Astec C II v 1,05g Relecase Document

Release 1.05g of Aztec C 1II incorporates a number of new
features, some bug fixes, and performance improvements.

The major feature additions are:
i, Scientific math functions
2. Overlay support
3¢ 1/0 redirection
4., Expanded device support
3, SCANF
6. New object library utility (LIBUTIL)
7. Relative byte support (lseek) rfor unbuffered I/0
8. New user’'s manual

The linkage editor, LN, was rewritten} it‘'s now 40 % faster,
The following bugs were fixed:
t. The were several problems with long to float conversion,

2., There were problems with evaluation of long and double
conditional expressions,

3. Shifts specifying 0 bits didn't work,

4. Division of a floating point number by itself didn't
equal one.

"3+ Théere were some problems using object libraries created
by Microsoft's M80 and LIB programs,

6+, Errer in the ‘strcat’ function.

7. The function ‘fopen’ didn‘t position the fiie «correctly
when opening with the ‘append’ option,

&. Subtracting a constant from a pointer didn’'t work,

Special notes:
1. OVLN.COM

The chapter on overlays says in one place that root and overlay
segments are created using the program LN, and in another place
that they are created using OVLN, Actually, LN is used,

2, Overlay usage
There are several caveats if you are using overlays., First, the

‘settop’ function must be called with an argument whose value s
sét equal to the size of the largest overlay segment, or the

1



length of the longest thread if overlays are nested. This <c¢call
‘must be initiated at the bteginning of the main routine before
calling any other routines, The size of an overlay is dizplayed
on the console, in hex, when it’'s linked, For example, if your
program uses 3 overlays, and the linker says their sizes are
125ah, 236h, and 837h, then it should make the following cail:
settop(0xi23a), The parameter to settop could be larger, if
desired., '

Second, If buffered 1/0 is used in an overlay segment at least
one buffered 1I1/0 call must exist in the root. This can be
accomplished by calling the ‘printf’ routine in the root. Note
that it is not necessary that the call to ‘printf’ be executed,
only that it be present, This will insure that the link editor
will include the buffered 1/0 tables in the root segment., :

The section on overlays in the manual incorrectly states that an
overlay function can have any name., The overlay file can have any
name (but it’'s extent must be ‘ovr’), Alco, the main module in an
overlay must be named ‘ovmain’, The example on pages XI.4 and
XI.5 should describe the two overlays as follows:

Here is ovlyt:

ovmain(a)

char #a;

<
printf("in ovlyt., %s\n",a);
return 1{;

2

Here is ovly2:

ovmain(a)

char #a;

<
printf(“in ovly2., %s\n",a);
return 2; '

)

Overlays can be nested, contrary to what the overlay section of
the manual states. If one overlay is to call another, the command
line to the linkage editor for the first overlay must specify the
dash r option, "-r*., This will cause LN to generate a “.rsm’ file
for the first overlay., This ‘.rem’ file must then be included in
the command line to the nested overlay, Also, each overlay must
include the module ‘ovbgn.o’, Overlays can be nested to any level
as long as the "-r" option is included on each link edit and the
".rsm® file of the calling overlay segment is included in the LN
parameter list for the link edit of the called overlay segment.
The “-r" option need not be specified for the last segment of any
one overlay path, Extreme caution should be used in using an
overlay segment in more than one path:, Although this is possible
to do, there is an enormous potential for error.



Segment,

For example, here are three nezted regmerts: a root =
root, and twd overlay segments, ovlivi and avly2., root «cail:
ovliyi; ovly! calls ovly2; ovly2 just returns,
Here is the root:

main{)

{
settop(0Oxi3aal}

ovloader(“ovlyi");
return;
2
Here is ovlyl:
ovliyi() € ovloader(“ovly2"); return;?
Here is ovaZ{
ovly2() € returh;)
The following commands will link the:se three segmente:

In -r root.o ovloader.o libc.iib
In -r ovlyt.o0 ovbgn.o root.rsm litc,lib
In ovly2.0 cvbgn.o oviyl.rsm libc.iib

This example illustrates only one overlay path, In actua:
practice, there would uszually te more than one path,

3, SIDSYM

The manual does not describe the program GSIDSYM, This program
converts a8 =svmbol table which has been created by the iinkacs
editor, LN, intoe a format which can be input to Digital
Research’s symbolic debuggers, SID and 251D, (The "-t° option
to LN causes LN to generate a symbol table), The format for
starting SIDSYM is :

SIDSYM infile outfile

where infile is the name of tne file containing the symbol table
generated by LN and outfile 1 the name of the Tile which iz 1o
contain the SID- and ZSID-readable symbtol table, inTile and
outfile can specify the same file.

o



cii.com
Iln.com
as.com
libutil.com
sidsym,com
czii.com
libec.lid
math.lid
softlibc.rel
softmath.rel
libc.h

errno.h

stdio.h

ioh

math.h
object.h
fecntloh
makelibc.sudb
makemath.,sub
softlibc.sud
softmath, sub
makezlib,.sub
t,asm

#.C

libutil.c
ovloader.c

ovbgn.asm

t,ucl
#,ual

compiler generating 8080 code.

Manx linkage editor

Manx relocating assembler

Manx object file librarian

sid symbol table formatter

‘c’ compiler generating 280 code.

8080 run-time object library,

{Manx format),

B0B0 scientific function object library,
(Manx format).,

8080 run-time object library

(Microsoft format).

8080 scientific function object library
(Microsoft format).

‘¢’ program header file. Should be
included in most ‘¢’ programs.

‘c’ program header file. Defines the
values set in the global variable
‘errno’ by the floating point and math
functions., :

‘c’ program header file. To be used by
programs requiring UNIX compatibility.
‘c’ program header file., Used by the
run-time library i/0 functions,

‘c’ program header file that declares:
the type of the math functions.

‘c’ program header Tile, Defines the
Manx object file format,

‘c’ program header file. Defines the
option parameter for the ‘open’
function,

submit file for making libec,lib,

submit file for making math.lib.

submit file for making softlibc.rel.
submit file for making softmath.rel.
submit file for making z80libc.lid (a
280 version of libec.lib),

assembler source for the run-time
library functions.,

‘c’ source for the run-time library
functions.,

‘c’ source for libutil,

i source for +the overlay support
function, ovloader.

assembler source for the overlay suppeort
function, ovbgn.

‘c’ source for user-supplied functions,
assembler source for user-supplied
functions.,



b To install an 8080 system, the following files must be
copied from the distribution disk:

cii.com, as.com, ln.com, libc.lidb, math.lib, libec.h
2, To install a 280 system, the following files must be copied:

czii.com, as.comy, ln.com, libc.h

Also, you must create 3 z80 run-time library. If you have a
large-capacity disk drive, this can be done by executing
the submit file makezlib,sub, This creates the Tfrile
z801ibc.libs Otherwise, you will have to create the run-
time library in several steps, with each of the initial
steps compiling and assembling several run-time functions
onto separate disks, Each of the last steps will then
transfer, wusing the program °‘libutil’, the object files
from one disk to the z80 library file, For example, if your
system has two drives, and you determine that three disks
are required to compile and assemble the run-time library
routines, you could proceed as follows:

a. create a disk with czii.com and as.com on it., Also, the
disk should contain three submit files, each of which
compiles and assembles the files on one of the run-time
library source and object disks.,

b. copy the source files for the run-time library functions
onto the three disks.

¢. place the disk containing the submitv files, <czii.com,
as.com, and submit.com into the ‘a:’ drive. For each of the
source and object disks, place it in the ‘b:° drive and
execute its submit file,

d, <create a disk containing libutil.com, submit.com, and
three submit files, Each submit file will copy object files
from one of the source and object disks to the z80 run-time
library file. This library file should be on the disk
containing libutil, and the submit files.

e. place the disk containing the libutil and submit files
in the ‘a:’ drive. For each of the source-and-object files,
place it in the ‘b:’ drive, and execute its submit file.

As you can see, creating a 280 system can be a lot of work., If
you are new to Aztec C, vyou might consider installing an 8080
system first and becoming familiar with it before installing a
280 system., An 8080 system will run on a z80 as well as an 8080,

3. To install an 8080 Microsoft system, the following files must
be copied:



cii.com, softlibc.rel, softmath.rel, lidc.h

4, To install a 280 Microsoft system, the following files must be
copied:

cziiscom libcsh

Also, a run-time library must be created. If you have a large
capacity disk drive, this can be done by modirfying and executing
the submit file softlibc.sub. The modifications are: use <(Czil
instead of cii, assemble suppz80.asm instead of supp8080.asm, and

replace supp8080 by suppz80.asm,

. If you don‘t have a large capacity drive, you must create the
run-time library in several steps. Use the procedure described in
section 2 above as a model.



