
 REFERENCE MANUAL

 FOR BUSINESS BASIC

 LEVELS 3 AND 4

BFISD 5085

 TABLE OF CONTENTS

 SECTION 1 - INTRODUCTION . 1-1

 OVERVIEW. 1-1
 SCOPE . 1-1
 CONTENTS. 1-2
 CONVENTIONS . 1-4
 RELATED PUBLICATIONS. 1-6

 SECTION 2 - FEATURES OF BUSINESS BASIC,
 LEVELS 3 AND 4 . 2-1

 OVERVIEW. 2-1
 CONSOLE MODE VS. PROGRAM MODE 2-1
 VARIABLES, CONSTANTS AND EXPRESSIONS. 2-2
 NUMBERS. 2-2
 SIMPLE NUMERIC VARIABLES 2-3
 SUBSCRIPTED NUMERIC VARIABLES (DIM). 2-3
 ARITHMETIC EXPRESSIONS 2-3
 STRING CONSTANTS . 2-4
 STRING VARIABLES . 2-5
 SUBSCRIPTED STRING VARIABLES (DIM) 2-5
 STRING EXPRESSIONS . 2-5
 STRING COMPARISON. 2-6

 LOGICAL OPERATIONS. 2-7
 OUTPUT DATA FORMATTING. 2-7
 POSITIONING. 2-8
 NUMERIC EDITING. 2-10
 NON-FORMATTED PRINTING OF NUMERIC VALUES 2-10

 I/O DIRECTIVES AND ALLOWABLE DEVICES. 2-13

 SECTION 3 ~ STATEMENT FORMATS. 3-1

 OVERVIEW. 3-1
 FORMAT. 3-1
 STATEMENT NUMBERS . 3-1
 DIRECTIVES. 3-2
 PARAMETERS AND I/O OPTIONS. 3-2
 COMPOUND STATEMENTS . 3-3

 SECTION 4 - DIRECTIVES . 4-1

 SECTION 5 - FUNCTIONS . 5-1

 SECTION 6 - SYSTEM VARIABLES . 6-1

 SECTION 7 - INPUT/OUTPUT OPTIONS 7-1

 SECTION 8 - SYSTEM OPTIONS . 8-1

 SECTION 9 - MNEMONIC CONSTANTS 9-1

 SECTION 10 - DISC ORGANIZATION 10-1

 OVERVIEW . 10-1
 DISC FORMAT. 10-1
 DISC COMPONENTS. 10-2

 SECTION 11 - FILE STRUCTURES AND ACCESS. 11-1

 OVERVIEW. 11-1
 INDEXED FILE. 11-2
 OVERVIEW . 11-2
 RECORD STRUCTURE . 11-2
 ACCESS . 11-2
 PROGRAMMING NOTES. 11-2

 SERIAL FILE . 11-3
 OVERVIEW . 11-3
 HEADER STRUCTURE . 11-3
 RECORD STRUCTURE . 11-3
 TERMINATOR . 11-3
 ACCESS . 11-3
 PROGRAMMING NOTES. 11-4

 PROGRAM FILE. 11-5
 HEADER STRUCTURE . 11-5
 DEF TABLE STRUCTURE. 11-5
 BASIC STATEMENTS . 11-5
 TERMINATOR . 11-6
 PROGRAMMING NOTES. 11-6

 DIRECT FILE . 11-6
 SIT STRUCTURE. 11-6
 HEADER STRUCTURE . 11-7
 KEY AREA STRUCTURE . 11-7
 RECORD STRUCTURE . 11-8
 ACCESS . 11-8
 HASHING . 11-8
 RANDOM ACCESS . 11-9

 SEQUENTIAL ACCESS. 11-11
 PROGRAMMING NOTES. 11-12
 EXAMPLES . 11-12

 SORT FILE . 11-13
 PROGRAMMING NOTES. 11-13

 UNLINKED FILE (LEVEL 4) 11-14
 ACCESS . 11-14
 PROGRAMMING NOTES. 11-14

 ii

 DISC DIRECTORY . 11-15
 ACCESS. 11-15
 DIRECTORY OPERATION . 11-15

 SECTION 12 - ERROR PROCESSING 12-1

 OVERVIEW . 12-1
 NON-CATASTROPHIC ERRORS. 12-1
 CATASTROPHIC ERRORS. 12-2
 ERROR CODES. 12-4

 APPENDIX A - FEATURES OF THE BUSINESS BASIC OPERATING SYSTEM. . . . A-1

 BUSINESS BASIC OPERATING SYSTEM. A-1
 TASKS, TERMINALS AND I/O DEVICES A-2
 COMPILER/LISTER. A-3
 JOB CONTROL AND MEMORY MANAGEMENT. A-4
 USER MEMORY. A-6
 GHOST TASKS. A-6
 SPOOLING (LEVEL 3) . A-8
 SPOOLING (LEVEL 4) . A-12
 PUBLIC PROGRAMMING . A-13
 INPUT BUFFERING. A-16
 BRANCHING. A-19
 FIELD PROTECTION . A-20
 TRANSMIT SCREEN. A-21
 PRINTER PORT OPTION. A-21
 NULL OUTPUT CHARACTERS . A-21
 SPECIAL KEY CONTROLS . A-22

 APPENDIX B - INTERNAL CHARACTER CODE B-1

 APPENDIX C - ALPHABETICAL SUMMARY OF DIRECTIVES, FUNCTIONS,
 VARIABLES, I/O OPTIONS AND SYSTEM OPTIONS. C-1

 iii

 LIST OF TABLES

 TABLE Page

 4-1 CALL/ENTER TABLE. 4_7, 4_28

 4-2 TABLE STATEMENT TABLE 4-111

 iv

SECTION 1 - INTRODUCTION

 OVERVIEW This manual describes Basic Four Information Systems
 Division's (BFISD) Business Basic Language, Levels 3
 and 4. These levels are used on BFISD's 1300 series
 of computers, which includes Models 200, 210, 410,
 510, 610 and 730.

 Programmers trained in the original Dartmouth
 University/General Electric Business BASIC language
 will discover major differences in BFISD's Levels 3
 and 4, which provide extended capabilities.

 It is recommended that newcomers to Basic Four
 products familiarize themselves with general
 information about the operating system, provided in
 Appendix A of this manual.

 Information on the operating system, located in
 Appendix A, is provided as a convenience only. This
 manual is a language manual, not a system
 description.

 Because this document contains information on two
 different release levels, certain portions do not
 apply to all users. However, the differences between
 Levels 3 and 4 are relatively few, and sections
 applying to only one level are clearly marked.

 SCOPE This reference manual is written as a tool for
 programmers in the everyday use of the systems
 described above. The explanations in this manual are
 presented in a simplified manner. All sections are
 structured to allow quick access of necessary facts
 for those seeking immediate answers to common
 questions, such as format or parameter selection.

 The manual is directed toward users of Basic Four
 systems who develop, program and support business
 applications.

 1-1

 The information in this manual is presented in the
 following sequence:

 o Section 1, "Introduction" - provides an overview
 of the purpose of the manual. Defines the
 intended audience, briefly describes the contents,
 defines style conventions, and lists related
 publications.

 o Section 2, "Features of Business BASIC, Levels 3
 and 4" - describes variables, constants and
 expressions, logical operations and output data
 formatting.

 o Section 3, "Statement Formats" - explains each
 component of a statement and defines parameters,
 common parameter abbreviations, and input/output
 options. Also describes symbols, I/O options,
 compound statements and input terminators.

 o Section 4, "Directives" - lists and describes each
 directive in alphabetical order.

 o Section 5, "Functions" - lists and describes each
 function in alphabetical order.

 o Section 6, "System Variables" - lists and
 describes each system variable in alphabetical
 order.

 o Section 7, "Input/Output Options" - lists and
 describes each input/output options in
 alphabetical order.

 o Section 8, "System Options" - lists and describes
 each system option in alphabetical order.

 o Section 9, "Mnemonics" - lists and describes each
 mnemonic in alphabetical order, providing its
 applicable levels and devices.

 o Section 10, "Disc Organization" - describes the
 organization of the disc.

 o Section 11, "File Structures and Access" -
 discusses various aspects of Business BASIC files
 on Level 3 and Level 4 operating systems.

 o Section 12, "Error Processing" - Lists each error
 and describes what the error number and message
 mean, and the procedures to follow for correction.

 o Appendix A describes features of the Business
 BASIC Operating System as they relate to the BASIC
 language.

 o Appendix B provides a table of internal character
 codes for use in converting characters from ASCII
 to hexadecimal and vice-versa.

 o Appendix C is an alphabetical summary of the
 directives, functions, variables, I/O options and
 system options available in Business BASIC,
 Levels 3 and 4.

 1-3

 This manual uses standard style conventions
 established for all Basic Four Information System
 Division (BFISD) documentation. Symbols used are
 defined as follows:

 Symbols used in the examples in this manual include
 the following:

 {} = parameters enclosed in this type of
 bracket are optional. If these
 parameters are not entered, the system
 either does not use them, or sets
 default values for them. All parameters
 not appearing in these brackets are
 required by the system. Do not enter
 () = these brackets, only what they contain
 parameters enclosed in parentheses are
 required. Parentheses are to be entered
 with the parameters they surround

 [] = square brackets are to be entered with
 the parameters that appear within them.
 Square brackets are only used in the
 EDIT statement

 "" = parameters enclosed in quotation marks
 are required. Quotation marks are to be
 entered with the parameters they
 surround

 NOTE

 All of the above parameters
 are optional when enclosed in
 {} brackets. For example:

 {"file ID"}
 {(fileno)}

 1-4

PARAMETER Many directives use the same parameters, which appear
ABBREVIATIONS in abbreviated form in the text. These parameters are
 defined as follows:

 argument list - a list of one or more variables,
 constants or expressions

 devno - the logical unit number of a
 device

 discno - the number of a disc

 file ID - a 1-6 character string (or a
 string variable containing same)
 that uniquely identifies a file

 fileno - the logical unit number of a file

 fileno/devno - the logical unit number of a file
 or device.

 keysz - the size of a key in a keyed file;
 minimum=2, maximum=56 (if key is
 greater than 32,767, maximum=54)

 logical expr - a comparison between variables
 and/or values, using a relational
 operator

 numeric expr - a numeric variable or constant, or
 an expression containing any
 combination of both. Can also
 contain arithmetic operators

 prog ID - the name of a program

 recno - the number of records in a file

 recsz - the size of each record of a file,
 in bytes

 secno - sector number

 stno - statement number

 string expr - a string variable or literal, or an
 expression containing a combination
 of both. May also contain a "+"
 for concatenation

 1-5

 INPUT TERMINATORS Input terminators are keys which notify the system
 that input has ended. The input terminator most
 commonly used is the CR character produced by
 pressing the RETURN key. Other field terminators are
 Control Bars (CB, sometimes called Motor Bars) I, II,
 III and IV. All operations in this manual are to be
 entered using the CR key. More information on input
 terminators can be found in the description of the
 CTL function in Section 4.

 RELATED
 PUBLICATIONS The following publications contain other information
 related to the Levels 3 and/or 4 Operating System:

 610/730 OPERATOR GUIDE, BFISD 5042

 OPERATOR TRAINING GUIDE, 200/410, BFISD 5045

 MAGNETIC TAPE UTILITIES REFERENCE MANUAL,
 BFISD 5052

 LEVEL 4 UTILITIES USER'S GUIDE, BFISD 5084

 DATAWORD II OPERATOR'S GUIDE (LEVEL 1.1),
 BFISD 5065A

 DATAWORD II REFERENCE MANUAL (LEVEL 1.2),
 BFISD 5104

 SERIAL DEVICE MANUAL, BFISD 5060

 OPERATOR'S GUIDE SYSTEM 610/730, BFISD 5042

 1-6

S ECTION 2 - FEATURES OF BUSINESS BASIC LEVELS 3 AND 4

 OVERVIEW This section discusses various aspects of the
 Business BASIC Language, Levels 3 and 4, including:

 o Variables, Constants and Expressions
 -Numbers
 -Simple Numeric Variables
 -Subscripted Numeric Variables
 -Arithmetic Expressions
 -String Constants
 -String Variables
 -Subscripted String Variables
 -String Expressions
 -String Comparison

 o Logical Operations

 o Output Data Formatting
 -Positioning
 -Numeric Editing
 -Non-Formatted Printing of Numeric Variables

 CONSOLE MODE VS.
 PROGRAM MODE The system can be utilized in two ways. First,
 commands can be entered directly into the system
 without statement numbers, which causes an immediate
 execution of the command upon striking of the RETURN
 or CR key. This type of operation provides immediate
 response to input. While these commands are being
 entered, the system is in Console Mode.

 The second way to utilize the system is to enter
 commands with statement numbers. The system then
 checks the commands for syntactical accuracy, but
 makes no attempt to execute them. This is the
 process of creating a program, a series of commands
 to be executed in a specific order.

 Once a program has been created, it can be invoked
 from Console Mode by use of the START or RUN
 directives. START is used to transfer enough memory
 to the user area to run the program; RUN is used when
 enough memory already exists in the user area.

 2-1

 Most directives can be used in either Program or
 Console Mode; those that cannot are listed below:

 DIRECTIVE PROGRAM MODE ONLY CONSOLE MODE ONLY

 DEF FN X
 EDIT X
 EXECUTE X
 GOSUB X
 IOLIST X
 LOAD X
 ON/GOTO X
 RETURN X
 SETTRACE X
 TABLE X

 VARIABLES, CONSTANTS Business BASIC provides for use of numbers, strings,
 AND EXPRESSIONS variables and other components of a computer
 language. These are discussed in the following
 paragraphs.

 NUMBERS A number is composed of digits and can be preceded by
 a sign and/or contain a decimal point. Because
 numbers can get extremely large, Business BASIC also
 provides another method of display, in which a number
 can optionally be modified by floating point notation
 (.1E-10). The number preceding the E is multiplied
 by 10 to the power following the E.

 Example:

 3 3.000
 003 3
 3. .3E1

 are all valid ways to represent the same number.

 2-2

 Numbers can range in magnitude from -1060+1 to
 1060-1. Numbers outside this range result in an
 ERROR 40. The system retains up to 14 significant
 digits. Integers and decimal places in excess of 14
 digits return an ERROR 26.

 If statement syntax calls for an integer (whole
 number) value, and the number used is not an integer,
 an ERROR 41 results.

 SIMPLE NUMERIC A simple numeric variable is denoted by a letter or a
 VARIABLES letter followed by a single digit, allowing for up to
 286 simple numeric variables. B and Z7 are examples
 of names for simple numeric variables. A simple
 numeric variable requires 12 bytes of data area when
 it is assigned any value. Once assigned a value
 these bytes cannot be released without clearing the
 entire data area. A simple numeric variable can
 contain any valid number. All references to
 previously unassigned numeric variables yield a value
 of 0.

 SUBSCRIPTED NUMERIC A subscripted numeric variable denotes an element of
 VARIABLES (DIM) an array. (An array is a systematic grouping or
 arrangement.)

 Arrays must be defined by use of a DIM statement
 before they are referenced (see DIM directive,
 Section 4).

 ARITHMETIC Business BASIC uses common mathematical symbols,
 EXPRESSIONS numeric variables and numeric constants to form
 arithmetic expressions. An arithmetic expression can
 be used wherever a numeric variable is valid, except
 to the left of an equal (=) sign. A string variable
 cannot be used in an arithmetic expression unless
 converted to numeric format (see NUM and ASC
 FUNCTIONS in Section 4).

 2-3

 Arithmetic expressions are evaluated according to the
 following hierarchy:

 Order Symbol Meaning BASIC Math

 1 Exponentiation 2^2 22

 2 * and / Multiply & Divide 2*2 and 2/2 2x2 and 2/2

 3 + and - Add and subtract 2+2 and 2-2 2+2 and 2-2

 If two symbols have the same order of precedence,
 operations are performed left to right. The order in
 which operations are performed can be changed by use
 of parentheses. If a set of parentheses appears
 within another set of parentheses, the innermost set
 is evaluated first and evaluation continues outward.

 Examples (Note: constants used can be replaced by
 variables):

 Math BASIC Result

 10+20 10+20 30
 10+20x10 10+20*10 210
 (10+20)x10 (10+20)*10 300
 10+20 (10+20)/10 3
 10

 22x3 2^2*3 12
 2+6 x 2+3 (2+6)/4*((2+3)/5) 2
 4 5

 STRING CONSTANTS A string constant can be any length (subject to
 memory limits of the task) and can be represented in
 two ways. Characters that can be entered from the
 keyboard are enclosed in quotation marks ("").
 Characters that cannot be generated from the keyboard
 can be represented by their hexadecimal value.
 Hexadecimal string constants are enclosed in dollar
 signs. Two hexadecimal characters are required to
 represent each single character, e.g., 01 (see
 Appendix B for assigned values).

 2-4

 STRING VARIABLES A string variable is identified by a single letter,
 followed by a dollar sign ($), such as A$, B$ or Z$;
 or by a single letter, followed by a single number
 and a dollar sign, such as A1$, A2$, A3$ or Z9$.

 There is no limit, other than user memory, to the
 number of characters that can be stored in a string
 variable.

 Example:

 A$ = "LOTSOFCHARACTERS"

 SUBSCRIPTED STRING The DIM statement is used to assign a length and/or a
 VARIABLES (DIM) string of the same characters to a string variable.
 The first parameter is the length of the string and
 the second parameter is the fill character. If the
 second parameter is omitted the fill character is a
 blank. If the second parameter is more than one
 character long, only the first character is used.

 Examples:

 0300 DIM B$(5)

 -B$ is 5 characters in length.

 0300 DIM B$(5,"*")

 -B$ is 5 characters in length and is filled
 with asterisks (*)

 STRING EXPRESSIONS Business BASIC uses a mathematical symbol (+) with
 string variables and string constants to form string
 expressions. The plus sign represents concatenation.

 Example:

 0010 LET A$="PEANUT"
 0020 LET B$="BUTTER"
 0030 LET C$=A$+B$
 0040 PRINT C$

 >RUN
 PEANUTBUTTER

 2-5

 The data area required by the system in execution of
 statements containing string concatenation is greater
 than the area normally required for storing the
 string(s); that is, the system requires data area
 overhead in handling string expressions.

 STRING COMPARISON When compared, strings of unequal length do not
 compare as equal. If two strings are equal for the
 length of the shortest string, then the longer string
 is considered greater in value.

 Example:

 0100 LET A$="S0ME"
 0110 LET B$="S0MEM0RE"

 -B$ is greater in value

 2-6

 LOGICAL OPERATIONS Statements of a program are executed in ascending
 statement number sequence. However, the program
 requires the ability to control the sequence of
 statement execution based on logical decisions.
 Thus, a fundamental feature of the Business BASIC
 language is the ability to alter the instruction
 execution sequence as a result of testing whether
 particular relationship exists. Testing by an IF
 statement determines, for example, if a numeric
 variable has reached a certain limit, or if the
 result of an arithmetic operation is within a
 specified range of values. Test criteria are
 established by the following relational operators

 = equal to

 < less than

 > greater than

 <> or >< not equal to

 <= or =< less than or equal to

 >= or => greater than or equal to

 Compound conditions can also be specified with the
 use of AND and OR:

 0100 IF A=1 AND B=2 OR C=3 THEN GOTO 0200

 See the IF directive in Section 4.

 OUTPUT DATA The formatting of output data on a terminal or
 FORMATTING printer usually consists of two preparatory steps.
 The first step provides vertical and horizontal
 positioning as necessary to place an item of data in
 a specific area of the printed output. The second
 step provides for numeric value editing as necessary
 to vertically align a column of numbers (masking) and
 to add auxiliary characters such as dollar signs and
 commas.

 2-7

 Vertical and horizontal positioning are provided by
 the "positioning expression", which is used in
 association with a single parameter of a PRINT or
 INPUT statement. Positioning is effective for
 terminals and printers. The positioning expression
 precedes the parameter (output expression) as
 follows:

 0020 PRINT (0,ERR=0100) @ (horizontal position
 expr {,vertical position expr})
 {,output expr}

 where:

 horizontal
 position = a numeric constant, variable or
 arithmetic expression the value
 which defines the horizontal
 position at which the first
 character of the printed or
 displayed value is to be placed

 vertical
 position = a numeric constant, variable or
 arithmetic expression the value o
 which defines the line on which
 input is to be placed (applicable
 only to video display devices)

 output
 expr = an expression that defines the
 value to be printed or displayed
 (see individual statement
 descriptions for allowable forms)

 The following are valid positioning expressions:

 0010 LET A$="P0SITI0N"
 0020 PRINT @(5,10),A$
 0030 LET R=2,B=5
 0040 PRINT @(R*5,B+10),A$

 >RUN

 POSITION

 POSITION

 2-8

 The horizontal position value, an absolute integer,
 indicates the horizontal character position where the
 first character of the output is to print or display.
 A value of zero indicates the first (left most)
 character position, and higher values indicate
 positions to the right. The VDT provides 80 (0-79)
 character positions, and printers provide 132 (0-131)
 character positions. Only the horizontal position
 can be specified on a printer.

 The vertical position value is also an absolute
 integer value, but in this case, reference is made to
 the top line (line 0) of the VDT screen. The VDT has
 24 lines (0-23). The vertical position value must
 not be greater than the number of lines on the
 display, or no display appears.

 2-9

 Editing of numeric values to be printed or displayed
 is provided by a form expression which includes a
 form operator (:) and a format mask (or the name of
 format mask). The form expression is appended to a
 parameter as follows:

 PRINT output expr:"###,##0.00+"

 or

 PRINT output expr: A$

 Following are numeric editing options:

 output
 expr = a numeric variable or an arithmetic
 expression that defines the value to be
 printed or displayed.

 : = the form operator

 0 = a character that forces the printing of
 a digit or a zero in the position
 specified

 # = a character that is replaced by a digit
 of the expression, but that suppresses
 the printing of a leading or trailing
 zero in the specified position when
 there is no digit

 * = a "fill" character used in place of the
 first # to cause the printing of an
 asterisk in each leading zero position
 and following the data printed

 $ = a "floating" character used in place of
 the first # or 0 to cause the printing
 of a dollar sign in place of the right
 most suppressed leading zero

 , = the point at which a comma is inserted
 if required (optional)

 . = the point at which a decimal point is
 inserted (optional)

 Format masks can also be used in converting numeric
 data to string data:

 LET A$=STR(N:"000")

 2-10

 Any one of the optional elements below can be used to
 indicate the sign of the output value. The sign
 element can be placed at the beginning or the end of
 the format mask to establish the position of the
 output sign character and can be preceded by "B" (the
 letter) characters to force the insertion of blanks
 at the positions indicated:

 Example: PRINT -1:"###,##0.00BB-"
 1.00 -

 Omission of the sign editing element causes the value
 to be output as an absolute value. Optional elements
 include:

 (mask) = outputs the value masked as specified;
 enclosed in parentheses if negative, no
 parentheses if positive.

 + = outputs + if the value is positive and -
 if the value is negative.

 - = outputs a blank if the value is positive
 and - if the value is negative.

 DR = outputs DR if the value is positive and
 CR if the value is negative.

 CR = outputs two blanks if the value is
 positive and CR if the value is
 negative.

 If the value of the number to be printed to the left
 of the decimal point exceeds the mask size, an error
 results. If there are more significant decimal
 places to the right of the decimal point than the
 mask allows, the number is rounded and truncated when
 output through the mask.

 Examples:

 >A$="+##,##0.00"
 >A=.05

 >PRINT A:A$
 +0.05

 >PRINT 1000:A$
 +1,000.00

 >A=-50
 >PRINT A:A$
 -50.00

 >PRINT .005:A$
 +0.01

 2-11

 Most printing of numeric values is accomplished in a
 formatted manner. However, Business BASIC provides
 the ability to output numeric values in a
 non-formatted or free-form manner.

 When a numeric value in a PRINT statement does not
 have an associated form operator (:), the manner in
 which the value prints is determined by the
 arithmetic mode. The number is rounded first
 according to the precision in effect, then output
 with a leading sign, if negative, or a blank.

 If the exponent is greater than 14 or less than -14,
 or the program is in floating point mode, the value
 is printed as a floating point number, consisting of
 a sign (+ or -), followed by the fractional part of
 the value (shown as a decimal number with up to 14
 positions), followed by the exponent of the value (in
 the form E+nn).

 Examples:

 +.2531E+01
 -.17391621E-04

 The system inserts one blank space before the first
 positive number prints.

 2-12

I/O DIRECTIVES AND The following table lists the input and output direc-
ALLOWABLE DEVICES tives available to the programmer, and the files and/
 or devices which can be specified for each:

 2-13

SECTION 3 - STATEMENT FORMATS

OVERVIEW Every BASIC program statement contains a statement
 number, directive and parameter(s). (Console Mode
 statements do not require a statement number.) This
 section discusses each part of the BASIC statement.

FORMAT BASIC statements are in the following format

 500 PRINT "EXPRESSION"

 500 PRINT "EXPRESSION"

 Statement
 Number Directive Parameters

 A number that The type of The required and/or
 uniquely operation optional values
 identifies being used in associa-
 the statement requested tion with the
 and places it directive to
 within the further define the
 program in action to be taken
 its proper Some directives
 sequence. need no parameters
 Console Mode
 statements do
 not require a
 statement
 number

STATEMENT NUMBERS Each statement in a Business BASIC program begins
 with a statement number, an integer between 1 and
 9999. Statement numbers should be assigned with
 enough gaps between them to allow insertion of
 additional statements, if any are needed.

 Statements may be entered in any order, and are
 automatically sorted into ascending order. If a
 statement is entered without a statement number, it
 is executed immediately (Console Mode) and does not
 become part of the program.

 If a new statement number is entered without a
 directive, the existing line with that statement
 number is deleted. If no statement already exists
 with that statement number, an ERROR 21 results.

 3-1

 When entering statement numbers, or any other numeric
 entry, leading zeros need not be entered (except when
 EDITing; then all leading zeros must be entered).

 DIRECTIVES The directive is the key element of the BASIC
 statement in that it instructs the system to perform
 specific operations such as PRINT or READ.
 Directives can be executed in both Console and
 Program Modes, unless otherwise noted in the
 description of the directive. All directives are
 available to both Levels 3 and 4, unless otherwise
 noted.

 LET and THEN are optional directives and need not be
 entered (see the LET and IF/THEN directives in
 Section 4).

 PARAMETERS AND The prime function of parameters is to define the
 I/O OPTIONS precise steps required to perform the overall
 operation defined by the directive. The type of
 information included depends on the directive and on
 the options available as part of the statement
 capability. Some directives do not require any
 parameters.

 Abbreviations for parameters are defined in the
 CONVENTIONS portion of Section 1.

 For a detailed explanation of input and output
 parameters, see INPUT/OUTPUT OPTIONS in Section 7.

 3-2

COMPOUND STATEMENTS Multiple statements can be specified on one
 statement-numbered line. A semicolon is used to
 specify the continuation of statements on a line to
 form a compound statement.

 Example:

 1000 LET X=20; LET Z=50; GOSUB 2000

 The following rules apply to compound statements:

 1. Compound statements are acceptable in both
 Program and Console Modes. In Level 3,
 however, only the first part of a compound
 statement is executed when in Console Mode.

 2. DEF, TABLE and IOLIST cannot be part of a
 compound statement.

 3. A REMark or ESCAPE statement can appear only as
 the last part of a compound statement; neither
 can be followed by a continuation. Portions of
 a compound statement which follow a REMark or
 an ESCAPE are treated as REMarks.

 4. Statements which transfer control cannot be
 followed by a compound, but can be followed in
 an IF statement by an ELSE, which then permits
 the addition of the following directives:

 GOTO, ON/GOTO, EXIT, EXITTO,
 END, STOP, RELEASE, RETURN,
 RETRY, START, RUN, EXECUTE

 5. An ESCAPE check occurs at each semicolon during
 execution.

 6. RETURN causes a return to the next statement in
 the compound sequence.

 7. RETRY re-executes the appropriate statement
 within a compound sequence.

 3-3

SECTION 4 - DIRECTIVES

OVERVIEW A directive is the key element of the BASIC statement
 in that it instructs the system to perform specific
 operations such as PRINT, READ, LOAD, etc.

 Directives can be executed in both Console and
 Program Modes, unless otherwise noted in a
 directive's description.

 All Directives are available to both Levels 3 and 4,
 unless otherwise noted.

 Directives are presented in alphabetical order.

 4-1

 D IRECTIVES

ADD ADD
ADD R ADD R
ADD E ADD E
ADD C (Level 3 only) ADD C (Level 3 only)
ADD L (Level 3 only) ADD L (Level 3 only)
ADD S (Level 4 only) ADD S (Level 4 only)

FORMAT ADD "prog ID" {,ERR=stno}

 ADD R "prog ID" {,ERR=stno} {,BNK=bank no.}

 ADD E "OSSPOL" {,ERR=stno} {,BNK=bank no.}

 ADD C ".CPLR" {,ERR=stno} {,BNK=bank no.}

 ADD L ".LSTR" {,ERR=stno} {,BNK=bank no.}

 ADD S ".SORT" {,ERR=stno} {BNK=bank no.}

DESCRIPTION The ADD directive is used to add the file I.D. of a
 program to the dictionary, eliminating the necessity
 of a directory search during execution of a CALL, RUN
 or LOAD.

 Variations of the ADD directive perform the following
 functions in addition to adding the program's file
 I.D. to the Dictionary:

 ADDR - Adds the specified program to
 memory, where it remains until it
 is DROPped.

 ADDE "OSSPOL" - Adds the error handler to memory

 ADDC ".CPLR" - Adds the compiler to memory (Level
 3 only; the Level 4 compiler is
 permanently in memory)

 ADDL ".LSTR" - Adds the lister to memory (Level 3
 only; the Level 4 lister is
 permanently in memory)

 ADDS ".SORT" - Adds the SORTSTEP module to memory
 (Level 4 only)

 4-2

 DIRECTIVES

ADD (Cont'd) ADD (Cont'd)

 NOTE

 It is not necessary to use ADD on Level 4
 because of the directory caching feature.
 While ADD and DROP can be used on Level 4,
 the caching feature performs the same
 operations automatically, ADDing a file,
 then DROPping it as additional space is
 required.

 When ADD is used, there is no way of
 determining the number of programs in the
 dictionary, which can ultimately lead to
 an ERROR 16, DISC OR PUBLIC PROGRAMMING
 DIRECTORY IS FULL.

 Use of ADD is therefore recommended only
 on Level 3.

EXAMPLES 0100 ADD "SALT",ERR=0200

 0100 ADD C ".CPLR",ERR=0200,BNK=2

 0100 ADD E "OSSPOL"

 0100 ADD L ".LSTR"

 0100 ADD R "SENIC"

 0100 ADD S ".SORT"

 4-3

 DIRECTIVES

BEGIN BEGIN

FORMAT BEGIN

DESCRIPTION The BEGIN directive resets the system by performing
 the following functions:

 o Resets the ERR and CTL system variables to zero

 o Resets uncompleted GOSUB and FOR/NEXT loops
 (clears the stack)

 o Resets precision to 2

 o Clears the user data area

 o Closes all OPEN files and devices

EXAMPLE 0020 BEGIN

 4-4

 DIRECTIVES

CALL CALL

FORMAT CALL "prog ID" {,ERR=stno} {,SIZ=expr}
 {,argument list}

 where:

 argument list one or more variables or
 expressions, separated by commas

 SIZ= expr available in Level 4 only, SIZ= is
 a number between 0 - 32K
 specifying the space needed for
 the CALLed program to run

DESCRIPTION The CALL directive is used to transfer control and
 pass arguments to another program. Each variable in
 the argument list is referenced in the CALLed program
 by the name specified in the corresponding ENTER
 statement.

 A program that is CALLed, but is not in the
 dictionary, is entered into the dictionary on a
 temporary basis and loaded into memory in the highest
 numbered bank with available space. Then, control is
 passed to it. When that program EXITs, its entry is
 dropped from the dictionary unless it is in use by
 another task (on Level 3 systems, it must also be the
 last Public program loaded in its bank, or it is not
 DROPped).

 If a program that is CALLed is in the dictionary, but
 is not in memory, the program is temporarily ADDR'd,
 and control is passed to it.

 If a program that is CALLed is both in the dictionary
 and resident in memory, the program simply has
 control passed to it.

 When a CALLed program ends, control is returned to
 the statement following the CALL statement in the
 program originally issuing the CALL.

 4-5

 DIRECTIVES

CALL (Cont'd) CALL (Cont'd)

 In Level 3, the CALL directive operates more quickly
 when the program has been previously ADDed, and
 quickest when a program has been ADDRed.

 Programs using CALL should have provisions for
 handling execution of an ESCAPE statement, pressing
 of the ESCAPE key, and the occurrence of an error.
 If one of these conditions occurs, and the program is
 not designed to handle it, the CALLed program is
 EXITed, and the system enters Console Mode.

 Arguments passed to a CALLed program can be returned
 to the CALLing program with or without a change in
 their values, depending on the manner in which the
 CALL argument list is used. In Table 4-1, "Y"
 denotes values which are subject to change upon
 returning from a CALLed routine, and "N" denotes
 variables which are used locally by the CALLed
 program and are not changed when control is returned
 to the CALLing program:

 4-6

 DIRECTIVES

 CALL (Cont'd) CALL (Cont'd)

 Table 4-1, CALL/ENTER Directives

 CALL ENTER CHANGE ACTION/RESULT
 Argument Argument

 A A Y A in CALLer is used/modified
 by reference to A in CALLed
 program

 A B Y A in CALLer is used/modified
 by reference to B in CALLed
 program

 A+n A N A in CALLed Program is set to
 (n=constant or numeric expression) value of CALLers A plus n.
 Original A of CALLer is
 preserved

 A$ B$ Y A$ in CALLer is used/modified
 by reference to B$ in CALLed
 program. Original A$ of
 CALLer can be changed

 "XYZ" C$ N C$ in CALLed Program is set
 to "XYZ"

 D(1) E N E in CALLed Program is set to
 value of CALLers DO).
 CALLers DO) is not changed

 D(ALL) E(ALL) Y E(...) in CALLed Program is
 set to value of each element
 of CALLers D(...). CALLers
 D(...) changes each time
 E(...) changes. This is a
 special case to make an
 entire array common

 4-7

 DIRECTIVES

CALL (Cont'd) CALL (Cont'd)

 For more information on the CALL directive, see
 "Public Programming" in Appendix A.

EXAMPLES 1000 CALL "MEACAB"

 1000 CALL "MEABUS",ERR=2000,A$,B

 4-8

 DIRECTIVES

CLEAR CLEAR

FORMAT CLEAR

DESCRIPTION The CLEAR directive resets the system by performing
 the same functions as the RESET directive, and
 clearing the user data area.

 Since CLEAR does not CLOSE any open files or devices,
 it is normally used when initializing a program that
 is to use files OPENed by a previously executed
 program.

 CLEAR performs the following functions:

 o Resets the ERR and CTL system variables to zero

 o Resets uncompleted GOSUB and FOR/NEXT loops

 o Resets precision to 2

 o Clears the user data area

EXAMPLE 0020 CLEAR

 4-9

 DIRECTIVES

CLOSE CLOSE

FORMAT CLOSE (fileno/devno {,ERR=stno} {,IND=index expr})

 where:

 index
 expr = used only for magnetic tape to
 indicate the position of the tape
 after the CLOSE. The following
 options are available:

 IND=0,2 - rewinds tape to load
 point

 IND=1 - rewinds tape to load
 point and takes tape
 off-line

 IND=9 - writes 2 file marks on
 tape, then rewinds
 tape

 NOTE

 If CLOSE has an IND=2 and is
 preceded by a WRITE RECORD, 2
 file marks are written on tape.
 If CLOSE has no IND= and is
 followed by a WRITE RECORD, 1
 file mark is written on tape.

DESCRIPTION The CLOSE directive releases use of a file or device.
 CLOSING files and devices immediately after use is
 recommended, since the total number of open files and
 devices cannot exceed 7 at any one time on Level 3,
 or 8 at one time on Level 4.

 Files and devices are also closed when a STOP, END or
 BEGIN directive is executed.

EXAMPLES 1200 CLOSE (1)

 1200 CLOSE (1,ERR=0150,IND=0)

 4-10

 DIRECTIVES

DEF FNx DEF FNx
DEF FNx DEF FNx$

FORMAT DEF FNx (argument list) = arithmetic expr

 DEF FNx$ (argument list) = string expr

 where

 X = a function name that uniquely
 defines the DEF statement, where
 x is a letter (A - Z).
 argument
 list = a list of variables where the
 position of each variable is
 correlated to a corresponding
 item positioned in the same
 relative location within the
 argument list of the statement
 using the DEF FNx directive

DESCRIPTION The DEF statement is used to define up to 26
 functions in a program. These functions are in
 addition to the predefined functions which are part
 of the Business BASIC language (see "FUNCTIONS" in
 Section 5).

 The DEF FNx directive defines an arithmetic
 operation; the DEF FNx$ directive defines a string
 expression.

 NOTE

 FNx and FNx$ cannot be used in the same
 program; e.g., FNA and FNA$ cannot exist
 in one program.

 Both DEF FN directives can only be used in Program
 Mode, and neither can be part of a compound
 statement.

 Either DEF FN directive can contain strings and
 numbers in the argument list. The output (expression
 is limited to strings (DEF FNx$) or numbers (DEF
 FNx).

 4-11

 DIRECTIVES

DEF FNx DEF FNx
DEF FNx$ DEF FNx$
 (Cont'd) (Cont'd)

 The Format parameters in the argument list
 are not "dummy" variables used only by the
 DEF function. They can also be referenced
 and used elsewhere in the program, though
 caution should be exercised since they may
 change when the DEF function is used.

 When one of these DEF functions is called,
 the values of the arguments being passed
 are moved into the corresponding formal
 arguments of the DEF. For example:

 >10 DEF FNS(X)=X*X
 >20 LET X=-1
 >30 PRINT X,FNS(10),X

 >RUN
 -1 100 10

 -note that referencing the
 function FNS changed the
 value of its formal argument
 X, from -1 to 10

 There are 26 user-defined functions available per
 program.

EXAMPLES DEF FNx - 0010 DEF FNA(A,B)=(A+B)/A

 0020 LET C=FNA(2,6)

 - Statement 0020 assigns A=2, B=6 and C=(2+6)/2=4

 DEF FNx$ - 0010 DEF FNA$(A$,B$)=B$+"-"+A$
 1000 LET X$="SID0",Y$="D0E"
 1010 PRINT FNA$(X$,Y$)

 >RUN
 DOE-SIDO

 4-12

 DIRECTIVES

DELETE DELETE

FORMAT DELETE {stno a} {,} {stno b}

 where

 stno a the number of a statement to be
 removed, or the first in a series of
 statements to be removed

 stno b the number of the last in a series
 of statements to be removed

DESCRIPTION The DELETE directive is used to remove one or more
 statements from a program. It cannot be used in a
 CALLed program.

EXAMPLES DELETE - removes all statements from the
 program

 DELETE 10 - removes only statement 10 from the
 program (entering only "10" performs
 the same task)

 DELETE 10, - removes statement 10 and all
 following statements

 DELETE 10,100 - removes all statements between 10
 and 100, inclusive

 DELETE ,100 - removes all statements through 100,
 inclusive

 4-13

 DIRECTIVES

DIM array DIM array

FORMAT DIM array name (range of first dimension {,range of

 second {,range of third}})

 where:

 array name = name of the numeric array (must be a
 single letter)

 range of
 dimensions = the number o.f elements in each
 dimension (first, second and third).
 The value of each dimension
 (subscript) must be an integer

DESCRIPTION The DIM array statement is used to define an array.
 An array is a 1-, 2- or 3-dimensional grouping of
 numeric values, referenced by a common name
 (A, B,...Z) and the appropriate dimensions
 (subscripts).

 A 1-dimensional array is commonly called a "list";
 the statement DIM A(3) defines a list comprised of 4
 elements, referenced as follows:

 A(0), A(1), A(2), A(3)

 A 2-dimensional array, called a "matrix", is
 referenced by the name and two subscripts; the
 statement DIM A(3,3) produces an array of 16
 elements:

 A(0,0), A(0,1), A(0,2), A(0,3),
 A(1,0), A(1,1), A(1,2), A(1,3),
 A(2,0), A(2,1), A(2,2), A(2,3),
 A(3,0), A(3,D , A(3,2), A(3,3)

 The statement DIM A(3,3,3) produces a 64 element
 array. When a DIM statement is executed, all
 elements of the array are set to zero. Previously
 defined arrays can be set to zero by executing
 another DIM statement. The area required for the
 array can be released by DIMing the array to zero.
 For example:

 0010 DIM A(0)

 4-14

 DIRECTIVES

DIM array (Cont'd) DIM array (Cont'd)

EXAMPLES 0010 DIM A(0)
 0010 DIM A(1)
 0010 DIM A(2,2,2)

 Both the simple numeric variable and an array with
 the same name can exist in the same program without
 conflict:

 0200 DIM A(5)
 0210 FOR 1=0 TO 5
 0215 LET A=37
 0220 LET A(I)=I*10; NEXT I
 0230 PRINT A(5),A(4),A(3),A(2),A(1),A(0),A

 >RUN
 50 40 30 20 10 0 37

 4-15

 DIRECTIVES

DIM string DIM string

FORMAT DIM string variable name (length {,str expr})

 where

 string variable
 name = name of the string

 length = length of the string (up to the
 limit of available user
 memory). Data area for the
 string variable is released if
 the length is 0

 string = the character used to fill the
 expr string. If no character is
 specified, the string is filled
 with blanks.

DESCRIPTION The DIM directive is used to assign a string
 comprised of a single character to a string variable.
 The character can be repeated within the string; the
 DIM directive also assigns the length of the string.

 When an string is defined, it can be initialized with
 the fill character specified in the string
 expression. If no fill character is specified, the
 string is filled with blanks.

EXAMPLES 1200 DIM A$(5) -assigns 5 blanks to A$

 1200 DIM B$(5,"A") -assigns "AAAAA" to B$

 1200 DIM C$(5,"BC") -assigns "BBBBB" to C$

 4-16

 DIRECTIVES

DIRECT DIRECT

FORMAT DIRECT "file ID", keysz, recno, recsz, discno, secno
 {,ERR=stno}

 where:

 keysz the size of a key in a keyed file;
 minimum=2, maximum=56 (if key is
 greater than 32,767, maximum=54)

 the maximum number of records for
 recno the file (cannot exceed 8,388,608)

 the size, in bytes, of each record
 recsz in the file (cannot exceed 32,767)

 the sector number where the file
 secno is to begin

DESCRIPTION The DIRECT directive is used to define files with
 records that can be directly accessed through a key.
 The key, which provides access for both READing and
 WRITEing the record, is usually made up of a data
 field itself, such as Employee Number or Customer
 Name, or a combination of fields. The key is
 established when the record is initially written into
 the file. Each key must be unique in order to
 identify its associated record.

 Records of the file can also be accessed sequentially
 through IND (physical order), or in logically
 ascending order of the keys.

 The Direct file structure is described in Section 5.

 NOTE

 When a Direct file is defined, the
 Scatter Index Table and the key
 area are initialized. Therefore,
 AN ACCIDENTALLY ERASED DIRECT FILE
 CANNOT BE RESTORED BY EXECUTING
 ANOTHER DIRECT STATEMENT. It is
 recommended that a backup of each
 file be kept.

EXAMPLE DIRECT "HIT",10,100,50,0,200

 -defines a DIRECT file named "HIT" with a key
 size of 10 bytes, 100 records of 50 bytes each
 at sector 200 of disc 0

 4-17

 DIRECTIVES

DISABLE DISABLE

FORMAT DISABLE discno

DESCRIPTION The DISABLE directive prevents access to files on the
 specified disc by making the disc drive unavailable
 to the entire system.

 All files on the specified disc must be CLOSEd before
 the disc can be DISABLEd. The DISABLEd disc can only
 be ENABLEd by the task that DISABLEd it.

 CAUTION

 Disc drives must be DISABLEd before
 disk packs are removed

EXAMPLE DISABLE 0 - DISABLES disc number 0

 4-18

 DIRECTIVES

DROP DROP

FORMAT DROP "prog ID" {,ERR=stno}

DESCRIPTION The DROP directive is used to remove a program from
 the dictionary.

 In Level 3, the last program ADDRed must be removed
 first. If it is necessary to remove the program that
 is second-to-last in the bank, the last program in
 that bank must first be removed. This is known as
 the LIFO (Last In, First Out) Rule, and does not
 apply to Level 4.

 DROP cannot be used in a program to be CALLed; i.e.,
 a CALLed program cannot DROP itself.

EXAMPLE 1200 DROP "ALINE" - removes "ALINE" from
 the Dictionary and from
 memory

 4-19

 DIRECTIVES

EDIT EDIT

FORMAT EDIT stno {C[copy through value]}
 {D[delete through value]}
 {Rtreplace value]} {[insert value]}

 where

 copy through = text in the original
 value statement, after which a
 change is to occur

 delete through = text in the original statement
 value that is to be deleted

 replace value = text that is to replace
 existing characters in the
 original statement, on a
 character-by-character basis

 insert value = text to be inserted into the
 original statement without
 replacing any of the existing
 characters

DESCRIPTION The EDIT directive is used to add, delete or replace
 any character(s) or string of characters in any
 statement in a program.

 EDIT is available in Console Mode only, except when
 used as part of an EXECUTE statement.

 The "copy" option specifies the character(s)
 preceding that portion of the statement to be
 altered. The system scans from left to right when
 searching for the "copy through" characters.
 Therefore, text of this field must be unique, unless
 the copy through characters are the first occurrence
 of their type in the statement.

 4-20

 DIRECTIVES

EDIT (Cont'd) EDIT (Cont'd)

 For instance, if the EDIT is to take place after the
 first period (.) in the original statement, the
 period by itself is sufficient as the copy option.
 But if there is more than one period in the original
 statement, and the EDIT is to take place after the
 second or subsequent period, the contents of the copy
 option must be unique.

 There is, however another method which can be used.
 The copy option can be repeated to progress through
 the statement. For example:

 0200 REM "THE ARK IS FULL. PLEASE LEAVE"
 >EDIT 0200 C[E]C[E]C[E]C[E]R[USE TH] [E SKIS"]

 0200 REM "THE ARK IS FULL. PLEASE USE THE SKIS"

 NOTE

 For editing purposes, the statement number
 is part of the text. For example:

 0020 REM "23"
 >EDIT 20 C[2]R[4]

 0024 REM "23"

 The "delete" option is used with the "copy" option to
 specify the portion of the statement to be deleted.
 As the system scans the statement from left to right,
 the unique character before the first character to be
 deleted is entered as the "copy" option. The last
 character to be deleted is then entered as the
 "delete" option, and the system deletes all
 characters between, including the "delete" option
 character.

 The "replace" option is used to specify the
 replacement character(s). It replaces characters in
 the original statement on a character-by-character
 basis. The "copy" option is often used with the
 "replace" option to position the changes.

 The "insert value" option is used to specify
 characters or strings which are to be inserted into
 the original statement, without replacing existing
 characters.

 4-21

 DIRECTIVES

EDIT (Cont'd) EDIT (Cont'd)

 All characters following the last character to be
 deleted, added, or replaced are automatically copied
 without use of the copy option. If a statement
 number is EDITed., a new statement is added to the
 program with the new statement number, and the old
 statement remains unchanged.

EXAMPLES ORIGINAL STATEMENT: 1200 PRINT(1)"CHANGER"

 1. "delete" EDIT:

 EDIT 1200 C["] D[H]

 result:

 1200 PRINT(1)"ANGER"

 2. "replace" EDIT:

 EDIT 1200 C[(] R[2]

 result:

 1200 PRINT(2)"ANGER"

 3. "insert" EDIT:

 EDIT 1200 C[)"] [CH]

 result:

 1200 PRINT(2)"CHANGER"

 Multiple EDITs are possible within a single EDIT
 statement. For example, the following EDIT is valid

 4-22

 DIRECTIVES

 EDIT (Cont'd) EDIT (Cont'd)

 ORIGINAL STATEMENT: 0150 PRINT(1)"ABCDEFGHI"

 EDIT command:

 >EDIT 150 C[] R[WRITE] C[(] R[2] C[B] R[X]
 [Y] D[F] [MNO]

 result:

 0150 WRITE (2) "ABXYMNOGHI"

 4-23

 DIRECTIVES

ENABLE ENABLE

FORMAT ENABLE discno

DESCRIPTION The ENABLE directive reactivates a disc drive that
 was previously DISABLEd or RESERVEd. The disc drive
 must be ENABLEd by the same task that DISABLEd or
 RESERVEd it.

EXAMPLE ENABLE 0 - ENABLES disc number 0

 4-24

 DIRECTIVES

END END

FORMAT END

DESCRIPTION The END directive is used to terminate a program.

 END performs the following operations:

 o Resets the program execution counter to the first
 statement of the program

 o CLOSEs all open files and devices

 o Performs a RESET operation

 o Returns the terminal to Console Mode

 The termination point established by the END
 directive is also used to discontinue MERGE
 operations. Therefore, END should only be used at
 the end of a program.

 END does not alter the contents of either the user
 data area, or the user program area.

 All Basic Four systems have an AUTO-END feature which
 automatically ends every program; this makes use of
 the END statement optional. However, use of END is
 recommended, and is required when MERGE is used.

 NOTE

 END in a CALLed program performs an EXIT.

EXAMPLE 9999 END

 4-25

 DIRECTIVES

ENTRACE ENDTRACE

FORMAT ENDTRACE

DESCRIPTION The ENDTRACE directive is used to terminate the
 listing of statements begun by execution of the
 SETTRACE directive.

EXAMPLES >ENDTRACE

 0200 ENDTRACE

 4-26

 DIRECTIVES

ENTER ENTER

FORMAT ENTER argument list

 where:

 argument
 list = one or more variable names,
 separated by commas. Must contain
 exactly the same number of elements
 as the variable list of the
 corresponding CALL in the CALLing
 program. Also, corresponding
 variables must be of the same mode
 (numeric, string or dimensioned
 array)

 NOTE

 Only one ENTER directive
 can be used per CALLed
 program.

DESCRIPTION The ENTER directive defines a set of variables in a
 CALLed program that corresponds to a set of variable
 names in the argument list of the CALLing program.

 ENTER is used for passing arguments (values) from the
 CALLing program to the CALLed program, and back
 again.

 Arguments passed to the CALLed program can be
 returned to the CALLing program with or without a
 change in their values, depending on the manner in
 which the CALL argument list is used. In Table 4-1,
 "Y" denotes values which are subject to change upon
 returning from a CALLed routine, and "N" denotes
 variables which are used locally by the CALLed
 program and are not changed when control is returned
 to the CALLing program:

 4-27

 DIRECTIVES

ENTER (Cont'd) ENTER (Cont'd)

 Table 4-1, CALL/ENTER Directives

 CALL ENTER CHANGE ACTION/RESULT
 Argument Argument

 A A Y A in CALLer is used/modified
 by reference to A in CALLed
 program

 A B Y A in CALLer is used/modified
 by reference to B in CALLed
 program

 A+n A N A in CALLed Program is set to
 (n=constant or numeric expression) value of CALLers A plus n.
 Original A of CALLer is
 preserved

 A$ B$ Y A$ in CALLer is used/modified
 by reference to B$ in CALLed
 program. Original A$ of
 CALLer can be changed

 "XYZ" C$ N C$ in CALLed Program is set
 to "XYZ"

 D(1) E N E in CALLed Program is set to
 value of CALLers DO).
 CALLers DO) is not changed

 D(ALL) E(ALL) Y E(...) in CALLed Program is
 set to value of each element
 of CALLers D(...). CALLers
 D(...) changes each time
 E(...) changes. This is a
 special case to make an
 entire array common

 4-28

 DIRECTIVES

ENTER (Cont'd) ENTER (Cont'd)

EXAMPLES 1000 ENTER A$, B, C passes parameters A$, B and C to
 the CALLed program

 2000 ENTER A(ALL) passes the entire array of
 parameters to the CALLed program

 CALLING SUBROUTINE

 0010 CALL "SUB", 1, 2, 3 note that only three variables
 are used to call the subroutine

 SUBROUTINE CALLED

 0010 A=-1, B=-2, C=-3, D=-4 however, the resultant values of
 A, B, C and D are:
 0020 ENTER A, B, C, D
 A=1
 B=2
 C=3
 D=-4

 Although an ERROR 36 occurs at
 statement 20 due to a variable
 mismatch, the values passed are
 entered into the corresponding
 argument

 4-29

 DIRECTIVES

ERASE ERASE

FORMAT ERASE "file ID" {,ERR=stno}

DESCRIPTION The ERASE directive deletes an"entry from the disc
 directory.

 Since the file itself is not affected by ERASE, an
 Indexed or Program file that is accidentally ERASEd
 can be restored by execution of another INDEXED or
 PROGRAM statement (providing that area on the disc
 has not been reused).

 However, a DIRECT, SORT or SERIAL file cannot be
 restored in this manner since DIRECT and SORT
 statements clear the Scatter Index Table and key area
 upon redefinition; and redefinition of a SERIAL file
 clears header data, which has the effect of
 destroying all references to data records (see FILE
 directive in Section 4).

EXAMPLE 1000 ERASE "AGOOF" - deletes the file "AGOOF"
 from the disc directory

 4-30

 DIRECTIVES

ESCAPE ESCAPE

FORMAT ESCAPE

DESCRIPTION When executed in Program Mode, ESCAPE causes an
 interruption of the program, lists the ESCAPE
 statement, and places the terminal in Console Mode.
 Continuation of the program from this point is
 accomplished by entering RUN. Strategic placement of
 ESCAPE directives within a new program permits
 periodic examination of data, thereby simplifying
 program debugging.

 When executed in Console Mode, ESCAPE causes the
 system to list the next statement (if any) in line
 be executed in the currently RUNning program.

 ESCAPE can appear in a compound statement, but any
 statements that follow it are treated as a REMark.

EXAMPLES 2000 ESCAPE

 4-31

 DIRECTIVES

EXECUTE EXECUTE

FORMAT EXECUTE {stno} string argument

 where

 stno = the statement number where the
 EXECUTEd command is to be inserted
 into the program

 string
 argument = a string expression that duplicates
 either a Console Mode command or a
 line of code from a program

DESCRIPTION The EXECUTE directive can only be used in Program
 Mode. It cannot be used in Console Mode, nor can it
 be invoked in a Public Program.

 EXECUTE provides a capability for generating or
 modifying program statements within a program.

 EXECUTE can be used to build statements, and when
 used within a program, enables commands which are
 normally available only in Console Mode.

 On Level 3, the compiler must be resident or an ERROR
 51, "COMPILE OR LIST OPERATION WITHOUT COMPILER/
 LISTER", results.

EXAMPLE EXECUTE can be used to print the values in the
 variables A1$, A2$, A3$, etc.:

 0010 FOR X=0 TO 9

 0020 EXECUTE "PRINT(1)A"+STR(X)+"$"

 0030 NEXT X

 4-32

 DIRECTIVES

 EXECUTE (Cont'd) EXECUTE (Cont'd)

 EXECUTE can also be used to edit other statements in
 the program:

 0100 LET X=Q+3

 0200 IF X=4 THEN GOTO 400
 .
 .
 .
 0400 EXECUTE "EDIT 0100 C[+]R[5]"

 4-33

 DIRECTIVES

EXIT EXIT

FORMAT EXIT {expr}

 where:

 expr = a value, 0-127, to which the error
 variable of the CALLing task is to
 be set (upon return to the CALLing
 program); or ERR if EXIT is used to
 pass program 'control when an error
 is encountered

DESCRIPTION The EXIT directive is used to return control, and
 optionally pass an error code to the CALLing program.

 The first statement executed after an EXIT directive
 is the statement following the CALL statement in the
 CALLing program. If the CALL was made from Console
 Mode, EXIT returns control to Console Mode.

 EXIT ERR can be used to EXIT from a CALLed program
 when an error occurs.

EXAMPLES 9999 EXIT

 9999 EXIT ERR

 4-34

 DIRECTIVES

EXITTO EXITTO

FORMAT EXITTO stno

DESCRIPTION The EXITTO directive transfers program control to a
 specified statement number within the program. It
 is used to exit from a FOR/NEXT loop without
 completing all the statements in the loop, or to
 clear the RETURN address from the top of the
 FOR/GOSUB stack. The top level of the FOR/NEXT/GOSUB
 stack is cleared, whether it is a NEXT address or a
 RETURN address.

 The statement number referenced by the EXITTO
 statement must be a constant whole number, not a
 variable. If the specified statement number does not
 appear within the program, program control transfer
 to the next higher statement number that does exist
 in the program.

EXAMPLE 0010 FOR 1=1 TO 10

 0020 IF A(I)=B THEN EXITTO 0040
 .
 .
 .
 0050 NEXT I

 In this example, when A(I)=B, control branches to
 statement 0040, and the top entry is cleared from the
 FOR/NEXT stack.

 4-35

 DIRECTIVES

EXTRACT EXTRACT

FORMAT EXTRACT (fileno {,ERR=stno} {,END=stno} {,DOM=stno}
 {,IND=index value} {,KEY=key value}
 {,TBL=stno} {,SIZ=size}) {argument list}
 {,IOL=stno}

 where:

 argument list string or numeric variables
 into which EXTRACTed data
 is to be inserted

 NOTE

 A comma is to be inserted before IOL=
 only when both IOL= follows an argument
 list

DESCRIPTION The EXTRACT directive reads fields of data from a
 file into respective variable fields in the
 statement.

 EXTRACT differs from READ in two ways: first, it
 prevents other users from accessing the record until
 another operation is performed on the file; second,
 it does not advance the record pointer to the next
 key in the file, but sets the forward pointer to the
 EXTRACTed record.

 If an EXTRACT is used before a WRITE, the WRITE does
 not require a key; the EXTRACTed record is
 overwritten, and is released for access by other
 users.

 If the information in a field is not required, an
 asterisk (*) can be substituted for the variable name
 to bypass processing of that field. The advantages
 of skipping fields are speed and a reduction of
 memory used by the program.

EXAMPLE 0300 EXTRACT (1,ERR=2000,KEY=A$)A,B

 -reads and locks a record, setting record
 pointer to the EXTRACTed record

 4-36

 DIRECTIVES

EXTRACT RECORD EXTRACT RECORD

FORMAT EXTRACT RECORD (fileno {,ERR=stno} {,END=stno}
 {,DOM=stno} {,IND=index value}
 {,KEY=key value} {,TBL=stno}
 {,SIZ=size}) {string variable}

 where

 string
 variable a string variable into which the
 record is to be read

DESCRIPTION The EXTRACT RECORD directive reads a full record from
 a file or device. If the SIZ= option is included,
 only the size specified is read. All field marks in
 the record are transferred as data.

 EXTRACT RECORD differs from READ RECORD in two ways:
 first, it prevents other users from accessing the
 record until another operation is performed on the
 file; second, it does not advance the record pointer
 to the next key in the file, but sets the forward
 pointer to the EXTRACTed record.

 If an EXTRACT RECORD is used before a WRITE RECORD,
 the WRITE RECORD does not require a key; the
 EXTRACTed record is overwritten, and is released for
 access by other users.

EXAMPLE 0200 EXTRACT RECORD(1,ERR=1000)A$

 -reads and locks a record, setting the record
 pointer to the EXTRACTed record

 4-37

 DIRECTIVES

FILE FILE

FORMAT FILE string

 where:

 string = a 20 byte string with the same format
 as the FID function

DESCRIPTION The FILE directive can be used to define any file
 type by placing the parameters of the file into a
 20-byte string. This string has the same format as
 the FID function (see FID function in this section).
 FILE can also be used to restore a file that has been
 accidentally ERASEd from the directory.

EXAMPLE 0010 OPEN (1,"ADOOR")
 0020 LET F$=FID(1)
 0030 CLOSE (1)
 0040 ERASE "ADOOR"
 0060 FILE F$

 When statement 50 is added to the above program, a
 DIRECT, SORT or SERIAL file can be redefined without
 clearing the Scatter Index Table and key area, or the
 header area:

 0050 LET F$(10,1)=IOR(F$(10,1),40)

 4-38

 DIRECTIVES

FIND FIND

FORMAT FIND (fileno {,ERR=stno} {,END=stno} {,DOM=stno}
 {,KEY=key value} {,TBL=stno} {,SIZ=size})
 {argument list} {,IOL=stno}

 where

 argument
 list = variable into which fields of the
 record are to be read

 NOTE

 A comma is to be inserted before IOL=
 only when IOL= follows an argument list
 Find is designed to be used with a key

DESCRIPTION The FIND directive is used to read data from a file
 into variables. FIND differs from READ and EXTRACT
 by not updating the key pointer position to the next
 highest key following a key that is not found. This
 difference makes FIND faster than READ and EXTRACT
 when the specified key is not in the file. If the
 key is in the file, about the same amount of time is
 required for any of the three directives.

 If the information in a field is not required, an
 asterisk (*) can be substituted for the variable name
 to bypass processing of that field. The advantages
 of skipping fields are speed and a reduction of
 memory used by the program.

EXAMPLE 0200 FIND (1,KEY=K$,ERR=0500)A,B$

 4-39

 DIRECTIVES

FIND RECORD FIND RECORD

FORMAT FIND RECORD (fileno {,ERR=stno} {,END=stno}
 {,DOM=stno} {,KEY=key value} {,TBL=stno}
 {,SIZ=size}) {argument list}

 where

 argument
 list = variable into which fields of the
 record are to be read

DESCRIPTION The FIND RECORD directive is used to read a full
 record from a Direct file into variables in the same
 manner as a READ RECORD or EXTRACT RECORD. FIND
 RECORD, however, does not update the key pointer to
 the next highest key following a key that is not
 found. This difference makes FIND RECORD faster than
 READ RECORD or EXTRACT RECORD if the specified key is
 not in the file. If the key is in the file, the
 three directives are approximately equal in speed.

EXAMPLE 0200 FIND RECORD(1,KEY=K$,ERR=0500)A$

 4-40

 DIRECTIVES

FLOATING POINT FLOATING POINT

FORMAT FLOATING POINT

DESCRIPTION The FLOATING POINT directive is used to initiate the
 Floating Point Mode. This mode maintains maximum
 (14 digit) accuracy while permitting the generation
 of very large or very small values by using "E" to
 indicate a power of 10.

 Numbers are output in Floating Point notation unless
 a mask is specified.

EXAMPLE 0010 FLOATING POINT
 0020 FOR 1=0 TO 5
 0030 PRINT 2^I;NEXT I

 >RUN

 .1E+01
 .2E+01
 .4E+01
 .8E+01
 .16E+02
 .32E+02

 4-41

 DIRECTIVES

FOR/NEXT FOR/NEXT

FORMAT FOR ctrl variable=start expr TO end expr
 {STEP expr}

 where

 ctrl variable = a simple numeric variable, whose
 value controls the FOR/NEXT
 loop. When the value of the
 control variable exceeds that of
 the end value, the loop is
 terminated.

 start expr = a numeric value to which the
 control variable is set upon
 execution of the FOR statement

 end expr = a numeric value. The FOR/NEXT
 loop is exited when the control
 value exceeds the end value

 STEP expr = a numeric value which determines
 the amount that the control
 variable is advanced during each
 execution of the NEXT statement.
 The step size cannot be 0, but
 can be negative. If not
 specified, step size is 1

DESCRIPTION The FOR/NEXT loop is used as a means for repetition
 of a series of statements in a program.

 When a FOR statement is first executed, the control
 variable is set equal to the start value. The end
 value and step value are saved. The statements
 following the FOR statement are executed in
 sequential order until the NEXT statement is reached
 The control variable is then incremented by the step
 value and compared to the end value.

 4-42

 DIRECTIVES

OR/NEXT (Cont'd) FOR/NEXT (Cont'd)

 If the control variable is less than or equal to the
 end value, control passes to the statement following
 the FOR statement. This sequence is repeated until
 the control variable is greater than the end value.
 Execution then continues with the statement following
 the NEXT statement.

 Except for available memory, there is no limit to the
 number of FOR/NEXT loops allowable in a program.
 FOR/NEXT loops can be "nested". However, each NEXT
 must correspond to its FOR, e.g.:

 0100 FOR 1=1 TO 5
 0110 FOR J=1 TO 5
 0120 NEXT I
 0130 NEXT J

 is invalid.

 FOR/NEXT loops can also be divided into two groups;
 one where the series of statements is repeated until
 the loop is terminated, and the other where the loop
 terminates before the specified number of executions
 is complete (see examples below).

EXAMPLES (These examples are normal FOR/NEXT loops where the
 series of statements is repeated until the loop is
 terminated.)

 FOR/NEXT loop:

 0010 FOR 1=1 TO 5
 0020 PRINT I,
 0030 NEXT I
 0040 PRINT " FINAL VALUE = ",I

 >RUN
 1 2 3 4 5 FINAL VALUE = 6

 4-43

 DIRECTIVES

FOR/NEXT (Cont'd) FOR/NEXT (cont'd)

 Nested FOR/NEXT loop:

 0010 FOR I=1 TO 2
 0020 FOR J=1 TO 3
 0030 PRINT 10*I+J,
 0040 NEXT J
 0050 PRINT 'LF'
 0060 NEXT I

 >RUN
 11 12 13
 21 22 23

 (This example is a loop which terminates before its
 normal number of executions. Note the use of EXITTO
 rather than GOTO to escape the loop. This clears the
 FOR/NEXT loop stack.)

 FOR/NEXT loop

 0010 REM "PROGRAM TO VERIFY THAT STRING INPUT IS
 NUMERIC
 0020 BEGIN
 0030 INPUT "NUMERIC? - ",A$
 0035 IF A$="END" THEN GOTO 0120
 0040 IF A$=" " THEN LET A$="0"
 0050 LET F$="Y"
 0060 FOR 1=1 TO LEN(A$)
 0070 REM "THE FOLLOWING LINE EXITS TO 100
 0080 IF P0S(A$(I,1)="0123456789+- ")=0 THEN LET
 F$="N";EXIT TO 0100
 0090 NEXT I
 0100 IF F$="N" THEN PRINT "INVALID"
 0110 GOTO 0030
 0120 END

 4-44

 DIRECTIVES

GET GET

FORMAT GET discno, secno {,ERR=stno} {,RTY=no. of retries},
 input string variable {,verify string variable}

 where:

 RTY = number of RETRYs if the GET is
 unsuccessful. Can be 0 - 254 (more
 than 254 is interpreted as 0). If
 no RTY is specified, the system
 defaults to 19 retries on removable
 disc systems, or 27 retries on
 fixed disc systems.

 input string
 variable = predimensioned variable to receive
 data from the disc

 verify string
 variable = optional verification string (must
 be the same size as input string
 variable), which performs internal
 comparison of strings to check for
 data integrity.

 NOTE

 GET is not recommended for use in appli-
 cations programs

 The GET directive transfers data from a sector on a
 disc into a variable.

 0190 DIM A$(1024),A1$(1024)
 0200 GET 0,1096,ERR=0500,RTY=49,A$,A1$

 4-45

 DIRECTIVES

GOSUB GOSUB

FORMAT GOSUB stno

DESCRIPTION The GOSUB directive, available in Program Mode only,
 calls an internal subroutine, transferring program
 control to the specified statement number. State-
 ments in the subroutine are executed sequentially
 until a RETURN statement is found. Control then
 returns to the statement following the GOSUB.

 Every subroutine referenced by a GOSUB directive must
 be ended by a RETURN or EXITTO statement (the EXITTO
 statement ends a subroutine without returning to the
 calling point, and clears the top level entry from
 the RETURN address stack).

EXAMPLE 0010 REM "EXAMPLE OF REPORT PROGRAM USING GOSUB"
 0020 BEGIN
 0030 OPEN (7)"LP"
 0040 OPEN (1)"INVENT"
 0050 LET P$="####0.00"
 0060 GOSUB 1000
 0070 READ (1,END=0500,ERR=0600)A,B,C,D
 0080 LET L=L+1
 0090 IF L>50 THEN GOSUB 1000
 0100 PRINT (7)A:P$,g(10),B:P$,@(20),C:P$,@(30),D:P$
 0110 GOTO 0070
 0500 PRINT "END OF RUN"
 0510 STOP
 0600 PRINT "ERROR: ",ERR:"000"," OCCURRED ON READ"
 0610 STOP
 1000 REM "SUBROUTINE TO PRINT HEADINGS"
 1010 LET P=P+1,L=0
 1020 PRINT(7)'FF',"ITEM",@(10),"QUANTITY",@(20),
 1020: "COST",@(30),"PRICE",@(70),"PAGE",P,'LF'
 1030 RETURN

 4-46

 DIRECTIVES

GOTO GOTO

FORMAT GOTO stno

DESCRIPTION The GOTO directive unconditionally transfers program
 control to the specified statement number. If the
 specified program number does not exist, the
 statement with the next higher number is executed.

 GOTO can be used in Console Mode (followed by a RUN
 command) to direct program control to any statement
 number. This is useful in program debugging.

EXAMPLES 0100 OPEN (7)"LPn
 0110 LET X=L+1
 0120 GOTO 0500
 0130 PRINT (7)"THIS"

 >G0T0 0130
 >RUN
 THIS

 4-47

 DIRECTIVES

IF IF

FORMAT IF logical expr {AND logical expr} {OR logical expr}
 {THEN} statement a {ELSE statement b}

 where:

 logical expr = a comparison between variables
 and/or values, using a
 relational operator sign

 statement a = the statement, such as GOTO 0250
 or WRITE A$, to execute if the
 comparison in the logical
 expression is "true"

 statement b = the statement, such as GOTO 0275
 or WRITE B$, to execute if the
 comparison in the logical
 expression is "false"

DESCRIPTION The IF directive allows conditional execution of
 BASIC statements based upon the result of a logical
 comparison between two or more data items.

 The logical expression portion of the statement
 contains two expressions, either string or numeric,
 separated by a relational operator. The relational
 operators are:

 = equal to
 < less than
 > greater than
 <> or X not equal to
 >= or => greater than or equal to
 <= or =< less than or equal to

 4-48

 DIRECTIVES

 IF (Cont'd) IF (cont'd)

 Some examples of logical expressions are:

 A=B LEN(X$)<=16

 C>=B A/B=E

 Several logical expressions can be evaluated in
 relation to each other by use of the AND and OR
 operators. An unlimited number of ANDs and ORs can
 be used in an IF statement, and they have equal
 precedence; the system evaluates them from left to
 right.

 Parentheses can be used to change the order of
 evaluation. The action taken by the IF statement is
 determined by the "trueness" or "falseness" of the
 logical expressions.

 Example:

 0010 LET A=1,B=2,C=3
 0020 IF A=1 OR B=2 AND C=0 THEN PRINT "20 IS
 0020:TRUE"
 0030 IF A=1 OR (B=2 AND C=0) THEN PRINT "30 IS
 0030:TRUE"

 >RUN

 30 IS TRUE

 Statement 20 only prints if A or B is true, and C is
 true. Statement 30 prints if A is true, or if B and
 C are true

 The THEN and ELSE clauses of the IF statement are
 conditionally executed based on the evaluation of the
 logical expression(s). If the expression(s) are
 evaluated as "true", the THEN clause is executed. If
 they are evaluated as "false", the ELSE clause is
 executed. If no ELSE clause exists, the next
 statement is executed.

 Each THEN or ELSE clause can contain a single or
 compound BASIC statement. Any BASIC statement is
 valid, except for DEF, IOLIST, and TABLE.

 4-49

 DIRECTIVES

IF (Cont'd) IF (cont'd)

 IF/ELSE commands can be nested into a single
 statement, provided the IF and ELSE conditions appear
 in an alternating sequence:

 IF logical expr THEN statement

 ELSE IF logical expr THEN

 statement ELSE IF . . .

 Example:

 0030 IF D1>10 THEN LET D2=10-ELSE IF
 0030:D1<8 THEN LET D2=9

EXAMPLES 0010 IF A=B THEN G0SUB 6000 ELSE GOTO 9999

 It is not necessary to type the word "THEN" as part
 of a THEN clause, if another directive is involved
 (e.g., GOTO, GOSUB, etc.); the system adds it
 automatically. The system also adds zeros where
 applicable:

 10 IFA=BGOSUB60 -as entered (no
 spaces, no THEN)
 >LIST
 0010 IF A=B THEN GOSUB 0060 -as the lister prints

 4-50

 DIRECTIVES

INDEXED INDEXED

FORMAT INDEXED "file ID", recno, recsz, discno, secno
 {,ERR=stno}

 where:

 recno - the maximum number of records for
 the file (cannot exceed 8,388,608)

 recsz - the size, in bytes, of each record
 in the file (cannot exceed 32,767)

 secno - the sector number where the file
 is to begin

DESCRIPTION The INDEXED directive defines a file comprised of
 records located in contiguously numbered sectors.
 These records can be READ or WRITEn either
 sequentially or randomly by record number (the first
 record is number 0).

 Records defined in an Indexed file are all the same
 length. Fields within the records are delineated b»
 special characters called "field marks", which are
 inserted by the system.

 NOTE

 An Indexed file can be expanded to include
 a greater number of records by ERASEing
 the file, and then redefining it with a
 larger number in the recno field. The
 ERASE operation deletes information from
 the disc directory but does not alter the
 data in the area defined for the file.
 The file can be enlarged only if
 sufficient disc space exists immediately
 following the file.

 EXAMPLE 0130 INDEXED "FINGER",100,50,0,200

 -creates the Indexed file "FINGER" at sector
 200 of disc drive 0 with 100 records of 50
 bytes each

 4-51

 DIRECTIVES

 INPUT
 INPUT

FORMAT INPUT {(fileno/devno {,ERR=stno} {,END=stno}
 {,DOM=stno} {,IND=index value} {,KEY=key value}
 {,TBL=stno} {,TIM=time} {,SIZ=size})}
 {@(expr{,expr})} {,string constant} {,mnemonic}
 {,variable} {,IOL=stno}

 where

 @ expr,
 expr = horizontal and vertical
 positioning of the INPUT
 statement

 NOTE

 A comma is inserted before IOL= only when
 IOL= is used with a variable

DESCRIPTION The INPUT directive is used for two-way communication
 between the operator and the program. An INPUT may
 contain string constants for output to the terminal
 device. The operator's response goes into the
 variables included as parameters in the INPUT
 statement.

 If the information in a field is not required, an
 asterisk (*) can be substituted for the variable name
 to bypass processing of that field. The advantages
 of skipping fields are speed and a reduction of
 memory used by the program.

 When the system executes an INPUT statement, a
 message (if one was specified) appears on the
 operator's terminal. The system then waits for the
 operator to respond. The operator enters the
 response, then presses a field terminator (usually
 RETURN), and the system stores the data as directed
 by the statement, and then sets the CTL (control)
 task variable to a value determined by the type of
 field terminator used. The following list identifies
 the available field terminators and the resulting CTL
 values:

 4-52

 DIRECTIVES

 INPUT (Cont'd) INPUT (Cont'd)

 Control
 (CTL)
 Keys ASCII Character Value

 CR or LF CR or LF (line feed) 0
 Control Bar I FS (field separator) 1
 Control Bar II GS (group separator) 2
 Control Bar III RS (record separator) 3
 Control Bar IV US (unit separator) 4

 An INPUT, INPUT RECORD, READ or READ RECORD statement
 using the SIZ= option sets the CTL value to 5 if the
 number of characters INPUT or READ corresponds to the
 SIZ value specified.

 The operator selects the key(s) to be pressed based
 on the directions given, or in accordance with
 pre-established operating procedures. If the
 programmer has directed the possible use of any
 terminator other than RETURN, the INPUT statement can
 be followed by a statement that selects program
 branching, depending on the type of terminator
 entered. The operator can thus be given the ability
 to determine the course of processing that ensues.

 Under normal circumstances all entries typed at the
 terminal keyboard are received by the system, and are
 then immediately returned to the terminal for display
 or printing. However, in some applications (such as
 when entries must be masked before display), this
 immediate return of the entry is inhibited and the
 display results from execution of a subsequent PRINT
 statement. Inhibition of the immediate display (or
 printing) of input data is accomplished by using a
 device number other than zero in the INPUT statement.

 The device number used must have been previously
 assigned to the terminal by means of an OPEN
 statement. An example of an INPUT statement that
 inhibits display of a keyboard input follows:

 4-53

 DIRECTIVES

 INPUT (Cont'd) INPUT (Cont'd)

 0010 LET F$=FID(0)
 0020 OPEN (2)F$
 0030 INPUT (2,ERR=0030)@(0,10),"ENTER QUANTITY
 0030:S0LD-",B
 0040 PRINT (0,ERR=0030)@(0,11),B:"00000"
 >RUN

 ENTER QUANTITY SOLD-
 00123

 An attempt to enter non-numeric variables results in
 an ERROR 26. This provides an easy method for
 verifying that data input is numeric.

 Example:

 0010 INPUT (0,ERR=0100)"ANY NUMBER? ",A
 0020 PRINT "VALID"
 0030 GOTO 0010
 0100 PRINT "INVALID"
 0110 GOTO 0010
 >RUN
 ANY NUMBER? 1
 VALID
 ANY NUMBER? A100
 INVALID

 INPUT VERIFICATION Business BASIC provides the means to verify the
 maximum and minimum sizes of strings, the values of
 strings, and the maximum, minimum and number of
 decimal places of a numeric within an INPUT
 statement, as described below. Tests for
 verification occur from left to right within the
 parentheses.

 4-54

 DIRECTIVES

 INPUT (Cont'd) INPUT (Cont'd)

 Numeric Verification INPUT {(file parameters)} N: ({-} range mask)...

 where:

 range
 mask = is a literal string of digits, with or
 without a decimal point, which
 specifies the maximum (inclusive)
 limit of N

 minus
 sign (-) = specifies (if used) that the minimum
 limit of N is the negative value of
 the mask, inclusive; if not specified,
 the minimum is 0

 Placement of the decimal point, or absence of it,
 specifies the maximum number of fractional digits
 allowed.

 Examples:

 0010 INPUT (0,ERR=0010)A:(249.99)

 -the acceptable values of A are in the range
 of 0 through 249.99. Any value in excess of
 249.99 or with more than 2 fractional digits
 generates an ERROR 48.

 0010 INPUT (0,ERR=0010)A:(-999)

 -the acceptable values for A are integers in
 the range of -999 through +999.

 4-55

 DIRECTIVES

 INPUT (Cont'd) INPUT (Cont'd)

 String Verification INPUT {(file parameters)} N$: ({branchlist} {,}
 {LEN=Min,Max})

 where:

 branchlist = branchlist is one or more items
 whose syntax is: string literal
 =stmnt no. (e.g., "END" = 100).
 Branchlist items are separated by
 commas. If a true condition is
 found (i.e., N$ = string literal),
 statement execution is transferred
 to the specified statement number

 Min Max = Min and Max specify the inclusive
 range of legal lengths for N$. Min
 must be less than or equal to Max,
 or an ERROR 20 results

 If no branchlist is specified, or if the variable
 does not match any literal in the branchlist, the
 LEN= specification is checked. If LEN= is not
 specified, an ERROR 48 is generated.

 An ERROR 48 is also generated if the length of the
 variable is not within the specified range and the
 variable does not match any literal in the branchlist
 (or if there is no branchlist). Otherwise, statement
 execution continues normally.

 Examples:

 0010 INPUT (0,ERR=0010)"L/N/C",A$:("L"=0200,
 "N"=0300,"C"=0400)

 -if A$ = "L", program control is transferred to
 statement 200

 -if A$ = "N", program control is transferred to
 statement 300

 -if A$ = "C", program control is transferred to
 statement 400

 -any other value for A$ takes the ERR branch and
 returns to the INPUT statement

 (more)

 4-56

 DIRECTIVES

INPUT (Cont'd) INPUT (Cont'd)

 0100 INPUT (0,ERR=0100)"FILE NAME",A$:(LEN=1,6)

 -if the length of A$ is less than 1 or greater
 than 6, the ERR branch is taken

 0050 INPUT "NEXT KEY OR CR",A$:(""=1000,
 LEN=8,10)

 -if A$ = no entry, program control is transferred
 to statement 1000

 -if the length of A$ is less than 8 or greater
 than 10, an ERROR 48, "INVALID INPUT", occurs.

 4-57

 DIRECTIVES

INPUT RECORD INPUT RECORD

FORMAT INPUT RECORD (fileno/devno {,ERR=stno} {,END=stno}
 {,DOM=stno} {,IND=index value}
 {,KEY=key value} {,SIZ=size})
 {@(expr{,expr})} {string variable}

 where:

 string variable = name of the string into which the
 record is to be input

DESCRIPTION The INPUT RECORD directive is used to input a full
 record from a file without the need to specify what
 fields comprise the record. Field marks are
 transferred as data.

 INPUT RECORD is similar to the READ RECORD directive
 and is used in the same way. It inputs one record
 from a file or device into a string variable. Any
 field terminators are included in the record as data,
 and no field terminator is added to the end of the
 record.

 The SIZ= clause must be used with an INPUT RECORD
 command when input is from the VDT, since a RETURN or
 Control Bar key is treated as part of the data, rather
 than as a terminator.

EXAMPLE 0010 INPUT RECORD(2,ERR=0100,SIZ=5)A$

 4-58

 DIRECTIVES

IOLIST IOLIST

FORMAT IOLIST argument list {,IOL=stno}

 where:

 argument list a list defining data items to
 be input or output in
 subsequent I/O statements.
 The list can contain string
 variables, string constants,
 numeric variables, numeric
 constants, arithmetic
 expressions, string
 expressions, at-positions
 (@), mnemonics, or other IOL
 references

DESCRIPTION The IOLIST directive, available in Program Mode only
 is used to define a set of variables that can be
 referenced in input and output statements. Use of
 the IOLIST directive saves both coding space and
 debugging time.

 The list of variables established in the IOLIST
 directive is referenced by other statements using an
 IOL= clause. An IOL= clause can also appear in
 IOLIST statements.

 The IOLIST statement cannot be part of a compound
 statement.

EXAMPLE 0050 OPEN (1)"AFILE"
 0100 IOLIST A$,B,C$,D$,IOL=0110
 0110 IOLIST E,F$,G$
 0120 IOLIST A$,B:"###","ABC","05678",IOL=0110
 0200 READ (1, KEY=A$)I0L=0100
 0250 WRITE (1, KEY=A$)I0L=0120
 0260 PRINT 'SB',@(0,1),I0L=0120

 4-59

 DIRECTIVES

LET LET

FORMAT {LET} {numeric variable = numeric expr} {,}
 {string variable = string expr} {,...}

DESCRIPTION The LET directive assigns a value to a variable. The
 value on the right side of the equal sign is assigned
 to the variable on the left side of the equal sign.
 Both sides of the equal sign must be the same data
 type, numeric or string.

 The word LET is optional and need not be entered as
 part of the statement. The system automatically
 assumes LET if no other directive is recognizable.
 More than one LET assignment can be made in one
 statement by using commas between them. The LET verb
 occurs only at the start of the assignment list, if at
 all.

EXAMPLE

 0010 LET A=2

 0010 B=5,Q=2

 0010 LET D1=P*Q; IF D1>10 THEN LET D1=12

 4-60

 DIRECTIVES

LIST LIST

FORMAT LIST {(devno {,ERR=stno} {,TBL=stno}) {stno a} {,}
 {stno b}

 where:

 stno a = the number of the statement to be LISTed
 or the number of the first statement in a
 series of statements to be listed

 stno b = the number of the last statement in a
 series of statements to be listed

DESCRIPTION The LIST directive is used to print, or output on any
 output device (except MTC & MTR), any statement or
 any series of statements. The selected statement(s)
 are accessed from the user program area and are
 output in statement number sequence. The LISTed
 information includes statement numbers, directives
 and all parameters of each statement, including any
 REMark statement in the series. The LIST directive
 can be used as a statement in any program except a
 Public program.

 When any statement in a list exceeds 79 characters in
 length (including the statement number), the portion
 in excess of 79 characters is listed on the next
 line. The continued portion of the statement is then
 preceded by the statement number, followed by a
 colon(:).

 When LISTing to a disc file, the file must be an
 INDEXed file with at least as many records as there
 are lines in the program that are to be LISTed.

EXAMPLES >LIST -lists all statements

 >LIST 10 -lists statement 10

 >LIST 10, -lists statement 10 and all following
 statements

 >LIST 10,100 -lists statements 10 through 100

 >LIST ,100 -list all statements through 100

 4-61

 DIRECTIVES

 LIST (Cont'd) list (Cont'd)

 0100 LIST (4,ERR=0070)0010,0100

 -specifies that statements 10 through
 100 inclusive are to be listed at
 device 4. Control transfers to
 statement number 70 in the case of an
 error

 >L0AD "INZONE"

 READY
 >INDEXED "FINGER",100,80,0,1850
 >OPEN (1)"FINGER"
 >LIST (1)

 -this routine sets up the Indexed file
 "FINGER", opens it, and copies the
 statements in "INZONE" to "FINGER"

 4-62

 DIRECTIVES

OAD LOAD

FORMAT LOAD "prog id"

DESCRIPTION The LOAD directive, available in Console Mode only,
 is used to bring a program into memory.

 When a LOAD command is issued, the current program in
 the user area is deleted, all FOR/NEXT/GOSUB/
 SETERR/SETESC return addresses are.cleared, precision
 is set to 2, and the program is READ into the user
 area. The program can then be executed or modified.
 The execution of a LOAD command has no effect on the
 user data area.

 If insufficient program area is available, an ERROR
 19 (PROGRAM SIZE) displays. In Level 3, the program
 area is cleared prior to the attempt to LOAD. In
 Level 4, the program area is not cleared until it has
 been determined that the specified program can be
 LOADed.

 Like RUN, LOAD conserves the values of the variables.
 For example:

 >LET A=129
 >LOAD "PGM"
 >PRINT A

 129

 -if the program "PGM" uses A, its A
 value is set to 129 (unless a BEGIN
 or CLEAR is executed first)

EXAMPLE >LOAD "INZONE"

 4-63

 DIRECTIVES

LOCK LOCK

FORMAT LOCK (fileno {,ERR=stno})

DESCRIPTION The LOCK statement prevents other users from
 accessing a file. This is especially useful when
 file is being updated.

 A LOCKed file is released by an UNLOCK or CLOSE
 statement.

EXAMPLE 0100 LOCK (1,ERR=0200)

 4-64

 DIRECTIVES

MERGE MERGE

FORMAT MERGE (fileno/devno {,ERR=stno} {,IND=value}
 {,TBL=stno})

 where

 value = the index number of the first record in
 the file which contains the lines of code
 to be added

DESCRIPTION The MERGE directive is used to retrieve a program in
 LIST format from an INDEXED file on disc, or from any
 other input device (except MTC and MTR), and to add
 that program to the program currently existing in a
 user memory area.

 The statements of the two programs are merged
 together. If both programs have a statement with the
 same statement number, the one in the MERGEing
 program replaces the existing one.

 The addition of a statement with a statement number
 that does not exist in the current user program,
 causes that new statement to be inserted in the
 program in numerical order, according to its
 statement number. The MERGE Operation is terminated
 following the MERGEing of an END statement. If no
 END statement is present in the program being read,
 an ERROR 21 (STATEMENT NUMBER MISSING) is displayed
 upon reaching a record in the file that contains no
 statement number.

 MERGE cannot be used in a Public program.

EXAMPLE Follow these steps to perform a MERGE:

 1. LOAD, then LIST the program to be MERGEd
 ("PGM1"):

 >LOAD "PGM1"

 READY
 >LIST
 0010 REM "LOADING PGM1"
 0020 INPUT A$
 0130 PRINT A$
 0140 GOTO 0020
 1000 END

 4-65

 DIRECTIVES

 MERGE (Cont'd) MERGE (Cont'd)

 2. OPEN an Indexed file ("TRUNK"), and temporarily
 store the program to be MERGEd in it in LISTed
 format:

 >INDEXED "TRUNK",5,80,0,2096
 >0PEN (1)"TRUNK"
 >LIST (1)
 >END

 3. LOAD, then LIST the program into which "PGM1" is
 to be MERGEd ("PGM2"):

 >L0AD "PGM2"
 READY
 >LIST
 0010 REM "PGM2"
 0015 OPEN (1)"B0X"
 0030 IF LEN(A$)>3 THEN GOTO 0150
 0040 READ (1,ERR=0150,KEY=A$)«
 0050 PRINT "VALID"
 0150 PRINT "INVALID"
 0160 GOTO 0020

 4. OPEN the Indexed file ("TRUNK"); then enter the
 MERGE command:

 >OPEN (1)"TRUNK"
 >MERGE (1)

 5. LIST the combined programs:

 >LIST
 0010 REM "PGM1"
 0015 OPEN (1)"B0X"
 0020 INPUT A$
 0030 IF LEN(A$)>3 THEN GOTO 0150
 0040 READ (1,ERR=0150,KEY=A$)*
 0050 PRINT "VALID"
 0130 PRINT A$
 0140 GOTO 0020
 0150 PRINT "INVALID"
 0160 GOTO 0020
 1000 END

 Statement 10 is listed in both programs, so the one
 in the MERGEing program survives.

 NOTE

 No error is signalled (nor is ERR= exit
 taken) for statements which are invalid
 in the MERGE file (except those with
 missing statement numbers).

 4-66

 DIRECTIVES

NEXT NEXT

FORMAT NEXT control variable

 where:

 control
 variable = the variable to be incremented (or
 decremented if the step value is
 negative)

DESCRIPTION The NEXT directive is used with the FOR statement
 to create conditional looping within a program.

 See FOR/NEXT in this section.

EXAMPLE See FOR/NEXT in this section for examples.

 4-67

 DIRECTIVES

ON/GOTO ON/GOTO

FORMAT ON expr GOTO stno a {,stno b} {,stno c}...{,stno n}

 where:

 expr = a numeric integer (or variable
 representing same), the value of
 which determines the next
 statement number to be executed

 stno a = the statement number to be
 executed next if the value of the
 expression equals 0 or less

 stno b = the statement number to be
 executed next if the value of the
 expression equals 1

 stno c = the statement number to be
 executed next if the value of the
 expression equals 2

 stno n = the statement number to be
 executed next if the value of the
 expression is equal to or greater
 than the relative position of the
 statement number in line, minus
 one

DESCRIPTION The ON/GOTO directive is used to transfer program
 control to a specified statement number. The
 statement number selected depends upon the numeric
 value of the expression, and the relative position of
 the statement numbers after the GOTO determines which
 statement number is to be executed next. During
 execution, the value of the expression must be an
 integer.

 4-68

 DIRECTIVES

 ON/GOTO (Cont'd) ON/GOTO (Cont'd)

 The first statement number (stno a) is executed next
 if the value of the expression is equal to 0 or less
 (negative). The second statement number (stno b) is
 executed next if the value of the expression is equal
 to 1. Subsequent statement numbers represent branch
 locations for successive integer values of the
 expression. The last statement number (stno n) is
 used for all values equal to or greater than the
 number of statement numbers in the list, minus 1.

 There is no limit to the number of statement numbers
 permitted in the list (other than restrictions due to
 memory).

 EXAMPLE

 0100 ON X GOTO 0200,0300,0400,0500

 -if X=0 or less (negative), the next statement
 execute' is 0200

 -if X=1, the next statement executed is 0300

 -if X=2, the next statement executed is 0400

 -if X=3 or more, the next statement executed is
 0500

 4-69

 DIRECTIVES

OPEN
 OPEN

FORMAT OPEN (fileno/devno {,ERRrstno} {,BLK=max buffer size}
 {,TRK=track number} {,SEQ=sequence number}
 {,ISZ=recsz}) "file/device ID"

 where:

 BLK = either 0 (no user-area buffer) or 1024
 (user The BLK= option can be used with
 buffer Indexed, Serial and Direct files to
 size) speed up sequential accesses by
 (Level 3 reducing the number of physical I/O
 only) operations to one per buffer, rather
 than one per record. The option
 assigns user memory for the buffer
 used exclusively by the specified
 file. A buffer can be shared between
 a CALLing and CALLed program, and the
 file can be accessed by either
 program. WRITES are prohibited unless
 the file is LOCKed

 ISZ = an arithmetic expression representing
 (record a temporarily redefined record size
 size) for a file. The file is accessed as
 if it were an Indexed file with a
 record size equal to the arithmetic
 expression. The ISZ= option is used
 with READ RECORD and WRITE RECORD to
 handle multiple records or partial
 records (e.g., the Scatter Index Table
 (SIT) and KEY areas for Sort and
 Direct files). The FID of a file
 opened with the ISZ= option reflects
 the new record size and number of
 records, but the disc directory is not
 affected.

 The last record in a file OPENed with
 ISZ is short (less than the ISZ size)
 if ISZ is not evenly divisible into
 the file size, but an ERROR 2, END OF
 FILE, is not generated until there is
 no data to be read in the file. An
 ERROR 1 is generated when the last
 record is written if the record to be
 written is larger than the last record
 size available.

 A file OPENed with ISZ is implicitly
 LOCKed from use by other tasks.

 4-70

 DIRECTIVES

OPEN (Cont'd) OPEN (Cont'd)

 TRK = used for magnetic tape cartridge only,
 TRK specifies the track (0-3) on the
 cartridge to be used for data transfer

 SEQ = used for magnetic tape cartridge and
 reel-to-reel tape, SEQ specifies the
 file on the track to be accessed

DESCRIPTION The OPEN statement is used for two purposes: To
 permit a user to access a specified disc data file
 for subsequent input/output operations, or to allow a
 user to reserve a specified input/output device for
 his/her exclusive use. Each user is limited to
 access (OPENing) of a total of 7 files and/or devices
 at any given time on Level 3, and 8 on Level 4.

 Additional files/devices can be OPENed by CLOSEing
 those files/devices that are no longer needed.

 The terminal on which the user program is running is
 assigned a device number of zero by the operating
 system.

EXAMPLES 0010 OPEN (1)"AD00R"

 0020 OPEN (2,ERR=0050)A$

 0030 OPEN (3,TRK=1,SEQ=0)"C0"

 4-71

 DIRECTIVES

 PRECISION PRECISION

FORMAT PRECISION expr

 where:

 expr = an integer value between 0 and 14

DESCRIPTION The PRECISION directive is used to change the number
 of places of rounding. PRECISION is always reset to
 2 when a BEGIN, CLEAR, RESET, END, STOP, RUN or LOAD
 statement is executed.

EXAMPLES 0010 PRECISION 2
 0020 LET A=.55555
 0030 FOR 1=0 TO 5
 0040 PRECISION I;PRINT A;NEXT I

 >RUN
 1

 .6
 .56
 .556
 .5556
 .55555

 Statement 20 involves no computation; therefore, no
 rounding takes place. If, however, statement 20
 above is replaced with the following:

 0020 LET A=0+.55555

 then the stored value of A is 0.56, and the printout
 reflects the rounded value:

 4-72

 DIRECTIVES

 PRECISION (Cont'd) PRECISION (Cont'd)

 >RUN
 1
 .6
 .56
 .56
 .56
 .56

 0100 REM "CODE 3-6
 0200 PRECISION 2
 0220 LET A=.5,B=.01,C=4
 0230 LET D=A*B*C,E=B*C*A
 0240 PRINT D,E

 >RUN

 .04 .02

 4-73

 DIRECTIVES

PRINT PRINT

FORMAT PRINT {(fileno/devno {,END=stno} {,ERR=stno}
 {,IND=index value} {,KEY=key value}
 {,DOM=stno} {,TBL=stno})} {@(expr{,expr})}
 {list} {,I0L=stno} {,}

 where:

 list = one or more numeric or string constants
 or variables or arithmetic or string
 expressions defining the data items to
 be printed or displayed. Each such data
 item can employ a positioning expression
 and/or a form expression as required.
 Mnemonic constants can be inserted at
 points where I/O device control is
 required

 = a comma can be used at the end to
 suppress the otherwise automatic line
 feed (LF)

 NOTE

 A comma is inserted before IOL= only when
 IOL= follows an expression list.

DESCRIPTION The PRINT directive is used to PRINT to a file or
 device. Use of PRINT suppresses automatic generation
 of a field mark (line feed (LF) character) following
 each data field. One line feed character is
 generated at the end of all data items. A comma (,)
 at the end of all items suppresses the terminating LF
 character.

 The PRINT statement is normally used to output data
 to terminals and printers. In this capacity the
 PRINT statement makes full use of positioning and
 form expressions as required to produce printed
 reports and precisely arranged and edited displays.

 The PRINT statement can include any number of
 parameters defining data items to be printed. If the
 expression for any data item is not preceded by a
 positioning expression, printing (or display) occurs
 immediately following the last character output.

EXAMPLE 0130 PRINT (3,ERR=0340)@(5),A$,@(35),B:X$

 4-74

 DIRECTIVES

PRINT RECORD PRINT RECORD

FORMAT PRINT RECORD (fileno/devno {,END=stno} {,ERR=stno}
 {,SIZ=size limit} {,DOM=stno}
 {,IND=index value} {,KEY=key value}
 {,TBL=stno}) {@(expr {,expr})}
 {string variable}

DESCRIPTION The PRINT RECORD statement provides a means of
 writing a full record to a file without the
 requirement of specifying all of the variables which
 comprise the record. All field marks are transferred
 as data and no additional terminator is supplied. If
 the length of the variable is shorter than the
 defined record size, the rest of the record is filled
 with hexadecimal zeros.

 EXAMPLE

 0130 PRINT RECORD(3,ERR=0340)A$

 4-75

 DIRECTIVES

PROGRAM PROGRAM

FORMAT PROGRAM "file ID" prog size, discno, secno
 {,ERR=stno}

 where:

 prog size = the maximum size of the program in
 bytes (can not exceed 32,767 bytes)

 discno = the disc (0-7) on which the program is
 to be SAVEed

 secno = the sector where the program is to
 begin

DESCRIPTION The PROGRAM directive defines a program file.
 Program files differ from data files in that they are
 accessed by LOAD, SAVE, RUN or CALL, rather than READ
 or WRITE.

 NOTE

 A Program file can be expanded to include
 a greater number of bytes by ERASEing the
 file and redefining the program with a
 larger number in the size field. The
 ERASE operation deletes information from
 the disc directory but does not alter data
 in the area defined for the program.
 Redefinition can be performed only if
 sufficient disc space exists immediately
 following the Program file.

EXAMPLE >20 PROGRAM "KOJAK",2000,1,1000,ERR=0100

 -defines program "KOJAK", with a maximum size
 of 2000 bytes at sector 1000 of disc number 1

 4-76

 DIRECTIVES

PUT PUT

FORMAT PUT discno, secno {,ERR=stno} {,RTY=no. of retries},
 input string variable {,verify string variable}

 where:

 secno = sector number to begin writing to

 RTY = number of retries if the PUT is
 unsuccessful. RTY can be 0 to 254
 (more than 254 is interpreted as 0). If
 not entered, the number of retries
 equals 19 on removable discs or 27 on
 fixed discs

 input = variable containing data to be put on
 string disc
 variable

 verify = optional verification string, the same
 string size as the input string variable
 variable

DESCRIPTION PUT is used to write data contained in a string
 variable to a sector on a disc.

 PUT can only be used on a DISABLEd or RESERVEd disc.

 CAUTION

 Improper use of the PUT directive
 can cause extensive file damage.
 Data that is PUT into a sector
 overwrites existing data in that
 sector. Due to common misuse of
 this directive, PUT is not
 recommended for use in applications
 programs.

 0200 PUT 0,1096,ERR=0500,A$,A1$

 4-77

 DIRECTIVES

READ READ

FORMAT READ {(fileno/devno {,END=stno} {,ERR=stno}
 {,IND=index value} {,KEY=key value} {,TBL=stno}
 {,SIZ=size} {,DOM=stno} {,TIM=time})}
 {,@(expr{,expr})} {variable list} {,IOL=stno}

 where:

 @ expr,
 expr = horizontal and vertical
 positioning

 NOTE

 A comma is inserted before IOL= only
 when both IOL= and a variable list are
 used.

DESCRIPTION The READ statement is used to read data from a file
 or device. The fields from the record are placed
 into the respective variables in the READ statement.

 If a field contains non-numeric information, and the
 corresponding variable is numeric, an error results.
 A numeric field can be read into a string variable,
 and a field that has been written as a string, but
 contains only valid numeric data can be read into a
 numeric variable.

 If the information in a field is not required, an
 asterisk (*) can be substituted for the variable name
 to bypass processing of that field. The advantages
 of skipping fields are speed and a reduction of
 memory used by the program.

 For non-terminal devices, the differences between
 READ and INPUT are as follows:

 o String constants cannot be used;

 o Positioning expressions are not allowed;

 o Mnemonic constants are not allowed.

 Use of the READ directive varies somewhat, depending
 on the file type (see File Types in Section 5).

 4-78

 DIRECTIVES

 READ (Cont'd) READ (Cont'd)

 Direct File READ A Direct file can be READ either with or without a
 KEY option. If a key is not specified, the directive
 READs the record with the next highest key value.
 When the READ operation is complete, the "next key"
 pointer is updated to point to the key following the
 key that has just been read (i.e., READing a Direct
 file without specifying a key causes the records to
 be retrieved in keysorted order).

 If a record is READ with a key and the key is not
 found, an error occurs, and the key pointer is
 updated to point to the next higher key after the key
 that was not found.

 If it is not desirable for the key pointer to be
 updated to the next higher key fter the key that was
 not found, FIND should be used instead of READ.

 NOTE

 Level 4 unlinked files do not use linked
 keys. Therefore, KEY= or IND= must be
 specified in the READ statement.

 Examples Reading and writing a Direct file:

 0010 REM "PROGRAM 1 ? WRITE DIRECT FILE"
 0020 BEGIN
 0030 DIRECT "AA",52,100,100,0,700,ERR=0500
 0040 OPEN (1)"AA"
 0050 INPUT (0,ERR=0600)"PRODUCT NUMBER OR END
 ",A$:("END"=1000,LEN=5,5)
 0060 INPUT (0,ERR=0060)"QUANTITY-",A:(100)
 0070 INPUT (0,ERR=0070)"PRICE-'»,B:(99999.99)
 0080 WRITE (1,KEY=A$)A$,A,B
 0090 GOTO 0050
 0500 PRINT "ERROR: ",ERR:"000"
 0510 STOP
 0600 PRINT "ERROR IN INPUT. PLEASE RE-ENTER"
 0610 GOTO 0050
 1000 PRINT "END OF JOB"
 1010 STOP
 9999 END

 (more)

 4-79

 DIRECTIVES

READ (Cont'd) READ (Cont'd)

 0010 REM "PROGRAM 2 ? READ DIRECT FILE IN
 SEQUENCE AND PRINT PRICE"
 0020 BEGIN
 0030 OPEN (1)"AA"
 0040 READ (1,END=1000)A$,*,B
 0050 PRINT "PRODUCT-",A$," PRICE: ",B
 0060 GOTO 0040
 1000 PRINT "ALL PRODUCTS AND PRICES PRINTED"
 1010 STOP
 9999 END
 >

 0010 REM "PROGRAM 3 ? UPDATE PRICES"
 0020 BEGIN
 0030 OPEN (1)"AA"
 0040 INPUT (0,ERR=0040)"PRODUCT NUMBER OR END:
 ",A$:("END"=1000,LEN=1,52)
 0050 EXTRACT (1,ERR=0500,KEY=A$)*,A,B
 0060 PRINT "OLD PRICE IS ",B
 0070 INPUT (0,ERR=0070)"ENTER NEW PRICE
 ",B:(99999.99)
 0080 WRITE (1)A$,A,B
 0090 GOTO 0040
 0500 IF ERR0 11 THEN GOTO 0600
 0510 PRINT "INVALID PRODUCT ENTERED. PLEASE
 RE-ENTER"
 0520 GOTO 0040
 0600 IF ERR<>0 THEN GOTO 0700
 0610 PRINT "RECORD FOR THIS PRODUCT IN USE. WAITING"
 0620 GOTO 0050
 0700 PRINT "ERROR: ",ERR:"00","OCCURRED ON READ"
 0710 STOP
 1000 PRINT "END OF JOB"
 1010 STOP
 9999 END

 4-80

 DIRECTIVES

 READ (Cont'd) READ (cont'd)

 Sort File READ The READ statement for Sort files cannot specify any
 data fields.

 The following example defines a Sort file of 50 keys,
 each of which contains 10 characters, then writes 50
 keys to the file, READs the Sort file sequentially,
 and prints each key:

 0010 REM "CREATE SORT FILE"
 0020 SORT "SORT", 10,50,0,100
 0030 OPEN (1)"S0RT"
 0040 FOR 1=1 TO 50
 0050 WRITE (1,KEY=STR(I:"00000")+"AAAAA")
 0060 NEXT I
 0070 CLOSE (1)
 0100 REM "READ SORT FILE SEQUENTIALLY AND PRINT
 KEYS"
 0110 OPEN (1)"S0RT"
 0120 LET K$=KEY(1,END=0200)
 0130 REM " K$ CONTAINS THE KEY OF SORT FILE"
 0140 PRINT "KEY=",K$
 0150 READ (1)
 0160 REM "READ IS NECESSARY TO ADVANCE TO NEXT KEY"
 0170 GOTO 0120
 0200 REM "END OF FILE"
 0210 STOP

 4-81

 DIRECTIVES

READ (Cont'd) READ (cont'd)

 One use of a Sort file is to effect different
 sequences of a single Direct master file. In the
 following example, the Direct file "MASTR" is a
 customer master file in customer number sequence
 (customer number is a 5-digit number). Each record
 in the master file contains 5 fields: Customer
 Number, Customer Name, Address, Amount Due, and
 Amount Paid. A SORT file "NAME" has been created
 with a key consisting of 10 characters: the first 5
 characters of both the customer,name and the customer
 number. The sample program prints an alphabetic
 listing of all the customers in the master file which
 have a non-zero amount due:

 0010 OPEN (1)"MASTR"
 0020 OPEN (2)"NAME"
 0030 OPEN (7)"LP"
 0035 REM " K$ CONTAINS THE FIRST 5 CHARACTERS OF
 CUST NAME
 0036 REM " PLUS THE CUSTOMER CODE IN POSITION 6-10
 0040 LET K$=KEY(2,END=1000)
 0045 REM " CUSTOMER CODE IS THE KEY TO FILE "MASTR"
 0050 READ (1,KEY=K$(6,5))A$,B$,C$,D,E
 0055 REM " THE VARIABLE D CONTAINS THE AMOUNT DUE
 0056 REM " IF NOT ZERO, THE CUSTOMER WILL BE LISTED
 0060 IF DO 0 THEN PRINT (7)"CUSTOMER C0DE",A$,
 "NAME: ",B$," AMOUNT DUE:",D
 0070 READ (2)
 0080 GOTO 0040
 9999 END

 4-82

 DIRECTIVES

 READ (Cont'd) READ (cont'd)

 READing From Indexed READ statements for Indexed or Serial files or from
 or Serial Files and magnetic tapes cannot include a DOM= or KEY=
 Peripheral Devices option. The IND= option can be used to select
 specific records.

 Example:

 0010 REM "PROGRAM TO PRINT LABELS
 0020 BEGIN
 0030 OPEN (1)"ADDRES"
 0040 OPEN (7)"LP"
 0050 READ (1,END=0100)A$,B$,C$,D$
 0060 PRINT (7)'FF',A$
 0070 PRINT (7)B$
 0080 IF LEN(C$)>0 THEN PRINT (7)C$
 0090 PRINT (7)D$
 0100 GOTO 0050
 0110 CLOSE (1)
 0120 CLOSE (7)
 0130 END

 4-83

 DIRECTIVES

READ RECORD READ RECORD

FORMAT READ RECORD (fileno/devno {,DOM=stno} {,END=stno}
 {,ERR=stno} {,IND=index value}
 {,KEY=key value} {,TBL=stno}
 {,TIM=time} {,SIZ=size}) string variable

 where

 string variable = a string variable into
 which the record is read

DESCRIPTION The READ RECORD directive provides a method of
 reading a full record from a file or device. All
 field marks in the record are transferred as data
 When the size option is included, only the size
 specified is transferred.

 NOTE

 When used with magnetic tape units
 (MTC/MTR), the string variable must be
 DIMed large enough to hold all the data.
 Unlike other devices, which expand a
 string to a length necessary to hold all
 the data, MTC and MTR remain as DIMed.
 Data that exceeds the defined length of
 the string is truncated, and an ERROR 1
 is returned.

EXAMPLE 0100 READ RECORD(1,END=0900)A$

 4-84

 DIRECTIVES

RELEASE RELEASE

FORMAT RELEASE {"task ID"}

 where:

 task ID = the task identifier corresponding to the
 task identifier used with a prior START
 command from the system control task
 (SCT). The Task ID is not used when
 RELEASE is executed by a task other than
 the SCT

DESCRIPTION The RELEASE directive closes files and releases a
 task's memory. The SCT can RELEASE any task except
 its own; all other tasks can RELEASE only themselves
 or any ghost task.

EXAMPLES 0010 RELEASE "T1"

 0010 RELEASE

 4-85

 DIRECTIVES

REM REM

FORMAT REM {{"}remark{"}}

 where

 remark = a comment

DESCRIPTION A comment can be inserted at any point in a program
 by using the REM statement. Quotation marks are
 recommended in cases of multiple REM's in one
 statement, and to ensure that any blanks within a
 REMark are retained.

EXAMPLE 0100 REM "PROGRAM TO DISEMBARK ARK"

 4-86

 DIRECTIVES

REMOVE REMOVE

FORMAT REMOVE (fileno, KEY=key value {,DOM=stno}
 {,ERR=stno})

DESCRIPTION The REMOVE directive is used to delete the key of an
 existing record in a keyed file. Deletion of a key
 removes all references to the key and its associated
 data. The associated record is filled with
 hexadecimal zeros (00).

 The system updates the key pointer to point to the
 key following the key that has just been REMOVEd.

 The REMOVE statement must specify a key.

EXAMPLE 0100 REMOVE (1,KEY=K$)

 4-87

 DIRECTIVES

RESERVE RESERVE

FORMAT RESERVE discno

DESCRIPTION The RESERVE directive RESERVES a disc for exclusive
 use by the task executing it. Only the task that
 RESERVEd the disc can access the files on it.

 The following rules apply to the RESERVE directive:

 o A DISABLEd disc can not be RESERVEd

 o A RESERVEd disc can be DISABLEd by the same task

 o An ENABLE deRESERVEs a disc

 o A PUT can be performed on a RESERVEd disc

EXAMPLE 0100 RESERVE 0

 4-88

 DIRECTIVES

RESET RESET

FORMAT RESET

DESCRIPTION The RESET directive performs a low-level system reset
 that affects only the task that issued the statement.
 RESET resets the ERR and CTL system variables to
 zero, and any GOSUB or FOR/NEXT loops that have not
 been fully executed are reset. Additionally, the
 RESET statement reestablishes the arithmetic mode at
 PRECISION 2. Execution of the RESET statement does
 not clear the user data area, nor CLOSE any OPEN
 files or devices, nor reset the program execution
 pointer which identifies the statement to be next
 executed.

EXAMPLE 0900 RESET

 4-89

 DIRECTIVES

RETRY RETRY

FORMAT RETRY

DESCRIPTION The RETRY directive causes the transfer of program
 control to the statement where the last error
 occurred. RETRY must be preceded by an error branch
 in a program or an ERROR 27 occurs. RETRY cannot be
 executed unless an error occurred previous to the
 RETRY.

 The RETRY branch address is cleared by a START, LOAD
 or RUN (with program name specified), and BEGIN,
 CLEAR and RESET statements.

EXAMPLE 0010 REM "PROGRAM TO INPUT NEW CUSTOMERS"
 0020 BEGIN
 0030 OPEN (1)"MASTER"
 0040 LET P$="00000"
 0050 INPUT (0,ERR=0210)'CS',"CUSTOMER NUMBER
 (CR TO END) ",N:(99999)
 0060 IF N=0 THEN STOP
 0070 LET N$=STR(N:P$)
 0080 FIND (1,DOM=0120,KEY=N$)
 0090 INPUT (0,ERR=0090)@(0,22),'RB',"CUSTOMER ON
 FILE (DEL TO DELETE, CR TO CONTINUE:,T$:("DEL"
 =0100,""=0050)
 0100 REMOVE (1,KEY=N$)
 0110 GOTO 0050
 0120 SETERR 0210
 0130 INPUT @0,1),"ADDRESS",A$:(LEN=0,30)
 0140 INPUT @(0,2),"CITY",C$:(LEN=0,15)
 0150 INPUT @(0,3),"STATE",S$:("CA"=0160,"AZ"=0160,
 "OR"=0160)
 0160 INPUT @(0,4),"ZIP",Z:(99999)
 0170 INPUT @(0,5),"BALANCE",B:(-99999.99)
 0180 SETERR 0
 0190 WRITE (1,KEY=N$,ERR=8000)N$,A$,C$,S$,Z,B
 0200 GOTO 0050
 0210 INPUT (0,ERR=0210)@(0,22),'RB','INVALID (CR TO
 CONTINUE) ",T$:(""=0220)
 0220 RETRY
 .
 .
 8000 REM "ERROR HANDLING ROUTINE"

 4-90

 DIRECTIVES

RETURN RETURN

FORMAT RETURN

DESCRIPTION Available in Program Mode only, the RETURN directive
 is used to terminate a GOSUB, SETESC or SETCTL
 routine. It returns program control to the statement
 following the GOSUB, SETESC or SETCTL.

EXAMPLE 0300 GOSUB 0950
 0400 LET Z$="ZFRANC"
 .
 .
 .
 0950 LET A=50; LET B=A*C/2; PRINT B
 0960 RETURN

 4-91

 DIRECTIVES

RUN RUN

FORMAT RUN {"prog ID"}

DESCRIPTION The RUN directive is used to execute a program.
 Execution begins at the lowest numbered statement.

 If a program has been SAVEd on disc but is not now
 the current program in memory, it can be executed by
 providing its file identification as a RUN parameter,
 as follows:

 >RUN "AMOK"

 If a program name is specified, RUN automatically
 LOADs the program, clearing FOR/NEXT/GOSUB/SETERR/
 SETESC return addresses, and resetting PRECISION to
 2. RUN then executes the program, beginning at the
 lowest numbered statement. As with the LOAD, the
 user data area remains unchanged when RUN is
 executed. If insufficient user area is available, an
 ERROR 19 (PROGRAM SIZE) is generated.

 RUN can also be used to continue execution of a
 program after it has been stopped by any condition
 other than END or STOP. The condition causing the
 STOP is usually either the occurrence of an error or
 an ESCAPE. RUN causes the program to continue
 execution at the statement causing the error, or,
 following an ESCAPE, at the next statement in
 sequence.

 Programmed overlay of segmented programs can be
 accomplished by the use of the RUN statement as part
 of a program:

 0400 RUN "PRGM"

 4-92

 DIRECTIVES

RUN (Cont'd) RUN (Cont'd)

 All previously existing program statements in the
 program area are DELETEd, and the program statement
 pointer is set to one. Existing data in the data
 area is not changed and is usable by the incoming
 program.

 On Level 3 systems, the user program area is cleared
 prior to the attempt to LOAD. On Level 4, the
 program area is not cleared until it has been
 determined that the specified program can be LOADed.

EXAMPLES >RUN

 0400 RUN "AMOK"

 4-93

 DIRECTIVES

SAVE SAVE

FORMAT SAVE "file ID" {,prog size, discno, secno}

 where:

 file ID = the name of the program. File ID is
 optional on Level 4, required on
 Level 3

 prog size = the maximum number of bytes to be
 reserved on disc to store the program
 (cannot exceed 32,767 bytes)

 discno = the number of the disc (0-7) on which
 the program is.to be SAVEd

 secno = the number of the sector where the
 program is to begin

DESCRIPTION The SAVE directive is used to copy a program from
 user memory to a Program file on disc. The Program
 file must have been previously defined by a PROGRAM
 statement or must be currently defined by parameters
 of the SAVE statement.

 When the SAVE directive includes the program size,
 disc number and sector number parameters, it
 automatically defines a PROGRAM file and saves the
 program on disc.

 When the SAVE directive is used with only the file
 ID, the program currently in the user memory area is
 saved in a previously defined file.

 It is recommended on Level 4 and required on Level 3
 that the file ID always be used to prevent accidental
 saving of the wrong program. If the file ID is not
 used (Level 4 only), the program is SAVEd to the file
 ID which was last referenced (LOADed, SAVed, RUN).

 If an attempt is made to SAVE a program into a file
 of insufficient size, an ERROR 19 results. The file
 is defined, however, and must be ERASEd prior to
 entry of a subsequent SAVE statement.

 If a program file has been ERASEd, it can be
 recovered by executing the equivalent PROGRAM
 statement if the area where the program was on disc
 has not been overwritten.

 SAVE cannot be used in a Public program.

 4-94

 DIRECTIVES

SAVE (Cont'd) SAVE (Cont'd)

EXAMPLES >SAVE "STAMPS",3000,0,2057

 is equivalent to

 >PR0GRAM "STAMPS",3000,0,2057
 >SAVE "STAMPS"

 4-95

 DIRECTIVES

SERIAL SERIAL

FORMAT SERIAL "file ID", av recno, av recsz, discno, secno
 {,ERR=}

 where:

 av recno the average number of records in
 the file

 av recsz the average size, in bytes, of
 each record in the file

 secno the sector number where the file
 is to begin

DESCRIPTION The SERIAL directive defines a Serial file.

 The average record size and average number of records
 parameters are used to define the total space
 required for the file. However, they do not limit
 either quantity to that amount. For example, a
 Serial file defined with 100 records with an average
 size of 60 bytes can actually contain 200 records of
 30 bytes, or 50 records of 120 bytes, or any other
 combination which totals 6000 bytes.

 Rules for using Serial files:

 1. The maximum record size for a serial file is
 32,767 bytes.

 2. The file must be LOCKed in order to WRITE to it;
 otherwise, an ERROR 13, ILLEGAL FILE USE/ACCESS,
 results.

 3. Indices can be used to access records in a Serial
 file as they are in an INDEXED file, except that
 record-to record movement of the index can be in
 the forward direction only. To move to a
 previous record, the file must be CLOSEd, then
 reOPENed.

 4-96

 DIRECTIVES

 SERIAL (Cont'd) SERIAL (Cont'd)

 EXAMPLE >0170 SERIAL "TRIX",40,50,1,540

 -This example defines file "TRIX" for storage of
 a total of 2000 bytes of data (including field
 terminators and record lengths), breaking down
 to an average number of records of 40, and an
 average record size of 50 bytes at sector 540 of
 disc 1.

 4-97

 DIRECTIVES

SETCTL SETCTL

FORMAT SETCTL stno

DESCRIPTION Available in Level 4 only, the SETCTL directive is
 used to cause branching when the operator enters
 CTRL+Y. When the operator enters this combination,
 and SETCTL is in effect, branching occurs to the
 statement number specified in SETCTL, and the ERR
 variable is set to 126. If no SETCTL is in effect,
 and the operator enters CTRL+Y, the input is ignored
 and no action is taken.

 CTRL+Y can be used to branch to a subroutine, much
 like the GOSUB directive. When a RETURN is
 encountered after the CTRL+Y causes branching,
 program control returns to the statement following
 the CTRL+Y.

EXAMPLE 0700 SETCTL 0950

 4-98

 DIRECTIVES

SETDAY SETDAY

FORMAT SETDAY "string expr"

 where:

 string expr = 8 characters in the format
 MM/DD/YY, MM-DD-YY, or any other
 format. The recommended format
 is:

 MM = Month
 DD = Day
 YY = Year

 DESCRIPTION The SETDAY directive is used to set the value
 returned by the system variable DAY. The argument
 can be any string expression with 8 characters. All
 other lengths result in an error.

 EXAMPLE SETDAY "06/01/81"

 4-99

 DIRECTIVES

SETERR SETERR

FORMAT SETERR stno

DESCRIPTION The SETERR directive is used to branch to a general
 error routine. RETRY can then be used to return to
 the statement at which the error occurred for
 reexecution. This greatly simplifies the code
 required to handle errors.

 The following rules apply to SETERR:

 o If an error occurs within a statement that has no
 explicit error exit (an ERR= option takes
 precedence over a SETERR), a branch occurs (if a
 SETERR is in effect) to the specified statement.
 The specified statement can be the beginning of a
 routine for handling the error.

 o The routine can be terminated with a RETRY
 statement, in which case program control returns
 to the error statement.

 o SETERR is cleared by a RUN, LOAD, RESET, BEGIN,
 CLEAR, END or SETERR 0.

 o When the system takes the SETERR or ERR= branch,
 it automatically performs a SETERR 0 and saves the
 statement number to RETRY (unless the error
 occurred on an ERR= branch and returns to the same
 statement where the error occurred). This allows
 limited error branching within an error routine
 without losing the original RETRY address. When
 the RETRY statement is executed, the SETERR is
 restored to its original value. This design
 prevents an error within an error routine causing
 an infinite loop.

 o If an ERR= option (that does not branch to itself)
 is executed within an error routine, the RETRY
 address is set to that statement (losing the
 original RETRY address) and the SETERR is not
 reset.

 o If a SETERR is used for handling errors in a
 routine, a SETERR 0 should be executed after
 completion of the routine. This protects future
 errors from falling under control of the first
 SETERR.

EXAMPLE 0010 SETERR 0100

 4-100

 DIRECTIVES

SETESC SETESC

FORMAT SETESC stno

DESCRIPTION The SETESC directive is used to prevent an operator
 from escaping out of a program. SETESC causes
 program control to transfer to the specified ,
 statement number when ESCAPE is pressed. The
 operating system executes a GOSUB to the SETESC line
 number and begins processing. Following a RETURN,
 the operating system resumes processing at the point
 the SETESC branch was taken.

 The SETESC branch does not occur when a statement
 contains an ESCAPE directive.

EXAMPLE 0050 SETESC 9000
 0059 REM "ESCAPE KEY WILL BE PRESSED DURING EXECUTION
 OF 60"
 0060 LET A=A+1,B=B+1,C=C+1
 0070 GOTO 0060
 9000 REM
 9001 REM "ESCAPE ROUTINE"
 9002 REM
 9003 PRINT "YOU CANNOT ESCAPE"
 9004 RETURN

 4-101

 DIRECTIVES

 SETTIME
SETTIME

FORMAT SETTIME numeric expr

 where:

 numeric expr :an expression representing a
 value between 0 and 24 entered
 in decimal form (i.e., 13-50 =
 1:30 p.m.). The following
 formula should be used to
 determine the proper format:

 H + (M/60) (S/3600)

 where:

 H = Hours
 M = Minutes
 S = Seconds

DESCRIPTION SETTIME is used to change the value of the TIM system
 variable. The TIM variable is set to 0 whenever the
 system is LOADed.

EXAMPLE 0010 REM "PROGRAM TO SET TIME AND DAY"
 0020 BEGIN
 0030 INPUT (0,ERR=0030)"HOUR = ",H:(23)
 0040 INPUT (0,ERR=0040)"MINUTES = ",M:(59)
 0050 INPUT (0,ERR=0050)"SECONDS = ",S:(59)
 0060 PRECISION 4
 0070 SETTIME H+M/60+S/3600
 0080 INPUT (0,ERR=0080)"MONTH= ",M:(12)
 0090 IF M<1 THEN GOTO 0080
 0100 INPUT (0,ERR=0100)"DAY = ",D:(3D
 0110 IF D<1 THEN GOTO 0100
 0120 IF P0S(STR(M:"00")="04060911",2)0 0 AND D>30
 THEN GOTO 0100
 0130 IF M=2 AND D>29 THEN GOTO 0100
 0140 INPUT (0,ERR=0140)"YEAR = ",Y:(99)
 0150 IF Y<1 THEN GOTO 0140
 0160 IF FPT(Y/4)<>0 AND M=2 AND D>28 THEN GOTO 0100
 0170 SETDAY STR(M:"00")+"/"+STR(D:"00")+
 "/"+STR(Y:"00")
 0180 REM "PRINT THE DATE AND TIME"
 0190 PRECISION 4
 0200 LET T=TIM, H=INT(T), S=INT(FPT(T)*3600),
 M=INT(S/60), S=S-M*60
 0210 PRINT "DATE IS",DAY
 0220 PRINT "TIME IS",H:"00",":",M""00",":",S:"00"
 0230 STOP

 4-102

 DIRECTIVES

SETTRACE SETTRACE

FORMAT SETTRACE {(fileno/devno)}

DESCRIPTION The SETTRACE directive is used to initiate the
 listing of statements as they are executed. It is
 especially useful when debugging a program that
 appears to be branching in an unforeseen or
 undesirable manner. The resulting listing delineates
 the exact sequence in which program statements are
 being executed. The SETTRACE command can be used as
 a statement within the program at selected points
 until the program is debugged. The output of the
 SETTRACE is in the same format as the LIST command.
 Optionally, SETTRACE can be entered in Console Mode
 to begin the listing of executed statements. In any
 case, the listing continues until terminated by
 execution of an ENDTRACE, END or STOP.

 If the file or device specified has not been OPENed
 or has been made unready, an error results on the
 SETTRACE statement. Also, if the device being used
 to trace the execution should fail, an error occurs
 and the statement being executed is displayed as the
 statement in error. This can be confusing since the
 listed statement may not actually be in error.

 In Level 3, SETTRACE is automatically discontinued
 when the Error Handler is ADDE'd.

EXAMPLE 0010 FOR 1=1 TO 3
 0020 LET A=I+1; NEXT I
 >SETTRACE

 >RUN
 0010 FOR 1=1 TO3
 0020 LET A=I+1 NEXT
 0020 LET A=I+1 NEXT
 0020 LET A=I+1 NEXT
 END

 >READY

 4-103

 DIRECTIVES

 SORT SORT

FORMAT SORT "file ID", keysz, recno, discno, secno
 {,ERR=stno}

 where

 keysz - the size of a key in a keyed file;
 minimum=2, maximum=56 (if key is
 greater than 32,767, maximum=54)

 the maximum number of records for
 recno - the file (cannot exceed 8,388,608)

 the sector number where the file
 secno - is to begin

DESCRIPTION The SORT statement is used to define a Sort file.

 When a Sort file is defined, the Scatter Index Table
 and key area are initialized. Therefore, if a Sort
 file is accidentally erased, it cannot be restored by
 executing another SORT statement.

 When accessing a Sort file, the I/O directives used
 must not specify any data fields.

 4-104

 DIRECTIVES

SORT (Cont'd) SORT (Cont'd)

EXAMPLES 0100 SORT "ACUTE",15,100,1,350

 0010 REM "PROGRAM TO INPUT CUSTOMERS"
 0020 BEGIN
 0030 GOTO 0070
 0040 REM "THE TWO FILES ARE"
 0050 DIRECT "CUST",5,1000,64,1,24
 0060 SORT "ZIP",10,1000,1,1000
 0070 OPEN (1)"CUST"
 0080 OPEN (2)"ZIP"
 0090 INPUT (0,ERR=0090)"CUSTOMER NUMBER",A:(99999)
 0100 LET A$=STR(A:"00000") NAME",A1$:(LEN=0,20)
 0110 INPUT (0,ERR=0110)"CUST0MERZIP",Z:(99999)
 0120 INPUT (0,ERR=0120)"CUST0MER
 0130 WRITE (1,KEY=STR(A:"00000"))A,A1$,Z
 0140 REM "FOLLOWING EXTRACTS RECORD TO ENABLE
 OBTAINING OF INDEX VALUE"
 0150 EXTRACT (1,KEY=A$)*
 0160 LET I=IND(1)
 0170 WRITE (2,KEY=STR(Z:"00000")+STR(I:"00000"))
 0190 GOTO 0090

 0010 REM "PROGRAM TO READ ZIP FILE AND PRINT CUSTOMER
 NAME AND NUMBER"
 0020 BEGIN
 0030 OPEN (1)"CUST"
 0040 OPEN (2)"ZIP"
 0050 LET A$=KEY(2,END=0100)
 0060 READ (1,IND=NUM(A$(6)))A,A1$
 0070 PRINT "CUST #",A,@(15),"CUST NAME",
 A1$,@(33) 'ZIP",A$(1,5)
 0080 READ (2)
 0090 GOTO 0050
 0100 END

 4-105

 DIRECTIVES

START START

FORMAT START pages {,ERR=stno} {,BNK=bank no.}
 {,"prog ID"} {,"task ID"}

 where:

 pages = the number of pages assigned to the task
 (min=3 on Level 3, min=4 on Level 4;
 max=128)

 bank no.= the bank number in*which the task is to
 be located (some tasks-, e.g., DataWord
 and magnetic tape utilities, are limited
 to banks numbered 7 or lower)

 prog ID = the name of the program

 task ID = the task identifier. Terminal-connected
 tasks are numbered TO, T1, etc.; ghost
 tasks are numbered GO, G1, etc.

DESCRIPTION The START directive assigns memory to a task, closes
 files, and clears the program and data areas of the
 task.

 After the system is LOADed, only the System Control
 Task (SCT) is active. The START command must be
 executed from the SCT to activate other tasks. For
 example:

 START 28,"UR","T1"

 executed either in Console Mode or Program Mode,
 initiates the program "UR" at terminal "T1" in a
 little less than 28 pages of memory (there are 2 1/2
 pages of task overhead on Level 3 and 3 1/2 pages on
 Level 4, whenever a task is STARTed). The statement:

 START 28,"T1"

 assigns a little less than 28 pages of user memory to
 "T1", with no program initiated, and T1 is activated
 in Console Mode (actual usable pages are 25 1/2 in
 Level 3, and 24 1/2 on Level 4, due to overhead).

 4-106

 DIRECTIVES

START (Cont'd) START (cont'd)

 Once activated by a START command from the SCT, other
 terminals can use the START command to reassign
 memory to their tasks. Terminals other than the SCT
 can only START themselves and ghost tasks.

EXAMPLES >START 40

 >START 40,"CASPER","GO"

 4-107

 DIRECTIVES

STOP STOP

FORMAT STOP

DESCRIPTION The STOP directive is used to terminate a program at
 any point other than the end of that program. The
 termination process resets the program execution
 pointer to the first statement of the program, CLOSES
 all open files and devices, performs a RESET
 operation, and returns the terminal to Console Mode.
 The "logical" termination point established by the
 STOP statement does not discontinue MERGE operations,
 and for this reason the STOP statement should be used
 for all program terminations except the one that
 occurs at the end of the program.

 Execution of the STOP statement does not alter the
 data content of either the user data area or the user
 program area.

 STOP is identical in function to END, except that END
 is used to terminate program LOADing during a MERGE
 operation.

EXAMPLE 6510 STOP

 4-108

 DIRECTIVES

TABLE TABLE

FORMAT TABLE hexadecimal string

DESCRIPTION TABLE is a non-executing statement used to define the
 substitution values used to translate characters from
 one code to another during an input/output operation.

 Any input/output instruction which specifies a TBL=
 option includes, in the processing of that data, a
 conversion of each data character using the procedure
 described below. For input, the conversion is
 performed before the check is made for an input field
 terminator. For output, field terminators are
 converted after they are supplied by the system.

 The first two digits of the hexadecimal string are
 used as a mask byte which is ANDed with each input
 byte; the remainder of the hexadecimal string is the
 code comparison table and can be of any length, 256
 bytes or less.

 The mask byte is ANDed with each input byte to form a
 temporary result byte. The ANDing operation is done
 on a bit level. When a bit in the input byte is a 1
 and the corresponding bit in the mask byte is 1, the
 same bit in the result byte is set to 1. If either
 the bit in the input byte or the mask byte is 0, the
 corresponding bit in the result byte is set to 0.
 The ANDing operation can be compared to a filtering
 process: 1 bit in the mask allows data to pass
 through, 0 bits stop data from passing through the
 filter. The following examples demonstrate the AND
 operation:

 INPUT BYTE 'FA' =1111 1010 'A6' = 1010 0110
 MASK BYTE 'A3' =1010 0011 ?7F' = 0111 1111
 RESULT BYTE A2 1010 0010 26 0010 0110

 The result byte is then used as a subscript to the
 code conversion table. If the value of the subscript
 is 0, the first byte in the table (excluding the
 mask) replaces the input byte. If the value of the
 result byte is the binary equivalent of 20, the 21st
 byte (including the mask) from the table replaces the
 input byte.

 4-109

 DIRECTIVES

TABLE (Cont'd) TABLE (Cont'd)

 NOTE

 Proper selection of the mask byte
 reduces the size of the table. If the
 mask byte is 0011 1111 ('3F'), as in the
 examples above, the result byte never
 exceeds 0011 1111 ('3F'), and the table
 does not need to be larger than 64
 characters in length. If the result
 byte exceeds the size of the table, the
 system outputs the result byte.

EXAMPLE The following paragraphs provide ah example of the
 method used to build a table for EBCDIC to ASCII
 conversion:

 Assume that the data to be read and converted
 contains only upper case letters and no special
 characters or terminators.

 The first step is to build a table of the character
 set to be converted, the binary value of each
 character in ascending order. This is shown by
 columns one and two in Table 4-2. By looking at the
 Binary column (Column 2) it can be determined that
 the first two bits provide no useful information
 since they are identical. There are also cases where
 they are not the same, but provide no information, as
 in the case of a parity bit. In the example, it is
 desirable to strip off the first 2 bits. The mask
 for this is 0011 1111, or $3F$.

 Next, column 3, which is the decimal value after the
 masking operation, is filled. After completing this,
 columns 4 and 5, which are the ASCII characters and
 hexadecimal values that the EBCDIC characters are to
 be converted to, are filled. At this point, Table 2
 can be built showing all possible masked decimal
 values and their corresponding hexadecimal value.
 There are usually numerous holes in the table (marked
 with an *). These holes must be filled with some
 hexadecimal values, such as blanks, or another
 hexadecimal value that is not in the output character
 set, such that they can be later removed. Once this
 table is complete, it can be written in BASIC by
 appending the mask byte to the front of the
 hexadecimal values.

 4-110

 DIRECTIVES

 TABLE (Cont'd) TABLE (Cont'd)

 TABLE 4-2 - TABLE STATEMENT TABLE

 --
 | COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 COLUMN 5|
 | |
 | EBCDIC MASKED ASCII OUTPUT |
 | EBCDIC BINARY DECIMAL CHARACTER HEX |
 | CHARACTER VALUE VALUE EQUIVALENT VALUE |
 | |
 | A 1100 0001 1 A C1 |
 | B 1100 0010 2 B C2 |
 | C 1100 0011 3 C C3 |
 | D 1100 0100 4 D C4 |
 | E 1100 0101 5 E C5 |
 | F 1100 0110 6 F C6 |
 | G 1100 0111 7 G C7 |
 | H 1100 1000 8 H C8 |
 | I 1100 1001 9 I C9 |
 | J 1101 0001 17 J CA |
 | K 1101 0010 18 K CB |
 | L 1101 0011 19 L CC |
 | M 1101 0100 20 M CD |
 | N 1101 0101 21 N CE |
 | 0 1101 0110 22 0 CF |
 | P 1101 0111 23 P DO |
 | Q 1101 1000 24 Q D1 |
 | R 1101 1001 25 R D2 |
 | S 1110 0010 34 S D3 |
 | T 1110 0011 35 T D4 |
 | U 1110 0100 36 U D5 |
 | V 1110 0101 37 V D6 |
 | w 1110 0110 38 w D7 |
 | X 1110 0111 39 X D8 |
 | Y 1110 1000 40 Y D9 |
 | Z 1110 1001 41 Z DA |
 | |
 | Masked Decimal |
 | Value 0 1 2 3 4 5 6 7 8 9 10*11*12*13*14* |
 | Output HexValue AO C1 C2 C3 C4 C5 C6C7 C8 C9 AO AO AO AO AO |
 | Masked DecimalValue 15*16*17 16 19 20 2122 23 24 25 26 27 28 29 |
 | |
 | |
 | Output HexValue AO AO CA CB CC CD CE CFDO D1 D2 AO*AO*AO*AO* |
 | Masked DecimalValue 30 31 32 33 34 35 36 3738 39 40 41 42 43 |
 | through 63 |
 | |
 | Output HexValue AO*AO*AO*AO*D3 D4 D5 D6D7 D8 D9 DA AO |
 | are all AO's |
 | 0100 TABLE 3FAOC1C2C3C4C5C6C7C8C9AOAOAOAOAOAO |
 | A0CACBCDCECFD0D1D2A0A0A0A0A0A0A0A0 |
 | D3D4D5D6D7D8D9DAAOAOAOAOAOAOAOAO |
 | AOAOAOAOAOAOAOAOAOAOAOAOAOAOAO |

 4-111

 DIRECTIVES

 TABLE (Cont'd) TABLE (Cont'd)

 Within the Basic Four system, the TABLE statement has
 most often been used in (but is not limited to) the
 conversion of ASCII (American Standard Code for
 Information Interchange Code) to EBCDIC (Extended
 Binary Coded Decimal Interchange Code), and
 vice-versa.

 4-112

 DIRECTIVES

UNLOCK UNLOCK

FORMAT UNLOCK (fileno/devno {,ERR=stno})

DESCRIPTION The UNLOCK directive allows other tasks to access
 files previously LOCKed. A LOCKed file automatically
 becomes UNLOCKed when the file is CLOSEd.

EXAMPLE 0200 UNLOCK (1,ERR=0200)

 4-113

 DIRECTIVES

WAIT WAIT

FORMAT WAIT number of seconds.

 where

 number of seconds = an integer representing the
 length of time for the pause

DESCRIPTION The WAIT directive is used to suspend task execution
 for a specified number of seconds. The pause can
 range from 0 to 255 seconds, and is accurate to
 within 1 second.

EXAMPLE 0200 WAIT 2

 4-114

 DIRECTIVES

WRITE WRITE

FORMAT WRITE {(filno/devno {,DOM=stno} {,END=stno}
 {,ERR=stno} {,IND=index value} {,KEY=key value}
 {,SIZ=size} {,TBL=stno})} {@(expr {,expr})}
 {variable list} {,IOL=stno}

 NOTE

 A comma is inserted before IOL= only when both
 IOL= and an argument list are used.

DESCRIPTION The WRITE statement functions in the same manner as
 the PRINT statement except that the system
 automatically appends a line feed (LF) ($8A$)
 character to each variable specified in the WRITE
 variable list.

 NOTE

 Mnemonic constants and positioning
 expressions, if included as parameters,
 are output as data to non-terminal
 devices.

DIRECT FILE WRITE Unless an EXTRACT preceded the WRITE operation (see
 EXTRACT), a Direct file WRITE statement must include
 a KEY. The system then searches the Key/Scatter
 Index Table area to see if the key already exists in
 the file.

 If the key already exists, the new record is written
 over the old record. The operation is then complete.
 If the key does not exist, the system must find space
 for the key and data. If the "last removed key
 pointer" entry in the header is not zero, the
 relative position specified by this pointer is used
 for the key, and data.

 If the removed key pointer is zero, the system uses
 the relative position specified by the next available
 pointer. The pointers are also updated to include
 the new key in sorted order.

 It is highly recommended that the key always be
 written as part of the data. Accidental erasures of
 the file are then recoverable, since the data area is
 not destroyed on redefinition.

 For more information, see "FILE TYPES", Section 11.

 4-115

 DIRECTIVES

WRITE RECORD WRITE RECORD

FORMAT WRITE RECORD (fileno/devno {,DOM=stno} {,END=stno}
 {,ERR=stno} {,IND=index value}
 {,SIZ=size} {,KEY=key value}
 {,TBL=stno}) {string variable}

 where:

 string variable = the string variable to be
 written

 NOTE

 IND= cannot be specified when WRITEing to
 a magnetic tape unit.

DESCRIPTION The WRITE RECORD statement provides a means of
 writing a full record to a file or device without the
 requirement of specifying all of the fields which
 comprise the record. All field marks are transferred
 as data and no record terminator is written. If the
 field is smaller than the defined record size, the
 record is filled with hexadecimal zeros.

EXAMPLE 0100 WRITE REC0RD(1)A$

 4-116

SECTION 5 - FUNCTIONS

OVERVIEW FUNCTIONS are used to manipulate data. They perform
 a variety of operations, such as converting
 characters to different forms (ASCII, hexadecimal,
 etc.), checking for data integrity, returning
 information related to files, converting variables
 from strings to numerics and vice versa, and more.

 Predefined functions which are part of the Business
 BASIC language are discussed in this section.

 In addition to the predefined functions, 26
 user-defined functions are available for each program
 (see "DEF FNx" Directive in Section 4).

 5-1

 FUNCTIONS

 ABS ABS
(ABSOLUTE VALUE) (ABSOLUTE VALUE)

FORMAT ABS (numeric expr {,ERR=stno})

DESCRIPTION The ABS function computes the absolute value of an
 argument. The argument is evaluated for magnitude
 alone; the sign (+ or -) is ignored.

EXAMPLES 0100 LET X=ABS(12) - assigns the value 12 to X

 0100 LET X=ABS(-6) - assigns the value 6 to X

 5-2

 FUNCTIONS

 AND AND
(COMBINE STRINGS) (COMBINE STRINGS)

FORMAT AND (string expr, string expr {,ERR=stno})

DESCRIPTION The AND function returns a string that is the result
 of combining the bits of two string expressions
 according to the following rules:

 0 AND 0 = 0
 0 AND 1 = 0
 1 AND 0 = 0
 1 AND 1 = 1

EXAMPLE LET X$=AND($0F$,$DC$)

 then $0F$ 0000 1111
 DC 11011100

 PRINT HTA(X$) = $0C$ = 0000 1100

 5-3

 FUNCTIONS

 ASC ASC
(STRING TO DECIMAL) (STRING TO DECIMAL)

FORMAT ASC (string expr {,ERR=stno})

DESCRIPTION The ASC function converts a single string character to
 a decimal number. If the string expression is longer
 than one character, the value returned is the ASC of
 the first character in the string.

EXAMPLES 0500 LET X=ASC("A") - returns a value of 193 to X

 0500 LET X=ASC("1") - returns a value of 177 to X

 0500 LET X=ASC(79) - returns a value of 121 to X

 5-4

 FUNCTIONS

 ATH ATH
(HEXADECIMAL TO ASCII) (HEXADECIMAL TO ASCII)

FORMAT ATH (string expr {,ERR=stno})

DESCRIPTION The ATH function converts the hexadecimal characters
 in the string expression to ASCII characters. The
 string must contain only the characters 0-9 and A-F.
 Each two characters in the argument string are
 converted to one character in the output string. If
 the string contains an odd number of characters, a
 zero is added to the left of the first character
 before the conversion.

EXAMPLE LET X$=ATH("B0B1B2") - X$ = $B0B1B2$ = 012

 5-5

 FUNCTIONS

 BIN BIN
 (BINARY) (BINARY)

FORMAT BIN (numeric expr, length {,ERR=stno})

 where:

 length = length of t-he string

DESCRIPTION The BIN function returns a string containing the
 binary representation of the value of the argument.
 The string is the length specified, padded with
 hexadecimal zeroes to the left, if necessary.

 If the length is too short to contain all the
 significant digits of the number, the string is right
 justified and truncated.

 The leftmost bit is considered the "sign" bit. If "on'
 (1), the nuber is negative. Negative numbers are
 stored in two's complement (negative binary) notation

 The Binary to Hexadecimal Conversion Table is as
 follows:

 1111
 0000 :: 0 0101 :: 5 1010 :: A
 0001 :: 1 0110 :: 6 1011 :: B
 0010 :: 2 0111 :: 7 1100 :: C
 0011 := 3 1000 :: 8 1101 :: D
 0100 :: 4 1001 :: 9 1110 :: E

EXAMPLES LET X$=BIN(50,2) - X$ is 0032

 LET X$=BIN(1024,2) - X$ is 0400

 LET X$=BIN(-50,2) - X$ is $FFCE$

 LET X$=BIN(193,1) - X$ is $C1$

 -To print the values of X as listed,
 enter: PRINT HTA(X$)

 5-6

 FUNCTIONS

 BSZ BSZ
(BANK SIZE) (BANK SIZE)

FORMAT BSZ (bank no.)

 where:

 bank no. = a number between 1 and 15

DESCRIPTION The BSZ function returns the number of bytes
 available in the specified bank. The bank number can
 be any number between 1 and 15, inclusive, provided
 the specified number corresponds to an existing bank.
 The number of pages available in a bank can be
 computed as the INT (BSZ(bank)/256).

EXAMPLE X=INT(BSZ(2)/256)

 X = the number of available pages in bank 2

 5-7

 FUNCTIONS

 CHR CHR
(NUMERIC TO ASCII) (NUMERIC TO ASCII)

FORMAT CHR (numeric expr {,ERR=stno})

DESCRIPTION The CHR function converts the numeric expression to an
 ASCII character. The number must be between 0 and 255.

EXAMPLES 0100 LET X$=CHR(193)

 - stores "A" in X$

 0100 LET X$=CHR(177)

 - stores "1" in X$

 5-8

 FUNCTIONS

 CPL CPL
(COMPILE) (COMPILE)

FORMAT CPL (string expr {,ERR=stno})

DESCRIPTION The CPL function compiles the string expression. The
 string can contain any valid BASIC statement, with or
 without a line number. The CPL function converts the
 statement to a format that can be executed by the
 BASIC executor. The first two hexadecimal bytes of the
 output string contain the string length in binary
 format, provided the statement number is included.

EXAMPLES A$=CPL("1 END") A$ = 04000143
 | | |
 | | |
 | | |
 | | | -compiled "END"
 | |
 | |-statement number in
 | binary
 |
 |-length of compiled
 statement in binary

 -To print the value of A$ as listed, enter
 PRINT HTA(A$)

 5-9

 FUNCTIONS

 CRC CRC
(CYCLIC REDUNDANCY CODE) (CYCLIC REDUNDANCY CODE)

FORMAT CRC (string expr {,2-byte string})

 where:

 2-byte string the seed or start string,
 hexadecimal value

DESCRIPTION Used to check for data integrity, the CRC function
 computes checksums for a string variable. Creation of
 the checksum is based upon the unique bit pattern of
 the series of characters comprising the string.

EXAMPLES 0020 LET A$=CRC(B$)
 0030 LET A=ASC(A$(1))*256+ASC(A$(2))

 -returns a 2-byte string that contains
 characters with ASCII values between 0
 and 255

 The CRC function also allows the accumulation of the
 CRC of a large string without having the complete
 string in memory at one time.

 C$=CRC(A$+B$) is equivalent to:

 C$=CRC(A$), C$=CRC(B$,C$)

 NOTE

 If the CRC is to be used in conjunction
 with unformatted synchronous
 communications, the bytes must be in
 reverse order.

 5-10

 FUNCTIONS

 DEC DEC
(BINARY TO DECIMAL) (BINARY TO DECIMAL)

FORMAT DEC (string expr {, ERR=stno})

DESCRIPTION The DEC function converts a binary string expression
 into a signed decimal number. The leftmost bit is
 considered the "sign" bit. If "on" (1), the number is
 negative.

 Negative numbers are stored in two's complement
 (negative binary) notation.

 - X is 50
EXAMPLES LET X=DEC(0032)
 - X is -50
 LET X=DEC($FFCE$)
 - X is 1024
 LET X=DEC(0400)
 - X is -63
 LET X=DEC("A")
 - X is 193
 LET X=DEC(00+"A")

 5-11

 FUNCTIONS

 EPT EPT
(EXPONENT) (EXPONENT)

FORMAT EPT (numeric expr {, ERR=stno})

DESCRIPTION The EPT function returns the exponent of the numeric
 expression.

EXAMPLES LET X=EPT(55) 55*10^2 then: X=2
 .
 LET X=EPT(5.23) 523*10^1 then: X=1

 LET X=EPT(-500) -.5*10^3 then: X=3

 LET X=EPT(0) 0*10^0 then: X=0

 LET X=EPT(.00001) .1*10^-4 then: X=-4

 5-12

 FUNCTIONS

 FID FID
(FILE INFORMATION) (FILE INFORMATION)

FORMAT FID (fileno {,ERR=stno})

DESCRIPTION The FID function returns information associated with
 the specified file number. If the file number refers
 to a device, a two-byte device name is returned. If
 the number refers to a disc file, 20 bytes of
 information about the file are returned. The FID for
 a disc file has the following format:

 NUMBER OF
 BYTES BYTES DESCRIPTION

 1-3 3 Starting sector of file

 4-9 6 File name

 10 1 File type
 00 Indexed file
 4-9 1 01 Serial file
 02 Direct or Sort File
 10 04 Program file
 08 Unlinked (or
 Unsorted) Direct or
 Sort file (Level 4
 only)

 $0A$ Dictionary

 11 1 *Key size plus pointers

 12-14 4 Number of records

 15-16 2 Bytes per record

 17-19 2 Ending sector + 1

 20 1 Disc number (plus Fileset in
 Level 4)

 *where pointer size in bytes is 4 for
 fewer than 32K records, 6 for 32K records
 or more

EXAMPLE >LET A$=FID(2)
 >PRINT A$(4,6) -displays the file name of the
 file OPENned on channel 2

 5-13

 FUNCTIONS

 FNX FNX
(DEFINE FUNCTION) (DEFINE FUNCTION)

FORMAT FNx {$} (argument list)

 where

 x = any letter from A-Z

 $ = specified for string functions

 argument list = values provided for use by the DEF
 statement

DESCRIPTION Used with the DEF directive, FNx allows reference to
 specific functions not provided in Business BASIC (see
 DEF directive in this section).

EXAMPLE 0230 LET A=FNA(B,D)

 5-14

 FUNCTIONS

 FPT FPT
(FRACTIONAL PART) (FRACTIONAL PART)

FORMAT FPT (numeric expr {,ERR=stno})

DESCRIPTION The FPT function returns the fractional part of the
 numeric expression, rounded to the PRECISION in
 effect.

EXAMPLES 0200 PRECISION 3

 0210 LET X=FPT(55.885) X=.885

 0200 PRECISION 2

 0210 LET X=FPT(55.885) X=.89

 0215 LET X=FPT(55.884) X=.88

 5-15

 FUNCTIONS

 GAP GAP
(ODD PARITY) (ODD PARITY)

FORMAT GAP (string variable or literal)

DESCRIPTION This function generates odd parity for the specified
 string variable or constant on a byte-for-byte basis
 The resultant string is the same length as the
 specified string.

EXAMPLE 0200 LET A$=GAP($0FDC$) - A$ is equal to $8FDC$

 5-16

 FUNCTIONS

 HSH HSH
(HASH) (HASH)

FORMAT HSH (string expr {,2-byte string})

 where:

 2-byte string = the seed or start string,
 hexadecimal value

DESCRIPTION The HSH function is used by the system to:

 o determine the location of an entry in the Scatter
 Index Table (SIT) that corresponds to a particular
 key; and

 o perform a data integrity check when a program is
 loaded into memory. All Level 3 and 4 programs
 have a HSH at the end, following the Auto-End.

EXAMPLES 0600 LET A$=HSH(B$)

 0600 LET A$=HSH(B$,C$)

 0600 LET A$=HSH(B$(10,LEN(B$)-11))

 computes the Hash of a program
 where B$ is the entire program
 in compiled format

 5-17

 FUNCTIONS

 HTA HTA
(ASCII TO HEXADECIMAL) (ASCII TO HEXADECIMAL)

FORMAT HTA (string expr {, ERR=stno})

DESCRIPTION The HTA function converts each ASCII character in the
 string to its hexadecimal equivalent. Each character
 in the string is converted to two characters in the
 output string.

EXAMPLES LET X$=HTA("ABC") - X$ is "C1C2C3"

 LET X$=HTA("123") - X$ is "B1B2B3"

 5-18

 FUNCTIONS

 IND IND
(INDEX) (INDEX)

FORMAT IND (fileno {,ERR=stno} {,END=stno})

DESCRIPTION The IND function returns the index of the next record
 to be accessed on the specified file. For Indexed and
 Serial files, the value returned is the index of the
 next sequential record. For Direct and Sort files, the
 value returned is the index of the next higher logical
 key.

EXAMPLE LET A$=IND(1,ERR=0500,END=1000)

 5-19

 FUNCTIONS

 INT INT
(INTEGER) (INTEGER)

FORMAT INT (numeric expr {,ERR=stno})

DESCRIPTION The INT function returns the integer part of the
 numeric expression. Any fractional digits are removed,
 and rounding does not occur.

EXAMPLES 0100 LET X=INT(5.84) - X is 5

 0200 LET Y=INT(.333) - Y is 0

 0300 LET Z=INT(-6.22) Z is -6

 5-20

 FUNCTIONS

 IOR IOR
(LOGICAL OR) (LOGICAL OR)

FORMAT IOR (string expr, string expr {,ERR=stno})

DESCRIPTION The IOR function returns a string that is the result
 of combining the bits of the two string expressions
 according to the following rules:

 0 IOR 0 = 0
 0 IOR 1 = 1
 1 IOR 0 = 1
 1 IOR 1 = 1

EXAMPLE LET X$=IOR($0F$,$DC$)

 then: $0F$ = 0000 1111
 DC = 1101 1100

 X$ = DF = 1101 1111

 5-21

 FUNCTIONS

KEY KEY

FORMAT KEY (fileno {,ERR=stno} {,END=stno} {,IND=recno})

DESCRIPTION The KEY function returns a string containing the key
 of the next logical record to be accessed from the
 file. Key is for use with Direct or Sort files.

 For more information, see "FILE STRUCTURES AND
 ACCESS", Section 11.

EXAMPLE 0075 LET A$=KEY(1,ERR=0500,END=2000)

 5-22

 FUNCTIONS

 LEN LEN
(LENGTH) (LENGTH)

FUNCTION LEN (string expr {,ERR=stno})

DESCRIPTION The LEN function returns the length of the string,
 including any non-printable or fill characters.

EXAMPLES 0010 LET A$="ABC"

 0020 LET B$="DEFG"

 0030 LET X=LEN(A$) - X is 3

 0040 LET Y=LEN(A$+B$) - Y is 7

 5-23

 FUNCTIONS

 LRC LRC
 (LOGITUDINAL (LONGITUDINAL
 REDUNDANCY REDUNDANCY
 CHECK) CHECK)

FORMAT LRC (string variable or constant)

DESCRIPTION Used to perform a data integrity check, this function
 computes a longitudinal redundancy check based on the
 string variable or constant specified.

 The code generated is returned as a 1-byte string,
 and is equivalent to the exclusive ORing (XOR) of all
 bytes of the argument string. A Null argument
 returns 00.

EXAMPLE >LET A$=LRC($1C4D27$)
 >PRINT HTA(A$)
 76

 5-24

 FUNCTIONS

LST LST
 (LIST)

FORMAT LST (string expr {, ERR=stno})

DESCRIPTION The LST function converts a compiled BASIC statement
 into LIST format. The string expression must contain
 valid compiled BASIC code, with a line number.

EXAMPLE 0100 LET A$=LST(B$)

 - when B$ is a compiled BASIC statement
 the statement is converted into LIST
 format and placed in A$.

 1000 LET A$="BASIC"
 1010 PRINT A$," FOUR"
 1020 LET X$=PGM(1010)
 1030 PRINT LST(X$)

 RUN
 >BASIC FOUR

 5-25

 FUNCTIONS

 MOD MOD
(MODULO) (MODULO)

FUNCTION MOD (numeric expr a, numeric expr b
 {, ERR=stno})

 where:

 numeric expr a = the number on which to
 perform the modulo
 calculation; the dividend

 mumeric expr b = the number representing
 the base or divisor

DESCRIPTION The MOD function performs repeated divisions, the
 first-numeric expression divided by the second. The
 result returned is the remainder of the last division
 (not the quotient).

 MOD divides integers. It does not use fractional
 values rounded to Precision.

EXAMPLES 0100 LET X=M0D(26,7) - X=5, the remainder

 0100 LET X=M0D(22,11) - X=0, the remainder

 5-26

 FUNCTIONS

 NOT N0T
(INVERSE STRING) (INVERSE STRING)

FORMAT NOT (string expr)

DESCRIPTION The NOT function returns a string that is the result
 of taking the inverse of the string, bit by bit. The
 rules for the NOT operation are:

 NOT 0 = 1
 NOT 1 = 0

EXAMPLE 0100 LET X$=N0T($DC$)

 if: DC = 1101 1100

 then: PRINT HTA(X$) = 23 = 0010 0011

 5-27

 FUNCTIONS

 NUM NUM
(NUMERIC VALUE) (NUMERIC VALUE)

FORMAT NUM (string expr {,ERR=stno})

DESCRIPTION The NUM function returns the numeric value of the
 characters in the string expression. All characters
 in the string must be numeric, or related to numbers
 e.g., "+", "-", ".", ",", "E" are legal.

EXAMPLE 0100 LET A$="224"

 0200 LET B=NUM(A$, ERR=8000)

 - B is 224. If A$ contains any invalid
 characters, program control transfers to
 statement 8000.

 5-28

 FUNCTIONS

 PGM PGM
(PROGRAM) (PROGRAM)

FORMAT PGM (stno)

DESCRIPTION The PGM function returns the compiled format of the.
 designated statement number. If the statement number
 does not exist in the program, the next higher
 statement is returned.

EXAMPLES 0100 LET A$=PGM(10) - A$ returns the compiled
 form of statement 10

 0100 LET A$=LST(PGM(10)) - A$ returns the listed
 format of statement 10

 5-29

 FUNCTIONS

 POS POS
(POSITION) (POSITION)

FORMAT POS (scan string relational operator target string
 {, step value} {, ERR=stno})

 where:

 scan string = the string (in constant or
 variable form) being searched

 relational operator= one of the valid symbols of
 comparison:

 = <> or X
 < <= or =<
 > >= or =>

 target string = the string (in constant or
 variable form) to be searched

 step value = the increment defining the
 intervals at which the target
 string is examined for each
 subsequent comparison (default
 value is 1)

DESCRIPTION The POS function is used to determine the position of
 specified character(s) less than, equal to, or greater
 than those within a specified string. The value
 returned is the offset of the first matching substring
 in the target string. A zero is returned if no
 substring is found that meets the requirements.

EXAMPLE LET A$="ABCDEFGHIJKL"
 (target string)

 then: LET X=POS("D"=A$) - X is 4

 LET X=P0S("D"<A$) - X is 5

 LET X=POS("D">A$) - X is 1

 LET X=POS("5"=A$) - x is 0

 LET X=POS("DE"=A$,3) - X is 4

 LET X=POS("DE"=A$,4) - X is 0

 LET X=POS("DE"<A$,3) - X is 7

 5-30

 FUNCTIONS

 PUB PUB
(PUBLIC PROGRAMS) (PUBLIC PROGRAMS)

FORMAT PUB (bank no.)

 where:

 bank no. the designated bank number

DESCRIPTION The PUB function returns a string representing all of
 the Public programs in the designated bank. For each
 Public program, a string (11 bytes in length on
 Level 3, 16 bytes for Level 4) in binary format is
 returned. The format, with conversion code, is as
 follows:

 BYTE CONTENTS CONVERSION CODE

 1,2 start location PRINT DEC(A$(1,2))

 3,4 program size PRINT DEC(A$(3,2))

 5-10 program name --

 11 program types: PRINT ASC(A$(11,1))

 1=ADDR
 3=ADDE
 5=ADDS
 PRINT ASC(1$(12,1))
 12 fileset number

 13-16 unused

EXAMPLE 0100 FOR 1=1 TO N
 0110 LET A$=PUB(I)
 0120 IF LEN(A$)=0 THEN GOTO 0160
 0130 FOR J=1 TO LEN(A$) STEP X
 0140 PRINT A$(J+4,6)
 0150 NEXT J
 0160 NEXT I

 -where:

 N = the highest available bank

 X = the STEP value for the PUB function
 (11 bytes for Level 3, 16 bytes for
 Level 4)

 5-31

 FUNCTIONS

 SGN SGN
SIGN) (SIGN)

FORMAT SGN (numeric expr {, ERR=stno})

DESCRIPTION The SGN function returns the sign of the numeric
 expression. If the expression is negative, a -1 is
 returned; if it is positive, a 1 is returned; and if
 it is zero, a 0 is returned.

EXAMPLES LET X=SGN(-77) - X=-1

 LET X=SGN(6) - X=1

 LET X=SGN(0) - X=0

 5-32

 FUNCTIONS

 STR STR
(STRING) (STRING)

FORMAT STR (numeric expr {:mask} {,ERR=stno})

 where

 mask see "NUMERIC EDITING", page 2-9

DESCRIPTION The STR function converts the numeric expression to a
 string of characters. The length and format of the
 string is specified by a format mask. The mask can be
 expressed as a string constant surrounded by double
 quotation marks (""), or as a string variable.

EXAMPLES LET X$=STR(100:"00000") X$ is "00100"

 LET A=100
 LET X$=STR(A:"$##0.00") X$ is "$100.00"

 LET X$=STR(100) - X$ is "100"

 5-33

 FUNCTIONS

 XOR XOR
(EXCLUSIVE OR) (EXCLUSIVE OR)

FORMAT XOR (string expr, string expr {, ERR=stno})

DESCRIPTION The XOR function returns a string that is the result
 of combining the bits of the first string with the
 bits of the second string according to the following
 rules:

 0 XOR 0 = 0
 0 XOR 1 = 1
 1 XOR 0 = 1
 1 XOR 1 = 0

 The strings must be the same length

EXAMPLE LET X$=X0R($0F$,$DC$)

 then: $0F$ = 0000 1111
 DC = 1101 1100

 PRINT HTA(X$) = $D3$ = 1101 0011

 5-34

SECTION 6 - SYSTEM VARIABLES

 OVERVIEW A system variable is a function whose use is
 pre-defined by the operating system. System
 variables are used to determine the value of specific
 system operations, such as the time (TIM) and the
 date (DAY).

 System variables are also used to determine the
 number of unused bytes in the user area of memory,
 the value of the last occuring error, the highest
 available sector number, and more.

 6-1

 SYSTEM VARIABLES

 CTL CTL
(CONTROL VARIABLE) (CONTROL VARIABLE)

FORMAT CTL

DESCRIPTION The CTL variable contains a number that indicates
 which field terminator was used to end the last input
 statement. The meaning of each terminator key is
 defined by the application.

 The following chart shows the terminator keys that the
 operator can use and the ASCII and CTL values (CTL is
 set to five (5) if input is terminated because a
 "SIZ=" clause in an input statement was satisfied):

 ASCII
 KEY VALUE CHARACTER CTL VALUE
 0
 RETURN $8D$ CR (carriage return)

 CBI $9C$ FS (field separator) 1
 (or SHIFT+CTRL+L)

 CBII $9D$ GS (group separator) 2
 (or SHIFT+CTRL+M)

 CBIII $9E$ RS (record separator) 3
 (or CTRL+N)

 CBIV $9F$ US (unit separator) 4
 (or CTRL+O)

 none (SIZ=satisfied)(none) 5

EXAMPLES 0100 PRINT CTL

 0100 IF CTL=4 THEN GOTO 9000

 6-2

 SYSTEM VARIABLES

 DAY DAY
(DATE) (DATE)

FORMAT DAY

DESCRIPTION The DAY variable contains the current date as an
 8-byte string, and is set by using'the SETDAY
 directive. The date is returned in the following
 format:

 MM/DD/YY -where MM=month

 DD=day

 YY=year

EXAMPLES >PRINT DAY

 0100 LET X$=DAY
 0200 PRINT X$(1,2) - prints the month

 6-3

 SYSTEM VARIABLES

 DSZ DSZ
(AVAILABLE USER MEMORY) (AVAILABLE USER MEMORY)

FORMAT DSZ

DESCRIPTION The DSZ variable contains the number of unused bytes
 remaining in the user memory area.

EXAMPLE > PRINT DSZ

 6-4

 SYSTEM VARIABLES

 ERR ERR
(ERROR) (ERROR)

FORMAT ERR {(code 1, code 2,...,code n)}

 where

 code an error code

DESCRIPTION The ERR variable contains the value of the last error
 that occurred. This can be a number from 0 to 127-

 ERR can be used by itself, as demonstrated in Example
 1 below, to display the previous error number.

 ERR can also be used to branch to a specified
 statement number, based upon the error code of the
 previous error, as demonstrated in Example 2 below.

EXAMPLES 1. 0100 PRINT "ERROR CODE = ", ERR
 0999 EXIT ERR

 2. 0050 ON ERR(11,12,47) GOTO 100,200,300,400

 -branch to 100 if error is other than 11, 12
 or 47

 -branch to 200 if error=11

 -branch to 300 if error=12

 -branch to 400 if error=47

 The same operation can be written using a LET
 statement:

 0050 LET E=ERR (11,12,47)
 0060 ON E GOTO 100,200,300,400

 6-5

 SYSTEM VARIABLES

 HSA HSA
 (HIGHEST SECTOR AVAILABLE) (HIGHEST SECTOR AVAILABLE)

FORMAT HSA (discno) {,ERR=stno}

DESCRIPTION The HSA variable contains the highest sector number
 available on the specified disc.

EXAMPLE >PRINT HSA(O)

 6-6

 SYSTEM VARIABLES

 PSZ PSZ
(PROGRAM SIZE) (PROGRAM SIZE)

FORMAT PSZ

DESCRIPTION The PSZ variable contains the number of bytes used by
 the resident program, not including data. If PSZ is
 referenced in a CALLed program, the value is the size
 of the CALLing program.

 NOTE

 PSZ contains the user program area
 overhead. Therefore, PSZ always
 equals at least 19.

EXAMPLE >PRINT PSZ

 6-7

 SYSTEM VARIABLES

 SSN SSN
(SYSTEM SERIAL NUMBER) (SYSTEM SERIAL NUMBER)

FORMAT SSN

DESCRIPTION The SSN variable contains the system serial number,
 returned in a 9-byte string in Level 3, and a 19-byt
 string in Level 4.

EXAMPLE >PRINT SSN

 6-8

 SYSTEM VARIABLES

 SSZ SSZ
 (SECTOR SIZE) (SECTOR SIZE)

FORMAT SSZ (discno)

DESCRIPTION The SSZ variable contains the number of bytes in a
 sector on the specified disc.

EXAMPLE >PRINT SSZ(O)

 6-9

 SYSTEM VARIABLES

 SYS SYS
(OPERATING SYSTEM LEVEL) (OPERATING SYSTEM LEVEL)

FORMAT SYS

DESCRIPTION The SYS function contains the level of the operating
 system. SYS is available only on Level 4.2 systems
 and above. It provides an 11-byte string expression
 showing the operating system level.

EXAMPLE >PRINT SYS
 LEVEL 4.2A

 6-10

 SYSTEM VARIABLES

 TCB TCB
(TASK CONTROL BLOCK) (TASK CONTROL BLOCK)

FORMAT TCB (n)

 where:

 n = a numeric value ranging from 0-9

DESCRIPTION The TCB variable contains information that pertains to
 a particular task. Level 3 systems support 9 TCB
 variables. Level 4 adds a tenth TCB which contains
 information about the SELECTed state of a task (see
 SELECT in this section).

 Each TCB variable is one or two bytes in length, and
 some TCB's must be converted into decimal or
 hexadecimal format to be useful. The following list
 shows the contents of each TCB and the appropriate
 equation for conversion, if required. Note that all
 1-type values are divided by 256.

 Byte
 TCB(n) Description Length Conversion Equation

 0 disc number 1 D=INT(TCB(0)/256)

 1 sector number 2-|
 |- S=DEC(BIN(TCB(1),2)+
 | BIN(TCB(2)/256,1))
 2 sector number 1-|

 3 system status 2 S$=HTA(BIN(TCB(3),2))

 4 current statement
 number 2

 5 statement number
 of last error 2

 6 statement number
 SETESC references 2

 7 statement number
 SETERR references 2

 8 undefined

 9 SELECTed state
 (0-63, 255) 2 F=ASC(BIN(TCB(9),2))

 6-11

 SYSTEM VARIABLES

TCB (Cont'd) TCB (Cont'd)

EXAMPLES 0200 LET S=DEC(BIN(TCB(1),2)+BIN(TCB(2)/256,1))

 - provides the sector number

 1000 INPUT (0,ERR=8000)@(5,10)'CL',A

 8000 PRINT @(0,21),'CL',"YOU GOOFED. ERR = ",
 ERR,"AT LINE ",TCB(5);INPUT*;RETRY

 - displays the line number where
 the error occured

 6-12

 SYSTEM VARIABLES

 TIM TIM
(TIME OF DAY) (TIME OF DAY)

FORMAT TIM

DESCRIPTION The TIM variable contains the current system time in
 hours and fractional hours. It is continually updated
 by the system, and can be set by using the SETTIME
 instruction.

 TIM can be translated into hours, minutes, and
 seconds, as in the example below.

EXAMPLES 0100 LET T=TIM

 0200 LET H=INT(T)

 0300 LET S1=INT(FPT(T)*3600)

 0400 LET M=INT(S1/60)

 0500 LET S=S1-M*60

 - where H=hours, M=minutes, S=seconds

 >PRINT TIM

 6-13

 SYSTEM VARIABLES

TSK(n) TSK(n)
(TASK) (TASK)

FORMAT TSK (bank no.)

 where:

 bank no. = the number (0-15) of the memory bank
 to be checked for currently residing
 tasks

DESCRIPTION The TSK function returns a 6-byte string representing
 each of the tasks located in the designated bank.
 The string consists of 2 bytes each for starting
 location within the bank, length in bytes, and task
 name ("T1", "T2", etc.).

 When zero is specified as the bank number (i.e.,
 TSK(O)), the system returns a list of configured
 devices, except for discs. Each configured device is
 contained in a 6-byte substring, the format of which
 is as follows:

 Bytes 1,2 - device name in ASCII (e.g., "TO")

 Byte 3 - device status in ASCII:

 Code 0 = available (not in use)

 1 = ESCAPE was pressed on an
 available VDT

 2 = not available (currently
 in use)

 3 = defective port (ERR=5 on
 access) (Level 4)

 Bytes 4,5 - reserved for future use (currently
 assigned blanks - $A0A0$)

 (more)

 6-14

 SYSTEM VARIABLES

 TSK(n) (Cont'd) TSK(n) (Cont'd)

 Byte 6 device type in hexadecimal:

 00 - DataWord I terminal
 01 - serial printer (non
 pitch selectable)
 02 - DataWord I printer
 03 - slave printer (non
 selectable pitch)
 06 - 3270 channel A
 07 - 3270 channel B
 $0A$ - 27xx/37xx channel A,
 leased
 $0B$ - 27xx/37xx channel A,
 switched
 $0C$ - 27xx/37xx channel B,
 leased
 $0D$ - 27xx/37xx channel B,
 switched
 $0E$ - 27xx/37xx channels A or
 B Auto-Dial
 44 - 3100 parallel printer
 47 - matrix printer
 48 - drum printer _
 49 - 32xx parallel printer
 $4A$ - pitch selectable serial
 printer
 $4B$ - pitch selectable slave
 printer
 80 - VDT with attached
 printer
 81 - Auto-Dial terminal
 FF - VDT

 NOTE

 The values defined for the 6th byte are
 currently applicable only to terminals,
 ghost tasks, and printer devices. The
 4th and 5th bytes are reserved for
 future use.

 6-15

 SYSTEM VARIABLES

TSK(n) (Cont'd) TSK(n) (Cont'd)

EXAMPLES

TSK(O) >PRINT TSK(O)

 An over-simplified example of a program using the
 TSK(O) variable follows:

 0100 LET A$=TSK(0)
 0110 FOR 1=1 TO LEN (A$) STEP 6
 0120 LET B$=A$(I,6)
 0130 PRINT B$ (1,2)
 0140 IF B$(3,D ="0" THEN PRINT "AVAILABLE"
 0150 IF B$(3,D ="1" THEN PRINT "ESCAPE KEY
 PRESSED"
 0160 IF B$(3,D ="2" THEN PRINT "ACTIVE/IN USE"
 0170 NEXT I
 0180 END

 The above example does not use the device type byte
 (byte 6 of each substring), but can be used to
 indicate the actual device. For example:

 0165 IF B$(6,1)=$4B$ THEN PRINT "PITCH SELECTABLE
 SLAVE PRINTER"

 NOTE

 Byte 6 of some of the substrings not
 listed may return a byte which does not
 reflect the actual device type

TSK(1-9) If the System Control Task issues the following:

 Start 20,BNK=2,"T1"
 Start 30,BNK=2,"T2"

 and B$ = TSK (2) the result is as follows:

 B$ is 12 bytes long, the first task starting at
 location (HTA) of B$ is EC00, the task length is
 1400 (20 pages, 5120 bytes), and the file name is
 "T1" (D4B1).

 The second task's starting location (at B$(7)) is
 CE00, the task length is 1E00 (30 pages, 7680
 bytes) and the file name is "T2" (D4B2).

 6-16

SECTION 7 - INPUT/OUTPUT OPTIONS

 Input/Output options are used to augment the
 execution of an I/O directive. Specified within the
 parentheses, immediately following the file number,
 these optional parameters can cause branching within
 the program. They can also set up controls to
 override system defaults, specify a record to be
 accessed, specify a length for the range of a
 variable, and more.

 Multiple I/O options in a statement are separated by
 commas. Except for the ERR= option, the order of the
 options within the parentheses does not matter.

 If an ERR= option appears in a statement following,
 for example, a DOM= option, program control may
 transfer before the ERR= option is reached.

 7-1

 INPUT/OUTPUT OPTIONS

 BLK= BLK=
(USER BUFFER SIZE) (USER BUFFER SIZE)

FORMAT BLK=(n)

 where:

 n = 0 (no user-area buffer) or 1024 (character
 user-area buffer)

DESCRIPTION Available in Level 3 only, the BLK= option can be
 used with OPEN statements for Indexed, Serial and
 Direct files to speed up sequential accesses by
 reducing the number of physical I/O operations to one
 per buffer, rather than one per record.

 BLK= assigns user memory for the buffer used by the
 specified file. A buffer can be shared between a
 CALLing and CALLed program, and the file can be
 accessed by either program. However, WRITE access is
 prohibited, unless the file is LOCKed.

EXAMPLE 0450 OPEN (1,ERR=0800,BLK=1024) "FILENM"

 7-2

 INPUT/OUTPUT OPTIONS

 DOM= DOM=
(DUPLICATE OR MISSING KEY) (DUPLICATE OR MISSING KEY)

FORMAT DOM= stno

DESCRIPTION The DOM= option transfers control to the specified
 statement if the key specified in an INPUT or REMOVE
 operation is not found in the file, or if the key
 specified in a WRITE operation is already in the file.
 If a DOM= option is not used, an ERROR 11, MISSING OR
 DUPLICATE KEY, is generated when the specified key is
 not found.

 NOTE

 Use of D0M= is recommendedi,n statements
 performing READs and WRITES. When DOM=
 appears in the syntax before ERR=,
 special branching occurs in cases of
 missing or duplicate keys.

 Exception: when DOM= is used in a WRITE which
 is updating a record, DOM= is ignored, the
 record is not updated, and the ERR= branch is
 taken.

EXAMPLES 0100 READ (2,KEY=A$)R$ If the KEY is not in
 the file, an
 ERROR 11 occurs

 0100 READ (2,KEY=A$,D0M=500)R$ If the KEY is not in
 file, the D0M=
 branch is taken, and
 ERR=11 is set

 0100 WRITE (2,KEY=A$)R$ If the KEY is in the
 file, old data is
 WRITEn over

 0100 WRITE (2,KEY=A$,D0M=500)R$ -If the KEY is in the
 file, the D0M=
 branch is taken, and
 ERR=11 is set. Old
 data is not WRITEn
 over

 0100 WRITE (2,KEY=A$,D0M=500,ERR=400)R$

 - If the KEY is not in
 the file, but
 another error
 occurs, branch to
 statement 400
 7-3

 INPUT/OUTPUT OPTIONS

 END= END=
(BRANCH AT END OF FILE) (BRANCH AT END OF FILE)

FORMAT END= stno

DESCRIPTION The END= option transfers program control to the
 specified statement number when the end of the file is
 reached. If an END= option is not used, an ERROR 2,
 END OF FILE, is generated.

EXAMPLES 0200 READ (1,END=0500)A$

 0200 LET K$=KEY(1,END=9000)

 7-4

 INPUT/OUTPUT OPTIONS

 ERR= ERR=
(ERROR EXIT) (ERROR EXIT)

FORMAT ERR= stno

DESCRIPTION The ERR= option transfers program control to the
 specified statement number if an error occurs while
 executing the statement. For the statement containing
 it, the ERR= option overrides a SETERR statement.
 Specific error control clauses, such as END= and DOM=,
 override an ERR= option. Errors greater than 99 are
 not trapped by an ERR= option; rather, they cause an
 immediate exit to Console Mode, due to the nature of
 these errors (exceptions: ERRORS 126, CTRL+Y KEY USED,
 and 127, ESCAPE, are trapped by ERR=).

 NOTE

 Use of DOM= is recommended in statements
 performing READs and WRITEs. When DOM=
 appears in the syntax before ERR=,
 special branching occurs in cases of
 missing or duplicate keys.

EXAMPLE 0200 READ (1,ERR=0500)A$

 7-5

 INPUT/OUTPUT OPTIONS

 IND= IND=
(RECORD INDEX) (RECORD INDEX)

FORMAT IND= expr

 where:

 expr = a numeric expression that specifies
 the position of the record in a file,
 relative to zero

DESCRIPTION The IND= option specifies the index (record number) of
 the record to be accessed by the input/output
 statement. The first record in a file has an index
 of 0.

 IND= can be used with Indexed, Direct, Sort or Serial
 files. Use of IND= when READing Direct or Sort files
 speeds record access by using the relative (to 0)
 record number. However, files are not sorted when
 this method is used.

EXAMPLE 0200 READ(1,IND=10)

 7-6

 INPUT/OUTPUT OPTIONS

 ISZ= ISZ=
(ACCESS FILE AS IF INDEXED) (ACCESS FILE AS IF INDEXED)

FORMAT ISZ=recsz

 where:

 recsz = the redefined record size for a file

DESCRIPTION The ISZ option allows any file to be accessed as if
 it were an Indexed file with the record size
 specified.

 ISZ= is used in conjunction with READ RECORD and
 WRITE RECORD to handle multiple records or partial
 records (e.g., the SIT and KEY areas for Sort, Direct
 or Program files). The FID of a file opened with the
 ISZ= option reflects the new record size and number
 of records, but the disc directory is not affected.

 The last record in a file OPENed with ISZ is short
 (less than the ISZ size) if ISZ is not evenly
 divisible into the file size, but an ERROR 2, END OF
 FILE, is not generated until there is no data to be
 read in the file. An ERROR 1, END OF RECORD, is
 generated when the last record is written if the
 record to be written is larger than the last record
 size available.

 A file OPENed with ISZ is implicitly LOCKed from use
 by other tasks.

EXAMPLES >OPEN (1,ISZ=2048)"BOOK"

 >READ RECORD(1)A$

 >PRINT HTA(A$)

 7-7

 INPUT/OUTPUT OPTIONS

KEY= KEY=

FORMAT KEY= string expr

DESCRIPTION This option specifies the key of the record to be
 accessed by the input/output statement containing the
 KEY= option.

EXAMPLES 0500 READ(1,KEY=A$)X$

 0500 WRITE(1,KEY=STR(A:"00000"))A,B$

 7-8

 INPUT/OUTPUT OPTIONS

 LEN= LEN=
 (LENGTH OF VARIABLE) (LENGTH OF VARIABLE)

FORMAT LEN= min,max

 where:
 the minimum length allowable for the
 min variable

 the maximum length allowable for the
 max variable

DESCRIPTION The LEN= option specifies the inclusive range for the
 length of a variable. Min must be less than or equal
 to Max.

 If the length of the variable is beyond the specified
 range, an ERROR 48, INVALID INPUT, results.

EXAMPLE 0100 INPUT (0,ERR=0300)A$:(LEN=2,3)

 0300 IF ERR=48 THEN GOTO 8000 ELSE GOTO 7000

 7-9

 INPUT/OUTPUT OPTIONS

 RTY= RTY=
(NUMBER OF RETRIES) (NUMBER OF RETRIES)

FORMAT RTY= x

 where

 an integer between 0 and 255

DESCRIPTION Used in input/output directives, the RTY= option
 specifies the number of retries the system is to
 perform if the attempt to execute the directive is
 unsuccessful.

 If RTY= is not specified, the system performs
 approximately 19 retries.

EXAMPLE 0150 READ (1,ERR=0200,RTY=35)"A$"

 7-10

 INPUT/OUTPUT OPTIONS

 SEQ= SEQ=
(SEQUENTIAL FILE NUMBER) (SEQUENTAL FILE NUMBER)

FORMAT SEQ= fileno

DESCRIPTION The SEQ= option specifies the file number on the track
 being accessed. This option is only used for magnetic
 tape cartridge and reel-to-reel units.

EXAMPLE 0650 LET N=N+2

 0700 OPEN (1,SEQ=N)"C1"

 7-11

 INPUT/OUTPUT OPTIONS

 SIZ= SIZ=
(INPUT SIZE) (INPUT SIZE)

FORMAT SIZ= numeric expr

DESCRIPTION This option specifies the maximum number of characters
 that can be input by the input statement containing
 the SIZ= option. If the maximum number of characters
 is entered, input is ended, even if no Carriage
 Return or Control Bar key is pressed. The CTL
 variable is set to five (5) if input is terminated due
 to a SIZ= option.

EXAMPLE 0700 INPUT (0,SIZ=1)A$

 7-12

 INPUT/OUTPUT OPTIONS

 TBL= TBL=
(TRANSLATION TABLE) (TRANSLATION TABLE)

FORMAT TBL= stno

DESCRIPTION This option specifies the number of the TABLE
 statement to be used to translate data. The statement
 number specified must contain a TABLE statement (see
 the TABLE directive in this section).

EXAMPLES 0100 READ(1,TBL=2000)A$

 0100 WRITE(2,TBL=5000)A$,B

 7-13

 INPUT/OUTPUT OPTIONS

 TIM= TIMr
(SET TIMEOUT) (SET TIMEOUT)

FORMAT TIM= numeric expr

DESCRIPTION This option specifies the number of seconds allowed
 for completion of input. After that interval has
 passed, an ERROR 0 is generated. There is no default
 timeout for keyboard input. The maximum TIM= value is
 255 seconds. "TIM=0" returns almost immediately.

EXAMPLE 0100 INPUT (0,ERR=0500,TIM=60)"NAME",A$

 - allows 60 seconds for input;
 otherwise, control passes to
 statement 500

 7-14

 INPUT/OUTPUT OPTIONS

 TRK= TRK=
(TRACK NUMBER) (TRACK NUMBER)

FORMAT TRK= trackno

DESCRIPTION On a magnetic tape cartridge, the TRK= option
 specifies which track is to be used for data
 transfer. This option is only used with magnetic
 tape cartridges, and is ignored by magnetic tape
 reel-to-reel units.

EXAMPLE 0700 OPEN (1,TRK=3)"C2"

 7-15

 INPUT/OUTPUT OPTIONS

 VOL= V0L=
(VOLUME NUMBER) (VOLUME NUMBER)

FORMAT VOL= volume number

DESCRIPTION The VOL= option was used in early Level 3 systems to
 specify which volume of magnetic tape was to be used
 It has since been replaced with the TRK= option.
 Attempts to use VOL= on later systems result in an
 ERROR 20, STATEMENT SYNTAX.

EXAMPLE 0200 OPEN (1,V0L=2)"CO"

 7-16

SECTION 8 - SYSTEM OPTIONS

OVERVIEW System options are used to augment the execution of a
 directive, and are specified outside the parentheses
 (input/output options appear within parentheses).
 The 2 available system options are BNK= and IOL=.

 Multiple system options in a statement are separated
 by commas, and the order in which they appear within
 the parentheses does not matter.

 8-1

 SYSTEM OPTIONS

 BNK= BNK=
(BANK NUMBER) (BANK NUMBER)

FORMAT BNK= (n)

 where

 the number of the bank in which pages
 assigned to the task are to be located

DESCRIPTION The BNK= option is used to assign a particular bank
 in which the pages assigned to the task are to be
 located. Using BNK= with a START statement, a
 programmer can control the amount of pages assigned
 to each bank of memory.

EXAMPLE 0200 START 45,BNK=3>"G2"

 5-2

 SYSTEM OPTIONS

 IOL= IOL=
(IOLIST STATEMENT) (IOLIST STATEMENT)

FORMAT IOL= stno

DESCRIPTION The IOL= option specifies the statement number of the
 IOLIST to be used. The IOLIST contains a list of
 variables and/or constants.

EXAMPLES 0100 IOLIST A$,B,C,IOL=0200

 0200 IOLIST D,E

 0300 READ (1,KEY=A$)IOL=0100

 0400 PRINT (7)IOL=0100

 8-3

SECTION 9 - MNEMONICS

 Mnemonics are used to prepare devices for the
 reception or transmittal of data. In some cases,
 mnemonics return the devices to an idle state upon
 completion of the data transfer, and flag special
 action which is device dependent. Some mnemonics
 merely set flags which are tested during subsequent
 operations.

 Mnemonic constants are subject to TBL= conversion,
 and are passed as data to the software driver for the
 device.

 Each mnemonic consists of two alphabetic characters
 enclosed by primes (single quotation marks) and is
 inserted in a statement at the point where the stated
 operation is desired. The format and use of the
 mnemonics is illustrated by the following example:

 0100 PRINT @(35,5), A$, 'LF', B$

 In this example the 'LF' mnemonic is used to perform
 a line feed on the user terminal after printing the
 value of A$ at character position 35 on line 5. If
 the mnemonic is inserted in the statement immediately
 following the PRINT directive, the line feed occurs
 prior to printing the value of A$.

 The mnemonic constants available for each type of I/O
 device appear on the following pages. Unless the
 mnemonic is listed as applicable for a device, an
 ERROR 29, UNDEFINED MNEMONIC, is generated upon
 statement execution (ERROR 29's can be turned off for
 VDT's in Level 4).

 After the list is a special section on Mnemonic
 Hexadecimal sequence.

 9-1

 MNEMONIC APPLICABLE APPLICABLE RESULTANT
 MNEMONIC NAME LEVEL DEVICES ACTION

 @(x) Horizontal 3,4 VDT, Display next data at
 Position Printer absolute horizontal
 position defined by
 x

 @(x,y) Horizontal 3,4 VDT Display next data at
 and Vertical position x of verti-
 Position cal line y

 'BE' Begin Echo VDT Begins the dis-
 play of input
 data

 'BG' Begin Generat- 4 VDT Begins the gen-
 ing ERROR 29 eration of ERROR 29
 after execution of
 'EG' which ended
 the generation

 'BI' Begin Input 4 VDT Passes input
 Transparency data through the
 driver with no
 interference.
 Prevents the
 interception
 (therefore, use-
 fullness) of 'ESC'
 'CAN', and 'CTL' X,
 Y, S, and Q

 'BO' Begin Output 4 VDT Causes all data
 Transparency control characters
 and mnemonic
 sequences (except
 'EO') to be sent to
 the device, without
 interference or
 translation by the
 driver

 'BS' Backspace 3,4 VDT Moves the cursor
 back one space,
 erasing the previous
 character

 'BT' Begin Input 4 VDT Begins input
 Buffering buffering if the
 (Type-Ahead) system is so
 configured

 'CE' Clear Screen 4 VDT Clears the screen
 to End of Page from the cursor to
 the end of the
 screen

 9-2

 MNEMONIC APPLICABLE APPLICABLE RESULTANT
 MNEMONIC NAME LEVEL DEVICES ACTION

 'CF' Clear Fore- 3,4 VDT Replaces all
 ground Foreground
 characters with
 spaces

 'CH' Cursor Home 3,4 VDT Positions cursor
 at home (0,0) and
 sets Foreground mode

 'CI' Clear Input 3,4 VDT Clears all data in
 the input buffer

 'CL' Clear Line 3,4 VDT Replaces all
 characters between
 the cursor and the
 end of the line with
 blanks

 Cursor drops one
 'CR' Carriage 3,4 VDT, line, moves to
 Return Printer horizontal posi-
 tion 0. Varies per
 type of printer

 'CS' Clear Screen 3,4 VDT Clears all char-
 acters from the
 video screen, posi-
 tions the cursor at
 home and sets the
 mode to Foreground

 'DC' Delete 4 VDT Deletes the char-
 Character acter at the cursor
 and shifts char-
 acters to the right
 of the cursor one
 position to the
 left. Writes a
 space in the last
 position of the line
 or field. Starts
 Foreground if
 Background is in
 effect

 'EE' End Echo 4 VDT Ends the display of
 input data

 9-3

 MNEMONIC APPLICABLE APPLICABLE RESULTANT
 MNEMONIC NAME LEVEL DEVICES ACTION

 'EG' End Generation 4 VDT Prevents ERROR 29's
 of ERROR 29 in Level 4.

 'EI' End Input 4 VDT Restores inter-
 Transparancy ception of 'ESC',
 'CAN' and 'CTL' X,
 Y, S, and Q

 'EL' End Load 3,4 Some Ends the loading of
 Printers the VFU (vertical
 format unit)

 'EO' End Output 4 VDT Cancels 'BO',
 Transparency causing data,
 control characters
 and mnenomic
 sequences to pass
 through and be
 translated by the
 driver on the way to
 the device

 'EP' Expanded Print 3,4 Some Causes all char-
 Printers acters in the cur-
 rent line to be
 printed in expanded
 print. Printing of
 null line results in
 the next line being
 expanded

 'ES' ESCAPE 3,4 VDT Sends an ESC char-
 acter to the device,
 which treats it as a
 lead-in code. The
 next character
 defines an action
 code for the VDT

 9-4

 MNEMONIC APPLICABLE APPLICABLE RESULTANT
 MNEMONIC NAME LEVEL DEVICES ACTION

 'ET' End Input 4 Software Cancels 'BT', ending
 Buffering input buffering
 (Type-Ahead)

 'FF' Form Feed 3,4 Printers Causes printers to
 vertically space to
 the top of the next
 page

 'IC' Insert 4 VDT Moves all characters
 Character at and to the right
 of the cursor one
 space right. The
 next character
 output or input
 occurs in the space
 at the cursor
 position. Resets
 Foreground mode

 'LD Line Delete 3,4 VDT Removes the line
 where the cursor is
 positioned, rolls
 all lines below it
 up one line, inserts
 a blank line at the
 bottom of the screen
 and sets the mode to
 Foreground

 'LF' Line Feed 3,4 VDT, Outputs a line feed/
 Printer carriage return

 'LI' Line Insert 3,4 VDT Inserts a blank line
 at the position of
 the cursor, rolls
 all lines below it
 down, deletes the
 bottom line on the
 screen and sets
 Foreground mode

 9-5

 MNEMONIC APPLICABLE APPLICABLE RESULTANT
 MNEMONIC NAME LEVEL DEVICES ACTION

 'PE' End Protect 4 VDT Cancels 'PS', ending
 the protection mode

 'PG' Page Mode 3,4 7270 VDT Sends to the local
 (Printer Port with serial printer, all
 Only) Printer VDT screen data from
 the home position
 (0,0) to the cursor
 (when the system is
 so configured)

 'PM' Plot Mode 3,4 Some Used with each line
 Printers of Plot Data. In
 this mode, a 'LF'
 causes the paper to
 advance only a
 single dot row,
 instead of a normal
 character line space

 'PS' Start Protect 4 VDT Begins display
 Mode protection.
 Prevents the cursor
 from entering a
 previously protected
 position, and also
 prevents screen
 scrolling

 'RB' Ring Bell 3,4 VDT, Causes beep on VDTs;
 Printer rings bell on some
 printers

 'RC' Read Cursor VDT Provides current
 cursor position
 coordinates. Should
 be used with or
 followed by an INPUT
 directive. Echo is
 suppressed for the
 remainder of the
 INPUT directive and
 is restored
 afterward

 9-6

 MNEMONIC APPLICABLE APPLICABLE RESULTANT
 MNEMONIC NAME LEVEL DEVICES ACTION

 'S2' Slew 2 3,4 Some Slew to Channel 2
 Printers

 'S3' Slew 3 3,4 Some Slew to Channel 3
 Printers

 'S4' Slew 4 3,4 Some Slew to Channel 4
 Printers

 'S5' Slew 5 3,4 Some Slew to Channel 5
 Printers

 'S7' Slew 7 3,4 Some Slew to Channel 7
 Printers

 'S8' Slew 8 3,4 Some Slew to Channel 8
 Printers

 'SB' Start Back- 3,4 VDT Begins Background
 ground mode. Marks
 Background
 characters as
 protectable, though
 does not begin
 protection

 'SF' Start Fore- 3,4 VDT Begins Foreground
 ground mode.

 'SL' Start Load 3,4 Some Directs the loading
 Printers of the electronic
 VFU (vertical print
 unit

 'TR' Transmit 3,4 VDT Sends data from the
 Screen display screen to
 the input variable.
 Unsupported on
 Level 3

 'VT' Vertical Tab 3,4 VDT, Provides ability
 Printers to execute routines
 on the VDT that are
 designed for
 printers

 9-7

MNEMONIC HEXADECIMAL Level 3 uses a BASIC/driver protocol that allows
SEQUENCE a special X 'FE' lead-in for mnemonics; Hexadecimal
 codes can be input instead of the two-letter mnemonic
 name. Using this method, some Level 3 systems can
 utilize mnemonics normally available to Level 4 only.
 Use of mnemonics on Level 3, however, is not
 supported by Basic Four, and can yield unpredictable
 results. They are listed here (Table 4-1) for
 informational purposes only, and their use is not
 recommended.

 Level 4 uses a different terminal driver and does not
 recognize the X 'FE' conversions.

 Table 4-1. Level 3 Mnemonic Conversion

 | |
 | Lead-in (Hex) Convert To |
 | |
 | $FE90$ 'TR' |
 | $FE91$ @ (X,Y) |
 | $FE92$ 'CH' |
 | $FE93$ 'LD' |
 | $FE94$ 'CL' |
 | $FE95$ 'PS' |
 | $FE96$ 'PE' |
 | $FE97$ 'IC' !
 | $FE98$ 'DC' |
 | $FE99$ 'SB' |
 | $FE9A$ 'LI' |
 | $FE9B$ 'RC' |
 | $FE9C$ 'CS' |
 | $FE9D$ 'CF' |
 | $FE9F$ 'SF' |
 | |
 | |

 9-8

SECTION 10 - DISC ORGANIZATION

OVERVIEW The disc is a permanent storage device for programs
 and data files. This section describes the
 organization of discs used by the Basic Four
 operating system.

DISC FORMAT The disc is divided into segments called "sectors",
 which are numbered from 0 through the highest user-
 addressable sector (HSA). A maximum of 1024 bytes of
 information can be stored in each sector.

 Each Disc is catagorized as either a "system dis" or
 a "user disc". The allocation of space on each type
 of disc is as follows:

 SYSTEM DISC USER DISK

 SECTORS CONTENTS SECTORS CONTENTS

 0 Bootstrap 0 Bootstrap

 1 Header 1 Header

 2-6 Loader 2-n Directory

 7-n Directory n+1-HSA Files

 n+1-HSA Files

 where n = sector number

 The operating system can be loaded from a system disc
 only.

 10-1

 DISC COMPONENTS Each disc is comprised of the following components:

 BOOTSTRAP The bootstrap, stored on sector 0 of all discs, is
 used to load the operating system into memory. The
 bootstrap cannot be accessed by the user.

 HEADER The disc header defines certain characteristics of
 the disc. Created by a utility program when the disc
 is initialized, the header is stored in sector 1.
 The header contains the following information:

 BYTES CONTENTS

 1-3 Starting sector of directory

 4-9 Disc name

 10 $0A$

 11 18

 12-14 Maximum number of directory entries

 15-16 0000

 17-19 Ending sector+1 of directory

 20 01

 21-24 Reserved for system use

 The remainder of sector 1 is reserved for use by
 utility programs.

 LOADER The loader, stored on sectors 2-6 of the system disc,
 is used to load the operating system into memory.

 10-2

 The directory is a special form of a Sort file which
 contains a key for each file stored on the disc.
 While the size of the directory may vary, its maximum
 capacity is 32,767 entries.

 Each directory entry (key) contains the following
 information:

 BYTES CONTENTS

 1-3 Starting sector of file

 4-9 File name

 10 File type (low order four bits)

 0 - Indexed
 1 - Serial
 2 - Direct/Sort
 4 - Program
 8 - Unlinked (Level 4)

 11 Key size (00 for Indexed, Program,
 Serial files)

 12-14 Number of records defined in file or
 actual program size

 15-16 Record size or actual program size

 17-19 Ending sector+1 of file

 20 Reserved

 21-22 Pointer to next logical key, sorted on
 starting sector

 23-24 Duplicate Scatter Index Table pointer

 NOTE

 More detailed information about direc-
 tory operations can be found in "FILE
 STRUCTURES AND ACCESS", Section 11.

 All nonreserved sectors on the disc can be used to
 store programs and data files.

 10-3

SECTION 11 - FILE STRUCTURES AND ACCESS

OVERVIEW Business BASIC provides the user with several
 alternative methods of organizing data in a file.
 Knowledge of the different file structures and access
 methods aid the user in determining the optimum file
 type for each application.

 This section contains descriptions of the following
 types of files:

 o Indexed

 0 Serial

 o Program

 o Direct

 0 Sort

 o Unlinked File (Level 4)

 In addition to the above file types, this section
 contains information about the disc directory.

 NOTE

 This manual is a reference manual
 rather than a training manual.
 Explanations in this section are
 intended for reference purposes only.

 11-1

 INDEXED FILE

 OVERVIEW An Indexed file is a collection of fixed length
 records stored in contiguous sectors on a disc.

 RECORD STRUCTURE Each physical record in an Indexed file has a fixed
 length specified by the FILE directive. As with all
 file types, fields within each record are delineated
 by special characters called "field separators",
 which are automatically inserted by the operating
 system when the record is written. Logical records,
 therefore, may vary in length. The unused portion of
 the physical record is filled with null characters.

 The structure of a record in an Indexed file defined
 with a record size of 16 bytes, for example, is as
 follows:

 WRITE (1)"A","RECORD"

 ACCESS Records in an Indexed file can be accessed either
 randomly by record number, or sequentially, through
 use of the IND= option. The first record in the file
 has an index of 0.

 PROGRAMMING NOTES An Indexed file is not cleared when it is defined;
 the FILE directive inserts the name in the directory,
 but does not alter the data area of the file itself.

 11-2

 SERIAL FILE

 OVERVIEW A Serial file is a group of variable length records
 preceded by a header which describes the current
 contents of the file. The Serial file, which
 minimizes the use of space, is used for truly
 sequential operations, such as spooling.

 HEADER STRUCTURE The Serial file header contains the following
 information:

 BYTES CONTENTS

 1-3 Next available file index

 4-7 Number of bytes on file, including the
 header

 8-9 0000

 10 "S"

 11 01

 RECORD STRUCTURE The header is followed by a series of variable length
 records. The actual record data is preceded by a one
 or three byte length descriptor, which contains the
 total number of bytes in the record. If the total
 length of the record (length descriptor + data) is
 less than 255 bytes, the size of the descriptor is
 one byte; otherwise, a three byte descriptor is used
 (the first byte is null).

 The structure of two records in a Serial file is
 illustrated as follows:

 TERMINATOR Following the final data record in the file is a
 terminator record of three nulls (00).

 ACCESS Records in a Serial file must be READ or WRITEn
 sequentially. The IND= option can be used only to
 position a previously WRITEn file in a forward
 direction.

 11-3

 SERIAL FILE (Cont'd)

 PROGRAMMING NOTES A Serial file must be locked before it is WRITEn. A
 maximum of 32,764 bytes of data can be stored in each
 record.

 The Serial directive initializes the file header
 which, in effect, causes the data area to be cleared.

 A Serial file to be used for spooling should be
 created with the PRINT statement to prevent a field
 separator ($8A$) from insertion between fields. Each
 PRINT statement causes one record to be WRITEn, with
 a field separator (line feed) at the end of the
 record. A comma at the end of the PRINT statement
 supresses the line feed.

 NOTE

 A File header is not WRITEn on the disc
 until the file is CLOSEd. Failure to
 CLOSE a Serial file after WRITEing it
 results in a loss of data.

 11-4

 PROGRAM FILE

OVERVIEW A program consists of four logical sections:

 o Header Structure

 o DEF Table Structure

 o BASIC Statement

 o Terminator

HEADER STRUCTURE The 11 byte header contains the following
 information:

 BYTES CONTENTS

 1-3 Program length (byte 1 through hash)

 4-9 Program name

 10-11 Reserved for system use

DEF TABLE STRUCTURE The DEFined function table begins in byte 12. The
 length of the table, also stored in byte 12, is
 computed by multiplying the number of DEF statements
 in the program by 3 and adding 1. If the program has
 no DEF statements, byte 12 contains 01.

 Each entry in the DEF table contains 3 bytes. The
 first byte contains the function letter designator,
 where FNA is represented by 01, FNB by 02, and
 FNZ by $1A$. The second and third bytes of each
 entry contain the binary representation of the
 corresponding DEF statement number.

BASIC STATEMENTS The program itself begins after the function table;
 i.e., at DEC (byte 12) + 12 (?JKELLER). Each
 statement contains three fields: statement length,
 statement number, and statement body.

 The length field of each statement contains the total
 length of all three statement fields. If the total
 length is less than 255 bytes, the length field is
 one byte; otherwise, the length field is 3 bytes long
 (the first byte is null values, and the next 2 bytes
 are the length in binary).

 11-5

Armin Diehl, 06/12/11
no OCR error, this is what is in the original manual

 TERMINATOR The 7 byte terminator follows the final BASIC
 statement in the program. The first 5 bytes of the
 terminator are 0427104303. The last 2 bytes of the
 terminator contain the program checksum. The
 checksum is computed by taking the HSH of the program
 from bytes 10 through 5 of the terminator (i.e., the
 checksum excludes the program length, program name,
 and the checksum itself).

 PROGRAMMING NOTES The PROGRAM and SAVE directives do not initialize the
 program area on the disc.

 11-6

 DIRECT FILE

OVERVIEW A Direct file consists of a Scatter Index Table
 (SIT), key area, and data records. The general
 format of the file is illustrated in the following
 diagram (not drawn to scale):

 __
 | | |
 | HEADER | |
 | | |
 | |
 | SIT |
 | |
 | |
 | |
 | |
 | |
 | KEY AREA |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | DATA RECORDS |
 | |
 | |
 | |

 Associated with each record in a Direct file is a
 string of characters called a "key". The key
 provides a convenient method for randomly accessing
 records.

 Keys are linked together in ascending sorted order,
 which provides the capability to access data
 sequentially.

SIT STRUCTURE The SIT (Scatter Index Table) is a collection of 2 or
 3 byte values which point to keys in the key area.
 The size of the pointers is based on the defined size
 of the file; 3 byte pointers are used if the file is
 defined with more than 32,767 records.

 The first 5 pointers in the SIT comprise the file
 header, which is used in conjuction with the disc
 directory entry to fully describe the characteristics
 of the file.

 11-7

 DIRECT FILE (Cont'd)

 HEADER STRUCTURE The header contains the following information

 BYTES CONTENTS

 1 Index of the last key removed (00's
 if none)

 2 Index of the next available key slot
 (FF if none)

 3 Index of the lowest logical key in the
 file

 4 Number of active keys in the file

 5 Reserved

 The index is the physical position, relative to one,
 of the key slot in the key area. The first key slot
 has an index of one (IND=0); the second, an index
 of 2 (IND=1); etc.

 KEY AREA STRUCTURE The key area is divided into segments called "slots".
 The size of each slot is computed by doubling the
 pointer size (2 bytes if less than 32,767 records, 3
 bytes if more) and adding the defined key size. A
 key slot cannot cross a sector boundary.

 Each active key in the file has 2 pointers appended
 to it:

 The forward pointer is the index of the next
 logically higher key in the file. The duplicate SIT
 pointer is the index of the next key with a duplicate
 scatter index value (SIV).

 When an active key is removed from the file, the key
 and its first pointer are filled with FF's. The
 second pointer is the index of the next key on the
 removed chain.

 When the file is defined the SIT area and key area
 are initialized to nulls (00). Therefore, Key
 slots which have never been used contain nulls
 (00's).

 11-8

 DIRECT FILE (Cont'd)

 RECORD STRUCTURE The data records in a Direct file have the same
 format as those in an Indexed file. The relative
 position of the data record corresponds to the
 relative position of its key in the key area.

 ACCESS Records can be accessed either randomly by key, or
 sequentially in ascending key sort order.
 Descriptions of random and sequential access follow a
 brief description of hashing.

 The methods used by the operating system to locate or
 remove an existing key, or insert a new key are
 transparent to the user. The information in this
 subsection is for general information only.

 HASHING A hashing algorithm is used to locate an entry in the
 SIT which corresponds to the key specified on the key
 option. The following BASIC program duplicates the
 hashing algorithm used by the operating system:

 0010 REM "K$: KEY SPECIFIED IN KEY OPTION"
 0020 REM "N: NO. OF SECTORS IN SIT"
 0030 REM "R: NO. OF RECORDS DEFINED IN FILE"
 0040 REM "S: RELATIVE SIT SECTOR CONTAINING POINTER"
 0050 REM "P: OFFSET WITH SIT SECTOR CONTAINING
 POINTER"
 0060 LET C$=CRC(K$),H$=HSH(K$,C$)
 0070 LET S=M0D(DEC(00+H$),N),C=DEC($00$+C$)
 0080 IF R>32767 THEN GOTO 0110
 0090 IF S=0 THEN LET P=2*M0D(C,507)+11 ELSE
 LET P=2*M0D(C,511)+1
 0100 STOP
 0110 IF S=0 THEN LET P=3*M0D(C,335)+16 ELSE
 LET P=3*M0D(C,341)+1
 0120 STOP

 Hashing is performed only when the input/output
 directive includes the KEY= option, i.e., when
 records are accessed randomly.

 11-9

 DIRECT FILE (Cont'd)

 RANDOM ACCESS The key specified by the KEY= option is first padded
 to the defined key size with nulls. The hashing
 algorithm described in the preceding subsection is
 applied to the key, and the calculated slot in the
 SIT is examined.

 Key Not Found If the calculated SIT slot contains nulls, the
 specified key is not in the file. The action then
 taken by the operating system depends on the I/O
 directive used.

 READ/EXTRACT - The system searches for the next
 higher logical key in the file,
 updates the next key pointer to the
 index of that key, and sets an error
 condition to notify the user that the
 specified key was not found.

 FIND/REMOVE - The system immediately sets the error
 condition to notify the user that the
 specified key was not found.

 WRITE - The system first determines the
 logical location of the new key in the
 sorted chain by searching for the key
 closest in value to, but less than,
 the key specified in the KEY= option.

 The physical location of the new key
 depends on the contents of the file
 header contained in the first sector
 of the SIT. If possible, the new key
 is placed in the slot occupied by the
 last removed key, the index of which
 is in the first field of the header.

 If no removed slots are available, the
 system places the key in the slot
 pointed to by the second field in the
 header. If n£ slots are available, an
 error is issued.

 11-10

 DIRECT FILE (Cont'd)

 After the logical and physical
 locations of the new key are
 determined, the operating system
 updates the file. This requires
 several disc accesses.

 The new key is inserted in the key
 area, and the appropriate forward
 pointers changed to insert it in the
 sorted chain. The index (relative
 physical position) of the new key is
 inserted in the SIT.

 Finally, the SIT file header is
 updated to reflect the addition of the
 new key. The data record is not
 written until the key has been
 successfully inserted into the file.

Key Found If the calculated SIT slot does not contain nulls,
 the key pointed to by the index in the SIT is
 examined. If the specified key does not match the
 key in the key area, the duplicate SIT pointer (the
 second pointer appended to the key) is examined.

 If the duplicate SIT pointer contains nulls, the key
 is not in the.file. Otherwise, the key pointed to by
 the dulicate SIT pointer is compared to the specified
 key. This process is repeated until the end of the
 duplicate SIT chain is reached (key not found) or the
 specified key is found.

 If the key is found, the operating system takes
 action based on the I/O directive used.

 READ/FIND - The system updates the next key
 pointer to the index of the next
 higher logical key in the file (the
 value of the forward pointer appended
 to the specified key). The data
 record is then read.

 EXTRACT - The data record is read; the next key
 pointer is not updated.

 WRITE - If the WRITE statement includes the
 DOM= option, an error condition is set
 to notify the user that the specified
 key is already in the file. If the
 DOM= option is not used, the system
 overwrites the existing data record.

 11-11

 DIRECT FILE (Cont'd)

 REMOVE - The system first searches for the key
 closest in value to, but less than the
 specified key. The forward pointer in
 this key is then replaced with the
 pointer appended to the specified key,
 so that the specified key is
 eliminated from the sorted chain. In
 addition:

 o The slot occupied by the specified
 key is filled with FF's.

 o The index of the next removed key
 is placed in the second pointer
 area of the key slot, so that all
 removed entries are chained
 together.

 o The SIT slot, or appropriate
 duplicate SIT pointer, is filled
 with nulls.

 o The file header is updated to
 reflect the deletion of the key.

 After the key is successfully removed,
 the associated data record is filled
 with nulls.

 SEQUENTIAL ACCESS The READ directive always causes the next key pointer
 to be advanced, regardless of whether a key is
 specified. This feature allows records to be
 accessed in sorted order.

 The system reads the key pointed to by the current
 file index, replaces the current file index with the
 forward pointer in that key, and reads the record
 associated with the key. The SIT is not accessed.

 11-12

 DIRECT FILE (Cont'd)

PROGRAMMING NOTES Execution of the DIRECT statement causes the key area
 and SIT to be intitialized; the data area is not
 altered. Therefore, if a Direct file is accidentally
 erased, it cannot be redefined using a DIRECT
 statement.

 NOTE

 It is strongly recommended that the
 key be included as part of the data
 record so that the Direct file can,
 if accidentally erased, be recreated
 by READing it as an Indexed file and
 WRITEing a new Direct file.

 On Level 4, the key area of large Direct files is
 initialized as a large removed chain. This
 organization results in improved performance for
 files whose keys have been written in acsending
 collating sequence.

EXAMPLES

READ Sequential 0010 OPEN (1)"FILE"
 0020 READ (1,END=0040)A$
 0030 GOTO 0020
 0040 PRINT "END OF FILE"
 0050 END

Examine Keys 0010 OPEN (1)"FILE
 0020 LET K$=KEY(1,END=0050)
 0030 READ (1)
 0040 GOTO 0020
 0050 PRINT "END OF FILE"
 0060 END

READ Random 0010 OPEN(1)"FILE"
 0020 READ (1,KEY=K$,DOM=0040)A$
 0030 STOP
 0040 PRINT "KEY NOT FOUND"
 0050 REM "PRINT THE NEXT HIGHER KEY"
 0060 LET K$=KEY(1,END=0080)
 0070 PRINT K$
 0080 END

WRITE Random 0010 OPEN(1)"FILE"
 0020 WRITE (1,KEY=K$,DOM=0040)A$
 0030 STOP
 0040 REM "DON'T OVERWRITE DATA"
 0050 PRINT "KEY ALREADY IN FILE"
 0060 END

 11-13

 SORT FILE

 OVERVIEW A Sort file is a Direct file that has no data
 records; it consists only of a SIT and key area.

 A Sort file can be used to effect different sort
 sequences for Direct of Indexed files.

 Examples:

 0010 REM "BUILD 'CMAST' SORTED ON CUSTOMER NO."
 0020 REM "BUILD 1CNAME' SORTED ON CUSTOMER NAME"
 0030 OPEN (1)"CMAST"
 0040 OPEN (2)"CNAME"
 0050 INPUT (0,ERR=0050)"CUSTOMER NO.: ",N:(999999)
 0060 IF N=0 THEN STOP ELSE LET N$=STR(N:"000000")
 0070 INPUT (0,ERR=0070)"NAME: ",C$:(LEN=5,20)
 0080 LET K$=C$(1,5)+N$
 0090 WRITE (1,KEY=N$)N$,C$
 0100 WRITE (2,KEY=K$)
 0110 GOTO 0050

 0010 REM "READ 'CMAST' IN CUSTOMER NAME SEQUENCE"
 0020 OPEN (1)"CMAST"
 0030 OPEN (2)"CNAME"
 0040 LET K$=KEY(2,END=80)
 0050 READ (1,KEY=K$(6,6))N$,C$
 0060 READ (2)
 0070 GOTO 0040
 0080 END

 PROGRAMMING NOTES Execution of the SORT statement causes the key area
 and SIT to be initialized. Therefore, if a Sort file
 is accidentally erased, it cannot be redefined using
 another SORT statement.

 The KEY function must be used to access previously
 written keys in a Sort file.

 I/O directives must not specify any data fields.

 11-14

 UNLINKED FILE (LEVEL 4)

 OVERVIEW The unlinked file has the same general structure as a
 Direct or Sort file except that the forward pointer
 appended to each key is filled with nulls.

 ACCESS Because the keys are not linked together in sorted
 order, unlinked files can only be accessed randomly
 by key.

 PROGRAMMING NOTES The overhead of maintaining the sorted keys in Direct
 or Sort files is substantial. If sequential access
 is not required by the application, the Unlinked file
 provides the convenience of random access by key in
 addition to greater speed.

 All I/O directives must specify the KEY= option.

 Use of the KEY function with Unlinked files produces
 unpredictable results.

 Unlinked files must be defined via the file
 definition utility program. An Unlinked file can be
 converted to a Linked file (and vice-versa) through
 use of a utility program, (see the Level 4 Utilities
 User's Guide, BFISD 5084).

 11-15

 DISC DIRECTORY

 OVERVIEW The disc directory is a special form of the Sort
 file. The analogies between the two file types are
 summarized as follows:

 SORT FILE DIRECTORY

 File name Disc name (sector 1)

 FID Disc header (sector 1)

 Insert new key Define a file

 REMOVE ERASE

 READ randomly OPEN, LOAD, RUN, CALL, etc.

 Each key slot ing the directory is 24 bytes long.
 The first 20 bytes contain the file ID (FID).
 Appended to the FID are the forward and duplicate SIT
 pointers. Because the first 3 bytes of the FID
 contain the starting sector number of the file, the
 keys are sorted in order of disc location.

 ACCESS The directory can be accessed both randomly by key
 and sequentially in sorted order. As with all file
 types, the user must OPEN the directory (using the
 disc name) before the contents of the directory can
 be accessed.

 DIRECTORY OPERATION The major difference between directory operation and
 Sort file operation occurs when a key is accessed
 randomly. In a Sort file, the hashing algorithm is
 applied to the entire key (excluding pointers). When
 randomly accessing a key in the directory, the system
 applies the hashing algorithm to the file name only.

 11-16

SECTION 12 - ERROR PROCESSING

OVERVIEW This section discusses errors and the methods of
 error handling.

 Error conditions are classified into two types:
 Catastrophic and Non-Catastrophic.

NON-CATASTROPHIC Non-Catastrophic errors are those which do not cause
ERRORS damage to files or to the disc.

 Non-Catastrophic errors should be placed under
 program control through use of the ERR= and/or DOM=
 options, the ERR variable, the ERR function, or the
 SETERR directive.

 NOTE

 The ERR variable always reflects the value
 of the last error until a new error occurs
 or a "reset" operation is executed (BEGIN,
 END, STOP, CLEAR, LOAD OR RESET)

 When an error occurs, if the ERR= option has not been
 used and no SETERR is in effect, an error message is
 displayed on the user terminal in one of the
 following forms:

 Level 3 - !ERROR=nn

 Level 4 - !ERROR=nn
 error message

 where:

 nn = a number identifying the type of error
 that has occurred

 error
 message = a short message describing the error

 The statement causing the error is printed directly
 below the error number and/or message, and the system
 enters Console Mode.

 The proper procedure is to correct the error as
 necessary, then type "RUN" to continue.

 12-1

 If it is necessary to continue the program at a
 different statement, enter the following:

 GOTO n

 where:

 n = the number of the statement to be executed

 Then enter RUN.

 The ERR (Code 1, Code 2, Code 3,...,Code n) function
 assists in determining which error occurred. The ERR
 function generates an integer which can be used in an
 ON/GOTO statement to construct a multiple branch.
 See ON/GOTO in Section 4.

 CATASTROPHIC ERRORS Catastrophic errors (Error 100 series; e.g.,
 ERROR 103) occur during execution of certain
 statements which require more than one disc WRITE to
 complete. If an unrecoverable disc error occurs
 before the successful completion of all required
 WRITEs (except for data records), an appropriate disc
 error code (103 or 104) is issued. Issuance of an
 ERROR 100 type diagnostic returns the task to Console
 Mode. ERR options are not taken.

 If an ERROR 100 diagnostic appears, the user must
 assume that either the disc directory or Direct file
 Key Area has been written incorrectly, and take the
 appropriate action. The type of error must be
 determined and corrected before proceeding (see
 ERRORS 3 and 4, which correspond to 103 and 104).

 In most cases, correction of a Series 100 error
 requires contact with a Marketing Service Represent-
 ative.

 Following is a list of BASIC statements for which
 ERROR 100 diagnostics are issued:

 12-2

 SAVE (when defining a file)

 INDEXED

 SERIAL

 DIRECT

 PROGRAM

 SORT

 ERASE

 WRITE OR WRITE RECORD (Direct file, and only if
 a new key is created)

 REMOVE

 NOTE

 SAVE (an existing program) and data
 record WRITES and PUTs are not
 classified as potential ERROR 100
 candidates

 The following subsection defines the causes of error
 codes generated by the system. The error codes are
 listed in numerical order. The paragraph title for
 each code illustrates the format in which the error
 code (along with the message on Level 4) appears on
 the terminal.

 When an error message displays, turn to the following
 subsection and locate the error. Then, review the
 list following that error until the cause of the
 problem is found. In some cases, correcting action
 is suggested, while in others, the procedure is
 obvious; e.g., an ERROR 21, INVALID STATEMENT NUMBER,
 results from the statement:

 >LIST 99991

 Correcting action in this case is the reentering of
 the statement with the proper statement number, which
 cannot be greater than 9999.

 12-3

ERROR CODES This subsection describes error codes and what they
 mean.

!ERROR=0 This error occurs (usually after a few seconds delay)
FILE/RECORD/DEVICE when an attempt is made:
BUSY OR INACCESSIBLE
 1. To access a peripheral device (printer, tape,
 etc.) that is not in the "ready" state. To
 correct, ready the device being accessed, e.g.,
 make sure the printer is powered up and on-line.

 2. To DISABLE a disc on which there is an open file.
 To correct, close all OPEN files.

 3. to DISABLE a disc which is already DISABLEd by
 another user. Do an ENABLE of the affected disc
 from the task that DISABLEd it.

 4. To ERASE an open file. Do an END on all active
 terminals.

 To access a record which has been EXTRACTed by
 another user. To correct, release record from
 extract by one of the following:

 a. Perform another operation on the file which
 has the record extracted (same user).

 b. Enter END on all other active terminals.

 6. To OPEN a file that has been LOCKed by another
 user. To correct, the file must be CLOSEd or
 UNLOCKed by the user who LOCKed the file.

 7. To LOCK a file already OPENed by another user.
 To correct, the file must be CLOSEd by the user
 that OPENed the file.

 8. By a non-ghost task to write to a ghost task
 which has not done an INPUT. To correct,
 synchronize the logic so that complementary
 FUNCTIONS are always performed together in ghost
 and non-ghost tasks trying to communicate.

 9. A time-out has occurred between terminal entries
 where the TIM= feature was set to some number of
 seconds. To correct, either set TIM= to a larger
 value, or instruct the operator to be more
 prompt.

 10. To START a task which had already been STARTed.

 11. To START a terminal or ghost which has been
 OPENed by another task.

 12-4

 This error occurs when an attempt is made to:

 1. READ a record with a missing field terminator.
 To correct, check the possiblity of attempting to
 read more fields than have been written.

 2. WRITE a record which would cause overflow of the
 record size defined. The record size must allow
 for field terminators. For example, if a file is
 defined with a record size of 40, an attempt to
 WRITE to the file with a single-field record of
 size 40 (or greater) causes an ERROR 1 because of
 the field terminator. To correct, reduce the
 size of the record being written.

 3. Execute any input or output statement which
 specifies a number of variables greater than the
 number of field terminators received.

 4. PRINT beyond the configured line length (on a
 printer).

 5. WRITE beyond the end of file, when using the ISZ=
 option, and the last record's size is less than
 the ISZ= value. (This is the case if the ISZ=
 value is not an integer divisor into the file
 size.)

 12-5

 This condition occurs when an attempt is made:

 1. To READ/WRITE to a record using an IND value
 greater than the total number of records defined.
 To correct, redefine the IND of the READ/WRITE
 statement or enlarge the file.

 2. To WRITE a greater number of records than are
 defined. To correct, define a new file using a
 new name and with a number of records greater
 than the current value. Then transfer the data
 from the old file to the new one.

 3. To sequentially READ past the highest indexed
 record or the highest key. To.correct, enter an
 END= option in the READ statement.

 4. To READ past the end-of-file mark on Magnetic
 Tape. To correct, enter an END= option in the
 READ statement (also see ERROR 72).

 5. To use the KEY or IND function when the last
 record in the file has been read. To correct use
 an END= option.

 6. On SERIAL files, to READ or WRITE a record larger
 than fits in the remaining file space.

 7. To READ or WRITE a file opened with an ISZ=
 beyond the last record of a file. No error is
 given when attempting to READ or WRITE the last
 record of the file, even if it is smaller than
 the ISZ= value. To correct, adjust the ISZ=
 option.

 8. By a non-ghost task to READ from a ghost task
 which is not in output mode.

 9. To MERGE an Indexed file with no END statement,
 and a PROGRAM statement is in the last record
 position of the file.

 10. To print to a spool file which is filled.

 11. To READ a Serial file when the last access was a
 WRITE.

 12-6

 !ERR0R=3
 DISC READ ERROR

 This error can indicate damage, drive misalignment,
 or faulty disc data recording. The error can occur
 repeatedly when attempts are made to access data from
 a damaged disc. The error can also result from
 electronic malfunctions, or from running the disc
 under extreme temperatures.

 NOTE

 To aid the programmer, the display of
 an ERROR 3 includes the following
 information, in addition to the
 statement content:

 DSC=discno SEC=secno STS=status

 where:

 discno = the number of the disc that was
 accessed

 secno = the first of the one or more sectors
 accessed

 status = the status of the disc drive as
 determined by the system. For further
 information contact a Service
 Representative

 There are essentially three reasons why an ERROR 3
 occurs:

 a. The record was incorrectly WRITEn on the disc.

 b. The record was incorrectly READ from the disc.

 c. A data error occurred in the disc controller.

 If an ERROR 3 occurs, call a Service Representative.

 12-7

 !ERR0R=4 This error occurs when an attempt is made to:
 DISC NOT READY
 1. Define the use of any disc within a
 DIRECT,INDEXED, SERIAL, PROGRAM, SORT, SAVE, GET,
 or PUT statement using a configuration which
 specifies a greater number of disc drives than
 are physically included in the system. To
 correct, DISABLE disc numbers in excess of those
 available for use.

 2. Use a disc drive which is not in a "ready"
 condition. To correct, turn the drive on.

 3. Use an inoperative disc drive unit. To
 avoid/correct an ERROR 4 occurrence, do not use
 the inoperative disc drive unit; have it
 repaired, or DISABLE the drive.

 4. WRITE to a disc with the READ ONLY switch ON. To
 correct, turn the READ ONLY switch OFF.

 5. Open a file with no disc in the drive and the
 drive ENABLEd.
 NOTE

 To aid the programmer, the display of ERROR 4
 includes the following information in addition*
 to the statement content:

 DSC=discno SEC=secno STS=status

 where:

 discno = the number of the disc that was to be
 accessed

 secno = the sector number of the first sector
 being accessed

 status = the status of the disc drive as
 determined by the system. For further
 information, contact a Service
 Representative.

 NOTE

 A short delay takes place before the ERROR 4
 occurs. This is to handle cases where the drive
 temporarily drops out of the "ready" state.

 12-8

 !ERR0R=5 This error occurs when:
 PERIPHERAL DATA
 TRANSFER ERROR 1. A parity error occurs upon transmission to or
 from a terminal. A persistent error is
 indicative of a device malfunction.

 An invalid character is read from an input-output
 device. It can result from faulty storage media
 such as a damaged magnetic tape, or device
 malfunction.

 3. An interrupt from the CPU front panel or a power
 failure occurs during terminal access.

 4. A remote printer has a protocol error, or the
 ACK/NAK sequence is not correct due to
 transmission problems.

 If an ERROR 5 repeatedly occurs, call a Service
 Representative.

 !ERR0R=6 This error occurs when the system detects an
 INVALID DISC invalid directory, or no directory, on an ENABLEd
 DIRECTORY OR disc in the configured system (when for example,
 NON-CERTIFIED TAPE defining a file), or a disc or mag tape being READ,
 CARTRIDGE is formatted incorrectly. Use of an uncertified tape
 cartridge can also cause this error (not applicable
 to reel-to-reel magnetic tapes).

 12-9

 !ERR0R=7 This error occurs when an attempt is made to:
 SECTOR POINTER OUT
 OF RANGE 1. Reference sector zero or a sector number above
 the highest available sector by means of a GET or
 PUT statement. The reference to the unavailable
 sector can be made directly by means of the secno
 (sector number) field of the statement, or
 indirectly, by establishing a string length which
 would require the use of unavailable sectors.
 To correct, change the secno field, or the length
 of the field referenced by the statement.

 2. Access a keyed file which has an out-of-range
 data pointer. To correct, the file must be copied
 to a new file to reestablish the pointers.

 !ERR0R=8 This error occurs when the system is unable to verify
 DISC WRITE ERROR/DATA correct recording of data on disc. The verification
 MISCOMPARE operation consists of reading the data from disc and
 comparing it with the original data written to disc
 (PUT), or reading the data from disc twice and
 comparing the resultant strings (GET).
 Verification is available as an option on GET/PUT
 statements by use of the verify string variable.

 The ERROR 8 display includes the following
 information:

 DSC=discno SEC=secno

 where:

 discno = the number of the disc to/from which data
 was WRITEn/READ

 secno = the first sector on/from which data was
 WRITEn/READ

 NOTE

 ERROR 8 is a catastrophic error. Persis-
 tence of this error is indicative of disc
 or memory malfunction. All file
 definitions and key linkages should be
 examined for integrity. If the error
 persists, call a Marketing Service
 Representative.

 12-10

 !ERR0R=9 This error occurs when the system power source is
 POWER FAILURE subject to external power fluctuations or surges
 during an input/output operation. Under such
 conditions, the system completes disc accesses and
 then terminates CPU operation. When the line voltage
 is again normal, all peripherals are brought through
 a system-controlled power-up sequence, the error
 indication is generated, and the system goes to
 Console Mode (unless it was doing a disc READ or
 WRITE - in which case it simply repeats the disc
 operation and continues, with no indication of a
 power failure). If a disc model 2500 key search was
 in progress at the time of power failure, an ERROR 9
 is reported in Console Mode and the statement must be
 re-executed. No correcting action is required to
 continue operation.

 NOTE

 An ERR0R=9 displays on the VDT for all
 active tasks in Console Mode, but can
 be transparent to tasks in Program
 Mode.

 If an input/output statement is being
 executed at the time of the power
 failure, ERR options are taken - or if
 no ERR option is specified, the error
 message displays, and the task returns
 to Console Mode. If no input/output
 statements are involved, the active
 task continues to run after the
 power-up sequence is complete with no
 apparent indication of the error to the
 user.

 Power Fail Recovery Any task performing a disc I/O operation is
 For Task Performing suspended for a maximum of 3 minutes until the disc
 Disc I/O drives become ready again. If the disc is not ready
 after 3 minutes, an ERROR 4 is generated.

 If the disc does not become ready before the
 successful completion of one or more, but not all,
 WRITES required in a disc output command, an ERROR
 104 is generated. This error forces the task into
 Console Mode, indicating the disc directory or Direct
 file could have been destroyed.

 Power Fail Recovery All tasks in Console Mode immediately generate
 For Tasks Not an ERROR 9 on power fail recovery. Other tasks
 Performing Disc I/O performing I/O can generate an ERROR 5 if a
 transmission error occurs.

 12-11

 !ERR0R=10 This error occurs when:
 ILLEGAL FILE NAME
 SIZE OR USAGE/ 1. More than six characters are specified as a file
 ILLEGAL OVERLAID CALL identification field of a INDEXED, SERIAL,
 DIRECT, PROGRAM, SORT, OPEN, ERASE, SAVE, LOAD,
 CALL ADD or RUN statement. The file
 identification field must not contain more than
 six characters.

 2. The argument of a KEY function is not included,
 or the argument field is longer than the defined
 key size. To correct, adjust the KEY function
 argument.

 3. On Level 4, an attempt is made to overlay a CALL
 with no valid CALLing program in memory.

 !ERR0R=11 This error occurs when an attempt is made to access
 MISSING OR DUPLICATE a record of a Direct file using a KEY whose value is
 KEY not equal to the key defined for any record of the
 file.

 After taking the D0M= option on a WRITE statement,
 the ERR variable is set to 11.

 12-12

 !ERROR 12 This error occurs when an attempt is made to:
 MISSING OR DUPLICATE
 FILE NAME/NON- 1. OPEN or ERASE a disc data file using a file
 CONFIGURED DEVICE identification field that has not been previously
 defined on an available disc by means of a
 DIRECT, INDEXED, PROGRAM, SORT, SERIAL, FILE or
 SAVE statement.

 2. OPEN or ERASE a file that resides on a DISABLEd
 disc.

 3. OPEN an input/output device not included in the
 configuration.

 4. Define a disc data file or program by means of a
 DIRECT, INDEXED, SERIAL, PROGRAM, SORT or SAVE
 statement when a file of the'same name already
 exists on an available disc.

 5. Define a disc data file or program by means of a
 DIRECT, INDEXED, SERIAL, PROGRAM, SORT or SAVE
 statement where the file name is the same as the
 name reserved for a system device (i.e., LP, P1,
 P2...P7, TO, T1...TF, M0, M1, G0...G3, SY) or the
 disc name.

 6. ADD or DROP a program that is not found.

 12-13

 !ERR0R=13 This error occurs when an attempt is made to
 IMPROPER FILE OR
 DEVICE ACCESS 1. READ or INPUT on an output-only device such as
 a printer.

 2. WRITE or PRINT on an input-only device.

 3. WRITE or PRINT to a Direct file when the
 statement does not include an INDex or KEY option
 and the subject record is not currently
 EXTRACTed.

 4. READ or INPUT a disc data file using a statement
 that contains a constant or mnemonic.

 5. WRITE to mag tape without write ring; or to
 specify an illegal I/O.

 6. WRITE to Serial file, or WRITE to a file using
 the BLK= option, if the file is not LOCKed.

 7. Access a ghost program from a non-ghost program
 (or vice versa) when both programs are in the
 same mode (i.e., input or output) at the same
 time.

 8. Access a lower index than previously accessed on
 a Serial file (attempting to move backwards in
 the file).

 9. ADD a non-program file to the Public Dictionary.

 10. DROP a peripheral device or a nonresident
 program.

 11. Access a key in an Indexed file via the KEY
 function.

 12. WRITE to a WRITE PROTECTed magnetic tape.

 13. Use IND= with a WRITE RECORD.

 14. RELEASE a disc file or a task-tied (OPENed)
 ghost.

 12-14

!ERR0R=14 This error occurs when an attempt is made to:
IMPROPER FILE OR
DEVICE USAGE 1. OPEN a device that is in use (previously OPENed).

 2. OPEN a disc file or device using a file/device
 number that is currently being used by that user.

 3. START with an illegal device ID.

 4. Perform an input/output operation using a
 file/device number that was not previously used
 in an OPEN statement by the same user.

 5. Define a disc data file, or program, by means of
 a DIRECT, INDEXED, SERIAL,'PROGRAM, SORT or SAVE
 statement on a disc that was previously DISABLEd.

 6. DISABLE a disc that was previously DISABLEd.

 7. ENABLE a disc that was previously ENABLEd.

 8. LOCK a file that has not been OPENed by the same
 user.

 9. LOCK a file that has already been LOCKed by the
 same user.

 10. UNLOCK a file that has not been LOCKed, or which
 has been OPENed with an ISZ= option.

 11. ADDR a program already in the resident Public
 Programming Dictionary.

 12. START a device (rather than a terminal or ghost
 task).

 13. Perform an input/output operation that is not
 valid for magnetic tapes.

 14. RELEASE a task which has not been STARTed.

 12-15

!ERROR=15 This error occurs when an attempt is made to define a
DISC SPACE OCCUPIED data file or program to the disc directory using a
BY ANOTHER FILE DIRECT, INDEXED, PROGRAM, SORT, FILE, SERIAL or SAVE
 statement that specifies sectors currently allocated
 to another file or program. To correct, change the
 sector specification.

!ERR0R=16 This error occurs when:
DISC OR PUBLIC
PROGRAMMING 1. An attempt is made to define a disc data file or
DIRECTORY program using a DIRECT, INDEXED, PROGRAM, SORT,
IS FULL FILE, SERIAL, or SAVE statement when the capacity
 of the disc directory has been reached. To
 correct, ERASE unneeded data files and/or
 programs.

 2. There is an overflow of the dictionary (directory
 cache on Level 4). To correct, DROP unneeded
 Public programs from the dictionary, if possible,
 and CLOSE files which are not needed.

 12-16

!ERR0R=17 This error occurs when an attempt is made to:
INVALID PARAMETER/
NON-CONFIGURED DISC 1. Use a GET or PUT when the first variable name is
 the same as the verify variable name.

 2. Use a disc number (1-7) not recognized in the
 system configuration in a SAVE, PROGRAM, INDEXED,
 SERIAL, DIRECT, SORT, FILE, ENABLE, DISABLE, or
 RESERVE statement (disc numbers outside the range
 of 0-7 generate an ERROR 41).

 3. Use a GET or PUT when the length of the first
 variable name is not the same as the verify
 variable.

 4. SAVE or LOAD a non-program file, or RUN a Direct,
 Sort, Serial, or an Indexed file.

 5. Perform an input or output operation to a PROGRAM
 file.

 6. LIST or MERGE from anything other than an Index
 or Serial file or device.

 7. Use AND, IOR or XOR functions with different
 length arguments.

 8. Specify an invalid value for a magnetic tape I/O
 option, or specify an undefined string variable.

 9. Execute a FILE statement with bad file
 parameters.

 10. SAVE, without parameters, a null program area.

 11. Use a KEY= option on an Indexed file.

 12. Access a DIRECT file record which has a bad link.

 12-17

!ERR0R=18 This error occurs when an attempt is made to:
ILLEGAL CONTROL
OPERATION 1. DROP a program that is busy.

 2. SAVE an ADDed program.

 3. START the communications driver (OS2780) in a
 bank other than 1.

 4. SAVE to an OPENed file.

 5. Access a "protected" program (LIST, SAVE, PGM
 function, etc.) (Level 4).

 6. CALL a program more than 127 times (recursively).

!ERR0R=19 This error occurs when an attempt is made to:
PROGRAM SIZE IS
LARGER THAN DEFINED 1. SAVE a program that consists of a greater number
SIZE of bytes than specified for the program in the
 length field of the PROGRAM or SAVE statement
 used to define the program file.

 2. LOAD or RUN a program with insufficient data
 space.

 12-18

!ERR0R=20 ERROR 20 is a general catch-all error for the
STATEMENT SYNTAX compiler. Illegal punctuation, non-existent or
 misspelled directives and incorrect syntax are just
 some of the causes of an ERROR 20.

 In addition to compiler errors, several other
 situations can cause an ERROR 20. This error can
 occur when an attempt is made to:

 1. Enter a command which is not in the minimal
 compiler's instruction set, and the full compiler
 is not configured.

 2. Execute a statement that has a format mask with
 illegal characters.

 3. Execute an EDIT statement that has an illegal
 parameter option.

 4. Execute a command reserved for the control task
 only; e.g., RELEASE "T3".

 5. RELEASE SCT.

 6. Enter or execute an I/O statement that contains a
 key function. For example:

 >0010 PRINT (1,KEY=K$)

 7. Use a second argument on a CRC or HSH function
 whose length is not equal to 2.

 8. Execute a user-defined fuction reference (FNx)
 where the FNx argument list does not match the
 DEF argument list.

 12-19

!ERR0R=21 This error occurs when an attempt is made to:
INVALID STATEMENT
NUMBER 1. Enter, during Console Mode operation, a statement
 whose directive is preceded by a statement number
 greater than 9999 or less than 1.

 2. LIST or DELETE a statement number greater than
 9999 or less than 1.

 3. MERGE a statement whose directive is preceded by
 a statement number greater than 9999 or less than
 1.

 4. Enter or execute an EDIT, GOSUB, GOTO or ON/GOTO
 statement with a branch statement number greater
 than 9999 or less than 1.

 5. Enter a statement that contains an IOL=, ERR=,
 TBL=, DOM=, or END= which specifies a statement
 number greater than 9999 or less than 1.

 6. Execute an EDIT or DELETE statement on a
 non-existent statement number.

 7. Add to a nonexistent statement number by use of
 the Console Mode editing feature,

 8. Execute a CPL function on a text string which has
 no statement number.

 12-20

!ERR0R=23 This error occurs when an attempt is made to:
MISSING VARIABLE/
NON-DIMENSIONED
STRING 1. Enter or execute a statement whose structure
 implies the absence of a variable, for example:

 0010 *ERR 23
 0010 F0R5=1T010

 0010 *ERR 23
 0010 FORITO

 2. Use a GET or PUT with a string variable with a
 length of zero (undefined).

!ERR0R=24 This error occurs when an attempt is made to
DUPLICATE FUNCTION establish a user-defined function by means of a DEF
NAME statement, when the function name within the state-
 ment has been previously defined.

!ERR0R=25 This error occurs where an attempt is made to execute
UNDEFINED FUNCTION a statement containing a user-defined function (FNA
 through FNZ) that was not previously defined by a DEF
 statement in the user's program, or which was defined
 for a different function (e.g., FNA reference to a
 DEF FNB).

 12-21

!ERR0R=26 This error occurs when an attempt is made to execute
INCORRECT VARIABLE a function of any kind where the argument is of an
USAGE incorrect mode (i.e., where the argument is a string
 and should be numeric, or where the argument is
 numeric and should be string). The error occurs when
 an attempt is made to:

 1. Enter more than 14 digits, or enter a
 non-numeric character at a terminal in response
 to an INPUT statement whose expression field
 specifies a numeric value.

 2. READ non-numeric data from a file into a numeric
 variable. The error is usually indicative of a
 READ statement in which the type and order of
 variables do not correspond to the type and order
 of variables in the WRITE statement used to
 create the file.

 3. Enter or execute a statement or function where
 the type of variable (numeric or string) defined
 by the argument is in disagreement with the type
 of variable implied by the statement or function
 name.

 4. Specify a string or string variable as an INDex,
 or specify a number or numeric variable as a KEY.

 5. GET a numeric variable.

 6. Take the NUM of a non-numeric character.

 7. Convert non-hexadecimal characters via the ATH
 function.

 12-22

!ERR0R=27 This error occurs when an attempt is made to:
RETURN WITHOUT
GOSUB/DELETE 1. Execute a RETURN without a previously executed
WITH ACTIVE GOSUB GOSUB. This is indicative of an error in
OR FOR/NEXT program logic.

 2. Execute a RETRY without an ERROR branch resulting
 from a SETERR or ERR=.

 3. Execute an EXITTO with neither a GOSUB nor a FOR
 statement previously executed.

 4. Execute an EXIT from the main (not Public)
 program.

 5. DELETE or EDIT a statement in a program with an
 active FOR-NEXT or GOSUB-RETURN routine.

!ERR0R=28 This error occurs when an attempt is made to execute
NEXT WITHOUT FOR a NEXT without execution of a previous, corresponding
 FOR.

!ERR0R=29 This error occurs when an attempt is made to enter or
UNDEFINED MNEMONIC execute a statement containing a peripheral device,
 mnemonic constant or a positioning expression
 (e.g., (@ 10,10)) on a printer that is not recognized
 as valid.

!ERROR=30 This error occurs when an attempt is made to:
USER PROGRAM
INCORRECT CHECKSUM 1. LOAD, CALL, LIST, ADDR or RUN a program with an
 incorrect check field (HSH).

 2. Perform a LST function on an invalid string.

 3. EXIT back to an overlaid program which has been
 modified (Level 4).

 12-23

 !ERR0R=31 This error occurs when an attempt is made to:
 INSUFFICIENT MEMORY
 WITHIN TASK 1. ENTER or MERGE a statement which, if added to the
 program, would make the program too large to fit
 in the available user area. To correct, see
 number 2 below.

 2. EDIT an existing statement to increase its length
 to the extent that the additional program area
 required would make the program too large to fit
 in the available user area. To correct:

 a. SAVE the program, enlarge the user area, LOAD
 the program and continue; or

 b. Split the program and add statements to
 initiate overlay; or

 c. Reduce the size of the existing program to
 provide space for the coding to be included.

 3. Execute a program whose operation has filled the
 user area. The specific action that caused the
 error is usually the addition of a new variable
 or the lengthening of an existing variable. In
 either case, it is likely that a loss of data has
 occurred and the program must be reRUN following
 corrective action. It is possible that the error
 was due solely to failure to CLEAR the user data
 area prior to the execution of the program.

 4. Execute string manipulations within a program
 which temporarily require more data area than is
 available. After the error occurs, the data area
 is returned to the size remaining prior to the
 string manipulation.

 5. Enter a statement via a terminal keyboard when
 the user area is almost full (this is a less
 common cause for the error). In this instance,
 the error results from the fact that all Console
 Mode keyboard entries are stored in a buffer
 within the user area prior to processing of the
 carriage return terminator. To correct:

 a. Enlarge the size of the user area using the
 START command.

 12-24

 b. CLEAR the data area (if possible) prior to
 execution (or revision) of the program. If
 CLEARing is not appropriate, select one or
 more unnecessary string variables of
 sufficient length and set their values to
 null; or

 c. Modify the program so that less data is
 required (e.g. remove REM statements).

 6. LOAD or ADDR a Program file that has non-valid
 data.

 7. Execute a CALL statement with insufficient data
 space available to store the CALL stack
 information.

 8. OPEN a tape unit (MO, CO, etc.) with insufficient
 data space to hold the driver (MTR, MTC and Word
 Processing printer drivers are brought into
 individual user areas when OPENed).

!ERROR=32 This error occurs when hardware register storage
(HARDWARE) STACK requirements of multiple peripheral device interrupts
OVERFLOW exceed the capacity of the hardware "stack". In
 normal operation, the stack is sufficient to
 accommodate all interrupts. Therefore, the
 occurrence of this error indicates a recurring
 hardware (peripheral device or controller)
 malfunction. However, it can be caused by an attempt
 to compile a statement with a large number of
 parentheses, or with nested functions.

 Usually, an ERROR 35 serves as an indicator that
 stack overlow is imminent (see ERROR 35).

 This error can also occur on an IOLIST statement that
 loops on itself.

 For example:

 0010 PRINT IOL=0020
 0020 IOLIST IOL=0030
 0030 IOLIST IOL=0020
 >RUN

 12-25

!ERROR=33 This error occurs when an attempt is made to execute
INSUFFICIENT MEMORY a START or CALL statement requesting allocation of
CAPACITY processor memory when the available (unused) memory
 is less than that required to satisfy the request.
 To correct:

 a. Reduce the size of the user area requested by the
 START statement; or

 b. RELEASE any terminals not in use; or

 c. Reduce the amount of memory reserved for the
 programs and data of other users.

 If ERROR 33's appear on a regular basis, it may be
 advisable to purchase more memory.

!ERROR=34 This error is caused by the inability of the CPU to
VDT BUFFER OVERFLOW keep up with the VDT transfer rate.

 To correct:

 1. Increase input buffer size (Level 4 only), if
 possible (max 255);

 2. Reduce overall system loading, if possible, by
 temporarily stopping other tasks.

 3. Slow down input; or

 4. Design an application program such that INPUT
 statements are executed more frequently.

 12-26

!ERROR=35 This error occurs when stack overflow is imminent
PARENTHETIC due to complex arithmetic (or logical) expressions
EXPRESSION LIMIT being executed (with complexity directly related to
 the number of parentheses within the expression).
 To correct repeated occurrences:

 1. Simplify the arithmetic (or logical)
 expression by the elimination of the
 parentheses; or

 2. Divide the arithmetic (or logical) expression
 into two or more parts and include each part
 in a separate statement.

!ERROR=36 This error occurs when:
CALL/ENTER VARIABLE
MISMATCH 1. The number of variables or the mode of the
 variables are not consistent between CALL and
 ENTER statements.

 2. ENTER is executed more than once in a CALLed
 program.

 3. An attempt is made to execute ENTER in a main
 (not public) program.

 12-27

!ERROR=37 This error occurs when an attempt is made to execute
INVALID FUNCTION an unsupported function.

!ERROR=38 This error occurs when an attempt is made to:
ILLEGAL COMMAND IN
PUBLIC PROGRAM 1. Execute one of the following commands in a Public
 program:

 EXECUTE LIST RUN ESCAPE
 DELETE MERGE SAVE

 2. Use an undefined variable in a CALL parameter
 list.

 3. DIMension an ENTERed variable.

 4. Re-START from within a Public program (Level 4)

!ERROR=39 This error occurs when ESCAPE is pressed in a public
ESCAPE IN PUBLIC program.
PROGRAM

!ERROR=40 This error occurs when an attempt is made to
NUMERIC VALUE execute a statement involving arithmetic operations
OVERFLOW that result in an absolute numeric value less than
 -1060+1, or greater than 1060-1. This excessive
 value can also result from an attempt to divide by
 zero. When this error occurs, previous arithmetic
 processes should be checked to determine if a zero
 value divisor was generated.

 12-28

 !ERR0R=41 This error occurs when an attempt is made to:
 INVALID INTEGER
 RANGE 1. Enter or execute a statement using a negative
 value, fractional value, or too large a value
 to identify the following:

 a. A file ID or device ID (maximum 7 in Level 3,
 8 in Level 4).

 b. A disc number (maximum 7).

 c. The number of records in a file (maximum
 223-1 records).

 d. The record size (maximum 32767 bytes).

 e. A sector number greater than the HSA.

 f. An INDex or ISZ= value (maximum 223-1).

 g. At position @ (maximum 255).

 h. A subscript (range = 1 to 32767).

 i. A program size (maximum 32767 bytes),

 j. A PRECISION (maximum 14).

 k. An ON/GOTO statement whose expression field
 results in a value greater than 32K.

 l. A power (^)(maximum 255).

 m. A key size in a DIRECT or SORT statement
 (maximum 56).

 n. An increment length in a POS statement
 (maximum 32K).

 o. A Block size (BLK=) with a value other than
 0, or 1024 bytes (sector size) (Level 3).

 p. A BNK=, PUB or TSK specification (max.
 bank=15).

 q. A START size where size is less than 3 on
 Level 3 or 4 on Level 4 or greater than 128.

 r. A SELECT value greater than 63 (and not 255)

 s. A BIN function length (max=32767)

 12-29

 2. Execute the CHR code conversion function of a
 value that is less than zero or greater than 255.

 3. DIMension a numeric array that requires greater
 than 32K of memory (more than 4095 elements).

 4. Enter a minimum or maximum LEN specification for
 input verification which is greater than 32K.

 5. Close file 0.

 !ERR0R=42
 NONEXISTENT NUMERIC This error occurs when an attempt is made to:
 SUBSCRIPT
 1. Execute a statement which contains an expression
 that references an undefined numeric array or a
 non-existent element of a DIMensioned numeric
 array. To correct:

 a. Define the numeric array using a DIMensione.
 statement that includes the referenced
 element; or

 b. Revise the coding that causes generation of
 an unexpectedly large variable that is used
 as the subscript.

 2. Return a POS function with a length
 field of zero.

 12-30

!ERROR=43 This error occurs when an attempt is made to
INVALID FORMAT execute a PRINT or WRITE statement or a STR
MASK SIZE function that references a formatted numeric variable
 having more significant digits to the left of the
 decimal point than have been provided for in the
 format mask; or when the format mask contains invalid
 characters.

 To correct, redefine the format mask allowing
 sufficient positions to handle the larger number or
 correct format mask characters.

 NOTE

 If this error occurs on a WRITE or PRINT
 to disc, it results in the WRITEing or
 PRINTing of a partially complete record.
 The record is correct up to and including
 the field prior to the error field.

!ERR0R=44 This error occurs during execution only and is
STEP SIZE OF ZERO caused by a STEP value (in either constant or
 variable form) of zero existing on the first
 execution of a FOR statement. Changing of a variable
 STEP value to zero during the execution of a FOR/NEXT
 loop does not cause an error, since the STEP value is
 set at the beginning of execution of the loop.

 12-31

!ERR0R=45 This error occurs when an attempt is made to:
INVALID STATEMENT
USAGE 1. Enter a statement which is restricted to Console
 Mode only, including a statement number
 (indicating Program Mode).

 2. Enter a DELETE or LIST command that references
 descending statement numbers.

 3. Execute a statement with a TBL= option that
 references a statement number which is not a
 TABLE statement.

 4. Enter a statement (EXECUTE, FOR, NEXT, GOSUB,
 RETURN or RETRY) in Console Mode which is
 available in Program Mode only.

 5. Enter a statement with an IOL= option that
 references a statement which is not a valid
 IOLIST statement.

!ERROR=46 This error occurs when an attempt is made to:
INVALID STRING SIZE
 1. Execute a statement whose KEY= field defines a
 key to a Direct data file whose length exceeds
 the key size inferred by the keysz field of the
 associated DIRECT statement.

 2. Execute the ASC function with a null argument
 (string length = 0).

 3. Enter other than eight characters with the SETDAY
 statement.

 12-32

!ERROR=47 This error occurs when an attempt is made to:
SUBSTRING REFERENCE
OUT OF RANGE 1. Reference a string variable using subscript
 notation that is not within the range of the
 length of that variable.

 For example:

 >A$="ABCD"
 >PRINTA$(2,4)

 !ERROR=47

 2. Reference a substring of an undefined string.

!ERR0R=48 This error occurs when an attempt is made to:
INVALID INPUT
 1. Input into a string variable when the branch list
 conditions are not met, and/or the LENgth of the
 data input is outside the range specified in the
 LEN= specification.

 2. Input a numeric value when the number and/or
 value falls outside the range specified for
 verification in the input statement, or has too
 many fractional digits.

!ERROR=49 This error occurs when a non-translatable statement
NON-TRANSLATABLE is encountered during the translation of a program
STATEMENT from one level to another (used only by Basic Four
 translators and the renumbering utility *P).

 12-33

!ERROR=50 An ERROR 50 indicates that a problem exists in the
GENERAL MEMORY ERROR operating system. If an ERROR 50 occurs, please call
 a Marketing Service Representative.

!ERR0R=51 (Level 3) This error occurs when an attempt is made to compile
COMPILE OR LIST or list a program while the Compiler/Lister is not
OPERATION WITHOUT resident in memory.
COMPILER/LISTER

!ERROR=54 This error occurs on an attempt to open a Serial
OPEN OF SERIAL FILE file with an invalid header.
WITH INVALID HEADER

!ERR0R=55 This error occurs when the MTR/MTC controller re-
TAPE CONTROLLER turns garbled information on a READ operation. To
 correct, include RETRY logic in the statement.

!ERR0R=72 This error occurs when the End of Tape (EOT) is
END OF TRACK ON reached on a magnetic tape.
TAPE/UNEXPECTED ETX

 12-34

!ERROR=103 A file (Direct or Sort) or directory has invalid
CATASTROPHIC READ key pointers due to a critical write operation
FAILURE/FILE that could not complete due to a disc error. The
POINTERS DAMAGED task is forced into Console Mode.

 To correct, identify the operation, but do not
 proceed until the file or"directory has been rebuilt.
 A RUN can appear to be successful, but could result
 in a serious error in the file or directory structure
 after the appearance of the error.

!ERR0R=104 An ERROR 104 occurs when an attempt is made to:
CATASTROPHIC DISC
FAILURE/FILE 1. WRITE to a file when the 'READ ONLY' switch on
POINTERS DAMAGED the disc drive is on.

 2. WRITE to a disc when there is a hardware
 malfunction.

!ERROR=123 If a parity error occurs after a task begins updating
CATASTROPHIC a Direct, Sort or Serial file (or the directory), but
PARITY ERROR/FILE before all WRITES are completed, the error is
POINTERS DAMAGED displayed, and the task is placed in Console Mode.

 12-35

!ERR0R=124 If a parity error occurs before a task begins
PARITY ERROR updating a file (or directory), or after the WRITES
 to the file (or directory) have been completed, the
 error is displayed and the task is placed in Console
 Mode.

!ERR0R=126 (Level 4) Use of the CTL+Y operation can be captured in
CTL+Y KEY USED Level 4. This is not a catastrophic error. If SETCTL
 is not in effect, CTL+Y is ignored.

!ERROR=127 The system variable ERR is set to the value 127
ESCAPE when the ESCAPE key is pressed.

 12-36

APPENDIX A - FEATURES OF THE BUSINESS
BASIC OPERATING SYSTEM

 This section describes features of the Levels 3 and 4
 OVERVIEW operating systems as they pertain to the language.
 This section is not intended as a comprehensive guide
 to operating systems, and is included only as a
 convenience to the user.

 BUSINESS BASIC The BASIC operating system provides common support
 OPERATING SYSTEM functions for application programs, including
 Execution Scheduling, Peripheral Device Allocation
 and Control, File Management and Disc Control.

 Execution Scheduling is the interpreting and
 executing of an application program, but with the
 additional dimension of sharing the computer's
 resources between other programs at the same time.
 The process is cyclic, in that control is returned to
 the Program Executive when the execution of a
 statement has been completed. The statement next
 selected for execution by the Executive is from
 another application program or task. This prevents
 monopolization of the central processor by any one
 task.

 Peripheral Device Allocation and Control involves the
 processing of requests for use of peripheral devices
 by a task. It checks the device's availability, then
 assigns it to that task. It also handles all
 input/output operations on the device, providing a
 simplified, common interface to the application
 program.

 File Management and Disc Control handles all aspects
 of the system's disc files. It executes the file
 definition statements, maintains the directory of
 file names, and handles all OPEN, CLOSE, READ, FIND,
 WRITE, EXTRACT, KEY, REMOVE, LOCK, UNLOCK, RESERVE,
 ENABLE and DISABLE statements. It also maintains the
 Scatter Index tables, and key chains for Direct and
 Sort files.

 A-1

TASKS, TERMINALS, In Business BASIC terminology, a "task" is a program
AND I/O DEVICES or other activity, such as program development, that
 is running under the control of the operating system.

 In the case of a program requested by a terminal
 operator for interactive use (such as data entry),
 the program can be loaded from the disc into a
 portion of main memory specifically assigned to that
 operator's terminal.

 Alternatively, any terminal can use a "Public
 program" that is shared by several other operators.
 The Public program concept reduces main memory
 requirements, but places certain restrictions on any
 program that is used as a Public program. The
 activation of terminals, assignment of user task
 areas in memory, and the use of Public programs are
 described later in this section.

 Some programs (such as report printing) do not
 require any action by an operator, and therefore do
 not require a video display terminal. Such programs
 can be activated as "ghost tasks" as described in
 this section under Ghost Tasks.

 For each task, the operating system allows up to 8
 (numbered 0-7) I/O devices or files on Level 3, or 9
 (numbered 0-8) on Level 4. The operating system
 manages any conflicts between tasks that are
 competing for use of the I/O devices.

 If the task is not a ghost task, its controlling
 terminal is automatically assigned file/device number
 zero; the terminal is automatically readied for use
 (OPENed); and I/O statements involving the terminal
 are not required to reference the file/device number
 (0), unless input/output options are used.

 For other I/O devices to be used, the devices (LP for
 the first printer, Pn for additional printers, Mn for
 magnetic tape units, Tn for other terminals) must
 first be readied (OPENed), and must be assigned a
 file/device number that is used by the program for
 all communication with the device.

 Similarly, to gain access to a file, the file must be
 OPENed and a file/device number must be assigned for
 communicating with the file.

 A-2

 The operating system manages conflicts between tasks
 competing for I/O devices and files by returning
 error codes when a task attempts to OPEN an I/O
 device that has been OPENed by another task, and when
 an attempt is made to READ a record that has been
 EXTRACTed by another task.

 The operating system provides many other error code
 indications - codes representing operator problems,
 equipment problems, conflicts between tasks, and
 routine logical indicators (see ERROR Processing,
 Section 10).

 COMPILER/LISTER The compiler/lister functions automatically, without
 intervention by the programmer. The compiler portion
 compiles program statements into a more efficient
 form, requiring less storage space and less running
 time. The lister portion performs the reverse
 function, retrieving statements in a compiled format
 and listing them in a format similar to that
 originally entered by the programmer.

 The compiler and lister are permanent parts of the
 operating system on Level 4, and cannot be DROPed or
 ADDed.

 On Level 3 systems, the compiler and lister normally
 begin in memory as the first Public programs (this
 can vary depending on how the system start-up was
 programmed). Both can be removed by use of the DROP
 directive, provided all other Public programs that
 have been added to memory after the compiler and
 lister have been DROPped first.

 If the lister has been DROPped, attempts to perform
 LIST, EDIT, or the LST function cause an Error 51.
 Further, with the Lister DROPped, the operating
 system does not display statements that are in error,
 nor traced statement, but instead displays the
 program name and statement number only.

 Even when the compiler has been DROPped, a "minimal
 compiler" remains resident which accepts certain
 critical directives, such as END, BEGIN, ENABLE, RUN
 ("prog"), and CALL ("prog"). Thus, the compiler and
 lister can be returned to memory by running a program
 which contains the ADDC and ADDL directives.

 A-3

 JOB CONTROL AND When the Load Button is pressed, the bootstrap loads
 MEMORY MANAGEMENT the loader, which loads the operating system. The
 operating system, in turn, checks available memory
 against the system's configuration, then initiates
 the operating system monitor program "OSMONR" on the
 configured system control task (SCT: TO or GO) with
 30 pages of task memory on Level 3 and 32 pages on
 Level 4 (if the SCT is GO, then OSMONR is initiated
 with 10 pages on Level 3 or 25 pagees on Level 4).

 "OSMONR" first loads the compiler/lister, then
 performs an interactive dialog on the system control
 task to establish requirements for the Spooling
 option (see Spooling in this section); and finally
 places TO in the "ready" state.

 An operator at controlling terminal TO can then use
 the START command to change TO's memory allocation,
 to allocate memory to other tasks and terminals, and
 to start programs running on other tasks and
 terminals. Subsequent control of tasks, terminals,
 and programs involves the use of the RELEASE and
 START commands.

 If GO has been started as the SCT, individual
 terminals are activated by striking of the ESCAPE key
 (G0 moniters them surreptitiously).

 In Level 3, "OSMONR" can be modified by the user to
 start task TO in Program Mode instead of Console
 Mode, and the first task performed by TO can be a
 program that activates other terminals in Program
 Mode, running application programs.

 On Level 4, use the Start Up Control supplied with
 the Utility set to modify OSMONR (see the Level 4
 Utilities Users Guide, BFISD 5084).

 A-4

 Using the START and RELEASE commands in programs run
 by TO, and RELEASE commands in programs run as other
 terminal tasks and ghost tasks, the system designer
 can create a comprehensive control scheme that
 schedules jobs and allocates system resources for
 maximum throughput.

 Specialized functions of the SCT include the STARTing
 and RELEASEing of terminal tasks, RELEASEing of ghost
 tasks, and the DROPing of Public Programs (see Public
 Programming in this section) in Level 3.

 After the loading sequence during start-up, only the
 SCT is active, and the START command must be executed
 from it, to activate the other terminals. For
 example, the statement:

 START 30, "*A", »T1"

 executed in either Console Mode or Program Mode,
 initiates the utility program "*A" at terminal "T1"
 in about 30 pages of user memory (there are 2-3 pages
 of overhead whenever a task is STARTed). But the
 statement:

 START 30, "T1"

 assigns about 30 pages of user memory to "T1", with
 no program initiated, and T1 is activated in Console
 Mode.

 Once activated by a START command from the SCT, other
 terminals can use the START command to reassign
 memory to their task. Terminals other than the SCT
 can only START their own tasks and ghost tasks.

 The activity of tasks and the availability of memory
 for new tasks can be monitored by using the following
 system functions:

 BSZ -indicates the number of unassigned bytes
 available in a memory bank

 TSK -indicates the tasks active in a memory bank,
 their starting locations, and size.

 A-5

 PUB -indicates the names of Public Programs in a
 memory bank, their starting locations, and
 size.

 TSK (0) -indicates the current status of all
 tasks and devices configured on the
 system.

 (See Section 4 for more information on functions)

USER MEMORY The allocation of memory space to tasks cannot span
 memory banks (except for banks 0 and 1 on Level 3).
 This means if a 16 page area exists in bank 1 and a
 16 page area exists in bank 2, two 16 page tasks
 could execute, but a single, 32 page task could not.
 The fragmented memory space is, however, available
 for any task to use for Public Program modules (which
 also cannot span memory banks).

GHOST TASKS A ghost task is one which is not dependent on a
 terminal for operation. Examples are print programs
 and file updating programs. Ghost tasks are started
 from any other task, or by the operator using a
 terminal. The START command is used to start a ghost
 task.

 Example:

 0010 START 20, "PRINT", "GO"

 where "START 20" indicates 20 pages of user memory,
 "PRINT" is the name of the program and GO is the name
 of the ghost task. Up to 8 ghost tasks can be
 configured on Level 4 (GO through G7), and up to 4 on
 Level 3 (GO through G3).

 When a ghost task is finished, it should execute a
 RELEASE statement. This RELEASES the ghost task's
 memory for reassignment to another task.

 The following code allows a task to RESEASE itself if
 it is running as a ghost task:

 9900 LET F$=FID(0)

 9910 IF F$(1,1)="G" THEN RELEASE ELSE END

 A-6

 RESTRICTIONS ON The following restrictions apply to ghost programs:
 GHOST PROGRAMS

 o The program cannot attempt to communicate with a
 controlling terminal because none is assigned; and

 o A SETERR should be executed at the beginning of
 the program to prevent an error which might cause
 a return to Console Mode (which requires a
 terminal for output of the error message, the ">",
 etc.).

COMMUNICATION WITH It is possible to communicate with a ghost task
A GHOST TASK FROM A from a "standard task" (one with a controlling VDT)
"STANDARD TERMINAL through the use of the utility program "*G" on
TASK" Level 3, or "*GH0ST" on Level 4. The ghost task ID
 (G0-G7) is input to the utility whenever it is RUN or
 CALLed. If the ghost task specified is active, the
 utility OPENs it on the first available unit (1-7)
 and READs and WRITES to the ghost task as though it
 were an I/O device. Data entered on the VDT keyboard
 (except ESCape key) is transmitted to the ghost task
 by *G(or *GHOST), and any output from the ghost task
 is displayed on the VDT as though it were connected
 to the ghost. The utility CLOSES the ghost unit
 number and terminates when the ghost task RELEASES
 itself, or when the operator presses the ESCape key
 on the VDT.

 A-7

SPOOLING Automatic deferred printing (spooling) allows an
 application program to proceed with printing a
 report, even though all printers are busy. The
 output which would have gone to the printer is
 intercepted and stored in a Serial file for
 subsequent printing. The Spooling feature requires a
 few extra pages in any bank.

 No language changes are required to take advantage of
 this feature, and it can be completely transparent
 and automatic to the application program.

LEVEL 3

Enabling the When the LOAD button has been pressed, the Basic
Spooling Feature Four proprietary message displays, followed by the
 question:

 DO YOU WANT SPOOLING? (CR/N)

 A CR response enables the spooling function in the
 system by activating the program OSSPOL and running
 the program *.I. *.I continues the dialog by
 asking:

 SPOOL FILES BEING ACTIVATED;
 DEFAULT NUMBER OF LINES IS 1500
 MAKE ENTRY TO CHANGE OR JUST CR

 A CR leaves the number of print lines per spooled job
 at 1500 lines. By entering a number, the number of
 lines is changed.

 *.I then asks:

 START THE DESPOOLING PRINTER
 TASK NOW? (CR/N)

 This question gives the operator the option to start
 printing any queued print jobs from a previous
 period, or to wait until a later time. If CR is
 entered, the utility program *.P starts as a ghost
 task. The *.P utility program "despools" the print
 jobs which have been previously queued.

 A-8

 Defining a Task's Permanent Spool Files - For each task configured into
 Spool Files a given system, there is a predefined permanent spool
 file. These files have the following character-
 istics: Type = Serial, 132 bytes/record, 1500
 records. The name format for these files is "LPTx"
 for terminal tasks and "LPGx" for ghost tasks, where
 x is the specified value assigned to the task. These
 files act as the primary spool file for their
 associated tasks in that, if not currently in use,
 the appropriate permanent spool file is opened for
 the task by the 0SSP0L function. If a task's
 permanent spool file is already in use, 0SSP0L
 defines and opens a secondary spool file.

 Secondary Spool Files - Secondary spool files are
 created and opened by the 0SSP0L function to enable a
 task to process multiple print jobs without waiting
 for printer availability. After a secondary spool
 file is printed, it is erased from the disc. These
 files have the same charactersitics as the permanent
 spool files, but utilize the format: "__Snnnn",
 where nnnn is a four digit sequence number taken from
 the counter in the null key record of file "Queue".
 This provides reasonable assurance of uniqueness of
 file names between tasks and print jobs.

 Priority - A print file is assigned a print priority
 form 0 to 9. All poriority 9 print files are printed
 prior to priority 8, etc., through priority 1.
 Priority 0 print files are not printed and can be
 thought of as being in a "Hold" status until
 "released" by a change to a non-zero priority. The
 default priority is 5 for automatically spooled
 output.

 Class - A print file is also assigned to a print
 class (A to Z). All print files of a given class
 (and of the same priority) are printed as a group.
 Thus, print class can be used as a means of forms
 specification and grouping in the print queue to
 minimize form changes on the printer. For a given
 priority, the order of printing is based on class.

 A-9

 Adding a Print Job There are three ways that print jobs can be submitted
 to the Spooling Queue into the Spooling Queue: Automatically by an
 application program attempting to OPEN a busy
 printer; interactively by the operator through the
 use of the utility program *.S; or directly from a
 special application program which makes an entry into
 the queue file.

 Automatic Submission - The automatic submission
 process begins whenever an active task attempts to
 0PEN(1)"LP". This operation is intercepted by OSSPOL
 and the permanent spool file for that task is opened
 instead (e.g., OPEN(1)"LPTx"). If the permanent
 spool file is already active, OSSPOL creates and
 opens a secondary spool file for the task. All data
 transfers made by the task to "Device 1" are
 automatically routed to the spool file instead.

 When the task closes the device CLOSE(1), OSSPOL
 closes the spool file and makes the appropriate entry
 in the queue file. If a spool file fills, an ERROR 2
 is produced.

 Interactive Submission - Any file can be submitted
 for printing by operator interaction with the utility
 *.S. By running *.S, the operator is allowed to
 specify a file name, priority, copies, etc., and *.S
 then builds a queue entry for the file.

 Printing the Queued Files are printed and their corresponding entries
 Print Jobs are deleted from the print queue by the utility pro-
 (Despooling) gram *.P. Current implementation only permits
 spooling print files for the printer called LP. The
 execution of *.P can be initiated by the operator in
 either of the two ways: when the system is first
 started up (see "ENABLING THE SPOOLING FEATURE"
 above), or by STARTing *.P from a VDT, either as a
 ghost or terminal task, at a later time.

 A-10

 When a print job is ordered, files are selected for
 printing from the print queue file in the following
 order:

 1. Priority (9 first, 1 last, 0 hold)

 2. Class (A first, Z last)

 3. Sequence* (N before 1 +N. N is greater
 than 0)

 4. File Name (Alphabetically)

 * The sequence number is assigned by spooling
 to assure the uniqueness of an entry in the
 queue.

 When a spool file is submitted for printing via
 RUN "*.S", a brief message about that file can be
 included in the "Instructions" field of the queue
 modification and display utility *.M. When a spool
 file is selected for printing by *.P, the message in
 the instructions field is changed to:

 "***PRINTING*** COPY--"

 All spool files still logged in the queue (from
 previous system operating periods) are placed in a
 holding state by setting their priorities to zero and
 placing the string "***H0LDING***" in their
 instruction fields. If such old spool files exist,
 it is left to the operator to either delete these
 from the queue or to make them non-zero priority to
 force them to print. *.I tells the operator at the
 VDT how many files are still in the queue and asks if
 the despooling printer task should be started now.
 If the queue file contains old spool file entries,
 *.I is terminated by running *.M, the "Modify and
 Display 'Queue' File" utility.

 A-11

 Changing the Print The print queue can be modified from any VDT using
 Queue *.M. This utility allows printer queue entries to be
 changed in priority, class, and number of copies, and
 allows reversal of the auto-erase flag and revision
 of operator instructions. Print requests can also be
 completely deleted from the queue by blanking the
 first character of the file name. Any attempt to
 modify or access a print queue entry while it is
 being printed causes termination of the job. When a
 file is deleted from the queue, it is also erased if
 its "auto-erase" field contains "Y" (for Yes).

 The print queue is displayed in key sequence. This
 yields results in the order to be printed within each
 priority category. Files currently being printed are
 displayed with the operator instructions replaced by
 the string, "***PRINTING COPY***".

 SPOOLING (Cont'd)

 LEVEL 4 A complete description of Level 4 Spooling can be
 found in the LEVEL 4 UTILITIES USER'S GUIDE,
 BFISD 5084.

 A-12

PUBLIC PROGRAMMING The main objective of Public programming is to reduce
 the overall memory requirements of a system. This is
 done by putting one copy of frequently used programs,
 utilities, and subroutines into a common, mutually
 accessible place, and allowing any task to "share"
 the stored code on a reentrant basis. As an example,
 an order entry system with 10 VDTs, all doing order
 entry and using 31 pages of memory per VDT for
 multiple copies of the necessary programs, would
 require 310 pages of memory. The same function might
 be accomplished with Public programming by using just
 one 22 page copy of the program, plus data storage
 and overhead for each VDT of 10 pages each, for a
 total of 100+22 = 122 pages.

DICTIONARY Dictionary entries stored in the operating system
CONSIDERATIONS area of main memory are used to support Public
 programming and OPENed files and devices. When the
 system is configured, eight dictionary entries are
 allocated to Public programming if the feature is
 requested (Automatic on Level 4). If spooling is
 selected when the system is loaded during start-up,
 one of the dictionary entries is dedicated to
 spooling. However, the total number of Public
 program dictionary entries available is increased
 automatically by the operating system to make use of
 dictionary entries normally assigned to tasks and in
 Level 3, to the compiler/lister. If the
 compiler/lister is dropped from the Level 3
 dictionary, two entries become available.

 Further, any unused task entries in the dictionary
 are available automatically for Public programs:
 seven dictionary entries are assigned to each task in
 Level 3, eight in Level 4, when the system is
 configured, and a dictionary entry is used for each
 unique file or device opened by a task. When all
 available dictionary entries have been used - either
 by tasks opening files, or by an accumulation of
 Public program activity - any attempt by a task to
 open an additional file or to CALL or ADD an
 additional program fails, and results in an ERROR 16.

 A-13

 PUBLIC PROGRAM An entry is made in the dictionary whenever a Public
 COMMANDS program is ADDed. This command does not bring the
 program into memory, but locates it on the disc and
 maintains its disc address in the dictionary so that
 subsequent CALLs to the program access the program
 from the disc without a normal disc directory search.
 If an entry for a program is made in the dictionary,
 any attempt to modify the disc file or the normal
 disc directory entry causes an ERROR 18.

 As an alternative to ADDing a program to the
 dictionary, the ADDR command can be used to LOAD the
 program (make it a Resident program) as well as ADD
 it's directory information to the dictionary. DROP
 is a command that deletes program entries from the
 dictionary and memory. The CALL, ENTER and EXIT
 commands are used to run Public programs.

 NOTE

 ADD is unnecessary on Level 4. See the
 "ADD" directive in Section 4.

 For programs not in the dictionary, the CALL command
 automatically ADDRs the program (and DROPs it on
 EXIT).

 The PGM and PSZ functions return information about
 the CALLing program when executed in a Public
 program.

 OVERLAID CALL If an attempt is made in Level 3 to CALL a program
 (LEVEL 4 ONLY) into public memory, and public memory is full, an
 ERROR 33 results. If the same situation occurs on a
 Level 4 system, however, the system attempts to write
 the CALLed program over the CALLing program. If the
 CALLed program is not too large to fit into the space
 occupied by the CALLing program, it overwrites the
 CALLing program, clearing it from memory. At the
 execution of the EXIT directive, the CALLing program
 is brought back into memory from the disc, and the
 CALLed program disappears.

 The overlaid CALL can also be forced in Level 4 when
 room exists in public memory, and when the CALLed
 program is resident in public memory, by use of the
 SIZ= parameter in the CALL statement. The SIZ=
 parameter specifies the space needed to run the
 CALLed program and may force the system to use the
 overlay procedure described above, pre-empting the
 search in public memory. If insufficient space
 exists to overlay the program, an ERROR 33 results.

 A-14

RESTRICTIONS ON The following statements cannot be executed from a
PUBLIC PROGRAMS Public program. If an attempt is made to do so, an
 ERROR 38 results.

 EXECUTE LIST SAVE ESCAPE
 DELETE MERGE RUN START

 The trace flag is not altered by a Public program, so
 the statements can be traced. Statements that are
 traced in Public programs are not displayed, however.
 Each line traced in a Public program displays only
 the statement number and program name. Tracing is
 initiated and terminated by the SETTRACE and ENDTRACE
 commands.

 Programs can be removed from public memory with use
 of the DROP directive. In Level 3, the only Public
 program which can be DROPed (on a bank-by-bank basis)
 is the last one that has been ADDRed to a given bank.
 This is known as the Last In, First Out (LIFO) rule,
 and does not apply to Level 4 systems.

 A-15

 INPUT BUFFERING Input buffering allows an operator to enter input
 data on the VDT keyboard without having to wait for a
 prompting message or a request for input to appear on
 the display during the execution of a Business BASIC
 program. The operator can enter responses required
 by the program in the sequence in which the data is
 requested. However, the characters are not displayed
 until the statement requesting the data is executed
 by the processor. Up to 26 variable characters can
 be buffered in Level 3. This number is variable in
 Level 4, with a minimum of 26, and a maximum of 255
 characters.

 CLEARING THE INPUT 'CI', the "clear input" mnemonic, provides a means to
 BUFFER - 'CI' insure that no unprocessed input is used at critical
 prompt points in a program. The execution of 'CI' in
 a statement clears all data in the input buffer. A
 statement such as:

 INPUT 'CI', "PLEASE REENTER DATE: ", A$

 clears any data in the input buffer, prints the
 character string, and waits for the operator to enter
 the field. Subsequent inputs are then buffered as
 they were before the execution of this mnemonic.
 On Level 4 systems, the input buffer feature can be
 turned off on any task by use of the 'ET' mnemonic,
 and can be reinitiated with the 'BT' mnemonic (see
 "MNEMONICS" in Section 8).
 On systems which do not support input buffering, the
 'CI' mnemonic is ignored.

 ESCAPE PROCESSING The operator can correct an error after a field
 terminator has been buffered and before the field has
 been processed (displayed) through use of the ESCAPE
 key. When the ESC key is pressed, the input buffer
 is cleared and the terminal is returned immediately
 to Console Mode, unless fielded by SETESC.

 If the ESCAPE occurred during the processing of the
 input buffer, that portion of the input field which
 has been moved to the program area is lost. When the
 RUN statement is entered, processing begins at the
 beginning of the statement which was interrupted by
 the ESCAPE. If the program has a SETESC in effect,
 the buffer is cleared before executing the SETESC
 routine.

 TBL = PROCESSING If a TBL= is in effect in an input statement, input
 buffering is not supported for that statement. The
 input buffer is cleared in the initial execution of
 the statement, and again at the end.

 A-16

ERROR PROCESSING Any error which returns the terminal to Console Mode

 clears the input buffer. Buffering is not in effect
 during Console Mode. In Program Mode, only ERRORs 5,
 34, and 9 clear the input buffer when errors are
 fielded using ERR= or SETERR.

 Buffer overflow (ERROR 34) is flagged whenever one
 more character is put into the input buffer than the
 buffer can hold. The error is issued on the next I/O
 directive to the terminal and is processed as other
 errors described.

PROGRAMMING When operator verification of system output is
 required, the 'CI' mnemonic should be used on the
 input statement. This forces the operator to wait
 for the system prompt before keyboard input is
 accepted.

 Example:

 0090 PRINT (0,ERR=1010)"BALANCE=", A
 0100 INPUT (0,ERR=100) "CORRECT? (YES/NO)", 'CI',
 0100: D$:("YES"=650,"NO"=725)

 To avoid confusion, input buffering should not be
 used with the TBL= option. The input buffer is
 cleared upon execution of the I/O statement
 containing the TBL= function. Any data in the input
 buffer is then lost.

 Input buffering can be disabled in Level 4 by use of
 the 'ET' mnemonic.
 EXAMPLE OF INPUT
 BUFFERING
 0010 BEGIN
 0020 SETERR 0500
 0030 FOR X = 1 TO 20000
 0040 REM "THIS LOOP IS TO SIMULATE PROCESSING TIME
 0050 NEXT X
 0060 INPUT "ENTER A:",A
 0070 INPUT "ENTER B:",B
 0080 INPUT "ENTER C:",C
 0090 PRINT 'CI',
 0100 INPUT "ENTER D:",D
 0110 INPUT "ENTER E:",E
 0120 PRINT "HERE ARE THE RESULTS:",A,B,C,D,E,
 0200 STOP
 0490 PRINT 'CI'
 0500 ON ERR (26, 34) GOTO 0510, 0530, 0550
 0510 PRINT "PROGRAM TERMINATED BECAUSE OF ERROR",
 0510:ERR; STOP
 0530 PRINT "ENTER ONLY NUMERIC DATA,"; WAIT 2; RETRY
 0550:PRINT "YOU HAVE EXCEEDED THE INPUT BUFFER AREA.
 0550:PLEASE REKEY DATA"; WAIT 2; RETRY
 1000 END

 A-17

 The preceding program can be used as a sample method
 of handling input buffer overflows and other errors
 that affect the state of the input buffer. The loop
 beginning at statement 30 is used as a timing loop to
 allow the filling of the input buffer. To overflow
 the buffer, key in more characters within the time of
 the loop. When statement 60 is executed (the first
 I/O statement encountered after the buffer overflow),
 an error branch occurs at statement number 0550 and
 the overflow error message is printed. The input
 buffer is cleared automatically, and all input
 accumulated in the buffer is cleared.

 An example of the 'CI' mnemonic appears in statement
 90. This means that the buffer*area is cleared at
 this point and the next input line, "ENTER D:",
 always waits for a response.

 In the example, an ERROR 26 occurs if an alpha
 character is entered. An error branch takes the
 program to statement 530 and the error message is
 printed. Since error processing does not clear the
 input buffer, input statements after an error
 condition takes their data from the input buffer.
 Consequently, the 'CI' mnemonic should be used in the
 statements processing the error (see Examples 2 and
 3).

 The following data tests the example:

 Data Test 1

 Input Result

 1 (CR) 2 (CR) 3 (CR) ENTER A: 1
 ENTER B: 2
 ENTER C: 3
 ENTER D:

 A-18

 Data Test 2

 Input Result

 1 (CR) W (CR) 3 (CR) ENTER A: 1
 4(CR) 5(CR) ENTER B: W
 ENTER ONLY NUMERIC
 DATA
 ENTER B: 3
 ENTER C: 4
 ENTER D:

 The preceding example shows why it is important to
 clear the buffer area during error processing. If
 statement 20 is changed to SETERR 490, the following
 occurs:

 Data Test 3

 Input Result

 1 (CR) W (CR) 3 (CR) ENTER A: 1
 4 (CR) 5 (CR) ENTER B: W
 ENTER ONLY NUMERIC
 DATA
 ENTER B:

BRANCHING Some directives cause program control to transfer to
 another statement number when certain conditions
 exist, as a method of program control. These
 directives are:

 GOTO ON/GOTO
 GOSUB SETCTL (Level 4)
 EXITTO SETESC
 SETERR

 Some I/O options also transfer program control.
 These include:

 DOM= ERR=
 END=

 A-19

 The Level 4 terminal driver supports mnemonics which
 protect display fields from being overwritten.
 Protected fields are written in Backgound Mode, and
 once written and protected, cannot be overwritten
 unless Protected Mode is discontinued.

 Protection is a two step process: First, Background
 Mode must be started ('SB') prior to dislay of any
 line or partial line to be protected; then Protect
 Mode must be initiated('PS').

 The following mnemonics are associated with Field
 Protection, and are fully described in Section 4
 under MNEMONICS:

 'SB' - Start Background Mode; Start Write Protect

 'SF' - Start Foreground Mode; End Write Protect

 'PS' - Start Protect Mode

 'PE' - End Protect Mode

 Default resets regarding Field Protection and use of
 other mnemonics include:

 1. @(X,Y) allows the cursor to overwrite a
 protected position. Input or output at that
 point overwrites the X,Y position, but not
 other positions following it. (The cursor and
 data are placed in the first unprotected
 display position to the right and below the
 protected positions).

 2. Use of any of the following mnemonics resets
 the VDT from Background ('SB') to Foreground
 mode:

 'CE' 'DC'
 'CF' 'IC'
 'CL' 'LD'
 'CS' 'SF'

 Start of screen scroll

 3. Use of the following mnemonics when 'PS'
 (protect mode on) is in effect are ignored by
 the VDT:

 'LD'
 'LI'
 'CL'

 A-20

 Use of the following mnemonics reset protect
 mode:

 'CS'
 'CF'
 'PE'

 5. Following execution of 'PS', the cursor is at
 home position (0,0).

PRINTER PORT OPTION The printer port option (when configured) allows a
 serial printer to be connected to a VDT without using
 another physical I/O channel. The VDT and printer
 share the same channel.

NULL OUTPUT Level 3 systems count NULL characters (00 or
CHARACTERS 80) as printable characters on the display screen.
 Level 4 does not. Systems converting from Level 3 to
 Level 4 should review applications with NULLs in
 horizontal positioning routines.

 00 does not move the cursor.

 A-21

 SPECIAL KEY
 CONTROLS Level 4 provides additional keyboard controls
 accessed by use of the CONTROL key in conjunction
 with X, Y, S or Q. Use of one of these combinations
 results in the following action:

 CTRL + X - used to generate an ERROR 5

 CTRL + Y - used with SETERR to shift program
 control to a specified statement

 CTRL + S - causes task to stop processing. The
 task can be restarted from where it
 left off by use of CTRL + Q. It is
 often used with the LIST directive

 CTRL + Q - used to begin processing at the point
 where processing was stopped by use
 of CTRL + S

 A-22

APPENDIX B - INTERNAL CHARACTER CODE

 B-1

APPENDIX C - ALPHABETICAL SUMMARY OF
DIRECTIVES, FUNCTIONS,

VARIABLES I/O OPTIONS, AND
SYSTEM OPTIONS

 * = Level 3 only
 ** = Level 4 only

TASK TYPE DESCRIPTION

ABS Function Return absolute value
ADD Directive Add program's file ID to Public pro-

 gram directory
ADDC* Directive Add compiler to resident memory
ADDE Directive Add error-handling to resident memory
ADDL* Directive Add Lister to resident memory
ADDR Directive Add program to resident memory
ADDS** Directive Add SORTSTEP module to resident memory
AND Function Combine the bits of two strings
ASC Function Convert string to decimal
ATH Function Convert hexadecimal to ASCII

BEGIN Directive Reset system
BIN Function Return binary value
BLK=* I/O Option Assign user memory for buffer
BNK= System Option Assign bank number
BSZ Function Return bytes available in a bank

CALL Directive Transfer program control to another
 program
CHR Function Convert numeric expression to ASCII
CLEAR Directive Reset system
CLOSE Directive Release file or device
CPL Function Compile string expression
CRC Function Check for data integrity
CTL Variable Return field terminator last used

DAY Variable Return system date
DEC Function Convert binary to signed decimal
DEF FNx Directive Define arithmetic operation or string
 expression
DELETE Directive Remove statement(s) from a program
DIM Directive Define an array
DIRECT Directive Define a Direct file
DISABLE Directive Place a disc drive off-line
D0M= I/O Option Transfer program control if duplicate
 or missing key
DROP Directive Remove a program from Public Program
 Directory
DSZ Variable Return unused bytes in user task
 memory

EDIT Directive Add, replace or delete characters in a
 statement
ENABLE Directive Place a disc drive on-line

 C-1

 TASK TYPE DESCRIPTION

 END Directive Terminate a program
 END= I/O Option Branch at end of file
 ENDTRACE Directive Terminate SETTRACE listing
 ENTER Directive Pass values from CALLing to CALLed
 program and back
 EPT Function Return exponent of expression
 ERASE Directive Delete entry from Disc Directory
 ERR Function Return last occuring error
 ERR= I/O Option Branch on error
 ESCAPE Directive Interrupt program
 EXECUTE Directive Generate or modify statements from
 within a program
 EXIT Directive Return control to CALLing program
 EXITERR Directive Return control to CALLing program when
 an error occurs
 EXITTO Directive Transfer program control to specified
 statement
 EXTRACT Directive Read data field from a file into
 variable field in a statement
 EXTRACT RECORD Directive Read a full record from a file or
 device
 FID Function Return file or device information
 FILE Directive Define file type or restore ERASEd
 file
 FIND Directive Read data from a file into a variable
 FIND RECORD Directive Read a full record from a file or
 device
 FLOATING POINT Initiate Floating Point Mode
 FNx Function Define function
 FOR/NEXT Directive Begin looping
 FPT Function Return fractional part of expression

 GAP Function Generate odd-parity, byte-for-byte
 GET Directive Transfer data from a sector to a
 variable
 GOSUB Directive Transfer program control to internal
 statement
 GOTO Directive Transfer program control to a
 subroutine
 HSA Variable Return highest available sector
 HSH Function HASH; check for data integrity
 HTA Function Convert ASCII to hexadecimal

 IF Directive Conditionally execute a statement
 IND Function Return index of next record
 IND= I/O Option Specify index of record to be access
 INDEXED Directive Define Indexed file
 INPUT Directive Used for communication between oper-
 ator and program

 C-2

TASK TYPE DESCRIPTION

INPUT RECORD Directive Read a full record from a file
INT Function Return integer of expression
IOL= System Option Branch to IOLIST statement
IOLIST Directive Define list of variables
IOR Function Combine the bits of two strings
ISZ= I/O Option Define record size for a file

KEY Function Return key of next record
KEY= I/O Option Specify key to be accessed

LEN Function Return length of string expression
LEN= I/O Option Specify length range of variable
LET Directive Assign value to a variable
LIST Directive Print statement(s)
LOAD Directive Bring a program into memory
LOCK Directive Protects a file from access by other
 users
LRC Function Check for data integrity
LST Function Convert compiled BASIC to LIST format

MERGE Directive Combine two programs
MOD Function Divide integers, return the remainder

NEXT Directive Used with FOR to create looping
NOT Function Return inverse of string
NUM Function Return numeric value of characters in
 a string
ON/GOTO Directive Transfer program control to a
 statement
OPEN Directive Access a file or reserve a device

PGM Function Return compiled format of a statement
POS Function Return character position
PRECISION Directive Set number of places of rounding
PRINT Directive Print to a file or device
PRINT RECORD Directive Write a full record to a file
PROGRAM Directive Define a program file
PSZ Variable Return bytes used by a program, not
 including data
PUB Function Return information about Public
 programs in a bank
PUT Directive Write data in a string to a sector
 (NOT RECOMMENDED IN APPLICATIONS
 PROGRAMS)

READ Directive Read data into a variable
READ RECORD Directive Read a full record into a variable
RELEASE Directive Close files and release task
REM Directive Insert a comment
REMOVE Directive Delete the key of an existing record
 in a keyed file

 TASK TYPE DESCRIPTION
 -
 RESERVE Directive Reserve a disc for exclusive use
 RESET Directive Reset system
 RETRY Directive Transfer program control to the state-
 ment where the last error occurred
 RETURN Directive Transfer program control to the state-
 ment following the OOSUB 1
 RTY= I/O Option Specify number of retries if operation
 fails
 RUN Directive Execute a program

 SAVE Directive Copy program from user memory to prog-
 ram file on disc
 SEQ= 1/0 Option Specify file number on the tape track
 being accessed
 SERIAL Directive Define a Serial file
 SETCTL** Directive Branch when operator enters CTL+Y
 SETDAY Directive Set value of DAY variable
 SETERR Directive Branch to error routine
 SETESC Directive Branch when ESCAPE is pressed
 SETTIME Directive Set value of TIM (time) variable
 SETTRACE Directive List statements as they execute
 SGN Function Return sign of numeric expression
 SIZ= I/O Option Set maximum allowable characters
 for input
 SORT Directive Define a Sort file
 SORTSTEP** Directive Convert a batch of input strings into
 sorted sequences of strings
 SSN Varlable Return the system serial number
 SSZ Variable Return bytes in a sector
 START Directive Reset system, start tasks
 STOP Directive Terminate program before the physical
 end of the program
 STR Function Convert numeric expression to string
 SYS** Variable Return operating system level

 TABLE Directive Define values to translate characters
 to another code during I/O operation
 TBL= I/O Option Specify number of TABLE statement to
 be used
 TCB Variable Return task information
 TIM Variable Return current system time
 TIM= I/O Option Specify seconds allowed for input
 TRK= I/O Option Specify tape track to be used for data
 transfer
 TSK(O) Variable List configured devices (except discs)
 TSK(1-9) Variable Return string for all tasks in the
 bank

	SECTION 1 - INTRODUCTION
	SECTION 2 - FEATURES OF BUSINESS BASIC LEVELS 3 AND 4
	SECTION 3 - STATEMENT FORMATS
	SECTION 4 - DIRECTIVES
	SECTION 5 - FUNCTIONS
	SECTION 6 - SYSTEM VARIABLES
	SECTION 7 - INPUT/OUTPUT OPTIONS
	SECTION 8 - SYSTEM OPTIONS
	SECTION 9 - MNEMONICS
	SECTION 10 - DISC ORGANIZATION
	SECTION 11 - FILE STRUCTURES AND ACCESS
	SECTION 12 - ERROR PROCESSING
	APPENDIX A - FEATURES OF THE BUSINESS
BASIC OPERATING SYSTEM
	APPENDIX B - INTERNAL CHARACTER CODE
	APPENDIX C - ALPHABETICAL SUMMARY OF
DIRECTIVES, FUNCTIONS,
VARIABLES I/O OPTIONS, AND
SYSTEM OPTIONS

