since the initial - of the imaginary part -
scrves to scparate it from the real part. ' ‘

In Common Lisp syntax, a complex. number is printed as #C(realpart imagpart); for
example, #C(5 3). Common Lisp incxplicably does not allow the more natural 5+ 3i syntax.

‘The real and imaginary parts arc printcd individualiy according to the specifications above.

Symbols:

If escaping is off, the p.r. is simply the successive characters of the print-name of the symbol.
If escaping is on, two changes must be made. First. the symbol might require a package prefix
in order that read work corrcctly, assuming that the package into which read will read the
symbol is the one in which it is being printed. Scc the chapter on packages (chapter 27, page
636) for an cxplanation of the package name prefix. If the symbol is one which would have
another symbol substituted for it if printed normally and read back, such as the symbol member
printed using Common Lisp syntax which would be replaced with cli:member if rcad in thus, it
is printed with a package prefix (e.g., global member) to make it rcad in properly. See page 519
for more information on this.

If the symbol is uninterned, #: is printed instead of a package prefix, provided *print-
gensym* is non-nil. :

Secondly, if the p.r. would not read in as a symbol at all (that is, if the print-name looks like
a number, or contains special characters), then escape characters are added so as to suppress the
other rcading. Two kinds of escape characters may be used: single-character escapes and multiple
escapes. A single-character escape can be used in front of a character to overrule its special’
syntactic meaning. Multiple escapes arc used in pairs, and all the characters between the pair
- have their special syntactic meanings suppressed except single-character eseapes. 1f the symbol
name contains escape characters, they are escaped with single-character escapes. If the symbol
name contains anything else problematical, a pair of multiple cscape characters are printed around
it. o '

The single-character and multiple escape characters are determined by the current readtable.
Standardly the multiple escape character is vertical bar (]), in both traditional and Common Lisp
syntax. The single-character- escape character is slash (/) in traditional syntax and backslash (\) in
Common Lisp syntax.

PSiKLMANDRDPRT.TEXT29 : 8-JUN-84

What the Printer Produces sl ' Lisp Machine Manual

FOO s typical symbol, name composed of upper case letters

A/|B : symbol with a vertical bar in its name -

|Symbol with lower case and spaces in its name|

|One containing slash (//) and vertical bar (/}) also]

Except when multiple escape characters are printed, any upper case letters in the symbol's
name may be printed as lower case.. according to the value of the variable *print-case*. This is
true whether cscaping is cnabled or not. Sce the next section for details.

Conses: .

The p.r. for conses tends to favor lists. It starts with an open-parenthesis. Then the car of
the cons is printed and the cdr of the cons is cxamined. If it is nil, a close-parenthesis is printed.
If it is anything clsc but a cons, space dot space followed by that object is printed. If it is a
cons, wc print-a spacc and start all over (from the point afier we printed the open-parenthesis)
using this new cons. Thus, a list is printed as an open-parcnthesis, the p.r.’s of its clements
separated by spaces, and a close-parenthesis. “This is how the printer produces representations
such as (a b (foo bar) c) in preference to synonymous forms such as (@ . (b . ((foo . (bar .

nil)) . (c . nil)))).

The following additional feature is provided for the p.r. of conses: as a list is printed, print
maintains the length of the list so far and the depth of recursion of printing lists. If the length
exceeds the value of the variable *print-length*, print terminates the printed represcntation of
the list with an cllipsis (thrce periods) and a close-parenthesis. If the depth of recursion cxceeds

" the value of the variable *print-level*, then the character # is printed instcad of the list. These

two features allow a kind of abbreviated printing that is more concise and suppresses detail. Of
course, neither the ellipsis nor the # can be interpreted by read, since the relevant information is
lost. ‘In Common Lisp rcad syntax, cither onc causes read to signal an error. :

If *print-pretty* is non-nil, conses are given to the grinder to print.

f ‘print-circle" is non-nil, a check is made for cars or cdrs that are circular or shared
structure, and any object (except for an interned symbol) already mentioned is replaced by a #n#
label reference. See page 524 for more information on them.

(let ((*print-circles t))
(prinl (circular-list 3 4)))
prints ' _
#1= (3 4 . #1#)

PS:<I.MANSRDPRT.TEXT.29 ' _ : ~ 8-JUN-84

- Lisp Machine Manual ' SH o What the Printer Produces

Character Objects:

When cscaping is off, a character object is printed by printing the character itself, with no
- delimiters. ‘ o » :

In Common Lisp syntax, a character object is printed with cscaping as #foni\character-or-
name. font is the character's font number, in decimal, or is omitted if zero. characier-or-name
begins with prefixes for any modifier bits (control, meta, ctc.) present in the character, cach
followed by a hyphen. ‘Fhen comes a representation of the character sans font and modifier bits.
If this reduced character is a graphic character, it represents itself. Otherwise, it certainly has a
standard name; the name is used. If a graphic characters has special syntactic properties (such as
whitespace, paretheses, and macro characters) and modifier bit prefixes have been printed then a
single-character cscape character is printed before it. ‘ '

In traditional syntax, the p.r. is the similar except that the \ is replaced by =/.

Strings:

If escaping is off, the p.r. is simply. the successive characters of the string. If escaping is on,
double-quote characters (‘") arc printed surrounding the contents, and any single-character escape
characters or double-quotes inside the contents are preceded by single-character escapes. If the
~ string contains a Return character followed by an open parenthesis, a single-character cscape is

printed before the open parenthesis. Examples:
"Foo'l .
"/"Foo/", he said."

Named Structures:

If the named structure type symbol has a named-structure-invoke property, the property is
called as a function with four arguments: the symbol :print-self, the named structure itself, the
stream to print on, and the current ‘depth of list structurc (sce below). It is this function’s
responsibility to output a suitable printed representation to the stream. This allows a user to
define his own p.r. for his named structures; more information can be found in the named
structure scction (see page 390). Typically the printed representation used starts with either #< if
it is not supposed to be reada