SOFTWARE
SYSTEMS

Aztec C II User Manual
Release 1.05
12/1/82

Copyright (C) 1981 by Manx Software Systems
All Rights Reserved

Worldwide

Distributed by:
Manx Software Systems
P. O. Box 55
Shrewsbury, N. J. 07701
201-780-4004

INTRODUCTION

Welcome to the growing number of Aztec C II users. This manual
will describe the use of the various components of the Aztec C II

system.

1.1 Origin of "c®

Dennis Ritchie originally designed "C" for the UNIX project at
Bell Telephone Laboratories. All of the UNIX operating system,
its utilities, and application programs are written in "C",

1.2 standard Reference Manual for "C*®
The standard reference for the "C" language is:

Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language. Prentice-Hall Inc., 1978, (Englewood
Cliffs, N. J.)

The above text besides providing the standard definition and
reference for the "C" language is an excellent tutorial. Aztec C
II can be conveniently used in conjunction with the K & R text
for learning the "C" language. Aztec C II is a complete
implementation of the K & R standard "C". The K & R book is an
essential part of the Aztec C II documentation. Most questions
regarding the "C" language and many questions on the run time
library package will only be answered in the K & R text.

1.3 Basic Components of the Aztec C II System

The Aztec C II system consists of a comprehensive set of tools
for producing software using the "C" programming language. The
system includes a full feature "C" compiler, a relocating
assembler, a linkage editor, an object library maintenance
utility, plus an extensive set of run time library routines.
Also included are interfaces to MICROSOFT's MACRO-80 assembler
(M80) and Digital Research's SID/ZSID debugging system.

1.4 Brief System Overview

The Aztec C II compiler is a complete implementation of UNIX
version 7 "C", with the exception of the bit field datatype. The
compiler produces relocatable 8080 source code. The compiler can
optionally produce Z80 instructions for some optimization on 280
systems. It does not, however, generate Z80 mnemonics. The source
output of the Aztec C II compiler can be assembled by the
MICROSOFT MACRO-80 (M80) assembler.

The MANX AS relocating assembler is an 8080 mnemonic assembler
that accepts a subset of the MICROSOFT MACRO-80 assembler syntax.
The assembler is used to assemble the output of the compiler and
for writing assembly language subroutines to be combined with "C"

routines.

The relocatable object files produced by the assembler are
combined with other relocatable files and library routines by the
MANX LN linkage editor. The linkage editor will scan through one
or more run time libraries and incorporate any routines that are
referenced by the linked modules.

The Aztec C II system also includes LIBUTIL, an object library
utility. LIBUTIL allows a user to change the contents of the
standard MANX supplied run time library or to create private run
time library.

The run time library is included in the standard package in
gource form, in MANX library format, and in MICROSOFT library
ormat,

1.5 System Requirements

Aztec C II runs on any CP/M or HEATH HDOS system with at least
56K of memory and one disk drive. There are no special terminal
requirements for Aztec C II other than the ability to produce
upper and lower case and the special characters:

(Y)I[1<>=-4+="12\/ "8 *&:;|""
1.6 Cross Compilers

A UNIX cross compiler is available for Aztec C II. The cross

compiler produces 8080 or 280 code that can be downloaded to the

target machine. Other cross compilers will be made available in
the future.

01.7 Portability

Code written for Aztec C II can be compiled with Aztec C][, the
Apple DOS 3.3 "C" compiler, Computer Innovations C86 compiler
for the IBM PC, CP/M-86, and MSDOS, and UNIX v7 "C". MANX
"C" compilers for 8088/8086 and 68000 systems will be available
in early 1983.

SOFTWARE LICENSE

Aztec C II, MANX AS, and MANX LN are licensed software products.
Manx Software Systems reserves all distribution rights to these
products. Use of these products is prohibited without a valid
license agreement. The license agreement is provided with each
pPackage. Before using any of these products the license agreement
must be signed and mailed to:

Manx Software Systems
P. O. Box 55
Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine
and explicitly limits duplication of the products to no more than
two copies whose sole purpose will be for backup. Any uses of
these products that might lead to the creation of or distribution
of unauthorized copies of these products will be a breach of the
licensing agreement and Manx Software Systems will excercise its
right to reclaim the original and any and all copies derived in
whole or in part from first or later generations and to pursue
any appropriate legal actions.

Software that is developed with Aztec C II, MANX AS, or MANX LN
can be run on machines that are not licensed for these products
as long as no part of the Aztec C II software, libraries,
supporting files, or documentation is distributed with or
required by the software. In the latter case a licensed copy of
the appropriate Aztec C software is required for each machine
utilizing the software. There is no licensing required for
executable modules that include library routines. The only
restriction is that neither the source, the libraries themselves,
or the relocatable object of the library routines can be
distributed.

COPYRIGHT

Copyright (C) 1981, 1982 by Manx Software Systems. All rights
reserved, No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without prior written permission
of Manx Software Systems, Box 55, Shrewsbury, N. J. 07701.

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Manx Software Systems reserves the right to
revise this publication and to make changes from time to time in
~the content hereof without obligation of Manx Software Systems
to notify any person of such revision or changes.

TRADEMARKS

Aztec C II, MANX AS, and MANX LN are trademarks of Manx Software
Systems. Credit is given to Digital Research of California for
its trademarks: CP/M, MP/M, and MAC. Credit is given to Microsoft
of Washington for its trademarks: MACRO-80, and LINK-80. Any
references to M80 and L80 also refer to the appropriate
trademarked software packages. UNIX is a trademark of Bell
Laboratories.

Aztec C II

CONTENTS

SECTION

Installation R
Overview LR N U
Aztec C II Compiler e eesceetecsessesesecsccssrssesennsese
MANX AS Relocating Assembler I T I T
MANX LN LinKer «cocecececenennnssecocennacasocconncncnnnns
Library Functions R
Microsoft Compatibility .eceeeecccecesossocecscococncnonns
Error Codes and EITOr PIrOCESSING eueeceeosescococococssss.
LIBUTIL Library Utility ceeeeececocscceceococsccsoecensess
I/0 Redirection and BUffered I/O veeesseecscoscocnonnnann.
MANX Overlay Linker R R T
Data FOIMALSE ceoeescescocrsseoceccoscocccncosccscnsosesssss
Assembly Language Support T
Producing ROMable €O s eeeeeecessccascososoeceocsennnssss
Floating POiInt SUPPOXt seeeeeccoccscocsccacscoccecoconsens
SID/ZSID SUPPOIL eeoeuseecoscoccsossessassscassossecsesess
Unbuffered I/O SUPPOIt cueceeveecococncoscsoscssncsnsscoess

User submitted SOftware ® 000000 C0COOCOEOCEOIIOONCEOIOOIOSOIOIOIEOEOEOTEOEOOEOON

I
II
III
IV

VI
VII
VIII

IX

XI
XII
XIII
XIV
XV
XVI
XVII
XVIII

SampPle PrOQGLAM seeecscacosccssocssocassssocscconsens Appendix A

Programming for Efficiency ...ceeceoeeeeeccsecceessss Appendix B

Copyright (C) 1981 by Manx Software Systems

Aztec C II

INSTALLATION

Aztec C II is distributed on one or more diskettes. Two compilers
and two libraries are supplied. The CII compiler and LIBC.LIB
library will run on 8080 systems and produce 8080 code. The CZII
and LIBCZ80.LIB library require a Z80 processor for compilation
and execution. The %280 version is more efficient than the 8080
version in the use of memory and CPU resources. The 280 version
does not, however, generate 280 mnemonics, nor is it fully
optimized for the 280. Any other libraries supplied on the
distribution disk are 8080. To produce code that will run on both
8080 and 280 systems the 8080 compiler and libraries must be
used.

Instructions for generating a "working disk"™ from the
distribution disk(s) will be found in the release document
supplied with the disks. Because some releases have significant
changes in the form and contents of the distribution disk, it is
very important to read the release document thoroughly to insure
proper creation of a working disk.

After creating a working disk, it is advisable to compile,
assemble, link edit, and execute the sample program, EXMPL.C. To
produce an executable absolute file, follow the procedure
described in the OVERVIEW section of this manual. To execute the
program once created, type in EXMPL. The program will display the
following:

enter your name

When you enter your name followed by a carriage return, the
program will display a simple greeting.

Your Aztec CII compiler, assembler, and link editor are now
installed and ready to go.

Copyright (C) 1981 by Manx Software Systems Page I.l

AZTEC C II OVERVIEW

OVERVIEW

Figure 1 depicts the basic steps for producing a binary image of
a "C" program. It also indicates the path for producing and using
run time subroutine libraries. The process depicted is fairly
basic.

/ lcl
| source file |

/ “ASM" \

ettt L L +
3. | MANX AS Assembler |
e et +
I
/ *o" \ ettt ket +
| object file |---> | LIBUTIL librarian |
/ e ————— +
: |
 Batatl e ettt + / subroutine \
4. | MANX LN Link Editor |<-- | 1library |
Frmmm e + \ . /
|
/ "CcoM" \
| executable file |
|
e s - + e e - +
5. | program execution |<---->| Digital Research |
| | SID debugger |
et e e + trmmmm e +

Figure 1. Developing "C" Programs with Aztec C Il

In developing a large system, many "C" programs would be

Copyright 1981 (c) by Manx Software Systems Page II.l

AZTEC C II | OVERVIEW

compiled and assembled into object files., A private library
might be built to contain frequently used subroutines, Object
modules would be combined with library routines by the linkage
editor to produce an executable binary image.

Figure 2 depicts the basic steps for producing a binary image of
a "C" program using Aztec C II and the MICROSOFT MACRO-80 (M80)
assembler, LINK-80 linker (L80), and LIB-80 (LIB) librarian. The
basic procedure is the same.

1. | EDITOR [

/ ncl
| source file |

e +
2. | Aztec C II compiler |
Rttt LTt P, +
|
/ "ASM" \ .
| source file | at this step ",ASM" must be
renamed " .MAC"
|
B Rt T +
3. | MACRO-80 assembler | the .8080 option must be used
B R T +
|
/ "REL" \ et +
| object file |---> | LIB-80 1librarian |
e +
: -
e e L L + / subroutine \
4. | LINK-80 Link Editor |<-- | library |
Lt + \ /
|
"COM"
| executable file |
I
trm e + D +
5. | program execution |<---=>| Digital Research |
| | SID debugger |
Fmm e + trmmm e +
Figure 2.

Developing "C" Programs with Aztec C II and the MICROSOFT System

Copyright 1981 (c) by Manx Software Systems Page 1I.2

AZTEC C 1I OVERVIEW

In the following text several references are made to "COM" files.

CP/M absolute modules usually have ".COM" sufffixed to the
filename and so "COM" refers to an executable module. For HEATH

HDOS the corresponding type of file has ".ABS" appended to the
file name. ‘

Source programs for Aztec C II are created with a text editor. A
text editor is not supplied with the Aztec CII, but there are
numerous excellent editors available for CP/M and HDOS.

There are three steps to follow to create a "COM" (CP/M) or "ABS"
(HDOS) file from a "C" source file. The first step is the compile
step that translates "C" source into assembler mnemonics. The
second step is an assembly of the assembler source file generated
by the "C" compiler. Either the MANX AS assembler or the
MICROSOFT MACRO-80 assembler may be used. The third step is the
link edit step. If the MANX AS assembler was used in the first
two steps, then the MANX LN linker must be used to combine the
object files and library object routines to produce an executable
file. If the MICROSOFT assembler was used then the MICROSOFT
linker must be used. The Manx and MICROSOFT object files are not

compatible.

Assume that a "C" source program, EXMPL.C, exists. Then the
following procedure would produce a EXMPL.COM (CP/M) or EXMPL.ABS
(HDOS) file.

step 1:

CII exmpl.c compile
step 2:

AS exmpl.asm agsgmplg‘
step 3:

LN exmpl.o libc.1lib link

In the above example, the output file from the compile step,
"exmpl.asm®, is specified as the input to the assembly step. The
output file from the assembler, "exmpl.o®, is specified as the
input file to the linkage editor. The output of the linkage
editor is named "exmpl.com"™ (CP/M) or "exmpl.abs" (HDOS).

Any number of object files can be linked together. Common
subroutines can be automatically included through a library
search., The "-L" option specifies the library name. ®"libc.lib" is
the name of a run time library supplied with the compiler
package., It must be included in every link. Additional libraries
can be supplied with additional "-L" specifications. The linker
can tell the difference between a library and a simple object file
allowing the "-L" to be omitted. A library is created by the

Copyright 1981 (c) by Manx Software Systems Page II.3

AZTEC C 1I OVERVIEW

LIBUTIL program,

In order to use Aztec C II with the Microsoft assembler and
linker, the "-M" option must be specified on the compile step. To
create a library for use with the Microsoft link editor, the "C"
library source supplied with this package must be compiled with
the "-M" option, assembled with the Microsoft assembler, and
placed in a Microsoft library. Library assembler source must be
assembled and placed in the same library (see sectionVI,
Library Functions).

The CII command and "libc.lib"™ library are 8080 compatible. The
CZII command and "libcz80.1ib" library are 280 equivalents and
can be used on 280 systems in place of CII and "libc.lib" for
some improvement in memory utilization and execution speed.

Copyright 1981 (c) by Manx Software Systems Page II.4

AZTEC C 1I OVERVIEW

COMPILER

The Aztec C II compiler is implemented according to the language
description supplied by Brian W. Kernighan and Dennis M. Ritchie,
in The C Programming Language. The user should refer to that
document for a description and definition of the "C" language.
This document will detail areas where the Aztec C II compiler
differs from the description in that book.

The reader who is not familiar with "C" and does not have a copy
of the Kernighan and Ritchie book is strongly advised to acquire
one., The book provides an excellant tutorial for learning and
using C. The program examples given in the book, can be entered,
compiled with Aztec C II and executed to reinforce the
instruction given in the text.

The library routines defined in standard C that are supported by
Aztec "C" are identical in syntax to the standard. The library
routines that are supported are defined in the library section of
this manual. In order to allow access to native operating system
functions, Aztec CII includes some extended library routines
that do not exist in the standard C. These also are described in
the library section. The system dependent functions should be
avoided in favor of the standard functions in order to reduce
future conversion problems, '

Aztec C II requires the following statement:

#¢include "libc.h"
If none of the special open options are used (see Library
Function section), then the following can be used instead of
libc.h:

#include "stdio.h"
Aztec C II is invoked by the command:

CII name.cC
It is recommended that the filename end in ".c", but it is not
necessary. “C" source statements found in the "name.c" file are
translated to assembler source statements and written to a file
named “"name.asm", If some other name is wanted then the "-0"
option is used (O is a letter). For example
CII -0 temp.asm exmpl.c

will process the "C" statements in exmpl.c and write the translated

Copyright 1981 (c) by Manx Software Systems Page III.1l

Aztec C 1I COMPILER

assembler source to temp.asm.

If the Microsoft assembler is to be used, the "-M" option is
required.

By default Aztec C II expects that pointer references to members
within a structure are limited to the structure associated with
the pointer. To support programs written for other compilers
where this is not the case, the "-S" option is provided. If "-s"
is specified as a compile time option and a pointer reference is
to a structure member name that is not defined in the structure
associated with the pointer, then all previously defined
structures will be searched until the specified member is found.
The search will begin with the structure most recently defined
and search backwards from there.

. ‘
*-T" option will copy the "C" source statements as
comments in the assembly language output

file. Each "C" statement is followed by the

assembly language code generates from the
statement.

There are four options for changing default internal table sizes:

-E option specifies the size of the expression work
table.
=X option specifies the size of the macro (#define)

work table. The ~-Y option specifies the
maximum number of outstanding cases allowed
in a switch statement.

-Y option specifies the maximum number of outstanding
cases allowed in a switch statement.

-Z option specifies the size of the string literal
table.

The default value for -E is 120 entries. Each entry uses 14
bytes. Each operand and operator in an expression requires one
entry in the expression table. Each function and each comma
within an arqument list is an operator. There are some other
rules for determining the number of entries that an expression
will require. Since they are not straightforward and are subject
to change, they will not be defined here. The best advice is that
‘if a compile terminates because of an expression table overflow
(error 36), recompile with a larger value for -E.

The following expression uses 15 entries in the expression table:
a =b + function(a + 7, b, d) * x

The following will reserve space for 300 entries in the

Copyright 1981 (c) by ‘Manx Software Systems Page III.2

Aztec C 1I CONPILER

expression table:
cii -E300 prog.c
There must be no space between the -E and the entry size.

The macro table size defaults to 2000 bytes. Each "#define" uses
four bytes plus the total number of bytes in the two strings. The
following macro uses 9 bytes of table space:

¢define v O0X1F
The following will reserve 4000 bytes for the macro table:
cii -X4000 prog.c

The macro table needs to be expanded if an error 59 (macro table
exhausted) is encountered.

The default size for the case table is 200 entries, with each
entry using 4 bytes.

The following will use 4 (not 5) entries in the case table:

switch (a) {
case 0:
a+=1;
break;
case 1:
switch (x) {
case 'a':
functl(a);
break;
case 'b':
funct2(b);
break;
}
a =>5;
case 3:
funct2(a);
break}

}

The following allows for 300 outstanding case statementsﬁ
cii -Y¥300 prog.c

The size of the case table needs to be increased if an error 76
(case table exhausted) is encountered.

The size of the string table defaults to 2000, Each string
literal occupies a number of bytes equal to the size of the
string. The size of a string is equal to the number of characters
in the string plus one (for the null terminator).

Copyright 1981 (c) by Manx Software Systems Page III.3

Aztec C II : COMPILER

The following will reserve 3000 bytes for the string table:
cii -23000 prog.c

The size of the string table needs to be increased if an error
2 (string space exhausted) is encountered.

The name of the "C" source file must always be the last argument .
in the command line.

Copyright 1981 (c¢) by Manx Software Systems Page III.4

Aztec C IX ASSEMBLER

ASSEMBLER

The MANX AS assembler accepts a subset of the Microsoft MACRO-80
assembler language. The Manx AS assembler does not support
macroes or Z80 mnemonics,

The MANX AS assembler is a relocating assembler and is invoked
by the command line:

AS name.asm

The relocatable object file produced by the assembly will be
named name,0 where name is the same name as the name on the .asm
file. An alternate object filename can be supplied by specifiying
=0 filename (0 is a letter). The object file will be written to
the filename following "-0", The filename does not have to end
with ".0", it is, however, the recommended format. The file
"name.asm" is the assembly language source file. The filename
does not have to end in ".asm",

To produce an assembly listing, specify "-L". The assembler is a
one pass assembler so forward address references will not appear
on the listing.

The following defines the syntax for the AS assembler:
STATEMENTS

Source files for the MANX AS assembler consist of statements of
the form: :

[label[:]] [opcode] [argument] [;comment]

The brackets "[...]" indicate an optional element.

LABELS

A label consists of 1 to 8 alphanumerics followed by an optional
colon. A label must start in column one. If a statement is not
labeled then column one must be left blank. A label must start
with an alphabetic. An alphabetic is defined to be any letter or
one of the special characters: :

es _.
An alphanumeric is an alphabetic, or a digit from 0 to 9.
A label followed by "##" is declared external.
EXPRESSIONS

Expressions are evaluated from left to right with no precedence
as to operator or parentheses. Operators are:

Copyright 1981 (c) by Manx Software Systems Page 1IV.l

Aztec C 11 ASSEMBLER

+ - % / AND OR XOR NOT SHL SHR MOD

CONSTANTS

The default base for numeric constants is decimal. A number
suffixed by a "B" is binary, ie. 10010110B. A number suffixed by
a "D" is decimal, ie. 765D, A number suffixed by an O or Q is
octal, eg. 1260 or 126Q. A number or alphabetic A-F suffixed by
an "H" is hexadecimal, ie, OFEEH.

A character constant is of the form 'character': 'A’'.
v ASSEMBLER DIRECTIVES
The MANX AS assembler supports the following pseudo operations:

COMMON /<block name>/ sets the location counter to the
. selected common block.

CSEG select code segment

DB <exp> define byte constant

DSEG select data segment

DW define word constant (2 bytes)

END end of assembler source statements

FUNC label if label is not defined then
it is declared external

NLIST turn off listing

LIST turn on listing

MACLIB/XTEXT filename %gglude statements from another

ile

PUBLIC/EXT/EXTRN label declares label to be external

or entry

cOpyright 1981 (c) by Manx Software Systems Page IV.2

Aztec C 1I LINKER

LINKER
Overview
A. SUMMARY

The aztec link editor will:
a. combine object files produced by the Aztec II
assembler
b. select routines from object libraries
‘€. produce an executable .COM (CP/M) or ABS (HDOS)
file

The following are the options available with this linker:

l. -1 specifies an input library of subroutines
2. -o specifies the output file

3. -r generates a symbol table for overlays

4. =-t creates a symbol table file

5. =b sets the base address '

6. =-c sets the base address for the code portion

of the output
7. =d sets the base address for the data area
8. ~-f allows command arguments to be taken from
the file

The MANX LN link editor will combine object files produced by the
MANX AS assembler, select routines from object libraries, and
produce an executable "COM" (CP/M) or "ABS" (HDOS) file.

Supplied with Aztec C II is the libc.lib object library. In most
cases this library must be specified. To link a simple single
module routine, the following command will suffice:

LN name.o 1libc.lib

The operand "name.o” is the name of the object file. The
executable file created by LN will be named name.COM (CP/M) or
name.ABS (HDOS). The -0 option followed by a filename can be used
to create an alternative name for the LN output file.

Several modules can be linked together as in the following
example: :

LN -0 name.com modl.o mod2,0 mod3.o 1libc.lib
Also several libraries can be searched as in the following:
LN -0 name.com modl.o mod2.0 mylib.lib 1lib.lib 1libc.lib
Libraries are searched sequentially in ordef of specification. It
is expected that all external references will be forward. One way

to deal with the problem of routines that make external reference
to a routine already passed by the librarian is the following:

Copyright 1981 (c) by Manx Software Systems Page V.1

Aztec C II LINKER

LN -0 name.com modl.o mod2.0 mylib.l mylib.l 1libc.lib

The link editor will read the "mylib.l1" library twice. The second
time through it will resolve backward references encountered on
the first pass.

B. DETAILED LISTING OF LINKER OPTIONS
-T

to create a symbol table file for the ZSID debugging aid. The
symbol table file will have the same prefix name as the ".COM" or
" ABS" file with a suffix of ".SYM". '
g3 2‘7“""‘/
-B address

to specify a base address other than hex 100. The "base address”
is assumed to be in hex.

-C address

to specify a starting address for code portion of the output. The
default is the base address + 3. The first three bytes are
usually occupied by a jump instruction to system initialization
code, It is assumed that the code starting address is specified
as a hex number,

-D address

to specify a data address., Data is usually placed behind the end
of the code segment.

-F filename

to merge contents of "filename” with command line arguments. More
than one specification of -F can be supplied. There are several
advantageous uses for this command. The most obvious is to supply
the names of modules that are commonly linked together. All
records in the file are read. There is no need to squeeze
everything into one record. ‘

Copyright 1981 (c) by Manx Software Systems Page V,2

. Astec C II

LIBRARY FUNCTIONS

STANDARD LIBRARY FUNCTIONS

A. SUMMARY

1. Buffered File I/0

agetc
aputc
fclose
fgets
fopen
fprintf
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
scanf
sscanf
ungetc

2.

close
creat
lseek
open
posit
read
rename
unlink
write

Copyright 1981 (c) by Manx Software Systems

(K & R chapter 7)

(stream) ASCII version of getc
(cstream) ASCII version of putc
(stream) closes an 1/0 stream

reads text from stream to buffer
opens file name according to how
writes formatted print to stream
(cp, stream) writes string cp to stream

(buf, 82, cnt, strm) reads cnt items from strm to buffer
(fp, control, pl, p2, ...) converts input string

(strm, pos, mode) positions stream to pos

(buffer, max, stream)
(name, how)
(strm, format, argl...)

(strm) returns current file position

(buf, sz, cnt, strm) writes count items from buf to strm
(stream) gets a character from file stream
() ~ read from standard input

(buffer) reads a 1line from the console
(stream) returns a word from stream

writes formatted data on console
writes character ¢ into stream
writes to standard output

writes string cp onto console
(c, stream) writes a word c to stream
(control, pl, P2, ...) formats input from standard in
(str, control, pl, p2, ...) reverse of sprintf

(c, stream) pushes ¢ back into stream

(format, argl, arg2...)
(c, stream)

(c)

(cp)

Unbuffered 1/0 R chapter 8)

(£4)

(name, mode)

(fd, pos, mode)
(name, rwmode)
(£f4, num)

(£4, buf, BUFSIZE)
(oldname, newname)
(filename)
(fd,buf, BUFSIZE)

(K&

closes file fd
creates a file ,
positions file desc according to mode

positions file fd to number record
reads from fd to buf BUFSIZE bytes
renames a disk file

erases a disk file

Page VI.l

opens file according to read/write mode

writes from buffer to £d4 BUFSIZE bytes

Copyright 1981 (c) by Manx Software Systems

LIBRARY FUNCTIONS

converts ASCII to floating
converts ASCII to integer

converts ASCII to long

converts floating point to ASCII
returns cp from beginning of string
returns cp from end of string
compares strl with str2

string copy routine

returns length of string

compares srtl to str2 at most max
string copy at most max characters

moves length bytes from src to dest
initializes area to value

stop program

formats data using routine function
checks for digits 0...9

checks for lower case

checks for upper case ‘
places string format data in buffer
converts to lower case

converts to upper case

calls bdos

calls the n'th entry into BIOS
calls the n'th entry into BIOS
calls bdos

returns to the operating system
initializes file control blocks
bumps top of program memory

inverse cosine of x (arcos x)
inverse sine of x (arcsin x)
inverse tangent of (arctan x)
arctangent of x divided by ¥y
cosine of x

hyperbolic cosine

cotangent of x

exponential function of x
natural log of x

logarithm basi of x

raise x to the y-th power
sine of x

hyperbolic sine function
returns the square root of x

‘Aztec C 1I
3. String Manipulation
atof (cp)
atoi (cp)
atol (cp)
ftoa (m, cp, prec, type)
index (cp, c)
rindex (cp, ©)
strcmp (strl, str2)
strcpy (dest, src)
strlen (cp)
strncmp (strl, str2, max)
strncpy (dest, src, max)
4. Utility Routines
alloc (size) e
blockmv (dest, src, length)
clear (area, length, value)
exit (n)
format (func, format, argptr)
isdigit (c)
islower (c)
isupper (c)
sprintf (buff, form, argl,arg2)
tolower (c)
toupper (c)
5. Operating System Interface
bdos (bc, de)
. bios (n, bc, de)
bioshl (n, bc, de)
CPM (bc, de)
exit (n)
fcbinit (name, fcbptr)
settop (size)
6. Math and Scientific Routines
acos (x)
asin (x)
atan (x)
atan2 (x,Y)
cos (x)
cosh (x)
cotan (x)
exp (x)
log (x)
loglo (x)
pow (x, y)
sin (x)
sinh (x)
sqrt (x)

Page VI.2

Aztec C II LIBRARY PUNCTIONS

tan (x) tangent of x
tanh (x) hyperbolic tangent function

B. DETAILED LISTING OF LIBRARY FUNCTIONS
Explanation of Format of Library Descriptions

The following is a sample library function description. Each of
its parts is numbered and explained in the paragraphs below. All
the 1library functions found in this section of the manual follow

this format:

l.fseek

2.int 3.fseek 4.(stream, pos, mode)
5.FILE *stream;
6.int pos, mode

l.fseek A
The word located in the left margin is the name of
the function to be described. The functions are
listed in alphabetical order according to
category.

2.int
This is a definition of the type of value
returned. Here, it is an integer. (Other types
could be 1longs, characters, doubles, pointers,
etc) .

3.fseek

This again is the name of the function.

4.(stream, pos, mode)
This is a prototype of the parameter list. In this

example, "stream®™ is a pointer (*) to a structure
of type "FILE". The parameters of "pos" and

"mode" are integers.

5. FILE*streamThis defines the "stream" parameter as type FILE.
All parameters must be defined as they are in the

function definition.

6.int pos,mode
. This defines defines pos and mode as integers.

NOTES:
1. FILE is defined in file libc.h or stdio.h.

2. When calling ANY library function or using
MACRO-80, libc.h MUST BE INCLUDED.

Copyright 1981 (c) by Manx Software Systems Page VI.3

Axtec C 11 LIBRARY FUNCTIONS

Standard 1/0 functions

These functions provide a uniform I/0 interface for all programs
written in Aztec C II regardless of the operating system being
used. They also provide a byte stream orientated view of a file
even under systems which do not support byte 1/0. To use the
standard I/0 package you should insert the statement:

" #include "libc.h"
or
#¢include "stdio.h"

into your programs to define the FILE data type and miscellaneous
other things needed to use the functions.

1. Buffered File 1/0 (K & R chapter 7)
agetc)

int agetc(stream)
FILE *stream;

This is an ASCII version of getc which recognizes an end
of line sequence (CR LF on CPM) and returns it as a single
newline character ('\n'). Also, an end of file sequence
(control Zz on CPM) is recognized and returned as EOF. This
routine provides a uniform way of reading ASCII data
across several different systems.,

aputc

int aputc(stream)
int ¢; FILE * stream;

ASCII version of putc which operates in the same manner as
putc. However, when a newline ('\n') is put into the file,
an end of line sequence is written to the file (CR LF on

CPM).

Note: If a partial data block is written as the last block
in a file, it is padded with an end of file sequence
(control Z on CP/M) before being flushed.

fclose

int fclose(stream)
FILE *stream;

The function "fclose” informs the system that the user's
program has completed its buffered i/o operations on a
device or file which it had previously opened (by calling
the function "fopen"). fclose releases the control blocks

Copyright 1981 (c) by Manx Software Systems Page VI.4

Azxtec

fgets

fopen

C II LIBRARY FUNCTIONS

and buffers which it had allocated to the device or file,
thus allowing them to be used when other devices or files
are opened for buffered i/o. Also, when a disk file is
being closed, fclose writes the internally buffered
information, if any, to the file.

If the close operation is successful, fclose returns a
non-negative integer as its value. If it isn't successful,
"fclose" returns -1 as its value, and sets an error code
in the global integer errno. If the close was successful,
errno is not modified.

char *fgets (buffer, max, stream)
char *buffer; int max;
FILE *stream

The function "fgets" reads characters from a device or
file which has been previously opened for buffered i/o (by
a call to "fopen") into the caller's buffer. The operation
continues until either (1) a newline character ('\n') is
read, or (2) the maximum number of characters specified by
the caller have been transferred. If the newline character
is read, it will appear in the caller's buffer.

If the read operation is successful, "fgets" returns as
its value a pointer to the start of the caller's buffer.
Otherwise, it returns the pointer NULL and sets a code in
the global integer errno. If it is successful, errno is
not modified. :

The parameter "stream" identifies the device or file; it
contains the pointer which was returned by the function
*fopen" when the device or file was opened for buffered

i/o.

The parameter "buffer” is a pointer to a character array
into which "fgets"™ can put characters.

The parameter "max" is an integer specifying the maximum
number of characters to be transferred.

FILE *fopen(name,how)
char *name; char *how;

The function "fopen" prepares a device or disk file for
subsequent buffered i/o operations; this is called

- "opening”™ the device or file.

If the device or file is successfully opened, fopen returns
as its value a pointer to a control block of type FILE,
When the user's program issues subsequent buffered i/o

Copyright 1981 (c) by Manx Software Systems Page VI.5

- Aztec C II /}BRARY FUNCTION
T $Sile c]a@:»« noT exis7, JT 15 Crearec (4, W, wt,a at)

calls to this device, the pointer to its control block must
be included in the list of parameters. In the descriptions
of the other buffered i/o functions which require this
pointer, the FILE pointer is called "stream".

If fopen can't open the device or file, it returns the
pointer NULL and sets an error code in the global integer
"errno". If the open was successful, errno isn't modified.

The parameter "name"” is a pointer to a character array
which contains the name of the device or file to be opened.
The devices which can be opened have the following names:

device name = device
con: system console
lst: or prn: line printer
pun:. punch device
rdr: reader device

The device name can be in upper or lower case.

When a disk file is to be opened, the drive identifier in
the name parameter is optional., If its included, the file
is assumed to be on the specified drive; otherwise, its
assume to be on the default drive.

The "how" parameter specifies how the user's program
intends to access the device or file. The allowed values
and their meanings are:
Zhow® value meaning
“r" Open for reading. The device or
file is opened. If a file is
opened, its current position is set
to the first character in the file.
If the device or file doesn't
exist, NULL is returned.

"w" Open for writing. If a file is
being opened, and if it already
exists, it is truncated to zero
length, If it's a file and the file
doesn't exist, it is created.

"a" Open for append. The calling program
is granted write-only access to the
device or file. For disk files, if
the file exists, the its current
position is set to the character
which follows the last character in
the file. Also, for disk files, if
the file doesn't exist, it is
created and its current position is
set to the start of the file.

Copyright 1981 (c¢) by Manx Soft&are Systems Page VI.6

Aztec C I1X LIBRARY FUNCTIONS

"r+" Open for reading and writing. Same
as "r" but the device or file may
also be written to.

"wt" Open for reading and writing. Same
as "w" but the device or file may
also be read.

"a+" Open for append and read. Same as
"a" but the device or file may also
be read.

fprintf

fprintf(stream,format,argl,arg2,...)
FILE *stream;
char *format;...

The function "fprintf" formats the caller's parameters as
specified by the caller and writes the result to a device
or disk file. Formatting is done as described in chapter
7, entitled "Input and Output", of The C Programming
Language. Note: Long and floating point conversions are
supported by Aztec CII, but not by Aztec C.

The parameter "stream"” identifies the device or file. It
contains the pointer which "fopen" returned to the caller
when the device or file was opened for buffered i/o.

The parameter "format"™ specifies how the formating is to
be done.

The parameters "argl", etc, are the parameters which are
to be formatted.

fputs

int fputs(cp,stream)
char *cp; FILE *stream;

The function "fputs" writes a character string to a device
or disk file. "fputs” uses the function "aputc" to write
the string, so newline translation may occur.

If the operation is successful, "fputs® returns zero as
its value., Otherwise, it returns EOF.

The parameter "stream® identifies the device or file. It
contains the pointer which was returned by "fopen™ to the
caller when the device or file was opened for buffered

i/o.

The parameter "cp" is a pointer to a character array
containing the string to be written.

Copyright 1981 (c) by Manx Software Systems Page VI.?7

~Aztec C II LIBRARY FUNCTIONS

fread

int fread(buffer,size,count,stream)
char *buffer;

int size,count;

FILE *stream;

Reads[éouni]items ofiéizé]bytes into[&uffeizfrom Eﬁreaﬁﬂ
Returns the number of items actually read. '

fscanf

int fscanf(stream,control, argl, arg2, ...)
FILE *stream;
char *control;

Formats data according to control. Data is read from stream
file. Formating is done as described in chapter 7,

Input and Output, of The C Programming Language.

fseek

int fseek (fp,pos,mode)
FILE *fp;
long pos;
int mode;

Positions the stream according to pos and mode. Mode is
interpreted as follows:

0- seek from 0. Pos is treated as an unsigned number
and fp is positioned pos bytes from the beginning of
the file.

l1- seek relative from the current position.

2- seek relative from the end of the file.

ftell

long ftell(stream)
FILE stream;

Returns the current byte position of stream from the
beginning of the file.

furite
int fwrite(buffer,size,count,stream)
char *buffer;

Copyright 1981 (c) by Manx Software Systems Page VI,8

. Aztec C 1I LIBRARY FUNCTIONS

getc
int getc(stream)
FILE *stream;
Returns the next character from stream. The unique value.
_EOF is returned if an error is encountered or when reaching
end of file. The character is not sign extended so that
the unique value EOF (-1) is distinguishable from an Oxff
byte in the file.

getchar C MACRO
int getchar()
Returns the next character from standard input (stdin).

gets
char *gets(buffer)
char *buffer;
Reads a line from the standard input. The returned value is
buffer. All of the usual line editing facilities are
available if input is from the console. This is not the
case with getchar. Note: the end of line sequence is not
left in the buffer. This is different from fgets for
compatibility reasons. :

 getw

int getw(stream)
FILE *stream;
Returns a word from stream. The least significant byte is
read first, followed by the most significant byte. Returns
EOF if errors or end of file occur. However, since EOF is a
good integer value, errno should be checked to determine if
an error has occurred,

printf

int size,count;
FILE *streanm;

Writes count items of size bytes from buffer into stream.
Returns the number of items actually written.

printf(format,argl,arqg2,...)
char *format; ...

Formats data according to format and writes the result to

the console. Formating is done as described in chapter 7,

Input and Output, of The € Programming Language.

Copyright 1981 (c) by Manx Software Systems Page VI.9

Aztec

C 1x ‘ LIBRARY FUNCTIONS

putc
int putc(c,stream)
int c; FILE *stream;
Writes character c into stream at the current position.
Returns ¢ if all is okay and returns EOF if an error
occurs,
putchar
int putchar(c)
int c;
Writes ¢ to the standard output (stdout)
puts
int puts(cp)
char *cp;
Writes string cp to the standard output (stdout).
putw
int putw(c stream)
int ¢; FILE *stream;
Writes a word, c, to stream. The least significant byte is
written first, followed by the most significant byte.
Returns c¢ if all is okay and EOF if error occurs. However,
since EOF is a good integer value, errno should be checked
to determine if an error has occurred.
scanf
int scanf(control, argl, arg2, ...)
char *control;
Formats data according to control. Data is read from
standard in. Formating is done as described in chapter 7,
Input and Output, of The C Programming Language.
ungetc

int ungetc(c stream)
int c; FILE *strean;

Pushes ¢ back onto stream so that the next call to getc
will return c, Normally returns c, and returns EOF if c
cannot be pushed back. Only one character of push back is
guaranteed and EOF cannot be pushed back.

Copyright 1981 (c) by Manx Software Systems Page VI.1l0

Aztec C 11 LIBRARY FUNCTIONS

2. Dnbuffered 1/0

close

creat

Unbuffered I/0 is described in chapter 8 of The C

Programming Lapguage by Brian W. Kernighan and Dennis M.
Ritchie. the chapter is captioned "The UNIX System

Interface".

close(£fd)
int fd;

An open device or disk file is closed.

The parameter "fd" specifies the device or file to be
closed. It is the file descriptor which was returned to the
caller by the open function when the device or file was

opened.

If the close operation is successful, close returns as its
value the value of the fd parameter.

If the close operation fails, close returns -1 and sets a
code in the global integer errno. If the close was
successful, errno is not modified. The only symbolic value
which close may set in errno is EBADF, meaning that the
file descriptor parameter was invalid.

creat(name, pmode)
char *name;
int pmode;

The function "creat" creates a file and opens it for write-
only access. If the file already exists, it is truncated so
that nothing is in it (this is done by erasing and then
creating the file). -

If "creat" is successful, it returns as its value a "file
descriptor®”, that is, a positive integer which is an index
into a table of device and file control blocks. Whenever a
call is made to one of the unbuffered i/o functions to
access the file, its file descriptor must be included in
the function's parameters.

If "creat" fails, it returns -1 and sets a code in the
global integer "errno". If it succeeds, errno is not

modified.

The parameter "name" is a pointer to a character array

Copyright 1981 (c) by Manx Software Systems Page VI.1l

Aztec C 1I LIBRARY FUNCTIONS

containing the name of the file. The drive identifier in
the name is optional. If its included, the file will be
created on the specified drive; otherwise, it will be
created on the default drive.

The parameter "pmode" is optional; if specified, it is
ignored. The pmode parameter should be included, however,
for programs for which UNIX-compatibility is required,
since the UNIX creat function requires it. In this case,
pmode should have an octal value of 0666.

1seek

long int lseek(fd, offset, origin)
int £4, origin;
long offset;

lseek sets the current position in the file specified by
the fd parameter to the position specified by the offset
and origin parameters. .

The current position is set to the location specified by
the origin parameter plus the offset specified by the
offset parameter,where the offset is a number of
characters.

The value of the parameter "origin" determines the basis
for the offset as follows:

0 offset is from beginning of file
1 offset from the current position
2 offset is from the end of file

If lseek is successful, it returns as its value the new
current position for the file; otherwise, it returns =1. In
the latter case, the global integer errno is set to a
symbolic value which defines the error. The symbolic values
which lseek may set in errno are: EBADF, if the fd
parameter is invalid; EINVAL, if the offset parameter is
invalid or if the requested current position is less than
zero, If lseek is successful, errno is not modified.

Examples:

l. To set the current position to the beginning of the
file:

lseek (fd, OL, 0)

l1seek returns as its value 0, meaning that the current
position for the file is character 0.

2. To set the current position to the character following
the last character in the file:

Copyright 1981 (c) by Manx Software Systems Page VI.12

Aztec C 1I LIBRARY FUNCTIONS

open

lseek (£d, 0L, 2)

1seek xeturhs as its value the current position of the
end of the file, plus 1.

3. To set the current position 5 characters before the
present current position:

lseek (fd,-5L,1)

4. To set the current position 5 characters after the
present current position:

lseek (£fd4,5L,1)

open(name,rwmode)
char *name;

The function "open" prepares a device or file for
unbuffered i/o and returns as its value an integer which
must be included in the list of parameters for the i/o
function calls which refer to this device or file.

The name parameter is a pointer to a character string which
is the name of the device or file which is to be opened.
The names of the devices which can be opened are :

device name = device
con: system console
1st: or prn: line printer
pun: punch device
rdr: ’ reader device

The names can be either upper or lower case.

When a disk file is to be opened, the name string can
be a complete name; for example, "b:sample.ext". The drive
identifier and the colon character can be omitted; in this
case the file is assumed to be on the default drive. The
extent and preceeding period can also be omitted, if the
file doesn't have an extent field.

The "mode" parameter specifies the type of access to the
device or file which is desired, and optionally, for a disk
file, specifies other functions which open should perform.
The mode values are:

mode yalue meaning
O_RDONLY " read only
O_WRONLY write only
O_RDWR read and wvrite

Copyright 1981 (c) by Manx Software Systems Page VI.13

Aztec C 1I LIBRARY FUNCTIONS

O_CREAT create file, then open it
O_TRUNC truncate file, then open it
O_EXCL if O_EXCL and O_CREAT are both

set, open will fail if the
file exists

The integer values associated with the symbolic values for
mode are defined in the file "fcntl.h", which can be
included in a user's program. To guarantee UNIX
compatibility, a program should set the "mode® parameter
using these symbolic names.

The calling program must specify the type of access desired
by including exactly one of O_RDONLY, O_WRONLY, or O_RDWR
in the mode parameter. The other values for mode are
optional, and if specified,are "or-ed" into one of the
type-of-access values. :

If only the O_CREAT option is specified, the file will be
created, if it doesn't exist, and then opened. If the file
does exist it is simply opened.

If the O_CREAT and O_EXCL options are both specified, and
if it didn't previously exist, it will be created and then
- opened., If it did previously exist, the open will fail.

If the O_TRUNC option is specified, the file will be
truncated so that nothing is in it, and then will be
opened. The truncation is performed by erasing the file, if
it exists, then creating it. It's not an error to truncate
a file which doesn't previously exist.

If both O_CREAT and O_TRUNC are specified, open proceeds as
if only O_TRUNC was specified.

1f open doesn't detect an error, it returns as its value an
integer, called a "file descriptor”, which must be included
in the list of parameters which are passed to the other
unbuffered i/o functions when performing i/o operations on
the file. The file descriptor is different from the file
pointer which is used for buffered i/o.

1f open does detect an error, it returns as its value -1,
and sets a code in the global integer errno which defines
the error. The symbolic values which open may set in errno
and their meanings are:

errno yalue = meaning
EMFILE maximum number of open devices and
- files exceeded (ll's the limit)
EACCES invalid access requested
ENFILE maximum number of open files
B exceeded
EEXIST file already exists (when O_CREAT

Copyright 1981 (c) by Manx Software Systems Page VI.1l4

Aztec C 11 LIBRARY FUNCTIONS

posit

and O_EXCL are both specified)
ENOENT unable to open file

The file errno.h defines the integer values of the symbolic
values. If open doesn't detect an error, errno isn't
modified.

Examples:

l. To open the system console for read access:
fd = open("con:",0_RDONLY)

2, To open the line printer for write access:
fd = open("1st",0_WRONLY)

3. To open the file "b:sample.ext” for read-only access
(the file must already exist):

fd = open("b:sample.ext",0_RDONLY)

4. To open the file subl.c on the default drive, for
read-write access (if the file doesn't exist, it will
be created first):

fd = open("subl.c”,0_RDWR+O_CREAT)

5. To create the file "main.txt®, if it doesn't exist, or
to truncate it to zero length, if it already exists,
and then to open it for write-only access:

fd = open("main.txt",0_WRONLY+O_TRUNC)

posit(fd,num)
int £d4,num;

posit will set the current position for a disk file to a
specified 128-byte record. .

This function should not be used when UNIX compatibility is
required, because it isn't supported by UNIX.

The parameter "fd" identifies the file; fd is the file
descriptor which was returned to the caller by open when

‘the file was opened.

The parameter "num" is the number of the specified record,
where the number of the first record in the is zero.

Copyright 1981 (c¢) by Manx Software Systems Page VI.1l5

Aztec C 11 LIBRARY PUNCTIONS

read

If posit is successful, it returns 0 as its value.

If no error occurs, posit returns -1, and sets an error
code in the global integer errno. The only symbolic value
which may be set in errno is EBADF, in response to a bad
file descriptor. If no error occurs, errno isn't modified.

Examples:

l. to set the current position to the first byte in the
"first record:

posit(£d,0)

2. To set the current position to the first byte of the
fourth record:

posit(£fd,3)

read (fd, buf,bufsize)
int fd, bufsize; char buf;

The read function reads characters from a device or disk
file into the caller's buffer. In most cases, the
characters are read directly into the caller's buffer.

The £fd parameter specifies the file; it contains the file
descriptor which was returned to the caller when the file
was opened.

The parameter buf is a pointer to the buffer into which the
characters from the deive or file are to be placed.

The parameter bufsize specifies the number of characters to
be transfered. '

If the read operation is successful, it returns as its
value the number of characters transfered.

If the operation isn't successful, read returns -1 and
Places a code in the global integer errno.

For more information, see the description on the
unbuffered read operation for the various devices and for
disk files in the chapter on unbuffered i/o.

Copyright 1981 (c) by Manx Software Systems Page VI.16

Aztec C II LIBRARY FUNCTIONS

rename

rename (oldname, newname)
char oldname[],newname(];

The function "rename" changes the name of a file.

The parameter "oldname™ is a pointer to a character array
containing the old file name, and "newname" is a pointer to
character array containing the new name of the file.

If a file with the new name already exists, it is erased
before the rename occurs.

The value returned by rename is undefined. Unlike many
other i/o functions, rename never modifies the global
integer errno.

unlink

write

unlink (name)
char namef{]};

The function "unlink® erases a file.

The parameter "name"™ is a pointer to a character array
containing the name of the file to be erased.

unlink returns 255 as its value if the operation wasn't
successful; otherwise it returns a value in the range 0 to
3. Unlike many other i/o functions, unlink never modifies
the global integer errno.

write(fd,buf,bufsize)
int fd, bufsize; char buf;

The write function writes characters to a device or disk
file from the caller's buffer. The characters are written
to the device or file directly from the caller's buffer.

The parameter "fd" specifies the device or file. It
contains the file descriptor which was returned by the open
function to the caller when the device or file was opened.

The parameter "buf" is a pointer to the buffer containing

Copyright 1981 (c) by Manx Software Systems Page VI.17

a

- Aztec C IIX LIBRARY FUNCTIONS

the characters to be written.

The parameter "bufsize" specifies the number of characters
to be written.

If the operation is successful, write returns as its value
the number of characters written.

If the operation is unsuccessful, write returns -1 and
places a code in the global integer errno. If the operation
is successful, errno is not modified. f

For more information on the detailed operation of the write
function when writing to the different devices and to disk
files, see the chapter on unbuffered i/o.

3. String Manipulation
These functions allow manipulation of "C" style strings as

described in The C Programming Language by Kernighan and
Ritchie,

atof
double atof(cp)
char *cp;

ASCII to float conversion routine.

atoi

int atoi(cp)
char *cp;

Converts ASCII string of decimal digits into an integer.
Atoi will stop as soon as it encounters a non-digit in the
string.

atol

long atol(cp)
char *cp;

ASCII to long conversion routine.

ftoa

int ftoa (m,cp,precision,type)
double m;

Copyright 1981 (c) by Manx Software Systems Page VI.18

Aztec C IXI LIBRARY FUNCTIONS

char *cp;
int precision;
int type;

convert from float/double format to character format. The
value of m is converted to ans ASCII string and assigned to
*c, The precision operand specifies the number of digits to
the right of the decimal point. Type can be

0 for E format

1l for F format.

index

char *index(cp,c)
char *cp, c¢;

Searches string cp for the letter specified by parameter
*c". If the letter is found then the function returns a

pointer to its position. Othersise a 0 is returned.

rindex
char *rindex(cp,c)

Functions the same as index, but the scan begins from the
end of the string and moves towards the beginning.

sscanf

int sscanf(string,control, argl, arg2, ...)
char *string
char *control;

Formats string according to control, Formating is done as
described in chapter 7, Input and Output, of The C

Programming Language.
strcmp

strcmp(strl,str2)
char *strl, *str2;

Compares strl to str2 and returns: 0 (zero) if strings are

equal, -1 (negative one) if strl is less than str2, and 1
(one) if strl is greater than str2.

strcpy

strcpy(dest,src)
char *dest, *src;

Copyright 1981 (c) by Manx Software Systems Page VI.19

Aztec C 1I LIBRARY FUNCTIONS

int max;

Copies the string pointed to by src into destination.

strlen

strlen(str)

char *str;

Returns the length of str, The length does not include the
null at the end of the string.

strncmp

strncmp(strl,str2,max)
char *strl, *str2;
int max;

Compares strl to str2 the same as strcmp, but compares at
most max characters,

strncpy

strncpy(dest,src,max)
char *dest, *src;
int max;

copies the string pointed to by src into dest, but copi;s

~at most max characters. The destination may not be null

terminated when copy is done.

4.0tility Routines

alloc

char *alloc(size)
int size;

Allocates memory with size numer of bytes and returns
pointer to beginning.

blqcknv

Copyr

blockmv(dest, src, length)
char *dest, *srcj;
int dest;

Moves data from src to dest. The number of bytes is

ight 1981 (c) by Manx Software Systems Page VI.20

"Astec C II LIBRARY FUNCTIONS

specified by parameter length., N o checking for overlap is
performed,

clear

clear(area,length,value)
char *area; int length, value;

Initializes length bytes starting at area with value.

exit

exit(n)
int n;

Returns to the operating system. Any streams which have
been opened with fopen but not closed with fclose will be

closed at this time. If N is non zero then any submit that
was in progress will abort.

format
format (function,format,argptr)
int (*function) ();
char *format; unsigned *argptr;
Formats data according to the string format and calls the

given function with each character of the result. Formatting
is done as described in chapter 7, Input and Output, of The

C Programming Language. Note: the long and floating point
conversions are not yet supported.

e.g. The printf routine looks like this:

printf(fmt,args)
char *fmt; unsigned args;

int putchar();
format (putchar,fmt,&args);
isdigit

isdigit(c)
int c;

Returns one if ¢ is a digit, zero otherwise.
islowver

islower(c)
int ¢;

Copyright 1981 (c) by Manx Software Systems Page VI.21

Axztec C II LIBRARY FUNCTIONS

Returns one if ¢ is a lower case alphabetic, zero
otherwise.

1au§per

issupper (c)
char c;

Tests whether argument is an uppper case letter and returns
non zero if it is and zero if not.

sprintf

sprintf(buffer,format,argl,arg2,...)"
char *buffer, formatj;...

Formats data according to the string format and leaves the
result in buffer. Formatting is done as described in
chapter 7, " Input and Output", of The C Programming
Language

tolower

tolower(c)
int c¢;

If c is upper case,c is mapped to lower case and the new
value returned; otherwise ¢ is returned.

toupper

toupper (c)
int c;

If ¢ is lower case, it is mapped to upper case and the new
value returned; otherwise ¢ is returned.

S. Operating System Interface

bdos
bdos (bc,de)
int bc,de;
Calls the bdos with tegister pair BC set to bc and DE set
to de. The value returned in HL is the return value.
bios

bios(n,bc,de)
int n,bc,de;

Copyright 1981 (c) by Manx Software Systems Page VI.22

Aztec C 1I LIBRARY FUNCTIONS

Calls the n'th entry into the bios with BC set to bc and DE
set to de, The returned value is the accumulator contents

gn return from the CP/M BIOS. N equal to zero is a warm
oot,

bioshl

bioshl(n,bc,de)
int n,bc,de;

Calls the n'th entry into the bios with BC set to bc and DE
set to de. The returned value is the HL register contents
on return from the CP/M BIOS. N equal to zero is a warm
boot.

CPM
CPM(bc,de)
int bc,de;
Calls the bdos with register pair BC set to bc and DE set
to de. The value returned in HL is the return value.
exit
exit(n)
int n;
Returns to the operating system. Any streams which have
been opened with fopen but not closed with fclose will be
closed at this time. N is the return code, which is ignored
in this release but may be used by future versions.
fcbinit
fcbinit(name, fcbptr)
char *name; struct _fcb *fcbptr;
The _fcb structure is initialized to zeros and name is
unpacked into the proper places. The _fcb structure is
defined in "io.c". The structure need not be used;
however, fcbptr must point to an area at least 36 bytes
long.
settop

char *gettop(size)
unsigned size;

The current top of available memory is moved up by size

bytes and the 0ld value of the top is returned. If the new

top is within 512 bytes of the stack pointer, NULL will be

Copyright 1981 (c) by Manx Software Systems Page VI.23

Aztec C II LIBRARY FUNCTIONS

returned.
§. Math and Scientific Routines
sqrt
double sqrt(x);
double x;
sqrt'is a function of one argument which returns as its
value the square root of the argument. The type of the
returned value is double. :
The argument which is passed to sqrt must be of type double
and must be greater than or equal to zero.
If sqrt detects an error, it sets a code in the global
integer variable ERRNO and returns an arbitrary value to the
caller. If sqrt doesn't detect an error, it returns to the
caller without modifying ERRNO. Table 2.1.1 1lists the
symbolic values which sqrt may set in ERRNO and their
meanings. The file MATH.H, which can be included in a user's
module, declares ERRNO to be a global integer and defines
the numeric value associated with each symbolic value.
EXAMPLE

In the following program sqrt computes the square root of 2.
If the computation returns a non-zero value in ERRNO, the
program prints an error message.

#include "libc.h"
#¢include "errno.h"
main() {

double sqrt(),a;

errno = 0;
a = sqrt((double) 2);
if (errno 1= 0) {
if (errno == EDOM)
printf(®"errno set to EDOM by sqrt\n");

~else
printf("invalid errno= %d returnedbysqrt\n");

}
Table 2.1.1 Error codes returned in ERRNO by sqrt

O - G G G S Sms M Sub e I D Sus GIE Gus G GIL N0 R G GED SIS GED GI S G5 SED VR GFR GRS N G GUn Gun G G S dne
— Gm e G G G I Gme T T T G B G S G G G IS G G GID GRS G SN GUV Sun G D G5 SN GID G N GHL S GID GRS SR SR

- = - S G G - ST S G S G G G G Gub SIS G GER G GS GED G B G G B D G I G G S G G -

Copyright 1981 (c¢) by Manx Software Systems Page VI.24

Aztec C II LIBRARY FUNCTIONS

e G G S I T G GE G D S e G I T SN G G G G e GIY G I GEE G N B G S G G G W S G S

log
double log(x);
double x;
log is a function of one argument which returns the natural
logarithm of the argument as its value, as a double
precision floating point number.
The argument which is passed to log must be a double
precision floating point number and must be greater than
zero.
If log detects an error, it sets a code in the global
variable ERRNO and returns an arbitrary value;otherwise, it
returns to the caller without modifying ERRNO. Table 2.2.1
lists the symbolic values which log may set in ERRNO, the
associated values returned by log, and the meaning.
Table 2.2.1 Error codes returned in ERRNO by log
| Code | 1log(x) | Meaning |
| EDOM | -HUGE | x <= 0.0 |
logl0
double 1loglO(x);

double x;

logl0 is a function of one argument which returns as its
value the base-10 logarithm of the argument. The type of the
returned value is double,

The argument must be greater than zero, and must be of type
double.

If logl0 detects an error, it sets a code in the global
integer ERRNO and returns an arbitrary value to the caller;
otherwise, it returns to the caller without modifying ERRNO.
Table 2.3.1 lists the symbolic values which logl0 may set in
ERRNO, the associated value returned by logl0, and the
meaning.

Table 2.1.1 Error codes returned in ERRNO by logl0

Copyright 1981 (c) by Manx Software Systems Page VI.25

Aztec C II LIBRARY FUNCTIONS

| EDOM | =-5.2el51 | x <= 0.0 I
exp
double exp(x):
double x;
exp is a function of one arqument which returns as its value
e**(argument). The type of the returned value is double.
The arqument must be greater than -354.8 and less than
349.3; it must be of type double.
If exp is unable to perfofm the computation, it sets a code
in the global integer ERRNO and returns an arbitrary value;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.4.1 lists the symbolic values that exp may
set in ERRNO, the associated value of exp, and the meaning.
Table 2.1.1 Error codes returned in ERRNO by exp
Code	exp(x)	Meaning
ERANGE	5.2el51	x > 349.3
ERANGE	0.0	x < -354,8
pow

double pow(x,y);
double x,y;

pow is a function of two arguments, for example, x and y,
which, when called, returns as its value x to the y-th
power (x**y, in FORTRAN notation). x is the first argument
to pow, and y the second. The value returned is of type
double. .

The arguments must meet the following requirements:
X cannot be less than zero;
if x equals zero, y must be greater than zero;
if x is greater than zero, then
-354.8 < y*log(x) < 349.3

If pow is unable to perform the calculation, it sets a code
in the global integer ERRNO and returns an arbitrary value;
otherwise it returns the computed number as its value
without modifying ERRNO. Table 2.6.1 lists the symbolic
codes which pow may set in ERRNO, the associated value
returned by pow, and the meaning.

Copyright 1981 (c) by Manx Software Systems Page VI.26

. Aztec C II LIBRARY FUNCTIONS

Table 2.1.1 Error codes returned in ERRNO by pow

I Code | pow(x,y) | Meaning |
EDOM	=5.2el51	x<0 or x=y=0
ERANGE	5.2el51	y*log(x) > 349.3
ERANGE	0.0	y*log(x) < =-354.8

8sin
double sin(x);
double x;
sin is a function of one argument which, when called,
~returns as its value the sine of the argument. The value
returned is of type double. ‘
The arqument is in radians, and its absolute value must be
less than 6.7465e9. The type of the argument is double.
If sin can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed number, without modifying
ERRNO. Table 2.,7.1 lists the symbolic codes which sin may
set in ERRNO, the associated values returned by sin, and the
meaning.
Table 2.1.1 Error codes returned in ERRNO by sin
| Code | sin(x) | Meaning |
| ERANGE | 0.0 |abs(x) >= 6.7465e9 |
cos

double cos(x):
double x;

cos is a function of one argument which, when called,
returns as its value the cosine of the argument. The
returned value is of type double.

The argument is in radians, and its absolute value must be
less than 6.7465e9. The type of the arqument is double.

If cos can't perform the computation, it returns an

arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value, without modifying

Copyright 1981 (c) by Manx Software Systems Page VI.27

Aztec C II | LIBRARY PUNCTIONS

the associated value returned by cos, and the meaning.

Table 2.1.1 Error codes returned in ERRNO by cos

S G s S GRS G U G G S G S G G G GES G D G P G G S G U S G S GRS GMD GRS G G M U CE TED SEe SR Gun G G GUS =S
D G G T G D G G . G S G G GIP S G CIS T W G G GES G G G G - G S S G S S G G G G G GE G G W O

e G e I IR G BT G G GAS G G GES GEn CER G G G G G G G SR G Gu P B G S e SR G S W e G G G G W G G W G

tan

double tan(x);
double x;

tan is a function of one argument which, when called,
returns as its value the tangent of the argument. The type
of the value returned is double.

The argumentkls in :adlans, and its absolute value must be
less than 6.7465e9. The type of the argument is double.

If tan can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.8.1 lists the codes which tan may set in
ERRNO, the associated value returned by tan, and the meaning.

Table 2.1.1 Error codes returned in ERRNO by tan

- s > S S - G P > S G S G = S G G - S G - Y T - ——-—
s s > G G G e S e e S B B e o G S e G > S B e G G . T G G S S S G G = - =

cotan

double cotan(x);
double x;

cotan is a function of one argument which, when called,
returns as its value the cotangent of the argument. The
returned value is of type double.

The argument is in radlans, and its absolute value must be
greater than 1.91e-152 and less than 6.7465e9. The type of
the argument is double.

If cotan can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.9.1 lists the symbolic codes which cotan may

Copyright 1981 (c) by Manx Software Systems Page VI.28

Aztec C 11 : : LIBRARY PUNCTIONS

set in ERRNO, the associated value returned by cotan, and
the meaning. :

Table 2.1.1 Error codes returned in ERRNO by cotan

- e G G . S P G T I G G G Gn G B I G S G G G G WSS G Gue G G G b E Gu G G GRS GEp @R GRS S S Gm S SR e

| Code | cotan(x) | Meaning |

| ERANGE | 5.2el51 | 0<x<1.9le-152 |

| ERANGE | =5.2el51 | =1.91e-152 <x<0 |
|

| ERANGE | 0.0 abs(x) >= 6.7465e9 |

- o o e W . G o G S G G G I N G G G SN G G GRS G W S B S Gue S e B G Gu BV GI 0 G G G G G

asin
double asin(x);
double x;
asin is a function of one argument which, when called,
returns as its value the arcsine of the argument. The
returned value is of type double.
The absolute value of the argument must be less than or
equal to 1.0. Its type is double.
I1f asin can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value without modifying
ERRNO. Tablé 2.10.1 lists the symbolic codes which asin may
set in ERRNO, the associated values returned by asin, and
the meaning.
Table 2.1.1 Error codes returned in ERRNO by asin
| Code | asin(x) | Meaning |
| EDOM | 0.0 | abs(x) > 1.0 |
acos

double acos(x);
double x;

acos is a function of one argument which, when called,
returns as its value the arcosine of the argument. The
returned value is of type double.

The absolute value of the argument must be less than or
equal to 1.0. It must be of type double.

Copyright 1981 (c) by Manx Software Systems Page VI.29

Aztec C 1I LIBRARY FUNCTIONS

atan

atan2

If acos can'g perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.11.1 lists the symbolic codes which acos may
set in ERRNO, the associated value returned by acos, and the
meaning.

Table 2.1.1 Error codes returned in ERRNO by acos

double atan(x);
double x; »

atan is a function of one argument which, when called,
returns as its value the arctangent of the argument. The
returned value is of type double.

The argument can be any real value, and must be of type
double.

Unlike many of the other math functions, atan never returns
code in ERRNO,

double atan2(y,x);
double y,x;

atan2 is a function of two arguments, say x and y, which,

when called, returns as its value the arctangent of y/x, in
radians. y is the first argument, and x is the second. The
returned value is of type double, :

The arguments can assume any real values, except that x and
Y cannot both be zero. If x equals zero, the value returned
is also zero. :

If atan2 can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.12.1 lists the symbolic codes which atan2 may -
set in ERRNO, the associated values returned by atan2, and
the meaning. ‘

Table 2.1.1 Error codes returned in ERRNO by atan2

COpy:ight 1981 (c) by Manx Software Systems Page VI.30

Aztec C II LIBRARY FUNCTIONS

8inh

cosh

- - - v - e G s W W U G G B B W G WD e P G B S G G e Q26 > G S WO G G S = —

I G s G G G A G W TS S G WS e S Gem G s G s SR GRS B G G G G G G G G S . T G G G = G

double sinh(x);
double x;

sinh is a function of one argument which returns as its
value the hyperbolic sine of the argument. The returned
value is of type double.

The absolute value of the argument must be less than
348.606839, and is of type double.

If sinh can't perform the computation, it sets a code in the
global integer ERRNO and returns an arbitrary value;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.13.1 lists the symbolic codes which sinh may
set in ERRNO, the value returned by sinh, and the meaning.

Table 2.1.1 Error codes returned in ERRNO by sinh

G B (D G G G T G G G G G I ST G G G G GE e I GIn GRS G G S G WIS G G G G R G SIS G G e GEs G G G G G e

D S G S BT G G W G G G G S SED (e G2 G Gus G G GEP G G G G G G WIS G G P G G GRG She Gas GEe A G SR G G G G G

| ERANGE | 5.2el51 | abs(x) > 348.606839 |

S G G G G S G G G G G S S L > G G G SRS SIS Gie G N S G G G G G o G G G Y - s . G G P G G G G-

double cosh(x);
double x;

cosh is a function of one argument which returns as its
value the hyperbolic cosine of the argument. The value
returned is of type double.

The absolute value of the argument must be less than
348.606839, and it must be of type double.

If cosh can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value without modifying
ERRNO., Table 2.14.1 lists the symbolic codes which cosh may
set in ERRNO, the associated values returned by cosh, and

the meaning.

Table 2.1.1 Error codes returned in ERRNO by cosh

S B S . G S D G G Gt B G G U G S T G G G G WS G G GUS Ge Gt G s G e S W G W T G S G G -

Copyright 1981 (c) by Manx Software Systems Page VI.31

Aztec C 11 LIBRARY FUNCTIONS

| Code | cosh(x) | Meaning . |

- o e o e e G S D G G G G S e S G G -

| ERANGE | 5.2el51 | abs(x) > 348.606839 |

tanh
double tanh(x);
double x;

tanh is a function of one argument which returns as its
value the hyperbolic tangent of its argument. The value
returned is of type double.

The argument can be any real number whatsoever. It must,
however, be of type double.

Unlike some of the other math functions, tanh never modifies
ERRNO, and always returns the computed value. :

Copyright 1981 (c) by Manx Software Systems Page VI.32

Aztec C II MICROSOFT COMPATIBILITY

MICROSOFT COMPATIBILITY

The Microsoft assembler (M80) and linker (L80) can be used with
the Aztec C II compiler. The "-M" option must be specified on all
compilations targeted for the M80 assembler as in the following:

CII -M crtdrivr.c
Some older versions of L80 will not work with Aztec C 1I.

You must specify:
#¢include "libc.h"

in every module that will be used with the MICROSOFT system.

An 8080 library for use with the MICROSOFT L80 linker is supplied
on the distribution disk. Read the release document for more
details. Generally a ZB80 Microsoft library will not be included
on the distribution disk and must be created. To create a library
to use with the L80 linker, all of the ".C" programs supplied on
the distribution disk must be compiled using the "-M" option,
assembled with the M80 assembler, and placed in a Microsoft
library. The “.ASM" files supplied on the distribution disk must
also be assembled with M80 and placed in the library. Some of the
supplied assembler source has "8080" or "zZ80" as part of the

filename. Only the 8080 versions should be assembled for an 8080
system, and only the 280 versions should be assembled for a 280
system, Code intended for assembly with the MICROSOFT MACRO-80
assembler should not include labels with leading "_".

You must specify .8080 to the MICROSOFT M80 assembler to assemble
source files created by Aztec C 1I. 280 assembler subroutines
using Z80 mnemonics can be combined with the Aztec C II modules

by specifying .280 to the MICROSOFT assembler for the 280 source
modules. The "rel" file outputs for .8080 and .Z80 are compatible.

Copyright 1981 (c) by Manx Software Systems VII.l

Aztec C II ERPOR :CODES

ERROR MESSAGES

ERROR NUMBER EXPLANATION
1 bad digit in octal constant
2 ‘string space exausted (see COMPILER -2 option)
3 unterminated string
4 compiler error in effaddr
5 illegal type for function
6 inappropriate arguments
7 bad declaration syntax
8 name not allowed here
9 must be constant
10 size must be positive integer
11 data type too complex
12 illegal pointer reference
13 unimplemented type
14 v unimplemented type
15 : storage class conflict
16 data type conflict
17 unsupported data type
18 data type conflict
19 too many structures
20 structure redeclaration
21 missing)'s
22 struct decl syntax
23 undefined struct name
24 need right parenthesis
25 expected symbol here
26 must be structure/union member
27 illegal type CAST
28 - incompatable structures
29 structure not allowed here
30 missing : on ? expr
31 call of non-function
32 illegal pointer calculation
33 illegal type
34 undefined symbol
35 Typedef not allowed here ‘
36 no more expression space (see COMPILER-=E :option)
37 invalid expression -
38 no auto. aggregate initialization
39 no strings in automatic
40 this shouldn't happen
41 invalid initializer
42 too many initializers
43 undefined structure initialization
44 too many structure initializers
45 bad declaration syntax
46 missing closing bracket
47 open failure on include file
48 illegal symbol name ‘
49 already defined
50 missing bracket

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page VIII.1

Aztec C 1I

51
52
53
54
55
56

'ERROR ©0D7S

must be lvalue

symbol table overflow

multiply defined label

too many labels

missing quote

missing apostrophe

line too long

illegal # encountered

macro table full (see COMPILER -X option)
output file error

reference of member of undefined structure
function body must be compound statement
undefined label

inappropriate arguments

illegal argument name

expected comma

invalid else

syntax error

missing semicolon

bad goto syntax

statement syntax

statement syntax

statement syntax

case value must be integer constant
missing colon on case ,
too many cases in switch (see COMPILER =Y OPTION)
case outside of switch

missing colon

duplicate default

default outside of switch
break/continue error

illegal character

too many nested includes

illegal character

not an argument

null dimension

invalid character constant

not a structure

invalid storage class

symbol redeclared :

illegal use of floating point type
illegal type conversion

illegal expression type for switch

bad argument to define

no argument list

missing arg

bad arg

not enough args e
conversion not found in code table

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page VIII.2

Aztec C 1IX ERROR CODES

ERROR PROCESSING

During run time three variables are used to enhance error
handling. An external variable "errno" is an integer that is set
to an error code by the 1/0 and scientific math routines.
"Sysvec® is an array used to control error processing for
floating point numbers. "flterr" is set to indicate floating
point arithmetic errors. "flterr®” set to 0 indicates a good
result, a non-zero value indicates a bad result., See the section
on floating point support for more details.

"errno®™ is set to 0 at the beginning of each I/0 request and is
set to a non-zero value if an error occurred.

ferrno" is set to a non-zero value if an error occurred in
processing a scientific math function see section VI, Library
Functions for more information.

The definition for the various settings for errno is in file
errno.h. The following is the contents of errno.h for v1.05 of
Aztec C II:

int errno;

#define ENOENT -1 file does not exist

#define E2BIG -2 not used

#define EBADF -3 bad file descriptor - file is not open or
improper operation

#define ENOMEM -4 insufficient memory for requested
operation

#define EEXIST -5 file already exists on create request

#define EINVAL -6 invalid argument

#define ENFILE -7 exceeded maximum number of disk files

¢define EMFILE -8 exceeded maximum number of file
descriptors

#define ENOTTY -9 not used

#define EACCES =10 invalid access request

$¢define ERANGE -20 invalid argument to math function:
function value can't be computed

#$define EDOM -21 invalid argument to math function:

argument value illegal by definition

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page VIII.3

Aztec C II ‘ LIBUTIL LIBRARY UTILITY

LIBRARY MAINTENANCE

LIBUTIL
A, SUMMARY -
The LIBUTIL LIBrary UTILity is used in order to:

l. create a library

2. append a library (

3. produce an index list (-

4. extract members (

5. replace a library (-

6. create a library using an
extended command line (.)

-a)

t)
-x)
)

I

l. LIBUTIL -o ekample.lib X.0 X.0
USE - to create a library
FUNCTION the following creates a private library,
example.lib, containing modules subl.o
and sub2.o0

>LIBUTIL -o example.lib subl.o sub2.0

2., LIBUTIL option -a

USE - to append to a library
FUNCTION- the following appends exmpl.o to the
example.lib

>LIBUTIL -0 example.lib -a exmpl.o

this function can be used to append any
number of .0 files to the library. For
example, the following appends exmpl.o
and smpl.o to the example.lib

>LIBUTIL -0 example.lib -a exmpl.o smpl.o
NB If a large number of files needs to
be appended to a library, it is advantageous
to use the SUBMIT option (see item 7)

3. LIBUTIL option -t

USE - to produce an index listing of modules
in a given library

FUNCTION- the following displays a listing of all
modules in a particular library, example.lib:

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.1

Aztec C II LIBUTIL LIBRARY UTILITY

>LIBUTIL -0 example.lib -t

NB this function will allow only one
library to be listed at a time

4. LIBUTIL option -x

USE - a. copies a particular library module into
' a relocatable object file
b. copies a complete library into relocatable
' object files
FUNCTION- a. the following copies library module, exmpl
into a relocatable object file:

>LIBUTIL -o example.lib -x exmpl

b. the following copies a complete library,
‘example.lib, (including all modules
contained within it) into relocatable object

files:
>LIBUTIL -0 example.lib =-x

NB. It should be noted that when copying a
single module the LIBUTIL executes the
command and returns. When copying a
complete library, the LIBUTIL lists
the modules being copied.

5. LIBUTIL option ~-r

USE - to replace a library module with the contents
of a relocatable object file

FUNCTION- the following replaces the library module
subl with the relocatable object file

subl.o

>LIBUTIL -o example.lib -r subl.o

6. LIBUTIL -0 library name .

USE to create a library using an extended command

line
FUNCTION the following creates a library, charles.lib
and appends to it subl.o, sub2.0,

sub3,o, sub4.o, etc.

>xsub
LIBUTIL -o charles 1lib .
subl.o sub2.0 sub3.0 sub4.o

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.2

Aztec C I1I LIBUTIL LIBRARY UTILITY

B. DETAILED EXPLANATION
Creating a Library

The command for creating a library has the following two formats:

format 1:

LIBUTIL [-o <output library name>] <input file list>

format 2:

LIBUTIL [-o <output library name>] <input file list>
one or more lists, each an <input file list> ‘

If the optional parameter [-o <output library name>] is
specified, the name of the file containing the library to be
created is <output library name>; if this parameter is not
specified, the name of the file containing the library to be
created is "libc.lib". In either case, LIBUTIL proceeds by first
creating the library in a new file having a temporary name; if
the creation is successful, LIBUTIL then erases the file named
<output library file>, if it exists, and renames the file
containing the newly created library to <output library file>.

<input file list> defines the files containing the modules which
are to be placed in the library. An input file can be either (1)
a file created by the Manx assembler, AS, in which case it
contains a single relocatable object module, or it can be (2)
another library which was created by LIBUTIL. In either case, the
input files are not modified by LIBUTIL; LIBUTIL just copies the
modules in the input files to the output library.

An <input file list> is one or more names, separated by spaces. A
name can be one of the following: (1) a complete CP/M file name;
eg, b:subl.o; (2) a CP/M file name which doesn't specify the disk
drive on which the file resides; eg, subl.o; in this case,
LIBUTIL assumes the file is on the default disk drive; (3) a name
which doesn't specify an extension; in this case, LIBUTIL assumes
the file name is <name)>.o. For example, if the name is subl,
LIBUTIL assumes the file name is subl.o and is on the default
disk drive. If the name is b:subl, LIBUTIL assumes the file name

is b:subl,o. ‘

When an input file contains a single relocatable object module,
the name by which the module is known in the library is the
filename, less the disk drive identifier and the extension. For
example, if the input file is b:subl.o, then the module name
within the created library is subl.

When an input file is itself a library, the member names in the
created library are the same as the member names in the input
library. For example, if an input file is a library containing
modules subl, sub2, and sub3, then the name of these modules in

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.3

Aztec C II LIBUTIL LIBRARY UTILITY

the created library are also subl, sub2, and sub3.

To specify that there are additional lines of <input file lists>,
a period surrounded by at least one space on either side must
appear in the <input file list> on the first line of the command.
Of course, LIBUTIL doesn't assume that such a period is a name;
it just acts as a flag to LIBUTIL, specifying that there are
additional lines of <input file list>s. Also, names can both
preceed and follow the period flag.

The order in which modules are placed in the created library is
specified by the order of the names in the input file lists,
If there is only one input file list, for example:

subl.o sub2.0 sub3.o0 ,

where the input files each contain a single relocatable object
module, then the order of the modules in the library would be:
subl, sub2, sub3,

If an input module is itself a library, then its modules are
copied to the created library in the same order. If there is
only one input file list, for example

subl.o 1libl.lib sub2.o

where subl.o and sub2.0 each contain a single relocatable object
module and 1ibl.lib is a library containing modules sub3, sub4,
and sub5, in that order, then the created library would contain
modules in the following order:

subl, sub3, sub4, sub5, sub2.

If there are additional lines of input file lists, then modules
are placed in the created library in the following order: first, the
modules in the files preceeding the period flag are placed in the
created library, as defined above; second, the modules in the
additional input file lists are placed in the created library,
third, the modules in the files succeeding the period flag are
placed in the created library. For example, suppose LIBUTIL is
invoked with the following sequence:

LIBUTIL -o newlib.lib subl.o . sub2.0
sub3.0 sub4.o0
sub5.0 sub6.0

If each of the input files contains a single relocatable objgct
module, then the created library would contain the following
modules in the specified order: subl, sub3, sub4, sub5, subé6,
sub2.

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.4

Aztec C 1I LIBUTIL LIBRARY UTILITY

Listing the modules in a ljbrary

To have LIBUTIL produce a listing of the modules in a library,
LIBUTIL must be invoked with a "dash parameter”™ which contains
the character 't'. A dash parameter is simply a parameter which
has a dash (-) as its first character. LIBUTIL lists only the
modules in the library, not the functions.

The user can explicitly tell LIBUTIL the name of the library file
to be listed by including the character 'o' in a dash parameter;
in this case, LIBUTIL assumes that the following parameter is the
name of the library file.

The user can implicitly tell LIBUTIL which library file is to be
listed by not including the character 'o' in a dash parameter; in
this case, LIBUTIL assumes that the file libc.lib is to be

listed.,

LIBUTIL will not perform multiple functions during a single
invocation. For example, you can't make it create a library and
then list the contents with only a single activation of LIBUTIL;
you would have to activate it to create the library, then
activate it again to list the contents.

The parameter list to LIBUTIL, when it is to perform a listing,
can include either one or two dash parameters. If one is used,
then both the 't' character and the 'o' character (if specified)
are in it; in this case, they can appear in any order. If two
dash parameters are used, then one contains the single character
't' and the other the single character 'o'. The only restriction
in this case is that the name of the library file must be the
parameteﬁ §tring immediately following the dash parameter which
has the 'o'.

EXAMPLES:

LIBUTIL -t ,
lists the modules in the library file libc.lib

LIBUTIL -ot example.lib
LIBUTIL -t -0 example.lib

LIBUTIL -0 example.lib -t
each of these three lines causes LIBUTIL to list the

modules in the library example.lib

Adding modules to a library and replacing modules in a lib:ary

LIBUTIL can be told to add modules to a library or replace
modules in a library by including one of the characters 'a' or
'r' in a dash parameter. There is only one function, which
performs both an 'add' operation and a 'replace' operation.
Either character, 'a' or 'r' causes LIBUTIL to perform the
function. The user also tells LIBUTIL, either explicitly or
implicitly, the name of the library file on which the operation

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.5

Aztec C 1I LIBUTIL LIBRARY UTILITY

"is to occur and gives LIBUTIL a list of files whose modules are

to be added to or replaced in the library. Each of these files
can contain either a single relocatable object module or can be
itself a library. In the following paragraphs, the library file
on which the operation is to occur is called the ‘subject library
file' and each file which is to be added or replaced is called an
'input file’'.

. LIBUTIL proceeds as follows: it creates a library file with a
temporary name. Then it copies modules one at a time from the
subject library to the new library; before copying each module,
it checks whether there is a file in the input file list whose
name, less drive specification and extent, is the same as that of
the module; if not, the module is copied. If they do match,
'LIBUTIL copies the contents of the matching file to the new
library, and the module from the subject library is not copied.
If, after LIBUTIL has processed all modules in the subject
library in this manner, any files in the input file list remain
“which haven't been copied to the new library, LIBUTIL then copies
the contents of these files to the new library. Finally, LIBUTIL
erases the original subject library and renames the new library,
~giving it the name of the subject library file. -

The user can give LIBUTIL the name of the subject library either
explicitly or implicitly. To explicitly define it, the user
includes the character 'o' in a dash parameter; the parameter
immediately following this dash parameter must then be the name
of the subject library file. To implicitly define it, the user
simply doesn't include the 'o' character in adash parameter;
LIBUTIL then assumes that the name of the subject library file is
*libc.lib’.

All parameters which follow the dash parameters and the subject
file name are names of input files. The drive identifier and/or
the extent of these names can be optionally ommitted. If the
drive identifier is omitted, LIBUTIL assumes the file is on the
default drive. If the extent is omitted, LIBUTIL assumes the

extent is ‘'ext!’.

LIBUTIL can be told to read additional input file names from one
or more lines on the console device by including the character
',' in place of one of the input file names on the LIBUTIL
command line. In this case, LIBUTIL will read input file names
from the console until another '.' is read where a file name was
expected, LIBUTIL then continues reading input file names from
the original command line.

Once LIBUTIL has finished its copy-with-replace function from the
subject library to the new library, it will append the input

files which haven't been copied to the the new library in the
same order in which it read their names from the command lines.

EXAMPLES
1. Let example.lib be a library file on the default disk drive

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.6

Aztec C 1I LIBUTIL LIBRARY UTILITY

which contains the modules subl, sub2, and sub3. To append the
module in the file newsub.o, which is also on the default drive,
to example.lib any ofthe following commands could be issued:

LIBUTIL -oa example.lib newsub
LIBUTIL -oa example.lib newsub.o
LIBUTIL -ao example.lib newsub
LIBUTIL -a -0 example.lib newsub.o
LIBUTIL -o example.lib -a newsub

After LIBUTIL is done, there will be a new library file named
example.lib, and it will contain the following modules, in the
order specified: subl, sub2, sub3, and newsub. The module in the
file newsub.o doesn't have a name; it only gets one when a copy
of it is placed in a library. The name of the module is derived
from the name of the file in which it was originally contained by
stripping that file name of the disk drive prefix and extent
suffix. In this example, the name of the module which is appended
to example.lib is thus 'newsub'. Just to beat this example to
death, suppose that we are back at the point at which we have the
original example.lib, containing modules subl, sub2, and sub3,
and that we have the file newsub.o. After entering the following
commands:

rename sub4.o=newsub.o
LIBUTIL -oa example.lib sub4

example.lib will contain modules named subl, sub2, sub3, sub4.

2. Let example.lib contain the modules subl, sub2, and sub3; and
let newlib.lib contain the modules newsubl, newsub2, and newsub3.
We can tell LIBUTIL to append the modules in newlib.lib to
example.lib by entering any of the following lines:

LIBUTIL -oa example.lib newlib.lib
LIBUTIL -a -o example.lib newlib.lib
LIBUTIL -o example.lib -a newlib.lib

After LIBUTIL is done, there will be a new example.lib, and it
will contain the following modules, in the specified order: subl,
sub2, sub3, newsubl, newsub2, newsub3.

To illustrate another point, let's rerun LIBUTIL again with the
comand specified above, starting with the original example.lib,
containing subl, sub2, and sub3, and with the library file
newlib.lib containing the modules sub3, newsubl, subl, and
newsub2., After LIBUTIL completes, there will be a new
example.lib, and it will contain the following modules, in the
specified order: subl, sub2, sub3, sub3, newsubl, subl, newsub2.
The first subl module in the new example,lib will be that from
the original example.lib, and the second will be from newlib.lib.
The first sub3 module in the new example,lib will be from the
original example.lib, and the second will be from newlib.lib. The
point being exemplified is that LIBUTIL will not replace modules

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.7

Aztec C]I LIBUTIL LIBRARY UTILITY

in the original library with modules from an input library; it
will only append modules in the input library to the subject
library.

3. Let example.lib be a library containing the modules subl,
sub2, and sub3. To replace module sub2 with the contents of the
file named sub2.0 and to append the modules in the library file
newlib.lib (which are modl, mod2, and mod3) and the module in
the file ~
newsubl.o to example.lib any of the following commands could be
entered: '

LIBUTIL -oa example.lib sub2 newlib.lib newsubl
LIBUTIL -a -0 example.lib sub2.0 newlib.lib newsubl.o

After LIBUTIL is done, there will be a new example.lib file, and

it will contain the following modules, in the order specified:

subl, sub2, sub3, modl, mod2, mod3, and newsubl. The sub2 module in the
new example.lib is the same as that in sub2.o.

4. Let example.lib be a library containing the modules subl,
sub2, and sub3. The following submit file, when

activated, will cause LIBUTIL to replace module sub2 with the
module in file sub2.,0, and append the modules in the library
newlib.lib (which are modl, mod2, and mod3), and the modules in
the files newsubl.o, newsub2.0, newsub3.0, newsub4.0, newsub5.o,
newsub6.o0, and newsub7.o0:

xsub
LIBUTIL -oa example.lib newsubl.o . newsub7 sub2

newsub2 newsub3 newsub4
newlib.lib newsub$s
newsubé6

After LIBUTIL is done, there will be a new example.lib,
containing the following modules, in the specified order: subl,
sub2, sub3, newsubl, newsub2, newsub3, newsub4, modl, mod2, mod3,
newsub5, newsub6, newsub7. The module sub2 will be a copy of that
in the file sub2.0.

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page IX.8

Aztec C II Buffered I/0 - I/O Redirection

I/0 Redirection and Buffered 1/0

Cc has two basic types of I1/0, namely buffered, sometimes called
stream I/0, and unbuffered. Unbuffered I/0 is discussed in
another section. Buffered I/0 tends to be less efficient than
unbuffered 1/0, but is easier to use.

There are three standard files in Aztec C II: stdin, stdout,
and stderr. When a program is started these three files are
opened automaticaly and file pointers are provided for them. The
getchar and scanf functions read from the stdin file. The
putchar and printf functions output to the stdout file. Run
time error messages are directed to stderr.

‘The default device for stdin, stdout, and stderr is "CON:". The

destination for stdin and stdout can be "redirected" to a disk
file or another device. To redirect stdin, specify on the command
line a "<" followed by the file name or device, for example:

myprog parml parm2 < input.fil

When "myprog" executes, all getchar requests and scanf requests
will read from file input.fil.

To redirect stdout, specify on the command line a ">" followed by
the file name or device, for example:

myprog parml parm2 > prn:

When “myprog" executes, all output requests to putchar and
printf will be directed to the printer device PRN:,

"stdin" and "stdout" can be used just as any other file pointer.
Any I/0 performed with these file pointers will be redirected if
" redirection was requested.

1/0 can be redirected to any file or the devices:

LST:
PRN:
PUN:
RDR:

The above devices can be specified as the "file name" to fopen
and open. Any I/0O to the returned file pointer (fp) or
file descriptor (fd) will be directed to the specified device.
"CON:" can also be specified as a device to fopen and open. For
example:

#include "libc.h"
main()

char ¢;
FILE *fl;

Copyright 1981 (c) by Manx Software Systems PAGE X.1l

Aztec C 1IX Buffered I/O -~ I/0 Redirection

fl=fopen('lst-' w");
fputs("this is going to the list dev1ce LST:\n",£fl);

There are a number of library routines for buffered 1/0. The
reader is directed to the LIBRARY section of this manual and

chapter 7 of The € Programming Language for more information,

Copyright 1981 (c) by Manx Software Systems PAGE X.2

Aztec C 11 OVERLAY SUPPORT

MANX Overlay Support

In order to allow users to run programs which are larger than the
limited memory size of a microcomputer, MANX provides overlay
support. This feature allows a user to divide a program into
~serveral segments; one of the segments, called the root segment,
is always in memory. The other segments, called overlays, reside
on disk and are only brought into memory when requested by the
root segment. There is only one area of memory into which
the overlays are loaded.

If an overlay is in the overlay area of memory when the root
requests that another be loaded, the newly specified overlay
segment overlays the first.

MANX does not allow overlays to be "nested"; that is, one overlay
cannot call another. Only the root can call an overlay. There is
no limit, however, to the number of overlays that the root can

call.
How to Make an QOverlay File
--What is an Overlay?
An overlay is one or more sections of executable
code that run in the same area of memory. The
advantage of an overlay, therefore, is that it

allows the user to run programs of unlimited size
in a machine which has a limited memory capacity.

How do I Call an Overlay From a Program?

The following is the format for calling an overlay:

ovloader (overlay name,pl, p2, P3ace)

The ovloader function's first parameter must be the
name of the overlay file. The parameters pl, P2, p3

are passed directly to the overlay. The overlay

loaded from a file whose name is overlay name and
whose extent is .ovr. ovloader returns as its value

the value which was returned by the overlay.

How do I Make a Function an Overlay?

Nothing special needs to be done. The overlay doesn't

have to know that it's an overlay. An overlay

activated in the normal way, and performs a normal

return,
What Files are Created on the Disc?

CcOom The file which contains the root has the extent
.com

Copyright 1981 (c) by Manx Software Systems PAGE XI.l

Aztec C II

«OVI

«ISM

Sample Run:

1)
2)
3)

OVERLAY SUPPORT

There is one file for each overlay, the extent of
which is .ovr

There is a file containing the relocatable symbol
table with the extent .rsm for the root and for any
overlay that invokes another overlay.

In -r myroot.o ovloader.o libc.lib math,lib
ln mysubl.o myroot.rsm ovbgn.o libc.lib math.lib

ln mysub2.0 myroot.rsm ovbgn.o libc.lib math.lib

The -r option in the first line denotes that the
module that is created is a root. Files myroot.rsm
and myroot.com are created.

The -r option is not specified on the second 1link
edit since it does not invoke another overlay. The
presence of the ".rsm" file in the parameter list is
all that is necessary to inform the 1linker that

mysubl.,o is an overlay file.

The third 1line creates a second overlay file that
runs in the same space as the first overlay file.

Copyright 1981 (c) by Manx Software Systems PAGE XI.2

Aztec C 1II OVERLAY SUPPORT

address
x'100° e —————————————— e +
| base module |
x'9F0" fom———— e —————————————————— +
| module 1 |
x'1C20°’ frmmmm e +
- module 2 |
frmm e ————————————— e +
Figure 1
A single binary image with 3 segments
e attatataetaty + x'100°
| base “"root" module]
o ————— +
x'9F0" i | x'9F0"
frrmm—— e —————— + frmmmm e ———— e —————
| module 1 | | module 2
e —————————— ——————————— + frm—————— e ————————————— +
Figure 2

Layout of the Program in Figure 1 as an Overlay

Figure 1 shows a program that can be logicaly divided into three
segments as it would look if run as a single module. Figure 2
shows the same program run as an overlay. In figure 2 module 1
and module 2 occupy the same memory ljocations. A possible flow of
control would be for the base routine to call module 1, module 1
then returns to the root and the root calls module 2, module 2
returns to the root and the root calls module 1 again. Then
module 1 returns to the root the root exits to the operating
system. Notice that all overlay segments must return to their
caller and that overlays at the same level cannot directly invoke
each other.

Programmer Information

The root causes an overlay to be loaded into memory and control
to be passed to it by calling the MANX-supplied function
"ovloader”, which must reside in the root segment. The parameters
to ovloader are a character string, giving the name of the
overlay to be loaded, followed by the parameters which are to be
passed to the overlay. "ovloader® is of type "int".

Wwhen the overlay is loaded, control passes to the MANX-supplied
function "ovbgn"™, which must be the first function of the

Copyright 1981 (c) by Manx software Systems PAGE XI.3

Aztec C II OVERLAY SUPPORT

overlay. In turn, ovbgn transfers control to the function in the
overlay whose name is the same as that of the overlay; ovbgn
passes the parameters to it which were passed to ovloader. This
function must return a value of type "int" or a pointer.

When the function to which ovbgn passed control completes its
processing, it simply returns, Control then passes back to the
root segment, at the instruction in the user's program following
the one that called ovloader. The value returned to the root is
the value which was returned to ovbgn by the user's routine in

the overlay.
Example

In this example, the root segment, which consists of the function
*main® and any neccesary run-time library routines, behaves as

follows:

(1) it calls the overlay ovlyl, passing it as parameter a
- pointer to the string "first message"”.
(2) it prints the integer value returned to it by ovlyl;
(3) it ¢calls the overlay ovly2, passing it a pointer to the
string "second message®;
(4) it prints the integer value returned to it by ovly2.

The overlay segment ovlyl consists of the function ovlyl, the
MANX function ovbgn, and any neccesary run-time library routines.
It prints the message "in ovlyl" plus whatever character string
was passed to it by main. '

The overlay segment ovly2 consists of the function ovly2, the

function ovbgn, and any neccesary run-time library routines. It .

prints the message "in ovly2", plus whatever character string was
passed to it by main. :

Here then is the main function:

main() {
~int a;

a = ovloader("ovlyl","first message"”) ;
printf("in main. ovlyl returned $d\n", a);
a = ovloader("ovly2","second message") ;
printf("in main, ovly2 returned $d\n",a);

}

Here is ovlyl:

ovlyl(a)
char *a;

printf(”"in ovlyl. %s\n",2);
return 1;

Copyright 1981 (c) by Manx Software Systems PAGE XI.4

Aztec C 1I OVERLAY SUPPORT

Here is ovly2:

ovly2(a)
char *aj;

printf("in ovly2. $s\n",a);
return 2;

}

When the segments are generated and the com file activated, the
following messages appear on the console:

in ovlyl. first message.
in main., ovlyl returned 1.
in ovly2. second message.
in main, ovly2 returned 2.

Creating a root segment and overlay segments

To create a root segment and one or more overlay segments, the
MANX utility "ovln®" must be run several times. Each execution
creates one segment and places it in a separate disk file. The
first execution must create the root segment. This execution also
creates a file containing a symbol table, which must be specified
during the subsequent executions of ovln which create the overlay

segments.

To create a segment, ovln is activated in the same manner as
is the MANX linkage editor utility, "ln", when a normal "com"
file is to be created. When creating a root segment, the only
difference is that the character 'r' must be contained in one
of the "dash parameters" to ovln. ovln then creates a root
segment in file whose extent is "com” and a symbol table in the
file whose extension is "rsm". The filename of these two
files (which is the part of the file name which remains after the
disk drive identifier and extent are removed) is the same as

that of the first file specified to ovln.

when an overlay segment is to be created, the first three
parameters passed to ovln are

(1) the file containing the function to which ovbgn

is to pass control;
(2) the name of the symbol table created when the root

segment was created;
(3) the name of the file containing the function ovbgn.

ovln then reates the overlay segment and places it in the
file whose extent is "ovr" and whose filename (see the above
paragraph for the definition of this term) is the same as that
of the file specified in the first parameter to ovln.

Copyright 1981 (c) by Manx Software Systems PAGE XI.5

Aztec C 11 pata Formats

Data Formats
1. character
Characters are 8 bit ASCII.
Strings are terminated by a NULL (X'00').

For computation characters are promoted to integers with a
value range from 0 to 255.

2. pointer

Pointers are two bytes (16 bits) 1long. The internal
representation of the address FOAB stored in location 100

would be:

location contents in hex format
100 AB
101 FO

3. int, short

Integers are two bytes long. A negative value is stored in
two's compliment format. A -2 stored at location 100 would

look like:

location contents in hex format
100 FE
101 FF

4. long

Long integers occupy four bytes. Negative values are stored
in two's complement. representation. Longs are stored
sequentially with the least significant byte stored at the
lowest memory addres and the most significant byte at the
highest memory address.

5. float and double

Floating point numbers are stored as 32 bits, doubles are
stored as 64 bits. The first bit is a sign bit. The next 7
bits are the exponent in excess 64 notation. The base for the
exponent is 256. The remaining bytes are the fractional data
stored in byte normalized format. A zero is a special case
and is all 0 bits. The hexadecimal representation for a float

with a value of 1.0 is:

41 01 00 00

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page XII.l

Aztec C 11X Data Formats

A 255.0 would be:

41 FF 00 00
A 256.0 would be:

42 01 00 o0

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page XII.2

Aztec C II ASSEMBLY LANGUAGE SUPPORT

A. Imbedded Assembler Source

Assembly language statements can be imbedded in a "C" program
between an “#ASM" and "#ENDASM" statement. Both statements must
begin in column one. No assumptions should be made concerning the
contents of registers. The environment should be preserved and
restored. Caution should be used in writing code that depends on
the current code generating techniques of the compiler. There is
no guarantee that future releases will generate the same or
similar patterns.

B. Assembler Subroutines

The calling conventions used by the Aztec C II compiler are very
simple. The arguments to a function are pushed onto the stack in
reverse order, i.e. the first argument is pushed last and the
last argument is pushed first. The function is then called using
the 8080 CALL instruction., When the function returns, the
arguments are removed from the stack. A function is required to
return with the arguments still on the stack unless something is
pushed back in place of them. Registers BC, IX, and 1Y must be
preserved by routines called from C. The function's return value
should be in HL and the Z flag set according to the value in HL.
For examples of assembly code called by "C" programs refer to
the string.asm and toupper.asm files supplied with the package.

Example:

; Copyright (C) 1981 Thomas Fenwick
public isupper_
isupper_:
1xi h,2 ; hl := stack pointer + 2 (arguement address)
dad sp
mov a,m : load argument into accumulator via hl
cpi 'A!
jc false
cpi 'z2'+l1
jnc false
true:
1xi h,1
mov a,l
ora a
ret
’
public islower_
islower_:
1xi h,2
dad sp
mov a,m
cpi ‘'a’
jc false

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page XIII.l

Aztec C II ASSEMBLY LANGUAGE SUPPORT

cpi 'z'+l
jc true

ixi h,0
mov a,l
ora a
ret

false:

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page XIII.2

_ Aztec C 1I ROMable Code

Aztec C II produces reentrant code that is ROMable. The basic
tools for producing ROMable code are provided by the Manx LN
linkage editor. With the -B option of the linkage editor, the ROM
address for the code can be set. With the -D option of the
linkage editor, the RAM address of the variable data can be set.
The code and data are written to a single file. The code precedes
the data. The linkage editor produces a message showing the code
gize and the data size. Separating the code from the data is the
responsibility of the user.

The user must also rewrite CALLCPM.ASM. This routine sets up the
stack and calls croot.c to handle the command line arguments and
the settup for I/0 redirection. In most cases all that needs to
be done is to preserve the environment, set up the stack and call
the "C" routine. Exit returns to this routine. In most cases exit
processing will involve restoring the entry environment and
perhaps passing back data.

If space is tight, the standard library functions can be
eliminated. Most library routines can be easily eliminated. The
support routines cannot. The compiler generates calls to these
routines for standard processing. A basic library can be created
by breaking the support modules, like supp8080.asm, into their
basic components. 1f float and long support are not needed the
supp8080.asm routines should be sufficient. If this module is not
broken up its full size is less than .5K with most of the space
taken up by int multiply and divide routines. If these routines
are not needed then they can be eliminated. 1/0 in a ®"strippped"”
system would be performed by bios or bdos calls.

COPYRIGHT (Cs 1981 by MANX SOFTWARE SYSTEMS Page XIV.1

Aztec C 1I FLOATING POINT SUPPORT

Aztec C II Floating Point Support

Aztec C II supports floating point numbers of type float and
double. All arithmetic operations (add, subtract, multiply, anu
divide) can be performed on floating point numbers, and
conversions can be made from floating point representation to
other other representations and vice versa.

The common conversions are performed automatically, as specified
in the K & R text. For example, automatic conversion occurs when
a variable of type 'float' is assigned to a variable of type
'int', or when a variable of type 'int' is assigned to a variable
of type ‘float', or when a 'float' variable is added to an 'int'
variable,

Other conversions can be expicitly requested, either by using
'cast' operator or by calling a function to perform the
conversion. For example, if a function expects to be passed a
value of type 'int', the (int) cast operator can be used to
convert a variable of type ‘'float' to a value of type 'int',
which is then passed to the function. For another example, the
function 'atof' can be called to convert a character string to a
value of type 'double’.

The following sections provide more detailed information of the
floating point system. One section describes the internal
representation of floating point numbers and another describes
the handling of exceptional conditions by the floating point
system,

Floating point exceptions

When a ¢ program requests that a floating point arithmetic
operation be performed, a call will be made to functions in the
floating point support software. While performing the operation,
these functions check for the occurence of the floating point
exception conditions; namely, overflow, underflow, and division
by zero. On return to the caller, the global integer 'flterx'
indicates whether an exception has occurred. 1f the value of this
integer is zero, no error occurred, and the value returned is the
computed value of the operation. Otherwise, an error has
occurred, and the value returned is arbitrary. Table A lists the
possible settings of flterr, and for each setting, the associated
value returned and the meaning.

flterr	value returned	meaning
0	computed value	no error has occurred
1	+/- 2.9e-157	underflow
2	+/- 5.2el51	overflow
I3 | +/- 5.2el51 | division by zero |

- '—-.—--—--——-—-—.---—-———-.——-——-.——-—————-——

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page XV.1

Aztec C II , FLOATING POINT SUPPORT

When a floating point exception occurs, in addition to returning

an indicator in 'flterr', the floating point support routines
will either log an error message to the console or call a user-
specified function, The error message logged by the support
routines define the type of error that has occurred (overflow,
underflow, or division by zero) and the address, in hex, of the

instruction in the user's program which follows the call to the
support routines.

Following the error-message-logging or user-function-calling, the
floating point support routines return to the user's program
which called the support routines.

To determine whether to log an error message itself or to call a
‘user's function, the support routines check the first pointer in
Sysvec, the global array of function pointers. If it contains
zero (which it will, unless the user's program explicitly sets
it), the support routines log a message; otherwise, the support
routines call the function pointed at by this field.

A user's function for handling floating point exceptions can be
written inC. The function can be of any type, since the support
routines don't use the value returned by the user's function. The
function has two parameters: the first, which is of type 'int',
is a code identifying the type of exception which has occurred. 1
indicates underflow, 2 overflow, and 3 division by zero.

The second parameter passed to the user's exception-handling
routine is a pointer to the instruction in the user's program
which follows the call instruction to the floating point support
routines. One way to use this parameter would be to declare it to
be of type 'int'. The user's routine could then convert it to a
character string for printing in an error message.

Two programs follow. One is a sample routine for handling
floating point , followed by excepltions. The routine displays an
error message, based on the type of error that has occurred, and
returns to the floating point support routines. The other is
main(), which sets a pointer to the error-handling routine in the

sysvec array.
#include "libc.lib"
main() {
Sysvec[FLT_FAULT] = usertrap;
}

usertrap(errcode,addr)
int errcode,addr;

char buff[4];

convert(addr,buff); /* convert addr to hex char stringin buff */
switch (errcode)

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page XV.2

Aztec C 11 FLOATING POINT SUPPORT

case 'l':
grinﬁf('floating point underflow at $s\n",buff);
reak;
case '2°': '
printf(*floating point overflow at $s\n",buff);
break;
case '3':
printf("floatingpointdivision byzeroat %s\n",buff);
break;
default:
printf("invalid code %4 passed to usertrap\n",errcode);

break;

Internal representation of floating point numbers

Floats

A variable of type 'float' is repesented internally by a sign
" flag, a base-256 exponent in excess-64 notation, and a three-
character, base-256 fraction. All variables are normalized.

The variable is stored in a sequence of four bytes. The most
significant bit of byte 0 contains the sign flag; 0 means it's

positive, 1 negative.

The remaining seven bits of byte 0 contain the excess-64
exponent.

Bytes 1,2, and 3 contain the three-character mantissa, with the
most significant character in byte 1 and the least in byte 3. The
‘decimal point' is to the left of the most significant byte.

As an example, the internal representation of decimal 1.0 is 41
01 00 00.

Doubles

A floating point number of type 'double' is represented
internally by a sign flag, a base-256 exponent in excess-64
notation, and a seven-character, base-256 fraction.

The variable is stored in a sequence of eight bytes. The
most significant bit of byte 0 contains the sign flag; 0 means
positive, 1 negative.

The excess-64 exponent is stored in the remaining seven bits
of byte 0.

The seven-character, base-256 mantissa is stored in bytes 1
through 7, with the most significant character in byte 1, and the
least in byte 7. The 'decimal point' is to the left of the most
significant character. ‘

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS Page XV.3

Aztec C II FLOATING POINT SUPPORT

As an example, (256*%*3)*(1/256 + 2/256**2) is represented by

the following bytes: 43 01 02 00 00 00 00 00.

Floating Point Operations

For accuracy, floating point operations are performed using

mantissas which are 16 characters long. Before the value is
returned to the user, it is rounded.

COPYRIGHT (C) 1981 by MANX SOFTWARE SYSTEMS - Page XV.4

Aztec C 1I SID/1SID Debugging Support

Di%ital Researches SID and ZSID symbolic debuggers can be used
with the Aztec C II system. The -T option in the link edit step
wil create a symbol table. PIP or some other utility can be used

to upper case the symbols for SID if necessary.

Copyright 1981 (c) by Manx Software Systems PAGE XVI.5

Aztec C 11 : Unbuffered 1/0

Unbuffered 1/0

This section describes how a program accesses devices and files
using the functions defined in chapter 8 of the K&R text. A
program which acccesses devices and files using these functions
will also be able to run on a UNIX system.

The basic input/output support functions allow a program to
access the console, printer, reader, punch, and the files on any
disk. The support functions are:

creat creates a disk file

unlink deletes a disk file

rename renames a disk file

open prepares a device or file for I/O

close concludes the I/0 operations on a deviceor file
read reads data from a device or file

write writes data to a device or file

posit positions a disk file to a specific record
lseek positions a disk file to a specific character

Generally, to access a device or file, a program first must call
the "open"™ function, passing it the name of the device or file
and a code indicating the type of operations the program intends
to perform, Open returns a "file descriptor®” which the program
must include in the parameters which are passed to other
functions when accessing the device or file. This file descriptor
is an integer which is an index into a table, called the "channel
table". Each entry in this table is a control block describing a
device or file on which the program is performing I/O operations.
For more details on the "open" function, see the chapter on the
unbuffered i/o functions.

The only exception to the rule requiring the opening of devices
and files prior to the issuance of program i/o with them regards
the logical devices stdin, stdout, and stderr. When the program
first gets control, these logical devices have already been
opened by the system; hence, the program can issue i/o calls to
them without opening them itself.

Generally,after a program has completed its i/o to a device or
file, it must call the "close" function to allow the system to
release the control blocks which it has allocated to the device
or file. The only exception to this rule is that the logical
devices stdin, stdout, and stderr never need be closed.

In the remainder of this section, the details of program i/o to
the various devices and disk files are presented.

Copyright 1981 (c) by Manx Software Systems PAGE XVII.6

_Aztec C 11 Onbuffered 1/0

Console 1/0

There are two ways for a program to access the system console
using UNIX-compatible i/o functions. One is to issue read and
write calls to the "logical devices"™ stdin, stdout, and/or
stderr. These three devices are opened by the Aztec system before
a user's program gains control., Thus the user's program can
access these devices without performing an initial "open"
function on them, and without performing a *close" function on
them before terminating. The default condition is for these
"logical devices®” to all be the system console, However, the
operator, when activating the user's program, can specify that
the stdin or stdout logical device be associated with another
device or a disk file; that is, that the stdin and stdout i/o be
"redirected®. Thus, if the user's program must communicate with
the operator, and can't be assured that the stdin and/or stdout
i/o has been redirected, then the program must use the other
method of communicating with the console, which is described in
this section. For more information on using the UNIX-compatible
i/o functions to communicate with the stdin, stdout, and stderr
devices, see the appropriate section which follows.

The other method for a program to access the system console is to
explicitly open the console, issue read and write function calls
to it, and then close it. The open and close calls were described
above, so the rest of this section just covers the details of
reading and writing to the console.

Console input

To read characters from the system console, a program issues read
function calls, passing as parameters the file descriptor which
was returned to the program when it opened the console, the
address of a character buffer into which characters from the
console are to be placed, and a number which specifies the
maximum number of characters to be returned to the program. The
read function will place characters in the buffer, as described
below, and return as its value an integer specifying the number
of characters placed in the buffer.

The system maintains an internal 256-character buffer into which
it reads console keyboard input. The read function returns
characters to the calling program from this buffer. If the
internal buffer is empty when a program requests console input,
the read function will perform its own read operation to the
console, putting the characters obtained in its internal buffer.
While the read function's read operation is in progress, the
console operator can use the normal CP/M editing characters, such
as rub out, backspace, etc. These editing characters do not
appear in the internal read buffer. The read function's read
operation terminates when the operator depresses the carriage
return key, the line feed key, or ctl-z, or when there are 256
characters in the internal buffer. Following the characters in
the internal buffer which were input by the user, the read
function places a carriage return, line feed sequence.

Copyright 1981 (c) by Manx Software Systems PAGE XVII.7

Aztec C II Unbuffered 1I/0

The read function returns characters to the calling program from
the internal buffer., If there are characters in the buffer which
haven't yet been passed to the caller, the read function
transfers some to the caller's buffer, with the number transfered
being either the number requested by the caller, or the number
remaining in the internal buffer from the last actual console
read operation which haven't been passed to the caller. If the
internal buffer is empty when the caller makes a request of the
read function, the read function performs an actual console read
operation to refill the internal buffer, as described above, and
then transfers characters from it to the caller's buffer.

The read function returns to the caller as its value the number
of characters placed in the caller's buffer, or zero, if the
operator typed ctl-z in response to a console read operation by
the read function, or -1 if an error occurred. If an error
occurred, the read function also places a code in the global
‘integer errno which defines the error. If no error occurred, read
returns without modifying errno. The only symbolic value which
read may place in errno is EBADF, in response to an invalid file
descriptor from the caller. The integer value of EBADF is defined
in the file errno.h, which may be included in the user's program.

Writing to the system console, the line printer, or the punch

To send characters to the system console, the line printer, or
the punch device, a program calls the function *"write", passing
it as parameters the file descriptor which was passed to it by
the function "open" when it opened the device, the address of a
buffer containing characters to be sent, and an integer
specifying the number of characters to be sent. The write
function sends the characters directly to the device and returns
as its value the number of characters sent. If the write function
encounters a carriage return character in the caller's buffer, it
sends it to the device, then sends a line feed character, then
continues with the next character in the caller's buffer.

If the write function detects an error, it returns -1 as its

value and places an error code in the global integer errno. If an

error was not detected, errno is not modified. The only symbolic

value which write may place in errno is EBADF, signifying that an

invalid file descriptor was passed to write. The file errno.h defines the
integer value of EBADF,

Reading from the "reader"® device

A program gets characters from the "reader” device by calling the
"read®™ function, passing it as parameters the file descriptor
which was passed to it by open when it opened the reader device,
the address of a buffer into which characters from the device are

Copyright 1981 (c) by Manx Software Systems PAGE XVII.S8

Aztec C II Unbuffered 1/0

to be placed, and an integer specifying the number of character
to be read. . . '

The read function reads characters directly into the caller's
buffer. The operation continues until "read" reads the number of
characters specified by the caller. It then returns as its value
the number of characters read.

If read detects an error, it returns as its value -1, and sets a
~code in the global integer errno.h. If no error was detected,
errno.h is not modified. The only symbolic value which read may
set in errno is EBADF; this means that an invalid file descriptor
was passed to read. The file errno.h, which can be included in
the user's program, defines the integer value of EBADF,

UNIX-compatible I/0 to the stdin, stdout, and stderr devices

As was mentioned in the section on console i/o, when a user's
pProgram is activated, three "logical devices” are always open;
these are called "stdin", "stdout", and "stderr”. By default,
these are associated with the system console; however, the
operator can specify, when activating the program, that read
operations directed to stdin and write operations directed to
stdout be redirected to an operator-specified device or disk
file. The user's program needn't be aware of the actual device
associated with stdin, stdout, or stderr; it seimply issues read
and write function calls as it would to the system console,

If the user's program is to communicate with stdin and stdout
where the possibility exists that either or both of them are a
device, such as the console, then the user's program should
restrict itself to just issuing read and write function calls to
these logical devices. However, if the operator always redirects
the stdin or stdout i/o to a disk file, then the program can
access the redirected device as it would a normal disk file. That
is, it can reposition the "current position®™ of the logical
device using the "posit" and/or "lseek®™ function calls. These
calls are described below, in the section on file i/o.

When accessing any device or file, including stdin, stdout, or
stderr, the user's program must include a "file descriptor® with
the function call parameters which identifies the device with
which the user's program wants to communicate. In the case of
devices and files other than stdin, stdout, and stderr, the file
descriptor is that which the open function returned to the user's
program when it opened the device or file. Since the user's
program doesn't itself open the stdin, stdout, and stderr logical
devices, there has to be another way for it to determine the file
descriptors to use when commincating with these devices. The way
is this: to communicate with stdin, use a file descriptor having
value 0; for stdout, use 1; and for stderr, use 2,

Copyright 1981 (c) by Manx Software Systems PAGE XVII.9

Aztec C II ‘ _ Unbuffered I/0

File 1/0

When communicating with disk files, in addition to the open and
close function calls, which were described above, and the read,
write, posit, and lseek function calls, which are described
below, there are three other function calls which can be made:
creat, to create a non-existant file, or to truncate an existing
file so that it doesn't contain anything; unlink, to erase a disk
file; and rename, to rename a disk file. These function are
described in chapter VI.

Programs call the functions read and write to transmit characters
between the program and a disk file. The transfer begins at the
"current position® of the file and proceeds until the number of
characters specified by the calling program have been transfered.

The current position of a file can be manipulated in various ways
by a program, allowing the program to access the file both
sequentially and randomly. To read a file sequentially from the
beginning of the file, the program simply issues repeated read
requests. After each read operation, the current position of the
file is set to the character following the last one returned to
the calling program. Similarly, to write a file sequentially from
the beginning of the file, the program issues repeated write
requests. After each write operation, the current position of the
file is set to the character following the last one written.

Two additional functions, njgeek” and "posit", are provided to
allow programs to access files randomly. lseek sets the current
position of a file to a specified character location. posit sets
the current position to a specified record. The program can then
igssue read and/or write requests to transfer data beginning at
the new current position. If UNIX compatibility is a requirement,
don't use the function "posit® - it's not supported by UNIX.

To perform a sequential update of a file, a program would
repeatedly perform the following sequence: read in a buffer's
worth of data; update the buffer; reset the current position in
the file to the location before the read operation; and finally,
write the buffer back to the file. The sequence for updating a
file randomly would be the same, except that the program would
explicitly set the current position of the file before each read
operation.

Copyright 1981 (c) by Manx software Systems PAGE XVII.10

Aztec C 1IX User Submitted Software

User Submitted Software

Some user submitted software is distributed with this system. The
convention for naming the file extension for user submitted
software is as follows:

- oual - assembler source for a library routine
.ucl - "C" source for a library routine

“osuau - assembler source for a utility routine
‘.ucu = "C" source for a utility routine

Included in the user routines are an alloc and free function plus
an in port and out port function,

Anyone wishing to share software is welcome to do so. Each
routine should have:

- a copyright notice

- a statement granting the free use of the software :
- documentation describing the function and use of the software

Copyright 1981 (c) by Manx Software Systems PAGE XVIII.1ll

APPENDIX A

The following is a listing of the source and various intermediate
files produced from the following sequence of commands:

cc =t prog.c
as -1 prog.asm
ln -t prog.o -1 libc.lib

The program accepts two filenames from the command line. The
first file is copied to the second file. All occurrences of
newline (hex OA) are replaced by carriage return/linefeed (hex

0DOA) .
' COMPILE
¢include "libc.h"

main(argc,argv)
int argc;char **argv;

int c,f1,£2;

fl=fopen(argv(l],"c");
f2=fopen(argv[2],"w");

while((c=getc(£f1l)) |=EOF)
aputc(c,£f2);

fclose(fl);
fclose(£2);
exit(0);

COMPILER QUTPOT

*$include "libc.h" .
/% Copyright (C) 1981 Thomas Fenwick */
*$define fputc(x,y) putc(x,y)
*$define fgetc(x) getc(x)
‘*$define NULL 0
*§define EOF -1
*$define _BUFSIZ 1024
t§define _SCTSIZE sctparm.size
*§define _SCTMASK sctparm.mask
*$define _SCTSHFT sctparm.shift
*§define _FILLC sctparm.fillc
*gtruct _sctparm {
* unsigned size;
unsigned mask;
unsigned shift;
unsigned fillc;
} sctparm;
COMMON /sctparm_/

* % »

22

DS 8

CSEG

*g$define _KIND 0x03
s3define _TTY 0x01
tgdefine _FILE 0x02
*$define _RDRPUN 0x03
*3§define _READ 0x04
*$define _WRITE 0x08
*j§define _DIRTY 0x10
*§define _ATEND 0x20
*typedef struct {

* char *_bp; /* current position in buffer */

* char *_bend; /* last character in buffer + 1 */

* char *_buff; /* address of buffer */

* char _flags; /* open mode, etc. */

* char _unit; /* token returned by open */

* unsigned _curpos; /* current sector position */
*} FILE;

*main(argc,argv)

*int argc;char t*argv;
PUBLIC main_

main_: CALL .zsavi##
DW .3

*{

* int c,f1,£2;
. fl=fopen(argv|l],"cr");
LXI H,.140
~ PUSH H
" LXI H,16~.3
DAD SP
MOV E,M
INX H
MOV D,M
XCHG
INX H
INX H
MOV E,M
INX H
MOV D,M
PUSH D
FUNC fopen_
CALL fopen_
POP D '
POP D
XCHG
ILX1I 8'0-03
DAD SP
MOV M,E
INX B
MOV M,D
* f2=fopen(argv[2],"w");
LXI H,.1+2
PUSH H
LXI H,lﬁ-.J
DAD SP
MOV E,M

o4

INX H
MOV D,M
LXI H,4
DAD D
MOV E,M
INX B
MOV D,M
PUSH D
FUNC fopen_
CALL fopen_
POP D

POP D

XCHG

LXI H'-2-03
DAD SP
MOV M,E
INX B
MOV M,D

LXI H,O-.3

DAD SP

MOV E M

INX H

MOV D,M

PUSH D

FUNC getc_

CALL getc_

POP D

XCHG

LXI H'2-03

DAD SP

MOV M,E

INX H

MOV M,D

LXI B,-1

CALL .ne##

Jz .5
aputc(c,£f2);

LXI H,-Z".3

DAD SP

MOV E,M

INX H

MOV D,M

PUSH D

LXI H"-o3

DAD SP

MOV E,M

INX H

MOV D,M

PUSH D

FUNC aputc_
CALL aputc_
POP D

POP D

while((c=getc(£1)) 1=EOF)

JMP .4

fclose(fl);

LXI H'O-OB

DAD SP

MOV E,M

INX H

MOV D,M

PUSH D

FUNC fclose_
CALL fclose_
POP D
fclose(£f2);

LXI H"2-03

DAD SP

MOV E,M

INX H

MOV D,M

PUSH D

FUNC fclose_
CALL fclose_

53

*}

POP D
exit(0);
LXI H,0
PUSH H
FUNC exit_
. CALL exit_
POP D
RET
° 3 EQU "6
ol ‘
DB 114,0,119,0
END
ASSEMBLER LISTING
0 0000 *$include "libc.h"
1l 0000 */% Copyright (C) 1981 Thomas Fenwick */
2 0000 *§define fputc(x,y) putc(x,y)
3 0000 *gdefine fgetc(x) getc(x)
4 0000 *$define NULL 0
5 0000 *$define EOF -1
6 0000 *§define _BUFSIZ 1024
7 0000 *gdefine _SCTSIZE sctparm.size
8 0000 *¢define _SCTMASK sctparm.mask
9 0000 *$§define _SCTSHFT sctparm,.shift
10 0000 *§define _FILLC sctparm.fillc
11 0000 *struct _sctparm {
12 0000 * unsigned size;
13 0000 * unsigned mask;
14 0000 * unsigned shift;
15 0000 * -unsigned fillc;

0000
0000
0000
0000
0008
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0003

0005

0005
0005
0005
0008
0009
000c
0004
000e
000f
0010
0011
0012
0013
0014
0015

- 0016

0017
0017
00la
001b
00l1c
001d
0020
0021
0022
0023
0024
0024

*} sctparm;

COMMON /sctparm_/
22

DS 8

CSEG

*gdefine _KIND 0x03
_*§define _TTY Ox01
- *§define _FILE 0x02

*j§define _RDRPUN 0x03
*$define _READ 0x04

*§define _WRITE 0x08
*§define _DIRTY 0x10
*§define _ATEND 0x20

*typedef struct {

*char *_bp;/*current position in buffer */
*char *_bend;/* last character in buffer + 1 */
*char *_buff;/* address of buffer */
char _flags;/ open mode, etc. */

char _unit;/ token returned by open */
unsigned _curpos;/ current sector position */

*} FILE;

*main(argc,argv)

*int argc;char **argv;

PUBLIC main_ ‘

cd xx xx main_:

XX XX

*{

* int c¢,f1,£2;

* fl=fopen(argv(l],”c");
21 xx xx)
e5
21 xx xx
39
Se
23
56
eb
23
23
Se
23
56
as

cd xx xx
dl

dl

eb

21 xx xx
39

73

23

72

* f2=fopen(argv(2],"w");
21 xx xx

CALL .zsavié
DW .3

LXI H,.1+40
PUSH H

LXI H'16-o3
DAD SP

MOV E,M

INX H

MOV D,M
XCHG

INX H

INX H

MOV E,M

INX H

MOV D, M
PUSH D
FUNC fopen_
CALL fopen_
POP D

POP D

XCHG

LXI H,O".3
DAD SP

MOV M,E
INX H

MOV M,D

LXI H,.1+2

0027
0028
002b
002¢
0024
002e
002f
0032
0033
0034
0035
0036
0037
0037
003a
003b
003c
0034
0040
0041
0042
0043
0044
0044
0044
0047
0048
0049
004a
004b
004c
004c
004f
0050
0051
0054
0055
0056
0057
0058
005b
005e
0061
0061
0064

- 0065

0066
0067
0068
0069
006¢
0064
006e
006f
0070

XX

04

XX

XX

XX

XX

£f

XX
XX

AX

XX

PUSH H
XX LXI H,16-.3
DAD SP
MOV E,M
INX
; MOV
00 LXI
DAD
MOV
INX
MOV D,M
PUSH D
FUNC fopen_
XX CALL fopen_
POP D
POP D
XCHG
xX LXI H,-2-.3
DAD SP
MOV M,E
INX H
MOV M,D

while((c=getc(fl)) |=EOF)

xX LXI H,0-.3
DAD SP
MOV E, M
INX H
MOV D,M
PUSH D
FUNC getc_

xx CALL getc_
POP D
XCHG

XX LXI H,2-.3
DAD SP
MOV M,E
INX H
MOV M,D

ff LXI H,-l

xx CALL .ne#é#

XX “JZ W5

aputc(c,£2);

XX LXI Hp“2'.3
DAD SP
MOV E,M
INX H
MOV D,M

~ PUSH D

xx : LXI H,4-.3
DAD SP
MOV E,M
INX H
MOV D,M
PUSH D

M
4
M

UxmoOXTOX

126 0071 ‘ FUNC aputc_

127 0071 cd xx xx CALL aputc_
1286 0074 dl POP D

129 0075 a4l , POP D

130 0076 cl) xx xx JMP .4

131 0079 5

132 0079 * fclose(fl);
133 0079 21 xx xx LXI H,0-.3
134 007c 39 DAD SP

135 0074 Se MOV E,M

136 007e 23 INX H

137 007f 56 MOV D,M

138 0080 45 PUSH D

139 0081 FUNC fclose_
140 0081 cd xx xx CALL fclose_
141 0084 4l POP D

142 0085 * fclose(£2);
143 0085 2] xx xx LXI H,-2-.3
144 0088 39 DAD SP

145 0089 Se MOV E,M

146 008a 23 INX H

147 008b 56 ‘ MOV D,M

148 008c 4S5 PUSH D

149 0o08d FUNC fclose_
150 008d cd xx xx CALL fclose_
151 0090 dl POP D

152 . 0091 L exit(0);

153 0091 21 00 00 LXI H,0

154 0094 e5 ; PUSH H

155 0095 FUNC exit_
156 0095 cd xx xx CALL exit_
157 0098 dl POP D

158 0099 *}

159 0099 c9 , RET

160 009%a .3 EQU -6

16l 009%a ' ol:

162 009a 72 00 77 00 DB 114,0,119,0
163 009%e END

S1D/2SID SYMBOL TABLE FROM LINK

15FE $MEMRY
1438 ARGl
143A .ARG2
143C .ARG]
01A5 .an
0467 .arloop
01AD .asad
01B8 .asan
0480 .asave
01C3 .asdv
01D3 .asls

0lEl

O1EF
01FA

0208
0216
0221
0230
023E
024C
OECY
0260
0258
0296
02B5
02BF
02E9
0310
02D8
0lAl
028E
02Bl
02ES
0304
02DE
03F0
030B
039D
02C4
03CD
0330
03D9
03FD
0287
0431
0438
044A
0451
0329
0462
0474
02EA
03F4
030F
03Al
02C8
03BA
03C5
03Dl
0257
0295
02EA
030F
02E9
03F5
0310

oasml
.asor
.a8IM
.as8I8
.a88b
.asud
«a8UM
«asur
«a8XY
.begin
.chl
.cm
.dv
.eq
.false
«geé
.gt

.iad

.ian
.idv
.ieq
.ige
.igt
.dle
.ils
Wilt
eiml
.ine
.dor
Jirm
.irs
.i8b
.iud
.dlue
Jduf
.iug
.iul
.dum
.dur
Jixr
.le
18
o1t
.ml
.ne
.Ng
nt
«Oor
.rcm
JIdv
.rge
«rgt
.rle
.rls
.Ilt

0338
03B9
03C4
0337
O03DE
03DD
0402
02A9
043C
043D
0455
0456
0362
0467
0401
040A
02D2
02AA
043D
043C
0456
0455
0363
0466
0478
0261
0ED3
OFB?
0000
0802
04A5
OE6E
04E7
OED3
OEE3
13F9
1419
11E3
15FC
10AE
OEFB
07BA
0B31
0531
OSFE
05BC
08Cl1
134D
0A22
082D
9378
0879
O0CCE
0E40
0103

oIm
.INg
Int
.Irm
«ILB

L8

.I8b
.rud
Iue
.uf
.rug
.rul
.Ium
Jrur

«8b

+BWL
.true
-ud

ue

uf

.ug

oUl

+um

Jur

oXI
«Z5av
CPM_
Croot_
boot
_closall
agetc_
alloc_
aputc_
bdos_
bios_
blockmv_
clear_
close_
errno_
exit_
fcbinit_
fclose_
fflush_
fgets_
fopen_
fputs_
fread_
feize_
fwrite_
getc_
getchar_
getw_
iseek_
itell_
main_

10EC
131A
0957
13BD
09C4
1222
O0FP94
15F4
O0F94
0C79
129E

open_
posit_
putc_
putchar_
putw_
read_
sbrk_
sctparm_
settop_.
ungetc_
write_

10

APPENDIX B

The following program listed with its compiled output shows how
the same routine can be coded using different "C" features to

produce code that executes more efficiently.
PROGRAM

main()
/* the following examples show some of the ways that

static, pointer, and register variables are used
to produce faster executing code. */

}* good */

{
int i,a[l0];
for(i=0;i<10;i++)
‘ ali)=2;

}

{* better */

register i;

static a[l0]);

for(i=0;i<10;++1i)
alil=2;

) -
{* best */

static a[l0];
register int *ip;

for(ip = a ; ip < a+l0 ;)
*ipt++ = 2;

[S])

COMPILED OUTPUT

*main()
/ the following examples show some of the ways that

* static, pointer, and register variables are used
* to produce faster executing code. */
*

PUBLIC main_
main_s: CALL .zsav#é
DW .2
/ good */

*{

* int i,a[l0]);
for(i=0;i<10;i++)
LXI H,0
XCHG
LXI H,2'.2
DAD SP

MOV M,E
INX H
MOV M,D
JMP .4

LXI H,Z‘.z
DAD SP
PUSH H
MOV A,M
INX H
MOV H,M
MOV L,A
INX H
XCHG
POP H
MOV M,E
INX H
MOV M,D
XCHG
DCX H

i H

LXI H,Z-.Z
DAD SP
MOV E,M
INX H
MOV D,M
~LXI H,10
" CALL .lt#¢
, JZ .5
* ali]=2;
LXI H,2
PUSH H
LXI H,“.Z
DAD SP
MOV E,M
INX H
MOV D,M
XCHG
DAD H
XCHG
LXI H,-IG-.z
DAD SP
DAD D
POP D
MOV M,E
INX R
MOV M,D
JMP .3
53
*)
#{* better ¢/
) register i;

* static a[l10);
DSEG

DS 20

CSEG
. for(i=0;i<10;++i)

LXI H,0

MOV B,H

MOV C,

JMP .8

MOV
MOV
INX
MOV
MOV

..
U Ow

« «

MOV
MOV
LX1I
XCHG
CALL .lt##
Jz .9
* ali]l=2;
LXI H,2
PUSH H
MOV H,B
MOV L,C
DAD H
LXI D,.6
DAD D
POP D
MOV M,E
INX H
MOV M,D
JMP .7

PE‘F Owxeem
-) to
o

9
*)
/ best */
s
] static all0];
DSEG
10
DS 20
CSEG
* register int *ip;
. for(ip = a ; ip < a+l0 ;)
" LXI H,.10
MOV B,H
MOV C,L
«11:
MOV H,B
MOV L,C
LXI D,.10+20
XCHG
CALL .ul#s
Jz .12

«d12:

.2 EQU

LXI H,
PUSH H
MOV
MOV
INX
INX
MOV
MOV
DCX

POP
MOV

Ow N

- w

- w»

e

-

EXTXTUOXODITZLET

X -
2%
-

-0 ™

JMP

RET
-22
END

*ip++ = 2;

PROBLEM REPORT

DESCRIPTION OF PROBLEM:

SERIAL NUMBER OF SOFTWARE:

VERSION (SPECIFY C OR CII X.XX):

MACHINE TYPE:

DISK FORMAT:

TOTAL MEMORY:

'VERSION OF CP/M OR HDOS:

~ UPDATE INFORMATION REQUEST FORM

Please send all updates and bulletins to the following address:

NAME:

ADDRESS:

ADDRESS:

ADRESS:

Updates and announceménts will be sent to the address specified
for shipment of the original package., If this is not the correct
address please fill out the attached "UPDATE INFORMATION FORM®

and mail it to:

MANX SOFTWARE SYSTENS
' BOX 55
SBREWSBURY, NJ 07701

This is also the address for reporting problems.

A problem report can also be given by calling:

201 780 4004

Please include a contact name and telephone number with any
pifvlen reports.

	0001
	0002
	001
	002
	003
	004
	005
	01-01
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	07-01
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	11-05
	12-01
	12-02
	13-01
	13-02
	14-01
	15-01
	15-02
	15-03
	15-04
	16-05
	17-06
	17-07
	17-08
	17-09
	17-10
	18-11
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-00
	B-01
	B-02
	B-03
	B-04
	ReplyA
	ReplyB
	ReplyC

