

LOGITECH™ MODULA-2

Version 3.0

USER'S MANUAL

Copyright © 1984, 1985, 1986, 1987, LOGITECH,Inc.

All Rights Reserved.

No part of this document may be copied or reproduced in any fonn or by any means
without the prior written consent of LOGITECH, Inc.

LOGITECH, Inc. makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability and fitness for a particular purpose. The
infonnation in this document is subject to change without notice. LOGITECH, Inc.
assumes no responsibility for any errors that may appear in this document.

From time to time changes may occur in the filenames and in the files actually included
on the distribution disks. LOGITECH, Inc. makes no warranties that such files or
facilities as mentioned in this documentation exist on the distribution disks or as part of
the materials distributed.

This edition applies to LOG/TECH Modula-2, Version 3.00.

Third Edition September 1987

Document#:
Initial issue:
Current revision:
Printed:

LU-UD-009-1

February 1984

August 1987

August 1987

ii

Trademarks

LOGITECH and POINT are trademarks, and LOGIMOUSE is a registered trademark of
LOGITECH, Inc.

IBM is a registered trademark of International Business Machine Corporation.

CodeView is a trademark, and Microso/t, MS, and MS-DOS are registered trademarks of
Microsoft Corporation.

Intel is a registered trademark of Intel Corporation.

Hewlett-Packard, HP, and Laserlet are registered trademarks of Hewlett-Packard
Corporation.

Byte is a registered trademark of McGraw-Hill, Inc.

UNIX and AT&T are registered trademarks of American Telephone and Telegraph
Corporation.

PFIXPLUS is a trademark of Phoenix Software Associates, LTD.

Olivetti is a registered trademark of Olivetti.

COMPAQ is a registered trademark of Compaq Computer Corporation.

iii

.-----LOGITECH SOFTWARE LICENSE AGREEMENT-----.

THIS DOCUMENT IS A LEGAL AGREEMENT BE1WEEN YOU, THE LICENSEE, AND

LOGITECH, INc ("LOGITECH"). By USING THIS PROGRAM, YOU ARE AGREEING TO

BECOME BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO

THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN THE DISK PACKAGE AND THE

OTHER ITEMS THAT ARE PART OF THIS PRODUCT IN THEIR ORIGINAL PACKAGE,

WITH YOUR PAYMENT RECEIPT (THE "RECEIPT"), TO LOGITECH FOR A FULL REFUND.

In consideration of payment of the License Fee, which is a part of the price evidenced by
the Receipt, LOGITECH grants to the Licensee a nonexclusive right, without right to
sublicense, to use this copy of this LOGITECH Software on a single Computer at a time.
LOGITECH reserves all rights not expressly granted, and retains title and ownership of the
Software, including all subsequent copies in any media. This Software and the
accompanying written materials are copyrighted. Y Oli may copy the Software solely for
backup purposes; all other copying of the Software or the written materials is expressly
forbidden.

As the only warranty under this Agreement, and in the absence of accident, abuse or
misapplication, LOGITECH warrants, to the original Licensee only, that the disk(s) on
which the Software is recorded is free from defects in materials and workmanship under
normal use and service for a period of ninety (90) days from the date of payment as
evidenced by a copy of the Receipt. LOGITECH'S only obligation under this Agreement is,
at LOGITECH'S option, to either (a) return payment as evidenced by a copy of the Receipt
or (b) replace the disk that does not meet LOGITECH'S limited warranty and which is
returned to LOGITECH with a copy of the Receipt. THIs WARRANTY GIVES YOU

LIMITED, SPECIFIC LEGAL RIGHTS. You MAY HAVE OTHER RIGHTS, WHICH VARY

FROM STATE TO STATE.

THE SOFTWARE AND ACCOMPANYING WRITTEN MATERIALS (INCLUDING THE

USER'S MANUAL) ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND

INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, EVEN IF LOGITECH HAS BEEN ADVISED OF THAT PURPOSE.

LOGITECH SPECIFICALLY DOES NOT WARRANT THAT THE OPERATION OF THE

SOFTWARE WILL BE liABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR

INCIDENTAL DAMAGES ARISING OUT OF THE USE OF OR INABIliTY TO USE SUCH

PRODUCT EVEN IF LOGITECH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR UMITA TION OF

liABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE

LIMITATION MAY NOT APPLY.

iv

Table of Contents

Table of Contents

Introduction 1

How LOGI1ECH Modula-2 is Organized2
How to Read This Manual .. 3
LOGI1ECH POLICIES AND SERVICES .. .5
Other LOGI1ECH Products .. 6

Installation 7

What do you need? .. 8
What have you purchased? .. 9
Configure Your Operating System .. 10
LOGI1ECH Modula-2 on Floppy Diskettes ... 12
LOGI1ECH Modula-2 on a Hard Disk ... 16
Special Notes ... 22

Chapter 1 A Tutorial 23
Task 1: Get Ready .. 24
Task 2: Bring up the PTDEMO.MOD File .. 25
Task 3: M2ASSIST - The Syntax Checker .. .26
Task 4: M2ASSIST - The Compiler .. 27
Task 5: M2ASSIST - Find Next Error ... 28
Task 6: M2ASSIST - The Linker .. 30
Task 7: M2ASSIST - Run .EXE File .. 32
Review: The POINT EntrylRun Cycle .. 34

v

Table of Contents

Chapter 2 Modula-2 for the Pascal Programmer 35

2.1 Types of Modules ... 35
2.1.1 Program Modules .. 36
2.1.2 Definition Modules .. 36
2.1.3 Implementation Modules ... 36

2.2 First Steps From Pascal To Modula-2 .. 38
2.3 More Differences .. 39
2.4 Functions and Procedures .. 47
2.5 Use of Modules "."",,, ,, 50

2.5.1 User Definable Modules .. 50
2.5.2 Importing Procedures with Identical Names ... 56
2.7.3 Standard Library Modules ... 57

Chapter 3 The Compiler 69
3.1 How to Use the Compiler ... 70
3.2 Compiler Organization ... 72
3.3 Compiler Output Files .. 73
3.4 Compilation of a Program Module .. 74
3.5 Compilation of a Definition Module .. 77
3.6 Compilation of an Implementation Module ... 78
3.7 Symbol Files Needed for Compilation ... 79
3.8 Compiler Options ... 80

3.8.1 Table of Available Options ... 81
3.8.2 Description of the Options ... 82

3.8.2.1 The Optimize Option .. 86
3.9 Compiler Directives in Modules .. 90
3.10 Compiler Messages .. 91

3.10.1 Source Text Errors ... 9 1
3.10.2 Compiler Operational Messages and Errors 91

3.11 Compiler Table Limits ... 95
3.12 Compiler Error Messages ... 96

Chapter 4 Linking Modula-2 Files 101

vi

Table of Contents

Chapter 5 Version Checking 103
5.1 Module Keys and Version Checking ... 104
5.2 Version Errors and How to Fix Them .. 104
5.3 Version Errors During Compilation ... 105
5.4 Version Errors During Linking .. 106
5.5 Version Errors During Loading ... 108

Chapter 6 Interfacing Other Languages 109
6.1 Assembly Language with Modula-2 Conventions ... 110
6.2 Use of Low-Level Features .. 115
6.3 Foreign Definition .. 116

6.3.1 Conventions Used .. 116
6.3.1.1 Symbol Name Convention .. 117
6.3 .1.2 Parameter Passing Convention ... 118
6.3.1.3 Default Data Segment When Using "c" Qualifier 118

6.3.2 Examples of Foreign Definition Modules ... 119
6.3.2.1 "main" in Modula-2, and "foreign module" in C 119
6.3.2.2 "main" in C and "foreign module" in Modula-2 120
6.3.2.3 "main" in Modula-2 and "foreign module" in Assembly 121

Chapter 7 The Symbolic Post-Mortem Debugger 123
7.1 LOGITECH PMD Files ... 125
7.2 The PMD and Your Hardware ~ ... 125
7.3 How to Run the Post-Mortem Debugger ... 126
7.4 PMD Configuration .. 128

7.4.1 Screen configuration .. 128
7.4.2 On-line Help .. 128

7.5 Post-Mortem Debugger Options .. 129
7.6 User interface ... 130

7.6.1 Windows .. 130
7.6.2 Mouse Functions ... 132
7.6.3 Keyboard Functions .. 134

7.6.3.1 How to scrol1. .. 134
7.6.3.2 Select a window object ... 134
7.6.3.3 Call the menu .. 135
7.6.3.4 Respond to a prompt ... 13 6
7.6.3.5 Move mouse cursor with the keyboard ... 136

vii

Table of Contents

7.7 Windows and Commands .. 137
7.7.1 Call Window .. 140
7.7.2 Module Window .. 142
7.7.3 Data Window ... 143
7.7.4 Text Window ... 148
7.7.5 Raw Window ... 149
7.7.6 Message Window .. 150
7.7.7 Markers .. 150
7.7.8 Selecting an Item for Display .. 150
7.7.9 Relation between windows .. 150

7.7.9.1 Update made from the Call window ... 150
7.7.9.2 Update made from the Module window 150
7.7.9.3 Update from the Data and Text windows 150

7.8 Consistency Checks .. 151
7.9 Messages .. 153

Chapter 8 Implementation Features 157

8.1 System Dependent Facilities .. 158
8.1.1 Language Extensions ... 159
8.1.2 Address Arithmetic .. 159

8.1.2.1 Interpretation of Objects of Type ADDRESS 160
8.1.2.2 Operations Involving Objects of Type ADDRESS 160
8.1.2.3 Dereferencing Pointers ... 163

8.1.3 The Module SySTEM ... 164
8.1.3.1 Constants Exported from Module SYSTEM 165
8.1.3.2 Types Exported from Module SYSTEM 165
8.1.3.3 Functions Exported from Module SYSTEM I66
8.1.3.4 Procedures Exported from Module SYSTEM 167

8.1.4 Data Representation .. 171
8.1.5 Type Conversion and Type Transfer ... 173

8.2 Priorities and Interrupts .. 175
8.2.1 Use of Priorities ... 175
8.2.2 Priority Levels ... 176
8.2.3 Interrupt Handling ... 177

8.2.3.1 Standard Method with IOTRANSFER ... 177
8.2.3.2 Faster Method with IOTRANSFER ... 177
8.2.3.3 Low Level Interrupt Handling ... 178
8.2.3.4 How to Cope With Non-Reentrancy of MS-DOS 180

viii

Table of Contents

8.2.4 Implementation Notes ... 181
8.2.4.1 The Device Mask .. 181
8.2.4.2 The Priority Masks ... 181
8.2.4.3 The Interrupt Controller Mask .. 182
8.2.4.4 Monitor Entry and Exit ... 183

8.2.5 The Definition Module for "lnputDevice" .. 184
8.2.6 The Implementation Module for "InputDevice" 184

8.3 DOSCALL .. 187
8.3.1 Extensions for DOS 2.0 ... 194

8.4 Decimals ... 201
8.4.1 Internal and External Format. .. 201
8.4.2 Types ... 201
8.4.3 Variables .. 202
8.4.4 Conversion and Status Procedures .. 203
8.4.5 Arithmetic Operations ... 204
8.4.6 Pictures .. 205
8.4.7 Picture Characters .. 206
8.4.8 Procedure StrToDec .. 206
8.4.9 Procedure DecToStr .. 206
8.4.10 Error Propagation .. 206

8.5 REAL Arithmetic ... 208
8.5.1 Simple Use of REAL Arithmetic209
8.5.2 Choices for Using REAL Arithmetic210
8.5.3 Accuracy of the Computations .. 214
8.5.4 Memory Requirements .. 214
8.5.5 Performance ... 215

8.6 RTS ... 216
8.6.1 Organization .. 216
8.6.2 RTSMain ... 217
8.6.3 RTSError ... 217
8.6.4 Language Dependent Facilities ... 217
8.6.5 Interrupt Handling ... 217
8.6.6 I/O Device Control .. 217
8.6.7 Arithmetic Coprocessors ... 217

8.7 Graphics ... 218

ix

Table of Contents

Chapter 9 Libraries 219

9.1 Library Search Strategy .. 219
9.1.1 Default Names ... 219
9.1.2 The Default Search Strategy .. 220
9.1.3 The Query Search Strategy .. 222

9.2 Library .DEF Files .. 223
ASCII ... 223
BitBlockOps .. 224
BitByteOps .. 226
BitWordOps ... 228
BlockOps ... 230
Break•.. 231
Calendar ... 233
CardinalIO ... 235
Chronometer .. 236
Conversions ... 237
DateFormat .. 239
DebugPMD .. 241
DebugTrace ... 242
Decimals .. 243
Delay .. 245
Devices .. 246
Directories ... 249
DiskDirectory .. 251
DiskFiles .. 253
Display ... 254
DOS3 ... 255
DOS31 ... 257
DosError .. 259
DOS Memory ... 260
DurationOps .. 261
DynMem .. 263
ErrorCode .. 264
Exec ... 265
FileMessage ... 266
FileNames .. 267
FileSystem ... 268
FloatingUtilities ... 281
Graphics ... 282
InOut .. 289

x

Table of Contents

Keyboard ... 293
LoadPath .. 294
LogiFile ... 295
LongIO .. 298
Lookup ... 299
MathLibO ... 300
Mouse .. 302
NumberConversion .. 307
Options .. 310
Overlay .. 312
Processes .. 314
Random .. 316
RealConversions .. 317
ReallnOut .. 319
RS232Code .. 321
RS232Int .. 323
RS232Polling ... 325
RTSCoroutine .. 327
RTSDevice .. 328
RTSlntPROC ... 330
RTSM87 .. 331
RTSMain ... 332
SimpleTerm ... 336
Sounds ... 337
Storage ... 338
Strings .. 340
Termbase ... 343
Terminal .. 346
TimeDate ... 348

9.3 Library Cross Reference .. 351

xi

Table of Contents

Appendix A Modula-2 Bibliography 371

Books ... 371
Magazines .. 375
User Groups .. 376

Appendix B Memory Organization & Run Time Description 377

B.1 Global Memory Organization .. 377
B.2 Subprogra..TJS and Resident Overlays .. 379
B.3 Program Execution .. 381
B.4 Processes .. 382
B.5 Allocation of Variables .. 384
B.6 The Heap ... 385
B.7 The Stack ... 385
B.8 The Procedure Activation Record .. .386
B.9 Procedure Calling Conventions .. .389
B.10 Function Results .. 391
B.11 Symbols in .OB] Files ... 392
B.12 Aborting LOGITECH Modula-2 Programs ... 393
B.13 Command Line Arguments ... 394

Appendix C Technical Tips 395

C.1 PrintTimeDate ... 396
C.2 Printing .. 397
C.3 The Screen ... 398
C.4 Redirectlnput ... 399

Appendix D Product Support Plan 401

Glossary 403

Index 407

xii

LOGITECH MODULA-2

Introduction

Introduction

~------------------(IMPORTANT)I------------------~

See the READ.ME file on Disk 1 for late breaking news about this version of
LOG/TECH Modula-2 .

1

Introduction

How LOGITECH Modula-2 is Organized

This manual assumes that you are familiar with the basics of DOS and with basic
programming concepts and terminology.

If you are a beginner, work through the tutorial to familiarize yourself with LOGITECH
Modula-2. Then consult the bibliography in Appendix A, for books on Modula-2.

If you are more experienced, and perhaps familiar with M odula-2' s predecessor, Pascal,
read t..;rough Chaptei 2. Modula-2 fOi the Pascal Piogrammei for an introduction to
the implementation-specific features of LOGITECH Modula-2, and later as a reference
for specific questions and problems which may arise.

This manual features:

• Introductory information which includes system requirements and installation
instructions.

• A step-by-step tutorial through the system, with the POINT Editor connecting you to
the various parts of the LOGITECH Modula-2 world.

• An overview of Modula-2, which explains how it differs from and is similar to
Pascal, with primary features of the language.

• Complete instructions for the LOGITECH Compiler.

• Complete instructions for the LOGITECH Symbolic Post-Mortem Debugger.

• Information on version checking for orderly program development.

• How to use non-Modula-2 modules in LOGITECH Modula-2 programs.

• A description of Modula-2 implementation features.
• How to help LOGITECH Modula-2 utilities find Library information.

• A complete listing of the LOGITECH Modula-2 .DEF files, with a
cross-referenced index.

• Information on memory organization and run-time organization.

• Technical tips.

• A bibliography.
• A LOGITECH Modula-2 glossary.

• An index.

2

Introduction

How to Read This Manual

The following conventions are used in this manual:

Keys to be pressed, look like this:

(Y) [Esc) ~

Control sequences or characters entered with a Control or Shift key, look like this:

Keys from the Numeric Keypad are shown like this:

CD CD EJ EJ
~~GJ G

Keyboard input for the DOS Command line is in upper case and looks like this:

M2L QJ
Mouse buttons used are based on the LOG/TECH standard, and use three buttons, e.g,

• 0 0 means press the left mouse button,
o D. means press the right mouse button, and
o • 0 means press the middle mouse button.

[•• j means press both buttons on a two button mouse.

Variable names in the text are surrounded by angle brackets, as in

<Application name> ~

File names look like this:

M2L.EXE

DOS commands and statements look like this:

PATH,COPY

Product names look like this:

MS DOS, LOG/TECH Modula 2

3

Introduction

Reserved words, predefined functions, and user-defined functions in LOGITECH
M odula-2 look like this when being discussed in text:

PROCESS, VAL, MyFunction

These are not emphasized in screen display or program listings.

Screen output and some listings look like this:

Program Not Found

Program source code looks like this:

IF condition THEN
statement6;

ELSIF condition THEN
statement7;

ELSE
statement8;

END;

Sample Screens look like this:

Text linet 32 Demo. MOD

PROCEDURE Recursiveone (x: CARDINAL; y:REAL; Z: INTEGER
BEGIN

WITH node[x] Do
datal :- x;
data2 :- y;
data3 :- z;

END; (* WITH *)

INC (x) :
y :- y + 1.0;

Data Demo

x
y

CARDINAL
2.0000000000E+000 REAL

3 INTEGER
node ARRAY [1 .. 4] OF RECORD

I Raw I HelplFl I messages

4

Call breakpoint

>Recursiveone
>Recursiveone
>Firstone
>initialization
>PROCESS

Module

>+Demo
Reals
RTSMain
Terminal
Termbase
Keyboard
Display

Introduction

LOGITECH POLICIES AND SERVICES

We know that effective communication with our customers is the key to quality service.
Therefore we have set up the LMIS (LOGITECH Mouse Information Service), an
electronic bulletin board where you can contact us at your convenience.
To reach the LMIS, dial:

(415) 795-0408

using a 300, 1200 or 2400 baud modem.

The menu of available options is self explanatory.

LOGITECH also sponsors an electronic conference on BIX, the BYTE INFORMATION
EXCHANGE system from Byte magazine. If you have access to BIX, join us in

conference LOGITECH,

and communicate with us there.

For all LOGITECH Modula-2 users, including ISVs (Independent Software Vendors),
we have formed a LOGITECH Modula-2 User Group. LOGIMUG publishes a
newsletter and provides a forum through which LOGITECH Modula-2 users can
exchange ideas and information. If you are an ISV, we encourage you to join the
impressive list of developers who use LOGITECH Modula-2 to design application
software. Call us for details.

The Modula-2 User Association (MODUS) is another important source of information
about the language, as well as a forum for Modula-2 users to exchange ideas and to share
pertinent technical tips. LOGITECH is an active corporate member of this association.
We encourage you to contact MODUS at:

MODUS
P.O Box 51778
Palo Alto, California 94303

(415) 322-0547

5

Introduction

Other LOGITECH Products

At LOGITECH we pride ourselves on technical excellence and advanced engineering.
In addition to LOGITECH Modula-2, we also offer these fine products which we believe
to be the most advanced in their product category.

LOGITECH Modula-2 Toolkit

The LOG/TECH Modula-2 Toolkit offers these Modula-2 functions:

eM2FORMAT, the LOGiTECH Modula-2 source code formatter.
e The LOGITECH Linker, the optimal linker for LOGITECH Modula-2.
e The LOGITECH RTD, or Symbolic Ruri-Time Debugger.
e M2DECODE dissambles .OBJ files for LOGITECH Modula-2 code.
e M2VERS keeps track of LOGITECH Modula-2 development versions.
e M2XREWF generates cross-referenced tables of Modula-2 source files.
e M2MAKE creates batch files with all parameters and search strategies

needed to recompile and relink changes made to your source code.
e M2CHECK helps you streamline code by referencing unused or

questionable library items.

Other LOGITECH Modula-2 Utilities

e The LOG/TECH Turbo-Pascal To Modula-2 Translator.

e A VAX/VMS version of LOGITECH Modula-2.

Site licences are available for all LOG/TECH Modula-2 products.

The LOGITECH C7 Mouse

The LOGITECH C7 Mouse connects to a serial port in your computer.
It needs no pad and no external power supply.

The LOGITECH Bus Mouse

The LOGITECH Bus Mouse is equivalent to the LOGITECH C7 Mouse,
except that it is connected to a Bus Board which you insert in your computer.
It needs no pad and no external power supply.

For additional information, or to order these products, call the LOGITECH sales office
toll-free from anywhere in the continental U.S. at (800)231-7717, or
in California, call (800) 552-8885.

6

Installation

Installation

This chapter tells you how to install the LOG/TECH Modula-2 Development System
under DOS. as well as how to optimize the system for your use.

Instructions are given for installation to a set of floppy diskettes. as well as to a hard disk.
In addition. this chapter tells you which floppy diskette to use while developing your
programs on a floppy diskette system.

Help in the form of batch files is provided on Disk 1. You can modify these batch files.
or install the system manually if your system differs from the assumed standard.

~-------------------------NOTE--------------------------~

Remember to read the READ.ME file on Disk #1 for late breaking information
that may not have been available when this manual went to press.

7

Installation

What do you need?

LOGITECH Modula-2 runs on an IBM PC, XT, AT or compatible computers, with:

• A floppy disk drive A, and either
• A floppy disk drive B, or
• A hard disk drive C.

In addition:

• To run M2C.EXE (the fully-linked version of the compiler), you must have
512 K Bytes of RAM memory.

• To run M2COMP.EXE (the overlay version of the compiler), you must have
290 K Bytes of RAM memory.

8

Installation

What have you purchased?

Manuals

If you purchased LOGITECH Modula-2 by itself, you have a copy of the POINT Editor
User's Manual, in addition to the LOGITECH Modula-2 User's Manual you are now
reading.

If you purchased the LOGITECH Modula-2 Development System, then you also have a
copy of the LOGITECH Modula-2 Toolkit Manual.

Diskettes

If you purchased LOGITECH Modula-2 by itself, you received five diskettes

Disk 1:

Disk 2:

Disk 3:
Disk 4:
Disk 5:

POINT Editor

Standard Library

Fully-Linked Compiler
Overlay Compiler

Post-Mortem Debugger

If you purchased the LOGITECH Modula-2 Development System which includes the
LOGITECH Modula-2 Toolkit, you also received four additional diskettes:

Disk 1:

Disk 2:

Disk 3:

Disk 4:

Standard Library Sources I
Utilities I

Standard Library Sources II
Linker
Utilities II

Run-Time Debugger

9

Installation

Configure Your Operating System

In order to run LOGITECH Modula-2, you need to configure your operating system .
.This is done by setting up the CONFIG.SYS file on the disk from which you start your
operating system. The I NST ALL procedure makes the necessary additions with the
proper settings to your CONFIG.SYS file, and saves the backup file as CONFIG.OLD.
Then it tells you how to enlarge your environment space, according to the version of
DOS you are using.

FlLES=20

BUFFERS=20

DEVICE=ANSI . SYS

The number of files that can be open at the same time. A
value of twenty (20) or more is needed to operate the
LOGITECH Modula-2 Development System.

If the right number of files is not set in DOS, the error
message file not found will appear when you try to run
LOGITECH Modula-2. This means that even though the file
you want may be present on the disk, it can't be opened due to
a lack of file descriptors in the operating system.

We recommend that you set the number of buffers to twenty
(20). An appropriate value will increase the performance of
the LOGITECH Modula-2 system. However, this is not a
requirement and you may omit this statement.

This statement provides access to Extended Screen and
Keyboard Control provided by DOS. Some parts of
LOGITECH Modula-2 assume that this driver is used. If you
omit this statement in CONFIG.SYS, certain control
characters written to the display may not have t.'1e effect
specified in the Terminal definition module.

10

Installation

SHELL=COMMAND.COM/P/E:n (for DOS 3.1 and higher)

Whenever you start your computer, DOS allocates a small
amount of bytes (e.g., 160) for environment space. Often, this
is not enough for the LOG/TECH Modula-2 settings.

An additional line in your CONFIG.SYS file can correct this:

SHELL=COMMAND.COM/P/E:n

If you are using DOS 3.1 or DOS 3.2, add one of these lines:

• For DOS 3.1, n is the number of 16 byte paragraphs
allocated for environment space. We recommend
that you add this 1ine:

SHELL=COMMAND.COM/P/E:31

• For DOS 3.2 or higher, n is the number of bytes
allocated for environment space. We recommend:

SHELL=COMMAND.COM/P/E:500

r--------------------- REMEMBER

After you create or change your CONFIG.SYS file, you must restart your system
for the changes to take effect.

11

Installation

LOGITECH Modula-2 on Floppy Diskettes

~-----------------------NOTE------------------------~

Before you install your software to either floppy drive or hard disk system,
we strongly recommend that you take a minute to:

1) Put Write-Protect tabs on all your LOGITECH Modula-2 disketttes, and

2) Use the DISKCOPY and DISKCOMP commands from your DOS files to
back up your diskettes. Then put your original diskettes in an archival area
and use the copies for all installation.

3) Prepare formatted diskettes with readable labeling, before you copy the the
files in the Installation procedure which follows.

Installing on Floppy Diskettes

If your LOGITECH Modula-2 Development System is going to be installed on a dual
floppy system, we recommend this organization:

Step 1: Prepare a POINT Editor diskette for your Modula-2 system.

Insert the LOGITECH Modula-2 POINT Editor (Disk #1) into drive B, and an
empty, formatted disk into drive A. Type,

COpy B:PT*.* A: CD
COPY B:CHECKER.* A: CD
COPY B:M2ASSIST.* A: CD

This will provide you with the LOGITECH editing environment of choice for
your LOGITECH M odula-2 Development System.

Step 2: Prepare a Library diskette for your Moduia-2 sysiem.

Insert the LOGITECH Modula-2 Library (Disk #2) into drive B, and an
empty, formatted disk into drive A. Type,

COPY B:*.* A: CD
You will use this Library Disk when linking. Some additional .LIB files are on
LOGITECH Disk 5 if you want to interface C language.

12

Installation

Step 3: Prepare a Fully-Linked Compiler diskette for your Modula-2 system.

Insert the LOGITECH Modula-2 Fully-Linked Compiler (Disk #3) into drive
B, and an empty, formatted disk into drive A. Type,

COPY B:*.* A:

You will use this disk to compile LOGITECH M odula-2 programs. This
version of the Compiler requires 512 KBytes of internal (RAM) memory.

Step 4: Prepare an Overlay Compiler diskette for your Modula-2 system.

Insert the LOGITECH Modula-2 Overlay Compiler (Disk #4) into drive B,
and an empty, formatted disk into drive A. Type,

COPY B:*.* A:

You will use this disk to compile larger LOGITECH Modula-2 programs. This
version of the Compiler requires 290 KB ytes of internal (RAM) memory.

Step 5: Prepare a Post-Mortem Debugger diskette for your Modula-2 system.

Insert the LOGITECH Modula-2 Post-Mortem Debugger (Disk #5) into drive
B, and an empty, formatted disk into drive A. Type,

COpy B:*.REF
COPY B:*.CFG
COPY B:*.EXE

A:
A:
A:

QJ
QJ
QJ

This disk will help you debug crashed LOGITECH Modula-2 programs.

Step 6: Prepare a Working diskette for your Modula-2 system.

Insert the LOGITECH Modula-2 POINT Editor (Disk #1) into drive B, and an
empty, formatted disk (which will become your Working diskette) into drive A.
To copy all the files with the .SYM extension from Disk 2 onto your Working
diskette, type,

COpy B:*.SYM A:

You will use this disk to hold .MOD and .DEF files to be compiled and linked.

13

Installation

PATH and Environment Variables

For LOG/TECH M odula-2 to work properly with a floppy diskette system, you need
some additional DOS commands in your AUTOEXEC.BAT file, which must be in the
root directory of your boot disk. If you do not yet have such a file, create it in the root
directory, using your text editor.

These commands assume that you have your Modula-2 Working Diskette in drive A,
and a compiler, linker, debugger, or utilities diskette in drive B. Append these to your
Clli-rent AUTOEXEC.8AT file, or create an AUTOEXEC.BAT wpjch includes the
following commands:

SET M2SYM=A:\;
SET M20BJ=A:\;B:\;
SET M2LIB=A:\;B:\;
SET M2REF=A:\;B:\;
SET M2MOD=A:\;B:\;
SET M2MAP=A:\;B:\;

These set the environment for LOG/TECH Modula-2 in a dual floppy configuration.
They let your LOG/TECH Modula-2 system take full advantage of DOS. More on the
environment variables used by LOG/TECH Modula-2 can be found in the section of this
manual on the library search strategy.

You must also set the DOS environment PATH statement (refer to your DOS Manual).
DOS uses this statement DOS to search for .EXE files. If your Modula-2 Working
diskette is in drive A and the compiler/linker/debuggers/utilities disk in drive B, the
environment variable PATH should contain the following string:

PATH=A:\;B:\;

~-----------------------NOTE------------------------~

Before you use LOG/TECH M odula-2, be sure to re-start your system so the
AUTOEXEC.BAT commands can take effect.

14

Installation

Running on Floppy Diskettes

When you work with LOGITECH Modula-2 on floppy diskettes, use drive A for your
Modula-2 Working diskette. It should contain these files:

• .SYM files from the LOGITECH Modula-2 Standard Library.
• .MOD and .DEF files for Modula-2 source text you have created.

• Other files you may create with LOGITECH Modula-2, to use for compiling, linking
or debugging.

While you are developing your programs, drive B holds a disk for what you are doing.
This disk must include the appropriate LOGITECH Modula-2 system files:

To Edit a source file
Insert a working copy of the POINT Editor disk in drive B.

To Compile a source file
Depending on the amount of memory in your machine,
insert a working copy of one of the compiler disks in drive B.

To Link a .OBJ file
Insert a working copy of the Library disk in drive B;
Insert a working copy of the LOGITECH Linker in drive A; or
Insert a working copy of the DOS Linker in drive A.

To Run a Debugger
Insert a working copy of one of the LOGITECH Debugger disks in drive B.

To Run Utilities
Insert a working copy of a LOGITECH utility disk in drive B.

~------------------------ NOTE ------------------------~

Depending on the capacity of your disks, you can include two or more of the disks
mentioned above onto one disk.

If you are using high density diskettes, study the following section on hard disk
systems, on the environment variables used by LOGITECH Modula-2, and also
study the section on library search strategy.

15

Installation

LOGITECH Modula-2 on a Hard Disk

The most convenient way to use LOG/TECH Modula-2 is with a hard disk.
This section tells you two ways to copy files from the distribution disks to your hard disk.

You can copy all the files into the same directory where you write your LOG/TECH
Modula-2 programs. However, it's better to take advantage of the structured directory
system in DOS. This reduces the number of files in your directories and, at the same
time, lets you use LOGITECH l~odula-2 from CL.'1y directory.

You can also install the LOG/TECH System to a directory of your choice.

Just make sure that you are on the hard disk where you want to keep your Modula-2 files,
and that Disk #1 is in Drive A.

Step 1: Create a Development Environment Directory.

To install LOG/TECH Modula-2 in a directory of your choice, type,

MD \YOUR_DIR QJ

Step 2: Run the Install Program

Insert Disk #1 in Drive A.

a) To install the LOG/TECH Modula-2 files in your root directory, type

A: INSTALL \

b) To install LOG/TECH Modula-2 in a directory of your choice, type,

A: INSTALL

The INSTALL program then tells you which disks to insert.

16

Installation

Step 3: Add Configuration Statements.

After you install the LOG/TECH Modula-2 Development System, you are
prompted to add some additional statements to your CON FIG.SYS and
AUTOEXEC.BAT files.

An additional line in your CONFIG.SYS file can correct this:

SHELL=COMMAND.COM/p/E:n

If you are using DOS 3.1 or DOS 3.2, add one of these lines:

• For DOS 3.1, n is the number of 16 byte paragraphs allocated for
environment space. We recommend that you add this line:

SHELL=COMMAND.COM/P/E:31

• For DOS 3.2, n is the number of bytes allocated for environment
space. We recommend this line:

SHELL=CO~.COM/P/E:500

After you add these statements, restart your system for them to take effect when
you work on your M odula-2 programs.

~------------------------ NOTE ------------------------~

INSTALL.BAT copies your AUTOEXEC.BAT and CONFIG.SYS files to
AUTOEXEC.OLD and CONFIG.OLD, and then adds various statements to your
AUTOEXEC.BAT and CONFIG.SYS files.

If you need to use the previous settings, simply rename these files with their
original extensions.

If you do this, you may also want to save your Modula-2 AUTOEXEC.BAT and
CONFIG.SYS files, too - under names you can use to reinstall your
LOG/TECH Modula-2 system, as needed.

17

Installation

The following procedure copies files from LOGITECH Modula-2 diskettes to a
subdirectory you have chosen.

If your system has special constraints, such as directory names that conflict with those
used by LOGITECH Modula-2, you can install environment step-by-step. You can, of
course, copy these files to any directory you choose, as long as you specify their PATH
in your AUTOEXEC.BAT file.

Perform these DOS commands:

Step 1: Create a directory for your development environment.

To install LOGITECH Modula-2 files in a directory of your choice, use the
MKDIR (MD) command to create that directory.

Step 2: Create subdirectories for LOGITECH Modula-2.

From the system prompt in your chosen subdirectory (e.g., \ YOUR_DIR),
perform these DOS commands:

DOS Command What it does

MKDIRM2EXE GD Creates the \ YOUR_DIR\M2EXE directory.
MKDIRM2L1B QJ Creates the \ YOUR_DIR\M2L1B directory.
MKDIRM2TMP QJ Creates the \ YOUR_DIR\M2TMP directory.

CD M2L1B GO Goes to the \ YOUR_DlR\M2L1B directory

MKDlR DEF QJ Creates the \ YOUR_DIR\M2L1B\DEF directory.
MKDIR LIB GD Creates the \ YOUR_DIR\M2L1B\L1B directory.
MKDIRMAP QJ Creates the \ YOUR_DIR\M2L1B\MAP directory.
MKDIRMOD QJ Creates the \ YOUR_DIR\M2L1B\MOD directory.
MKDIROBJ GD Creates the \ YOUR_DIR\M2L1B\OBJ directory.
MKDIR REF l.dJ Creates the \ YOUR~DIR\M2L1B\REF directory.
MKDlRSYM QJ Creates the \ YOUR_DIR\M2L1B\SYM directory.

CD .. QJ Return to \ YOUR_DIR subdirectory

18

Installation

Step 3: Copy the POINT Editor Files.

Insert Disk #1 with the POINT Editor into drive A and type:

COpy A:PT*.* M2EXE GD
COpy A:M2ASSIST.* M2EXE GD
COpy A:CHECKER.* M2EXE GD
COpy A:*.SYM M2L1B'SYM GD

This copies files on Disk #1 to the appropriate directories under, YOUR_DlA.

Step 4: Copy the Library Files.

Insert Disk #2 with the Standard Library files into drive A and type:

COPY A:*.LlB M2L1B\LlB GD
COpy A:*.OBJ M2L1B\OBJ GD

This copies .LlB files from Disk #2 to , YOUR_DlR\M2L1B\LlB, and .OBJ files
to' YOUR_DIR\M2L1B\OBJ.

Step 5: Copy the Fully Linked Compiler Files.

Insert Disk #3 with the Fully Linked Compiler into drive A and type:

COpy A:*.* M2EXE GD

This copies the Fully Linked Compiler and other files from Disk #3 to
, YOUR_DIR\M2EXE.

Step 6: Copy the Overlay Compiler Files.

Insert Disk #4 with the Overlay Compiler into drive A and type:

COpy A:*.* M2EXE GD
This copies the Overlay Compiler files from Disk #4 to , YOUR_DIR\M2EXE.

Step 7: Copy the Post-Mortem Debugger Files.

Insert Disk #5 with the Post-Mortem Debugger files into drive A and type:

COpy A:*.LlB M2L1B\LlB GD
COpy A:*.REF M2L1B\REF GD
COpy A:*.CFG M2EXEGD
COpy A:*.EXE M2EXE GD

This copies Post-Mortem Debugger files from Disk #5 to ,YOUR_DIR\M2EXE.

Step 8: Adjust your PATH statement.

Read the next section carefully.

19

Installation

PATH and Environment Variables

For LOGITECH Modula-2 to work properly with a hard disk system, you need some
additional DOS commands in your AUTOEXEC.BAT file. AUTOEXEC.BAT executes
various commands automatically every time you start your system. If you don't yet have
this file, create it with your POINT editor in the root directory.

SET Statements

Append the following to your AUTOEXEC.BAT file:

SET M2SYM=C:\M2LIB\SYM;
SET M20BJ=C:\M2LIB\OBJ;
SET M2REF=C:\M2LIB\REF;
SET M2MOD=C:\M2LIB\MOD;
SET M2LIB=C:\M2LIB\LIB;
SET M2MAP=C:\M2LIB\MAP;
SET M2TMP=C: \M2TMP ;

These settings are correct for a set of LOGITECH Modula-2 directories created at the
root of your hard disk. However, if you create your directories/rom a subdirectory, you
must add that subdirectory name to the PATH statement as well as to the SET
statements shown above. If your LOG/TECH Modula-2 environment is attached to the
"YOUR_DIR" subdirectory, for example, then you must preface your SET specification
accordingly, as in:

SET M2SYM=C:\YOUR_DIR\M2L1B\SYM;

etc., for each SET specification.

Note: The fictitious directory name \YOUR_DIR has been added to the statement
in this example.

20

Installation

~------------------------ NOTE ------------------------~
These statements set up the environment variables for LOG/TECH Modula-2,
and let the LOGITECH M odula-2 system take full advantage of your hard disk.
More information on the environment variables used by LOGITECH Modula-2
are found in this manual in Section 9.1. Library Search Methods.

The PATH Statement

You must also set the DOS environment statement PATH (refer to your DOS Manual).
PATH is used by DOS to search for .EXE files. For example, if you keep .EXE files in
drive C in a directory named COMMANDS, the PATH statement PATH will read:

PATH=C:\COMMANDS;

After you use the INSTALL program to add the M2EXE directory it should read:

PATH=C:\COMMANDS;C:\M2EXE;

~------------------------ Remember -------------------------,

Before using LOG/TECH Modula-2, be sure to re-start, re-boot, your system, so
the commands of the AUTOEXEC.BAT file will be executed.

21

Installation

Special Notes

A Word About the POINT Editor

The POINT Editor has provided the LOGITECH Modula-2 Development Group with
its editing environment of choice. Apart from the installation instructions you have just
read, the POINT Editor can also be placed in its own directory. In this way, you can
keep just the PT.INI file of your choice in your working directory. For more information
see the POINT User's Manual.

The POINT diskette includes a file named PTM2.INI which can be copied into PT.INI,
the Initialization file for the POINT Editor.

A Word About the MOD Editor

If you are more accustomed to the MOD Editor from previous releases, we have included
a file named PTMOD.lNI. You can copy this file to PT.INI on your POINT working
disk or directory, for the accustomed MOD interface with the additional features of
LOGITECH Modula-2, Version 3.0.

A Word About Mice

We recommend either the LOGITECH Bus Mouse or the LOGITECH C7 Mouse for
editing source text files and for running either the LOG/TECH Symbolic Post-Mortem
Debugger or the LOGITECH Symbolic Run-Time Debugger. We know you will find
either LOGITECH Mouse an ideal tool for the LOGITECH Modula-2 Development
System, as well as for other editing and graphics tasks.

Be sure to load your mouse driver software before you atttempt to edit or debug your
Modula-2 work. Instructions for installing mouse software is in your mouse manual.

22

Chapter 1
A Tutorial

A Tutorial

The best way to learn a new language is to use it. The same is true for programming
languages.

In this chapter you will enter and run a simple Modula-2 program. It's like getting
acquainted with a city by looking at a map and a tour book: it can get you started. If you
want adventures, you will then know just enough to get into trouble and also just enough
to figure your way out of trouble.

This tutorial uses the POINT Editor with the M2ASSIST extension menu, which provides
a fast, flexible development environment, whether you are a beginner or an experienced
programmer. POINT is easy to learn, easy to use, and is the LOGITECH Modula-2
development environment of choice.

The best environment will also include a LOGITECH Mouse, since the POINT Editor
optimizes the three button standard provided by LOGITECH. If you do not yet have a
mouse, or are operating temporarily on a non-mouse system, the POINT Manual has a
special summary for mouse emulation with POINT on a standard keyboard .

.-------------- NOTE --------------,

Before you begin this tutorial, be sure you have backed up your LOGITECH
Modula-2 diskettes and installed the system, and that the PATH and SET
statements are written as described in the preceding Installation section.

23

Chapter 1

Task 1: Get Ready

This tutorial assumes that you have used the default installation described in the
Installation section t above. If you are already using ,a directory with this name for other
purposes t choose another directory name t and adjust the following instructions
accordingly.

Step 1: Move to Your Development Directory.

From wherever you aret on the command linet type

CD\ YOUR_DIR QJ

where \ YOUR_DIR is the path and directory you have specified in the
Installation.

Step 2: Move to the M2TMP directory.

Type

CDM2TMP QJ

This takes you to the \ YOUR_DIR\M2TMP directory

For this tutorial we will work from the M2TMP sub-directory. Be sure that
your POINT files are in a directory that is listed in your PATH statement.
Refer to the Installation section t in the front of this manual.

Step 3: Bring the PTDEMO.MOD file into the M2TMP sub-directory.

Use the DOS COPY command t or a file management utility to copy this file into
the YOUR_DIR\M2TMP directory.

~---NOTE--~

Using \M2TMP to create your Modula-2 programs is a suggestion and not a
requirement of LOGITECH Modula-2. You can just as easily create and/or use
any other directory.

24

A Tutorial

Task 2: Bring up the PTDEMO.MOD File

Again, you can create Modula-2 files with any general purpose text editor. However, to
run the syntax checker you must be in the POINT environment. To load POINT, type

PT PTDEMO.MOD QJ
Here is the POINT screen you will see, with a listing for PTDEMO.MOD as it appears
in a window in the POINT environment.

open close HELP +next prev +WINDOW EDITING MOVING QUIT+ETC OPTIONS M2ASSIST

MODULE PtDemo;

FROM Terminal IMPORT writeString, WriteLn;

PROCEDURE Hello (str : ARRAY OF CHAR);
VAR i : CARDINAL;
BEGIN

FOR i := 1 TO 10 DO
Writestring(str);
WriteLn;

END
END Hello

BEGIN
Hello ("Hello Everybody"," !!!")

END PtDemo.

For more information on POINT, see the Tutorial in the POINT Editor User's Manual.

2S

Chapter 1

Task 3: M2ASSIST - The Syntax Checker

M2ASSIST is composed of several functions, some of which are executed from the
M2ASSIST menu at the top of the POINT screen, and some of which use the 00 key in
combination with one of the twenty-six alphabetical keys.

The first function we will use is Check Syntax, which appears in the M2ASSIST menu.

Step 1: Check the Syntax of PTDEMO.MOD.

Press I_ 0 D) on the M2ASSIST menu and use the highlight to execute the
Check Syntax. The syntax checker stops at BEGIN of the main program and
the following message appears on the status line:

';' expected at 'BEGIN'

Actually, a semicolon is missing after END Hello.

Step 2: Correct the PTDEMO.MOD listing.

Place a semicolon after Hello, as in the partial listing below. The corrected
listing should read:

END
END Hello;

BEGIN

WriteLn

Now run Check Syntax again, and you will see the message:

Syntax checker: no errors found

This means you are ready now to use the LOGITECH Modula-2 Compiler which takes
PTDEMO.MOD and creates PTDEMO.OBJ.

26

A Tutorial

Task 4: M2ASSIST - The Compiler

The next task is to attempt to compile PTDEMO.MOD.

When compilation is done, any key returns you to the source file in the editing window.

Step 1: Run the compiler.

Press (. Dol on the M2ASSIST menu and drag the cursor down the menu to
select Compile. A message at the bottom of the screen asks for options.
Press CD to accept the default options.

The screen is redrawn as follows:

m2comp c: \M2TMP\ptdemo .mod
LOGITECH Modula-2 compiler, 8086, MS-DOS OBJ-file, Rel. 3.00, (C), Aug 87
Copright (C) 1983, 1987 LOGITECH, Inc.

source file> C:\M2TMP\ptdemo.mod

Syntax and Declaration Analysis
Terminal in file: \M2LIB\SYM\Terminal.SYM

Block Analysis
---- error

Listing Generation
15 Hello("Hello Everybody"," Ill")

* 132: too many parameters

Termination
End Compilation

.press any key to continue ================= .•

Step 2: Return to the editing session.

Press any key to return to the editing session. You will see the listing file you
left when you selected the Compile command. In addition, at the bottom of the
screen, you will see a message that reads:

1 COMPILE ERROR.

27

Chapter 1

Task 5: M2ASSIST - Find Next Error

Errors found during Compilation can be found quickly in your source code with Find
Next Error. Find Next Error highlights the next statement tagged with a
compilation error after invoking Compile or Syntax checking.

You can insert/delete lines of text in the file and then go to the next tagged error.

Corresponding error messages from the .LST file are shown in a temporary window.
The error window closes at the first action.

Step 1: Look for the error.

Press (. 0 D) on the M2ASSIST menu and drag the cursor down the menu to
select Find Next Error.

The screen shifts to the general area of the error which is highlighted, and a box
appears at the bottom of the screen with the following message:

15

Hello ("Hello Everybody","! ! ! ")

"132

* 132: too many parameters

Step 2: Correct the source code.

Move to the area in the source code that is highlighted. As soon as you press a
key or move to the highlighted text the box with the error message dissappears,
leaving the highlighted text.

The source of the error is two string parameters where only one is allowed.
Remove the error (" , ") between Everybody and !!! in the line
Hello ("Hello Everybody","!!! ").

The corrected line will read:

Hello ("Hello Everybody! ! ! ")

28

A Tutorial

Step 3: Look for the next error.

Again, press (. 0 0) on the M2ASSI ST menu and drag the cursor down the
menu to select Find Next. Error.

That was apparently the only error, since the message on the status line at the
bottom of the screen reads:

NO MORE ERRORS

Step 4: Compile the source code again.

Now press [. 0 0) on the M2ASSIST menu and drag the cursor down the menu
to again select Compil.e.

The screen you get looks like the following:

m2comp c: \M2TMP\ptdemo .mod
LOGITECH Modula-2 Compiler, 8086, MS-DOS OBJ-file, ReI. 3.00, (C), Aug 87
Copright (C) 1983, 1987 LOGITECH, Inc.

source file> C:\M2TMP\ptdemo.mod

Syntax and Declaration Analysis
Terminal in file: \M2LIB\SYM\Terminal.SYM

Block Analysis
Code Generation
Termination

The interactive setting of the options was: S+ /R- /T+ /A- /0+ /F+
Code for 8086/8088 generated
Codesize: 155 bytes Datasize: 0 bytes

End Compilation

.press any key to continue ____________________ •

Step 5: Return to the POINT Window.

As soon as you press a key to return to your source code in the POINT window,
you find the following message at the bottom of the screen.

no l.isting fil.e was produced during the compil.e.

29

Chapter 1

Task 6: M2ASSIST - The Linker

When PTDEMO.MOD is successfully compiled, an additional file named
PTDEMO.OBJ is created by the compiler.

A Linker uses PTDEMO.OBJ to generate PTDEMO.EXE.

There are two ways to link an .OBJ file: use the M2ASSIST menu with the LOGITECH
Linker; or choose Exit to DOS Shell from the QUIT&ETC menu, and use a DOS or
other linker. If you use other than the LOGITECH Linker, include the directory with
your linker in the PATH statement, as mentioned in Installation.

Link with the LOGITECH Linker

Step 1: Link the .OBJ file.

Press (. 0 D) on the M2ASSIST menu and drag the cursor down the menu to
select Link. Press c:;o to accept the default Linker options.

The screen is redrawn as follows:

m2l C:\M2TMP\ptdemo
LOGITECH Modula-2 Linker, DOS 8086, Rel. n.nn, (C), Jul 87
Copright (C) 1987 LOGITECH, Inc.

main> C: \M2TMP\ptdemo
PTDEMO
RTSMAIN
RTSLANGU
TERMINAL
TERMBASE
ASCII
KEYBOARD
DISPLAY
RTSERROR

entry point defined at 9:
stack defined at 15F:
resolving the fixups

in file C:\M2TMP\PTDEMO.OBJ
in file c:\m2lib\.M2RTS.LIB
in file C:\m2lib\.M2RTS.LIB
in file C:\m2lib\.M2LIB.LIB
in file C:\m2lib\.M2LIB.LIB
in file C:\m2lib\.M2LIB.LIB
in file C:\m21ib\.M2LIB.LIB
in file C:\m2lib\.M2LIB.LIB
in file C:\m2lib\.M2RTS.LIB

171H [201]
OH [l5fO] length: 0000

creating EXE file : PTDEMO.EXE

.press any key to continue _________________ ,.

You are now ready to run the PTDEMO program you just linked with the LOGITECH
Linker.

30

A Tutorial

Link with the DOS Linker

If you have not yet purchased the LOG/TECH Modula-2 Toolkit, use the linker that
came with your copy of DOS.

Step 1 Select a DOS Shell.

Press (_ 0 0] on the QOIT+ETC menu and drag the cursor down the menu to
select Execute DOS Shell.

Step 2 Link from DOS

The screen below shows the prompts you will see as you link your copy of
PTDEMO.OBJ. Information to be entered is in bold face, and finalized with
QJ, unless there is no response to be entered in which case press QJ to
signify the default response.

EXIT returns you to Point

The IBM Personal computer DOS
version 3.nn

C:\M2TMP ~ink pt4emo c::cJ
IBM Personal Computer Linker
Version 2.3 (C) Copyright IBM Corp. 1981, 1985

Run File [PTDEMO.EXE) c::cJ
List File [NUL.MAP) c::cJ
Libraries [.LIB): \your_dir\m2~ib\m21ib+\m21ib\m2rt8 ~

C:\M2TMP exit ~

Enter the library names at the Libraries [. LIB] : prompt, as shown above:

\ YOUR_DIR\M2L1B\M2L1B+\M2L1B\M2RTS GD .
Step 3: Return to the POINT Window.

At the final prompt, type EXIT QJ, to return to the POINT window.
Now you can run the PTDEMO program you just linked with the DOS Linker.

31

Chapter 1

Task 7: M2ASSIST - Run .EXE File

Step 1: Run the .EXE file.

Press (. 0 0) on the M2ASSIST menu and drag the cursor down the menu to
select Run. The screen is redrawn as follows:

Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody

•

• press any key to continue ___ ===============,.

32

A Tutorial

Step 2: Run the .EXE file from DOS.

Quit POINT and return to DOS, by pressing OO-@J. Now, from
the command line, type PTDEMO GD. The screen is redrawn as follows:

c: \M2TMP\PTDEMO QJ

Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody
Hello Everybody

c: \M2TMP

~------------------------NOTE------------------------~

For information on other useful features of POINT, including multiple-window
editing, and additional features of the M2ASSIST extension. consult
the POINT Editor User's Manual.

33

Chapter 1

Review: The POINT Entry/Run Cycle

You started by invoking the POINT Editor, with PTDEMO.MOD loaded as an
argument. Then, from within POINT you were able to check syntax, compile, link, and
run the program. Let's look at the tools you just used and the steps you just took:

PT.EXE
Check Syntax

Edit

J,

PTDEMO.MOD

J,

Compile
withM2COMP

orM2C

J,

PTDEMO.OBJ

J,

Link

J,

PTDEMO.EXE

J,

Run .EXE
program

f- Loaded the PTDEMO.MOD file

f- Imported .SYM (Symbol) file(s)

~ .LST file for debugging

f- Imported .OBJ file(s)

~ .MAP file (option for overlays)

~ Screen Output

Now its time for you to write some Modula-2 programs of your own. Refer to the
bibliography in Appendix A which lists books, magazines, and user groups that are
devoted to Modula-2. And remember the words of Leonardo Da Vinci:

"The greatest tragedy in life is for theory to outstrip practice."

Good luck in your study of this great new programming language!

34

Modula-2 for the Pascal Programmer

Chapter 2
Modula-2 for the Pascal Programmer

Since Modula-2 evolved from Pascal it's easy for Pascal programmers to become
familiar with Modula-2.

There are two levels of difference between M odula-2 and Pascal. First, M odula-2
implements modem software engineering, such as, data abstraction, functional
abstraction, concurrency and more frequent use of modular programs. All these features
are not part of the standard Pascal definition, neither are they present in any
implementation. The second level of difference consists of relatively minor changes in
M odula-2 program syntax and constructs.

The most important difference is the introduction of the module.

2.1 Types of Modules

Modula-2 has three types of modules: program, definition, and implementation modules.
Program modules contain the source code for your main program. Program libraries are
created from matched pairs of definition modules and implementation modules. Source
code for all modules types is stored as standard text files and may be modified by any
text editor capable of working with these files. Program and implementation modules
use the extension .MOD. Definition modules use the file extension .DEF.

3S

Chapter 2

2.1.1 Program Modules

A program module is the main module of your program. A program consists of all the
modules that are referred to directly or indirectly by the main module. For program
modules, the module code, which is declared following the last BEGIN, constitutes the
main program. After initialization of all imported modules, the program will start there.

The examples in the following section are program modules. Program modules have the
following form:

MODULE <modulename>;
Import from the library modules to use, if any, in the form:

FROM <modulename> IMPORT
<list of identifiers separated by commas>;

or:
IMPORT <modulename>;
Declaration of constants, types, variables and procedures.

BEGIN
Code of the main program.

END <modulename>.

The list of identifiers imported may contain the names of constants, types, variables and
procedures exported from a library module. These names must be separated by commas.
Refer to Wirth's book Programming in Modula-2 for a more detailed explanation of the
module syntax.

2.1.2 Definition Modules

Definition modules define the interface between modules. By separating the definition of
the interface between modules from the implementation of those modules, the
implementations may be modified without having to recompile the entire system. As
programmers involved with large systems know, recompiling the entire system can be a
very time consuming process.

Definition modules have the following form:

DEFINITION MODULE <modulename>;
Import from the library modules to use, if any, in the form:
FROM <modulename>IMPORT

<list of names separated by commas>;
or:
IMPORT <modulename>;
EXPORT QUALIFIED

<list of names separated by commas>;
Declaration of constants, types, variables and procedures.
Procedure declarations consist of the procedure header only,

including the parameter list.
END <modulename>.

36

Modula-2 for the Pascal Programmer

2.1.3 Implementation Modules

Implementation modules contain the statements required to perform the functions defined
in the definition modules. They are similar in format to program modules except their
module body does not need to constitute a main program. Libraries are constructed from
matching sets of definition and implementation modules.

Implementation modules have the following form:

IMPLEMENTATION MODULE <modulename>;
Import from the library modules to use, if any, in the fonn:

FROM <modulename> IMPORT <list of names separated by commas>;
or:
IMPORT <modulename>;
Declaration of constants, types, variables and procedures.
Procedure declarations consist of the header and body,
including the code of the procedure.

BEGIN
Module initialization code.

END <modulename>.

The constants, types and variables declared in the corresponding definition module, must
not be repeated in the implementation. These names are known implicitly. However, for
every procedure specified in the definition part, a complete procedure, with matching
name and parameter list, must be contained in the implementation part.

M odula-2 enhances software production by shortening development time. While the real
speed of a Pascal or Modula-2 compiler is important, consider the time involved in
software production cycle. Include time for software updates and alterations. Pascal
often translates this into a significant additional programming effort, which offsets the
benefit of short Pascal compile time. Modula-2 minimizes this wasteful "domino effect"
by using highly independent module libraries.

The M odula-2 core is smaller than the Pascal core, because M odula-2 has no predefined
I/O statements, math functions or string manipulation routines. M odula-2 imports them
from library modules. So, Modula-2 really practices what it preaches!

This chapter has two main sections. The first shows a Pascal programmer how to write a
M odula-2 program or to convert a Pascal program to M odula-2. The second explains
the concept of the module.

The next section discusses differences in syntax and construct between Pascal and
Modula-2. This should allow a programmer to convert Pascal programs or to write new
ones in Modula-2.

37

Chapter 2

2.2 First Steps From Pascal To Modula-2

To demonstrate some basic syntax differences between Pascal and Modula-2, consider
the following simple number-squaring program:

MODULE FirstDerno;

(* List of imported procedures *)
FROM InOut IMPORT WriteString, WriteInt, ReadInt, WriteLn;

VAR Number, Square : INTEGER; (* Programs' identifiers *)

BEGIN
(* ---------- Input -------*)
WriteString("Type an integer "); ReadInt(Number);
(* ------ Processing ------*)
Square := Number * Number;
(* ---------- Output ------*)

WriteString("Number = "); WriteInt(Number,4); WriteLn;
WriteString("It's square = "); WriteInt(Square,6);
WriteLn;

END FirstDemo.

The following new concepts specific to M odula-2 are in the previous example:

• Modula-2 programs start with the reserved word MODULE followed by a program
name. The same name appears after the very last END statement. The program name
takes no arguments.

• All identifiers are case sensitive in M odula-2. Thus changing the case of one letter in
an identifier's name is sufficient to create a new identifier name.

• Modula-2 reserved words are always in upper case letters.
• Comments are enclosed in (* and *). Modula-2 uses curly braces for sets, hence they

do not enclose comments as in Pascal. Modula-2 allows nested comments.

• All I/O procedures are imported from a library module, such as InOut in this case.
Hence, Pascal's multipurpose WRITELN is replaced with a series of output
procedures. Each outputs only one item. If you look for the InOut module in
Programming in Modula-2, by Niklaus Wirth, you will find that it exports many
procedures. In our example we chose to "import" the four required procedures only.

38

Modula-2 for the Pascal Programmer

2.3 More Differences

Labels and GOTO statements are no longer supported by Modula-2. To translate Pascal
programs with labels or GOTO statements, you need to rewrite your Pascal program.

Constants are declared, similar to Pascal. M odula-2 allows for constant expressions to
be used wherever a constant is expected. Integer constants now include hexadecimal and
octal numbers. Thus: 12AFH represents a hexadecimal number, ending with an H. 27B
is an octal number, ending with a B. In addition, 27C represents the same octal number,
but its type is CHAR. Real constants are similar to those in Pascal. When expressed in
scientific notation, only the uppercase E must be used. All real constants require a
decimal point.

Character and string constants are similar to Pascal with an enhancement. Single or
double quotes may be used to delimit them. Thus, "Hello" and ' Hello' are both
acceptable, but "Hello' is not. The choice of delimiter may be dictated by the presence
of a quote symbol as part of the string constant. Thus "Don' t" forces the use of double
quotes, since a single one is part of the string.

Similarly, ' They have "some" children' must be delimited by single quotes.

Modula-2 defines these basic data types: integer, boolean, characters, real, cardinal and
bitset. The first three types are used as they are in Pascal. Using reals has a restriction
that prevents it from being mixed with integers and cardinals in an expression.
Predefined type converter functions must be used. Cardinals are unsigned integers with
values ranging from zero to an upper, machine-fixed limit. While cardinals and integers
are assignment compatible, they too cannot be directly mixed in an expression. The
bitset type is a predeclared set type for low level data manipulation.

Modula-2 supports sets with some syntax modifications. Set constants are enclosed in
curly braces. Set types are defined with SET OF <enumerated or subrange types>:

• CONST OctalNumSet = {1,2,3,4,5,6,7,8};

• TYPE Binary = SET OF [0 .. 1];

Modula-2 implements a generous number of set operations, including the symmetric set
differences.

39

Chapter 2

Modula-2 supports enumerated types just like Pascal. Subranges are also similar, but
Modula-2 requires them to be enclosed in square brackets. Why? This enables subrange
types to be used in defining array limits, as in:

= [1. .10];
= [1 .. 100];
= ARRAY Small Range OF REAL;
= ARRAY BigRange OF REAL;

TYPE Small Range
BigRange
SmallArray
BigArray
HugeArray
Table
Matrix

= ARRAY Small Range, BigRange OF REAL;
= ARRAY [1 .• 10], [1 •• 100] OF REAL;
= ARR.lI.Y [1. .10,1. .10} OF REAL; (* WRONG! *)

The above list also shows the difference between the two languages in declaring arrays.
Modula-2 allows subrange types to be used. Moreover, multidimensional arrays must
have the range of each dimension separated by a comma. However, using
multidimensional arrays in a program follows the familiar Pascal notation.

Modula-2 regards character strings as merely an array of characters. In normal practices
the ASCII null (zero code) is used as a string terminator. However, it is possible to use
slightly more elaborate record structures to implement strings. String manipulation
depends on library modules. The standard string library offers the essential operations
and treats strings as an array of characters.

Fixed records are no different in Modula-2 than in Pascal. Variant records have been
extended to allow for more than one variant field. In addition, the latter may have an
ELSE clause option. Consider the following example:

TYPE Material = (Element, Compound);
State = (Liquid, Gas, Solid):

Chemical Pointer = POINTER TO Chemical:

Chemical = RECORD
Name : ARRAY [1 .. 40] OF CHAR;
Formula: ARRAY [1 •• 20] OF CHAR;
CASE MaterialType Material OF

END;

Element At omicNumber

Compound

Valence
AtomicWeight
Molecularweight
CationCharge,

AnionCharge
CationName,

AnionName

CASE NorrnalPhysicalState:State OF
Liquid LiquidDensity,BoilingPoint
Gas VaporPressure,VaporTemp
Solid : SpecificGravity, MeltingPoint

END;

40

CARDINAL;
INTEGER;
REAL I
REAL;

INTEGER;

ARRAY [1 •. 15] OF CHAR;

REAL I
REAL I
REAL;

Modula-2 for the Pascal Programmer

Dynamic records can be created and accessed using pointers. Their declaration is a bit
more verbose, using the keywords POINTER TO, as in:

MODULE PointerDemo;
(* Partial listing *)
TYPE CardPtr = POINTER TO CARDINAL;

ComplexPtr = POINTER TO Complex;
Complex = RECORD

Re, Imag : REAL;
END;

VAR CPtr : ComplexPtr;
(* Other variables declared here *)

BEGIN
New(CPtr}; (* Create new dynamic record *)

(* Initialize to square root of minus one *)
CPtrA.Re := 0.0; CptrA.Imag := 1.0;

(* rest of the program *)
END PointerDemo.

As shown above, pointers are used with the carat symbol. The WITH keyword is also
used in Modula-2 to reference a record's field name without the record-name-dot
notation. A mandatory END is required. Modula-2 allows one record identifier per
WITH statement. There is no need for the BEGIN keyword after the DO reserved word.

41

Chapter 2

Creating dynamic variables with variant record structures uses the predefined NEW
procedure and includes variant tags as additional arguments. Recalling the variant record
Chemical, and its related pointer type ChemicalPointer, we proceed to define the
following pointer-typed variables:

FROM Storage IMPORT ALLOCATE
VAR Iron, Water, Oxygen : ChemicalPointer;

and create dynamic variables using the above pointers:

(* Iron is an element and a solid at normal conditions *)
NEW (Iron, Solid} ;

(* Water is a compound and a liquid at normal conditions *)
NEW(Water,Liquid};

(* Oxygen is an element and a gas at normal conditions *)
NEW(Oxygen,Gas};

Since I/O operations are no longer in the Modula-2 core, the predefined Pascal FILE OF
<type> has no equivalent. Instead, File structures depend on the I/O library module.

Modula-2 variable declaration is identical to that in Pascal with one additional feature.
An absolute address in square brackets, may follow the variable name. For example:

VAR Screen[OB800H:OH] : ARRAY [l .• MAXCOL], [l .. MAXROW] OF CHAR;

Modula-2 has simplified the syntax of statement blocks. In Pascal loops or WITH
statements, if the DO reserved word was followed by BEGIN, there is a compound
statement. Modula-2 has dropped the BEGIN keyword after DO and replaced it with a
mandatory END to close the loop or WITH body.

42

Modula-2 for the Pascal Programmer

The IF statement is very similar to that in Pascal with the following changes:

• No need for BEGIN-END in THEN or ELSE clauses with more than one statement.

• The IF construct must close with the END statement.

• The Pascal ELSEIF is now ELSIF, one letter shorter.

The above changes in the following function calculate your checking account balance.
For less than $500, a local bank charges you with a $5.00 service charge. For under
$1500, you get 5.4% interest rate. Beyond that amount, you get a 9.4% rate.

PROCEDURE BankOnIt(Savings : REAL) : REAL;

VAR BankCharges, Interest : REAL;

BEGIN
BankCharges := 0.0;
IF Savings < 500. THEN

(* Apply a five dollar service charge *)
BankCharges := 5.00;
Interest := 5.4 (* percent *)

ELSIF Savings < 1500. THEN
(* same rate as above, but no charges *)
Interest := 5.4

ELSE (* Very nice account *)
Interest := 9.4;

END; (* IF statement *)
RETURN (Savings * (1. + Interest/lOa.) - BankCharges};

END BankOnIt;

The CASE statement has also been enhanced in Modula-2. A much needed catch-all
ELSE clause is recognized. Statement sequences for each case are simply separated by
vertical bars. The BEGIN-END keywords are no longer needed for compound statements.
Here, the CASE statement translates numeric school grades into letters:

CASE NumericGrade OF
90 •. 100 Grade:= 'A';

Message := 'Very Nice work champ!' I
80 •• 89 Grade := ' B' ;

Message := 'Nice work' I
70 .. 79 Grade:= 'C';

Message := 'OK, but you can do better'
ELSE Grade := 'F';

Message := 'Sorry, you failed';
END; (* CASE NumericGrade *)

43

Chapter 2

M odula-2 has improved on loops where needed. The REPEAT-UNTIL loop is identical
to its implementation in Pascal. The wmLE-DO loop now requires a mandatory END
statement to bracket the loop. This is regardless of the number of statements inside the
loop. No BEGIN keyword is required after the DO. The FOR-DO loop has undergone
even more changes. Like the above WHILE loop, it must have an END statement.
Modula-2 allows the loop counter to increment/decrement by more than one, using the
BY clause. These "steps" can be positive or negative. Appropriately, Modula-2 no
longer supports the Pascal DOWNTO keyword. Here is a short program demonstrating
the FOR·DO loop in its new construct.

MODULE AreaUnderCurve;
(* Program to calculate area under curve Y = X*X between *)
(* zero and one. Simpson's rule is used. *)

FROM InOut IMPORT WriteString, WriteLn;
FROM RealInOut IMPORT WriteReal;

VAR Y : ARRAY [1 •• 11] OF REAL;
Increment, Area, SumEven, SumOdd REAL;
i CARDINAL

BEGIN
Increment := 0.1;

i := 1
WHILE i <= 11 DO (* Initialize Y array *)

END:

Y[i] := (Increment * FLOAT(i» * (Increment * FLOAT(i»
INC (i) (* Increment i by one *);

(* Initialize summations *)
SumEven := 0.0; SumOdd := 0.0;
(* Start loop for summing even terms *)
FOR i := 2 TO 10 BY 2 DO
SumEven := Sumeven + Y[i];
END;

(* Start loop for summing odd terms, counting back *)
FOR i := 9 TO 1 BY -2 DO

SumOdd := SumOdd + Y[i];
END;
Area := Increment / 3.0 * (Y[l] + 4.0*SumEven + 2.0*SumOdd + Y[ll]);
WriteString("Area for XA2 between 0 and 1 = H);
WriteReal(Area,14); WriteLn;

END AreaUnderCurve.

44

Modula-2 for the Pascal Programmer

Modula-2 introduces a new loop construct, the open loop. The keywords LOOP and
END define the open loop body. To exit such a loop an EXIT statement is used. The
open loop is very flexible. An if statement with EXIT placed right after the LOOP
keyword gives the effect of a WHILE loop, as in:

i := 0; j := 0;
WHILE i < 10 DO

INC (i);
INC(j,i);

END;

i := 0; j := 0;
LOOP
IF i >= 10 THEN EXIT; END;

INC(i);
INC(j,i) (*j:=j+i*);

END;

Similarly, placing the loop exit test just before the end of the loop simulates the
REPEAT-UNTIL loop.

i := 0; j := 0
REPEAT

INC(i);
INC(j,i);

UNTIL i = 10;

i := 0; j := 0;
LOOP

INC(i);
INC(j,i) ;

IF i = 10 THEN EXIT; END;
END;

45

Chapter 2

The loop exit test can be anywhere inside the loop body, as shown in the following
example. The program calculates the Bessel function of the first kind.

MODULE BesselFunction;

FROM InOut IMPORT WriteString, WriteLn, ReadCard;
FROM RealInOut IMPORT WriteReal, ReadReal;

CaNST Epsilon = 1.0E-08;

VAR Sum, Term, X, Y,
Factor1, Factor2, Factor3, PowerTerm REAL;
Order, i CARDINAL;

BEGIN
WriteString("Enter order of Bessel function A};
ReadCard(Order}; WriteLn;
WriteString{"Enter argument A};
ReadReal{X}; WriteLn;
Sum := 0.0; i := 0;
Y := -0.25 * X * X;
Factor1 := 1.0; Factor2 := 1.0;
Factor3 := 1.0; PowerTerm 1.0;
IF Order > a THEN

FOR i := 1 TO Order DO
Factor3
PowerTerm

Factor3 * FLOAT(i};
PowerTerm * X / 2.0;

END;
END;

i a; (* Initialize counter *)
LOOP

Term := Factor1 / Factor2 / Factor3;
Sum := Sum + Term;
(* Is added term insignificant ? *)
IF ABS(Term} < Epsilon THEN EXIT; END;
INC(i};
Factor1 Factor1 * Y;
Factor2 Factor2 * FLOAT {i};
Factor3 .= Factor3 * FLOAT(i};

END;
{* Program flow resumes here after EXIT *}
Sum := Sum * PowerTerm; {* Last calculation *}
WriteString("Bessel Function = "};
WriteReal{Sum,14}; WriteLn; WriteLn;

END BesselFunction.

Each EXIT statement resumes program flow after the exited loop body. Therefore, to
exit nested open loops one needs as many exit statements as there are loops.

46

Modula-2 for the Pascal Programmer

2.4 Functions and Procedures

Modula-2 considers a function as merely a procedure returning a value. Thus, the
keyword FUNCTION has been dropped and replaced with PROCEDURE. The other
change implements a RETURN statement that exits the function and returns the sought
value. If there are any statements after the RETURN, they will not be executed.
LOGlTECH Modula-2, Version 3.0, functions only return basic types and pointers.

Consider the following examples of a function to calculate the square root of a real
number, using Newton's iterative method.

PROCEDURE SquareRoot(X : REAL) : REAL;

CaNST Epsilon = loOE-08; (* Tolerance factor *)

VAR Y : REAL; (* Local storage for square root *)

BEGIN
Y:= X /2.; (* Initial guess for square root *)
REPEAT (* Improve guess by Newton's iterations *)

Y = (Y + X / Y) / 2.;
UNTIL ABS(Y*Y - X) < Epsilon;
RETURN Y (* back to caller *);

END SquareRoot;

An additional difference between the two languages, is that Modula-2 requires all
procedures and functions to include their names after the last END in the subprogram.

Like Pascal, Modula-2 allows parameter passing by value or by reference (using VAR
declaration). The latter makes it possible to simulate a function that returns structured
data types. Modula-2 has implemented an important new feature in parameter passing-­
open arrays. This enables procedures (and functions) to tackle arrays of consistent type,
but varying in size. This makes it easier to write general purpose routines in Modula-2.
Open arrays are limited to one dimensional arrays. They are declared in an argument list
as ARRAY OF <type>, with no dimension limits. Inside the procedure body the
dimension bounds are mapped onto [0 .. <array size - 1>]. Modula-2 provides the
predefined HIGHO function to return the upper bound value for an open array. Thus an
open array is mapped onto [0 .. HIGH «Open array name»].

47

Chapter 2

Here is an example for a routine to calculate the mean value of an array of reals.

PROCEDURE Mean(X : ARRAY OF REAL) : REAL;

VAR i CARDINAL;
Sum : REAL;

BEGIN
Sum := 0.; (Initialize sum *)
FOR i := 0 TO HIGH(X) DO

Sum := Sum + X[ij;
END;
RETURN Sum / FLOAT(HIGH(X) + 1);

END Mean;

Function Mean is able to handle arrays of varying sizes. The number of elements in the
passed array X is (illGH(X) + I). This assumes that the entire array X is filled with data.

Procedural and functional types are supported in Modula-2. The following example
demonstrates the first type. The program below reads an array of cardinals from a file
and sorts them. The sorting routines are imported. The program examines the list size
and depending on its value employs the appropriate sorting method. For small arrays, the
bubble sort is used. For medium arrays the Shell sort is called upon. QuickSort is
reserved for large arrays. To demonstrate the procedural type, the program defines
SortProc. It is a procedure taking two arguments: an array of cardinal and a scalar type
cardinal. The variable SortMethod is of SortProc type. In the IF statement we assign
either imported sorting procedure to SortMethod. Notice that the assignment does not
involve any procedural arguments. Following the IF statement is a call to SortMethod
with a complete argument list. The call will execute the assigned procedure (BubbleSort,
ShellSort or QuickSort).

48

Modula-2 for the Pascal Programmer

Here is the program:

MODULE Sort;

FROM InOut IMPORT WriteString, ReadString, WriteCard, WriteLn;
(* Modules FileIO and CardinalSortLib are fictitious *)

FROM MyFileIO IMPORT TextFile, EOF, Assign, Reset, ReadCardinal, Close;
FROM CardinalSortLib IMPORT ShellSort, QuickSort, BubbleSort;

(* Define a procedure type with an array of cardinals *)
(* and a scalar cardinal as arguments. *)
(* Imported sorting procedures must have same arguments *)

TYPE SortProc = PROCEDURE (VAR ARRAY OF CARDINAL;CARDINAL);

VAR CardinalList
Num, i
Filename

ARRAY [1 •. 5000] OF CARDINAL;
CARDINAL;

F
ARRAY [1 •. 14] OF CHAR;
TextFile

SortMethod SortProc;

BEGIN
WriteString("Enter data filename "):
ReadString(Filename)
Assign(TextFile,Filename);
Reset (F)
Num := 0;
WHILE NOT EOF(F) DO

INC (Num);
ReadCardinal(F,CardinaIList[Num]);

END;
Close(F);
IF Num <= 30 THEN

(* Small list, use bubble sort *)
SortMethod := BubbleSort (* No arguments *)

ELSIF Num <= 150 THEN (* Medium list => Shell sort *)
SortMethod := Shell Sort (* No arguments *)

ELSE (* QuickSort used for large array *)
SortMethod .= QuickSort (* No arguments *);

END;

SortMethod(CardinaIList, Num); (* Sort list *)

FOR i := 1 TO Num DO (* Display sorted list *)

END;

WriteCard
WriteString
WriteCard
WriteLn;

END Sort.

(i, 5);
(' ,) ;

(CardinaIList[i],6);

Modula-2 provides PROC, a predefined parameterless procedure type. This is useful in
creating coroutines, which are discussed later.

Predefined functions and procedures are listed in Wirth's Programming in Modula-2.

49

Chapter 2

2.5 Use of Modules

2.5.1 User Definable Modules

M odula-2 implements library modules to benefit software productivity. This affects both
the individual programmer and a team of programmers working on a big project. One of
the advantages of library modules is that they minimize side effects between modules
written by different programmers or written at different times. This reduces debugging
greatly and significantly improves on software maintainability.

The virtue of modules stems from the fact that inter-module communication is spelled
out and is not ambiguous. This is done by specifying the objects exported and imported.
As we have seen in previous M odula-2 programs, there are invariably lists of imports.
Each specifies the module from which to import and the specific procedures imported. If
the reader looks at the definition module of, for example, module InOut, he will find all
the imported items defined in that module (Le. marked for export). Modula-2 works on
the principle that you can obtain an item only if it is made available to you.

In M odula-2 a library module is made up of two parts: the definition and the
implementation modules. The definition module is regarded as the interface with client
modules. All exported objects are catalogued there. This includes constants, data types,
variables and procedures. The implementation module has all the detailed exported
procedure code and additional local constants, data types, variables and procedures.
Optional module initialization code lines may be included. Each of the definition and
implementation modules are compiled separately. The programmer may tlimprovetl on
the implementation module by replacing old algorithms with more efficient ones. As
long as the exported objects are not altered, we only need to recompile the
implementation module.

50

Modula-2 for the Pascal Programmer

Consider the following example to demonstrate some of the above points. We present a
small library module to create and add complex numbers. The definition module is:

DEFINITION MODULE ComplexOps;

EXPORT QUALIFIED
Complex, (* Type *)
MakeComplex, AddComplex; (* Procedures *)

TYPE Complex = RECORD Real, Imaginary : REAL; END;

(* Only procedure headings are needed *)

PROCEDURE MakeComplex(X, Y : REAL; (* Input *)
VAR C : Complex (* Output *))

(* Procedure to create a complex number from X & Y components. *)

PROCEDURE AddComplex (A, B : Complex; (* Input *)
VAR C : Complex (* Output *));

(* Procedure to add complex numbers A & B to give C *);

END ComplexOps.

The definition module ComplexOps exports the "transparent" type Complex. The
terminology refers to types whose definition is made available to client modules.
M odula-2 also allows the export of "opaque" types, where the data type defmition is not
revealed. We will discuss this in more detail later. For now, it is enough to say that there
is the following difference between transparent and opaque types: the ability of the client
modules to have their own procedures (possibly available for export) to manipulate the
transparent types only. This privilege is denied with opaque types. Thus clients modules
of ComplexOps can develop and export procedure to subtract, divide and multiply
complex numbers. Their access to the components of type Complex makes it possible.

In general, definition modules need only the heading of the exported procedures, and the
definition module ComplexOps is no exception. In practice, the definition module should
be the first one written to set the module specification. In large software projects this is
the appropriate thing to do.

51

Chapter 2

The implementation module is:

IMPLEMENTATION MODULE ComplexOps;

(* Type Complex has been defined in the definition module *)

PROCEDURE MakeComplex (X, Y : REAL; (* Input *)
VAR C : Complex (* Output *) }

(* Procedure to create a complex number from X & Y *)
(* components. *)
BEGIN

C.Real := X;
C.Imaginary := Y;

END MakeComplex;

PROCEDURE AddComplex(A, B : Complex; (* Input *)
VAR C : Complex (* Output *) };

(* Procedure to add complex numbers A & B to give C *)
BEGIN

C.Real := A.Real + B.Real;
C.Imaginary := A.Imaginary + B.Imaginary;

END AddComplex;

END ComplexOps.

The implementation module does not contain the definition of type Complex. Since it is
exported, the compiler is already aware of it through the definition module. The
exported procedures are listed in the module. All the imported objects needed in each
module need to be explicitly imported regardless, if it is a definition module, an
implementation module, or a program module. Otherwise, import lists are located in the
implementation module. Local constants, data types, variables and procedures are of
course included in the implementation module.

We spoke earlier of the ability to change and improve the code in the implementation
module. In certain cases this may require that exported transparent data types be
modified. This poses a problem since transparent types give library module developers
little or no control over how client modules use them. Most likely the sought
improvement may be hindered because of potential data type incompatibility between the
old and new structures. A new sister module is created. However this solution is not
always a sound way to go.

52

Modula-2 for the Pascal Programmer

While the above discussion refers to a rather specific case, it also points to a broader
programming aspect: full control over exported data types. M odula-2 has met this need
by allowing opaque exported types. In this case the definition module lists the name of
the opaque type only. No type structure is defined there. Instead, it is located in the
implementation module. With the details about the structure denied to client modules, the
exporting module has the monopoly on procedures that manipulate opaque types. Thus,
with full control over opaque types comes the responsibility to export every procedure
needed to process the data types in question. Care in planning ahead must be exercised.

Return to the complex number addition module. Complex numbers may be represented
by two dimensional rectangular coordinates (X,Y). Alternatively, the same (X,Y) point
can be replaced by polar coordinates: a modulus and an angle. While the two systems are
equivalent, their components represent different physical entities. It is possible to
develop a library of complex operations using rectangular coordinates and later change
the implementation module to use polar ones. An opaque complex type makes the
smooth transition.

Below is the new definition module for ComplexOps. Notice that the exported type
Complex has no structure definition associated with it.

DEFINITION MODULE ComplexOps;
FROM Storage IMPORT ALLOCATE;

EXPORT QUALIFIED
Complex, (* Type *)
MakeComplex, AddComplex; (* Procedures *)

TYPE Complex: (* Is now opaque *)
(* Only procedure headings are needed *)

PROCEDURE MakeComplex (X, Y : REAL; (* Input *)
VAR C : Complex (* Output *»

(* Procedure to create a complex number from X & Y components. *)

PROCEDURE AddComplex(A, B : Complex; (* Input *)
VAR C : Complex (* Output *»;

(* Procedure to add complex numbers A & B to give C *);

END ComplexOps.

53

Chapter 2

The implementation module is similar to the previous version. Within it the Complex
type is now fully defined. The fields of the type Complex have been renamed to remind
the reader that rectangular coordinates are used to represent complex numbers. Notice
that opaque types must be pointer to other structures. This is mandatory in M odula-2.

IMPLEMENTATION MODULE ComplexOps;
FROM Storage IMPORT ALLOCATE;

(* Type Complex uses rectangular coordinates *)
TYPE Complex = POINTER TO RECORD

XCoord, YCoord : REAL;
END;

PROCEDURE MakeComplex(X, Y : REAL; (* Input *)
VAR C : Complex (* Output *))

(* Procedure to create a complex number from X & Y components.*)
BEGIN

NEW (C) ;
C".XCoord X;
C".YCoord Y;

END MakeComplex;

PROCEDURE AddComplex (A, B : Complex; (* Input *)
VAR C : Complex (* Output *));

(* Procedure to add complex numbers A & B to give C *)
BEGIN

C".XCoord := A".XCoord + B".XCoord;
C".YCoord := A".YCoord + B".YCoord;

END AddComplex;

END ComplexOps.

S4

Modula-2 for the Pascal Programmer

Here is the implementation module version that uses polar coordinates:

IMPLEMENTATION MODULE ComplexOps;
FROM Storage IMPORT ALLOCATE;

FROM MathLibO IMPORT sqrt, arctan, sin, cos;

(* Type Complex uses polar coordinates *)

TYPE Complex = POINTER TO RECORD
Modulus, Angle : REAL;

END;

PROCEDURE MakeComplex (X, Y : REAL;
VAR C : Complex

(* Input *)
(* Output *»

(* Procedure to create a complex number from X & Y components. *)
BEGIN

NEW (C) ;
CA.Modulus := sqrt(X * X + Y * Y);
CA.Angle arctan(Y / X);

END MakeComplex;

PROCEDURE AddComplex (A, B : Complex; (* Input *)
VAR C : Complex (* Output *»;

(* Procedure to add complex numbers A & B to give C *)

VAR X, Y : REAL;

BEGIN
X := AA.Modulus * cos(AA.Angle) + BA.Modulus * cos(BA.Angle);
Y := AA.Modulus * sin (AA.Angle) + BA.Modulus * sin(BA.Angle);
MakeComplex(X, Y, C);

END AddComplex;

END ComplexOps.

The following changes took place:

• Four required mathematical functions are imported from MathLibO.

• The Complex type is defined using the Modulus and Angle fields.
• The body of the two module procedures has been significantly changed.
• Procedure AddComplex now calls procedure MakeComplex.

Note: the MakeComplex procedure in the very. first implementation seemed an
extravagant export: given the definition of Complex, client programs can assign values to
the record fields effortlessly. The situation is reversed with the opaque Complex: client
modules now really need procedure MakeComplex, since they have no idea about its
internal structure. The rectangular and polar versions demonstrate this point.

S5

Chapter 2

2.5.2 Importing Procedures with Identical Names

With the incentive to develop library modules it is inevitable that the same procedure
names appear in more than one module. How do we resolve the conflict due to importing
two identically named routines? It is possible to omit the import list, thus importing the
entire library. To use the imported routine we use the same notation as with referencing
fields of record structures. With the module name constantly referenced, the compiler is
able to distinguish which procedure we are calling. Moreover, the program readability
will enjoy the clarity too. Consider the following example.

MODULE ImportAllDemo

IMPORT InOut:
IMPORT MyFileIO:

VAR Filename ARRAY [1 •. 14] OF CHAR:
F MyFileIO.TextFile: (* Imported type *)
Message ARRAY [1 .• 80] OF CHAR:
NumLines CARDINAL;

BEGIN;
InOut.WriteString("Enter file name "):
InOut.ReadString(Filename):
InOut.WriteLn:
REPEAT

InOut.WriteString("Enter number of lines "):
InOut.ReadCard(NumLines):
InOut.WriteLn:

UNTIL NumLines > 0:

MyFileIO.Assign(F,Filename):
MyFileIO.Reset(F);
InOut.WriteString("Enter text ");
InOut .WriteLn:
REPEAT

InOut.ReadString(Message):
MyFileIO.WriteString(F,Message);
DEC(NumLines);

UNTIL NumLines = 0;
MyFileIO.Close(F);

END ImportAllDemo.

In the above example we can distinguish for each call to procedure WriteString whether it
is imported from modules InOut or MyFileIO.

56

Modula-2 for the Pascal Programmer

2.5.3 Standard Library Modules

LOG/TECH Modula-2 comes with a variety of versatile library modules. They supply
your programs with a wide gamut of capabilities. This includes string manipulation, file
I/O, disk directory access, data conversions, mathematical functions, DOS and low level
access, coroutines, just to name a few. Many of the above routines are part of Pascal, but
not M odula-2. Thus M odula-2 depends heavily on a core or fundamental library
modules. The reader is referred to other parts of the manual where the definition
modules are discussed.

There are three small but very important modules -- SYSTEM, Storage and Processes. We
will discuss these modules because they export low level and process management
routines.

The module Storage tackles the allocation and deallocation of dynamic variables.
ALLOCATE and DEALLOCATE procedures are defined as:

PROCEDURE ALLOCATE (VAR a : ADDRESS; size : CARDINAL)
PROCEDURE DEALLOCATE (VAR a : ADDRESS; size : CARDINAL)

where ADDRESS is a pointer to a memory location imported from module SYSTEM.
These are equivalent to calling the NEW and DISPOSE procedures used for the same
purpose. The following demonstrates how the two sets of procedures work identically.
Let us define the following data types and variable.

TYPE Ptr = POINTER TO Element;
Element = RECORD

Volume, Weight REAL;
Name ARRAY [1 •. 80) OF CHAR;

END;

VAR Indicator ptr;

Calling NEW(Indicator) and ALLOCATE(Indicator, TSIZE(Element» yield the same
result: creating a dynamic variable accessed through the pointer Indicator. TSIZEO is a
function imported from module SYSTEM that returns the size of any data type.
Similarly, DISPOSE(Indicator) and DEALLOCATE(Indicator, TSIZE(Element» both undo
the effect of the above procedures.

57

Chapter 2

Let us demonstrate the use of the ALLOCATE and DEALLOCATE procedures in
developing a short dynamic string library module.

DEFINITION MODULE DynamicString;

EXPORT QUALIFIED STRING, NewString, RemoveString, AssignString, Length;

TYPE STRING; (* Opaque type *)

STRING; (* Output *) PROCEDURE NewString (VAR S
MaxLength

(* Create a dynamic string *)
CARDINAL (* Input *»;

PROCEDURE RemoveString (VAR S STRING; (* Input
(* Remove a dynamic string *)

PROCEDURE AssignString (VAR S STRING; (*
A ARRAY OF CHAR (*

(* assign an array of characters to a STRING

PROCEDURE Length (S : STRING) : CARDINAL:
(* Function to return string length *);

END DynamicString.

The implementation module is:

IMPLEMENTATION MODULE DynamicString

FROM SYSTEM IMPORT ADDRESS, TSIZE:
FROM Storage IMPORT ALLOCATE, DEALLOCATE:

TYPE STRING = POINTER TO RECORD
Long,

END;

MaxLong CARDINAL;
Element ADDRESS;

*)

*» :

Output *)
Input *»

PROCEDURE NewString (VAR S
MaxLength

(* Create a dynamic string *)

STRING; (* Output *)
CARDINAL (* Input *»:

BEGIN
NEW(S) :

END;

WITH S DO
Long := 0;
MaxLong := MaxLength:

ALLOCATE (Element, + MaxLong);

END NewString:

58

Modula-2 for the Pascal Programmer

PROCEDURE RemoveString(VAR S : STRING; (* Input *)};
(* Remove a dynamic string *)

BEGIN
WITH S DO

DEALLOCATE (Element, + MaxLong};
END;
DISPOSE(S};

END RemoveString;

PROCEDURE AssignString (VAR S : STRING; (* Output *)
A ARRAY OF CHAR (* Input *)}

(* assign an array of characters to a STRING *)

VAR Ptr POINTER TO CHAR;

BEGIN
IF A[O] <> OC

THEN i := 0;
WHILE (i <= HIGH(A)} AND (A[i] <> OC)

AND (SA.MaxLong>= (i*TSIZE(CHAR}})
DO

Ptr :=SA.Element + i * TSIZE(CHAR);
A[i] ; PtrA

INC (i);
END;

SA.Long := i + 1;
ELSE

SA.Long := 0 (* Empty string *);
END;

END AssignString;

PROCEDURE Length(S : STRING} : CARDINAL;
(* Function to return string length *)

BEGIN
RETURN SA. Long;

END Length;

END DynamicString.

59

Chapter 2

The next module we examine is SYSTEM. It exports four data types: BYTE, WORD,
ADDRESS and PROCESS. The type WORD corresponds to one hardware storage unit.
For example, the types CARDINAL and INTEGER use one WORD of storage. The type
ADDRESS is defined as POINTER TO WORD. The type PROCESS is used in declaring
coroutines.

The type WORD opens the door for some data conversion and the creation of general
purpose (generic) routines. Recall that Modula-2 routines accept open arrays of any type
in their argument lists. The ARRAY OF WORD is no exception and is compatible with
any type, scalar or otherwise.

In the first example of using WORD we demonstrate the compatibility between
CARDINAL and INTEGER. Each type occupies one WORD of storage, a key feature in
the example. The following procedure searches an array of either types. The index of the
matched element is returned. A boolean flag is used to indicate whether the returned
value reflects a successful search. We assume that the array values are in the range
[0 .. 32767], the common value range for integers and cardinals.

PROCEDURE SearchArray (A ARRAY OF WORD; (* Input *)
S WORD (* Input *)
VAR Found BOOLEAN (* Output *)

VAR if SoughtValue CARDINAL;

BEGIN
Found := FALSE; (* Default outcome *)

:= 0; (* Zero search index *)
SoughtValue := CARDINAL(S);

WHILE (i <= HIGH(A)) AND (NOT Found) DO
IF CARDINAL(A[i]) = SoughtValue THEN (* Found it! *)

Found := TRUE
ELSE (* Next element? *)

INC (i);
END:

END; (* WHILE *)
RETURN i;

END SearchArray;

CARDINAL;

Using ARRAY OF WORD to create generic modules is more elaborate when handling
multi-word data structures. Since the processed object size varies, we must supply a
single "sample" type in the generic procedure argument list. The above sample type is
used as a template to determine the type size and provide local scalar variables. Another
set of needed parameters is the user-supplied operations, such as comparisons, performed
on the data objects. This is supplied in the form of procedural or functional parameters.

60

Modula-2 for the Pascal Programmer

Here is a simple procedure to perform a generic linear list search on an array:

PROCEDURE GenericLookUp (VAR SearchArray
SampleScalarType, SearchValue
IsItEqual
VAR Found
VAR Num, TypeSize, SearchIndex

PROCEDURE Get Element (Index : CARDINAL;
VAR Object: ARRAY OF WORD);

(* Procedure to extract one object *)
VAR i : CARDINAL;

BEGIN
FOR i := 0 TO TypeSize-l DO

Object[ij := SearchArray[(Index*TypeSize + i};
END;

END Get Element;

BEGIN
TypeSize
Num

HIGH (SampleScalarType) + 1;
'= (HIGH (SearchArray) + I} DIV TypeSize;

SearchIndex 0;
Found '= FALSE;
WHILE (SearchIndex < Num) AND (NOT Found)

DO GetElement(SearchIndex, SampleScalarType};
IF IsItEqual(SampleScalarType, SearchValue}

THEN Found := TRUE
ELSE

INC(SearchIndex};
END;

END;
RETURN SearchIndex;

END GenericLookUp;

ARRAY OF WORD;
ARRAY OF WORD;
SuppliedPROC;
BOOLEAN) : CARDINAL;
CARDINAL;

In the above example we supply an array of objects via SearchArray. The SearchValue
and SampleScalarType variables supply the searched value and an additional internally
needed copy of the single object. The local procedure GetElement is used to extract a
member of the search array and save it into SampleScalarType. The user-supplied
function IsItEqual is used in comparing the search value with an array element.

61

Chapter 2

Below is a sample for the IsItEqual function dealing with date records. Local pointers
are used to access the record structure in question. Once the pointer addresses are
assigned, the RETURN statement supplies the logical result for the two-field test.

PROCEDURE IsItEqual(Elernentl,
Elernent2 : ARRAY OF WORD) : BOOLEAN;

VAR ptrl, Ptr2 : POINTER TO RECORD

BEGIN

DayNurnber, MonthNurnber : CARDINAL;
END;

(* Get pointers addresses *)
Ptrl := ADR(Elernentl};
Ptr2 := ADR(Elernent2);
RETURN ((PtrlA.DayNurnber = Ptr2 A.DayNurnber) AND

(PtrlA.MonthNurnber = Ptr2A.MonthNurnber»;
END I s It Equa 1;

Module SYSTEM has three address related functions. ADR(Z) returns the address of
identifier Z. Functions SIZE and TSIZE return the sizes of a variable and data type,
respectively. The rest of the exported routines tackle concurrency.

62

Modula-2 for the Pascal Programmer

Consider the following simple example. It continuously displays the messages
"In Coroutine <0>", where <n> follows the sequence [1,2,3].

MODULE ConcurrentDemo;

WriteString, WriteLn; FROM InOut IMPORT
FROM SYSTEM IMPORT WORD, PROCESS, ADR, SIZE, NEWPROCESS, TRANSFER;

VAR main, Coroutinel, Coroutine2, Coroutine3
WorkSpacel, WorkSpace2, WorkSpace3
(* Workspace *)

PROCEDURE Messagel;
BEGIN

LOOP
WriteString("In Coroutine # 1");
WriteLn;

TRANSFER (Coroutinel, Coroutine2);
END;

END Messagel;

PROCEDURE Message2;
BEGIN

LOOP

END;

WriteString("In Coroutine # 2");
WriteLn;
TRANSFER (Coroutine2, Coroutine3);

END Message2;

PROCEDURE Message3;
BEGIN

END;

LOOP
WriteString("In Coroutine # 3");
WriteLn;
TRANSFER(Coroutine3, Coroutinel);

END Message3;

BEGIN (* main *)
(* Create the new Coroutines *)

PROCESS;
ARRAY [1 .. 200] OF WORD;

NEWPROCESS(Messagel, ADR(WorkSpacel), SIZE (WorkSpacel), Coroutinel)
NEWPROCESS(Message2, ADR(WorkSpace2), SIZE (WorkSpace2), Coroutine2)
NEWPROCESS(Message3, ADR(WorkSpace3), SIZE (WorkSpace3), Coroutine3)
TRANSFER (main, Coroutinel);

END ConcurrentDemo.

63

Chapter 2

The previous program shows that each co-routine is created using the NEWPROCESS
procedure taking the following arguments:

• Parameterless procedure name. The procedure must be at the top level in the module
and not nested within another routine.

• The address of a coroutine workspace (for stacks and other items).

• Size of the workspace.
• A PROCESS typed variable to be associated with the coroutine name.

Our example uses three variables, each 200 WORDS long, to reserve the needed
workspaces. An alternate route is to dynamically allocate the workspace sizes.

The coroutine example also shows how coroutines are activated. The TRANSFER
procedure is used to request the activation of a new coroutine while suspending the old
one. When ConcurrentDemo first runs, the three coroutines are created. Next, the main
section transfers the attention of the CPU to the first coroutine and suspends itself. An
infinite sequence of tasks begins. Each coroutine displays a message and transfer CPU
control to another coroutine, and so on. Coroutine procedures are parameterless, as
stated earlier, and contain their code inside an infinite open loop.

IOTRANSFER is another procedure exported by SYSTEM and works similar to
TRANSFER. It is oriented towards tackling device interrupts. Since these interrupts take
place beyond the program's control, there must bean automatic way to handle them.
IOTRANSFER shifts the control from a first process to a second one, but is able to
resume the first when an interrupt occurs. IOTRANSFER takes a third parameter, the
interrupt vector number. Module SYSTEM also exports procedure LISTEN. This causes
the coroutine to wait for an IOTRANSFER to take place.

Synchronization between coroutines is vital in keeping their liveliness. This assures that
every process maintains its vitality. Using a single CPU, each process must run for a
short period of time and then be suspended to allow others to resume likewise. The
above coordination becomes more critical when the same data is accessed by more than
one coroutine. In this case it is imperative to ensure that only one process manipulate
data. This means that other coroutines must wait for their tum to access the same data.
The overall picture depicts two waiting queues: one for processes simply waiting their
turn to use the CPU, the other for processes waiting to access a critical data item.

64

Modula-2 for the Pascal Programmer

The Processes module exports items needed to accomplish the above sought
synchronization. The definition module is:

DEFINITION MODULE Processes;

EXPORT QUALIFIED SIGNAL, init, SEND, WAIT, Awaited, StartProcess;

TYPE SIGNAL; (* Opaque type used by processes to communicate with each other *)

PROCEDURE Init(VAR S SIGNAL); (* Initialize signal *)

PROCEDURE SEND (VAR S SIGNAL); (* Send signal *)

PROCEDURE WAIT (VAR S SIGNAL); (* Wait for signal *)

PROCEDURE Awaited(S : SIGNAL) : BOOLEAN;
(* Function to return if a signal is awaited *)

PROCEDURE StartProcess(P : PROC; WorkSpace: CARDINAL);
(* Start process P with WorkSpace bytes *);

END Processes.

In the above module, type SIGNAL is used for process inter-communication. Procedure
Init is used to initialize a signal. Procedure WAIT suspends a process while waiting for a
particular signal to be sent (using SEND) by another process.

65

Chapter 2

To demonstrate how the above data type and procedures are used, consider the following
program, which takes an array of reals from the keyboard and calculates the
corresponding average and standard deviation values. These statistics are evaluated
using the sums of the observations and their squared values which can be evaluated
concurrently. A coroutine is employed to update the sum of squares, while the main
program calculates the sum of observations. Since each array element is accessed by the
main program and the coroutine, we need to synchronize their access.

Let's look at the listing and then resume our discussion.

MODULE Synchronicity;

FROM Processes
FROM InOut
FROM RealInOut
FROM MathLibO

IMPORT SIGNAL, Init, SEND, WAIT, StartProcess;
IMPORT WriteString, WriteLn, ReadCard, WriteCard;
IMPORT ReadReal, WriteReal;
IMPORT sqrt;

CONST MAX = 100;

VAR Count, NumData
GoAheadMakeMyDay
SumX, SumXx, Average, StdDeviation
X

PROCEDURE GetSumSquare;

CARDINAL;
SIGNAL;
REAL;
ARRAY [l .• MAX] OF REAL;

(* Process to calculate sum of data squares *)

BEGIN
(* Message displayed first time process is invoked *)
WriteString('Start squaring');

END;

WriteLn;
LOOP

WAIT(GoAheadMakeMyDay); (* wait for a go signal *)
WriteString ('Squaring observation # ');
WriteCard (Count,4);
WriteLn;
SumXX '= SumXX + X[Count] * X[Count];

END GetSumSquare;

66

PROCEDURE GetData;

VAR i : CARDINAL;

BEGIN
REPEAT

Modula-2 for the Pascal Programmer

WriteString('Enter number of data «100) ');
ReadCard(Numdata)

UNTIL (NumData <= MAX) AND (NumData> 2);

FOR i := 1 TO NumData DO
WriteString('Enter observation # ');
WriteCard(i,4);

END;

WriteString (' ,);
ReadReal(X[i]);
WriteLn;

END GetData;

BEGIN
GetData;
WriteString('All data entered');
WriteLn;
Init(GoAheadMakeMyDay);
(* Initialize counter and statistical summations *)

Count : = 1;
SumX :=0.0;
SumXX := 0.0;
StartProcess(GetSumSquare,600);
SEND(GoAheadMakeMyDay);
LOOP

END;

WriteString('Surnrning observation # ');
WriteCard(Count,4);
WriteLn;
SumX := SumX + X[Count]:
INC(Count); (* Increment global data counter *)
(* Are all the observations processed? *)
IF Count > NumData THEN EXIT END;
(* Signal for GetSumSquare process to resume *)
SEND(GoAheadMakeMyDay);

Average
StdDeviation

SurnX / FLOAT(NumData):
sqrt((SumXX - SumX * SurnX

FLOAT(NumData)) /

WriteString('Average
WriteReal(Average,14);
WriteLn;

(FLOAT(NumData - 1));
,) ;

WriteString('Standard Deviation
WriteReal(StdDeviation,14);

,) ;

WriteLn;
END Synchronicity.

67

Chapter 2

When the program starts it first prompts for keyboard data entry, performed by procedure
GetData. The main program proceeds with a confirmation message followed by
initializing the process signal. After the appropriate variable initializations process
GetSumSquare is triggered. In turn it displays the "start squaring" message once
and waits for a signal. The control is briefly transferred back to the main program only
to execute the SEND procedure and return us to the coroutine. The open loop is resumed
and the message "Squaring observation 1" is displayed followed by the first update
of the sum of squares. Having accessed the fIrst array member, X[l], the coroutine
signals to the main program for it to resume. The message "Summing observation lit
is displayed, sum updated and counter incremented. This is followed by a test to
determine if all the data have been processed and the loop is accordingly exited.
Otherwise the main program signals the coroutine to perform its task and another cycle
of calculations is executed.

68

Chapter 3
The Compiler

The Compiler

The LOGITECH Modula-2 Compiler translates an ASCII text file with an extension of
either .DEF or .MOD written in high level Modula-2 code - into a linkable object file
with an extension of .OBJ containing low level machine code.

There are two versions of the LOGITECH compiler - a fully linked version, and an
overlay version.

M2C. EXE is the fully linked version.

M2COMP.EXE is the overlay version and consists of a base file and six overlay files.
This version uses less memory and so takes longer to compile a given module than
M2C.EXE, but may be useful when memory is limited due to hardware or due to other
applications present in memory at the same time.

69

Chapter 3

3.1 How to Use the Compiler

To run the fully-linked version of the compiler, type:

M2CGD

To run the overlay version of the compiler, type:

M2COMPGD

If you are compiling with M2C.EXE from the DOS command line, you will see the
banner with the version number and a prompt for the name of the module to be compiled:

C: \TEMP> m2c
LOGITECH MODULA-2 Compiler, Rel. m. n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file>_

Enter the filename and any options (see Section 3.8 on compiler options). The default
drive is the current disk and the default extension for program and implementation
modules is .MOD.

When this module is compiled, the compiler asks for another module. At this point, you
can enter another filename or terminate the compiler by pressing [Esc) .

You can also run the compiler by typing the filename(s) on the command line, thus:

M2COMP (or M2C) <File 1> <File 2> ... <File X> 0
In this case the compiler will compile all the files in the specified order. At the end it
returns automatically to DOS without any further request for source files.

70

The Compiler

~------------------------- NOTE ------------------------~
If you use the M2ASSIST environment in POINT, you will see a compile options
prompt on the bottom line of the screen.

As soon as you enter the necessary options, you will see a new screen with
information similar to that on the previous page.

To compile more than one file at a time with POINT:

Step 1: Save the file(s) to be compiled;
Step 2: Type the complete compile command on a scratch screen;
Step 3: Select Execute Selected Command from the QUIT+ETC menu.

71

Chapter 3

3.2 Compiler Organization

The overlay version of the compiler is organized as a base part and several passes or
'overlays'. The base part remains in memory during the entire compilation and calls the
passes sequentially. When loading these passes, the compiler assumes they are on the
same drive as M2COMP.EXE, the compiler base.

The necessary overlay files are:

M2COMP.EXE
M20VLlNI.OVL

M20VL1.0VL
M20VL2.0VL
M20VL3.0VL

M20VLSYM.OVL
M20VLLlS.OVL

compiler base
initialization
syntax analysis and declaration
block analysis
code generation
symbol file generation
lister

The fully linked version of the compiler is the single file M2C.EXE.

~-------------------------NOTE--------------------------~

During compilation, temporary work files are created on the current drive and
directory, or where the environment variable M2TMP specifies. (You may
specify a RAM disk to increase compilation speed.) These files are deleted before
compilation ends.

72

The Compiler

3.3 Compiler Output Files

Several files are generated by the compiler. They are created in the current directory and
are given the same file name as the source file, but with the appropriate extension:

.SYM Symbol file

Compiler output file with symbol table information. This information is
generated during compilation of a definition module .

. REF Reference file

Compiler output file with debugger information, generated during compilation
of an implementation or a program module .

. OBJ Object file

Compiler output file with generated 8086 object code in linker format, generated
during compilation of implementation or program module .

. LST Listing file

Normally generated only if errors occur.

73

Chapter 3

3.4 Compilation of a Program Module

Compilation of a program module in which there are no errors generates a linkable
object (.OBJ) file, and a debug reference (.REF) file.

If there are errors, the link and reference files are not produced, but a listing (.LST) file is
produced.

The L option (see Section 3.8 on compiler options, below) tells the compiler to
generate a listing file even if there are no errors.

Thus, if you type

M2COMPQJ

you get a screen that looks like this:

C: \ TEMP > m2comp
LOGITECH MODULA-2 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH

source file> examp1 r:Tl
Syntax and Declaration ~ysis

Terminal in file: B: Terminal. SYM
Block Analysis
Code Generation
Termination

The interactive setting of the options was: S+ /R+ /T+ /A- /0- /F+
code for 8086/8088 generated
Codesize: 90 bytes Datasize: 1 bytes

End Compilation

LOGITECH MODULA-2 compiler, ReI. m. n
Copyright (C) 1983, 1984, 1985 LOGITECH

source file> ~
---- no comp~lation

Termination
End compilation
C: \TEMP >

In the above screen, the file EXAMPLE1 is entered at the first source file prompt.
[Esc) is pressed at the second source file prompt, in order to return to DOS.

74

If, from your TEM P directory, you enter

M2COMPQJ

The Compiler

you will see a screen that resembles the one below. As with the screen just discussed, if
you press [Esc) at the source file prompt, you will be returned to the DOS prompt.

C: \ TEMP > m2comp
LOGITECH Modula-2 Compiler, Rel. m.n

Copyright (C) 1983, 1984, 1985, 1987 LOGITECH
source file> rESC1
---- no compi~on

Termination
End compilation
C: \TEMP >

75

Chapter 3

Syntax and Declaration Analysis, Block Analysis, and Code Generation
denote the succession of activated compiler passes. If errors are detected by the
compiler, compilation stops after the pass that finds the error. Errors are displayed on the
screen, and a listing file is generated with error messages similar to those below.

C : \ TEMP > m2comp examp1
LOGITECH MODULA-2 Compiler, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH

source file> examp1
Syntax and Declaration Analysis

Terminal in file: B: Terminal. SYM
---- error

Lister
3 VAR ch CHAR;

* 37: ':' expected
Termination
End compilation

C: \TEMP >

When the error display is more than one page, the compiler will ask if you want to see
more errors after each page.

(Esc) stops the error listing display.

Pressing any other key continues the error listing.

This is true unless the IBatch option is used, in which case the compiler will not ask for
more errors.

In both cases, the compiler generates the .LST error listing.

76

The Compiler

3.5 Compilation of a Definition Module

Compilation of a definition (.DEF) module is similar to the compilation of a program
module. However, when a definition module is successfully compiled, a symbol (.SYM)
file is the result; when a program or implementation module is compiled the result is a
linkable object (.08J) file.

The symbol file contains the declarations of the definition part in symbolic, compiler­
readable format. It also contains . a unique module key which is used to check
consistency. If errors are detected by the compiler, then a listing file is generated instead
of the symbol file.

~---NOTE--~

A Definition Module must be compiled before its Implementation Module.

A Definition Module must be compiled before any module that imports it.

Example:

C: \ TEMP > m2comp find. def
LOGITECH MODULA-2 Compiler, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH

source file> find.def
Syntax and Declaration Analysis
Symfile
Termination
End compilation

C: \TEMP >

77

Chapter 3

3.6 Compilation of an Implementation Module

Compiling an implementation module is similar to compiling a program module.

When an implementation module is compiled, a symbol file for this module is needed.
This symbol file is produced before compiling the implementation module, by compiling
the corresponding definition module.

Compiler output files for implementation modules are the same as those generated when
compiling a program module. A linkable object (.OBJ) file and a debug reference
(.REF) file are generated as the result of a successful compilation. A listing file is
produced only if there are errors.

C : \ TEMP :> m2 comp find
LOGITECH MODULA-2 Compiler, ReI. m.n

Copyright (C) 1983, 1984, 1985 LOGITECH
source file:> find .mod

Syntax and Declaration Analysis
Examp3 in file: A: Examp3 . SYM
Storage in file: B: Storage. SYM

Block Analysis
Code Generation
Termination

The interactive setting of the options was:S+/R+/T+/A-/O-/F+
code for 8086/8088 generated
Codesize: 234 bytes Datasize: 56 bytes

End Compilation
C: \TEMP >

78

The Compiler

3.7 Symbol Files Needed for Compilation

Symbol files are used by the compiler for full inter-module checking. When a definition
module is compiled, it generates a symbol file containing symbol table information.
When the corresponding implementation part is compiled (or when a tlclienttl module is
compiled which imports it) the appropriate symbol file is read.

By default, the compiler first searches for symbol files on the disk/directory containing
the source file. It uses the module name (truncated if necessary) as the filename, and a
extension of .SYM. If a symbol file is not found on the first search, additional searches
on other drives or directories are done automatically. (See the section on library search
strategy for a complete description).

If a symbol file is not found, the compiler issues a message and asks for the file. This
can be prevented, using the Autoquery option (see compiler options described below). If
the Query option is turned on, the compiler will not perform any automatic searches. It
will display the module name and let you enter the file name for every symbol file
needed.

When the compiler asks for a symbol file, the request is repeated until an appropriate file
is found or [Esc I is pressed. (Esc I tells the compiler that the file is not available. The
compiler then stops at the end of the first pass, after listing all the required symbol files.
This helps you detect any other missing files.

79

Chapter 3

3.8 Compiler Options

When it reads the source file name, the compiler can also accept some options. Options
are entered just after the filename, are preceded by a forward slash (/), and may use
additional arguments (+) and (-). An option value is a predefined string that defines
the state of the corresponding option. Possible values for the compiler options are listed
below, followed by an explanation of their effects.

The default values in the following table are good unless you specify otherwise in a file
which you can create named M2C.CFG. Keep this file in the M2EXE directory (where
M2C.EXE resides) so it can be read by M2C.EXE or M2COMP.EXE. The default
values M2C.CFG specifies will be applied to the filenames as if had been appended on
the command line.

80

The Compiler

3.8.1 Table of Available Options

Option Value for ON Value for OFF Default

query Query NOQuery NOQ

auto query Aquery NOAquery A

interactive Interactive Batch

listing Listing NOListing NOL

error listing EListing NOEListing EL

emulator/coprocessor Emulator Coprocessor E

8086/80286 2 8 8

verslOn'\ Version NOVersion NOV

statistics STATistics NOSTA Tistics STAT

stacktest S+ S- S+

float test F+ F- F+

rangetest R+ R- R+

indextest T+ T- T+

alignment A+ A- A-

optimize 0+ 0- 0-

headerinlisting Header NOHeader H

footerinlisting Footer NOFooter NOF

dateinlisting DAte NODAte NODA

debug Debug NO Debug D

symbol SYmbol NOSYmbol SY

m2linker M2L NOM2L M2L

To change the compile option defaults, put the desired settings (in the same syntax of the
command line) into a file you create named M2C.CFG. In the above list, use either
Upper Case letters (as in the bold letters in the table, above), or the complete name to
specify an option. Optionally, R, S, A, 0, and T may use the + argument.

81

Chapter 3

IQ
INOQ
IA
INOA

II
IB

3.8.2 Description of the Options

Query

Autoquery

Defines the search mechanism for the symbol files of imported
modules. The following table shows the possible combinations of
option settings and the corresponding behavior of the compiler:

Query Autoquery Action

Query Aquery Ask for filenames

Query NOAquery Ask for filenames

NOQuery Aquery Search for file by default strategy.
If not found, ask for filename.

NOQuery NOAquery If not found, compile ends.

The default setting for these two options is INOQuery and IAquery.

Interactive
Batch

Tells the compiler whether to run interactive or as a batch job. In
interactive mode, display of error messages is stopped after a screen
page and is resumed by hitting a key. This facility is turned off in the
batch mode. Note: Autoquery is not affected by this option.

82

IL
INOL
IEL
INOEL

IE
Ie

N
INOV

ISTAT
INOSTAT

The Compiler

Listing

Error Listing
Says whether or not to generate a listing. This table shows how option
combinations create corresponding behavior by the compiler.

Listing
Listing
NOListing

NOListing

EListing
NOEListing
EListing

NOEListing

A listing file is always generated.
Same as above.
Detected errors generate a short
error listing file with only the
erroneous lines with error messages.
No listing generated.

In all cases the compiler writes the lines with errors and the error
message on the screen. Before each compilation, the compiler deletes
the corresponding listing file (<filename>.LST).

Emulator
Coprocessor

This affects code generation for floating point arithmetic. If set to
coprocessor, the compiler generates inline code for the Intel 8087
numeric processor. Otherwise, it generates code for the LOGITECH
REAL ARITHMETIC EMULATOR.

Version

The compiler displays information about the running version, for
example, processor and operating system flags.

Statistics

At the end of a compilation the compiler displays statistics on the
generated code.

83

Chapter 3

15+
15-

IR+
IR-

IF+
IF-

IT+
IT-

IA+
IA-

10+
10-

18
12

Stack test

Range and Overflow test

Float Arithmetic Error Test

Index and NIL pointer test

Alignment

Affects the variable and record field allocation. If set to A+, all
variables except single bytes are allocated on even boundaries. If set to
A-, no special effort is made to allocate variables on even boundaries.
Choose either to save memory space A-, or increase program execution
speedA+.

Register Trace Optimization

Reduces code size and increases execution speed. (See the following
subsection for more information.)

8086
80286
Affects code generation. If set to 8086, the compiler generates code for
the 8086/8088. If set for 80286, the compiler generates code for the
80186/80286. The advanced instructions used are ENTER, LEA VE,
PUSH Immediate, Shift/Rotate Immediate, and Integer Immediate
Multiply.

84

IH
INOH
IF
INOF
IDA
INODA

ID
INOD

IM2L
INOM2L

ISY
INOSY

The Compiler

Header in Listing

Footer in Listing

Date in Listing

These define the format of the generated listing file. The header option
says whether a page header line is generated or not. The footer option
defines whether a page footer line is generated or not. The date option
says whether the date information is generated within the header line.
The format of a page header line is:

MODULA-2 <filename.ext> <date> <page#>

Footer line text can only be defined in the compiler parameter module.

Debug

This tells whether or not to generate the reference (.REF) file. This
file contains the necessary information for the symbolic debugger.

LOGITECH Linker Information

Instructs the compiler to produce extra information in the .OBJ file to
allow the LOGITECH Linker to perform some improvements. The
extra information lets the linker remove unreferenced procedure calls
and constants from the .EXE file, and also allows the linker to search
automatically for the files to be linked.

Symbol

Produces symbol that will be used by debuggers. Refer to ADDendix E
for naming conventions if you don't use the LOGITECH Debugger.

85

Chapter 3

3.8.2.1 The Optimize Option

This option can be used to tighten code. This is done by tracking register content. Our
test numbers show a reduction of up to 10% in size, and about the same increment in
execution speed. The gain in speed and reduction in size may vary substantially from
program to program. Compilation time is longer when optimization is ON (/0+).

To perform optimization on specific areas of source code (See Section 3.9), you can use
(*$0+*), (*$0-*), and (*$0=*).

When the compiler is instructed to use the optimize option, it considers that the program
being compiled satisfies some requirements. The average Modula-2 application usually
meets these requirements but the programmer does have the ability to cheat the compiler.

In the following cases the requirement outline is sketched and some examples of bad and
good program behaviour is given.

86

The Compiler

Case 1: Using ADR ()

A memory update is not recognized to kill the previous value when the following
conditions are true:

• Location type is any scalar type, and is designated either by a variable name or a
record field name;

• A pointer is initialized with the address of that variable (via the ADR function);

• The location is updated before use by its name and then by the de-referenced pointer;

• This happens within an EBB* boundary.

This may lead to generation of bad code. To be safe, use in-line option (*$0+1-*).

Example 1 shows where failing to put in-line options is an improper use of optimization.

Example 1 ----------------------------,

VAR p: POINTER TO INTEGER;
i, j: INTEGER;

------------------> (*$0-*)
i := something;
p := ADR(i);
pA := somethingElse;
j := i;
------------------> (*$0+*)

* EBB or Extended Base Block. A code section that must be completely executed
before the final statement in that section can be executed.

87

Chapter 3

Case 2: Calling with V AR Parameter

The compiler doesn't perform inter-procedural alias analysis which sometimes leads to
bad code, as follows:

Example2---,

PROCEDURE P
VAR i: INTEGER;

BEGIN

Q (i, i);

END P;

PROCEDURE Q (VAR x, y: INTEGER);
VAR a, b:: INTEGER;

BEGIN

------------------> (*$0-*)
x := a;
y := a + 1;
b := x;
------------------> (*$0+*)

END Q.

In procedure Q, variable b gets a bad value, since x and y are aliased to the same memory
location. One way around this might be to use (*$0-/+*) to encapsulate the three
statements in procedure Q.

Case 3: Safe Cases of Aliases

Cases of aliases other than those in Case 1 and Case 2, such as fields in a variant record
(e.g., p'" and qA when p=q, and a [i] and a [j] when i=j) are recognized by the
compiler without your intervention.

88

The Compiler

Case 4: Using CODE Statement

Another situation that unsafely relates to the optimize option is playing tricks with the
CODE statement. CODE statements are well treated by the compiler if they are
"self-contained" - i.e., if they don't jump into the middle of another statement.

When the compiler encounters a CODE call, it resets all information about the content of
the registers and resumes collecting at the next statement. This information can be faked
by a misplaced jump. The examples illustrate the possible situations.

Example3--~

CODE (073H, OlH); (*

CODE (040H);
GETREG(AX, error);
iF error THEN

JNB @FOO *)
(* INC AX
(* @FOO: MOV error,AX

*)
*)

The code in Example 3 above, is acceptable because after compilation of these
statements, the registers descriptor will be properly initialized with the information that
AX contains the variable "error".

Example4--~

CODE (073H, 04H); (*

CODE (040H);
GETREG(AX, error);
iF error THEN

JNB @FOO *}
(* INC AX
(* MOV error, AX
(* @FOO:

*)
*)
*)

The code in Example 4 above, is not acceptable because, after compilation, the register
descriptor will be wrongly initialized with the information that AX contains the variable
"error". This is not true if the JNB is taken.

This code style, even if accepted by the compiler, is not clean. It relies, for example, on
the fact that the compiler will generate three bytes of code to translate the GETREG

statement.

To repair the code in Example 4, either re-arrange the sequence, or use (*$0-/+*).

89

Chapter 3

3.9 Compiler Directives in Modules

Certain compiler directives may be specified in the source text of a module. These
directives must appear immediately at the beginning of a comment and consist of
$<Ietter><setting>, without any intervening or preceding spaces.

Letter

S
R
F
T
A
0

Setting

+

=

Definition

S tack overflow test
Subrange and arithmetic overflow test
Real arithmetic error test
Index test (arrays, case) and NIL pointer test
Word alignment for variables and record fields
Register Trace Alignment

Effect

Set the option ON
Set the option OFF
Revert to setting before last

Default

s+
R+
F+
T+
A-
0-

Example--~

MODULE x; (*$T+*)

(*$T-*)
CASE i OF

END
(*$T=*)

END x

test code is generated

no test code is generated

test code is generated
(Le. the prior value is restored)

90

The Compiler

3.10 Compiler Messages

There are two types of compilation errors:

• Errors detected in the source text printed on the listing and displayed on the screen.

• Operational errors displayed on the screen.

3.10.1 Source Text Errors

These errors appear in the listing file, marked under the offending line by a A and the
error number. The source line and error message are also displayed on the screen as they
are written to the listing. Compiler error messages are also listed in an appendix.

3.10.2 Compiler Operational Messages and Errors

Upon termination, the compiler sets the MS-DOS errorlevel system variable. This
variable can be checked in a batch file. The generated values are:

o successful compilation

1 abnormal termination due to internal errors

2 incomplete compilation due to missing files

3 source program error

During operation of the compiler the following messages and errors may be displayed:

Assertion of compiler
internal reference: xx
at source line : nn

Please send a bug-report to LOGITECH

We hope you never get this message. It is displayed when an internal
consistency check of the compiler fails. If you get this message, please
contact LOGITECH with a copy of the program which caused the
error. The source line information may help you find a work-around.
The internal reference is an indicator for the kind of problem that
occurred and will help LOGITECH locate it.

91

Chapter 3

cannot load

There is not enough memory to allocate all data areas the compiler
needs or to load a compiler overlay. See the chapter on Program
Execution for details.

EOF on Control

error

We hope this message never occurs. You see it when an internal
consistency check of the lister fails. If you get this message, contact
LOGITECH with a copy of the program that caused the error.

The compiler detected errors in your program. These errors will appear
on the screen and in the listing file.

error message first element on control

See EOF on Control.

file creation failed

Your disk directory is probably full. When running under DOS, this
message may also appear if you did not boot your operating system
from a disk that contains a CONFIG.SYS file, as described in the
installation section of this manual.

file not found

A source or symbol file was not found. The compiler will repeatedly
request the filename. You should either type the correct filename or
press (Esc) if the required file is missing. When running under DOS,
this message may also appear if you did not boot your operating system
from a disk that contains a CONFIG.SYS file, as described in the
installation section of this manual.

<file name> halted

An overlay of the compiler terminated with an unexpected status. This
might happen if you stop the compiler with (Ctrl H Break) or @!ill-@J.

92

heap overflow

The Compiler

There is not enough memory to allocate all data areas the compiler
needs, or to load a compiler overlay. See the chapter on Program
Execution for details.

illegal option: <option typed>

Please refer to the list of valid compiler options.

Incorrect line number on Control

See EOF on Control.

incorrect module nama

The module name found in the symbol file does not correspond to the
name of the module for which a symbol file is needed. Make sure you
enter the right filename.

NControl too small

See EOF on Control.

no compilation

no file

No compilation takes place because no source file was specified.

You typed (Esc] when asked to enter a filename, and did not supply
any file.

not catalogued: <extension>

The compiler had problems closing the file with the given extension.
Make sure that the disks are in the drives.

not deleted: <extension>

The compiler had problems deleting the file with the given extension.
Make sure that the disks are in the drives.

93

Chapter 3

output disk full

Because of insufficient space on your disk, the compiler has stopped.
You should delete superfluous files.

<program name> program not found

A compiler overlay was not found on the disk where it is expected to
be. Please check whether you installed Modula-2 properly. When
running under DOS, this message may also appear if you did not boot
your operating system from a disk that contains a CONFIG.SYS file,
as described in the installation section of this manual.

stack overflow

Not enough memory to allocate all data areas the compiler needs or to
load a compiler overlay.

symbol files missing

The compiler could not find all the symbol files for the imported
modules. Therefore type checking is impossible and compilation stops.
Check that the corresponding definition modules have been compiled
and that all necessary symbol files have been specified correctly.

<file name> warned

An overlay of the compiler terminated with an unexpected status. This
might happen if you stop the compiler with (Ctrl H Break lor @}@).

wrong symbol file

The file found is not a correct symbol file. Most likely, the file isn't a
symbol file at all, or it was not generated by the same compiler.

94

The Compiler

3.11 Compiler Table Limits

The following error messages depend on some internal compiler table sizes. The
following list gives the description of the errors and the actual table size of the compiler:

7 too many identifiers (identifier table full)

Identifier table holds 30tOOO characters. This is the limit on the total number of
characters of all distinct identifiers in one module and the exported identifiers of
its imported modules.

Contrary to readablet self-documenting programming stylet shorter identifiers
and use of the same identifiers in different scopes helps avoid this message.

8 too many identifiers (hash table full)

Hash table holds 3571 identifiers. This limits the number of distinct identifiers
in one module, including all the identifiers exported by the imported modules.

The same identifier names in different scopes helps avoid this message.

205 implementation restriction: procedure too long

Code size per procedure limited to 5000. Split the procedure into smaller
entities.

206 implementation restriction: statement table overflow

Number of statements per procedure limited to 1000. Split the procedure into
smaller entities.

209 expression too complicated: jump table overflow

Jump table size is 50 entries. This determines the number of possible short
circuit jumps in a boolean expression.

Try breaking the expression into several temporary expressions.

210 too many globals, externals, and calls (linker table overflow)

The linker table holds fixup information for the linker. The size of this table is
850 entries per procedure. Access to an imported variable generates one entry; a
call to an imported procedure generates two entries. A forward call to a local
procedure generates one entry.

Split the procedure into smaller sectionst or reduce frequency of access to
imported variables and calls to imported procedures.

95

Chapter 3

3.12 Compiler Error Messages

0: illegal character in source file
1:
2: constant out of range
3: open comment at end of file
4: string terminator not on this line
5: too many errors
6: string too long
7: too many identifiers (identifier table full)
8: too many identifiers (hash table full)

20: identifier expected
21: integer constant expected
22: 'J' expected
23: ';' expected
24: block name at the END does not match
25: error in block
26: ':=' expected
27: error in expression
28: THEN expected
29: error in LOOP statement

30: constant must not be CARDINAL
31: error in REPEAT statement
32: UNTIL expected
33: error in WHILE statement
34: DO expected
35: error in CASE statement
36: OF expected
37: ':' expected
38: BEGIN expected
39: error in WITH statement

40: END expected
41: ')' expected
42: error in constant
43: '=' expected
44: error in TYPE declaration

96

The Compiler

45: '(' expected
46: MODULE expected
47: QUALIFIED expected
48: error in factor
49: error in simple type

50: ' " expected
51: error in formal type
52: error in statement sequence
53: ' .' expected
54: export at global level not allowed
55: body in definition module not allowed
56: TO expected
57: nested module in definition module not allowed
58: '}' expected
59: ' .. ' expected

60: error in FOR statement
61: IMPORT expected

70: identifier specified twice in importlist
71: identifier not exported from qualifying module
72: identifier declared twice or illegal forward reference to this identifier
73: identifier not declared
74: type not declared
75: identifier already declared in module environment
76:
77: too many nesting levels
78: value of absolute address must be of type CARDINAL
79: scope table overflow in compiler

80: illegal priority
81: definition module belonging to implementation not found
82: structure not allowed for implementation of hidden type
83: procedure implementation different from definition
84: not all defined procedures or hidden types implemented
85: name conflict of exported object or enumeration constant in environment
86: incompatible versions of symbolic modules
87:

97

Chapter 3

88: function type is not scalar or basic type
89:
90: pointer-referenced type not declared
91: tagfieldtype expected
92: incompatible type of variant-constant
93: constant used twice
94: arithmetic error in evaluation of constant expression
95: incorrect range
96: range only with scalar type
97: type-incompatibie constructor eiement
98: element value out of bounds
99: set-type identifier expected

100: structured type too large
101: undeclared identifier in export list of the module
102: range not belonging to base type
103: wrong class of identifier
104: no such module name found
105: module name expected
106:
107: set too large
108:
109: scalar or sub range type expected

110: case label out of bounds
111: illegal export from program module
112: code block for modules not allowed

119: illegal variable as FOR loop counter

120: incompatible types in conversion
121: this type is not expected
122: variable expected
123: incorrect constant
124: no procedure found for substitution
125: unsatisfying parameters of substituted procedure
126: set constant out of range
127: error in standard procedure parameters
128: type incompatibility
129: type identifier expected

98

The Compiler

130: type impossible to index
131: field not belonging to a record variable
132: too many parameters
133: function parenthesis missing
134: reference not to a variable
135: illegal parameter substitution
136: constant expected
137: expected parameters
138: BOOLEAN type expected
139: scalar types expected

140: operation with incompatible type
141: only global procedure or function allowed in expression
142: incompatible element type
143: type incompatible operands
144: no selectors allowed for procedures
145: only function call allowed in expression
146: arrow not belonging to a pointer variable
147: standard function or procedure must not be assigned
148: constant not allowed as variant
149: SET type expected

150: illegal substitution to WORD or BYTE parameter
151: EXIT only in LOOP
152: RETURN only in PROCEDURE
153: expression expected
154: expression not allowed
155: type of function expected
156: integer constant expected
157: procedure call expected
158: identifier not exported from qualifying module
159: code buffer overflow

160: illegal value for code
161: call of procedure with lower priority not allowed

170: global data too large (more than 64K bytes)
171: local data too large (more than 32K bytes)
172: parameter data too large (more than 32K bytes)

99

Chapter 3

200: compiler error
201: implementation restriction
202: implementation restriction: FOR step too large
203: implementation restriction: boolean expression too long
204: implementation restriction: expression too complicated
205: implementation restriction: procedure too long
206: implementation restriction: statement table overflow
207: implementation restriction: illegal type conversion
208:
209: expression too complicated: jump tabie overflow
210: too many globals, externals and calls (linker table overflow)

211: implementation restriction: code >= 64K bytes

220: not further specified error
221: division by zero
222: index out of range or conversion error
223: case label defined twice
224: DEFINITION expected

100

Linking Modula-2 Files

Chapter 4
Linking Modula-2 Files

The .OBJ files you obtain after the compilation can be linked by the LOGITECH Linker
or with the linker that comes with your version of DOS.

The LOGITECH Linker is part of the LOGITECH Modula-2 Toolkit and runs either
from the DOS command line or from the M2ASSIST extension of the POINT
Environment. The LOGITECH Linker supports a multi-layer overlay scheme, is able to
link by procedure rather than by module (this will make your executable files smaller),
and is able to find all the needed files automatically.

Please refer to the manual for the linker you will be using for details on its use.

r-------------[Caution]--------------,

The DOS Linker is not case-sensitive.

Thus: if you have two symbols that differ only in case, the DOS Linker displays

Symbol defined twice

One solution to this problem is to use the /NOSYMBOL compiler option, which
defines fewer symbols.

Another solution is to use a linker that recognizes the /NOIGNORECASE option

Note: your object files may not link with DOS Linkers older than version 2.30.

101

Chapter 4

Notes:

102

Chapter 5
Version Checking

Version Checking

All modules in a program must be compiled with consistent versions of module
definitions.

When you change a module definition .DEF file, you must also recompile all program
and implementation modules using that module before you can create a new executable
program. When you compile a changed .DEF file, this creates a new .SYM file which is
incompatible with any other version of that module. Even if you don't change anything
in the definition part, recompiling it creates a new version of the .SYM file.

103

Chapter 5

5.1 Module Keys and Version Checking

LOGITECH Modula-2 checks for version consistency and keeps inconsistent versions
from being compiled together.

Version checking is simple in concept, but can be complex in application. Each time you
recompile a .DEF file it creates a different module key for the resulting .SYM file.

Once you compile a .DEF definition file, you can compile its "client" implementation
module which uses the definition part. These other modules will import the module, and
the compiler will find the compiled version of the definition part, and use it to fully check
the module being compiled. The module key of the referenced definition parts are in the
compiled output.

At compile, link and load time, LOGITECH Modula-2 verifies that all the keys included
for a given definition module are the same. This guarantees that all modules which share
an interface are compiled with the same version of the interface. This ensures the
consistency of the program, as if there was only one source file, compiled all at once.

5.2 Version Errors and How to Fix Them

If the version consistency rule is broken, you will get a version error during either
compilation, linking, or (sub)program loading. The following sections describe the
typical cause and some possible corrections for version errors.

I NOTE]

The M2MAKE utility from the LOGITECH Modula-2 Toolkit is the easiest way
to resolve version errors.

104

Version Checking

5.3 Version Errors During Compilation

A version error while compiling module A.MOD can only arise if there is some
definition module X.DEF that is imported by two different paths into A.MOD, and the
version imported by one path is not the same as the version imported on the other path.

Look for a moment at the following example:

A.MOD
B.DEF
C.DEF

Suppose that we compile as follows:

X.DEF
B.DEF
X.DEF
C.DEF
A.MOD

imports
imports
imports

becomes
becomes
becomes
becomes
becomes

B.DEF and C.DEF
X.DEF
X.DEF

X.SYM (version 1)
B.SYM (uses version 1 of X)
X.SYM (version 2)
C.SYM (version 2 of X)
A.OBJ

There will be a version error when A.MOD is compiled, because the version of X.DEF
imported through B.DEF is not the same as the version imported through C.DEF. The
recompilation of X.DEF is the source of the version conflict. Before A.MOD can be
compiled, B.DEF must be recompiled with the newer version of X.DEF.

105

Chapter 5

5.4 Version Errors During Linking

When two or more modules are linked together, a version error can occur if some
definition module has been used in two different versions by the linked modules.

Example:

MAIN.MOD imports

INOUT.DEF defines
imports

INOUT.MOD implements
imports

TERMINAL.DEF defines
imports

TERMINAL.MOD implements
imports

Then suppose these compilations are done:

From

TERMINAL.DEF
INOUT.DEF
INOUT.MOD
TERMINAL.MOD
TERMINAL.DEF
MAIN.MOD

To

TERMINAL.SYM
INOUT.SYM
INOUT.OBJ
TERMINAL.OBJ
TERMINAL.SYM
MAIN.OBJ

InOut,
Terminal.

InOut
nothing.

InOut
Terminal.

Terminal
nothing.

Terminal
nothing.

(version 1)

(uses version 1 of Terminal)
(corresponds to version 1)
(version 2)
(uses version 2 of Terminal)

Under these conditions, linking MAIN.MOD generates a version conflict between the
version of TERMINAL.SYM used by MAIN.MOD, and the version used by
TERMINAL.MOD and INOUT.MOD. One solution is to recompile INOUT.MOD and
TERMINAL.MOD with the new TERMINAL.SYM and link again.

106

Version Checking

The version conflict will be shown by the linker as an unresolved public symbol withthe
following format:

KEY DDMMMYY HHMM OF <moduleName> - --
where YY is for the last two digits of the year, MMM for the first three letters of the month,
DD for the two digits of the day of the month, HH for the two digits for the hour, and MM,

the two digits for the minutes.

LOGITECH MODULA-2 Linker, DOS 8086, ReI. 3.0, Sept 87
Copyright (C) 1987 LOGITECH, Inc.
master file > main

MAIN
TERMINAL
INOUT
RTSMAIN
rtserror

in file C:\WORK\CONSISTE\MAIN.OBJ
in file C:\WORK\CONSISTE\TERMINAL.OBJ
in file C:\WORK\CONSISTE\IINOUT.OBJ
in file C:\m2lib\M2RTS.LIB
in file C:\m2lib\M2RTS.LIB

VERSION CONFLICT BETWEEN MODULES :

---- KEY 29jul87 OF Terminal asked in file
C:\~ORK\CONSISTE\MAIN.OBJ

FATAL ERROR version conflict in module

Figure 5-1: Sample of Version conflict at link time

107

Chapter 5

5.5 Version Errors During Loading

When the LOG/TECH Modula-2 Overlay schema (which is only accessible through the
LOG/TECH Linker) is used to build an application program, an additional check is
made by the LOG/TECH Modula-2 system. The system can detect inconsistency at load
time between the base and overlay layers. This error will happen when an incorrect
version of the .MAP fiel is used when the overlay is linked. Here is a typical case:

A base layer is compiled and linked to produce MVPROG.EXE and MVPROG.MAP.
Next, a version of MVOVL 1.0VL is produced, using MVPROG.MAP as the base .MAP
file.

Later, some modules of MVPROG.EXE are changed and the base layer is recompiled
and relinked. This generates a second version of MVPROG.MAP that is different
from the first version of MVPROG.MAP that was used to generate MVOVL 1.0VL.

The difference in . MAP versions will be flagged at run time as inconsistant.

Remedy this situation by relinking the overlay programs with the new . MAP file version.

108

Interfacing Other Languages

Chapter 6
Interfacing Other Languages

LOGITECH Modula-2 uses the standard .OBJ object file format of DOS. This means
you can link LOG/TECH Modula-2 Compiler output files with .OBJ object files
produced by other compilers or by the assembler.

You need three pieces of information for an interface between different languages:

• Precise symbol names in the .OBJ file as procedure entrypoint and variables:
C puts an _ (underscore) before symbols; other languages put symbols in upper case.

• Calling conventions:
When one procedure calls another, parameter information is passed between them.
Each type of information is put on the stack in an order that is dependent on the
language and its implementation. A function also returns information into registers.

• How the run-time supports of the different languages interact.

LOGITECH Modula-2 gives you three ways to handle this interface.

• You can follow the LOG/TECH Modula-2 conventions described in Appendix B.9,
B.lO, and B.ll. Section 6.1 shows you how to write such an Assembly program. If
the procedure to be called is in a high-level language, create an Assembly interface.

• You can use Modula-2 low-level features like EXTCALL, CODE, SEGREG,
GETREG in order to follow the convention of the external procedure that you call.
See Section 6.2.

• LOG/TECH Modula-2 has an extension which helps you interface other languages
by defining foreign definition modules. This is described in Section 6.3.

109

Chapter 6

6.1 Assembly Implementation with Modula-2 Conventions

This section describes the Assembly language routine in Figure 6-1, which can be called
by a LOG/TECH Modula-2 program. This routine in turn calls the Write procedure
from the Terminal module of the standard Modula-2library.

Follow these steps:

Step 1: Write a Modula-2 Definition File.

This .DEF file will reference the names of your Assembly language procedures,
variables, and their structures for the Modula-2 program listed in Figure 6-2.

Step 2: Compile the .DEF file.

This will create a .SYM file.

Step 3: Write an Assembly Language Program.

See the sample listing in Figure 6-1. You need to define an initialization
routine which will be executed before the main part of your program is run. In
Modula-2, each module which·is imported must be initialised before being used.

Since Modula-2 performs version checking, your Assembly program must
define a public symbol with information about your .DEF file. This is called
the key; it contains the date of the .SYM file you created at Step 2.

The key is defined as:
KEY <date of SYMfile> _OF _ <module name>

KEY __ uses two underline characters with no break;
<date of SYMfile> uses the case-sensitive format ddmmmyyy_hhmm where;

dd stands for the day;
mmm, the month;

yy, the year;
"_" is a separator;

hh stands for the hour; and
mm stands for the minute.

When compiling a Modula-2 implementation module, the compiler generates
this key, and at the same time, makes sure that your implementation corresponds
to your definition. As you write in Assembly, remember: an automatic check
cannot be performed to insure that your Assembly code follows the definition;
that is your responsibility!

110

Interfacing Other Languages

Step 4: Assemble the .ASM File.

Use an assembler to produce a .OBJ file. Remember that Modula-2 is case
sensitive, so use this option in your assembler.

Step 5: Link the different .OBJ Files.

If you use a DOS linker, include the names of all the necessary .OBJ files on
the command line, including the file you created with the assembler.

With the LOGlTECH Linker, you don't need to specify all the filenames: the
name of the main program file is enough. If your Assembly program imports a
file not in the standard library, then you must specify that file on the command
line when you link.

Step 6: Run the .EXE file.

The . EXE file produced by the linking can be run like any other. EXE file.

111

Chapter 6

This sample program shows the interface between Assembly and LOGlTECH Modula-2

• The initialization procedure writes "hello"

• The main module calls the AsmWrite procedure to write a string; this procedure uses
the procedure Write in·the Terminal module of the standard library.

Figure 6-1: EXASM Program Listing.

TITLE ExAsm

The symbol KEY __ <dateSYMfile>_OF_<modulename> is needed for version
checking of Modula-2. Its value has no special meaning, usually O.

PUBLIC KEY __ 19jun87 _2007 _OF _ExAsm
KEY_19jun87_2007_0F_ExAsm EQU 0

ExAsm_TEXT

Exported Procedures
PUBLIC L __ AsmWrite_ExAsm

Initialization entrypoint
PUBLIC $INIT __ ExAsm

Exported Variables
PUBLIC text __ ExAsm

Used procedures
EXTRN L Write Terminal: FAR
EXTRN $INIT __ Terminal: FAR

SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS: ExAsm_TEXT

;--

;--
Asmwrite (VAR str : ARRAY OF CHAR)

PUSH BP save BP and SP
MOV BP, SP BP should not be changed -

It will be used to access the parameters

MOV AX, SEG ExAsm DATA
MOV DS, AX

ASSUME DS ExAsm DATA
i:=O;

MOV AX,O
MOV l,AX

WHILE (i<=HIGH (str)) AND (str[i]<>Oc)
while: MOV AX,l

CMP AX, 10[BP] HIGH (str) is offset at 10
JNBE end
LES BX,6[BP) ADR(str) is offset at 6

112

Interfacing Other Languages

Figure 6-1: EXASM Program Listing (cont'd)

end:

MOV SI,AX
MOV AL,ES: [BX+SI]
CMP AL,O
JE end

Write (str [i]) ;
PUSH AX
CALL L __ Write __ Terminal

INC (i);
MOV CX, SEG ExAsm DATA
MOV DS, CX
INC i
JMP while

MOV SP,BP
POP BP
RET 6

restore SP and BP

release the 6 bytes
of the parameters

;--
PROC FAR

MOV AX, INIT FLAG DATA Test if already
MOV DS, AX initialized
ASSUME DS: INIT_FLAG_DATA
MOV AL, 1 TRUE
XCHG AL, BYTE PTR FLAG_ExAsm
OR AL, AL is it FALSE or
JNE End init skip if TRUE

Execution of the in it code -- here, for example, we write 'Hello'
after initialization of all needed (imported) modules

ExAsm TEXT

CALL $INIT __ Terminal
MOV AX, 7
PUSH AX
MOV AX,SEG ExAsm DATA
PUSH AX
MOV AX, OFFSET text __ ExAsm
PUSH AX
CALL L _ ~smWr i t e __ ExAsm

RET
ENDP

ENDS

INIT_FLAG_DATA SEGMENT WORD PUBLIC 'FAR DATA'

TRUE

FLAG ExAsm DB 0 initialization flag
INIT_ FLAG_DATA ENDS

ExAsm DATA
text __ ExAsm
i
ExAsm_DATA

SEGMENT WORD PUBLIC 'FAR DATA'
DB

END

DW
ENDS

, Hello
o

Figure 6-1: EXASM Program Listing (End)

113

Chapter 6

DEFINITION MODULE ExAsm;
PROCEDURE AsmWrite (VAR str : ARRAY OF CHAR);
END ExAsm.

Figure 6-2: Modula-2 listing for EXASM.DEF

MODULE CallAsm;
FROM ExAsm IMPORT AsmWrite;
Var str : ARRAY [O •. Sl;
BEGIN

str := "folks!";
AsmWrite(str};

END CallAsm;

Figure 6-3: Modula-2 listing for CALLASM.MOD

114

Interfacing Other Languages

6.2 Use of Low-Level Features

The listing in Figure 6·4 tells how to call other high level languages, in this case a C
library output routine.

LOGITECH Modula-2low level EXT CALL, CODE, SETREG, and GETREG features.

MODULE Example;
FROM SYSTEM IMPORT EXTCALL, CODE, AX;
PROCEDURE CWrite(text: ARRAY OF CHAR);
BEGIN

FOR i:=O TO HIGH(text) DO
SETREG(AX,text[i));
CODE(OSOH); (* PUSH AX *)

(* we call the C library routine _putchar *)
EXTCALL (lI_putchar");
CODE (OS8H); (* POP AX *)

(* caller must POP parameters after the call in C *)
END;

END CWrite;
END Example.

Figure 6·4: LOGITECH Modula-210w level EXT CALL, CODE, SETREG, and GETREG

I WARNING I
In this method, nothing is done to initialize C run-time support.
This means that you cannot use the C routines which depend on run-time support.

115

Chapter 6

6.3 Foreign Definition

The LOG/TECH Modula-2 Development System lets you declare foreign definition
modules that interface other languages. These modules have the same syntax than the
standard Modula-2 definition modules except that they should begin with the
keyword FOREIGN which may be followed by a qualifier indicating the language to
interface:

ForeignDefinitionModule = FOREIGN [LanguageQualifier] DefinitionModu!e
LanguageQualifier = C

A foreign definition module could look like this:

FOREIGN DEFINITION MODULE ForeignModule;
EXPORT QUALIFIED ForeignProc;
PROCEDURE ForeignProc (num : INTEGER);
END ForeignModule.

Figure 6-5 Foreign Definition Module with no Qualifier

or like this:

FOREIGN C DEFINITION MODULE ForeignModule;
EXPORT QUALIFIED ForeignProc;
PROCEDURE ForeignProc (num : INTEGER);
END ForeignModule.

Figure 6-6 Foreign Definition Module with C Qualifier

6.3.1 Conventions Used

The implementation of the foreign definition module can be in any language whose
compiler generates the standard .OBJ file format, and uses both the symbol name and the
parameter passing conventions explained below.

116

Interfacing Other Languages

6.3.1.1 Symbol Name Convention

If you don't use any language qualifier, the compiler will assume that the symbol names
generated by the foreign compiler are the very same symbol names as those declared in
the foreign definition module. This is convenient when interfacing Assembly language
because the symbol names generated by the assembler in the .OBJ file are the same as
those in the source code. Pascal compilers usually generate the samne symbol names too
in the .OBJ file, but all in upper case. (This is not a problem when linking with hte DOS
linker, which is not case-sensitive.)

• In Assembly language, declare the symbols as described below:

ForeignProc PROC FAR

ForeignProc ENDP

for a routine named ForeignProc in
the foreign definition module.

If you use the language qualifier "c" to indicate that the foreign language is C language,
the compiler will assume that the routine symbol names are the very same as those
declared in the foreign definition module, but that the data symbol names are the symbol
names with a _ (underscore) at the very beginning of the name. Microsoft C, version 4.0
automatically adds the underscore at the beginning of data names. For routine names, the
keyword pascal should be used to indicate to the C compiler to generate the symbol
name only.

• Microsoft C, version 4.0, declares the routine as described below:

far pascal ForeignProc (num)
int num;
(

Data symbol names are automatically added with an underscore with Microsoft C.

You can implement the foreign module in Modula-2 itself; the compiler assumes that this
Modula-2 module will be called by another language with the conventions described
above. If you already have software written in another language, you can use Modula-2
to develop additional, complementary code. The declaration of the routine should be as
usual:

PROCEDURE ForeignProc (num : INTEGER);
BEGIN

END ForeignProc;

117

Chapter 6

6.3.1.2 Parameter Passing Convention

The parameters are passed with the Pascal convention : i.e., the parameters are pushed
from left to right by the caller and the stack is cleared by the called routine before
returning to the caller. Here are some examples:

• For the assembly language the parameters should be popped in the reverse order than
they were pushed, and the stack should be cleared before the return. Please see the
example below for interfacing with assembly language.

• When using Version 4.0 of Microsoft C, the keyword pascal. will indicate to the
compiler to use the Pascal convention for passing the parameters.

• When using LOGITECH Modula-2 to implement the foreign routine, the compiler
will automatically use the Pascal convention for passing the parameters.

6.3.1.3 Default Data Segment When Using "C" Qualifier

To be compatible with Version 4.0 of Microsoft C, the data segment should contain by
default the segment of a group named DGROUP. Therefore before any call to a foreign
module routine, the LOGITECH Modula-2 compiler generates the following code
sequence:

MOV AX, SEG DGROUP
MOV DS, AX
CALLF ForeignProc

118

Interfacing Other Languages

6.3.2 Examples of Foreign Definition Modules

In the examples below the foreign definition module is one of the two above. The
differences are whether the main program is in Modula-2 or in another language. The
details are discussed below.

6.3.2.1 "main" in Modula-2, and "foreign module" in C

The foreign definition module is the one in Figure 6-6, above.

Here is the C implementation of ForeignProc:

far pascal ForeignProc (nurn)
int nurn;

int i;
printf("This is C Language\n");
for (i=O;i<nurn;i++)

printf("Hello Folks ... \n");

The command for compiling this file is:

MSC IAL FOREIGNM.C QJ
Here is the main program in M odula-2:

MODULE MainMod;

FROM ForeignModule IMPORT ForeignProc;
FROM Terminal IMPORT WriteString, WriteLn;

BEGIN
WriteString("This is Modula-2");WriteLn;
ForeignProc (10);
WriteString ("This is Modula-2") ;WriteLn;

END MainMod.

The command for compiling this file is:

M2C FOREIGNM.DEF MAINMOD.MOD QJ
The command for linking these files is:

LINK MAINMOD.OBJ+FOREIGNM.OBJ/MAP QJ
The screen interaction you see while linking looks like this:

Run File [MainMod.EXE]:
List File [MainMod.MAP]:
Libraries [.LIB] :\M2LIB\LIB\MCRTS.LIB+\M2LIB\LIB\M2LIB.LIB
Cannot find library: M2USER.LIB
Enter new file spec:

119

Chapter 6

To initialize C run time support, MeRTS.LlB should be used when linking. This library
file does not ask for the entry point of the . EXE file. Therefore the entry point will be
given to the C run time support which will, after its initialization, call_main - which is
declared at the entry point of RTSMAIN.OBJ. After initialization of the Modula-2 RTS
the main part of MainMod is called.

To run the program, simply type:

MAINMOD GD

6.3.2.2 "main" in C and "foreign module" in Modula-2

The foreign definition module is the one in Figure 6-6 above, with the "c" qualifier.

Here is the M odula-2 implementation of ForeignProc ':

IMPLEMENTATION MODULE ForeignModule;

FROM Terminal IMPORT WriteString, WriteLn;

PROCEDURE ForeignProc (num : INTEGER);
VAR i : INTEGER;
BEGIN

WriteString ("This is Modula-2"); WriteLn;
FOR i := 1 TO num DO

WriteString ("Hello Folks ••• "); WriteLn
END

END ForeignProc;

END ForeignModule.

The command for compiling this file is:
M2C FOREIGNM.DEF FOREIGNM QJ

Here is the main program in C.

far pascal ForeignProc (int);

main ()
(

printf("This is C Language\n");
ForeignProc(lO);
printf("This is C Language\n");

The command for compiling this file is:
MSC tAL MAINC.C; GD

120

Interfacing Other Languages

Link these files with the following command:
LINK MAINC.OBJ+FOREIGNM.OBJ/MAP GD

You should see the following output:

Run File [MainC.EXE]:
List File [MainC.MAP]:
Libraries [.LIB] :\M2LIB\LIB\CMRTS.LIB+\M2LIB\LIB\M2LIB.LIB
Cannot find library: M2USER.LIB
Enter new file spec:

To initialize C run time support and Modula-2 RTS, use the CMRTS.L1B file when
linking. CMRTS.L1B asks for the entry point of the EXE file. Therefore the Modula-2
RTS is initialized first, and then calls _astart, which is the entry point for C run time
support. After the C run time support is initialized, the call is done to _main.

To execute the program just type:

MAINC GD

6.3.2.3 "main" in Modula-2 and "foreign module" in Assembly

The foreign definition module is shown in Figure 6-5 above, with no language qualifier.

Here is the Assembly implementation of ForeignProc:

TITLE ForeignModule

PUBLIC ForeignProc

ForeignModule TEXT SEGMENT BYTE PUBLIC 'CODE'
ForeignModule-TEXT ENDS
ForeignModule=DATA SEGMENT WORD PUBLIC 'FAR DATA'
ForeignModule_DATA ENDS

ASSUME CS: ForeignModule_TEXT, DS: ForeignModule DATA

ForeignModule DATA SEGMENT
- strl DB 'This is assembly language', OAH, ODH, '$'

str2 DB' Hello Folks ... ', OAH, ODH, ' $'
ForeignModule_DATA ENDS

ForeignModule_TEXT SEGMENT

ForeignProc PROC FAR
PUSH BP
MOV BP, SP
SUB SP, 2
MOV AX, SEG ForeignModule_DATA
MOV DS, AX
MOV DX, OFFSET ForeignModule_DATA:strl
MOV AH, 9
INT 021H

121

reserves 2 bytes

writes strl to screen

Chapter 6

forblock:

forloop:

MOV WORD PTR [BP-2),O; counter := 0
JMP forloop

MOV ox, OFFSET ForeignModule_DATA:str2
MOV AH, 9
INT 021H

INC WORD PTR [BP-2)

MOV AX, [BP+6)
CMP [BP-2), AX
jl forblock

MOV SP, BP
POP BP
RET 2

ForeignProc ENDP

ForeignModule_TEXT ENDS
END

writes str2 to screen

increments counter

parameter num
is counter = num ?

The main program in M odula-2 is the same as that in Section 6.3.2.1.

The command for compiling this file should be:
M2C FOREIGNM.DEF MAINMOD.MOD 0

The command for compiling this file should be:
MASM FOREIGNM.ASM GD

The commands for compiling and linking these files should be:
LINK MAINMOD.OBJ+FOREIGNM.OBJ/MAP 0

You should see the following output:

Run File [MainMod.EXE):
List File [MainMod.MAP):
Libraries [.LIB):\M2LIB\LIB\M2RTS.LIB+\M2LIB\LIB\M2LIB.LIB
Cannot find library: M2USER.LIB
Enter new file spec:

.----------{ Warning with Foreign Modules J,------------.
When using foreign definition modules, take low level considerations of different
compilers into account. Some run time supports reroute some system calls and
trap some interrupts. Be aware of the potential for this kind of problem.

LOGlTECH Modula-2 utilities are tailored to work with Modula-2 code
generated by the LOGITECH Modula-2 Compiler, and may not work perfectly
with code generated by other compilers.

122

The Symbolic Post Mortem Debugger

Chapter 7
The Symbolic Post-Mortem Debugger

The LOG/TECH Symbolic Post-Mortem Debugger, known as the LOG/TECH PMD, or
simply the PMD, lets you inspect a crashed program to find out what went wrong with
the program and where the problem occurred.

LOG/TECH Modula-2 works with two complementary debuggers: the Symbolic Post­
Mortem Debugger (referred to as the LOG/TECH PMD, or simply the PMD) is
described in this chapter. The Symbolic Run-Time Debugger which is called the
LOG/TECH RTD, or simply the RTD, is part of the LOG/TECH Modula-2 Toolkit and
is described there.

The PMD lets you symbolically analyze a program that terminated abnormally. Thus,
you can determine what went wrong, anD where the problem occurred. To do this, a
memory dump must have been created and written onto a file by LOG/TECH Modula-2
Run-Time Support. This memory dump, together with the .REF reference files
generated by the compiler, are taken by the PMD, and you are given symbolic
information on the state of the program: the procedure call chain with the procedure
names, the modules they come from, and the values of all data according to their types
and structures.

123

Chapter 7

A memory dump is created only if the module DebugPMD has been imported into at least
one of the program or sub-program (overlay) modules. The memory dump is written into
the file <filename>.PMD, where <filename> is the name of the program or overlay file
that contains the process that has terminated abnormally. If a program or overlay file
terminates abormally, without the DebugPMD module linked to it, the program is merely
terminated with an appropriate message.

If a program terminates abnormally and unpredictably, insert calls to the DebugPMD
library module and recompile your source code. Then, after linking, run the program
again. Then, when your program crashes, the memory image is saved on disk in a dump
file. The PMD lets you inspect this dump file symbolically: it displays the state of the
program, using the corresponding module and procedure names. It also shows the names
and values of variables according to their type structure.

LOG/TECH Modula-2 creates <program_name>.PMD, a memory dump file, when:

• A run-time error occurs.
• A program calls the standard procedure HALT.

• A program calls the Terminate procedure, exported by the RTSMain module , with a
parameter other than Normal or Warning.

• [Ctrl H Break) or @!ill-@J is pressed while a program that imports the Break module
is running.

The structure and user interface of the RTD are the same as that of the P MD. The RTD
uses the same windows and screen layout as the PMD. The RTD commands are a
superset of the PMD commands. All commands of the P MD are also valid in the RTD

124

The Symbolic Post Mortem Debugger

7.1 LOGITECH PMD Files

The following files are on the diskette:

MDA.CFG

CGA.CFG

EGA.CFG

DB.CFG

DB.HLP

PMD.EXE

The file extensions stand for:

.CFG Configuration file

.HLP Help file

. EXE Executable file

7.2 The PMD and Your Hardware

The LOGITECH PMD works on IBM PC and compatible computers. We recommend
that you run the P MD with a mouse, although it is possible to work without one. If a
mouse is used, it is important to have recent mouse drivers: LOGITECH, Release 3.20 or
higher, or Microsoft, Release 6.00 or higher.

The P MD requires approximately 260K bytes of memory, not counting DOS or any other
drivers you may have installed.

The PMD can work with a MDA, CGA or EGA video controller. With a CGA and EGA
the windows can have colors. With an EGA controller, the PMD can have a screen with
43 lines.

125

Chapter 7

7.3 How to Run the Post-Mortem Debugger

To run the LOGITECH PMD, type:

PMD <dump_file_namejf_known> 0
The debugger responds with a sign-on message:

LOGITECH MODOLA-2 Post-Mortem Debugger

followed by the version number and a copyright notice.

If you have not specified a dump file name, you will see the following screen. If you
specified the name of the dump file on the command line you will not see the prompt.

I __ Name of dump (MEMORY.PMD) I

Figure 7-1 Sample Screen

If you did not enter the dump file name on the command line, enter it here.

126

The Symbolic Post Mortem Debugger

When the PMD is loaded, it executes some internal initialization, and then displays
displays appropriate information in each window on the screen.

~---------------------rIN~OOTTEID)----------------------~

If you use the dump file name on the command line specify it as an argument just
after the debugger.

The PMD from LOG/TECH Modula-2, Version 3.0 uses the .MAP file of the
program .

.------------- IMPORTANT !!! -----------....,

! ! ! NO DEBUGGING CAN BE DONE WITHOUT A .MAP FILE! ! !

The application program must be compiled with the SYMBOL option (which is set by
default) and the link must be made with a .MAP file (default of the linker).

127

Chapter 7

7.4 PMD Configuration

The PMD reads certain files during its initialization phase. One contains the layout of
the screen, and one has information for the help window.

7.4.1 Screen configuration

The screen configuration is in the file DB.CFG. This file is a binary file which can not
be edited. If the file is not found, the debugger prompts for it. If you press r Esc 1 , you
get the default setting for the screen. You can then modify the setting and either save it
with the save config command, or be queried when you leave the debugger.

On the distribution disk, four screen configuration files are provided:

MDA.CFG

CGA.CFG

EGA.CFG

DB.CFG

Monochrome.
Fits all controllers. MDA.CFG is used when the configuration file is
not found and you press (Esc I .
Color.
Works with eGA controller or with EGA in eGA mode.

EGA.
Works in 43 lines mode

Same as MDA.CFG.

If the computer has an exotic display (e.g. Olivetti, ATT, or COMPAQ), start with
MDA configuration (MDA is less critical).

7.4.2 On-line Help

On-line help is in a text file named DB.HLP. If DB.HLP is not found, you are not
prompted for it.

~-------------------------NOTE------------------------~

Search strategy is the same for both the PMD and RTD: the debugger first looks
into the current directory and then in the directory from where it was loaded.

128

The Symbolic Post Mortem Debugger

7.5 Post-Mortem Debugger Options

When you start the PMD, you may also specify various options on the command line.
Options are denoted by a / (forward slash), followed by the first character of the option
name. For example, to activate the Query option, enter:

PMDfQ QJ

when starting the PMD.

/Q

(default: fQ-)
Query

Tells the PMD to search for reference and source files according to the query
search strategy. You will be prompted to enter the reference and source file
names. If the Query option is not specified, the PMD automatically searches for
these files according to the default search strategy.

129

Chapter 7

7.6 User interface

7.6.1 Windows

The PMD uses windows for optimal viewing of executed code.

A window can be open or it can be an icon. Open windows show their contents. Icons
appear as a labels on the last line of the screen. Throughout this chapter, we will often
referred to a "window", meaning an open window, or to an "icon" ~ which means a
window label.

These windows cannot be overlapped and they always share the entire screen. A window
is always displayed beside another window. For example, if the screen is divided
vertically in two windows, a third window can be opened only at the border of one of the
already opened windows.

There is always one active window. Therefor, if a menu is called it will referenc the
functions in the active window. It is also possible to activate an icon so that its menu is
available. The activation of the icon does not open it as a window.

The menus and the messages are displayed with pop-up windows.

130

Window functions are:

Activate a window
Scroll through the contents

Change color screen colors:
Borders
Window Contents
Menus

Change Size and Position:

The Symbolic Post Mortem Debugger

Move window borders (because they share the screen, the motion of a border
modifies the size of adjacent windows)

Fill the whole screen (zoom window)
Shrink to become an icon
Swap position and/or size with another window. Can be swap an icon and a
window, but not two icons.

All commands can be done with the mouse and/or with the keyboard. With the mouse,
use the (. 0 01 double click which calls the most probable command, or use the menu.
With the keyboard, use the menu or the short cuts. If the mouse is not connected, the
mouse cursor is not displayed.

131

Chapter 7

7.6.2 Mouse Functions

The mouse button is context sensitive. The table below describes these meanings.

Cursor position

Left Window Border

Bottom Window Border

Bottom Left Comer
of Window

Inside Window

Prompt

Menu

Scroll Up

Scroll Left

Move
Left Bottom Border

OneOick:
Select

Double Click:
Carty Out Most
Probable Action
On The Selection

Tenninate
User Entry

Execute
Highlighted
Action

Figure 7-2 Mouse Function Table

132

Select Absolute
Vertical Position

Select Absolute
Horizontal Position

Ca1IMenu
To Manipulate
Window

Escape from
Prompt

Execute
Highlighted
Action

Scroll Down

Scroll Right

Call Menu
For Specific
Window Actions

Escape from
Prompt

Execute
Highlighted
Action

Note:

Scroll functions:

Click:

The Symbolic Post Mortem Debugger

Similar to those in the POINT Editor or Microsoft Word.

Attempting to scroll beyond the ends causes a beep.

If two-button mouse is used, use (••) for (0 • 0 J.

(• 0 0 J anywhere inside the window or on an icon you wish
to select. [. 0 D) doesn't expand the icon, but gives you its
local menu.

Move window borders: Select the lower left window corner (the other part of the
border is used as scroll bar). If there is ambiguity, the PMD
prompts you for a menu.

eXchange windows: Select one window. Then point at the other window with the
mouse and select eXchange in that window's menu. This
moves the active window into the new window position.

The other window commands are available via the menu.

133

Chapter 7

7.6.3 Keyboard Functions

7.6.3.1 How to scroll

The active window can be scrolled horizontally and vertically. The cursor keypad is
mapped as follows for scrolling:

beginning
of text

1 line up
1

1

+-------+-------+-------+
Iii 1

--- 1 HOME 1 1 PG UP 1---- 1 page up
1 1 1 1
+-------+-------+-------+
1 1

1 column ------ 1 < > 1---- 1 column
to the left 1 1 to. the right

end of
text

+-------+-------+-------+
1 1 1 1

------- 1 END 1 V 1 PG DN 1---- 1 page down
1 1 1 1
+-------+-------+-------+

1 line down

1 page right

1 page left

Figure 7-3 Cursor Key Scrolling

7.6.3.2 Select a window object

To select a window object, move cursor above the object and press (Spacebar I or QJ .
To activate a window, use a window activation command.

134

The Symbolic Post Mortem Debugger

7.6.3.3 Call the menu

[ill)

QJ
or

[Spacebar]

lEse]

Menu bar

Displays or erases the menu.

Validates the selected item in the menu.

Leaves the menu without performing the action.

Menu bar can be moved up or down. The cursor keypad is mapped as
follows for bar moving:

1 line up
1

1
+-------+-------+-------+
1 1 1 1

few columns 1 HOME 1 1 PG UP 1---- few lines up
to the left 1 1 1 1

+-------+-------+-------+
1 1 1 1

1 column ------ 1 < 1 1 > 1---- 1 column
to the left 1 1 lito the right

+-------+-------+-------+
1 1 1 1

few columns 1 END 1 V 1 PG DN 1---- few lines down
to the right 1 1 1 1

+-------+-------+-------+
1

1

1 line down

Figure 7-4 Select The Menu Bar

However, it is faster to use keystroke commands. The menu beside the
corresponding item displays the appropriate keystroke sequence.

+means@

A means I CtrlJ

The musical note sign means (. 0 D) double click.

Off-menu, (Esc] purges the keyboard input buffer.

Wrong keystrokes are beeped, if beep is ON.

QJ and I Spacebar) activate the selected command.

135

Chapter 7

7.6.3.4 Respond to a prompt

Q]
or

[Spacebar]

[Esc]

@!ill{K)
[~ Back]

Validates the characters entered to the debugger.

Aborts the input processing.

Erases all the input characters.

Erases the last character input.

~--------------------------NOTE--------------------------~

[.00] actsasQ].
[0 • 0] and (0 0 .) act as [Esc) .

7.6.3.5 Move the mouse cursor with the keyboard

These functions are for the numeric keypad when a mouse is connected to the computer.
You can move the mouse cursor by using (nShift l- with the keypad. The cursor keypad is
mapped as follows:

few columns
to the left

1 line up

+-------+-------+-------+
1 1 1 1

--- 1 HOME 1 1 PG UP 1---- few lines up
1 1 1 1
+-------+-------+-------+
1 1

1 column ------ 1 < > 1---- 1 column
to the left 1 1 to the right

few columns
to the right

+-------+-------+-------+
1 1 1 1

--- 1 END 1 V 1 PG DN 1---- few lines down
1 1 1 1
+-------+-------+-------+

1 line down

Figure 7-5 Keyboard and Mouse

136

The Symbolic Post Mortem Debugger

7.7 Windows and Commands

The LOGITECH PMD displays these windows:

Type

Ca11:

Modu1e:

Text:

Data:

Raw:

He1p:

Message:

Function

Show the calling chain of your program at crash time

Show list of the modules in memory

M odula-2 source file

Data defined in a module or procedure

Direct access to the memory

Displays the contents of DB.HLP (help file)

Displays messages of the PMD (e.g., which file is accessed)

The PMD has two types of commands - global and local. Local commands are only
applicable to the particular window in which they appear and are shown.

Quit command

This command lets you quit the PMD. If the screen layout was changed during
the session and not saved, you can save the configuration at that time.

137

Chapter 7

Window activation commands

You can switch from one window to another one by typing:

Keystrokes Window Selected

~@) Call

~C0 Module

0(Q) Data

~ITJ Text

~ffi) Raw

0CBJ Help

~@J meSsage

You can also click into the window or go through menu. When you activate an
icon, it does not open it lets you use its menu. Open an icon with a window
manipulation command.

(£D opens the help window (full screen). (£D exits the help window.

138

The. Symbolic Post Mortem Debugger

Window manipulation commands

You can move the window borders. With a mouse, the border can be selected
by picking the lower left comer of a window (the other part of the border is used
as scroll bar). If an ambiguity exists, the PMD prompts you for a menu to
select. If no mouse is used, (use Alt }{0 and the PMD prompts with a menu
for the window to modify.

~ (Zoom) toggles a window between full and partial screen.

A window can be open or it can be an icon. A window is iconized (or shrunk
@-@J) when only its label is visible on the last line of the screen. You can
open an icon with the vertical or the horizontal expand, (][Jffi or OO{8J .
(][J-0 , lets you exchange two windows. This command moves the active
window in the selected window. Without a mouse, a menu lets you select the
target window.

Configuration commands:

Bring up a menu to change screen colors:

[ID®,@]@

@]ill,@@
00@,0]@

Turns a bell on or off.

Border colors.

Menu colors.

Window content colors.

Lets you save the configuration. If you do not save after a change, you
will be prompted when you wi11leave the debugger.

Low level commands:

Redraws all windows.

Centers the current selection.

Menu commands:

Invokes and exits the menu (toggle).

139

Chapter 7

7.7.1 Call Window

The Call window displays the chain of procedure calls of the crashed process.

Local commands in the Call window:

Address: Gives the address and line number of the executed statement.

Examine break process: Updates all windows with the information related to the
process running when the program stopped.

Data: Updates the data window with the data of the selected element
(PROCEDURE or PROCESS).

Text: Updates the text window with the text of the selected element
(PROCEDURE or PROCESS).

Both: Executes Data and Text commands or is equivalent to the
double click on the selected item.

~---------------NOTE--"-'------------~

You can see the contents of the process only if
RTSMAIN.REF is available.

140

The Symbolic Post Mortem Debugger

The following screen shows the default setup of the windows.

Text lineit 32 Demo.MOD

PROCEDURE RecursiveOne (x: CARDINAL; y:REAL; Z: INTEGER
BEGIN

WITH node[x] Do
datal := x;
data2 :- y;
data3 :- z;

END; (* WITH *)

INC (x) ;
y :- y + 1.0;

Data Demo

x
y

INTEGER
2.0000000000E+000 REAL

z
node

I Raw I Help I Fl I messages

Figure 7-6 Sample Screen

3 INTEGER
ARRAY[1 .. 4] OF RECORD

141

Call breakpoint

>Recursiveone
>RecursiveOne
>Firstone
>initialization
>PROCESS

Module

>+Demo
Reals
RTSMain
Terminal
Termbase
Keyboard
Display

Chapter 7

7.7.2 Module Window

The Module window displays the list of modules of the program being debugged.

Local Commands in the Module Window

Find: Lets you search for a module. Wildcard * and ? characters
use the same syntax as DOS. To select the next module name
matching the input pattern use Find again and press r .J I.

Address: Gives data and code addresses of the module, and updates the
raw window.

Data: Updates the data window with data of the selected element.

Text: Updates the text window with the text of the selected element.

Both: Executes Data and Text commands or is equivalent to the
double click on the selected item.

142

The Symbolic Post Mortem Debugger

7.7.3 Data Window

Data window displays variables and/or parameters of the selected procedure or module.

Local Commands in the Data Window

Son and Father:

eXchange:

Right/left:

Index:

Displays the data structure beneath the current level for the
selected item. If the selected item is an array, the Son
command displays the values of the elements of the array. If
the selected variable is a record, the Son command displays
the names and values of the record fields. Likewise, local
modules are shown as data of the embedding module. You
can also examine the content of the process descriptor by
entering the Son command when a variable of type
"PROCESS" is selected. TTl addition, this command can be
used to follow linked lists when you select a variable which is
a pointer or is of type "ADDRESS". The double click applies
these functions. The command Son is applied when an
element is "double clicked". The command Father is applied
when the path on the top of the window is "double-clicked".
The command Son can be used on a variable of type
PROCESS only if the file RTSMAIN.REF is available.

Lets you switch from procedure local data to module global
data and vice versa.

These commands are only applicable when the selected data
item is an element of an array, or part of an element of an
array. The Right and Left commands select the element with
the next higher or lower index in the array. The current level
is not changed by these commands. If the array elements are
records, the record field selected is not affected.

Lets you select randomly an element of an array by giving the
value of its index.

143

Chapter 7

Type transfer:

Variable:

Examine PROCESS:

Address:

Lets you change the type of a displayed variable. You can use
a predefined or user-defined type. If no type is given, the
variable is displayed with its original type. The Type transfer
is allowed only if the type of the variable and the new type are
of the same size. If you use a type of your own, the debugger
prompts you for the module defining it. A type-changed
variable is marked by a "T".

Returns to the first level of the selected procedure or module.
The first level shows the variables of the procedure or module.
The Variables command can be used after you have repeatedly
entered the Son command and wish to return to the first level
directly, without repeatedly entering the Father command.

This command can be used when you select a variable of type
"PROCESS". Otherwise, the PMD prompts you to introduce
the address of the process descriptor - the content of a variable
of type PROCESS. The Examine command displays the call
chain of the process to be examined. Enter the call window
command Examine break process to show the Call window of
the process that was running when the program stopped.
Checks to see if the process is initialized (a word with a
special pattern is in all process descriptor).

Displays the address of the selected data item and updates the
Raw window.

144

The Symbolic Post Mortem Debugger

The following sample screens show the path you follow to modify the content of an array
element with a record structure. First, invoke the Son command to view the elements of
the variable "node" of the module "Demo" (Figures 7-7 and 7-8. Again, invoke the Son
command to display the fields of the record "node[1]", and the value and type of each
field (Figures 7-9).

PROCEDURE RecursiveOne (x: CARDINAL; y:REAL; z: INTEGER
BEGIN

WITH node[x] Do
datal := x;
data2 :- y;
data3 := z;

END; (* WITH *)

INC(x);
y:=y+1.0;

Data Demo

x
y

INTEGER
2.0000000000E+OOO REAL

3 INTEGER
node ARRAY [1. .4] OF RECORD

I Raw I HelplFl I messages

Figure 7-7 Sample Screen

145

Call breakpoint

>Recur si veOne
>RecursiveOne
>Firstone
>initialization
>PROCESS

Module

>+Demo
Reals
RTSMain
Terminal
Termbase
Keyboard
Display

Chapter 7

Text line. 32 Demo . MOD

PROCEDURE RecursiveOne (x: CARDINAL: y:REAL: Z: INTEGER
BEGIN

WITH node[x] Do
datal :- x:
data2 :- y:
data3 :- z:

END: (*. WITH *)

INC (x) :
y:=y+l.O:

Data

[1]
[2]
[3]
[4]

Demo.node

RECORD
RECORD
RECORD
RECORD

DATA
DATA
DATA
DATA

Figure 7-8 Sample Screen

line. 32 Demo.MOD

PROCEDURE RecursiveOne (x: CARDINAL: y:REAL; Z: INTEGER
BEGIN

WITH node[x] Do
datal := x:
data2 :- y:
data3 := z:

END: (* WITH *)

INC (x) :
y :- y + 1. 0:

Data

datal
data2
data3

Demo. node [1]

2.0000000000E+000
3

INTEGER
REAL
INTEGER

Call breakpoint

>RecursiveOne
>Recur si veOne
>Firstone
>initialization
>PROCESS

Module

>+Demo
Reals
RTSMain
Terminal
Terrnbase
Keyboard
Display

Call breakpoint

>RecursiveOne
>Recursiveone
>FirstOne
>initialization
>PROCESS

Module

>+Demo
Reals
RTSMain
Terminal
Terrnbase
Keyboard
Display

::::::, I Raw I Help I Fl I messages ;::::::

~~1;~~;~~:~::!::::::::::::::::::::::::::;::::::::!:::::::::::::::::::::::::::::::::!:::::!:!:::::::::::::::::!::~~~~~~~~;;~

Figure 7-9 Sample Screen

146

The Symbolic Post Mortem Debugger

Text line* 32 Demo.MOD

PROCEDURE Recursiveone (x: CARDINAL: y:REAL: z: INTEGER
BEGIM

WITH node [x] Do
datal :- x:
data2 :- y:
data3 :- z:

END: (* WITH *)

INC (x) :
y :- y + 1.0:

Data Demo.node[l]

datal INTEGER
data2
data3

2.0000000000E+000 REAL
3 INTEGER

I!ew value (CARDINAL) I

Figure 7·10 Sample Screen

Text line# 32 Demo.MOD

PROCEDURE RecursiveOne (x: CARDINAL: y: REAL: z: INTEGER
BEGIN

WITH node [x] Do
datal :- x:
data2 :- y:
data3 := z:

END: (* WITH *)

INC (x) :
y := y + 1.0:

Data Demo .node [1]

CARDINAL datal
data2
data3

2.0000000000E+OOO REAL
3 INTEGER

I Raw I HelplFl I messages

Figure 7·11 Sample Screen

147

Call breakpoint

>Recursiveone
>RecursiveOne
>FirstOne
>initialization
>PROCESS

Module

>+Demo
Reals
RTSMain
Terminal
Termbase
Keyboard
Display

Call breakpoint

>Recursiveone
>RecursiveOne
>FirstOne
>initialization
>PROCESS

Module

>+Demo
Reals
RTSMain
Terminal
Termbase
Keyboard
Display

Chapter 7

7.7.4 Text Window

The Text window displays the text of a module or procedure. The (» greater-than sign
indicates the line in which the program, the next procedure, or where the last process
transfer or interrupt occurred.

Local Commands in the Text Window

Find:

eXchange:

Address:

Prompts for a PROCEDURE or local module name (case
sensitive), or a line number and, if found, the PMD sets the
selected position to this PROCEDURE, module, or line
number. This command allows you to enter either a line
number or a procedure name. Wild characters are accepted
(" * "," ? ").

Lets you switch from MOD to DEF or DEF to MOD.

Show the code address of the selected source line and updates
the Raw window.

148

The Symbolic Post Mortem Debugger

7.7.5 Raw Window

The Raw window displays the memory contents around a given address. The initial
address of the selected memory location depends on the window from which you invoke
the Raw window. The values are set the same way as'in the PMD.

Local Commands in the Raw Window

Address:

Son:

Examine PROCESS:

Hexadecimal:

Decimal:

Various display modes:

#Address:

#Byte:

#Unsigned:

#Char:

#Integer:

#Text:

#Real:

#Word:

Lets you enter the address of data to be displayed.

Takes the contents of the selected memory location as the new
selected address. You typically enter this command to follow
a linked list. (dereferencing)

Assumes the memory contents at the selected address is of
type "PROCESS" that is a pointer to a process descriptor. The
Examine command displays the Call window of the process.
The call window command Examine break process can be
used to show the Call window of the process that was running
when the program crashed. It also checks the check word of
the process descriptor to check if a valid process is selected.

Decimal to hexadecimal conversion.

Hexadecimal to decimal conversion.

address, byte, cardinal, char, integer, longint, real, text, word

ADDRESS (hexadecimal) format.

BYTE (hexadecimal) format.

Unsigned CARDINAL format

CHAR (octal) format. Non-printable characters are displayed
as octal numbers.

INTEGER.

TEXT. Non-printable characters are displayed as IBM PC
extended characters.

REAL.

WORD (hexadecimal) format.
(default)

149

Chapter 7

7.7.6 Message Window

Version: Lets you display the version of the debugger.

7.7.7 Markers

> (greater-than) is used in the PMD as an execution marker to indicate active code when
the program crashed. It appears in the Call, Module and Text windows.

7.7.8 Selecting an Item for Display

The PMD displays the position of the selected item highlighting the proper line. You
may select a different item using the cursor keys or the mouse.

7.7.9 Relation between Windows

The PMD displays different windows at the same time. This impacts what is shown and
how selections are made. The Call and Module windows are mostly used for selecting
text and/or data. You can select an element and use the double click (or the menu) to
update the other windows.

7.7.9.1 Update made from the Call window

When a windows update is requested from the Call window, the PMD shows the data
and/or the text of the selected procedure. The Raw window shows the contents of the
stack.

7.7.9.2 Update made from the Module window

When a windows update is requested from the Module window, the PMD displays the
data and/or the text of the current module. The Raw window shows the global data area.

7.7.9.3 Update from the Data and Text windows

You can modify the contents of the Raw window by using the command Address of the
Data or the Text window.

150

The Symbolic Post Mortem Debugger

7.8 Consistency Checks

The PMD does three consistency checks:

• Between the code in memory (.PMD file or .EXE file) and the .MAP file. This check
is made by using keys stored in the code and referenced by a $OK label in the map.

• Between the code in memory and the .REF file. This test is made by using the keys
stored in the code and a key stored in the .REF.

• Between the .REF file and the .MOD file. This check is made by using the date of
the .MOD (i.e. the date of the source file when it was compiled) stored in the .REF
file. If this date is not the same as the date of the .MOD file read by the debugger, an
inconsistency is signaled.

The inconsistency between the .MAP and the code in memory is very dangerous. It is
extremely probable that all the information known from the .MAP is wrong. For this
reason, the debugger does not display any symbolic information. It is strongly advised to
relink your application.

An inconsistency between the .REF and the code in memory will make trouble only for
the corresponding module. Depending on the changes made, only the data can be wrong
or only the position displayed in the Text window or both can be wrong. It is advised to
recompile this module and to relink the application (with a .MAP !)

An inconsistency between the .MOD and the .REF will make trouble when displaying
the statement executed in the Text window. It is also advised to recompile this module
and to relink the application.

151

Chapter 7

~------------------------NOTE------------------------~

An additional check is made when a process descriptor or when an overlay
descriptor is accessed (an overlay descriptor is also allocated for the main
program). A field is initialized in the both descriptors with a specific value. If
this value is not found, an error is signaled. This error means that you tried to
analyze an incorrect part of the memory or that the memory was destroyed.

A test is also made when a .EXE is loaded to check if it is a Modula-2 program.
The debugger can debug programs only if the main is in Modula-2.

152

The Symbolic Post Mortem Debugger

7.9 Messages

Already as an icon

Already at top level

ASSERT: message

An internal error is detected into the debugger. The execution stops.

Beginning of this ARRAY

Call list incomplete (BP chain invalid)
A problem was encountered while reading the stack (memory
destroyed ?)

Call list too long (>32)

This is a warning message which tells you that not all procedures on
the stack are visible in the call list.

Can't be iconized

Can't expand in an icon

Cmd not allowed (use zoom)

Cmd not allowed on a window

Cmd not allowed on an icon

Cmd not valid in DEF MODULE

Color changed

Config changes NOT saved

You did not save the last screen configuration.

DEF file not found

End of this ARRAY

Help file not found

153

Chapter 7

Incorrect MAP file
An inconsistency is detected between the .MAP file and the code. This
message appears and remains in the windows to warn you.

Incorrect REF file
An inconsistency was detected with the .REF file. A pop up window
displays the reason the first time the inconsistency is detected. This
message remains in the window to remind you.

Invalid call list
This message is displayed in a pop-up window when a problem is
encountered while reading the call list (memory destroyed ?)

Invalid descriptor
The overlay descriptor has no valid check word (memory destroyed ?)

Invalid PROCESS descriptor
The process used as a parameter of the last command has no valid
check word (memory destroyed ?)

Invalid process
The dump cannot be analyzed, the process descriptor of the process
which crashed is invalid (memory destroyed ?)

MOD file not found

MODULE not found in list

No call l.ist

No data (unknown PROCEDURE)

No data in this element

No data in this local MODULE

No data in this PROCEDURE

No global. data in this MODULE

No global or local data

No selected PROCEDURE

No text associated

No text for a PROCESS

154

The Symbolic Post Mortem Debugger

Not enough memol:Y
Memory problem. Use Small or Big swap option.

PROC/MODULE isn't in this text

REF file can't be re-opened

REF file not found

Swapping of icons not allowed

Thi s border can' t be moved

This data can't be modified
[Data window, Modify command]
This data cannot be modified. Usually this is for hidden types. In this
case you should use the Son command to see the effective type and
then you can modify the variable.

This data isn't an ARRAY

This data isn't structured

This data is of its original TYPE

To modify data use Son cmd

Too many MODULEs (> 256)
The debugger cannot debug programs with more than 256 modules.

Too small for expanding

TYPE not found in given MODULE

TYPE sizes differ

Wrong version of REF file: Bad structure
The REF file does not have the correct version (recompile the module
and relink the application) or is too big.

Wrong version of REF file: Different from OBJ
An inconsistency was detected between the .REF and the code in
memory.

Wrong version of text file

An inconsistency was detected between the .MOD and the .REF file.

155

Chapter 7

Out of dump

Out of dump = NIL

Out of dump > 1 MB

156

Implementation Features

Chapter 8
Implementation Features

,------------- WARNING -----------...,

Use the features in this chapter with care, since they can conflict with the basic
software of the operating system, and with the LOG/TECH Modula-2 system.

157

Chapter 8

8.1 System Dependent Facilities

This section gives an overview of the LOGITECH Modula-2 specific low-level
features. Section 8.2. Priorities and Interrupts gives additional information on
hardware dependencies.

The differences in programming for various implementations can be attributed to:

• Changes to the language itself.
• Differences in the set of available procedures and data types which reflect the

structure of the machine used.

• Differences in the internal representation of data.
• Differences in the set of available modules, in particular those for handling files and

peripheral devices.

The last item reflects the environmental aspects of Modula-2 - such as the set of
standard library modules that give access to the file system, the keyboard and the screen.

A listing of the .DEF files for the LOGITECH Modula-2 library is in Section 9.2.

158

Implementation Features

8.1.1 Language Extensions

Constants of type ADDRESS may be declared as <segment:offset>, where the segment and
offset are CARDINAL numbers. The segment and offset must be constant numbers.

Example:

CONST int3Addr = OH:12H;

TYPE ScreenType =
ARRAY [0 .. 24] OF
ARRAY [0 .• 79] OF
RECORD char, attr: CHAR END;

VAR screen [OBOOOH:OH] : ScreenType;

(* rows *)
(* columns *)
(* content *)

a := 1234:5678; (* assume 'a'of type ADDRESS *)

LOG/TECH Modula-2 also provides for the declaration of absolute variables. Absolute
variables are variables for which the programmer, rather than the LOG/TECH Modula-2
compiler, defines the memory address at which the variable will be located. This feature
is intended to be used for memory-mapped input and output.

When declaring an absolute variable, the identifier denoting it must be followed by an
address constant in brackets. The address constant defines the absolute address of the
variable in memory. The variable screen in the above example is declared as an
absolute variable.

8.1.2 Address Arithmetic

In Modula-2, the standard module SYSTEM provides the type ADDRESS. The use of the
type ADDRESS and the operations on objects of type ADDRESS, must be considered non­
portable. The implementation of ADDRESS operations is very dependent on the
architecture of the target system. The structure of a computer may restrict the operations
that are possible on objects of type ADDRESS.

159

Chapter 8

8.1.2.1 Interpretation of Objects of Type ADDRESS

Objects of type ADDRESS denote a particular location in memory. Type ADDRESS is
compatible with any pointer type. Objects of type ADDRESS can be used as if there were
two different type definitions for type ADDRESS:

TYPE ADDRESS = POINTER TO WORD;

TYPE ADDRESS = RECORD
OFFSET CARDINAL;
SEGMENT CARDINAL;

END;

Example:

If we assume the declarations:

VAR
a : ADDRESS;
w : WORD;
off,seg: CARDINAL;

then the following statements are legal:

a A := w; w := a A
;

a.OFFSET := off: off := a.OFFSET;
a.SEGMENT := seg; seg := a.SEGMENT
WITH a DO SEGMENT := seg END;

8.1.2.2 Operations Involving Objects of Type ADDRESS

A restricted set of arithmetic operations on objects of type ADDRESS is possible. The
switch and compiler option T determines whether or not test code is generated for
ADDRESS operations.

160

Implementation Features

Addition and Subtraction

Addition and subtraction are allowed in expressions of type ADDRESS. An ADDRESS
expression contains exactly one operand of type ADDRESS. All other operands must be
of type CARDINAL. The operation is only performed with the OFFSET value of the
ADDRESS - the SEGMENT value is never modified. If test code is on, the run-time error
address overflow will occur upon an overflow of the OFFSET value on an addition
or subtraction operation.

The standard procedures INC and DEC can also be used with variables of type
ADDRESS. The following declarations are assumed:

PROCEDURE INC (VAR a:ADDRESS; k:CARDINAL);

PROCEDURE DEC (VAR a:ADDRESS; k:CARDINAL);

~-------------------------NOTE-----------------------------~

The second parameter must be assignment compatible with type CARDINAL. If
test code is on, negative values will generate a run-time error. Using INC and
DEC is the preferred way to do ADDRESS arithmetic.

The following list shows the kinds of expressions involving operands of type ADDRESS
which are valid. Each operand itself may be an expression of the corresponding type.

Operation

Addition
Addition
Subtraction

1st Operand

ADDRESS
CARDINAL
ADDRESS

161

2nd Operand Result Type

CARDINAL ADDRESS
ADDRESS ADDRESS
CARDINAL ADDRESS

Chapter 8

Multiplication and Division

Multiplication and division operations are not allowed with operands of type ADDRESS.
This includes:

* / MOD DIV

Comparison

The comparison of two operands or expressions of type ADDRESS is allowed. Here are
the restrictions and how the comparison is implemented:

equal
not-equal

A check on (non-) identity is generated:

al = a2 <--> (al.SEGMENT = a2.SEGMENT) AND (al.OFFSET = a2.0FFSET)

greater-than
greater-equal
less-than
less-equal

These are allowed only between addresses within the same segment - if the
SEGMENT values of both operands are identical. They compare the OFFSET
values only.

The result of these operations is undefined if the two ADDRESS operands
compared have different SEGMENT values.

If test code is ON, the run-time error address overflow will occur when the
SEGMENT values are not equal.

162

Implementation Features

8.1.2.3 Dereferencing Pointers

The switch and compiler option "T" determines whether or not test code is generated for
accessing data through pointers.

If test code is on, any pointer with an offset equal to OFFFFH is considered to be NIL.
Therefore, any access through such a pointer is illegal and will result in a run-time error.

The predefined constant NIL, which is compatible with all pointer types, has the internal
representation OH:OFFFFH. It is strongly recommended that no program makes use of
this information. The representation of NIL is implementation dependent and subject to
change without notice.

163

Chapter 8

8.1.3 The Module SYSTEM

The module SYSTEM offers additional facilities to programs written in the Modula-2
language. Most of them are dependent upon the implementation or are specific to the
target processor. Module SYSTEM also contains types and procedures which allow very
basic coroutine handling.

Module SYSTEM is directly known to the compiler because its exported objects obey
special rules that must be checked by the compiler. If a compilation unit imports objects
from module SYSTEM, no symbol file need be supplied for this module. However, the
declaration of these objects in the import list is required.

Furthermore, no link file exists for this module. The implementation of the pseudo
module SYSTEM is realized by inline code or by calls to the LOG/TECH Modula-2 run­
time support, generated by the compiler.

The interface of the pseudo module SYSTEM cannot be described completely with a
regular Modula-2 definition module. Module SYSTEM offers some features which
expand the language itself. However, for easy reference, a description of module
SYSTEM in a form similar to a definition module has been included in the library section
of this manual.

For additional information please refer to Section 12 of Report on the Programming
Language in Programming in M odula-2.

164

Implementation Features

8.1.3.1 Constants Exported from Module SYSTEM

AX, BX, CX, DX, SI, DI, ES, DS, CS, SS, SP, BP

These constants denote the processor's registers. They are defined for use with
the procedures GETREG and SETREG which are also provided by module
SYSTEM.

8.1.3.2 Types Exported from Module SYSTEM

BYTE

WORD

An individually accessible storage unit (one byte). No operations except
assignments and type conversions are allowed for variables of type BYTE. An
actual parameter of any type that uses one byte of storage may be passed to a
formal BYTE parameter. For convenience, small CARDINAL constants
(< = 255) are also allowed as parameters.

One word of memory (two bytes). No operations except assignments and type
conversions are allowed for variables of type WORD. An actual parameter of
any type that uses one word of storage may be passed to a formal WORD
parameter.

PROCESS

A type used for process handling.

ADDRESS

The address of any location in storage. The type ADDRESS is compatible with
all pointer types and is itself defined as POINTER TO WORD. Section 8.1.2,
Address Arithmetic, explains more on the properties and the use of type
ADDRESS.

165

Chapter 8

8.1.3.3 Functions Exported from Module SYSTEM

ADR(variable): ADDRESS

Storage address of the parameter variable.

SIZE(variable): CARDINAL

Returns the number of bytes used in storage by the parameter variable. If the
variable is of type RECORD with variants, then a variant of maximal size is
assumed.

TSIZE(type): CARDINAL
TSIZE(type, tag1const, tag2const, •.•) : CARDINAL

Yields the number of bytes used in storage by a variable of the substituted type.
If the type is a record with variants, then tag constants of the last FieldList (see
syntax in Programming in Modula-2) may be substituted in their nesting order.
If some or all tag constants are omitted, then the remaining variant with
maximal size is assumed.

166

8.1.3.4 Procedures Exported from Module SYSTEM

NEWPROCESS (processBody : PROC;
workspaceAddress : ADDRESS;

workspaceSize : CARDINAL;
V AR process : PROCESS)

Create a new process.

processBody is the procedure to execute.

Implementation Features

workspaceAddress is the address of the data area for the process (the workspace).
workspaceSize is the size of the workspace in bytes.

The variable process receives the created PROCESS object. Allow 400 bytes
for system overhead in each workspace.

~--------------------------NOTE--------------------~

If the workspace of the new process is too small and does not allow a
reasonable initialization, the process that calls NEWPROCESS is
tenninated with a stack overflow.

TRANSFER (V AR from Process, toProcess : PROCESS)

Save the current process state in fromProcess, and resume the execution of the
process in toProcess.

IOTRANSFER (V AR interruptHandler: PROCESS;
interruptedProcess: PROCESS;
interruptVectorNumber: CARDINAL)

Save the current process state in interruptHandler, and resume the execution of
the process in interruptedProcess. The occurrence of the designated interrupt
has the effect of TRANSFER (interruptedProcess, interruptHandler).

167

Chapter 8

LISTEN

Temporarily lower the priority of the calling process and allow pending
interrupts to come through.

GETREG (register: CARDINAL; V AR value: BYTEorWORD)

SETREG (register: CARDINAL; value: BYTEorWORD);

These two procedures are used to set and to retrieve the contents of machine
registers. They generate in-line code, and are particularly useful in conjunction
with the special procedures CODE and SWI (software interrupt) described
below. The registers AX, BX, CX, DX, SP, BP, SI, DI, ES, CS, SS, and DS are
accessible where SP, BP, SS and CS cannot be used with SETREG. For register
only the register constants provided by module SYSTEM should be used.

If the actual argument for value is a variable in one byte, only the lower half of
the register is affected. For example, in SETREG (AX, ch), where ch is declared
to be a CHAR, only the AL register is modified.

----------------------- VVARNING -------------------------~
Utmost care must be exercised when using GETREG and SETREG. It must be
kept in mind that expression evaluation and address computation use registers and
therefore might destroy the value of a register already set by SETREG or to be
read by GETREG. It is impossible for the compiler to recognize such a situation
and the programmer must take full responsibility.

Only constants, or variables and value parameters which are declared local to the
procedure calling GETREG or SETREG, should be used for the second argument.
This argument should be of a simple type. It should neither be an expression,
contain a function call, index an array, nor be a global (module) variable or a VAR
parameter. If necessary, input parameter values should be copied to local
variables of simple types which can be used when calling SETREG. Only local
variables of simple types should be used with GET REG . If necessary, their values
should be copied to the real output parameters. If there are sequences of calls to
SETREG or GETREG, no other statements should break such a sequence. All
local copies of input values should be made before the first call to SETREG, and
the values of the local variables should be copied back after the last call to
GETREG.

Unpredictable effects may result from failure to heed this warning.

168

Implementation Features

CODE (codelConst, code2Const, •.• : BYTE)

Insert binary machine instructions into the code. A call to CODE inserts the
constant values, codelConst, code2Const, etc., in-line as executable code.

SWI(interruptVectorNumber: CARDINAL)

This procedure is used to generate a software interrupt. It compiles into an INT
instruction. The parameter must be a constant.

If you are using the procedure SWI to call the IBM-PC ROM BIOS or to call
any other assembly routines, we strongly recommend that you save and restore
the base pointer register BP. The value of the BP register is essential to
LOGITECH Modula-2 because it is used to access local variables and
procedure parameters.

To save and restore the BP register, use procedure CODE, which is also
provided by module SYSTEM. Insert CODE (SSH); right before, and
CODE (SOH) ; right after the call to SWI. This pushes and pops the BP register
to/from the stack, so that its value will be preserved.

ENABLE
DISABLE

Calls to the procedures ENABLE and DISABLE compile into STI and CLI
instructions, which enables or disables interrupts.

Note: Any call to the operating system, or any input or output by means of the
LOGITECH Modula-2 library may have the effect of enabling interrupts, thus
undoing a previous call to DISABLE.

INBYTE (port: CARDINAL; V AR value: BYTEorWORD)
OUTBYTE (port: CARDINAL; value: BYTEorWORD)

Get or put a byte value from or to the specified I/O port.

INWORD (port: CARDINAL; V AR value: WORD)
OUTWORD (port: CARDINAL; value: WORD)

Get or put a word value from or to the specified I/O port.

169

Chapter 8

DOSCALL (functionNumber: CARDINAL; •.•)

It generates a DOS function call via software interrupt 21H. The parameter list
is variable, depending on the first parameter, which must be a constant and
indicates the number of the DOS function. The appendix contains a detailed
description of the available DOSCALLs.

Because the parameters of DOSCALL must be given to DOS in registers, no
complicated expressions should be used. The compiler might easily run out of
registers, resulting in compiler error 204.

EXT CALL (Procname : ARRAY of CHAR);

Procname must be a constant string. It tells the compiler to call a non M odula-2
procedure. It is up to you to take care of the parameter passing and calling
conventions, perhaps in CODE statements. (See Chapter 6. Interfacing Other
Languages).

170

Implementation Features

8.1.4 Data Representation

The data types have the following internal representation in LOGITECH Modula-2 :

BYTE

BOOLEAN

CHAR

Enumeration Types

WORD

INTEGER

LONGINT

CARDINAL

Subrange Types

REAL

SET

BIT SET

One byte.

One byte, TRUE=1, FALSE=O.

One byte, ASCII character set.

One byte, elements are numbered 0 .. 255.

Two bytes.

Two bytes, -32768 .. 32767, two's complement notation, least
significant byte first.

Four bytes, -2147483648 .. 2147483648, twos complement
notation, least significant byte first.

Two bytes, 0 .. 65535, least significant byte fIrst.

Same representation as the base type.

Eight bytes, Intel 8087 double precision format
(IEEE Floating Point standard).

The size of a SET is the number of bytes obtained by dividing
the number of elements in the SET (up to 256) by 8 and
rounded to the next higher integer. The elements are
associated to the bits consistently with the above pictures.

Two bytes. If we number the elements of a set from 0 to 15,
the representation in a memory word is:

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

low byte high byte

171

Chapter 8

POINTER
PROC
PROCEDURE
ADDRESS
PROCESS

ARRAY

RECORD

Opaque Types

Four bytes. The first two bytes (lower address) hold the offset
value (lower byte first) and the second two bytes hold the
segment value (lower byte first).

An array is stored as a contiguous sequence of elements, with
the indices in ascending order, the right-most index varying
most quickly. If the base type fits in one byte (CHAR,
BOOLEAN, enumeration) the elements are stored in sequential
bytes. Otherwise, each element is stored on a word boundary
(at an even address).

The fields of a record are allocated in the order in which they
are declared. The first field has the lowest address. If you
select the Alignment option, fields with a size other than one
byte are allocated on even addresses. Therefore, dummy bytes
are included after odd sized elements.

Opaque Types are always allocated four bytes, regardless of
their actual implementation.

172

Implementation Features

8.1.5 Type Conversion and Type Transfer

There are two ways to deal with the "strong typing" of Modula-2: type conversion and
type transfer.

Type Conversion

Type conversion provides the means to convert data from one type into another one,
regardless of the internal representation. This is the system independent and portable
way to convert data from one type to another. Therefore, whenever possible, type
conversion should be used rather than type transfer. The procedures to make the
conversion are built-in, standard procedures, or part of the LOG/TECH Modula-2
library. They are as follows:

Standard Functions

CHR
ORD
VAL
FLOAT
TRUNC

Library Functions

MathLibO.real
MathLibO.entier

Type conversion works by calculating a new value of a new type which corresponds to
the value to be converted.. Code may be executed to perform the conversion, and range
checks are done for the resulting values.

173

Chapter 8

Type Transfer

The second way is referred to as type transfer, or sometimes, as type coercion. This
method is system dependent - it depends on the internal representation of data.
Therefore, use type transfers with utmost care, and avoid them whenever possible.

With a type transfer, no conversion of data takes place. The data is simply interpreted in
a different way, according to the new type structure.

Modula-2 lets you use an identifier of a type, either a standard type like CHAR, or any
user-defined type, as if it were a function procedure. The compiler does not produce any
code for type transfers. A type transfer simply indicates that a value shall be interpreted
in a different way.

A type transfer is only allowed if the object is of the same size as objects of the new type.
When transferring a variable of type T1 into type T2, the following relation must be true:

SYSTEM.TSIZE (Tl) = SYSTEM.TSIZE (T2)

When using type transfer instead of type conversion, be aware of the internal
representation of data. Your programs may not run on other machines or with other
implementations of Modula-2.

Example 1: Interpret the value of a SET as a CARDINAL

VAR b: BITSET; (* 'b' and 'e' are both *)
e CARDINAL; (* represented as 2 bytes *)

b : = {O,5,15};
e = CARDINAL (b); (* e = 2**0 + 2**5 + 2**15 *)

Example 2: Use a CARDINAL value in an INTEGER expression

VAR i: INTEGER;
e CARDINAL.;

i : = 2*i + INTEGER (e);

This second example illustrates an abuse of the type transfer. What was really meant was
a conversion to integer. The correct solution is:

i : = 2*i + VAL (INTEGER, e);

174

Implementation Features

8.2 Priorities and Interrupts

8.2.1 Use of Priorities

Priorities can be specified in the header of a module. They are allowed in program and
implementation modules, as well as in local modules declared inside of another module.
Priorities are used to control the occurrence of interrupts. When no priority is specified,
all interrupts may occur.

However, when a program is running at a certain priority, only interrupts of a higher
priority will be accepted. At the highest priority all interrupts are disabled. Note also
that running at the lowest, specified priority is very different from running without any
priority.

A priority module is entered upon the execution of its module initialization code or upon
a call of an exported procedure. A priority module is left upon return from its
initialization code or upon return from an exported procedure. When entering a priority
module, the interrupt control system (hardware and software) is set such that interrupts of
a priority lower or equal to the one specified in that module are not passed to the
processor. When leaving a priority module, the interrupt control system is reset to the
state it was prior to entering that module. The procedure LISTEN, from module
SYSTEM, allows a process to lower its priority temporarily. During the execution of the
procedure LISTEN the interrupt control system is set such that all pending interrupts are
accepted.

Inside a priority module, calls to procedures of other priority modules with a lower
priority than that of the module with the call statement are not allowed. When this
situation is detected by the compiler, an appropriate error message is produced (error
161). If a procedure of a module with no specified priority is called, the current priority
remains unchanged. If a procedure of a module with higher priority is called, that higher
priority becomes effective during execution of the called procedure. The old priority is
restored upon return from that procedure.

Priorities are attached to processes. Upon a TRANSFER or IOTRANSFER to a process
running at another priority, the interrupt control system is switched to the priority of the
process which will be activated. The same holds true for the implicit coroutine transfer
which occurs upon an interrupt.

When a subprogram terminates, the priority is set back to the value which was effective
when the subprogram was loaded.

175

Chapter 8

8.2.2 Priority Levels

Both the LOGITECH Modula-2 compiler and the LOGITECH Modula-2 run-time
support only allow for a fixed range of priority levels. Eight priority levels are supported
with values ranging from 0 (lowest level) to 7 (highest level). If a module priority is
specified with a value out of this range, the compiler produces an appropriate error
message (error 80).

~---------------------(~NMO~TnEnl----------------------~

Do not confuse software priority level with hardware priority mask. The
mapping between the two is explained in Section 8.2.4.2.

176

Implementation Features

8.2.3 Interrupt Handling

There are three main ways to handle interrupts in LOG/TECH Modula-2 :

8.2.3.1 Standard Method with IOTRANSFER

In "standard" Modula-2, the procedure IOTRANSFER from module SYSTEM allows for
the implementation of interrupt handlers. After the call to IOTRANSFER the interrupt
handler is installed and is waiting for the specified interrupt. However, on 8086 based
systems, the system needs to be notified that interrupts from the corresponding device
may now occur. In LOG/TECH Modula-2 , the module Devices provides the capability
to enable and disable interrupts from a device. After an interrupt handler has been
installed, module 'Devices' should be used to enable interrupts from the corresponding
device.

An interrupt handler should not call the operating system, for instance to write to the
terminal or to a file. If the operating system is not reentrant, such a call may crash the
whole system. In general, operating systems that do not support multi-tasking, for
instance DOS 2.0, are not reentrant.

Please refer also to the definition module Devices and to the sample device driver
InputDevice at the end of this section. Module InputDevice illustrates how an interrupt
handler should be programmed with LOG/TECH Modula-2 .

8.2.3.2 Faster Method with IOTRANSFER

The standard method using IOTRANSFER as described in the previous section,
associates a process with the next occurrence of the specified interrupt only. The
procedure InstallHandler provided by module Devices allows you to install an interrupt
handler that will be removed upon the proper termination. It associates a process, the
interrupt handler, permanently with a particular interrupt. While it is not required to
install an interrupt handler in this way, it may be useful for handling time critical
interrupts. Installing an interrupt handler permanently improves the performance, by
about 20 percent, of IOTRANSFER and of the implicit coroutine transfer that takes place
when the interrupt occurs. InstallHandler must only be called after the process has been
created (by means of NEWPROCESS) and before the process has called IOTRANSFER.
For instance, it may be called at the beginning of the code of the process.

177

Chapter 8

8.2.3.3 Low Level Interrupt Handling

This is the fastest method to handle interrupts, but also the least portable. Unlike the
previous two methods, this implementation doesn't perform a context switch on
interrupts, but uses the current stack to handle the interrupt. This provides a great
improvement in speed because the overhead of two transfers is removed.

One disadvantage of this method is that the debug utilities do not support the debugging
of interrupt service routines, because the state of the stack does not have the usual form.

The RTSIntPROC module lets you install such Interrupt Service Routines. The
procedure installed as ISR must be a PROC, but does not have to save registers or similar
functions, because the module RTSIntPROC saves all registers and sends the End-Of­
Interrupt command to the interrupt controller before the call to the Modula-2 procedure.

The procedure is executed "Interrupts Disabled". Thus, the procedure does not need to
be in a priority module (and as the stack and context is unpredictable, it is not allowed in
a priority module). As the procedure is executed "Interrupts Disabled", it must be fast to
allow other interrupts to be serviced.

The procedure must not call DOS directly or indirectly, because DOS is not re-entrant,
and the interrupt PROC may interrupt any running code, including DOS, depending when
the interrupt occurs. For example, it shall not use library modules making Input/Output
like FileSystem, Terminal, InOut, etc.

178

Implementation Features

The following code shows a module which allows the installation of a M odula-2
procedure as an interrupt service routine:

MODULE ModulaISR;

FROM RTSIntPROC IMPORT SetIntPROC, FreeIntPROC;
FROM SimpleTerm IMPORT WriteString, WriteLn, KeyPressed;

VAR
BreakPressed

PROCEDURE ISR;
BEGIN

BreakPressed
END ISR;

BOOLEAN;

True;

BEGIN
BreakPressed := FALSE;
SetIntPROC (ISR, 27);
LOOP

IF BreakPressed THEN
BreakPressed := FALSE;

(* signal the event to the outside

(* reset the event

*)

*)

(* The write MUST be done outside the ISR, because Write uses DOS calls, *)
(* and DOS is not re-entrant. This is the way to signal an event from *)
(* an ISR and take it into account, and make the heavy or time-consuming *)
(* work outside the ISR. *)

WriteString ("Break !n);
WriteLn;

END;
IF KeyPressed() THEN EXIT END;
END;
FreeIntP roc;

END ModulaISR

(* make the time-consuming work *)

(* releases all installed ISRs *)

179

Chapter 8

8.2.3.4 How to Cope With Non-Reentrancy of MS-DOS

The non-reentrancy of MS-DOS appears to be a problem when writing a real-time kernel
in Modula2 (as in other languages). The basic principle is to avoid task switching while
DOS is in a 'critical section'. There is an undocumented DOS call (34 H) which can be
used to determine whether DOS is in such a critical section. Since DOSCALL 34H is not
documented, it is not supported by the LOGITECH Modula-2 Compiler. The following
program extract shows you how to get access to this information:

MODULE scheduler;

FROM SYSTEM IMPORT
ADR, ADDRESS, SETREG, GETREG, SWI, AX, ES, BX;

TYPE
BooleanPtr = POINTER TO BOOLEAN;

VAR
criticalSectionptr BooleanPtr;
aux ADDRESS;

BEGIN
SETREG (AX, 3400H);
SWI (21H);
GETREG (ES, aux.SEGMENT);
GETREG (BX, aux.OFFSET);
criticalSectionptr := BooleanPtr(aux);

END scheduler.

In the scheduler routine which actually performs the task switching, one must test the
critical section flag in DOS:

IF criticalSectionPtrA THEN
(*

don't do the transfer to the waiting process,
but let the interrupted process continue

*)
TRANSFER(currentProcess,interruptedProcess);

ELSE
(* transfers to waiting process *)
TRANSFER (currentProcess, waitingProcess);

END;

A similar check can be done to avoid DOS function calls in an interrupt handler routine,
while DOS is in a critical section.

180

Implementation Features

8.2.4 Implementation Notes

LOGITECH M odula-2 implements priorities and device handling through the mask
register of the interrupt controller in the 8086 system. The corresponding code is part of
the LOGITECH M odula-2 run-time support.

8.2.4.1 The Device Mask

The run-time support maintains a device mask that indicates from which devices
interrupts are enabled. When a program is not running at any priority, the mask register
of the interrupt controller is identical to this device mask. The initial value of the device
mask corresponds to the value of the interrupt controller mask at the time when the
LOGITECH Modula-2 program was started.

The library module Devices provides procedures that allow a program to enable or disable
interrupts from a device. These procedures are implemented by calls to functions of the
run-time support, which modify the device mask. The device numbers used by module
Devices and by the LOGITECH Modula-2 run-time support correspond to the order and
meaning of the bits in the mask register of the interrupt controller.

The run-time support maintains only one copy of the device mask. Thus, the device
mask is shared among all processes and any subprograms of a LOGITECH Modula-2
program.

8.2.4.2 The Priority Masks

To each priority level a particular priority mask corresponds, which masks out the
interrupts from all devices with the same or a lower priority. The order and meaning of
the bits in the priority mask are the same as those in the device mask and in the mask
register of the interrupt controller. The mapping between the priorities and the priority
masks is done by the run-time support. The value of the priority level is used as an index
to a table of priority masks.

The table of priority masks is initialized as follows: It masks bit seven for priority level
zero, the lowest priority. It masks bit six and seven for priority level one, and so on. For
priority level seven, the highest priority, all bits in the mask are set such that all interrupts
are disabled. These default settings correspond to the IBM-PC hardware. If necessary,
the values in this table may be modified to implement a different priority scheme that
reflects the hardware properties of a given 8086 based system.

181

Chapter 8

8.2.4.3 The Interrupt Controller Mask

When a program is not running at any priority, LOG/TECH Modula-2 sets the mask
register of the interrupt controller such that it is identical to the device mask. If a
program is running at a particular priority, the mask register of the interrupt controller is
set to the logical OR of the device mask and the corresponding priority mask. In this
way, all interrupts are disabled which are masked out either in the device mask or in the
current priority mask.

The field PriorityMask of the process descriptor holds the priority mask that corresponds
to the priority at which the process is running. When creating a new process (procedure
NEWPROCESS), the initial value of the priority mask in the process descriptor is zero.
This initial value indicates that the process is not running at any priority. If the procedure
which constitutes the process is declared in a priority module, its priority becomes
effective when the process is started. A process starts execution upon the first
TRANSFER of control to it, after it was created by NEWPROCESS.

The mask register of the interrupt controller is always equal to the logical OR of the
current device mask and the priority mask that corresponds to the priority at which the
current process is running. When a coroutine transfer occurs upon a call to TRANSFER,
IOTRANSFER, or upon an interrupt, the mask register of the interrupt controller is set
according to the priority of the process that takes control and according to the value of
the device mask. The mask register of the interrupt controller is also set accordingly
whenever the priority changes because of a call to, or a return from, a priority module.
When the device mask is modified, the mask register of the interrupt controller is updated
according to the new device mask and according to the priority mask of the current
process.

182

Implementation Features

8.2.4.4 Monitor Entry and Exit

Priority modules are also called monitors. When entering or leaving a monitor, some
code is executed to change the priority of the current process. This code is part of the
LOGITECH Modula-2 run-time support.

The compiler generates a call to the run-time support (RTS call) in the procedure entry
code (to the Monitor Entry function) and in the procedure exit code (to the Monitor Exit
function) for every procedure exported from a priority module. The procedure LISTEN
from module SYSTEM is translated to another RTS call, the Listen function.

The Monitor Entry function is called after the possible stack-test and after the stack
pointer is decremented by the size of the local data. It saves the current priority mask,
from the process descriptor of the current process, onto the stack of the entered
procedure. The new priority is used as an index in a table that contains the value of tbe
priority mask for each priority level. The new priority mask is stored in the process
descriptor. The mask register of the interrupt controller is set to the logical OR of the
new priority mask and the current device mask.

The Monitor Exit function restores the old priority mask from the top of the stack back
into the process descriptor. It also sets the mask register of the interrupt controller to the
logical OR of the old priority mask and the current device mask. Unless the device mask
has been changed while running on priority, the mask register of the interrupt controller
will have the same value as before entering the priority module.

The Listen function first sets the current priority to no priority, in a way similar to the
Monitor Entry function. The value of the priority mask for no priority is not stored in the
table of priority masks. The mask for no priority has all bits set to zero. Therefore, the
mask register of the interrupt controller will be equal to the device mask. The Listen
function then sets the interrupt enable flag of the processor. At this point, all pending
interrupts may come through, if they were enabled in the device mask. After the
execution of a no-operation instruction, the Listen function restores the old priority in a
way similar to the Monitor Exit function.

183

Chapter 8

8.2.5 The Definition Module for "InputDevice"

DEFINITION MODULE InputDevice;
(*

*)

Sample Input Device

This is the sample interface definition for a small input device driver, which
shows how interrupt driven devices should be handled in LOGITECH Modula-2.
A corresponding scheme can be used for interrupt driven output devices.

EXPORT QUALIFIED
ReadInfo;

PROCEDURE ReadInfo (VAR info: Information);
(*

*)

get information from the device, where 'Information' might be
of type 'CHAR' for a character device

END InputDevice.

8.2.6 The Implementation Module for "InputDevice"

IMPLEMENTATION MODULE InputDevice [priority];
(*

*)

Sample Input Device

This is a small sample input device driver, which shows how interrupt driven
devices should be handled in LOGITECH Modula-2.

A corresponding scheme can be used for interrupt driven output devices

FROM SYSTEM IMPORT
PROCESS, NEWPROCESS, TRANSFER, IOTRANSFER, ADR, SIZE, BYTE, ADDRESS;

FROM RTSMain IMPORT
InstallTermProc;

FROM Devices IMPORT
GetDeviceStatus, SetDeviceStatus, SaveInterruptVector, RestoreInterruptVector;
InstallHandler;

CONST
device = ??;
(* bit number in interrupt controller mask *)

interruptVectorNumber = ??;
(* interrupt vector used by device *)

184

VAR
mainP, driverP: PROCESS; (* Modula-2 coroutines *)

workspace: ARRAY [o •• ??] OF BYTE;
(* workspace for driver coroutine *)

oldInterruptVector : ADDRESS;

oldDeviceStatus: BOOLEAN;

activ: BOOLEAN;
(*

Implementation Features

indicates whether the device driver has been activated
*)

PROCEDURE ReadInfo (VAR info
BEGIN
(* get info from a buffer *)

END ReadInfo;

Information) ;

PROCEDURE DeviceDriver;
BEGIN
(*

here we could associate the process permanently to
the given interrupt vector number by:

InstaIIHandler(driverP, interruptVectorNumber);
This call improves the performance of the interrupt handling

*)
LOOP

IOTRANSFER(driverP, mainP, interruptVectorNumber};
(* handle the interrupt, put info into a buffer *)

END; (* LOOP *)
END DeviceDriver;

PROCEDURE StartDevice;
BEGIN

IF NOT activ THEN
SaveInterruptVector (interruptVectorNumber,

oldInterruptVector);
(* save interrupt vector used by device *)

GetDeviceStatus(device, oldDeviceStatus};
(* save old device status (interrupts enabled/disabled) *}
activ := TRUE;
NEWPROCESS (DeviceDriver, ADR (workspace), SIZE (workspace), driverP);
(* create a Modula-2 process for the driver *)

TRANSFER (mainP, driverP);
(* transfer control to the driver process *)

SetDeviceStatus(device, TRUE}:
(* allow (enable) interrupts from the device *)

END:
END StartDevice:

185

Chapter 8

PROCEDURE StopDevice;
BEGIN

IF activ
THEN activ := FALSE;

SetDeviceStatus(device, oldDeviceStatus);
(* restore the original device status (interrupts enabled/disabled) *)

RestoreInterruptVector (interruptVectorNumber, oldInterruptVector);
(* restore the original value of the interrupt vector used by the device *)

END;
END StopDevice;

PROCEDURE InitDevice;
BEGIN

(* initialize device if necessary *)
END InitDevice;

BEGIN
activ := FALSE;
InitDevice;
StartDevi ce;
InstallTermProc(StopDevice);
(*

install 'StopDevice' as a termination routine, in order to properly stop
the device driver when the program that uses the driver terminates

*)
END InputDevice.

186

Implementation Features

8.3 DOSCALL

The DOSCALL procedure must be imported from the SYSTEM module. It provides a
rather simple way to access the underlying operating system from programs written in
Modula-2. For the description of each of these functions we refer to the corresponding
MS-DOS or PC-DOS Manual. The actual parameters of the procedures should not be
very complicated. The compiler might easily run out of registers.

The fIrst line is a Modula-2 procedure declaration. The second line notes for each
parameter the register(s) in which it is passed. The type BYTEWORD (which doesn't
exist in Modula-2) means that any type compatible with BYTE or WORD is possible for
the actual parameter.

Example:

DOSCALL (15;
FCBAddr : ADDRESS;
VAR returnCode BYTEWORD) ;
AH DS : DX AL

possible use:

VAR FCB : ARRAY[O ... 35] OF CHAR:
returnVal : CARDINAL

DOSCALL(15, ADR(FCB), returnVal):
IF returnVal = .•. THEN

The standard procedure DOSCALL has a variable parameter list. This parameter list
depends on the first parameter that must be a constant. This constant is the number of the
DOS function to be called.

187

Chapter 8

The formats of these functions are:

Function OH: Program Terminate

DOSCALL (OH)
AH

Function IH: Keyboard Input

DOSCALL (lH; VAR char:BYTEWORD);
AH AL

Function 2H:Display Output

DOSCALL (2H; char:BYTEWORD);
AH DL

Function 3H: Auxiliary Input

DOSCALL (3H; VAR char:BYTEWORD);
AH AL

Function 4H: Auxiliary Output

DOSCALL (4H; char:BYTEWORD);
AH L

Function 5H: Printer Output

DOSCALL (5H; char:BYTEWORD);
AH DL

Function 6H: Direct Console I/O

DOSCALL (6H; OFFH; VAR char:BYTEWORD;
AH DL AL

VAR ready: BOOLEAN); (input)
ZF

DOSCALL (6H; char:BYTEWORD); (output)
AH DL

Function 7H: Direct console Input without echo

DOSCALL (7H; VAR char:BYTEWORD);
AH AL

Function 8H: Console input without echo

DOSCALL (8H; VAR char:BYTEWORD);
AH AL

188

Function 9H: Print String

DOSCALL (9H; stringaddr:ADDRESS);
AH DS: DX

Function OAR: Buffered Keyboard input

DOSCALL (OAH; stringaddr:ADDRESS);
AH DS: DX

Function OBH: check standard input status

DOSCALL (OBH; VAR status:BYTEWORD);
AH AL

Implementation Features

Function OCH: Clear standard input buffer and invoke a standard input function

The second parameter (input function) determines the form of the
parameter list.
It must be one of the constants (functions) lH, 6H, 7H, 8H, or OAR.

DOSCALL (OCH; lH; VAR char:BYTEWORD);
AH AL AL

DOSCALL (OCH; 6H; VAR char:BYTEWORD;
AH AL AL
[DL = OFFH implicitly]

VAR ready:BOOLEAN);
ZF

DOSCALL (OCH;
AH

DOSCALL (OCH;
AH

DOSCALL (OCH;
AH

Function ODH: Disk reset

DOSCALL (ODH)
AH

Function OEH: Select Disk

7H; VAR char:BYTEWORD);
AL AL

8H; VAR char:BYTEWORD);
AL AL

OAH; stringaddr:ADDRESS);
AL DS : DX

DOSCALL(OEH; drive: BYTEWORD;
AH DL

VAR nrofdrives : WORD);
AL

189

Chapter 8

Function OFH: Open File

DOSCALL (OFH; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode : BYTWORD);
AL

Function IOH: Close File

DOSCALL (lOH; FCBaddr:ADDRESS;
AH DS: DX

VAR returnCode : BYTEWORD);
AL

Function IIH: Search for the first entry

DOSCALL (llH; FCBaddr:ADDRESS;
AH DS: DX

VAR returnCode : BYTEWORD);
AL

Function 12H: Search for the next entry

DOSCALL (12H; FCBaddr : ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function 13H: Delete File

DOSCALL (13H; FCBaddr : ADDRESS;
AH DS:DX

VAR returnCode : BYTEWORD);
AL

Function 14H: Sequential Read

DOSCALL(14H; FCBaddr : ADDRESS;
AH DS: DX

VAR returnCode : BYTEWORD);
AL

Function ISH: Sequential Write

DOSCALL (15H; FCBaddr : ADDRESS;
AH DS: DX

VAR returnCode : BYTEWORD);
AL

190

Function 16H: Create File

DOSCALL (16H: FCBaddr : ADDRESS:
AH DS: DX

VAR returnCode : BYTEWORD):
AL

Function 17H: Rename File

DOSCALL (17H: FCBaddr : ADDRESS:
AH DS: DX

VAR returnCode : BYTEWORD):
AL

Function 19H: Current Disk

DOSCALL (19H: VAR currDrive BYTEWORD):
AH AL

Function lAH: Set Disk Transfer Address

DOSCALL (lAH; DTA : ADDRESS):
AH DS: DX

Function IBH: Allocation table information

DOSCALL (lBH; VAR FATaddr : ADDRESS:
AH DS: BX

VAR nrallocUnits, nrSectors,
DX AL

sectSize : BYTEWORD);
CX

Function lCH: (not implemented)

Function 21H: Random Read

DOSCALL(21H: FCBaddr:ADDRESS;
AH DS : DX

VAR returnCode : BYTEWORD);
AL

Function 22H: Random Write

DOSCALL(22H; FCBaddr:ADDRESS;
AH DS: DX

VAR returnCode : BYTEWORD);
AL

191

Implementation Features

Chapter 8

Function 23H: File Size

DOSCALL(23H; FCBaddr : ADDRESS;
AH DS: DX

VAR returnCode : BYTEWORD);
AL

Function 24H: Set Random Record Field

DOSCALL(24H; FCBaddr : ADDRESS);
AH DS: DX

Function 25H: Set Interrupt Vector

DOSCALL(25H; vectorVal
IntNumber

AH DS: DX

ADDRESS;
BYTEWORD) ;

AL

Function 26H: Create a new program segment

DOSCALL(26H: progSegment:BYTEWORD);
AH DX

Function 27H: Random Block Read

DOSCALL(27H; FCBaddr:ADDRESS;
AH DS:DX

VAR nrofBytes:BYTEWORD;
cx

VAR returnCode:BYTEWORD);
AL

Function 28H: Random Block Read

DOSCALL(28H: FCBaddr:ADDRESS;
AH DS:DX

VAR nrofBytes:BYTEWORD;
cx

VAR returnCode:BYTEWORD);
AL

Function 29H: Parse Filename

DOSCALL (29H; FCBaddr ADDRESS;
mode BYTEWORD;

AH ES:D AL

VAR stringaddr : ADDRESS;
DS:SI

VAR returnCode BYTEWORD);
AL

192

Implementation Features

Function 2AH: Get Date

DOSCALL(2AH; VAR year:WORD; VAR monthday:WORD);
AH CX DX

Function 2BH: Set Date

DOSCALL(2BH; year:WORD; monthday:WORD;
AH CX DX

VAR returnCode:BYTEWORD);
AL

Function 2CH: Get Time

DOSCALL(2CH; VAR hourminute, secondmillisec:WORD);
AH CX DX

Function 2DH: Set Time

DOSCALL(2DH; hourminute, secondmillisec:WORD;
AH ex DX

VAR returnCode:BYTEWORD);
AL

Function 2EH: Set/Reset Verify Switch

DOSCALL(2EH; zero:BYTEWORD; onoff:BYTEWORD);
AH DL AL

193

Chapter 8

8.3.1 Extensions for DOS 2.0

Function 2FH: Get DT A

DOSCALL (2FH: VAR DTAaddr: ADDRESS):
AH ES:BX

Function 30H: Get DOS version

DOSCALL (30H: VAR major, minor: BYTE):
AH AL AH

Function 31H: Terminate and remain resident

DOSCALL (31H: exitCode : BYTEWORD:
AH AL

paragraphs: WORD):
DX

Function 33H: Ctrl-Break-Check

DOSCALL(33H: mode:BYTEWORD; VAR state:BYTE);
AH AL DL

Function 35H: Get Vector

DOSCALL(35H: vector:BYTEWORD: VAR vector:ADDRESS
AH AL ES:BX

Function 36H: Get disk free space

DOSCALL(36H: drive:BYTEWORD: VAR valid:BYTEWORD:
AH DL AX

VAR availClusters:BYTEWORD;
BX

VAR totclust:BYTEWORD;
DX

VAR bytesPerSect:BYTEWORD);
CX

Function 38H: Return Country dependent information

DOSCALL(38H; buffAddr:ADDRESS; fctcode:BYTEWORD);
AH DS:DX AL

Function 39H: Create a subdirectory (MKDIR)

DOSCALL(39H; stringaddr:ADDRESS;
AH DS: DX

VAR error: WORD);
AX,CF

(error = 0 means no error;

refer to the table in the DOS manual for other errors)

194

Implementation Features

Function 3AH: Remove a directory entry (RMDIR)

DOSCALL(3AH; stringaddr:ADDRESS; VAR error:WORD):
AH DS:DX AX,CF

Function 3BH: Change the current directory (CHDIR)

DOSCALL(3BH; stringaddr:ADDRESS; VAR error:WORD);
AH DS:DX AX,CF

Function 3CH: Create a File

DOSCALL(3CH; stringaddr:ADDRESS; attrib:BYTEWORD:
AH DS:DX CX

VAR handle:BYTEWORD; VAR error:WORD);
AX AX,CF

Function 3DH: Open a File

DOSCALL(3DH; stringaddr:ADDRESS; access:BYTEWORD;
AH DS:DX AL

VAR handle:BYTEWORD; VAR error:WORD);
AX AX,CF

Function 3EH: Close a file handle

DOSCALL(3EH; handle:WORD; VAR error:WORD);
AH BX AX,CF

Function 3FH: Read from a file or device

DOSCALL(3FH; handle:WORD; nrbytes:WORD;
AH BX CX

buffAddr:ADDRESS:
DS:DX

VAR readBytes:BYTEWORD:
AX

VAR error:WORD);
AX,CF

Function 40H: Write to a file or device

DOSCALL(40H; handle:WORD; nrbytes:WORD:
AH BX CX

buffAddr:ADDRESS;
DS:DX

VAR writtenBytes:BYTEWORD: VAR error:WORD):
AX AX,CF

195

Chapter 8

Function 41H: Delete a file from a specified directory

DOSCALL(41H; stringaddr:ADDRESS; VAR error:WORD);
AH DS:DX AX,CF

Function 42H: Move file read/write pointer

DOSCALL(42H; handle:WORD; method: BYTEWORD;
AH BX AL

inHigh,inLow:WORD;
CX DX

VAR outHigh,outLow:WORD; VAR error:WORD);
DX AX AX,CF

Function 43H: Change File Mode

DOSCALL(43H; stringaddr:ADDRESS; fctcode:BYTEWORD;
AH DS:DX AL

VAR mode:BYTEWORD; VAR error:WORD);
CX AX,CF

Function 44 H: I/O control for devices

The procedure depends on the value of the second parameter that must be a
constant. This parameter determines the function to execute:

Get device info

DOSCALL(44H; 0; handle:WORD;
AH AL BX

VAR deviceinfo:BYTEWORD:
DX

VAR error:WORD);
AX,CF

Set device info

DOSCALL(44H; 1; handle:WORD;
AH AL BX

deviceinfo:BYTEWORD;
DX

VAR error:WORD);
AX,CF

196

Read Bytes from device control channel

DOSCALL(44H; 2; handle:WORD;
AH AL BX

nrBytes:BYTEWORD; buffAddr:ADDRESS;
CX DS:DX

VAR transferredbytes:BYTEWORD;
AX

VAR error:WORD);
AX,CF

Write Bytes to device control channel

DOSCALL(44H; 3; handle:WORD;
AH AL BX

nrBytes:BYTEWORD; buffAddr:ADDRESS;
CX DS:DX

VAR transferedbytes:BYTEWORD;
AX

VAR error:WORD);
AX,CF

Read Bytes from drive control channel

DOSCALL(44H; 4; drive:BYTEWORD;
AH AL BL

nrBytes : BYTEWORD;
buffAddr : ADDRESS;

CX DS:DX

VAR transferedbytes : BYTEWORD;
AX

VAR error:WORD);
AX,CF

Write Bytes to drive control channel

DOSCALL(44H; 5; drive:BYTEWORD;
AH AL BL

nrBytes:BYTEWORD; buffAddr:ADDRESS;
CX DS:DX

VAR transferedbytes:BYTEWORD;
AX

VAR error:WORD);
AX,CF

197

Implementation Features

Chapter 8

Get Input Status

DOSCALL(44H; 6; handle: WORD; VAR status:BYTEWORD;
AH AL BX AX

VAR error:WORD};
AX,CF

Get Output Status

DOSCALL(44H; 7; handle: WORD; VAR status:BYTEWORD;
AH AL BX AX

VAR error:WORD};
AX,CF

Function 45H: Duplicate a file handle

DOSCALL(45H; handlel:WORD; VAR handle2:BYTEWORD;
AH BX AX

VAR error:WORD};
AX,CF

Function 46H: Force a duplicate of a file

DOSCALL(46H; handlel:WORD; VAR handle2:BYTEWORD;
AH BX CX

VAR error:WORD}:
AX,CF

Function 47H: Get Current Directory

DOSCALL(47H: drive:BYTEWORD: straddr:ADDRESS;
AH DL DS:SI

VAR error:WORD}:
AX,CF

Function 48H: Allocate Memory

DOSCALL(48H: VAR paragraphs:BYTEWORD;
AH BX

VAR membase:BYTEWORD;
AX

VAR error:WORD}:
AX,CF

Function 49H: Free allocated Memory

DOSCALL(49H: segaddr:ADDRESS;
AH ES must be a paragraph address

VAR error:WORD}:
AX,CF

198

Function 4AH: SETBLOCK-Modify allocated memory blocks

DOSCALL(4AH; blockaddr:ADDRESS;
AH ES must be a paragraph address

VAR paragraphs:BYTEWORD;
BX

VAR error:WORD);
AX,CF

Function 4BH: Load or execute a program

DOSCALL (4BH;stringaddr : ADDRESS;
paramblock : ADDRESS;

AH DS: DX ES:BX

fctval : BYTEWORD;
AL

VAR error: WORD);
AX,CF

Function 4CH: Terminate a process(Exit)

DOSCALL(4CH; returnCode:BYTEWORD);
AH AL

Implementation Features

Function 4DH: Retrieve the return code of a sub-process(Wait)

DOSCALL(4DH; VAR retCode:BYTEWORD);
AH AX

Function 4EH: Find first matching file

DOSCALL(4EH; stringaddr:ADDRESS; attribut:BYTEWORD;
AH DS:DX CX

VAR error:WORD);
AX,CF

Function 4FH: Find next matching file

DOSCALL(4FH; VAR error:WORD);
AH AX,CF

Function 54 H: Get Verify state

DOSCALL(54H; VAR state:BYTE);
AH AL

Function 56H: Rename a file

DOSCALL(56H; fromstring,tostring:ADDRESS;
AH DS: DX ES : Dr

VAR error:WORD)i
AX, CF

199

Chapter 8

Function 57H: Get/Set a file's date and time

DOSCALL(57H; handle WORD;
mode : BYTEWORD;

AH BX AL

VAR date,time : BYTEWORD;
DX ex

VAR error : WORD);
AX, CF

200

Implementation Features

8.4 Decimals

The module Decimals provides functions for arithmetic and formatting with decimal
numbers of 18 or less digits. These functions are appropriate for business-oriented
computation.

8.4.1 Internal and External Format

Decimal numbers have two formats -- external and internal. Numbers in external format
are represented by character strings. This external format is used for reading and writing
numbers to the console or printer in a form you can understand. Arithmetic operations
are performed on numbers stored in an encoded, internal format. The procedures
StrToDec and DecToStr convert decimal numbers between internal and external format.
StrToDec encodes decimal numbers and DecToStr decodes decimal numbers.

8.4.2 Types

Module Decimals provides the following types:

DECIMAL

Used for internal representation of a decimal number. Arithmetic operations are
performed on variables of type DECIMAL.

DecState

A variable of type DECIMAL has a state of type DecState associated with it.
This state may have the following values:

NegOvn
Minus

Zero
Plus

posovn
Invalid

indicates negative overflow
indicates negative decimal value
indicates value 0
indicates positive decimal value
indicates positive overflow
indicates invalid number

The procedure DecStatus returns the state of a decimal variable.

201

Chapter 8

8.4.3 Variables

The following variables are exported from module De"cimals:

DecValid

Indicates the success of the last operations. DecValid is set after each call to a
conversion or arithmetic procedure. It is set to FALSE if the operation failed.

Remainder

Remainder is set after each division operation with procedure DivDec. DivDec
returns an integer number for the quotient. If the result is not an integer number.
Remainder indicates the first digit that appears after the decimal point. For
example, the division of 39 by 8 yields a quotient of 4. The remainder is equal
to 8 because this digit appears immediately after the decimal point in the exact
result of 4.875. If the division operation fails, the remainder is '?'.

8.4.4 Conversion and Status Procedures

The following conversion and status procedures are provided by module Decimals:

StrToDec

Converts numbers from external to internal format. (Explained in greater detail
below.)

DecToStr

Converts numbers from internal to external format. (Explained in greater detail
below.)

DecStatus

Returns the current state of a decimal variable. DecStatus can be used to get the
sign of a valid decimal number. When an operation fails, you can call the
procedure DecStatus to determine the actual arithmetic error. DecStatus specifies
the error status of the decimal variable according to type DecState.

202

Implementation Features

8.4.5 Arithmetic Operations

The following arithmetic operations can be performed with variables of type DECIMAL:

CompareDec

AddDec

SubDec

MuIDec

DivDec

NegDec

Compares two decimal values, DecO and Decl. Output is an
integer value as follows:

1 if DecO is greater than Decl
o if DecO equals Decl

-1 if DecO is less than Decl

Adds two decimal values, DecO and Decl. The output is the
sum of the two values, a decimal value.

Performs the subtraction of one decimal value, Decl, from
another decimal value, DecO. The output is the difference of
the two values, a decimal value.

Performs the multiplication of two decimal values, a
multiplicand, DecO and a multiplier, Decl. The output is the
product of the two values, a decimal value.

Performs the division of one decimal value by another. The
dividend, DecO is divided by the divisor, Decl. Output is the
quotient of the two values, a decimal value.

The remainder is placed in the global variable Remainder as
previously explained.

Returns the negative value of a decimal value.

203

Chapter 8

8.4.6 Pictures

Numbers in external format are stored in character strings. These strings may include a
currency character, commas and decimal points. For example:

$923,841,371.38

is a decimal number in external format.

So called "pictures" are used for the conversion between the string representation of
decimal numbers in external format and their representation in internal format. Pictures
indicate how decimal numbers appear in external format. They control the occurrence of
leading blanks, leading zeros, number signs, currency characters, commas and decimal
points.

For example, the picture which corresponds to the decimal number shown above is:

$,$$$,$$$,$$$,$$9.99

With the picture ZZZZZZZZZZZZ9 the same decimal number would have appeared as:

92384137138

204

Implementation Features

8.4.7 Picture Characters

Blank spaces may not appear in a picture. Pictures may consist of the following
characters only:

9 digit
Z nonzero digit or leading blank
$ nonzero digit, leading blank, or $
5 sign of number (+ or -)

decimal point
comma or leading blank

If the first character of a picture is a dollar sign ($), it will appear as a currency character
in the external format. The currency character floats across any leading blanks so it
appears adjacent to the leftmost digit. However, if a decimal value consists of the same
number of digits as the picture which represents it, each dollar sign will be replaced by a
digit and thus, no currency character will appear.

Numbers without leading zeros are represented with 'Z's. 'Z' is replaced by a digit if
there is one, otherwise it is replaced by a blank.

'9's represent numbers which require leading zeros to be displayed. A '9' is replaced by
a digit if there is one, otherwise it is replaced by a zero.

In the following picture, the '9's guarantee that dollar amounts less than $1.00 appear in
standard form.

$$$,$$9.99

The following numbers correspond to this picture:

$0.39
$369.00

$48,327.04

Sign characters (5) and decimal points (.) do not float across leading blanks, they appear
in their specified position. Commas (,), 'Z' and $ characters correspond to leading
blanks when they appear to the left of a number.

205

Chapter 8

8.4.8 Procedure StrToDec

The procedure StrToDec uses pictures to convert numbers from external to internal
format. If the input string is shorter than the picture string, leading blanks are added until
it is the same length as the picture. A currency character can appear only once in the
input string, and it must be adjacent to the leftmost digit. Commas are matched if they
are within the number, or ignored if they appear to the left of the number. The sign
character is matched by a '+', '-' or a blank. Decimal points are matched
unconditionally.

Pictures ensure that input strings will be within a limited range. StrToDec sets DecValid
to FALSE and the state of the decimal result to Invalid under the following conditions:

• The input string does not match the picture specification.
• The input string is longer than the picture string.
• The input string and the picture specify more than 18 digits.

8.4.9 Procedure DecToStr

If the number of digits in a number in external format exceeds the number of digit
characters in the picture which represents it, DecToStr sets DecValid to FALSE and
returns an invalid format string. Thus, pictures can be used to control the maximum
number of digits that can appear in a number.

Procedure DecToStr represents erroneous decimal variables with special character strings
depending on the state of the decimal variable:

PosOvfl

NegOvfl

Invalid

is represented by + + + + + + +
is represented by - - - - - - -

is represented by ? ? ? ? ? ? ?

The length of the string is determined by the length of the corresponding picture.

8.4.10 Error Propagation

Once an error occurs in a decimal variable as the result of an operation, the error remains
through all the operations involving the variable. The following tables show how errors
are propagated by the arithmetic operations. For operations in the form A <operation> B,
the leftmost column represents states of A and the topmost row represents states of B.

206

Implementation Features

ADDITION and SUBTRACTION

AlB NegOvfl Minus Zero Plus PosOvfl Invalid

NegOvfl NegOvfl NegOvfl NegOvfl NegOvfl Invalid Invalid
Minus NegOvfl PosOvfl Invalid
Zero NegOvfl PosOvfl Invalid
Plus NegOvfl PosOvfl Invalid
PosOvfl Invalid PosOvfl PosOvfl PosOvfl PosOvfl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

MULTIPLICATION

AlB NegOvfl Minus Zero Plus PosOvfl Invalid

NegOvfl PosOvfl PosOvfl Zero NegOvfl NegOvfl Invalid
Minus PosOvfl Plus Zero Minus NegOvfl Invalid
Zero Zero Zero Zero Zero Zero Invalid
Plus NegOvfl Minus Zero Plus PosOvfl Invalid
PosOvfl NegOvfl NegOvfl Zero PosOvfl PosOvfl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

DIVISION

AlB NegOvfl Minus Zero Plus PosOvfl Invalid

NegOvfl Invalid Invalid Invalid Invalid Invalid Invalid
Minus Invalid Plus Invalid Minus Invalid Invalid
Zero Zero Zero Invalid Zero Zero Invalid
Plus Invalid Minus Invalid Plus Invalid Invalid
PosOvfl Invalid Invalid Invalid Invalid Invalid Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

207

Chapter 8

8.5 REAL Arithmetic

Modula-2 provides the data type REAL for floating point arithmetic. LOGITECH
M odula-2 supports the type REAL according to the IEEE standard for double precision
floating point numbers. This format uses 8 bytes and is precise for 15 to 16 decimal
digits. The values that can be represented range from 2.23 times 10 to the minus 308th
power, to 1.79 times 10 to the 308th power:

2.23E-308 <= Ixl <= 1.79E+308.

An optional 8087 math coprocessor can be added to many 808618088 based
microcomputer systems. The 8087 performs floating point operations at very high speed.
It provides a set of instructions which manipulate operands and yield results in the IEEE
standard floating point format. If an 8087 coprocessor is not present, the REAL
arithmetic functions must be emulated on the 8086 or 8088 processor.

LOGITECH Modula-2 allows you to create programs that use an 8087 coprocessor and
run at very high speed, as well as programs that emulate REAL arithmetic on the 8086 or
8088. A compile time switch decides whether the compiler generates 8087 inline code or
code that uses the LOGITECH REAL Arithmetic Emulator.

208

Implementation Features

8.5.1 Simple Use of REAL Arithmetic

If you know your program will be running on a system with an 8087, you can use the
compiler option Coprocessor. When compiling with the Coprocessor option, the
compiler generates 8087 in line code for REAL operations. The library file C87L1 B. LI B
contains those LOG/TECH Modula-2 library modules with 8087 inline code. If you
compile with the Coprocessor option you should use these files when linking. A program
that includes 8087 inline code requires an 8087 to run and cannot be executed on a
system without an 8087.

The following describes the easiest way to create a program that runs without an 8087
coprocessor:

You must choose the compiler option Emulator if your program should run on a system
without an 8087. When compiling with the Emulator option, which is the default, the
compiler generates code for the LOG/TECH REAL emulator. It also generates a
reference to module Reals and to M2REAL.LlB which provides the REAL emulation.
The library file E87L1B.LlB contains those LOG/TECH Modula-2 library modules that
have been compiled for the emulator. If you compile with the Emulator option you
should use these files when linking. When you link with the files from E87L1B.LlB,
your program will always use the emulator for REAL arithmetic.

A LOG/TECH Modula-2 program compiled with the Emulator option can also be linked
so that it uses an 8087 for execution and executes at maximum speed. It is also possible
to link the program such that it uses an 8087 if one is present, and otherwise uses the
emulator. The library M87L1B.LlB contains two versions of the library modules.

209

Chapter 8

8.5.2 Choices for Using REAL Arithmetic

You may decide what kind of REAL arithmetic to use, either at compile-time, link-time
or run-time.

The later the decision about which kind of REAL arithmetic to use is made, the more the
portability of a program is improved. However, postponing this decision also increases
memory requirements and decreases execution speed. The relative benefits and
disadvantages of each alternative are detailed below.

LOGITECH Modula-2 offers the following alternatives for REAL arithmetic:

• At compile time the compiler options Coprocessor and Emulator determine the kind
of code generated. Choose to generate 8087 inline code (Coprocessor option) or to
compile for the LOGITECH REAL emulator (Emulator option). When compiling for
the emulator, the compiler automatically generates a reference to the module Reals
and to M2L1B.LlB which provides the REAL emulation. The compiler implicitly
knows the interface of module Reals, therefore no symbol file needs to be provided.

• To generate 8087 inline code, an 8087 coprocessor is required to execute the
program. The program will not run on a system without an 8087.

• If you choose to compile a module for the LOGITECH REAL emulator, how the
program will be linked is still flexible. LOGITECH Modula-2 provides the
following implementations for the REAL emulator (module Reals) and for the
mathematical functions (module MathLibO):

• If the program will not be executed on a system with an 8087, using the pure
emulator version is the best choice. To use this version of the emulator, you
must link with the files with E87L1B.LlB. A program linked in this way may be
executed on a system with an 8087; however, it will never use the 8087.

• The pure 8087 version of the emulator can be useful if the program being linked
is executed on a system with an 8087. To use this version of the emulator, you
should link with the files from C87L1B.LlB. A program linked with these files
requires an 8087 for execution.

210

Implementation Features

• Using a "mixed" version of the emulator postpones, until run-time, the decision
of whether or not to use an 8087. The mixed emulator version is a combination
of the other two versions, and thus is the most flexible option. If you choose to
link with the mixed version of the emulator, then it will be determined at run­
time whether an 8087 is present or not. Based on this determination:

• The program will use the 8087 if executed on a system with an 8087.

• The program will use the emulator to perform REAL arithmetic when the 8087
coprocessor is not present.

• Linking with the mixed version of the emulator increases flexibility and
improves the portability of a program. The main disadvantage of the mixed
version of the emulator is that the program requires more memory to run
because the code for both forms of the emulation must be present. When
linking the program, the M87L1S library file must be used.

211

Chapter 8

The distribution diskettes contain all three of the above-mentioned libraries with the
emulator version E87L1B.LlB as the default. since it has been copied to M2REAL.LlB.
Thus when you use the compiler and the linker with the default options. the LOGlTECH
REAL Arithmetic Emulator will be used.

M2REAL.LlB contains the following modules of the LOGITECH Modula-2 Library.

Reals The LOGITECH Real Arithmetic Emulator

MathLihO

These two modules are differently impiemented in each version of ivi2REAL.LiB.

Contains emulator code

Contains 8087 code

E87L1B.LlB

C87L1B.LlB

M87L1B.LlB Has both emulator and 8087 code. triggered by a switch that indicates
teh presence of the mathematical co-processor.

RealConversions

ReallnOut

FloatingUtilities

Random

DurationOps

These are those modules that use the type REAL. They all have some
implementation. but are compiled with different options.

E87L1B.LlB
C87L1B.LlB
M87L1B.LlB

use option
use option
use option

212

IE
Ie
IE

Implementation Features

1) For 8087 InUne Code

Copy the library C87L1B.LlB onto M2REAL.LlB

Compile all your modules which use floating point arithmetic with the Ie option.

2) For The Pure Emulator

Copy the library E87L1B.LlB onto M2REAL.LlB

Compile all your modules which use floating point arithmetic with the IE option.

3) For the 8087 Version of the Emulator

Copy the library C87L1B.LlB onto M2REAL.LlB

Compile all your modules which use floating point arithmetic with the IE option.

4) For the Mixed Emulator

Copy the library M87L1B.LlB onto M2REAL.LlB

Compile all your modules which use floating point arithmetic with the IE option.

The difference between 1) and 3) is that in 1) the module Real is not referenced or used,
since the code has been generated inline.

213

Chapter 8

8.5.3 Accuracy of the Computations

For all the basic arithmetic operations on operands of type REAL, the 8087 coprocessor
and the LOGlTECH REAL Emulator yield the same results. To compute mathematical
functions such as sine or cosine, the emulator uses the Chebyshev polynomial
approximation. Because the 8087 coprocessor uses a different scheme for
approximation, the results of mathematical functions may sometimes differ slightly. For
all practical purposes, these differences between the 8087 and the emulator are not
significant.

8.5.4 Memory Requirements

When you compile with the Coprocessor option, the compiler generates 8087 inline code
and makes no reference to the emulator (module Reals). Module Reals is only linked into
a program if some part of the program was compiled using the Emulator option. As a
general rule, the memory requirements are larger for programs that use the emulator.

Table 8-1 lists the approximate memory requirements (code and data) for the different
implementations of the modules Reals and MathLihO. All numbers are given in bytes.

8087 Inline Code

8087 Version of
Emulator

Pure Emulator

Mixed Emulator

Table 8-1

Reals

500

2300

2800

MathLibO Reals and MathLibO

1700 1700

1700 2200

4200 6500

6100 8900

214

Implementation Features

8.5.5 Performance

Table 8-2 lists the time measured for 1000 executions of the addition, multiplication, and
division of two REAL numbers. Subtraction and addition require the same amount of
time. The last row lists the times measured for 1000 executions of a loop that performs
once, each basic operation (addition, subtraction, etc.), each kind of comparison (equal,
less than, etc.), and calls once, each of the functions provided by MathLibO.

All times are given in seconds. However, the times measured may differ from system to
system. Table 8-2 allows for a relative comparison of the performance you can expect
when choosing a particular alternative for REAL arithmetic in LOG/TECH Modula-2.
On the average, 8087 inline code is approximately ten times faster than full emulation of
REAL arithmetic on the 8086.

Addition Multiplication Division Combination

Pure Emulator 1.0 1.2 2.1 61.0

8087
InIine Code 0.11 0.11 0.11 6.6

8087
Version of Emulator 0.22 0.22 0.22 8.2

Mixed Emulator
(with 8087) 0.31 0.31 0.31 12.5

Mixed Emulator
(without 8087) 1.1 1.3 2.2 63.0

Table 8-2

215

Chapter 8

8.6 RTS

LOGlTECH Modula-2 Run-Time Support provides support to the application for error
handling, arithmetic coprocessor use, interrupt handling, and language dependent
facilities.

8.6.1 Organization

The main module of the RTS is RTSMain, which must always be linked to the
application. Other modules of the RTS may be linked or not, depending on their needs.

Module Function

RTSMain Entrypoint Initialization

RTSError

RTSRealError Error Checks

RTSLanguage Special Language Constructs Support

RTSCoroutine

RTSlnterrupt

RTSPriority Interrupt and Process Management

RTSDevice

RTSlntProc I/O Device Control

RTS87

RTSM87 Math Coprocessor Support

216

Implementation Features

8.6.2 RTSMain

RTSMain is the entry point of any LOGITECH Modula-2 application. It initializes the
run-time support, and then gives control to the application.

8.6.3 RTSError

The RTSError module will be present if run-time checks (e.g., range error checks) are
requested at compile time. It provides an entry point for the different kinds of error.
This module has also the task, in case of run-time error, of clearing the stack.
RTSRealError does the same if REAL type is used.

8.6.4 Language Dependent Facilities

The RTSLanguage module provides the routines that are called in the case of dynamic
parameter copy, (e.g.,. a parameter of type ARRAY OF CHAR). This module provides
also support for special cases of CASE statements.

8.6.5 Interrupt Handling

The RTSPriority module is used if some modules of the application are priority modules.
It provides routines to change and restore the priority mask of the application when a
procedure is called that belongs to a priority module.

The RTSlnterrupt module is needed when binding a multiprocess application. An
IOTRANSFER call will refer to this module.

8.6.6 I/O Device Control

RTSDevice and RTSlntPROC let you get control on the processors interrupt vector. They
also let you change and restore such vectors.

8.6.7 Arithmetic Coprocessors

RTS87 or RTSM87 provide support for the 80n87 arithmetic coprocessor.

RTS87 will be needed is some modules of the application have been compiled with the
Ie switch (for coprocessor use).

RTSM87 is used in the mixed Emulator/Coprocessor mode.

217

Chapter 8

8.7 Graphics

The LOG/TECH Modula-2 library provides a graphics module Graphics. This module is
provided with different implementations, depending on the graphics you want to use.

Currently the following adaptors are supported:

CGA
Hercules

GRAPHCGA.OBJ
GRAPHHEC.OBJ

By default, GRAPHCGA.OBJ is copied onto GRAPHICS.OBJ. These object files are
not part of any library, but are distributed as .OBJ files.

218

Chapter 9
Libraries

9.1 Library Search Strategy

Libraries

The LOGITECH Modula-2 Compiler, Linker, Debuggers and the other Utilities
automatically search for all referenced modules. The default search strategy can be
modified by command options.

The following discussion uses PATH or PATHNAME as a synonym for drive and/or
pathname. For example, C:\M2L1B\SYM is the P ATHNAME for the file
C:\M2L1B\SYM\STORAGE.SYM.

9.1.1 Default Names

The LOGITECH Modula-2 Compiler, Linker, Debuggers, M2MAKE, M2CHECK and
M2DECODE construct default filename from module names. This is done by truncating
the module name to the length of a DOS file name, and appending the appropriate
extension (.SYM, .OBJ, etc.) to that name. This default filename is then used to find the
corresponding file on all paths that are defined by the search strategy.

219

Chapter 9

9.1.2 The Default Search Strategy

When a module is needed~ several paths will be checked automatically to find the
corresponding file. The search strategy ~ as described below ~ is applied by all
LOGITECH Modula-2 Utilities that look for referenced modules.

• Since all utilities per default generate their output files into the current directory ~ the
currrent directory is the first path used to find the needed file.

• If the file was not found in the current directory ~ the so-called master path is used to
find the file. The master path is the path where the main (or master) input module for
the currently executed utility comes from.

• If the file was not found in the master path~ those paths defined by the environment
variables are taken one after the other to look for the file. The environment variables
are set by the user after his own fashion. A default setting for the default installation
of the LOGITECH Modula-2 System has been provided:

SET M2SYM=\M2LIB\SYM
SET M20BJ=\M2LIB\OBJ
SET M2REF=\M2LIB\REF
SET M2MAP=\M2LIB\MAP
SET M2LIB=\M2LIB\LIB
SET M2MOD=\M2LIB\MOD
SET M2DEF=\M2LIB\DEF

Each of these environment strings can denote a number of paths~ separated by
semicolons.

If the needed file was not found on one of the defined paths~ the default search strategy
will take effect.

Assume the following environment settings:

SET M2SYM=\M2LIB\SYM;\MYLIB\SYM
SET M20BJ=\M2LIB\OBJ;\MYLIB\OBJ
SET M2REF=\M2LIB\REF;\MYLIB\REF;
SET M2MAP=\M2LIB\MAP;\MYLIB\MAP;
SET M2LIB=\M2LIB\LIB;\MYLIB\LIB;
SET M2MOD=\M2LIB\MOD;\MYLIB\MOD;
SET M2DEF=\M2LIB\DEF;\MYLIB\DEF;

220

Libraries

Calling the compiler with the following command will automatically take the indicated
symbol files as input:

M2C \ TESTPGMS\REAL TEST GD

C:> m2c \testpgms\realtest
LOGITECH Modula-2 Compiler, 8086, MS-DOS OBJ-file, ReI. 3.00, (C), Aug 87
Copright (C) 1983, 1987 LOGITECH

source file> C: \ TESTPGMS\realtest . MOD

syntax and Declaration Analysis
RealTest in file: C:\TESTPGMS\RealTest.SYM
ReallnOu in file: C:\M2LIB\SYM\ReallnOu.SYM
MathLibO in file: C: \M2LIB\SYM\MathLibO . SYM
NewMathL in file: C:\M2LIB\SYM\NewMathL.SYM
TestIO in file: C:\TestIO.SYM
InOut in file: C:\M2LIB\SYM\InOut.SYM

Block Analysis
Code Generation
Termination

The interactive setting of the options was: S+
code for 8087 Emulator generated
code for 8086/8088 generated
Codesize: 5397 bytes Datasize: 48 bytes

End Compilation

221

master path
environment
environment
environment
current directory
environment

/R+ /T+ /A- /0+ /F+

Chapter 9

9.1.3 The Query Search Strategy

The query search strategy is always applied by the LOGITECH Modula-2 system when
you are prompted to type in the (path and) file name of a library file. This can happen
when a file is not found using the default search strategy, or when you specify the Query
option when compiling.

When you see a prompt on the LOGITECH Modula-2 Compiler screen, several
responses are available.

What You Enter

FILENAME only

PATH NAME only
ended by

: or \

Complete PATH
and FILENAME.

What It Means

Means "no file". Use this to indicate that the file is not
available. Depending on context, (Esc) may not let you
complete the program.

Means the FILENAME should be constructed from the
module name, and that the default search strategy (as
explained above) will be applied.

(no PATH name) The FILENAME will be used, but
will still be searched for automatically according to the default
search strategy.

The file name will be constructed from the module name, and
searched for using the specified path. Only one attempt to
open the file will be made.

Here too, only one attempt will be made to open the file.

222

ASCII Libraries

9.2 Library .DEF Files

ASCII

DEFINITION MODULE ASCII;
(*

Symbolic constants for non-printing ASCII characters.
This module has an empty implementation.

*)

EXPORT QUALIFIED
nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, If, vt, ff, cr, so, si,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,
del,
EOL;

CONST
nul OOC; soh OlC; stx = 02C; etx 03C;
eot 04C; enq 05C; ack = 06C; bel 07C;
bs lOC; ht llC; If = 12C; vt l3C;
ff 14C; cr 15C; so = 16C; si 17C;
dle 20C; dcl 2lC; dc2 22C; dc3 23C;
dc4 24C; nak 25C; syn = 26C; etb 27C;
can 30C; em 31C; sub = 32C; esc 33C;
fs 34C; gs 35C; rs = 36C; us 37C;
del 177C;

CONST
EOL = 36C;
(*

- end-of line character

This (non-ASCII) constant defines the internal name of the end-of-line character.
Using this constant has the advantage, that only one character is used to specify
line ends (as opposed to cr/lf).

The standard I/O modules interpret this character and transform it into the
(sequence of) end-of-line code(s} required by the device they support. See
definition modules of 'Terminal' and 'FileSystem'.
*}

END ASCII.

223

Chapter 9 BitBlockOps

BitBlockOps

DEFINITION MODULE BitBlockOps;

(* Bitwise operations on blocks.

*)

Blocks are defined as a starting address and a size, i.e. the number of
bytes they hold.
In a block, the left or low bit is the low bit of the byte located
at (starting address); and the right or high bit is the high bit of the byte

located at (starting address + size - 1)

FROM SYSTEM IMPORT ADDRESS;

PROCEDURE BlockAnd (destination, source: ADDRESS;
size CARDINAL);

(* ANDs the block destination with the block source *)

PROCEDURE BlockOr (destination,
size

source: ADDRESS;
CARDINAL) ;

(* Bitwise OR *)

PROCEDURE BlockXor (destination, source: ADDRESS;
size CARDINAL);

(* Bitwise XOR *)

PROCEDURE BlockNot (block : ADDRESS;
size : CARDINAL);

(* Bitwise complement to 1 *)

PROCEDURE BlockShr (h~ock

size
count

(* Shi~t Logical Right

ADDRESS;
CARDINAL;
CARDINAL) ;

shifts the bits in block to the right by the number of bits specified
in count. Zeros are shifted in on the left. *)

PROCEDURE BlockSar (block
size
count

(* Shift Arithmetic Right

ADDRESS;
CARDINAL;
CARDINAL);

shifts the bits in block to the right by the number of bits specified
in count. Bits equal to the original high order bit are shifted in
on the left, preserving the sign of the original value. *)

PROCEDURE BlockShl (block
size
count

(* Shift Left

ADDRESS;
CARDINAL;
CARDINAL) ;

shifts the bits in block to the left by the number of bits specified
in count. Zeros are shifted in on the right. *)

PROCEDURE BlockRor (block
size
count

(* Rotate Right

ADDRESS;
CARDINAL;
CARDINAL);

rotates block right by the number of bits specified in count *)

224

BitBlockOps

PROCEDURE BlockRol (block
size
count

(* Rotate Left

ADDRESS;
CARDINAL;
CARDINAL) ;

rotates block left by the number of bits specified in count *)

END BitBlockOps.

225

Libraries

Chapter 9 BitByteOps

BitByteOps

DEFINITION MODULE BitByteOps;

(* Bitwise operations on bytes.
Bits in bytes are numbered from 0 to 7 *)

FROM SYSTEM IMPORT BYTE;

PROCEDURE GetBits (source : BYTE;
firstBit, lastBit : CARDINAL): BYTE;

(* Extracts the bits of source from first Bit to lastBit and returns them
as a byte in which bit 0 correspond to the firstBit of the source.

*)

PROCEDURE SetBits (VAR byte BYTE;
firstBit, lastBit: CARDINAL;
pattern BYTE);

(* Masks byte with pattern from firstBit to lastBit. The first
(lastBit - firstBit + 1 of pattern are used, with leading zeros if necessary.
Examples : To set the bits to 1, the pattern OFFH should be passed,

and to set the bits to 0, the pattern 0 should be passed.
*)

PROCEDURE ByteAnd (left, right
(* Bitwise AND *)

PROCEDURE ByteOr (left, right
(* Bitwise OR *)

PROCEDURE ByteXor (left, right
(* Bitwise XOR *)

BYTE): BYTE;

BYTE): BYTE;

BYTE): BYTE;

PROCEDURE ByteNot (byte : BYTE): BYTE;
(* Bitwise complement to 1 *)

PROCEDURE ByteShr (byte
count

(* Shift Logical Right

BYTE;
CARDINAL): BYTE;

shifts the bits in byte to the right by the number of bits specified in count.
Zeros are shifted in on the left. *)

PROCEDURE ByteSar (byte : BYTE;
count : CARDINAL): BYTE;

(* Shift Arithmetic Right

*)

shifts the bits in byte to the right by the number of bits specified in count.
Bits equal to the original high order bit are shifted in on the left,
preserving the sign of the original value.

PROCEDURE ByteShl (byte BYTE;
count CARDINAL): BYTE;

(* Shift Left
shifts the bits in byte to the left by the number of bits specified in count.
Zeros are shifted in on the right. *)

226

BitByteOps Libraries

PROCEDURE ByteRor (byte BYTE;
count CARDINAL): BYTE;

(* Rotate Right
rotates byte right by the number of bits specified in count *)

PROCEDURE ByteRol (byte BYTE;
count CARDINAL): BYTE;

(* Rotate Left
rotates byte left by the number of bits specified in count *)

PROCEDURE HighNibble (byte: BYTE): BYTE;
(* Returns the high order nibble (4 bits) value of byte *)

PROCEDURE LowNibble (byte: BYTE): BYTE;
(* Returns the low order nibble (4 bits) value of byte *)

PROCEDURE Swap (VAR byte: BYTE);
(* Swaps the high and low order nibble values of byte *)

END BitByteOps.

227

Chapter 9 BitWordOps

BitWordOps

DEFINITION MODULE BitWordOps;

(* Bitwise operations on words.
Bits in words are numbered from 0 to 15 *)

FROM SYSTEM IMPORT WORD;

PROCEDURE GetBits (source : WORD;
firstBit, lastBit : CARDINAL): WORD;

(* Extracts the bits of source from first Bit to lastBit and returns them
as a word in which bit 0 correspond to the first Bit of the source.

*)

PROCEDURE SetBits (VAR word
firstBit,
pattern

(* Masks word with pattern
(lastBit - firstBit + 1

WORD;
lastBit: CARDINAL;

: WORD);
from firstBit to lastBit. The first
of pattern are used, with leading zeros

if necessary.
Examples : To set the bits to 1, the pattern OFFFFH should be passed,
and to set the bits to 0, the pattern 0 should be passed. *)

PROCEDURE WordAnd (left, right: WORD): WORD;
(* Bitwise AND *)

PROCEDURE WordOr (left, right
(* Bitwise OR *)

PROCEDURE WordXor (left, right
(* Bitwise XOR *)

WORD): WORD;

WORD): WORD;

PROCEDURE WordNot (word : WORD): WORD;
(* Bitwise complement to 1 *)

PROCEDURE WordShr (word
count

(* Shift Logical Right

WORD;
CARDINAL): WORD;

shifts the bits in word to the right by the number of bits specified
in count. Zeros are shifted in on the left. *)

PROCEDURE WordSar (word : WORD;
count: CARDINAL): WORD;

(* Shift Arithmetic Right

*)

shifts the bits in word to the right by the number of bits specified in count.
Bits equal to the original high order bit are shifted in on the left,
preserving the sign of the original value.

PROCEDURE WordShl (word WORD;
count CARDINAL): WORD;

(* Shift Left

*)

shifts the bits in word to the left by the number of bits specified in count.
Zeros are shifted in on the right.

228

BitWordOps Libraries

PROCEDURE WordRor (word WORD;
count CARDINAL): WORD;

(* Rotate Right
rotates word right by the number of bits specified in count *)

PROCEDURE WordRol (word WORD;
count CARDINAL): WORD;

(* Rotate Left
rotates word left by the number of bits specified in count *)

PROCEDURE HighByte (word: WORD): WORD;
(* Returns the high order byte value of word *)

PROCEDURE LowByte (word: WORD): WORD;
(* Returns the low order byte value of word *)

PROCEDURE Swap (VAR word: WORD);
(* Swaps the high and low order bytes value of word *)

END BitWordOps.

229

Chapter 9

BlockOps

DEFINITION MODULE BlockOps;

(* Block operations.
Blocks are defined with a starting address and a size, i.e. the number
of bytes they contain.

*)

FROM SYSTEM IMPORT ADDRESS;

PROCEDURE BlockMoveForward (destination, source : ADDRESS;
size CARDINAL) ;

(* Moves size bytes from source to destination, starting at the address
of source and going up until address of (source+size) is reached *)

PROCEDURE BlockMoveBackward (destination, source : ADDRESS;
size : CARDINAL);

BlockOps

(* Moves size bytes from source to destination, starting at (source+size)
and going down until address of source is reached *)

PROCEDURE BlockMove (destination, source : ADDRESS;
size : CARDINAL);

(* Moves size bytes from source to destination, test is made on the
addresses of source and destination to decide whether MoveBackward or
MoveForward is to be used. Note that because of this comparison,
Move is slightly slower than the two previous procedures *)

PROCEDURE BlockClear (block : ADDRESS;
size CARDINAL);

(* Fills size bytes with 0, starting from block. *)

PROCEDURE BlockSet (block ADDRESS;
blockSize CARDINAL;
pattern ADDRESS;
patternSize CARDINAL);

(* Fills blockSize bytes starting from block with the pattern of
patternSize bytes. *)

PROCEDURE BlockEqual (blockl, block2 : ADDRESS;
size : CARDINAL): BOOLEAN;

(* Returns TRUE if the blocks starting at left and right have the same
first size bytes. *)

PROCEDURE BlockPosition (block ADDRESS;
blockSize CARDINAL;
pattern ADDRESS;
patternSize CARDINAL): CARDINAL;

(* Searches pattern in block, returns the index, of the first successful
match, MaxCard if no match. *)

END BlockOps.

230

Break Libraries

Break

DEFINITION MODULE Break;
(*

*)

Handling of the Ctrl-Break interrupt

This module provides an interrupt handler for the Ctrl-Break interrupt IBH of
MS-DOS and PC-DOS on the IBM-PC. This module depends on the ROM BIOS of the
IBM-PC and will not run on any machine which is not compatible to an IBM-PC at
this level.

Module 'Break' installs a default break handler, which stops the execution of the
current program with 'System.Terminate(stopped)' when Ctrl-Break is typed. This
produces a memory dump for the stopped program.

Module 'Break' allows a program to install its own break handler, and to enable or
disable the break handler which is currently installed.

EXPORT QUALIFIED
EnableBreak, DisableBreak, InstallBreak, UnInstallBreak;

PROCEDURE EnableBreak;
(*

- Enable the activation of the current break handler
If Ctrl-Break is detected, the currently installed break handler will be called.

*)

PROCEDURE DisableBreak;
(*

- Disable the activation of the current break handler
If a Ctrl-Break is detected, no action takes place. The Ctrl-Break is ignored.

*)

PROCEDURE InstallBreak (BreakProc: PROC):
(*

*)

- Install a break handler

in: BreakProc break procedure to be called upon Crtl-Break

A program can install its own break handler. Module 'Break' maintains a
stack of break procedures. The break procedure on top of the stack (i.e.
the one which was installed most recently) will be called upon the
occurence of a ctrl-break. The default break handler which is installed
initially terminates the program with a call to
'system.Terminate(stopped)'.

Up to four user defined break procedure may be installed at the same time.

231

Chapter 9

PROCEDURE UnlnstallBreak;
(*

- Uninstall the current break handler

Break

Removes the break procedure which is currently on top of the stack. So the last
installed break procedure will be deactivated, and the one installed previously
becomes active again.

*)

END Break.

232

Calendar

Calendar

DEFINITION MODULE Calendar;

(* This module defines a Date type and operations on dates of
the Gregorian Calendar, introduced in 1582

*)

FROM DurationOps IMPORT
Duration, Unit, UnitSet;

FROM TimeDate IMPORT
Time;

TYPE Date
RECORD

year
month
day

CARDINAL;
[1 12];
[1 31];
[0 23];
[0 59];
[0 59] ;

hour
minute
second
thousandth: [0 999] ;

END; (* Date *)

PROCEDURE GetMachineDate (VAR date: Date);
(* Gets the machine date *)

PROCEDURE SetMachineDate (date
(* Sets the machine date *)

PROCEDURE TimeToDate (time
VAR date

(* Type conversion from Time

PROCEDURE DateToTime (date
VAR time

(* Type conversion from Date

Date);

: Time;
: Date);
(in TimeDate)

: Date;
: Time);
(in Calendar)

PROCEDURE IsValid (date : Date): BOOLEAN;

to Date (in Calendar)

to Time (in TimeDate)

*)

*)

(* Returns TRUE if date is valid, according to the Gregorian calendar *)

PROCEDURE DaysIn (month CARDINAL;
year CARDINAL): CARDINAL;

(* Returns the number of days in the month of the year, according to
the Gregorian calendar, 0 if month is out of range. *)

PROCEDURE LeapYear (year : CARDINAL): BOOLEAN;
(* Returns TRUE if year is a leap year, according to the Gregorian

calendar (year number divisible by 400 or by 4 and not by 100) *)

PROCEDURE SameDate (date1, date2 : Date;
precision : Unit) : BOOLEAN;

Libraries

(* Returns TRUE if date1 and date2 are the same date, within precision *)

233

Chapter 9 Calendar

PROCEDURE Later (datel, date2 : Date;
precision : Unit) : BOOLEAN;

(* Returns TRUE if datel comes after date1, within precision *)

PROCEDURE LaterOrSameDate (datel, date2 : Date;
precision Unit): BOOLEAN;

(* Returns TRUE if date2 is after date1 or if date1 and date2 are the same
date, within precision *)

(* The following operations give good results only with dates following
October 15, 1582, when the Gregorian Calendar was first used.

*)

Accuracy to the second over long periods cannot be achieved, due to fluctuations
in the Earth rotation that often cause annual corrections of one second.

PROCEDURE AddToDate (date Date;
duration Duration;
VAR resultDate Date);

(* Add a duration to a date, gives a new date *)

PROCEDURE SubToDate (date
duration
VAR resultDate

Date;
Duration;
Date) ;

(* Subtract a duration from a date, gives a new date *)

PROCEDURE DeltaDate (datel, date2 Date;
unitFormat UnitSet;
VAR duration Duration);

(* Absolute value of the difference between two dates, given a duration
with units in unitFormat (see module Duration) *}

END Calendar.

234

CardinalIO

DEFINITION MODULE CardinalIO;
(*

CardinalIO

Terminal input/output of CARDINALs in decimal and hex

Libraries

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
ReadCardinal, WriteCardinal, ReadHex, WriteHex;

PROCEDURE ReadCardinal (VAR c: CARDINAL);
(*

*)

- Read an unsigned decimal number from the terminal.
out: c the value that was read.

The read terminates only on ESC, EOL, or blank, and the terminator
must be re-read, for example with Terminal.Read.

If the read encounters a non-digit, or a digit which would cause the number to
exceed the maximum CARDINAL value, the bell is sounded and that character is
ignored. No more than one leading '0' is allowed.

PROCEDURE WriteCardinal (c: CARDINAL; w: CARDINAL);
(*

*)

- Write a CARDINAL in decimal format to the terminal.
in: c

w
value to write,
minimum field width.

The value of c is written, even if it takes more than w digits. If it takes
fewer digits, leading blanks are output to make the field w characters wide.

PROCEDURE ReadHex (VAR c: CARDINAL);
(*

*)

- Read a CARDINAL in hexadecimal format from the terminal.
[see ReadCardinal above]

PROCEDURE WriteHex (c: CARDINAL; digits: CARDINAL);
(*

*)

- Write a CARDINAL in hexadecimal format to the terminal.
[see WriteCardinal above]

END CardinalIO.

235

Chapter 9 Chronometer

Chronometer

DEFINITION MODULE Chronometer;

(* Management and use of 'Chrono' objects, which permits to measure times
with an estimated accuracy of 0.02 second.
All the operations on these chronos are similar to those on a real chronometer.

*)

FROM DurationOps IMPORT
Duration, (* The measured time will be of this type *)
UnitSet; (* The units to represent the time. *)

TYPE
Chrono;

PROCEDURE NewChrono (VAR chrono : Chrono);
(* Creates a new variable of type Chrono ('Takes a chrono'), and resets it.

*)

A call to NewChrono is mandatory before any other operation, otherwise
the program will be HALTed at any call of such an operation.

PROCEDURE DisposeChrono (VAR chrono : Chrono);
(* Destroys variable of type Chrono ('Drops the chrono') It is illegal to call

any operation with chrono as parameter other than NewChrono
after a call to DisposeChrono.

*)

PROCEDURE StartChrono (chrono : Chrono);
(* Starts the chrono.

The chrono begins to measure elapsing time.
*)

PROCEDURE ReadChrono (chrono Chrono;

(* Reads the
If format
A chrono
the last
Accuracy

*)

format UnitSet;
VAR elapsedTime Duration);

chrono, without stopping it.
is empty then elapsedTime will be in seconds.

can be read several times, elapsedTime holds the time elapsed since
StartChrono of this chrono.
: 0.02 second

PROCEDURE StopChrono (chrono Chrono);
(* Stops the chrono.

The time elapsing after a call to StopChrono is not taken in account.
*)

PROCEDURE ResetChrono (chrono : Chrono);
(* Stops and Resets the chrono.

*)

After a call to Reset the chrono is prepared· to measure times from zero.
Reset is automatically called by NewChrono.

END Chronometer.

236

Conversions

DEFINITION MODULE Conversions;
(*

Conversions

Convert from INTEGER and CARDINAL to string

Libraries

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
Convert Octal, ConvertHex,
ConvertCardinal, ConvertInteger, ConvertLongInt;

PROCEDURE ConvertOctal(num, len
VAR str

CARDINAL;
ARRAY OF CHAR};

(*

*)

- Convert number to right-justified octal representation

in:

out:

num
len
str

value to be represented,
minimum width of representation,
result string.

If the representation of 'num' uses fewer than 'len' digits, blanks are added
on the left. If the representation will not fit in 'str', it is truncated
on the right.

PROCEDURE ConvertHex(num, len: CARDINAL;

(*

*)

VAR str: ARRAY OF CHAR};

- Convert number to right-justified hexadecimal representation.
[see ConvertOctall

PROCEDURE ConvertCardinal(num, len
VAR str

CARDINAL;
ARRAY OF CHAR};

(*

*)

- Convert a CARDINAL to right-justified decimal representation.
[see Convert Octal 1

PROCEDURE ConvertInteger(num
len

VAR str

INTEGER;
CARDINAL;
ARRAY OF CHAR};

(*

*)

- Convert an INTEGER to right-justified decimal representation.
[see ConvertOctall

Note that a leading '-' is generated if num < 0, but never a '+'.

237

Chapter 9

PROCEDURE ConvertLongInt(num
len

VAR str
(*

LONGINT;
CARDINAL;
ARRAY OF CHAR);

- Convert a LONGINT to right-justified decimal representation.
[see ConvertOctall

Note that a leading is generated if num < 0, but never a '+'.
*)

END Conversions.

238

Conversions

DateFormat Libraries

DateFormat

DEFINITION MODULE DateFormat;

(*

*)

Conversion between Date (from Calendar) and string types.

An internal format, called current format holds the template of a string,
i.e. the way in which a date is represented. Routines are provided to
change this format, as a whole or field by field.

FROM Calendar IMPORT
Date;

TYPE
Format:

Order (DateOnly,
DateAndTime,
TimeOnly,
TimeAndDate):

DayFormat (European,
US,
ISO):

YearFormat (Short,
Long):

MonthFormat (InDigits,
InLetters) :

MonthName ARRAY [0 15]

MonthList ARRAY [1 12]

HourFormat (PMSec,
PMNoSec,
H24Sec,
H24NoSec) ;

(* Select Date and/or Time, and the *)
(* order in which they are represented. *)

(* day month year *)
(* month day year *)
(* year month day *)

(* 87 *)
(* 1987 *)

(* 03 *)
(* March, Mars, ... *)

OF CHAR:

OF MonthName: (* Holds the months names, can
(* be changed by user.

(* 1:17:05 pm *)
(* 1:17 pm *)
(* 13:17:05 *)
(* 13:17 *)

*)
*)

SeparatorList = ARRAY [0 .• 5] OF CHAR: (* Holds the separators of the *)
(* different date/time compo - *)
(* components, can be changed *)
(* by the user. *)

PROCEDURE DefaultFormat (): Format:
(* Returns default date format :

dd-mmm-yyyy hh:mm:ss i.e. 13-Jun-1987 17:45:30 *)

PROCEDURE Current Format (): Format:
(* Returns current date format *)

PROCEDURE SetFormat (format: Format):
(* Sets the current format to format *)

239

Chapter 9

PROCEDURE SetOrder (order: Order);
(* Sets the current format's order to order.

(default: DateAndTime) *)

PROCEDURE SetDayFormat (day format : DayFormat);
(* Sets the current format's day format to dayFormat

(default: European *)

PROCEDURE SetYearFormat (yearFormat : YearFormat):
(* Sets the current format's year format to yearFormat

(default: Long) *)

PROCEDURE SetMonthFormat (monthFormat : MonthFormat);
(* Sets the current format's month format to monthFormat

(default: InLetters) *i

PROCEDURE SetMonthList (monthList : MonthList);
(* Sets the current format's month list to monthList

DateFormat

(default: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec) *)

PROCEDURE SetHourFormat (hourFormat : HourFormat);
(* Sets the current format's hour format to hourFormat

(default: H24Sec) *)

PROCEDURE SetSeparator (separator SeparatorList);
(* Sets the current format's list to separator

(default: "_- ::") *)

PROCEDURE DateToString (date Date;
VAR image ARRAY OF CHAR;
VAR done BOOLEAN);

(* Converts a Date in a string of current format *)

PROCEDURE StringToDate (image ARRAY OF CHAR;
VAR date Date;
VAR done BOOLEAN;
VAR errorPos CARDINAL);

(* Converts a string in a date. The syntax of this string should be the one
defined by the current format, otherwise done is set to FALSE and errorPos to
the index of the first unexpected character of the string.

*)

END DateFormat.

240

DebugPMD

DEFINITION MODULE DebugPMD;

END DebugPMD.

Libraries

DebugPMD

241

Chapter 9

DEFINITION MODULE DebugTrace;
(*

DebugTrace

DebugTrace

(c) COPYRIGHT 1986,1987 LOGITECH SA, CH-1111 Romanel/Morges, Switzerland.

Abstract text
Created 19-MAR-87 Reuteler

Modified dd-mmm-yy Author Reason

*)

END DebugTrace.

242

Decimals

DEFINITION MODULE Decimals;
(*

Decimal Arithmetic
*)

EXPORT QUALIFIED

Decimals

DECIMAL, DecDigits, DecPoint, DecSep, DecCur, DecStatus,
DecState, DecValid, StrToDec, DecToStr, NegDec, CompareDec,
AddDec, SubDec, MulDec, DivDec, Remainder, DecRepr;

CONST
DecDigits
DecRepr
DecCur
DecPoint
DecSep

TYPE

18;
10;

, $' ;

, ,. , ,

DECIMAL = ARRAY [O .. DecRepr-l] OF CHAR;

VAR

(*
WARNING: Representation is implementation dependent!

*)

DecState (NegOvfl,
Minus,
Zero,
Plus,
PosOvfl,
Invalid

) ;

DecValid: BOOLEAN;
(* set after every operation *)

Remainder: CHAR;
(* remainder digit - set after DivDec *)

PROCEDURE StrToDec (String: ARRAY OF CHAR;
Picture: ARRAY OF CHAR;
VAR Dec: DECIMAL);

(*

Libraries

Converts a DECIMAL number from an external format to an internal format; after
checking and matching between the picture and the input string. The result is
placed in variable Dec.

*)

PROCEDURE DecToStr (Dec: DECIMAL;

(*

*)

Picture: ARRAY OF CHAR;
VAR RsltStr: ARRAY OF CHAR);

Converts a DECIMAL number from an internal format to an external format; after
checking and matching between the picture and the DECIMAL number. The result is
placed in variable RsltStr.

243

Chapter 9

PROCEDURE DecStatus (Dec: DECIMAL): DecState;
(*

*)

Detects the state of the number represented as DECIMAL
and returns one of the following states

- Negative overflow --> NegOvfl
- Negative --> Minus
- Null --> Zero
- Positive --> Plus
- Positive overflow --> PosOvfl
- Invalid representation --> Invalid

PROCEDURE CompareDec (DecO,Dec1: DECIMAL): INTEGER;
(*

*)

Compares two DECIMAL numbers and returns an integer value indicating the
comparison result:

-1 if DecO is less than Dec1
o if DecO equals Dec1
1 if DecO is greater than Dec1

PROCEDURE AddDec (DecO,Dec1: DECIMAL; VAR Sum: DECIMAL);
(*

Decimals

Adds two DECIMAL numbers (DecO and Dec1) together and places the result in the
variable Sum.

*)

PROCEDURE SubDec (DecO,Dec1: DECIMAL; VAR Sub: DECIMAL);
(*

Subtracts Dec1 from DecO and places the result in Sub.
*)

PROCEDURE MulDec (DecO,Dec1: DECIMAL; VAR Prod: DECIMAL);
(*

Multiplies two DECIMAL numbers and places the result in the variable Prod.
*)

PROCEDURE DivDec (DecO,Dec1: DECIMAL; VAR Quot: DECIMAL);
(*

*)

DecO is divided by Dec1. The quotient is placed in the variable Quot and the
remainder is placed in the global variable Remainder.

PROCEDURE NegDec (Dec: DECIMAL; VAR NDec: DECIMAL);
(*

The negative DECIMAL value of Dec is placed in the variable NDec.
*)

END Decimals.

244

Delay

DEFINITION MODULE Delay;

EXPORT QUALIFIED
Delay;

PROCEDURE Delay (milliSec: INTEGER);
(*

Delay

Interrupts the program execution for approximatly 'milliSec' milliseconds.
*)

END Delay.

245

Libraries

Chapter 9 Devices

Devices

DEFINITION MODULE Devices;
(*

*)

Additional facilities for device and interrupt handling

The MODULA-2/86 run-time support maintains a device mask that indicates from which
devices interrupts are enabled. The bits of the device mask have the same meaning
as the bits in the mask register of the interrupt controller.

Module 'Devices' provides access to the device mask. It allows a program to
inquire and change the status of a device (interrupts enabled or disabled). The
device numbers used by module 'Devices' and by the run-time support are equal to
the number of the bit in the device mask, that indicates whether interrupts from
this device are enabled or disabled.

When a program is running at no priority, the mask register of the interrupt
controller is identical to this device mask. When a program is running at some
priority, then the mask register of the interrupt controller is set to the logical
OR of the device mask and the corresponding priority mask. When the priority or
the device mask changes, the MODULA-2/86 run-time support sets the mask register
of the interrupt controller accordingly. At any point in time, all the interrupts
masked out, either in the device mask or in the current priority mask, are
disabled. The priority mask for 'no priority' does not mask out any interrupt,
i.e. its value is all zeros.

When writing interrupt handlers in MODULA-2/86, it is strongly recommended to use
only the procedures provided by module 'Devices', and not to access directly the
mask register of the interrupt controller.

The following should be performed in order to install an interrupt handler: First
save the old interrupt vector, then set up the interrupt handler (IOTRANSFER), and
if necessary, save the current device status (interrupts enabled or disabled) and
enable interrupts from the device.

Before the program terminates, or in order to remove an interrupt handler, the
following sequence of procedure calls should be performed: If necessary, restore
the old device status or disable interrupts from the device, and then restore the
old interrupt vector.

At the end of a program the MODULA-2/86 run-time support resets the mask register
of the interrupt controller to its initial value.

In general, a call to IOTRANSFER in Modula-2 associates a process with only the
next occurence of the specified interrupt. The procedure 'InstallHandler'
provided by module 'Devices' allows to install an interrupt handler permanently.
It associates a process, the interrupt handler, permanently with a certain
interrupt.

While it is not required to install an interrupt handler in this way, it may be
useful for handling time critical interrupts. Installing an interrupt handler
permanently improves the performance of IOTRANSFER and of the implicit coroutine
transfer that takes place when the interrupt occurs by about 20 percent.

'InstallHandler' must only be called after the process has been created (by means
of NEWPROCESS) and before the process has called IOTRANSFER. For instance, it may
be called right at the beginning of the code of the process.

246

Devices

FROM SYSTEM IMPORT ADDRESS, PROCESS:

EXPORT QUALIFIED
GetDeviceStatus, SetDeviceStatus,
SaveInterruptVector, RestoreInterruptVector,
InstallHandler, UninstallHandler:

PROCEDURE GetDeviceStatus(deviceNr: CARDINAL:

(*
VAR enabled: BOOLEAN);

- Return the status of a device in the device mask

in: deviceNr number of the device to be checked bitnumber (0 .. 7)
of bit for device in interrupt controller 8259 mask

Libraries

out: enabled TRUE if interrupts from the device are enabled, FALSE otherwise
*)

PROCEDURE SetDeviceStatus(deviceNr: CARDINAL;
enable: BOOLEAN);

(*

*)

- Set the status of a device in the device mask

in: deviceNr number of the device to enable or disable bitnumber (0 .. 7) of
bit for device in interrupt controller 8259 mask

enable if TRUE, enable interrupts from the device,
otherwise disable them

The mask register of the interrupt controller will be updated according to the
current priority and the new device mask.

PROCEDURE SaveInterruptVector (vectorNr
VAR vector

CARDINAL;
ADDRESS) ;

(*

*)

- Save the current value of an interrupt vector

in: vectorNr
out: vector

interrupt vector number
value of current interrupt vector

PROCEDURE RestoreInterruptVector (vectorNr CARDINAL:

(*

*)

vector ADDRESS);

- Restore the value of an interrupt vector

in: vectorNr
vector

interrupt vector number
value to restore (previously saved with 'SaveInterruptVector')

247

Chapter 9 Devices

PROCEDURE InstallHandler (process : PROCESS;
vectorNr: CARDINAL);

(*

*}

- Install an interrupt handler permanently

in: process
vectorNr

process associated with the interrupt handler
interrupt vector number

The process is associated permanently to the given interrupt vector number. This
improves the performance of IOTRANSFER and of the implicit coroutine transfer that
takes place when the interrupt occurs. A process may be associated to at most one
interrupt, and at most one process may be associated to the same interrupt.

, InstallHandler' must only be called after the P!ocess has been created (by means
of NEWPROCESS) and before the process has called IOTRANSFER. For instance, it may
be called right at the beginning of the code of the process. Except for the call
to 'InstaIIHandler', the code of a permanently installed interrupt handler is
identical to the code of a regular interrupt handler.

PROCEDURE UninstaIIHandler(process: PROCESS};
(*

*)

- Uninstall an interrupt handler which has been installed permanently

in: process process associated with the interrupt handler

In general, there is no need to call this procedure. The MODULA-2/86 run-time
support automatically uninstalls interrupt handlers upon termination of a
(sub-) program.

END Devices.

248

Directories

DEFINITION MODULE Directories;
(*

Additional directory operations
*)

EXPORT QUALIFIED
DirQueryProc, DirResult, DirQuery,
Delete, Rename;

TYPE

Directories

DirQueryProc = PROCEDURE (ARRAY OF CHAR, VAR BOOLEAN};

DirResul t = (OK,
ExistingFile,
NoFile,
OtherError) ;

(* rename to existing name *)
(* file not found *)

PROCEDURE DirQuery(wildFileName
DirProc

ARRAY OF CHAR;
DirQueryProc;
DirResult} ; VAR result

(*
- Apply the a procedure to all matching files

in: wildFileName file name, wild-characters are allowed

Libraries

DirProc procedure to be called for each file matching 'wildFileName'

*)

out: result result of directory operation

'DirQuery' executes 'DirProc' on each file which satisfies the specification of
'wildFileName' where wild-characters are allowed. If no more files are found,
or as soon as 'DirProc' returns FALSE, the execution is stopped.

If an incorrect filename is passed, this may return a 'result <> OK', and
'DirProc' will not be called.

Possible results are OK, NoFile, or OtherError.

PROCEDURE Delete (FileName
VAR result

ARRAY OF CHAR;
DirResult) ;

(*
- Delete a file.

in: FileName name of the file to delete

out: result result of directory operation

Possible results are OK, or NoFile.
*)

249

Chapter 9

PROCEDURE Rename(FromName
ToName

VAR result

ARRAY OF CHAR;
ARRAY OF CHAR;
DirResult);

(*
- Rename a file.

in: FromName
ToName

out: result

name of the file to rename
new name of the file

result of directory operation

Possible results are OK, NoFile, ExistingFile, or OtherError.
*}

END Directories.

250

Directories

DiskDirectory

DEFINITION MODULE DiskDirectory;
(*

DiskDirectory

Interface to directory functions of the underlying OS

Libraries

Deri ved from the Lilith Modula-2 system developed by thegroup of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
CurrentDrive, SelectDrive,
CurrentDirectory, ChangeDirectory,
MakeDir, RemoveDir,
ResetDiskSys, ResetDrive;

PROCEDURE CurrentDrive (VAR drive: CHAR);
(*

- Returns the current default drive.

out: drive name of the default drive, given in character format (e.g. 'A').
*)

PROCEDURE SelectDrive (drive: CHAR; VAR done: BOOLEAN);
(*

*)

- Set default drive.

in:

out:

drive

done

name of drive to make default, specified in
character format (e.g. 'A').

TRUE if operation was successful.

The default drive will be used by all routines referring to DK: .

PROCEDURE CurrentDirectory (drive
VAR dir

CHAR;
ARRAY OF CHAR);

(*

*)

- Gets the current directory for the specified drive.

in: drive

out: dir

name of the drive, specified in character format (e.g. 'A');
blank or OC denotes the current drive.

current directory for that drive.

Because CP/M-86 does not support named directories, dir[O) will always be set
to nul (OC) under CP/M-86.

251

Chapter 9 DiskDirectory

PROCEDURE ChangeDirectory (dir: ARRAY OF CHAR;

(*

*)

VAR done: BOOLEAN);

- Set the current directory

in: dir drive and directory path name.

out: done TRUE if successful; FALSE if the directory does not exist.

Because CP/M-86 does not support named directories, this function has no effect
and 'done' returns always FALSE under CP/M-86.

PROCEDURE MakeDir (dir ARRAY OF CHAR;
BOOLEAN) ;

(*

*)

VAR done

- Create a sub-directory

in: dir drive, optional pathname and name of sub-directory to create.

out: done TRUE if successful; FALSE if path or drive does not exist.

Because CP/M-86 does not support named directories, this function has no effect
and 'done' returns always FALSE under CP/M-86.

PROCEDURE RemoveDir (dir ARRAY OF CHAR;
BOOLEAN) ;

(*

*)

VAR done

- Remove a directory

in: dir drive and name of the sub-directory to remove.

out: done: TRUE if successful; FALSE if directory does not exist.

The specified directory must be empty, otherwise 'done' returns FALSE and the
directory is not removed.

Because CP/M-86 does not support named directories, this function has no effect
and 'done' returns always FALSE under CP/M-86.

PROCEDURE ResetDiskSys;
(*

- MS-DOS or CP/M-86 disk reset
*)

PROCEDURE ResetDrive (d: CHAR): CARDINAL;
(*

*)

- CP/M-86 reset drive.

in:

out:

drive name of drive to make default, specified in
character format (e.g. 'A').

returns always zero under CP/M-86

Under DOS this function has no effect and returns always the value 255.

END DiskDirectory.

252

DiskFiles

DEFINITION MODULE DiskFiles;
(*

DiskFiles

Interface to disk file functions of the underlying OS.
[Private module of the MODULA-2/86 system.]

The default drive 'DK:', and drives 'A:' through 'P:' are supported

Libraries

under DOS or CP/M-86. This driver provides buffering. The maximum number of open
files is 12.

*)

Derived from the Lilith Modula-2 system developed by thegroup of Prof. N. Wirth
at ETH Zurich, Switzerland.

FROM FileSystem IMPORT File;

EXPORT QUALIFIED
InitDiskSystem,
DiskFileProc, DiskDirProc;

PROCEDURE InitDiskSystem;
(*

*)

- Initialize mediums for further disk file operations

This procedure has to be imported by FileSystem. This has the side-effect, that
this module is referenced and will therefore be linked to the user program.

PROCEDURE DiskFileProc (VAR f: File);
(*

*)

- low-level interface for disk operations within a file

This procedure is passed as a parameter to the procedure
CreateMedium in FileSystem.

PROCEDURE DiskDirProc (VAR f File;

(*

*)

name ARRAY OF CHAR);

- low-level interface for disk operations within a directory

This procedure is passed as a parameter to the procedure
CreateMedium in FileSystem.

END DiskFiles.

253

Chapter 9

DEFINITION MODULE Display;
(*

Low-level Console Output

Display

[Private module of the MODULA-2/86 system]

Display

Derived from the Lilith Modula-2 system developed by thegroup of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED Write;

PROCEDURE Write (ch: CHAR);
(*

- Display a character on the console.

*)

in: ch character to be displayed.

The following codes are interpreted:

ASCII.EOL
ASCII. ff
ASCILdel
ASCII.bs
ASCII .cr
ASCII.lf

(36C)
(14C)

(l77C)
(lOC)
(15C)
(12C)

go to beginning of next line
clear screen and set cursor home
erase the last character on the left
move 1 character to the left
go to beginning of current line
move 1 line down, same column

Write uses direct console I/O.

END Display.

254

DOS3

DOS3

DEFINITION MODULE DOS3;
(*

*)
Additional DOS 3.0 functions

FROM SYSTEM IMPORT
BYTE, WORD, ADDRESS;

EXPORT QUALIFIED
GetExtendedError,
CreateTemporaryFile,
CreateNewFile,
LockUnlockFileAccess,
GetProgramSegmentPrefix;

(* DOS 3.0 function 59H *)
PROCEDURE GetExtendedError(version WORD;

(* DOS 3.0 function 5AH *)

(* BX *)
VAR extendedError WORD;
(* AX *)

VAR errorClass BYTE;
(* BH *)

VAR suggestedAction BYTE;
(* BL *)

VAR locus BYTE);
(* CH *)

PROCEDURE CreateTemporaryFile(path ADDRESS;
(* DS:DX *)
attribute WORD;
(* CX *)

VAR errorCode WORD;
(* AX, CF *)

VAR handle WORD;
(* AX,CF *)

VAR pathAndName ADDRESS);
(* DS:BX *)

(* DOS 3.0 function 5BH *)
PROCEDURE CreateNewFile(pathAndName

(* DS:BX *)
attribute
(* CX *)

VAR errorCode
(* AX,CF *)

VAR handle
(* AX,CF *)

ADDRESS;

WORD;

WORD;

WORD) ;

255

Libraries

Chapter 9

(* DOS 3.0 function 5CH *)
PROCEDURE LockUnlockFileAccess{lock

(* DOS 3.0 function 62H *)

(* AL *)
handle
(* BX *)
offsetHigh
(* CX *)

offsetLow
(* DX *)
lengthHigh
(* SI *)
lengthLow
(* DI *)

VAR errorCode
(* AX, CF *)

PROCEDURE GetProgramSegmentPrefix(VAR PSPsegrnent
(* BX *)

END DOS3.

256

DOS3

BYTE;

WORD;

WORD;

WORD;

WORD;

WORD;

WORD) ;

WORD) ;

DOS31

DOS31

DEFINITION MODULE DOS31;
(*

*}
Additional DOS 3.1 functions

FROM SYSTEM IMPORT
BYTE, WORD, ADDRESS;

EXPORT QUALIFIED
GetMachineName,
SetPrinterSetup,
GetPrinterSetup,
GetRedirectionListEntry,
RedirectDevice,
CancelRedirection:

(* DOS 3.1 function 5EOOH *}
PROCEDURE GetMachineName(computerName ADDRESS:

(* DS:DX *}

VAR nameNumberIndFlag BYTE;
(* CH *}

VAR nameNumber BYTE;
(* CL *}

VAR errorCode WORD};
(* AX, CF *}

(* DOS 3.1 function 5E02H *}
PROCEDURE SetPrinterSetup(redirectionListIndex WORD;

(* BX *}
setupStringLength WORD;
(* CX *}
setupBuffer ADDRESS;
(* DS: SI *}

VAR errorCode WORD}:
(* AX,CF *}

(* DOS 3.1 function 5E03H *}
PROCEDURE GetPrinterSetup(redirectionListIndex WORD:

(* BX *}
setupBuffer ADDRESS;
(* ES :DI *}

VAR setupStringLength WORD;
(* CX *}

VAR errorCode WORD}:
(* AX, CF *}

257

Libraries

Chapter 9

(* DOS 3.1 function 5F02H *)
PROCEDURE GetRedirectionListEntry

(redirection Index
(* BX *)

localDeviceName
(* DS:SI *)
networkName
(* ES :DI *)

VAR deviceStatusFlag
(* BH *)

VAR deviceType
(* BL *)

VAR storedParmValue
(* CX *)

VAR error Code
(* AX, CF *)

WORD;

ADDRESS;

ADDRESS;

BYTE;

BYTE;

WORD;

WORD) ;

(* DOS 3.1 function 5F03H *)
PROCEDURE RedirectDevice(deviceType

(* BL *)
valueToSaveForCaller
(* CX *)
deviceName
(* DS:SI *)
networkPath
(* ES:DI *)

VAR errorCode
(* AX, CF *)

(* DOS 3.1 function 5F04H *)
PROCEDURE CancelRedirection(deviceName

END DOS31.

(* DS:SI *)
VAR errorCode
(* AX,CF *)

258

DOS31

BYTE;

WORD;

ADDRESS;

ADDRESS;

WORD) ;

ADDRESS;

WORD) ;

DosError

DosError

DEFINITION MODULE Dos Error;

(* Get the DOS error message associated to an error code. *)

PROCEDURE GetErrorMessage (errorCode CARDINAL;
VAR errorMessage ARRAY OF CHAR);

(* errorCode is an error number returned by DOS functions.
errorMessage is at most 40 character long *)

END DosError.

259

Libraries

Chapter 9 DOSMemory

DOSMemory

(* This is an interface to the DOS memory allocation (DOSCALL 48H, 49H, 4AH)
* The blocks are linked to the Modula-2 RunTime Support, thus they are known
* by the system and dumped in case of error.

*)

DEFINITION MODULE DOSMemory;

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED DOSAlloc, DOSDeAlloc, DOSAvail, DOSSetSize, DOSGetMaxSize;

PROCEDURE DOSAlloc(VAR a: ADDRESS; paraSize: CARDINAL);
(* Allocates a block of paraSize paragraphs *)
(* a is the address of the block returned or NIL if the size *)
(* is not available or an error occured *)

PROCEDURE DOSDeAlloc(VAR a: ADDRESS; paraSize: CARDINAL);
(* DeAllocates a block previously allocated with DOSAlloc. The *)
(* paraSize passed must be the size given for allocate or setsize *)
(* a is set to the NIL value if DeAlloc succeds, not modified *)
(* an error occured. *)
(* NOTE: the address passed MUST BE the address returned by *)
(* DOSAlloc *)

PROCEDURE DOSAvail(): CARDINAL;
(* Function that returns the size (in paragraphs) of the largest *)
(* space available. *)

PROCEDURE DOSSetSize(a: ADDRESS; paraSize: CARDINAL; VAR errorCode: CARDINAL);
(* Sets the size of the block given to the new size given in paraSize. *)
(* The returned errorCode is : *)
(* 0 No Error *)
(* 7 memory control block destroyed *)
(* 8 insufficient memory *)
(* 9 incorrect block address *)
(* NOTE: the address passed MUST BE the address returned by DOSAlloc *)

PROCEDURE DOSGetMaxSize(a: ADDRESS): CARDINAL;
(* Gets the maximal paragraph size to which the block given as *)
(* parameter can be extended *)
(* NOTE: the address passed MUST BE the address returned by DOSAlloc *)

END DOSMemory.

260

DurationOps Libraries

Duration Ops

DEFINITION MODULE DurationOps;

(* This module defines a Duration type and the relevant units.

*)

It allows comparisons, addition and substraction on the Duration type,
and a way to do conversion .between units with ease.

TYPE Unit (Millenium, Century, Year, Month,
Day, Hour, Minute, Second,
Tenth, Hundredth, Thousandth);

(* Year mean solar time year: 365 days hours 49 minutes 12 seconds
31 556 952 seconds

Month Year / 12 2 629 746 seconds
*)

TYPE Duration = ARRAY Unit OF REAL;
(* Each cell of this array will hold the real amount of the relevant

unit .
*)

TYPE Unit Set

CONST
FullUnitSet

SET OF Unit;

UnitSet {Millenium, Century, Year, Month,
Day, Hour, Minute, Second,
Tenth, Hundredth, Thousandth};

EmptyUnitSet = UnitSet I};

PROCEDURE Clear (VAR duration
(* Set duration to zero *)

Duration) ;

PROCEDURE Format (VAR duration : Duration:
format : UnitSet);

(* Formatting of duration in format.
Allows conversions between duration units.
Unit cells of duration not in format are set to 0.0.

Those in format are set to the greatest possible 'integer' value, except
for the smallest unit which contains the remainder which may not be integer.

If format is empty, duration is reformatted with the same units.
*)

PROCEDURE FormatOf (duration: Duration): UnitSet;
(* Returns the format of duration, i.e. the set of the non zero unit cells. *)

PROCEDURE Sum (left, right
format
VAR result

(* Addition of left and
empty then result is

*)

Duration:
UnitSet;
Duration);

right, result being formatted with format.
formatted with the union of left and right

261

If format is
formats

Chapter 9 DurationOps

PROCEDURE Diff (left, right Duration;
format UnitSet;
VAR result Duration);

(* Substraction of left and right, result being formatted with format. If format
is empty then result is formatted with the union of left and right formats

*)

PROCEDURE Equal (left, right : Duration;
accuracy : Unit) : BOOLEAN;

(* Returns TRUE if left and right are equal within accuracy *)

PROCEDURE Greater (left, right : Duration;
accuracy : Unit) : BOOLEAN;

(* Returns TRUE if left is greater than right within accuracy *)

PROCEDURE GreaterOrEqual (left, right : Duration;
accuracy Unit): BOOLEAN;

(* Returns TRUE if left is greater or equal than right within accuracy *)

END DurationOps.

262

DynMem Libraries

DynMem

DEFINITION MODULE DynMem;

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED InstallDynMem, Alloc, DeAlloc, Avail;

(* for all procedures below, the block address must be paragraph aligned *)
(* with offset 0 *)

PROCEDURE InstallDynMem(block: ADDRESS;
size : CARDINAL);

(* size is the size in bytes usable by DynMem and it must be < MaxInt *)

PROCEDURE Alloc(block ADDRESS;
VAR adr ADDRESS;
size CARDINAL);

(* adr will be the allocated block address or NIL if no space available *)
(* size is in bytes *)

PROCEDURE DeAlloc block ADDRESS;
VAR adr ADDRESS;
size CARDINAL): BOOLEAN;

(* adr return value will be NIL *)

PROCEDURE Avail (block : ADDRESS;
size: CARDINAL): BOOLEAN;

(* returns TRUE if size is available in the block *)

END DynMem.

263

Chapter 9 ErrorCode

ErrorCode

DEFINITION MODULE ErrorCode;
(*

*)
handle return code to operating system

EXPORT QUALIFIED
SetErrorCode, GetErrorCode, ExitToOS;

PROCEDURE SetErrorCode(value: CARDINAL);
(*

*)

Sets the error return code that will be used on normal termination;
but it doesn't terminate the program immediately.

PROCEDURE GetErrorCode(VAR value: CARDINAL);
(*

Allows to inspect the set return code
*)

PROCEDURE ExitToOS;
(*

*)

Terminate current program and return to operating system. Set the error code
corresponding to value defined by a previous call to SetErrorCode.
implementation restriction: if the program is using overlays, only the current
overlay will be terminated.

END ErrorCode.

264

Exec

DEFINITION MODULE Exec;
FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
DosShell, DosCommand, Run, Execute;

PROCEDURE DosShell(VAR done: BOOLEAN);
(* call "COMMAND. COM"

Exec

(* remain in DOS command shell, until user types EXIT
(* finds COMMAND. COM through environment variable COMSPEC=

PROCEDURE DosCommand (command, parameters
VAR done

(* call COMMAND.COMic command parameters
(* execute just one DOS command and return

ARRAY OF CHAR;
BOOLEAN) ;

(* finds COMMAND. COM through environment variable COMSPEC=
(* here, the DOS shell will perform a search strategy,
(* using the PATH= environment variable
(* This call can be used to perform built in commands of
(* DOS (e.g. dir, ren, copy ...)

PROCEDURE Run (programFileName, parameters
VAR done

(* call program with parameters
(* the complete filename with drive,
(* path and extension has to be passed.
(* no search strategy will be performed

ARRAY OF CHAR;
BOOLEAN) ;

PROCEDURE Execute (programFileNameAdr: ADDRESS;
(* pointer to program filename *)

environment : CARDINAL;
(* paragraph address of environment *)
(* 0 for current environment *)

commandLineAdr : ADDRESS;
(* pointer to command line parameters *)

*)
*)
*)

*)
*}

*}
*}
*}
*}
*}

*}
*}
*}
*)

Libraries

(* first byte is number of characters in command line *)
(* next characters contain parameters *)

} ;

FCBIAdr, FCB2Adr : ADDRESS;
(* pointer to default file control blocks *)

VAR errorCode : CARDINAL
(* DOS error code *)

(* call program with given parameter block information *)
(* no search strategy will be performed *)

END Exec.

265

Chapter 9

DEFINITION MODULE FileMessage;
(*

FileMessage

Write file status/response to the terminal
*)

FROM FileSystem IMPORT Response;

EXPORT QUALIFIED WriteResponse;

PROCEDURE WriteResponse (r: Response);
(*

- Write a short description of a FileSystem response on the terminal.

in: r the response from some FileSystem operation.

FileMessage

The actual argument for 'r' is typically the field 'res' of a variable of
type 'File'. The printed message is up to 32 characters long.

*)

END FileMessage.

266

FileNames

DEFINITION MODULE FileNames;
(*

FileNames

Read a file specification from the terminal.

Libraries

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
FNParts, FNPartSet, ReadFileName;

TYPE
FNParts
FNPartSet

(FNDrive, FNPath, FNName, FNExt);
SET OF FNParts;

PROCEDURE ReadFileName (VAR resultFN
defaultFN

ARRAY OF CHAR;
ARRAY OF CHAR;
FNPartSet) ;

(*

*)

VAR ReadInName

- Read a file specification from terminal.

in:
out:

defaultFN
resultFN
ReadInName

default file specification,
the file specification read,
which parts are in specification.

Reads until a <cr>, blank, <can>, or <esc> is typed. After a call to
ReadFileName, Terminal.Read must be called to read the termination character.
The format of the specification depends on the host operating system.

END FileNames.

267

Chapter 9

DEFINITION MODULE FileSystem;
(*

File manipulation routines

FileSystem

File System

This implementation is based on the underlying operating system for file handling.
It distinguishes between BINARY files and TEXT files.

File structure:

After any file operation the result should be checked for errors, by testing
the field 'res' of the file variable (see type declarations for 'File'
and'Response'}.

The BOOLEAN field 'eof' in a file variable (variable of type 'File}' allows to
determine the end-of-file. It is set to TRUE after the first unsuccessful
attempt to read information from the file. This first attempt to read beyond
end-of-file does not set any error condition; the field 'res' of the file
variable still indicates 'done'. However, the character (or other data}
returned is not valid.

Binary files:

A file is a sequence of bytes with no other structure implied.

Under some operating systems (e.g. CP/M-86} the file may be organized in
records (128 bytes each}, and therefore, the length of a file will always be a
multiple of this record size.

Text files:

A file is a sequence of characters. The character code 32C (Ctrl-Z} indicates
end-of-file}. All other character codes from OC to 377C are legal. When
reading a text file, 'eof' becomes TRUE when encountering the character 32C, or
at the pysical end of the file. When closing a text file that has been
modified, the character 32C is written on the file.

When reading from a text file (by means of procedure 'ReadChar'}, the character
ASCII.EOL is returned for the sequence <CR, LF>, or for a single <CR> or <LF>.
When writing to a text file (by means of procedure 'WriteChar'}, the character
ASCII.EOL is changed to the sequence <CR,LF>.

268

FileSystem Libraries

*}

An open file is in one of the states 'opened', 'reading', 'writing', or
'modifying'. These states have the following meaning:

opened

reading
writing

modifying

Content of file buffer is undefined and not associated with
a position in the file.
When starting to read or write from a file that is in state open,
the state is changed implicitly to reading or writing.
No writing is allowed.
No reading is allowed. Writing always takes place at the end-of­
file position.
When writing on an existing file, which is (physically) longer than
the current write position, it is undefined, whether the file
is truncated upon a close.
Reading and writing are allowed. Writing an element inside of a
file means 'overwriting' the value of the element with a new value.
Upon a close, the file is not truncated.

The state of the file is given by the field 'flags' of a file variable. By
means of the procedures Set Read, SetWrite, SetModify, and SetOpen, it is
possible to change the state of an open file.

To every file is associated a 'current position'. This corresponds to the
number of the current byte inside the file, starting with zero for the first
byte. The next reading or writing takes place at the current position. This
position is updated automatically after reading or writing. It can also be
inquired or set through the procedure GetPos or SetPos.

After the opening of a file (by means of Lookup or Create) it is state 'opened'
and positioned at the beginning (low = 0, high = O).

Conventions for filenames:

For the procedures Lookup and Rename, a filename has to be given, including a
medium name (drive name), a file name and an optional file type. For the
procedure Create, a medium name has to be given. The medium name is up to
three characters long (alphanumeric, starting with a letter). It is separated
from the file name by a colon (':'). If no medium name is given, the current
default medium (drive) is assumed. The default medium may also be denoted
by 'DK:'.

Depending on the operating system, the file name may include a path name,
specifying the the directory where the file exists. The length of the file
(and path) name, and the characters legal for file names, depend on the
operating system.

By default, the mediums (i.e. disk drives) handled by module 'DiskFiles'
are installed.

Derived from the Lilith Modula-2 system developed by the group of
Prof. N. Wirth at ETH Zurich, Switzerland.

269

Chapter 9

FROM SYSTEM IMPORT ADDRESS, WORD, BYTE;

EXPORT QUALIFIED
File, Response, Command,
Flag, FlagSet,

(* basic file operations: *)
Create, Close, Lookup, Rename, Delete,
SetRead, SetWrite, SetModify, SetOpen,
Doio,
SetPos, GetPos, Length,

(* stream-like I/O: *)
Reset, Again,
ReadWord, ReadChar, ReadByte, ReadNBytes,
WriteWord, WriteChar, WriteByte, WriteNBytes,

(* medium handling: *)
MediumType,
FileProc, DirectoryProc,
CreateMedium, RemoveMedium,

FileNameChar;

TYPE

MediumHint = CARDINAL;
(*- medium index used in DiskFiles *)

Medi umType = ARRAY [0 •• 2] OF CHAR;
(*- medium name (A, B •••) *)

Flag
(*

(er, ef, rd, wr, ag, txt);

- status flag for file operations:

er error occured, ef = end-of-file reached,
rd in read mode, wr = in write mode,

*)

ag "Again" has been called after last read,
txt = text-file (the last access to the file was a
'WriteChar' or 'ReadChar').

270

FileSystem

FileSystem Libraries

FlagSet SET OF Flag;
(*- status flag set *)

Response = (done, notdone, not supported, callerror,
unknownmedium, unknownfile, paramerror,
toomanyfiles, eom, userdeverror):

(*

*}

- result of a file operation

done:
FileSystem routine successfully terminated notsupported:
for internal purposes only

callerror:
a) You tried to write to a file currently in state reading. Use SetWrite

to change a file's state from reading to writing.
b} You tried to read from a file currently in state writing. Use SetRead

to change a file's state from writing to reading.
c} You tried to read from or write to a file marked as invalid by the

following operations:
unsuccessful Create or Lookup
successful Close or Delete

unknownmedium:
The medium, or drive, which you addressed does not exist or is not known to
the MODULA-2/86 System (it has not been installed by means of the
CreateMedium routine) .

unknownfile:
The file you specified as the parameter for the Delete routine
could not be found.

paramerror:
a} The syntax of the medium name, or drive name, which you specified

is incorrect.
b} When renaming a file, you must not change the medium name (drive name) .
c} You tried to position a file after its physical end.

toomanyfiles:
Only 12 files can be opened at the same time.

eom:
'end of medium' - The medium (disk) holding the file, to which you wanted
to write is short of storage space.

userdeverror:
Not used in this implementation of the FileSystem.

notdone:
a} You tried to read from a file for which the BOOLEAN field eof of the

corresponding file variable is true.
b} You tried to open a non-existing file with Lookup

(with parameter newFile = FALSE) .
c} Any other error, not covered by the above meanings of the

values of the FileSystem Response Type.

Command (create, close, lookup, rename, delete,
setread, setwrite, setmodify, setopen,
doio, setpos, getpos, length);

(*- commands passed to module 'DiskFiles' *)

Buff Add = POINTER TO ARRAY [O •. OFFFEH) OF CHAR;
(*- file buffer pointer type *)

271

Chapter 9 FileSystem

File RECORD
bufa : Buff Add;

(*- buffer address *)
buflength : CARDINAL;

(*- size of buffer in bytes. In the current release it is always
a multiple of 128. *)

validlength : CARDINAL;
(*- number of valid bytes in buffer *)

bufind: CARDINAL;
(*- byte-index to the buffer of the current position *)

flags FlagSet;
(*- status of the file *)

eof : BOOLEAN;
(*- TRUE if last access was past the end of the file *)

res Response;
(*- result of last operation *)

lastRead : CARDINAL;
(*- the word or byte (char) last read *)

mt : MediumType;
(*- selects the driver that supports this file *)

fHint : CARDINAL;
(*- used internally by device driver *)

mHint : MediumHint;
(*- used internally by medium handler *)

CASE com: Command OF
lookup: new: BOOLEAN;
setpos,
getpos,
length: highpos, lowpos: CARDINAL;

END;
END;

(*- file structure used for bookkeeping by DiskFiles *)

PROCEDURE Create (VAR f
mediumName

File;
ARRAY OF CHAR);

(*

*)

- create a temporary file

in: mediumName name of medium to create file on, in character format

out: f initialized file structure

A temporary file is characterized by an empty name. To make the file permanent,
it has to be renamed with a non-empty name before closing it. For subsequent
operations on this file, it is referenced by 'f'.

PROCEDURE Close (VAR f: File);
(*

*)

- Close a file

in: f structure referencing an open file

out: f the field f.res will be set appropriately.

Terminates the operations on file "f". If "f" is a temporary file, it will be
destroyed, whereas a file with a non-empty name remains on its medium and is
accessible through "Lookup". When closing a text-file after writing, the end­
of-file code 32C is written on the file (MS-DOS and CP/M-86 convention).

272

FileSystem

PROCEDURE Lookup (VAR f: File; fileName: ARRAY OF CHAR;
newFile: BOOLEAN);

(*
- look for a file

in: filename drive and name of file to search for
newFile TRUE if file should be created if not found

Libraries

out: f initialized file structure; f.res will be set appropriately.

*)

Searches the medium specified in "filename" for a file that matches the name and
type given in "filename". If the file is not found and "newFile" is TRUE, a new
(permanent) file with the given name and type is created. If it is not found
and "newFile" is FALSE, no action takes place and "notdone" is returned in the
result field of "f".

PROCEDURE Rename (VAR f: File; newname: ARRAY OF CHAR);
(*

*)

- rename a file

in: f
new name

out: f

structure referencing an open file
filename to rename to, with device:name.type specified

file name in f will be changed and the field f.res
will be set appropriately.

The medium, on which the files reside can not be changed with this command. The
medium name inside "newname" has to be the old one.

PROCEDURE Delete (name: ARRAY OF CHAR; VAR f: File);
(*

- delete a file

in: name name of file to delete, with dev:name.type specified

out: f the field f.res will be set appropriately.
*)

PROCEDURE ReadWord (VAR f: File; VAR w: WORD);
(*

*)

- Returns the word at the current position in f

in:

out:

f

w
f

structure referencing an open file

word read from file
the result field f.res will be set appropriately.

The file will be positioned at the next word when the read is done.

273

Chapter 9

PROCEDURE WriteWord (VAR f: File; w: WORD);
(*

*)

- Write one word to a file

in:

out:

f
w

f

structure referencing an open file
word to write

the field f.res will be set appropriately.

When overwriting, the file will be positioned at the next word
when the write is done.

PROCEDURE ReadChar (VAR f: File; VAR ch: CHAR);
(*

- Read one character from a file

in:

out:

f

ch
f

structure referencing an open file

character read from file
the field f.res will be set appropriately.

ReadChar returns the character contained in the referenced file at
the file's current position, with the following exceptions:

FileSystem

(The symbolic constants are from the Standard Library module ASCII.DEF)

*)

Character Sequence
in File:

Symbolic Octal

<cr, If>
<cr>
<If>
<Ctrl-z>

lSC, 12C
lSC
12C
32C

Character Returned

Symbolic

<EOL>
<EOL>
<EOL>
<nul>

Octal

36C
36C
36C

OC

<Ctrl-z>, i.e. 32C, indicates end-of-file.

If ReadChar encounters the end of the file or tries to read beyond it, a nul
character, or OC, is returned.

The file will be positioned at the next character when the read is done.

274

FileSystem

PROCEDURE WriteChar (VAR f: File; ch: CHAR);
('It

- Write one character to a file

in:

out:

f
ch

f

structure referencino an open file
character to write

the field f.res will be set apporopriately.

Libraries

WriteChar writes the character to the referenced file at the file's current
position, with the followinO exceptions:

'It)

(The symbolic constants are from the Standard Library module ASCII.DEF)

Character to write

Symbolic

<EOL>
<cr>
<If>
<Ctrl-z>

Octal

36C
lSC
12C
32C

Character Sequence
in File:

Symbolic Octal

<cr, If>
<cr>
<If>
<Ctrl-z>

lSC, 12C
lSC
12C
32C

<Ctrl-z>, i.e. 32C, indicates end-of-file.

When overwritinq, the file will be positioned at the next character
when the write is done.

PROCEDURE ReadByte (VAR f: File; VAR b: BYTE);
('It

'It)

- Read one byte from a file

in:

out:

f

b
f

structure referencinq an open file

byte read from file
the field f.res will be set appropriately.

The file will be positioned at the next byte when the read is completed.

PROCEDURE WriteByte (VAR f: File; b: BYTE);
('It

'It)

- Write one byte to a file

in:

out:

f
b

f

structure referencinq an open file
byte to write

the field f.res will be set appropriately.

When overwritinq, the file will be positioned at the next byte
when the write is done.

275

Chapter 9 FileSystem

PROCEDURE ReadNBytes (VAR f File:

(*

*)

bufPtr
requestedBytes
VAR read

ADDRESS;
CARDINAL;
CARDINAL) :

- Read a specified number of bytes from a file

in:

out:

f
bufPtr
requestedBytes

bufPtr"
f
read

structure referencing an open file
pointer to buffer area to read bytes into
number of bytes to read

bytes read from file
the field f.res will be set appropriately.
the number of bytes actually read.

The file will be positioned at the next byte after the requested
sequence of bytes.

PROCEDURE WriteNBytes (VAR f File:

(*

*)

bufPtr
requestedBytes
VAR written

ADDRESS;
CARDINAL:
CARDINAL) ;

- Write a specified number of bytes to a file

in:

out:

f
bufPtr
requestedBytes
f
written

structure referencing an open file
pointer to string of bytes to write
number of bytes to write
the field f.res will be set appropriately.
the number of bytes actually written

When overwriting, the file will be positioned at the next byte
after the requested sequence of bytes.

PROCEDURE Again (VAR f: File);
(*

*)

- returns a character to the buffer to be read again

in: f structure referencing an open file

out: f the f.res field will be set appropriately.

This should be called after a read operation
It prevents the subsequent read from reading
read before will be returned a second time.
read in between have the same effect as one
file is undefined after a call to Again (it
operation) .

276

only (it has no effect otherwise).
the next element; the element just
Multiple calls to Again without a

call to Again. The position in the
is defined again after the next read

FiIeSystem Libraries

PROCEDURE SetRead (VAR f: File):
(*

*)

- Sets the file in reading- state, without changing the current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

Upon calling SetRead, the current position must be before the eof.
In reading state, no writing is allowed.

PROCEDURE SetWrite (VAR f: File);
(*

*)

- Sets the file in writing-state, without changing the current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

Upon calling SetWrite, the current position must be a legal position in the file
(including eof). In writing state, no reading is allowed, and a write always
takes place at the eof. The current implementation does not truncate the file.

PROCEDURE SetModify (VAR f: File);
(*

*)

- Sets the file in modifying-state, without changing the current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

Upon calling SetModify, the current position must be before the eof. In
modifying-state, reading and writing are allowed. Writing is done at the
current position, overwriting whatever element is already there.
The file is not truncated.

PROCEDURE SetOpen (VAR f: File);
(*

*)

- Set the file to opened-state, without changing the current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

The buffer content is written back on the file, if the file has been in writing
or modifying status. The new buffer content is undefined. In opened-state,
neither reading nor writing is allowed.

PROCEDURE Reset (VAR f: File):
(*

- Set the file to opened state and position it to the top of file.

in: f structure referencing an open file

out: f f.res will be set appropriately.
*)

277

Chapter 9 FileSystem

PROCEDURE SetPos (VAR f: File; high, low: CARDINAL);
(*

*)

- Set the current position in file

in:

out:

f
high
low

f

structure referencing an open file
high part of the byte offset
low part of the byte offset

f.res will be set appropriately.

The file will be positioned (high*2 A 16 + low) bytes from the top of file.

PROCEDURE GetPos (VAR f: File; VAR high, low: CARDINAL);
(*

*)

- Return the current byte position in file

in:

out:

f

high
low

structure referencing an open file

high part of byte offset
low part of byte offset

The actual position is (high*2 A 16 + low) bytes from the top of file.

PROCEDURE Length (VAR f: File; VAR high, low: CARDINAL);
(*

*)

- Return the length of the file in bytes.

in:

out:

f

high
low

structure referencing an open file.

high part of byte offset
low part of byte offset

The actual length is (high*2 A 16 +low) bytes. Depending on the operating system,
this length may always be a multiple of some record size reflecting the physical
length of the file and maybe not the true logical file length.

PROCEDURE Doio (VAR f: File);
(*

*)

Do various read/write operations on a file

in: f structure referencing an open file

out: f f.res will be set appropriately.

The exact effect of this command depends on the state of the file (flags):

opened
reading

writing

modifying

NOOP.
reads the record that contains the current byte from the file. The
old content of the buffer is not written back.
the buffer is written back. It is then assigned to the record, that
contains the current position. Its content is not changed.
the buffer is written back and the record containing
the current position is read.

Note that 'Doio' does not need to be used when reading through the
stream-like I/O routines. Its use is limited to special applications.

278

FileSystem Libraries

PROCEDURE FileNameChar (c: CHAR): CHAR;
(*

- Check the character c for legality in a filename.

in: c charater to check

out: DC for illegal characters and c otherwise;
lowercase letters are transformed into uppercase letters.

Which characters are leagl in a filename depends on the host operating system.
*)

TYPE
FileProc = PROCEDURE (VAR File);
(*

*)

- Procedure type to be used for internal file operations

A procedure of this type will be called for the following functions
(see TYPE 'Command'):
setread, setwrite, setmodify, setopen, doio, setpos, getpos, and length.

DirectoryProc = PROCEDURE (VAR File, ARRAY OF CHAR);
(*

*)

- Procedure type to be used for operations on entire files

A procedure of this type will be called for the following functions
(see TYPE 'Command'): create, close, lookup, rename, and delete.

PROCEDURE CreateMedium (mt MediumType;
FileProc;
DirectoryProc;
BOOLEAN) ;

(*

*)

fproc
dproc
VAR done

- Install the medium "mt" in the file system

in:

out

mt
fproc
dproc

done

medium type to install
procedure to handle internal file operations
procedure to handle operations on an entire file

TRUE if medium was installed successfully

Before accessing or creating a file on a medium, this medium has to be announced
to the file system by means of the routine CreateMedium. FileSystem calls
"fproc" and "dproc" to perform operations on a file of this medium. Up to 24
mediums can be announced.

279

Chapter 9

PROCEDURE RemoveMedium (mt: MediumType; VAR done: BOOLEAN);
(*

- Remove the medium "mt" from the file system

in: mt medium type to remove

out: done TRUE if medium was removed successfully

FileSystem

Attempts to access a file on this medium result in an error (unknownmedium).
*)

END FileSystem.

280

FloatingUtilities

FloatingUtilities

DEFINITION MODULE FloatingUtilities;

EXPORT QUALIFIED
Frac, Int, Round, Float, Trunc;

PROCEDURE Frac (r : REAL) : REAL;
(*

Returns the fractional part of r, i.e. Frac(r) r + Int (r)
*)

PROCEDURE Int (r : REAL) : REAL;
(*

Returns the integer part of r, 1.e. the greatest integer number less than
or equal to r, if r >= 0, or the smallest integer number greater than or
equal to r, if r < O.

*)

PROCEDURE Round (num : REAL) : INTEGER;
(*

Returns the value of num rounded to the nearest integer as it follows
if num >= 0, then Round (num) = TRUNC(num - 0.5)
num must be of type real, and result is of type integer.

*)

PROCEDURE Float int : INTEGER : REAL;

PROCEDURE Trunc real : REAL) INTEGER;

END FloatingUtilities.

281

Libraries

Chapter 9

DEFINITION MODULE Graphics;
(* Graphics module *)

FROM SYSTEM IMPORT BYTE;

EXPORT QUALIFIED
(* colors *)

Graphics

Black, Blue, Green, Cyan, Red, Magenta, Brown, LightGray,
DarkGray, LightBlue, LightGreen, LightCyan, LightRed,
LightMagenta, Yellow, White,

(* screen modes *)
txtMedRes, txtHiRes, txtCMedRes, txtCHiRes,
gphMedRes, gphCMedRes, gphHiRes,

(* screen control *)
ScreenMode, GetScreenMode, GetScreenExt,
Palette, ColorTable, ForegroundColor, BackgroundColor,

(* graphics *)
Window, GetWindow, ClearWindow, BackgroundPattern,
ClipDot, Dot, GetDotColor,
ClipLine, Line, Arc, Circle, Text,
FloodFill, FillRect, Pattern,
SavePicture, RestorePicture,

(* cursor control *)
cursorWidth, cursorHeight,
CURSORSHAPE, CURSORSHAPEPOINTER,
CursorShape, CursorColor, CursorWrap, CursorShow,
EraseCursor, DisplayCursor, MoveCursor,
GetCursorPosition, CursorVisible;

(* colors *)
CONST

(* Dark colors

Black
Blue
Green
Cyan
Red
Magenta
Brown
LightGray

(* screen control
CONST

*)

0;
1;
2;
3;
4;
5;
6;
7;

Light colors *)

DarkGray
LightBlue
LightGreen
LightCyan
LightRed
LightMagenta
Yellow
White

8;
9;

10;
11;
12;
13;
14;
15;

screen modes *)
0; (* text 40x25 monochrome medium resolution mode *)
1; (* text 40x25 color medium resolution mode *)
2; (* text 80x25 monochrome high resolution mode *)
3; (* text 80x25 color high resolution mode *)
4; (* graphic 320x200 color medium resolution mode *)

Graphics

(* supported
txtMedRes
txt CMedRe s
txtHiRes
txtCHiRes
gphCMedRes
gphMedRes
gphHiRes

5; (* graphic 320x200 monochrome medium resolution mode *)
6; (* graphic 640x200 monochrome high resolution mode *)

282

Graphics

PROCEDURE ScreenMode (mode: INTEGER);
(*

*)

Sets the screen in the given mode. The screen is cleared.
The supported text modes are the following:
1. txtMedRes

It activates the monochrome medium resolution text mode
with 40x25 characters.

2. txtCMedRes
It activates the color medium resolution text mode
with 40x25 characters.

3. txtHiRes
It activates the monochrome high resolution text mode
with 80x25 characters.

4. txtCHiRes
It activates the color high resolution text mode
with 80x25 characters.

The supported graphic modes are the following:
1~ gphCMedRes

It activates the 320x200 dots color graphics screen.
x-coordinates are in a range between 0 •• 319,
y-coordinates are in a range between 0 •• 199.
The drawing colors may be selected with the procedure Palette.

2. gphMedRes
It activates the 320x200 dots monochrome graphics screen.
x-coordinates are in a range between 0 •• 319,
y-coordinates are in a range between 0 •• 199.
If you have an RGB monitor (like the IBM Color/Graphics display),
you can even use the colors from Palette(O) and Palette (1).

3. gphHiRes
It activates the 640x200 dots (high resolution)
monochrome graphics screen.
x-coordinates are in a range between 0 •• 639,
y-coordinates are in a range between 0 •• 199.
The background in the high resolution mode is always black.
The drawing color may be selected by procedure ForegroundColor.

PROCEDURE GetScreenMode (VAR mode: INTEGER);
(*

Returns the current screen mode.
*)

PROCEDURE GetScreenExt (VAR x, y: INTEGER);
(*

*)

Returns the extension of the screen.
If the screen is in a mode which is not supported,
x, yare set to O.

283

Libraries

Chapter 9

PROCEDURE Palette (palette: INTEGER);
(*

Selects the current palette in gphC40 and gphBW40.
A change of the palette will cause everything on the screen to change to
the colors of the new palette.

Graphics

Four palettes are available and for each palette there is a choice of four colors.

Color number: 0 1 2 3
Palette(0) Background Green Red Brown
Palette (1) Background Cyan Magenta LightGray
Palette (2) Background LightGreen LightRed Yellow
Palette (3) Background LightCyan LightMagenta White

*)

PROCEDURE ColorTable (colorl, color2, color3, color4: INTEGER);
(*

*)

Defines the color translation table for subseque~t drawings.
The given colors are colors of the palette.
All the drawing procedures use the color table if the color -1 is specified. The
SavePic procedure always uses the color table.
When a point has to be written on the screen and the color table is specified,
the point's current color is used to index the color table.
The point is drawn in the color so obtained.
The default color table setting is (0,1,2,3).
That means that when a point is written on the screen,
it does not change the color which is already there.

The color table (0,1,2,3) means that:
color 0 becomes color 0,
color 1 becomes color 1,
color 2 becomes color 2,
color 3 becomes color 3.

The color table (3,2,1,0) means that:
color 0 becomes color 3,
color 1 becomes color 2,
color 2 becomes color 1,
color 3 becomes color O.

PROCEDURE ForegroundColor (color: INTEGER);
(*

*)

Selects the foreground color in gphBW640 mode.
Changing the foreground color causes anything on the screen
to change to the new color.
The color constants defined above may be used.

PROCEDURE BackgroundColor (color: INTEGER);
(*

*)

Sets the background color in gphBW320 and gphC320 modes.
The color constants defined above may be used.
Color is an integer in the range 0 •• 15.

284

Graphics

PROCEDURE Window (xl, y1, x2, y2: INTEGER);
(*

Libraries

Defines a window, that is the area on the screen where all the drawing occurs.
The coordinates are absolute screen coordinates.

*)

The coordinates are clipped to the screen boundaries.
If the specified window has no intersection with the screen,
the new window is not defined. The previous window is still
valid.
The current window can be retrieved by using the procedure GetWindow.
The point (xl, y1) is the upper left corner;
the point (x2, y2) is the lower right corner of the window.
The entire screen is the default graphic window 0,0,319,199
in the 320x200 dot mode and 0,0,639,199 in the 640x200 dot mode.
After defining a window, all the coordinates are relative to the window.
The origin of the reference system is the upper left corner of the window.

PROCEDURE GetWindow (VAR xl, y1, x2, y2: INTEGER);
(*

*)

Returns the coordinates of the window.
(xl, y1) is the upper left corner and
(x2, y2) is the lower right corner of the window.

PROCEDURE BackgroundPattern (pat: ARRAY OF BYTE);
(*

Defines the background pattern which is used by the ClearWindow procedure.
*)

PROCEDURE ClearWindow (color: INTEGER);
(*

*)

Fills the current window with the current background pattern in the given color.
The colors 0 .. 3 will be selected from the color palette;
the color -1 will make use of the color table.
The background pattern is defined with the procedure BackgroundPattern.

PROCEDURE ClipDot (x, y: INTEGER): BOOLEAN;
(*

Returns TRUE if the dot at coordinates (x, y) is inside the window.
*)

PROCEDURE Dot (x, y: INTEGER; color: INTEGER);
(*

*)

Plots a point at the screen coordinates x and y in the given color.
If color = -1, the color table is used.

PROCEDURE GetDotColor (x, y: INTEGER): INTEGER;
(*

*)

Returns the color value of the dot located at coordinate xpos, ypos.
In the 320 x 200 dot graphic mode, values of 0 .• 3 may be returned.
In the 640 x 200 dot graphic mode, values of 0 •• 1 may be returned.
If the dot is outside the window, GetDotColor returns -1.

285

Chapter 9

PROCEDURE ClipLine (VAR xl, y1, x2, y2: INTEGER): BOOLEAN;
(*

Graphics

Returns the in variables xl, yl and x2, y2 the coordinates of the end points
of the segment obtained by clipping the line at the window boundaries.
The procedure also returns TRUE if at least a portion of the line
lies in the window.

*)

PROCEDURE Line (xl, y1, x2, y2: INTEGER; color: INTEGER);
(*

*)

Draws a straight line from (xl, y1) to (x2, y2) in the given color.
If the color is -1, the color will be obtained from the color table.

PROCEDURE Arc (centerX, centerY, radius, startAngle, arcAngle, color: INTEGER);
(*

*)

Draws a circular arc centered at (centerX, centerY) and with given radius.
The starting position is given by startAngle and the extent of the arc
is given by arcAngle.
startAngle and arcAngle are given in positive or negative degrees.
o degrees is at 3 o'clock.
A positive angle goes counterclockwise,
while a negative angle goes clockwise.
startAngle is treated mod 360.
arcAngle is in the range (-360, 360).
The arc is drawn in the given color.
If the color is -1, the color table will be used.

PROCEDURE Circle (x, y, radius, color: INTEGER);
(*

*)

Draws a circle with center at (x, y),
with the given radius and in the given color.
In the 640 x 200 mode, the circle will appear as an ellipse.
If the color is -1, the color table will be used.

PROCEDURE FloodFil1 (x, y, fillColor, borderColor: INTEGER);
(*

*)

Fills an area on the display surface with the color specified by fillColor.
The color table is not supported.
The area is bounded by the given borderColor.
(x, y) are the coordinates of any point within the area to be filled.

PROCEDURE FillRect (xl, y1, x2, y2, color: INTEGE-R);
(*

*)

Fills the rectangular area defined by the coordinates xl, y1, x2, y2
with the current pattern (see the procedure Pattern).
Bits set to 1 in the pattern cause a dot to be written in the given color;
bits set to 0 cause no change to the diplay.
If color = -1, the color table is used.

PROCEDURE Pattern (pattern: ARRAY OF BYTE);
(*

*)

Defines the pattern used by the FillRect procedure.
Each byte corresponds to a horizontal line,
each bit corresponds to a pixel.

286

Graphics

PROCEDURE Text (x, y: INTEGER; string: ARRAY OF CHAR; color: INTEGER);
(*

*)

Displays the given string at the given position.
The lower left corner of the first character in the string
is positioned at coordinates (x, y).
The width and height of a character is 8 pixels.
Clipping is performed at the window boundaries.

PROCEDURE SavePicture (VAR buffer: ARRAY OF BYTE; xl, y1, x2, y2: INTEGER);
(*

Libraries

Saves the contents of a rectangular area on the screen into the variable buffer.
The rectangular area is defined by the coordinates (xl, y1), (x2, y2)

*)

and it is clipped to the current graphic window.

The first 6 bytes of the buffer constitute a three word header.
The remaining bytes will contain the data.
The programmer has to ensure that the buffer is large enough
to accommodate the entire transfer.
The minimum buffer size in bytes is computed as following:

320 x 200 modes:
size = ((width + 3) div 4) * height * 2 + 6;

640 x 200 modes:
size = ((width + 7) div 8) * height + 6.

where:
xl, x2, y1, y2 have been clipped to the current graphic window;
width = abs(x1-x2) +1;
heigth = abs (y1-y2) +1;

After loading, the buffer has the following structure:
byte 0 .• 1 contains 2 in the 320 x 200 mode,

byte 2 •• 3
byte 4 .• 5
byte 6 .••

contains 1 in the 640 x 200 mode;
width of the image;
height of the image;
data.

Data is stored with the leftmost pixels in the most significant bits of the bytes.
At the end of each row, the remaining bits of the last byte are skipped.

PROCEDURE RestorePicture (VAR buffer: ARRAY OF BYTE; x, y: INTEGER);
(*

*)

Restores on the screen the contents of buffer (see SavePic).
The lower left corner of the picture is placed at (x, y).

(* cursor data types and procedures *)

TYPE CURSORSHAPE = RECORD

CONST

hotX INTEGER;
hotY INTEGER;
shape: ARRAY[0 •. 7] OF BYTE;

END;

CURSORSHAPEPOINTER POINTER TO CURSORSHAPE;

cursorWidth 7;
cursorHeight = 7;

(* cursor pattern width - 1 *)
(* cursor pattern height - 1 *)

287

Chapter 9

PROCEDURE CursorShape (shapePT: CURSORSHAPEPOINTER) 0;

(*
Selects the cursor shape.
IT does NOT redisplay the cursor.

*)

PROCEDURE CursorColor (color: INTEGER);
(*

Selects the color in which the cursor will be drawn.
It does NOT redisplay the cursor.

*)

PROCEDURE CursorShow (show: BOOLEAN);
(*

If show is TRUE, the cursor will be displayed on the screen.
*)

PROCEDURE CursorWrap (wrap: BOOLEAN) ;
(*

Graphics

If wrap is TRUE, the cursor position is wrapped at the window boundaries.
If wrap is FALSE, the

*)

PROCEDURE EraseCursor;
(*

cursor position

Erases the cursor if displayed.
*)

PROCEDURE DisplayCursor;
(*

is clipped at the window boundaries.

Displayes the cursor on the screen with current shape and color.
The hotX, hotY of the cursor indicate the bit in the cursor shape
which has to be positioned at the current cursor location.

*)

PROCEDURE MoveCursor (x, y: INTEGER);
(*

*)

Moves the cursor to (x, y). (x, y) are coordinates realtive to the window.
If wrap is TRUE, the point (x, y) is wrapped. The cursor is then displayed.
If wrap is FALSE, the point (x, y) is clipped.
The cursor is then displayed only if the point (x, y) is inside the window.

PROCEDURE GetCursorPosition (VAR x, y: INTEGER);
(*

Returns the cursor coordinates relative to the window.
*)

PROCEDURE CursorVisible (): BOOLEAN;
(*

Returns TRUE if the cursor is visible on the screen.
*)

END Graphics.

288

InOut

InOut

DEFINITION MODULE InOut:
(*

*)

Standard high-level formatted input/output,
allowing for redirection to/from files

From the book 'Programming in Modula-2' by Prof. N. Wirth.

FROM SYSTEM IMPORT WORD:
FROM FileSystem IMPORT File:

EXPORT QUALIFIED
EOL, Done, in, out, termCH,
OpenInput, OpenOutput, CloseInput, CloseOutput,
Read, ReadString, ReadInt, ReadCard, ReadWrd,
Write, WriteLn, WriteString, WriteInt, WriteCard,
WriteOct, WriteHex, WriteWrd;

CONST

VAR

EOL = 36C:
(*- end-of-line character *)

Done: BOOLEAN:
(*

- set by several procedures;
TRUE if the operation was successful, FALSE otherwise.

*)

termCH: CHAR:
(*

- terminating character from ReadString, Readlnt, ReadCard.
*)

in, out: File:
(*

- The currently open input and output files.
Use for exceptional cases only.

*)

PROCEDURE OpenInput(defext: ARRAY OF CHAR):
(*

Libraries

- Accept a file name from the terminal and open it for input (file variable 'in').

*)

in: defext default filetype or 'extension'.

If the file name that is read doesn't end with' .', and it doesn't have an
extension, then 'defext' is appended to the file name.

If OpenInput succeeds, Done = TRUE and
subsequent input is taken from the file until CloseInput is called.

289

Chapter 9

PROCEDURE Ope nOut put (defext: ARRAY OF CHAR):
(*

*)

- Accept a file name from the terminal and open it for output
(file variable 'out').

in: defext default filetype or 'extension'.

If the file name that is read doesn't end with '.', and
it doesn't have an extension, then 'defext' is appended to the file name.

If OpenOutput succeeds, Done - TRUE and subsequent output
is written to the file until CloseOutput is called.

FROCEDURE Closelnput;
(*

- Close current input file and revert to terminal for input.
*)

PROCEDURE CloseOutput:
(*

- Close current output file and revert to terminal for output.
*)

PROCEDURE Read(VAR ch: CHAR);
(*

- Read the next character from the current input.

out: ch the character read; EOL for end-of-line

Done - TRUE unless the input is at end of file.
*)

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);
(*

- Read a string from the current input.

InOut

out: s the strinq that was read, excluding the terminator character.

*)

Leading blanks are accepted and thrown away~ then characters are read into's'
until a blank or control character is entered. ReadString truncates the input
string if it is too long for's'. The terminating character is left in
'termCH'. If input is from the terminal, BS and DEL are allowed for editing.

PROCEDURE ReadInt(VAR x: INTEGER);
(*

*)

- Read an INTEGER representation from the current input.

out: x the value read.

ReadInt is like ReadString, but the string is converted to
an INTEGER value if po'ssible, using the syntax:

["+"1"-"] digit { digit }.
Done - TRUE if some conversion took place.

290

InOut

PROCEDURE ReadCard(VAR x: CARDINAL);
(*

*)

- Read an unsigned decimal number from the current input.

out: x the value read.

ReadCard is like ReadInt, but the syntax is:
digit { digit }.

PROCEDURE ReadWrd(VAR w: WORD);
(*

- Read a WORD value from the current input.

out: w the value read.

Libraries

Done is TRUE if a WORD was read successfully. This procedure cannot be
used when reading from the terminal.
Note that the meaning of WORD is system dependent.

*)

PROCEDURE Write (ch: CHAR);
(*

- Write a character to the current output.

in: ch character to write.
*)

PROCEDURE WriteLn;
(*

- Write an end-of-line sequence to the current output.
*)

PROCEDURE WriteString(s: ARRAY OF CHAR);
(*

- Write a string to the current output.

in: s string to write.
*)

PROCEDURE WriteInt(x: INTEGER; n: CARDINAL);
(*

*)

- Write an integer in right-justified decimal format.

in: x
n

value to be output,
minimum field width.

The decimal representation of 'x' (including '-' if x is negative) is output,
using at least n characters (but more if needed) •
Leading blanks are output if necessary.

291

Chapter 9

PROCEDURE WriteCard(x, n: CARDINAL);
(*

- Output a CARDINAL in decimal format.

in: x
n

value to be output,
minimum field width.

The decimal representation of the value 'x' is output,
using at least n characters (but more if needed).
Leading blanks are output if necessary.

*)

PROCEDURE WriteOct(x, n: CARDINAL);
(*

*)

- Output a CARDINAL in octal format.
[see WriteCard above)

PROCEDURE WriteHex(x, n: CARDINAL);
(*

- Output a CARDINAL in hexadecimal format.

*)

in: x
n

value to be output,
minimum field width.

Four uppercase hex digits are written, with leading blanks if n > 4.

PROCEDURE WriteWrd(w: WORD);
(*

*)

- Output a WORD

in: w WORD value to be output.

Note that the meaning of WORD is system dependent,
and that a WORD cannot be written to the terminal.

END InOut.

292

InOut

Keyboard

Keyboard

DEFINITION MODULE Keyboard;
(*

Default driver for terminal input.
[Private module of the MODULA-2/86 system]

Libraries

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, switzerland.

*)

EXPORT QUALIFIED Read, KeyPressed;

PROCEDURE Read (VAR ch: CHAR);
(*

*)

- Read a character from the keyboard.

out: ch character read

If necessary, Read waits for a character to be entered.
Characters that have been entered are returned immediately,
with no echoing, editing or buffering.

- Ctrl-C terminates the current program
- ASCII.cr is transformed into ASCII.EOL

PROCEDURE KeyPressed (): BOOLEAN;
(*

- Test if a character is available from the keyboard.

out: returns TRUE if a character is available for reading
*)

END Keyboard.

293

Chapter 9

LoadPath

DEFINITION MODULE LoadPath;

PROCEDURE GetLoad(VAR str: ARRAY OF CHAR);
(* Get the complete filename of the file loaded by MSDOS

In the environnement:

*)

- Look for the sequence 0,0
- Skip two bytes (meaning unknown, often 1,0)
- Take next characters until a 0
Return empty string if:
- Doesn't find 0,0
- filename> HIGH(str)

PROCEDURE GetLoadDir(VAR str: ARRAY OF CHAR);
(* Return the directory of the loaded file or empty string

if problems
*)

END LoadPath.

294

LoadPath

LogiFile

LogiFile

DEFINITION MODULE LogiFile;
(*

File sUb-system for Logitech utilities;
*)

FROM SYSTEM IMPORT ADDRESS, WORD, BYTE;
FROM TimeDate IMPORT Time;

EXPORT QUALIFIED
File, OpenMode,
NUL, LF, CR, EOL, EOF,
Open, Create, Close, Delete,
GetFileDate,
GetPos, SetPos, Reset,
ReadChar, WriteChar,
ReadNBytes, WriteNBytes,
ReadByte, WriteByte, ModifyByte,
ReadWord, WriteWord, ModifyWord,
EndFile;

TYPE
File;
OpenMode (ReadOnly, WriteOnly, ReadWrite);

CONST
NUL
LF
CR
EOL
EOF

~C;

12C;
15C;
36C;
32C;

(* end
(* end

of line character for
of file character for

character files
character files

(* --- *)
(*

Operations on the directory:
*)

*)
*)

PROCEDURE Open(VAR f File; (* Open an existing file *)
name ARRAY OF CHAR;
mode OpenMode;

VAR done BOOLEAN};

PROCEDURE Create (VAR f File; (* Open a new file *)
name ARRAY OF CHAR;

VAR done BOOLEAN};

PROCEDURE Close (VAR f
VAR done

PROCEDURE Delete (VAR f
VAR done

File;
BOOLEAN};

File;
BOOLEAN} ;

(* Close a file *)

(* Close a file *)
(* remove from directory *)

295

Libraries

Chapter 9

PROCEDURE GetFileDate(f : File;
VAR datetime : Time);

(* returns the creation date and time of the given file *)

(* --- *)
(*

*)

Positioning inside an open file,
highpos and lowpos represent a double precision value:
highpos * lOOOOH + lowpos.

PROCEDURE Getpos(f File;
VAR highpos CARDINAL;
VAR lowpos CARDINAL);

(* Get current byte position of the file *)

PROCEDURE Setpos(f File;
highpos CARDINAL;
lowpos CARDINAL);

(* Set file to indicated byte position, and set to IReadMode" *)

PROCEDURE Reset(f: File);
(* Position the file at the beginning and set to "ReadMode" *)

(* --- *)
(*

Reading and Writing of files in ITextMode":

LogiFile

Calls to ReadChar and WriteChar set the internal file status to "TextMode".
This means that EOL and EOF characters are interpreted,

*)

EOL:
WriteChar(f,EOL) writes the physical EOL-character onto the file
(under MS-DOS: CR,LF; under XENIX: LF).
ReadChar(f,ch) with ch=EOL under MS-DOS means that the read procedure
found a CR on the file, translated it into EOL, and skipped
the character just after CR,assuming that it is a LF.
ReadChar(f,ch) with ch=EOL under XENIX means that the read procedure
found a LF on the file, and translated it into EOL.

EOF «ctrl-Z>, 32C)
When writing, the EOF is treated like any other character,
i.e., WriteChar(f,EOF) just writes EOF onto the file, thus setting a logical EOF.
If the character EOF is found on a file,
this results in ReadChar(f,ch) with ch=NUL, AND EndFile(f)=TRUE.
Note: The EOF is never written automatically by LogiFile!

PROCEDURE ReadChar(f File;
CHAR) ;

(* Read a character from file *)
VAR ch

PROCEDURE WriteChar(f
ch

File;
CHAR) ;

(* Write a character to file *)

(* --- *)
(*

*)

Reading and Writing of files in IBinaryMode":
Calls to all the following read, write, and modify procedures
set the internal file status to IBinaryMode".

296

LogiFile

PROCEDURE ReadNBytes(f File;
buffPtr ADDRESS;
requestedBytes CARDINAL;
VAR read CARDINAL);

(* Read requested bytes into buffer at address *)
(* 'buffPtr', number of effectiv read bytes is *)
(* returned in ' read' *)

PROCEDURE WriteNBytes(f File;
buffPtr ADDRESS;
requestedBytes CARDINAL;
VAR written CARDINAL);

(* Write requested bytes into buffer at address *)
(* 'buffPtr', number of effectiv written bytes is *)
(* returned in 'written' *)

PROCEDURE ReadByte (f File; (* Read a byte from
VAR b BYTE);

file *)

PROCEDURE WriteByte (f File; (* Write a word to file *)
b BYTE) ;

PROCEDURE ModifyByte (f File; (* Modify a word on file *)
b BYTE);

PROCEDURE ReadWord(f File; (* Read a word from file *)
VAR w WORD) ;

PROCEDURE WriteWord (f File; (* Write a word to file *)
w WORD) ;

PROCEDURE ModifyWord(f: File; (* Modify a word on file *)
w: WORD) ;

(* --- *)

PROCEDURE EndFile(f: File): BOOLEAN;

(* End of file reached, with the following logic:

After Open
After Create

undefined
undefined

"WriteMode" undefined
i.e., after calls to Write- or Modify- procedures.

"ReadMode":

Libraries

When reading in "TextMode" (using ReadChar) a logical EOF (32C, <ctrl-Z»
in the file sets EndFile to TRUE.

*)

If there is no logical EOF in the file, or when reading in "BinaryMode",
reading to or after the physical EOF sets EndFile to TRUE.

NOTE: All read procedures return NUL or read bytes=O
when reading past the end of the file.
In "BinaryMode" this is always the physical EOF,
in "TextMode" this is either the logical EOF, or
if there is no logical EOF, the physical EOF.

END LogiFile.

297

Chapter 9

LongIO

DEFINITION MODULE LongIO;

EXPORT QUALIFIED ReadLonglnt, WriteLonglnt;

PROCEDURE ReadLonglnt (VAR longX : LONGINT);
PROCEDURE WriteLonglnt(x: LONGINT; n: CARDINAL);

END LongIO.

298

LongIO

Lookup

DEFINITION MODULE Lookup;

FROM LogiFile IMPORT File;

EXPORT QUALIFIED LookupFile;

PROCEDURE LookupFile(prompt
name
paths
defext
VAR file

Lookup

query, autoquery, acceptoptions
VAR effectivename
VAR good file

(* for implementation the modules FileNames, *)
(* Options and CompFile are imported *)

(* prompt string is displayed on terminal *)
(* name for construction of a default file
(* paths drive and paths; separated by ,.,

(* defext default extension of searched file
(* file opened file *)
(* query explicit asking for file name *)
(* autoquery switch automatically to mode query

ARRAY OF CHAR;
ARRAY OF CHAR;
ARRAY OF CHAR;
ARRAY OF CHAR;
File;
BOOLEAN;
ARRAY OF CHAR;
BOOLEAN);

name *)
*)

*)

if not found *)
(* acceptoptions accept options appended to file name *)
(* options are not evaluated *)
(* effectivename name of found file *)
(* goodfile lookup was successful *)

END Lookup.

299

Libraries

Chapter 9

MathLibO

DEFINITION MODULE MathLibO;
(*

Real Math Functions

From the book 'Programming in Modula-2' by Prof. N. Wirth.
*)

EXPORT QUALIFIED
sqrt, exp, ln, sin, cos, arctan, real, entier;

PROCEDURE sqrt(x: REAL}: REAL;
(*

- returns square root x

x must be positive.
*)

PROCEDURE exp(x: REAL}: REAL;
(*

- returns eAx where e = 2.71828 ••
*)

PROCEDURE In(x: REAL}: REAL;
(*

- returns natural logarithm with base e

x must be positive and not zero
*)

PROCEDURE sin(x: REAL}: REAL;
(*

2.71828 •. ofx

- returns sin (x) where x is given in radians
*}

PROCEDURE cos(x: REAL}: REAL;
(*

- returns cos (x) where x is given in radians
*}

PROCEDURE arctan(x: REAL}: REAL;
(*

- returns arctan(x) in radians
*}

PROCEDURE real (x: INTEGER}: REAL;
(*

- type conversion from INTEGER to REAL
*)

300

MathLibO

MathLibO

PROCEDURE entier(x: REAL}: INTEGER;
(*

- returns the largest integer number less or equal x

Examples: entier(1.5) = 1; entier(-1.5} -2;

If x cannot be represented in an INTEGER, the result is undefined.
*}

END MathLibO.

301

Libraries

Chapter 9 Mouse

Mouse

DEFINITION MODULE Mouse;
(*

Mouse Driver Interface

Short description:

The functions implemented in this module provide a Modula-2 interface for the
LOGITECH Mouse Driver. This driver interface is compatible with the
Microsoft Mouse Driver interface, so this module can be used with all the
compatible mouse drivers. For detailed description of these functions, please
refer to your mouse documentation:

e.g. LOGITECH Mouse Driver Programmer's Reference Manual
Microsoft Mouse, Installation and Operation Manual

Microsoft is a registered trademark of Microsoft corporation

*)

EXPORT QUALIFIED
DriverInstalled,

Button, ButtonSet,

FlagReset,

ShowCursor, HideCursor,

GetPosBut,

SetCursorPos,

GetButPres, GetButRel,

SetHorizontalLimits, SetVerticalLimits,

GraphicCursor, SetGraphicCursor,
Set Text Cursor,

ReadMotionCounters,

Event, EventSet, EventHandler, SetEventHandler,

LightPenOn, LightPenOff,

SetMickeysPerPixel,

Conditional Off,

SetSpeedThreshold;

302

Mouse Libraries

VAR
DriverInstalled: BOOLEAN:

(* Flag that indicates, whether a mouse driver is loaded or not.
If its value is FALSE, none of the following functions will work properly.

*)

TYPE
Button (LeftBut ton,

RightButton, (* not available on some mice *)

MiddleButton (* not available on some mice *)
) ;

ButtonSet = SET OF Button;

PROCEDURE FlagReset(VAR mouseStatus : INTEGER;
VAR numberOfButtons :CARDINAL);

(* Microsoft Mouse Driver System Call 0
Input : AX 0 System Call 0

Output: AX --> mouse status
0 (FALSE) : mouse hardware and

not installed
-1 (TRUE) : mouse hardware and

installed
BX --> number of mouse buttons

*)

PROCEDURE ShowCursor;
(* Microsoft Mouse Driver System Call

Input : AX = 1 System Call 1
*)

PROCEDURE HideCursor;
(* Microsoft Mouse Driver System Call 2

Input : AX = 2 System Call 2
*)

software

software

PROCEDURE GetPosBut(VAR buttonStatus : ButtonSet;
VAR horizontal, vertical :INTEGER);

(* Microsoft Mouse Driver System Call 3

*)

Input : AX = 3 System Call 3

Output: BX --> mouse button status
CX --> horizontal cursor position
DX --> vertical cursor position

PROCEDURE SetCursorPos(horizontal, vertical INTEGER);
(* Microsoft Mouse Driver System Call 4

*)

Input : AX = 4 System Call 4
CX <-- horizontal mouse cursor position
DX <-- vertical mouse cursor position

303

Chapter 9

PROCEDURE GetButPres(button
VAR buttonStatus
VAR buttonPressCount
VAR horizontal, vertical

(* Microsoft Mouse Driver System Call 5
Input : AX 5 System Call 5

BX <-- button
Output: AX --> current button status

Button;
ButtonSet;
CARDINAL;
INTEGER);

BX --> count of button presses since
last call to this function

CX --> horizontal cursor position at last press
DX --> vertical cursor position at last press

*)

PROCEDURE GetButRel(button
VAR buttonStatus
VAR buttonReleaseCount
VAR horizontal ,vertical

(* Microsoft Mouse Driver System Call 6
Input : AX = 6 System Call 6

BX <-- button
Output: AX --> current button status

BX --> count of button releases

Button:
ButtonSet;
CARDINAL;
INTEGER);

since
last call to this function

CX --> horizontal cursor position at last press
DX --> vertical cursor position at last press

*)

PROCEDURE SetHorizontalLimits(minPos, maxPos: INTEGER);
(* Microsoft Mouse Driver System Call 7

*)

Input : AX = 7 System Call 7
CX <-- minimum horizontal position
DX <-- maximum horizontal position

PROCEDURE SetVerticalLimits(minPos, maxPos: INTEGER);
(* Microsoft Mouse Driver System Call 8

*)

Input : AX = 8 System Call 8
CX <-- minimum vertical position
DX <-- maximum vertical position

TYPE
GraphicCursor RECORD

screenMask,
cursorMask: ARRAY [0 •• 15] OF BITSET;
hotX, hotY: [-16 •• 16];

END;

(* The screenMask is first ANDed into the display;
then the cursorMask is XORed into the display.
The hot spot coordinates are relative to the
upper-left corner of the cursor image, and define
where the cursor actually 'points to'.

*)

304

Mouse

Mouse

PROCEDURE SetGraphicCursor(VAR cursor: GraphicCursor);
(* Microsoft Mouse Driver System Call 9

Input : AX 9 System Call 9
BX <-- cursor hot spot (horizontal)
CX <-- cursor hot spot (vertical)
ES:DX <-- pointer to screen and cursor

masks
*)

PROCEDURE SetTextCursor(selectedCursor,
screenMaskORscanStart,
cursorMaskORscanStop CARDINAL);

(* Microsoft Mouse Driver System Call 10

*)

Input : AX 10 System Call 10
BX <-- cursor select

0: Software text cursor
1: Hardware text cursor

CX <-- screen mask value or
scan line start

DX <-- cursor mask value or
scan line stop

For the software text cursor, the second two parameters
specify the screen and cursor masks.
The screen mask is first ANDed into the display;
then the cursor mask is XORed into the display.
For the hardware text cursor, the second two parameters contain
the line numbers of the first and last scan line
in the cursor to be shown on the screen

PROCEDURE ReadMotionCounters(VAR horizontal,
vertical :INTEGER);

(* Microsoft Mouse Driver System Call 11
Input : AX = 11 System Call 11

CX <-- horizontal count
DX <-- vertical count

*)

TYPE
Event (Motion,

LeftDown,
LeftUp,
RightDown, (*
RightUp, (*
MiddleDown, (*
MiddleUp (*

) ;

EventSet = SET OF Event;

EventHandler
PROCEDURE (EventSet,

ButtonSet,
INTEGER,
INTEGER

) ;

not available on some mice *)
not available on some mice *)
not available on some mice *)

not available on some mice *)

(* condition mask *)
(* button state *)
(* horizontal cursor pos *)
(* vertical cursor pos *)

305

Libraries

Chapter 9

PROCEDURE SetEventHandler(mask : EventSet;
handler: EventHandler);

(* Microsoft Mouse Driver System Call 12

*)

Input : AX = 12 System Call 12
CX <-- call mask
ES:DX <-- address of handler routine

Establish conditions and handler for mouse events.
After this, when an event occurs that is in the mask,
the handler is called with the event set that actually happened,
the current button status, and the cursor x and y.

PROCEDURE LightPenOn;
(* Microsoft Mouse Driver System Call 13

Input : AX = 13 System Call 13
*)

PROCEDURE LightPenOff;
(* Microsoft Mouse Driver System Call 14

Input : AX = 14 System Call 14
*)

PROCEDURE setMickeysPerPixel(horPix, verPix: CARDINAL);
(* Microsoft Mouse Driver System Call 15

*)

Input : AX = 15 System Call 15
CX <-- horizontal mickey/pixel ratio
DX <-- vertical mickey/pixel ratio

PROCEDURE ConditionalOff(left, top,
right, bottom: INTEGER);

(* Microsoft Mouse Driver System Call 16

*)

Input : AX = 16 System Call 16
CX <-- left
DX <-- top
SI <-- right
DI <-- bottom

PROCEDURE SetSpeedThreshold(threshold: CARDINAL);
(* Microsoft Mouse Driver System Call 19

Input : AX = 19 System Call 19
DX <-- treshold in mickeys/second

*)

END Mouse.

306

Mouse

NumberConversion

NumberConversion

DEFINITION MODULE NumberConversion;
(*

Conversion between numbers and strings

Conventions for the routines that convert a string to a number:

- Leading blanks are skipped.
- A plus sign ('+') preceeding the number is always accepted,

Libraries

a minus sign ('-') is only accepted when converting to INTEGER or LONGINT.
- Blanks between the plus or minus sign and the number are skipped.
- The last character in the string must belong to the number to be converted.

No trailing blanks or other trailing charatcers are allowed.
- 'done' returns TRUE if the conversion is successful.

Conventions for the routines that convert a number to
a string:

- If the string is too small, the number is truncated.
- If less than 'width' digits are needed to represent the number,

leading blanks are added.
*)

EXPORT QUALIFIED
MaxBase, BASE,
StringToCard, StringToInt, StringToLongInt, StringToNum,
CardToString, IntToString, LongIntToString, NumToString;

CONST MaxBase = 16;

TYPE BASE = [2 •• MaxBase);

PROCEDURE StringToCard(str ARRAY OF CHAR;
CARDINAL;
BOOLEAN) ;

(*

*)

VAR num
VAR done

- Convert a string to a CARDINAL number.

in:

out:

str

num
done

string to convert

converted number
TRUE if successful conversion,
FALSE if number out of range,
or contents of string non numeric.

307

Chapter 9

PROCEDURE StringToInt(str ARRAY OF CHAR;
INTEGER;
BOOLEAN};

(*

*)

VAR num
VAR done

- Convert a string to an INTEGER number.

in:

out:

str

num
done

string to convert

converted number
TRUE if successful conversion,
FALSE if number out of range,
or contents of string non numeric.

PROCEDURE StringToLongInt(str ARRAY OF CHP.R;
LONGINT;
BOOLEAN} ;

(*

*)

VAR num
VAR done

- Convert a string to a LONGINT number.

in:

out:

str

num
done

string to convert

converted number
TRUE if successful conversion,
FALSE if number out of range,
or contents of string non numeric.

PROCEDURE StringToNum(str ARRAY OF CHAR;
BASE;
CARDINAL;
BOOLEAN} ;

(*

base
VAR num
VAR done

- Convert a string to a CARDINAL number.

in: str string to convert

NumberConversion

base the base of the number represented in the string

out: num
done

*)

converted number
TRUE if successful conversion,
FALSE if number out of range,
or contents of string not within base.

PROCEDURE CardToString(num
VAR str
width

CARDINAL;
ARRAY OF CHAR;
CARDINAL} ;

(*
- Convert a CARDINAL number to a string.

in: num number to convert
width width of the returned string

out: str returned string representation of the number
*)

308

NumberConversion

PROCEDURE IntToString(num
VAR str
width

INTEGER;
ARRAY OF CHAR;
CARDINAL) ;

(*
- Convert an INTEGER number to a string.

in: num number to convert
width width of the returned string

out: str returned string representation of the number
*)

PROCEDURE LongIntToString(num
VAR str
width

LONGINT;
ARRAY OF CHAR;
CARDINAL) ;

(*
- Convert a LONGINT number to a string.

in: num number to convert
width width of the returned string

out: str returned string representation of the number
*)

PROCEDURE NumToString(num
base
VAR str
width

CARDINAL;
BASE;
ARRAY OF CHAR;
CARDINAL) ;

(*

*)

- Convert a number to the string representation in the specified base.

in:

out:

num
base
width

str

number to convert
the base of conversion
width of the returned string

returned string representation of the number

END NumberConversion.

309

Libraries

Chapter 9

DEFINITION MODULE Options;
(*

Options

Read a file specification, with options, from the terminal

Options

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
NameParts, NamePartSet, Termination,
FileNameAndOptions, GetOption;

TYPE
Termination
NameParts
NamePartSet

(norm, empty, can, esc);
(NameDrive, NamePath, NameName, NameExt);
SET OF NameParts;

PROCEDURE FileNameAndOptions(default ARRAY OF CHAR;
ARRAY OF CHAR;
Termination;
BOOLEAN;
NamePartSet};

(*

*)

VAR name
VAR term
accept Option
VAR readInName

- Read file name and options from terminal.

in: default the file specification to use if one is not entered,
acceptOption if TRUE, allow options to be entered,

out: name the file specification,
term how the read ended,
readInName which parts of specification are present.

If the current drive is specified in the default name,
and if no drive is entered, then the actual name of the current drive
is returned with the name read.

The variable 'term' indicates the status of the input termination:
norm normally terminated
empty normally terminated, but name is empty
can <can> is typed, input line cancelled
esc <esc> is typed, no file specified

Input is terminated by a <cr>, blank, <can>, or <esc>.
<bs> and are allowed while entering the file name.

310

Options

PROCEDURE GetOption(VAR optStr: ARRAY OF CHAR;
VAR length: CARDINAL);

(*
- Get another option from the last call to FileNameAndOptions.

out: optStr
length

text of the option,
length of optStr.

Libraries

Calls to GetOption return the options from the last call to FileNameAndOptions,
in the order they were entered. When there are no more options,
a length of 0 is returned.

*)

END Options.

311

Chapter 9

Overlay

DEFINITION MODULE Overlay;

FROM SYSTEM IMPORT ADDRESS;
FROM RTSMain IMPORT Status, OverlayPtr, OverlayDescriptor;

EXPORT QUALIFIED
ErrorCode,
OverlayId, InstallOverlay, DeInstallOverlay, CallOverlay, GetErrorCode,
LayerId i NewLayer, DisposeLayer, InstallOverlayInLayer,
CallOverlayInLayer;

TYPE
ErrorCode

(Done, NotDone, FileNotFound, BadFormat, I nsufMemory , VersionConflict);

PROCEDURE GetErrorCode (error: ErrorCode; VAR str : ARRAY OF CHAR);

PROCEDURE CallOverlay

(*

fileName
VAR done
VAR status

ARRAY OF CHAR;
ErrorCode
Stat us) ;

Loads and executes the overlay defined by filename. Upon termination,

Overlay

the overlay is unloaded from memory. The filename must be a complete DOS name.
IF there is no path given in the filename, the loader will search
in the directory from which carne the base of the application,
else it search only the given directory.

*)

TYPE
OverlayId = OverlayPtr;

(* defines a handle to a resident overlay *)

PROCEDURE InstallOverlay (fileName ARRAY OF CHAR;
ErrorCode

(*

*)

VAR done
VAR status Status): OverlayId;

Loads and executes a resident overlay. Upon termination, the resident overlay
is logically linked to the overlay which has loaded it.
The handle returned can be used to explicitly unload the resident overlay.

312

Overlay

PROCEDURE DeInstallOverlay overlayId : OverlayId):
(* explicitly unloads the resident overlay defined by its handle *)

(*
The following procedures perform the same task as the previous one.
The only difference is the use of a parameter 'layer'. A layer is
a piece of memory, reserved from DOS through the call to NewLayer, that

Libraries

one or many overlays can share. Giving the handle returned by Newlayer as
parameter to these routines forces the loader to use the space left in this layer.

Note : for each overlay, the loader knows in which layer it is loaded.
So there is no need to tell the loader in which layer a resident overlay
is loaded. That is why there is only one procedure DeInstallOverlay.

*)

TYPE
LayerId;

PROCEDURE NewLayer (VAR layer : LayerId; size : CARDINAL; VAR done
(* ask DOS for memory. size is given in paragraphs *)

PROCEDURE DisposeLayer (layer: LayerId);
(* give back the reservewd memory to DOS *)

PROCEDURE CallOverlayInLayer
(fileName

layer
VAR done
VAR status

PROCEDURE InstallOverlayInLayer

END Overlay.

(fileName
layer

VAR done
VAR status

ARRAY OF CHAR;
LayerId
ErrorCode
Status) ;

ARRAY OF CHAR;
LayerId
ErrorCode
Status): OverlayId;

313

BOOLEAN) :

Chapter 9

Processes

DEFINITION MODULE Processes;
(*

(pseudo-) concurrent programming with SEND/WAIT

From the book 'Programming in Modula-2' by Prof. N. Wirth.
*)

EXPORT QUALIFIED
SIGNAL, SEND, WAIT,
StartProcess, Awaited, Init;

TYPE
SIGNAL;
(*

*)

- SIGNAL's are the means of synchronization between processes.
Any variable of type SIGNAL must be initialized explizitly
by means of procedure 'Init' before using it
with any other procedure of this module.

PROCEDURE StartProcess (P: PROC; n: CARDINAL);
(*

- Start up a new process.

in: P
n

top-level procedure that will execute in this process.
number of bytes of workspace to be allocated to it.

Allocates (from Storage) a workspace of n bytes, and creates
a process executing procedure P in that workspace.
Control is given to the new process.

Processes

Caution The caller must ensure that the workspace size issufficient for P.

Errors StartProcess may fail due to insufficient memory.
*)

PROCEDURE SEND (VAR s: SIGNAL);
(*

*)

- Send a signal

in: s the signal to be sent.

out: s the signal with one less process waiting for it.

If no process is waiting for s, SEND has precisely no effect.
Otherwise, some process which is waiting for s is given control
and allowed to continue from WAIT.

314

Processes

PROCEDURE WAIT (VAR s: SIGNAL);
(*

- wait for some other process to send a signal.

in: s the signal to wait for.

The current process waits for the signal s. At some later time,

Libraries

a SEND(s) by some other process can cause this process to return from WAIT.

Errors: If all other processes are waiting, WAIT terminates the program.
*)

PROCEDURE Awaited (s:SIGNAL): BOOLEAN;
(*

*)

- Test whether any process is waiting for a signal.

in: s
out:

the signal of interest.
TRUE if and only if at least one process is waiting for s.

PROCEDURE Init (VAR s: SIGNAL);
(*

- Initialize a SIGNAL object.

in: s

out: s

the signal to be initialized

the initialized signal (ready to be used
with one of the procedures declared above)

An object of type SIGNAL must be initialized with this procedure
before it can be used with any of the other operations.
After initilization of s, Awaited(s) is FALSE.

END Processes.

315

Chapter 9 Random

Random

DEFINITION MODULE Random;

(* Random numbers generator.
Algorithm : Based on the additive congruential method

(Knuth, The art of computer programming, Vol.2, pp 26-27)
*)

PROCEDURE Randomize;
(* Initializes the random number generator.

The random number sequence following a call to Randomize cannot be reproduced.
A call to Randomize is done automatically at the initialization
of this module.

*)

PROCEDURE RandomInit (seed: CARDINAL);
(* Initializes the random number generator.

*)

The 'seed' parameter is used to generate the first number of the
sequence. Thus, following a call to RandomInit with a given seed,
the random number sequence will always be the same, regardless of
any previous call to Randomize, RandomCard, etc •.•

Note: RandomCard, RandomInt, RandomReal are based on the same
generator, so in order to get the same sequence, these functions
must be called in the same order.

PROCEDURE RandomCard (bound : CARDINAL) : CARDINAL;
(* Returns a random cardinal in the range (0 <= r < bound)

if bound is greater than 0, or in the range (0 <= r <= MaxCard) if bound O.
*)

PROCEDURE RandomInt (bound : INTEGER): INTEGER;
(* Returns a random integer in the range (0 <= r < bound)

if bound is greater than 0, or in the range (0 <= r <= MaxInt) if bound O.
*)

PROCEDURE RandomReal (): REAL;
(* Returns a random real uniformly distributed the range (0.0 <= r < 1.0) with

15-16 decimal digits (IEEE double precision floating point numbers standard)
*)

END Random.

316

RealCoDversioDs

RealCoDversioDs

DEFINITION MODULE RealConversions;
(*

Conversion Module for floating numbers
*)

EXPORT QUALIFIED
RealToString, StringToReal:

PROCEDURE RealToString (r

(*

digits, width
VAR str
VAR okay

REAL;
INTEGER;
ARRAY OF CHAR;
BOOLEAN) ;

Libraries

- Convert a REAL to right-justified fixed point or exponent representation

*)

in:

out:

r
digits
width

str
okay

real number to be represented,
number of digits to the right of the decimal point,
maximum width of representation,

string result,
TRUE if the conversion is done properly, FALSE otherwise.

If 'digits' < 0 then exponent notation is used,
otherwise fixed point notation is used.
Note that a leading '-' is generated if r < 0, but never a '+'.

If the representation of 'r' uses fewer than 'width' digits,
blanks are added on the left. If the representation will not fit in 'width'
then 'str' is returned empty and 'okay' is set to FALSE.

The minimum required 'width' is:

- if 'digits' < 0: width >= ABS(digits) + 8

- if 'digits' >= 0: width >= ABS(digits) + 2 + before,
where 'before' is the number of digits
before the decimal point of 'r' in fixed point notation
(e.g. r = 123.456 --> before = 3, r = 0.012 --> before = 1)

317

Chapter 9 Real Conversions

PROCEDURE StringToReal (str ARRAY OF CHAR;
REAL;

(*

*)

VAR r
VAR okay BOOLEAN) ;

- Convert ARRAY OF CHAR to REAL representation.

in: str string to be represented,

out: r
okay

REAL result,
TRUE if the conversion is done properly,
FALSE otherwise.

Leading blanks are skipped, control code characters and space are considered
as legal terminators. The syntax for a legal real representation in 'str' is:

realnumber
fixedpointnumber
exponent
sign
digit

fixedpointnumber [exponent].
[sign] {digit} ['.' {digit}].
('e' I 'E') [sign] digit {digit}.

'+' I '-'.
'0' 1'1' 1'2'1'3'1'4'1'5' 1'6' 1'7' 1'8' 1'9'.

The following numbers are legal representations of one hundred:
100, 10E1, 100EO, 1000E-1, E2, +E2, 1E2, +1E2, +1E+2, 1E+2 •

At most 15 digits are significant, leading zeros not counting.
The range of representable real numbers is: 1.0E-307 <= ABS(r) < 1.0E308

END RealConversions.

318

ReallnOut

DEFINITION MODULE RealInOut;
(*

RealInOut

Terminal input/output of REAL values

The implementation of this module uses the procedures 'ReadString'

Libraries

and 'WriteString' of module 'InOut' for reading and writing of REAL values.
Therefore, redirection of i/o through 'InOut' applies, too.

From the book 'Programming in Modula-2' by Prof. N. Wirth.
*)

EXPORT QUALIFIED
ReadReal, WriteReal, WriteRealOct, Done;

VAR Done: BOOLEAN;

PROCEDURE ReadReal (VAR x: REAL);
(*

*}

- Read a REAL from the terminal.

out: x the number read.

The range of representable valid real numbers is:
1.0E-307 <= ABS(r) < 1.0E308

The syntax accepted for input is:

realnumber
fixedpointnumber
exponent
sign
digit

fixedpointnumber [exponent].
[sign] {digit} ['.' {digit}].
('e' I 'E') [sign] digit {digit}.

, +' I ' -' •
'0' 1'1' 1'2' 1'3' 1'4' 1'5' 1'6' 1'7' 1'8' 1'9'.

The following numbers are legal representations of one hundred:
100, 10E1, 100EO, 1000E-1, E2, +E2, 1E2, +lE2, +lE+2, 1E+2 •

At most 15 digits are significant, leading zeros not counting.
Input terminates a control character or space.
DEL or BS is used for backspacing

The variable 'Done' indicates whether a valid number was read.

PROCEDURE WriteReal (x: REAL; n: CARDINAL);
(*

*)

- Write a REAL to the terminal, right-justified.

in: x
n

number to write,
minimum field width.

If fewer than n characters are needed to represent x, leading blanks are output.
At least 10 characters are needed to write any REAL number.

319

Chapter 9

PROCEDURE WriteRealOct (x: REAL);
(*

Write a REAL to terminal, as four words in octal form

in: x number to write,
*)

END RealInOut.

320

RealInOut

RS232Code

DEFINITION MODULE RS232Code;
(*

RS232Code

High-speed interrupt-driven input/output via the
RS-232 asynchronous serial port

This module provides interrupt-driven I/O via the serial port, but the
Interrupt Service Routine is implemented using in-line code
(as opposed to IOTRANSFER). Charcters received are stored in
a buffer of lOOH characters.

This approach is NOT portable to other Modula-2 implementations,
but it allows for treatment of interrupts with a high frequency.

Libraries

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
Init, StartReading, StopReading,
BusyRead, Read, Write;

PROCEDURE Init (baudRate
stopBits
parityBit
evenParity
nbrOfBits
VAR result

CARDINAL;
CARDINAL;
BOOLEAN;
BOOLEAN;
CARDINAL;
BOOLEAN);

(*

*)

- Initialize the serial port.

in:

out:

baudRate
stopBits
parityBit
evenp'ari ty
nbrOfBits

result

transmission speed,
number of stop bits (usually 1 or 2),
if TRUE, parity is used, otherwise not,
if parity is used, this indicates even/odd,
number of data bits (usually 7 or 8),

TRUE if the initialization was completed.

The legal values for the parameters depend on the implementation
(e.g. the range of supported baud rates) •

PROCEDURE StartReading;
(*

- Allow characters to be received from the serial port.

This procedure initializes the communication controller to generate interrupts
upon reception of a character. It also unmasks the corresponding interrupt level in
the interrupt controller.
*)

321

Chapter 9

PROCEDURE StopReading;
(*

- Disable receiving from the serial port.

A call to this procedure disables the communication controller

RS232Code

from generating interrupts. In addition it terminates the coroutine which
listens to the line. The old interrupt vector as well as the old state
of the interrupt controller (mask) is restored.

*)

PROCEDURE BusyRead (VAR ch CHAR;
BOOLEAN) ;

(*

*)

VAR received

- Read a character from serial port, if one has been received.

out: ch
received

the character received, if any,
TRUE if a character was received.

If no character has been received, then ch = DC, and received

PROCEDURE Read (VAR ch: CHAR);
(*

- Read a character from the serial port.

out: ch the character received.

As opposed to BusyRead, Read waits for a character to arrive.
*)

PROCEDURE Write (ch: CHAR);
(*

- Write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.
*)

END RS232Code.

322

FALSE.

RS232Int

DEFINITION MODULE RS232Int;
{*

RS232Int

Interrupt-driven input/output via the RS-232
asynchronous serial port

Interrupts are treated with the standard procedure IOTRANSFER.
Charcters received are stored in a buffer of 400H characters.

This module initializes the serial port as follows:
baudRate 1200,
stopBits 1,
parityBit FALSE,
evenParity don't care,

nbrOfBits 8

Libraries

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*}

EXPORT QUALIFIED
Init, StartReading, StopReading,
BusyRead, Read, Write;

PROCEDURE Init {baudRate CARDINAL;

{*

*}

stopBits CARDINAL;
parityBit BOOLEAN:
evenParity BOOLEAN;
nbrOfBits CARDINAL;
VAR result BOOLEAN};

- Initialize the serial port.

in: baudRate
stopBits
parityBit
evenParity
nbrOfBits

out: result

transmission speed,
number of stop bits {usually 1 or 2},
if TRUE, parity is used, otherwise not,
if parity is used, this indicates even/odd,
number of data bits {usually 7 or 8},

TRUE if the initialization was completed.

The legal values for the parameters depend on the implementation
{e.g. the range of supported baud rates}.

PROCEDURE StartReading:
{*

*}

- Allow characters to be received from the serial port.

This procedure initializes the communication controller to generate interrupts
upon reception of a character. It also unmasks the corresponding
interrupt level in the interrupt controller.

323

Chapter 9

PROCEDURE StopReading;
(*

- Disable receiving from the serial port.

A call to this procedure disables the communication controller
from generating interrupts. In addition it terminates the coroutine

RS232Int

which listens to the line. The old interrupt vector as well as the old state of
the interrupt controller (mask} is restored.

*}

PROCEDURE BusyRead (VAR ch: CHAR; VAR received: BOOLEAN};
(*

*}

- Read a character from serial port, if one has been received.

out: ch
received

the character received, if any,
TRUE if a character was received.

If no character has been received, then ch = OC, and received

PROCEDURE Read (VAR ch: CHAR};
(*

- Read a character from the serial port.

out: ch the character received.

As opposed to BusyRead, Read waits for a character to arrive.
*}

PROCEDURE Write (ch: CHAR};
(*

- Write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.
*}

END RS232Int.

324

FALSE.

RS232PoIling

DEFINITION MODULE RS232Polling;
(*

RS232PolIing

Polled input/output via the RS-232 asynchronous serial port

Libraries

Since this module does not use interrupts, it is the responsibility of the
programmer to poll (by calling 'Read' or 'BusyRead') frequently enough to ensure
that no characters are lost.

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
Init, BusyRead, Read, Write;

PROCEDURE Init (baudRate
stopBits
parityBit
evenParity
nbrOfBits
VAR result

CARDINAL;
CARDINAL;
BOOLEAN;
BOOLEAN;
CARDINAL;
BOOLEAN);

(*

*)

- Initialize the serial port.

in:

out:

baudRate
stopBits
parityBit
evenParity
nbrOfBits

result

transmission speed,
number of stop bits (usually 1 or 2),
if TRUE, parity is used, otherwise not,
if parity is used, this indicates even/odd,
number of data bits (usually 7 or 8),

TRUE if the initialization was completed.

The legal values for the parameters depend on the implementation
(e.g. the range of supported baud rates).

PROCEDURE BusyRead (VAR ch: CHAR; VAR received: BOOLEAN);
(*

*)

- Read a character from serial port, if one has been received.

out: ch
received

the character received, if any,
TRUE if a character was received.

If no character has been received, then ch = OC, and received

PROCEDURE Read (VAR ch: CHAR);
(*

- Read a character from the serial port.

out: ch the character received.

As opposed to BusyRead, Read waits for a character to arrive.
*)

325

FALSE.

Chapter 9

PROCEDURE Write (ch: CHAR):
(*

- Write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.
*)

END RS232Polling.

326

RS232Polling

RTSCoroutine

DEFINITION MODULE RTSCoroutine;

FROM SYSTEM IMPORT PROCESS;

EXPORT QUALIFIED addProcess;

VAR

RTSCoroutine

addProcess : PROCEDURE (PROCESS);

END RTSCoroutine.

327

Libraries

Chapter 9

RTSDevice

DEFINITION MODULE RTSDevice;

FROM SYSTEM IMPORT ADDRESS, PROCESS;

EXPORT QUALIFIED
GetDeviceStatus, SetDeviceStatus,
GetPrioMask, setPrioMask,
SaveInterruptVector, RestoreInterruptVector,
InstallHandler, UninstallHandler;

PROCEDURE GetDeviceStatus(deviceNr
VAR enabled

(*

CARDINAL;
BOOLEAN) ;

- Return the status of a device in the device mask

RTSDevice

in: deviceNr number of the device to be checked bitnumber (0 .. 7) of bit
for device in interrupt controller 8259 mask

*)

out: enabled TRUE if interrupts from the device are enabled,
FALSE otherwise

PROCEDURE SetDeviceStatus(deviceNr
enable

CARDINAL;
BOOLEAN) ;

(*

*)

- Set the status of a device in the device mask

in: deviceNr number of the device to enable or disable bitnumber (0 •. 7)
of bit for device in interrupt controller 8259 mask

enable if TRUE, enable interrupts from the device,
otherwise disable them

The mask register of the interrupt controller will be updated according to the
current priority and the new device mask.

PROCEDURE GetPrioMask(priorityLevel: CARDINAL): BITSET;
(*

- Gets the mask used for the priorityLevel (only low byte significant)
*)

PROCEDURE SetPrioMask(priorityLevel: CARDINAL; mask: BITSET);
(*

- Sets the used for the priorityLevel (only low byte used)
*)

PROCEDURE SaveInterruptVector(vectorNr: CARDINAL;
VAR vector: ADDRESS);

(*
- Save the current value of an interrupt vector

in: vectorNr interrupt vector number

out: vector value of current interrupt vector
*)

328

RTSDevice Libraries

PROCEDURE RestoreInterruptVector (vectorNr
vector

CARDINAL;
ADDRESS) ;

(*

*)

- Restore the value of an interrupt vector

in: vectorNr
vector

interrupt vector number
value to restore (previously saved with 'SaveInterruptVector')

PROCEDURE InstallHandler(process
vectorNr

PROCESS;
CARDINAL) ;

(*

*)

- Install an interrupt handler permanently

in: process
vectorNr

process associated with the interrupt handler
interrupt vector number

The process is associated permanently to the given interrupt vector number.
This improves the performance of IOTRANSFER and of the implicit coroutine
transfer that takes place when the interrupt occurs. A process may be
associated to at most one interrupt, and at most one process may be associated
to the same interrupt.

'InstallHandler' must only be called after the process has been created
(by means of NEWPROCESS) and before the process has called IOTRANSFER.
For instance, it may be called right at the beginning of the code of the
process. Except for the call to 'InstallHandler', the code of a permanently
installed interrupt handler is identical to the code of a regular interrupt
handler.

PROCEDURE UninstallHandler(process: PROCESS);
(*

*)

- Uninstall an interrupt handler which has been installed permanently

in: process process associated with the interrupt handler

In general, there is no need to call this procedure. The LOGITECH MODULA-2 run­
time support automatically uninstalls interrupt handlers upon termination
of a (sub-) program.

END RTSDevice.

329

Chapter 9 RTSlntPROC

RTSlntPROC

DEFINITION MODULE RTSIntPROC;

(*

*)

constraints and Limitations:

NOTE : Each interrupt PROC must be removed before a new one
is installed within the save vector !!

The interrupt PROC must not be in a priority module !!
nor call a priority module procedure.

The PROC is executed interrupt off, so it must be as short as possible.

IMPLEMENTATION :

All registers are saved; thus the Modula-2 code can be executed without
taking care of this.
The End of Interrupt is also sent to the Interrupt Controller before the
entry of the Modula-2 interrupt procedure.

Sets a PROC as interrupt service routine, all registers are preserved except the
stack, that remains the stack of the interrupted process.

NOTE: this interrupt PROC MUST BE as short as possible, and use as little stack
as possible. So will it be fast and reliable.

PROCEDURE SetIntPROC(p: PROC; vector: CARDINAL);

(*

*)

Removes the interrupt PROC previously installed and restores the old value of the
interrupt vector.

PROCEDURE RemoveIntPROC(vector: CARDINAL);

(*
Removes all interrupt PROC installed prevously

*)

PROCEDURE FreeIntPROC;

END RTSIntpROC.

330

RTSM87

DEFINITION MODULE RTSM87;

EXPORT QUALIFIED co87Present;

VAR
co87Present : BOOLEAN;

END RTSM87.

Libraries

RTSM87

331

Chapter 9

RTSMain

(*$A+*)

DEFINITION MODULE RTSMain;

FROM SYSTEM IMPORT ADDRESS, BYTE, PROCESS;

EXPORT QUALIFIED
Status, GetMessage,
ProcPtr, ProcDescriptor, freeList,
OverlayKey, OverlayName, Overlayptr, OverlayDescriptor, overlayList,
RegisterBlock, ProcessDescriptor, ProcedureKindj ActivationBlock,
PSPAddress, blockList,
Process, ProcessPtr, curProcess, activProcess, errorCode,

RTSMain

Terminate, InstallTermProc, CallTermProc, InstallInitProc, CallInitProc,
RTDProc, DebuggerRecord, debuggerRecord, Execute,
overlayInitProc, overlayTermProc;

(* Type definition above shall imperatively correspond to the structures *)
(* defined in RTS.INC *)

CONST
CheckValue = OFA50H;

(* ***** Errors ***** *)

TYPE

TYPE

VAR

Status

Process
ProcessPtr

Normal, Warning, Stopped, Fatal,
Halt, CaseErr, StackOvf, HeapOvf,
FunctionErr, AdressOverflow, RealOverflow, RealUnderflow,
BadOperand, CardinalOverflow, IntegerOverflow, RangeErr,
DivideByZero, CoroutineEnd, CorruptedData, FileStructureErr,
IllegalInstr, IllErrorCode, TooManyInterrupts, TermListFull,
InitListFull, NoCoprocessor87);

POINTER TO ProcessDescriptor;
POINTER TO Process;

curProcess
activProcess

ProcessPtr;
Process;

(* always points to activProcess *)
(* points to the ProcessDescriptor *)
(* of the active PROCESS *)

(* ***** Internal informations ***** *)

VAR
PSPAddress
blockList

ADDRESS;
ADDRESS;

PROCEDURE GetMessage(status: Status; VAR message: ARRAY OF CHAR);

(* ***** Termination procedures ***** *)

332

RTSMain

TYPE
ProcPtr
ProcDescriptor

VAR

POINTER TO ProcDescriptor;
RECORD

next
termProc

END;

ProcPtr;
PROC;

freeList: ProcPtr;

PROCEDURE InstallTermProc(p PROC);

PROCEDURE CallTermProc;

PROCEDURE InstallInitProc(p PROC);

PROCEDURE CallInitProc;

(* ***** Overlays and drivers ***** *)

TYPE
OverlayName
OverlayKey

OverlayPtr
OverlayDescriptor

ARRAY [0 .• 39] OF CHAR;
ARRAY [0 .. 2] OF CARDINAL;

POINTER TO overlayDescriptor;
RECORD

overlayKey
overlayName

checkWord

memoryAddr
memorySize
codeSegment

OverlayKey;
OverlayName;

CARDINAL;

ADDRESS;
CARDINAL; (* in paragraphs *)
CARDINAL;

programLevel: CARDINAL;
termProc ProcPtr;
initProc ProcPtr;
freeList

next
prev

ProcPtr;

Overlayptr;

CASE overlay : CARDINAL OF

Libraries

o notUsed ARRAY [0 •• 14] OF CARDINAL;
I 1,2 loaderProcess: Process;

priorityMask CARDINAL;

SP, SS, BP CARDINAL;
overlayStatus: Status;

END;

father
parent
processList
resource

layer ADDRESS;

Overlayptr;
Process;
ADDRESS;

dummy ARRAY [1 .• 7] OF ADDRESS;
END(* OverlayDescriptor*);

333

Chapter 9

VAR
overlayList : Overlayptr;

(* ***** Overlay Interface procedures ***** *)

VAR
overlayInitProc
overlayTermProc

PROC;
PROC;

(* ***** Process descriptor ***** *)

TYPE
RegisterBlock

ProcedureKind
ActivationBlock

ProcessDescriptor

RECORD
ES CARDINAL;
DS CARDINAL;
DI CARDINAL;
SI CARDINAL;
BP CARDINAL;
dummy CARDINAL;
BX CARDINAL;
DX CARDINAL;
CX CARDINAL;
AX CARDINAL;
IP CARDINAL;
CS CARDINAL;
flag CARDINAL;

END;

(FarProcedure, NearProcedure, NestedProcedure);
RECORD

dynamicLink: ADDRESS;
IP CARDINAL;

CASE ProcedureKind OF
NearProcedure:
FarProcedure:

CS: CARDINAL;
NestedProcedure:

staticLink: ADDRESS
END;

END;

RECORD
POINTER TO RegisterBlock;

RTSMain

topStack
progStatus
priorityMask
programLevel
heapDesc
unused
checkWord

Status; (* alignement mandatory *)
BITSET;

bot tomSta ck
currOverlay
interruptDesc
processList
dummy

END;

(* ***** Debugger interface ***** *)

CARDINAL;
ADDRESS;
ADDRESS;
CARDINAL;
CARDINAL; (* still used ??? *)
OverlayPtr;
CARDINAL;
Process;
ARRAY [1 •• 3] OF ADDRESS;

334

RTSMain Libraries

TYPE
RTDProc PROCEDURE(PROCESS, ADDRESS);

(* active process and overlay list *)

DebuggerRecord RECORD
(* The debugger ID is initialized with the CheckValue *)
(* The RTD initialize it to 0 *)
debuggerId CARDINAL;
beforeInitCode RTDProc;

VAR

beforeMainCode
beforeTermProc
beforeExit

END;

debuggerRecord : DebuggerRecord;

(* ***** Program termination ***** *)

VAR
errorCode : BYTE;

PROCEDURE Terminate (st Status);

PROCEDURE Execute;

RTDProc;
RTDProc;
RTDProc;

(* Warning: upon entry, ES:DI is a pointer to the address of the code *)
(* to execute !!! *)

END RTSMain.

/

335

Chapter 9 SimpleTerm

SimpleTerm

DEFINITION MODULE SimpleTerm;

(* All the procedures above use the standard console device from MS-DOS *)
(* and thus can be redirected as DOS allows it *)

EXPORT QUALIFIED
Read, KeyPressed, ReadAgain, ReadString,
Write, WriteString, WriteLn;

PROCEDURE WriteString(s : ARRAY OF CHAR);
(* Displays the string s on DOS standard output *)

PROCEDURE WriteLn;
(* Displays an end of line on DOS standard output *)

PROCEDURE Write (ch: CHAR);
(* Displays the character ch on DOS standard output *)

PROCEDURE Read(VAR ch: CHAR);
(* Reads a character from DOS standard input *)

PROCEDURE KeyPressed(): BOOLEAN;
(* Tests if any character is ready from DOS standard input *)

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);
(* Gets a string from DOS standard input : ESC or RETURN ends the input *)

PROCEDURE ReadAgain;

END SimpleTerm.

336

Sounds

DEFINITION MODULE Sounds;

EXPORT QUALIFIED
Sound, NoSound;

PROCEDURE Sound(hertz: INTEGER);
(*

Sounds

Accesses the PC speaker with the frequency of hertz Hertz.

Libraries

The specified frequency will be emitted until you call the procedure NoSound.
Frequencies between 21 and 32767 Hertz can be produced.

*)

PROCED~RE NoSound;
(*

Turns off the PC speaker.
*)

END Sounds.

337

Chapter 9

DEFINITION MODULE Storage;
(*

Standard dynamic storage management

Storage

Storage

Storage management for dynamic variables. Calls to the Modula-2 standard
procedures NEW and DISPOSE are translated into calls to ALLOCATE and DEALLOCATE.
The standard way to provide these two procedures is to import them from
this module 'Storage'.

*)

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
ALLOCATE, DEALLOCATE, Available,
InstallHeap, RemoveHeap;

PROCEDURE ALLOCATE (VAR a: ADDRESS; size: CARDINAL);
(*

*)

- Allocate some dynamic storage (contiguous memory area) .

in: size number of bytes to allocate,

out: a ADDRESS of allocated storage.

The actual number of bytes allocated may be slightly greater
than 'size', due to administrative overhead.

Errors: If not enough space is available, or when attempting
to allocate more than 65520 (OFFFOH) bytes at once, then the calling program is
terminated with the status 'heapovf'.

PROCEDURE DEALLOCATE (VAR a: ADDRESS; size: CARDINAL);
(*

*)

- Release some dynamic storage (contiguous memory area) .

in:

out:

a
size

a

ADDRESS of the area to release,
number of bytes to be released,

set to NIL.

The storage area released is made available for subsequent calls to ALLOCATE.

PROCEDURE Available (size: CARDINAL) : BOOLEAN;
(*

- Test whether some number of bytes could be allocated.

in: size number of bytes

out: TRUE if ALLOCATE (p, size) would succeed.
*)

338

Storage

PROCEDURE InstallHeap;
(*

- Used internally by the loader
*)

PROCEDURE RemoveHeap;
(*

- Used internally by the loader
*)

END Storage.

Libraries

339

Chapter 9

DEFINITION MODULE Strings;
(*

Strings

Variable-length character strings handler.

Strings

NOTE: For most of these string handling procedures,there is the possibility of the
user not providing a variable large enough to contain the result of a string
operation. Should this possibility arise, truncation may result, as there will be
no other error notification. The implementation of this module does not cause a
range error, instead, it truncates silently.

*)

String variables have the following characteristics:
- They are of type ARRAY OF CHAR.
- The array lower bound must be zero.
- The length of the string is the size of the string variable,

unless a null character (OC) occurs in the string to indicate end of string.

EXPORT QUALIFIED
Assign, Insert, Delete,
Pos, Copy, Concat, Length, CompareStr;

PROCEDURE Assign (VAR source, dest: ARRAY OF CHAR);
(*

- Assign the contents of string variable source into string variable dest

in: source

out: dest
*)

PROCEDURE Insert (substr
VAR str
inx

ARRAY OF CHAR;
ARRAY OF CHAR;
CARDINAL);

(*

*)

- Insert the string substr into str,starting at str[inxl.

in: substr
str
inx

out: str

If inx is equal or greater than Length (str)
then substr is appended to end of dest.

340

Strings

PROCEDURE Delete (VAR str
inx
len

(*

ARRAY OF CHAR;
CARDINAL;
CARDINAL) ;

- Delete len characters from str, starting at str[inx].

in: str
inx
len

out: str

If inx >= Length(str) then nothing happens. If there are

Libraries

not len characters to delete, characters to the end of string are deleted.
*)

PROCEDURE Pos (substr, str: ARRAY OF CHAR): CARDINAL;
(*

- Return the index into str of the first occurrence of the substr.

in: substr
str

Pos returns a value greater then HIGH(str) if no
occurrence of the substring is found
*)

PROCEDURE Copy (str
inx
len
VAR result

(*

ARRAY OF CHAR;
CARDINAL;
CARDINAL;
ARRAY OF CHAR);

- Copy at most len characters from str into result.

in: str source string,
inx starting position in ' str',
len maximum number of characters

out: result copied string
*)

PROCEDURE Concat (sl, s2
VAR result

ARRAY OF CHAR;
ARRAY OF CHAR);

(*
- Concatenate two strings.

in: sl left string,
s2 right string,

to copy,

out: result receives left string followed by right string.
*)

PROCEDURE Length (VAR str: ARRAY OF CHAR): CARDINAL;
(*

- Return the number of characters in a string.

in: str
*)

341

Chapter 9

PROCEDURE CompareStr (sl, s2: ARRAY OF CHAR): INTEGER;
(*

*)

- Compare two strings.

in: sl
s2

Returns an integer value indicating the comparison result:
-1 if sl is less than s2;
o if sl equals s2;
1 if sl is greater than s2

END Strings.

342

Strings

Termbase

DEFINITION MODULE Termbase;
(*

Termbase

Terminal input/output with redirection hooks
[Private module of the MODULA-2/86 system)

Libraries

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
ReadProcedure, StatusProcedure, WriteProcedure,
AssignRead, AssignWrite, UnAssignRead, UnAssignWrite,
Read, KeyPressed, Write;

TYPE
ReadProcedure = PROCEDURE (VAR CHAR) ;
(*

*)

TYPE

- To assign a private read procedure (for redirection of input)
a procedure of type , ReadProcedure' must be provided.
This procedure returns a character from the input device.
It waits until a character hes been entered.

StatusProcedure = PROCEDURE (): BOOLEAN;
(*

*)

- To assign a private status-procedure (for redirection of input)
a procedure of type 'StatusProcedure' must be provided.
This procedure returns TRUE, if a character is available to read,
FALSE otherwise.

TYPE
WriteProcedure
(*

PROCEDURE (CHAR);

*)

- To assign a private write procedure (for redirection of output)
a procedure of type 'WriteProcedure' must be provided. This is typically
used to redirect output to a file or to the screen and a file (log file).
Special interpretation of characters sent to the screen can be performed
in such a private driver procedure.

343

Chapter 9 Termbase

PROCEDURE AssignRead (rp: ReadProcedure;
sp: StatusProcedure;

VAR done: BOOLEAN);
(*

*)

- Install read and status routines for terminal input.

in: rp read-a-character procedure,
sp is-character-available function,

out: done TRUE if the installation was done.

Initially the corresponding procedures of 'Keyboard' are installed.

Subsequent assignments will be valid until the next 'UnAssignRead' is executed
or until the (sub-;program which has installed the procedures terminates. Upon
termination of a program, the read and status procedures allocated by that
program are removed. Read procedures are non-sharable resources
(see module 'Program').

The assignments are implemented in a stack manner. When a read procedure is
removed, the previously valid procedure becomes valid again. Up to six levels
of re-assignment are allowed. Done = FALSE if this depth is exceeded. During
execution of a read or status procedure, this assignments-stack is decremented,
which allows an installed routine to call recursively Terminal.Read and/or
Terminal.KeyPressed to activate the previously installed routine. At the lowest
level however, the stack is not decremented.

PROCEDURE AssignWrite (wp: WriteProcedure;
VAR done: BOOLEAN);

(*
- Install write routine for terminal output.

in: wp character output procedure,

out: done set TRUE if the installation was done.

(See AssignRead above.]
Initially the procedure Display.Write is assigned.

*)

PROCEDURE UnAssignRead (VAR done: BOOLEAN);
(*

- Undo the last AssignRead by the current program.

out: done set TRUE if there was something to unassign.

The previously valid procedures become active again.
*)

PROCEDURE UnAssignWrite (VAR done: BOOLEAN);
(*

- Undo the last Assignwrite by the current program.

out: done set TRUE if there was something to unassign.

The previously valid procedure becomes active again.
*)

344

Termbase

PROCEDURE Read (VAR ch: CHAR);
(*

- Read a character using the current input procedure.

out: ch the character read.

Uses the current read-procedure, as assigned by AssignRead.
*)

PROCEDURE KeyPressed (): BOOLEAN;
(*

- Test if a character is available from the current input.

Uses the current status-procedure, as assigned by AssignRead.
*)

PROCEDURE Write (ch: CHAR);
(*

- Write a character to the current output.

in: ch character to write.

Uses the current write-procedure as assigned by AssignWrite.
*)

END Termbase.

345

Libraries

Chapter 9

DEFINITION MODULE Terminal;
(*

Terminal Input/Output

Terminal

This module uses the read and write procedures from module
TermBase, which allows to redirect the i/o.

Terminal

Derived from the Lilith Modula-2 system developed by the group of Prof. N. Wirth
at ETH Zurich, Switzerland.

*)

EXPORT QUALIFIED
Read, KeyPressed, ReadAgain, Readstring,
Write, Write String, WriteLn;

PROCEDURE Read (VAR ch: CHAR);
(*

- Read a character from the terminal.

out: ch character that was read.

The character is not echoed.
The character ASCII.cr is transformed into ASCII.EOL.

*)

PROCEDURE KeyPressed (): BOOLEAN;
(*

- Test if a character is available to Read from terminal.
*)

PROCEDURE ReadAgain;
(*

- Undo the last read: Make the last character be re-read.
*)

PROCEDURE ReadString(VAR string: ARRAY OF CHAR);
(*

*)

- Read (with echo) a line from the terminal.

out: string receives the text of the line

Characters are accepted (and echoed) from the keyboard until <cr> is entered.
The <cr> is not returned or eChoed. and <bs> can be used for editing.
Tabs may be entered, but are expanded into blanks immediately.
No other control characters may be entered.

346

Terminal

PROCEDURE Write (ch: CHAR);
(*

*)

- Write a character to the terminal.

in: ch character to be written.

If terminal output has not been redirected,
the following interpretations are made:

ASCII.EOL
ASCII.ff
ASCII.del
ASCILbs
ASCII.cr
ASCII.lf

(36C)
(l4C)

(l77C)
(lDC)
(lSC)
(l2C)

go to beginning of next line
clear screen and set cursor home
erase the last character on the left
move 1 character to the left
go to beginning of current line
move 1 line down, same column

PROCEDURE WriteString (string: ARRAY OF CHAR);
(*

- Write a string to the terminal.

in: string string to be written.

Libraries

The string is terminated by its physical length or by a null character (OC).
*)

PROCEDURE WriteLn;
(*

*)

- Write a new-line to the terminal.
[Equivalent to Write (ASCII.EOL»)

END Terminal.

347

Chapter 9

TimeDate

DEFINITION MODULE TimeDate;
(*

Access to the system's date and time
*)

EXPORT QUALIFIED
Time,
SetTime, Get Time,
CompareTime, TimeToZero,
TimeToString;

TYPE
Time = RECORD day, minute, millisec: CARDINAL; END;
(*

*)

- date and time of day

'day' is

'minute'
'millisec'

Bits 0 •• 4 = day of month (1 •• 31),
Bits 5 .• 8 = month of the year (1 •• 12),
Bits 9 •• 15 = year - 1900.
is hour * 60 + minutes.
is second * 1000 + milliseconds,
starting with 0 at every minute.

PROCEDURE GetTime (VAR curTime: Time);
(*

*)

- Return the current date and time.

out: curTime record containing date and time.

On systems which do not keep date or time, , GetTime'
returns a pseudo-random number.

PROCEDURE SetTime (curTime: Time);
(*

- Set the current date and time.

in: curTime record containing date and time.

On systems which do not keep date or time, this call has no effect.
*)

PROCEDURE CompareTime(t1, t2: Time): INTEGER;
(*

*)

- compare two dates and time

in: t1, t2 two time structures to compare
out: return integer value indicating result of comparison

-1 t1 < t2
o t1 t2

+1 t1 > t2

348

TimeDate

TimeDate

PROCEDURE TimeToZero(VAR t: Time);
(*

- initialize time and date to zero

out: t zero time 00-00-00 00:00:00
*)

PROCEDURE TimeToString(t: Time; VAR s: ARRAY OF CHAR);
(*

- convert time into a string

in :
out:

t
s

time structure to be convert to a string
string containing description of date and time given in t.

Libraries

The length of s should be at least 17 characters and the time will be of format:
yy-mm-dd hh:nn:ss

where
yy is year (last 2 digits only)
mm is month (1. .12)
dd is day of month (1. .31)
hh is hours (0 •• 23)
nn is minutes (0 • • 59)
ss is seconds (0 •• 59)

*)

END TimeDate.

349

Chapter 9 TimeDate

Notes:

350

Libraries

9.3 Library Cross Reference

The following procedures with referenced modules are in alphabetical order
first, by procedures whose names begin in upper case - then, by those in lower case.

Procedure Module

ADDRESS SYSTEM

ADR SYSTEM

ALLOCATE Storage

AX SYSTEM

ActivationBlock RTSMain

AddDec Decimals

Again FileSystem

Alloc DynMem

Arc Graphics

Assign Strings

AssignRead Termbase

Assign Write Termbase

Avail DynMem

Available Storage

Awaited Processes

BASE NumberConversion

BP SYSTEM

BX SYSTEM

BYTE SYSTEM

BackgroundColor Graphics

BackgroundPattern Graphics

351

Chapter 9

Procedure Module

Black Graphics

Blue Graphics

Brown Graphics

BusyRead RS232Code

BusyRead RS232Int

BusyRead RS232Polling

Button Mouse

ButtonSet Mouse

CODE SYSTEM

CR LogiFile

CS SYSTEM

CURSORSHAPE Graphics

CURSORSHAPEPOIN Graphics

CX SYSTEM

Call1nitProc RTSMain

CallOverlay Overlay

CallOverlaylnLayer Overlay

CallTermProc RTSMain

CancelRedirection DOS31

CardToString NumberConversion

ChangeDirectory DiskDirect

Circle Graphics

Clear DurationOps

ClearWindow Graphics

ClipDot Graphics

Clip Line Graphics

Close FileSystem

Close LogiFile

Closelnput InOut

CloseOutput InOut

352

Libraries

Procedure Module

ColorTable Graphics

Command FileSystem

CompareDec Decimals

CompareStr Strings

CompareTime TimeD ate

Concat Strings

Conditional Off Mouse

ConvertCardinal Conversions

ConvertHex Conversions

ConvertInteger Conversions

ConvertLonglnt Conversions

ConvertOctal Conversions

Copy Strings

Create FileSystem

Create LogiFile

CreateMedlum FlleSystem

CreateNewFile DOS3

CreateTemporary DOS3

CurrentDirectory DiskDirectory

CurrentDrive DiskDirectory

CursorColor Graphics

CursorShape Graphics

CursorShow Graphics

Cursor Visible Graphics

CursorWrap Graphics

Cyan Graphics

353

Chapter 9

Procedure Module

DEALLOCATE Storage

DECIMAL Decimals

DI SYSTEM

DOSAlloc DOSMemory

DOSAvail DOSMemory

DOSCALL SYSTEM

DOSDeAlloc DOSMemory

DOSGetMaxSize DOSMemory

DOSSetSize DOSMemory

DS SYSTEM

DX SYSTEM

DarkGray Graphics

Date Calendar

DeAlloc DynMem

Delnstan Overlay Overlay

DecCur Decimals

DecDigits Decimals

DecPoint Decimals

DecRepr Decimals

DecSep Decimals

DecState Decimals

DecStatus Decimals

DecToStr Decimals

DecValid Decimals

Delay Delay

Delete Directories

Delete FileSystem

Delete LogiFile

Delete Strings

DeltaDate Calendar

354

Libraries

Procedure Module

Diff DurationOps

DirQuery Directories

DirQueryProc Directories

DirResult Directories

DirectoryProc FileSystem

DisableBreak Break

DiskDirProc DiskFiles

DiskFileProc DiskFiles

D isplayCursor Graphics

DisposeLayer Overlay

DivDec Decimals

Doio FileSystem

Done InOut

Done ReallnOut

DosCommand Exec

DosShell Exec

Dot Graphics

DriverInstalled Mouse

Duration DurationOps

EOF LogiFile

EOL ASCII

EOL InOut

EOL LogiFile

ES SYSTEM

EmptyUnitSet DurationOps

EnableBreak Break

EndFile LogiFile

Equal DurationOps

EraseCursor Graphics

355

Chapter 9

Procedure Module

ErrorCode Overlay

Event Mouse

EventHandler Mouse

EventSet Mouse

Execute Exec

Execute RTSMain

ExitToOS ErrorCode

FNPartSet FileNames

FNParts FileNames

File FileSystem

File LogiFile

FileNameAndOptions Options

FileName Char FileSystem

FileProc FileSystem

FillRect Graphics

Flag FileSystem

FlagReset Mouse

FlagSet FileSystem

Float FloatingUtilities

FloodFill Graphics

ForegroundColor Graphics

Format DurationOp

FormatOf DurationOp

Frac FloatingUtilities

356

Libraries

Procedure Module

GETREG SYSTEM

GetButPres Mouse

GetButRel Mouse

GetCursorPosition Graphics

GetDeviceStatus Devices

GetDeviceStatus RTSDevice

GetDotColor Graphics

GetErrorCode ErrorCode

GetErrorCode Overlay

GetExtendedError DOS3

GetFlleDate LogiFile

GetMachineName DOS31

GetMessage RTSMain

GetOption Options

GetPos FileSystem

GetPos LogiFile

GetPosBut Mouse

GetPrinterSetup DOS31

GetProgramSegmentPrefix DOS3

GetRedirectionListEntry DOS31

GetScreenExt Graphics

GetScreenMode Graphics

GetTime TimeDate

GetWindow Graphics

GraphicCursor Mouse

Greater DurationOps

GreaterOrEqual DurationOps

Green Graphics

Hide Cursor Mouse

357

Chapter 9

Procedure Module

INBYTE SYSTEM

IOTRANSFER SYSTEM

Init Processes

Init RS232Code

lnit RS2321nt

Init RS232Polling

InitDiskSystem DiskFiles

Insert Strings

InstallBreak Break

InstallDynMem DynMem

InstallHandler Devices

InstallHandler RTSDevice

InstallHeap Storage

InstalllnitProc RTSMain

Install Overlay Overlay

InstallOverlayInLayer Overlay

InstallTermProc RTSMain

Int FloatingUtilities

IntToString NumberConversion

KeyPressed Keyboard

KeyPressed SimpleTerm

KeyPressed Termbase

KeyPressed Terminal

LF LogiFile

LayerJd Overlay

Length FileSystem

Length Strings

LightBlue Graphics

LightCyan Graphics

358

Libraries

Procedure Module

LightGray Graphics

LightGreen Graphics

LightMagenta Graphics

LightPenOff Mouse

LightPenOn Mouse

LightRed Graphics

Line Graphics

LockUnlockFileA DOS3

LonglntToString NumberConversion

Lookup FileSystem

LookupFile Lookup

Magenta Graphics

MakeDir DiskDirectory

MaxBase NumberConversion

MediumType FileSystem

ModifyByte LogiFile

ModifyWord LogiFile

MoveCursor Graphics

MulDec Decimals

NEWPROCESS SYSTEM

NUL LogiFile

NamePartSet Options

NameParts Options

NegDec Decimals

NewLayer Overlay

NoSound Sounds

NumToString NumberConversion

359

Chapter 9

Procedure Module

OUTBYTE SYSTEM

Open LogiFile

Openlnput InOut

OpenMode LogiFile

OpenOutput InOut

Overlay Descriptor RTSMain

Overlayld Overlay

OverlayKey RTSMain

OverlayName RTSMain

OverlayPtr RTSMain

PROCESS SYSTEM

PSPAddress RTSMain

Palette Graphics

Pattern Graphics

Pos Strings

ProcDescriptor RTSMain

ProcPtr RTSMain

ProcedureKind RTSMain

Process RTSMaln

ProcessDescriptor RTSMain

ProcessPtr RTSMain

RTDProc RTSMain

Read InOut

Read Keyboard

Read RS232Code

Read RS232Int

Read RS232Polling

Read SimpleTerm

Read Termbase

Read Terminal

360

Libraries

Procedure Module

ReadAgain SimpleTerm

ReadAgain Terminal

ReadByte FileSystem

ReadByte LogiFile

ReadCard InOut

ReadCardinal CardinallO

ReadChar FileSystem

ReadChar LogiFile

ReadFileName FileNames

ReadHex CardinallO

Readlnt InOut

ReadLonglnt LongIO

ReadMotionCount Mouse

ReadNBytes FileSystem

ReadNBytes LogiFile

ReadProcedure Termbase

ReadReal ReallnOut

ReadString InOut

ReadString SimpleTerm

ReadString Terminal

ReadWord FileSystem

ReadWord LogiFile

ReadWrd InOut

RealToString RealConversion

Red Graphics

RedirectDevice DOS31

RegisterBlock RTSMain

Remainder Decimals

RemoveDir DiskDirectory

RemoveHeap Storage

RemoveMedium FileSystem

361

Chapter 9

Procedure Module

Rename Directories

Rename FileSystem

Reset FileSystem

Reset LogiFile

ResetD iskSys D iskD irectory

ResetDrive DiskDirectory

Response FileSystem

RestoreInterrupt Devices

RestoreInterrupt RTSDevice

RestorePicture Graphics

Round FloatingUtilities

Run Exec

SEND Processes

SETREG SYSTEM

SI SYSTEM

SIGNAL Processes

SIZE SYSTEM

SP SYSTEM

SWI SYSTEM

SaveInterruptVector Devices

SaveInterruptVector RTSDevice

SavePicture Graphics

ScreenMode Graphics

SelectDrive D iskD irectory

SetCursorPos Mouse

SetDeviceStatus Devices

SetDeviceStatus RTSDevice

SetErrorCode ErrorCode

SetEventHandler Mouse

SetGraphicCursor Mouse

SetHorizontalLimits Mouse

362

Libraries

Procedure Module

SetMickeysPer Pixel Mouse

SetModify FileSystem

SetOpen FileSystem

SetPos FileSystem

SetPos LogiFile

SetPrinterSetup DOS31

SetRead FileSystem

SetSpeedThreshold Mouse

SetTextCursor Mouse

SetTime TimeDate

Set VerticalLimit Mouse

SetWrite FileSystem

ShowCursor Mouse

Sound Sounds

StartProcess Processes

StartReading RS232Code

StartReading RS232Int

Status RTSMain

StatusProcedure Termbase

StopReading RS232Code

StopReading RS232Int

StrToDec Decimals

StringToCard NumberConv

StringTolnt NumberConv

StringToLonglnt NumberConv

StringToNum NumberConv

StringToReal RealConversions

SubDec Decimals

Sum DurationOps

363

Chapter 9

Procedure Module

TRANSFER SYSTEM

TSlZE SYSTEM

Terminate RTSMain

Termination Options

Text Graphics

Time TimeDate

TimeToDate Calendar

TimeToString TimeDate

TimeToZero TimeDate

Trunc FloatingUtilities

UnAssignRead Termbase

Un Assign Write Termbase

UnlnstallBreak Break

UninstallHandle Devices

U ninstallHandle RTSDevice

Unit Duration Ops

UnitSet DurationOps

WAIT Processes

WORD SYSTEM

White Graphics

Window Graphics

Write Display

Write InOut

Write RS232Code

Write RS232lnt

Write RS232Polling

Write SimpleTerm

Write Termbase

Write Terminal

364

Libraries

Procedure Module

WrlteByte FileSystem

WriteByte LogiFile

WrlteCard InOut

WriteCardinal CardinallO

WrlteChar FileSystem

WriteChar LogiFile

WrlteHex CardinallO

Write Hex InOut

WriteInt InOut

WriteLn InOut

WriteLn SimpleTerm

WriteLn Terminal

WriteLongInt LongIO

WriteNBytes FileSystem

WriteNBytes LogiFile

WriteOct InOut

WriteProcedure Termbase

WriteReal RealInOut

WriteRealOct ReallnOut

WriteResponse FileMessage

WriteString InOut

WriteString SimpleTerm

Write String Terminal

WriteWord FileSystem

WriteWord LogiFile

WriteWrd InOut

Yellow Graphics

365

Chapter 9

Procedure Module

ack Ascn

activProcess RTSMain

addProcess RTSCoroutine

arctan MathLibO

bel ASCn

blockList RTSMain

bs ASCn

can ASCn

c087Present RTSM87

cos MathLibO

cr ASCn

curProcess RTSMain

cursorHeight Graphics

cursorWidth Graphics

del ASCII

dc2 ASCII

dc3 ASCII

dc4 ASCII

debuggerRecord RTSMain

del ASCn

dIe ASCn

em ASCII

enq ASCII

entier MathLibO

eot ASCII

366

Libraries

Procedure Module

errorCode RTSMain

esc ASCII

etb ASCII

etx ASCII

exp MathLibO

ff ASCII

freeList RTSMain

fs ASCII

gphCMedRes Graphics

gphHiRes Graphics

gphMedRes Graphics

gs ASCII

ht ASCII

in InOut

If ASCII

In MathLibO

nak ASCII

nul ASCII

out InOut

overlay InitProc RTSMain

overlayList RTSMain

overlayTermProc RTSMain

367

Chapter 9

Procedure Module

real MathLibO

rs ASCII

si ASCII

sin MathLibO

so ASCn

soh ASCII

sqrt MathLibO

stx ASCII

sub ASCII

syn ASCII

termCH InOut

txtCHiRes Graphics

txtCMedRes Graphics

txtHiRes Graphics

txtMedRes Graphics

us ASCII

vt ASCII

368

Appendices

Modula-2 Bibliography

Appendix A
Modula-2 Bibliography

Books

Wirth, Niklaus
Programming in Modula-2, Third Edition
Springer-Verlag, New York, Berlin, 1985

Adams, J. Mack, Phillippe J. Gebrini, and Barry L. Kurtz
An Introduction to Computer Science with Modula-2
D. C. Heath and Co., Lexington, MA, 1988

Beidler, John, and Paul Jackowitz
Modula-2
PWS, Boston, MA 1986

ChirIian, Paul M.
Introduction to Modula-2
Matrix Publishing, Beaverton, OR, 1984

Christian, Kaare
A Guide to M odula-2
Springer-Verlag, New York, Berlin, 1984

371

Appendix A

Ford, Gary A., and Richard Wiener
Modula-2 A Software Development Approach
John Wiley and Sons, New York, 1985

Gleaves, Richard
Modula-2 for PASCAL PROGRAMMERS
Springer-Verlag, New York, 1985

Greenfield, S.B.
Invitation to Modula-2
Petrocelli, Princeton, NJ, 1985

Joyce, Edward
Modula-2: A Seafarer's Guide and Shipyard Manual
Addison Wesley, Reading, MA, 1985

Kaplan, 1., and M. Miller
Modula-2 Programming
Hayden, Hasbrouck Heights, NJ, 1986

Kaplan, I., and M. Miller
Programming in Modula-2
Prentice-Hall, Englewoood Cliffs, NJ, 1986

Kelly-BootIe, Stan
Modula-2 Primer
Howard Sams, Indianapolis, IN, 1987

King, K. N.
Modula-2: A Complete Guide
D. C. Heath and Co., Lexington MA, 1988

Knepley, E., and R. Platt
Modula-2 Programming
Reston, Reston, VA, 1985

Moore, J.B., and K.N. McKay
Modula-2: Text and Reference
Prentice-Hall, Englewood Cliffs, NJ, 1987

Messer, P. and I. Marshall
Modula-2: Constructive Program Development
Blackwell,1986

372

Ogilvie, J.W.L.
M odula-2 Programming
McGraw Hill, New York 1985

Pinson, Lewis
Introduction to Computer Science with Modula-2
John Wiley and Sons, New York

Sale, Arthur
Modula-2: Discipline & Design
Addison-Wesley, Sydney, Australia, 1986

Sawyer, B. and D. Foster
Programming Expert Systems in Modula-2
Wiley, New York, 1986

Schildt, H.
Modula-2 Made Easy
Osborne McGraw-Hill, Berkeley, CA, 1986

Sincovec, R., and R. Wiener
Data Structures with Modula-2
John Wiley & Sons, 1986

Sutcliffe, Richard J.
Introduction to Programming Using Modula-2
Merrill, Columbus, OH, 1987

Thalmann, Daniel
Modula-2, An Introduction
Springer Verlag, New York, Berlin, 1985

Ural, S
Introduction to Programming with Modula-2
Harper & Row, New York, 1987

Walker, B .K.
Modula-2 Programming with Data Structures
Wadsworth, Belmont, CA, 1986

Ward, Terry A.
Advanced Programming Techniques in M odula-2
Scott, Foresman, Glenview, IL, 1987

373

Modula-2 Bibliography

Appendix A

Wiatrowski, Calude A. and Richard S. Wiener
From C to Moduhl-2 and Back ... Bridging the Languarge Gap
John Wiley and Sons, New York, 1987

Wiener, Richard
Data Structures Using Moduhl-2
John Wiley and Sons, New York

Wiener, Richard
Moduhl-2 Wizard: A Programmer's Reference
John Wiley and Sons, New York, i986

Wiener, Richard, and Richard Sincovec
Data Structure Components in Modula-2
John Wiley and Sons, New York, 1986

Wiener, Richard, and Richard Sincovec
Software Engineering with Modula-2 and ADA
John Wiley and Sons, New York, 1984

Wirth, Niklaus
Algorithm and Data structures
Prentice Hall, Englewood Cliffs, NJ, 1986

374

Journal of Pascal, Ada & Modula-2
John Wiley & Sons
Subscription Department
605 Third Avenue
New York, NY 10158

Magazines

The MODUS Quarterly (formerly Modula-2 News)
Modula-2 Users Association (MODUS)
P.O. Box 51778
Palo Alto, CA 94303

Structured Language World
Springer-Verlag New York, Inc.
175 Fifth Avenue
New York, NY 10010

375

Modula-2 Bibliography

Appendix A

User Groups

Modula-2 Users Associaton (MODUS)
c/o Pacific Systems Group
P.O. Box 51778
Palo Alto, CA 94303

Modula-2 Special Interest Group (SIG)
USUS (US CD Pascal System Users' Society)
P.O. Box 1148
La Jolla, CA 92038

376

Memory Organization

AppendixB
Memory Organization & Run Time Description

B.I Global Memory Organization

Global memory organization when executing a LOG/TECH Modula-2 program is shown
in Fi2ure B-1.

After loading a program, run-time support creates the main process which will then
execute the program. It then transfers control to this main process.

377

AppendixB

The memory location of START_MEMORY in Figure B·l is the address of the first free
paragraph after the code and data of a Modula-2 program. From this address on, chunks
of memory can be allocated, through DOS, to the application program in order to
implement the heap. Such chunks may not be contiguous.

0000

Interrupt Vector Table

0400

Operating System

Modula-2 Program Code

Modula-2 Program Data

Stack

Free Memory

Figure B·l: Global Memory Organization

378

Memory Organization

B.2 Subprograms and Resident Overlays

The following schema is supported by the LOG/TECH Modula-2 Development System
only if the LOG/TECH Linker is used to bind the application.

An overlay is a piece of executable code that can be loaded and executed. An overlay
can in turn load another overlay on top of itself.

Two different kinds of overlay are supported: subprogram overlay and resident overlay.

Mter executiont a subprogram overlay is automatically unloaded from the memory t
while a resident overlay gets unloaded from the memory - either upon explicit request t

or when the parent overlay subprogram gets loaded. The parent overlay subprogram is
the first overlay subprogram found going back in the loading chain. (We will refer to an
overlay as "layer" from time to time.)

• The main program is a subprogram overlay; it is also called the BASE LAYER.

• A Library module called Overlay is the overlay manager. Overlay contains
procedures that can load and execute subprogram overlays or install and de­
install resident overlays.

• The number of layers that can be loaded on top of each other is limited only by
the available memory.

• The programmer is not concerned where an overlay is loaded. The overlay
manager takes care of finding the place and of loading the new layer.

379

AppendixB

Fii:ure B-2 shows a possible memory organization when a base layer and two overlays
are loaded.

0000

Interrupt Vector Table
0400

Operating System

Modula-2 Program Code

Modula-2 Program Data

Stack

Overlay 1

Heap Block

Free Memory

Overlay 2

Heap Block

Free memory

Figure B-2: Memory Organization for Overlays

380

Memory Organization

B.3 Program Execution

To run a LOG/TECH Modula-2 program, you enter the name of the program on the
DOS command line, concluding it with Cd]. The program name can be preceded by a
prefix with the drive and\or directory name, in which case the program is loaded from the
specified drive or directory.

For example:

C: \TEMP> \otherdir\examplel 0
The program worked! (Hit a key) 0
C:\TEMP>

381

AppendixB

B.4 Processes

When starting a Modula-2 program, LOGITECH Modula-2 Run-Time Support
automatically creates the main process. This default process gets the stack as its
workspace. Figure B-1 and Figure B-2 above, illustrate the organization of the
workspace of the main process.

When a new process is created by a call to procedure NEWPROCESS from module
SYSTEM$ it must be assigned a workspace. This region of memory must be explicitly
defined by the programmer. It is usually a variable, owned by the parent process. Such a
variable can be global, for example, an ARRA Y declared at the level of a module. It can
be a dynamic variable, created on the heap by a call to NEW, or it can also be a variable
declared local to a procedure, which is allocated on the stack. If a non-global variable is
used, make sure the process does not have a longer lifetime than its workspace!

The heap of the process is allocated by DOS in DOS free memory and is consequently
shared by any other process.

Workspace Address

Process Descriptor

Top of Process Stack

Stack of process

Workspace End

Figure B-3: Process Workspace

382

Memory Organization

The process descriptor of a process created by NEWPROCESS starts at the first paragraph
boundary in the workspace of the process. Approximately 200 bytes are needed for the
process descriptor plus the initial stack. In addition, at any point in time, there should be
approximately 200 bytes of free memory in the workspace of the process. This memory
may be needed when an interrupt occurs during the execution of the process, because the
standard interrupt handlers of the operating system use the current stack. This is true for
any program and is not related in any way to the use of IOTRANSFER in Modula-2.
This brings the minimum size of a workspace to approximately 400 bytes, assuming that
the corresponding process does nothing at all!

~-------------------------NOTE--------------------------~

If the workspace of the new process is too small, and does not allow a reasonable
initialization, the process that calls NEWPROCESS will be terminated with a
stack overflow.

For any procedure call, some space on the stack is needed. Also, any call to the operating
system, needs approximately 100 bytes of stack space. The standard LOG/TECH
M odula-2 library implements all input and output functions by means of calls to the
operating system. Taking everything into account, even the most simple process that
does terminal or file I/O, requires a workspace of at least 2K. For more complicated
processes, a larger workspace is required.

The workspace of a process must be large enough to hold its stack. If the process stack
grows too much, the program containing this process is aborted with a stack overflow.
The maximum size of a process workspace is approximately 64K.

383

AppendixB

B.S Allocation of Variables

Local variables are declared inside a procedure. They are allocated with the procedure
activation record on the stack of the process that executes the procedure call. The
variables of modules which are declared local to a procedure are allocated at the same
place. The procedure parameters are also allocated inside the procedure activation
record.

Because the procedure activation record only exists while the procedure is being
executed, the lifetime of local variables and of procedure parameters is limited to the
duration of the procedure call. Every time a procedure is called, a new instance of its
activation record is created. If the procedure is recursive, or is called by more than one
process at the same time, several instances of its procedure activation record will exist.

Global variables that are declared in modules which are not local to a procedure come
into existence when the program or subprogram that contains this module is loaded.
Their lifetime is limited by the lifetime of the program or subprogram to which they
belong.

There is only one instance of the global variables of a module. Global variables are
shared by all procedures and processes of a program. A program that calls a subprogram
also shares its global variables with the subprogram.

Variables are allocated in the order of their declaration: the first variable has the lowest
address. Alignment of variables depends on the setting of the alignment option. If
alignment is on, variables with a size greater than one byte are allocated on even
addresses. Byte sized variables can be allocated on odd addresses. Alignment can
improve the performance of the program for an 8086 based system.

The maximum allowance for all local variables of a procedure is approximately 32K
bytes. The same limit exists for the total size of all parameters of a procedure. In
practice, however, these sizes are much more limited by the size of the stack, which
cannot exceed 64K bytes. The limit for the total size of all global variables declared in
one program module or in one implementation module, including those declared in the
corresponding definition module, is approximately 64 K bytes. The total size of the
global variables in all modules of a program is only limited by DOS.

384

Memory Organization

B.6 The Heap

The library module Storage implememts the heap management. On each chunk of
memory (typically 10 - 40 K) it does its own memory management. This is transparent
and you can directly get and release memory by means of ALLOCATE and
DEALLOCATE.

Modula-2 provides the standard procedures NEW and DISPOSE to allocate and
deallocate dynamic memory. The compiler maps calls to these procedures to calls of the
procedures ALLOCATE and DEALLOCATE. When using NEW or DISPOSE in a
module, procedures ALLOCATE or DEALLOCATE must be imported or declared in that
module. The standard way is to import these procedures from the library module
Storage. However, a program may declare and use its own versions of ALLOCATE or
DEALLOCATE. In this way, a program can implement its own heap management. In
general, the strategy for allocation and deallocation of dynamic memory will then differ
from the default strategy provided by module Storage.

B.7 The Stack

The stack holds different kinds of data:

• Procedure activation records
• Temporary values during the evaluation of an expression

• Other temporary data

Every process owns its private stack which is part of its workspace. Upon creation of a
process by a call to NEWPROCESS the stack is set such that the fIrst word pushed onto
the stack occupies the last word at the highest even address in the workspace. The stack
grows from the end of the workspace toward lower addresses.

Maximum stack size is 64K bytes. However, in most applications the workspace needed
by a process is less than 64K. Therefore, the stack size is usually limited by the size of
the workspace and the occupation of the heap.

The default size of the main process stack is a fixed value (8000 bytes); you can change
this at link time by using a different size. Refer to the section on linker options.

385

AppendixB

B.8 The Procedure Activation Record

Each time there is a procedure call, a new procedure activation record is created on the
stack of the current process. Depending on whether 8086/8088 or 80186/80286 code is
generated, the activation record format differs slightly. The procedure activation record
contains the following information (see also Figure B-4 and Figure B-5 below):

Procedure parameters Are pushed, if they exist, onto the stack in the order they are
declared. Because the stack grows toward lower addresses,
the last parameter is found at the lowest address.

Static link A pointer, within the same stack, to another procedure
activation record which constitutes the static environment of
the procedure. The static link can find variables or parameters
in the static environment of the procedure. The static link is
only for procedures which are declared nested inside of
another procedure. The static environment consists of the
parameters and variables which are declared in the embedding
procedure(s). When code is generated for 80186/80286, the
static link does not exist, but is implemented as a display.

Return address If the procedure was activated by a near procedure call, the
return address is an offset value only, which corresponds to
the instruction pointer. If the procedure was activated by a far
call, there is also a segment value which corresponds to the
code segment of the calling procedure.

Dynamic link Points to the previous procedure activation record within the
same stack.

Display (186/286 only) A table of pointers, within the same stack, to the other
procedure activation records which make up the static
environment of the procedure. The number of table entries
corresponds to the lexical nesting level of the current
procedure. The display table is used to find variables or
parameters in the static environment of the procedure. The
display is only generated if the code generation option for
80186/80286 was selected. For 8086/8088 code, access to the
static environment is implemented by the static link.

Local data All the variables declared inside the procedure.

386

Local Data of Procedure

Dynamic Link

Return Offset

Return Code Segment

Static Link

Last Parameter

...
First Parameter

Figure B-4: Procedure Activation Record for 8086/8088

387

Memory Organization

Low Addresses

Stack Pointer

Base Pointer

Higb Addresses

AppendixB

Local Data of Procedure

Display

Dynamic Link

Return Offset (IP)

Return Code Segment (CS)

Last Parameter

...
First Parameter

Figure B-5: Procedure Activation Record for 80186/80286

388

Low Addresses

Stack Pointer

Base Pointer

High Addresses

Memory Organization

B.9 Procedure Calling Conventions

A procedure is called with a far intersegment call if at least one of the following
conditions is true:

• It is imported from another separately compiled module.

• It is exported from a definition module.
• It is used in an assignment to a procedure variable or as a procedure parameter.
• It is used as the body (starting point) of a process upon a call to NEWPROCESS.

If none of these conditions is true, the procedure is called with a near intrasegment call.

Before a procedure call occurs, this prologue is executed in the calling procedure:

• Parameters, if any, are pushed on the stack in the same order as they are declared.
A value parameter on one byte occupies two bytes on the stack, with the value in the
low byte and an undefined high byte.

• for 8086/8088 only:
If the called procedure is declared nested inside of the calling procedure, the static
link is pushed on the stack.

This sets up the first part of the procedure activation record. The remainder is set up
inside the called procedure.

Now, the procedure is called and gains control. It executes the following procedure
prologue, to prepare the rest of the procedure activation record:

• An optional call to the run-time support routine stack check is executed. BX contains
the number of bytes on the stack needed by the current procedure. This amount
includes the size of local variables and the stack space needed to pass parameters to
called procedures.

389

AppendixB

The following steps are executed for 8086/8088:

• The current value of the base pointer BP is pushed on the stack. This sets up the
dynamic link.

• The value of base pointer BP is set to the current value of stack pointer SP.
• Space is reserved on top of the stack for the local variables of the procedure, if any

exist, by reducing the current value of the stack pointer SP by the total size of the
procedure variables.

Tnis is the code generated for 80186/80286:

• The instruction ENTER size, level is executed where size is the total size of the
procedure variables, and level is the lexical nesting level of the procedure. This
instruction automatically sets up the dynamic link, the display, the space for the local
variables on the stack, and the values for BP and SP.

The statements of the procedure body are then executed. The local variables and the
parameters of the procedure are accessed with an offset relative to the base pointer BP.

Upon termination of the procedure body, the procedure epilogue is executed, performing
the following operations:

The following steps are executed for 8086/8088:

• The stack pointer SP is reset to the current value of the base pointer BP. This
removes the local variables from the stack.

• The dynamic link is popped to restore the old value of the base pointer BP.

This is the code generated for the 80186/80286:

• The instruction LEAVE is called. LEAVE automatically removes local variables,
display, and dynamic link and resets BP and SP.

• A return instruction passes control back to the calling procedure. A far or near return
is used, according to the type of call that was used to activate the procedure. The
parameters and the static link are discarded automatically with the return instruction.

390

Memory Organization

B.I0 Function Results

A function result is returned as follows, depending on the size of the function type:

• One byte values are passed back in register AL.
• Two byte values are passed back in register AX.
• Four byte values are passed back in register DX and in register AX.
• REAL values are always passed back on top of the stack.

~-------------------------NOTE--------------------------~

In the current release, arrays and record types are not allowed as function types.

SET types bigger than a word are treated as structures.

391

AppendixB

B.II Symbols in .OBJ Files

Here are the exact symbol definitions that the LOGITECH Modula-2 compiler puts in
the object file. These can be used for symbolic debugging, or correcting linker symbol
errors. The LOGITECH debuggers show you the names of variables or procedures you
declared, without prefix and suffix. Symbols are truncated to 31 characters (the limit of
the DOS linker and of some assemblers). The generated symbols are case-sensitive.

Type of Symbol

Exported procedure
Local procedure
Nested procedure
Global variable

Beginning of module
End of module

Beginning of data of a module
End of data of a module

Beginning of initialization code
if in different segment

End of initialization code

Name

L __ <procnam> __ <modname>
S __ <procnam> __ < ... > .. .
N __ <procnam> __ < ... > .. .

<varnam> <modname>

$BM __ <modname>
$EM __ <modname>

$BD __ <modname>

$ED __ <modname>

$BI __ <modname>
$EI __ <modname>

Note: These symbols are neither used nor generated, but are reserved.

Initialization entrypoint
Module entrypoint after initialization
Code of a local module

Key for version checking at link time
Key for version checking at run time

Beginning of a Modula-2 program
Description of a Modula-2 program

$ INIT __ <modname>
$BODY __ <modname>

$BODY __ <modname>

KEY __ <dateSYMfile> _ OF _ <modname>
$OK __ <dateOBJfile> OF <modname>

Start Modula
$DD

KEY _._ uses two underline characters with no break;
<data of fila> uses the position-sensitive format ddmmmY'YY_hhmm where;

dd= the day;
"_" is a separator;

mmm= month;
hh = the hour;

392

yy= year;
mm = the minute.

Memory Organization

B.12 Aborting LOGITECH Modula-2 Programs

When you type (Ctrl H Break I or Ctrl C, the operating system usually aborts the
program that is currently running. Ctrl Break and @!ill-@ have the same effect in
LOGITECH Modula-2. However, depending on the circumstances, there are some
restrictions on their use.

In general, Ctrl C only has an effect when the program is waiting for keyboard input.
Ctrl Break cannot be used when the program is waiting for input, but can be used any

other time. Ctrl Break is immediately effective - it is acted upon as soon as you use
it. The effect of Ctrl C is delayed until the program reads the@!ill-@ character. By
typing Ctrl Break it is possible to stop a Modula-2 program that is running in an
infinite loop. However, under certain circumstances, the whole system might crash if
(Ctrl H Break) was accepted. LOGITECH Modula-2 tries to prevent this from happening.
Therefore, typing (Ctrl H Break) will sometimes have no effect at all.

In LOGITECH Modula-2, the Break library module lets you define how a program will
behave when you press (Ctrl H Break) or @!ill-@ is typed. If the Break and the
DebugPMD modules are linked into a program, a memory dump (file MEMORY.PMD)
will be generated when you press (Ctrl H Break) or @!ill-@. To debug a program with
the symbolic post-mortem debugger, a memory dump is needed. To be linked with a
Modula-2 program, you must explicitly import the Break module into one of the program
modules. Normally, you will import it in the main module of the program. If the Break
or DebugPMD modules are not linked with a program, no memory dump will be
generated when you use (Ctrl H Break) or @!ill-@ to terminate the program, but the
program will stop anyway, if possible.

With the Break module, you can also keep a program from aborting by having it ignore
(Ctrl H Break I and Ctrl C. You can also install a Break procedure which will be called
when you press Ctrl Break or @!ill-@. With a Break procedure, a dump will not be
generated automatically. When the Break module is used, pressing (Ctrl H Break I once, in
almost all cases, stops the program or calls the installed break procedure.

393

AppendixB

B.13 Command Line Arguments

When a LOGITECH M odula-2 program is executed using the executable file name
prefix and the GD, any text which follows the file name is taken as keyboard input.
This means that you can type, for example:

M2COMP MY _PROG/BATCH/NOAQUERY GD

This works for any LOGITECH Modula-2 program that does keyboard input using the
Terminal or InOut modules. You can aiso inciude this faciiity in your own program.
When you use a read routine like ReadString, it will automatically read the command
line.

This lets you use LOGITECH Modula-2 programs more easily with the DOS Batch files,
which only recognize program input on the command line. Because the compiler, linker
and debugger accept either a space or a GD to terminate an argument, multiple
arguments may be given on the command line. For example:

M2L OVERLAY1 (MAINLINE) GD

394

Appendix C
Technical Tips

395

Technical Tips

Appendix C

e.l Print Time and Date

The following is an example of how to get the Time and Date from the system in a
legiable format. Some math manipulation has to be done to extract the information from
the Time record.

MODULE PrintTimeDate;

FROM TimeDate IMPORT
Time, Get Time;

FROM InOut IMPORT
WriteCard, WriteLn, WriteString;

VAR
curtime
tday, tmonth,
tyear, ttemp,
hr, min

: Time;

CARDINAL;

BEGIN

GetTime(curtime};
tday := curtime.day MOD 32;
ttemp := curtime.day DIV 32;
tmonth := ttemp MOD 16;
ttemp := curtime.day DIV 512;
tyear := ttemp MOD 128;
hr := curtime.minute DIV 60;
min := curtime.minute MOD 60;
WriteString('The Time is '};
WriteCard(hr,2};
WriteString(':'};
WriteCard(min,2};
WriteLn;WriteLn;
WriteString('The Date is '};
WriteCard(tmonth,2};
WriteString('/'};
WriteCard(tday,2};
WriteString('/'};
WriteCard(tyear,2};
WriteLn;

END PrintTimeDate.

(*

*)

The printout has the following format:

The Time is 14:25
The Date is 8/ 5/87

396

e.2 Printing

This is one way of getting output on the printer

MODULE Printing:

FROM FileSystem IMPORT
Lookup, Close, File, WriteChar, Response;

FROM InOut IMPORT
WriteString, WriteLn;

VAR
printer File;
str ARRAY [0 .. 9] OF CHAR;

PROCEDURE PrintString(str: ARRAY OF CHAR);

VAR
i: CARDINAL;

BEGIN
i: =0;

WHILE (i<= HIGH(str» AND (str[i]<>Oc) DO
WriteChar(printer,str[i]);
INC (i);

END;
END PrintString;

PROCEDURE OpenPrinter;

BEGIN
Lookup(printer,'PRN', FALSE):
IF printer. res <> done THEN

WriteString ("cannot open' PRN''');
WriteLn;
RETURN;

END;
END OpenPrinter;

BEGIN
str := 'It works!';
OpenPrinter;
PrintString(str);
Close (printer) ;

END Printing.

397

Technical Tips

Appendix C

C.3 The Screen

This is one way of writting to the screen memory. The location of the screen memory
depends on your Video Adaptor Card.

For Monochrome Adaptors it is OBOOOH:OH
For Color Graphic Adaptors it is OB800H:OH]

MODULE Screen:

CONST
MAXCOL = 79:
MAXROW = 23:

TYPE ScreenType

VAR

ARRAY[O •• MAXROWj OF
ARRAY[O .• MAXCOLj OF
RECORD char,attr : CHAR END:

screen[OBOOOH:OHj:screenType:

PROCEDURE WriteToScreen(str: ARRAY OF CHAR):

VAR i : CARDINAL:

BEGIN
i := 0:
WHILE (i<=HIGH(str» AND (str[ij<>Oc) DO
screen[12,37+ij .char str[ij: (* Starts writting approximately

in the center of the screen *)
INC (i):
END;

END WriteToScreen:

BEGIN

WriteToScreen('Hello');

END Screen.

398

Technical Tips

C.4 Redirect Input

This is an example of how to use the redirection capability of Termbase module. Refer to
a textbook on Modula-2 if you don't understand the mechanism of procedure parameters
as used by AssignRead.

DEFINITION MODULE RedirectInput;

EXPORT QUALIFIED SetInput;

PROCEDURE SetInput(str: ARRAY OF CHAR);

END RedirectInput.

IMPLEMENTATION MODULE RedirectInput;
FROM InOut IMPORT OpenInput;
FROM Termbase IMPORT UnAssignRead,

AssignRead, ReadProcedure, StatusProcedure;
FROM ASCII IMPORT EOL;

VAR
InputString: ARRAY [0 .. 80) OF CHAR;
StringIndex : CARDINAL;

PROCEDURE Read(VAR ch:CHAR);

BEGIN
IF (Stringlndex<=HIGH(InputString» AND

(InputString[StringIndex) <>Oc) THEN
ch:=InputString[StringIndex];
INC (StringIndex);

ELSE
ch:=EOL;

END;
END Read;

PROCEDURE Status(): BOOLEAN;

BEGIN
RETURN TRUE;

END Status;

PROCEDURE SetInput(str: ARRAY OF CHAR);

VAR i: CARDINAL; done: BOOLEAN;

399

Appendix C

BEGIN
i:=O;
WHILE (i<=HIGH(str» AND (i<=HIGH(InputString» AND (str[ij<>Oc) DO

InputString[ij:=str[ij;
INC(i);

END;
IF (i<=HIGH(InputString» THEN InputString[ij:=Oc END;
StringIndex:=O;
AssignRead(Read,Status,done);
OpenInput(I.TXT");
UnAssignRead(done);

END Set Input;

END RedirectInput.
MODULE Example;
(*

This program is an example of redirection and it uses MODULE
RedirectInput. Before you run this program create a file which
has the string (text) • This program reads the string from a
file (example.txt) and displays it on the screen.

*)
FROM RedirectInput IMPORT Set Input;
FROM InOut IMPORT ReadString, WriteString;

VAR str: ARRAY [0 •• 80) OF CHAR;

BEGIN
SetInput(lexample.txt");
ReadString(str);
WriteString(str);

END Example.

(* example. txt contains the string *)
(* Reads the string untill a blank is encounterd *)

400

Appendix D
Product Support Plan

Copy Protection

Product Support Plan

The LOGITECH Modula-2 disks are not copy-protected. This doesn't mean you can
make unlimited copies of them. LOGITECH Modula-2 software is protected by the
copyright laws that pertain to computer software. It is illegal to make copies of the
contents of these disks, except for your own backup, without written permission from
LOGITECH, Inc. In particular, it is illegal to give a copy to another person.

Reminder

Remember to send your registration card, if you haven't done that. It helps us to keep
our contact with you, and keeps you up-to-date with important product information.

401

AppendixD

Technical Support

LMIS

We know that effective communication with our customers is the key to quality service.
Therefore we have set up the LMIS (LOGlTECH Mouse/Modula-2 Information Service),
an electronic bulletin board where you can contact us at your convenience.
To logon to the LMIS, dial:

(415) 795-0408

using a 300, 1200 or 2400 baud modem.

The menu of available options is self explanatory.

BIX

LOGITECH also sponsors an electronic conference on BIX, the BYTE INFORMATION
EXCHANGE system from Byte magazine. If you have access to BIX, join us in the
LOGITECH conference, and communicate with us there.

Getting Help through the Hotline

You should rely on your manual or your dealer to answer questions about using your
package. If you do encounter a technical problem with your package, our Technical
Support Specialists will be glad to help you.

We ask you to follow these steps before you call or write.

• Read the section of the manual that describes the procedure you are trying to perform.

• If the problem relates to your software, check to make sure that the software is
properly configured.

If, after following these steps, you are still not able to solve the problem, give us a call at
(415) 795-0427, or write to us. If you write, please include your daytime phone number
and the best time to reach you. Also, please add "Attn: Technical Support" somewhere
on the envelope.

We want to help you make the most effective use of your package.

402

Modula-2 Glossary

A LOGITECH Modula-2 Glossary

In LOG/TECH Modula-2, these terms have specific meanings:

Base layer
A program which calls a subprogram. For example, the compiler passes made
by the overlay version of the LOG/TECH Modula-2 compiler are called
sequentially by the compiled base which is their base layer.

Compilation unit
Part of a program contained in a separate file which can be compiled separately.
M odula-2 compilation units are: definition, implementation, and program
modules. Modules can be compiled separately only if the imported definition
modules are already compiled. Only definition modules can export objects. If
an object is exported from a compilation unit, it must be split into definition and
implementation modules.

Definition module
The definition part of a Modula-2 module. For more infonnation on definition
modules, refer to the corresponding sections in Programming in Modula-2 by
Niklaus Wirth.

Development system
The entire system, both hardware and software, used to develop a program.
Software includes the operating system and utility programs and libraries.
When used to develop Modula-2 programs, it includes Modula-2 run-time
support, as well as the Modula-2 compiler, linker, debuggers, editor, utilities,
and library.

403

Modula-2 Glossary

Language support

Library

A program seen as an extension to the hardware. It gives the target system the
ability to execute programs written in the corresponding programming language.
The language support for Modula-2 is part of the Modula-2 run-time support.

In general, a library is a set of functions or procedures which can be used by any
program. In Modula-2 the library is equal to the set of all available Modula-2
library modules.

Library module
A M odula-2 module, consisting of a definition and an implementation part,
which is available for use by any M odula-2 program.

Implementation module
The implementation part of a M odula-2 module. An implementation module
contains the code that implements the capabilities provided by this module as
they are specified by the corresponding definition module. The section on basic
concepts in this manual contains a brief description of implementation modules.
For more on the use of implementation modules refer to the corresponding
sections in Programming in Modula-2 by Niklaus Wirth.

Main module
The main module of a Modula-2 program is the module that is given to the
linker to link the program. The module code of the main module constitutes the
main program. The main module must be a program module.

Main program
The term 'main program' has two different definitions depending on the context
in which it is used:

When talking about a single program, it refers to a particular part of the code of
that program, the main program code. Executing the main program code is
equivalent to executing the whole program. In Modula-2, the main program
code consists of the program module. The execution of a program starts with
the execution of its main program code. When the execution reaches the end of
the main program code, the program terminates.

When talking about programs and subprograms, the term main pro gram refers
to a program that is the base layer of a (set ot) subprogram(s), and that is not a
subprogram itself.

404

Objects

Overlay

Modula-2 Glossary

Anything that can be given a name, including constants, variables, procedures,
types, and modules.

A part of the code of a program is an overlay of that program, if this code is
loaded at the same memory location as some other code - the code of another
overlay - of the same program. When code that belongs to an overlay is loaded
into memory, it overlays the code of the overlay that was loaded previously.
Sometimes, not only code but also data is overlayed.

By using overlays, a program that would require a large amount of memory can
run on a computer with less memory. Modula-2 provides a simple overlay
concept in the form of subprograms.

Program
A Modula-2 program with all the modules which are imported directly or
indirectly by its main module. When a program is linked, the resulting load file
includes all these modules. A M odula-2 program may also call another
Modula-2 program as a subprogram. A program that calls a subprogram, but is
not a subprogram itself is also called a main program. In this context, the term
program refers to the one main program and the set of all its subprograms.

Program module
A M odula-2 module which does not have a definition module and is not
declared in any other module. The code of a program module is a main
program. For more information on program modules please refer to the
corresponding sections in the book Programming in Modula-2 by Niklaus
Wirth.

RTS (Run-time support)
A set of modules which includes language support and other configuration­
dependent functions. These include typical operating system features such as
setting up the memory configuration, loading programs, and dumping memory
to disk.

Separately compiled module (SCM)
A compilation unit which is either an implementaion or a program module, and
has been compiled separately.

405

Modula-2 Glossary

Subprogram
A Modula-2 program called by another Modula-2 program. A subprogram
consists of those modules imported directly or indirectly by its main module
which are not part of its base layer. A subprogram can use objects exported by
the modules of the calling program. A subprogram may also call other
subprograms. Subprograms in Modula-2 provide a very simple overlay
concept. For information on how to call subprograms, please refer to the
definition module 'Program' in the library section of this manual. For
information on the memory use of subprograms, refer to the appendix on
memory organization.

Target system
The system, both hardware and software, on which you execute your application
programs. In most cases the target system is the same as the development
system. However, this is not a requirement. The hardware configuration of a
target system for Modula-2 or Modula-2lVX86 does not require a terminal or
disks. The software configuration may be reduced to the Modula-2 run-time
support and your program.

Workspace
The memory region allocated to a process for stack, program variables, heap,
and subprograms. When a Modula-2 program is started, it begins execution as
the main process. The default stack size of any main program is 8000 bytes.
This value can be modified at link time. A subprogram shares the workspace
(stack) of its base layer. When a process is created, the workspace is defined as
a parameter of SYSTEM NEW PROCESS. It may be located anywhere, (loop,
stack, or global data). Just don't let the process have a longer lifetime than its
workspace!

406

INDEX

A

Abort A Program, 393

Absolute Variables, 159

Activation Record, 386

Address

Constant, 159

Arithmetic, 159

ADDRESS, 57159-163,165

ADR Function, 62, 166

Alignment, 84

ALLOCATE, 57

ANSI.SYS, 10

ARRAY, 40, 172

Assembly interfacing, 110

Assembly language, 110-114, 120

AUTOEXEC.BAT, 17,20

B

Base Layer, 379,401

BITSET, 171

BOOLEAN, 171

BUFFERS Statement, 10

BYTE, 165,171

c

CLanguage, 115-122

Call Chain, 123, 140

Calling Convention, 387

CARDINAL, 171

CASE Statement, 43

CHAR, 171

CHR, 173

CODE, 169

Command Line Handling, 126, 394

Compilation Unit, 401

409

Compile

From Editor, 27

From DOS Shell, 70

Compiler,

Configuration, 80, 81

Directives, 90

Error Messages, 96

Options, 80

CONFIG.SYS, 10

Configuration of PMD, 125, 128

Controller Mask, 181

Coroutine, 63

CODE, Procedure,

Using CODE, 89

D

DEALLOCATE, 57

Debugging Commands

Keyboard Control, 134

Mouse Control, 132

DEC With Addresses, 161

Decimals, 201

Default Data Segment, 117

Definition Module, 401

Development System, 401

DISABLE, 169

DOSCALL, 170,187

Diskettes, 9

DOS 3.1, 11

DOS 3.2, 11

DOS Non Reentrancy, 180

Dynamic Array Parameters, 48

Dynamic Link, 387

INDEX

INDEX

E

Enable, 169

Enumeration Type, 171

Examples Technical Tips, 369

Execution, 381

EXTCALL Procedure, 115,170

Extensions (See Files)

F

Files:

Declaration, 47

CFG, 125, 128

FILES statement, 10

LST,73

OBJ,73

REF,73

SYM,73

Foreign Definition, 116-122

Function Results In Register, 391

G

GETREG, 168

GOTO statement, 39

H

Heap, 385

410

I

Implementation Module, 402

INBYTE, 169

INC, With Addresses, 161

Installation, 7

Interfacing Other Languages, 109

Assembly Language, 110-114, 120

CLanguage, 115-122

INTEGER, 171

Interrupt, 177, 181

INWORD, 169

IOTRANSFER, 167,175,177

ISR (Interrupt Service Routine), 178

K

Key, 107,110

Key Control (PMD), 132

L

Language Qualifier, 116

Language Support, 402

Library Search Strategy, 217-219

Library, 402

Link:

From Editor, 30

With DOS Linker, 32

Linking, 101, 119, 120

USTEN, 168.183

LONGINT, 171

M

Main Module, 402

Mask Interrupt Controller, 181

MathLibO, 173

Memory Dump, 123-126

Memory Organization, 377-380

Memory Requirements, 8

Module,

Definition, 36,51,53,55,58,77

Implementation, 37,52,54,58,78

Program, 36,56,74

Monitor, 183

Mouse Control (PMD), 132

N

NEWPROCESS, 167, 182,382

o

Object Files (.OBJ), 392

Objects, 403

Opaque Type, 172

Options,

Compiler, 80

PMD, 129

OUTBYTE, 169

OUTWORD, 169

Overlays, 379, 403

p

Pascal, 35-68

PATH Command, 14,20,21

Pictures In Decimals Output, 204

411

PMD

Commands, 137-149

Configuration, 125, 128

Keyboard Control, 134

Messages, 152-156

Mouse Control, 132

Options, 129

Windows, 137-149

Pointer Type, 41

POlNTER, 172

Priorities, 175, 176, 181

PROC Type, 49

PROC, 172

Procedure Activation, 386-389

PROCEDURE, 172

Procedures

IOTRANSFER 64

TRANSFER, 64

PROCESS, TYPE, 64

liSTEN,64

NEW, 57

DISPOSE,57

WAIT,65

SEND,65

PROCESS, 165,172,382

Program, 403

R

REAL, 171, 208-213

Record Type, 40

Record Variant, 40

Register Constants Def, 165

Return Address, 387

RTS Run Time Support, 403

RTSIntPROC, 178

Run Time Errors, 124

INDEX

Run Time Support Modules, 119, 120,214-215

INDEX

s

Search Strategy, 217-219

Separate Compilation, 403

Separate Compilation, 403

SET, 171

set Type, 39

SETREG, 168

SETREG,168

SIGNAL, TYPE, 65

SIZE Function, 62

Size, 166

Stack, 378, 385

Stack, 378, 385

Statement

EXIT,46

FOR, 44

IF,43

LOOP, 46

REPEAT,44

WHILE,45

WITH,41

Static Link, 387

Status, 124

Subprogram, 404

Subranges, 171

SWI, 169

Symbols In OBI file, 392

Symbol

Defined Twice, 101

Name Convention, 109, 116

SYSTEM, Module, 64

412

T

Target System, 404

Tennination of Program, 124

Tennination Procedure, 124

Transfer, 167,175

Tronc, 173

TSIZE Function, 62, 166

TYPE, ADDRESS, 57

TYPE, WORD, 60

Type

v

Conversion, 173

Transfer, 174

VAL, 173

Variable Allocation, 384

Version Checking

At Compile-Time, 105

At Link-Time, 106

At Load-Time, 108

w

Word, 165, 171

Workspace, 382, 404

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Logitech U.S.A.
Corporate Headquarters
6505 Kaiser Drive
Fremont, CA 94555
Tel : 415-795-8500

lDGITECH'"
MODULA-2
v E R S ION 3.0

USEItS MANUAL
Compiler
Library

Post Mortem Debugger

~LOGITECH
Logitech Switzerland
European Headquarters
CH-lill RomanellMorges
Switzerland
Tel: 41-21-869-9656

Logitech Taiwan
Far East Headquarters
15 R&D Road 2
Science Based Industrial Park
Hsinchu, Taiwan, ROC
Tel: 886-35-77-8241

Algol-Logitech Italy
Via Durazzo 2
20134 Milano MI
Italy
Tel: 39-2-215-5622

