
LOGITECH

MOUSE PROGItAMMER'S TOOLKIT

LOGITECH, Inc.
Corporate Headquarters

805 Veterans Blvd.
Redwood City, CA 94063
U.S.A.
(415) 365-9852

WGITECH,SA
European Headquarters

tH-llll Romanel-Morges
Switzerland' .

41/21/W' 96 56

ALGOL LOG:IJECH, Spa

Via Durazzo.2
.~134 MiJano"Mt
Italy

3912/21~:~~2

First Edition November 1986

Copyright (C) 1986 LOGITECH, Inc.

All Rights Reserved. No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of LOGITECH, Inc.

LOGITECH, Inc. makes no warranties with respect to this documentation and disclaims any implied
warranties of merchantability and fitness for a particular purpose. The information in this document is
subject to change without notice. LOGITECH, Inc. assumes no responsibility for any errors that may
appear in this document.

From time to time changes may occur in the filenames and in the files actually included on the
distribution disks. LOGITECH, Inc. makes no warranties that such files or facilities as mentioned in this
documentation exist on the distribution disks or as part of the materials distributed.

LU-UD004-1

Initial issue: November 1986

Current revision: November 1986

This edition applies to Release 3.0 and above of the software.

Printed: November 1986

TRADEMARKS

LOGIMOUSE is a registered trademark and CLICK and LOGIMENU are trademarks of
LOGITECH, Inc.

IBM is a registered trademark of, and ffiM PC/XT and ffiM AT are trademarks of International
Business Machines Corporation.

HerculesTM Graphics Card is a trademark of Hercules Computer Technology.
HP Vectra is a registered trademark of Hewlett Packard Company.
Lotus and 1-2-3 are registered trademarks of Lotus Development Corp.
WordStar is a registered trademark of MicroPro.
AT&T, AT&T 6300 and AT&T 6300 Plus are trademarks of AT&T.
Sigma Color 400 is a trademark of Sigma Designs, Inc.
Tecmar Graphics Master is a trademark of Tecmar, Inc.
Microsoft and MSDOS are registered trademarks of Microsoft Corp.
Compaq Portable is a trademark of Compaq Computer Corp.

TABLE OF CONTENTS

WGITECH MOUSE DRIVER FUNCTIONS

1.1 PROGRAM INTERFACE
1.1.1 Programming Interface for Assembler
1.1.2 Programming Interface for Modula-2
1.1.3 Programming Interface for C
1.1.4 Programming Interface for Microsoft Pascal
1.1.5 Programming Interface for Turbo Pascal
1.1.6 Programming Interface From the BASIC Interpreter
1.1.7 Notes

1.2 THE STANDARD MOUSE DRIVER FUNCTIONS

1.2.0 FUNCTION 0 • RESET
1.2.0.1 Calling Reset (0) from Assembly Language
1.2.0.2 Calling Reset (0) from Modula-2
1.2.0.3 Calling Reset (0) from C
1.2.0.4 Calling Reset (0) from Microsoft Pascal
1.2.0.5 Calling Reset (0) from Turbo Pascal
1.2.0.6 Calling Reset (0) from Basic

1.2.1 FUNCTION 1 • SHOW CURSOR
1.2.1.1 Calling Show Cursor (1) from Assembler
1.2.1.2 Calling Show Cursor (1) from Modula-2
1.2.1.3 Calling Show Cursor (1) from C
1.2.1.4 Calling Show Cursor (1) from Microsoft Pascal
1.2.1.5 Calling Show Cursor (1) from Turbo Pascal
1.2.1.6 Calling Show Cursor (1) from Basic

1.2.2 FUNCTION 2 • HIDE CURSOR
1.2.2.1 Calling Function 2 from Assembler
1.2.2.2 Calling Function 2 from Modula-2
1.2.2.3 Calling Function 2 from C
1.2.2.4 Calling Function 2 from Microsoft Pascal
1.2.2.5 Calling Function 2 from Thrbo Pascal
1.2.2.6 Calling Function 2 from Basic

1.2.3 FUNCTION 3 - GET MOUSE POSITION & BUTTON STATUS
1.2.3.1 Calling Function 3 from Assembler

1.2.3.2 CALLING FUNCTION 3 FROM MODUlA·2
1.2.3.3 Calling Function 3 from C
1.2.3.4 Calling Function 3 from Microsoft Pascal
1.2.3.5 Calling Function 3 from Thrbo Pascal
1.2.3.6 Calling Function 3 from Basic

iii

1

2
2
2
2
2
2
3
4

5

6
7
7
8
8
8
9

10
10
10
10
10
11
11

12
12
12
12
12
13
13

14
14

14
14
15
15
15

Iv

\

1.2.4 FUNCTION 4 • SET MOUSE CURSOR POSITION
1.2.4.1 Calling Function 4 from Assembler
1.2.4.2 Calling Function 4 from Modula-2
1.2.4.3 Calling Function 4 from C
1.2.4.4 Calling Function 4 from Microsoft Pascal
1.2.4.5 Calling Function 4 from Turbo Pascal
1.2.4.6 Calling Function 4 from Basic

1.2.5 FUNCTION 5 • GET BUITON PRESS INFORMATION
1.2.5.1 Calling Function 5 from Assembler
1.2.5.2 Calling Function 5 from Modula-2
1.2.5.3 Calling Function 5 from C
1.2.5.4 Calling Function 5 from Microsoft Pascal
1.2.5.5 Calling Function 5 from Turbo Pascal
1.2.5.6 Calling Function 5 from Basic

1.2.6 FUNCTION 6 • GET BUITON RELEASE INFORMATION
1.2.6.1 Calling Function 6 from Assembler
1.2.6.2 Calling Function 6 from Modula-2
1.2.6.3 Calling Function 6 from C
1.2.6.4 Calling Function 6 from Microsoft Pascal
1.2.6.5 Calling Function 6 from Turbo Pascal
1.2.6.6 Calling Function 6 from Basic

1.2.7 FUNCTION 7· SET MINIMUM & MAXIMUM X POSmON
1.2.7.1 Calling Function 7 from Assembler
1.2.7.2 Calling Function 7 from Modula-2
1.2.7.3 Calling Function 7 from C
1.2.7.4 Calling Function 7 from Microsoft Pascal
1.2.7.5 Calling Function 7 from Turbo Pascal
1.2.7.6 Calling Function 7 from Basic

1.2.8 FUNCTION 8 • SET MINIMUM & MAXIMUM y POSmON
1.2.8.1 Calling Function 8 from Assembler
1.2.8.2 Calling Function 8 from Modula-2
1.2.8.3 Calling Function 8 from C
1.2.8.4 Calling Function 8 from Microsoft Pascal
1.2.8.5 Calling Function 8 from Turbo Pascal
1.2.8.6 Calling Function 8 from Basic

1.2.9 FUNCTION 9 • DEFINE GRAPHIC CURSOR
1.2.9.1 Calling Function 9 from Assembler
1.2.9.2 Calling Function 9 from Modula-2
1.2.9.3 Calling Function 9 from C
1.2.9.4 Calling Function 9 from Microsoft Pascal
1.2.9.5 Calling Function 9 from Turbo Pascal
1.2.9.6 Calling Function 9 from Basic

1.2.10 FUNCTION 10 • DEFINE TEXT CURSOR
1.2.10.1 Calling Function 10 from Assembler
1.2.10.2 Calling Function 10 from Modula-2
1.2.10.3 Calling Function 10 from C
1.2.10.4 Calling Function 10 from Microsoft Pascal
1.2.10.5 Calling Function 10 from Turbo Pascal
1.2.10.6 Calling Function 10 from Basic

16
16
16
16
17
17
17

18
18
18
19
19
19
19

20
20
20
21
21
21
21

22
22
22
22
22
23
23

24
24
24
24
24
25
25

26
27
27
28
29
30
31

32
33
33
33
34
34
35

1.2.11 FUNCflON 11 • READ MOUSE MOTION COUNTERS
1.2.11.1 Calling Function 11 from Assembler
1.2.11.2 Calling Function 11 from Modula-2
1.2.11.3 Calling Function 11 from C
1.2.11.4 Calling Function 11 from Microsoft Pascal
1.2.11.5 Calling Function 11 from Turbo Pascal
12.11.6 Calling Function 11 from Basic

1.2.12 FUNCTION 12 • DEFINE EVENT HANDLER
1.2.12.1 Calling Function 12 from Assembler
1.2.12.2 Calling Function 12 from Modula-2
1.2.12.3 Calling Function 12 from C
1.2.12.4 Calling Function 12 from Microsoft Pascal
1.2.12.5 Calling Function 12 from Turbo Pascal
1.2.12.6 Calling Function 12 from Basic

1.2.13 FUNCTION 13 • LIGHT PEN EMUlATION MODE ON
1.2.13.1 Calling Function 13 from Assembler
1.2.13.2 Calling Function 13 from Modula-2
1.2.13.3 Calling Function 13 from C
1.2.13.4 Calling Function 13 from Microsoft Pascal
1.2.13.5 Calling Function 13 from Turbo Pascal
1.2.13.6 Calling Function 13 from Basic

1.2.14 FUNCTION 14 • LIGHT PEN EMUlATION MODE OFF
1.2.14.1 Calling Function 14 from Assembler
1.2.14.2 Calling Function 14 from Modula-2
1.2.14.3 Calling Function 14 from C
1.2.14.4 Calling Function 14 from Microsoft Pascal
1.2.14.5 Calling Function 14 from Turbo Pascal
1.2.14.6 Calling Function 14 from Basic

1.2.15 FUNCfION 15 • SET MOUSE MOTIONIPIXEL RATIO
1.2.15.1 Calling Function 15 from Assembler
1.2.15.2 Calling Function 15 from Modula-2
1.2.15.3 Calling Function 15 from C
1.2.15.4 Calling Function 15 from Microsoft Pascal
1.2.15.5 Calling Function 15 from Turbo Pascal
1.2.15.6 Calling Function 15 from Basic

1.2.16 FUNCTION 16 • CONDITIONAL HIDE CURSOR
1.2.16.1 Calling Function 16 from Assembler
1.2.16.2 Calling Function 16 from Modula-2
1.2.16.3 Calling Function 16 from C
1.2.16.4 Calling Function 16 from Microsoft Pascal
1.2.16.5 Calling Function 16 from Turbo Pascal
1.2.16.6 Calling Function 16 from Basic

1.2.19 FUNCTION 19 • SET SPEED THRESHOLD
1.2.19.1 Calling Function 19 from Assembler
1.2.19.2 Calling Function 19 from Modula-2
1.2.19.3 Calling Function 19 from C
1.2.19.4 Calling Function 19 from Microsoft Pascal
1.2.19.5 Calling Function 19 from Turbo Pascal
1.2.19.6 Calling Function 19 from Basic

v

36
36
36
36
37
37
37

38
39
39
40
41
41
41

42
42
42
42
42
43
43

46
46
46
46
46
46
47

48
48
48
48
49
49
49

50
50
50
50
51
51
51

52
52
52
52
52
53
53

vi

1.3 EGA FUNCfIONS
1.3.1 Read EGA Register
1.3.2 Write EGA Register
1.3.3 Read EGA Register Group
1.3.5 Read EGA Register List
1.3.6 Write EGA Register List
1.3.7 Reset to Default Values
1.3.8 Set the Default Values
1.3.9 EGA Functions Installed

CHAPTER 2
THE WGIMOUSE CURSOR DESIGNER

2.1 FILES

2.2 USING LCD

2.3 THE MOUSE BUTTONS

2.4 THE ICONS

2.5 MAKING SKELETONS FOR OTHER lANGUAGES
2.5.1 LCD Skeleton Variables
2.5.2 Example 1

The Skeleton for LOGITECH MODULA-2
2.5.3 Example 2

The Skeleton for Microsoft C

54
54
55
55
56
56
56
56
57

59

59

59

59

60

62
62

63

64

CHAPTERl
LOGlTECH MOUSE DRIVER FUNCTIONS

This manual describes the functions of the standard mouse driver, provides descriptions of the
graphics and text cursors, and gives examples of how to use each of the functions from 8086
assembler and high-level languages.

The software protocols used by the LOGITECH MOUSE driver are compatible with the standard
driver protocols of Microsoft Corp. as documented in the installation and operation manual
published by Microsoft Corp. entitled Microsoft (R) Mouse User's Guide for IBM Personal
Computers.

This reference section applies to the LOGITECH Mouse Driver (MOUSE. COM and MOUSE.SYS)
Release 3.00 and above.

Interface modules are available for a variety of languages. The source code of the interfaces is
included in the diskette accompanying this manual.

The floppy diskette that comes with the LOGITECH MOUSE PROGRAMMERS Toolkit contains
subdirectories (MOD, C, TURBO, MSP) which contain the source code of programs to interface
the Mouse Driver with a Modula-2, C, Turbo Pascal, Microsoft Pascal program respectively.

The examples have been written using the Microsoft 8086 Assembler, the LOGITECH MODULA·
2 compiler, the Microsoft C compiler, the Borland Turbo Pascal compiler, the Microsoft Pascal
compiler the GWBASIC system and the mM BASICA system. The interfaces may require some
adaptations for other compilers, memory models of the 8086, or environments.

2 WGITECH MOUSE Driver Functions

1.1 PROGRAM INTERFACE

1.1.1 Programming Interface for Assembler

The mouse driver functions are called through a software interrupt, number 51 (33H). The
parameters and returned values are passed in the registers. Register AX is always used for the
function number.

1.1.2 Programming Interface for Modula-2

The module MOUSE provides the interface to the mouse driver for a Modula-2 program compiled
with the LOGITECH MODULA-2 system. Compile MOUSE.DEF and MOUSE.MOD, and
include the necessary IMPORT list.

1.1.3 Programming Interface for C

The C interface is written in Microsoft Assembler for the Microsoft C compiler using the large
model of the 8086. The interface is contained in the file MIFASM. It needs to be assembled and
the resulting .om object file linked to the application. The interface for other compilers will not
differ significantly, but it is advisable to look carefully at the source given in MIF ASM.

1.1.4 Programming Interface for Microsoft Pascal

The Microsoft Pascal interface is written in Assembler for the Microsoft Pascal compiler using the
large memory model of the 8086. The interface is contained in the file P ASMIF ASM. It needs to
be assembled and the resulting .om object file linked to the application.

1.1.5 Programming Interface for Turbo Pascal

MOUSE.P AS contains the types, constants, variables, procedures needed to interface the mouse
driver from a Turbo Pascal Program. The Pascal code should be included at the start of the Turbo
Pascal application program.

Program Interface 3

1.1.6 Programming Interface From the BASIC Interpreter

It is possible to make a mouse driver function call from a BASIC program running under the IBM
BASICA system or the GWBASIC interpreter. The following shows how to make these calls.

Insert an initialization sequence as follows:

10 DEF SEG=O
20 MSEG=256*PEEK(51*4+3)+PEEK(51*4+2)
30 MOUSE=256*PEEK(51*4+1)+PEEK(51*4)+2
40 DEF SEG=MSEG

Be sure that the statements appear at the beginning of the program before the first call to a mouse
function. Then use the CALL statement to make the call.

CALL MOUSE(M1X,M2X,M3%,M4X)

Where MOUSE is the variable containing the BASIC entry offset of the mouse software, and
Ml %, M2%, M3%, and M4% are the names of the integer variables you have chosen for
parameters in this call. They correspond to the values for AX, BX, CX, and DX which are
described in this document. As an example:

100 ISet minimum and maximum horizontal position to
1(320,100)

200 M1%=7 'function number is 7
300 M3%=0 Iminimum coordinate
400 M4%=639 lmaximum coordinate
500 CALL MOUSE(M1%,M2%,M3%,M4%)

Note : There are two entry points in the driver, the first is the interrupt entry point (which is the
address found in the interrupt vector table entry for interrupt 51) and the second is the BASIC (or
FAR CALL) entry point, which is 2 bytes after the interrupt entry point. The second entry point is
necessary so that the mouse driver functions can be called as BASIC subroutines using the CALL
statement or using a far call from another language.

4 LOGITECH MOUSE Driver Functions

1.1.7 Notes

Programs which intercept the video i/o software interrupt (int 10h) should exercise utmost care,
and the following guidelines should be observed:

• The program should guarantee that video mode changes (function 0) are intercepted by
the mouse driver so that the driver can display the correct type of cursor (text or graphics).
The mouse driver guarantees consistency of the screen contents to programs that write on
the screen via int 10h (or via DOS).

• Some programs write directly into the video memory. If this is the case the program
should use function 2 (hide cursor) or 16 (conditional hide cursor) to tum off the cursor
before writing to the screen. When finished writing, function 1 (show cursor) should be
called to redisplay the cursor.

• To check for the presence in memory of the LOGITECH mouse driver one should check
for a "signature" at offset 16 (10H) from the entry point of software interrupt 51 (33H).
The signature is the string

"LOGITECH MOUSE DRIVER".

• The presence of the mouse driver must be checked for by examining the interrupt vector
entry for interrupt 51 (33H). Use DOS function 35H (Get Vector) or check directly the
offset and segment value at address OOOO:OOCCH. The vector may be uninitialized (value is
zero), in which case the mouse driver has not been loaded and must not be called. If
initialized, function 0 of the driver will return a flag if the mouse (or driver) is present.

Functions 5

1.2 THE STANDARD MOUSE DRIVER FUNCl'IONS

The following is a list of the mouse driver functions and their assigned number. The number is to
be passed in register AX when calling interrupt 51 (33H). Each is described in its own section
further in this chapter.

Function Name
F1ag Reset (Mouse Initialization)
Show Cursor
Hide Cursor
Get Mouse Position & Button Status
Set Mouse Cursor Position
Get Button Press Information
Get Button Release Information
Set Minimum & Maximum X Position
Set Minimum & Maximum Y Position
Define Graphic Cursor
Define Text Cursor
Read Mouse Motion Counters
Define Event Handler
Light Pen Emulation Mode On
Light Pen Emulation Mode Off
Set Mouse MotionIPixel Ratio
Conditional Hide Cursor
Set Speed Threshold

Number
o (OOH)
1 (01H)
2 (02H)
3 (03H)
4 (04H)
5 (05H)
6 (06H)
7 (07H)
S (OSH)
9 (09H)
10 (OAH)
11 (OBH)
12 (OCH)
13 (ODH)
14 (OEH)
15 (OFH)
16 (10H)
19 (13H)

6 LOGITECH MOUSE Driver Functions

1.2.0 FUNCfION 0 • RESET

This function checks the presence of the mouse, resets it, and initializes the driver. All current
features are reset to their initial values. Return parameters are mouse status (0 if the mouse is not
connected, -1 if connected) and the number of buttons on the mouse.

Input

Output

The initial values are:

Cursor:

AX=O

AX = mouse status
BX = number of buttons

invisible
arrow in graphics mode
software cursor in text mode

Event Handler: NIL
Minimum X Position: 0
Maximum X Position: 639
Minimum Y Position: 0
Maximum Y Position: 199

Function 0 • Reset 7

1.2.0.1 Calling Reset (0) from Assembly Language

After checking that the mouse driver is loaded (interrupt vector not zero), call function 0 and
check for the returned value. It is recommended to check for the returned value zero, which
indicates that no mouse or driver is present (AX remains zero).

Check if the interrupt vector is set correctly

MOV AL, 33H
MOV AH, 35H Get Vector
INT 21H ; From DOS
CMP BX, 0 Is offset in BX zero?
JNZ MOOSE_OK
MOV AX, ES
CMP AX, 0 Is segment in ES zero?
JNZ MOUSE_OK

You get here if the mouse interrupt is not initialized

JMP

Now check for the presence of the mouse (and driver), and reset
the driver and the mouse

MOUSE_OK:
MOV
INT
TEST
JNZ
JMP

AX, 0
33H
AX,AX
MOOSE_READY
NOj4ooSE

1.2.0.2 Calling Reset (0) from Modula-2

Zero in AX means no mouse

Mouse.DriverInstalled already indicates whether the interrupt vector has been initialized.

MODULE test;
IMPORT Mouse;
VAR

mouseStatus : INTEGER;
noButtons : CARDINALi

BEGIN
mouseStatus := Oi
IF Mouse.DriverInstalled THEN

Mouse.FlagReset (mouseStatus, noButtons)i

IF mouseStatus = 0 THEN
(* Mouse not available *)

END
END

END test.

8

1.2.0.3 Calling Reset (0) from C

testO
(

)

int mouseStatus • 0;
unsigned noButtons;

if Driverlnstalled()
{

)

FlagReset (&mouseStatus, &noButtons);
if (mouseStatus c= 0)

(/* mouse not available */)

1.2.0.4 Calling Reset (0) from Microsoft Pascal

program test;

function Drfverlnstalled: boolean; EXTERN;
procedure FlagReset(VARS mouseStatus,

WGITECH MOUSE Driver Functions

numberOfButtons: Integer); EXTERN;

var
mouseStatus, noButtons : Integer;

begin
if Driverlnstalled () then
begin

end
end.

FlagReset (mouseStatus, noButtons);
if mouseStatus = 0 then

(* mouse not available *)

1.2.0.5 Calling Reset (0) from Turbo Pascal

program test;
($ i mouse. pas)
var

mouseStatus, noButtons Integer;

begin
if Driverlnstalled() then
begin

end
end.

FlagReset (mouseStatus, noButtons)i

if mouseStatus = 0 then
(* mouse not available *)

Function 0 - Reset

1.2.0.6 Calling Reset (0) from Basic

10 DEF SEG c 0
20 MSEG c 256*PEEK(51*4+3)+PEEK(51*4+2)
30 IF MSEG = 0 THEN 90
40 ENTRY c 256*PEEK(51*4+1)+PEEK(51*4)
50 DEF SEG = MSEG

60 IF PEEK(ENTRY) = 207 THEN 90
70 GOTO 100
90 PRINT IIMouse Driver Not Loaded" END
100 PRINT IIMouse Driver Loaded OK"

200 MOUSE = ENTRY+2 I basic entry point
210 M1% = 0
220 CALL MOUSE (M1%,M2%,M3%,M4%)
230 IF M1% = -1 THEN 290
240 PRINT "Mouse not responding" : END
290 I Mouse is connected and responding - continue
500 I the rest of your program

9

10 LOGITECH MOUSE Driver Functions

1.2.1 FUNCTION 1 • SHOW CURSOR

Show Cursor makes the mouse driver cursor visible. The cursor shape is as defined by function 9
(Define Graphics Cursor) or 10 (Define Text Cursor) according to the current video mode.

Refer to function 2 (Hide Cursor) for information on how many calls to Show Cursor are needed
to make the cursor visible after calling Hide Cursor.

Input
AX=1

Output
none

1.2.1.1 Calling Show Cursor (1) from Assembler

SHOW_CURSOR:
MOV AX, 1
INT 33H

1.2.1.2 Calling Show Cursor (1) from Modula-2

MODULE test;
IMPORT Mouse;
BEGIN

Mouse.ShowCursor;
END test.

1.2.1.3 Calling Show Cursor (1) from C

test ()
{

ShowCursor ();
}

1.2.1.4 Calling Show Cursor (1) from Microsoft Pascal

program test;

procedure ShowCursor; EXTERN;

begin

ShowCursor;
end.

Function 1 • Show Cursor

1.2.1.5 Calling Show Cursor (1) from Turbo Pascal

program test;
{Si mouse.pas}

begin
ShowCursor;

end.

1.2.1.6 Calling Show Cursor (1) from Basic

200 • assuming set up 8S in A.2.1
210 M1X = 1
220 CALL MOUSE (M1X, M2%, M3%, M4%)

11

12 LOGITECH MOUSE Driver Functions

1.2.2 FUNCTION 2 • HIDE CURSOR

This function makes the cursor invisible. Although the cursor is hidden it still tracks the motion of
the mouse, changing position as the mouse changes position.

The Hide Cursor function is cumulative. The cursor visibility status can be seen as a counter which
is 1 when the cursor is visible, and 0 or negative when the cursor is invisible. Hide Cursor
decrements the status, making the cursor invisible when going from 1 to O. Show Cursor
increments the status, with a maximum value of 1. When the status reaches 1, the cursor is made
visible. This means that two calls to Hide Cursor will be canceled by two calls to Show Cursor.

Input
AX=2

Output
none

1.2.2.1 Calling Function 2 from Assembler

HIDE_CURSOR:
MOV AX, 2
INT 33H

1.2.2.2 Calling Function 2 from Modula-2

MODULE testi
IMPORT Mousei
BEGIN

Mouse.HideCursori
END test.

1.2.2.3 Calling Function 2 from C

testO
{

HideCursor()i
}

1.2.2.4 Calling Function 2 from Microsoft Pascal

program test;
procedure HideCursoriEXTERNi
begin

HideCursori
end.

Function 2 • Hide Cursor

1.2.2.5 Calling Function 2 from Turbo Pascal

program test;
{$ i mouse. pas}

begin
HideCursor;

end.

1.2.2.6 Calling Function 2 from Basic

200 I assuming set up as in A.2.1
210 M1X = 2
220 CALL MOUSE (M1X, M2%, M3%, M4%)

13

14 LOGITECH MOUSE Driver Functions

1.2.3 FUNCTION 3 - GET MOUSE POSmON & BUTTON STATUS

This function reports the status of the buttons and the position of the cursor horizontally and
vertically. The button status is a single integer value with bit 0 representing the left button, bit 1
the right and bit 2 the middle. When a button is down the corresponding bit is 1 and when a
button is up the bit is O.

Input

Output

AX=3

BX = button status
ex = horizontal cursor position
DX = vertical cursor position

1.2.3.1 Calling Function 3 from Assembler

GET_pas_BuT:
MOV AX, 3
INT 33H

1.2.3.2 Calling Function 3 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

buttonSet : Mouse.ButtonSet;
horizontal, vertical : INTEGER;

BEGIN
Mouse.GetPosBut (buttonSet, horizontal, vertical);

END test.

1.2.3.3 Calling Function 3 from C

teste)
{

>

struct {
unsigned leftButton 1· ,
unsigned rightButton 1;
U'lSigned middleButton : 1;

} *buttonStatus;

int *horizontal, *vertical;

GetPosBut (buttonStatus, horizontal, vertical);

Function 3 • Get Position

1.2.3.4 Calling Function 3 from Microsoft Pascal

program test;
procedure GetPosBut (VARS buttonStatus, horizontal, vertical :

var
buttonStatus, horizontal, vertical Integer;

begin
GetPosBut (buttonStatus, horizontal, vertical);

end.

1.2.3.5 Calling Function 3 from Turbo Pascal

program test;
($ i mouse. pas)

var
buttonStatus, horizontal, vertical: Integer;

begin
GetPosBut (buttonStatus, horizontal, vertical);

end.

1.2.3.6 Calling Function 3 from Basic

200 • assuming set up as in A.2.1
210 M1X = 3
220 CALL MOUSE (M1X, M2X, M3X, M4X)

Integer);EXTERN;

230 IF M2X AND 1 THEN PRINT "Left Button Pressed"
240 IF M2X AND 2 THEN PRINT "Right Button Pressed"
250 IF M2X AND 4 THEN PRINT "Middle Button Pressed"

15

16 LOGITECH MOUSE Driver Functions

1.2.4 FUNCTION 4 - SET MOUSE CURSOR POSITION

This function sets the cursor position to the specified horizontal and vertical location on the
screen. The new values must be within the specified ranges for the mode of the screen (see Chapter
3, section 5 for table of coordinates). If you are using a text screen mode, the values are rounded to
the nearest values permitted by the screen for horizontal and vertical positions (ie to character
boundaries).

Input

Output

AX=4
ex = new horizontal cursor position
DX = new vertical cursor position

none

1.2.4.1 Calling Function 4 from Assembler

SET_CURSOR_POS:
MOV AX, 4

MOV CX, HORIZ
MOV DX, VERT
INT 33H

1.2.4.2 Calling Function 4 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

horizontal, vertical INTEGER;

BEGIN
Mouse.SetCursorPos (horizontal, vertical);

END test.

1.2.4.3 Calling Function 4 from C

testO
{

int horizontal, vertical;

SetCursorPos (horizontal, vertical);
}

Function 4 • Set Cursor Position

1.2.4.4 Calling Function 4 from Microsoft Pascal

program test;

procedure SetCursorPos (horizontal, vertical Integer)iEXTERNi

var
horizontal, vertical Integeri

begin
SetCursorPos (horizontal, vertical);

encl.

1.2.4.5 Calling Function 4 from Turbo Pascal

program testi
{Si mouse.pas}

var
horizontal, vertical Integer;

begin
SetCursorPos (horizontal, vertical);

end.

1.2.4.6 Calling Function 4 from Basic

200 I assuming set up as in A.2.1
210 M1% = 4
220 M3% = 0 I horizontal
230 M4% = 0 I vertical
240 CALL MOUSE (M1%, M2%, M3%, M4%)

17

18 LOGITECH MOUSE Driver Functions

1.2.5 FUNCI'lON 5 • GET BU'ITON PRESS INFORMATION

This function returns a count of button presses since the last call to this function. It also returns
the horizontal and vertical position of the cursor at the time of the last press of the specified button
and the status of the other buttons at that moment.

Input

Output

AX=S
BX = button of interest (0: Left, 1: Right, 2: Middle)

AX = button status
BX = number of button presses on specified button
ex = horizontal cursor position at last press
DX = vertical cursor position at last press

Notes: The BX register input parameter indicates which button the report is to be made
on.
The AX register, on return from the function, contains the current status of all the mouse
buttons. Each button is represented by a single bit, 1 => button pressed.

AX : Bit 0 = Left Button
Bit 1 = Right Button
Bit 2 = Middle Button

1.2.5.1 Calling Function 5 from Assembler,

GET_BUTTON_PRESS:
MOV AX, 5
MOV BX, BUTTON
INT 33H

1.2.5.2 Calling Function 5 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

button : Mouse.Button;
buttonStatus : Mouse.ButtonSet;
buttonPressCount : CARDINAL;
horizontal, vertical : INTEGER;

BEGIN
Mouse.GetButPres (button, buttonStatus, buttonPressCount, horizontal, vertical);

END test.

Function 5 • Get Button Press Info

1.2.5.3 Calling Function 5 from C

testO
{

int button, buttonStatus, buttonPressCount, horizontal, vertical;

GetButPres (button, &buttonStatus, &buttonPressCount, &horizontal, &vertical);
)

1.2.5.4 Calling Function 5 from Microsoft Pascal

program test;

19

procedure GetButPres (button Integer;VARS buttonStatus, buttonPressCount, horizontal, vertical
Integer);EXTERN;

var
button, buttonStatus, buttonPressCount, horizontal, vertical : Integer;

begin
GetButPres (button, buttonStatus, buttonPressCount, horizontal, vertical);

end.

1.2.5.5 Calling Function 5 from Turbo Pascal

program test;
($ i mouse. pas)

var
button, buttonStatus, buttonPressCount, horizontal, vertical : Integer;

begin
GetButPres (button, buttonStatus, buttonPressCount, horizontal, vertical);

end.

1.2.5.6 Calling Function 5 from Basic

200 I assuming set up as in A.2.1
210 M1X = 5
220 M2X = 1 I Right Button
230 CALL MOUSE (M1%, M2%, M3%, M4%)
240 IF (M1% AND 2) THEN PRINT IIRight button pressedll

20 LOGITECH MOUSE Driver Functions

1.2.6 FUNCflON 6 • GET BUTTON RELEASE INFORMATION

This function returns a count of button releases since the last call to this function. It also returns
the horizontal and vertical position of the cursor at the time of the last release of the specified
button and the status of the other buttons at that moment.

Input

Output

AX=6
BX = button of interest (0 :Left, 1 :Right, 2 :Middle)

AX = button status
BX = number of button releases on specified button
ex = horizontal cursor position at last release
DX = vertical cursor position at last press

Input: The BX register input parameter indicates which button the report is to be made on.

Output: The AX register, on return from the function, contains the current status of all the mouse
buttons. Each button is represented by a single bit, 1 => button pressed.

AX : Bit 0 = Left Button
Bit 1 = Right Button
Bit 2 = Middle Button

1.2.6.1 Calling Function 6 from Assembler

GET_BUT_REL:
MOV AX, 6
MOV BX, BUTTON
INT 33H
MOV BUTTON_STATUS, AX
MOV BUTTON_REL_COUNT, BX
MOV HORIZ, CX
MOV VERT, DX

1.2.6.2 Calling Function 6 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

button : Mouse.Button;
buttonStatus : Mouse.ButtonSet;
buttonReleaseCount : CARDINAL;
horizontal, vertical : INTEGER;

BEGIN
Mouse. GetButRel (button, buttonStatus, buttonReleaseCount, horizontal, vertical);

END test.

Function 6 • Get Button Release Info

1.2.6.3 Calling Function 6 from C

testO
{

tnt button, buttonStatus. buttonReleaseCount, horizontal, vertical;

GetButRel (button, &buttonStatus, &buttonReleaseCount, &horizontal, &vertical);
)

1.2.6.4 Calling function 6 from Microsoft Pascal

program test;
procedure GetButRel (button Integer;VARS buttonStatus, buttonReleaseCount,

horizontal, vertical : Integer);EXTERN;

var
button, buttonStatus, buttonReleaseCount, horizontal, vertical : Integer;

begin
GetButRel (button, buttonStatus, buttonreleasecount, horizontal, vertical);

end.

1.2.6.5 Calling Function 6 from Turbo Pascal

program test;
(Si mouse.pas)

var
button, buttonStatus, buttonReleaseCount, horizontal, vertical : Integer;

begin
GetButRel (button, buttonStatus, buttonreleasecount, horizontal, vertical);

end.

1.2.6.6 Calling Function 6 from Basic

200 I assuming set up as in A.2.1
210 M1% = 6
220 M2X = 2 • Middle Button
230 CALL MOUSE (M1%, M2%, "3%, M4%)
240 IF (M1% AND 4) THEN PRINT IIMiddle button released ll

21

22 LOGITECH MOUSE Driver Functions

1.2.7 FUNCI10N 7 • SET MINIMUM & MAXIMUM X POSmON

This function sets the minimum and maximum horizontal cursor positions on the screen. All
cursor movement is restricted to this area once the area is set.

If the cursor is outside the defined area when the call is made, it moves to just inside the area. If
the minimum value is greater than the maximum, the two values are exchanged.

Input

Output

AX=7
ex = new minimum horizontal cursor position
DX = new maximum horizontal cursor position

none

1.2.7.1 Calling Function 7 from Assembler

SET_HORIZONTAL_LIMITS:
MOV AX, 7
MOV ex, MIN_POS
MOV ox, MAX_POS
INT 33H

1.2.7.2 Calling Function 7 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

minPos, maxPos INTEGER;

BEGIN
Mouse.SetHorizontalLimits (minPos, maxPos);

END test.

1.2.7.3 Calling Function 7 from C

testO
int minPos, maxPosi
{

SetHorizontalLimits (minPos, maxPos);
}

1.2.7.4 Calling Function 7 from Microsoft Pascal

program test;
procedure SetHorizontalLimits (minPos, maxPos : Integer)iEXTERN;
begin

SetVerticalLimits (minPos, maxPos)i
end.

Function 7 • Set Min & Max X Position

1.2.7.5 Calling Function 7 from Turbo Pascal

program test;
{Si mouse.pas}

var
minPos, maxPos Integer;

begin
SetHorizontalLimits (minPos, maxPos)i

end.

1.2.7.6 Calling Function 7 from Basic

200 I assuming set up as in A.2.1
210 M1X = 7
220 M3X = 100 I Min X value 100
230 M4X = 200 • Max X value 200
240 CALL MOUSE (M1X, M2X, M3X, M4X)

23

24 LOGITECH MOUSE Driver Functions

1.2.8 FUNCflON 8 • SET MINIMUM & MAXIMUM Y POSmON

This function sets the minimum and maximum vertical cursor positions on the screen. All cursor
movement is restricted to this area once the area is set.

If the cursor is outside the defined area when the call is made, it moves to just inside the area. If
the minimum value is greater than the maximum, the two values are exchanged.

Input

Output

AX=8
ex = new minimum vertical cursor position
DX = new maximum vertical cursor position

none

1.2.8.1 Calling Function 8 from Assembler

SET_VERTICAL_LIMITS:
MOV AX, 8
MOV CX, MIN_POS
MOV DX, MAX_POS
INT 33H

1.2.8.2 Calling Function 8 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

minPos, maxPos INTEGER;

BEGIN
Mouse.SetVerticalLimits (minPos, maxPos);

END test.

1.2.8.3 Calling Function 8 from C

testO
int minPos, maxPos;
{

SetVerticalLimits (minPos, maxPos);
}

1.2.8.4 Calling Function 8 from Microsoft Pascal

program test;
procedure SetVerticalLimits (minPos, maxPos : Integer);EXTERN;
begin

SetVerticalLimits (minPos, maxPos);
end.

Function 8 - Set Min & Max Y Position

1.2.8.5 Calling Function 8 from Turbo Pascal

program test;
{Si mouse.pas}
var

minPos, maxPos : Integer;
begin

SetVerticalLimfts (mfnPos, maxPos);
end.

1.2.8.6 Calling Function 8 from Basic

200 I assuming set up as in A.2.1
210 M1% = 8
220 M3% = 50 I Min Y value 50
230 M4% = 150 I Max Y value 150
240 CALL MOUSE (M1%, M2%, M3%, M4%)

25

26 LOGITECH MOUSE Driver Functions

1.2.9 FUNCTION 9 • DEFINE GRAPHIC CURSOR

Graphics Cursor

The graphics cursor as displayed on the screen is an array of pixels (16x16 or 8x8 depending on
screen mode). It is defined by two 16x16 arrays of bits called the screen mask and the cursor mask.

The screen mask is ANDed with the screen contents. The cursor mask is then XORed with the
result.

The operational behavior of these bit arrays are summarized by the following table:

screen mask cursor mask resulting screen bit

0 0 0
0 1 1
1 0 UNCHANGED
1 1 INVERTED

Hot Spot : When a mouse function refers to the graphics cursor location it is referring to the point
on the screen that lies directly under the cursor's target area The target area is the point in the
cursor block that the mouse software uses to determine the cursor coordinates. This point is
generally referred to as the hot spot of the cursor.

Define Graphic Cursor determines what the shape and color of the cursor will be when it is in
graphics mode, and it identifies the center of the cursor. The cursor block is a 16 X 16 bit pattern.
The cursor hot spot values must be within the range of -16 to 16. They define one pixel inside or
near the cursor block.

The default graphics cursor (i.e. before function 9 is called) is an arrow, with the hot spot at the
upper left-hand comer.

Input

Output

AX=9
BX = horizontal cursor hot spot
ex = vertical cursor hot spot
ES:DX = address of screen and cursor mask

none

The screen and cursor mask is made of 32 words (16 bits), the first group of 16 words being the
screen mask, and the second group the cursor mask.

Function 9 • Define Grapbic Cursor

1.2.9.1 Calling Function 9 from Assembler

Cross_CURSOR:
OW -4081, -4081,-4081, 7224, 0, 0
OW 0, 7224, -4081, -4081, -4081, -1
OW -1, -1, -1, -1, 0, 2016
OW 384, 384, 16no, 32766, 16no, 384
OW 384, 2016, 0, 0, 0, 0
OW 0, 0

HOT_SPOT_X EQU 7
HOT_SPOT_Y EQU 5

SET_Cross_CURSOR:
NOV AX, 9

MOV BX, HOT_SPOT_X
MOV CX, HOT_SPOT_Y
PUSH OS
POP ES
LEA OX, Cross_CURSOR
INT 33H

1.2.9.2 Calling Function 9 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

cursor : Mouse_GraphicCursor;
BEGIN

WITH cursor DO
screenMask[O] := BITSET(2016); screenMask[1] := BITSET(960)i
screenMask[2] := BITSET(-32383)i screenMask[3] := BITSET(-16381)i
screenMask[4] := BITSET(-818S); screenMask[S] := BITSET(-4081)i
screenMask[6] := BITSET(-818S); screenMask[7] := BITSET(-16381)i
screenMask[8] := BITSET(-32383); screenMask[9] := BITSET(960);
screenMask[10] := BITSET(2016)i screenMask[111 := BITSET(-1);
screenMask[12] := BITSET(-1); screenMask[13] := BITSET(-1);
screenMask[14] := BITSET(-1)i screenMask[1S] := BITSET(-1);
cursorMask[O] := BITSET(O)i cursorMask[1] := BITSET(30750);
cursorMask[2] := BITSET(15420); cursorMask[3] := BITSET(7800)i
cursorMask[4] := BITSET(4080); cursoHMask[S] := BITSET(2016);
cursorMask[6] := BITSET(4080); cursorMask[71 := BITSET(7800);
cursorMask[8] := BITSET(15420); cursorMask[9] := BITSET(30750);
cursorMask[10] := BITSET(O); cursorMask[11] := BITSET(O);
cursorMask[12] := BITSET(O); cursorMask[13] := BITSET(O);
cursorMask[14] := BITSET(O); cursorMask[1S] := BITSET(O);
hotX := 7; hotY := 5;

END;
Mouse.SetGraphicCursor (cursor);

END test.

27

28

1.2.9.3 Calling Function 9 from C

maine)
{

graphicCursor_type XCursor ~ {

LOGITECH MOUSE Driver Functions

{4080, 2016, -31807, -15997, -8185, -4081, -2017, -4081,
-8185, -15997, -31807, 2016, 4080, -1, -1, -1,
0, 28686, 14364, 7224, 3696, 2016, 960, 2016,
3696, 7224, 14364, 28686, 0, 0, 0, 0,
7, 6

SetGraphicCursor (&XCursOr)i
)

)i

Function 9 • Define Graphic Cursor

1.2.9.4 Calling Function 9 from Microsoft Pascal

program test;

type
cursortype = record

screenMask,
cursorMask array[0 •• 15] of integer;
hotX, hotY : integer;

end;

procedure SetGraphicCursor (VARS cursor cursortype);EXTERN;

procedure SetCursorToX;
VAR

cursor : cursortype;
begin
with cursor do
begfn

screenMask[O] :- 4080; 8creenMask[1] := 2016;
screenMask[2] := -31807; screenMask[3] := -15997;
screenMask[4] := -8185; screenMask[5] := -4081;
screenMask[6] := -2017; screenMask[71 := -4081;
screenMask[8] := -8185; screenMask[9] := -15997;
screenMask[10] := -31807; screenMask[11] := 2016;
screenMask[12] := 4080; screenMask[13] := -1;
screenMask[14] := -1; screenMask[15] := -1;

cursorMask[O] := 0; cursorMask[1] := 28686;
cursorMask[2] := 14364; cursorMask[3] := 7224;
cursorMask[4] := 3696; cursorMask[5] := 2016;
cursorMask[6] := 960; cursorMask[71 := 2016;
cursorMask[8] := 3696; cursorMask[9] := 7224;
cursorMask[10] := 14364; cursorMask[11] := 28686;
cursorMask[12] := 0; cursorMask[13] := 0;
cursorMask[14] := 0; cursorMask[1S1 := 0;

hotX := 0;
hotY := 0;

end; (* with *)

SetGraphicCursor (cursor);
end;
begin

SetCursorToX;
end.

29

30

1.2.9.5 Calling Function 9 from Turbo Pascal

program test;

(Si mouse.pas) (* LOGITECH MOUSE Turbo Pascal Interface *)

procedure SetCursorToCross;
const

CrossCursor : GraphicCursor =

WGITECH MOUSE Driver Functions

(screenMask: (-4081, -4081, -4081, 7224, 0, 0, 0, 7224,
-4081, -4081, -4081, -1, -1, -1, -', -1)i

begin

cursorMask: (0, 2016, 384, 384, 16770, 32766, 16770, 384,
384, 2016, 0, 0, 0, 0, 0, O)i

hotX: 7;
hotY: 5)i

SetGraphicCursor (Crosscursor)i
endi

begin
HiResi
ShowCursori
SetCursorToCrossi

end_

Function 9 • Define Graphic Cursor

1.2.9.6 Calling Function 9 from Basic

190 I assuming setup as in A.2.1
200 I Set the cursor to Cross
210 I (this code generated automatically by the
215 I LOGITECH MOUSE Cursor Design program (LCD»
220
230 CURSOR%(O,O) = -1
240 CURSOR%(1,0) = -4081
250 CURSOR%(2,0) = -4081
260 CURSOR%(3,0) = -4081
270 CURSOR%(4,0) = 7224
280 CURSOR%(5,0) = 0
290 CURSOR%(6,0) = 0
300 CURSOR%(7,0) = 0
310 CURSOR%(8,0) = 7224
320 CURSOR%(9,0) = -4081
330 CURSOR%(10,0) = -4081
340 CURSOR%(11,0) = -4081
350 CURSOR%(12,0) = -1
360 CURSOR%(13,0) = -1
370 CURSOR%(14,0) = -1
380 CURSOR%(15,0) = -1
390
400 CURSOR%(0,1) = 0
410 CURSOR%(1,1) = 0
420 CURSOR%(2,1) = 2016
430 CURSOR%(3,1) = 384
440 CURSOR%(4,1) = 384
450 CURSOR%(5,1) = 16770
460 CURSOR%(6,1) = 32766
470 CURSOR%(7,1) = 16770
480 CURSOR%(8,1) = 384
490 CURSOR%(9,1) • 384
500 CURSOR%(10,1) = 2016
510 CURSOR%(11,1) = 0
520 CURSOR%(12,1) • 0
530 CURSOR%(13,1) = 0
540 CURSOR%(14,1) = 0
550 CURSOR%(15,1) = 0
560
570 M1% = 9
580 M2% = 7
590 M3% = 6
600 CALL MOUSE (M1%, M2%, M3%, CURSOR%(O,O»

31

32 WGITECH MOUSE Driver Functions

1.2.10 FUNCfION 10 • DEFINE TEXT CURSOR

The text cursor is a cursor that can be used when the video is in one of the text modes. Two kinds
of text cursors are supported: a hardware text cursor and a software text cursor (for more detailed
information on the text cursor see Chapter 3 section 6)

The hardware text cursor is the cursor actually placed on the screen by the video controller itself. It
is defined in terms of the scan lines of the character cell numbered from 0 starting from the top
scan line. The numbers of scan lines on a character cell depends on the actual video controller and
monitor (see the controller documentation for details).

The software text cursor is a character or a character attribute that replaces and/or modifies the
character cell on the screen where it is positioned.

The behavior of this cursor is defined by two 16-bit values.

The format of the two values is the following:

BIT DESCRIPTION

15 blinking (1) or non blinking (0) character
14-12 background color
11 high intensity (1) or medium intensity (0)
10-8 foreground color
7-0 character code

The two values are called the screen mask and the cursor mask. The screen mask is used to
determine which of the character attributes are preserved (it is ANDed with the screen character
and attribute). The cursor mask is used to determine which of the characteristics are changed by
the cursor (it is XORed with the result of the previous operation).

The BX input register selects whether the software or hardware cursor is used by the mouse driver.

If the hardware cursor is selected (BX = 1), the ex and DX input registers should contain
the first and last scan lines of the cursor which will be shown on the screen. The range of
these scan line values depends on the display adapter of the computer (0 .. 7 for mM
monochrome adapter, 0 .. 14 for mM CGA - see Chapter 3, section 5 for further details).

If the software text cursor is selected (BX = 0), ex and DX specify the screen and cursor
masks.

Input

Output

AX=10
BX = select cursor (0 -> software cursor, 1 -> hardware cursor)
ex = screen mask value/scan line start
DX = cursor mask value/scan line stop

none

Function 10 - Define Text Cursor

1.2.10.1 Calling Function 10 from Assembler

SET_TEXT_CURSOR:
NOV AX, 10
NOV BX, 0
NOV CX, 077FFH
NOV DX, 07718H
INT 33H

1.2.10.2 Calling Function 10 from Modula-2

PROCEDURE SetTextCursorToArrowi
CONST

UPARROW = 018Hi

BEGIN

BLANK = OHi
SCREENMASKATTR = 077Hi
CURSORMASKA TTR = 077H i
SOFTWARECURSOR = OHi

33

Mouse.SetTextCursor (SOFTWARECURSOR,SCREENMASKATTR*256+BLANK, CURSORMASKATTR*256+UPARROW);
END SetTextCursorToArrow;

1.2.10.3 Calling Function 10 from C

testO
(

SetTextCursorToArrow()
{

)

)

int UPARROW = Ox018;
int BLANK = OXOi
int SCREENMASKATTR = Ox077;
i nt aJRSORMASKA TTR = Ox077;
int SOFTWARECURSOR = OxO;

SetTextCursor (SOFTWARECURSOR, SCREENMASKATTR*256+BLANK,
CURSORMASKATTR*256+UPARROW);

34

1.2.10.4 Calling Function 10 from Microsoft Pascal

program test;
procedure SetTextCursor (selectedCursor,

screenMaskORscanStart,
cursorMaskORscanStop : Integer

);EXTERNi

procedure SetTextCursorToArrow;
const

UPARROW = 018Hi
BLANK = OH;
SCREENMASKATTR = 077Hi
CURSORMASKATTR = 077H;
SOFTWARECURSOR = OH;

begin

LOGITECH MOUSE Driver Functions

Set Text Cursor (SOFTWARECURSOR, SCREENMASKATTR*256+BLANK,
CURSORMASKATTR*256+UPARROW);

end;

begin
SetTextCursorToArrow;

end.

1.2.10.S Calling Function 10 from Turbo Pascal

program test;
{Si mouse.pas} (* LOGITECH MOUSE Turbo Pascal Interface *)

procedure SetTextCursorToArrow:
const

UPARROW = 018H:
BLANK = OH;
SCREENMASKATTR = 077H:
CURSORMASKATTR = 077H:
SOFTWARECURSOR = OH:

begin

end:

SetTextCursor (SOFTWARECURSOR, SCREENMASKATTR*256+BLANK,
CURSORMASKATTR*256+UPARROW):

begin

SetTextCursorToArrow:
end.

Function 10 • Define Text Cursor

1.2.10.6 Calling Function 10 from Basic

200 I assuming setup as in A.2.1
210 M1X = 10
220 M2X = 0 I select software cursor
230 M3X = &HnFF I screen mask
240 M4X = &Hn18 I cursor mask
250 CALL MOUSE(M1X, M2%, M3%, M4X)

35

36 LOGITECH MOUSE Driver Functions

1.2.11 FUNCfION 11 - READ MOUSE MOTION COUNTERS

This function returns the horizontal and vertical step count (the distance the mouse has moved in
11200 inch increments) since the last call to this function. The step count is always within the range
-32768 to 32767. A positive horizontal count specifies a motion from left to right while a positive
vertical count specifies a motion towards the user (assuming the mouse is in the conventional
orientation, cable pointing away from user). The step count is reset to 0 after the call is completed.

Input

Output

AX=11

ex = horizontal count
DX = vertical count

Note: In the LOGITECH MOUSE driver there is an accelerator which causes cursor motion to be
scaled non-linearly against mouse motion. Acceleration only occurs if the mouse is moved at a
speed greater than a threshold value. This accelerator is equivalent to the speed-doubling which
some other mouse drivers provide. Without acceleration, the mouse resolution is 200 Steps per
Inch (SPI). With fast mouse movement it may rise to 400 SP!. Acceleration is enabled by default.
To disable acceleration, call function 19 with a very large speed threshold, say 7FFF Hex.

1.2.11.1 Calling Function 11 from Assembler

READ_MOTION_COUNTERS:

MOV AX, "
INT 33H
MeV HORIZ, CX
MeV VERT, DX

1.2.11.2 Calling Function 11 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

horizontal, vertical : INTEGER;
BEGIN

Mouse.ReadMotionCounters (horizontal, vertical);
END test.

1.2.11.3 Calling Function 11 from C

testO

<

)

int horizontal, vertical;
ReadMotionCounters (&horizontal, &vertical);

Function 11 • Read Mouse Motion Counters

1.2.11.4 Calling Function 11 from Microsoft Pascal

program test;

procedure ReadMotionCounters (VARS horizontal, vertical Integer);EXTERN;

var
horizontal, vertical : Integer;

begin
ReadMotionCounters (horizontal, vertical);

encl.

1.2.11.5 Calling Function 11 from Turbo Pascal

program test;
{Si mouse. pas} (* lOGITECH MOUSE Turbo Pascal Interface *)

var
horizontal, vertical : Integer;

begin
ReadMotionCounters (horizontal, vertical);

end.

1.2.11.6 Calling Function 11 from Basic

190 I assuming setup as in A.2.1
200 M1% = 11
210 CALL MOUSE(M1%, M2%, M3%, M4%)

37

38 LOGITECH MOUSE Driver Functions

1.2.12 FUNCTION 12 • DEFINE EVENT HANDLER

This routine sets the address of a user subroutine to be called by the mouse driver on occurrence of
a specified event. The driver temporarily stops execution of your main program and calls the
specified subroutine whenever one or more of the conditions defined by the call mask occur. The
call mask is a single integer value which defines the conditions which will cause an interrupt. Each
bit in the call mask corresponds to a specific condition:

Mask Bit Condition

o change cursor position
1 press left button
2 release left button
3 press right button
4 release right button
5 press middle button
6 release middle button
7-15 not used

Input
AX=12
ex = call mask
ES:DX = address of event-handler routine

Output
none

The event-handler itself must be a piece of code which starts at the address passed to Function 12.
When the event handler is call edt the following information is available in the registers:

Register
AX
BX
ex
DX

Information
Event which occurred (1 bit set in format of event mask)
Button State
Horizontal Cursor Position
Vertical Cursor Position

Note: That the event handler is called from the mouse driver during an interrupt (typically a serial
port interrupt), which means that the event handler must behave as such. For example, it is usually
not possible to call DOS from the event handler. It is also strongly recommended to spend as little
time as possible in the event handler.

The recommended procedure for an event handler is to record the event in some kind of queue
that is read by the main program. The mouse events then can be treated at the same level as
keyboard input.

Function 12 • Define Event Handler

1.2.12.1 Calling Funetion 12 from Assembler

COUNTER label WORD
DW 0

PUSH AX
NOV AX, COUNTER
ADD AX, 1

NOV COUNTER, AX

POP AX

SET_EVENT_HANDLER:
NOV AX, 12
MOV CX,
PUSH CS
POP ES
LEA DX, MY_EVENT_HANDLER
INT 33H

1.2.12.2 Calling Function 12 from Modula-2

MODULE test;

IMPORT Mouse;

PROCEDURE EventHandler (events Mouse. EventSet;

BEGIN

buttons : Mouse.ButtonSet;
x, y : INTEGER);

(* code to process the events - if there were many different
events to process, this procedure could call other procedures
to handle the different events *)

END EventHandler;

VAR
eventMask : EventSet;

BEGIN (* module initialization *)

eventMask := {}i (* initialize event mask to no events *)

INCL (eventMask, LeftButtonPress);
(* set event mask so that EventHandler is called only when the left button

is pressed *)

SetEventHandler (eventMask, EventHandler);
(* main body of program *)

END test.

39

40

1.2.12.3 Calling Function 12 from C

#define FALSE 0
#define TRUE 1

int finished = FALSE;
tnt quit = 0;

LOGITECH MOUSE Driver Functions

/* the procedure EventHandler is called by the driver asynchronously whenever movement of the
mouse occurs • the button status is then checked. If the right button is pressed, the global
variable Ifinished l is set to TRUE, the eventhandler returns and the program terminates.
*/

EventHandler (eventSet, buttonSet, horiz, vert)
int eventSet, buttonSet, horiz, vert;

<
if (buttonSet == 2) <finished = TRUE; return;}
/* if right button pressed then quit */

}

test()

<

<

SetEventHandler (9, EventHandler); /* event is called when mouse moves */

finished = FALSE;
while (finished -= FALSE)

/* loop */
}

}

Function 12 • Define Event Handler 41

1.2.12.4 Calling Function 12 from Microsoft Pascal

program test;
procedure SetEventHandler (mask : Integer; VARS handler : Integer);EXTERN;
(* NB: declaration of the event handler must be as follows - it must be made PUBLIC so that it is
identified by a long (doubleword) address to be called from the mouse driver. Note also that DOS
function calls should not be made from within the event handler· this is because DOS is not re­
entrant. Basically, this means be careful of calls such as Write, WriteLn etc which are usually
translated into DOS calls. *)

procedure MyEventHandler (eventSet, ButtonSet, horiz, vert Integer)
[PUBLIC] ;

begin
(* do something *)

end;

var
eventMask : Integer;

begin
eventMask := 2; (* left button presses only *)
SetEventHandler (eventMask, MyEventHandler);

end.

1.2.12.5 Calling Function 12 from Turbo Pascal

program test;
{Si mouse.pas} (* LOGITECH MOUSE Turbo Pascal Interface *)

procedure MyEventHandler (eventSet,buttonSet,horiz,vert : Integer);
begin

(* do something *)
end MyEventHandler;

begin
SetEventHandler (2 (*left button*), Ofs(MyEventHandler»i

end.

1.2.12.6 Calling Function 12 from Basic

This function will require different treatment for different implementations of BASIC.

42 LOGITECH MOUSE Driver Functions

1.2.13 FUNCTION 13 • LIGHT PEN EMUlATION MODE ON

This function enables light pen emulation by the mouse. When light pen emulation is enabled, a
simultaneous press of the left and right mouse buttons will emulate the pen-down state of the light
pen. Both mouse buttons released emulates the pen-up state of the light pen.

Thus, programs which expect a light pen can be run with a mouse instead by first calling function
13. If a light pen is to be used along with a mouse, function 14 will switch off the light pen
emulation.

Light pen emulation is OFF by default.

Input
AX=13

Output
none

1.2.13.1 Calling Function 13 from Assembler

LIGHT_PEN_ON:
MOV AX, 13

INT 33H

1.2.13.2 Calling Function 13 from Modula-2

MODULE test;
I MPORT Mouse;
BEGIN

Mouse. Li ghtPenOn;
END test.

1.2.13.3 Calling Function 13 from C

testO
(

LightPenOn();
)

1.2.13.4 Calling Function 13 from Microsoft Pascal

program test;

procedure LightPenOniEXTERNi

begin
LightPenOni

end.

Function 13 • Ught Pen Emulation On

1.2.13.5 Calling Function 13 from Turbo Pascal

program test;
(Sf mouse.pas) (* LOGJTECH MOUSE Turbo Pascal Interface *)

begin
LightPenOn;

end.

1.2.13.6 Calling Function 13 from Basic

190 I assuming setup as in A.2.1
200 M1X I: 13
210 CALL MOUSE(M1X, M2X, M3%, M4)

43

44 WGITECH MOUSE Driver Functions

Here is a small test program to illustrate the use of a mouse in place of a light pen. It is written in
mM BASI CA. The reference for the light pen functions is the IBM BASIC Reference 3.0.

2 REM THIS PROGRAM TESTS THE LIGHT PEN EMULATION OF THE MOUSE DRIVER
3 REM
5 SCREEN 0 : SCREEN 2 ' graphics mode 640x200
10 DEF SEG=O
20 MSEG=256*PEEK(51*4+3)+PEEK(51*4+2)
30 IF MSEG=O THEN 90
40 ENTRY=256*PEEK(51*4+1)+PEEK(51*4)
50 DEF SEG=MSEG
60 IF PEEK(ENTRY)=207 THEN 90
65 MOUSE=ENTRY+2
70 PRINT "MOUSE DRIVER PRESENT"
80 GOTO 150
90 PRINT "MOUSE DRIVER NOT LOADED"
100 END
150 GOSUB 800 'mouse driver function 0, Flag Reset
170 IF M1X=-1 THEN 200
180 PRINT "MOUSE NOT RESPONDING" : END
200 PRINT "SETTING LIGHT PEN EMULATION ON"
220 GOSUB 900 ' mouse driver function 13, Light Pen Emulation On

224 GOSUB 600 • mouse driver function " Show Cursor
230 PRINT "TESTING LIGHT PEN EMULATION"
232 PRINT
235 PRINT "RIGHT BUTTON TO EXIT"
236 PRINT "LEFT BUTTON STEPS THROUGH THE PEN FUNCTIONS 0-9"
237 PRINT
240 PEN ON
242 PENFUNCTION=O
245 GOSUB 700 ' mouse driver function 3, Get Position and Buttons
246 IF M2X=0 THEN 245
249 IF M2% AND 2 THEN SCREEN 0 : END 'right button pressed
255 GOSUB 700 'Get Position and Buttons
260 IF M2% AND 1 THEN 255
270 IF PENFUNCTION < 9 THEN PEN FUNCTION = PENFUNCTION+1 GOTO 245
280 PENFUNCTION = 0 : GOTO 245
490 REM
500 ' SUBROUTINE HIDECURSOR
510 M1X=2
520 CALL MOUSE(M1%, M2%, M3%, M4%)
530 RETURN
540 REM
600 ' SUBROUTINE SHOWCURSOR
610 M1X=1
620 CALL MOUSE(M1%, M2%, M3%, M4%)
630 RETURN
640 REM

Function 13 - Ught Pen Emulation On

700 • SUBROUTINE GET POSITION AND BUTTONS
710 M1X=3
720 CALL MOUSE(M1X, MlX, M3X, M4X)
730 RETURN
740 REM
800 • SUBROUTINE FLAG RESET
810 M1X=0
820 CALL MOUSE(M1X, M2X, M3X, M4X)
830 RETURN
840 REM
900 • SUBROUTINE LIGHT PEN EMULATION ON
910 M1X=13
920 CALL MOUSE(M1X, M2%, M3%, M4%)
930 RETURN

45

46 WGITECH MOUSE Driver Functions

1.2.14 FUNcnON 14· LIGHT PEN EMULATION MODE OFF

This function disables the light pen emulation mode.

Input
AX=14

Output
none

1.2.14.1 Calling Function 14 from Assembler

LI GHT _PEN_OFF :
MOV AX, 14
INT 33H

1.2.14.2 Calling Function 14 from Modula-2

MOOULE test;
IMPORT Mouse;
BEGIN

Mouse. LightPenOff;
END test.

1.2.14.3 Calling Function 14 from C

testO
{

Li gh tPenOf f 0 ;
}

1.2.14.4 Calling Function 14 from Microsoft Pascal

program test;

procedure LightPenOff;EXTERN;

begin
LightPenOff;

end.

1.2.14.5 Calling Function 14 from Turbo Pascal

program test;
{Si mouse.pas} (* LOGITECH MOUSE Turbo Pascal Interface *)

begin
LfghtPenOff;

end.

Function 14 • Ught Pen Emulation Off

1.2.14.6 Calling Function 14 from Basic

190 I assuming setup as in A.2.1
200 M1" = 14
210 CALL MOUSE(M1", M2", M3", M4)

47

48 LOGITECH MOUSE Driver Functions

1.2.15 FUNCfION 15· SET MOUSE MOTION/PIXEL RATIO

This function sets the mouse motion to screen pixel ratio.

The horizontal and vertical ratios specify the amount of mouse motion which is required to move
the cursor 8 pixels. The allowable range of values is 1 to 32767 mickeys where a mickey is defined
to be the unit of physical mouse motion (or if you like, hand movement). The value which should
be set is dependent on the number of mickeys the mouse records per inch - some mice are 100
mickeys/inch, others 200 or even 320.

The default values are 8 steps to 8 pixels horizontally and 16 steps to 8 pixels vertically. For the
LOGITECH MOUSE 200 mickeys/inch, this is equivalent to 3.2 inches of horizontal mouse
movement and 2.0 inches of vertical mouse movement to move the cursor over the extent of a
640000 pixel screen.

Input

Output

AX=15
ex = horizontal step to pixel ratio
DX = vertical step to pixel ratio

none

1.2.15.1 Calling Function 15 from Assembler

SET_MICKEYS_PER_PIXEL:
MOV AX, 15
MOV CX, 16 ; horizontal
MOV DX, 16 ; vertical
INT 33H

1.2.15.2 Calling Function 15 from Modula-2

MODULE test;
IMPORT Mouse;
VAR

horPix, verPix : CARDINAL;
BEGIN

horPix := 16;
verPix := 16;
Mouse.SetMickeysPerPixel (horPix, verPix);

END test.

1.2.15.3 Calling Function 15 from C

testO

<
unsigned horPix, verPix;
horPix = 16;
verPix I: 16;
SetMickeysPerPixel (horPix, verPix)i

)

Function 15 • Set MotlonJPlxel Ratio

1.2.15.4 Calling Function 15 from Microsoft Pascal

program test;
procedure SetMickeysPerPixel (horPix, verPix : Integer);EXTERN;
var

horPix, verPix : Integer;
begin

horPix := 16;
verPix := 16;
SetMickeysPerPixel (horPix, verPix);

end.

1.2.15.5 Calling Function 15 from Turbo Pascal

program test;
(Si mouse. pas) (* LOGITECH MOUSE Turbo Pascal Interface *)

var
horPix, verPix : Integer;

begin
horPix := 16;
verPix := 16;
SetMickeysPerPixel (horPix, verPix)i

end.

1.2.15.6 Calling Function 15 from Basic

190 I assuming setup as in A.2.1
200 M1% = 15
210 M3% = 16
220 M4% = 16
230 CALL MOUSE(M1%, M2%, M3%, M4%)

49

so WGITECH MOUSE Driver Functions

1.2.16 FUNCfION 16 - CONDmONAL HIDE CURSOR

This function allows the user to define an area on the screen within which the mouse cursor will
automatically be turned off. This function is used to guard a portion of the screen which your
program is about to update.

Calling the Show Cursor Function (function 1) - resets the region (i.e. cursor enabled over the
whole screen).

Like HideCursort this function decrements the cursor counter. See ShowCursor and HideCursor
for details.

Input

Output

AX= 16
ex = left margin
DX = top margin
SI = right margin
DI = bottom margin

none

1.2.16.1 Calling Function 16 from Assembler

COND I TIONAL_OFF:
MOV AX, 16
MOV CX, 50 ; left margin
MOV DX, 60 ; top margin
MOV SI, 60 ; right margin
MOV DI, 70 ; bottom margin
INT 33H

1.2.16.2 Calling Function 16 from Modula-2

MODULE test;
IMPORT Mouse;
BEGIN

Mouse.ConditionalOff (50, 60, 60, 70);
END test.

1.2.16.3 Calling Function 16 from C

testO
{

ConditionalOff (50, 60, 60, 70);
)

Function 16 • CondItional Hide Cursor

1.2.16.4 Calling Function 16 from Microsoft Pascal

program test;
procedure ConditionalOff (left, top, right, bottom: Integer);EXTERN;
begin

ConditionalOff (50, 60, 60, 70);
end.

1.2.16.5 Calling Function 16 from Turbo Pascal

program test;
{Si mouse.pas} (* LOGITECH MOUSE Turbo Pascal Interface *)

begin
ConditionalOff (50, 60, 60, 70);

end.

1.2.16.6 Calling Function 16 from Basic

51

This function may not generally be used from BASIC due to the number of parameters to be
passed.

52 LOGITECH MOUSE Driver Functions

1.2.19 FUNCTION 19 • SET SPEED mRESHOLD

This function allows the user to define a threshold speed (in units of mouse velocity, mickeys per
second) of the mouse above which the driver will add in an acceleration component. This has the
effect of allowing a fast movement of the mouse to move the cursor further than a slow movement.
The acceleration component varies according to the implementation of the driver. On some drivers
it is a constant multiplier, generally with a value of 2, on others it changes according to the
increasing speed of the mouse, with multiplier values increasing over an acceleration curve. The
Logimouse driver has the latter type of accelerator.

To cancel the acceleration effect, SetSpeedThreshold may be called with a large value for the speed
threshold - 07FFFH or some equivalently large number will certainly remove all acceleration. To
restore acceleration again, SetSpeedThreshold should be called with a speed threshold value of O.

Input
AX=19
DX = threshold speed in mickeys/second

Output
none

1.2.19.1 Calling Function 19 from Assembler

SET_SPEEO_THRESHOLO:
MOV AX, 19

MOV OX, 300 ; speed threshold
INT 33H

1.2.19.2 Calling Function 19 from Modula-2

MODULE test;
IMPORT Mouse;
BEGIN

Mouse.SetSpeedThreshold (300);
END test.

1.2.19.3 Calling Function 19 from C

testO
(

SetSpeedThreshold (300);
)

1.2.19.4 Calling Function 19 from Microsoft Pascal

program test;
procedure Setspeedthreshold <threshold : Integer);EXTERN;
begin

SetSpeedThreshold (300);
end.

Function 19 • Set Speed Threshold

1.2.19.5 Calling Function 19 from Turbo Pascal

program test;
{Sf mouse.pas} (* LOGITECH MOUSE Turbo Pascal Interface *)

begin
SetSpeedThreshold (300);

end.

1.2.19.6 Calling Function 19 from Basic

190 I assuming setup as in A.2.1
200 M1X = 19
210 M4X = 300
220 CALL MOUSE(M1%, M2%, M3%, M4X)

53

54 LOGITECH MOUSE Driver Functions

1.3 EGA FUNCTIONS

The EGA functions are installed as an extension of interrupt 10H. They are installed only if an
Enhanced Graphics Adapter board is present on the system. Using these functions gives the
application the capability to read back values in write-only EGA registers. In order to assure
correct behavior, the application must use these functions exclusively instead of writing directly to
the EGA.

The registers are grouped as follow. A reference to an EGA register is made with a pair (group
number, register number), or a whole group of registers may be referred to by a group number.

Group Register Port Description

0 Oto24 3D4 CRT Controller
8 Ot04 3C4 Sequencer
16 Oto 8 3CE Graphics Controller
24 Oto 19 3CO Attribute Controller
32 0 3C2 Output Register
40 0 3DA Feature Control Register
48 0 3CC Graphics 1 Position
56 0 3CA Graphics 2 Position

Calling an EGA function consists of loading the input registers with the appropriate values as listed
below and then initiating software interrupt 10 Hex. In 8086 assembly code, the sequence for
function 250 is as follows:

CALL_FN_250:
MOV AX, 250
MOV ax, 0
INT 10H

1.3.1 Read EGA Register· EGA Function 240

Input
AH = 240
BX = Register number
DX = Group number

Output
BL = Value of register

The value of the register indicated by (DX,BX) is returned in BL.

EGA Functions

1.3.2 Write EGA Register - EGA Function 241

Input
AH=241
DX = Group number

Single Register:
BL = Value to be written

Register from a group:
BL = Register number
BH = Value to be written

The register indicated by (DX, BL) is set to the value of BH.

1.3.3 Read EGA Register Group· Function 242

Input
AH =242
ES:BX = Buffer address
CH = Starting Register Number
CL=Count
DX = Group Number

Output
ES:BX to ES:BX +Count-l contains the values of the designated registers

55

The values of the registers from group DX, numbered from CH to CH+CL-l are copied to the
buffer indicated by ES:BX.

1.3.4 Write EGA Register Group· Function 243

Input
AH = 243
ES:BX = Buffer address
CH = Starting Register Number
CL= Count
DX = Group Number

The registers from group DX, numbered from CH to CH+CL-l are set to the values contained in
the buffer indicated by ES:BX.

56

1.3.5 Read EGA Register Ust • Function 244

Input
AH=244
ES:BX = Address of Register List
CX= Count

Output
ES:BX to ES:BX+Count*4 contains the values read

WGITECH MOUSE Driver Functions

The values of the registers described in the list indicated by ES:BX are transferred to the list. The
list is a sequence of records in the form:

WORD
BYTE
BYTE

Group Number
Register Number
Value

1.3.6 Write EGA Register Ust • Function 245

Input
AH=245
ES:BX = Address of Register List
CX=Count

The values contained in the list indicated by ES:BX are transferred to the indicated registers. The
list has the same form as for function 244.

1.3.7 Reset to Default Values· Function 246

Input
AH=246

This function resets the values of all the registers to the values defined using function 247.

1.3.8 Set the Default Values· Function 247

Input
AH=247
ES:BX = Pointer to a table of one-byte register

values, one for each register of the group
DX = Group Number

This function defines the table of default values used by function 246 for the given group.

EGA Functions

1.3.9 EGA Functions Installed· Function 250

Input
AH=2S0
BX=O

Output
BX = 0 if not installed

57

This function allows the application to detect if the EGA functions are installed. Register BX
should be set to 0 before calling the function. If it is still 0 on return, the EGA functions are not
installed.

58 WGITECH MOUSE Driver Functions

NOTES:

59

CHAPTER 2
THE LOGIMOUSE CURSOR DESIGNER

FOR IBM PC & COMPATIBLES WITII CGA GRAPHICS.

The Logimouse Cursor Designer (LCD) facilitates design of mouse cursors. It produces actual
code to integrate in your application and is language independent. This is accomplished by means
of load able skeletons (templates) which define the structure of the output. Skeletons for several
popular languages are provided. Customizing or creating your own skeleton files is simple.

2.1 FILES

The LCD program is the file LCD.EXE

The skeleton files are called SKEL.xxx where XXX is a filename extension denoting the language.
Thus SKEL. C is a skeleton for the C language. The output is simple enough that in most cases it is
compatible with various implementations of a language.

2.2 USING LCD

Type LCD to run the program.

LCD need the mouse driver to work and so this should be loaded first by typing MOUSE. If you
try to run LCD without the mouse driver you will get the following error message:

mouse driver not loaded

2.3 mE MOUSE BU'ITONS

Left Button

Right Button

Middle Button

paints a mask cell

clears a mask cell

sets the hot spot (the place on the cursor
which dictates exactly where the cursor is
actually pointing)

60 LOGITECH MOUSE Cursor Designer

2.4 THE ICONS

• Load Skeleton

Loads a skeleton file (SKEL.XXX). A directory of skeleton files available in the current
directory is displayed. The default skeleton is SKEL.MOD (it is loaded automatically at
the start).

• Save Cursor

Saves cursor to a file in the format given by the current skeleton. Prompts for a name for
the cursor. The file is created with the given name and an extension is added according to
the current skeleton (eg if the cursor is given the name 'CROSS' and the current skeleton
is 'SKEL.PAS', the output file will be called 'CROSS.PAS').

• Arrow

Resets the cursor to an arrow.

• Install Cursor

Installs the designed cursor as the current mouse cursor.

• Load Cursor

Loads a cursor file for editing. Prompts for cursor name. Only the name of the cursor
should be given and NOT the file extension (this is generated automatically from the
current skeleton loaded). LCD uses the format of the loaded skeleton (default is Modula-
2) to interpret the cursor file. The cursor file must have been created from the loaded
skeleton file, otherwise LCD will not be able to interpret it and the message

Cursor does not match skeleton

will appear.

When a cursor has been successfully loaded, a different skeleton may be loaded and the
cursor saved in the new language format. Thus, if a cursor has been saved in C and it is
required in Assembler, the C skeleton should be loaded, then the required cursor loaded
followed by the Assembler skeleton and finally the cursor saved.

61

• Make S From C

Attempts to automatically generate a reasonable screen mask from the cursor mask. It
does this by copying the cursor mask to the screen mask, inverting the screen mask and
then 'padding-out' the outline. The screen mask may require some final editing to achieve
the desired effect.

• Invert C

Inverts the cursor mask

• Invert S

Inverts the screen mask

• Clear C

Dears the cursor mask

• Clear S

Clears the screen mask

62 LOGITECH MOUSE Cursor Designer

2.5 MAKING SKELETONS FOR OTHER LANGUAGES

Skeleton files can be defined for other languages and you may wish to modify the existing ones.
The structure of the skeleton file is very informal. The skeleton represents the code of the
particular language being used. In a skeleton, the actual values of the cursor fields are replaced by
variables, denoted by surrounding percentage signs, for example %P% denotes the cursor name,
%HX% denotes the x coordinate of the hot spot. The LCD program reads the skeleton file and
when it writes a cursor file, it copies the skeleton back out to the output file but substitutes the
values of the designed cursor for the variables, for example, %P% might become MY_CURSOR,
%HX% might become 7.

Note: Be careful when using the name variable %P%. It must be followed by a non-alphabetic
character such as Y.Y....»" or 'yy;yy' etc. Names like %P%_Cursor or SetCursorTo%P% are legal but
not %P%Cursor or Set%P%Cursor.

2.5.1 LCD Skeleton Variables

%P% The name of the cursor.

%SO% The fields of the screen mask.

%SI5%

%CO% The fields of the cursor mask.

%C15%

%HX% The x coordinate of the cursor hot spot.

%HY% The y coordinate of the cursor hot spot.

2.5.2 Example 1 : The Skeleton for WGITECH MODULA·2

PROCEDURE SetCursorTo%P%i

(* the use of the LOGITECH MODULA·2 interface to the mouse driver is assumed *)

VAR
cursor Mouse.GraphicCursori

BEGIN
WITH cursor DO

screenMask[D] := BITSET(%SD%)i screenMask[1] :m BITSET(%S1%)i
screenMask[2] := BITSET(%S2%)i screenMask[3] := BITSET(%S3%)i
screenMask[4] := BITSET(%S4%)i screenMask[S] := BITSET(%SS%)i
screenMask[6] := BITSET(%S6%)i screenMask[71 := BITSET(%S7%);
screenMask[S] := BITSET(%SS%)i screenMask[9] := BITSET(%S9%)i
screenMask[10]:= BITSET(%S10%)iscreenMask[11]:= BITSET(%S11%)i
screenMask[12]:= BITSET(%S12%)iscreenMask[13]:= BITSET(%S13%)i
screenMask[14]:= BITSET(%S14%);screenMask[1S]:= BITSET(%S1S%);
cursorMask[O] := BITSET(%CO%)i cursorMask[1] := BITSET(%C1%)i
cursorMask[2] := BITSET(%C2%)i cursorMask[3] := BITSET(%C3%)i
cursorMask[4] := BITSET(%C4%); cursorMask[S] := BITSET(%C5%);
cursorMask[6] := BITSET(%C6%); cursorMask[71 := BITSET(%C7%);
cursorMask[S] := BITSET(%CS%); cursorMask[9] := BITSET(%C9%);
cursorMask[10]:= BITSET(%C10%);cursorMask[11]:= BITSET(%C11%);
cursorMask[12]:= BITSET(%C12%);cursorMask[13]:= BITSET(%C13%);
cursorMask[14]:= BITSET(%C14%);cursorMask[1S]:= BITSET(%C1S%);
hotX := %HX%; hotY := %HY%;

END;
Mouse.SetGraphicCursor (cursor);

END SetCursorTo%P%i

63

64 LOGITECH MOUSE Cursor Designer

When this skeleton is loaded, a cursor designed and called "Cross", the resultant output file
"CROSS.MOD" contains the following:

PROCEDURE SetCursorToCrossi
(* the use of the LOGITECH MODULA-2 ;nterface to the mouse dr;ver is assumed *)

VAR
cursor : Mouse.Graph;cCursori

BEGIN
WITH cursor DO

screenMask[O] := BITSET(-1)i screenMask[1] := BITSET(-1)i
screenMask[2] := BITSET(-1)i screenMask[3] := BITSET(-2017)i
screenMask[4] := BITSET(-2017)iscreenMask[5] :=BITSET(-2017)i
screenMask[6] := BITSET(O)i screenMask[71 :=BITSET(O)i
screenMask[8] := BITSET(O)i screenMask[9] :=BITSET(O)i
screenMask[10]:= BITSET(-2017)iscreenMask[11]:=BITSET(-2017)i
screenMask[121:= BITSET(-2017)iscreenMask[131:=BITSET(-1)i
screenMask[141:= BITSET(-1)i screenMask[15]:=BITSET(-1)i
cursorMask[O] := BITSET(O)i cursorMask[1] :=BITSET(O)i
cursorMask[2] := BITSET(O)i cursorMask[3] :=BITSET(O)i
cursorMask[4] := BITSET(960)icursorMask[5] :=BITSET(960)i
cursorMask[6] := BITSET(960)icursorMask[71 :=BITSET(32766)i
cursorMask[8] := BITSET(32766)icursorMask[9] :=BITSET(960)i
cursorMask[101:= BITSET(960)icursorMask[11]:=BITSET(96O)i
cursorMask[121:= BITSET(O)i cursorMask[13]:=BITSET(0)i
cursorMask[14]:= BITSET(O)i cursorMask[15]:=BITSET(0)i
hotX := 7i hotV := 8i

ENDi
Mouse.SetGraphicCursor (cursor)i

END SetCursorToCrossi

2.5.3 Example 2 : The Skeleton for Microsoft C

graphicCursor_type XP%Cursor =
WO%, %51%, %52%, %53%, %54%, %55%, %56%, %57'X,

%58%, %59%, %510%, %511%, %512%, %513%, %514%, %515%,
%CO%, %C1%, %C2%, %C3%, %C4%, %C5%, XC6%, XC7'X,
XC8%, XC9%, %C10%, %C11%, %C12%, %C13%, %C14%, %C15%,
%HX%, %HV% >i

When this skeleton is loaded, a cursor designed and called "Cross", the resultant output file
"CROSS.C· contains the following:

graphicCursor_type CrossCursor =
{-1, -1, -1, -2017, -2017, -2017, 0, 0,
0, 0, -2017, -2017, -2017, -1, -1, -1,
0, 0, 0, 0, 960, 960, 960, 32766,
32766, 960, 960, 960, 0, 0, 0, 0,
7, 8 >i

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64

