MICROMATTIGON

CUAL P ISK DRIVE
IiNSTALLATICGCN GUITDE
A ND USER"'"S MANUSRL

VER:0.04

PLEASE NOTE THE FOLLOWING SPECIAL PRECAUTIONS WHEN USING DISKETTES

There are a few special precautions you must observe when handling diskettes and
files to avoid destruction of data and programs through- misuse or mishandling:

1. Whenever you remove a diskette from a drive and replace it with another diskette,
REBOOT the CP/M system BEFORE PERFORMING ANY SUBSEQUENT OPERATIONS.
A "warm start" is sufficient (control-C) to cause CP/M to recognize that the diskettes
have changed. A reboot is not necessary, however, if the replaced diskette is "read-only"
and data or programs will not be written to the diskette.

2. Do not turn the mainframe or disk drive power off with a diskette in the drive.
Many controllers (such as the MDS 800 controller) will engage the head and turn on
the write electronics momentarily, thus destroying a track of data.

3. Always store diskettes in their protective jackets when not in the diskette drive. -
Otherwise, dust will gather on the recording surface causmg drive head wear and
reduced media life.

4. Store the diskettes in normal work areas where temperatures are not extreme
(within the 50-125 degrees F), and do not allow them to get near magnetic influences
(such as large power supply transformers) or allow them to be exposed to direct sunlight
for any extended period of time.

‘5. Provide adequate archives for your programs and data. Regular and organized
backup techmques are essential for protection against media, hardware, software, or
operator failures in any computing environment.

TABLE OF CONTENTS
1.0 Parts List
2.0 Minimum Hardware Configuration
3.0 How To Connect The Hardware

4,0 Bringing Up the System
1 Connecting the Conscle
2 System Console Communications
3 Teletype
4y RS232 Device
5 Baud Rate Selection
6 DIP pin layout

EoEsEE
* e . L]

. .

5.0 Bringing Up CP/M
5.1 Bringing Up the System Without A Front Panel
5.2 How To Insert A Diskette

6.0 Backing Up the System
6.1 Altering the Software I/0 Port Speed
6.2 Serial I/0 Port Speed Constants

7.0 Relocating Your System
7.1 Operating System Components
T.2 Regeneration Procedure
7.3 Sample I/0 Routines
7.4 Common Load Offsets

8.0 Theory of Operation

1 How CP/M Is Initiated

2 Schematics

9.0 Source Code
9.1 CBIOS
9.2 Bootstrap
9.3 Superboot
9.4 Software Serial. 1/0 Port

QUANTITY

JENTN @) Y N N N i Y QP S ST Y

SECTION 1.0

PARTS

LIST

ITEM

Dual Disk Drive

S-100 Bus Contreoller Card

40 Conductor Connector Cable
Software Diskette

16 Pin DIP Header
Documentation Manual
Warranty Card

CP/M Registration Card

~CP/M Licensing Agreement

CP/M Documentation Manuals
BASIC-E Reference Manual

SECTION 2.0

MINIMUM HARDWARE CONFIGURATION

The MICRCMATION Dual Disk Drive system runs on an S-100 bus,
8080 or Z-80 microcomputer with a minimum of 16K of RAM. To
run BASIC-E at least 20K 1is needed. The memory must be
contiguously addressed from locations 0 through 3FFF.
Additional memory must avoid certain 1locations due to the
memory on the controller board The reserved locations are
four pages of memory, F800 through FBFF.

A console communications device is also needed. A video
terminal (CRT) such as the ADM-3 or Hazeltine 1500 or a
hardcopy type such as the Decwriter 1II, teletype or the
HyTerm II 1is adequate. The terminal must be able to
communicate over a standard serial interface wusing RS232
conventions or a Teletype terminal (TTY) that uses a 20ma
current loop.

Computers that do not have front panel switches or some other
means of transferring control to a specified location (other
than 2zero) will -need a board that transfers control on a
reset or power-on.

SECTION 3.0

HOW TO CONNECT THE HARDWARE

Bé sure that all components of the computer system are
unplugged before connecting the MICROMATION dual disk drive.

Place the controller card in an empty S-100 bus slot
component side forward. The card must be firmly seated in
the connector to make good electrical contact. The
connector end of the 40 conductor cable extending from the
MICROMATION disk drive unit should then be connected to the
top row of pins on the controller board. A small number "1"
is etched near the leftmost pin on the board. The side of -the -
cable with the single red wire must align with this. In most
computers the cable will extend toward the rear of the box.

Any board that executes a jump instruction on a reset or
power-on, such as the ~MICROMATION JUMP-START (tm) board,
should be disabled until the disk system has been tested (If
you do not have front panel "switches, you WILL need a

JUMP-START board or equivalent to get started. See Section»’«,

5.1). The JUMP-START board will be a helpful addltlon to the
system when it is up and running. .

SECTION 4.0

BRINGING UP THE SYSTEM

Supplied with the MICROMATION disk system is a copy of CP/M,
a microcomputer Cperating System (0S). It provides a named
file structure on diskettes and I/0 routines for the system's
peripheral devices. It includes ‘'system tools such as an
assémbler, text editor and dynamic debugger.

CP/M comes with Six separate manuals describing its abilities
and use. It is important that these manuals be read and
studied. ' o

This manual is a guide to the CP/M documentation and it
provides a conveéenient summary for generating CP/M systems.
It will not act as a substitute for a thorough reading of the
CP/M documentation. The contents of this manual and the
CP/M manuals should be read completely before attempting any
action.

SECTION 4.1

SYSTEM CONSOLE COMMUNICATION

CP/M uses a two-way communications device called the System
Console. Through it the wuser requests services from the
operating system and the OS informs the user of its status.
The console device is usually a Cathode Ray Tube (CRT) or a
Teletype (TTY). In addition to the console device itself, two
things are necessary. First 1is a serial 1I/0 port that
supports either the TTY interface or the RS232 terminal and
the software routines to interface between this port and the
CP/M operating system. Both are supplied with the
MICROMATION system. The 1I/0 port 1is 1implemented 1in an
on-board PROM. The interface drivers are ready to run in the
distributed version of the CP/M BIOS (See CP/M SYSTEM

b

ALTERATION GUIDE, page 12, for a discussion of the drivers).

The serial 1I/0 port provides instant communication with the
system. It is possible to start-running right away." It also
allows the wuse of the CP/M facilities to customize CP/M
avoiding the laborious task of hand assembling and toggling
in of I/0 routines. It also avoids the undesirable practice
of "hot patching"™ programs.

The primary purpose of the on-board sofware I/0 port is to
get the system running with a minimum of time and effort. It
is not designed as a permanent replacement for hardware 1/0
support. Many hardware I/0 boards provide more than one port
and a wider range of communication disciplines than the
on-board software port.

SECTION 4.2

. CONNECTING THE CONSOLE

The MICROMATION controller boargfhas a 16 pin DIP socket 1in
the wupper right corner for .connecting the system console
device. The console device MUST have either an EkS232 or 20ma
current 1loop interface. A 16 pin DIP Header (plug) is
provided with the MICROMATION system. It should already be
inserted in the DIP socket. Remcve it before soldering to
it! The connecting wires from the terminal must be soldered
to the top of the pins on the plug. The pin configuration
is shown in Figure 4.6. If the terminal is a TTY or other
current 1loop device <connect only the pins shown in Figure
4,4y, If it is an RS232 compatible device connect only the
pins shown in Figure #4.3. Some RS232 devices require that
lines other than the three shown here be pulled high or
grounded. Check the specific manufacturer's documentation
before hooking up any additional lines.

Pata is sent through the port serially with no parity. There
is one start bit and two stop bits on each data byte.
Assure that the - terminal is set for this type of
communication. s

Once the soldering is finished, plug the DIP headef into the
socket on the controiler board. The notches on both
components must be 2ligned.

FIGURE 4.3

RS232 CONNECTION SUMMARY

DIP : :

PIN NAME EIA . RS232
L 15 GROUND AB 7
-2 SIG. OUT BB 3

1 SIG. IN BA 2

FIGURE 4.4

TELETYPE CONNECTION SUMMARY

DIP <~
PIN NAME POLARITY

6 ouT -

5 ouT +

3 IN +

y IN -

SECTION 4.5
BAUD RATE SELECTION
2400 BRu D
The serial data transmission speed-of t software - I/0 port

is regulated by a two byte constan# held in memory in the
CP/M CBIOS. It is set initially for 36—bsud (10 —eps), the
speed of TTYs. Most CRTs can be set for this speed. If the
terminal will operate at higher speeds it 1is possible to
alter the speed constant. This should be changed only after
the system is in an operational state. Cnce the system is up

N

the speed can be altered with the facilities of CP/M. A
description of how to change the baud rate constant is given

in Section 6.1.

SECTION 4.6

DIP PIN LAYOUT

- . —— - ———— ———— — - ——— - —— - —— — - — - - ———— - —— —— ' ———- =

I 1
I 16 15 14 13 12 11 10 9 I
I 1
I RS-232 I
Y GND I
\ 1
I 1

/ I

/ 1
I RS-232 RS-232 TTY TTY TTY TTY I
I IN ouT IN+ TIN - ~OUT+ OUT-" I
I 1 2 3 4 5 6 7 8 I
I I

= —————— —— ————— - —————— - —— - —————— - - —— - —— ——————— - —— - ——— -

SECTION 5.0

CP/M INITIATION PROCEDURE .

When all of the hardware components are properly installed
CP/M can be initiated and run. It is strongly suggested to
make at least one backup copy of the system diskette
immediately after determining that the system 1is functional
and before ANY other processing. A program is included with
the system for this purpose. The procedure for using it is
described in Section 6.0. The following steps describe the
exact procedure for starting CP/M.

A. All components must be interconnected. The
40 conductor cable should run from the disk
controller to the disk drives. The console
must be connected to the 16 pin DIP header.

B. All components must be plugged ihto a
grounded, 115vac circuit. Be sure that the
console device is plugged in. .

C. Turn on the power to the computer and the
disk drives. Depress the "RESET" switch on
the computer's front panel. The "STOP" switch,
if the computer has one, should be depressed
before the "RESET" to prevent the computer
from executing random instructions before the
bootstrap operation. Allowing the computer to
process "garbage" instructions can cause it to
write garbage on the diskette! Do not turn on
the power while the diskette is in the drive
as power transients can destroy data also.

D. Insert the system diskette in drive "A".
Make sure the diskette is facing in the proper
direction (See Figure 5.2). CP/M will ALWAYS
bootstrap from drive "A".

E. Examine memory location F800. This is the
beginning of the program "SUPERBOOT" in PROM.
Verify that the first byte of this routine 1is

‘a 31H. The system will now be ready to execute

The system bootstrap will take approximatély three

When the
Processor
console.

the procedure to bootstrap the operating
system into main memory.

F. Start processor execution with the "RUNY
switch and the "SUPERBOOT" routine will bring
in the Dbootstrap program from track zero,
sector one of drive "A", The - bootstrap
program will then read in the remainder of the
0S from tracks zero and one.

seconds.

operation 1is finished, the CP/M Console Command

(CCP) will type the system prompt message to
It looks like this:

- A>

the

The prompt message is printed whenever CP/M 1is 1idling and
awaiting a command from the console operator. :
If some combination of one or two other characters appear on
the screen it may indicate a communications problem. Check
the console device to assure that it is set for the proper
baud rate and framing pattern. If there is no response from
the terminal, check the manufacturer's documentation. Some
RS232 terminals require a "Clear To Send" or other signal to
be pulled high before they will respond to any external
communications. Some devices can automatically ¢transmit a
line-feed following a carraige-return. If this option is
present, it must be disabled. -

Briefly test the CP/M functions at this point. Type the
command "DIR" followed by a carraige-return and the operating
system should respond by printing the diskette file
directory. See the CP/M FACILITIES manual for a more
detailed description of the CCP functions.

Test the resident command "TYPE" by typing:

TYPE BOOT. ASM
The source file for the bootstrap program "BOOI" should be
printed to the system console (long typeouts can be aborted®

by hitting any key on the console keyboard.).

The next test should be of a CP/M system transient program.
Use the "STAT" transient for this. Type: :

STAT
The response should be:

BYTES AVAILABLE: nnnkK
To test the write function of the system type:

SAVE 1 X.COM |
This will build a small file on diskette by the "X.COM". The
"DIR" command should show that the file has been added to the
directory.
At ﬁhis point the system is functioning correctly. Before

attempting any programming tasks at least one system backup
disk should be created.

10

SECTION 5.1

BRINGING UP THE SYSTEM WITHOUT A FRONT PANEL

A power-on/reset jump start board is necessary- to bring up
the MICROMATION system if the computer does not have a front

panel. Not having a front panel reduces the debugging
facilities available but - the initiation procedure is
simplified. .

Set the jump address on the board for F800, the address of

Superboot. Follow the procedures described in section 5.0

except for step 'E' which will be automatically performed by
the jump start board.

LY

SECTION 5.2

HOW TO INSERT A DISKETTE

For Memorex systems, insert the diskette in drive A,

the lower drive, with the label facing up. Push the

diskette firmly until it engages in the drive, and

close the door of the drive.

11

SECTION 6.0

BACKING UP THE SYSTEM

The program MMCOPY copies the entire contents of a diskette
from drive A onto a diskette on drive B. Place a blank
diskette in drive B. Be sure that the write protect notch is
absent or has a tab over it. This will enable the write
mechanism of the MICROMATION drive. Type the following 1in
response to the system prompt:

MMCOPY

To make more than one backup diskette, type:

a

MMCOPY R

This causes +the MMCOPY program to repeat the copying
operation. When the copy program requests a return, make sure
the diskettes are inserted and type return. When the
diskettes have been copied, respond with a control-c to the
"TYPE RETURN" message (See the MMCGPY documentation for a
complete discussion "of this program).

Cne backup copy of the system should be stored in a
protected location and kept only in the event that all other
diskettes are erased. Remember, if the last system diskette
is accidently erased it will cost $25.00 to replace it. BACK
IT uPp!

SECTION 6.1

ALTERING THE SOFTWARE I/O PORT SPEED

If the system console device will run at a higher speed than
the preset 110 baud rate, the speed constant held in reserved
memory locations FA71 and FA72 can be altered. For baud rates
of 110 or faster only the low order byte is significant. The
high order byte is always set to zero. The single low order
byte can be set to any new speed with the Dynamic Debugging
Tool, DDT. After initiating DDT, use the 'set' facility to
insert the proper speed constant in the low order 1location.
The front panel can also be used. The speed constants are
shown in Table 6.2. ‘

12

Immediately after setting the constant, communications to and
from the-console will become garbled until the baud rate on
the console device is changed.

Altering the speed constant with DDT is temporary. It will
only last until the next "COLD" bootstrap operation. A cold
boot will bring in a fresh copy of the CBIOS from diskette.
It will contain the o0ld speed <constant for 110 and the
system will instantly revert. A permanent change to the I/0
port speed can be done when relocating CP/M.

SECTION 6.2

SERIAL I/0 PORT SPEED CONSTANTS

BAUD RATE

110 150 300 600 1200 2400
DECIMAL 171 125 62 31 15 7

<
HEX AB 7D 3E 1F OF 07

SECTION 7.0

RELOCATING YOUR SYSTEM

When the CP/M disk system is up and running it is possible to
generate a system that will utilize all available RAM. To
run BASIC-E or CBASIC a system running in at least 20K of
memory is needed.

While adjusting the size of the operating system the CBIOS
console I/0 routines can be replaced. The new I/0 routines
can communicate through the normal I/0 ports and hardware I/0
support board(s). A driver routine to allow CP/M to output to
a printer can be installed.

13

The procedures for generating; relocating and customizing the
operating system are thoroughly described in the CP/M
documentation manual: ot ‘ i

- CP/M SYSTEM ALTERATION’GUIDE

The following section is a step-by-step summary of how to
relocate and customize the system. This manual is not as
detailed as the SYSTEM ALTERATION GUIDE. It 1is not a
substitute but an aid and summary for the CP/M manual. The
process of generating a new system is not complex but it can
be a confusing procedure the first few times it is attempted.
It 1is suggested that both this and the CP/M manuals be
studied before building a custom system. '

SECTION 7.1

. OPERATING SYSTEM CCMPONENTS
CP/M is composed of resident and transient programs. The
transient programs need no modifications because they adjust
themselves to the size of the current operating system. The

resident components of the operating system must be modified
for different sizes. They are:

CONSOLE COMMAND PROCESSOR
BASIC DISK OPERATING SYSTEM
BASIC INPUT CUTPUT SYSTEM
BOOTSTRAP PROGRAM

A detailed discussion of the organization of resident CP/M
components is in the manual:

CP/M INTERFACE GUIDE

When I/0 drivers are added to the Basic Input Output System
(BIOS) a Customized BIOS or CBIOS is created. This CBIOS
must be assembled for the desired system size and combined
with the other portions of the OS including the bootstrap
program. A standard system program, MOVCPM, will regenerate a
new version of the operating system of any desired size
without the customized portions and the bootstrap.

14

SECTION 7.2

REGENERATION PROCEDURE

Create the operating system (CCP and BDOS) for the size
desired. The CBIOS and Bootstrap programs are distributed
in source form. They need to be modified and reassembled
separately. The three components are then gathered 1in the

transient program area with DDT and saved on diskette as a
COM type file. '

Use the MCVCPM program to create a new copy of the operating
system of the desired size. Save it as an ordinary COM file
by typing:

* SAVE 32 CPMnnK.COM

Where 'nn' is the size of the new system. Use the PIP
program to make a copy of the BIOS source that is distributed
with the system. Call it 'CBIOSnnK.ASM'. Copy the bootstrap
'ASM' file with PIP also. Name it 'BOOTnnK.ASM'.

Make the following modifications to the source files of the
CBIOS and Bootstrap. Use the CP/M Text Editor (ED).

The manual:
ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM
gives a thorough description of the 'use of this program.

Enter the Editor with the name of the CBIOS source copy.
Alter the 'MSIZE' variable at the start of the program so
that it indicates the proper size of the system. Put in
comments describing any changes made in the CBIOS. Put the
date of the change at the beginning of the code. Insert the
I/0 drivers for peripheral access after the names:

CONIN:
CONOUT:
CONST:

A detailed description of the purpose of each routine can be
found on page 15 of the SYSTEM ALTERATION GUIDE.-

Be sure the I/0 routines do not force the size of the CBIOS
out of the alloted space.

For a list device, enter the driver routine after the name:

15

LIST:

Routines for a paper tape reader -or punch can be added after
the names: : '

READER:
PUNCH:

Unused routines should be terminated with a 'RET?
instruction. If the hardware I/0 board has UART chips that
need programming, those procedures should be installed in the
celd boot portion of the CBIOS marked with the comment:

;PLACE UART INITIALfZATION RTNS HERE
Sample I/0 routines are shown in Section 7.3.

When all modifications have been made to the CBIOS, exit from
the editor and assemble the new CBIOS. Detailed instructions

on the CP/M Assembler are in the manual:

LY

CP/M ASSEMBLER (ASM)

In addition to the CBIOS the bootstrap program must be
reassembled for the new memory size. Using the editor,
change the 'MSIZE' variable at the start of +the bootstrap
program. Exit the editor and reassemble the bootstrap.

CP/M can now be credted out of its componerits: the relocated
operating system (CCP, BDOS), the customized CBIOS, and the
bootstrap. Uniting =all of these parts 1is done with DDT.
Start the DDT program and read in the new CP/M by typing:

DDT CPMnnK.CCM

DDT will respond with its logon message followed by the next
available address and the contents of the program counter:

DDT VERS 1.3
NEXT PC
2100 0100

Now insert the name of the CBIOS file by typing:
ICBIOSnnK. HEX

This prepares DDT to read the CBIOS file. "DDT normally reads
programs into-the memory locations for which.they. have been_.
assembled. The operating system must be built in the TPA
rather than the location where the 0S will reside when it 1is
running. They can be placed in the proper location by
reading the files in with an "offset". The offset for the
CBIOS 1is <calculated from the size of the new system. The
offset and calculating it is fully explained on pages 6-7 of

16

the SYSTEM ALTERATION GUIDE.

The lowest page of memory is reserved for system
communications and usable memory begins at 1location 100H.
The SYSGEN .program will occupy the 800H bytes ranging from
100H to 8FFH. The new operating system must be placed
starting at 1location 900H where the SYSGEN program expects
to find it. .

Section 7.4 shows a chart of common offsets. For example,

use the offset of AQO80 for a 32K system. To read the CBIOS
with the 32K offset, type:

RAO80

This causes the CBIOS to be properly inserted 1in relation
to the EDOS forming the correct operating system
configuration. :

- Insert the bootstrap program next. The bootstrap's 1location
dces not change from system to system, it is always loaded
with the same offset and will always occupy the first sector
on diskette. It must occupy the lowest portion of memory
beyond 900H. The bootstrap is "org'ed" at location zero and
must be loaded by DDT at an address 900H bytes away from its
normal load address. This is done by specifying a 900H byte
offset on the DDT "R" (READ) command:

IBOOTnnK,. HEX
R900

The new customized CP/M is now properly organized in memory.
Type a control-c to return to the monitor and type:

SAVE 32 CPMnnK.COM

This places a copy of the customized system onto the diskette
under the name specified. The system must be "sysgen'ed" onto
the first two tracks of a diskette for ©bootstrapping. The
first two tracks are what the bootstrap program reads.

The program 'SYSGEN' is wused for accessing the operating
system tracks. SYSGEN performs two vital tasks. It reads a
copy of the operating system off of tracks =zero and one and
places it into memory starting at 1location 900H in the
Iransient Program_Area, and two, it will take any copy of the

operating system that is already at location 900H and place .

it on the first two tracks of the specified diskette.
Use DDT to get the copy of the new system into the TPA, then

use the second function of SYSGEN to place it on any
diskette. The sequence is as follows:

17

DDT CPMnnK.COM

When DDT finishes loading the new 0OS and types® the prompt
character, enter a control-c to return to the monitor. Place
the desired diskette in drive B and call SYSGEN to place the
operating system on it. When SYSGEN types: '

GET SYSTEM (Y/N)?

Type a 'N'; the system is already present. SYSGEN will then
request:

PUT SYSTEM (Y/N)?

Respond with a 'Y' and the SYSGEN progfam will place the new
0OS onto the first two tracks of the diskette in drive B from

the image of the operating system in memory.

When the SYSGEN is finished, the diskette in drive B is ready
for rebooting. Remove the diskette from drive.-A and replace
it with the one in B. Remember, in order to read in the
ENTIRE new copy of CP/M, execute a cold-start (RESET)
procedure. The control-c operation only performs a warm boot
and will not read in the CBIOS.

SECTION 7.3

SAMPLE CBIOS I/0 ROUTINES

CONST:
IN 0 :GET PORT STATUS
ANI H :IS A CHAR THERE?
JINZ WASTHERE :YES, SO JUMP
XRA A :NO, SO CLEAR FLAGS AND ACCUM
RET :ALL DONE. EXIT
WASTHERE:
MVI A, OFFH ;INDICATE THAT SOMETHING
RET . WAS THERE THEN EXIT
CONIN: :
IN 0 :GET PORT STATUS
ANI 1H ;IS A CHAR THERE?
JZ CONIN . :IF NOTHING THERE, TRY AGAIN
IN 1 :GET THE INCOMING DATA BYTE
ANI 07FH :CLEAR THE PARITY BIT
RET ;ALL DONE. EXIT
?
CONOUT : | _
IN 0 :GET PORT STATUS

18

PUNCH:

READER:

ANI
JZ

MOV

ouT

RET

IN
ANI
JZ
MOV
OouT
RET

RET

2H
CONOUT

- A,C

1

2H
LIST
A,C

SIZE
IN K

16
24
32
40
48
56
64

;IS OUTPUT BUFFER CLEAR?
:NO, SO TRY AGAIN
:PUT OUTGOING DATA IN ACCUM

sWRITE IT OUT

:ALL DONE.

:GET PORT STATUS
;IS OUTPUT 3UFFER CLEAR?
:NO, SO TRY AGAIN

:PUT OUTGOING DATA IN ACCUM

 ;WRITE IT OUT

sALL DONE.

;PUNCH AND READER ARE NOT USED.

SECTION 7.4

COMMON OFFSETS

OFFSET
VALUE

E080
Cco80
A080
8080
6080
4080
2080

19

EXIT

EXIT

SECTION 8.0

THEORY, OF OPERATION

The MICROMATION disks are controlled by an S-100 bus
compatible controller. The controller is managed by software
in two pages (512 bytes) of on-board PROM. Data transferred
is buffered in one page (256 bytes) of on-board RAM. An
additional address page is reserved for use by the controller
for communications. The memory is addressed as follows:

PRCM o F800 - FOFF
RAM FAQO - FAFF
I/0 LOCATIONS FBOO - FBFF

The MICROMATION controller transfers information to and from
diskette whenever one of two reserved memory locations is
accessed. When the '"MARKPORT' byte is read the controller
.reads a sectormark from the diskette. When the same byte is
written to the sectormark is written to diskette. A second
"pseudoport!' is called 'DATAPORT'. When it is accessed it
causes transfer of a single byte of data. The psuedoport can
be considered as an output port to diskette. For example, if
the instruction:

LDAX DATAPORT
«
is executed, the transfer of data is to the accumulator from
the diskette rather than from the memory byte 1itself.
Conversely, if this is executed:

STAX DATAPORT
The byte in the accumulator is wfitten to the current disk

location. Each sector of data is arrayed on diskette in the
following format: :

20

FIELD ' BYTES

INTER-RECORD GAP
ADDRESS MARK
TRACK

ZERO

SECTOR |

ZERO

ID FIELD CRC
ONES

ZEROS

DATA MARK

DATA FIELD
DATA FIELD CRC
ZERO

- i .
N -
-t N) OO0 e OV ad) et d wd e omd

The status of the disk controller can be read into the
accumulator 1in the same manner as data is transferred. By
reading the 'statusport' location, eight bits of information
are placed in the accumulator.

D7 D6 D5 Dy D3 D2 D1 DO
READY SEEK HEAD INDEX SECTOR WRITE SERIAL TRACK
DONE LOALED PROTECT INPUT ZERO

The controller 1is given instructions by writing to the
'CONTROLPORT' memory lccation. The eight control bits are:

. | :
D7 D6 D5 D4 D3 D2 D1 DO
UNIT SELECT SELECT RESTORE DIR STEP

SELECT A B HEAD

SECTION 8.1

HOW CP/M IS INITIATED

A small program, called 'SUPERBOOT' is burned into PROM at
‘the reserved memory 1location F800. This program has the
single function of reading in a single sector of data from
track 0 sector 1 of drive A. It places the 128 bytes of data
at location zero 1in main memory. Execution 1is then
transferred to location zero. The 128 byte program that
SUPERBOOT 1loads 1is the cold bootstrap 1loader for CP/M. -
SUPERBOOT is the same for any MICRCMATION ~version-—of -CP/M.—
When initiating CP/M for the first time, either a manual
operation or a power-on/reset triggered circuit must jump to
location F800 where the SUPERBOOT program resides.

21

M M C (0] 4 Y
AAAAAAAADAAAAADAAAADNDAAADAAAAAAANAAAANA

This program is a generalized full-disk copy proaram
that is designed to run-in a CP/M -environment. MMCOPY
will copy the entire contents of a diskette on drive A
to a diskette on drive B.

The program is invoked by -typing the transient name
with two optional parameters, For example:

A-MMCQPY RS

If the optional 'R' parameter 1is specified the
Pprogram will repeat execution indefinitely or until a
control-c (warm boot) is entered - from the console 1in
response to the mount message. The mount message is
issued before every copy and is of the form:

SOURCE ON A, DESTINATION ON B, THEN RETURN

It gives the_.,operator a chance to change either one
or both of the diskettes. After the diskette has been
copied or when a control-c 1is detected MMCOPY will
issue a reboot message giving the operator the
opportunity to mount a system diskette in drive A.

If the optional 'S' parameter is entered anywhere on
the command-line, the copy program will stop-- copvying

when it encounters a full track of 'ES's. When a
diskette 1is initialized it is padded -- with the
hexadecimal byte configuration of 'E5's. The 's!

parameter will thus allow a diskette with only a few
tracks used to be copied in significantly less time than
if the entire 77 +tracks of unused data area were
copied.

All data copied is automatically verified on disk
reads and writes. . If an error-is.detected the entire
track (26 sectors) will be-recopied and a- message - will
be printed indicating the hex address -of the track and
sector in error. _If the "error --persists, MMCOPY. will
retry. the track for 10 times. BAfter 10 unsuccessful
retries a '"PERMANENT' message will be.- printed and the
program will continue, ignoring the bad data.

MEMTEST USER DOCUMENTATION 1

M EM T E S T

MEMTEST is a program designed to give your RAM memory an extensive read’
and write test. It will record all errors found while running on the
system console. It is designed to test only RAM memory and will not
test disk I/0 or disk DMA. Other programs are available to test those
functions.

The program begins by requesting three addresses from the user that must
be entered in hexadecimal form. Leading zeros are required. It will
request a starting address, a test length and a test increment. The pro-
gram will begin at the starting address and perform three tests (called
phases) in a single block of memory that is the size specified by 'incre-
ment'. At the end of these three tests the starting address is increased
to the next increment and the phases are repeated. This continues until
enough increments have been tested to equal the test length. For ex-
ample, if you specify a starting address of 4000 (remember, this is in
- hex), a“test length of L4000 and an increment of 1000, the program will
start at 4000 (16K) and test through U4FFF outputing error statistics at
the end. It will then repeat the procedure starting at 5000 and test-
ing through 5FFF. This repeats a total of four times or until it has
tested 4000 (16K) bytes.

In order to thoroughly test a memory board, we recommend two tests.
The first time through the increment should be equal to the amount of
memory addressed by one bank of RAM chips (this is 4K on most 16K boards).
The second test should be run with an increment equal to the total
board memory size. Thus on a 16K system with the test board strapped
for 4O000H through TFFFH the test specifications would be:

TEST ONE TEST TWO

BEG. TEST LOCATION: 4000 4000
TOTAL TEST LENGTH: 4000 4000
TEST INCREMENT: 1000 _ 4000

Note that this is a very thorough test. Test one will take close to
six hours to run to completion and Test two will take around 24 hours
to execute!

The actual test consists of three phases. For Phase One the test area
is written with a bit pattern and then examined to see if the pattern
is still there. The program repeats this test 256 times checking all
possible bit patterns. -

MEMTEST USER DOCUMENTATION 2

In Phase Two the test area is initially filled with zeros. A byte con-
taining a single '1' bit is then written to the first location of the
test area. The entire increment is checked to see if it is still =zeros.
The program repeats this test routine through all eight single bit pat-
terns. It will then write the test byte in the second location in the
test increment and repeat the above loop. It will thus 'walk' the eight
bit patterns through every byte in the test area.

The Phase Three test procedure is identical to Phase Two except that
both the testing field and the walking bit pattern are complemented.
All of memory is filled with FF's and the bit patterns that are walked
are the eight patterns containing a single '0' bit.

Upon completion of the three phases on each test increment, the pro-
gram prints a table that consists of a row of eight four-digit hex num-
bers that are a count of the total number of errors found during the
three phases. The left most number corresponds to the most significant
bit (7) .of the chip and right most to the least significant bit (0) of
the chip. .

I d

One row is printed for each OUOOH bytes tested. If a board containing

1K chips was tested, each row corresponds to one block of chips and each
number in the row to a specific chip. However, if the board contained
4K chips then the first four rows correspond to one block of chips and
the total errors attributable to a given chip would be the sum of the

four numbers in the individual column (of four rows) belonging to that-:

bank.

MEMTEST was originally designed as a stand-alone memory test program
but has now been upgraded to run in a CP/M environment. Therefore, care
must be taken not to give the memory test program addresses that will
cause it to overlay itself or the BDOS (operating system) with any of
the test patterns. The minimum beginning test location is 1000H (4K)
and the total test length should never extend into the CP/M BDOS.

The most convenient method of operation is to strap your memory so that
the board to be tested has addresseés that are contained completely with-
in the TPA (Transient Program Area). A second method is to strap the
board to be tested with addresses completely ABOVE the operating system.
For example, if the system contained two 16K RAM boards a 16K version of
CP/M could be used and the board to be tested should be strapped for
4000H (16K) through TFFFH (32K-1).

If neither of the above options are possible on your.system it may be

possible to run the test on one 4K block at a time and then restrap the

board.So all blocks can be tested.

MEMTEST USER DOCUMENTATION 3

The MEMTEST program will ask during the setup procedure whether you want
detail error 1nformat10n by printing:

RECORD EACH ERROR ON CONSOLE? (Y OR N)

If you respond with a 'Y', each time a byte is found to be in error a line
will be printed at the system console in the form:

A= aa aa GB= gg bb W= ww ww
Where aa aa is the address in memory in hexadecimal form of the bad byte.
Where gg is what pattern the program expected to find.
Where bb is what the program found.
Where ww ww is the address currently containing the walklng byte.
During setup, the MEMTEST program will ask:

REPEAT TEST? (Y OR N)

If the response is 'Y' the entire test procedure will repeat indefinitely.

MMI 6301 (8c)

7uLs241 (100)

. a Vee 18
} 5 2 N
) Azﬁ’%'g e M DATA 7 T 'l ol 15 DI 7
AL @;— a6 , ms IN2 02 DI 6
a13 s> a5 N LA ppeem— WS ”‘“3015
0 .
AL2 Al DATA 4 iy ot [“BPID DI 4
AA—t 11 b ¢
ALl s T AAS Yuns o5 DI 3
a0 e w2 A2 w6 o DI 2
1 :
o BHa g A A1 w7 o7 PEPDI 1
5 ol .7 :
A8 m’ 14 DATA O —11N8 08 DI 0
SINTA o [P
SINP NBL B
Sout 13 74Ls32 10— 3 3 q r
POBIN BP72 2 POBIN —F2) 74,04 '
1 740506 9 741532
MMI 6306 (6c) 2112 (68)
. 14
.—I]:? A8 N 7
745155 (4e) ® s s |,
A = 5 | Ab1/o4 He DATA 7
n B T D DA 1w o DATA 7 % 25 |
[A | = A -
o B mf-mmER £ o3 Pome F o | L] vesftt e
S y m o 2]
e 2| v P FERD STATES g g 7] :; o2 P pata s ° & 1522l o s
S 6 Y s |4
" 6 _ 4
sy g LD HEAD *15] :é o1 H2 paTA 4 $ 710 01 1% aTa 4
2v0 | WRIE DIK o WRITES L r/w
= 15 DZ- 2v1 F— WRITE MARK ROM ENBL —1CS RAM ENBL 13|
be7>— L
POBIN R 22 - WRTTE FILT a8 BPED-{ a8 |mui 6306 7o) VS 2112 (78)
G Ted ol s 2 WRITE SERIAL Y s : Sl |2
1] A6 o4 DATA 3 M A 5] ,5i/04— DATA 3
2 3 moA |2 Mm p |15
- 007 Rpo>={1T olF—paTA 7 E b |3 22 0310 pata 2 0 R L 2;1/03 L pata 2
4 5 M OD oy
D06 [BP40 12 o022 DATA b 0 R |+{A3 Y s (210 10
65 s _mms b5 | = ATA 1 S ETR el
D05 BP39 - s ° 1al 12 210 Q
poy B3 ot [3DATA 4 a0 T MARO /’/Ol - DATA O
' / —{R/W
D421 15 o5 {LL DATA 3 Bl
D03 Bpgd>=<(1> 0> == DATA ROM ENBL — 12 rAM ENBL 23| &5
poz BPap-LY 16 o6 13 DATA 2
AN
D01 15 17 o7 P2 DATA 1 A7 BP8dD
o o N7 an - (ALL PuLLuP RESISTORS 470)
poo pr3p>i8i18 o8 FLDATA 0 A6 BPsp
l . AS BP723> A
E ENBL A | 871597 (9c) : € o e
WRITE B ~—iEMeL B A4 BP30 o MICROMATION -
3 i B Y3 UNIVERSAL FLOPPY DISK
n Fr— {}eu B Y T CONTROLLER
— 74s04 13,9 Al T DATA BUFFERS, MEMORY, AND
WR 1 11 SELECTION LOGIC
' tor 58)'NRITE B A0 BP79)
PAGE 1 oF 4

1374508

| © 6. MORROW

OuT OF PHASf—_‘ZLSOZ 8090 74Ls74
ACK -)10 o 11 118 DATA —

' [10 g & Vec . %Vcc 10 g Vec ” 4 2Vcc
— > 19 2 R 15
Tk 2 o Aok, S aln o 12 SR Bk Hp of=C Ok
128 |3 128 |6 —— 13 — 138_{6 ——=
svs CLk—Hck A" (K [Hfek ab-h ok M B B K ek af—C CLK
Vcc R R , R r R
713 | 71 _ | 1
1 L _
DISK DATA aTH 21118 b2 RESET
3-WRITE GATE 4is02 8090
2 : 3 7415161 04
HEAD bl alfzONE Vee pl s
ONE P2 a2 w0 = Wy D o[> READ DATA
THO & o3| hree e 1¢ 11 C?(C .
THREE — 1y QL;J‘D FOUR gn = LS
FOUR ——ﬁ‘ns a5[— QuT OF m B CLK —J13
VCC'_g"DG 7) EN TQA 14 D CLK Vee
A% CLK cK l;_ 74Ls174 C CLK —5 CK QB J.Jé E CLK
| 2 T _ac F CLK
S — 1 3 L__o/ DD
RESET READ MARK l.i_Dc,l_z — _] IY ey L DOUBLE DENSITY
EON —1 741510 6 5
4 Muz D CLk 090 4
H
DISK CLK C CLK—/ 6 —— 4
D V. \I7~c $10 _2_133‘" E0C -—£]>é— EOC
U |- iﬁ % £ CLk 20 8090
Vce 11 9 1] 74us
1 ENB ' 6 c aQ F CLK—
2 D a— 9a : S
3.8 veo 9 |5 12 D_ @ C O 10] 8
8K . —
~{ RANGE iCKR Q Ve R D CLK___Z__ 13a EOW
eNTL Vec £ 15 | svs ek - BT o0
R - Fok= /7S
1k B8a |7 7 00— '
ENA QA e
1 10 —_— 2 R_]5 12] R
P SYNC BP7 5> P SYNG s 5 “b
74Ls04 y #Vce 3 74Ls74 11 s
Vee 2, s g2 K I—-CKSQ :
T o T
74us74 | 2¢ am Voo 10

RN § § N [
1-READ MARK ——}o— READ 31ck .
741504 R

D 1 1
2|58
3-HEAD 3

0 8 12 11
3 P15 o5 Mr PROY
1 7ys10 1y |16 06

74508 Eon
as 1-T7G—Eﬁ§iiE;ENB XRDY
THis74 i 8098 (3a)
1-READ DAT“"_Ji'Eg::)o—ﬁ- READ ATTN —— 3¢
1-READ MARK—H o , o Vee »
s — |4 £ T—
- EON —4 g MICROMATION
S S —— e
12 WRITE SYNC UNIVERSAL FLOPPY DISK
. 7hLs7Y 45_ 023 e CORTROLLER
1-WRTTE FARK —10] CK g LOGIC
74Ls00 { !Vcc ,
© G. MORROW PAGE 2 OF 4

4 Vee Vee ¢l N
1739 2-DK 0K Y | 11,
- TA— 2-A" (LK 5 8 745165 A
2-READ DA SR 1212 WRITE DATA
. 7405299 2-C CLK 731=S -3
1-DATA 7 H 74Ls20 5 — 1
1-DATA 5 15, 621 —- ir %

5 = 1-DATA 0 12 13 | 7ws08 < [k 7
1-DATA 4— g € 1-DATA 1 @ : W~
1-DATA 3 : D 20D 74Ls02 —2-cx
1-0ATA 2—f ¢ 1I¢ 10), 1TRITE MARKT Jgp 32 Lls/e 1w
1-DATA 1 Ak ’ Vee ql2f s 701532 15L
L-DATA 0 ——— P L AT [

2- A CK —ck o -tk e CQ g 8)108 L
2-2%3 13|> 2 el e |17 13 11 RB 74102
12 19 9_pp 1243¢ - & b
B} 7h4Ls00 ' _CLK
2-WRITESYNC] 6 2-C CLK 4 7Lu_520
2-R7 cuﬁJ 38
€00 - 3 Juson \
L DRIVE
Poc BP>— ' 2 11 o SELECT
. q ll ‘l o112 02 H1I3>BRIVE A
, 1WRITE FILT —eicer] 2 3 SHuD wves
(of o] —1Q =7
READY L‘;/ﬁ]_.ll =B oara 7 —3o1 o i o FHLID>EWA
—I5 4 7 EN A
- 4 02 1-DATA 4 ——D2 @
INDEX HEAD 8098 (3a)
L2 12 o3 —1-pata 3 b p3 oA ;: 3)
— — +
SECTOR 6 13 06— 13 1 pata 2 11 pd g 10 2
—_— 2 —
WRITE 14 o7 2—1- para 1—1305 Q ! T ESTORE
PRETEST _jIB] LA _ 14l e o415) ?Asovs 43)
4-SERIAL INPUT—;7 1215 &5 I
J 1-DATA 5 74U s174 1t I DIRECTION
TRACK 0 B 6 o6 =
=~ g - WRITE DATA 2 —|3
HEAD —14 . o ag—ﬂg—g—ﬁ—y E@f;—qxl ol?@wam—: DATA
SEER IO g; |12'5 A Ls 74Ls00 WRITE GATEG-‘IQ @7@%}75 ENBL
- gcc ISGA 03 —@HEAD LOAD
1-READ STATOS 11%pep ! =X I
2-WwRITE SYNC— S a 1
3 —g 3| lc |7us7 EN 2
741508 ‘{Rl]Vcc
POC ’
7415161 1 llS 9
R
——D = of— HEAD :
= 10 MICROMATION
L U Pt st UNIVERSAL LOPPY DISK
s O HEAD CONTROLLER
10
INDEX STATUS AND DISK WRITE LOGIC
LOAD HEAD T © G. MORROW |paceE 3 oF 4

PocC

R3232 ouT

1-DATA RS232 enD
1-%RITE SERIAL TTY out +
TTY out -
Vee 4,7 x _____;_____
SERIAL INPUT
47
l:tzt a e 2N3906
2N3904
3.3k
RS232 1IN EJI} WA ‘% 27
= K
Vee o LNl %
47x 1w _ =
27K
TTY IN +
. 82MF
TTY v - @T 12y
LM340 or 7805
+8v (BPS1) BPLD INGNDOUT —I——'— Vee
' 30mF T . ‘ T 39MF
GND (BP100)BPS>—3 + |
220 iw
+16 v Be>—W— J_ +12v
1N759 O01MF
ING712 1
220 3w
S 1 12y
18759 - -~
: MH@R@MATH@N '
UNIVERSAL FLOPPY DISK
CONTROLLER

SERTAL INTERFACE &
POWER SUPPLIES

© G. MORROW PAGE 4 oF 4

aaTYPE MEMOREX,PRN

F800

FAOO

OOFE
0040
0002
O00FD
0080
0004

020
0010
¢Goos

0023
000A
0006

FA70
0000

F800
F803
F80S
F808

' F80B

F8O0E

’810
F813
F816
F819
F81C
F81F

3170PA
0EOO

CDS8AFS8
CD22F8
C200FS8
0EO1

CD56F9
010000
CD64F9
CDC1F8
C200F8
Cc30000

W e S S we e we

ORG

?
SCRATCH:

i
H

: MASK EQU
ADDRESSMARK
SEEXDONEMASK

UPDATED 1/2/78 TO TO RUN IN PROM AT F800

H

H

H
OF800H

EQU OF800-H+200H

INMASK
OUTMASK
READYMASK
HOMEMASK
HEADMASK
AMASXK

BMASK
H

‘HEADSETTLE

STEPSETTLE
STEPDELAY

7

H

. N

BOOTSTRAP:

ATES
EQU OFEH
EQU AOH
EQU 02H
EQU OFDH
EQU 80H
EQU 04H
EQU 20H
EQU 10H
EQU 08H
EQU 35D
EQU 10D
EQU 6D

DRIVERS FOR MEMOREX DRIVE

; COMBINED ROUTINES TO BE INCLUDED ‘IN DISK CONTRO

; THIS ROUTINE READS TRACK 0,SECTOR 1 INTO MEMORY
;AT LOCATION ZERO AND THEN JUMPS TO ZERO

H
STACK

COLDBOOT

!
LXI

MVI
CALL
CALL
JNZ
MVI
CALL
LXI
CALL
CALL
JNZ
JMP

EQU
EQU

SP,STACK
c,0

SELDSK
HOME
BOOTSTRAP
c,1

SETSEC
B,COLDBOOT
SETDMA
DISKREAD
BOOTSTRAP
COLDBOOT

SCRATCH+70H

0

$ SET STACK POINTER-TO BUFFER
SELECT DRIVE A

; LOOP IF

DRIVE NOT READY

i SET SECTOR ONE

1 SET DMA
sAT ZERO

; LOOP IF
; JUMP TO

ADDRESS

ERROR
BOOT

. F822-~
F825
F826

F829
F82C
F82D
F82E

F831
F834
F835
F836

F839
F83C

F83E
F83FP
F841
F844

F845
F846
F847
F848
F84A
F84B
F84C
F84F

F850
F853
F854
F855
F858
F85B

F85E

F861
F864
F865
F867

F86A
F86D
FB86E

Fg870
F871
F872
F873
F874
F875
F877
F87A

CD81F8
DO
2177FPA

CD6AFS
1A
1F
DA29F8

CD61F8
1A
1F
D231F8

2176FA
36FE

2C
3600
c23kEFs
c9

AF

B1

F8
3EA4C
91

D8
CD81F8
DO

2177FA
78
B9
CA7BFS8
CDSEFS8
C350F8

DA6AFS

3A70FA
35’
E6FD
C370FS8

3A70FA
34
F602

12

3cC

12

3D

12
0606
CDA3F8
c9

HOME ¢

ATHOME:

GOHOME:

INITIALIZE:

FILLLOOP:

H

SETTRK:

STEPLOOP:

?
STEPHEAD:

STEPOUT:

STEPIN:

DOSTEP:

CALL

RNC
LXI

CALL STEPIN

LDAX
RAR
JC

CALL
LDAX
RAR
JNC

LXT
MVI

INR
MVI
JNZ
RET

XRA
ORA
RM
MVI
SUB
RC
CALL
RNC

LXI
MOV
CMP
Jz
CALL
JMP

Jc

LDA
DCR
ANI
JMP

LDA
INR
ORI

STAX
INR
STAX
DCR
STAX
MVI
CALL
RET

DISKREADY

;IS DEVICE READY?
s+ IF CARRY SET, THEN DIS]

H,TRACK ;POINT H-L TO TRACKBUFFER

; STEP AWAY FROM HOME

D ; READ STATUS
; CHECK TRACK ZERO BIT

ATHOME

jCONTINUE STEPPING IN TILL NOT ?

STEPOUT ;GO TOWARDS HOME
D ;CHECK STATUS
;CHECK TRACK ZERO BIT ' -

GOHOME ;LOOP UNTIL AT HOME
H,ADDRPTR
M, ADDRESSMARK
L ; BUMP ADDRESS BUFFER PT
M,0 ;FILL BUFFER WITH ZERO
FILLLOOP _
A ;GET A ZERO .
c ;IS TRACK=-0?

;IF YES, RETURN
A,76D ; COMPARE TO LAST TRACK
o]

;CHECK IF TRACK GREATER
DISKREADY ; CHECK RFEADY

s RETURNIF NOT
H, TRACK ;POINT TO PRESENT TRACK
A,M ;GET PRESENT TRACK
c ;COMPARE TO DESIRED TRA
DONESTEP ;ON CORRECT TRACK
STEPHEAD ;CARRY SET TO INDICATE
STEPLOOP ;GO AROUND AGAIN
STEPIN ;GO INWARDS IF CARRY SF
£

CONTROLBYTE ;CHECK DRIVE SELECT «¢
M ; DECREMENT TRACK BUFFEF
OUTMASK ;SET D1 POR DIRECTION
DOSTEP $EXECUTE STEP
CONTROLBYTE
M ; INCREMENT TRACK REGIS”
INMASK ;SET IN CODE :
D ;OUT PUT DIRECTION
A ;SET STEPA BIT
D ;OUTPUT STEP
A ;CLEAR STEP BIT
D jCLEAR STEP BIT ON POR’
B, STEPDELAY ;SET UP DELAY
DELAY ;DELAY FOR STEP TIME

F87B
F87D
F880

F881

F884
F885
F886
F887
rgsgs
F889

F88A
F88D
F88E
F88F

F892
F894

F897

F899
F89cC
F89F
F8AOQ

F8A3

F8AS

F8AS8
F8A9
F8AC
F8AD
F8BO

F8B1
F8B4
F8BS5
F8B7
F8B8
F8B9

F8BA
F8BC
F8BF
F8CO

060A
CDA3F8
Cc9

CDB1F8

AF
1A
07
D8
3¢C
Cc9o

CDBI1F8
AF.

81
CA97F8

3EO8
C399F8

3E10

3270FA
3202FB
AF

C3BAFS8

2E1F

3A00FB

2D
C2AS5F8
05~
C2A3F8
c9

1102FB
1A
E620
13

1A

1B

0623
CCA3FS8
AF

c9

DONESTEP:
MVI
CALL
RET

O % ~ s v .

ISKREADY:
CALL
CAUTION

-’

XRA
LDAX
RLC
RC
INR
RET

U3 v~

ELDSK:

CALL
XRA
ADD
Jz

DO A SELECTE
MVI
JIMP

-

SELECTA:
MVI
DOSELECTs
STA
STA
XRA
JMP
H
H
H
DELAY:
MVI
DELAYLP:
LDA

DCR
JNZ
DCR
JNZ
RET
?
3
HEADLOAD:
LXI
LDAX
ANI
INX
LDAX
DCX
CALLDELAY:
MVI
C2
XRA
RET

B,STEPSETTLE
DELAY

HEADLOAD

s SET UP HEAD SETTLEING

IT IS ASSUMED THAT HEADLOAD SETS ﬂ,E T™O DISKFUNCTIC

A sCLEAR THE ZERO FLAG
D $GET FUNCTION BYTE FRC
; READY BIT SHIFTED INTO CARRY

;CARRY ,ZERO SET -

A ;CLEAR ZFERO FLAG
;DRIVE NOT READY

HEADLOAD

A ;GET ZEROS

C s ZERO=1 IF DRIVE A, 2?7

SELECTA

A, BMASK :GET SELECT MASK FOR 1}

DOSELECT

A,AMASK :GET SELECT MASK FOR ;

CONTROLBYTE :SET UP DRIVE STATUS

DISKFUNCTION 1 SEND TO CONTROLLER

A :SET ZERO FLAG

CALLDELAY ;CALL DELAY FOR HFADL

L,31 :+# OF MILLISFCS DELAY

DATAPORT s THIS INSTRUCTION CAD
1A 32 MICOR-SECOND DF
;IF THE HFAD IS LOADF

L

DELAYLP

B

DELAY

D,DISKFUNCTION

D ; READ DISK STATUS

HEADMASK ; CHECX FOR HEAD LOAD!

D ; POINT TO HEADLOAD

D ;i STROBE HEADLOAD COUNTER

D ;SET D,E TO DISKFUNCTION, FO°

B,HEADSETTLE
DELAY ;LET
A 3+ SET

: FOR

1 SET UP HEADSETTLING
HEAD SETTLE

ZERO FLAG

RETURN

-

H MAP OF SCRATCH AREA

FA6F = BOOTSTACK ° EQU SCRATCH+6FH
FA70 = CONTROLBYTE EQU SCRATCH+70H
FA71 = SPEED EQU SCRATCH+7 1R
FA73 = RETRYCOUNT EQU SCRATCH+73H
FA74 = DMAADDR EQU SCRATCH+74H
FA76 = ADDRPTR EQU SCRATCH+76H
FA7D = DATAPTR EQU SCRATCH+7DH
FAFD = LASTDATA EQU. SCRATCH+0FDH
007D = DATABYTE EQU 7DH
FA79 = SECTOR EQUA SCRATCR+79H
FA77 = TRACK EQU SCRATCH+77H
FBOO = DATAPORT EQU SCRATCH+100H
FBO1 = MARKPORT EQU SCRATCH+101H
FBO2 = DISKFUNCTION EQU SCRATCH+102H
FB03 = LOADPORT EQU SCRATCH+103H
FBO3 = SERIALOUTPORT EQU SCRATCH+103H
FAFE = CRCBUFFER EQU SCRATCH+0FEH
84BF = RESIDUE EQU 84BFH
. H
’
? AN
?
DISKREAD:
F8C1 O0EOO MVI c,0 ;SET READ FLAG
F8C3 CDFEFS8 CALL ENTRY ; EXECUTE READ
F8C6 CO RNZ ; RETURN IF ERROR
F8C7 2D < DCR L ;s POINT TO CRC
F8C8 EB XCHG ;MOVE LAST BYTE ADDRESS TO DE
F8C9 217DFA LXI H,DATAPTR ;POINT TO ADDR OF DATA MARK
F8CC CD70F9 CALL CREECH ;COMPUTE CRC
F8CF 78 MOV A,B s MOVE HIGH RESIDUE TO ACC
F8DO0 B1 ORA c 3 COMPARE TO C
F8D1 CO RNZ ;CRC ERROR IF B,C NOT ZERO
DATAXFER:
FS8D2 0680 MVI B, 128 $}SET BYTE COUNTER
F8D4 117DFA LXT D,DATAPTR jPOINT TO DATA MARK
F8D7 2A74PA LHLD DMAADDR ;POINT H,L TO DESTINATION
XFERLOOP: _
F8DA 13 INX D ;POINT TO NEXT BYTE IN BUFFER
F8DB 1A LDAX D $}GET BYTE FROM BUFFER
F8DC 77 MOV M,A 1 STORE BYTE IN MAIN MEMORY
F8DD 23 INX H ; PONINT TO NEXT BYTE IN MEMORY
FBDE 05 DCR B }JHIT BYTE COUNTER
F8DF C2DAFS8 INZ XFERLOOP GO AROUND FOR MORE
F8E2 C9 RET $ZERO SET TO INDICATE NO ERROR
‘ H
’
DISKWRITE:
F8E3 2A74FA LHELD DMAADDR ;POINT TO DATA IN MAIN MEMORY
FS8E6 EB XCHG a $ MOVE ADDRESS TO DE
F8E7 217EFA LXT H,DATAPTR+1 34 POINT TO DATA BUFFFER
LOADLOOP:
FBEA 1A LDAX D JGET BYTE PROM MENORY
F8EB 77 MOV M,A s MOVE INTO BUFFER
FB8EC 13 INX D s NEXT BYTE IN MEMORY
F8ED 2C INR L ;NEXT BUFFER BYTE
FS8EE C2EAFS8 JINZ LOADLOOP ;END OF BUFFPER?
F8F1 11FDFA LXT D,LASTDATA ;POINT TO LAST DAT BYTE

F8F4 2E7D N MVI L,DATABYTE s LOAD LOW ORDER ADDRER OF [

F8F6 CD70F9
F8F9 71
FS8FA 23
F8FB 70
F8FC 0EO07

F8FE CD81F8
‘F901 coO
F902 F3
F903 CDOFF9
F906 FB
F907 C8
F908 3E04
FO90A BS
F90B CAFEFS8
F90E C9

FOOF “2176FA
F912 1101FB
F915 0606

F917 1A
F918 BE
F919 C217F9
F91C 1B

F91D 23

FI91E 1A

F91F BE

F920 CO

F921 05
F922- C21DF9
F925 060A

F927 1A
F928-05
F929 C227F9
F92C 79
F92D B7
F92E CA46F9
F931 AF

F932 12
F933 0D
F934 C232F9
F937 13
F938 23 -
F939 7E
FO3A 12
F93B 1B
F93C 23

F93D 7E
F93E 12
-F93F 2C
F940 C23DF9
FP943 AF
F944 12
F945 C9

CALL
MOV
INX
MOV

MVI.

s/
3
;-
ENTRY:
. RNZ
< DI

EI
RZ
MVI
CMP
JZ
RET
;-
H
READWRITE:
LXI
LXI
MVI

ADDRMARKLOOP:

LDAX
CMP
JNZ
DCX

ADDRESSHEADER:

INX
LDAX
" CMP
RNZ
DCR
" JNZ
MVI
GAPLOOP:
LDAX
‘DCR
JNZ
MOV
ORA
Jz
XRA
ZEROWRITE:
' STAX
DCR
JINZ
INX

INX-~-

MOV
‘STAX

DCX

INX

WRITEDATALOOP:

MOV

STAX"™

INR
JNZ
XRA
STAX
RET

3

REECH

axmx0
- e
N wW.,

CALL DISKREADY

CALL READWRITE

"+ RETURN

s COMPUTE CRC

jSTORE CRC IN CRC BUFFER
s NEXT BYTE .

s STORE LAST CRC BYTE
$sSET UP WRITE FLAG

s CHECKX FOR HEAD LOADED

§DISK NOT READY

;DISABLE INTERRUPTS TO PROTECT REZ2
; EXECUTE READ OR WRITE

; ENABLE INTERRUPTS FOLLOWING READy

IF NO ERROR
A,d ; WRONG SECTOR HEADER READ? g
B ;B CONTAINS POINTER WHERE ERROR Of
ENTRY ;RETRY IF WRONG SECTOR
s RETURN WITH NO ZERO TO INDICATE 1}
H, ADDRPTR ;POINT TO ADDR MRK
D, MARKPORT ; POINT TO PORT F¢
B,6 ;SET BYTE COUNTER
D ; READ MARK
M s ADDRESS MARK?
ADDRMARKLOOP ;IF NOT TRY AGAIN
D ;POINT TO DATA PORT
‘H ; LOOK AT NEXT BYTF IN HEADER
‘D $ READ NEXT BYTE FROM DISK
M ;s RIGHT DATA READ?
;RETURN IF ERROR
B ;HIT BYTE COUNTER
ADDRESSHEADER ;TRY AGAIN IF NOT DONE
"B,10 ;SET BYTE COUNTER FOR CRAP IN GAP
D ; READ BYTE OF GAP
B ;HIT BYTE COUNTER
GAPLOOP ;RETURN IF NOT LAST GAP BYTE
A,C ; CHECX READ/WRITE FLAG
A ;FLAG = 0 ?
READSECTOR ;GET OUT FOR READ
A ;SET UP TO WRITE ZEROS I!
D jWRITE A ZERO DATA BYTE
c ; LAST BYTE
ZEROWRITE ;GO AROUND FOR M
D ;POINT TO MARKPORT
H ;POINT TO DATA MARK
A,M ;GET DATA MARK
D jWRITE DATA MARK .
D ;POINT TO DATAPOINT
H ;POINT TO DATA
A,M ;GET DATA BYTE
D ;WRITE DATA TO DISK
L ; POINT TO NEXT BYTE
WRITEDATALOOP s LOOP IF NOT LAST BYTE
A ;CLEAR ACC,SET ZERO
D ;WRITE ZERO

;FINISHED

F946
F947
F948
F949
F94A
F94B
F94cC
F94D
F94E

F94F
F950
F951

F952-

F953

F956
F959
F95A
F95D
FO95E
F9S5SF
F960
F961
F963

F964
F965
F966
F969

1A
1A
1A
13
23
1A
BE
co
1B

2C
cs
1A
77
C34FF9

2179FA
71
CD6AF9
n

23

70

23
36FB
Cc9

60
69
2274FA
Cc9

H

READSECTOR:

LDAX D ; READ PASTA CRAP IN GAP
LDAX D ;DITTO
LDAX D o
INX D ;POINT TO MARKPORT
INX H ;POINT TO DATA MARK
LDAX D ;READ DATA MARK
CMP M ; COMPARE
RNZ ;RETURN WITH ERROR IF NOT
DCX D ;POINT TO DATAPORT
READDATALOOP:
INR L ;POINT TO NEXT BYTE IN BUFFER
RZ $GET OUT IF LAST BYTE
LDAX D ; READ DATA BYTE
MOV M,A ;STORE BYTE IN MEMORY
IMP READDATALOOP ;GO AROUND FOR MORE;
:
;
:
;
3
3
SETSEC:
LXI H,SECTOR ;POINT TO SECTOR BUFFER
MOV M,C ;STORE REGISTER NUMBER FROM C R
CALL SETADDRCRC ;COMPUTE CRC OF HEADER
MOV M,C ;STORE FIRST CRC BYTE
B INX - H ;POINT TO NEXT BUFFER BYTE
i MOV M,B ;STORE SECOND CRC BYTE
INX H ; POINT TO NEXT BYTE
MVI M,0FBH ;STORE DATA MARK
RET ; DONE
,
:
;
SETDMA:)
’ MOV H,B #MOVE B,C PAIR TO H,L
MOV L,C ’
SHLD DMAADDR ; STORE ADDRESS IN BUFFER
RET '

:
U

’
SETADDRCRC:

F96A 2176FA LXI H,ADDRPTR $ STARTING ADDRESS IN H

P96D 117AFA LXI - D,SECTOR+1 ;ENDING ADDRESS IN D,E
CREECH: ; ROUTINE TO COMPUTE CRC '

F970 01FFFF ’ LXI © B,=1

F973 DS T PUSH D , .

P974 7E ' MOV A,M

F975 A9 XRA c

F976 57 MOV D,A

F977 OF) RRC

F978 OF RRC

F979 OF RRC

P97A OF ' _ RRC

F97B E60F ANI OFH)

F97D AA XRA D

F97E 5P R MOV E,A

F97F OF RRC

F980 OP RRC

F981 OF RRC

F982 57 MOV D,A

F983 E61F ANI 1FH

F985 A8 XRA B

F986 4F MOV C,A

F987 7A o MOV - A,D

F988 E6E0 ANI - - OEOH

F98A AB ’ XRA E

F98B 47 MOV - B,A

P98C 7A MOV “A,D

F98D OF . " RRC

F98E E6F0 ANI OFOH

F990 A9 " XRA c

F991 4F MOV C,A

F992 23 INX H

F993 D1 POP D

F994 7A MOV A,D

F995 BC : * CMP H

F996 D8 ' RC :

F997 C273F9 : JINZ CREECH+3

F99A 7B MOV - A,E

F99B BD CMP .

F99C D8 ' RC

F99D C373F9 JMP CREECH+3

H
x

FOA0
FOA2

F9AS
F9A6
FOAS8
FO9AB
FI9AC
FO9AD
F9BO
F9B3

F9B4
F9B?7
FOBS8
FO9B9
FI9BC

F9BE
F9BF
F9CO
FoC1

F9C4
F9CS5
F9C6
F9C9
FoCA
F9CD
FO9CE
FPSDO

FI9D1
F9D2
F9D3
F9D4
F9D5
F9D7
F9D8
F9D9

F9DA
F9DD
F9EO
F9E1
F9E2
F9ES
FO9E6
FO9E9

0601
2A71FA

ES
1EFF
3A02FB
1F
1F
DAA8F9
CDEAF9
E1
3A02FB
1F
1F
DAASF9
16FF

ES
29
2B
3A02FB

1P

SF
CDEAF9
E1
DABEF9
7A
E67F
c9

79
87
47
SF
3EOB
4F
17
57

2A71FA
2A71FA
29
2B
CDEAF9
oD
C2DAF9
c9

3
o SOFTWARE UART ROUTINES

4 .
SERIALIN:

°
»

SWAIT:

SLOOK:

GTBIT:

H

2
"SERIALOUT:

OLOOP:

MVI B,1 ;SET TO SUPRESS OUTPUT I¥ DF’
LHLD SPEED ; GET SPEED CONSTANT

PUSH H ; SAVE ON STACK

MVI E,OFFH sINITILIZE 1/2 THE S
LDA DISKFUNCTION : LOOK FOR SE
RAR ; ROTATE INTO CARRY

RAR

JC SLOOK ;IS SERIAL INPUT BIT
CALL SERIALDELAY : ;WAIT HALF A
POP H ;s RESET SPEED CONSTANT

LDA DISKFUNCTION s VERIFY THAT
RAR ;IS STILL PRESENT
RAR

JC SWAIT

MVI D,0FFH s INITIALIZE OTHER HA

PUSH H ;;UPDATE THE STACK

DAD H 1 CALCULATE THE SPEED
DCX H ; CONSTANT FOR A FULL
LDA DISKFPUNCTION ;:GET THEA I N
RAR s ROTATE TO BIT ZERO

MOV E,A s UPDATE THE SHIFT RF
CALL SERTALDELAY :DELAY ONE R
POP H ;GET THE SPEED CONSTANT

Jc GTBIT 1 HAS THE START BIT §
MOV A,D ; MOVE BYTE TO ACC
ANI 7FH ;CLEAR HIGH BIT

RET :

MOV A,C : MOVE CHARACTER TO At
ADD A ;ADD A START BIT

‘MOV B,A s MAKE BIT 0 OF B A 2}
MOV E,A ;SHIFTED DATA TO E
MVI a,11 ;THIS IS THE BIT COU!
MOV C,A ; COUNT TO REG C

RAL ;LOAD D WITH THE RES"
MOV D,A ;BITS AND HIGH ORDER
LHLD SPEED ;GET THE SPEED CONST?
LHLD SPEED ; PADDING

DAD H ; ADJUST FOR OUTPUT
DCX H ;1 LOOP

CALL SERIALDELAY ;OUTPUT DATA
DCR c ; DECREMENT BIT COUNT
JINZ OLOOP

RET

FO9EA
FO9EB
F9EC
F9ED
FOEE
FO9EP
F9F2
FOF3
F9F4
F9F7
FO9F8
F9F9
FOFA
FI9FB
F9FC
FSFD
FSFE
FIOFF

A~

7B
BO
OF
OF
OF
3203FB
2D
0o
C2EAF9
7A
1F
7B
1F
SP
7A
1F
57
c9

H
H
SERIALDELAY:

MOV
ORA
RRC
RRC
RRC
STA
DCR
NOP
JNZ
MOV
RAR
MOV
RAR
MOV
MOV
RAR
MOV
RET

e

A,E .
B
+TO THE SERIAL PORT
;AT PROPER BIT
SERIALOUTPORT
L s DECREMENT SPEED
; PADDING
SERTALDELAY ; LOOP UNTIL T
A,D ; ROTATE
; ONE
A,E :BIT
; POSITION -
E,A :+ TO THE
A,D s RIGHT
sWITH END AROUND
D,A 1BIT PRESERVED

TYPE

A-TYPE MEMCBIOS

B-TYPE MEMCBIOS.PRN

0010

3E00

3E00

FAOQO

FA10
FA6F
FA70
FA73
FA74
FA76
FA77
FA79

FBEOO
FBO1
FBO2
FBO3
FBO3

F822
F88A
F845
F956
F964

FBE3
F8C1
F8D2

FA71
F9D1
F9A0

] oW uuce

CBIOS FOR MICROMATION 16K VERSION OF CP/M VERSION 1.3

COPYRIGHT (C) 1977, MICROMATION AND DIGITAL RESFEARCH

FEB 17,1978
DRIVERS FOR MEMOREX DRIVE

T v S N S W % we v W

SIZE EOU 16 ;SI”F OF OPFRATING SYSTEM IN ¥
: (CORRFNTLY 16XK), THIS NTIMRFR
: CHANGED FOR LARGFR SYSTEMS,

LOCATION EQU MSIZE*1024~-512 ;ORG LOCATION FOR THF

.
.

ORG LOCATION ; BASE OF BIOS IN 16K SYSTEM

MAP OF SCRATCH AREA

e w6 we we

SCRATCH EOU OFAOOH +tBASE ADDR OF RAM SCRA
H . :
PRESDSK EQU SCRATCH+10H
BOOTSTACK . EQU SCRATCH+6FH
CONTROLBYTE EQU SCRATCH+70H
RETRYCOUNT EQU SCRATCH+73H
DMAADDR EQU SCRATCH+74H
ADDRPTR EQU SCRATCH+76H
TRACK EOU SCRATCH+77H
SECTOR EQU SCRATCH+79H
H

3 PSEUDO PORTS IN ROM

:

DATAPORT EQU SCRATCH+100RH
MARKPORT EQU SCRATCH+101H
DISKFUNCTION EQU SCRATCH+102H
LOADPORT EOU SCRATCH+103H
SERIALOUTPORT EOU SCRATCH+103H
1

?

:

HOME EQU 0F822H

SELDSK EOU 0F88AH

SETTRK EQU OF845H

SETSEC EQU._. OF956H $SET SECTOR NIIMBER
SETDMA EQU OF964H

; .

]

DISKWRITE EQU OF8E3H
DISKREAD EQU OF8C1H
DATAXFER EQU OF8D2H

’

H

SPEED EQU SCRATCH+71H
SERIALOUT EQU OF9D1H

SERIALIN EQU OFSAOH
¥

0000
2900
3106
2880
1500
002A

3E00
3EO03
3E06
3EO09
3EOC
3EOF
3E12
3E15
3E18
3E1B
3E1E
3E21
3E24
3E27
3E2A

3E2D
3E2E
3E31

3E34
3E37
3E3A
3E3C
3E3F
3E40
3E41
3E44
3EA4S
3E46
3E47
3E48

3E4B
3E4C
3EA4F

3ES52
3ES3
3ES54

3ESS
3ESS8
3ESB

3ESE
3E60
3E63

C32D3E
C3553E
C3023F
C31B3F
C32F3F
C3333F
C3333F
C3333F
C322F8
C3343E
C345F8
C356F9
C364F9
C3343F
C3503F

AF
3210FA
C3DA3E

2100FA
3A10FA
FE10
D24B3E
6F

2C
3A77FA
77

69

2C

7E
3277FA

79
3210FA
C38AFS8

c9
6o
00

318000
3A10FA
32D93E

0ECO

CD8AFS8

CD22F8

H
CBASE EQU

CPMB EQU
BDOS EOU
CCPM EOU
CPML EQU

NSECTS EOU

?
JMP

EBOOT: JMP
JIMP
JIMP
JIMP
JIMP
JMP
JMP
JIMP
JMP
JIMP
JMP
JMP
JIMP
JMP

-7

COLDBOOT:
XRA
STA
JMP

H
; -
JOSELDSK:
LXI
LDA
CPI
JNC
MOV
INR
LDA
MOV
MOV
INR
MOV
STA
GOSELDSK:

MOV

- STA
i JMP

ERRORV: RET
NOP
NOP

WBOOT: LXI
LDA
STA

STARTBOOT:
MVI
CALL
CALL

(MSIZE-16)*1024 ;BIAS FOR SYSTEMS GREATER THAN
CBASE+2900H
CBASE+3106H

CPMB-128
$-CPMB
2AH ; CHANGE FOR LARGER MFMORY .
COLDBOOT
WBOOT
CONST
CONIN
CONOUT
LIST
PUNCH
. READER
HOME ; HOME
IOSELDSK : SELDSK
SETTRK : SETTRK
SETSEC 3 SETSEC
SETDMA s SETDMA
READ . ; DISKREAD
WRITE s DISKWRITFE
A :
PRESDSK ;INITIALIZE PRESENT DISK
BOOT
H,SCRATCH ;POINT TO BOTTOM OF SCRATCH
PRESDSK ;GET PRESENT DRIVE #
10H ;CHECK FOR VALID #
GOSELDSK ;GET OUT IF INVALID
L,A tPOINT TO TRACK OF PRESENT DRI
L - ; INCREMENT TO NEXT BYTF
TRACK ;GET PRESENT TRACK
M,A ; STORE IN BUFFER
L,C ;POINT TO SELECTFD DRIVE RUFFF
L ; NEXT BYTE
A,M° ;GET TRACK OF SELECTFED DRIVFE
TRACK ;UPDATE CONTROLLER ‘ .
A,C T ; LOAD SELECTED DRIVE
PRESDSK ;UPDATE DISK BUFFER
SELDSK GO TO CONTROLLER
s NOT CURRENTLY USED
; RESERVED FOR FUTURE ERROR
3 REPORTING. ‘
SP,80H
PRESDSK ;GET PRESENTLY SELECTED DRIVE
'CURRDRIVE 3 STORE IN BUFFER
c,0
SELDSK 1 SELECT DRIVE A TO REBOOT
HOME

3E66
3E69

3E6C

3E6F
3E70
3E72

3E75
3E78
3E79
3E7A
3E7B
3E7C
3E7D
3E7E
3E7F
3E82
3E83
3E84
3E85

3E88
3E89
3E8C
3E8D

3E90
3E93
3E96
3E97
3E9A
3E9D
3E9F

3EA2
3EAS

3EAS8
3EA9
3EAA

3EAD
3EBO
3EB1
3EB4
3EB6
3EB9
3EBC

018028
CD64F9

110000

7B
FE1A
CAAD3E

21BF3E
19

7E

13

D5

cs

4F

F5
CDS6F9
F1

E1

ES
118000

3D
CA903E
19
C3883E

2274FA
3A77FA
B7
CAA23E
3A79FA
D612
F2A83E

CD343F
C25E3E

ci
D1
C36F3E

3A77FA
B7
C2DA3E
0EO1
CDA4SFS8

018035 7

C36C3E

READ DISKETTE FOR TWO TRACKXS, STARTING AT BOOT LOADFR

LXY B,CCPM ;ONE SECTOR BOOT
CALL SETDMA ’
RDTRK: ;READ THE FIRST/NEXT TRACK
LXI D,o0 s SECTOR NTUMBER = 0NNN0
RDSEC: ;READ THE FIRST/NEXT SECTOR .
MOV A,E tE IS SECTOR NUMBER
CcPI 26 : .
J2z NXTTRK ;0...25 COUNTS SECTORS
: GET SKEWED SECTOR NUMBER
LXI H, TRAN
DAD D :HL IS ADDRESS OF SKFWED SFECTr
MOV A,M 11...26 IN REG A
INX D ;TO NEXT SECTOR
PUSH D ; SAVE SECTOR NUMBER
PUSH B ; SAVE DMA ADDRESS
" MOV C,A : READY FOR SECTOR SET
PUSH PSW ; SAVE SKEWED SECTOR NUMBER
CALL SETSEC
POP PSW ; COUNT TO DMA POSITION
POP H ;COPY OF DMA BASE ADDRESS
PUSH H ;BACX TO STACK
LXI D, 128 ;SECTOR SIZE
MUOL:
DCR A s REGA*128
J7 MUL1
DAD D ;+128
JIMP MUL
MUL1: _ ;HL IS DMA ADDRESS FOR THIS SECTOR
SHLD DMAADDR ;STORE IT™ DIRECTLY
LDA TRACK
ORA . A
JZ RELP ;IF TRACK 0, THFN CONTINIE
LDA SECTOR ;IF TRACK 1 AND SECTOR - 18
su1l 18 ; THEN SKXIP THFE RFAD
Jp SKIPREAD
RELP:
CALL READ s+ READ THE DATA
JINZ STARTBOOT : STAY HERE WHILF FRRO!
SKIPREAD:
POP B ;s RECALL BASE DMA ADDRFSS
POP D ; RECALL SECTOR NUMBER
: JIMP RDSEC 3 FOR ANOTHER SECTOR
NXTTRK:
LDA TRACK 30,12
ORA A
INZ BOOT ;STOP AT TRACK 1
MVI c,1 ;SEEX 1 IF NOT
CALL SETTRK
LXT -~ B,CCPM+26%*128 — ;MOVE TO NEXT.-TRACK. P

LW e we v

JMP RDTRK ; TO RFAD THE ENTIRE TRACK

TRAN: ;s TRANSLATION TABLE FOR SKEW FACTOR

3EBF 01 . DB 01H
3ECO0 05 DB 05H
3EC1 09 DB 09H .
3EC2 0D DB 0DH
3EC3 11 DB 11H
3EC4 15 DB 15H _
3EC5 19 DB 19H .
3EC6 03 DB 03H :
3EC7 07 DB 07H
3EC8 0B DB 0BH
3EC9 OF DB OFH
3ECA 13 DB 13H
3ECB 17 DB 17H
3ECC 02 DB 02H
3ECD 06 DB 06H
3ECE OA DB 0AH
3ECF OE DB OEH
3EDO 12 DB 12H
3ED1 16 DB 16H
3ED2 1A DB 1AH
3ED3 04 DB 04H
3ED4 08 DB 08H
3EDS 0C DB 0CH
3ED6 10 DB 10H
3ED7 14 DB 14H
3ED8 18 DB 18H
7
3ED9 00 CURRDRIVE " DB 0
?
BOOT:

?
SET THE SOFTWARE UART SPEED

]

; IF THE CBIOS IS MODIFIED FOR AN I/O ROARD THE

: CODE TO PROGRAM THE UART SHOULD BE

3§ PUT HERE AND THE INSTRUCTION TO SET THFE SOFTWAPF
3 UART SPEED REMOVED.

3EDA 210700 - LXI H,0007H
3EDD 2271FA SHLD ! SPEED
?
? _
3EE0 3EC3 MVI A,0C3H
3EE2 320000 STA]
3EES '21033E LXI H, EBOOT
3EE8 220100 SHLD 1
3EEB 320500 STA 5
3EEE 210631 LXI H,BDOS
3EF1 220600 SHLD 6
3EF4 018000 LXI B,80H
3EP7 CD64F9 CALL SETDMA
3EFA FB EI . -
3EFB 3AD93E LDA CURRDRIVE ;ACTIVF DISK
3EFE 4F MOV C,A :
3EFF C30029 JIMP CPMB
1 SOFTWARE UART CONSOLE ROUTINES
CONST:
3F02 060A MVI B,10 ;EACH LOOP = 35 MICROSFCONDS
CONST1:
3F04 3A02FB LDA DISKFUNCTION ; LOOK FOR BIT
3FP07 1P RAR
3FP08 1F RAR o
3F09 D2123F JNC CONSTFD ; FOUND BIT
3F0C 05 DCR B .
3FOD C2043F JINZ CONST1 3 LOOP POR SPECIFIED TIME

3F10 AF XRA A $1ZERO A - NO CHARACTER FOUND

CONSTFD: .
3F12 CDAOF9 CALL SERIALIN ;GET BYTE

3F15 322E3F STA OLDBYTE ; SAVE BYTF
3F18 3EFP MVT A,0FFH - .
3P1A C9 RET ’

CONIN: . :
3F1B 3A2E3F LDA OLDBYTE ;WAS A BYTE THERE
3FP1E FEOO CcPI 0 ' BN
3F20 CA2A3F JZ CONIN1 ; NO
3F23 FS5 PUSH PSW ; SAVE A
3F24 AF XRA A :
3F25 322E3F STA OLDBYTE ;ZERO OLDBYTE
3F28 P1 POP PSW
3F29 C9 RET

CONIN1: .
3F2A CDAOF9 CALL SERIALIN
3F2D C9 RET
3F2E 00 OLDBYTE DB 0

CONOUT:
3F2F CDD1F9 CALL SERIALOUT
3F32 C9 RET

LIST:

. PUNCH:
3F33 Cc9 READER: RET

ERROR CHECKING READ AND WRITE RTNS FOé
MICROMATION CBIOS

W0 N0 W N we N we we

. AUGUST 24, 1977
:
0014 = . RETRYLIMIT EOU 20 ;NUMBER OF RETRIES
READ: :
3F34 CDAB3F CALL READYNOW
3F37 AF XRA A ;GET A ZFRO
3F38 3273FA STA RETRYCOUNT
: RETRYREAD:
3F3B CDC1F8 CALL DISKREAD ;CALL PROM RTN
3F3E 3E00 MV T A,0 ;ZERO ACCUM, LFAVE F
3F40 C8 RZ . ;IF NO FRROR THFM RF’
3F41 CD523E CALL ERRORY .
3F44 CD7A3F CALL ERRORCHFCK
'3F47 C23B3F JINZ RETRYRFEAD ;IF ERROR RETRY
3F4A CDD2FS8 . , CALL DATAXFER ; TRANSFRRS DATE
3F4D 3EOF MVI A,O0FH ; ERROR CODE 4
3F4F C9 RET ;EITHFR RETRY SUCCFS
; _
;o
WRITE:
3F50 CDAS3F CALL - READYNOW ,
3FS3 3A02FB LDA DISKFUNCTION ; READ STATUS
3FS56 E604 ANT 04H ;CHECK WRITE PROTFCT
3F5S8 CA643F Jz NOTPROTECT
3F5B 11D33F LX1I D,WPMSG ;SET UP ADDR OF MSG
3FSE CDBB3F CALL PRINTMSG
3F61 €30000 ’ JIMP 0 ;WARM BOOT
NOTPROTECT:
3P64 AP , XRA A ;GET A ZERO
"3F65 3273FA STA RETRYCOUNT
RETRYWRITE: 4
3F68 CDE3F8 CALL DISKWRITE ;CALL PROM RTY
3F6B 3E00 MVI A,0 ;ZERO ACCUM, LEAVE F

3F6D C8 ’ RZ ;IF NO ERROR THFM RFW¥

3F6E
3F71
3F74
3F77
3F79

3F7A

3F7D
3F7E
3F81
3F83
"3F84
3F86
3F87

3F88
3F8B
3F8D
3F8E
3P91
3F92
3F95%
3P96
3F97
3F9A
3F9B
3F9C
3F9F
3FAO
3PA1
3FA4
3FA6
3FA7

3FA8
3FAB
3FAC
3FAD
3FBO

3FB3
3FB6
3FB7
3FB8

3FBB
3FBC
3FBE
3FPBF
3FCO
3FC1
3FC4
3FCS
3FC6

3FC9

3FD3

'CD523E CALL ' ERRORV

CD7A3F CALL ERRORCHECK :

C2683F INZ RETRYWRITE ; IF ERROR, RETRY
3EOF MVI A,OFH ; RETIIRN FRROR CODF
co9 RET ; MORF THAM RFTPYLIV

H

?

ERRORCHECK : .
3A73FA LDA . RETRYCOUNT ;GET NUMBER OF RE™PT
3c INR A ; ADD ONE
3273FA STA RETRYCOUNT
FE15 CPI RETRYLIMIT+1 ;HAVE WE RETRIED ENC
cs RZ ;IF YES, RETHNRN W7FT
3E77 MVI A,77H IS EPROR A TRACK Fr
BD cmp L ;L HOLDS LOCATION OF
co RNZ ;IF NOT AT 77 THEN !

3 TRACKERROR
3A73FA LDA RETRYCOUNT
D60A sul 10
F8 RM
3A77FA LDA TRACK ,

AF MOV C,A ;GET TRACK IN C
3A79FA LDA SECTOR

a7 MOV B,A ;GET SECTOR IN R

cs PUSH B ; SAVE TRACK AND SFC"
CD22F8 CALL HOME ;PROM RTN TO HOME HY
c1 POP B ; RESTORF TRACK AND ¢
cs PUSH B ; SAVE TRACK AND SFC*
CDA4SF8 CALL SETTRK ;PROM RTN TO FIND T?
c1 POP B ;GRT TRACK AND SFCT(
a8 MOV c,B ;GET SFCTOR IN REG (
CD56F9 i CALL SETSEC ;PROM RTN TO FIND S!
3EFF MVI A,0FFH s TUPN OFF THF

3D DCR A : ZERO FLAG FOR °
c9 RET

?

3

READYNOW: .
3A02FB LDA DISKFUNCTION ; CHECK STATUS
07 RLC s CHECREADY LINE
D8 RC s CARRY SET,DRIVE RFADY
11C93F LXT D,NOTRDYMSG ;POINT TO MSG BUFFE
CDBR3F CALL PRINTMSG

READYLOOP:
3A02FB : LDA DISKFUNCTION
07 RLC
D8 c
C3B33F gnp READYLOOP ;LOOP TILL READY

H

PRINTMSG:
1A LDAX D ;GET FIRST CHARACTER
FE24 CcPI g $END DELIMITER?
cs RZ $RET IF DONE
D5 PUSH D
AF MOV c,A
CD2F3F CALL CONOUT
D1 POP D
13 INX D
C3BB3F JIMP PRINTMSG ; LOOP UNTIL DONFE

H

NOTRDYMSG:
4EAF542052 DB '*NOT READYS'

]

WPMSG:

5752495445 DB 'WRITE PROTECTEDS'

MOVCPH Docurmwu‘:ou ;

If the CBIOS is not changed, the follow*ng procedure may be used
{0 generate new systems for any siz= memory.,

ros the file CPM.Cd'i has .'been included with this diékettc, which enables .
you %o generate a CP/M system for any manory size, up to 64K bLytes. the
command : _ i

CrM <cr> -

(vhere <cr> denotes the carriage-return key) loads the CH1.COM projram and
qives-it control. This pxoarzam then examines the current memory confiquation,
and produces a new CP/% system which is relocated to the tos of the memory
(actuslly, the hichest contigquous RAM area is used). The newly constructed
CP/M systen then qgets control, and the system starts with the normal sign-on
messaie.

The conmard
CPM % *

‘constructs a new version of ths CP/M system, but-leaves it in memory, ready
fo. a sysgen cperation. The message

READY FOR “SYSGEN™ CR
“SAVE 32 Ctixx.COH"

.S txinted at the console upon completion, wher2 xx is the memory size in
kilobytes. The operator can then tyre ’ - -

. SYSGEN ’ - to start the system ceneration
with the response : » '
: GET SYSTEM (Y/N)?n - user must respord with "n*
and the message - .- , . :
- PUT SYSTEM (Y/N)?y user must resrond with y

TESTINATION ON B, THEN TYPE REIURN
Place the new diskette on drive B, ard type a return when ready (note that if
you answer with an "a" rather than a "yt to the promct abcve, SYSGEN will
place the CP/“I s;stem on drive A mstead of drive B). Syscen will then tyce
.. . ‘ - FUNCTION GD'-!PL:,"’E. nEBOOI‘I
'ﬁie user can t.hen go through the reboot rrocess with the old or new diskette.
The cperator céuld also havei:yped. .
SAVE 32 CPtixx.CCM
at the caoupletion c;f ceM.COM, which wculd olace. the C?/M memory imece on

ijisk, In this case, the relocated memory imege can oe “patched” to include
custca I/0 drivers, as daszribed in the C2/1 Alteratlcn Guice.

' (_oycr)

Noteé that the memory size can be given explicitla} to the CPM.COM proaram
~(en it is started in order to override the internal mechanisms which
- Jetermine the amount of memory on the system. In this case, the operator must

yee

l CPM xx -

r - . .

- CrM xx *

l‘here xx is the memory size in decimal kilobytes. The first form produces a
CP/M system which operates in xx kilobytes, and starts the newly created
ystem when the relocation is -complete.. The second form creates the new
ystem, but leaves it in memory for a sysgen or save operation,

For example, the invocation
CpM 48 *

l:tarts CPM.COM, and creates a 48K system in memory. Uron completion, the
essage ' '

: READY FOR "SYSGEN" OR
"SAVE 32.CPX48.COM" °

is typed. The operator can then perform the sysgen or save oreration as
Fescribed above. Note that the newly created system is serialized with the’
W mxber attached to your original diskette, and are subject to the conditions
- of the Software Licensing Aqreement included in this package.

