


LOGITECH™ MODULA-2 

Version 3.0 

TOOLKIT 



Copyright © 1987 LOGITECH, Inc. All Rights Reserved. 

No part of this document may be copied or reproduced in any fonn or by any means 
without the prior written consent of LOGITECH, Inc. 

LOGITECH, Inc. has made every effort to ensure the accuracy of this manual. 
However, LOGITECH, Inc. makes no warranties with respect to this documentation and 
disclaims any implied warranties of merchantability or fitness for a particular purpose. 
The information in this document is subject to change without notice. LOGITECH, Inc. 
assumes no responsibility for any errors that may appear in this document. 

From time to time changes may occur in the file names and in the files actually included 
on the distribution disks. LOGITECH, Inc. makes no warranties that such files or 
facilities as mentioned in this documentation exist on the distribution disks or as part of 
the materials distributed. 

This edition applies to LOG/TECH Modula-2, Version 3.00. 

Document Number 

First Edition 

First Printed 

LU-UD-OOI0-1 

August 1987 

August, 1987 

ii 



Trademarks 

LOGITECH and POINT are trademarks t and LOGIMOUSE is a registered trademark of 
LOGITECH, Inc. 

IBM is a registered trademark of International Business Machine Corporation. 

CodeView is a trademark t and Microso/tt MS t and MS-DOS are registered trademarks of 
Microsoft Corporation. 

Intel is a registered trademark of Intel Corporation. 

Hewlett-Packard t HP t and LaserJet are registered trademarks of Hewlett-Packard 
Corporation. 

Byte is a registered trademark of McGraw-Hili, Inc. 

UNIX and AT&T are registered trademarks of American Telephone and Telegraph 
Corporation. 

PF IXPLUS is a trademark of Phoenix Software Associates, LTD. 

Olivetti is a registered trademark of Olivetti. 

COMPAQ is a registered trademark of Compaq Computer Corporation. 

iii 



,..----LOGITECH SOFTWARE LICENSE AGREEMENT-----, 

THIS DOCUMENT IS A LEGAL AGREEMENT BElWEEN YOU, THE LICENSEE, AND 

LOGITECH, INc ("LOGITECH"). By USING THIS PROGRAM, YOU ARE AGREEING TO 

BECOME BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO 

THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN THE DISK PACKAGE AND THE 

OTHER ITEMS THAT ARE PART OF THIS PRODUCT IN THEIR ORIGINAL PACKAGE, WITH 

YOUR PAYMENT RECEIPT (THE "RECEIPT"), TO LOGITECH FOR A FULL REFUND. 

In consideration of payment of the License Fee, which is a part of the price evidenced by 
the Receipt, LOGITECH grants to the Licensee a nonexclusive right, without right to 
sublicense, to use this copy of this LOGITECH Software on a single Computer at a time. 
LOGITECH reserves all rights not expressly granted, and retains title and ownership of the 
Software, including all subsequent copies in any media. This Software and the 
accompanying written materials are copyrighted. You may copy the Software solely for 
backup purposes; all other copying of the Software or the written materials is expressly 
forbidden. 

As the only warranty under this Agreement, and in the absence of accident, abuse or 
misapplication, LOGITECH warrants, to the original Licensee only, that the disk(s) on 
which the Software is recorded is free from defects in materials and workmanship under 
normal use and service for a period of ninety (90) days from the date of payment as 
evidenced by a copy of the Receipt. LOGITECH'S only obligation under this Agreement is, 
at LOGITECH'S option, to either (a) return payment as evidenced by a copy of the Receipt 
or (b) replace the disk that does not meet LOGITECH'S limited warranty and which is 
returned to LOGITECH with a copy of the Receipt. THIs WARRANTY GIVES YOU 

LIMITED, SPECIFIC LEGAL RIGHTS. You MAY HAVE OTHER RIGHTS, WHICH VARY 

FROM STATE TO STATE. 

THE SOFTWARE AND ACCOMPANYING WRITTEN MATERIALS (INCLUDING THE 

USER'S MANUAL) ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND 

INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 

PARTICULAR PURPOSE, EVEN IF LOGlTECH HAS BEEN ADVISED OF THAT PURPOSE. 

LOGITECH SPECIFICALLY DOES NOT WARRANT THAT THE OPERATION OF THE 

SOF1WARE WILL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR 

INCIDENTAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH 

PRODUCT EVEN IF LOGITECH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF 

LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE 

LIMIT A TION MAY NOT APPLY. 

iv 



Table of Contents 

Table of Contents 

Introduction 1 

How to Read this Manual .......................................................................................... 3 
Other LOGITECH Products ...................................................................................... 5 

Installation 7 

What do you need? .................................................................................................... 8 
What have you purchased? ........................................................................................ 8 
Installing on Floppy Diskettes ................................................................................ 10 
Running the Toolkit on a Dual Floppy System ....................................................... 14 
Hard Disk Systems .................................................................................................. 15 

v 



Table of Contents 

Chapter 1 
The LOGITECH M2FORMAT Utility 17 

1.1 Introduction ...................................................................................................... 17 
1.2 System Configuration and Getting Started ...................................................... 20 
1.3 Recommended Disk Organization ................................................................... 23 
1.4 Things you should know about M2FORMA T ................................................. 24 
1.5 Using M2FORMAT ........................................ · ................................................. 25 

1.5.1 Modifying the Template File ................................................................... 25 
1.5.2 Compile the Template File ...................................................................... 26 
1.5.3 Formatting a Modula-2 Source File ........................................................ 28 
1.5.4 Specify Arguments to M2FORMAT ....................................................... 31 

1.6 Editing the Template File ................................................................................. 32 
1.6.1 Comment Commands .............................................................................. 32 
1.6.2 Generating A New Template File ............................................................ 34 

1.7 Formatting Options .......................................................................................... 40 
1.7.1 End Comments ........................................................................................ 40 
1.7.2 Line Overruns .......................................................................................... 42 
1.7.3 Padding .................................................................................................... 44 
1.7.4 Hardcopy Switch .................................................................................... 45 
1.7.5 Formatting Switch ................................................................................... 45 
1.7.6 Syntax Checking Switch ......................................................................... 45 
1.7.7 Margins .................................................................................................... 46 

1.8 Hardcopy Features ........................................................................................... 47 
1.8.1 Overview of Hardcopy Features ............................................................. .4 7 
1.8.2 Configuring PRINTER.M2F ................................................................... 49 

1.9 Syntax Extensions ............................................................................................ 52 
1.10 Formatting Resolution .................................................................................... 53 

1.10.1 Identifier Lists ....................................................................................... 53 
1.10.2 Procedure Declarations .......................................................................... 53 
1.10.3 Nested Procedures ................................................................................. 54 
1.10.4 Import Lists ........................................................................................... 54 

1.11 Error Messages ............................................................................................... 55 

vi 



Table of Contents 

Chapter 2 
The LOGITECH Linker 57 

2.1 How to use the Linker ...................................................................................... 58 
2.2 Search Strategy ................................................................................................ 59 

2.2.1 Object files ............................................................................................... 59 
2.2.2 Library files ............................................................................................. 59 
2.2.3 Output files .............................................................................................. 60 

2.3 Temporary files ................................................................................................ 61 
2.4 MS-DOS Environment. .................................................................................... 61 
2.5 Linker Options ................................................................................................. 62 
2.6 How to Link an Overlay ................................................................................... 65 
2.7 Linker Error Messages ..................................................................................... 67 

2.7.1 Common Errors ....................................................................................... 67 
2.7.2 Special Errors .......................................................................................... 70 

2.8 Overlays ............................................................................................................ 71 
2.8.1 Creating an Overlay ................................................................................. 71 
2.8.2 The Overlay Manager .............................................................................. 72 
2.8.3 Loading an Overlay ................................................................................. 72 
2.8.4 Execution of the Overlay ......................................................................... 72 
2.8.5 Termination of the Overlay ..................................................................... 73 

2.8.5.1 Termination of a Subprogram ......................................................... 73 
2.8.5.2 Termination of a Resident Overlay ................................................ 73 

2.9 Accessing Overlays from within Loaded Overlay ........................................... 74 
2.9.1 Subprogram ............................................................................................. 74 
2.9.2 Resident Overlays .................................................................................... 74 
2.9.3 Termination Procedures .......................................................................... 75 
2.9.4 Initialization Procedures .......................................................................... 75 
2.9.5 An Example ............................................................................................. 76 
2.9.6 Creating PROCESS in Overlays ............................................................. 81 

vii 



Table of Contents 

Chapter 3 
The Symbolic Run-Time Debugger 83 

3.1 LOGITECH RTD Files .................................................................................... 84 
3.2 The RTD and your Hardware ........................................................................... 85 

3.2.1 Memory Requirements and Swapping ..................................................... 85 
3.3 How to Run the Run-Time Debugger .............................................................. 86 

3.3.1 Programs Taking Command Line Arguments ......................................... 87 
3.4 Control of Program Execution ......................................................................... 88 

3.4.1 Breakpoints .............................................................................................. 88 
3.4.2 Step Mode ................................................................................................ 88 
3.4.3 Overview of the Run-Time Debugger Commands .................................. 89 
3.4.4 Run-Time Errors ...................................................................................... 89 
3.4.5 Stopping Programs During Execution ..................................................... 90 
3.4.6 Debugging Programs that Use Overlays ................................................. 90 

3.5 R TD Configuration .......................................................................................... 91 
3.5.1 Screen configuration ................................................................................ 91 
3.5.2 On-line Help ............................................................................................ 91 

3.6 Run-Time Debugger Options ........................................................................... 92 
3.6.1 File-related Options ................................................................................. 92 
3.6.2 Memory-related Options ......................................................................... 92 
3.6.3 Mouse-related Options ............................................................................ 93 
3.6.4 Screen-handling Options ......................................................................... 94 
3.6.5 RTD Option File ...................................................................................... 95 

3.7 User Interface ................................................................................................... 96 
3.7.1 Windows .................................................................................................. 96 
3.7.2 Mouse Functions ..................................................................................... 98 
3.7.3 Keyboard Functions .............................................................................. 100 

3.7.3.1 How to scrol1. ................................................................................ 100 
3.7.3.2 Select a window object ................................................................. l00 
3.7.3.3 Call the menu ................................................................................ 101 
3.7.3.4 Respond to a prompt ..................................................................... 102 
3.7.3.5 Move a window border ................................................................. 102 

viii 



Table of Contents 

3.8 Windows and Commands .............................................................................. 103 
3.8.1 Call Window .......................................................................................... 107 
3.8.2 Module Window .................................................................................... 109 
3.8.3 Data Window ......................................................................................... 110 
3.8.4 Text Window ......................................................................................... 117 
3.8.5 Raw Window ......................................................................................... 118 
3.8.6 Message Window .................................................................................. 119 
3.8.7 Application Window ............................................................................. 119 
3.8.8 Markers .................................................................................................. 120 
3.8.9 Selecting an Item for Display ................................................................ 120 
3.8.10 Relation between Windows ................................................................. 121 

3.8.10.1 Update made from the Call Window .......................................... 121 
3.8.10.2 Update made from the Module Window .................................... 121 
3.8.10.3 Update from the Data and Text Window .................................... 121 

3.9 Consistency Checks ........................................................................................ 122 
3.10 Messages ...................................................................................................... 123 

Chapter 4 
THE M2DECODE UTILITY 129 

Chapter 5 
The M2VERS Source Manager Utility 131 

5.1 Marking the Version Dependent Parts ..................................................... 132 
5.2 Invoking the M2VERS Utility .................................................................. 134 
5.3 Example Dialog ........................................................................................ 135 
5.4 Error Handling .......................................................................................... 138 

ix 



Table of Contents 

Chapter 6 
The Cross-Reference Utility M2XREF 141 

Chapter 7 
The M2MAKE Utility 143 

7.1 Features .......................................................................................................... 144 
7.2 Usage .............................................................................................................. 144 
7.3 How to Run Ivi2:NlAKE .................................................................................. 145 
7.4 Invoking M2MAKE From a Batch File ......................................................... 146 
7.5 M2MAKE Options ......................................................................................... 148 
7.6 M2MAKE Pattern Specification .................................................................... 154 
7.7 Search Strategy ............................................................................................... 157 
7.8 Compiling Overlay Systems .......................................................................... 159 
7.9 Program Operation ......................................................................................... 161 
7.10 Error Messages ............................................................................................. 163 

Chapter 8 
The M2CHECK Utility 167 

8.1 Invoking M2CHECK ..................................................................................... 168 
8.2 Operational Errors .......................................................................................... 168 
8.3 Warning Messages ......................................................................................... 169 
8.4 DOS Error-level Variable .............................................................................. 171 
8.5 Options ........................................................................................................... 172 

Index 177 

x 



TOOLKIT 





Introduction 

Introduction 

The LOG/TECH Modula-2 Toolkit is a collection of utilities which streamline and 
simplify programing and maintaining M odula-2 programs. 

The LOG/TECH M2FORMAT Utility 

Automatically determines the style features for formatting Modula-2 
source files. It is an intelligent style formatter in the sense that a 
template file is used to determine the style feature for formatting. You 
can easily modify this template file to reflect your style preferences. 

The LOG/TECH Linker 

Combines all the separately compiled modules into a single executable 
file. It takes the object (.OBJ) files of the modules to be linked as 
input and produces an executable (.EXE or .OVL) file, and a map 
(.MAP) file as output. 

The LOG/TECH Symbolic Run-Time Debugger 

Lets you monitor the execution of a program. You can run the program 
in steps. After each step, you can inspect the data and current status of 
the program. You can modify the values of the variables the program 
uses. 

The LOG/TECH M2DECODE Utility 

Decodes LOG/TECH Modula-2 .OBJ files into text files with 
information such as disassembled code or data. 

1 



Introduction 

The LOG/TECH M2VERS Utility 

Helps keep track of different versions of a program. 

The LOG/TECH M2XREF Utility 

Generates cross reference information tables of text files. especially of 
M odula-2 source files. 

The LOG/TECH M2MAKE Utility 

Builds batch files that compile the minimum number of modules 
necessary in the correct order. 

The LOG/TECH M2CHECK Utility 

Analyzes a Modula-2 source file and generates a listing file which can 
be used to avoid common programming errors. 

2 



Introduction 

How to Read This Manual 

The following conventions are used in this manual: 

Keys to be pressed, look like this: 

(Y) lEse] QJ 

Control sequences or characters entered with a Control or Shift key, look like this: 

Keys from the Numeric Keypad are shown like this: 

[f] CD B 5J 
(fiQ£) ~ CD G 

Keyboard input for the DOS Command line is in upper case and looks like this: 

M2L QJ 

Mouse buttons used are based on the LOGITECH standard, and use three buttons, e.g, 

_ 0 D. means press the left mouse button, 
o 0 _ means press the right mouse button, and 
o _ 0 means press the middle mouse button. 

(I- -j means press both buttons on a two button mouse.) 

Variable names in the text are surrounded by angle brackets, as in 

<Application name> QJ 
File names look like this: 

M2L.EXE 

DOS commands and statements look like this: 

PATH,COPY 

Product names look like this: 

MS DOS, LOGITECH M odula 2 

3 



Introduction 

Reserved words, predefined functions, and user-defined functions in LOGITECH 
Modula-2100k like this when being discussed in text: 

PROCESS, VAL, MyFunction 

These are not emphasized in screen display or program listings. 

Screen output and some listings look like this: 

Program Not Found 

Progra..1i source code looks like this: 

IF condition THEN 
statement6; 

ELSIF condition THEN 
statement? ; 

ELSE 
statementS; 

END; 

Sample Screens look like this: 

Text line'*' 32 Demo . MOD 

PROCEDURE RecursiveOne (x: CARDINAL; y:REAL; Z: INTEGER 
BEGIN 

WITH node [x] Do 
datal :- x; 
data2 :- y; 
data3 :- z; 

END; (* WITH *) 

INC (x) ; 
y : .. y + 1. 0; 

Data Demo 

x 
y 

CARDINAL 
2.0000000000E+OOO REAL 

z 
node 

3 INTEGER 
ARRAY [ 1 .. 4] OF RECORD 

4 

Call breakpoint 

>Recursiveone 
>RecursiveOne 
>Firstone 
>initialization 
>PROCESS 

Module 

>+Demo 
Reals 
RTSMain 
Terminal 
Termbase 
Keyboard 
Display 



Introduction 

Other LOGITECH Products 

At LOGITECH we pride ourselves on technical excellence and advanced engineering. 
In addition to LOG/TECH Modula-2, we also offer these fine products which we believe 
to be the most advanced in their product category. 

LOGITECH Modula-2 

The LOG/TECH Modula-2 Development System provides today's 
programmers with the most powerful development environment available for 
the PC. In addition to the tools and utilities described in the LOG/TECH 
Modula-2 User's Manual and in the LOG/TECH Modula-2 Toolkit, 
LOGITECH offers the following: 

• The LOG/TECH Turbo-Pascal To Modula-2 Translator . 
• A VAX/VMS version of LOG/TECH Modula-2. 

Site licences are available for all of the above. 

The LOGITECH C7 Mouse 

The LOGITECH C7 Mouse connects to a serial port in your computer. It 
needs no pad and no external power supply. 

The LOGITECH Bus Mouse 

The LOGITECH Bus Mouse is equivalent to the LOG/TECH C7 Mouse, 
except that it is connected to a Bus Board which you insert in your computer. It 
needs no pad and no external power supply. 

For additional information, or to order these products, call the LOGITECH sales office 
toll-free from anywhere in the continental U.S. at (800)231-7717, or 
in California, call (800) 552-8885. 

5 



Introduction 

Notes: 

6 



Installation 

Installation 

This chapter tells you how to install the LOG/TECH Modula-2 Toolkit under DOS. 
Remember: before you attempt to install the Toolkit, you should have already installed 
the system described in the LOG/TECH Modula-2 User's Manual. 

Help in the form of batch files is provided on Disk 1. You can modify these batch files or 
install the system manually if your system differs from the assumed standard. 

Instructions are given for installation to a set of floppy diskettes, as well as to a hard disk. 

~------------------------NOTE--------------------------' 

Remember to read the READ.ME file on Disk 1 for late breaking information that 
may not have been available when this manual went to press. 

7 



Installation 

What do you need? 

LOGITECH Modula-2 runs on an IBM PC, XT, AT or compatible computers, with: 

• A floppy disk drive A, and either -

• A floppy disk drive B, or 

• A hard disk drive C. 

• 320 K of RAM, 640 K recommended. 

What have you purchased? 

Manuals 

The instructions you are reading are in the LOGITECH Modula-2 Toolkit Manual. 

Diskettes 

These four diskettes come with the LOGITECH Modula-2 Toolkit 

Disk 1: 

Disk 2: 

Disk 3: 

Disk 4: 

Standard Library Sources I 
Utilities I 

Standard Library Sources II 

Linker 
Utilities II 

Run-Time Debugger 

8 



The following files are on these diskettes: 

Disk 1: Standard Library Sources I 
Utilities I: 

ASM.ARC 
RTS.ARC 
UTILS1.ARC 
Installation batch files 

.ASM Files of the Library 
Sources for the M2RTS.LlB 
First part of the utilities 

Disk 2: Standard Library Sources II: 

OEF.ARC 
M001.ARC 
M002.ARC 

Disk 3: Linker 
Utilities II: 

M2L.ARC 
UTILS2.ARC 

Disk 4: Run Time Debugger: 

.0 EF Files of the Library 

.MOD Files of the Library 

.MOO Files of the Library 

LOG/TECH Linker 
Second part of the utilities 

Installation 

RTO.ARC LOG/TECH Symbolic Run Time Debugger (RTD) 

Most of the files in the LOG/TECH Modula-2 Toolkit have been archived (packed) into 
smaller files (those with the extension .ARC). The ARC utility allows you to unarchive 
(unpack) them into your working disk. 

9 



Installation 

The LOGITECH Modula-2 Toolkit on Floppy Diskettes 

~-------------------------NOTE--------------------------~ 

Before you install your software to either floppy drive or hard disk system, 
we strongly recommend that you take a minute to: 

1) Put Write-Protect tabs on all your LOG/TECH Modula-2 diskettes, and 

2) Use the DISKCOPY and DISKCOMP commands from your DOS files to 
back up your diskettes. Then put your original diskettes in an archival area 
and use the copies for all installation. 

3) Prepare formatted diskettes with readable labeling, before you copy the the 
files in the Installation procedure which follows. 

Installing on Floppy Diskettes 

To use the LOG/TECH Modula-2 Toolkit on a dual floppy system, examine the contents 
of the diskettes you received and become familiar with the files on these diskettes. 

To see the contents of an archived file (extension .ARC), use the executable file 
ARC.EXE on Disk 1. For example, to list the contents of the .ARC file UTILS2.ARC, 
insert the corresponding Disk (i.e., Disk 3) into drive B; then insert Disk 1 (with the 
ARC utility) into drive A and type: 

A:ARC -L B:UTILS2.ARC QJ 

10 



Installation 

Use the following procedures to prepare your working diskettes for a floppy disk 
environment: 

Step 1: 

Step 2: 

Prepare Working Diskettes 

Label and format nine (9) diskettes with labels that reflect their contents. We 
suggest: 

YourDisk 1 M2MAKE Refer to Chapter 7 
M2CHECK Refer to Chapter 8 

YourDisk 2 M2FORMAT Refer to Chapter 1 
M2DECODE Refer to Chapter 4 
M2VERS Refer to Chapter 5 
M2XREF Refer to Chapter 6 

YourDisk 3 M2L Refer to Chapter 2 

YourDisk 4 RTD Refer to Chapter 3 

YourDisk 5 DEF Standard Library Definition Files 

YourDisk 6 MOD1 Standard Implementation Files I 

YourDisk 7 MOD2 Standard Implementation Files II 

YourDisk 8 ASM Standard Library Assembly Files 

YourDisk 9 RTS Run Time Support Source Files 

Copy ARC.EXE to each Working Diskette. 

Insert the copy of LOGITECH Disk 1 in drive A and one of your blank, labeled 
diskettes in drive B. Type, 

COPY A:ARC.EXE B: QJ 
Insert another blank labeled diskette in drive B and repeat the above instruction 
until all diskettes have a copy of ARC.EXE. 

Steps 3 through 11 detail a procedure for ltunARCing" the files from a source 
diskette to a standard 360 K working diskette. 

If you have high density diskettes, you can optimize your Modula-2 
environment by combining the contents of several diskettes to a single high 
density diskette. 

11 



Installation 

Step 3: Copy compressed files to YourDisk 1 

Insert LOGITECH Toolkit Db;k 1 in drive A. Insert YourDisk 1 in drive B. 
Type, 

B:ARC -E A:UTILS1.ARC B:*.* QJ 
Step 4: Copy compressed files to YourDisk 2 

Insert LOGITECH Toolkit Disk 3 in drive A. Insert YourDisk 2 in drive B. 
Type, 

B:ARC -E A:UTILS2.ARC B:*.* QJ 
Step 5: Copy compressed files to YourDisk 3 

Insert LOGITECH Toolkit Disk 3 in drive A. Insert YourDisk 3 in drive B. 
Type, 

B:ARC -E A:M2L.ARC B:*.* QJ 
Step 6: Copy compressed files to YourDisk 4 

Insert LOGITECH Toolkit Disk 4 in drive A. Insert YourDisk 4 in drive B. 
Type, 

B:ARC -E A:RTD.ARC B:*.* QJ 
Please also copy all the .CFG files from the PMD Disk to YourDisk 4. 

Step 7: Copy compressed files to YourDisk 5 

Insert LOGITECH Toolkit Disk 2 in drive A. Insert Y ourDisk 5 in drive B. 
Type, 

B:ARC -E A:DEF.ARC B:*.* QJ 
Step 8: Copy compressed files to YourDisk 6 

Insert LOGITECH Toolkit Disk 2 in drive A. Insert YourDisk 6 in drive B. 
Type, 

B:ARC -E A:MOD1.ARC B:*.* QJ 
Step 9: Copy compressed files to YourDisk 7 

Insert LOGITECH Toolkit Disk 2 in drive A. Insert YourDisk 7 in drive B. 
Type, 

B:ARC -E A:MOD2.ARC B:*.* QJ 

12 



Installation 

Step 10: Copy compressed files to YourDisk 8 

Insert LOG/TECH Toolkit Disk 1 in drive A. Insert YourDisk 8 in drive B. 
Type, 

B:ARC -E A:ASM.ARC B:*.* CD 
Step 11: Copy compressed files to YourDisk 9 

Insert LOG/TECH Toolkit Disk 1 in drive A. Insert YourDisk 9 in drive B. 
Type, 

B:ARC -E A:RTS.ARC B:*.* CD 
Step 12 Review 

The disks we have called YourDisk 1-9 are now ready to use. 

You may now delete ARC.EXE from each diskette if you wish, since it is not 
used further by LOG/TECH Modula-2. 

13 



Installation 

Running the Toolkit on a Dual Floppy System 

When you work with LOGITECH Modula-2 on floppy diskettes: 

Drive A holds your M odula-2 Working diskette. 

It should contain: 

• .MOD and .DEF files for Modula-2 source text you have created. 
• .SYM files from the LOGITECH Modula-2 Standard Library. 
• Other files you may have created with LOGITECH Modula-2 which you 

need for compiling, linking or debugging. 

Drive B holds a LOGITECH Modula-2 utility diskettes: 

To Compile 
A working copy of the LOGITECH Compiler is in drive B. 

To Link 
the LOGITECH Linker is in drive B (e.g. YourDisk 3). 
A working copy of the Library disk is swapped in drive B after you start the 
Linker. You start with the Linker diskette in drive B, when the Linker 
prompts for masterfile, swap the Linker diskette in drive B with the Library 
diskette and proceed. 

ToRunRTD 
The LOGITECH Debugger disk is in drive B (e.g. Y ourDisk 4). 

To Run Utilities 
One of the two LOGITECH Programming Utilities disks is in drive B, 
depending on which utility you want to use (e.g. YourDisk 1 or 2). 

r------------------------ NOTE ------------------------~ 

Depending on the capacity of your disks, you can include two or more of the disks 
mentioned above onto one disk. 

If you are using high density diskettes, study the following section on hard disk 
systems, on the environment variables used by LOGITECH Modula-2, and also 
study the Section 9.1, Library Search Strategy in the LOGITECH Modula-2 
User's Manual. 

14 



Installation 

Hard Disk Systems 

If you used the automatic installation program when you installed the base software 
described in the LOG/TECH Modula-2 User's Manual, you will be able to use it again 
here to install the LOG/TECH Modula-2 Toolkit software. Make sure you are on the 
hard disk and in the directory where you previously defined your Modula-2 system. 
Then, with your working copy of Toolkit Disk 1 in drive A, type: 

A:INSTALL 

This creates additional directories as needed and copies the necessary files from Disk 1 
to the LOG/TECH Modula-2 area on your hard disk. You are then prompted for 
successive disks as needed. 

If your system has special constraints, such as directory names that conflict with those 
used by LOG/TECH Modula-2, then you must install step-by-step. 

Step 1: Add Additional Directories. 

To install LOG/TECH Modula-2 in a directory of your choice, type, 
CO \YOUR_OIR C2J 
MO 
MO 

\M2L1B\ASM 
\M2L1B\RTS 

15 

C2J 
QJ 



Installation 

Step 2: Install Disks. 

• Insert Disk 1 in Drive A, and type: 
COpy A:ARC.EXE 

ARC -E 
ARC -E 
ARC -E 

A:ASM.ARC M2L1B\ASM\*.* GD 
A:RTS.ARC M2L1B\RTS\*.* QJ 
A:UTILS1.ARC M2EXE\*.* QJ 

• Insert Disk 2 in Drive A, and type: 

ARC -E A:DEF.ARC M2L1B\DEF\*.* ( .J ) 
ARC -E A:MOD1.ARC M2L1B\MOD\*.* GD 
ARC -E A:MOD2.ARC M2L1B\MOD\*.* GD 

• Insert Disk 3 in Drive A, and type: 

ARC -E A:M2L.ARC M2EXE\*.* 
ARC -E A:UTILS2.ARC M2EXE\*.* 

• Insert Disk 4 in Drive A, and type: 

ARC -E A:RTD.ARC M2EXE\*.* 

16 



M2FORMAT 

Chapter 1 
The LOGITECH M2FORMA T Utility 

1.1 Introduction 

LOG/TECH M2FORMAT is an intelligent style formatter for any compilable Modula-2 
source files. It is intelligent in the sense that a template file automatically determines the 
style features for formatting. You can easily modify this template file to reflect your 
style preferences. M2FORMAT includes the template compiler and source file 
formatter. 

M2FORMATis easy to learn and easy to use. 

You do not have to specify format parameters numerically. Instead M2FORMAT adapts 
the style you have used for the syntactical constructs of M odula-2 in the template file 
when formatting these constructs in your code. The template file gives an example of the 
style. The style features consists of the number of lines and indentations between 
syntactic elements. The template compiler reads the template file and extracts the 
formatting data. Such data will then be used by M2FORMAT. 

17 



Chapter 1 

~----------------------CAUTION----------------------~ 

Compile or syntax check source files before attempting to reformat the file using 
M2FORMAT. However, M2FORMAT will also identify syntax errors in the 
source file before exiting. 

Each template file must be "compiled" just once by the template compiler before it is 
usable for formatting source files. The compiled template data may then be used 
repeatedly whenever the particular style in the template is desired. There are features 
such as spacing and newline, and a number of selectable style features that are specified 
by "comment commands", which let you select left and right margins, as well as options 
on how to handle comments and line overruns. Template file compilation and source file 
formatting are separate operations, so recompilation of template files is required only if 
changes in style are made in the template file. 

Features of M2FORMAT include: 

1. Intelligent determination of style features from a template file. 

2. Style consistency check through template "compilation". 

3. Detailed list of style inconsistencies. 

4. Production of a template <filename>. TM D for use by format program. 

5. Separate template compilation and formatting for increased speed and style 
enforcement. 

6. Selection of multiple template files for formatting. 

7. User options provided through comment commands in template or source file. 

8. Output can be specified for hardcopy or as a compilable source file. 

9. Intelligent handling of all Modula-2 constructs, including comments. 

10. Format any size file, limited only by disk space. 

18 



M2FORMAT 

11. User selected source file may include PATH. 

12. Line overruns identifiable by comments in the formatted output file so 
compilability is unaffected. 

13. Select files by command line, prompt, or selection from directory file list. 

14. Turn formatting or syntax checking off or on for selected portions of source file. 

15. Default text file provides the name of a default template file, and a set of masks 
that filter the file names displayed by the file directory. 

16. Hardcopy output lets you define attributes (printer escape codes) before and 
after keywords, identifiers, comments and procedure headings. 

17. Distance is set from page bottom, so major constructs start on the next page. 

Although LOG/TECH M2FORMAT should be used as a final step in the software 
development life cycle to ensure consistency of style in the final software documentation, 
it can be used at any stage of the development process to enhance readability. 

19 



Chapter 1 

1.2 System Configuration and Getting Started 

LOGITECH M2FORMAT runs under PC-DOS or MS-DOS 2.x or higher on any 
IBM PC or IBM PC -compatible computer with at least 256K of RAM. 

Make backup copies of all the diskettes before use. The template file contains 
representations for all constructs in the M odula-2 language. When modifying the 
template file for defining new style features, be careful that you don't delete any 
constructs. Before running M2FORMAT, set the environment variable M2F to the 
directory· where M2FORMAT system files are kept (for example, SET 
M2F=C:\M2EXE\FORMA 1). 

r--------------------------------------------------------------NOTE-----------------------------------------------------------, 

M2FORMAT requires the ANSI.SYS file for correct operation. 

M2FORMAT includes: 

TEMPL 

M2FC.EXE 

The template file. Contains style features to be used by the 
M2FORMAT software. Every Modula-2 construct is included, as 
well as formatting options that are selectable through comment 
commands (either in the template file or in your Modula-2 source 
file). Comment commands in your source file take precedence 
over the default values in the template file. 

The template compiler. It verifies consistency of style features in 
the template file and generates information used by M2FORMAT. 
M2FC.EXE produces a template data file, <filename>.TMD. 

M2FORMAT.EXE The stand alone version of M2FORMAT. It formats a Modula-2 
source file, based on style features contained in a user-specified 
template file. The template you specify must have been compiled 
using M2FC.EXE, to produce the resulting *.TMD file. 
M2FORMAT.EXE produces a separate output file that contains the 
formatted source file. Formatted Modula-2 source files are given 
the name <filename>.FMT for implementation and program 
modules and <filename>. FM D for definition modules. 

20 



M2FORMAT 

PTM2FORM.EXE The POINT version of M2FORMAT. This version of 
M2FORMAT can be used as an extension of the "LOGITECH 
POINT Editor" version 1.5. (see the "POINT Editor" 
documentation for information on POINT extensions). 

DEFAUL T.M2F This file contains information used by M2FORMAT for 
determining the default template file and how to display directories 
for file selection. This file first contains the default template data 
filename on line one. Next are mask definitionst one on each linet 

for use by the directory option when running program 
M2FORMAT.EXE. The default template filename is 
TEM PL. TM D and the default filename masks for the directory 
option are *.MOD and *.DEF. These default filenames provide a 
listing of only those files that have .MOD or .DEF extensions when 
the directory is displayed by M2FORMAT. To add additional 
masks t write each on a separate line (with a limit of 10 masks). Put 
DEFAUL T.M2F in the subdirectory that is set by the environment 
variable M2F. 

PRINTER.M2F Needed only for the hardcopy option. The first line contains the 
physical page length for hardcopy output. The second line contains 
the number of lines from bottom of page that causes major 
constructs such as procedure headingst compound statements (1Ft 
CASE t WHILE t etc) to start on the next page of hardcopy. Then 
comes a set of printer escape code sequences which you can define. 
These are sent to the output file when comments t procedure 
headings t identifiers t and keywords are encountered. (See Section 
1.8.2, Configuring PRINTER.M2F for a detailed discussion of the 
file.) Put PRINTER.M2F in the subdirectory that is set by the 
environment variable M2F. 

21 



Chapter 1 

The diagram in Figure 1.1 shows how these files. interact with your source files to 
produce formatted output files. 

Template 
Source File 

(tempI) 

1 'I 
'I Template 1 ____ ' I Template 

---I I Compiler I 1 I Data File 
I (M2FC.EXE) I I (templ.TMD) 
,-______ 1 1 __ -, __ _ 

!User Modula-2 ! v I Formatted I 
I Source File I I ,i Modula-2 Filei 
I (filename MOD) I 'I Modula-2 I 'I (filename. FMT) I 

---II Formatter 1---1 
'I (M2FORMAT.EXE) I , 

IUser Modula-2 1---1 ,_.,.-___ -.:--1 ---/I-=Fo-r--m-a-:-tt:-e-d'---I 
I Source File I I Modula-2 Filel 
I (filename.DEF) I I (filename.FMD) I 

--I I I 
Formatter I I Printer I 
Defaults I I Defaults I 

(DEFAULT .M2F) I I (PRINTER.M2F) I 

_--------1 I I 

Figure 1-1 Model for M2FORMAT Software 

22 



M2FORMAT 

1.3 Recommended Disk Organization 

If you have a harddisk, create a separate directory that contains the template compiler 
(M2FC.EXE), the template source and data files C*.TMD), and the configuration files 
IPRINTER.M2F" and "DEFAUL T.M2P'. Set the environment variable IM2F" to this 
directory name. Place the LOG/TECH M2FORMAT M2FORMAT. EXE file in a sub­
directory that is contained in the PATH. 

This organization keeps M2FORMAT out of any working directories and keeps the 
seldom used template compiler and its template files away from other common 
directories. 

For floppydisk users, the compiler and template source files need not be on-line, once 
template data files are created. The M2FORMAT M2FORMAT.EXE program file, 
.TMD template data files, and the configuration files PRINTER.M2F and 
DEFAUL T.M2F must be online when formatting. 

23 



Chapter 1 

1.4 Things you should know about M2FORMAT 

LOG/TECH M2FORMAT software is intended for use with Modula-2 program, 
implementation, and definition modules that are complete and syntactically correct. Any 
attempt to use it with incorrect or incomplete program segments will cause M2FORMAT 
to report a syntax error and halt without formatting. 

In addition to recognizing and formatting standard Modula-2 statements, some basic 
syntax extensions have been added. These extensions are discussed in Section 1.9, 
Syntax Extensions. Other non-standard M odula-2 extensions can be left unformatted by 
using the "syntax check off flag" as discussed in Section 1.7, Formatting Options. 

TEM PL is a template file that can be modified to reflect new style features. Be careful 
not to delete any constructs in this file. Instead, change only the spacing, newline, or 
comment selectable features. Multiple template data files may be generated and used as 
input to M2FORMAT.EXE. 

Comment handling is unique in M2FORMAT. In normal operation, comment text is 
packed with one space between words. The starting position of most comments is 
defined in the template file. Comments that exceed end of line are wrapped to the next 
line on a word boundary and are placed directly under the first word of the comment on 
the preceding line. To preserve comments such as tables with special spacing 
requirements, precede the comment with "format-off' (*. f-*> , and use "format-on" 
(*. f+*> after the comment. 

Line wrap is handled in the following way by M2FORMAT. Formatted output lines that 
exceed the end of line are clipped on word boundaries and continued on the next line ,at 
the same indentation level as the preceding line. If the "comment command" (* .m+*> is 
enabled, all line wraps are flagged in the formatted output file with the comment (*@*> 
in column 1. These comment flags can be used to customize the formatting of each line 
wrap. 

24 



M2FORMAT 

1.5 Using M2FORMAT 

This section gives detailed information on how to use LOGITECH M2FORMAT 
software. It is divided into three parts that follow the three steps in formatting your 
source code: 

1: Define a specific style. 

2: Check for consistency in this defined style. 

3: Reformat a compilable Modula-2 source file. 

A simple walk-thru example shows you how to use M2FORMAT. In this example, the 
style features provided in the standard template, TEM PL, are used without modification. 

The following Modula-2 program is used as an example. The template file show in 
Figure 1-2 is significantly different from the final version listed in Figure 1-8. 

MODULE CountExample; 

FROM InOut IMPORT WriteString,WriteLn,WriteCard; 

CONST 
MaxCount = 10; 

LongerName = 11; 

VAR Count : CARDINAL; 

BEGIN 
FOR Count := 1 TO MaxCount DO 

WriteString ("Count = "I; 
WriteCard (Count,31; 

WriteLn; 
END; 

END CountExample. 

Figure 1-2 A Compilable Modula-2 Program Listing 

1.5.1 Modifying the Template File 

For this walk-through the template file is used unmodified as provided in TEM PL. See 
Section 1.4, Editing the Template File, for information on how to modify the template 
file. 

25 



Chapter 1 

1.5.2 Compile the Template File 

To run Template Compiler, type: 

M2FC QJ 

You will see the following screen display: 

I 
LOGITECH Modula-2 Template Compiler 

Copyright (c) 1987 LOGITECH Inc. 
All Rights Reserved 

Enter template file (CR for directory ) --> 

version 1.2 

Figure 1-3 Screen Display Observed When Template Compiler Is Executed 

Type the name of the template file: 

<templatename> QJ at the Enter template file prompt, 

or press QJ for a directory listing. TEM PL is the standard template file. 

The directory option lists current directory files alphabetically, with the first file 
highlighted. Use the (B I~I CD CD keys to highlight the file you wish to 
select. Then press QJ . 

26 



M2FORMAT 

Once the template file is selected, the template compiler begins its two-pass 
compilation of the template file. Figure 1-4 shows the screen you see if no 
inconsistencies are encountered in the style features of the template file. The 
compiler produces an output file, <templatename>.TMD, or TEMPL.TMD for 
the standard template file. The. TM 0 file must be put in the subdirectory that is 
set by the environment variable "M2F". A compiled template file must be 
present for LOGITECH M2FORMAT to execute correctly. 

LOGITECH Modula-2 Template Compiler 
Copyright (e) 1987 LOGITECH Inc. 

All Rights Reserved 

Compiling templ 

Pass 1 

Pass 2 

version 1.2 

Figure 1-4 Screen Display After Successful Run Of Template Compiler 

27 



Chapter 1 

1.5.3 Format a Modula-2 Source File 

To execute LOGITECH M2FORMAT, type: 

M2FORMAT CD 
The display shown in Figure 1-5 appears on the screen. 

LOGITECH Modula-2 Formatter version 1.2 
Copyright (c) 1987 LOGITECH Inc. 

All Rights Reserved 

Enter file to format (CR for directory) -->_ 

Figure 1-5 First Screen Display When M2FORMAT Is Executed 

You may enter the <filename.ext> of the file you wish to format or QJ for a 
directory listing. Use B , CD , B ,rn ' keys to highlight the file you wish to 
select, then press QJ . 

Only those filenames with the extensions specified in DEFAUL T.M2F will 
appear in the directory listing (e.g. *.MOD, *.DEF). A filename may include a 
path designation. If so, then the reformatted file will be saved in the same path. 
The file to be formatted must not end in the suffix . FMT or . FM D or an error 
will be reported and the program terminated. 

28 



M2FORMAT 

After you enter a valid source filename, the screen in Figure 1-6 is displayed. 

I 
LOGITECH Modula-2 Formatter 

copyright (c) 1987 LOGITECH Inc. 
All Rights Reserved 

version 1.2 

I 
The default template file (CR to accept, ESC to reject) --> templ.tmd I 

Figure 1-6 Second Screen Display When M2FORMAT Is Executed 

You are prompted for the template file. Press QJ to accept the default template file or 
( Esc 1 to list all the . TM D files (in the subdirectory set by the environment variable 
"M2F"). Selection is again done through highlighting and QJ. If a DEFAUL T.M2F 
file is not available in the subdirectory that is set by the environment variable "M2F", you 
may enter a filename without the . TM D extension, which is then assumed. 

29 



Chapter 1 

Once a valid compiled template file is selected, and if the fonnatting has proceeded with 
no errors, LOG/TECH M2FORMAT displays the screen in Figure 1-7. The original 
source file is unchanged. The formatted file is saved as <filename>. FMT for 
implementation and program modules and <filename>.FMD for definition modules. 

LOGITECH Modula-2 Formatter 
Copyright (c) 1987 LOGITECH Inc. 

All Rights Reserved 

version 1.2 

I 
Formatting example . MOD 

Pass 1 

Pass 2 

output file name is example. FMT 

Figure 1-7 Screen Display After Successful Run OfM2FORMAT 

30 



M2FORMAT 

The reformatted output in file <example>.FMT is shown in listing in Figure 1-8, 
consistent with the style features in the supplied standard template file TEM PL. 

MODULE CountExarnple; 

FROM InOut IMPORT 
WriteString, WriteLn, WriteCard; 

CaNST 
MaxCount = 10; 
LongerNarne = 11; 

VAR 
Count : CARDINAL; 

BEGIN 
FOR Count := 1 TO MaxCount DO 

WriteString( "Count = " }; 
WriteCard( Count, 3 }; 
WriteLn; 

END (* for Count *); 
END CountExarnple. 

Figure 1-8 Reformatted Example Program (Standard Style) 

1.5.4 Specify Arguments To M2FORMAT In The Command Line 

To pre-specify all arguments to M2FORMAT type: 

M2FORMAT <filename.ext> <templatename> [;D 

in which case the screens in Figure 1-5 and Figure 1-6 are skipped. <filename>.<ext> 
is formatted using <templatename> as template file. This is useful for batch command 
files as it lets you invoke M2FORMAT without waiting. If the extension is left off, 
M2FORMAT applies .MOD. If the template extension .TMD is left off, M2FORMAT 
assumes the extension .TMD. 

If only one argument to M2FORMAT is specified, it is assumed to be the name of the 
file to be formatted. M2FORMAT will prompt for <templatename> by showing the 
Screen Display in Figure 1-6. 

31 



Chapter 1 

1.6 Editing the Template File 

You can edit the template file TEM PL with any suitable text editor. Restrict your editing 
to horizontal and vertical spacing and comment commands. Do not delete constructs 
contained in the file. 

r------------------------CAUTION----------------------~ 

Keep a backup copy ofTEMPL. 

1.6.1 Comment Commands 

Comment commands or comment selected features are selected with predefined 
comments in either the template file or the M odula-2 source file that is to be reformatted. 
Comment selected features in the Modula-2 source file have precedence over the default 
features specified in the template file. The form of the comment command is (*.x*) with 
no spaces. The command may be in either upper or lower case. The following comment 
selectable features are provided. A complete discussion of comment commands is given 
in Section 1.7, Formatting Options. 

32 



Command 

<*.lx*> 
<*.rx*> 
<*.e+*> 
<*.e-*> 

<*.m+*> 
<*.m-*> 

<*.p+*> 
<*.p-*> 

<*.f+*> 
<*. f-*> 

(*. s+*> 
(*. s-*> 

(*.h+*> 
(*.h-*> 

Description 

Left Margin - x ranges from 0 to 15. Default is O. 

Right Margin - x ranges from 60 to 240. Default is 80. 

End Comment On 

End Comment Off (Default) 

M2FORMAT 

When selected, comments are automatically placed one 
space after the reserved word END to identify the 
construct. If a user comment already follows END, the end 
comment is suppressed. 

Line Overrun Marking On 

Line Overrun Off (Default) 
When enabled, line overruns generated in formatted output 
file are marked with the symbol (*@*) in the first column. 

Identifier Padding On (Default) 

Identifier Padding Off 
If enabled, then identifiers in V AR, CONST, TYPE or 
PROCEDURE headings are padded with blanks so that 
" = " and" : "symbols are aligned. 

Formatter Enable (Default) 

Formatter Disable 
May be used in your source file to control which sections 
of the file are to be reformatted or left unchanged. 

Syntax Checking Enable (Default) 

Syntax Checking Disable 
May be used in your source file to control sections of the 
file that contain non-standard Modula-2 that would 
normally cause a syntax error during formatting. 

Hardcopy Enable 

Hardcopy Disable (Default) 
When enabled, the output file is created with hardcopy 
features as defined in the printer configuration file 
PRINTER.M2F. The hardcopy option may only be 
selected in the template file. 

Figure 1-9 Table Of Comment Selected Features 

33 



Chapter 1 

1.6.2 Generating A New Template File 

The template file provided with the software is given in the listing in Figure 1-10. The 
style shown can be modified by changing spacing, newline, or comment selected 
features. 

(* comment *) 
(* .h-*) 
(* .10*) 
(*.r78*) 
(* .m-*) 
(* .e+*) 
(* .p+*) 

DEFINITION MODULE defmodulel; 

FROM somemodulel IMPORT 
importiteml, importitem2, importitem3; 

(* comment *) 

IMPORT 
importitem4; 

EXPORT QUALIFIED 
exportiteml; 

CONST 
constl = -const2 + ( const3 - const4 ) * constS; 
(* comment *) 
const6 = NOT const7; 

TYPE 
subrange = [ lowl •. low2]; 
arraytypel = ARRAY[ lowl •. highl], [ low2 •• high2] OF typel: 
arraytype2 = ARRAY subrange OF type2; 
opaquetype; 
enumtype = ( enuml, enum2, enum3 ); 
settype = SET OF enumtype; 
recordtype = RECORD 

recl, rec2, rec3 : type2; 
CASE variant : type3 OF 

valuel : 
caselabell : type4; 

value2 •• value3: 
caselabe12 : typeS; 

END; 
END; 

ptrtype = POINTER TO type6; 
proctypel PROCEDURE 

( type7, 
VAR type8) BOOLEAN; 

proctype2 PROCEDURE 
( VAR type9, 

typelO ); 
proctype3 PROCEDURE 

( type9, 
typelO ); 

proctype4 PROCEDURE(): BOOLEAN; 

Figure 1-10 Listing ofTEMPL (cont'd next page) 

34 



VAR 
varl : typell; (* comment *) 
var2 : type12; 

PROCEDURE procnamel 
( paraml type13; 

VAR param2 type14 (* comment in params *) ) 

(* comment *) 

PROCEDURE procname2 
( VAR parm3 

parm4 
type15: 
type16 ); 

END defmodulel. 
DEFINITION MODULE defmodule2; 

FROM somemodule2 IMPORT 
(* comment *) importitem5, importitem6, 
(* comment *) importitem7; 

EXPORT QUALIFIED 
(* comment *) exportitem4, eXportitem5, 
(* comment *) exportitem6; 

END defmodule2. 

IMPLEMENTATION MODULE impmodulel; 

CONST 
constS = const9; 
constlO = constll; 

TYPE 
type17 
type19 

VAR 

typelS; 
type20; 

var3 [OFH:OFH 
var4, 
var5, 
var6 : type22; 

type21; 

PROCEDURE outerprocnamel 
( parm5 : type17; 

parm6, 
parm7, 
parmS : typelS ); 

PROCEDURE innerprocnamel() 
(* comment *) 

BEGIN (* comment *) 
(* comment *) 
statementl; 

END innerprocnamel; 

BOOLEAN; 

Figure 1-10 Listing ofTEMPL (cont'd next page) 

35 

M2FORMAT 

BOOLEAN; 



Chapter 1 

BEGIN 
xl := -x2 + x3 > ( x4 * xS ); (* conunent *) 
(* conunent *) 
set := { setelementl, setelement2 l; 
qualset := qualident { setelementl, setelement2 l; 
pointerA[index] .ident := record.somefield; 
procedurecall( x6, x7 ); 
WHILE NOT condition DO 

statement2; 
END; 

WITH record DO 
statement3; 

END; 
LOOP 

statement4; 
END: 
REPEJl.T 

statementS; 
UNTIL condition: 
IF condition 
THEN 

statement 6: 
ELSIF condition 
THEN 

statement 7: 
ELSE 

statementS; 
END: 
FOR xS := x9 TO xlO BY -xll DO 

statement 9: 
END; 
CASE x12 OF 

x13, 
x14 : 

statementlO; 
xlS •• x16: 

statement 11; 
ELSE 

statement12: 
END: 
RETURN x17: 

END outerprocnamel; (* conunent *) 

(* conunent *) 

PROCEDURE procname3 

VAR 

TYPE 

CONST 

( VAR parm3 
parm4 

BEGIN 
statementl; 

END procname3: 

type23; 
type24 ): 

END impmodulel. 

Figure 1-10 Listing ofTEMPL (cont'd next page) 

36 



MODULE progmodulel [ priority); 

MODULE internalmodule; 

BEGIN 
statementl3; 

END internalmodule; 

BEGIN 
(* Comment *) 
statementl4; 

END progmodulel. 

Figure 1-10 End OfTEMPL Listing 

M2FORMAT 

As an example of how the template file may be edited we extract the IF THEN ELSE 
construct as shown in the listing in Figure 1-10 and reproduce it in the listing in Figure 
1-11. We will edit this construct to illustrate methods for changing the formatting style. 

IF condition 
THEN 

statement 6; 
ELSIF condition 
THEN 

statement7; 
ELSE 

statement8; 
END; 

Figure 1-11 Listing Of IF THEN ELSE Format Template 

In Figure 1-12 the style of the IF THEN ELSE construct has been changed so that THEN 
occurs on the same line as the condition and the statements are indented four spaces. 

IF condition THEN 
statement6; 

ELSIF condition THEN 
statement 7; 

ELSE 
statementS; 

END; 

Figure 1-12 Listing For Revised IF THEN ELSE Format Template 

37 



Chapter 1 

The template compiler is able to detect style inconsistencies in the template file. Figure 
1-13 shows the format of a REPEAT construct followed by an IF THEN ELSE construct. 
The style inconsistency occurs because of the different indentation level for the IF and 
for the REPEAT constructs. The template compiler will therefore generate the error 
message shown in Figure 1-14. 

The M2FORMAT Compiler error messages identify the line numbers in the template 
file, the offending tokens, and the two key formatting parameter values for each token. It 
is clear from Figure 1-14 that the "spaces" parameter for the IF token is inconsistent with 
that for the REPEAT token. 

REPEAT 
statementS; 

UNTIL condition; 
IF condition 
THEN 

statement 6; 
ELSIF condition 
THEN 

statement 7; 
ELSE 

statement8; 
END; 

Figure 1-13 IF THEN ELSE Format Template With An Error 

» Template conflict 
» Line 154 : Token REPEAT, 
» Line 158 : Token IF, 

Figure 1-14 Error Message From Template Compiler 

38 

1 line, 0 spaces 
1 line, 2 spaces 



M2FORMAT 

As an example of the flexibility that the template file offers within a construct, you have 
a wide range of choices for spaces and new lines. This is shown in an extreme example 
in Figure 1-15. The style in this example is valid and will compile. 

IF condition 
THEN 

statement 6; 
ELSIF condition 

THEN 
statement 7; 

ELSE 
statementS; 

END; 

Figure 1-15 Listing For Another Valid Formatting Style 

39 



Chapter 1 

1.7 Formatting Options 

Formatting options are selected through comment commands. Comment-selected 
features in the Modula-2 source file have precedence over default features in the 
template file. The fonn of the comment command is <*.x*) with no spaces. The 
command can be in either upper or lower case. All comment commands in the Modula-2 
source file are passed through to the formatted output. 

1.7.1 End Comments 

End comments enhance the readability of programs by placing a comment at the close of 
control constructs (e.g. END <* while X+4*); ). This option is activated using 
(*.e+*) in either the template file or the source file. It is deactivated using (*.e-*). 
When activated, end comments are placed immediately after the keyword END on control 
constructs only if an end comment is not already present. 

If the first identifier of the control construct (e.g., IF first) is not preceded by a left 
parenthesis, the identifier is included in the end comment, otherwise it is omitted. 

Source File 

IF first > second 
THEN 

statement; 
END; 

Formatted File 

IF first > second 
THEN 

statement; 
END(* if first *); 

Figure 1-16 Simple Expression 

40 



Source File 

IF ( first > second ) AND ( second < third ) THEN 
statement; 

END; 

Formatted File 

IF ( first > second ) AND ( second < third ) THEN 
statement; 

END(* if *); 

Figure 1-17 Complex Expression 

41 

M2FORMAT 



Chapter 1 

1.7.2 Line Overruns 

Line overruns are handled automatically. Lines that exceed end of line are wrapped to 
the next line on a word boundary and are placed directly under the first word on the 
preceding line. There are however, cases where line overruns are handled specially. 
Here are several examples. In complex expressions, the innermost expression (i.e. 
lowest nested parenthesis) is never broken across line boundaries. This is shown in 
Example 1, Figure 1-18. Parameter lists of a procedure call are also handled specially 
as in Example 2, Figure 1-19. 

Line overruns may be marked with the comment C*@*) by invoking the comment 
command (*.m+*) in either the template file or the source file. The comment command 
(*.m-*) disables line overrun marking. 

Source File 

IF ( first > second ) OR (third > forth ) OR ( fifth> sixth + x ) 
"Right margin 

Formatted File (with m+ option) 

IF ( first > second ) OR (third > forth ) OR 
(*@*) (fifth> sixth + x ) 

Formatted File (with m- option) 

IF first > second ) OR (third > forth ) OR 
fifth > sixth + x ) 

Figure 1-18 Example 1, Expression Overrun 

42 



M2FORMAT 

Source File 

procedurecall( parameterl, parameter2, parameter3, parameter4 ); 
" Riqht marqin 

Formatted File 

procedurecall( parameterl, parameter2, parameter3, parameter4 ); 

Figure 1-19 Example 2 Procedure Call Parameter Overrun 

43 



Chapter 1 

1.7.3 Padding 

(*.p+*) in either the template or source file turns on padding of identifier lists. The 
command (*.p-*) turns off padding. Padding is recommended only for formatting styles 
where identifier lists conSist of a single line for each identifier as shown in the example. 
When padding is on, identifiers line up on the " : " or " = " signs as shown in 
Figure 1.20. 

Padding off: 

TYPE 
typel = RECORD 

first : INTEGER; 
second : REAL; 

END; 

thesecondtype = REAL; 

VAR 

Padding on: 

first : INTEGER; 
secondandthird : INTEGER; 

TYPE 
typel = RECORD 

first INTEGER; 
second REAL; 

END; 

thesecondtype = REAL; 

VAR 

Figure 1-20 

one INTEGER; 
thisisabigone INTEGER; 

44 



M2FORMAT 

1.7.4 Hardcopy Switch 

LOGITECH M2FORMAT can be configured to produce output files that can be copied 
to a printer for hardcopy. Hardcopy is selected' by inserting the hardcopy switch 
<*.h+*> in the template file. When hardcopy is enabled, the file PRINTER.M2F must 
be present in the directory set by the environment variable "M2F". PRINTER.M2F 
contains configuration information used for hardcopy. The hardcopy flag may only be 
used in the template file and is not permitted in the source file to be formatted. For 
additional information on hardcopy see Section 1.8 Hardcopy Features. 

1.7.5 Formatting Switch 

Formatting may be selectively turned on and off within a source file by using <*. f+*> 
or <*. f-*>. This lets you selectively retain existing format within a file, such as a table 
in comment blocks. M2FORMAT requires correct syntax in your input program even 
when formatting is disabled. 

1.7.6 Syntax Checking Switch 

M2FORMAT syntax checking may be selectively turned on and off within a source file 
by using <*. s+*> or <*. s-*>. This lets you use M2FORMAT on programs with nop­
standard Modula-2. Any section of code where syntax checking is disabled must result 
in a syntactically correct program if that section were to be removed from the program as 
shown in the example. The section of code is passed through to the formatted output file 
as is from your input file as in Figure 1-21. 

VAR 
MyInt : INTEGER; 
(*. s-*) 
Buff: Byte ABSOLUTE Infile; 
(*. s+*) 
Fileptr : INTEGER; 

Figure 1-21 Modula-2 Code With Non Standard Syntax 

45 



Chapter 1 

1.7.7 Margins 

Left and right margins may be selected using (* .lx) and (. rx) in either the template 
file or your input file. The valid range for the left margin is 0-15 and the right margin is 
60-240. An attempt to modify the margins beyond the valid range will result in an error. 

46 



M2FORMAT 

1.8 Hardcopy Features 

1.S.1 Overview of Hardcopy Features 

LOGITECH M2FORMAT can produce printable output by setting the hardcopy switch 
(*.h+*> in the template file. When hardcopy is enabled, the file PRINTER.M2F must 

be present in the directory set by the environment variable "M2F". PRINTER.M2F 
contains configuration information used for hardcopy. 

You can set the number of physical lines per page, to accommodate different printers. 
An optional page heading containing the file name, page number, date and time of 
formatting is placed on the third line of the page. The listing starts on line six and 
continues to a bottom margin of two lines. 

To minimize the effects of page breaks, set the number of lines before the bottom margin, 
this should cause the next major construct to start on the following page. Major 
constructs are defined by the keywords BEGIN, WIDLE, IF, ELSE, ELSIF, CASE, 
REPEAT, LOOP, WITH, FOR, PROCEDURE, VAR, TYPE, and CONST. 

47 



Chapter 1 

Most printers have features such as bold or italic text that are selectable using special 
escape sequences. A set of six escape code sequences (which you can redefine) are used 
to select modes for printing identifiers, keywords, procedure and module headings, and 
comments. The listing in Figure 1-22 contains an example of a program module that has 
comments, module heading, and bold procedure headings. 

File: example.mod Page 1 11/21 9:35 

PROGRAM Example; 

(* proqram to show the use of printer attributes *) 

FROM InOut IMPORT 
(* proc *) WriteString, Writeln; 

PROCEDURE WriteM8ssaqe 
(s : ARRAY OF CHAR); 

BEGIN 
WriteString (s); 
WriteLn; 

END WriteMessage; 

BEGIN (* main proqram *) 
WriteMessage ("hello world"); 

END Example 1. 

Figure 1-22 

48 



M2FORMAT 

1.8.2 Configuring PRINTER.M2F 

PRINTER.M2F contains user-defined information for configuring hardcopy. The file 
layout is shown below in Figure 1-23. 

number of lines per physical page 
bottom number of lines for major construct to start on 
header enable (l=header on, Q=header off) 
escape sequence to be sent at beginning of output file 
escape sequence to be sent at end of output file 
escape sequence to be sent at beginning of the module heading 
escape sequence to be sent at end of module heading 
escape sequence to be sent at beginning of comment text 
escape sequence to be sent at end of comment text 
escape sequence to be sent at beginning of keyword 
escape sequence to be sent at end of keyword 
escape sequence to be sent at beginning of identifier 
escape sequence to be sent at end of identifier 
escape sequence to be sent at beginning of procedure heading 
escape sequence to be sent at end of procedure heading 

Figure 1-23 

The first line in the file is the number of lines per physical page in the range of 50 to 120, 
which is set to 66 for most printers. 

The second line of the file is the number of lines from the bottom of the page to start 
major constructs on the next page. (BEGIN, WHILE, IF, ELSE, ELSIF, CASE, REPEAT, 
LOOP, WITH, FOR, PROCEDURE, VAR, TYPE, and CONST) 

The third line selects whether or not a page header is placed at the start of each page. 

The forth through fifteenth lines contain escape code sequences to be sent before and 
after certain elements of M odula-2. 

Escape code sequences are one per line, and must be printable ASCn characters. Non­
printable ASCII may be encoded as three decimal digits, after a backslash character, 
representing the decimal character value of the desired character. For example, 

\027@x 

sends an escape character followed by an @ and an x. The character value must be 
between 0 and 255, or an error will be reported. 

49 



Chapter 1 

Escape code sequences sent at the beginning and end of the formatted file are useful for 
sending formfeeds (\012) at the beginning or end of listings, or any global printer 
configuration commands. If no escape code sequence is desired for any of the constructs, 
that line must contain a single backslash. Other escape code sequences are useful for 
highlighting procedure headings, comments, keywords or identifiers. Normally, you 
enable a certain printer option at the beginning of certain element of Modula-2, then 
disaple the printer feature after the feature. 

Depending on the capabilities of the printer, care must be taken when selecting printer 
control as there are times when escape sequences overlap. For example, assume that 
boldface type is selected for procedure headings and italics for identifiers. When 
hardcopy is enabled, the segment of the LOG/TECH M2FORMAT output file is shown 
in Figure 1.24. Escape sequences are shown in brackets < >. If the escape sequence 
selected for italics is not independent of the selection of bold (e.g. the printer can't print 
bold italics), the rest of the procedure heading may not be bold. 

<bold on>PROCEDURE <italic on> procname <italic off> ( };<bold off> 

Figure 1-24 Segment Of M2FORMAT Output File With Hardcopy Enabled 

50 



M2FORMAT 

Comments can be added to the file to increase comprehension of the file. Comments are 
indicated by a pound sign (It) in the first column of a line. The comment extends to the 
end of the line. An example of a printer configuration for a Hewlett-Packard Laser Jet 
is shown in Figure 1-25. 

**#**#*#*#####**#*##*##**#**#**#**#######*#*########*# 
# printer config file for laser jet for bold comments, 
# procedure and module headings 
*################*#####*##**###############*########*# 
# physical page length 
60 
# number of line that cause major constructs to start on the next page 
3 
# header on/off (on = 1, off = 0) 
1 
#escape sequence sent at the start of a file 
\ 
#escape sequence sent at the end of a file 
\012 
#escape sequence sent at the start of a module heading 
\027(s5B 
#escape sequence sent at the end of a module heading 
\027(sOB 
#escape sequence sent at the start of a comment 
\027(s5B 
#escape sequence sent at the end of a comment 
\027(sOB 
#escape sequence sent at the start of a keyword 
\ 
#escape sequence sent at the end of a keyword 
\ 
#escape sequence sent at the start of an identifier 
\ 
#escape sequence sent at the end of an identifier 
\ 
#escape sequence sent at the start of a procedure heading 
\027(s5B 
#escape sequence sent at the end of a procedure heading 
\027(sOB 

Figure 1-25 Printer configuration for a Hewlett Packard LaserJet printer 

51 



Chapter 1 

1.9 Syntax Extensions 

LOGITECH M2FORMAT currently recognizes and formats standard Modula-2 source 
code files as defined by the Modula-2 book by Niklaus Wirth Programing in Modula-2 
third edition. In addition M2FORMAT recognizes the LOGITECH Modula-2 language 
extensions of the compiler, for example. 

VAR 
PortAddress [OFH:OFH] CARDINAL; 

Figure 1-26 Example of LOGITECH Modula-2language extension 

52 



M2FORMAT 

1.10 Formatting Resolution 

In general, the template lets you specify the formatting style only once for each construct 
in the Modula-2 language. However, to increase formatting flexibility, there are certain 
constructs in the template that are repeated. The various constructs that allow additional 
resolution are now discussed. 

1.10.1 Identifier Lists 

The identifier list construct is used extensively in Modula-2 for variable declarations, 
enumerated type declarations, record field declarations, procedure declaration 
parameters, procedure call parameters, and case statement labels. The template lets you 
specify the formatting style of each of these identifiers separately. 

1.10.2 Procedure Declarations 

Procedure declarations allow for extensive flexibility based on the number and type of 
parameters. Procedure declarations can be of three types: 

1) a procedure declaration with parameters that are all passed by value (no VAR's). 

2) a procedure declaration with at least one parameter passed by reference. 

3) a procedure declaration with no passed parameters. Examples of each type are 
shown in the listing in Figure 1-27. 

PROCEDURE PassByValue ( x : INTEGER; y : REAL ); 

PROCEDURE PassByReference ( VAR x : INTEGER; y : REAL ); 

PROCEDURE NoParameters ( ); 

Figure 1-27 Three Types of Procedure Declarations 

The increased formatting resolution lets you specify details such as the parameters 
aligned regardless of whether reference or value is used as seen in PROCEDURE 
PassByReferenece. 

53 



Chapter 1 

1.10.3 Nested Procedures 

Procedures and functions are classified as being either first level (visible from the main 
body of a program) or as nested procedures. LOGITECH M2FORMAT lets you specify 
the indentation level and number of blank lines of nested procedures relative to the parent 
procedure. 

1.10.4 Import Lists 

In recognizing at, emerging style often used in import lists, l'.f2FORMAT allows 
different formatting for import lists that used comments to specify what type of item is 
being imported. This style is encapsulized in the definition module defmodule2 in the 
template source file. 

54 



M2FORMAT 

1.11 Error Messages 

Error messages that occur during the execution of the template compiler are indicative of 
inconsistencies in formatting style. Check the indicated style features for the 
inconsistency and correct them. 

Errors that occur during the execution of LOGITECH M2FORMAT are indicative of an 
incorrect input source file. Error comments will assist in identifying syntax errors in the 
source file. Check to see that the source file is a compilable M odula-2 source file and 
correct the syntax errors. The line number indicated represents the approximate location 
of the syntax error. Syntax errors cause M2FORMAT to terminate immediately. 

If comment commands have been incorrectly entered into the source file, an error will 
occur (e.g., <*.p*> is incorrect). Incorrect comment commands generate an error 
message but do not terminate M2FORMAT. 

If PRINTER.M2F is not present or it contains invalid configuration data, an error 
message will be generated and M2FORMAT will be terminated. 

55 



Chapter 1 

Notes: 

56 



The LOGITECH Linker 

Chapter 2 
The LOGITECH Linker 

The LOGITECH Linker combines separately compiled modules into a single executable 
file. It takes the object (.OBJ) files of the module to be linked as input, and produces an 
executable (.EXE) or an overlay (.OVL) file, and a map (.MAP) file. The .MAP file 
provides information about the associated .EXE file. This .MAP file must be present to 
use the the RTD and PMD debuggers. 

The first .OBJ file name the Linker accepts defines the name of the . EXE output file. 
The names of the modules to be imported are encoded in the .OBJ file generated by the 
LOG/TECH Modula-2 Compiler. This means that after you give the name of the first 
.OBJ file to the Linker, the Linker will automatically search for other .OBJ and .LlB 
files to be imported. 

Parameters may be given on the command line for various enhancements. /OPT, for 
example, lets the Linker combine only the necessary procedures when creating an output 
file. Most standard linkers put more procedures in the output file than is necessary. 
However the LOGITECH Linker is able to combine the minimum necessary procedures 
for its output file. This creates a smaller, more efficient executable file. 

57 



Chapter 2 

2.1 How to use the Linker 

Step 1: To load the LOGITECH Linker type: 

M2L QJ 

You will see a screen resembling this: 

C:\m2l 
LOGITECH Modula-2 Linker, DOS 8086, Rel. 3.0, Aug. 87 
Copyright (e) 1983, 1986, 1987 LOGITECH 
master file > 

Step 2: Enter the filename and any options. 

(See section 2.5 Linker Options). 

Compiled modules which are ready to be linked use .OBJ as the default 
extension. The default drive is the current disk drive. 

If you use the default optiops, the Linker automatically links all other necessary modules. 
It also lists all imported modules and their corresponding file names. 

You can specify the file name on the DOS command line directly after the command to 
load the Linker. The Linker will then display the banner and begin linking. 

58 



The LOGITECH Linker 

2.2 Search Strategy 

2.2.1 Object files 

By default, object files use the extension .OBJ. To know which additional files are to be 
used during linking, the LOGITECH Linker finds references that are imbedded in the 
.OBJ file which is being linked. Files which are needed for linking have an extension of 
.OBJ or .LlB. Object files compiled with the LOGITECH Modula-2 Compiler contain 
information about the imported modules that need to be imported into the final .EXE or 
.OVL file. 

The object files are searched for in the following order: 

1: In the current directory. 

2: In the directory where the master (main) file came from. This path is called the 
master path. 

3: In the directories specified by the environment variable M20BJ. 

Each time a directory path is specified on the command line, or when the Linker asks for 
a file it does not find, the directory path is added to the begginning of the list of directory 
paths specified by the environment variable M20BJ. 

If the Linker, after the search, does not find the file it assumes that the file is defined in a 
library file. (See Section 2.2.2 Library Files, below). 

When the Linker asks for an object file, the request is repeated until an appropriate file is 
found or ( Esc I is pressed. (Esc I means that the file is not available. 

2.2.2 Library files 

A library file is a collection of different object files. Library files use the extension .LlB. 
They can be created using the Microsoft Librarian utility (they also follow the Microsoft 
format for library files). 

59 



Chapter 2 

The LOGITECH Linker recognizes four predefined names for library files: 

M2L1B.LlB 

M2RTS.LlB 

M2REAL.LlB 

M2USER.LlB 

(contains the standard Modula-2 library) 

(contains the run-time system) 

(contains the reals library) 

(contains a library which you can define) 

As some object files have not been found, the Linker will scan the library files it knows, 
and extract the missing .OBJ file from them. 

The known libraries are the four libraries defined above by default. You can use your 
own libraries in one of the following ways: 

• Copy your private library to M2USER.LlB (which is defined for this purpose). 

• Give the name(s) of your private libraries on the command line of the Linker, 
preceded by the switch ILiB (or IL) as in the following example: 

m21 obj1 obj2 ILiB mylib1 mylib2 mylib3 

• If the Linker does not find an object file in a library, it prompts you for it. You 
can either give a file name with no extension and the Linker will assume this 
new name is the name of an object file, or you can give a file name with the 
extension .LlB. The Linker will assume the given name is the name of a library 
file. The file you specify will be added to the list of the other library names, and 
the missing object will be searched for. 

The library files are searched for as follows: 

1: The current directory is searched. 

2: In the directory where the master (main) file came from. This path is called the 
master path. 

3: The directory path specified by the environment variable M2L1B are searched. 

2.2.3 Output files. 

After successful linkage, the Linker writes all output files (.OVL, .EXE and .MAP 
formats) in the current directory. 

60 



The LOGITECH Linker 

2.3 Temporary Files 

If the LOG/TECH Linker runs out of memory during the linking process, it creates a 
temporary file on disk on which it stores data. This frees the memory for the linking 
process. 

These temporary files are automatically erased when the linking process is complete. 

2.4 MS-DOS Environment 

The Linker uses four variables as environment parameters. 

To create or modify these variables using the DOS command, type: 

SET <variable> = <value> 

Variables Specify path for 

M20BJ Object (.OBJ) files 

M2L1B Library (.LlB) files. 

M2MAP Map (.MAP) files. 

M2TMP Temporary files (can be used with RAM disk). 

61 



Chapter 2 

2.5 Linker Options 

The LOG/TECH Linker accepts several options, from any position on the command 
line. 

Three kinds of option are accepted on the command line : 

/ Those that begin with a forward slash" / ". (Switch options). 

@ Those that begin with " @ ". Tells the Linker to use the following filename as 
the name of a command file that it must read. (Must be followed by filename). 

+ And " + ". Tells the Linker to continue the input of the command line on a 
new line. This is useful for a long command line. (Stand alone character). 

The following options can be used: 

(note: the case of the characters has no effect). 

IBAT IB 

ICASE (I C) 

IUB (lL) 

Tells the Linker it is running in a batch file. Ordinarily the 
Linker tells you to enter a character when it prompts the list of 
undefined symbols or the list of unreferenced procedures. 

Ignore the case of the characters in symbols. 

By default, the case of the character is checked when 
comparing symbols. If this switch is present, the Linker will 
not check the case, i.e." a "is equivalent to" A ". 

The following names are library file names. 

On the command line, all filenames are assumed to be the 
names of .OBJ files. If this switch is present, all the filenames 
that follow are assumed to be the names of . LI B files. 

62 



/L1NE (Ill) 

/NOM 

/MAP (1M) 

/MS 

/NOL 

/OPT (10) 

The LOGITECH Linker 

List line numbers in the .MAP file. 

In order to produce symbolic information for debuggers like 
SYMDEB, CODEVIEW (Copyright © Microsoft) or 
PFIXPLUS, (Copyright © Phoenix Software Associates 
Ltd.) this switch tells the Linker to put source line numbers 
on the map file. 

The Linker generates a .MAP file by default. This switch 
tells the Linker not to generate such a file. 

Produce a .MAP file (default). 

Forces the Linker to produce a map file. The full syntax is: 

/MAP [= <filename>] 

If the" = "sign is present, the filename that follows is assumed 
to be the name of the map file to be created. 

If the equal sign is not present, the master name is used as 
filename. 

Produces a CMD file. 

The LOGITECH Linker will create a file CMD, on which it 
writes the names of the object file. This file can then be used 
with the standard Microsoft Linker. 

If the Linker generates such a command file it will not 
generate (MAP, OVL or EXE) file(s). 

No Default Library search. 

The Linker uses information encoded in the object file to 
know the name of eventually used library. This switch tells 
the Linker not to use this information. 

Deletes unreferenced part of code. 

Tells the Linker to check for unreferenced part of code. 

The Linker will then prompt the name of the deleted 
procedures. These procedures will then not be present in the 
output file. 

63 



Chapter 2 

10PTQ (lOQ) 

lOUT 

IPACK (lP) 

ISTACK (IS) 

IWAIT (lW) 

Deletes unreferenced part of code with query. 

Same switch as 10PT. The difference is that the Linker 
prompts the name of each unreferenced procedure and asks 
the user if he will need this procedure in the output file. 

Specify the name of output (.EXE or .OVL) file 

Lets you specify the name of the output (EXE or OVL) file. 
The syntax is: 

lOUT = <filename> 

Produce a packed. EXE file. 

This switch forces the Linker to pack the .EXE output file . 
. OVL files are automatically packed. This effects the size of 
the resulting output file only, not the memory the output file 
uses when it is executed. 

Specify the stack size. 

Lets you change the size of the stack defined for the output 
file (works only forEXE file, since OVL files have no stack). 
The default size for a Modula-2 program is 8000 bytes. The 
syntax is: 

ISTACK = value 

Value must be in the range of [512 ... 65535]. 

Wait before creating a file. 

The Linker asks you to press a key before creating an output 
file. This lets you change the disk in the disk drive. 

~---------------NOTE-----------------~ 

If the Linker has created a dump file on a floppy disk, 
do not remove this disk until the end of the link 
process! 

64 



The LOGITECH Linker 

2.6 How to Link an Overlay 

During its execution, a program can load overlays. 

LOGITECH Modula-2 overlay files, with an extension of .OVL, can be generated only 
by the LOGITECH Linker (and not by a DOS linker). 

An overlay can reference modules which are part of other overlays. To know the names 
of the modules and objects which are declared in other referenced overlays, the .MAP 
files of these overlays must be given to the Linker. 

The syntax of the command line is the following : 

M2L <objectfilenames> «mapfilenames» 

Any switch can be used on the command line. 

The Linker then creates a .OVL file, linking all the object files specified in the command 
line. It will then link the imported object files that are not declared in the .MAP files. 

The .MAP file generated when linking an overlay can be used again to create another 
overlay. When creating the .MAP, the Linker writes the name of the other imported 
map, so you have only to specify the name of the first imported map, and the Linker will 
automatically find the name of the others. 

65 



Chapter 2 

Example: 

In this example the program uses the following strategy: 

The first part of a program is the "Base" which then loads the "OVERLAY1" overlay. 
The Base part of any program is the main . EXE file of the program. For this example, 
the Base of the main .EXE file will be named "BASE". 

While overlay "OVERLA Y1 " is executing, it wi11load another overlay "OVERLA Y2". 

When you run BASE.EXE it executes the first overlay (.OVL) file, which we call here 
OVERLAY1. When OVERLA Y1 is running, it can load OVERLAY2. 

To link all the components together, follow this procedure: 

Step 1: Link the BASE module: 

M2LBASE GD 
A . MAP file is generated by default. 

Step 2: Link the first overlay file: 

M2L OVERLA Y1 (BASE) G!J 
With the BASE, a .MAP file is generated by default: 

Step 3: Link the second overlay file(s): 

M2L OVERLA Y2 (OVERLA Y1) Cd] 

This overlay might reference OVERLAY1 and BASE. However, since 
OVERLAY1 already references BASE, one has only to give the name of the 
first referenced .MAP, which is OVERLAY1.MAP: 

Switches can be set anytime. For example, try to optimize (lOPT) 
OVERLAY2. You can also try to optimize OVERLAY1 or BASE, but be 
careful, the Linker might delete procedures which are referenced by an overlay! 
To avoid this, use the switch IOPTQ, and specify the Linker procedures which 
it can not delete. 

66 



The LOGITECH Linker 

2.7 Linker Error Messages 

2.7.1 Common Errors 

bad format on command 1ina 

Misspelled switches or unrecognized characters have been given on the 
command line. The LOGlTECH Linker rewrites the typed command 
line showing where it has detected an error: 

LOGITECH MODULA-2 Linker, DOS 8086, ReI. 3.00, Aug 87 
copyright (C) 1987 LOGITECH, Inc. 

masterfile > main imported /o/p/nom/q/Iib mylibrary 
> main imported /o/p/nom/q/ 

FATAL ERROR : bad format on command line 

version conf1ict in modu1e 

A version conflict has been detected in one of the M odula-2 object 
files. This error arises typically when a DEFINITION module has been 
recompiled and the IMPLEMENTATION part has not. 

no object fi1e 1inked 

The Linker could not link any files. 

67 



Chapter 2 

more than one entry point in the program 

The object files linked together define more than one entry point. 
Since the entry point of a program is the point where DOS should start 
its execution, only one entry point must be defined. 

master file of overlay is not a main 

Each overlay is defined by its main module. The main module is a 
standard Modula-2 main module without DEFINITION part. This error 
occurs when the first object file given on the command line is not a 
main lvlodula-2 module. 

no entry point in program 

There must be one entry point for any program. 

undefined symbol 

The Linker could not resolve all the external references. This occurs 
when some object files are missing, or when there is a version conflict 
between modules. 

invalid library 

One of the files given to the Linker as a library file is not a Microsoft 
library file. 

source map file not found 

One of the. MAP files given to the Linker has not been found. 

incorrect map file 

The .MAP file given to the Linker is incorrectly formatted. 

Name of main program not found in map 

(.MAP file maybe corrupted). 

When using a .MAP file to find the names of the modules which are 
part of another layer, the Linker could not find the main modules of the 
layer corresponding to this . MAP. 

68 



The LOGITECH Linker 

can not open output map file (disk full ?) 

can not open output file (disk full ?) 

Open failure. Occurs if the disk is full or write-protected. 

too many nested overlays 

An overlay can be loaded by another overlay, this last overlay can also 
be loaded by another overlay, and so forth. The maximum number of 
nested overlays is 255. 

overlay without entry point. 

Occurs if the first object file given on the command line (which will 
define the overlay) is not a main M odula-2 module. 

bad key in map 

The .MAP is corrupted or the object files described by it have not been 
generated by the LOG/TECH Compiler. 

insufficient memory to link the program 

disk full 

The program being linked is too big to be linked. Try to recompile 
some files with the LOG/TECH Compiler with the option /NOSY. 
This will generate less symbols in the object file. 

Occurs if the disk is full or write-protected. 

more than one stack segment 

A program may have only one stack segment. 

symbol defined twice 

Each symbol defined by the object files can occur only once. 

can not open temporary file 

As it is running out of memory, the Linker copies part of its data to disk. This error 
occurs when it is unable to open the open files, either because the disk is full, write­
protected, or the path specified in the M2TMP environment variable is not good. 

69 



Chapter 2 

2.7.2 Special Errors 

Special errors occur when linking object files generated by other language compilers or 
by assemblers. They should not occur if the object files being linked have been created 
by the LOG/TECH Compiler or are part of the LOG/TECH Modula-2 Library. 

~-------------------------NOTE--------------------------~ 

The LOG/TECH Linker will usually link object files generated by the 
LOG/TECH Compiler with object files generated by assembly language if there 
is no use of GROUP statement in the assembly language source file. 

bad record in object file 

The Linker can not recognize one or more records in the object file 
being linked. The object file is either corrupted or does not follow the 
Intel Standard Format for object files. 

unknown record in object file 

The Linker has detected a record in the object file being linked that is 
not implemented, (Le. the Linker does not interpret the records). 

not implemented kind of fixup. 

Occurs if an object file was not generated by the Modula-2 Compiler. 

segment size greater than declared 

unable to pack output file 

overflow in address computing 

underflow in address computing 

offset in removed block 

All these errors come from corrupted .OBJ files, or .OBJ files that have not 
been generated by the Modula-2 Compiler. 

70 



The LOGITECH Linker 

2.8 Overlays 

Overlays are basically equivalent to standard Modula-2 programs. They are built from a 
main M odula-2 module which imports other M odula-2 modules. 

The difference is that the modules that are imported by an overlay are not necessarily part 
of the overlay itself, but can be part of another overlay. An overlay can make reference 
to other overlays, using the exported identifier of the modules which are part of other 
overlays. 

Overlays are loaded and unloaded during the execution of the Base and overlay programs 
which use them,making it possible for overlays to share memory. They can also be 
nested, in the sense that one overlay can load another overlay. 

The first program of an application (with the extension .EXE) is called the Base. Since 
the Base also behaves like an overlay, (it can be seen as an overlay of the DOS 
interpreter which invokes it), features applying to overlays also apply to the Base. 

2.8.1 Creating an Overlay 

A LOGlTECH Modula-2 overlay file has a .OVL extension. It can be created only by 
the LOGlTECH Linker. Since an overlay can reference other overlays (for example the 
overlay which will load this overlay (may be the Base)), the Linker needs to know which 
identifiers are exported from these referenced overlays. This information is given to the 
Linker by the . MAP file generated as the Linker created these other overlays (or the 
Base). 

The syntax on the Linker's command line is the following: 

m21 <object_file> ( <map_file» /anySwitch 

The Linker first links together the modules specified in the list of the .OBJ files on the 
command line. Then, it tries to link all the other imported files, checking each time if 
those files are not already defined in the. MAP file (i.e. if those modules are not already 
part of other overlays). If those modules are already defined in some other overlay, the 
Linker will put some special information in the output file in order to permit the new 
overlay to access those modules. This means that their code will not be written in the 
new overlay. 

71 



Chapter 2 

2.8.2 The Overlay Manager 

The Overlay manager is defined in the M2L1B module library Overlay. This module 
provides procedures to call, load, or unload overlays. It also provides a way for you to 
control memory allocation. 

2.8.3 Loading an Overlay 

Two procedures in the Overlay manager loads the overlays. The routine you use will 
specify tl}e nature of t'1e overlay being loaded: 

PROCEDURE CaliOverlay (fileName, errorCode, status); 

loads the overlay specified in <fileName>, starts its execution, and then 
unloads it automatically. Overlays which are called through this 
routine are called "SUBPROGRAM". After the overlay has been 
unloaded, control is returned to the program which issued the call. 

PROCEDURE InstaliOverlay (fileName, errorCode, status):Overlayld; 

loads the specified overlay, starts its execution and then give back the 
control to the calling program. Overlays loaded through this routine are 
called "RESIDENT OVERLAYS". Their main feature is that they are 
not automatically unloaded from memory, but instead the code and data 
of the overlay becomes logically part of the program in which the call 
to InstallOverlay was issued. After the termination of a resident 
overlay, the code and data can still be used by the application. 

PROCEDURE DelnstallOverlay (fileName, errorCode, status):Overlayld; 

unloads explicitly a resident overlay. 

2.8.4 Execution of the Overlay 

Once it has been loaded, the code of the main module of the overlay is executed, as in a 
standard Modula-2 program. The execution is terminated as the last statement of the 
main module is executed, or in the case of a run-time error. 

72 



The LOGITECH Linker 

2.8.5 Termination of the Overlay 

2.8.5.1 Termination of a Subprogram 

When a subprogram is terminated, it is unloaded from memory and control is returned to 
the calling program. 

Two pieces of information about the overlay are given back to the calling program: 

1: The loading status of the overlay: 

The loading status gives information about the loading of the overlay. If the 
loading was successful (the overlay could be found on the disk, there was 
enough free memory to load it. .. ), the loading status has the value Done. 

2: Execution status. 

If the value of the loading status is Done, the execution status gives information 
about the way the overlay was terminated. Normally this status has a value of 
Normal (if the execution was successful). In the case of unsuccessful 
termination, the possible values of the status is defined in the RTSMain (i.e. 
range error, divide by 0, stack overflow, ... ) 

2.8.5.2 Termination of a Resident Overlay 

In the case of loading errors and execution errors, resident overlays behaves like 
subprograms, i.e. they are unloaded from memory and control is given back to the calling 
program, returning the same information about the loading status and the execution 
status. 

If the resident overlays can be successfully executed, they become logically part of the 
calling program and control is given back to the calling program. 

A resident overlay can explicitly be unloaded from memory using the procedure 
DeinstallOverlay (OverlayId) provided by the overlay manager. 

If a resident overlay is not unloaded explicitly by the application, it will be unloaded 
when the overlay to which it has become logically part is unloaded. 

73 



Chapter 2 

2.9 Accessing Overlays from within a Loaded Overlay 

2.9.1 Subprogram 

Subprograms can not be accessed from previously loaded overlays. 

Subprograms behave like procedures. Subprograms can still access the subprogram 
which have been previously loaded (like a procedure can access the data of the procedure 
in which it is nested)t or they can themselves call other subprograms. Once a 
subprogram is terminatedt the code and data are unloaded from memory, an cannot be 
used any longer. 

2.9.2 Resident Overlays 

Resident overlays provide a way to load code for procedures during the execution of an 
applicationt and then explicitly unload them when they are no longer needed. 

Typically, a resident overlay will import procedure variables from modules defined in 
previously loaded overlays. As the resident overlay is initialized, it changes the value of 
these procedure variables to some procedure it itself defines. When the resident overlay 
is initialized, its code and data can still be accessed from the rest of the application, using 
these procedure variables. 

74 



The LOGITECH Linker 

2.9.3 Termination Procedures. 

The module RTSMaln provides a way to install termination procedures using the 
procedure InstallTermProc (PROC). 

A tennination procedure installed using InstallTermProc will be executed upon the 
unloading of the overlay in which the call to InstallTermProc is issued. Termination 
routines installed in the <base>. EXE are executed upon termination of the application. 

A typical use of termination procedure is to release resources owned by the overlay. As 
an example, if a module which handles file operations (as LogiFile or FileSystem) is 
unloaded from memory (since the overlay in which it is defined is unloaded), one should 
close all the files opened using this module which are still open to ensure correct 
behavior of the application. 

2.9.4 Initialization Procedures. 

The module RTSMain provides a way to install Initialization procedures using the 
procedure InstalllnitProc (PROC). 

Initialization procedures are procedures which will be called upon the loading of an 
overlay. Each time an overlay is loaded, all the initialization procedures installed will be 
executed. 

75 



Chapter 2 

2.9.5 An Example 

Consider an application that consists of a base that loads several overlays as 
subprograms, one after the other as well as on top of each other: 

ov1321 
I 

ov121 ov131 ov132 ov132 
I I I I 

ovll ov12 ov12 ov13 ov13 ov13 ov13 
I I I I I I I 

base base base base base base base base base 

---------------------------- time --------------------------------> 
The base contains the common module FileHandler. 

Shared Resource 

The module File Handler installs a termination procedure that closes all open files upon 
termination of the application. This means that files that have been opened for example 
in OVL 1 but that have not been close there explicitly, will be left open until some other 
overlay closes them, or until the application terminates. 

Thus, files or any other resources generated by other modules, can be shared over overlay 
boundaries. 

76 



The LOGITECH Linker 

Up to this point, the implementation part of the module FileHandler could be the 
following: 

IMPLEMENTATION MODULE FileHandler; 

FROM RTSMain IMPORT InstallTermProc; 

CONST MaxFile = 255; 

TYPE FileDesc RECORD 
used 
handle 

END; 

BOOLEAN; (* TRUE if this entry is used *) 
INTEGER; (* for instance DOS file handle *) 

FileTable = ARRAY [O .• MaxFile-l] OF FileDesc; 

VAR fileTable : FileTable; 

PROCEDURE OpenFile (VAR f : File); 

(* opens a file and records it in a table *) 

VAR i : CARDINAL; 
BEGIN 

(* search for a free entry in the table *) 
i : = 0; 
WHILE (i < MaxFile) & fileTable [i] .used DO 

INC (i); 
END; 

IF i < MaxFile THEN (* a free entry exist *) 
fileTable [i] .used := TRUE; 
DOSCALL (OPEN, •...• ); (* now the file has been opened *) 

END; 
END OpenFile; 

PROCEDURE CloseAllFiles; 
VAR i : CARDINAL; 

BEGIN 
(* called upon the termination of the application *) 
(* close all open files *) 
FOR i := 0 TO MaxFile-l DO 

IF fileTable [i].used THEN 
DOSCALL (CLOSE, .••• ); 

END; 
END; 

END CloseAllFiles; 

VAR i : CARDINAL; 

BEGIN (* FileHandle *) 
FOR i := 0 TO MaxFile-l DO 

fileTable [i] .used := FALSE; 
END; 

(* now install the termination procedure (CloseAllFiles) *) 

InstallTermProc ( CloseAllFiles ) 

END FileHandler. 

77 



Chapter 2 

Private Resources 

Any module that does not want its resources to be shared over overlay boundaries, has to 
make sure that a termination routine is called for every overlay. This can be achieved by 
using the initialization routines. 

In our example, the module FileHandler will have to install an initialization routine in its 
own initialization code (i.e. the module body). This initialization routine will be called 
for every overlay that will be loaded, and its execution is considered to be part of the 
cu..rrently loaded (i,e, the new) overlay, A termination routine to close the open files of 
this overlay can be installed now, inside the initialization routine. 

Usually, it will be the same termination routine that is called on all levels. This means 
that the installing modules must have other means to identify, for example the files that 
have been opened in a specific overlay. This information can be obtained from the 
variable RTSMain.currprocessAA.termOverlay which is of type OverlayPtr. 

78 



The LOGITECH Linker 

According to this, the new implementation part of the module FileHandler would be 
the following: 

IMPLEMENTATION MODULE FileHandler; 

FROM RTSMain IMPORT InstallTermProc, InstallInitProc, currprocess, 
ProcessDescriptor, OverlayPtr; 

CONST MaxFile = 255; 

TYPE FileDesc RECORD 
used 
handle 
owner 

END; 

BOOLEAN; (* TRUE if this entry is used *) 
INTEGER; (* for instance DOS file handle *) 
Overlayptr; (* the specifi overlay were *) 

(* the files has been opened *) 

FileTable ARRAY [O •• MaxFile-l] OF FileDesc; 

VAR fileTable : FileTable; 

PROCEDURE OpenFile (VAR f : File); 

(* opens a file and records it in a table *) 

VAR i : CARDINAL; 
BEGIN 

(* search for a free entry in the table *) 
i := 0; 
WHILE (i < MaxFile) & fileTable [i] .used DO 

INC (i); 
END; 

IF i < MaxFile THEN (* a free entry exist *) 
fileTable [i] .used := TRUE; 
DOSCALL (OPEN, ••••. ); (* now the file has been opened *) 
fileTable [i] .owner := currprocessAA.termoverlay; 

END; 
END OpenFile; 

(Cont'd on next page) 

79 



Chapter 2 

PROCEDURE CloseAllFiles; 
VAR i : CARDINAL; 

BEGIN 
(* called upon the termination of any overlay *) 
(* close all open files that were opened in the terminating overlay *) 
FOR i := 0 TO MaxFile-l DO 

IF fileTable [i].used & 
(fileTable [i] .owner = currprocessAA.termoverlay) THEN 

DOSCALL (CLOSE, •••• ); 
END; 

END; 
END CloseAllFiles; 

PROCEDURE InitProcedure; 
(* called before the initialization of any new loaded overlay *) 
(* install the termination procedure 'CloseAllFiles' in the *j 
(* new loaded overlay *) 

BEGIN 
InstallTermProc ( CloseAllFiles ); 

END InitProcedure; 

VAR i : CARDINAL; 

BEGIN (* FileHandle *) 
FOR i := 0 TO MaxFile-l DO 

fileTable [i] .used := FALSE; 
END; 

(* now install the termination procedure (CloseAllFiles) *) 

InstallInitProc ( InitProcedure ) 

END FileHandler. 

Another way to generate private resources is to link the corresponding module with those 
overlays where the resource has to be private, and take the one linked with the Base for 
those where the resource is supposed to be shared. 

80 



The LOGITECH Linker 

2.9.6 Creating PROCESSES in Overlays 

PROCESSES can be created using the standard procedure NEWPROCESS in 
subprograms (but not in resident overlays). These processes can load other overlays, 
when they have the control. 

Upon the unloading of the overlay, processes which were created in the overlay itself are 
destroyed. It is also no longer possible to TRANSFER to such a process. Transferring to 
a dead process will usually hang the system. If such a process has loaded overlays, these 
overlays will be unloaded from memory. 

81 



Chapter 2 

Notes: 

82 



The Symbolic Run-Time Debugger 

Chapter 3 
The Symbolic Run-Time Debugger 

LOG/TECH Modula-2 works with two complementary debuggers: the Symbolic Post­
Mortem Debugger (referred to as the LOG/TECH PMD) is described in the 
LOG/TECH Modula-2 User's Manual. The Symbolic Run-Time Debugger which is 
described in this chapter, is referred to as the LOG/TECH RTD, or simply the RTD. 

TheRTD lets you watch how a program runs. 

You can execute the program step by step. After each step, you may then inspect the 
data and the current status of the program. There are several ways you can step through 
the program. Depending on the situation, you may execute larger or smaller steps. You 
can also modify the values of the variables the program uses. 

The structure and user interface of the RTD are the same as that of the PMD. The RTD 
uses the same windows and screen layout as the PMD. The RTD commands are a 
superset of the PMD commands. All commands of the PMD are also valid in the RTD 

83 



Chapter 3 

3.1 LOGITECH RTD Files 

On the RTD diskettes you will find the file RTD.ARC. When you extract the files as 
explained in the Installation Chapter, or run INSTALL, you will obtain the following: 

RTDPAR.CFG 

RTD.EXE 

RTDINIT.OVL 

RTDM2.0VL 

RTDOVLAY.OVL 

The RTD will also use the following files from the PMD: 

MDA.CFG 

CGA.CFG 

EGA.CFG 

DB.CFG 

DB.HLP 

The file extensions stand for: 

.CFG Configuration file 

.HLP Help file 

. EXE RTD executable file 

.OVL RTD overlay file 

84 



The Symbolic Run-Time Debugger 

3.2 The RTD and Your Hardware 

The LOGITECH RTD works on IBM PC and compatible computers. It is advised to run 
the RTD on a 512K or 640K system and with a mouse. The debugger can work with a 
MDA, CGA or EGA video controller. With a CGA or EGA controller, the RTD can 
have windows with colors. With an EGA controller, the RTD can have a screen with 43 
lines. 

The RTD can also be used without a mouse. If a mouse is used, it is important to use 
recent mouse drivers (LOGITECH Mouse driver Version 3.20 (or higher), Microsoft 
Mouse driver Version 6.00 (or higher». 

3.2.1 Memory Requirements and Swapping 

The RTD requires approximately 275 Kbytes of memory to run. The remaining memory 
can be used by the program being debugged. In order to determine the maximum size of 
the program that can be debugged, you have to add the size of your DOS, and the size of 
every other resident program (Mouse Drivers, ... ) you have loaded: For example: 

RTD 
Dos 3.2 
LOGITECH Mouse driver 

275 Kbytes 
20 Kbytes 
9 Kbytes 

304 Kbytes 

304 Kbyte is the memory used before your application can be loaded. The requirement 
of 275 Kbytes includes only the RTD. 

With the Big swap option, it is possible to enlarge the memory space available to the 
program being debugged. The RTD requires as little as 125K to run. Refer to Section 
3.6 RTD Options for details. 

When you specify the a swap option, parts of the RTD are loaded into memory as 
needed. When the program has been stopped, the program is swapped out to disk. It will 
be swapped back into memory as soon as you resume execution. 

When you choose the Big swap option, the debugger creates the two swap files 
RTDSWAP.RTD and RTDPROG.RTD. They will be created in the current directory 
of the current drive if the "V" option is off, or they will be created in the virtual drive if 
the "V" option is on. Both files have a fixed size of approximately 150K bytes. 
Therefore, when using the Big swap option you should make sure 300K bytes of disk 
space are available. 

85 



Chapter 3 

3.3 How to Run the Run-Time Debugger 

To run the LOGITECH RTD, type: 

RTD GD 
The debugger responds with a sign-on message: 

MODULA-2/86 Run-Time Debugger 

followed by the version number and a copyright notice. 

You will see the following screen prompting you for the name of the program you wish 
to debug: 

I __ Name of program (MAIN.EXE) I 

Enter the name of the executable file «filetype>. EXE) followed by 0. The RTD 
will then load your program into memory, and update each window on the screen with 
the appropriate information. At this point, the program has not started to execute. 

You may set breakpoints before executing the program. You instruct the debugger to 
start the execution of the program by entering one of the Go commands. Refer to 
Section 3.4.3 and Section 3.8 for more information on Go commands. 

86 



The Symbolic Run-Time Debugger 

The RTD is started by just typing RTD QJ. The name of the file to debug can be 
specified on the command line or added when the debugger prompts. 

RTD options should appear just after the name of the debugger. If the application 
debugged in the RTD wants options, just type the options after the name of the 
application. 

RTD Version 3.0 uses the .MAP file of the program. 

~----------- IMPORTANT !!! -----------..., 

! ! ! NO DEBUGGING CAN BE DONE WITHOUT A .MAP FILE! ! ! 

The application program must be compiled with the SYMBOL option (which is set by 
default) and the link must be made with a .MAP file (default of the linker). 

3.3.1 Programs Taking Command Line Arguments 

With the LOGITECH RTD, you can also debug programs that accept command line 
arguments. When the RTD asks for the program to be debugged, enter the arguments in 
the usual way. For example: 

Assume the program "mycopy" is normally started under DOS by entering: 

<mycopy> <file1 > <file2> c::dJ 
With the RTD, the following will start the program in the same way: 

RTD <mycopy> <fiIe1 > <file2> QJ 

87 



Chapter 3 

3.4 Control of Program Execution 

There are two ways you can control the program being debugged. One is to set 
breakpoints on specific statements in the program. The other is to step through the 
program, stopping at each statement or procedure call. 

When the debugger stops the execution of the program, either at a breakpoint or after a 
step you can inspect and modify the content of variables in any part of the program. You 
can also examine any process, and you can view or change the data of any module or any 
active procedure. 

3.4.1 Breakpoints 

One way to monitor program execution is to tell the RTD at which points to stop. These 
are called breakpoints. When the program executes a statement at a breakpoint, the 
program stops and you may examine the data structures and the status of the program. 

You may set a breakpoint on any program statement. The RTD sets no limit to the 
number of breakpoints. You may set or remove breakpoints before you start the 
execution of the program or any time the program is stopped. 

Each breakpoint has an occurrence counter. Each time you set a breakpoint, the 
debugger prompts you to specify a limit for the occurrence counter. This tells the 
debugger how many times to execute the statement before stopping the program. Once 
an occurrence counter has reached its limit, the debugger stops the program each time it 
encounters this breakpoint. 

For example: Set the limit of the counter for a particular breakpoint to five. The RTD 
will execute the program until the fifth time it reaches the statement on which this 
breakpoint is set. If you continue the execution of the program, the debugger will stop 
the program each additional time this breakpoint is encountered. 

3.4.2 Step Mode 

You can also tell the RTD to execute the program statement by statement or procedure 
call by procedure call. The debugger "steps" through the program, stopping its execution 
at the beginning of the next statement or procedure call. Another possible step is to 
execute the program up to the return from the current procedure. If a breakpoint is 
encountered during the execution of a step, the program will stop at the breakpoint. 
Anytime the program is stopped, you can examine its current status and data. 

88 



The Symbolic Run-Time Debugger 

3.4.3 Overview of the Run-Time Debugger Commands 

Six commands clearly distinguish the RTD from the PMD. These commands let you 
control program execution by stopping at specific points in the program. Whenever you 
stop the program, you can examine its current status, as well as display and modify its 
data. In this way you can determine more specifically the location and cause of problems 
in your program. 

The six commands are described in detail in the corresponding section. The following 
list briefly defines each command. You invoke these global commands by entering the 
letters of the command name, shown in upper case on the command line. For example, 
you activate the Go Breakpoint command by typing GB. 

GB Go Breakpoint 

Stop at the next breakpoint or overlay loading. 

GS Go Statement 

Stop at the next statement, breakpoint, or overlay loading. 

GP Go Procedure 

Stop on the next procedure call, breakpoint, or overlay loading. 

GR Go Return 

Stop on the return from the current procedure, or the next breakpoint, or overlay 
loading. 

GE Go End 

Execute the program until the end, ignoring breakpoints, but not the overlay 
loading. 

GF Go Flat 

Same as GS, but it steps over a procedure call without going into the procedure. 

3.4.4 Run-Time Errors 

When a run-time error occurs in the program being debugged or when the program calls 
the standard procedure HALT, the RTD gains control, updates the windows and displays 
an error message. No memory dump «filename> . PM D) is generated. The RTD also 
indicates in the Call window the cause of the run-time error. You can now inspect the 
program and you can resume execution. It will continue with the termination routines of 
the terminated layer. 

89 



Chapter 3 

3.4.5 Stopping Programs During Execution 

A program being debugged, with or without the RTD, should import the Break module, 
so that its object file will include this module. 

The program being debugged can be stopped by typing @!ill-@J when it is waiting for 
input, or ( Ctrl H Break] at any other time it is executing, for instance when it runs in an 
infinite loop. If a program that contains module Break is stopped in this way, the RTD 
handles this situation in the same way as when a run-time error occurs, and you can 
inspect the status and the data of the program as they were, when @!ill-@J or 
[ Ctrl H Break 1 was typed. 

If a program that does not contain the Break module is stopped by @!ill-@J or 
[ Ctrl H Break 1 the RTD will not be able to analyze the current program state. However as 
in the case of run-time errors you can follow the termination of the current overlay. 

3.4.6 Debugging Programs that Use Overlays 

When an overlay is called, the RTD stops the execution when it is loaded, but before it 
has started execution. This is similar to what happens when you start debugging a 
program. The windows get updated when the overlay has been loaded. You may then 
set breakpoints or start the execution of the overlay in step mode. 

For all these files, the search strategy is the same: first the debugger looks into the current 
directory and then in the directory from where the program to debug was loaded. 

90 



The Symbolic Run-Time Debugger 

3.5 RTD Configuration 

The RTD reads files during its initialization. It reads a file which contains the layout of 
the screen, a file which contains information displayed in the help window, and then it 
reads overlays. 

3.5.1 Screen configuration 

The screen configuration is in the file DB.CFG. This file is a binary file which can not 
be edited. If the file is not found, the debugger prompts for it. If you press ( Esc) , you 
get the default setting for the screen. You can then modify the setting and either save it 
with the save config command, or be automatically prompted when you leave the 
debugger. 

On the distribution disk, four screen configuration files are provided: 

MDA.CFG 

CGA.CFG 

EGA.CFG 

DB.CFG 

Monochrome. 
Fits all controllers. MDA.CFG is used when the configuration file is 
not found and you press ( Esc I . 
Color. 
Works with eGA controller or with EGA in eGA mode. 

EGA. 
Works in 43 lines mode 

Same as MDA.CFG. 

If the computer has an exotic display (e.g. Olivetti, ATT, or COMPAQ), start with 
MDA configuration (MDA is less critical). 

3.5.2 On-line Help 

On-line help is in a text file named DB.HLP. If DB.HLP is not found, you are not 
prompted for it. 

~-------------------------NOTE--------------------------~ 

For both DB files, the search strategy is the same: first the debugger looks into the 
current directory and then in the directory from where the RTD was loaded. 

91 



Chapter 3 

3.6 Run-Time Debugger Options 

When you start the RTD, you may also specify various options on the command line. 
Options are denoted by a / (forward slash), followed by the first character of the option 
name. For example, to activate the Query and Small swap options, enter: 

RTD/O/S QJ 

when starting the RTD. 

Tne RTD accepts file-related, memory-related, mouse-related, and screen-related 
options. 

/0 

(default: 10-) 
Query 

3.6.1 File-related Option 

Tells the RTD to search for reference and source files according to the query 
search strategy. You will be prompted to enter the reference and source file 
names. If the Query option is not specified, the RTD automatically searches for 
these files according to the default search strategy. 

3.6.2 Memory-related Options 

These two options let the debugger and the application share the same memory area. The 
debugger uses about 275K without either swap. 

IS (default: IS-) 
Small swap - uses 225K 

18 (default: 18-) 
Big swap - uses 125K 

92 



The Symbolic Run-Time Debugger 

For a faster swap, use the following: 

N (default: N-) 
Virtual disk 

Saves swap files on drive D:. In a computer with AboveBoard memory, you can 
use VDISK as virtual disk D:. Other drives may be specified in the 
RTDPAR.CFG file. 

IL (default: IL-) 
Large 

Enlarges the internal workspace of the RTD. This workspace is used for storing 
information on the program being debugged. In particular, it contains 
information for each module of the program. When debugging large programs 
with many modules, the default workspace of the RTD may be too small. This 
would lead to a stack or heap overflow in the debugger itself. You can specify 
the amount of workspace the RTD has to use in the file RTDPAR.CFG. 

1M (default: IM-) 

Mouse 

3.6.3 Mouse-related Options 

Use this only when the application uses an old mouse driver. The reason is that 
the old mouse drivers are unable to switch context so that two applications can 
use the mouse simultaneously. If IM+ is used, the mouse is not used by the 
debugger, which lets the application use the mouse without conflict. 

93 



Chapter 3 

3.6.4 Screen-handling Options 

IG (default : IG-) 
Graphics 

MDA: 

eGA: 

Use this for conflict between the debugger screen and the application screen. 
Try the application with G- (default). If a problem occurs (messy screen), 
restart the debugger with G+. 

The controller can be MDA, eGA, or EGA. If EGA is used, it can be used in 
M DA mode with a monochrome display (see EGAm, below), in eGA mode 
with a color display (see EGAc) or in EGA mode with a color display (see 
EGAe). 

Two methods are used for screen saving/restoring. With G-, the debugger writes 
its output in one page and the applications output in another page. G+ saves the 
application/debugger screen to disk. N saves these files on the same virtual 
drive as the swap files. 

Sometimes the debugger detects a method that won't work with the screen used. 
Then you must try G- and then G+ if you don't want this kind of problem. 

G+ is forced by the debugger 

G- uses page 1 and the application may use pages 0,2,3. 
G+ allows the application to use all the pages. 

EGAm: same as eGA 

EGAc: same as eGA 

EG Ae: G+ is forced by the debugger. 

94 



The Symbolic Run-Time Debugger 

3.6.5 RTD Option File 

You can change the RTD option default values by modifying a text file named 
RTDPAR.CFG. Keep this file in the directory where RTD.EXE resides or in your work 
directory. You can also put it into any sub-directory that is identified by the environment 
variable M2CFG. 

Typing options on the command line will overwrite the values specified in 
RTDPAR.CFG. 

In RTDPAR.CFG there are two additional options not available on the command line: 

A memory-related option: 

/W=KK Workspace 
(default: /W=32) 

Specifies the RTD workspace, expressed in KBytes from 16-64 KBytes. /W is 
only meaningful if the /L option is on. 

A file-related option: 

/P="CCC" Path 
(default: /P="D:" 

Specifies the drive and path of the directory where the RTD saves internal 
temporary files. Applicable only if the /V option is on. 

ID (default: ID+) 

Tells the debugger not to maintain the application screen. Use this switch if you 
have an application without any input/output or do not want flashes while screen 
switching (lG-) or have time spent while saving/restoring screen (lG+). See 
/G option for more details). 

With D-, the debugger writes on page 0 with a M DA screen or in page 1 with a 
CGA or EGA screen. In this case, it will not switch to page 0 when the 
application runs and you will see something only if the application writes in the 
current page. If the application switches to another page, the debugger will not 
show anything. If ID- is used, the command =A is not available. 

95 



Chapter 3 

3.7 User interface 

3.7.1 Windows 

The RTD uses windows for optimal viewing of executed code. 

The windows can have two states: opened or iconized. An opened window shows its 
contents. An iconized window is displayed as a label on the last line of the screen. 

In the following text an open window may be referred to as "window", and an iconized 
window as "icon". 

The windows cannot be overlapped and they always share the entire screen. A window is 
always displayed beside another window. For example, if the screen is divided vertically 
in two windows, a third window can be opened only from within the parameter of one of 
the two already opened windows. 

One window is always active (this means that the menu called is connected to the active 
window). It is also possible to activate an icon so that its menu is available. The 
activation of the icon does not open it as a window. 

The menus and the messages are displayed with pop-up windows. 

96 



Window functions are: 

activate a window 

scrolling of the contents 

color modification: 

for the borders 
for the window contents 
for the menus 

size modification: 

The Symbolic Run-Time Debugger 

window borders moved (because they share a screen, the motion of a 
border modifies the size of adjacent windows) 
window modified to fill the whole screen (zoom) 
window iconized (shrink) 
window swapping (to exchange the position/size of two 
windows). This command can also be applied between an 
icon and a window, but not between two icons. 

All commands can be done with the mouse and/or with the keyboard. With the mouse, 
use the I_ 0 0 1 double click which calls the most probable command, or use the menu. 
With the keyboard, use the menu or the short cuts. If the mouse is not connected, the 
mouse cursor is not displayed. 

97 



Chapter 3 

3.7.2 Mouse Functions 

The mouse button is context sensitive. The table below describes these meanings. 

Cursor position 

cursor on a window's 
left border 

cursor on a window's 
bottom border 

cursor on a window's 
bottom left comer 

cursor inside 
a window 

prompt 

menu 

(_DO] 

scroll up 

scroll left 

move 
leftlbottom border 

simple click: 
select 
double click: 
carry out 
the most probable 
action on the 
selection 

tenninate 
user entry 

execute the 
highlighted 
action 

98 

(0_0] [00_] 

vertical scroll down 
absolute position 

horizontal scroll right 
absolute position 

call call 
window's window's 
manipulation specific 
menu menu 

escape escape 
prompt prompt 

execute the execute the 
highlighted highlighted 
action action 



Note: 

Scroll functions: 

Click: 

The Symbolic Run-Time Debugger 

Similar to those in LOGITECH POINT or Microsoft Word. 

Attempting to scroll beyond the ends causes a beep. 

If a two-button mouse is used, (0 • D) can be emulated by 

~ !. DO! inside the window you wish to select. If you click 
• 0 0 on an icon, it does not expand the icon but lets you 

access its local menu. 

Move window borders: Select the lower left window comer (the other part of the 
border is used as scroll bar). If there is ambiguity, the 
debugger prompts you for a menu. 

eXchange windows: First select a window then point at the other window with the 
mouse and select the eXchange command in the window 
menu. This command moves the active window in the 
selected window. 

The other window commands are available via the menu. 

99 



Chapter 3 

3.7.3 Keyboard Functions 

3.7.3.1 How to scroll 

The currently activated window can be scrolled horizontally and vertically. The cursor 
keypad is mapped as follows for scrolling: 

beginning 
of text 

1 column 
to the left 

end of 
text 

1 line up 
1 

1 
+-------+-------+-------+ 

--- 1 HOME 
1 

1 PG UP 1---- 1 page up 
1 1 

+-------+-------+-------+ 
1 1 1 1 
1 < 1 1 > 1---- 1 column 
1 1 lito the right 
+-------+-------+-------+ 
1 1 1 1 
1 END 1 V 1 PG DN 1---- 1 page down 
1 1 1 1 
+-------+-------+-------+ 

1 

1 
1 line down 

TAB 1 page right 

SHIFT-TAB 1 page left 

3.7.3.2 Select a window object 

To select any window object, move the cursor above the object and press ( Spacebar I or 

0· 
To activate a window, use a window activation command. 

100 



The Symbolic Run-Time Debugger 

3.7.3.3 Call the menu 

(£IQ) 

QJ 
or 

[ Spacebar] 

[Esc] 

Menu bar 

displays or erases the menu. 

validates the selected item in the menu. 

leaves the menu without performing the action. 

The menu bar can be moved up or down. The cursor laypad is mapped 
as follows for bar moving: 

1 line up 

+-------+-------+-------+ 
/ / / / 

few columns --- / HOME / / PG UP /---- few lines up 
to the left / / / / 

+-------+-------+-------+ 
/ / / / 

1 column ------ / < / / > /---- 1 column 
to the left / / / / to the right 

+-------+-------+-------+ 
/ / / / 

few columns --- / END / V / PG DN /---- few lines down 
to the right / / / / 

+-------+-------+-------+ 
1 line down 

However, it is faster to use keystroke commands. The appropriate 
keystroke sequence is displayed in the menu beside the corresponding 
item. 

+means@ 

A means ( Ctrl J 

the musical note sign means (. 0 0 J double click. 

Off-menu, [ Esc J purges the keyboard input buffer. Wrong keystrokes 
are beeped, if beep is ON. GD and ( Spacebar J activate the selected 
command. 

101 



Chapter 3 

3.7.3.4 Respond to a prompt 

QJ 
or validates the characters entered to the debugger. 
I Spacebar] 

IEsc] aborts the input processing. 

erases all the input characters. 

erases the last character input. 

@!ill-(K) 
(~ Back) 

~------------------------NOTE------------------------~ 

[_DO] 
[0 _ O]and[O 0 _) 

acts asQJ. 

act as [ Esc I . 

3.7.3.5 Move the mouse cursor with the keyboard 

These functions are for the numeric keypad when a mouse is connected to the computer. 
You can move the mouse cursor by using [nShift}- with the keypad. The cursor keypad is 
mapped as follows: 

1 line up 

+-------+-------+-------+ 
1 1 1 1 

few columns --- 1 HOME 1 1 PG UP 1---- few lines up 
to the left 1 1 1 1 

+-------+-------+-------+ 
1 1 1 1 

1 column ------ 1 < 1 1 > 1---- 1 column 
to the left 1 1 lito the right 

+-------+-------+-------+ 
1 1 1 1 

few columns --- 1 END 1 V 1 PG DN 1---- few lines down 
to the right 1 1 1 1 

+-------+-------+-------+ 
1 line down 

102 



The Symbolic Run-Time Debugger 

3.8 Windows and Commands 

The LOG/TECH RTD displays these windows: 

Call. : Show the calling chain of your program 

Module: Show list of the modules in memory 

Text: M odula-2 source file 

Data: Data defined in a module or procedure 

Raw: Direct access to the memory 

Help: Displays the contents of DB.HLP (help file) 

Message: Displays messages of the RTD (like which file is accessed) 

Application: Screen of the application (applicable only if the /0 option is on) 

The RTD has two types of commands - global and local. Local commands are only 
applicable to the particular window in which they appear and are shown. 

Quit command 

Q This command lets you quit the RTD. If the screen layout was changed during 
the session and not saved, you can save the configuration at that time. 

103 



Chapter 3 

Go commands 

GB Go Breakpoint 

Instructs the debugger to execute the program until the next breakpoint or the 
next overlay loading. 

GE Go End 

Instructs the debugger to execute the program until the end, ignoring all 
breakpoints. It wi11~ however~ stop on the overlay loadings, 

For the following commands, the debugger stops the program either at the next 
breakpoint it encounters or the next overlay loading, or after the specified step has been 
completed, whichever comes first: 

GF Go Flat 

Same as as but it steps over a procedure call without entering the procedure. 

GP Go Procedure 

Instructs the debugger to execute the program until the next procedure call. If 
no breakpoint or overlay loading is encountered, the execution stops at the 
beginning of the procedure, right after it has been called. Note: at this point, 
some procedure parameters may not be initialized. 

GR Go Return 

Instructs the debugger to execute the program until the return from the current 
procedure. If no breakpoint or overlay loading is encountered, the execution 
stops at the statement following the procedure call in the calling procedure. 

GS Go Statement 

Instructs the debugger to execute the program until the next statement, or to the 
next breakpoint, or to the next overlay loading. 

If the program to be debugged contains more than one process, the step mode is 
only applicable to one process at a time.Go Statement, Go Procedure and Go 
Return always refer to the current process only. When you invoke one of 
these commands, the debugger will stop the program in the current process - the 
same process in which it was stopped the last time. 

The RTD always shows the stack of the process where the breakpoint was 
incountered. 

104 



The Symbolic Run-Time Debugger 

Window activation commands: 

You can switch from one window to another one by typing: 

~© 
~[@ 

~(Q) 

~(!) 

0rnJ 
~C!!J 

~~ 
~@ 

Selects Call window 

Selects Module window 

Selects Data window 

Selects Text window 

Selects Raw window 

Selects Help window 

Selects meSsage window 

Selects Application window 

This is also possible either by clicking into the window or via menus. The fact 
to activate an icon does not open it but lets you access its menu. To open an 
icon can be done by a window manipulation command. 

[ED opens the help window (full screen). [ED exits the help window. 

Window manipulation commands: 

You can move the borders of the window. With a mouse, the border can be 
selected by picking the lower left comer of a window (the other part of the 
border is used as scroll bar). If an ambiguity exists, the RTD prompts you for 
which menu to select. If no mouse is used, @@ should be used and the 
debugger prompts with a menu which window to modify. 

Zoom oom expands a window to full screen. It also returns the window its 
original size. 

Windows can have two states: opened or iconized. A window is iconized (or 
shrunk OO®) when only its label is visible on the last line of the screen. 
You can open an icon with one of the two commands: vertical expand OOffi, 
horizontal expand OO® This distinction occurs because of the window 
allocation policy: a window can be opened only in an already visible window. 

@-0 , lets you exchange two windows. This command moves the active 
window in the selected window. Without a mouse, a menu lets you select the 
target window. 

105 



Chapter 3 

Configuration commands: 

Lets you access a menu by which you can change colors: 

OO@),OO@ 
(ID{g , Cill-(Q) 

CID@]'@@ 
OO@ 

Border colors. 

Menu colors. 

Window content colors. 

Turns a bell on/off. 

Lets you save the configuration. If you do not save after a change, you 
will be prompted when you will leave the debugger. 

Low level commands: 

Lets you redraw all windows. 

Lets you center the current selection. 

Menu commands: 

Invokes and exits the menu (toggle). 

106 



The Symbolic Run-Time Debugger 

3.8.1 Call Window 

The Call window displays the chain of procedure calls of a process. The Call window 
displays: "No call chain", before you have started the program with the Go 
command because no procedure of the program is active. 

Local commands in the Call window: 

Address: Gives the address and line number of the executed statement. 

Examine break process: Updates all windows with the information related to the 
process running when the program stopped. 

Data: Updates the data window with the data of the selected element 
(PROCEDURE or PROCESS). 

Text: Updates the text window with the text of the selected element 
(PROCEDURE or PROCESS). 

Both: Executes commands Data and Text or is equivalent to the 
double click on the selected item. 

r-----------------NOTE----------------~ 

You can see the contents of the PROCESS only if 
RTSMAIN.REF is available. 

107 



Chapter 3 

The following example shows the default setup of the windows on the screen. 

The application screen will substitute this when either 0 @ is entered or when such a 
window is selected via menus. 

Text lineit 32 Demo . MOD 

PROCEDURE RecursiveOne (x: CARDINAL; y:REAL; z: INTEGER 
BEGIN 

WITH node[x] Do 
datal :- x; 
data2 :- y; 
data3 := z; 

END; (* WITH *) 

INC (x) ; 
y := y + 1.0; 

Data Demo 

x CARDINAL 
y 2.0000000000E+000 REAL 
z 
node 

Sample Screen 3-1 

3 INTEGER 
ARRAY [ 1 .. 4] OF RECORD 

108 

Call breakpoint 

>Recursiveone 
>RecursiveOne 
>Firstone 
>initialization 
>PROCESS 

Module 

>+Demo 
Reals 
RTSMain 
Terminal 
Termbase 
Keyboard 
Display 



The Symbolic Run-Time Debugger 

3.8.2 Module Window 

The Module window displays the list of modules that constitute the program being 
debugged. The modules in which the step mode is enabled are marked with a plus sign 
(+). 

Local Commands in the Module Window 

Find: Lets you search for a module. Wildcard * and ? characters 
are accepted with the same syntax as DOS. You can reflect 
the next module name matching the input pattern by selecting 
the find command again and pressing QJ . 

Address: Gives the data and the code addresses of the module, and 
updates the raw window .. 

Step mode Enable: Enables the step mode in the selected module. When you 
invoke the Go Procedure and Go Statement commands to step 
through the program, the program will only stop in the 
modules where the step mode is enabled. 

Step mode Disable: Disables the step mode in the selected module. For all 
modules of the system library, the step mode is disabled by 
default. 

Step mode Alldisable: Disables the step mode in all the modules. 

Data: Updates the data window with the data of the selected 
element. 

Text: Updates the text window with the text of the selected element. 

Both: Executes commands Data and Text or is equivalent to the 
double click on the selected item. 

109 



Chapter 3 

3.8.3 Data Window 

The Data window displays the variables and/or parameters of the selected procedure or 
module. 

Local Commands in the Data Window 

Son and Father: 

eXchange: 

Right/Left: 

Index: 

Displays the data structure beneath the current level for the 
selected item. If the selected item is an array, the Son 
command displays the values of the elements of the a...rray. If 
the selected variable is a record, the Son command displays 
the names and values of the record fields. Likewise, local 
modules are shown as data of the embedding module. You 
can also examine the content of the process descriptor by 
entering the Son command when a variable of type 
"PROCESS" is selected. In addition, this command can be 
used to follow linked lists when you select a variable which is 
a pointer or is of type "ADDRESS". The double click applies 
these functions. The command Son is applied when an 
element is "double clicked". The command Father is applied 
when the path on the top of the window is "double-clicked". 
The command Son can be used on a variable of type 
PROCESS only if the file RTSMAIN.REF is available. 

Lets you switch from procedure local data to module global 
data and vice versa. 

These commands are only applicable when the selected data 
item is an element of an array, or part of an element of an 
array. The Right and Left commands select the element with 
the next higher or lower index in the array. The current level 
is not changed by these commands. If the array elements are 
records, the record field selected is not affected. 

Lets you select randomly an element of an array by giving the 
value of its index. 

110 



Type transfer: 

Variable: 

Examine PROCESS: 

Address: 

The Symbolic Run-Time Debugger 

Lets you change the type of a displayed variable. You can use 
a predefined or user-defined type. If no type is given, the 
variable is displayed with its original type. The Type transfer 
is allowed only if the type of the variable and the new type are 
of the same size. If you use a type of your own, the debugger 
prompts you for the module defining it. A type-changed 
variable is marked by a "T". 

Returns to the first level of the selected procedure or module. 
The first level shows the variables of the procedure or module. 
The Variables command can be used after you have repeatedly 
entered the Son command and wish to return to the first level 
directly, without repeatedly entering the Father command. 

This command can be used when you select a variable of type 
PROCESS. Otherwise, the RTD prompts you to introduce the 
address of the process descriptor - the content of a variable of 
type PROCESS. The Examine command displays the call 
chain of the process to be examined. Enter the call window 
command Examine break process to show the Call window of 
the process that was running when the program stopped. 
Checks to see if the process is initialized (a word with a 
special pattern is in all process descriptor). 

Displays the address of the selected data item and updates the 
Raw window. 

111 



Chapter 3 

Modify 

Modifies the contents of the selected variable or parameter. The debugger 
prompts you to enter the new value according to the type of the data item: 

CARDINAL, INTEGER 

You enter the new value which must be of the same type. 

BYTE, WORD 

You enter the new value as a hexadecimal number. 

ADDRESS, POINTER, PROCESS, PROCEDURE VARIABLE 

You enter the new value in the form <segment>: <offset>. Both parts 
are four digit, hexadecimal numbers. If you want to modify a process 
variable, you must enter the address of the new process descriptor. To 
modify a procedure variable, enter the address of the entry point 
(BEGIN). 

~----------------~ARNING----------------~ 

The modification of a PROCESS variable and a PROCEDURE' 
variable could be very hazardous. Use these modifications very 
carefully! 

BOOLEAN 

CHAR 

You change items of type BOOLEAN by entering a T for TRUE or a F 
for FALSE. 

You modify items of type CHAR by entering a character in quotes, 
such as' a 'or" a ", or by entering an octal value. 

BITSET 

You modify items of type BIT SET by entering a binary number. The 
binary number consists of up to 16 digits of "one" or "zero", indicating 
that the corresponding bit should or should not be set. If you do not 
wish to modify a certain bit, you can enter an" x II at this position and 
the debugger will retain the original value for this bit. 

112 



SET 

The Symbolic Run-Time Debugger 

You modify items of type SET by invoking the Son command to list 
the contents of the set. The RTD then lists the possible elements in the 
set and indicates whether each element is in the set or not. To change 
the elements included in the set, you must select a particular element 
and activate the Modify command. By responding with T for TRUE or 
an F for FALSE to the prompt "In set?" you can then include or 
exclude that element into or from the set. 

The modifications of a set element clears the unused bits of the set. 
This can be used to correct an invalid set. 

ENUMERATION 

You modify the value by entering the name of the element to which 
you want to set the value. The element name must be given as defined 
by the declaration of the enumeration type. 

~----------------NOTE----------------~ 

Modify is not allowed on LONGINT and REAL. 

113 



Chapter 3 

The following sample screens show the path you follow to modify the content of an array 
element with a record structure. First, you invoke the Son command to view the 
elements of the variable "node" of the module "Demo" (Sample Screens 3-2 & 3-3). 
Next, you again invoke the Son command to display the fields of the record "node[1]", 
and the value and type of each field (Sample Screen 3-4). Finally, you modify the value 
of the first field which is of type CARDINAL. You invoke the Modify command 
(Sample Screen 3-5) and enter a 6 to change the value from 1 to 6. Sample Screen 3-6 
shows the modified data. 

Text line. 32 Demo.MOD 

PROCEDURE Recursiveone (x: CARDINAL; y:REAL; z: INTEGER 
BEGIN 

WITH node[xJ Do 
datal :- x; 
data2 :- y; 
data3 :- z; 

END; (* WITH *) 
INC (x) ; 
y :- y + 1.0; 

Data Demo 

x 
y 

CARDINAL 
2.0000000000E+000 REAL 

z 
node 

Sample Screen 3-2 

3 INTEGER 
ARRAY[l .. 4J OF RECORD 

114 

Call breakpoint 

> Recur s i veOne 
>Recursiveone 
>FirstOne 
>initialization 
>PROCESS 

Module 

>+Demo 
Reals 
RTSMain 
Terminal 
Termbase 
Keyboard 
Display 



The Symbolic Run-Time Debugger 

Text line. 32 Demo. MOD 

PROCEDURE RecursiveOne (x: CARDINAL; y:REAL; z: INTEGER 
BEGIN 

WITH node[x] Do 
datal :- x; 
data2 :- y; 
data3 :- z; 

END; (* WITH *) 

INC (x) ; 
y :- y + 1.0; 

Data 

[1] 
[2] 
[3] 
[4] 

Sample Screen 3-3 

Demo.node 

Text line. 32 Demo. MOD 

RECORD 
RECORD 
RECORD 
RECORD 

DATA 
DATA 
DATA 
DATA 

PROCEDURE RecursiveOne (x: CARDINAL; y:REAL; z: INTEGER 
BEGIN 

WITH node[x] Do 
datal :- x; 
data2 := y; 
data3 :- z; 

END; (* WITH *) 

INC (x); 
y := y + 1.0; 

Data Demo .node [1] 

datal 
data2 
data3 

CARDINAL 
2.0000000000E+OOO REAL 

3 INTEGER 

I Raw I Help I Fl I messages 

Sample Screen 3-4 

115 

Call breakpoint 

>Recursiveone 
>RecursiveOne 
>Firstone 
>initialization 
>PROCESS 

Module 

>+Demo 
Reals 
RTSMain 
Terminal 
Terrnbase 
Keyboard 
Display 

Call breakpoint 

>Recursiveone 
> Recur si veOne 
>Firstone 
>initialization 
>PROCESS 

Module 

>+Demo 
Reals 
RTSMain 
Terminal 
Termbase 
Keyboard 
Display 



Chapter 3 

Text linet 32 Demo . MOD 

PROCEDURE RecursiveOne (x: CARDINAL; y:REAL; Z: INTEGER 
BEGIN 

WITH node [x] Do 
datal :- x; 
data2 :- y: 
data3 :- z: 

END; (* WITH *) 

INC (x) ; 
y :- y + 1. 0; 

Data Demo.node[l] 

datal CARDINAL 
data2 
data3 

2.0000000000E+000 REAL 
INTEGER 

I =ew value (CARDINAL) I 

Sample Screen 3-5 

Text lineit 32 Demo.MOD 

PROCEDURE Recursiveone (x: CARDINAL; y:REAL; z: INTEGER 
BEGIN 

WITH node[x] Do 
datal :- x; 
data2 :- y; 
data3 :- z; 

END; (* WITH *) 
INC (x) ; 
y :- y + 1.0; 

Data Demo.node[l] 

datal CARDINAL 
data2 
data3 

Sample Screen 3-6 

2.0000000000E+000 REAL 
3 INTEGER 

116 

Call breakpoint 

>Recursiveone 
>RecursiveOne 
>Firstone 
>initialization 
>PROCESS 

Module 

>+Demo 
Reals 
RTSMain 
Terminal 
Termbase 
Keyboard 
Display 

Call breakpoint 

>Recur si veOne 
>Recursiveone 
>Firstone 
>initialization 
>PROCESS 

Module 

>+Demo 
Reals 
RTSMain 
Terminal 
Termbase 
Keyboard 
Display 



The Symbolic Run-Time Debugger 

3.8.4 Text Window 

The Text window displays the text of the module or procedure in which the debugger 
stops the program. The (» greater-than sign indicates the line in which the debugger 
stopped the program, the call of the next procedure, or where the last process transfer or 
interrupt occurred. 

Local Commands in the Text Window 

Find: 

eXchange: 

Address: 

Setbpt: 

Clearbpt: 

Kill all bpt: 

Go Line: 

Prompts for a PROCEDURE or local module name (case 
sensitive), or a line number and. if found. the RTD sets the 
selected position to this PROCEDURE, module, or line 
number. This command allows you to enter either a line 
number or a procedure name. Wild characters are accepted 
(" * ", II ? "). 

Lets you switch from MOD to DEF or DEF to MOD. 

Show the code address of the selected source line and updates 
the Raw window. 

Sets a breakpoint in the selected line. If more than one 
statement is on the line, the RTD prompts you to indicate on 
which statement you wish to set the breakpoint. It also 
prompts you to set a limit for the occurrence counter 
associated with the breakpoint. You may type ~ for the 
default value for this limit which is one. If a breakpoint is 
already set on the selected statement the RTD replaces the old 
value of the occurrence counter with the new one. 

Removes a breakpoint on the selected line. If more than one 
statement is on the line, the RTD prompts you to indicate from 
which statement you wish the breakpoint to be removed. 

Removes all breakpoints from the program. 

Lets you execute till the selected line is executed. A double 
click on the target line applies this function. 

117 



Chapter 3 

3.8.5 Raw Window 

The Raw window displays the memory contents around a given address. The initial 
address of the selected memory location depends on the window from which you invoke 
the Raw window. The values are set the same way as in the PMD. 

Local Commands in the Raw Window 

Address: 

Son: 

Examine PROCESS: 

Modify: 

In/Out Byte/Word: 

Hexadecimal: 

Decimal: 

Lets you enter the address of data to be displayed. 

Takes the contents of the selected memory location as the new 
selected address. You typically enter this command to follow 
a linked list. (dereferencing) 

Assumes the memory contents at the selected address is of 
type "PROCESS" that is a pointer to a process descriptor. The 
Examine command displays the Call window of the process. 
The call window command Examine break process can be 
used to show the Call window of the process that was running 
when the program stopped. It also checks the check word of 
the process descriptor to check if a valid process is selected. 

Allows you to modify the memory contents at the selected 
address. The RTD asks you for the new vale and specifies in 
which format it should be entered. The format to be used 
depends on the format in which the Raw window currently 
displays the memory contents. REAL and LONGINT cannot 
be modified 

U sed to read in and write out data through an I/O port. The 
RTD asks you to enter the address of the serial port which will 
be used. 

Decimal to hexadecimal conversion. 

Hexadecimal to decimal conversion. 

118 



The Symbolic Run-Time Debugger 

Various display modes: byte, word, address, char, text, cardinal, integer, longint, real 

#Byte: BYTE (hexadecimal) format. 

#Word: WORD (hexadecimal) fonnat. 
(default) 

#Address: ADDRESS (hexadecimal) fonnat. 

#Char: CHAR (octal) format. Non-printable characters are displayed 
as octal numbers. 

#Text: TEXT. Non-printable characters are displayed as IBM PC 
extended characters. 

#Integer: INTEGER. 

#Unsigned: Unsigned CARDINAL format 

#Real: REAL. 

#Longint: LONGINT format 

3.8.6 Message Window 

Version: Lets you display the version of the debugger. 

3.8.7 Application Window 

The Application window shows the output of your application. It is a full screen 
window. 

119 



Chapter 3 

3.8.8 Markers 

> (the greater-than sign) is used in the RTD as an execution marker to indicate active 
code. It appears in the Call, Module and Text windows. 

In the Call, Module and Text windows, certain lines are marked with an (*) to indicate 
where you have set breakpoints throughout the program. A breakpoint can be set at any 
statement in any procedure or module. 

The breakpoint where a program stops is marked with a pound sign (#) which replaces 
the asterisk. 

In the Module window, the RTD marks modules where the step mode is enabled with a 
plus sign (+) preceding the module name. It does not mark modules with step mode 
disabled. You may change the default and enable or disable the step mode in any module 
when the Module window is selected. 

When you invoke the Go Statement or the Go Procedure command, the step mode is 
active only in certain modules. The debugger executes the program and stops at each 
statement or procedure in those modules in which you have enabled the step mode. 
Unless a breakpoint is encountered, the program will not stop in a module where the step 
mode is not enabled. When a program is loaded by the debugger, by default the step 
mode is disabled in all modules that belong to the system library. For all other modules, 
the step mode is enabled. 

3.8.9 Selecting an Item for Display 

The RTD displays the position of the selected item highlighting the proper line. You 
may select a different item using the cursor keys or the mouse. 

120 



The Symbolic Run-Time Debugger 

3.8.10 Relation between Windows 

The RTD displays different windows at the same time. This impacts what is shown and 
how selections are made. The Call and Module windows are mostly used for selecting 
text and/or data. You can select an element and use the double click (or the menu) to 
update the other windows. 

3.8.10.1 Update made from the Call window 

When a windows update is requested from the Call window, the RTD shows the data 
and/or the text of the selected procedure. The Raw window shows the contents of the 
stack. 

3.8.10.2 Update made from the Module window 

When a windows update is requested from the Module window, the RTD displays the 
data and/or the text of the current module. The Raw window shows the global data area. 

3.8.10.3 Update from the Data and Text windows 

You can modify the contents of the Raw window by using the command Address of the 
Data or the Text window. 

121 



Chapter 3 

3.9 Consistency Checks 

The RTD does three consistency checks: 

• between the code in memory (PMD file or EXE file) and the MAP file. This check is 
made by using keys stored in the code and referenced by a $OK label in the map. 

.. between t.l)e code in memory and t.l)e REF file. This test is made by using t.l)e keys 
stored in the code and a key stored in the REF. 

• between the REF file and the MOD file. This check is made by using the date of the 
MOD (Le. the date of the source file when it was compiled) stored in the REF file. 
If this date is not the same as the date of the MOD file read by the debugger, an 
inconsistency is signaled. 

The inconsistency between the .MAP and the code in memory is very dangerous. It is 
extremely probable that all the information known from the .MAP is wrong. For this 
reason, the debugger does not display any symbolic information. It is strongly advised to 
relink your application. 

An inconsistency between the .REF and the code in memory will make trouble only for 
the corresponding module. Depending on the changes made, only the data can be wrong 
or only the position displayed in the Text window or both can be wrong. It is advised to 
recompile this module and to relink the application (with a .MAP !) 

An inconsistency between the .MOD and the .REF will make trouble when displaying 
the statement executed in the Text window. It is also advised to recompile this module 
and to relink the application. 

r---------------------------NOTE------------------------~ 

An additional check is made when a process descriptor or when an overlay 
descriptor is accessed (an overlay descriptor is also allocated for the main 
program). A field is initialized in the both descriptors with a specific value. If 
this value is not found, an error is signaled. This error means that you tried to 
analyze an incorrect part of the memory or that the memory was destroyed. 

A test is also made when a .EXE is loaded to check if it is a Modula-2 program. 
The debugger can debug programs only if the main is in Modula-2. 

122 



The Symbolic Run-Time Debugger 

3.10 Messages 

***** Unexpected breakpoint 

An unexpected bpt was encountered. For example, this is the case 
when the application does a SWI(3). 

Already as an icon 

Already at top level 

ASSERT: message 

An internal error is detected into the debugger. The execution stops. 

Beginning of this ARRAY 

Call list incomplete (BP chain invalid) 

A problem was encountered while reading the stack (memory 
destroyed 1) 

Call list too long (>32) 

This is a warning message which tells you that not all procedures on 
the stack are visible in the call list. 

Can't be iconized 

Can't expand in an icon 

Cmd not allowed (use zoom) 

Cmd not allowed on a window 

Cmd not allowed on an icon 

Cmd not valid in DEF MODOLE 

Color changed 

Config changes NOT saved 

You did not save the last screen configuration. 

123 



Chapter 3 

DEF file not found 

End of this ARRAY 

Go to line bpt, next bpt or overlay 

Go to next bpt or overlay loading 

Go to next PROCEDURE, bpt or overlay 

Go to next statement, bpt or overlay 

Go to next statement, proo, bpt or ovl 

Go to return from PROC, next bpt or ovl 

Go to the END of the pgm or overlay loading 

Help file not found 

Incorrect MAP file 

An inconsistency is detected between the .MAP file and the code. This 
message appears and remains in the windows to warn you. 

Incorrect REF file 

An inconsistency was detected with the .REF file. A pop up window 
displays the reason the first time the inconsistency is detected. This 
message remains in the window to remind you. 

Invalid call list 

This message is displayed in a pop-up window when a problem is 
encountered while reading the call list (memory destroyed ?) 

Invalid descriptor 

The overlay descriptor has no valid check word (memory destroyed ?) 

Invalid PROCESS descriptor 

The process used as a parameter of the last command has no valid 
check word (memory destroyed ?) 

124 



The Symbolic Run-Time Debugger 

Invalid process 

The dump cannot be analyzed, the process descriptor of the process 
which crashed is invalid (memory destroyed ?) 

MOD file not found 

MODULE not found in list 

New value out of range 

No breakpoint to clear 

No 

No 

No 

No 

No 

No 

No 

No 

No 

[Text window, Clear breakpoint command] 

No breakpoint is set at the selected statement, therefore it cannot be 
removed. 

call list 

data (unknown PROCEDURE) 

data in this element 

data in this local MODULE 

data in this PROCEDURE 

global data in this MODULE 

global or local data 

modif allowed in this mode 

modif till passed BEGIN 

On a BEGIN, the space for the local variable is not allocated. For this 
reason it is not allowed to modify the variable. 

No PROCESS during loading 

Before the execution, the process descriptor is not initialized: no call 
chain can be shown. 

No selected PROCEDURE 

125 



Chapter 3 

No statement in this line 

This message appears for lines which state as labels (LOOP, REPEAT, 
etc ... ) and for removed procedures. 

[Text window, Set breakpoint command] 

The selected line does not contain any statements. A breakpoint can 
only be set on a statement. A line that contains only a symbol like 
"END" (except program and procedure END's), "IF", "CASE", "LOOP" 
or similar is considered to contain no statement. 

No text associated 

No text for a PROCESS 

Not enough memory 

Memory problem. Use Small or Big swap option. 

PROC/MODOLE isn't in this text 

REF file can't be re-opened 

REF file not found 

Swapping of icons not allowed 

This border can't be moved 

This data can't be modified 

[Data window, Modify command] 

This data cannot be modified. Usually this is for hidden types. In this 
case you should use the Son command to see the effective type and 
then you can modify the variable. 

126 



The Symbolic Run-Time Debugger 

This data isn't an ARRAY 

This data isn't structured 

This data is of its original TYPE 

To modify data use Son cmd 

Too many MODULEs (> 256) 

The debugger cannot debug programs with more than 256 modules. 

Too small for expanding 

TYPE not found in given MODULE 

TYPE sizes differ 

Wrong version of REF file: Bad structure 

The REF file does not have the correct version (recompile the module 
and relink the application) or is too big. 

Wrong version of REF file: Different from OBJ 

An inconsistency was detected between the . REF and the code in 
memory. 

Wrong version of text file 

Out of dump 

Out of dump 

Out of dump 

An inconsistency was detected between the .MOD and the .REF file. 

= NIL 

> 1 MB 

127 



Chapter 3 

Notes: 

128 



Utility M2DECODE 

Chapter 4 
The M2DECODE Utility 

The M2DECODE utility decodes an object file (.OBJ) generated by the LOG/TECH 
Modula-2 Compiler. A text file is generated from the given OBJ file. This text file 
contains information such as imported modules, symbolic disassembled code and data 
areas. 

Code is disassembled into standard Assembler language format. Exported procedure and 
exported data are identified by their name. If the LOG/TECH Compiler was invoked 
using the switch /SYMBOL, all procedures and global data are identified by name. 

If the generated output is large, the decoder may generate a multiple of decoded files. 
The filenames of the output are automatically generated, starting with the extensions 
.DC 1, .DC2 and so on. 

129 



Chapter 4 

To decode a .OBJ file, type: 

M2DECODE <example> QJ 

M2DECODE will then ask you if you want the source lines to be put in the decoding. It 
may also ask: you for the name of the source file (if it is not in the same directory as the 
object file). Source lines will be inserted in the disassembled code at the corresponding 
place. 

~--------------------------NOTE--------------------------~ 

Source line can be inserted in the disassembled code only if the LOG/TECH 
Compiler has generated the appropriate information (using the switch /SYMBOL) 

130 



Utility M2VERS 

Chapter 5 
The M2VERS Source Manager Utility 

M2VERS is a program that manages different versions of one program. 

All modifications to a program are made in only one source code listing and the various 
versions can be derived automatically from that "master copy" using M2VERS. 

~-------------------------NOTE--------------------------~ 

The "master copy" is itself the source code of one of the target versions and can 
be compiled without being processed by M2VERS. When another version must 
be produced, M2VERS is applied to the "master copy" and generates the 
converted source text. 

We recommend that you always modify the same version of the program and generate 
the other versions from this original version. This will avoid confusion as to what 
changes were made in which versions. Furthermore, to avoid any confusion and to save 
disk space, the source texts of the derived versions can be deleted after their use. 

131 



Chapter 5 

5.1 Marking the M2VERS Dependent Parts 

In the master copy, the portions of text that belong to a specific version are enclosed by a 
"start marker" and an "end marker". Both start and end markers are Modula-2 comments 
and they contain the list of versions to which they belong. There are two kinds of 
markers: one to activate, another to deactivate a portion of text. 

Before using the markers, each version must be declared with a definition comment. 
Only 64 versions can be present in a file. They are numbered from 0 to 63. The version 
names can be written in upper or lower case. M2VERS does not distinguish between 
upper and lower case. 

Function Syntax 

definition Comment " (*V" number" =" symbol " *) ". 
activeS tart Marker " (* <" version {" , " version} "*) ". 
activeEndMarker " (*" version {" , " version} "> *) ". 
inactiveStartMarker " (* <" version {" , " version}. 
inactiveEndMarker version {" , " version} "> *) ". 
version symbol I number. 

Example 1 
/ 

(*V1=DOS Version for IBM PC-DOS*) 
(*V2=CP/M Version for CP/M 86*) 
PROCEDURE ReadCh (VAR ch: CHAR); 
BEGIN 
(*<DOS*) DOSCALL (1, ch); (*DOS>*) 
(*<CP/M CPMCALL(l, ch); CP/M>*) 
If ch = CR THEN ch := EOL END; 
END ReadCh; 

132 



Utility M2VERS 

A portion of text may be marked as belonging to several versions. In this case, the 
version names in the markers must be separated by a comma. 

Example 2 

(*Vl=A*) 
(*V2=B*) 
(*V3=C*) 
(*V4=D*) 

VAR ch: CHAR; 
BEGIN 
(*<C,D*) 

(*C, D>*) 

END 

INBYTE (OEOH, ch); 
(*<C*) IF ch = OC THEN RETURN END; (*C>*) 
buffer [i] := Chi 
INC (i); 

Write (ch) 

The versions can be specified either by a version number or by the symbol associated to 
the version. We recommend using the version name rather than the version number. The 
version number is automatically replaced by the version name, if it is defined, once the 
file is processed by M2VERS. 

133 



Chapter 5 

5.2 Invoking the M2VERS Utility 

Invoke M2VERS from the DOS command line by typing: 

M2VERS CD 
The program asks you for the file name of the master copy and for the name of the output 
file (by default, it is the same file as the input file. A backup file is generated with the 
extension .VBK). Then M2VERS shows the various versions defined in the master 
copy. 

The program then prompts for the name of the versions which have been activated. To 
select more than one version, you enter a list of version numbers or version names 
separated by commas. The program asks if the unselected parts of the master copy shall 
be deleted. Type ( Esc) to exit the program. 

At the end of the processing, M2VERS indicates which defined versions were 
encountered in the file. 

134 



Utility M2VERS 

5.3 Example Dialog 

To run M2VERS, for example, against a file named EXAMPLE1.MOD in a directory 
named TEMP, type: 

M2VERS GD 
You will see the following: 

c:\TUIl') M2VERS Q:J 

LOGITECH MODULA-2/86 M2VERS, DOS 8086, Rel m.n 
Copyright (C) 1985 LOGITECH 

Input file: EXAMPLE1.MOD Q:J 
Output file: EXAMPLE1.MOD Q:J 
Versions defined: 

1: DOS 
2: CP/M 

Enter version names: CP/M c;[) 
Suppress inactive text and brackets (y/-)? YES 
Are you sure (y/-)? NO 
done 

The following versions are present: 
referenced version defined 
in the file number as: 

yes 
yes 

DOS 
CP/M 

A set of options can be specified after the input file name: 

/ Q+ (Default) 
/Q. 

/B· (Default) 
/B+ 

If the output file already exists, the programs asks whether or not the 
old one can be deleted. This prompt can be suppressed by entering /Q­
after the input filename. The old file will be deleted without any 
warnings. If the output filename is the same as the input filename, a 
backup of the input file will be generated with a . VBK extension. 

This option indicates that M2VERS is used in a batch file. This option 
disables keyboard polling while the error listing is written to the screen. 

135 



Chapter 5 

Type: TYPE EXAMPLE1.MOD 0 

(*Vl-DOS version for IBM PC-DOS*) 
(*V2-CP/M Version for CP/M 86*) 

PROCEDURE ReadCh (VAR ch: CHAR): 
BEGIN 
(*<DOS DOSCALL(l, ch): DOS>*) 
(*<CP/M*) CPMCALL(l, ch): (*CP/M>*) 
IF ch - CR THEN ch :- EOL END: 
END ReadCh: 

Figure 5.1 Updated Listing for EXAMPLE1.MOD 

136 



Type: TYPE EXAMPLE1.VBK 0 

(*Vl-DOS Version for IBM PC-DOS*) 
(*V2-CP/M Version for CP/M 86*) 

PROCEDURE ReadCh (VAR ch: CHAR); 
BEGIN 
(*<DOS*) DOSCALL(l, ch); (*DOS>*) 
(*<CP/M CPMCALL(l, ch); CP/M>*) 
IF ch - CR THEN ch :- EOL END; 
END ReadCh; 

Figure 5.2 Backup Listing for EXAMPLEl. VBK 

137 

Utility M2VERS 



Chapter 5 

5.4 Error Handling 

The three types of error messages are: warning messages, error messages and fatal error 
messages. 

Warning and error messages are listed with five lines of source text which surround the 
location where the error was detected. To interrupt the listing, type any key and then, 
type any key to continue. 

Warning messages 

Warning messages only indicate that something is wrong. The program is not stopped. 

warning: can't activate version because of deactivated environment 

A portion of text which should be activated is nested in a 
deactivated one. 

Error messages 

Error messages do not stop the program execution, but no output file can be produced. 

error: identifier not declared 

An undeclared version name is used in a marker. 

error: syntax error in version list 

error: open bracket(s) at the end of file 

error: structure error in nesting of brackets 

Occurs when a nesting bracket is closed before the nested one. 

error: two consecutive open brackets with same symbol(s) 

error: bracket ter.minator expected 

error: bad identifier 

error: bad version number 

error: "=" required 

error: multiple definition of identifier 

138 



Utility M2VERS 

Fatal error messages 

These messages occur when the processing cannot be continued due to an internal 
problem of M2VERS. The execution is stopped and the output file is deleted. 

fatal error: too long symbol 

An identifier that is too long is encountered. The maximum 
length of an identifier is 80 characters. 

fatal error: buffer full 

The input buffer is full. There is a bracket that is too long. 
The maximum length for a bracket is 256 characters. 

fatal error: can't create table 

There is not enough memory to create the name table. 

fatal error: name table full 

Too many versions are defined. 

139 



Chapter 5 

Notes: 

140 



Utility M2XREF 

Chapter 6 
The Cross-Reference Utility M2XREF 

M2XREF generates cross reference information tables of M odula-2 source or listing 
files. 

The program reads a text file and generates a table with line number references to all 
identifiers occurring in the text. All standard symbols of Modula-2 are omitted from the 
table. The program also skips strings (enclosed by single or double quotes) and 
comments (from (u*u to u*U)). The program prompts for an input file. The default 
extension is .MOD. The generated table is listed on a cross-reference file in alphabetical 
order. Upper case letters are defined as greater than lower case letters. 

If the lines on the input file start with a number for example, and it is a listing file 
generated by the Compiler, M2XREF takes these numbers as referencing line numbers. 
Otherwise, M2XREF generates a listing file with line numbers. The name and the 
pathname of the output files are the same as those of the input file. The extensions are 
.XRF and .LST. 

141 



Chapter 6 

M2XREF Q:) 
LOGITECH MODULA-2/86 Cross-Reference Utility, ReI. rn.n 
Copyright (C) 1983, 1984, 1985 LOGITECH 
input file (ESC to quit) ) GREP.MOD/S Cd] 

lines 143 
identifiers 33 
characters 261 
refnumbers : 144 

input file (ESC to quit) ) ~ 
) 

Figure 6.1 M2XREF Screen with /S Option 

The program accepts some options after the filename. The options and their meaning 
are: 

IS Displays statistics on the terminal, for example, number of lines, identifiers and 
reference numbers. 

IL Generates a listing file with new line numbers. 

IN Generates no listing file. The line numbers in the reference table will refer to 
the line numbers on the input file. All lines on the input file without leading line 
numbers are skipped. 

142 



Utility M2MAKE 

Chapter 7 
The M2MAKE Utility 

The M2MAKE utility program is a valuable tool in the management of LOGITECH 
Modula-2 programs containing large numbers of modules. It is used during source code 
maintenance or development. M2MAKE creates a batch fIle containing the minimal 
steps for recompilation required by an application to produce a new executable version 
when one or more changes have been made. 

The M2MAKE utility is most easily run from a batch fIle under DOS. Considerations for 
building batch file are discussed in the next section. 

LOGITECH Modula-2 source language programs contain all necessary dependency 
information, and are read directly by the M2MAKE utility. Therefore changes in module 
structure introduced by source program editing are recognized as soon as M2MAKE is 
used to rebuild a system. 

One useful by-product of the M2MAKE utility is a cross-reference listing of inter­
module relationships. 

143 



Chapter 7 

7.1 Features 

M2MAKE has the following features and options: 

• Command file generation can be user-tailored through the specification of command 
patterns for six different sections of the command file. 

• The powerful command pattern facility allows cascaded make runs which can 
compile and link overlay systems in minimum time. 

• The command pattern facility allows generation of other useful command files, such 
as to extract (backup) or print all source modules in a given application. 

• Cross-reference listings of inter-module relationships in two different levels of detail 
are an optional by-product. 

• Syntax errors in the import lists of all source files are reported. In this case no 
command file or cross-reference listing is generated. 

• The same search strategy is used as for the compiler. Thus, modules in a hierarchy of 
directories and libraries can be processed. 

• Recursive imports in definition modules are detected and reported. (Recursive 
imports in implementation modules are of course allowed). 

• An autoquery option allows the specification of file names different from module 
names. 

• A log option gives a filename and date comparison listing of the files under 
consideration. 

• The name of the command file generated can be specified. 

• During parameter entry, an interactive help facility details parameter options. 

• Statistics relating to the number of source lines, statements, modules and procedures 
can be reported. 

7.2 Usage 

M2MAKE is typically useful in an environment where, in building or maintaining a 
collection of modules, .DEF and .MOD modules are periodically updated, and then it is 
necessary to partially recompile the whole system and relink it. 

M2MAKE uses information from the directory timestamps to determine whether source 
files need recompiling. It is therefore essential that the files are edited on a system 
where the real-time clock is always running and set to the correct date and time. 

144 



Utility M2MAKE 

7.3 How to Run M2MAKE 

The M2MAKE program has to produce a command file which compiles a system of 
modules including and imported by the module MYPROG. For example: 

Step 1: Type: 

M2MAKE MYPROG 0 
This will produce a DOS batch file CMDFILE.BAT in the current directory, 
which for example might contain: 

m2c importl.DEF/NOA/B import2.DEF/NOA/B 
m2c importl/NOA/B import2/NOA/B myprog/NOA/B 
m21 myprog 

Step 2: Run batch file, type: 

CMDFILE 0 
This compiles and links all necessary modules. If these modules compile and 
link correctly, then running M2MAKE again produces an empty 
CMDFILE.BAT. If some modules fail to compile successfully, then run 
M2MAKE again to generate a command file for those modules. 

Alternatively, M2MAKE can be invoked without the program name on the command 
line. With this method, it prompts for the program name. 

Mter entering the program name, options may be entered. At any time where an option 
may be entered, a help facility is available, by typing rn. Options may also be entered 
on the command line, but in this case the interactive help facility is not available or 
useful. The module name and option input is terminated by pressing (Spacebar 1 or 

0· 
Options are preceded by a /(forward slash). Details of the options available, and their 
meanings are described in a section 7.5 M2MAKE Options. 

145 



Chapter 7 

7.4 Invoking M2MAKE From a Batch File 

This is the most automatic and convenient way to use the M2MAKE utility. It is possible 
to use more or less complex batch files depending on your own requirements, or the need 
to compile overlay systems. (To understand batch files, see the section on batch files in 
the DOS manual). 

Step 1: Make a batch file called MYMAKE.BAT which contain: 

m2make %1 
cmdfile 

Step 2: Store this in a directory specified in the DOS PATH, so that it can be used from 
any directory. 

Step 3: Invoke M2MAKE using this batch file, by typing either 

MYMAKE MYPROG <options> GD 
or 
MYMAKE GD 
(and answer the prompt for Module Name and Options). 

M2MAKE will construct the batch file necessary to do the compilation 
(CMDFILE.BAT), and the batch file MYMAKE.BAT will invoke 
CMDFILE.BAT. 

Step 4: To review the batch file generated before allowing it to run, use a batch file 
containing: 

m2make %1 
type cmdfile.batlmore 
pause 
cmdfile 

146 



Example batch fIles for invoking M2MAKE: 

Use a standard pattern file: 

rn2rnake %l/PF=\rnake.pat 
crndfile 

Utility M2MAKE 

Use the non-overlay compiler, multiple compilations per DOS command, and no run­
time tests except stack overflow: 

rn2rnake %1/PD="rn2c #.DEF/NOA/B "/PM="rn2c/r-/t-/f-/NOA/B if II 

crndfile 

Use standard .MOD and .DEF compile patterns, but bypass all implementation module 
compilations if any definition module compilations fail: 

rn2rnake %l/PB="if exist *.lst gato end"/PT=:end 
crndfile 

147 



Chapter 7 

7.5 M2MAKE Options 

M2MAKE can accept a number of options, entered immediately following the filename. 
Each option begins with a / (forward slash), followed by the option letter (in upper or 
lower case), followed by a value. Enter main module name (without extension) followed 
by options: 

<Module Name> <option> 

Some options represent switches, in which case tl}e value field is +(on) or; -(off), 

Some options specify a filename, in which case the value is any valid DOS filename. If 
only a directory path is entered ending in \(backslash), a default filename is created on 
that subdirectory. If the filename extension is omitted, a default extension is supplied. 
Some options specify command file patterns, in which case the value is either a character 
string terminated by a / (forward slash), or 0 ,or a character string enclosed in single 
or double quotes. 

~-----------------------------------------NOTE--------------------------------------------~ 

M2MAKE does not support spaces before option indicator" / ". Any space will 
be interpreted as a terminator for the command line. 

148 



Utility M2MAKE 

The M2MAKE options are: 

Switch options 

IA Autoquery Option 
(Def~ult I A+ ) 

Request Filename if not found. 

This option specifies the action required when DEF/SYM or MOD/OBJ (non­
library source/object pair) files are not found that use the module-name for the 
filename. 

I A+ prompts you for a filename until one of the pairs is found with that 
filename or until you press ~ , which indicates M2MAKE should continue 
without that file. A pathname may be entered with or without a filename. A 
pathname without a filename ends in " \ ", and the specified directory will be 
searched for the module. The new specified path becomes the master path for 
the remaining files of that module (Le. if "path \" is the answer to a prompt for 
a DEF/SYM pair, then "path\" is used as the second directory (i.e. after the 
current directory) to search for the MOD/OBJ pair.) The II option is disabled 
temporarily for remaining files of modules for which a prompt is issued. 

With the I A- option, you are not prompted for missing files. 

The action taken when files are missing is controlled by IN option. 

149 



Chapter 7 

IF- make full system; ignore dates 

The default IF- causes a pattern generation for all modules which need 
compiling according to the relative file dates and module dependencies. 

The IF+ option generates the patterns for all files, regardless of the relative file 
dates, and in the order determined by the module dependencies. 

IG Log option 

11+ 

(Default IG-) loG the files scanned and checked. 

Causes M2MAKE to write at the terminal the name of each file it is referencing. 
If the named file is found, its full name including directory path is written, 
together with its directory timestamp. If a file is not found, the timestamp (Last 
Modified) field is blank, and the filename without a directory path is logged. If 
both files of a DEF/SYM or MOD/OBJ pair are found, an indication of the 
relative ages of the files is also logged. 

"<" indicates MOD or DEF older than OBJ or SYM; 

">" indicates younger. 

The relative age is one of the criteria M2MAKE uses to decide which files need 
to be compiled. 

11- Ignore object in path deeper than source 

This option is useful when the M2xxx environments are used to specify a 
hierarchy of directories with a private-library/master-library usage. With 11+, an 
object file is ignored by M2MAKE if it is further down the object search paths 
than the source is down the corresponding source paths. 

For example, if we work in \user and most files are in \master, and we set all 
M2xxx to "\master", then all search paths become "\master" (ie current 
directory, followed by \master). If we start with a fully made system of 
modules in \master, and no files in the current directory (\user), and copy and 
update the source files D1.DEF and M1.MOD from \master to \user then when 
M2MAKE is run with the II option, the files D1.SYM and M1.0BJ in \master 
are not seen by M2MAKE, so that it generates the patterns to compile M1.MOD 
and D1.DEF and all its dependencies. When the Compiler puts its outputs into 
the current directory, this leaves the made set of modules in \master intact. 
Further, modules can be independently updated and the system remade in 
\master, at which a further make run in the user directory will still generate all 
necessary compiles for the \user version with no impact on the \master version. 

150 



Utility M2MAKE 

IM=filename[.map] IM= read .MAP file of made overlay base. 

The specified .MAP file is read. Modules mentioned are not fully processed, as 
thay are assumed to be in the Base. Only their .SYM file dates are checked so 
that modules which import them, but are not in the Base, will be correctly 
compiled. 

IL Library file - assume all "made" 

IL = <filename> 

This option forces M2MAKE not to check for some files that will be assumed to 
be already "made". The set of these files is discribed in the file specified by 
<filename>. The syntax used in this description file is as follows: 

MODULE = <Modula-2 module names> 

for each file that must not be checked. A typical use is for library files (like the 
standard library) which do not need to be checked for each run of M2MAKE. 

If a file with the name "LlBRARY.MAK" exists on the default directory, 
M2MAKE will automatically use it as a description file. A description file is 
already provided with M2MAKE, which has the name LlBRARY.MAK. It 
contains the list of all the files of the library provided with the LOGITECH 
Modula-2 system. 

Multiple library description files may be specified and separated by commas. 

IN geNerate pattern even if source is missing. 
(Default IN-) 

When a source/object pair is missing, or when a source is missing and its object 
date and import relationship to other modules indicates it requires compilation, 
the IN option indicates what action M2MAKE should take. With the default 
IN-, the compile pattern is not generated, but a message is issued instead. With 
IN+, the compilation pattern is generated, even though the source file is 
missing. 

IT- Print some module sTatistics 

Some statistics of number of modules, number of imports etc. are printed to the 
log. If the IE option is used, causing a full scan of all source modules, 
additional statistics including number of statements, procedures, internal 
modules, lines etc. are printed. 

151 



Chapter 7 

IX Cross-reference option 
(Default IX-) 

This option causes the M2MAKE program to write an inter-module cross­
reference listing into a .XRM file. This listing is in three sections: 

• An alphabetical listing of modules with modules they import. 

• An alphabetical listing of modules with those modules which 
import them. 

• An alphabetical listing by Identifier .Module of exported 
identifiers and the modules which import them. In this 
listing, "******" represents a qualified import of a module, e.g.: 

IMPORT MODl 
as opposed to 

FROM MODl IMPORT Ident. 

The alphabetical listings are case-sensitive (upper case letters will precede lower 
case letters in the lexical order). 

152 



I E Extended Cross-Reference Option 
(Default I E-) 

Utility M2MAKE 

This option causes the M2MAKE program to write a cross-reference listing 
similar to the IX option. This listing is extended in that under each identifier the 
source text of the identifier definition is printed. 

~----------------------------------------------------NOTE-------------------------------------------------------~ 

To achieve this, the M2MAKE program scans each definition and 
implementation module in its entirety (not just to the end of the IMPORT 
lists). This takes longer, and gives the possibility of detecting more 
syntax errors (which will prevent the command-file generation). 

Identifiers which are exported but undeclared, and declared but unexported are 
highlighted in the extended cross-reference listing. Note: M2MAKE allows you 
to make a cross-reference of a suite of main modules which may share a 
common subset of modules. A list of main modules, separated by" , " should 
be given together with the IX+ or IE+ options. In this case no command file is 
generated. 

153 



Chapter 7 

Filename options 

/C Command File Name option 
(Default /C=CMDFILE.BAT. Default extension is .BAT) 

Generates a command file with a user-selectable name. 

/PF Pattern File Name option 
(Default /PF=PROG.PAT, where PROG is the main module name; default 
extension is . PAT) 

Enables a specified pattern file to be used for command file generation. 

/5 Extension of link output file option 
(Default /S=EXE) 

Lets you specify a linker output file extension other than. EXE. This is useful if 
using the absolute linker rather than the standard linker. In this case, use 
/S=H86. 

The link output file is examined by M2MAKE to check its existence and 
timestamp in order to decide whether a link step should be generated. 

Pattern Specification Options 

The command file is generated in six sections. One way to specify a pattern for each 
section is to enter it as an option. (See the section on Pattern specification for more 
details). The six options for pattern specifiers are: 

/PH Head of command file 
/PD DEF module compilations 
/PB Between DEF and MOD 
/PM MOD module compilations 
/PL Link step 
/ PT Tail of command file 

Each option specifier may be followed by =, and then by a character string terminated 
either by /, 0 ' or enclosed in single or double quotes. 

154 



Utility M2MAKE 

7.6 M2MAKE Pattern Specification 

Command file generation is done in six separate sections. Individual specification of 
how to generate these sections is done with character string templates - one for each 
section. Each of the six character string templates may be specified in one of three ways: 

• By specifying it in the options. 

• By specifying it in a pattern file. 

• By allowing it to take a default value. 

For each of the command file sections, that template is used which is specified by the 
earliest of the above methods. For instance, if the MOD compilation pattern is specified 
as an option, any MOD compilation pattern specified in a pattern file is ignored, as is the 
default MOD compilation pattern. 

The templates may contain directives to specify the filenames to be generated in the 
command file. 

## 
AA 

Is replaced by the directory path and filename prefix. The directory path is that 
determined for the file after finding it either via the search strategy or by 
autoquery. 

Is replaced by the filename prefix only. 

Generates # or A characters respectively. 

Letters associated with each of the six templates specify the pattern in the option list or 
the pattern file. 

155 



Chapter 7 

The six templates, and their associated letters are: 

IPH Head of command file. Always copied to the beginning of the command file. 

IPO DEF file compilation. Used each time a definition module is to be compiled. 

IPB Between DEF and MOD section. M2MAKE generates all required definition 
module compilations before any implementation or program module 
compilations. The PB pattern is copied to the command file between the DEF 
and MOD compile sections of the command file. 

IPM MOD file compilation. Used each time a MOD file is compiled. 

IPL Link step of command file. Used to generate a link if M2MAKE deems this to 
be necessary. 

IPT Tail section of command file. Always copied to the end of the command file. 

In the DEF and MOD patterns, it is possible to generate multiple filenames on one 
command line up to the Dos limit of 127 characters. This allows use of the compiler 
feature which allows multiple compiles without reloading the compiler (speed 
improvement). To specify this, the section to be repeated for each file should be 
enclosed in braces" { "," } ". For example, the pattern: 

m2c {I.mode/s-}" 

might generate: 

m2c \pathl\ml.MOD/s- \path2\m2.MOD/s-

Default values for all the pattern sections are: 

PH= 
PO="m2c I.DEF/NOA/B " 
PB= 
PM= "m2c I/NOA/B " 
PL="m21 I" 
PT= 

Each of the command file sections may be specified in a pattern file. A pattern file is 
used by M2MAKE if: 

• It is specified by name in the IPF parameter, and is found. 

• IPF is not specified, and a file with a name constructed from the main module 
name plus the extension . PAT is present in the current directory or on the 
M2PAT search path. 

156 



Utility M2MAKE 

If a pattern file is used, each of the six command file section patterns begins in the 
pattern file after a line beginning with 

. head or .h (i.e. only the first two characters are checked). 

.def or .d 

. between or .b 

. mod or .m 

. link or .1 

.tail or .t 

The pattern definition ends before the next pattern definition or end of the file. 

A pattern file might contain: 

.head - this is generated first 
del * .lst 
.def - this is generated for each def compilation 
m2c {#.def/NOA/B} 
if exist #.lst goto error 
.mod - this is generated for each mod compilation 
m2c {#/NOA/B/r-/t-} 
. link 
m21 # 
.tail 
if not exist *.lst goto end 
:error 
dir *.lst 
:end 

This example will generate a command file which will stop when a compilation error is 
detected in a definition module, but if all definition modules compile successfully, it will 
compile all implementation modules. 

157 



Chapter 7 

7.7 Search Strategy 

The compiler uses a search strategy for finding .SYM files. The linker uses this same 
strategy for finding .OBJ files. To be compatible, the M2MAKE program uses this same 
search strategy for looking up all files (the files which are subject to the search strategy 
are DEF, SYM, MOD, OBJ, EXE, MAK, PAT). The strategy searches the following 
paths in order until it finds a required file: 

1: The current directory. 

2: The master path. 

3: The M2xxx paths, set up by a prior DOS SET command, where XXX is the relevant 
file extension. 

158 



Utility M2MAKE 

7.S Compiling Overlay Systems 

To build an overlay system and pattern, batch files can be set up so that one M2MAKE 
run per link is done. The base layer is built in the first invocation of M2MAKE, and the 
other layers are built in turn by subsequent invocations. 

A scheme can be used where the generated command file is appended to the batch file 
which invokes the M2MAKE program. In this way, a loop in the command file can be 
established, and an arbitrary number of overlay layers can be built with a single 
command. 

A batch file MAKEOVLY.BAT, and a copy of it MAKEOVLY.STD are provided for this 
purpose. To use it as provided, each of these files must be placed in the current 
directory, together with the file MAKEOVLY.PAT. The batch file may then be invoked 
with the following parameters: 

parm 1 - main base layer module name 

parm2 - first overlay layer name 

parm3 - base of next overlay layer 

parm4 - next overlay layer module name 

The pair parm3, parm4 may be repeated for as many layers as exist (except for the 
command line length limitation of DOS). 

For example, if a system has the following overlay structure: 

+-- OV2 
+-- OVl --I 
1 +-- OV3 

BASE -----+ 
1 

+-- OV4 

The whole system can be built with the command: 

MAKEOVL Y BASE OV1 OV1 OV2 OV1 OV3 BASE OV4 

159 



Chapter 7 

MAKEOVL V.BAT contains: 

m2make %1/pl="m2l #"/ pf=makeovly.pat 
goto continue 
:loop 
if x%2 == x goto end 
del %2.ovl 
m2make %2/pl="m2l # (%l}"/pf=makeovly.pat/s=OVL 
shift 
shift 
: continue 
copy makeovly.std+cmdfile.bat makeovly.bat 

MAKEOVLV.PAT contains: 

.tail 
goto loop 
:end 

MAKEOVL V.STD contains: 

m2make %1/pl="m2l #"/pf=makeovly.pat 
goto continue 
: loop 
if x%2 == x goto end 
del %2.ovl 
m2make %2/pl="m21 # (%l}"/pf=makeovly.pat/s=OVL 
shift 
shift 
: continue 
copy makeovly.std+cmdfile.bat makeovly.bat 

Many variations on this theme of command and pattern files are possible. For an overlay 
system in which some specific layers require the link step to be fed with module names 
in answer to autoquery questions it may be more suitable to write a specific batch file to 
build each layer. The tail of each command file except the last could then invoke the 
batch file to build the next layer. 

160 



Utility M2MAKE 

7.9 Program Operation 

M2MAKE runs in five passes. At the start of each pass, an indicative message is written 
to the screen. These messages are: 

• Reading File: <filename>.MAK, <filename>.PAT 

• Reading Directories: path\*.xxx 

• Reading Source Modules and Comparing Timestamps 

• Generating Command File 

• Generating Cross Reference Listing 

During the first pass, the library and pattern files are read. 

During the second pass, derectories specified in the M2xxx environements are read for 
later use. 

During the third pass, the source programs are read, starting with the main module, in 
order to determine all imported modules. Imported module source programs are read 
repeatedly, until all mentioned modules have been processed. Normally, (with /E-) the 
programs are read only as far as the first source taken beyond the import list for each 
module, as this is sufficient to completely define the module structure. In addition, 
presence of object files, and relative dates of object and source files are noted in this 
pass. These findings are written to the log if the /G+ option is used. 

During the second pass, the need for compilations to be performed is calculated, based on 
the module dependencies determined from reading the import lists. 

161 



Chapter 7 

A source (.DEF or .MOD) must be compiled if any of the following are true: 

• its corresponding .OBJ does not exist. 

• its .OBJ is older than its source. 

• the .DEF file of an import is to be compiled. 

• its .OBJ is older than the .SYM file of an import. 

• (for a .MOD) its .OBJ is older than its SYM. 

• (for a .MOD) its .DEF is to be compiled. 

~-------------------------NOTE------------------------~ 

When copying files from other systems, make sure that the dates of the files that 
overwrite the existing files reflect the desired version. Example: You buy an 
update of a special library . All files delivered are older than your application, but 
of course newer than the old version. M2MAKE will not recognize that the files 
are no good. Use option IF to update your application. 

Source Language Syntax 

The syntax of the source language accepted by M2MAKE is an extension of that detailed 
in the EBNF description of Appendix I of Wirth's Programming In Modula-2, Third 
Edition. The extensions allow use of SOS6-format address constants (segment:offset), 
both in a ConstantDeclaration, and optionally enclosed in brackets after each ident in the 
IdentList of a VariableDeclaration. These extensions are implemented as a superset of the 
syntax allowed by the compiler. EBNF for these additions is as follows: 

AddressOrConstExpr = ConstExpression [":" ConstExpression J. 
ConstantDeclaration = ident "=" AddressOrConstExpr. 

VarIdent = Ident [" [ .. AddressOrConstExpr "J" J. 
VarIdentList = VarIdent {"," VarIdent I. 

VariableDeclaration = VarIdentList ":" type. 

Without using either cross-reference option, M2MAKE parses ProgramModule and 
DefinitionModule and ImplementationModule as far as the end of the import declarations. 
With the IX+ option, it parses DefinitionModule as far as the end of the export list, and 
with the IE+ option, it parses all three modules completely. 

162 



Utility M2MAKE 

7.10 Error Messages 

The following error messages may occur. The environment in which each occurs is 
explained below. 

Identifier space exceeded - terminated 

There is an absolute limit of 63 Kbytes on the number of characters in a 
symbol table internal to the M2MAKE program. This message 
indicates that the table has overflowed. The message is generated 
during the Reading Import Lists pass, and causes immediate 
termination of the M2MAKE program. 

The symbol table contains character strings. Character strings occupy 
n+ 1 bytes in the symbol table, where n is the length of the character 
strings. Items entered in this symbol table are: 

• each pattern specification 
• each unique module name 
• for every module, each filename 
• for every module, each directory path 
• if /X+ or /E+, each exported or imported identifier. 

Syntax Error in xxx MODOLE at line nnn 

Where xxx is IMPLEMENTATION, DEFINITION or PROGRAM, and 
nnn is a line number. Syntax errors detected while reading a source 
module are reported with this message to the log. In addition, a 
descriptive message for the error is logged. Such syntax errors cause 
further parsing of the current module to be abandoned. However, other 
modules continue to be processed. 

The command file generation and cross reference listing passes are not 
executed. 

163 



Chapter 7 

no source file : nama.ext 

Where name is a module name, and .ext is .MOD or .DEF. 
M2MAKE has detennined that it should compile the named module; 
however, the source for that module cannot be found through the 
search strategy. 

A missing .DEF file may appear to require compilation only when its 
corresponding .SYM file cannot be located. 

A missing .MOD file may appear to require compilation under the 
following conditions: 

• its .OBJ file is missing 
• its .OBJ file is older than its .SYM file 
• its .DEF file is to be compiled 

A missing .MOD file will not give rise to this error if its .OBJ file 
exists, is younger than its .SYM file, and the .DEF file is not to be 
compiled 

This message is issued to the log. It is also placed in the generated 
command file at the point where the compilation pattern for the named 
module would nonnally be written. The compilation pattern is written 
to the command file in this error situation only if the /R+ option is 
used. The error does not cause termination of command file generation 
or M2XREF listing generation. 

164 



Utility M2MAKE 

imports missing from file : name.ext 

M2MAKE has detennined that compilation of the given module should 
fail because required .SYM files will not be available after previously 
generated compiles have run without error. It is always preceded by at 
least one message indicating a . DEF file missing. 

This message is issued to the log. It is also placed in the generated 
command file at the point where the compilation pattern for the named 
module would normally be written. The compilation pattern is written 
to the command file in this error situation only if the /N+ option is 
used. The error does not cause termination of command file generation 
or cross reference listing generation. 

link step not generated - missing files 

M2MAKE knows that a link step should fail because modules it 
expects to find are missing. It is written to the log, and also placed in 
the generated command file. It will always be preceded by at least one 
"file missing" message. 

recursive import of DEF modules 

A .DEF module is importing itself, either directly or indirectly. The 
path of modules through which the fIrst-detected recursive import 
chain exists is then logged, one module per line, starting from the 
innermost. The batch file generation is terminated. 

165 



Chapter 7 

Notes: 

166 



Utility M2CHECK 

Chapter 8 
The M2CHECK Utility 

M2CHECK helps you find errors in M odula-2 programs. It reads and analyzes M odula-
2 source code and produces warning messages which indicate possible errors or 
"dangerous" codes. It also indicates unused variables, types, constants, and procedures. 

A module to be processed by M2CHECK has to be a correct Modula-2 module; 
M2CHECK produces error messages when it encounters syntax errors. Although 
execution continues, it M2CHECK may not find all problems. For this reason, use 
M2CHECK only to modules that have already been successfully compiled. 

M2CHECK sends output both to your display screen and to a .LST file. This .LST file 
can then be called up through Load Listing in the M2ASSIST menu when the 
corresponding .MOD file is in the active window in the POINT Editor. 

r--------------------------------------------------------------NOTE------------------------------------------------------------~ 

Syntax errors are referenced by number. See Section 8.3 Warning Messages for 
the messages and their meanings. 

Since none of the error-types detected by M2CHECK can appear in a definition module, 
M2CHECK can be used on implementation or "main" modules only. To completely 
check the usage of variables and other identifiers, M2CHECK needs to read the symbol 
files of imported modules as well as the symbol file of the implementation module. 
M2CHECK uses the same search strategy as the LOG/TECH Compiler. 

167 



Chapter 8 

8.1 Running M2CHECK 

To run M2CHECK type: 

M2CHECK EXAMPLE QJ 

You will get a screen that looks like the following: 

After the filename, options may be added to adjust the exact operation of M2CHECK to 
your specific needs ( see Section 8.S Options). If the filename is omitted on the 
command line, M2CHECK will prompt for it. In this case, options may again be 
appended to the filename, separated by" / ". 

8.2 Operational Errors 

If M2CHECK cannot complete the checking of a module for any reason described above, 
it will issue one of the following messages, indicating operational errors: 

- DEFINITION MODULE not checked 

fatal error: ~llegal symbol f~le 
(symbol f~le has a bad structure) 

168 



Utility M2CHECK 

8.3 Warning Messages 

Generation of the warning messages described in this section is the very purpose of the 
semantic checker M2CHECK. Most of the checks can be individually enabled or 
disabled through options, thus allowing to adapt M2CHECK to produce only those 
warnings which seem relevant to the user. 

500: Identifier ambiguity 

Occurs when several variables may be accessed, for example a global 
and a local variable with the same name, or two fields of two different 
records are visible at the same time because of the WITH statements. 

501 Identifier not referenced 

Signals that an identifier (variable, type, procedure, etc) declared or 
imported in the implementation is not used. 

502: Assignment to a FOR or WITH variabl 

Occurs when an assignment is made to the variable of the FOR loop or 
to the variable of the WITH statement. Note that if assignment of the 
FOR variable is discouraged because of the possible side-effects, 
assignment to a WITH variable has unpredictable effect and is 
therefore very dangerous. 

503: Variable referenced above 

Occurs when a variable is used before its declaration. This may be 
right, but it may also signal that the programmer has forgotten to 
declare a local variable. 

~---------------------NOTE---------------------~ 

Forward references are not allowed by some Modula-2 
compilers. Using them may reduce code portability. 

169 



Chapter 8 

504: Variable from another scope 

Occurs when an access is made to a variable belonging to an 
embedding procedure or module, for example in nested procedures. 
This is again perfectly legal but the programmer could also have 
forgotten to declare a local variable. 

505: Assignment to a value parameter 

Occurs when an assignment is made to a formal procedure parameter 
passed by value. 

506: PROCEDURE or hidden TYPE not implemented 

The compiler does not signal which identifier is mIssmg in the 
implementation while declared in definition, M2CHECK will list all 
missing identifiers in an implementation 

507: Identifier declared in DEFINITION not referenced 

Signals that an identifier (variable, type, procedure, etc) declared in the 
definition is not used inside the implementation. 

170 



Utility M2CHECK 

8.4 DOS Error-level Variable 

Upon termination, M2CHECK sets the MS-DOS error-level variable to one of the 
following values. This error-level variable can be checked in a batch file. 

0: no error detected, no warning issued 

1: execution completed, but warning(s) issued 

2: symbol file missing 

3: other operational error detected 

171 



Chapter 8 

8.5 Options 

The following options are available: 

Query: 

Listing: 

Autoquery: 

Scope checking: 

Forces M2CHECK to ask for SYM files 

I Q-( default) 
IQ+ 

Generates a complete listing with line numbers and error messages at 
the appropriate positions; if disabled, it will only produce the summary 
of the warning (on the display and on the listing file). 

IL- (default) 
IL+ 

Enable M2CHECK to ask for .SYM file if it does not found it. This is 
useful while using batch files. 

I A+ (default) 
IA-

Checks for accessing variables in other scopes. (warning 504) 

15- (default) 
15+ 

Variable checking: 
Checks for ambiguity during variable accessing. (warning 500) 

IV+ (default) 
IV-

Reference checking: 
Checks whether or not identifiers are referenced. (warning 501) 

IR+(default) 
IR-

172 



Utility M2CHECK 

Definition module checking: 
Checks for coherency between DEFINITION and IMPLEMENTATION 

ID+(default) 
10-

Illegal assignment checking: 
Checks for assignment to FOR or WITH variables. (warning 502) 

11+( default) 
11-

Paramater assignment checking: 
Checks for assignment to procedure parameter passed by value. 
(warning 505) 

I P+( default) 
IP-

173 



Chapter 8 

Notes: 

174 



INDEX 





A 

Archived Files, 9-13 

B 

Base (for an Overlay), 66 

Break module (RID), 90 

Breakpoint, 88 

c 

Call Chain, 107 

Command Line 

M2CHECK, 168 

M2DECODE, 130 

M2FORMAT, 31 

M2L,58,65 

M2MAKE,145 

M2VERS, 134 

RTD,87 

Configuration Files (RID), 91,95 

Comment 

Commands (M2FORMA T), 32 

Handling (M2FORMA T), 24, 32, 33 

Cross Reference 

Option (M2MAKE), 152 

M2XREF Utility, 141 

Crtl-Break, Crtl-C (RID), 90 

D 

Debuggers, see RTD 

(PMD In User's Manual) 

Decoder 

M2DECODE, 129 

DEFAULT.M2F, 21,28 

177 

E 

Error Messages 

M2CHECK, 168 

M2FORMAT, 55 

M2L,67 

M2MAKE, 163 

M2VERS, 138 

RTD, 123 

Environment Variables 

F 

M2F (M2FORMA T), 20, 23 

M2LID (M2L), 62 

M2MAP (M2L), 62 

M20BJ (M2L), 62 

M2TMP (M2L), 62, 69 

File Extensions 

ARC, 9 

BAT (M2MAKE), 146 

CFG (RTD), 84,91,95 

DC1 (M2DECODE), 129 

FMD (M2FORMAT), 20,22,30 

FMT (M2FORMA T), 20,22, 30 

HLP (RID), 84 

LID (M2L), 57, 59 

LST (M2CHECK), 167 

MAK (M2MAKE), 151 

MAP (M2L), 57, 66 87 

M2F (M2FORMAT), 21,22,28 

OBJ (M2L, M2DECODE), 57,59,129 

OVL (M2L), 57, 66 

PAT (M2MAKE), 156 

TMD (M2FORMAT), 21, 22, 27 

VBK (M2MAKE), 135, 137 

XRM (M2MAKE), 152 

Index 



Index 

H 

Hardcopy 

Switch, 45 

Features, 47 

I 

Initialization Procedures, 75 

Installation, 7 

L 

Library Files, 59 

Linker, 57 

Command Line, 58, 65 

Error Messages, 67 

Options, 62 

Overlay, 65,72 

M 

Mouse 

RTD, 93,98 

MAP Files, 57, 66, 87 

M2DECODE, 129 

M2F,23 

M2FC,20 

M2FORMAT, 17 

Comment Handling, 24 

M2L (See Linker) 

M2MAKE, 143 

M2VERS, 131 

o 

Object files, 57, 59, 129 

Options 

M2CHECK, 172 

M2DECODE, 129 

178 

M2FORMAT, 40 

M2L,63 

M2MAKE, 148 

M~VERS, 135 

RTD,92 

Overlay 

Base, 67 

Create, 72 

Debug, 90 

p 

Link, 65 

Initialization Procedures, 75 

PROCESSES, 81 

Standard Library Module, 72 

Tennination, 73 

PMD, (See User Manual) 

PRINTER.M2F, 21,49 

PTM2FORM, 21 

R 

RTD, 83-128 

s 

Breaking, 90 

Commands, 103-121 

Configuration, 91,95 

Consistency Check, 122 

Keyboard Control, 100 

Messages, 123 

Mouse Control, 98 

Option File, 95 

Options, 92 

Program Execution Control, 88 

Temporary Files, 85 

Windows, 96 

Shared Resource, 77 



T 

TEMPL (M2FORMA 1'), 20 

Template file (M2FORMA 1'), 17,32 

Temporary Files 

Linker, 62 

RTD,85 

Tennination 

Overlays, 73 

Procedures, 75 

u 

User Associations, 5 

v 

Version Utility 

M2VERS, 131 

Variables 

Environment, (See Environment Variables) 

w 

Windows (RTD), 96 

x 

X-Reference 

M2XREF Utility, 141 

Index 

179 



Index 

Notes: 

180 



Logitech U.S.A. 
Corporate Headquarters 
6505 Kaiser Drive 
Fremont, CA 94555 
Tel : 415-795-8500 

lDGITECH" 
MODULA-2 
v E R S ION 3.0' 

TOOLKIT 
Linker Decoder 

Make Utility Formatter 
Library Sources Disassembler 

Run Time Debugger Cross Reference Utility 
Version 

~LOGITECH 
Logitech Switzerland 
European Headquarters 
CH-lill RomanellMorges 
Switzerland 
Tel: 41-21-869-9656 

Logitech Taiwan 
Far East Headquarters 
15 R&D Road 2 
Science Based Industrial Park 
Hsinchu, Taiwan, ROC 
Tel: 886-35-77-8241 

Algol-Logitech Italy 
Via Durazzo 2 
20134 Milano MI 
Italy 
Tel : 39-2-215-5622 


