OVERVIEW OF THE LMI LISP MACHINE SOFTWARE

(The software described in this document
executes on both Series III and Lambda
machine hardware.)

LISP MACHINE INC.
3916 South Sepulveda Boulevard
Suite 204
Culver City, California 90230
(213) 390-3642

Copyright: LISP Machine Inc.
June, 1982



OVERVIEW OF LMI LISP MACHINE SOFTWARE

LMI LISP Machines are integrated hardware and software systems, pro-
viding a richer LISP interactive environment than that obtained from
either MACLISP or INTERLISP. The LISP Machine provides greater product-
ivity by reducing the time, trouble and cost of programming large systems.
As the last eight years of continuing programming development at MIT

have shown, large programs can be built, tested and debugged rapidly

and with ease. This allows software developers to spend more time on

program development rather than building system utilities.

Most computers are built first, with software then tailored to match
the machine. The LISP Machine's architecture, however, was implemented
around the LISP language. This results in a very fast and flexible
system designed to fit the needs of efficient LISP operation. Basic
LISP functionality is provided in either system microcode or directly
implemented in hardware.

Built on top of this architecture is a very extensive LISP implementa-
tion that, while compatible with MACLISP, provides thousands of very
rich and useful features. These features naturally extend the power

of the basic LISP language in ways that could not be done on conventional
architectures. Application programmers on the LISP Machine can, thus,
concentrate on the task at hand, chodsing from an extensive set of
appropriate system functions and language constructs without having to

either implement system utilities or restrict their software design.

Additionally, the LISP Machine also provides an extensive array of
software development tools. Along with the basic LISP interpreter,
the system provides a powerful screen-oriented text editor, compilers
that generate either micro or macrocode, as well as a complete user
environment with excellent debugging, networking and file system
software.



Significant characteristics of the LISP Machine include:

e A powerful dedicated processor with a large virtual memory
system (up to4.3billion words on the Lambda machine) and
disk.

® An interactive, high resolution display console (800 x 1024)
including an "AI" keyboard (100 keys providing a superset
of ASCII) and "mouse" interactive graphic pointing device.

® Complete datatype error checking via the LISP Machine's
tagged architecture.
@ A built-in network capability permitting LISP Machines to

communicate with other LISP Machines and with host computers.

e An industry standard bus permitting the addition of a broad
range of peripheral devices.

The basic system software includes nearly 10,000 compiled functions

and over 30,000 symbols representing an initial core image of about 4
million words. Additionally, the user is provided with over 200 micro-
coded functions residing in approximately 10K of user-writable control

memory.
The functionality represented by this extensive core image is available
to every user, yet a majority of the virtual address space remains for

user applications.

High Resolution Display

One of the most striking aspects of the LISP Machine concept is the
incorporation of a high resolution (800 x 1024) raster display. Re-
freshing at 60 times a second from a dedicated video memory, the display
offers resolution capable of reproducing a standard 8%" x 11" page of
text.

Window System

To control this display, the LISP Machine uses a powerful utility called
the Window System. This system allows the creation and placement of

separate virtual screens of arbitrary size anywhere on the display.



Each window can have a different process associated with it. Windows
can be resized or moved, or may partially or totally overlap one
another. This allows the display to be as user-tailored as a desk-top;
as cluttered and yet accessible as desired. To manage windows, the
user also has access to a sophisticated set of menu driven routines
allowing him to create or direct attention to any window within the
system. A simple mouse command generates the menu and the user need

only point to the desired item to produce the result.

A typical use for windows is to maintain both an editing and execution
environmer.t side by side on the screen. During the debugging cycle,
one is able to bounce back and forth between a ZMACS window, containing
program source, and a LISP window containing its execution. Another
use is to maintain several editing windows simultaneously on the
screen; insuring that specific editing changes are reflected in
dependent code.

Users may also use the window system to display their own applications
or menus. One may choose from any of the standard features available
within the window system or add new ones. This capability is made
possible because the window system is built using FLAVORS (a message
passing capability integrated into LISP Machine LISP) so that defining
the specific behavior required for a window is easily done. Existing

functionality available for use by application programmers includes:

® Ability to generate borders and labels.
e Defining objects that blink.
® Generation of basic screen graphics such as boxes and rectangles.
® The ability to represent multiple fonts within a given window.
e Menus.
e Definition of screen objects that are sensitive to being
pointed at by the mouse ("Mouse sensitive" items).
® Text and graphics manipulation primitives including character

delete, scrolling, "MORE" processing on non-scrolled windows
and automatic clipping of text and graphics.



ZMACS Editor

At the heart of the LISP Machine software environment is the 2ZMACS
screen-oriented, a real-time editor. 2ZMACS' power derives not only
from its inherent text and LISP editing capabilities, but also from
its integration into the global LISP environment. Thus, it is both an
important system utility and an example of the unified yet modular

structure that makes the LISP Machine environment so powerful.
Rich Command Set/Sophisticated Help Capability

ZMACS accepts over four hundred commands in addition to allowing users
to construct their own. Most commands are implemented in easy to
remember mnemonic arrangements, allowing experienced users great speed.
For the novice, or for the user exploring new features, the system
offers a great deal of on-line help. Commands may be given as text
strings (with automatic name completion) or the user can access self-
documentation for an unfamiliar keystroke. By using the APROPOS
command, one can search through the commands for those containing
relevant keywords (if you want to experiment with fonts, then APROPOS
FONT will retrieve documentation on all commands containing the word
"font").

Integrated Graphics

Unlike its predecessor, EMACS, ZMACS has full access to the LISP Machine's
graphics. The mouse is fully integrated into the editing process,
allowing rapid positioning of the cursor and the selection of functions
with its three buttons. For example, the mouse may be used to designate

a section of text to be either deleted or moved to a new location.

Within EMACS, this would require a list of cursor commands entered
exclusively from the keyboard. 2ZMACS, however, allows the user to

sweep across the screen going directly to the desired point.



User Friendly Environment

In addition to moving the cursor, the mouse allows relative ease in
selecting which portion of the file is currently displayed. If the
file is larger than the available ZMACS window, scrolling may be
achieved by placing the mouse at the bottom (or top) of the window.

By rolling the mouse against the window border, one physically moves
down the page. If a broader jump is required, one places the mouse
against the left border of the window. A heavy black line will appear
over a portion of that border signifying the location and relative
proportion of text displayed on the screen. Moving to a new location
within the file only requires that you move the mouse to a new location

along the boarder and press the proper mouse button.

It is important to note that these features, while utilized by ZMACS,
are also available to the programmer for specific applications (for
example, these features are available within the INSPECTOR). Because
of the modularity of the LISP Machine environment, many features
available in system software may also be incorporated in user programs;
one need only call the necessary library routine to utilize the

functionality.
Powerful Software Development Tool

In addition to text processing, ZMACS also excells as a software develop-
ment tool. Because LISP Machine LISP is dynamically linked, pieces of
program can be changed and independently compiled without the need to
re-link the entire program. One can edit a function in ZMACS and, with
one keystroke, compile and load it into the current LISP environment.
Code which calls that function, or is called by it, need not be touched.
One just reloads the edited function and initiates execution.

Complementing ZMACS's modular editing capability is its ability to

retrieve LISP source code. Functions within the LISP environment



maintain source file information on their property lists. 1In this way,
a ZMACS user can find and edit the source definition of any function
within the system. The function may be specified either by typing in
its name or by pointing at the function with the mouse. Similarly,

one can list all functions in the environment which call a selected
function. After the list appears, one simply "mouses" the desired
calling function to edit its definition. By providing easy source

code retrieval integrated into the editing process, one eliminates the
need for cumbersome filing systems to keep track of source code text,

facilitating multiple uses for a given piece of software.

ZMACS also knows a great deal about LISP syntax. As you edit a function,
levels of parenthesis are aligned and indentation performed automatic-
ally by an "incremental pretty—printer". There exists keystrokes for
commands such as "forward one s-expression" or "delete s-expression"

in analogy to standard character and word manipulation commands.
Positionirg the cursor next to a right parenthesis causes the corres-
ponding parenthesis to flash, though the system ignores parenthesis

that are commented out. 2ZMACS transforms LISP programming from a
language annoying to edit into one that is relatively easy. By pro-
viding LISP specific aides, ZMACS encourages readable, elegant and less

error-prone code.

Error Handling

Along with a sophisticated editing environment, the LISP Machine arch-
itecture also provides exceptional run-time error facilities. Each
LISP Machine word has an eight bit tag field, five of which indicate
its data type. While data types have normally been limited to numbers
and characters, the LISP Machine provides for a whole host of different
data objects besides the more traditioral atoms, functions, strings

and arrays. Datatype information is kept at the architectural levels
of the machine to allow data checking and error reporting to be done

guickly and efficiently within the system microcode.



When an error is detected, the offending function is suspended and
control passed to the error handler. At this point, the user has two
options available. The first is the more traditional approach toward
debugging, seen in past LISP systems. One has access to a LISP read-
eval-print loop within the environment of the stalled routine. The
programmer can poke around at the various local variables and data
structures that are currently active at that point of the computation.
While providing the user with a wealth of information about the current
software state, one is forced into a rather myopic view having to
guery the debugger for each component of the LISP environment. To
alleviate this problem, the LISP Machine provides users with the

"Window Error Handler".
Graphics-Oriented Error Display

The Window Error Handler is a graphically oriented display of the
offending functional environment. The screen is divided into areas
representing currently active functional arguments and local variables,
a history of the source level expressions that have been evaluated, as
well as the current macrocode environment and stack frame. The pro-
grammer can either point to various objects with the mouse to expand
their contents or evaluate atoms or expressions within the LISP error

environment.

In addition, ZMACS is integrated within the Window Error Handler.
Users have the option of having compile-time or run-time errors auto-
matically generate a ZMACS window pointing to the offending source code.

One need only edit and reload to continue execution.

INSPECTOR

Examining complex data structures within LISP has always been problem-
atical. Earlier LISP systems required that the debugger CAR and CDR
his way through complex pointer structures with little or no system
help to keep track of where he had been or where he was going. The



INSPECTOR provides a graphically oriented tool, allowing users to examine

and modify complex structures carefully and conveniently.

Similar to other software development tools resident within the LISP
Machine, the INSPECTOR consists of a window further divided into a
number of areas. At the top of the screen is a LISP read-eval-print
loop providing an environment for evaluation. Next is a history list
providing a full record of all objects visited during the course of the
INSPECT session. The final three areas are the most recently examined

objects, fully expanded.

To operate the INSPECTOR, one may either type an object into the LISP
read-eval-print loop or, more often, point to an existing object on
the screen. The object is then placed on the history list and expanded.

Based on what is seen the user can then repeat the process.

Incorporated into the INSPECTOR are many of the text handling features
resident within ZMACS. Utilization of the mouse to scroll through

long structures, or to move proportionally through a structure, operates
in a similar manner. Actually, the same code is used which makes the
INSPECTOR an excellent example of how easy it is to incrementally build

applications software within the LISP Machine environment.

Garbage Collection

The single largest impediment to the acceptance of LISP as a language
for production programming has been its garbage collector. Earlier
LISP implementations would periodically pause while garbage collection
took place. While an annoyance, earlier LISP programmers accepted
moderate delays in order to access the LISP programming environment.
With the advent of more sophisticated LISP systems, accessing much
larger address spaces, these delays have become a good deal longer and
guite unacceptable.

The LISP Machine environment solves this problem by offering a parallel

garbage collector. By executing concurrently with other LISP Machine



processes, the garbage collector does its job "incrementally", allowing
LISP computation to proceed without delay. Users need not fear that

a complete garbage collection might occur during a time-critical piece
of code. With the addition of a parallel garbage collector, the LISP
Machine architecture allows LISP to directly compete with other "real-
time" programming languages, yet still retain its enriched programming

environment.

File System

The LISP Machine File System allows users easy access to files residing
locally on the system disk as well as remote hosts. By defining a
uniform file syntax that incorporates a host declaration, users have a
general mechanism to access files network-wide. Features such as
automatic name completion and wildcard characters are available even

though these facilities may not be native to the host.

For files residing within the LISP Machine environment, redundancy and
protection are key. Files have version numbers and the system retains
a specified number of generations per file. Additionally, the user
has access to a two level delete scheme allowing both a delete and non-
reversible delete. At the lower levels there is totally redundant
information within the file blocks so that the file headers can be
totally recreated if need be. Additional file routines include a
scavenger to collect displaced file blocks and an incremental/total
tape dumping system.

ZMAIL

ZMAIL implements a highly functional mail system, providing service both
locally within the mainframe, as well as over the network. Relying
heavily on both ZMACS and the Window System, ZMAIL preaches the same
philosophy of incremental software development standard throughout the
LISP Machine.

Making heavy use of menus and "mouse-sensitive" items, the ZMAIL user

controls mail processing by simple mouse movements. One has access to



commands that delete or undelete a message, save messages on a file,
reply to an existing message, or send new mail. To move to a new
message, one need only point to its entry within the summary window
which is permanently resident on the screen. When creating a new
message, ZMAIL generates a ZMACS environment, giving the user the full

power of the system editor in which to express his thoughts.

LISP Machine LISP Control Structures

STACK GROUPS

The LISP Machine programming environment is a single user/multi-process
system. Separate processes are easily defined and controlled by use of

the Stack Group feature.

A Stack Group holds all the variable bindings and control stack for each
process, defining its state at any point in time. User programs may
utilize the Stack Group feature to execute background processes or to
generate a prioritized agenda of tasks to complete. Process scheduling
may either be done via a simple source level predicate, or one may build
sophisticated process control mechanisms with a comprehensive set of

system utilities.

Macros

Utilizing all the power of the LISP environment, LISP Machine macros
provide an efficient substitution mechanism for LISP forms. Acting
éimilarly to LISP functions, macros produce another LISP form which is
evaluated in place of the original macro call. Within the macro body
one has access to the full LISP processing environment to produce the
desired form. Routines can be as simple or complex as desired, and may
even be compiled. Macros are fully recursive, and macro-defining macros
are not uncommon. Macro expansion can take place at evaluation time

in the case of interpreted functions or at meta-evaluation time during

compilation.

-10-



Utilization of the "Backgquote"

A heavily used feature in macro programming, and a useful facility in
general, is the backquote. Selectively turning off evaluation, the
backguote allows easy construction of LISP forms having a combination
of both constants and functional expressions. Overly complex s-
expressions containing multiple levels of LIST and CONS, long the bane
of macro programmers, are no longer required. Instead, one uses an
elegant notation of guotes and backquotes achieving the desired result

with a maximum of clarity.

Packages

A problem in the implementation of large, multi-author, software projects
within LISP is the coordination of function and variable names. Every-
one wants to use names generic to the application. Past LISP implement-
ations determined which function body to execute based on a unique
function name within the entire virtual address space. If the same

name exists in more than one place within the address space, cne de-

finition would overlay the other.
Utilizing PACKACES as Separate Name Spaces

To ulleviate this problem, LISP Machine LISP dimensions the programm-

ing environment into PACKAGES. While still maintaining a common data
area, PACKAGES provide the user with separate OBLISTS allowing user
control on how ATOMS are resolved. Within multi-author projects, each
author implements his code within a separate name space which corresponds
to a separate PACKAGE. Programmers requiring services from another
package simply make an explicit reference to the desired package and
function. In this fashion, large and complex systems can be eaily
integrated, accessing common data, without conflicts between low level

routines.

-11-



PACKAGE Hierarchies

PACKAGES can also be hierarchical. If a function cannot be resolved
within the current PACKAGE, a search procedure is initiated which
examines the next PACKAGE up the chain. 1In this way, inheritance
schemes can be implemented, defining a PACKAGE's attributes in terms

of its predecessors.

Message Passing - FLAVORS

FLAVORS are a way of associating code with data structures and to
construct new FLAVOR objects out of currently existing ones. FLAVORS,
called like functions with keywords or "MESSAGES" as arguments, search
through their associated "METHODS" for one which handles that particular
MESSAGE. If no METHOD is found, the MESSAGE is referred to the component
FLAVORs that make up the object. Eventually, either a METHOD is found

and its code executed, or an unclaimed MESSAGE error is signaled.

Extended SMALLTALK

FLAVORS has its roots in the CLASS system of SMALLTALK but differs in
that an object may inherit from more than one SUPERCLASS. In SMALL-
TALK, one has the difficulty that pizzas, for example, must be either
in CLASS "food-objects" or "physical-objects", whereas in FLAVORS they
can be both. Additionally, upon FLAVOR definition, the system control
structure eliminates redundant paths to SUPERCLASS items, optimizing
MESSAGE processing.

Used Extensively by Window System

Illustrative of the power of FLAVORS is the observation that much of
the LISP Machine system software uses it, particularly the Window
System. Each window is an instantiation of a FLAVOR, inheriting
properties from the component FLAVOR "standard-tv-window". This object

defines the generic behavior of any window. Typical METHODS supported

-12~



for windows include accepting characters from the keyboard, drawing
lines or controlling the mouse. One can also define groups of METHODS
as a unit. While not qualifying as a full fledged FLAVOR, these group-
ings are called "MIX-INs", defining them as additives rather than

components.

STREAMS

Another powerful use of the FLAVOR system are STREAMS, which are how
standard input and output get passed between different programs and
processes. Although conceptually similar to UNIX "PIPES", STREAMS are
much more versatile I/O ports, since each is a full FLAVOR instantiation.
One can easily tailor an appropriate interface using existing FLAVORs

and MIX'INs to exactly suit the particular application, with backup
"METHODS" automatically installed to handle any "MESSAGES" for which

the optimized operations don't apply. Once a STREAM between two programs
or processes is created, information moves quickly and efficiently,

easily redirected if required.

SUMMARY

From its inception, the LISP Machine has emphasized an efficient hardware
environment providing a host of useful software tools. Software develop-
ment is greatly enhanced by the ease in which the system aides the
programmer; through rich extensions to the LISP language, powerful

system utilities, as well as with convenient diagnostic capabilities.

By maintaining both a clean user interface, yet providing extremely
powerful programming tools, the LISP Machine eases the time and effort

to construct and maintain highly sophisticated software applications.

As LMI continues to evolve the LISP Machine environment, this basic

philosophy will be maintained and extended.

-13-



	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13

