
o
o
o
o
o
o
o

•
I
•
I
• Ie
i er

SOFTWARE
SYSTEMS

AZTEC C II User Manual

Release 1.06

March 1984

Copyright (C) 1984 by Manx Software Systems, Inc.

All Rights Reserved

Worldwide

Distribut:ed by:
Manx software Systems

P. O. Box 55
Shrewsbury, N. J. 07701

201-780-4004

SOFTWARE LlCERSE

Aztec C II, Manx AS, and Manx LN are licensed software products.
Manx Software Systems reserves all distribution rights to these
products. Use of these products is prohibited without a valid
license agreement. The license agreement is provided with each
package. Before using any of these products the license agreement
must be signed and mailed to:

Manx Software Systems
P. O. Box 55

Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine
and explicitly limits duplication of the products to no more than
two copies whose sole purpose will be for backup. Any uses of
these products that might lead to the creation of or distribution
of unauthorized copies of these products will be a breach of the
licensing agreement and Manx Software Systems will excercise its
right to reclaim the original and any and all copies derived in
whole or in part from first or later generations and to pursue
any appropriate legal actions.

Software that is developed with Aztec C II, Manx AS, or Manx LN
can be run on machines that are not licensed for these products
as long as no part of the Aztec C II software, libraries,
supporting files, or documentation is distributed with or
required by the software. In the latter case a licensed copy of
the appropriate Aztec C software is required for each machine
utilizing the software. There is no licensing required for
executable modules that include library routines. The only
restriction is that neither the source, the libraries themselves,
or the relocatable object of the library routines can be
distributed.

COPYRIGHT

Copyright (C) 1981, 1982, 1984 by Manx Software Systems. All
rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without prior written permission
of Manx Software Systems, Box 55, Shrewsbury, N. J. 07701.

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Manx Software Systems reserves the right to
revise this publication and to make changes from time to time in
the content hereof without obligation of Manx Software Systems
to notify any person of such revision or changes.

TRADEMARKS

Aztec C II, Manx AS, and Manx LN are trademarks of Manx Software
Systems. Credit is given to Digital Research of California for
its trademarks: CP/M, MP/M, and RMAC. Credit is given to
Microsoft of Washington for its trademarks: MACRO-BO, and LINK-
80. Any references to MBO and LBO also refer to the appropriate
trademarked software packages. UNIX is a trademark of Bell
Laboratories.

Contents

section title abbreviation

I.

II.

Overview.

Tutorial

• ••••••••••••••••••••••••••••• • OV

Introduction. · t u t

III. Aztec C II Compiler •.•.•••.•...•.••.•..•••••••.•••.•• cc

IV.

V.

VI.

VII.

Aztec

Aztec

AS Assembler.

LN Linker ••••

.as

.In

Libutil the Library Utility ••...•.•..•...••••.• lbutl

Library Functions ••••. · • .lib

VIII.Technical Information. .tech

IX.

X.

o

o

o

data formats .•.••.••

floating point support •.•...

assembly language interface.

Software Extensions.

o

o

the tiny library.

a fast linker ...•

o interface with other assemblers.

.tech.l

.tech.3

.tech.7

.ext.l

.ext.3

.ext.4

. .•...• ext

o Manx overlay support •••.•..•••••.•.•. ext.5

o generating ROMable code.

o utility programs

(object file profiler) CNM

SQZ (library squeeze) •••••

SIDSYM (debugging support)

Style •••••••

.ext.12

.ext.17

.ext.20

.ext.2l

•••••.••••.•• style

XI. Error Messages •••••••••••••••••••••••••••.•••••••••• err

o compiler error codes ••••••••••••••••• err.l

o fatal error messages •••••••••••••••• err.32

o errors during assembly. .err.34

o linker errors ••••••••••••••••••••••. err.36

SECTION I

Overview

Aztec C OVERVIEW

This manual was written to provide the shortest path between
any two points. The table of contents provides a straightforward
outline of the text. This section explains in more detail what
is discussed in each section of the manual.

If you are new to compilers and the C language, you will
want to read section II, since it gives a more detailed
introduction to the package as a whole.

Each of the subsequent sections explores a new topic.
Sections III - VI describe the principal programs available with
Aztec C and give complete, specific information on their use.

Section VII shows which functions are available in the
standard libraries, and how they can be called from a C program.
The section has a short preface which explains how to use the
summaries effectively. For all users, the library section is a
handy reference and source of examples.

Miscellaneous topics are treated in section VIII. The
summary of data formats explains how C data types are handled by
the compiler. It is worth reading this section even if you are
just learning C, since it offers insight into the differences
between the data types available to you. The guide to
the assembly language interface demonstrates how you can use your
own assembly code with the Aztec compiler. However, it also
provides a closer look at function calls in C, at the assembly
language level.

Section IX describes the extensions which are available for
the Aztec C development system. The introduction specifies which
programs and features are included in the standard package, and
which can be purchased separately.

Section X provides a closer look at the C language and this
package. It will be most useful if you are just learning the
language, as it clarifies the problems that are frequently
encountered by beginners-- and non-beginners as well.

The final section lists and explains the error messages
which are generated by the Aztec software. Although there is
always a new way to produce a given message, this section should
start you looking in the right direction for a cause. It is
conveniently located in the rear of the manual for easy access.

copyright (c) 1984 by Manx Software Systems, Inc. oV.l

SECTION II

A Tuto'rial Introduction

Aztec C TUTORIAL

I ntrod uction

The software provided by Hanx is comprised of four
indispensible tools. They are called the compiler, assembler,
linker and librarian. These are generic names. The Manx
compiler is known as Aztec C II (see two). The assembler,
designed with crI in mind, is called AS. The Aztec linker is
called simply LN. Another word for "linker" is "link editor".
As its name might imply, LN is what ties together the process of
developing a program. The development of larger applications is
made easier with the help of a librarian such as LIBUTIL. It
will help to manage your files when a program grows very large.

Just what these programs are and how they are used is the
subject of the next several sections. However, before you move
on to the complete descriptions, you may want to read the more
general section which follows. Through it, you will become
acquainted with the structure of the package and how to use the
tools it makes available.

Getting Started

Manx has sent you one or more diskettes, or floppy disks.
Each diskette is labeled with the name of the product, the
version number and a fraction indicating which member of the set
it is. If the diskette is reversible (a flippy), be sure to note
that both sides may be used, in which case each side will have a
different label.

The diskettes in your package are not bootable.
use them, you will first have to boot CP/M.

Checking the Files

In order to

You should take a directory listing of your disks and check
the results against the list given in the release document
enclosed with your package. If at any time you believe that a
Manx file is corrupted or bad, you can test it using the program
called CRC.COM. For a given file or for an entire disk, the CRC
(cyclic redundancy check) program will compute a unique
hexadecimal number. When a file is altered in any way, its CRC
number must change also. In order to test the entire disk,
simply run the program by typing in "crc" to the CP/M prompt.
The general form of the command is:

crc filename

Copyright (c) 1984 by Manx Software Systems, Inc. tut.l

Aztec C TUTORIAL

This will run the CRC check on the given file. A drive can
also be specified:

crc a:exmpl.c

The CRC numbers of the files supplied with the package are
listed in the release document. If a different value is
generated by the eRC program for a file, the file is IIbad li

• A
CRC number remains the same only until the file is changed.

Back up the Disks!

Before going too far with your disks, it is important that
you back them up. Backup disks are nothing more than copies of
the original disks which insure against accidental erasure of
valuable files. The CP/M copy utility is generally adequate for
backing up your distribution disks.

Any further considerations are explained in the release
document accompanying this manual. The release document should
be read over at this point. It is the real introduction to your
version of the package. It explains the changes that have been
made since the last release as well as any problems reported by
our users.

When you have made your backup disks, store the originals
away in a safe place-- but not somewhere so safe that you can It
find them later on. You should also copy the version number of
the package from the label of your distribution disks. This
version number may differ from that which appears when a
particular program is run.

The Working Disk

It is a good idea to create a working disk, that is, a disk
which contains all the files you will need right away. A working
disk will eliminate all the extraneous files which appear on the
originals. For now, you will need the following files: cc.com,
as.com, In.com, c.lib and exmpl.c. These files can be
transferred to a formatted CP/M disk with the utility, PIP.

If these files do not fit onto a single disk, you may want
to put In.com and c.lib on a second disk.

That little extra trouble may prove to be worthwhile in the
future, if only for your own peace of mind. Now we can leave the
disk swapping behind and see how this package is put together.

The Z80 Compiler

The Aztec C II development system contains two compilers, cc
and cz. While either compiler will run on the zao

Copyright (c) 1984 by Manx Software Systems, Inc. tut.2

Aztec C

microprocessor, cz makes special use of the Z80.
chip, only cc can be used.

TUTORIAL

On the 8080

For the purposes of this introduction, either compiler will
work just as well on the Z80. The differences between them are
described in section III.

If you wish to use the ez compiler in the following example,
simply copy the file, cz.com, onto your working disk instead of
cc.com. Anywhere reference is made to ee, read ez.

An Examp1e

As depicted in the diagram, there are five steps to
developing an executable program. Most of your work is done in
steps one and five. The intervening steps are accomplished with
the aid of the software in this package.

For now, we will assume you are interested in seeing the
example program, exmpl.c, run on your computer. Although the
program itself is not very engaging, we hope that compiling it
will familiarize you with the Aztec development system.

Compi1ing the Examp1e

"exmpl.c"' is an ordinary text file. Normally, you will have
created it with a text editor. It is special only in that its
contents are a C language program.

Aztec C II translates this program into an assembly language
program. This translation process is called compilation. It is
begun by running the compiler with this command:

ce exmpl.e

If exmpl.c is not on the disk in the default disk drive, you
can specify a drive as follows:

a:ec b:exmp1.e

The same convention is used for running any CP/M program.

CP/M should go to the appropriate disk drive to find the
file, CC.COM. That is the compiler. Then the compiler will go
searching for the file, exmpl.c. When the compiler is finished,
it will leave behind a new file on the disk, EXAMPL.ASM. This
too is just a text file, which can be printed out with the CP/M
command, type, and edited with a text editor. Assembly language
programmers can edit this file to "hand optimize" certain parts
of the code to make it run faster. Otherwise, though, you should
not have to concern yourself with this file directly.

Copyright (c) 1984 by Manx software Systems, Inc. tut.3

Aztec C TUTORIAL

+---------------------+
1. I EDITOR I

+---------------------+
I

/ II e" \
1 source file I

\ /

+---------------------+
2. I Aztec C II compiler I

+---------------------+
I

/ "ASM" \
I source file I
\ /

+---------------------+
3. 1 MANX AS Assembler 1

+---------------------+
I

/ "0" \ +---------------------+
I object file 1---> 1 LIBUTIL librarian I
\ / +---------------------+

1

+---------------------+ / subroutine \
4. 1 MANX LN Link Editor 1<-- 1 library I

+---------------------+ \ /
I

/ II COM II \

1 executable file 1

\ /

+---------------------+ +------------------+
5. 1 program execution 1<---->1 debugging

1 lithe program
+---------------------+ +------------------+

Figure 1. Developing "C· programs with Aztec C II

The Assembly step

The next step is to convert this assembly code into what is
called object code. This is the job of the assembler. AS was
specifically designed to handle the output of the Aztec compiler,
so this step should run very smoothly unless: 1. there is not
enough space on the disk, or 2. you are including assembly code
you have written yourself. If neither of these things are true,
everything will run very smoothly.

Copyright (c) 1984 by Manx Software Systems, Inc. tut.4

Aztec C TUTORIAL

The assembly is begun with the following command:

as exmpl.asm

As always, a drive identifier can be given to specify on
which disk either of the files are located.

The assembler will leave its output in a file called
exmpl.o. The assembler output is known as relocatable object
code because it can be relocated anywhere in memory; this is done
by the linker. The linker will convert this code from
relocatable object format to absolute data, that is, a program
which will be loaded and run at a specific address in memory.

Linking the Example

When the assembler is finished, we are left with exmpl.o.
The command to the linker is:

In exmpl.o c.lib

The file, c.lib, is a library full of object modules similar
to exmpl.o. They are relocatable object code produced by
compiling and assembling the routines which are available in the
library. In the example program, printf is a function which
comes from this library. During the link step, the linker will
search the library for this function and "pull in" the object
module in which it is defined. More about libraries later.

Most programs will need to be linked with c.lib, since there
are many functions in it which remain invisible to you. Try the
following link command:

In exmpl.o

The linker will report that several names were undefined.
These are needed support functions which your program called
without knowing it.

The output of the linker is an executable program file.
Here, "exmpl.com" was produced. This program can be run by
entering the name of the file minus the extent:

exmpl

This is the way any CP/M program is run.

Copyright (c) 1984 by Manx Software Systems, Inc. tut.S

Aztec C TUTORIAL

So the process of going from source code to an executable
program consists of these three steps:

cc exmpl.c compile

as exmpl.asm assemble

In exmpl.o c.lib link

If your system allows it, you can use a submit file to
perform any or all of these steps.

If You Run Out of Disk Space

The only difficulty you may have is running out of disk
space. The danger of this occurring varies from system to
system. If you are having trouble in this respect, here are a
few suggestions:

1. Use two disks. The first disk might contain the
compiler and assembler, while the second disk contains the linker
and library.

2. If the three programs from Manx and the library all fit
on a single disk, then leave all of your software on a second
disk, perhaps in drive B. Make B the default drive by entering
"B:". Then, for example, your link command would look like this:

a:ln exmpl.o a:c.lib

3. The assembler has an option called -ZAP which will cause
it to delete its input file. This keeps assembly files, which
are not always useful to you, from cluttering up the disk. So
the following command:

as -ZAP exmpl.asm

will leave "exmpl.o" on the disk but delete "exmpl.asm".

Copyright (c) 1984 by Manx Software systems, Inc. tut.6

SECTION III

The Compiler

Aztec C COMPILER

The Compiler

The Aztec C II compiler is implemented according to the
language description supplied by Brian W. Kernighan and Dennis M.
Ritchie, in The C programming Language. Where discrepancy or
ambiguity iSfound in that text, reference is made to the
implementation of the language under UNIX version 7. The Aztec C
manual should bring to light any areas where there may be
confusion as regards Aztec C.

Since this manual is not intended as a complete guide to the
C language, you may need another text handy to answer questions
about proper syntax and usage. Several strong tutorials are
available: some are suggested in the appendix. The Kernighan and
Ritchie book is generally considered the place to turn to for the
final word. You may want to have a copy, whatever other books
you might own.

This section will explain how to use the compiler. There
are a variety of options which can be specified at compile time.
These enhance the flexibility of the system, so that you will
eventually want to become familiar with what is available. If
you are just trying out some small programs similar to the
example program of the last section, not all of the material in
this section will be of immediate importance to you.

Running the Compiler

The compiler is invoked by a command of the format:

cc [-options] filename.c

If the filename does not have an extension, the compiler
will assume it ends in II.C Il

• It is recommended that C source
files have this extension although the compiler will allow a
different one, as in II filename.src ll

•

The C source statements found in the given file are
translated into assembly language and written to a file. This
output file is named IIfilename.asm ll by default. (The assembler
will expect the lI.asm ll extent the same way that the compiler
expected the II.CIl.) An alternate output file can be specified
with the 11-011 option. For example,

cc -0 file.aBO file

will compile the program in IIfile.c ll and write the assembly
language equivalent to IIfile.aBO Ii

•

The compiler will append the II.C Il only if it doesn't see a
period (.) in the filename. So that if you want to name a source

Copyright (c) 1984 by Manx Software Systems, Inc. cc.l

Aztec C COMPILER

file wi thout any extension at all, as in II srcfil", you will have
to compile it in this way:

cc srcfil.

The period at the end of the filename stops the compiler
from tacking on the ".C".

The remaining compiler options have more specialized uses.
They are described below.

The 8080 and Z80 Compilers

The Aztec C II development system includes two compilers, cc
and cz. Both support the full C language, as explained above.
Both compilers generate 8080 assembler mnemonics.

cc can be used in conjunction with either the 8080 or Z80.
In either situation, one register is available for use by a
variable through the C language storage class, register.

cz can be run on only the Z80, and produces code intended
for the Z80. It uses the Z80 index registers, IX and IY, to hold
additional register variables, for a total of three. This
results in a higher throughput.

To simplify the descriptions in this manual, reference is
made only to cc throughout. On Z80 systems, the two compilers
can be used interchangeably. The assembly output of either
compiler can be assembled by the Manx AS assembler and linked
with the standard libraries, c.lib and m.lib. A call to either
csave or zsave is made at the entry point of each C function.
Both functions are pulled into every linked program.

Copyright (c) 1984 by Manx Software systems, Inc. cc.2

Aztec C

utility options

-D

-F

-I

-M

-0

-P

-Q

-R

-8

-T

-u

Table Manipulation

-E

-L

-y

-z

COMPILER

Compiler options

Defines a symbol for the preprocessor.

Forces frame allocation to take place in-line
rather than through a call to a library
function.

Causes search for included files in specified
areas.

This option causes the compiler to produce
code for the Microsoft assembler
(see section XI for details).

Used to specify an alternate output file.

Sends error messages to the printer.

Converts default automatic variables to
statics for efficiency.

This option is a special extension to the
compiler which causes it to produce code for
the Digital Research assembler (see section
XI for details).

Causes search for undefined structure members
as described below.

This option will insert the C source
statements as comments in the assembly code
output. Each source statement appears
before the assembly code it generates.

Converts default global variables into
externs (except initialized data).

Specifies the size of the expression table.

Specifies the size of the local symbol table.

Specifies the maximum number of outstanding
cases allowed in a switch.

Specifies the size of the table for literal
strings .

. Copyright (c) 1984 by Manx Software Systems, Inc. cc.3

Aztec C COMPILER

utility Options

-D Option

The -D option defines a symbol in the same way as the
preprocessor directive, 'define. Its usage is as follows:

cc -Dmacro[=text] prog.c

For example,

cc -DMAXLEN=lOOO prog.c

is equivalent to inserting the following line at the beginning of
the program:

'define MAXLEN 1000

Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the
preprocessor directive, lifdef, to selectively include code in a
compilation. A common example is code such as the following:

,ifdef DEBUG
printf("value: %d\n", i):

.endif

This debugging code would be included in the compiled source
by the following command:

cc -dDEBUG program.c

When no SUbstitution text is specified, the symbol is
defined as the numerical value, one.

This capability is useful when small pieces of code must be
altered for different operating environments. Rather than
maintaining two copies of such a program, this compile time
switch can be used to generate the code needed for a specific
environment. For example,

,ifdef

.else

.endif

-F Option

APPLE
appleinit():

ibminit():

The -F option causes function entry code to be generated in
line. Normally, every compiled C function begins with a call to

, Copyright (c) 1984 by Manx Software systems, Inc. cc.4

Aztec C COMPILER

a routine in c.lib.
equivalent code.

This option replaces this call with the

This results in a small savings in execution speed every
time the compiled function is called. If the function is called
repeatedly, the savings can add up to a large difference in the
execution time of the program. As a side effect, this option
will slightly increase the size of the compiled code.

-1 Option

The -1 option causes the compiler to search in a specified
area for files included in the source code.

By default, the compiler will search for included files in
the current user and user 0 on the default drive and in user 0 on
drive A, if that drive has been logged in (i.e., if drive A has
already been accessed).

The -1 option is used to specify a more extended search.
For example, tinclude'd header files might be kept in particular
user, such as user 5 on drive A. Then a compile command might
be this:

cc -i 5/a: program.c

The parameter for the option has the form:

[user number]/[drive identifier]

Each user area to be searched requires its own option
letter. The -I can be specified up to eight times in a single
command.

-p Option

The -P option redirects the screen output of the compiler to
the printer. This produces a hard copy of the error messages
generated during compilation.

-0 Option

-0 is an option which causes the compiler to treat automatic
variables as statics. This will essentially convert an automatic
lIint ill within a function to a IIstatic int ill.

This can cause a significant increase in execution speed,
since it is much less expensive to address statics than variables
on the stack.

As an empirical example, a version of the infamous
Eratosthenes ' sieve program which ran in 33 seconds was reduced

Copyright (c) 1984 by Manx software Systems, Inc. cc.5

Aztec C COMPILER

to a run of only 24 seconds, just by specifying the -Q option.

A declaration using the "auto" keyword,
i", will not be affected by the -Q option.
variable to remain an automatic.

such as "auto int
"auto" forces the

If a variable is declared as a "register int i", but there
are no available registers, the variable defaults to the
automatic storage class. So a "register int i" will become a
static under the -Q option, if there is not a free register.

Like any other static data, an auto-turned-static is
initialized to zero before the program begins.

Note that calling a function recursively may cause problems
when the -Q option is used. Consider a function with a "static
int i" which increments i and then calls itself:

qtest()
{

}

static int i;

if (++i < 100)
qtest(i):

return (i):

The following program will print out "100":

main ()
{

printf("%d", qtest(»:
}

If the integer variable in qtest() was not static, the
recursive call would have to be "i = qtest(i)". Although qtest()
does not seem to save the value returned by the call to itself,
the static variable retains its value throughout the nesting.

-u Option

The -u option performs a different storage class conversion.
It converts global variables into externs. That is, under -U,
"int i" outside any function becomes "extern int i". This is
useful in that it allows all global variables to be defined in a
single file without having to specify an "extern" with each other
declaration.

The universal way of defining a global integer, i, is to
have the statement, "int i", in one file and the statement,
"extern int i" in all other program files in which the variable
is used. The "int i" is a "definition" of the variable since it
causes space to be reserved in memory for the variable. Th~

"extern" causes no memory to be reserved; it says, "This variable

Copyright (c) 1984 by Manx Software Systems, Inc. cc.6

Aztec C COMPILER

is defined somewhere else but it is going to be used in this file
of the program. II

When using the Aztec assembler and linker, the only
requirement is that a global variable must be defined at least
once. So in this example, it is also possible to have lIint ill in
every file: the lIexternll keyword is not extremely significant in
this case. Although there may turn out to be more than one
global lIint ill in the program, memory will be allocated for just
one. This is also the behavior under UNIX.

The situation is slightly different when employing the
assembler and linker provided by Microsoft or Digital Research.
(These programs can be used only with a compiler which has the
extended options, -M and -R.)

When using the Microsoft or DRI assembler and linker, a
global variable must be defined exactly once. That is, lIextern
int i II must appear in every declaration except one, which must be
an lIint ill. This is where the -u option is useful. By
specifying it for all but a single source file, you will not have
to worry about having too many or not enough externs: the
lIexterns ll can be left off entirely since they will be tacked on
under the -u option.

A global initialization is immune to the -u option. Hence,
lIint i = 3: 11 is unchanged by it. Initializing a global variable
to zero will cause it to be ignored by -u. This is one means for
forcing a data definition when using this option.

-8 option

The -8 option is best illustrated by an example:

struct atype {
char aI, a2:

} a:

struct btype {

} b:

a.bI = 4:
b.c2 = 6:

char bI, b2:

Normally, both of the assignments will cause a compiler
error, since IIbl li is not a member of lIa ll , and IIc211 is not a
member of lIa li • However, under the -S option, the first
assignment will be legal and the second will be illegal.

Under -S, the compiler will not generate an error when it
notices that IIbl li is not a member of lIa li • Instead, it will
proceed to search through all the previously defined structures
until it finds the member IIbl li . The member of structure lib II I

Copyright (c) 1984 by Manx Software Systems, Inc. cc.7

Aztec C COMPILER

namely IIbl ll
, is taken to be referenced by lIa.bl ll

•

The second assignment will generate an error with or without
the -s option, since Ic2" is not a member of a previously defined
structure.

The -s option refers only to previously defined structures.

Table Manipulation

An explanation of the remaining options requires a little
background. As the compiler is compiling a C program, it has to
keep track of all the symbols in the source code-- mainly
variable and function names. It has to remember some information
about each variable, such as its data type. All this is stored
in symbol tables in memory.

The symbol tables start out with a certain default size.
This size is usually sufficient for compiling a moderately sized
source file. However, depending on the complexity of the
program, the compiler might use up all the entries in a table
during compilation. In this case, the compiler will terminate
with an appropriate error message.

If this happens, you will need to adjust the sizes of the
tables. Usually, this will call for just increasing the size of
a single table. The default sizes are given below, along with
examples for each option.

The amount of memory available to the compiler is obviously
limited. It will read into memory only as much of the source
file as it needs in order to generate output. Aside from the
w~rk space needed for this task, it maintains the following
tables: expression work table, macro/global work table, case
table, string table, label table, and local symbol table.

The label table holds information on all the labels in the
program (a label is the destination of a goto). It is fixed at a
generous size. If it overflows, the compiler will generate error
code 54, and you will have to decrease the number of labels in
your program.

The macro table is where macros defined with "#define" are
remembered. It also contains information about all global
symbols. Unlike the other symbol tables, it is self-adjusting,
and is never larger than it needs to be. Note that this is
different from versions previous to 1.06 of the compiler. This
change has made the "-X" option obsolete.

If the Compiler Runs Out of Memory

If the compiler aborts with a message indicating that it ran
out of memory, you will have to decrease the size of one or more

Copyright (c) 1984 by Manx Software Systems, Inc. cc.8

Aztec C COMPILER

of the tables. There is no harm in doing so, since the compiler
will always complain when a table overflows. Decreasing the size
of a table will free up space in memory for the compiler.

As indicated in section XI, the compiler may run out of
memory without overflowing any particular table. In this case, a
generic "out of memory" message will appear. If the module you
are compiling is extremely large, the simplest solution may be to
break it into two or more separate modules. However, if the
module is of reasonable size, it is possible to decrease the size
of a table which is not fully used, thereby freeing up memory for
the compilation.

Choosing which table to decrease and by how much is a matter
of estimation.

If a particular table overflows, the appropriate error will
be generated. It is then necessary to increase the size of that
table. Table sizes specified by option letters are used for only
a single compilation.

The Expression Table:

This is the area where the "current II expression is handled.
It is the compiler's work space as it interprets a line of C
code. The various parts of the line are stored here while the
statement is being compiled. When the compiler moves on to the
next expression, this space is again freed for use.

The default value for -E is 60 entries. Each "entry" in the
table consumes 14 bytes in memory. So the expression table
starts at 840 bytes. Each operand and operator in an expression
is one entry in the symbol table-- another fourteen bytes. The
term, "operator", includes each function and each comma in an
argument list, as well as the symbols you would normally expect
(+, &, "', etc.). There are some other rules for determining the
number of entries an expression will require. Since they are not
straightforward and are subject to change, they will not be
discussed here.

The following expression uses 15 entries in the table:

a = b + function { a + 7, b, d) * x

Everything is an entry except for the ")", including the
commas which separate the function arguments.

I f the expression
generate error number 36,

table overflows, the compiler
"no more expression space."

will

This command will reserve space for 100 entries (1800 bytes)
in the expression table:

cc -EIOO filename

Copyright (c) 1984 by Manx Software Systems, Inc. cc.9

Aztec C COMPILER

The option must be given before the filename. There can be
no space between the option letter and the value.

The Loca1 Symbo1 Tab1e:

New symbols can be declared after any open brace. Most
commonly, a declaration list appears at the beginning of a
function body_ The symbols declared here are added to the local
symbol table. If a variable is declared in the body of, say, a
for loop, it is added to the table. When the compiler has
finished compiling the loop, that entry in the table is freed up.
And when it has finished the function, the table will be empty.

The default size of the table is 30 entries. Since each
entry consumes 26 bytes, the table begins at 520 bytes. If the
table overflows, the compiler will send a message to the screen
and stop.

The number of entries in the table can be adjusted with the
-L option. The following compilation will use a table of 75
entries, or almost 2000 bytes:

cc -L75 program.c

The Case Tab1e:

When the compiler looks at a switch statement, it builds a
table of the cases in it. When it IIleaves ll the switch statement,
it frees up the entries for that switch. For example, the
following will use a maximum of four entries in the case table:

switch (a) {
case 0: /* one */

a += 1;
break;

case 1: /* two */
switch (x) {
case I a' : /* three */

func1 (a) ;
break;

case I b' : /* four */
func2 (b) ;
break;

} /* re1ease the 1ast two */
a = 5;

case 3: /* tota1 ends at three */
func2 (a) ;
break;

}

Copyright (c) 1984 by Manx Software Systems, Inc. cc.10

Aztec C COMPILER

The table defaults to 40 entries, each using up four bytes.
I f the compiler returns with an error 76 (licase table
exhausted ll

), you will have to recompile with a new size, as in:

cc -YlOO file

The string Table:

This is where the compiler saves IIliterals ll
, or strings.

The size of this area defaults to 1000 bytes. Each string
occupies a number ·~f bytes equal to the size of the string. The
size of a string is just the number of characters in it plus one
(for the null terminator).

If the string table overflows, the compiler will generate
error 2, IIstring space exhausted ll

•

The following command will reserve 2000 bytes for the string
table:

cc -Z2000 file

The size of the string table needs to be increased if an
error 2 (string space exhausted) is encountered.

Copyright (c) 1984 by Manx Software Systems, Inc. cc.ll

Aztec C COMPILER

Error checking

Compiler errors corne in two varieties-- fatal and not fatal.
Fatal errors cause the compiler to make a final statement and
stop. Running out of memory and finding no input are examples of
fatal errors. Both kinds of errors are described in section XII.
The non-fatal sort are introduced below.

The compiler will report any errors it finds in the source
file. It will first print out a line of code. The up-arrow
(carot) in this line indicates how far the compiler went before
it was able to detect the error. The name of the source file
will appear, followed by a line number, an error number and the
symbol which may have caused the error.

The compiler is not always able to give a precise
description of an error. Usually, it must proceed to the next
item in the file to ascertain that an error was encountered.
Once an error is found, it is not obvious how to interpret the
subsequent code, since the compiler cannot second-guess the
programmer's intentions. This may cause it to flag perfectly
good syntax as an error.

If errors arise at compile time, it is a general rule of
thumb that the very first error should be corrected first. This
may clear up some of the errors which follow.

The best way to attack an error is first to look up the
meaning of the error code in the back of this manual. Some hints
are given there as to what the problem might be. And you will
find it easier to understand the error and the message if you
know why the compiler produced that particular code. The error
codes indicate what the compiler was doing when the error was
found.

Copyright (c) 1984 by Manx Software systems, Inc. cc.12

SECTION IV

The As-sembler

Aztec C ASSEMBLER

The Assembler

The Manx AS assembler accepts a subset of the Microsoft
MACRO-BO assembler language. The Manx AS assembler does not
support macros or ZBO mnemonics.

The Manx AS assembler is a relocating assembler.
invoked by the command line:

AS fi1ename.asm

It is

The relocatable object file produced by the assembly will be
named "filename.o". An alternate object filename can be supplied
by specifiying -0 filename (0 is a letter). The object file will
be written to the filename following "-0", as in the following
example:

as -0 newfi1.obj filename.asm

The output filename does not have to end wi th ".0 ", but that
is the recommended format. The assembly language source file can
also have any extension. If none is given, the extension defaults
to ".asm".

When assembling compiler output, a useful option is -ZAP.
After creating the object code output file, the assembler will
delete the (intermediate) assembly language file. This conserves
disk space and is especially useful when compiling a large number
of C source files.

It is common practice to create a C language source file
ending in ".C", such "prog.c", and leave off the extension
entirely when compiling and assembling:

cc prog
as -ZAP prog

To produce an assembly listing, specify the -L option, as
in the following example. The assembler is a one pass assembler
so forward address references will not appear on the listing.

as -1 prog

Copyright (c) 19B4 by Manx Software Systems, Inc. as.l

Aztec C ASSEMBLER

The following summaries define the syntax for the AS
assembler:

STATEMENTS

Source files for the Manx AS assembler consist of statements
of the form:

[1abe1[:]] [opcode] [argument] [:comment]

The brackets "[•.• J II indicate an optional element.

LABELS

A label consists of 1 to 8 alphanumerics followed by an
optional colon. A label ITlust start in column one. If a statement
is not labeled, then column one must be left blank. A label must
start with an alphabeti.c. An alphabetic is defined to be any
letter or one of the special characters: @ $

An alphanumeric is cln alphabetic, or a digit from 0 to 9.

A label followed by "##" is declared external.

EXPRESSIONS

Expressions are evaluated from left to right according to
parenthesization, wit:h precedence given unary operators.
Operators are:

+ - * / A'~ID OR XOR NOT 8m. 8HR MOD

CONSTANTS

The default base for numeric constants is decimal. A number
suffixed by a "B" is bi nary, e.g. lOOlOllOB. A number suffixed by
a "D" is decimal, e.g. 765D. A number suffixed by an 0 or Q is
octal, e.g. 1260 or 1261:2. A number or alphabetic A-F suffixed by
an "HI! is hexadecimal, e.g. OFEEH.

A character constant is of the form:
character enclosed by ~3ingle quotes.

'A', that is, a

Copyright (c) 1984 b~r l\1anx Software Systems, Inc. as.2

Aztec C ASSEMBLER

ASSEMBLER DIRECTIVES

The Manx AS assembler supports the following pseudo
operations:

BSS sym_name, size

COMMON /<block name>/

CSEG

DB <exp>

DSEG

DW

END

GLOBAL sym_name, size

NLIST

LIST

MACLIB/XTEXT filename

PUBLIC/EXT/EXTRN label

creates symbol (sym name) of 'size'
bytes in the BSS segment (which
contains static data from C source
code) •

sets the location counter to the
selected cornmon block.

select code segment.

define byte constant.

select data segment.

define word constant (2 bytes) •

end of assembler source statements.

creates an external symbol with
size, 'size' bytes. An
uninitialized global char in C
compiles to a global of one byte.
If a symbol is defined with global
more than once, storage is
allocated by the linker for the
largest size given.

turn off listing

turn on listing

include statements from another
file

declares label to be external
or entry

Copyright (c) 1984 by Manx Software Systems, Inc. as.3

SECTION V

The Linker

Aztec C LINKER

The Linker

The Aztec linker is the software which ties together the
pieces of a program which were compiled and assembled separately.
The assembler produces a file containing what is called
relocatable object code. The Manx AS assembler generates object
files with a specific object file format. The Aztec linker
expects that the files it links will be in this format. That is
why AS and LN must be used together.

The following pages are a brief introduction to linking and
what the linker does. If you have had previous experience with
linkage editors, you may wish to continue reading with the
paragraph heading, "using the Linker." There you will find a
concise description of the command format for the linker.

Relocatable Object Files

The object code produced by the assembler is "relocatable"
because it can be loaded anywhere in memory. One task of the
linker is to assign specific addresses to the parts of the
program. Thjs tells the operating system where to load the
program when it is run.

Linkin9 hello.o

It is very unusual for a C program to consist of a single,
self-contained module. Let's consider a simple program which
prints "hello, world" using the function, printf. The
terminology here is precise: printf is a function and not an
intrinsic feature of the language. It is a function which you
might have written, but it already happens to be provided in the
file, "c.lib". This file is a library of all the standard i/o
functions. It also contains many support routines which are
called in the code generated by the compiler. These routines aid
in integer arithmetic, operating system support, etc.

When the linker sees that a call to printf was made, it
pulls the function from the library and combines it with the
"hello, world" program. The link command would look like this:

In hello.o c.lib

When "hello.c" was compiled, calls were made to some
invisible support functions in the library. So linking without
the standard library will cause some unfamiliar symbols to be
undefined. All programs will need to be linked wi th "c.lib".

Copyright (c) 1984 by Manx software Systems, Inc. In.l

Aztec C LINKER

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are
certain to call user-defined functions. It is up to the linker
to connect a function call with the definition of the function
somewhere in the code.

In the example given below, the linker will find two
function calls in file 1. The reference to funcl is "resolved"
when the definition of funcl is found in the same file. The
following command

In filel.o c.lib

will cause an error indicating that "func2" is an undefined
symbol. The reason is that the definition of func2 is in another
file, namely file2.o. The linkage has to include this file in
order to be successful:

Libraries

In filel.o file2.o c.lib

file 1

main ()
{

}

funcl().
func2();

funcl()
{

return;
}

file 2

func2()
{

return;
}

A library is a collection of object files put together by a
librarian. Libraries intended for use with LN must be built with
the Aztec librarian, LIBUTIL. This ut~lity is described in the
next section.

All the object files specified to the linker will be "pulled
into" the linkage; they are automatically included in the final
executable file. However, when a library is encountered, it is
searched. Only those modules in the library which satisfy a
previous function call are pulled in.

For Example

Consider the "hello, world" example. Having looked at the
module, "hello.o", the linker has built a list of undefined

Copyright (c) 1984 by Manx Software Systems, Inc. In.2

Aztec C LINKER

symbols. This list includes all the global symbols that have
been referenced but not defined. Global variables and all
function names are considered to be global symbols.

The list of undefined's for "hello.o" includes the symbol,
"printf". When the linker reaches the standard library, this is
one of the symbols it will be looking for. It will discover that
"printf" is defined in a library module whose name also happens
to be "printf". (There is not any necessary relation between the
name of a library module and the functions defined within it.)

The linker pulls in the "printf" module in order to resolve
the reference to the "printf" function.

Files are examined in the order in which they are specified
on the command line. So the following linkages are equivalent:

In hell0.o

In c.lib hello.o

Since no symbols are undefined when the linker searches
c.lib in the second line, no modules are pulled in. It is good
practice to leave all libraries at the end of the command line,
with the standard library last of all.

The Order of Library Modules

For the same reason, the order of the modules within a
library is significant. The linker searches a library once, from
beginning to end. If a module is pulled in at any point, and
that module introduces a new undefined symbol, then that symbol
is added to the running list of undefined's. The linker will not
search the library twice to resolve any references which remain
unresolved. A common error lies in the following situation:

module of program references (function calls)

main.o getinput. do calc

input.o gets

calc.o

output.o printf

Suppose we build a library to hold the last three modules of
this program. Then our link step will look like this:

In main.o proglib.lib c.lib

But it is important that "proglib.lib" is built in the right
order. Let's assume that main() calls two functions, getinput()
and do_calc(). getinput() is defined in the module, input.o. It

Copyright (c) 1984 by Manx Software Systems, Inc. In.3

Aztec C LINKER

in turn calls the standard library function, gets () . do_calc ()
is in calc.o and calls put_value(). put_value() is in output.o
and calls printf().

What happens at link time if proglib.lib is built as
follows?

proglib.lib: input.o
output.o
ca1c.o

After main.o, the linker has "getinput ll and "do calc ll

undefined (as well as some other obscure functions in c.lib).
Then it begins the search of proglib.lib. It looks at the
library module, "input", first. Since that module defines
"getinput", that symbol is taken off the list of undefined's.
But IIgets" is added to it.

The symbols "do calc" and "gets" are undefined when the
linker examines the module, "output". Since neither of these
symbols are defined there, that module is ignored. In the next
module, "calc", the reference to "do calc" is resolved but
"put_value" is a new undefined symbol.

The linker still has "getsll and "put value" undefined. It
then moves on to c.lib, where "gets" is resolved. But the call
to "put value" is never satisfied. The error from the linker
will look like this:

Undefined symbol: put_va1ue_

This means that the module defining "put value" was not
pulled into the linkage. The reason, as we-saw, was that
"put value ll was not an undefined symbol when the "output" module
was -passed over. This problem would not occur with the library
built this way:

prog1ib.lib: input.o
calc.o
output.o

The standard libraries were put together with much care so
that this kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a
library so that all references are resolved. In the example, the
problem could be solved with the following command:

In main.o prog1ib.1ib prog1ib.1ib c.1ib

The second time through proglib.lib, the linker will pull in
the module "output". The reason this is not the most
satisfactory solution is that the linker has to search the
library twice; this will lengthen the time needed to link.

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.4

Aztec C LINKER

Using the Linl<er

The general form of a linkage is as follows:

In [-options] filel.o [file2.o etc] [libl.lib etc]

The linker will essentially combine any number of object
files produced by the Aztec assembler into an executable program.
It will also search a library of object modules for functions
needed to complete the linkage. only those modules needed will
be pulled out of the library. The linker makes just a single
pass through a library, so that only forward references within a
library will be resolved.

By default, the executable output file will be named after
the first object file given on the command line. It will have
the extension ".com". The following linkage:

In prog.o c.lib

will produce the disk file, prog.com, which can be run under
CP/M. The standard library, c.lib, will have to be included in
most linkages.

A different output file can be specified with the -0 option,
as in the following command:

In -0 program.com modl.o mod2.o c.lib

The name given with -0 must have the extension, ".com".

This command also shows how several individual modules can
be linked together. A "module", in this sense, is a section of a
program containing a limited number of functions, usually
related. These modules are compiled and assembled separately and
linked together to produce a ".com" file. Modules are useful
because a change can be made to a single module without having to
recompile the source for the entire program.

More About Libraries

When certain modules are used over and over by different
programs, it is often expedient to build a library containing
these commonly used modules. This library can then be included
in the linkage of any of these programs. Any number of libraries
can be included in a given linkage:

In -0 program.o mylib.lib new.lib m.lib c.lib

Each of the libraries will be searched once in the order in
which they appear on the command line. In this example, the

Copyright (c) 1984 by Manx Software Systems, Inc. In.5

Aztec C LINKER

m.lib library is the math library provided by Manx.

Libraries can be named more conveniently with the -L option
to the linker. The previous linkage is identical to the
following:

In -0 program.o -~y1ib -lnew -1m -Ie

The -L option will take the string following it and append a
lI.lib". The resulting filename will be treated as the name of a
library.

The options recognized by the linker are summarized in the
table below. Further explanations follow.

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.6

Aztec C

-F

-L

-0

-R

-T

-v

-B

-c

-D

-u

+C

+D

LINKER

Linker Options

General purpose Options

This option allows command arguments to be
taken from the file specified.

Specifies a library of routines.

Specifies alternate output filename.

Generates a symbol table for overlays.

Creates a symbol table file.

Verbose mode.

Segment Address Specification

Sets the base address of the program.

Sets t.he beginning address for the code
portion of the program.

Sets the beginning address for the data area.

Sets the beginning address for the
uninitialized data area.

Memory Usage

Reserves specified number of bytes at end of
code segment of linked program (for use with
overlays).

Reserves specified number of bytes at end of
data segment of linked program (for use with
overlays) .

General purpose Options:

-F causes the linker to mElilge the contents of the given file
with the command line arguments. For example,

In myprog.o -f argfil -lc

where the file, argfil, contains the following:

modl.o mod2.o
mylib.lib

All records (that is, all lines) of the file are read.
There is no need to squeeze everything into one record.

Copyright (c) 1984 by Manx Software Systems, Inc. In.7

Aztec C LINKER

There are several advantageous uses for this command. The
most obvious is to supply the names of modules that are commonly
linked together. Since all the modules named are automatically
pulled into the linkage, the linker does not spend any time in
searching, as with a library. Furthermore, any linker option
except -F can be given in a -F file. -F can appear on the
command more than once, and in any order. The arguments are
processed in the order in which they are read, as always.

The -R option is used only when portions of a program are
being linked as overlays. This option is fully described in
section IX.

The -T option creates a disk file which contains a symbol
table for the linkage. This file is just a text file which lists
each symbol with a hexadecimal address. This address is either
the entry point for a function or the location in memory of a
data item. A perusal of this file will indicate which functions
were actually pulled into the linkage.

The symbol table file will have the same name as the ".com"
file, except that its extension will be ".sym". This ".sym" file
can be used in conjunction with the SID or ZSID debugging aid
available from Digital Research.

There are six special symbols which will appear in the
table. They are as follows:

Cor9 origin of code area (cf. -C option)
Cend end of code area
Dor9 origin of data area (-D)
Dend end of data area - -_Uor9_ origin of uninitialized data (-u)
uend end of uninitialized data area

The -V option causes the linker to send a progress report of
the linkage to the screen as each input file is processed. This
is useful in tracking down undefined symbols and other errors
which may error while linking.

Copyright (c) 1984 by Manx Software Systems, Inc. 10.8

Aztec C LINKER

segment address specification:

There are four crucial addresses which may be specified at
link time. They are the base address and the starting addresses
of the three major parts of the program. A linked program
normally looks like this:

Uend

uorg
Dend

Dorg
Cend

Corg
base

(hex address 103)
(hex address 100)

The symbols depicted in the figure can be seen in the
symbol table produced with the -T linker option.

At the base address is an instruction which initiates
execution: it is a jump to the beginning of the program. By
default, this instruction is located at hex address 100.

Again by default, the code portion of the program starts
right after this instruction-- three bytes higher at hex address
103.

The area containing initialized data is placed directly
above the code. At the top comes the uninitialized data area.

This order can be rearranged. The only restriction is that
the base address must be lowest and the code and data regions
must not overlap. If either condition is not satisfied, the
linker will print an error message and abort.

For example, the base address of a program is set by the
following command:

In -b 500 prog.o -Ie

The base address for prog.com will be hex address 500. The
address specified for any of these options is assumed to be
hexadecimal.

When just the base address is fixed, as in the example, the
code and data remain as a continguous span of memory above the
base address. However, the remaining three addresses can also be
specified:

In -b 200 -c 500 -d 1000 -u 3000 prog.o -Ic

Copyright (c) 1984 by Manx Software Systems, Inc. 10.9

Aztec C LINKER

This capability is needed for ROM based applications and for
situations requiring that certain areas of memory not be
overwritten by the program.

Memory Usage:

The +C and +D options effectively increase the size of the
code and data segments of the linked program. For example,

In +d 1000 prog.o -lc

will increase the data area of the linked program by hex 1000
bytes. These options are specifically provided for the use of
overlays. See the section describing software extensions for
more details.

Copyright (c) 1984 by Manx Software Systems, Inc. In.l0

SECTION VI

The Librarian

Aztec C LIBU'l'IL

Li brary Mai ntenance

LIBUTIL

Swmmnary

The LIBUTIL LIBrary UTILity is used in order to:

1. create a library
2. append a library (-a)
3. produce an index list (-t)
4. extract members (-x)
5. replace a module (-r)
6. create a library using an

extended command line (.)
7 • report progress of

library build (-v)

1. LIBUTIL -0 example.lib x.o x.o

USE -
FUNCTION

to create a library
the following creates a private library,
example.lib, containing modules subl.o
and sub2.0

>LIBUTIL -0 example.lib subl.o sub2.0

2. LIBUTIL option-a

USE - to append to a library
FUNCTION- the following appends exmpl.o to the

example.lib

>LIBUTIL -0 example. lib -a exmpl.o

this function can be used to append any
number of .0 files to the library. For
e x amp 1 e , the 'f 0 110 win gap pen d s
exmpl.o and smpl.o to the example.lib

>LIBUTIL -0 example.lib -a exmpl.o smpl.o

NB If a large number of files need to
be a p pen de d to' ali bra r y , it i s
advantageous to use the dot option (see
item 6).

Copyright (c) 1984 by Manx Software Systems, Inc. Ibutl.l

Aztec C LIBUTIL

3. LIBUTIL option-t

USE - to produce an index listing of modules
in a given library

FUNCTION- the following displays a listing of all
modules in a particular library,
example.lib:

>LIBUTIL -0 example. lib -t

4. LIBUTIL option-x

NB this function will allow only one
library to be listed at a time; also,
this lists only module names, and not
the functions which each module may
contain.

USE - a. copies a particular library module
into a relocatable object file

b. copies a complete library into
relocatable object files

FUNCTION- a. the following copies library module,
exmpl into a relocatable object file:

>LIBUTIL -0 example.lib -x exmpl

b. the following copies a complete
library, example.lib, (including all
modules contained within it) into
relocatable object files:

>LIBUTIL -0 example. lib -x

5. LIBUTIL option-r

NB. It shou ld be noted tha t when
copying a single module the LIBUTIL
executes the command and returns.
When copying a complete library,
the LIBUTIL lists the modules being
copied.

USE - to replace a library module wi th the
contents of a relocatable object file

FUNCTION- the fo llow ing rep lac e s the library
module subl with the relocatable object
file subl.o

>LIBUTIL -0 example. lib -r subl.o

Copyright (c) 1984 by Manx Software systems, Inc. 1but1.2

Aztec C

6. LIBUTIL -0 library name .

USE

FUNCTION

>xsub

to create a library using an
command 1 ine
the following creates a
charles.lib and appends to it
sub2.0, sub3.0, sub4.0, etc.

LIBUTIL -0 charles lib .
subl.o sub2.o sub3.o sub4.0

7. LIBUTIL option -v

LIBUTIL

extended

library,
subl.o,

USE to report the current status of a
library during an operation by LIBUTIL.

In More Detail •••

Creating a Library

The command for creating a new library has this format:

LIBUTIL [-0 <library name>] <input file list>

The -0 option specifies the name of the library being
created. If the option is not given, then the library name is
assumed to be IIlibc.lib li

• It is not recommended that LIBUTIL be
used without naming a library with this option.

How it Works

First, LIBUTIL creates the library in a new file with a
temporary name. If this file was successfully written, LIBUTIL
erases the file with the same name as the library, if one exists.
In effect, it makes sure that the new library can be created
before destroying the old. Then the temporary file is renamed to
the library name.

Note that there must be room on the disk for both the old
library and the new.

The <input file list> is a list of the object files which
are to be included in the library. These are usually files
generated by the Manx assembler.

Naming Conventions

An input filename can include a drive specification, as in
the name, b:modulel.o. Otherwise, the file is assumed to be on
the default drive. Also, the 11.0 11 ending can be left off

Copyright (c) 1984 by Manx Software Systems, Inc. lbutl.3

Aztec C LIBUTIL

altogether.
added on.

When an input filename lacks an extent, ".0" is

When an input file contains a single relocatable object
module, the name of the module in the library will be the
filename, less the drive specification and the extension. For
example, if the input file is b:subl.o, then the module name
inside the new library will be subl.

An input file can be a library itself. In this case, the
module names in the new library are the same as those in the
input library. For example, if the input file is a library
containing modules subl, sub2 and sub3, then the names of these
modules in the created library will also be subl, sub2 and sub3.

Since the list of input files for a library often will not
fit on a single line, there is a convenient way to extend the
command line. A period on the command line directs the linker to
start reading filenames from standard input. When another period
is read, the linker returns to the command line to read in the
remaining filenames.

Order in a Library

The order in which a library is built is often crucial for
easy linking. Modules go into a new library in the order in
which they are read by LIBUTIL. Consider the following example:

Let's assume there is currently a library, oldlib.lib, which
contains three modules:

subl sub2 sub3

The following command might be given:

LIBUTIL -0 newlib.lib oldlib.lib sub4 • subS
sub6.o sub7.o
sub8

This will create a library called newlib.lib. The first
three modules copied into it come from oldlib.lib. Then the
contents of sub4.0 become the module, sub4, in the library.

When LIBUTIL finds a period, it continues reading the
filenames from standard input. So the next three files copied
into newlib.lib are sub6.0, sub7.0 and sub8.0. Notice that ". 0 "
after a filename in the c?~mand is assumed.

The last module read in the example is in subS.o.
final makeup of newlib.lib is:

So the

subl
sub8

sub2
subS

sub3 suM sub6

Copyright (c) 1984 by Manx Software Systems, Inc.

sub7

Ibutl.4

Aztec C LIBUTIL

Listing the Modules in a Library

A listing such as this can be obtained with the -T option.
This option simply produces a listing of the modules in the order
in which they appear in a library. The -0 option is used in this
case to specify which library is to be listed. For example, the
listing above would be produced by entering:

libutil -0 newlib.lib -t

If the -0 option is missing, the library, libc.lib, is
assumed.

LIBUTIL will not perform multiple functions during a single
invocation. For example, you cannot make it create a library and
then list its contents with a single command~ you would need to
run LIBUTIL for each task.

There are just a few ways to use the -T option, such as:

libutil -t
libutil -ot example.lib
libutil -t -0 example.lib

Note that the listing the modules of a library does not give
a true representation of what functions are defined within the
library. For instance, a module named "prog inp" might contain
the functions, "get_record", "get_name" and "get_num".

Adding and Replacing Modules

The -A and -R options are used to add or replace modules in
a library. These options actually refer to the same process.
The method used by LIBUTIL is fairly simple.

The -0 option is used to specify the library that going to
be modified~ as always, this defaults to c.lib.

LIBUTIL creates a temporary file, just as it did when making
a new library. Each module of the old library is then copied, in
order, to the new file. Whenever a module name matches a name
given on the command line, the old library module is ignored, and
the contents of the file given in the command are copied to that
module in the new file.

When the last module in the old library has either been
copied or skipped over, LIBUTIL returns to the command line. The
files which have already been copied to the new library are
checked off. LIBUTIL then copies to the new library all the
remaining files on the command line, which have not been copied
to the new library.

Copyright (c) 1984 by Manx Software Systems, Inc. lbutl.5

Aztec C LIBUTIL

For example, given an obsolete library, obslib.lib:

modI mod 2 mod 3

and the following command:

libutil -oa obslib.lib mod2 • sub2
subi

LIBUTIL first copies modI from obslib to the temporary file.
Since mod2 is specified on the command line, it copies the
contents of mod2.0 to the temporary file and ignores the mod2 in
obslib. It continues to copy mod3 from obslib, subl and sub2 to
the temporary file, in that order. Then the temporary file
is renamed to obslib.lib and the old library is erasede

Just as in library creation, the old and the new libraries
exist on disk at the same time, before the old is erased. There
has to be enough room for both.

Consider the following command:

Iibutil -oa obslib.lib obslib.lib

LIBUTIL will copy obslib to the temporary file, since none
of the module names appear on the command line. Then the
remaining files from the input list are copied to the temporary
file. So that a listing of the resulting obslib.lib would be:

modI mod2 mod 3 modI mod2 mod 3

This curious naming of modules does not affect the way their
contents are treated by the linker. For example, the first modI
might contain a single function, "get value", while the second
contains a function, "get num". If "get value" is an undefined
symbol when the linker searches the library, just the first modI
will be pulled into the link, and similarly the second will be
pulled in for an undefined "get_num".

Copyright (c) 1984 by Manx Software Systems, Inc. Ibutl.6

SECTION VII

Library Functions

Library Functions

This chapter describes the functions which come with the
Aztec C package. It's divided into four subchapters:
introduction, overview, functions, and system dependent
functions.

The 'overview' subchapter presents an overview of several
topics, including i/o processing, memory usage, and error
handling.

The 'functions' subchapter describes in detail the functions
in the Aztec C package which are common to all systems supported
by Aztec C. Most of these functions are also supported by unix;
those which aren't are clearly identified.

The 'system dependent functions' subchapter describes
functions which are unique to a system.

A table of contents is provided at the beginning of the two
functions subchapters.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.l

Li brary Overvi ew

Overview of Library Functions

This subchapter contains several sections, each of which
presents an overview of a different topic. The following sections
are provided:

I/O
Introduces the i/o system provided in the Aztec C package.

STANDARD I/O
The i/o functions can be grouped into two sets~ this section
describes one of them, the standard i/o functions.

UNBUFFERED I/O
This section describes the other set of i/o functions, the
unbuffered.

CONSOLE I/O
Describes special topics relating to console i/o.

DYNAMIC BUFFER ALLOCATION
Discusses related to dynamic memory allocation.

ERRORS
Presents an overview of error processing.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.2

Overview of I/O

There are two sets of functions for accessing files and
devices: the unbuffered i/o functions and the standard i/o
functions. These functions are identical to their UNIX
equivalents, and are described in chapters 7 and 8 of The ~
programming Language.

The unbuffered i/o functions are so called because, with few
exceptions, they transfer information directly between a program
and a file or device. By contrast, the standard i/o functions
maintain buffers through which data must pass on its journey
between a program and a disk file.

The unbuffered i/o functions are used by programs which
perform their own blocking and deblocking of disk files. The
standard i/o functions are used by programs which need to access
files but don't want to be bothered with the details of blocking
and deblocking the file records.

The unbuffered and standard i/o functions each have their
own overview section (UNBUFFERED I/O and STANDARD I/O). The
remainder of this section discusses features which the two sets
of functions have in common.

The basic procedure for accessing files and devices is the
same for both standard and unbuffered i/o: the device or file
must first be "opened", that is, prepared for processing: Then
i/o operations occur: then the device or file is "closed".

A maximum of eleven files and devices can be open at once
for both standard and unbuffered i/o. When this limit is reached,
an open file or device must be closed before another can be
opened.

Each set of functions has its own functions for performing
these operations. For example, each set has its own functions for
opening a file or device. Once a file or device has been opened,
it can be accessed only by functions in the same set as the
function which performed the open, and must be closed by the
appropriate function in the same set. There are exceptions to
this non-intermingling which are described below.

There are two ways a file or device can be opened: first,
the program can explicitly open it by issuing a function call.
Second, it can be associated with one of the logical devices
standard input, standard output, or standard error, and then
opened when the program starts.

Standard input, standard output, and standard error devices

There are three logical devices which are automatically
opened when a program is started: standard input, standard
output, and standard error. By default, these are associated with
the console. The operator, as part of the command line which

Copyright (c) 1984 by Manx Software Systems, Inc. lib.3

I/O Overview I/O

starts the program, can specify that these logical devices are to
be "redirected" to another device or file. Standard input is
redirected by entering on the command line, after the program
name, the name of the file or device, preceeded by the character
1<1. Standard output is redirected by entering the name of the
file or device, preceeded by I>'. For example, suppose the
executable program copy reads standard input and writes it to
standard output. Then the following command will read lines from
the keyboard and write them to the display:

copy

The following will read from the keyboard and write it to
the file testfile:

copy >testfi1e

This will copy the file exmplfil to the console:

copy <exmplfil

And this will copy exmplfil to testfile:

copy <exmplfil >testfile

Aztec C will pass command line arguments to the user's
program via the user's function main{argc, argyl. argc is an
integer containing the number of arguments plus one; argv is a
pointer to a an array of character pointers, each of which,
except the first, points to a command line argument. The first
array element on some systems points to the command; on other
systems, for example, CP/M and CP/M-86, the first pointer is
null.

For example, if the following command is entered:

cat argl arg2 arg3

the program cat will be activated and execution begins at the
user's function main. The first parameter to main is the integer
4. The second parameter is a pointer to an array of four
character pointers; on some systems the first array element will
point to the string "cat" and on others it will be a null
pointer. The second, third, and fourth array elements will be
pointers to the strings "argl", "arg2", and "arg3 II respectively.

The command line can contain both arguments to be passed to
the user's program and i/o redirection specifications. The i/o
redirection strings wonlt be passed to the user's program, and
can appear anywhere on the command line after the command name.
For example, the standard output of the cat program can be
redirected to the file outfile by any of the following commands;
in each case the argc and argv parameters to the main function of
cat are the same as if the redirection specifier wasn't present:

Copyright (c) 1984 by Manx Software Systems, Inc. lib.4

I/O Overview

cat argl arg2 arg3 >outfile
cat >outfile argl arg2 arg3
cat argl >outfile arg2 arg3

Sequentia1 I/O

I/O

A program can access files both sequentially and randomly.
For sequential access, a program simply issues any of the various
read or write calls. The transfer will begin at the file's
"current position", and will leave the current position set to
the byte following the last byte transferred. A file can be
opened for read or write access; in this case, its current
position is initially the first byte in the file. A file can also
be opened for append access; in this case its current position is
initially the end of the file.

On systems which don't keep track of the last character
written to a file, such as CP/M and Apple DOS, it isn't always
possible to correctly position a file to which data is to be
appended. See below for details.

Random I/O

Two functions are provided which allow a program to set the
current position of an open file: fseek, for a file opened for
standard i/o; and lseek, for a file opened for unbuffered i/o.

A program accesses a file randomly by first modifying the
file's current position using one of the seek functions. Then the
program issues any of the various read and write calls, which
sequentially access the file.

A file can be positioned relative to its beginning, current
position, or end. positioning relative to the beginning and
current position is always correctly done. For systems which
don't keep track of the last character written to a file, such as
CP/M and Apple DOS, positioning relative to the end of a file
can't always be correctly done. See below for details.

Finding the end of a fi1e

UNIX keeps track of the last character written to a file.
Since the Aztec I/O functions attempt to make a file look like a
UNIX file to a program, when a program requests that a file be
positioned relative to its end (that is, relative to the last
character which was written to it), the Aztec C routines must try
to locate the last character which was written to it. This can
always be done if the operating system on which Aztec C is
running also keeps track of the last character written to a file.

However, CP/M, CP/M-86, and Apple DOS only keep track of the
last record written to a file. For these systems, it is not

Copyright (c) 1984 by Manx Software Systems, Inc. lib.5

I/O Overview I/O

always possible for the Aztec C i/o functions to determine the
last character written to the file, and hence for these systems
it is not always possible to position a file relative to its end.

When a program running on one of the systems mentioned in
the last paragraph requests positioning of a file relative to its
end, the Aztec i/o functions try to find the last character
written to the file. They always succeed if the file contains
only text: for files containing arbitrary data, they may not
succeed.

To locate the last valid character in a file on one of these
systems, the Aztec routines use the following fact: when a file
is created on these systems using Aztec C, the last record in the
file is padded at the end with the special character which
denotes the end of a text file. For CP/M and CP/M-86, the special
character is control-z: for Apple DOS, it's a null character. If
the program exactly filled the last record, it won't have any
padding.

When a program requests that a file be positioned relative
to its end, the Aztec C i/o routines search the file's last
record; end of file is declared to be located at the position
following the last non-end-of-file character.

For files of text, this algorithm always correctly
determines the last character in the file, so appending to text
files is always correctly done.

For other files, this algorithm will still correctly
determine the last valid character in the file ••. most of the
time. However, if the last valid characters in the file are end
of-file characters, the file will be incorrectly positioned.

Opening files

Opening files is somewhat system dependent: the parameters
to the open functions are the same on the Aztec C packages for
all systems, but some system dependencies exist, to conform with
the system conventions. For example, the syntax of file names and
and the areas searched for files differ from system to system.

The following paragraphs describe, for the systems supported
by Aztec C, system dependent information related to the opening
of files.

Opening files on CP/M, CP/M-86, and related systems

The character string which specifies the file to be opened
has the following fields, which must be in the order listed: (1)
a user number followed by a forward slash, (2) a drive identifier
followed by a colon, (3) the filename, (4) a period followed by
an extension. Only the third field is mandatory. If a user

Copyright (c) 1984 by Manx Software Systems, Inc. lib.6

I/O Overview I/O

number isn't specified, the file is assumed to be on the current
user. If the drive isn't specified, the file is assumed to be on
the default drive.

For example, the following are valid file names:

file. ext
b:file.ext
IS/file.ext
12/c:file.ext

file. ext
file.ext
file. ext
file.ext

is
is
is
is

on
on
on
on

default drive, current user
b: drive, current user
default drive, user 15
c: drive, user 12

A program can have files located in several different user
areas open at once.

There are several functions which may be useful to programs
which need to access files in various user areas: getusr, which
returns the current user number: setusr, which sets the current
user number: and rstusr, which resets the current user number.
See the section USER in the system dependent subchapter for more
details.

Opening files on TRSDOS and related systems

When opening a file on TRSDOS or related systems, the
filename has the standard TRSDOS format: that is, (l) filename,
(2) followed by a slash and an extention, (3) followed by a
period and a password, (4) followed by a colon and a drive
number. Only the first field is mandatory.

If a drive specifier is given, the file will be searched
for, and created if necessary, on that drive. Otherwise,
following the TRSDOS convention, a search for the file will be
made on all drives, beginning with drive :0. If the file is
found, and must be recreated, it will be recreated on the same
drive.

Accessing Devices

Aztec C allows programs to access devices as well as files.
Each system has its own names for devices, so the following table
lists the devices and, for each system, its name. In this table,
"CPM" refers to CP/M, CP/M-86, and related systems: PCDOS also
includes MSDOS: TRSDOS includes LDOS and DOSPLUS.

device CPM PCDOS Apple DOS TRSDOS
keyboard can: can: ki: *ki
display can: can: do: *do
printer prn: prn pr: *pr .. 1st:
RS232 in rdr: *ri
RS232 out pun: *ro

Copyright (c) 1984 by Manx Software systems, Inc. lib.7

I/O Overview I/O

On model 4 TRSDOS, dynamically created devices can also be
accessed.

Mixing unbuffered and standard i/o calls

As mentioned above, a program generally accesses a file or
device using functions from one set of functions or the other,
but not both.

However, there are functions which facilitate this dual
access: if a file or device is opened for standard i/o, the
function fileno returns a file descriptor which can be used for
unbuffered access to the file or device. If a file or device os
open for unbuffered i/o, the function fdopen will prepare it for
standard i/o as well.

Care is warranted when accessing devices and files with both
standard and unbuffered i/o functions.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.8

Overview: Standard I/O

The standard i/o functions are used by programs to access
files and devices. They are compatible with their UNIX
counterparts, with few exceptions, and are also described in
chapter 8 of The C programming Language. The exceptions concern
appending data to files and positioning files relative to their
end, and are discussed below.

These functions provide programs with convenient and
efficient access to files and devices. When accessing files, the
functions buffer the file data: that is, handle the blocking and
deblocking of file data. Thus the user's program can concentrate
on its own concerns.

Buffering of data to devices when using the standard i/o
functions is discussed below.

For programs which perform their own file buffering, another
set of functions are provided. These are described in the section
UNBUFFERED I/O.

opening files and devices

Before a program can access a file or device, it must be
"opened", and when processing on it is done it must be "closed".

An open device or file is called a "stream" and has
associated with it a pointer, called a "file pointer", to a
structure of type FILE. This identifies the file or device when
standard i/o functions are called to access it.

There are two ways for a file or device to be opened for
standard i/o: first, the program can explicitly open it, by
calling one of the functions fopen, freopen, or fdopen. In this
case, the open function returns the file pointer associated with
the file or device. fopen just opens the file or device. freopen
reopens an open stream to another file or device: it's mainly
used to change the file or device associated with one of the
logical devices standard output, standard input, or standard
error. fdopen opens for standard i/o a file or device already
opened for unbuffered i/O.

Alternatively, the file or device can be automatically
opened as one of the logical devices standard input, standard
output, or standard error. In this case, the file pointer is
stdin, stdout, or stderr, respectively. These symbols are defined
in the header file stdio.h. See the section entitled I/O for more
information on logical devices.

Closing streams

A file or device opened for standard i/o can be closed in
two ways: first, the program can explicitly close it by calling

Copyright (c) 1984 by Manx Software Systems, Inc. lib.9

STANDARD I/O Overview STANDARD I/O

the function fclose.

Alternatively, when the program terminates, either by
falling off the end of the function main, or by calling the
function exit, the system will automatically close all open
streams.

Letting the system automatically close open streams is
error-prone: data written to files using the standard i/o
functions is buffered in memory, and a buffer isn't written to
the file until it's full or the file is closed. Most likely, when
a program finishes writing to a file, the file's buffer will be
partially full, with this information not having been written to
the file. If a program calls fclose, this function will write the
partially filled buffer to the file and return an error code if
this couldn't be done. If the program lets the system
automatically close the file, the program won't know if an error
occurred on this last write operation.

Sequential I/O

Files can be accessed sequentially and randomly. For
sequential access, simply issue repeated read or write calls;
each call transfers data beginning at the "current position" of
the file, and updates the current position to the byte following
the last byte transferred. When a file is opened, its current
position is set to zero, if opened for read or write access, and
to its end if opened for append.

On systems which don't keep track of the last character
written to a file, such as CP/M and Apple DOS, not all files can
be correctly positioned for appending data. See the section
entitled I/O for details.

Random I/O

The function fseek allows a file to be accessed randomly, by
changing its current position. positioning can be relative to the
beginning, current position, or end of the file.

For systems which don't keep track of the last character
written to a file, such as CP/M and Apple DOS, positioning
relative to the end of a file cannot always be correctly done.
See the I/O overview section for details.

Buffering

When the standard i/o functions are used to access a file,
the i/o is buffered. Either a user-specified or dynamically
allocated buffer can be used.

The user's program specifies a l024-byte buffer to be used

Copyright (c) 1984 by Manx Software Systems, Inc. lib.lO

STANDARD I/O Overview STANDARD I/O

for a file by calling the function setbuf after the file has been
opened but before the first i/o request to it has been made.

If, when the first i/o request is made to a file, the user
hasn't specified the buffer to be used for the file, the system
will automatically allocate, by calling malloc, a I024-byte
buffer for it. When the file is closed it's buffer will be freed,
by calling free.

Dynamically allocated buffers are obtained from the one
region of memory (the heap), whether requested by the standard
i/o functions or by the user's program. For more information, see
the overview section DYNAMIC BUFFER ALLOCATION.

A program which both accesses files using standard i/o
functions and has overlays has to take special steps to insure
that an overlay won't be loaded over a buffer dynamically
allocated for file i/o. For more information, see section IX on
overlay support.

By default, output to the console using standard i/o
functions is unbuffered~ all other device i/o using the standard
i/o functions is buffered. Console input buffering can be
disabled using the ioctl function~ see the CONSOLE I/O overview
for details. Buffering of standard i/o to other devices can be
disabled using the setbuf function. See the description of setbuf
for details.

Errors

There are three fields which may be set when an exceptional
condition occurs during stream i/o. Two of the fields are unique
to each stream (that is, each stream has its own pair). The other
is a global integer.

One of the fields associated with a stream is set if end of
file is detected on input from the strearn~ the other is set if an
error occurs during i/o to the stream. Once set for a stream,
these flags remain set until the stream is closed or the program
calls the clearerr function for the stream. The only exception to
the last statement is that when called, fseek will reset the end
of file flag for a stream. A program can check the status of the
eof and error flags for a stream by calling the functions feof
and ferror, respectively.

The other field which may be set is the global integer
errno. By convention, a system function which returns an error
status as its value can also set a code in errno which more fully
defines the error. The section ERRORS defines the values which
may be set in errno.

If an error occurs when a stream is being accessed, a
standard i/o function returns EOF (-1) as its value, after
setting a code in errno and setting the stream's error flag.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.II

STANDARD I/O Overview STANDARD I/O

If end of file is reached on an input stream, a standard i/o
function returns EOF after setting the stream's eof flag.

There are two techniques a program can use for detecting
errors during stream i/o. First, the program can check the result
of each i/o call. Second, the program can issue i/o calls and
only periodically check for errors (for example, check only after
all i/o is completed).

On input, a program will generally check the result of each
operation.

On output to a file, a program can use either error checking
technique; however, periodic checking by calling ferror is more
efficient. When characters are written to a file using the
standard i/o functions they are placed in a buffer, which is not
written to disk until it is full. If the buffer isn't full, the
function will return good status. It will only return bad status
if the buffer was full and an error occurred while writing it to
disk. Since the buffer size is 1024 bytes, most write calls will
return good status, and hence periodic checking for errors is
sufficient and most efficient.

Once a file opened for standard i/o is closed, ferror can't
be used to determine if an error has occurred while writing to
it. Hence ferror should be called after all writing to the file
is completed but before the file is closed. The file should be
explicitly closed by fclose, and its return value checked, rather
than letting the system automatically close it, to know
positively whether an error has occurred while writing to the
file. The reason for this is that when the writing to the file is
completed, it's standard i/o buffer will probably be partly full.
This buffer will be written to the file when the file is closed,
and fclose will return an error status if this final write
operation fails.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.12

STANDARD I/O Overview STANDARD I/O

The standard i/o functions

The standard i/o functions can be grouped into two sets:
those that can access only the logical devices standard input,
standard output, and standard error; and all the rest.

Here are the standard i/o functions that can only access
stdin, stdout, and stderr. These are all ASCII functions; that
is, they expect to deal with text characters only.

getchar
gets
printf
puterr
putchar
puts
scanf

get an ASCII character from stdin
get a line of ASCII characters from stdin
format data and send it to stdout
send a character to stderr
send a character to stdout
send a character string to stdout
get a line from stdin and convert it

Here are the rest of the standard i/o functions:

agetc
aputc
fopen
fdopen

freopen
fclose
feof
ferror
fileno
fflush
fgets
fprintf
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getw
putc
putw
setbuf
ungetc

get an ASCII character
send an ASCII character
open a file or device
open as a stream a file or device already open
for unbuffered i/o
open an open stream to another file or device
close an open stream
check for end of file on a stream
check for error on a stream
get file descriptor associated with stream
write stream's buffer
get a line of ASCII characters
format data and write it to a stream
send a string of ASCII characters to a stream
read binary data
get data and convert it
set current position within a file
get current position
write binary data
get a binary character
get two binary characters
send a binary character
send two binary characters
specify buffer for stream
push character back into stream

Copyright (c) 1984 by Manx Software systems, Inc. lib.13

OVerview of unbuffered I/O

The unbuffered I/O functions are used to access files and
devices. They are compatible with their UNIX counterparts and are
also described in chapter 8 of The f programming Language.

As their narne implies, a program using these functions, with
two exceptions, communicates directly with files and devices;
data doesn't pass through system buffers. Some unbuffered I/O,
however, is buffered: when data is transferred to or from a file
in blocks smaller than a certain value, it is buffered
temporarily. This value differs from system to system, but is
always less than or equal to 512 bytes. Also, console input can
be buffered, and is, unless specific actions are taken by the
user's program.

programs which use the unbuffered i/o functions to access
files generally handle the blocking and deblocking of file data
themselves. programs requiring file access but unwilling to
perform the blocking and deblocking can use the standard i/o
functions; see the section STANDARD I/O for more information.

Here are the unbuffered i/o functions:

open
creat
close
read
write
lseek
rename
unlink
ioctl
isatty

- prepares a file or device for unbuffered i/o
- creates a file and opens it
- concludes the i/o on an open file or device
- read data from an open file or device
- write data to an open file or device
- change the current position of an open file
- renames a file
- deletes a file
- change console i/o mode
- is an open file or device the console?

Before a program can access a file or device, it must be
"opened", and when processing on it is done, it must be "closed".

An open file or device has
descriptor" associated with it;
device when it's accessed.

an integer known as a "file
this identifies the file or

There are two ways for a file or device to be opened for
unbuffered i/o. First, it can explicitly open it, by calling the
function open. In this case, open returns the file descriptor to
be used when accessing the file or device.

Alternatively, the file or device can be automatically
opened as one of the logical devices standard input, standard
output, or standard error. In this case, the file descriptor is
the integer value 0, I, or 2, respectively. See the section
entitled I/O for more information on this.

An open file or device is closed by calling the function
close. When a program ends, any devices or files still opened for
unbuffered i/o will be closed.

Copyright (c) 1984 by Manx Software Systems, Inc. lib. 14

UNBUFFERED I/O Overview UNBUFFERED I/O

If an error occurs during an unbuffered i/o operation, the
function returns -1 as its value and sets a code in the global
integer errno. For more information on error handling, see the
section ERRORS.

The remainder of this section discusses unbuffered i/o to
the various devices and to files.

Console I/O

Console I/O can be performed in a variety of ways. There's a
default mode, and other modes can be selected by calling the
function ioctl.

When the console is in default mode, console input is
buffered and is read from the keyboard a line at a time. Typed
characters are echoed to the screen and the operator can use the
standard operating system line editing facilities. A program
doesn't have to read an entire line at a time (although the
system software does this when reading keyboard input into it's
internal buffer), but at most one line will be returned to the
program for a single read request.

The other modes of console i/o allow a program to get
characters from the keyboard as they are typed, with or without
their being echoed to the display; to disable normal system line
editing facilities; and to terminate a read request if a key
isn't depressed within a certain interval.

Output to the console is always unbuffered: characters go
directly from a program to the display. The only choice concerns
translation of the newline character; by default, this is
translated into a carriage return, line feed sequence.
Optionally, this translation can be disabled.

For more information see the section CONSOLE I/O.

I/O to Hon-console Devices

I/O to devices other than the system console is always
unbuffered, with no translations.

File I/O

Programs call the functions read and write to access a file;
the transfer begins at the "current position" of the file and
proceeds until the number of characters specified by the program
have been transferred.

The current position of a file can be manipulated in various
ways by a program, allowing both sequential and random acccess to

Copyright (c) 1984 by Manx Software Systems, Inc. lib.IS

UNBUFFERED I/O Overview UNBUFFERED I/O

the file. For sequential access, a program simply issues
consecutive i/o requests. After each operation, the current
position of the file is set to the character following the last
one accessed.

The function lseek provides random access to a file by
setting the current position to a specified character location.

lseek allows the current position of a file to be set
relative to the end of a file. For systems which don't keep track
of the last character written to a file, such positioning cannot
always be correctly done. For more information, see the section
enti tled I/O.

open provides a mode, 0 APPEND, which causes the file being
opened to be positioned at its end. This mode is supported on
UNIX Systems 3 and 5, but not UNIX version 7. As with lseek, the
positioning may not be correct for systems which don't keep track
of the last character written to a file.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.16

OVerview of Console I/O

Console I/O can be performed in a variety of ways:

o console input can be buffered:

o console input can be unbuffered, with the program
receiving characters as they're typed:

o echoing of typed characters to the display can be enabled
or disabled:

o an input operation can be automatically terminated if a
character isn't received in a certain interval:

o mapping of CR to LF on input and LF to CR-LF on output
can be enabled or disabled.

There is a default mode for console i/o, which is in effect
unless changed by a call to the function ioctl. Thus, programs
can access the console in the default mode without doing anything
special. Or, console i/o can easily be customized to behave as
desired by the programmer.

In the default mode for console input, the system maintains
an internal buffer of characters which it has read from the
keyboard. Characters are returned to the program from this
buffer. When the buffer is empty, the system reads a line of
characters from the keyboard into the buffer: the program is
suspended while this occurs. The operator can use the line
editing facilities provided by the operating system, and typed
characters are echoed to the display. Finally, carriage return
characters are converted to newline characters.

In the default mode, console output is unbuffered (as it is
for all other modes). Newline characters are converted to
carriage return - line feed sequence.

A program selects console I/O modes using the function
ioctl. This has the form:

'include ··sgtty.h"

ioctl(fd, code, arg)
struct sgttyb *arg:

The header file sgtty.h defines symbolic values for the code
parameter (which tells ioctl what to do) and the structure
sgttyb.

The parameter fd is a file descriptor associated with the
console. On UNIX, this parameter defines the file descriptor
associated with the device to which the ioctl call applies. Here,
ioctl always applies to the console.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.17

Overview of Conso1e I/O

The parameter code defines the action to be performed by
ioct1. It can have these values:

TIOCGETP fetch the console parameters and store
them in the structure pointed at by arg

TIOCSETP and TIOCSETN
set the console parameters according to
the structure pointed at by arg

The argument arg points to a structure having the following
format:

struct sgttyb {
char sg erase:
char sg-ki11:

}
int sg=f1ags:

Only sg f1ags is used by Aztec C: the rest are provided for
UNIX compatibili ty.

sg f1ags determines the console I/O mode. These are the
symbolic values it can assume:

RAW
CBREAK
ECHO
CRMOD

set RAW mode (turns off CBREAK, ECHO, & CRMOD)
return each character as soon as typed
echo input characters to the display
map CR to LF on input; convert LF to CR-LF on
output

More than one of these codes can be specified in a single
call to ioct1: the values are simply 'or'ed together. If the RAW
option is selected, none of the other options have any effect.

When the console is in RAW mode, console input has the
following features:

o no character translations are performed

o the operator can't use the operating system's line
editing facilities

o typed characters aren't echoed to the screen

o the system will attempt to read the number of characters
requested by the read request: however, after one
character has been received, the operation will be
terminated if a character isn't received within a certain
period of time. This period is hard coded into ioct1.c.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.18

Overview of Console I/O

If CBREAK is selected, and RAW is not, console input has the
following features:

o the system will attempt to read the number of characters
requested. if ECHO isn't specified, the operation will
time out after one character has been received if a
character isn't received within a certain period of time.
If ECHO is specified, the operation won't terminate until
all characters requested have been received.

o If ECHO is selected, input characters are echoed to the
display: otherwise, they're not.

o If CRMOD is selected carriage returns are translated into
line feeds.

If neither RAW nor CBREAK is selected, a mode is selected
which is either similar or identical to the default mode
described above. If CRMOD is set, the mode is identical.
Otherwise, the only difference is that the translation of
carriage return into newline on input and the translation of
newline to carriage return - linefeed sequence on output doesn't
occur.

As mentioned above, when the console is in RAW mode or
CBREAK without ECHO mode, a read request to the console will
always return at least one character, but will terminate without
having read the specified number of characters if a character
isn't received within a certain interval. Actually, only the
unbuffered read request may time out: the standard i/o functions
are implemented in such a way that they will return the requested
number of characters.

For example, when the console is in RAW or CBREAK without
ECHO mode,

read(fd, buf, 80)

will always return at least one character, but may not return
return all 80 if the operator delays too long between subsequent
key strokes.

With the console still in a time-out-able mode

getc(fp)

directed to the console will always return one character, and

gets (buf, 80, fp)

will always return an entire line of characters.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.l9

OVerview of Console I/O

EXAMPLES

1. Console input using default mode

The following program copies characters from stdin to
stdout. The console is in default mode, and assuming these
streams haven't been redirected by the operator, the program will
read from the keyboard and write to the display. In this mode,
the operator can use the operating system's line editing
facilities, such as backspace, and characters entered on the
keyboard will be echoed to the display. The characters entered
won't be returned to the program until the operator depresses
carriage return.

'include IIstdio.hD

'include .Isgtty.h"
main ()
{

}

int c:
while ({c = getchar(» 1= EOF)

putchar(c):

2. Console input - RAW mode

In this example, a program opens the console for standard
i/o, sets the console in RAW mode, and goes into a loop, waiting
for characters to be read from the console and then processing
them. The characters typed by the operator aren't displayed
unless the program itself displays them. The input request won't
terminate until a character is received. This example assumes
that the console is named Icon:'; on systems for which this is
not the case, just substitute the appropriate name.

'include Iistdio.hli

'include I'sgtty.h ll
main {)
{

}

int c:
FILE *fp:
struct sgttyb stty:

if {(fp = fopen{ Dcon: A. lirA) = NULL) {
printf("canlt open the console\nR

):

exit():
}
stty.sg flags = RAW:
ioctl{fileno{fp). TIOCSETP. &sttY)i
for (:i){

c = getc (fp) : . . .
}

Copyright (c) 1984 by Manx Software Systems, Inc. lib.20

Overview of Console I/O

3. Console input - console in CBREAK + ECHO mode

This example modifies the previous program so that
characters read from the console are automatically echoed to the
display. The program accesses the console via the standard input
device. It uses the function isatty to verify that stdin is
associated with the console; if it isnlt, the program reopens
stdin to the console using the function freopen. Again, the
console is assumed to be named Icon:l.

,include "stdio.h"
'include Ilsgtty.h ll

main ()
{

}

int Ci
struct sgttyb sttYi

if (lisatty(stdin»
freopen (• con: •• II r·. stdin):

stty.sg flags = CBREAK I ECHOi
ioctl(O; TIOCSETP. &stty):
for (ii){

c = getchar()i

}

copyright (c) 1984 by Manx Software Systems, Inc. lib.21

Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation
and deal location of buffers from a section of memory called the
'heap'. They are:

malloc
calloc
realloc -

free

allocates a buffer
allocates a buffer and initializes it to zeroes
allocates more space to a previously allocated
buffer
releases an allocated buffer for reuse

In addition, the function sbrk allows users to implement
their own dynamic buffer allocation scheme: when passed an
integer, sbrk increments an internal pointer by that amount and
returns the original value of the pointer. The pointer initially
points to the base of the heap.

Dynamic allocation of standard i/o buffers

Buffers used for standard i/o are dynamically allocated from
the heap unless specific actions are taken by the user's program.
Standard i/o calls to dynamically allocate and deallocate buffers
can be interspersed with those of the user's program.

programs which perform standard i/o and which must have
absolute control of the heap can explicitly define the buffers to
be used by a standard i/o stream. See the standard i/o overview
for details.

Heap - stack positioning

The starting address of a program's heap is assigned when
the program is linked. The linker chapter describes how this
assignment is made.

When a program is activated, a 2048-byte block of memory is
reserved for the stack. The location of this block is system
dependent, but it's always above the beginning of the heap. The
heap's ending address is then set to the beginning of the stack
segment.

On CP/M, the top of the stack is the base of the CP/M bdoSi
on TRSDOS, it's $HIGHi on Apple DOS, it's the base of the DOS
file buffers.

Buffers can't be allocated above the heap-stack boundary,
but nothing prevents the stack from growing below the boundary.
This, of course, presents the possibility of the stack
overwriting a dynamically allocated buffer. The function rsvstk
can be used to change the heap-stack boundary.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.22

Overview of Error processing

This section discusses error processing which relates to the
global integer errno. This variable is modified by the standard
i/o, unbuffered i/o, and scientific (eg, sin, sqrt) functions as
part of their error processing.

The handling of floating point exceptions (overflow,
underflow, and division by zero) is discussed in chapter VIII.

When a standard i/o, unbuffered i/o, or scientific function
detects an error, it sets a code in errno which describes the
error. If no error occurs, the scientific functions don't modify
errno. If not error occurs, the i/o functions mayor may not
modify errno.

Also, when an error occurs,

o a standard i/o function returns -1 and sets an error flag
for the stream on which the error occurred;

o an unbuffered i/o function returns -1;

o a scientific function returns an arbitrary value.

When performing scientific calculations, a program can check
errno for errors as each function is called. Alternatively, since
errno is modified only when an error occurs, errno can be checked
only after a sequence of operations; if it's non-zero, then an
error has occurred at some point in the sequence. This latter
technique can only be used when no i/o operations occur during
the sequence of scientific function calls.

Since errno may be modified by an i/o function even if an
error didn't occur, a program can't perform a sequence of i/o
operations and then check errno afterwards to detect an error.
Programs performing unbuffered i/o must check the result of each
i/o call for an error.

Programs performing standard i/o operations cannot,
following a sequence of standard i/o calls, check errno to see if
an error occurred. However, associated with each open stream is
an error flag. This flag is set when an error occurs on the
stream and remains set until the stream is closed or the flag is
explicitly reset. Thus a program can perform a sequence of
standard i/o operations on a stream and then check the stream l s
error flag. For more details, see the standard i/o overview
section.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.23

ERRORS Overview ERRORS

The following table lists the values which may be placed in
errno. In addition, positive values may be set in errno following
an i/o operation: these are error codes returned by the CP/M
bdos.

The symbolic values listed below are defined in the header
file errno.h.

#define ENOENT -1
#define E2BIG -2
#define EBADF -3

#define ENOMEM -4

#define EEXIST -5
#define EINVAL -6
#define ENFILE -7
#define EMFILE -8

#define ENOTTY -9
#define EACCES -10
#define ERANGE -20
#define EDOM -21

file does not exist
not used
bad file descriptor - file is not open
or improper operation requested
insufficient memory for requested
operation
file already exists on creat request
invalid argument
exceeded maximum number of open files
exceeded maximum number of file
descriptors
ioctl attempted on non-console
invalid access request
math function value can't be computed
invalid argument to math function

Copyright (c) 1984 by Manx Software Systems, Inc. lib.24

System Independent Functions

This subchapter describes in detail the functions which are
common to all Aztec C packages.

The chapter is divided into sections, each of which
describes a group of related functions. Each section has a name,
and the sections are ordered alphabetically by name. Following
this introduction is a cross reference which lists each function
and the name of the section in which it is described.

A section is organized into the following subsections:

TITLE
Lists the name of the section, a phrase which is intended to
catagorize the functions described in the section, and one
or more letters in parentheses which specify the libraries
containing the section's functions.

The letters which may appear in parentheses and their
corresponding libraries are:

C c.lib
M m.lib

On some systems, the actual library name may be a variant on
the name given above. For example, on TRSDOS, the libraries
are named c/lib and m/lib.

SYNOPSIS
Indicates the types of arguments that the functions
described in the section require, and the values they
return. For example, the function atof converts character
strings into double precision numbers. It is listed in the
synopsis as

double atof(s)
char *s;

This means that atof{) returns a value of type double and
require~ as an argument a pointer to a character string.
Since atof returns a non-integer value, prior to use of the
function it must be declared:

double atof();

The notation

t include II header • h II

at the beginning of a synopsis indicates that such a
statement should appear at the beginning of any program
calling one of the functions described in the section.

On Radio Shack systems, a header file can use either a
period or a slash to separate the filename from the extent.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.2S

SYSTEM INDEPENDENT FUNCTIONS

That is, the include statement can be as listed above, or

#include IIheader/h ll

DESCRIPTION
Describes the sectionls functions.

SEE ALSO
Lists relevant sections. A letter in parentheses may follow
a section name. This specifies where the section is located:
no letter means that the section is in the current
subchapter; 101 means that itls in the overview subchapter;
lSI means that itls in the system dependent subchapter.

DIAGNOSTICS
Describes the error codes that the section l s functions may
return. The section ERRORS presents an overview of error
processing.

EXAMPLES
Gives examples on use of the sectionls functions.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.26

SYSTEM INDEPENDENT FUNCTIONS

Index to System Independent Functions

function

acos ••••••••.••
agetc•...
aputc •.•.•.•.••
asin ••..•••.•..
a tan •••••••••••
a tan2 ...••.••..
atof
a toi ••.•••.•••.
atol ••.....••••
calloc ...•••...
ceil •••••••••••
clearerr •••••••
close •••••••.•.
cos .•..•••.••..
cosh ••..••••••.
cotan ...•.•••..
crea t •.•••••.•.
exp ••••.•••••••
fclose .•.•••.••
fdopen ••••.••••
feof ••.•••••.••
ferror •••••••••
fflush •••••••••
fgets ••••••••••
fileno •••••••••
floor ..•.•••.••
fopen •.••.•••••
format .•••••.•.
fprintf .••••.••
fputs •..••••••.
fread •••.•••••.
free •••.•.•..•.
freopen •••••.••
frexp •.••••••••
fscanf ••.••...•
f seek ••••••••••
ftell ••••••••••
ftoa •••..••••••
fwrite •••••••••
getc •••••••••••
getchar •.••••••
gets •••••••••••
getw ••••.••••••
index ••••••••••
ioctl ••••••••••
isalpha ••••••••
isatty ••••••.•.
ldexp ••.•••••••
log

SIN
GETC
PUTC
SIN
SIN
SIN
ATOF
ATOF
ATOF
MALLOC
FLOOR
FERROR
CLOSE
SIN
SINH
SIN
CREAT
EXP
FCLOSE
FOPEN
FERROR
FERROR
FCLOSE
GETS
FERROR
FLOOR
FOPEN
PRINTF
PRINTF
PUTS
FREAD
MALLOC
FOPEN
FREXP
SCANF
FSEEK
FSEEK
ATOF
FREAD
GETC
GETC
GETS
GETW
STRING
IOCTL
CTYPE
IOCTL
FREXP
EXP

Copyright (c) 1984 by Manx Software Systems, Inc. lib.27

log 10 ••••••.••.
long jmp •..•••••
lseek ••••••.••.
malloc
movmem ••••••••.
modf ••.••••.••.
open •.•..••.•.•
pow ••.••.•...••
printf •••...•..
putc •.•••....••
putchar •.••.•••
puterr .•....•••
puts •.•••....••
putw •...•....••
ran •••.•••.....
read •..••....•.
rename .•....•••
rindex •........
scanf•.
setbuf
setjmp •.•...••.
setmem .•..••••.
sin
sinh •.••.•••...
sprintf •••.•.•.
sqrt .•..•••••••
sscanf
strcat
strcmp
strcpy
strlen
strncat
strncmp
strncpy
swapmem

SYSTEM INDEPENDENT FUNCTIONS

EXP
SETJMP
LSEEK
MALLOC
MOVMEM
FREXP
OPEN
EXP
PRINTF
PUTC
PUTC
PUTC
PUTS
PUTC
RAN
READ
RENAME
STRING
SCANF
SETBUF
SETJMP
MOVME~l

SIN
SINH
PRINTF
EXP
SCANF
STRING
STRING
STRING
STRING
STRING
STRING
STRING
MOVMEM

tan •••••••••••• SIN
tanh ••••••••..• SINH
tolower •.•••••• TOUPPER
toupper .••••••• TOUPPER
ungetc ••••.•••. UNGETC
unlink ••.•••••• UNLINK
write •••••••••• WRITE

Copyright (c) 1984 by Manx Software Systems, Inc. lib.28

Function Definitions

ATOF (e. M) utility Functions ATOF

NAME
atof, atoi, atol - convert ASCII to numbers
ftoa - convert floating point to ASCII

SYNOPSIS
double atof(cp)
char *cp;

atoi(cp)
char *cp:

long atol(cp)
char *cp:

ftoa(val, buf, precision, type)
double val:
char *buf:
int precision, type:

DESCRIPTION
atof, atoi, and atol convert a string of text characters
pointed at by the argument cp to double, integer, and long
representations, respectively.

atof recognizes a string containing leading blanks and tabs,
which it skips, then an optional sign, then a string of
digits optionally containing a decimal point, then an
optional lei or lEI followed by an optionally signed
integer.

atoi and atol recognize a string containing leading blanks
and tabs, which are ignored, then an optional sign, then a
string of digits.

ftoa converts a double precision floating point number to
ASCII. val is the number to be converted and buf points to
the buffer where the ASCII string will be placed. precision
specifies the number of digits to the right of the decimal
point. type specifies the format: 0 for "E" format, 1 for
"F" format, 2 for "G" format.

atof and ftoa are in the library m.1ib: the other functions
are in c.1ib.

copyright (c) 1984 by Manx Software Systems, Inc. lib.29

CLOSE (C) unbuffered I/O Function CLOSE

NAME
close - close a device or file

SYNOPSIS
close(fd)
int fd;

DESCRIPTION
close closes a device or disk file which is opened for
unbuffered i/o.

The parameter fd is the file descriptor associated with the
file or device. If the device or file was explicitly opened
by the program by calling open or creat, fd is the file
descriptor returned by open or create

close returns 0 as its value if successful.

SEE ALSO
UNBUFFERED I/O (0), ERRORS (0)

DIAGNOSTICS
If close fails, it returns -1 and sets an error code in the
global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.30

CREAT (c) Unbuffered I/O Function CHEAT

KAME
creat - create a new file

SYBOPSIS
creat(name, pmode)
char *name:
int pmode:

DESCRIPTION

creat creates a file and opens it for unbuffered, write-only
access. If the file already exists, it is truncated so that
nothing is in it (this is done by erasing and then creating
the file).

creat returns as its value an integer called a "file
descriptor". Whenever a call is made to one of the
unbuffered i/o functions to access the file, its file
descriptor must be included in the function's parameters.

The parameter name is a pointer to a character string which
is the name of the device or file to be opened. See the I/O
overview section for details.

The parameter pmode is optional. If specified, it is
ignored. The pmode parameter should be included, however,
for programs for which UNIx-compatibility is required, since
the UNIX creat function requires it. In this case, pmode
should have an octal value of 0666.

SEE ALSO
UNBUFFERED I/O (0), ERRORS (0)

DIAGNOSTICS
If creat fails, it returns -1 as its value and sets a code
in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.31

CTYPE (e) utility Functions C'l'YPE

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace,
ispunct, isprint, iscntrl, isascii
- character clasification functions

SYNOPSIS
tinclude ··ctype.h"

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table
lookup, returning nonzero if the integer is in the catagory,
zero otherwise. isascii is defined for all integer values.
The others are defined only when isascii is true and on the
single non-ASCII value EOF (-1).

isalpha
isupper
islower
isdigit
isalnum
isspace

ispunct
isprint

iscntrl

isascii

c is a letter
c is an upper case letter
c is a lower case letter
c is a digit
c is an alphanumeric character
c is a space, tab, carriage return, newline,

or formfeed
c is a punctuation character

c is a printing character, valued Ox20
(space) through Ox7e (tilde)

c is a delete character (Oxff) or ordinary
control character (value less than Ox20)

c is an ASCII character, code less than OxlOO

Copyright (c) 1984 by Manx Software Systems, Inc. lib.32

EXP (M) Math Functions EXP

NAME
exponential, logarithm, power, square root functions:

exp, log, 10glO, pow, sqrt

SYNOPSIS
double exp{x)
double x· ,

double log{x)
double x· ,

double 10glO{x)
double x· ,

double pow{x, Y)
double X,Yi

double sqrt{x)
double x· ,

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of x: 10glO returns the
base 10 logarithm.

pow returns x ** y (x to the y-th power).

sqrt returns the square root of x~

SEE ALSO
ERRORS

DIAGNOSTICS
If a function can't perform the computation, it sets an
error code in the global integer errno and returns an
arbitrary value: otherwise it returns the computed value
without modifying errno. The symbolic values which a
function can place in errno are EDOM, signifying that the
argument was invalid, and ERANGE, meaning that the value of
the function couldn't be computed. These codes are defined
in the file errno.h.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.33

EXP (M) Math Functions EXP

The following table lists, for each function, the error
codes that can be returned, the function value for that
error, and the meaning of the error. The symbolic values are
defined in the file math.h.

Ifunction I error f(x) Meaning I

exp
II

log
10glO
pow

II

II

sqrt

ERANGE
ERANGE
EDOM
EDOM
EDOM
ERANGE
ERANGE
EDOM

HUGE
0.0

-HUGE
-HUGE
-HUGE
HUGE
0.0
0.0

x >
x <

X <=
X <=

LOG HUGE
LOGTINY
a
o

x < 0, x=y=O
y*log(x) > LOGHUGE
y*log(x) < LOGTINY
x < 0.0

I
I
I
I
I
I
I
I

Copyright (c) 1984 by Manx software Systems, Inc. lib. 34

FCLOSE (c) Standard I/O Functions FCLOSE

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
'include ··stdio.h ll

fclose(stream)
FILE * stream:

fflush(stream)
FILE * stream:

DESCRIPTION
fclose informs the system that the user's program has
completed its buffered i/o operations on a device or file
which it had previously opened (by calling fopen). fclose
releases the control blocks and buffers which it had
allocated to the device or file. Also, when a file is being
closed, fclose writes any internally buffered information
to the file.

fclose is called automatically by exit.

fflush causes any buffered information for the named output
stream to be written to that file. The stream remains open.

If fclose or fflush is successful, it returns 0 as its
value.

SEE ALSO
STANDARD r/o (0)

DIAGNOSTICS
If the operation fails, -1 is returned, and an error code is
set in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.3S

FERROR (c) standard I/O Functions FERROR

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
t include II stdio • h II

feof(stream)
FILE * stream;

ferror(stream)
FILE * stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION
feof returns non-zero when end-of-file is reached on the
specified input stream, and zero otherwise.

ferror returns non-zero when an error has occurred on the
specified stream, and zero otherwise. Unless cleared by
clearerr, the error indication remains set until the stream
is closed.

clearerr resets an error indication on the specified stream.

fileno returns the integer file descriptor associated with
the stream.

These functions are defined as macros in the file stdio.h.

SEE ALSO
STANDARD I/O (0)

copyright (c) 1984 by Manx software Systems, Inc. lib.36

FLOOR (M) Math utility Functions FLOOR

NAME
fabs, floor, ceil - absolute value, floor, ceiling routines

SYNOPSIS
double floor(x)
double X· •

double ceil(x)
double X· •

double fabs(x)
double X· •

DESCRIPTION
fabs returns the absolute value of x.

floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than x.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.37

FOPEN (c) standard I/O Functions FOPEN

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
'include Iistdio.h li

FILE *fopen(filename, mode)
char * filename , *mode;

FILE *freopen{filename, mode, stream)
char *filename, *mode;
FILE *stream:

FILE *fdopen(fd, mode)
char *mode;

DESCRIPTION
These functions prepare a device or disk file for access by
the standard i/o functions; this is called "opening" the
device or file. A file or device which has been opened by
one of these functions is called a "stream".

If the device or file is successfully opened, these
functions return a pointer, called a "file pointer ll to a
structure of type FILE. This pointer is included in the list
of parameters to buffered i/o functions, such as getc or
putc, which the user's program calls to access the stream.

fopen is the most basic of these functions: it simply opens
the device or file specified by the filename parameter for
access specified by the mode parameter. These parameters are
described below.

freopen substitutes the named device or file for the device
or file which was previously associated with the specified
stream. It closes the device or file which was originally
associated with the stream and returns stream as its value.
It is typically used to associate devices and files with the
preopened streams stdin, stdout, and stderr.

fdopen opens a device or file for buffered i/o which has
been previously opened by one of the unbuffered open
functions open and create It returns as it's value a FILE
pointer.

fdopen is passed the file descriptor which was returned when
the device or file was opened by open or create It's also
passed the mode parameter specifying the type of access
desired. mode must agree with the mode of the open file.

The parameter filename is a pointer to a character string
which is the name of the device or file to be opened. For
details, see the I/O overview section.

Copyright (c) 1984 by Manx Software systems, Inc. lib.38

POPER (c) Standard I/O Functions FOPER

mode points to a character string which specifies how the
user's program intends to access the stream. The choices
are as follows:

mode

"r"

"w"

"a"

"x"

"r+"

"w+"

lIa+"

"X+"

meaning

Open for reading only. If a file is
opened, it is positioned at the
first character in it. If the file or
device does not exist, NULL is returned.

Open for writing only. If a file is
opened which already exists, it is trun
cated to zero length. If the file
does not exist, it is created.

Open for appending. The calling program
is granted write-only access to the
stream. The current file position is
the character after the last character
in the file. If the file does not
exist, it is created.

Open for writing.
previously exist.
supported by Unix.

The file must
This option is

not
not

Open for reading and writing. Same as
"r", but the stream may also be written
to.

Open for writing and reading. Same as
"w", but the stream may also be read;
different from "r+" in the creation of a
new file and loss of any previous one.

Open for appending and reading. Same as
"a", but the stream may also be read;
different from "r+" in file positioning
and file creation.

Open for writing and reading. Same as
"x" but the file can also be read.

On systems which don't keep track of the last character in a
file (for example CPM and Apple DOS), not all files can be
correctly positioned when opened in append mode. See the
I/O overview section for details.

SEE ALSO
I/O (0), STANDARD I/O (0)

DIAGNOSTICS
If the file or device cannot be opened, NULL is returned and
an error code is set in the global integer errno.

Copyright (c) 1984 by Manx Software systems, Inc. lib.39

FOPER (e) Standard I/O Functions FOPER

EXAMPLES
The following example demonstrates how fopen can be used in
a program.

#include IIstdio.h ll

main(argc,argv)
char **argvi
[

FILE *fopen(), *fPi

if «fp = fopen(*argv[l], *argv[2])) == NULL) {
printf(lIyoU asked me to open %s",*argv[l])i
printf(lIin the %s mode", *argv[2])i
printf("but I can ' tl\n")i

else
printf("%s is open\n", *argv[l])i

1

Here is a program which uses freopen:

#include IIstdio.h"
main ()
{

FILE *fPi
fp = freopen ("dskfile ", "W+", stdout);
printf("This message is going to dskfile\n") i

1

Here is a program which uses fdopen:

#include "stdio.h ll

dopen it(fd)
int fd; /* value returned by previous call to open */
[

1

FILE *fPi

if « fp = fdopen (fd , II r+ II)) == NULL)
printf(lIcan't open file for r+\n");

else
return (fp) i

Copyright (c) 1984 by Manx Software Systems, Inc. lib.40

FREAD (C) standard I/O Function FREAD

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
'include "stdio.h"

int fread(buffer, size, count, stream)
char *buffer;
int size, count;
FILE *stream;

int fwrite(buffer, size, count, stream)
char *buffer;
int size, count;
FILE *stream;

DESCRIPTION
fread performs a buffered input operation and fwrite a
buffered write operation to the open stream specified by the
parameter stream.

buffer is the address of the user's buffer which will be
used for the operation.

The function reads or writes count items, each containing
size bytes, from or to the stream.

fread and fwrite perform i/o using the functions getc and
putc: thus, no translations occur on the data being
transferred.

The function returns as its value the number of items
actually read or written.

SEE ALSO
STANDARD I/O (0), FOPEN, ERRORS (0), FERROR

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error. The
functions feof and ferror can be used to distinguish between
the two. In case of an error, the global integer errno
contains a code defining the error.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.41

FREAD (C) standard I/O Function FREAD

EXAMPLE
This is the code for reading ten integers from file 1 and
writing them again to file 2. It includes a simple check
that there are enough two-byte items in the first file:

#include IIstdio.h ll

main ()
{

FILE *fpl, *fp2, *fopen();
char *buf;
int size = 2, count = 10;

fpl = fopen(lIfilelll,lIrll);
fp2 = fopen (II file2 11

, "w ll
) ;

if (fread(buf, size, count, fpl) != count)
printf(IINot enough integers in filel \nll);

fwrite(buf, size, count, fp2);
}

Copyright (c) 1984 by Manx Software systems, Inc. lib.42

FREXP (M) Math Functions FREXP

NAME
frexp, ldexp, modf - build and unbuild real numbers

SYHOPSIS
double frexp(value, eptr)
double value:
int *eptr:

double ldexp(value, exp)
double value:

double modf(value, iptr)
double value, *iptr:

DESCRIPTIO:N
frexp computes for its argument, arg, a double quantity x
and an integer quantity n such that value = x*2**n. x is
returned as the value of frexp, and n is returned in the
integer field pointed at by eptr.

ldexp returns the double quantity value*2**exp.

modf returns as its value the positive fractional part of
value and stores the integer part in the double field
pointed at by iptr.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.43

FSEEK (c) Standard I/O Functions FSEEK

NAME
fseek, ftell - reposition a stream

SYNOPSIS
'include ··stdio.h ll

int fseek(stream, offset, origin)
FILE *stream;
long offset;
int origin;

long ftell(stream)
FILE *stream;

DESCRIPTION
fseek sets the "current position" of a file which has been
opened for buffered i/o. The current position is the byte
location at which the next input or output operation will
begin.

stream is the stream identifier associated with the file,
and was returned by fopen when the file was opened.

offset and origin together specify the current position:
the new position is at the signed distance offset bytes from
the beginning, current position, or end of the file,
depending on whether origin is 0, 1, or 2, respectively.

offset can be positive or negative, to position after or
before the specified origin, respectively, with the
limitation that you can't seek before the beginning of the
file.

For some operating systems (for example, CP~l and Apple DOS)
a file may not be able to be correctly positioned relative
to its end. See the overview sections I/O and STANDARD I/O
for details.

If fseek is successful, it will return zero.

ftell returns the number of bytes from the beginning to the
current position of the file associated with stream.

SEE ALSO
STANDARD I/O (0), I/O (0), LSEEK

DIAGNOSTICS
fseek will return -1 for improper seeks. In this case, an
error code is set in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.44

FSEEK (c) Standard I/O Functions FSEEK

EXAMPLE
The following routine is equivalent to opening a file in
"a+" mode:

a plus(filename)
char *filenamei
{

FILE *fp, *fopen()i

if «fp = fopen(filename, r+» == NULL)
fp = fopen(filename, W+)i

fseek(fp, OL, 2)i /* position 1 byte past
last character */

}

To set the current position back 5 characters before the
present current position, the following call can be used:

fseek(fp, -5L, 1)

Copyright (c) 1984 by Manx Software Systems, Inc. lib.45

GE'l'C (c) Standard I/O Function GETC

NAME
getc, agetc, getchar, getw

SYNOPSIS
'include "stdio.h"

int getc(stream)
FILE *stream:

int agetc(stream)
FILE *stream:

int getchar()

int getw(stream)
FILE *stream:

DESCRIPTION

/* non-Unix function */

getc returns the next character from the specified input
stream.

agetc is used to access files of text. It generally behaves
like getc and returns the next character from the named
input stream. It differs from getc in the following ways:

o it translates end-of-line sequences (eg, carriage
return on Apple DOS; carriage return-line feed on
CPM) to a single newline (I\n l

) character.
o it translates an end-of-file sequence (eg, a null

character on Apple DOS; a control-z character on
CPM) to EOF;

o it ignores null characters (1\0 1) on all systems
except Apple DOS;

o the most significant bit of each character returned
is set to zero.

agetc is not a Unix function. It is, however, provided with
all Aztec C packages, and provides a convenient, system
independent way for programs to read text.

getchar returns text characters from the standard input
stream (stdin). It is implemented as the call agetc(stdin).

getw returns the next word from the specified input stream.
It returns EOF (-1) upon end-of-file or error,- but since
that is a good integer value, feof and ferror should be used
to check the success of getw. It assumes no special
alignment in the file.

SEE ALSO
I/O (0), STANDARD I/O (0), FOPEN, FCLOSE

DIAGNOSTICS
These functions return EOF (-1) at end of file or if an
error occurs. The functions feof and ferror can be used to
distinguish the two. In the latter case, an error code is

Copyright (c) 1984 by Manx Software Systems, Inc. lib.46

GETC (c) Standard I/O Function GETC

set in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.47

GETS (C) Standard I/O Functions GETS

NAME
gets, fgets - get a string from a stream

SYNOPSIS
t incl ude n stdio • h II

char *gets(s)
char *s;

char *fgets(s. n, stream)
char *s;
FILE *stream:

DESCRIPTION
gets reads a string of characters from the standard input
stream, stdin, into the buffer pointed by 5. The input
operation terminates when either a newline character (\n) or
end of file is encountered.

fgets reads characters from the specified input stream into
the buffer pointer at by s until either (1) n-l characters
have been read, (2) a newline character (\n) is read, or (3)
end of file or an error is detected on the stream.

Both functions return 5, except as noted below.

gets and fget5 differ in their handling of the newline
character: gets doesn't put it in the caller's buffer, while
fgets does. This is the behavior of these functions under
UNIX.

These functions get characters using agetc: thus they can
only be used to get characters from devices and files which
contain text characters.

SEE ALSO
I/O (0), STfu~DARD I/O (0), FERROR

DIAGNOSTICS
gets and fgets return the pointer NULL (0) upon reaching end
of file or detecting an error. The functions feof and ferror
can be used to distinguish the two. In the latter case, an
error code is placed in the global integer errno.·

Copyright (c) 1984 by Manx Software Systems, Inc. lib.48

IOCTL (c) I/O function

NAME
ioctl, isatty - device i/o utilities

SYNOPSIS
'include "sgtty.h"

ioctl(fd, cmd, stty)
struct sgttyb *stty:

isatty(fd)

DESCRIPTION
ioctl sets and determines the mode of the -console.

IOCTL

For more details on ioctl, see the overview section CONSOLE
I/O.

isatty returns non-zero if the file descriptor fd is
associated with the console, and zero otherwise.

SEE ALSO
CONSOLE I/O (0)

Copyright (c) 1984 by Manx Software Systems, Inc. lib.49

LSEEK (c) Unbuffered I/O Function LSEEK

NAME
lseek - change current position within file

SYNOPSIS
long int lseek(fd, offset, origin)
int fd, origin;
long offset;

DESCRIPTION
lseek sets the current position of a file which has been
opened for unbuffered i/o. This position determines where
the next character will be read or written.

fd is the file descriptor associated with the file.

The current position is set to the location specified by the
offset and origin parameters, as follows:

If origin is A, the current position is set to offset
bytes from the beginning of the file.

If origin is I, the current position is set to the
current position plus offset.

If origin is 2, the current position is set to the end
of the file plus offset.

The offset can be positive or negative, to position after or
before the specified origin, respectively.

positioning of a file relative to its end (that is, calling
lseek with origin set to 2) cannot always be correctly done
on all systems (for example, CPM and Apple DOS). See the
section entitled I/O for details.

If lseek is successful, it will return the new position in
the file (in bytes from the beginning of the file).

SEE ALSO
UNBUFFERED I/O (0), I/O (0)

DIAGNOSTICS
If Iseek fails, it will return -1 as its value and set an
error code in the global integer errno. errno is set to
EBADF if the file descriptor is invalid. It will be set to
EINVAL if the offset parameter is invalid or if the
requested position is before the beginning of the file.

EXAMPLES
1. To seek to the beginning of a file:

1 see k (fd, a L , 0);

Copyright (c) 1984 by Manx Software Systems, Inc. lib.50

LSEEK (e) Unbuffered I/O Function LSEEK

lseek will return the value zero (O) since the current
position in the file is character (or byte) number
zero.

2. To seek to the character following the last character
in the file:

pos = Iseek(fd, OL, 2}:

The variable, pos, will contain the current position of
the end of file, plus one.

3. To seek backward five bytes:

1 see k (fd, - 5 L ,I) :

The parameter, 1, sets the origin at the current
position in the file. The offset is -5. The new
position will be the origin plus the offset. So the
effect of this call is to move backward a total of five
characters.

4. To skip five characters when reading in a file:

read(fd, buf, count}:
Iseek (fd, 5L, I):
read(fd, buf, count}:

Copyright (c) 1984 by Manx Software systems, Inc. lib.51

MALLOC (c) Memory Management Functions MALLOC

NAME
malloc, free, calloc, - memory allocation

SYNOPSIS
char *malloc(size)
unsigned size:

char *calloc(nelem, elemsize)
unsigned nelem, elemsize;

char *reaIloc(ptr, size)
char *ptr;
unsigned size:

free(ptr)
char *ptr:

DESCRIPTION
These functions are used to allocate memory from the "heap",
that is, the section of memory available for dynamic storage
allocation.

malloc allocates a block of size bytes, and returns a
pointer to it.

calloc allocates a single block of memory which can contain
nelem elements, each elemsize bytes big, and returns a
pointer to the beginning of the block. Thus, the allocated
block will contain (nelem * elemsize) bytes. The block is
initialized to zeroes.

realloc changes the size of the block pointed at by ptr to
size bytes, returning a pointer to the block. If necessary,
a new block will be allocated of the requested size, and the
data from the original block moved into it. The block passed
to realloc can have been freed, provided that no intervening
calls to cailoc, malloe, or realloc have been made.

free deal locates a block of memory which was previously
allocated by malloe, calloe, or realloci this space is then
available for reallocation. The argument ptr to free is a
pointer to the block.

maiioc and free maintain a circular list of free blocks.
When called, malloc searches this list beginning with the
last block freed or allocated coalescing adjacent free
blocks as it searches. It allocates a buffer from the first
large enough free block that it encounters. If this search
fails, it calls sbrk to get more memory for use by these
functions.

SEE ALSO
MEMORY USAGE (0), BREAK (S)

Copyright (c) 1984 by Manx Software Systems, Inc. lib.52

MALLOC (c) Memory Management Functions MALLOC

DIAGNOSTICS
ma11oc, ca110c and rea110c return a null pointer (0) if
there is no available block of memory.

free returns -1 if it's passed an invalid pointer.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.53

MOVMEM (c) utility Functions MOVMEM

movmem, setmem, swapmem

SYNOPSIS
movmem(src, dest, length)
char *src, *dest;
int length;

setmem(area, length, value)
char *area;

swapmem(sl. s2. len)
char *sl, *s2;

DESCRIPTION

/* non-unix function */

/* non-Unix function */

/* non-Unix function */

movmem copies length characters from the block of memory
pointed at by src to that pointed at by dest.

movmem copies in such a way that the resulting block of
characters at dest equals the original block at src.

setmem sets the character value in each byte of the block of
memory which begins at area and continues for length bytes.

swapmem swaps the blocks of memory pointed at by s1 and s2.
The blocks are len bytes long.

Copyright (c) 1984 by Manx Software systems, Inc. lib.54

OPEN (C) Unbuffered I/O Functions OPER

open

SYBOPSIS
t inc1ude • fcnt1. h II

open (name. mode)
char *name;

DESCRIPTION
This function will open a device or file for unbuffered i/o.
It returns an integer value called a file descriptor which
is used to identify the file or device in subsequent calls
to unbuffered i/o functions.

The parameter name is a pointer to a character string which
is the name of the device or file to be opened. For details,
see the overview section I/O.

The parameter mode specifies how the user's program intends
to access the file. The choices are as follows:

mode
o RDONLY
O-WRONLY
o RDWR
O-CREAT
o TRUNC
O-EXCL

o APPEND

meaning
read only
write only
read and write
Create file, then open it
Truncate file, then open it
Cause open to fail if file already
exists; used with 0 CREAT
position file for appending data

These open modes are integer constants defined in the files
fcntl.h. Although the true values of these constants can be
used in a given call to open, use of the symbolic names
ensures compatibility with UNIX and other systems.

The calling program must specify the type of access desired
by including exactly one of 0 RDONLY, 0 WRONLY, and 0 RDWR
in the mode parameter. The-three remaining values are
optional. They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does
not exist. To cause the file to be created when it does not
already exist, specify the 0 CREAT option. If 0 EXCL is
given in addition to 0 CREAT, the open will fail if-the file
already exists; otherwise, the file is created.

If the 0 TRUNC option is specified, the file will be
truncated so that nothing is in it. The truncation is
performed by simply erasing the file, if it exists, and then
creating it. So it is not an error to use this option when
the file does not exist.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.55

OPEN (C) Unbuffered I/O Functions OPER

Note that when 0 TRUNC is used, O_CREAT is not needed.

If O_APPEND is specified, the current position for the file
(that is, the position at which the next data transfer will
begin) is set to the end of the file. For systems which
don't keep track of the last character written to a file
(for example, CPM and Apple DOS), this positioning cannot
always be correctly done. See the I/O overview section for
details. Also, this option is not supported by UNIX.

If open does not detect an error, it returns an integer
called a ufile descriptor." This value is used to identify
the open file during unbuffered i/o operations. The file
descriptor is very different from the file pointer which is
returned by fopen for use with buffered i/o functions.

SEE ALSO
I/O (O), UNBUFFERED I/O (O), ERRORS (O)

DIAGNOSTICS
If open encounters an error, it returns -1 and sets the
global integer errno to a symbolic value which identifies
the error.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.56

OPEN (C) Unbuffered I/O Functions OPEN

EXAMPLES

1. To open the file, testfile, for read-only access:

fd = open("testfile", O_RDONLY):

If testfile does not exist open will just return -1 and set
errno to ENOENT.

2. To open the file, subl, for read-write access:

fd = open (II subl ll
, 0 RD\'JR+O CREAT):

If the file does not exist, it will be created and then
opened.

3. The following program opens a file whose name is given on
the command line. The file must not already exist.

main(argc, argv)
char **argv:
{

}

int fd:

fd = open(*++argv, 0 WRONLY+O CREAT+O_EXCL);
if (fd = -1) {

if (errno == EEXIST)
printf("file already exists\n"):

else if (errno == ENOENT)
printf(" unable to open file\n ll

);

else
printf("open error\n");

Copyright (c) 1984 by Manx Software Systems, Inc. lib.57

PRIN'l'F (C. M) Standard I/O Functions PRIRTF

NAME
printf, fprintf, sprintf
- formatted output conversion functions

SYNOPSIS
t include II stdio. h"

printf(fmt [.arg] •••)
char *fmt;

fprintf(stream. fmt [.arg] •••)
FILE * stream;
char *fmt;

sprintf(buffer, fmt [,arg] •••)
char *buffer, *fmt;

format(func, fmt. argptr)
int (*func) ();
char *fmt;
unsigned *argptr;

DESCRIPTION
These functions convert and format their arguments (arg or
argptr) according to the format specification fmt. They
differ in what they do with the formatted result:

printf outputs the result to the standard output
stream, stdout:

fprintf outputs the resul t to the stream specified in
its first argument, stream:

sprintf places the result in the buffer pointed at by
its first argument, buffer, and terminates the result
with the null character, '\0'.

format calls the function func with each character of
the result.

These functions are in both c.lib and m.lib, the difference
being that the c.lib versions don't support floating point
conversions. Hence, if floating point conversion is
required, the m.lib versions must be used. If floating point
conversion isn't required, either version can be used. To
use m.lib's version, m.lib must be specified before c.lib at
the time the program is linked.

The character string pointed at by the fmt parameter, which
directs the print functions, contains two types of items:
ordinary characters, which are simply output, and conversion
specifications, each of which causes the conversion and
output of the next successive arg.

Copyright (c) 1984 by Manx software Systems, Inc. lib. 58

PRIH'l'F (C. M) Standard I/O Functions PRINTF

A conversion specification begins with the character % and
continues with:

o an optional minus sign (-) which specifies left
adjustment of the converted value in the output field;

o an optional digit string specifying the 'field width' for
the conversion. If the converted value has fewer
characters than this, enough blank characters will be
output to make the total number of characters output
equals the field width. If the converted value has more
characters than the field width, it will be truncated.
The blanks are output before or after the value,
depending on the presence or absence of the left
adjustment indicator. If the field width digits have a
leading 0, a is used as a pad character rather than
blank.

o an optional period, '.', which separates the field width
from the following field;

o an optional digit string specifying a precision: for
floating point conversions, this specifies- the number of
digits to appear after the decimal point; for character
string conversions, this specifies the maximum number of
characters to be printed from a string;

o optionallYI the character 1, which specifies that a
conversion which normally is performed on an int is to be
performed on a long. This applies to the d, 0, and x
conversions.

o a character which specifies the type of conversion to be
performed.

A field width or precision may be * instead of a number,
specifying that the next available arg, which must be an
int, supplies the field width or precision.

The conversion characters are:

d, 0, or x
The int in the corresponding arg is
decimal, octal, or hexadecimal notation,
and output;

converted to
respectively,

u The unsigned integer arg is converted to decimal
notation;

c The character arg is output. Null characters are
ignored;

s The characters in the string pointed at by arg are
output until a null character or the number of

Copyright (c) 1984 by Manx Software Systems, Inc. lib.59

PRIN'l'P (e, M) Standard I/O Functions PRIBTP

characters indicated by the precision is reached. If the
precision is zero or missing, all characters in the
string, up the terminating null, are output:

f The float or double arg is converted to decimal notation
in the style '[-Jddd.ddd ' . The number of dis after the
decimal point is equal to the precision given in the
conversion specification. If the precision is missing,
it defaults to six digits. If the precision is
explicitly 0, the decimal point is also not printed.

e The float or double arg is converted to the style
'[-Jd.ddde[-Jdd ' , where there is one digit before the
decimal point and the number after is equal to the
precision given. If the precision is missing, it
defaults to six digits.

9 The float or double arg is printed in style d, f, or e,
whichever gives full precision in minimum space.

% output a %. No argument is converted.

SEE ALSO
STANDARD I/O (0)

EXAMPLES

1. The following program fragment:

char *name: float amt:
printf("your total, %s, is $%f\n", name, amt):

will print a message of the form

your total, Alfred, is $3.120000

Since the precision of the %f conversion wasn't specified,
it defaulted to six digits to the right of the decimal
point.

2. This example modifies example 1 so that the field width for
the %s conversion is three characters, and the field width
and precision of the %f conversion are 10 and 2,
respectively. The %f conversion will also use 0 as a pad
character, rather than blank.

char *name: float amt:
printf("your total, %3s, is $%10.2f\n", name, amt):

3. This example modifies example 2 so that the field width of
the %s conversion and the precision of the %f conversion are
taken from the variables nw and ap:

char *name: float amt: int nw, api
printf("your total %*s, is $%10.*f\n", nw, name, ap, amt)i

Copyright (c) 1984 by Manx Software Systems, Inc. lib.60

PRIN'l'F (C. M) Standard I/O Functions PRIIITF

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.61

PUTC (c) Standard I/O Functions PU'1'C

NAME
putc, aputc, putchar, putw, puterr
- put character or word to a stream

SYNOPSIS
linc1ude ·stdio.h"

putc(c, stream)
char c:
FILE *stream:

aputc(c, stream)
char c:
FILE *stream:

putchar(c)
char c:

putw(w,stream)
FILE *stream;

puterr(c)
char c:

DESCRIPTION

/* non-Unix function */

/* non-Unix function */

putc writes the character c to the named output stream. It
returns c as its value.

aputc is used to write text characters to files and devices.
It generally behaves like putc, and writes a single
character to a stream. It differs from putc as follows:

o when a newline character is passed to aputc, an end
of-line sequence (eg, carriage return followed by
line feed on CPM, and carriage return only on Apple
DOS) is written to the stream;

o the most significant bit of a character is set to
zero before being written to the stream.

aputc is not a Unix function. It is, however, supported on
all Aztec C systems, and provides a convenient, system
independent way for a program to write text.

putchar writes the character c to the standard output
stream, stdout. It's 'identical to aputc(c, stdout).

putw writes the word w to the specified stream. It returns w
as its value. putw neither requires nor causes special
alignment in the file.

puterr writes the character c to the standard error stream,
stderr. It's identical to aputc(c, stderr). It is not a Unix
function.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.62

PUTC (c) Standard I/O Functions PU'l'C

SEE ALSO
STANDARD I/O

DIAGNOSTICS
These functions return EOF (-1) upon error. In this case,
an error code is set in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.63

PUTS (C) Standard I/O Functions PUTS

NAME
puts, fputs - put a character string on a stream

SYNOPSIS
'include ··stdio.h ll

puts(s)
char *s:

fputs(s, stream)
char *s:
FILE *stream:

DESCRIPTION
puts writes the null-terminated string s to the standard
output stream, stdout, and then an end-of-line sequence. It
returns a non-negative value if no errors occur.

fputs copies the null-terminated string s to the specified
output stream. It returns 0 if no errors occur.

Both functions wr i te to the stream using aputc. Thus, they
can only be used to write text. See the PUTC section for
more details on aputc.

Note that puts and fputs differ in this way: On encountering
a newline character, puts writes an end-of-line sequence and
fputs doesn't.

SEE ALSO
STANDARD I/O (0), PUTC

DIAGNOSTICS
If an error occurs, these functions return EOF (-1) and set
an error code in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.64

QSOR'l' utility Function QSORT

qsort sort an array of records in memory

SYBOPSIS
qsort (array, number, width, func)
char *array:
unsigned number:
unsigned width:
int (*func)().

DESCRIP'lIOH
qsort sorts an array of elements using Hoare's Quicksort
algorithm. array is a pointer to the array to be sorted;
number is the number of record to be sorted; width is the
size in bytes of each array element; func is a pointer to a
function which is called for a comparison of two array
elements.

func is passed pointers to the two elements being compared.
It must return an integer less than, equal to, or greater
than zero, depending on whether the first argument is to be
considered less than, equal to, or greater than the second.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.65

QSORT utiiity Function QSORT

EXAMPLE
The Aztec linker, LN, can generate a file of text containing
a symbol table for a program. Each line of the file contains
an address at which a symbol is located, followed by a
space, followed by the symbol name. The following program
reads such a symbol table from the standard input, sorts it
by address, and writes it to standard output.

#include "stdio.h"
#define MAXLINES 2000
#define LINESIZE 16
char *lines[MAXLINES]:

main ()
{

}

int i,numlines, cmp():
char buf[LINESIZE]:

for (nurnlines=O; numlines<MAXLINES; ++numlines){
if (gets(buf) == NULL)

}

break:
lines[numlines] = alloc(LINESIZE);
strcpy(lines[numlines], buf):

qsort(lines, nurnlines, 2, cmp);
for (i = 0: i <numlines: ++i)

printf("%s\n", lines[i]);

cmp(a,b)
char **a, **b;
{

return strcmp(*a, *b);
}

Copyright (c) 1984 by Manx Software Systems, Inc. lib.66

RAN (M) Math Function RAN

NAME
ran - random number generator

SYNOPSIS
double ran ()

DESCRIPTION
ran returns as its value a random number between 0.0 and
1.0.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.67

READ (c) Unbuffered I/O Functions READ

NAME
read - read from device or file without buffering

SYNOPSIS
read (fd, buf.bufsize)
int fd, bufsize; char *buf:

DESCRIPTION
read reads characters from a device or disk file which has
been previously opened by a call to open or create In most
cases, the information is read directly into the caller's
buffer.

fd is the file descriptor which was returned to the caller
when the device or file was opened.

buf is a pointer to the buffer into which the information
is to be placed.

bufsize is the number of characters to be transfered.

If read is successful, it returns as its value the number
of characters transfered.

If the returned value is zero, then end-of-file has been
reached, immediately, with no bytes read.

SEE ALSO
UNBUFFERED I/O (a), OPEN, CLOSE

DIAGNOSTICS
If the operation isn't successful, read returns -1 and
places a code in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.68

RENAME (C) I/O Function RENAME

NAME
rename - rename a disk file

SYNOPSIS
rename (o1dname, newname)
char *o1dname,*newname:

DESCRIPTION
rename changes the name of a file.

/* non-Unix function */

o1dname is a pointer to a character array containing the
old file name, and newname is a pointer to a character
array containing the new name of the file.

If successful, rename returns 0 as its value; if
unsuccessful, it returns -1.

If a file with the new name already exists, rename sets
E EXIST in the global integer errno and returns -1 as its
value without renaming the file.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.69

SCARF (C) Standard I/O Functions SCANF

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
tinc1ude ··stdio.h ll

scanf(format [,pointer] •••)
char *format:

fscanf(stream, format [,pointer] .••)
FILE *stream:
char *format:

sscanf(buffer, format [,pointer] .••)
char *buffer, *format:

DESCRIPTION
These functions convert a string or stream of text
characters, as directed by the control string pointed at by
the format parameter, and place the results in the fields
pointed at by the pointer parameters.

The functions get the text from different places:

scanf gets text from the standard input stream, stdin;

fscanf gets text from the stream specified in its first
parameter, stream;

sscanf gets text from the buffer pointed at by its
first parameter, buffer.

The scan functions are in both c.lib and m.lib, the
difference being that the c.lib versions don't support
floating point conversions. Hence, if floating point
conversion is required, the m.lib versions must be used. If
floating point conversions aren't required, eithe version
can be used. To use m.lib's version, m.lib must be specified
before c.lib when the program is linked.

The control string pointed at by format contains the
following 'control items':

o conversion specifications;

o 'white space' characters (space, tab newline);

o ordinary characters; that is, characters which aren't
part of a conversion specification and which aren't white
space.

A scan function works its way through a control string,
trying to match each control item to a portion of the input
stream or buffer. During the matching process, it fetches

Copyright (c) 1984 by Manx Software Systems, Inc. lib.70

SCANF (e) standard I/O Functions SCARF

characters one at a time from the input. When a character is
fetched which isn't appropriate for the control item being
matched, the scan function pushes it back into the input
stream or buffer and finishes processing the current control
item. This pushing back frequently gives unexpected results
when a stream is being accessed by other i/o functions, such
as getc, as well as the scan function. The examples below
demonstrate some of the problems that can occur.

The scan function terminates when it first fails to match a
control item or when the end of the input stream or buffer
is reached. It returns as its value the number of matched
conversion specifications, or EOF if the end of the input
stream or buffer was reached.

Matching 'white space' characters

When a white space character is encountered in the control
string, the scan function fetches input characters until the
first non-white-space character is read. The non-white-space
character is pushed back into the input and the scan
function proceeds to the next item in the control string.

Matching ordinary characters

If an ordinary character is encountered in the control
string, the scan function fetches the next input character.
inpu t. If it rna tche s the ordinary character, the scan
function simply proceeds to the next control string item. If
it doesn't match, the scan function terminates.

Matching conversion specifications

When a conversion specification is encountered in the
control string, the scan function first skips leading white
space on the input stream or buffer. It then fetches
characters from the stream or buffer until encountering one
that is inappropriate for the conversion specification. This
character is pushed back into the input.

If the conversion specification didn't request assignment
suppression (discussed below), the character string which
was read is converted to the format specified by the
conversion specification, the result is placed in the
location pointed at by the current pointer argument, and the
next pointer argument becomes current. The scan function
then proceeds to the next control string item.

If assignment suppression was requested by the conversion
specification, the scan function simply ignores the fetched
input characters and proceeds to the next control item.

Details of input conversion

A conversion specification consists of:

Copyright (c) 1984 by Manx Software Systems, Inc. lib.71

SCANF (e) Standard I/O Functions SCARF

o the character 1%1, which tells the scan function that it
has encountered a conversion specification;

o optionally, the assignment suppression character

o optionally, a 'field width ' ; that is, a number specifying
the maximum number of characters to be fetched for the
conversion;

o a conversion character, specifying the type of conversion
to be performed.

If the assignment suppression character is present ina
conversion specification, the scan function will fetch
characters as if it was going to perform the conversion,
ignore them, and proceed to the next control string item.

The following conversion characters are supported:

% a single 1%1 is expected in the input~ no assignment is
done.

d a decimal integer is expected; the input digit string is
converted to binary and the result placed in the int
field pointed at by the current pointer argument;

a an octal integer is expected~ the corresponding pointer
should point to an int field in which the converted
result will be placed;

x a hexadecimal integer is expected; the converted value
will be placed in the int field pointed at by the current
pointer argument~

s a sequence of characters delimited by white space
characters is expected; they, plus a terminating null
character, are placed in the character array pointed at
by the current pointer argument.

c a character is expected. It is placed in the char field
pointed at by the current pointer. The normal skip over
leading white space is not done~ to read a single char
after skipping leading white space, use '%ls'. The field
width parameter is ignored, so this conversion can be
used only to read a single character.

[a sequence of characters, optionally preceded by white
space but not terminated by white space is expected. The
input characters, plus a terminating null character, are
placed in the character array pointed at by the current
pointer argument. The left bracket is followed by:

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.72

SCARF (e) Standard I/O Functions SCARF

o optionally, a IAI or I~I character;
o a set of characters;
o a right bracket, IJI.

If the first character in the set isn't A or ~, the set
specifies characters which are allowed; characters are
fetched from the input until one is read which isn't in
the set.

If the first character in the set is or the set
specifies characters which aren't allowed; characters are
fetched from the input until one is read which is in the
set.

e a floating point number is expected. The input string is
f converted to floating point format and stored in the

float field pointed at by the current pointer argument.
The input format for floating point numbers consists of
an optionally signed string of digits, possibly
containing a decimal point, optionally followed by an
exponent field consisting of an E or e followed by an
optionally signed digit.

The conversion characters d, 0, and x can be capitalized or
preceded by 1 to indicate that the corresponding pointer is
to a long rather than an int. Similarly, the conversion
characters e and f can be capitalized or preceeded by 1 to
indicate that the corresponding pointer is to a double
rather than a float.

The conversion characters 0, x, and d can be optionally
preceded by h to indicate that the corresponding pointer is
to a short rather than an int. Since short and int fields
are the same in Aztec C, this option has no effect.

SEE ALSO
STANDARD I/O (0)

EXAMPLES

1. In this program fragment, scanf is used to read values for
the int x, the float y, and a character string irito the
char array z:

int x; float Yi char z[50J;
scanf("%d%f%s", &x, &y, z);

The input line

32 75.36e-l rufus

will assign 32 to x, 7.536 to y, and "rufus\O" to z. scanf

Copyright (c) 1984 by Manx Software Systems, Inc. lib.73

SCANF (e) Standard I/O Functions SCARF

will return 3 as its value, signifying that three conversion
specifications were matched.

The three input strings must be delimited by 'white space'
characters; that is, by blank, tab, and newline characters.
Thus, the three values could also be entered on separate
lines, with the white space character newline used to
separate the values.

2. This example discusses the problems which may arise when
mixing scanf and other input operations on the same stream.

In the previous example, the character string entered for
the third variable, z, must also be delimited by white space
characters. In particular, it must be terminated by a space,
tab, or newline character. The first such character read by
scanf while getting characters for z will be 'pushed back'
into the standard input stream. Hhen another read of stdin
is made later, the first character returned will be the
white space character which was pushed back.

This 'pushing back' can lead to unexpected results for
programs that read stdin with functions in addition to
scanf. Suppose that the program in the first example wants
to issue a gets call to read a line from stdin, following
the scanf to stdin. scanf will have left on the input stream
the white space character which terminated the third value
read by scanf. If this character is a newline, then gets
will return a null string, because the first character it
reads is the pushed back newline, the character which
terminates gets. This is most likely not what the program
had in mind when it called gets.

It is usually unadvisable to mix scanf and other input
operations on a single stream.

3. This example discusses the behavior of scanf when there are
white space characters in the control string.

The control string in the first example was lI%d%f%s". It
doesn't contain or need any white space, since scanf, when
attempting to match a conversion specification, will skip
leading white space. There's no harm in having whi te space
before the %d, between the %d and % f, or between the % f and
%s. However, placing a white space character after the %s
can have unexpected results. In this case, scanf will, after
having read a character string for z, keep reading
characters until a non-white-space character is read. This
forces the operator to enter, after the three values for x,
y, and z, a non-white space character; until this is done,
scanf will not terminate.

The programmer might place a newline character at the end of

Copyright (c) 1984 by Manx Software Systems, Inc. lib.74

SCARF (e) Standard I/O Functions SCARF

a control string, mistakenly thinking that this will
circumvent the problem discussed in example 2. One might
think that scanf will treat the newline as it would an
ordinary character in the control string: that is, that
scanf will search for, and remove, the terminating newline
character from the input stream after it has matched the z
variable. However, this is incorrect, and should be
remembered as a common misinterpretation.

4. scanf only reads input it can match. If, for the first
example, the input line had been

32 rufus 75.36e-l

scanf would have returned with value 1, signifying that only
one conversion specification had been matched. x would have
the value 32, y and z would be unchanged. All characters in
the input stream following the 32 would still be in the
input stream, waiting to be read.

5. One common problem in using scanf involves mismatching
conversion specifications and their corresponding arguments.
If the first example had declared y to be a double, then one
of the following statements would have been required:

scanf("%d%lf%s", &X, &y, z);
or

scanf (II %d%F% s II, &x, &y, z):

to tell scanf that the floating point variable was a double
rather than a float.

6. Another common problem in using scanf involves passing scanf
the value of a variable rather than its address. The
following call to scanf is incorrrect:

int x; float y; char z[50]:
scanf("%d%f%s", x, y, z):

scanf has been passed the value contained in x and y, and
the address of z, but it requires the address of all three
variables. The "address of" operator, &, is required as a
prefix to x and y. Since z is an array, its address is
automatically passed to scanf, so z doesn't need the &
prefix, although it won't hurt if it is given.

7. Consider the following program fragment:

int x; float Y: char z[50]:
scanf("%2d%f%*d%[1234567890]1I, &x, &y, z):

Copyright (c) 1984 by Manx Software Systems,' Inc. lib.75

SCARF (C) Standard I/O Functions SCANF

When given the following input:

12345 678 90a65

scanf will assign 12 to x, 345.0 to y, skip '678 1
, and place

the string '90\0 1 in z. The next call to getchar will return
1 a 1 •

Copyright (c) 1984 by Manx Software Systems, Inc. lib.76

SETBUF (c) standard I/O Function SETBUF

NAME
setbuf assign buffer to a stream

SYNOPSIS
linclude ··stdio.h"

setbuf(stream, buf)
FILE *strea.m:
char *buf:

DESCRIPTION
setbuf defines the buffer buf to be used for the specified
stream.

The buffer must be BUFSIZ bytes, where BUFSIZ is defined in
stdio.h.

setbuf must be called after the stream has been opened, but
before any read or write operations to it are made.

If the user's program doesn't specify the buffer to be used
for a stream, the standard i/o functions wi~l dynamically
allocate a buffer for the stream, by calling the function
malloc, when the first read or write operation is made on
the stream. Then, when the stream is closed, the dynamically
allocated buffer is freed by calling free.

SEE ALSO
STANDARD I/O (0), MALLOC

Copyright (c) 1984 by Manx Software Systems, Inc. lib.77

SE'l'JMP (c) Utility Functions SETJMP

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
t include • setbuf • h II

setjrnp{env)
jmp_buf env;

longjrnp{env, val)
jmp_buf env:

DESCRIPTION
These functions are useful for dealing with errors
encountered by the low-level functions of a program.

setjmp saves its stack environment in the memory block
pointed at by env and returns 0 as its value.

longjmp causes execution to continue as if the last call to
setjrnp was just terminating with value val. val cannot be
zero.

The parameter env is a pointer to a block of memory which
can be used by setjrnp and longjrnp. The block must be defined
using the typedef jmp_buf.

EXAMPLE
In the following example, the function getall builds a
record pertaining to a customer and returns the pointer to
the record if no errors were encountered and 0 otherwise.

getall calls other functions which actually build the
record. These functions in turn call other functions, which
in turn

getall defines, by calling setjmp, a point to which these
functions can branch if an unrecoverable error occurs. The
low level functions abort by calling longjmp with a non-zero
value.

If a low level function aborts, execution continues in
getall as if its call to setjrnp had just terminated with a
non-zero value. Thus by testing the value returned by setjmp
getall can determine whether setjrnp is terminating because a
low level function aborted.

Copyright (c) 1984 by Manx software Systems, Inc. lib.78

SE'l'JMP (e) utility Functions SE'l'JMP

#include IIjmpbuf.hll

jmp_buf envbuf; /* environment saved here by setjmp */

getall(ptr)
char *ptr; /* ptr to record to be built */
{

}

if (setjmp(envbuf»
/* a low level function has aborted */
return 0;

getfieldl(ptr);
getfield2(ptr);
getfield3(ptr);
return ptr;

Here's one of the low level functions:

getsubfld2l(ptr)
char *ptr;
{

}

if (error)
longjmp(envbuf, -1);

Copyright (c) 1984 by Manx Software Systems, Inc. lib.79

SIN (M) Math Functions SIN

NAME
trigonometric functions:

sin, cos, tan, asin, acos, atan, atanlO

SYNOPSIS
doubl.e sin(x)
doubl.e X· ,

doubl.e cos(x)
doubl.e X· ,

doubl.e tan(x)
doubl.e X· ,

doubl.e cotan(x)
doubl.e X· ,

doubl.e asin(x)
double X· ,

doubl.e acos(x)
doubl.e X· ,

doubl.e atan(x)
doubl.e X· ,

doubl.e atan2(x,y)
doubl.e X· ,

DESCRIPTION
sin, cos, tan, and cotan return trigonometric functions of
radian arguments.

asin returns the arc sin in the range -pi/2 to pi/2.

acos returns the arc cosine in the range 0 to pi.

at an returns the arc tangent of x in the range -pi/2 to
pi/2.

atan2 returns the arc tangent of x/y in the range -pi to pi.

SEE ALSO
ERRORS

DIAGNOSTICS
If a trig function can't perform the computation, it returns
an arbitrary value and sets a code in the global integer
errno7 otherwise, it returns the computed number, without
modifying errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.SO

SIN (M) Math Functions SIN

A function will return the symbolic value EDOM if the
argument is invalid, and the value ERANGE if the function
value can't be computed. EDOM and ERANGE are defined in the
file errno.h.

The values returned by the trig functions when the
computation can't be performed are listed below. The
symbolic values are defined in math.h.

Ifunction I error f(x) I meaning

sin ERANGE 0.0 I abs(x) > XMAX
cos ERANGE 0.0 I abs(x) > XMAX
tan ERANGE 0.0 I abs(x) > XMAX
cotan ERANGE HUGE I O<x< XMIN
cotan ERANGE -HUGEl -XMIN <x <0
cotan ERANGE 0.0 I abs(x) >= XMAX
asin EDaM 0.0 I abs(x) > 1.0
acos EDaM 0.0 I abs(x) > 1.0
atan2 EDaM 0.0 I x = y = a

Copyright (c) 1984 by Manx Software Systems, Inc. lib.81

SINH (M) Math Functions SINH

NAME
sinh, cosh, tanh

SYNOPSIS
doub1e sinh(x)
doub1e X· •

doub1e cosh{x)
doub1e X· •

doub1e tanh(x)
doub1e X· •

DESCRIPTION
These functions compute the hyperbolic functions of their
arguments.

SEE ALSO
ERRORS

DIAGNOSTICS
If the absolute value of the argument to sinh or coshis to
greater than 348.6, the function sets the symbolic value
ERANGE in the global integer errno and returns a huge value.
This code is defined in the file errno.h.

If no error occurs, the function returns the computed value
without modifying errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.82

STRING (e) utility Functions STRING

NAME
strcat, strncat, strcmp, strncmp, strcpy, strlen, index,
rindex - string operations

SYNOPSIS
char *strcat(sl, s2}
char *sl, *s2;

char *strncat(sl, s2}
char *sl, *s2;

strcmp(sl, s2}
char *sl, *s2;

strncmp(sl, s2, n}
char *sl, s2:

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, 52, n}
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s:

char *rindex(s, c)
char *s:

DESCRIPTION
These functions operate on null-terminated strings, as
follows:

strcat appends a copy of string s2 to string sl. strncat
copies at most n characters. Both terminate the resulting
string with the null character (\0) and return a pointer to
the first character of the resulting string.

strcmp compares its two arguments and returns an integer
greater than, equal, or less than zero, according as sl is
lexicographically greater than, equal to, or less than s2.
strncmp makes the same comparison but looks at n characters
at most.

strcpy copies string s2 to sl stopping after the null
character has been moved. strncpy copies exactly n
characters: if s2 contains less than n characters, null
characters will be appended to the resulting string until n
characters have been moved; if s2 contains n or more
characters, only the first n will be moved, and the
resulting string will not be null terminated.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.83

STRING (C) utility Functions STRING

strlen returns the number of characters which occur in s up
to the first null character.

index returns a pointer to the first occurrance of the
character c in string s, or zero if c isn't in the string.

rindex returns a pointer to the last occurrance of the
character c in string s, or zero if c isn't in the string.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.84

TOUPPER (c) Utility Functions TOUPPER

NAME
toupper, tolower

SYNOPSIS
toupper(c)

tolower(c)

'include Ilctype .hll

_toupper(c)

_to lower (c)

DESCRIPTION
toupper converts a lower case character to upper case: if c
is a lower case character, toupper returns its upper case
equivalent as its value, otherwise c is returned.

tolower converts an upper case character to lowr case: if c
is an upper case character tolower returns its lower case
equivalent, otherwise c is returned.

toupper and tolower do not require the header file ctype.h.

_toupper and tolower are macro versions of toupper and
tolower, respectively. They are defined in ctype.h. The
difference-between the two sets of functions is that the
macro versions will sometimes translate non-alphabetic
characters, whereas the function versions don't.

Copyright (c) 1984 by Manx software Systems, Inc. lib.8S

UNGETC (c) standard I/O Functions UBGETC

NAME
ungetc - push a character back into input stream

SYNOPSIS
'include ··stdio.h"

ungetc(c. stream)
FILE *stream:

DESCRIPTION
ungetc pushes the character c back on an input stream. That
character will be returned by the next getc calIon that
stream. ungetc returns c as its value.

only one character of pushback is guaranteed. EOF cannot be
pushed back.

SEE ALSO
STANDARD I/O

DIAGNOSTICS
ungetc returns EOF (-1) if the character can't be pushed
back.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.86

UNLINK (C)

NAME
unlink

SYNOPSIS
unlink(name)
char *name:

DESCRIPTION
unlink erases a file.

I/O Function UNLIRK

name is a pointer to a character array containing the name
of the file to be erased.

unlink returns 0 if successful.

DIAGNOSTICS
unlink returns -1 if it couldn't erase the file and places a
code in the global integer errno describing the error.

Copyright (c) 1984 by Manx Software systems, Inc. lib.87

WRITE (e) unbuffered I/O Function WRITE

NAME
write

SYNOPSIS
write(fd,buf,bufsize)
int fd, bufsize: char *buf;

DESCRIPTION
write writes characters to a device or disk which has
previously opened by a call to open or create
characters are written to the device or file directly
the caller's buffer.

been
The

from

fd is the file descriptor which was returned to the caller
when the device or file was opened.

buf is a pointer to the buffer containing the characters to
be written.

bufsize is the number of characters to be written.

If the operation is successful, write returns as its value
the number of characters written.

SEE ALSO
UNBUFFERED r/o(o) , OPEN, CLOSE, READ

DIAGNOSTICS
If the operation is unsuccessful, write returns -1 and
places a code in the global integer errno.

Copyright (c) 1984 by Manx Software systems, Inc. lib.S8

CP/M Functions

This subchapter describes functions which are available only
to programs which are running on CP/M.

As with the subchapter describing the system indendent
functions, this subchapter is divided into sections, with each
section describing a group of related functions. A section is
divided into subsections; for a discussion of these subsections,
see the introduction to the system independent functions.

Following
functions, and
themselves.

this introduction is an index to
then detailed descriptions of the

Copyright (c) 1984 by Manx software Systems, Inc.

the CP/M
functions

lib.89

Index to CP/M Functions

functions section

bdos · BDOS
bdosh1 · BDOS
bios BIOS
biosh1 BIOS
exit EXIT
exit · EXIT

fCbinit FCBINIT
getusr USER
in PORT
out PORT
rstusr USER
rsvstk BREAK
sbrk BREAK
setusr USER

Copyright (c) 1984 by Manx Software Systems, Inc. lib.90

BOOS (C) CP/M System Calls

NAME
bdos, bdoshl - issue call to CP/M bdos

SDlOPSIS
bdos(bc, de)
int be, de:

bdoshl(bc, de)
int be, de:

DESCRIPTION

BOOS

These functions call the CP/M bdos with register pair BC set
to be and DE set to de.

bdos returns as its value the value which the CP/M bdos
returned in register A.

bdoshl returns as its value the value which the CP/M bdos
returned in register pair HL.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.91

BIOS (C) CP/M System Calls BIOS

NAME
bios, bioshl - issue call to CP/M bios

SYNOPSIS
bios(n, be, de)
int n, be, de:

bioshl(n, be, de)
int n, be, de:

DESCRIPTION
These functions call the n'th entry into the CP/M bios with
register pair BC set to be and DE set to de. For example,

bios(O)

is a cold boot.

bios returns as its value the value which the CP/ bios
returned in register A.

bioshl returns as its value the value which the CP/M bios
returned in register pair HL.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.92

BREAK Heap management functions BREAK

NAME
sbrk, rsvstk

SYNOPSIS
sbrk(size)

rsvstk{size)

DESCRIPTION
sbrk increments an internal pointer by size bytes, and
returns the value the pointer had on entry. The pointer
initially points to the base of the heap.

rsvstk sets the heap-stack boundary size bytes below the
current top of stack. The stack begins at the base of the
CPM bdos. Unless rsvstk is called, the heap-stack boundary
is 2048 bytes below the bdos base.

SEE ALSO
DYNAMIC BUFFER ALLOCATION (0), MALLOC

DIAGNOSTICS
sbrk returns -1 if the updated internal pointer would be
above the heap-stack boundary. In this case, the internal
pointer isn't modified.

Copyright (c) 1984 by Manx Software systems, Inc. lib.93

EXEC System calls EXEC

NAME
execl, execv, execlp, execvp -'execute a program

SYNOPSIS
execl(name, argO, argl, ••• , argD, O}
char *name, *argO, *argl, ••• , *argn;

execv(name, argYl
char *name, *argv[];

execlp(name, argO, argl, ••• , argD, O}
char *name, *argO, *argl, ••• *argn;

execvp(name, argv)
char *name, *argv[];

DESCRIPTION
The exec functions load another program from a disk file and
transfer control to it. The new program is loaded over the
currently executing program, so the exec functions never
return to the caller.

name specifies the file from which the program is to be
loaded. It has the same format as that of a file being
opened for i/o; see the I/O overview section for details. If
the extent for the filename isn't specified, it's assumed to
be that of an executable file; for example, on CPM it is
assumed to be II.COMII and on TRSDOS it's II/CMD".

The exec functions allow parameters to be passed to the
called program. They do this by building a command line from
the arguments passed to the exec function and then passing
the command line to the new program. For execl and execlp
the arguments are argl, argl, ... , argn. For execv and
execvp the arguments are argv[l], argv[2], ... , argv[n].
Note that argO and argv[o] aren't passed to the new program:
on Unix these strings are conventionally the name 'of the
program being executed.

There are really only two different exec functions: exec!
and execv. execlp and execvp simply call execl and execv,
respectively, and are provided for Unix compatibility.

execl and execlp are useful when a program knows exactly how
many arguments are to be passed to the new program. execv
and execvp are useful when the number of arguments to be
passed aren't known until the call is made.

Copyright (c) 1984 by Manx Software systems, Inc. lib.94

EXIT (C) System Calls EXIT

NAME
exit, exit

SYNOPSIS
exit(n)

exit(n)

DESCRIPTION
exit returns to the operating system, after closing any open
files or devices. Buffered data for files and devices opened
for standard i/o is written to disk, if necessary.

If n is non-zero, the file A:$$$.SUB is deleted, thus
preventing the continuation of the submit file, if any,
which initiated the program.

exit is the same as exit, except that devices and files
opened for standard i/o are never flushed.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.95

FCBINIT (c) utility Function

fcbinit - initialize file control block

SYNOPSIS
'include -io.h ll

fcbinit(name, fcbptr)
char *namei
struct fcb *fcbptri

DESCRIPTION

FCBINIT

The file control block pointed at by fcbptr is initialized
to zeroes and the file name pointed at by name is placed in
it.

If the file name specifies a user number, fcbinit returns it
as its value: otherwise it returns 255.

The file control block area pointed at by fcbptr must be at
least 36 bytes long.

The parameter name is a pointer to a character string which
is the name of the file. The format of the name is described
in the I/O overview section.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.96

PORT

NAME
in, out

SYNOPSIS
in(port)

I/O Functions

port access functions

out (port. val)

DESCRIPTION

PORT

in reads a character from port and returns it as its value.

out writes the character in the least significant byte of
val to port.

copyright (c) 1984 by Manx Software Systems, Inc. lib.97

USER (C) uti1ity Functions

NAME
getusr, setusr, rstusr

SYNOPSIS
getusr(}

setusr{user}

rstusr(}

DESCRIPTION
getusr returns the current user number as its value.

USER

setusr sets the user number to user. The user number which
was active on entry to setusr is saved for subsequent use by
rstusr.

rstusr resets the user number to the value which was saved
during the last call to setusr.

SEE ALSO
I/O (0)

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.98

SECTION VIII

Technical Information

Aztec C TECH INFO

Data Formats

1. character

Characters are 8 bit ASCII.

Strings are terminated by a NULL (x'OO').

For computation characters are promoted to integers with a
value range from 0 to 255.

2. pointer

Pointers are two bytes (16 bits) long. The internal
representation of the address FOAB stored in location 100
would be:

location

100
101

3. int, short

contents in hex format

AB
FO

Integers are two bytes long. A negative value is stored in
two's compliment format. A -2 stored at location 100 would
look like:

location

100
101

4. long

contents in hex format

FE
FF

L~ng integers occupy four bytes. Negative values are
in two's complement representation. Longs are
sequentially with the least significant byte stored
lowest memory addres and the most significant byte
highest memory address.

5. float and double

stored
stored
at the
at the

Floating point numbers are stored as 32 bits, and doubles
are stored as 64 bits. The first bit is a sign bit. The next 7
bits are the exponent in excess 64 notation. The base for the
exponent is 256. The remaining bytes are the fractional data
stored in byte normalized format. A zero is a special case and
is alIa bits.

Copyright (c) 1984 by Manx Software Systems, Inc. tech. 1

Aztec C TECH IRFO

The hexadecimal representation for a float with a value of
1.0 is:

41 01 00 00

A 255.0 would be:

41 FF 00 00

A 256.0 would be:

42 01 00 00

Copyright (c) 1984 by Manx software Systems, Inc. tech. 2

Aztec C TECH INFO

Floati ng Poi nt Su pport

Aztec C II supports floating point numbers of type float and
double. All arithmetic operations (add, subtract, multiply, and
divide) can be performed on floating point numbers, and
conversions can be made from floating point representation to
other other representations and vice versa.

The common conversions are performed automatically, as
specified in the K & R text. For example, automatic conversion
occurs when a variable of type float is assigned to a variable of
type int, or when a variable of type int is assigned to a
variable of type float, or when a float variable is added to an
int var iable.

Other conversions can be expicitly requested, either by
using a cast operator or by calling a function to perform the
conversion. For example, if a function expects to be passed a
value of type int, the (int) cast operator can be used to convert
a variable of type float to a value of type int, which is then
passed to the function. As another example, the function atof can
be called to convert a character string to a value of type
double.

The following sections provide more detailed information of
the floating point system. One section describes the internal
representation of floating point numbers and another describes
the handling of exceptional conditions by the floating point
system.

Floating Point Exceptions

When a C program requests that a floating point arithmetic
operation be performed, a call will be made to functions in the
floating point support software.

While performing the operation, these functions check for.
the occurence of the floating point exception conditions: namely,
overflow, underflow, and division by zero. On return to the
caller, the global integer flterr indicates whether an exception
has occurred.

flterr

o
I
2
3

value returned

computed value
+/- 2.ge-157
+/- 5.2e151
+/- 5.2e151

meaning

no error has occurred
underflow
overflow
division by zero

Copyright (c) 1984 by Manx Software Systems, Inc. tech. 3

Aztec C TECH INFO

If the value of this integer is zero, no error occurred, and
the value returned is the computed value of the operation.
Otherwise, an error has occurred, and the value returned is
arbitrary. The table lists the possible settings of flterr, and
for each setting, the associated value returned and the meaning.

When a floating point exception occurs, in addition to
returning an indicator in 'flterr', the floating point support
routines will either log an error message to the console or call
a user-specified function. The error message logged by the
support routines define the type of error that has occurred
(overflow, underflow, or division by zero) and the address, in
hex, of the instruction in the user's program which follows the
call to the support routines.

Following the error message or call to a user function, the
floating point support routines return to the user's program
which called the support routines.

To determine whether to log an error message itself or to
call a user's function, the support routines check the first
pointer in Sysvec, the global array of function pointers. If it
contains zero (which it will, unless the u~er's program
explicitly sets it), the support routines log a message:
otherwise, the support routines call the function pointed at by
this field.

A user's function for handling floating point exceptions can
be written in C. The function can be of any type, since the
support routines don't use the value returned by the user's
function. The function has two parameters: the first, which is of
type int, is a code identifying the type of exception which has
occurred. The value, 1, indicates underflow, 2 overflow, and 3
division by zero.

The second parameter passed to the user's exception-handling
routine is a pointer to the in~truction in the user's program
which follows the call instruction to the floating point support
routines. One way to use this parameter would be to declare it to
be of type int. The user's routine could then convert it to a
character string for printing in an error message.

The example below demonstrates how floating point errors can
be trapped and reported. In main, a pointer in the sysvec array
is set to the routine, usertrap. If a floating point exception
occurs during the execution of the program, this routine is
called with the arguments described above. The error handling
routine prints the appropriate error message, and returns to the
floating point support routines.

Copyright (c) 1984 by Manx Software Systems, Inc. tech. 4

Aztec C TECH IBFO

Internal Representation of Floating Point Numbers

Floats

A variable of type 'float' is repesented internally by a
sign flag, a base-256 exponent in excess-64 notation, and a
three-character, base-256 fraction. All variables are normalized.

#include "libc.lib"

main () {
sysvec[FLT_FAULT] = usertrap:

}

usertrap(errcode,addr)
int errcode,addr:
{

char buff[4]:

switch (errcode)
case '1':

}

printf("floating point underflow at %x\n",buff):
break:

case '2':
printf("floating point overflow at %x\n",buff):
break:

case '3':
printf(II floating point division by zero at %x\n", buff):
break:

default:
printf("invalid code %d passed to usertrap\n",errcode):
break:

The variable is stored in a sequence of four bytes. The most
significant bit of byte a contains the sign flag: a means it's
positive, 1 negative.

The remaining seven bits of byte a contain the excess-64
exponent.

Bytes 1,2, and 3 contain the three-character mantissa, with
the most significant character in byte 1 and the least in byte 3.
The 'decimal point' is to the left of the most significant byte.

As an example, the internal representation of decimal 1.0 is
41 01 00 00.

Copyright (c) 1984 by Manx Software Systems, Inc. tech. 5

Aztec C TECH INFO

Doubles

A floating point number of type double is represented
internally by a sign flag, a base-256 exponent in excess-64
notation, and a seven-character, base-256 fraction.

The variable is stored in a sequence of eight bytes. The
most significant bit of byte 0 contains the sign flag: 0 means
positive, 1 negative.

The excess-64 exponent is stored in the remaining seven bits
of byte O.

The seven-character, base-256 mantissa is stored in bytes 1
through 7, with the most significant character in byte 1, and the
least in byte 7. The "decimal point" is to the left of the most
significant character.

As an example, (256**3)*(1/256 + 2/256**2) is represented by
the following bytes: 43 01 02 00 00 00 00 00.

Floating point operations

For accuracy, floating point operations are performed using
mantissas which are 16 characters long. Before the value is
returned to the user, it is rounded.

Copyright (c) 1984 by Manx software Systems, Inc. tech. 6

Aztec C TECH INFO

Assembly Language Interface

A. Embedded Assembler SOurce

Assembly language statements can be embedded in a "c"
program between an tasm and an tendasm statement. The pound sign
(#) must stand in column one of the line, and the letters must be
lower case.

No assumptions should be made concerning the contents of
registers. The environment should be preserved and restored.
Caution should be used in writing code that depends on the
current code generating techniques of the compiler. There is no
guarantee that future releases will generate the same or similar
patterns.

In general, it is safest to contain assembly code in a
subroutine rather than embedding it in C source. This is the
recommended approach where feasible.

B. Assembler Subroutines

The calling conventions used by the Aztec C II compiler are
very simple. The arguments to a function are pushed onto the
stack in reverse order, i.e. the first argument is pushed last
and the last argument is pushed first.

The function is then called using the 8080 CALL instruction.
When the function returns, the arguments are removed from the
stack. A function is required to return with the arguments still
on the stack unless something is pushed back in place of them.

Registers BC, IX, and IY must be preserved by routines
called from C. The function's return value should be in HL and
the Z flag set according to the value in HL.

Copyright (c) 1984 by Manx Software Systems, Inc. tech. 7

Aztec C

Example:

; Copyright (C) 1981 Thomas Fenwick
public isupper_

isupper :

TECH IRFO

-lxi h,2 hI := stack pointer + 2 (arguement address)

true:

islower

false:

dad sp
mov a,m load argument into accumulator via hI
cpi 'A'
jc false
cpi 'Z'+l
jnc false

lxi h,l
mov a,l
ora a
ret

public islower

lxi h,2
dad sp
mov a,m
cpi la l

jc false
cpi 'z'+l
jc true

lxi h,Q
mov a,l
ora a
ret

Copyright (c) 1984 by Manx software systems, Inc. tech. 8

SECTION IX

Software Extensions

Aztec C EXTENSIONS

The Tiny Library

This library reduces the overhead in code size when a
program is linked with the standard library. This is
accomplished through some basic tradeoffs, as detailed below.

The linkage command when using the tiny library has this
form:

In module.o [program modules] t.lib c.lib

what makes it so small?

I/O redirection is not supported by the tiny library.
Furthermore, I/O is restricted to files and the console. NO
output to the printer is allowed. Thus, fopen can open only
files. The console must be accessed with the functions:
getchar, putchar, gets, puts, printf. Since stdin and stdout are
not supported (see below), agetc(stdin) and aputc(stdout) cannot
be used in place of getchar and putchar.

The tiny library does not allow the use of any low-level I/O
routines such as open and read. only buffered I/O is supported,
with the limitations noted.

A maximum of four files can be open simultaneously. One can
be open for writing, three for reading. A file cannot be open
for both reading and writing. Specifically, the tiny fopen
supports the "r" option for read only; any other option is
construed as a "w" for write only.

Two buffers are maintained for disk file I/O to all the open
files. One is used for writing and the other for reading. As
long as input requests are being made to only one file, the
buffer is refilled only when necessary. However, when reading
from a new file, the buffer is refilled. This can be inefficient
when two or three files are being read alternately, since the
buffer is refilled every time the input file changes.

The formatting performed by printf and related functions is
also restricted. The special format characters supported are %c
for a character, %d for a decimal integer, %x for hexadecimal,
and %s for a string. One exception to this rule is when sscanf
is called but printf is not. This will cause formatting to be
done the standard way.

An examination of the header file, "stdio.h", indicates some
of the internal changes that have been made. A source module to
be linked with the tiny library should be compiled with the -D
option to define the symbol, TINY, as in the command:

Copyright (c) 1984 by Manx Software Systems, Inc. ext.l

Aztec C EXTENSIOHS

cc -DTINY prog.c

This excludes the definitions of stdin, stdout, stderr,
getchar, putchar, feof, ferror, clearerr, fileno, and fflush.
The functions, getchar and putchar, are provided as library
functions rather than as macros. The remaining functions are not
available with the tiny library. Note that since stdin and
stdout do not exist with the tiny library, I/O to the console
cannot use agetc or aputc.

The following functions are not available when linking with
the tiny library:

clearerr
fdopen
feof
ferror
fflush
fileno
flush

freopen
fseek
ftell
scanf
setbuf
puterr
ungetc

Copyright (c) 1984 by Manx Software Systems, Inc. ext.2

Aztec C EXTENSIONS

A Fast ·Linl<er

This feature is provided to shorten the time required to
link a module for testing. The basic idea is that the module is
linked as an overlay of the program, r.com. For this reason,
there is no need at all to search an object file library.
Essentially, the standard library is incorporated into the
program, r.com.

Given a program consisting of a single module, a fast link
command would have this form:

In prog.o r.lib

or more conveniently,

In prog.o -lr

This creates a disk file called "prog.ovr". This is just an
overlay file of r.com, which loads the program into memory and
calls the main routine. The command to r.com has this form:

r [program name] [args]

If "prog" required one command line argument, the command to
run it would be:

The program name specifies which overlay file is to be
lbaded in memory. The arguments which follow are passed directly
to the program just as if it had been linked as usual.

This fast linkage is generally intended for testing
purposes. With it, changes to a test program can be made
quickly. When a module is fully debugged, it should be linked
with c.lib as is normally the case.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.3

Aztec C EXTENSIONS

MS and DRI Compatibility

The Aztec C II compiler can generate assembly code for the
M80 and RMAC assemblers from Microsoft and Digital Research,
respectively. In each case an option must be specified at
compile time.

The -M option will generate code for Microsoft's M80
assembler. In general, there are no special source level
restrictions in using M80. Labels should not begin with an
underscore, " Under the -M option, the compiler generates
code to ensure that statics and globals are initialized to zero,
so that it is not necessary to use a switch to do this with M80.

A module that is assembled with M80 must be linked using
L80. The run-time system necessary to perform this linkage is
available as a \PRO extension to the standard package. Included
in the \PRO extended software package are two files, Iibc.rel and
math.rel, which provide the same run-time support as c.Iib and
m.Iib. c.Iib and m.Iib cannot be linked with the Microsoft
linker.

Note that some early versions of LBO are not supported by
this interface.

The -R option produces code for the RMAC assembler by
Digital Research. This switch has no effect at the C source code
level. Modules assembled with RMAC must be linked with LINK-80.
The files, libc.rel and math.rel, are the standard libraries
which must be included in a linkage wi th LINK-80. They provide
the same run-time support as c.lib and m.Iib.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.4

Aztec C EXTENSIONS

Manx Overlay Support

In order to allow users to run programs which are larger
than the limited memory size of a microcomputer, Manx provides
overlay support. This feature allows a user to divide a
program into several segments. One of the segments, called the
root segment, is always in memory. The other segments, called
overlays, reside on disk and are only brought into memory when
requested by the root segment. There is only one area of
memory into which the overlays are loaded.

If an overlay is in the overlay area of memory when the
root requests that another be loaded, the newly specified
overlay segment overlays the first, that is, replaces it in
memory.

The Aztec linker allows overlays to be "nestedll~ that is,
an overlay at one level can call another overlay nested one
level deeper. However, an overlay cannot call an overlay which
is at the same level.

How to Make an overlay File

What is an Overlay?

An overlay is one or more sections of
executable code that run in the same area of
memory. The advantage of an overlay,
therefore, is that it allows the user to run
programs of unlimited size in a machine which
has a limited memory capacity.

How do I Call an Overlay From a program?

The following is the format for calling an overlay:

ovloader(overlay name,pl, p2, p3 ...)

The ovloader function's first parameter must be
the name of the overlay file. The parameters pI,
p2, p3 are passed directly to the overlay. The
overlay is loaded from a file whose name is
overlay name and whose extent is ".ovr".
ovloader returns as its value the value which was
returned by the overlay.

How Do I Make ~ Function an Overlay?

The function, ov1oader, loads the overlay and

Copyright (c) 1984 by Manx Software Systems, Inc. ext.5

Aztec C EXTENSIONS

then passes control to ovbgn, a function which is
linked with every overlay. ovbgn in turn calls
ovmain. "ovmain" must be the name of your
function which takes control when the overlay is
loaded. This function can then call any other

function which is in memory.

·So other than the naming of "ovmain", the
overlay does not have to know that it is an
overlay. "ovmain" executes and returns just like
any other function.

What Files are Created on the Disk?

• com

.ovr

.rsm

Sample Run:

The file which contains the root has the extent
of .com

There is one file for each overlay, the extent
of which is .ovr

There is a file containing the ielocatable symbol
table with the extent .rsm for the root and for
any overlay that invokes another overlay.

1) In +c 1020 +d aO -r myroot.o ovloader.o libc.lib math. lib

2) In mysubl.o myroot.rsm ovbgn.o libc.lib math. lib

3) In mysub2.0 myroot.rsm ovbgn.o libc.lib math. lib

In this example, there are three modules which comprise the
program, namely, "myroot.o", "mysubl.o" and Imysub2·.0". The
first step serves two purposes, to create the executable file,
"myroot.com", and to generate a ·file, "myroot.rsm".

This second file is called the relocatable symbol table. It
contains information about the contents of the root module which
is needed when an overlay is linked.

The +C and +D options are explained below.
specifies that the following module is a root.
for that module will be created.

The -R option
An II. r s m II f i 1 e

The module, "ovloader.o" is just the routine which loads the
overlay into memory.

The second step links the first overlay, "mysubl.o". The
".rsm" file for the root must be included in the linkage. The
module, "ovbgn.'o", is the startup routine which calls ovmain.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.6

Aztec C EXTENSIONS

step three performs the linkage of the second overlay in a
manner identical to the first.

Figure 1 shows a program, run as a single module, that can
be logically divided into three segments. Figure 2 shows the
same program run as an overlay. In figure 2, module 1 and module
2 occupy the same memory locations. A possible flow of control
would be for the base routine to call module 1, module 1 then
returns to the root and the root calls module 2, module 2 returns
to the root and the root calls module 1 again. Then module 1
returns to the root the root exits to the operating system.

Notice that all overlay segments must return to their caller
and that overlays at the same level cannot directly invoke each
other.

address

x'lOO' +-----------------------------+
I base module I

x'9FO' +-----------------------------+
I module 1 I

x'lC20' +-----------------------------+
I module 2 I
+-----------------------------+

Figure 1

A single binary image with 3 segments

+-----------------------------+ x'lOO'
I base Broot" module I
+-----------------------------+

x ' 9FO ' I I x ' 9FO '
+-----------------------------+ +-----------------------------+
I module 1 I I module 2 I
+-----------------------------+ +-----------------------------+

Figure 2

Layout of the program in Figure 1 as an Overlay

Programmer Information

The root loads an overlay by calling the MANX-supplied
function "ovloader", which must reside in the root segment. The
parameters to ovloader are a character string, giving the
name of the overlay to be loaded, followed by the parameters
which are to be passed to the overlay. ovloader is of the same
type as ovmain.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.7

Aztec C EXTENSIONS

When the overlay is loaded, control passes to the MANX
supplied function ovbgn, which must be linked with the
overlay. In turn, ovbgn transfers control to the function in the
overlay whose name is "ovmain". ovmain receives the arguments
passed to ovloader.

When ovmain completes its processing, it simply returns.
Control then passes back to the root segment, at the
instruction in the user's program following the one that called
ovloader. The value returned by ovloader is the value which
was returned by ovmain.

Overlays can be nested; that is, an overlay can call a
second overlay, provided that they are not at the same nesting
level. Also, an overlay can access any global functions and
variables which are defined in the calling segment.

Using Overlays

There are a few caveats for overlay usage. When the root
module is linked (with the -r option), the linker has to reserve
some of the memory used by the program for the overlay. This
memory which is set aside is where the overlay will be loaded at
run time.

There are two linker options which are relevant here. They
are +C and +D. These options will increase the code and data
areas of a program by a specified amount. Since these areas
actually comprise a single segment under CP\M, both these options
have the same effect.

When you link the root module, you will have to know how
much memory to reserve for the overlay, that is, you will have to
know how large the overlay is. This can be determined by linking
the overlay as in the following command:

In mysub.o ovbgn.o -1m -lc

Notice that this does not correctly link an overlay, since
the ".rsm" file from the root is missing. But the linker will
return a message giving the size of the overlay. Specifically,
it will return the size of the code, initialized and
uninitialized data, and the total of all three. Let's suppose
the linker message looks like this:

Base: 0100 Code: 24aO Data: 02c1 Udata: 0101 Total: 2862

In general, the total is the sum of the code, data and udata
values. This is the total amount of memory that will be needed
to load the overlay.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.8

Aztec C EXTENSIONS

For this example, the root, myroot.o, could be linked wi th
this command:

1n +c 24aO +d 3c2 -r myroot.o ov1oader.o -1m -1c

This will reserve an extra 24aO bytes for the code of the
overlay and 3c2 bytes for all the data, both initialized and
otherwise. Since these bytes are part of the same area of
memory, this linkage is equivalent to the following:

1n +d 2862 -r myroot.o ov1oader.o -1m -1c

In this case, all the memory was set aside with a single
option, +D. Notice that this is due to the fact that both code
and data are part of the same segment on the 8080 and related
microprocessors.

A Method

When the root is linked with the -r option, a ".rsm" file is
created on the disk. This file must be includ~d in the linkage
of each overlay called by the root. In the example above, this
file was left out when mysub.o was linked, because the ".rsm"
file is produced when the root is linked; and to link the root,
we needed to know how large the mysub.ovr overlay would be. This
means that we have to relink mysub.o with the ".rsm" file.

A more convenient method is to link the root first. The
". rsm " file produced is not affected by the +D or +C option. If
you can estimate the size of the overlay, specify it now. With
the II. rsmll, link the overlay:

1n mysub.o ovbgn.o root.rsm -1m -1c

If the linker returns with a total size greater than your
previous estimate, you can relink the root with the appropriate
value for the +D option. This method minimizes the number of
linkages you will have to run.

The root will usually call more than one overlay. In this
case, it necessary to reserve enough of memory for the largest
overlay. You can first link the root, with an estimate of this
largest size for the +D option. Then you can proceed to link
each of the overlays individually with the lI.rsm" file.

If one of the overlays should happen to turn out larger than
your initial estimate, the root can be relinked without relinking
every over lay.

Nested overlays

overlays can also be nested. Essentially, a module can load
into memory any overlay for which it is the root. This is best

Copyright (c) 1984 by Manx Software systems, Inc. ext.9

Aztec C EXTENSIONS

illustrated by an example. In the situation depicted below, the
root loads up ovlyl, which in turn loads up ovly2. At this
point, all three modules are in memory at the same. For this
reason, when the root is linked, enough memory has to be reserved
for both ovlyl and ovly2.

The following commands link the root and the two overlays:

In +d 4000 -r root.o ovloader.o -lc
In -r ovlyl.o ovbgn.o root.rsm -Ic
In ovly2.o ovbgn.o ovlyl.rsm -Ic

Here, it is-assumed that hex 4000 bytes are sufficient for
loading in both ovlyl and ovly2. If the combined totals of these
overlays is larger than this, it is necessary to relink the root.

Note that ovloader.o does not have to be included in the
linkage of ovlyl, since it is already linked in with the root.
Also note that the lI.rsm ll file included in the linkage of ovly2
is that generated by the linkage of ovlyl.

root.c:

ovlyl.c:

ovly2.c:

main ()
{

}

ovioader(-ovIyl". "in ovlyl"):
printf("just returned from ovlyl\n");

ovmain(str)
char *str:
{

}

printf("%s\n", str):
ovloader(lovly2", "in ovly2"):
printf(Ujust returned from ovly2\n-):

ovmain(str)
char *str:
{

printf(-%s\n", str):
}

Copyright (c) 1984 by Manx Software Systems, Inc. ext.IO

Aztec C EXTENSIONS

possible problems

A possible source of difficulty in using overlays
initialized data. In the following program module,
variable is initialized:

int i = 3:

function(l
{

return:
}

concerns
a global

The initialization of "i" is performed by the linker, rather
than at run time. In the same program, the following module is
allowed:

int i:

main {)
{

function () i
}

The global variables in each module refer to the same
integer, "i". At link time, this variable is set to the value 3.
Although this works when the two modules are linked together, a
problem arises when the first module is linked as an overlay:

In func.o ovbgn.o main.rsm -lc

From the ".rsm" file, the linker knows that "int i" has been
declared in main.o, the root. But it tries to initialize "i"
frbm the statement in the func.o module. This attempt fails
because the variable "i" is part of main.o, a module which is not
included in the linkage.

An attempt to initialize, in an overlay, a variable which
has been declared in the root will produce an error: "org out of
range II •

The simple solution is to change the statement, "int i = 3",
to the following:

int i:
i = 3:

This assignment will be performed at run time, so that the
linker does not try to perform an initialization.

Copyright (c) 1984 by Manx software Systems, Inc. ext.ll

Aztec C EXTENSIONS

Generating ROMabie Code

Anatomy of a program

A linked program can be visualized as having three major
components: the code, the initialized data and the uninitialized
data. Normally, a program will look like this in memory:

uninit'd data (above init'd)

init'd data (above code)

code (hex address 103)
base (hex address 100)

The linker has options for specifying each of the addresses
depicted. They are as follows:

-B
-c
-D
-u

base address
code segment
initialized data area
uninitialized data area

By default, uninitialized data is placed at the end of the
initialized data, and initialized data is placed at the end of
the code.

The prob1em with Initia1ized Data

Initialized data poses a problem when putting a program in
ROM, since data in ROM can be read but not altered. Data which
starts out in ROM must be moved into RAM, where it then can be
manipulated by the program. The program must look like this when
it is run:

Copyright (c) 1984 by Manx Software Systems, Inc. ext.12

Aztec C EXTENSIONS

(hex addr FFFF)

uninit'd data
RAM

init'd data (hex addr 8000)
....

moved to RAM

init'd data (after code)

ROM
code
base (hex address 0)

In the particular configuration shown above, the data is
placed at the available RAM beginning at hex address 8000. The
base is specified as the beginning of ROM, hex address O. These
values are given at link time, as in

In -b 0 -d 8000 program.o ROM. lib

When converted to hex format for burning into ROM, the
program looks like this:

ROM

The ROM Library

init'd data (above code)

code
base

What is needed is a routine to copy the initialized data
from ROM into RAM. This is provided as part of the startup
routine which is automatically linked in from the library,
ROM.lib. The startup routine will move the ini tialized data to
the address specified with the -D option, and clear the
uninitialized data area to zeroes (nulls). So it is not
necessary to initialize data to zero, since this is guaranteed
for uninitialized global data. Under certain conditions, data
might best be ini tialized by the program i tsel f, as wi th a loop
which sets an array to {I, 2, 3, .•. l.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.13

Aztec C EXTENSIONS

Leaving Data in ROM

If initialized data is "read only", that is, is never
changed by the program, then there is no reason why it cannot be
left in ROM. The following link command will set up this
situation:

In -b 0 -u 8000 ROM. lib

The initialized data defaults to being placed right after
the code, i.e, in ROM. The -u option to the linker specifies the
starting address of the uninitialized data area. The program
will look like this:

(hex addr FFFF)
RAM

uninit'd data (hex addr 8000)

initialized data
ROM

code
base (hex address 0)

Leaving Part of the Data in ROM

If some initialized data does not need to be changed but
other data does, it is possible to modify the assembly language
output of the compiler to separate the two types of data. The
goal here is to have the startup routine move into RAM only that
initialized data which needs to be altered at run time.

This is done by putting the read-only data in the same area
as the code of the program. The data in the code area will
remain in ROM, while the data in the data area will be moved into
RAM.

To force data to remain in the code segment, it is necessary
to strip out the "dseg" pseudo-op generated by the compiler for
each data definition.

This must not be done for data defined within a function:
the program will not run wi th data defini tions treated as
executable instructions.

Since only global data can be stripped of the dseg pseudo
op, it is usually a good idea to put all this "code area" data
into a single file by itself: this avoids the danger of stripping
dsegs within a procedure.

With initialized data "mixed" in this way, you will have to
specify values for the -B and -D options, so that the startup
routine will load the data area properly into RAM.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.l4

Aztec C EXTENSIONS

Why Two Libraries

The standard library, c.1ib, is not directly suited for
generating ROMable code. The changes which are needed in c.lib
have been incorporated into a separate library, ROM.1ib. This
library includes the startup routine which will move initialized
data into RAM. It does not support all the functions available
in the standard library. It contains no routines for memory
allocation and no i/o except for the function, sprintf. It does
contain the function, format, so that the user can write
functions for formatted i/o.

There is no initialized data in ROM.lib which must be moved
to RAM, as implied by the linkage example above. However, there
is initialized data in the floating point package in m.1ib which
must be moved by the startup routine in ROM. lib.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.15

Aztec C EXTENSIONS

Aztec Utility Programs

The following descriptions explain in detail the use of
special utility programs provided with the Aztec development
system. The format of each explanation is similar to those of
the library functions.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.16

CNM Aztec utility Program

NAME
cnm - display object file info

SYNOPSIS
cnm [-8] file [file •••]

DESCRIPTION

cnm displays the size and symbols of its object file arguments.
The files can be object modules created by AS, libraries of
object modules created by LN, and 'rsm' files created by LN
during the linking of an overlay root.

The -8 option tells cnm to just display the size information for
the files.

For example, the following displays the size and symbols for the
object module subl.o, the library c.lib, and the rsm file
root.rsm:

cnm subl.o c.lib root.rsm

By default, the information is sent to the display. It can be
redirected to a file or device in the normal way. For example,
the following three commands send information about subl.o to the
display, the file dispfile, and the printer, respectively:

cnm subl.o
cnm subl.o > dispfile
cnm >lst: subl.o

A filename can optionally specify multiple files, using the
"wildcard" characters ? and *. These have their standard CP/M
meanings: ? matches a single character: * matches zero or more
characters. For example

*.0
a'?'?lib

specifies all files with extent '.0'
specifies all files whose filename has three
characters, the first of which is 'a', and whose
extent is '.lib'

cnm displays information about an program's 'named' symbols: that
is, about the symbols whose first two characters are other than a
period followed by a digit. For example, the symbol quad is
named, so information about it would be displayed: the symbol
.0123 is unnamed, so information about it would not be displayed.

For each named symbol in a program, cnm displays its name, a code
specifying its type, and an associated value. The value displayed
depends on the type of the symbol.

A type code is a single character, and can be either upper or
lower case, specifying that the symbol is global or local to the

Copyright (c) 1984 by Manx Software Systems, Inc. ext.17

CNM Aztec uti1ity program

program, respectively. The types codes are:

a The symbol was defined using the assembler's EQUATE
directive. The value listed is the equated value of its
symbol.

The compiler doesn't generate symbols of this type.

t The symbol is in the code segment. The value is the offset
of the symbol within the code segment.

The compiler generates this type symbol for function nameSi
static functions are local to the function, and so have type
ti all other functions are global, that is, callable from
other programs, and hence have type T.

d The symbol is in the data segment. The value is the offset
of the symbol from the start of the data segment.

The compiler generates symbols of this type for initialized
variables which are declared outside any function. Static
variables are local to the program and so have type di all
other variables are global, that is, acces~able from other
programs, and hence have type D.

C The symbol is the name of a common block. The value is the
size of the common block, in bytes. C is in upper case
because common block names are always global.

The compiler doesn't generate this type symbol.

r The symbol is defined within a common block. The value is
the offset of the symbol from the beginning of the common
block.

The compiler doesn't generate this type symbol.

u The symbol is used but not defined within the program. The
value has no meaning.

The compiler generates U symbols for functions that are
called but not defined within the program, for variables
that are declared to be extern and which are actually used
within the program, and for unitialized, global
dimensionless arrays. variables which are declared to be
extern but which are- not used within the program don't make
it to the object file.

The compiler generates u symbols for variables which are
used but not defined within the program.

b The symbol is in the uninitalized data segment. The value is
the space reserved for the symbol.

The compiler generates b symbols for static, uninitialized

Copyright (c) 1984 by Manx Software Systems, Inc. ext.IS

Aztec utility program

variables which are declared outside all functions and which
aren't dimensionless arrays.

The assembler generates b symbols for symbols defined using
the bss assembler directive. If the symbol also appears in
the public directive, it's type is B instead of b.

G The symbol is in the uninitialized data segment. The value
is the space reserved for the symbol.

The compiler generates G symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren't dimensionless arrays.

The assembler generates G symbols for variables declared
using the global directive which have a non-zero size.

Copyright (c) 1984 by Manx Software Systems, Inc. ext. 19

SQZ Aztec utility Program SQZ

sqz - squeeze an object library

SYNOPSIS
sqz file [outfile]

DESCRIPTION

sqz compresses an object library which was created by LIBUTIL.

The first parameter is the name of the file containing the
library to be compressed. The second parameter, which is
optional, is the name of the file to which the compressed library
will be written.

If the output file is specified, the original file isn't modified
or erased.

If the output file isn't specified, sqz creates the compressed
library in a file having a temporary name, erases the original
library file, and renames the output file to the name of the
original file. The temporary name is derived from the input
library name by changing it's extent to I .sqzl.

If the output file isn't specified and an error occurs during the
creation of the compressed library, the original library isn't
erased or modified.

Copyright (c) 1984 by Manx Software Systems, Inc. ext.20

SECTION X

Style and Debugging

Aztec C STYLE

Style

This section was written for the programmer who is new to
the C language, to communicate the special character of C and the
programming practices for which it is best suited. This material
will ease the new user's entry into C. It gives meaning to the
peculiarities of C syntax, in order to avoid the errors which
will otherwise disappear only with experience.

what·s in it for me?

These are the benefits to be reaped by following the
methods presented here:

o reduced debugging times

o increased program efficiency

o reduced software maintenance burden

The aim of the responsible programmer is to write
straightforward code, which makes his programs more accessible to
others. This section on style is meant to point out which
programming habits are conducive to successful C programs and
which are especially prone to cause trouble.

The many advantages of C can be abused. Since C is a terse,
subtle language, it is easy to write code which is unclear. This
is contrary to the "philosophy" of C and other structured
programming languages, according to which the structure of a
program should be clearly defined and easily recognizable.

keep it simple

There are several elements of programming style which make C
easier to use. One of these is simplicity. Simplicity means
keep it simple. You should be able to see exactly what your code
will do, so that when it doesn't you can figure out why.

A little suspicion can also be useful. The particular
"problem areas" which are discussed later in this section are
points to check when code "looks right" but does not work. A
small omission can cause many errors.

learn the C idioms

C becomes more valuable and more flexible with time.
Obviously, elementary problems with syntax will disappear. But

Copyright (c) 1984 by Manx Software systems, Inc. style.l

Aztec C STYLE

more importantly, C can be described as lIidiomatic. 1I This means
that certain expressions become part of a standard vocabulary
used over and over. For example,

while «c = getchar(» 1= EOF)

is readily recognized and written by any C programmer. This is
often used as the beginning of a loop which gets a character at a
time from a source of input. Moreover, the inside set of
parentheses, often omitted by a new C programmer, is rarely
forgotten after this construct has been used a few times.

be flexible in using the library

The standard library contains a choice of functions for
performing the same task. Certain combinations offer advantages,
so that they are used routinely. For instance, the standard
library contains a function, scanf, which can be used to input
data of a given format. In this example, the function "scans"
input for a floating point number:

scanf(lI%f", &flt_num)~

There are several disadvantages to this function. An
important debit is that it requires a lot of code. Also, it is
not always clear how this function handles certain strings of
input. Much time could be spent researching the behavior of this
function. However, the equivalent to the above is done by the
following:

This requires considerably less code, and is somewhat more
straightforward. gets puts a line of input into the buffer,
"inp buf,1I and atof converts it to a floating point value. There
is no question about what the input function is IIlooking for ll and
what it should find.

Furthermore, there is greater flexibility in the second
method of getting input. For instance, if the user of the
program could enter either a special command (lle ll for exi t) or a
floating point value, the following is possible:

gets(inp buf);
if (inp buf[O] == lei)

exIt (0);
flt_num = atof(inp_buf);

Here, the first character of input is checked for an lIe ll ,
before the input is converted to a float.

The relative length of the library description of the scanf
function is an indication of the problems that can arise with
that and related functions.

Copyright (c) 1984 by Manx Software Systems, Inc. style.2

Aztec C' STYLE

write readible code

Readibility can be greatly enhanced by adhering to what
common sense dictates. For instance, most lines can easily
accommodate only one statement. Although the compiler will
accept statements which are packed together indiscriminately, the
logic behind the code will be lost. Therefore, it makes sense to
write no more than one statement per line.

In a similar vein, it is desirable to be generous with
whitespace. A blank space should separate the arithmetic and
assignment operators from other symbols, such as variable names.
And when parentheses are nested, dividing them with spaces-is not
being too prudent. For example,

if ((fp=fopen (II filename II , II r II) ==NULL))

is not the same as

if ((fp = fopen("filename ll
, "r")) == NULL)

The first line contains a misplaced pare-nthesis which
changes the meaning of the statement entirely. (A file is opened
but the file pointer will be null.) If the statement was
expanded, as in the second line, the problem could be easily
spotted, if not avoided altogther.

use straightforward logical expressions

Conditionals are apt to grow into long expressions. They
should be kept short. Conditionals which extend into the next
line should be divided so that the logic of the statement can be
visualized at a glance. Another solution might be to reconsider
the logic of the code itself.

learn the rules for expression evaluation

Keep in mind that the evaluation of an expression depends
upon the order in which the operators are evaluated. This is
determined from their relative precedence.

Item 7 in the list of "things to watch out for ll
, below,

gives an example of what may happen when the evaluation of a
boolean expression stops "in the middle". The rule in C is that
a boolean will be evaluated only until the value of the
expression can be determined.

Item 8 gives a well known example of an "undefined"
expression, one whose value is not strictly determined.

In general, if an expression depends upon the order in which

Copyright (c) 1984 by Manx Software systems, Inc. style.3

Aztec C STYLE

it is evaluated, the results may be dubious. Though the result
may be strictly defined, you must be certain you know what that
definition is.

a matter of taste

There are several popular styles of indentation and
placement of the braces enclosing compound statements. Whichever
format you adopt, it is important to be consistent. Indentation
is the accepted way of conveying the intended nesting of program
statements to other programmers. However, the compiler
understands only braces. Making them as visible as possible
will help in tracking down nesting errors later.

However much time is devoted to writing readible code, C is
low-level enough to permit some very peculiar expressions.

/* It is important to insert comments on a regular basis! */

comments are especially useful as brief introductions to
function definition&

In general, moderate observance of these suggestions will
lessen the number of "tricks" C will play on you-- even after you
have mastered its syntax.

Copyright (c) 1984 by Manx Software Systems, Inc. sty1e.4

Aztec C STYLE

Structured Programming

IIStructured programming ll is an attempt to encourage
programming characterized by method and clarity. It sterns from
the theory that any programming task can be broken into simpler
components. The three basic parts are statements, loops, and
conditionals. In C, these parts are, respectively, anything
enclosed by braces or ending wi th a semicolon: for, while and do
whi1e: if-else.

modu1arity and block structure

Central to structured programming is the concept of
modularity. In one sense, any source file compiled by itself is
a module. However, the term is used here with a more specific
meaning. In this context, modularity refers to the independence
or isolation of one routine from another. For example, a routine
such as maine) can call a function to do a given task even though
it does not know how the task is accomplished or what
intermediate values are used to reach the final re~ult.

Sections of a program set aside by braces are called
IIblocksli. The "privacy" of CiS block structure ensures that the
variables of each block are not inadvertently shared by other
blocks. Any left brace ({) signals the beginning of a block,
such as the body of a function or a for loop. Since each block
can have its own set of variables, a left brace marks an
opportunity to declare a temporary variable.

A function in C is a special block because it is called and
is passed control of execution. A function is called, executes
and returns. Essentially, a C program is just such a routine,
namely, main.

A function call represents a task to be accomplished.
program statements which might otherwise appear as several
obscure lines can be set aside in a function which satisfies a
desired purpose. For instance, getchar is used to get a single
character from standard input.

When a section of code must be modified, it is simpler to
replace a single modular block than it is to delete a section of
an unstructured program whose boundaries may be unclear at best.
In general, the more precisely a block of program is defined, the
more easily it can be changed.

Copyright (c) 1984 by Manx Software Systems, Inc. sty1e.5

Aztec C STYLE

Top-down Programming

"Top-down" programming is one method that takes advantage of
structured programming features like those discussed above. It is
a method of designing, writing, and testing a program from the
most general function (i.e., (main()) to the most specific
functions (such as getchar ()) .

All C programs begin with a function called main(). main()
can be thought of as a supervisor or manager which calls upon
other functions to perform specific tasks, doing little of the
work itself. If the overall goal of the program can be
considered in four parts (for instance, input, processing, error
checking and output), then main() should call at least four other
functions.

step one

The first step in the design of a program is to identify
what is to be done and how it can be accomplished in a
"programmable" way. The main routine should be greatly
simplified. It needs to call a function to perform the crucial
steps in the program. For example, it may call a function,
init(), which takes care of all necessary startup
initializations. At this point, the programmer does not even
need to be certain of all the initializations that will take
place in ini t().

All functions consist of three parts: a parameter list,
body, and return value. The design of a function must focus on
each of these three elements.

During this first stage of design, each function can be
considered a black box. We are concerned only with what goes in
and what comes out, not with what goes on inside.

Do not allow yourself to be distracted by the details of the
implementation at this point. Flowcharts, pseudocode, decision
tables and the like are useful at this stage of the
implementation.

A detailed list of the data which is passed back and forth
between functions is important and should not be neglected. The
interface between functions is crucial.

Although all functions are written with a purpose in mind,
it is easy to unwittingly merge two tasks into one. Sometimes,
this may be done in the interests of producing a compact and
efficient program function. However, the usual result is a
bulky, unmanageable function. If a function grows very large or
if its logic becomes difficult to comprehend, it should be

Copyright (c) 1984 by M~nx Software Systems, Inc. style.6

Aztec C

reduced by introducing additional function calls.

step two

There comes a time when a program must pass from the design
stage into the coding stage. You may find the top-down approach
to coding too restrictive. According to this scheme, the
smallest and most specific functions would be coded last. It is
our nature to tackle the most daunting problems first, which
usually means coding the low-level functions.

Whereas the top-down approach is the preferred method for
designing software, the bottom-up approach is often the most
practical method for writing software. Given a good design,
either method of implementation should produce equally good
results.

One asset of top-down writing is the ability to provide
immediate tests on upper level routines. Unresolved function
calls can be satisfied by IIdummy" functions which return a range
of test values. When new functions are added, they can operate
in an environment that has already been tested.

C functions are most effective when they are as mutually
independent as is possible. This independence is encouraged by
the fact that there is normally only one way into and one way out
of a function: by calling it with specific arguments and
returning a meaningful value. Any function can be modified or
replaced so long as its entry and exit points are consistent with
the calling function.

Copyright (c) 1984 by Manx software Systems, Inc. style.7

Aztec C STYLE

Defensive Programming

"Defensive programming" obeys the same edict as defensive
driving: trust no one to do what you expect. There are two
sides to this rule of thumb. Defend against both the possibility
of bad data or misuse of the program by the user, and the
possibility of bad data generated by bad code.

Pointers, for example, are a prime sour~e of variables gone
astray. Even though the "theory" of pointers may be well
understood, using them in new ways (or for the first time)
requires careful consideration at each step. Pointers present
the fewest problems when they appear in familiar settings.

faced with the unknown

When trying something new, first write a few test programs
to make sure the syntax you are using is correct. For example,
consider a buffer, str buf, filled with null-terminated strings.
Suppose we want to print the string which begins at offset begin
in the buffer. Is this the way to do it?

printf("%s", str_buf[begin]):

A little investigation shows that str buf[begin] is a
character, not a pointer to a string, which 1s what is called
for. The correct statement is

printf("%s", str_buf + begin):

This kind of error may not be obvious when you first see it.
There are other topics which can be troublesome at first
exposure. The promotion of data types within expressions is an
example. Even if you are sure how a new construct behaves, it
never hurts to doublecheck with a test program.

Certain programming habits will ease the bite of syntax.
Foremost among these is simplicity of style. Top-down
programming is aimed at producing brief and consequently simple
functions. This simplicity should not disappear when the design
is coded.

Code should appear as "idiomatic" as possible. pointers can
again provide an example: it is a fact of C syntax that arrays
and pointers are one and the same. That is,

array[offset]

is the same as

*(array + offset)

Copyright (c) 1984 by M"anx software Systems, Inc. style.S.

Aztec C STYLE

The only difference is that an array name is not an lvalue;
it is fixed. But mixing the two ways of referencing an object
can cause confusion, such as in the last example. Choosing a
certain idiom, which is known to behave a certain way, can help
avoid many errors in usage.

when bugs strike

The assumption must be that you will have to return to the
source code to make changes, probably due to what is called a
bug. Bugs are characterized by their persistence and their
tendency to mUltiply rapidly.

Errors can occur at either compile-time or run-time.
Compile-time errors are somewhat easier to resolve since they are
usually errors in syntax which the compiler will point out.

from the compiler

If the compiler does pick up an error in the source code, it
will send an error code to the screen and try to· specify where
the error occurred. There are several peculiarities about error
reporting which should be brought up right away.

The most noticeable of these peculiarities is the number of
spurious errors which the compiler may report. This interval of
inconsistency is referred to as the compiler's recovery. The
safest way to deal with an unusually long list of errors is to
correct the first error and then recompile before proceeding.

The compiler will specify where it "noticed" something was
wrong. This does not necessarily indicate where you must make a
change in the code. The error number is a more accurate clue,
since it shows what the compiler was looking for when the error
occurred.

if this ever happens to you

A common example of this is error 69: "missing semicolon."
This error code will be put out if the compiler is expecting a
semicolon when it finds some other character. Since this error
most often occurs at the end of a line, it may not be reported
until the first character of the following line-- recall that
whitespace, such as a newline character, is ignored.

Such an error can be especially treacherous in certain
situations. For example, a missing semicolon at the end of a
linclude 'd file may be reported when the compiler returns to read
input in the original file.

In general, it is helpful to look at a syntax error from the

Copyright (c) 1984 by Manx Software Systems, Inc. style.9

Aztec C

compiler's point of view.

Consider this error:

struct structag
char c:
int i:

}

int j:

STYLE

This should generate an error 16: "data type conflict". The
arrow in the error message should show that the error was
detected right after the "int" in the declaration of j. This
means that the error has to do with something before that line,
since there is nothing illegal about the int keyword.

By inspection, we may see that the semicolon is missing from
the preceding line. If this fact escapes our notice, we still
know that error 16 means this: the compiler found a declaration
of the form

[data type] [data type] [symbol name]

where the two data types were incompatible. So while short int
is a good data type, double int is not. A small intuitive leap
leads us to assume that the compiler has read our source as a
kind of "struct int" declaration: struct is the only keyword
preceding the int which could have caused this error. Since the
compiler is reading the two declarations as a single statement,
we must be missing a delimiter.

run-time errors

It takes a bit more ingenuity to locate errors which occur
at run-time. In numerical calculations, only the most anomalous
results will draw attention to themselves. other bugs will
generate output which will appear to have come from an entirely
different program.

A bug is most useful when it is repeatable. Bugs which show
up only "sometimes" are merely vexing. They can be caused by a
corrupted disk file or a bad command from the user.

When an error can be consistently produced, its source can
be more easily located. The nature of an error is a good clue as
to its source. Much of your time and sanity will be preserved by
setting aside a few minutes to reflect upon the problem.

Which modules are involved in the computation or process?
Many possibilities can be eliminated from the start, such as
pieces of code which are unrelated to the error.

The first goal is to determine, from a number of

Copyright (c) 1984 by Manx Software Systems, Inc. style.lO

Aztec C STYLE

possibilities, which module might be the source of the bug.

checking input data

Input to the program can be checked at a low cost. Error
checking of this sort should be included on a "routine" basis.
For instance, "if «fp=fopen(lfilel,lr"))==NULL)" should be
reflex when a file is opened. Any useful error handling can
follow in the body of the if.

It is easy to check your data when you first get your hands
on it. If an error occurs after that, you have a bug in your
program.

printf it

It is useful to know where the data goes awry. One brute
force way of tracking down the bug is to insert printf statements
wherever the data is referenced. When an unexpected value comes
up, a single module can be chosen for further investigation.

The printf search will be most effective when done with more
refinement. Choose a suspect module. There are only two keys
points to check: the entry and return of the function. printf
the data in question just as soon as the function is entered. If
the values are already incorrect, then you will want to make sure
the correct data was passed in the function call.

I f an incorrect value is returned, then the search is
confined to the guilty function. Even if the function returns
a good value, you may want to make sure it is handled correctly
by the calling function.

If everything seems to be working, jump to the next tricky
module and perform another check. When you find a bad result,
you will still have to backtrack to discover precisely where the
data was spoiled.

function ca11s

Be aware that data can be garbled in a funtion call.
Function parameters must be declared when they are not two byte
integers. For instance, if a function is called:

fseek(fp, 0, 0);

in order to "seek" to the beginning of a file, but the function
is defined this way:

fseek(fp, offset, origin)
FILE *fp;
long offset;

Copyright (c) 1984 by Manx Software Systems, Inc. sty1e.11

Aztec C STYLE

int origin;

there will be unfortunate consequences.

The second parameter is expected to be a long integer (four
bytes), but what is being passed is a short integer (two bytes).
In a function call, the arguments are just being pushed onto the
stack; when the function is entered, they are pulled off again.
In the example, two bytes are being pushed on, but four bytes
(wha tever four bytes are t_here) are be i 1'19 pu lled of f .

The solution is just to make the second parameter a long,
with a suffi~ (OL) or by the cast operator (as in (long)i).

A similar problem occurs when a non-integer return value is
not declared in the calling function. For example, if sqrt is
being called, it must be declared as returning a double:

double sqrt();

This method of debugging demonstrates the usefulness of
having a solid design before a function is coded. If you know
what should be going into a function and what should be coming
out, the process of checking that data is made much simpler.

found it

When the guilty function is isolated, the difficulty of
finding the bug is proportional to the simplicity of the code.
However, the search can continue in a similar way. You should
have a good notion of the purpose of each block, such as a loop.
By inserting a printf in a loop, you can observe the effect of
each pass on the data.

printf' s can also point out which blocks are actually being
executed. "Falling through" a test, such as an if or a switch,
can be a subtle source of problems. Conditionals should not
leave cases untested. An else, or a default in a switch, can
rescue the code from unexpected input.

And if you are uncertain how a piece of code will work, it
is usually worthwhile to set up small test programs and observe
what happens. This is instructional and may reveal a bug or two.

Copyright (c) 1984 by Manx Software Systems, Inc. style.l2

Aztec C STYLE

Things to Watch lOut for

Some errors arise again and again. Not all of them go away
with experience. The following list will give you an idea of the
kinds of things that can go wrong.

1. missing semicolon or brace

The compiler will tell you when a missing semicolon or brace
has introduced bad syntax into the code. However, often such an
error will affect only the logical structure of the program: the
code may compile and even execute. When this error is not
revealed by inspection, it is usually brought out by a test
printf which is executed too often or not enough. See compiler
error 69.

2. assignment (=) vs comparison (==)

Since variables are assigned values more often than they are
tested for equality, the former operator was given the single
keystroke: =. Notice that all the comparison tests with equality
are two characters: <=, >= and --.

3. misplaced semicolon

When typing in a program, keep in mind that all source lines
do not automatically end with a semicolon. Control lines are
especially susceptible to an unwanted semicolon:

for (i=Oi i<lOOi i++)i
printf("%d",i)i

This example prints the single number 100.

4. division (I) vs escape sequence (\)

C definitely distinguishes between these characters. The
division sign resides below the question mark on a standard
consolei the backslash is generally harder to find.

5. character constant (I) vs character string (-)

Character constants are actually integers equal to the ASCII
values of the respective character. A character string is a
series of characters terminated by a null character (\0). The
appropriate delimiter is the single quote and double quote,
respectively.

Copyright (c) 1984 by Manx Software systems, Inc. style.I3

Aztec C STYLE

6. uninitialized variable

At some point, all variables must be given values before
they are used. The compiler will set global and static
variables to zero, but automatic variables are guaranteed to
contain garbage every time they are created.

7. evaluation of expressions

For most operations in C, the order of evaluation is rigidly
defined. For example, the result of the following example is 8.
Notice that evaluation does not quite obey liMy Dear Aunt Sally: II
operators of equal precedence are evaluated left-to-right or
right-to-left, as they are defined.

int a = 2, b = 3, c = 4,
d = a + b / a * roe '-,

1* is evaluated */ I

d = a + ((b / a) * c) :

Consider this example:

if ((c = 0) II (c = 1)
printf("%d", c):

d· ,

"1" will be printed: since the first half of the conditional
evaluates to zero, the second half must be also evaluated. But
in this example:

if ((c = 0) && (c = 1)) .
I

printf("%d", c):

a "0" is printed. Since the first half evaluates to zero, the
value of the conditional must be zero, or false, and evaluation
stops. This is a property of the logical operators.

8. undefined order of evaluation

unfortunately, not all operators were given a complete set
of instructions as to how they should be evaluated. A good
example is the increment (or decrement) operator. For instance,
the following is undefined:

i = ++i + --i/++i - i++:

How such an expression is evaluated
implementation is called a "side effect."
effects are to be avoided.

by a particular
In general, side

Copyright (c) 1984 by Manx Software Systems, Inc. style.14

Aztec C STYLE

9. evaluation of boolean expressions

Ands, ors and nots invite the programmer to write long
conditionals whose very purpose is lost in the code. Booleans
should be brief and to the point. Also, the bitwise logical
operators must be fully parenthesized. The table on page []
shows their precedence in relation to other operators.

Here is an extreme example of how a lengthy boolean can be
reduced:

if «c = getchar(» 1= EOF && c >= la l && c <= IZI &&
(c = getchar(» >= III && c <= 19 1)

printf("good input\n");

if «c = getchar(» 1= EOF)
if (c >= la l && c <= IZI)

if «c = getchar(» >= 10 1 && c <= 19 1)
printf("good input\n");

10. badly formed comments

The theory of comment syntax is simply that everything
occurring between a left /* and a right */ is ignored by the
compiler. Non~theless, a missing */ should not be overlooked as
a possible error.

Note that comments cannot be nested, that is

/* /* this will cause an error */ */

And this could happen to you too:

/* the rest of this file is ignored until another comment /*

11. nesting error

Remember that nesting is d'etermined by braces and not
by indentations in the text of the source. Nested if statements
merit particular care since they are often paired with an else.

12. usage of else

Every else must pair up with an if. When an else has
inexplicably remained unpaired, the cause is often related to the
first error in this list.

13. falling through the cases in a switch

To maintain the most control over the cases in a switch
statement, it is advisable to end each case with a break,

Copyright (c) 1984 by Manx Software Systems, Inc. style.lS

Aztec C ! STYLE

including the last case in the switch.

14. strange loops

The behavior of loops can be explored by inserting printf
statements in the body of the loop. Obviously, this will
indicate if the loop has even been entered at all in course of a
run. A counter will show just how many times the loop was
executed; a small slip-up will cause a loop to be run through
once too often or seldom. The condition for leaving the loop
should be doublechecked for accuracy.

15. use of strings

All strings must be terminated by a null character in
memory. Thus, the string, "hello", will occupy a six-element
array; the sixth element is 1\0 1

• This convention is essential
when passing a string to a standard library function. The
compiler will append the null character to string constants
automatically.

16. pointer vs object of a pointer

The greatest difficulty in using pointers is being sure of
what is needed and what is being used. Functions which take a
pointer argument require an address in memory. The best way to
ensure that the correct value is being passed is to keep track of
what is being pointed to by which pointer.

17. array subscripting

The first element in a C array has a subscript of zero. The
array name without a subscript is actually a pointer to this
element. Obviously, many problems can develop from an incorrect
subscript. The most damaging can be subscripting out of bounds,
since this will access memory aboye the array and overwrite any
data there. If array elements or data stored with arrays are
being lost, this error is a good candidate.

18. function interface

During the design stage, the components of a program should
be associated with functions. It is important that the data
which is passed among or shared by these functions be explicitly
defined in the preliminary design of the program. This will
greatly facilitate the coding of the program since the interface
between functions must be precise in several respects.

First of all, if the parameters of a function are
established, a call can be made without the reservation that it

Copyright (c) 1984 by Manx Software Systems, Inc. style.16

Aztec C STYLE

will be changed later. There is less chance that the arguments
will be of the wrong type or specified in the wrong order.

A function is given only a private copy of the variables it
is passed. This is a good reason to decide while designing the
program how functions should access the data they require. You
will be able to detail the arguments to be passed in a function
call, the global data which the function will alter, the value
which the function will return and what declarations will be
appropriate-- all without concern for how the function will be
coded.

Argument declarations should be a fairly simple matter once
these things are known. Note that this declaration list must
stand before the left brace of the function body.

The type of the function is the same as the type of the
value it returns. Functions must be declared just like any
variable. And just like variables, functions will default to
type int, that is, the compiler will assume that a function
returns an integer if you do not tell it otherwise with a
declaration. Thus if function f calls function g which returns a
variable of type double, the following declaration is needed:

function f ()
{

double g(), bigfloat;

}
g(bigfloat)i

g(arg) double
double
{

return(arg);
}

19. be sure of what a function returns

You will probably know very well what is returned by a
function you have written yourself. But care should be taken
when using functions coded by someone else. This is especially
true of the standard library functions. Most of the supplied
library functions will return an int or a char pointer where you
might expect a char. For instance, getchar() returns an int, not
a char. The functions supplied by Manx adhere to the UNIX model
in all but a few cases.

Of course, the above applies to a function's arguments as
well.

20. shared data

Variables that are declared globally can be accessed by all

Copyright (c) 1984 by Manx Software Systems, Inc. style.17

Aztec C STYLE

functions in the file. This is not a very safe way to pass data
to functions since once a global variable is altered, there is no
returning it to its former state without an elaborate method of
saving data. Moreover, global data must be carefully managed; a
function may process the wrong variable and consequently inhibit
any other function which depends on that data.

Since C provides for and even encourages private data, this
definitely should not be a common bug.

Copyright (c) 1984 by Manx Software Systems, Inc. style.I8

SECTION XI

ERROR MESSAGES

Aztec C

COMPILER ERROR CODES

No. Interpretation

1: bad digit in octal constant
2: string space exhausted
3: unterminated string
4: internal error
5: illegal type for function
6: inappropriate arguments
7: bad declaration syntax
8: syntax error in typecast
9: array dimension must be constant

10: array size must be positive integer
11: data type too complex
12: illegal pointer reference
13: unimplemented type
14: internal
15: internal
16: data type conflict
17: internal
18: data type conflict
19: obsolete
20: structure redeclaration
21: missing}
22: syntax error in structure declaration
23: obsolete
24: need right parenthesis or comma in arg list
25: structure member name expected here
26: must be structure/union member
27: illegal typecast
28: incompatible structures
29: illegal use of structure
30: missing: in ? conditional expression
31: call of non-function
32: illegal pointer calculation.
33: illegal type
34: undefined symbol
35: typedef not allowed here
36: no more expression space
37: invalid expression for unary operator
38: no auto. aggregate initialization allowed
39: obsolete
40: internal
41: initializer not a constant
42: too many initializers
43: initialization of undefined structure
44: obsolete
45: bad declaration syntax
46: missing closing brace
47: open failure on include file
48: illegal symbol name

Copyright (c) 1984 by Manx Software Systems, Inc.

CC ERRORS

err.1

Aztec C

49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:

multiply defined symbol
missing bracket
lvalue required
obsolete
mUltiply defined label
too many labels
missing quote
missing apostrophe
line too long
illegal # encountered
macro too long
obsolete
reference of member of undefined structure
function body must be compound statement
undefined label
inappropriate arguments
illegal argument name
expected comma
invalid else
syntax error
missing semicolon
goto needs a label
statement syntax error in do-while
statement syntax error in for
statement syntax error in for body
case value must integer constant
missing colon on case
too many cases in switch
case outside of switch
missing colon on default
duplicate default
default outside of switch
break/continue error
illegal character
too many nested includes
too many array dimensions
not an argument
null dimension in array
invalid character constant
not a structure
invalid use of register storage class
symbol redeclared
illegal use of floating point type
illegal type conversion
illegal expression type for switch
invalid identifier in macro definition
macro needs argument list
missing argument to macro
obsolete
not enough arguments in macro reference
internal
internal
missing close parenthesis on macro reference
macro arguments too long
#else with no #if

Copyright (c) 1984 by Manx Software Systems, Inc.

CC ERRORS

err.2

Aztec C

104:
105:
106:
107:
108:
109:
110:
Ill:
112:
113:
114:
115:

#endif with no #if
#endasm with no #asm
#asm within #asm block
missing #endif
missing #endasm
#if value must be integer constant
invalid use of : operator
invalid use of void expression
invalid use function pointer
duplicate case in switch
macro redefined
keyword redefined

Copyright (c) 1984 by Manx Software Systems, Inc.

CC ERRORS

err.3

Aztec C CC ERRORS

Explanations

1: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting
system are zero through seven. In order to distinguish between
octal, hexadecimal, and decimal constants, octal constants are
preceded by a zero. Any number beginning with a zero must not
contain a digit greater than seven. Octal constants look like
this: 01, 027, 003. Hexadecimal constants begin with Ox (e.g.,
Oxl, OxAAO, OxFFF).

2: string space exhausted

The compiler maintains an internal table of the strings
appearing in the source code. Since this table has a finite
size, it may overflow during compilation and cause this error
code. The table default size is about one or two thousand
characters depending on the operating system." The size can be
changed using the compiler option -Z. Through simple guesswork,
it is possible to arrive at a table size sufficient for compiling
your program. The following example illustrates the use of this
option:

cc -Z3000 bigexmpl.c

The new table size allows the strings in the file to total 3000
bytes in length. This is equal to 3000 characters.

3: unterminated string

All strings must begin and end with double quotes ("). This
message indicates that a double quote has remained unpaired.

4: internal error

This error message should not occur. It is a check on the
internal workings of the compiler and is not known to be caused
by any particular piece of code. However, if this error code
appears, please bring it to the attention of MANX. It could be a
bug in the compiler. The release documentation enclosed with the
product contains fur~her information.

Copyright (c) 1984 by Manx Software systems, Inc. err.4

Aztec C CC ERRORS

5: illegal type for function

The type of a function refers to the type of the value which
it returns. Functions return an int by default unless they are
declared otherwise. However, functions are not allowed to return
aggregates (arrays or structures). An attempt to write a
function such as struct sam func() will generate this error code.
The legal function types are char, int, float, double, unsigned,
long, void and a pointer to any type (including structures).

6: error in argument declaration

The declaration list for the formal parameters of a function
stands immediately before the left brace of the function body, as
shown below. Undeclared arguments default to int, though it is
usually better practice to declare everything. Naturally, this
declaration list may be empty, whether or not the
function takes any arguments at all.

No other inappropriate symbols should appear before the left
(open) brace.

badfunction(argl, arg2)
shrt arg 1: /* misspelled or invalid keyword */
double arg 2;
{ /* function body */
}

goodfunction(argl,arg2)
float argl:
int arg2; /* this line is not required */
{ /* function body */
}

7: bad declaration syntax

A common cause of this error is the absence of a semicolon
at the end of a declaration. The compiler expects a semicolon to
follow a variable declaration unless commas appear between
variable names in multiple declarations.

/* correct */
/* error 7 */

int i, j:
char c d:
char *sl, *s2
float k: /* error 7 detected here */

sometimes the compiler may not detect the error until the
next program line. A missing semicolon at the end of a
'include'd file will be detected back in the file being compiled
or in another ,include file. This is a good example of why it is
important to examine the context of the error rather than to rely
solely on the information provided by the compiler error
message(s).

Copyright (c) 1984 by Manx Software systems, Inc. err.5

Aztec C CC ERRORS

8: syntax error in type cast

The syntax of the cast operator must be carefully observed.
A common error is to omit a parenthesis:

i = 3 * (int number):
i = 3 * «int)number):

/* incorrect usage */
/* correct usage */

9: array dimension must be constant

The dimension given an array must be a constant fo type
char, int, or unsigned. This value is specified in the
declaration of the array. See error 10.

10: array size must be positive integer

The dimension of an array is required to be greater than
zero. A dimension less than or equal to zero becomes 1 by
default. As can be seen from the following example, specifying a
dimension of zero is not the same as leaving the brackets empty.

char badarray[O]: /* meaningless */
extern char goodarray[]: /* good */

Empty brackets are used when declaring an array that has
been defined (given a size and storage in memory) somewhere else
(that is, outside the current function or file). In the above
example, goodarray is external. Function arguments should be
declared with a null dimension:

func{sl,s2)
char sl[], s2[]:
{

}

11: data type too complex

This message is best explained by example:

char ******£00:

The form of this declaration implies five pointers-to
pointers. The sixth asterisk indicates a pointer to a char. The
compiler is unable to keep track of so many "levels". Removing
just one of the asterisks will cure the error: all that is being
declared in any case is a single two-byte pointer. However it is
to be hoped that such a construct will never be needed.

Copyright (c) 1984 by Manx Software Systems, Inc. err.6

Aztec C CC ERRORS

12: illegal pointer reference

The type of a pointer must be either int or unsigned. This
is why you might get away with not declaring pointer arguments
and functions like fopen which return a pointer: they default to
int. When this error is generated, an expression used as a
pointer is of an invalid type:

char c:
int var: /* any variable */
int varaddress:
varaddress = &var: /* valid since addresses */
*(varaddress) = 'e l

: /* can fit in an inti */
(expression) = 10: / in general, expression

must be an int or unsigned * /
c = 'c': / error 12 */

13: internal [see error 4J

14: internal [see error 4J

15: storage class conflict

Only automatic variables and function parameters can be
specified as register.

This error can be caused by declaring a static register
variable. While structure members cannot be given a storage
class at all, function arguments can be specified only as
register.

A register int i declaration is not allowed outside a
function--it will generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not
many ways to use them in declarations. The possibilities are
listed below.

This error code indicates that two incompatible data types
were used in conjunction with one another. For example, while it
is valid to say long int i, and unsigned int j, it is meaningless
to use double int k or float char c. In this respect, the
compiler checks to make sure that int, char, float and double are
used correctly.

Copyright (c) 1984 by Manx Software Systems, Inc. err.7

Aztec C

data ~
char
int

unsigned/unsigned int
short

long/long integer
float

long float/double

17: internal error

18: data type conflict

interpretation
character
integer

unsigned integer
integer

long integer
floating point number

double precision float

[see error 4J

CC ERRORS

size(bytes)
1
2
2
2
4
4
8

This message indicates an error in the use of the long or
unsigned data type. long can be applied as a qualifier to int
and float. unsigned can be used with char, int and long.

19: obsolete

long i;
long float d;
unsigned u;
unsigned char c;
unsigned long I;
unsigned float f;

/* a long int */
/* a double */

/* an unsigned int */

/* error 18 */

Error codes interpreted as obsolete do not occur in release
1.06 of the compiler. Some simply no longer apply due to the
increased adaptibility of the compiler. Other error codes have
been translated into full messages sent directly to the screen.
If you are using an older version of the product and have need of
these codes, please contact MANX for information.

20: structure redeclaration

The compiler is able to tell you if a structure has already
been defined. This message informs you that you have tried to
redefine a structure.

21: missing}

The compiler expects to find a comma after each member in
the list of fields for a structure initialization. After the
last field, it expects a right (close) brace.

struct sam {
int bone:
char license[lO];

Copyright (c) 1984 by Manx Software Systems, Inc. err.8

Aztec C

} harry = (
1.
123-4-1984:

22: syntax error in structure declaration

CC ERRORS

The compiler was unable to find the left (open) brace which
follows the tag in a structure declaration. In the example for
error 21, "sam" is the structure tag. A left brace must follow
the keyword struct if no structure tag is specified.

23: obsolete [see error 19J

24: need right parenthesis or comma

The right parenthesis is missing from a function call.
Every function call must have an argument list enclosed by
parentheses even if the list is empty. A right parenthesis is
required to terminate the argument list.

In the following example, the parentheses indicate that
getchar is a function rather than a variable.

getchar();

This is the equivalent of

CALL getchar

which might be found in a more explicit programming language. In
general, a function is recognized as a name followed by a left
parenthesis.

With the exception of reserved words, any name can be made a
function by the addition of parenthes~s. However, if a
previously defined variable is used as a function name, a
compilation error will result.

Moreover, a comma must separate each argument in the list.
For example, error 24 will also result from this statement:

funccall(argl. arg2 arg3}.

25: structure member name expected here

The symbol name following the dot operator or the arrow must
be valid. A valid name is a string of alphanumerics and
underscores. It must begin with an alphabetic (a letter of the
alphabet or an underscore). In the last line of the following
example, "(salary)" is not valid because 1(1 is not an

Copyright (c) 1984 by Manx Software Systems, Inc. err.9

Aztec C

alphanumeric.

empptr = &anderson:
empptr->salary = 12000:
(*empptr).salary = 12000:
anderson. salary = 12000:
empptr = &anderson.:
empptr-> = 12000:
anderson.(salary) = 12000:

26: must be structure/union member

CC ERRORS

/* these three lines */
/* are */

/* equivalent */
/* error 25 */
/* error 25 */
/* error 25 */

The defined structure or union has no member with the name
specified. If the -S option was specified, no previously defined
structure or union has such a member either.

Structure members cannot be created at will during a
program. Like other variables, they must be fully defined in the
appropriate declaration list. Unions provide for variably typed
fields, but the full range of desired types must be anticipated
in the union declaration.

27: illegal type cast

It is not possible to cast an expression to a function, a
structure, or an array. This message may also appear if a syntax
error occurs in the expression to be cast.

structure sam { ••• } thom:
thom = (struct sam)(expression): /* error 27 */

28: incompatible structures

C permits the assignment of one structure to another. The
compiler will ensure that the two structures are identical.
However,that both structures must have the same st~ucture tag.
For example:

struct sam harry:
struct sam thom;

harry = thom;

29: illegal use of structure

Not all operators can accept a structure as an operand.
Also, structures cannot be passed as arguments. However , it is
possible to take the address of a structure using the ampersand
(&), to assign structures, and to reference a member of a
structure using the dot operator.

Copyright (c) 1984 by Manx Software Systems, Inc. err.IO

Aztec C CC ERRORS

30: missing: in ? conditional expression

The standard syntax for this operator is:

expression ? statementl : statement2

It is not desirable to use ?: for extremely complicated
expressions; its purpose lies in brevity and clarity.

31: call of non-function

The following represents a function call:

symbol (argl, arg2, ••• , argn):

where "symbol ll is not a reserved word and the expression stands
in the body of a function. Error 31, in re ference to the
expression above, indicates that IIsymbol li has been previously
declared as something other than a function.

A missing operator may also cause this error:

a(b + c):
a * (b + c):

/* error 31 */
/* intended */

The missing '*' makes the compiler view "a()" as a function call.

32: illegal pointer calculation

Pointers may be involved in three calculations. An integral
value can be added to or subtracted from a pointer. Pointers to
objects of the same type can be subtracted from one another and
compared to one another. (For a formal definition, see Kernighan
and Ritchie pp. 188-189.) Since the comparison and subtraction
of two pointers is dependent upon pointer size, both operands
must be the same size.

33: illegal type

The unary minus (-) and bit complement (-) operators cannot
be applied to structures, pointers, arrays and functions. There
is no reasonable interpretation for the following:

int function () :
char array[12]:
struct sam { } harry:
a = -array:
b = -harry:
c = -function & WRONG:

/* ? */

Copyright (c) 1984 by Manx Software Systems, Inc. err.ll

Aztec C CC ERRORS

34: undefined symbol

The compiler will recognize only reserved words and names
which have been previously defined. This error is often the
result of a typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed
within expressions. The exception to this rule is the use of
sizeof(expression) and the cast operator. Compare the
accompanying examples:

struct sam {
int i;
} harry:

typedef double bigfloat:
typedef struct sam foo;

j = 4 * big float. f-•
k = &foo;
x = sizeof(bigfloat);
y = sizeof (foo) :

/* error 35 */
/* error 35 */

/* good */

The compiler will detect two errors in this code. In the
first assignment, a typecast was probably intended; compare error
8. The second assignment makes reference to the address of a
structure type. However, the structure type is just a template
for instances of the structure (such as "harry"). It is no more
meaningful to take the address of a structure type than any other
data type, as in &int

36: no more expression space

This message indicates that the expression table is not
large enough for the compiler to process the source code. It is
necessary to recompile the file using the -E option to increase
the number of available entries in the expression table. See
the description of the compiler in the manual.

The command sequence should look like this:

cc -E500 filename.c

37: invalid expression

This error occurs in the evaluation of an expression
containing a unary operator. The operand either is not given or
is itself an invalid expression.

Unary operators take just one operand: they work on just one
variable or expression. If the operand is not simply missing, as

Copyright (c) 1984 by Manx Software Systems, Inc. err.12

Aztec C CC ERRORS

in the example below, it fails to evaluate to anything its
operator can accept. The unary operators are logical not {I}, bit
complement {~}, increment {++}, decrement {--}, unary minus {-},
typecast, pointer-to (*), address-of (&), and sizeof.

if (1) . ,

38: no auto. aggregate initialization

It is not permitted to initialize automatic arrays and
structures. Static and external aggregates may be initialized,
but by default their members are set to zero.

char array[S] = { la l
,

function ()
'b l IC I Id l }_ , , ,

{
static struct sam {

int bone:
char license[10]:

} harry = {
1,
-123-4-1984"

} :
char autoarray[2] = { If I, Igi }:
extern char array[]:

/* no good */

}

There are three variables in the above example, only two of
which are correctly initialized. The variable "array" may be
initialized because it is external. Its first four members will
be given the characters as shown. The fifth member will be set to
zero.

The structure "harry" is static and may be initialized.
Notice that "license" cannot be initialized without first giving
a value to "bone". There are no provisions in C for setting a
value in the middle of an aggregate.

The variable "autoarrayll is an automatic array.
is local to a function and it is not declared to
Automatic variables reappear automatically every time
is called, and they are guaranteed to contain garbage.
aggregates cannot be initialized.

39: obsolete [see error 19J

40: internal [see error 4J

41: initializer not a constant

That is, it
be static.
a function
Automatic

In certain initializations, the expression to the right of

Copyright {c} 1984 by Manx Software Systems, Inc. err.I3

Aztec C CC ERRORS

the equals sign (=) must be a constant. Indeed, only automatic
and register variables may be initialized to an expression. Such
initializations are meant as a convenient shorthand to eliminate
assignment statements. The initialization of statics and globals
actiually occurs at link-time, and not at run-time.

{
int i = 3:
static int j = (2 + i):
}

42: too many initializers

/* il1egal */

There were more values found in an initialization than array
or structure members exist to hold them. Either too many values
were specified or there should have been more members declared in
the aggregate definition.

In the initialization of a complex data structure, it is
possible to enclose the initializer in a single set of braces and
simply list the members, separated by commas. If more than one
set of braces is used, as in the case of a structure within a
structure, the initializer must be entirely braced.

struct {
struct {

char arraY[]i
} substruct:

} superstruct =

version 1:

version 2:

{

} :

{

"abcde£ghij-

{

}
} :

{ 'alibi IC I IJ.-I I) "I} , , , . . . , ,

In version 1, the initializers are copied byte-for-byte onto
the structure, superstruct.

Another likely source of this error is in the initialization
of arrays with strings, as in:

char array[10]= "abcdefghij-:

This will generate error 42 because the string constant on
the right is null-terminated. The null terminator ('\0' or axao)
brings the size of the initializer to 11 bytes, which overflows
the ten-byte array.

Copyright (c) 1984 by Manx Software Systems, Inc. err. 14

Aztec C CC ERRORS

43: undefined structure initialization

An attempt has been made to assign values to a structure
which has not yet been defined.

struct sam { ••• }:
struct dog sam = { 1. 2. 3}: /* error 43 */

44: obsolete [see error 19J

45: bad declaration syntax

This error code is an all purpose means for catching errors
in declaration statements. It indicates that the compiler is
unable to interpret a word in an external declaration list.

46: missing closing brace

All the braces did not pair up at the end of compilation.
If all the preceding code is correct, this message indicates that
the final closing brace to a function is missing. However, it
can also result from a brace missing from an inner block.

Keep in mind that the compiler accepts or rejects code on
the basis of syntax, so that an error is detected only when the
rulei of grammar are violated. This can be misleading. For
example, the program below will generate error 46 at the end even
though the human error probably occurred in the while loop
several lines earlier.

As the code appears here, every statement after the left
brace in line 6 belongs to the body of the while loop_ The
compilation error vanishes when a right brace is appended to the
end of the program, but the results during run time will be
indecipherable because the brace should be placed at the end of
the loop.

It is usually best to match braces visually before running
the compiler. A C-oriented text editor makes this task easier.

main ()
{

int i. j:
char array[80];

gets (array) :
i = 0:
while (array[i]) {

putchar(array[i]):
i++:

for (i=O: array[i];i++) {
for (j=i + 1; array[j]; j++) {

Copyright (c) 1984 by Manx Software Systems, Inc. err.IS

Aztec C CC ERRORS

printf(Delements %d and %d are II, i,
if (array[i] == array[j])

printf(lithe same\n-):
else printf(-different\na

):

}
putchar(I \n·);

}
}

47: open failure on include file

When a file is 'included, the compiler will look for it in a
default area (see the manual description of the compiler). This
message will be generated if the file could not be opened. An
open failure usually occurs when the included file does not exist
where the compiler is searching for it. Note that a drive
specification is allowed in an include statement, but this
diminishes flexibility somewhat.

48: illegal symbol name

This message is produced by the preprocessor, which is that
part of the compiler which handles lines which begin with a pound
sign (#). The source for the error is on such a line. A legal
name is a string whose first character is an alphabetic (a letter
of the alphabet or an underscore). The succeeding characters may
be any combination of alphanumerics (alphabetics and numerals).
The following symbols will produce this error code:

2nd time,
dont do this!

49: multiply defined symbol

This message warns that a . symbol has already been declared
and that it is illegal to redeclare it. The following is a
representative example:

int i, j, k, i: /* illegal */

50: missing bracket

This error code is used to indicate the need for a
parenthesis, bracket or brace in a variety of circumstances.

51: lvalue required

only lvalues are are allowed to stand on the left-hand side
of an assignment. For example:

Copyright (c) 1984 by Manx Software Systems, Inc. err.16

Aztec C

int num:
num = 7:

CC ERRORS

They are distinguished from rva1ues, which can never stand on the
left of an assignment, by the fact that they refer to a unique
location in memory where a value can be stored. An Iva1ue may be
thought of as a bucket into which an rva1ue can be dropped. Just
as the contents of one bucket can be passed to another, so can an
lvalue y be assigned to another lvalue, x:

'define NUMBER 512

z· , /* wrong: 1/rvalues are reversed */
x = y:
1024 =
NUMBER = x: /* wrong: NUMBER is sti11 an rva1ue */

Some operators which require Iva1ues as operands are
increment (++), decrement (--), and address-of (&). It is not
possible to take the address of a register variable as was
attempted in the following example:

52: obso1ete

register int i, j:
i = 3:
j = &i;

[see error 16]

53: mu1tip1y defined 1abe1

On occasions when the goto statement is used, it is impor
tant that the specified label be unique. There is no criterion
by which the computer can choose between identical labels. If
you have trouble finding the duplicate label, use your text
editor to search for all occurrences of the string.

54: too many 1abe1s

The compiler maint~ins an internal table of labels which
will support up to several dozen labels. Although this table is
fixed in size, it should satisfy the requirements of any
reasonable C program. C was structured to discourage
extravagance in the use of goto's. Strictly speaking, goto
statements are not required by any procedure in Ci they are
primarily recommended as a quick and simple means of exiting from
a nested structure.

This error indicates that you should significantly reduce
the number of goto's in your program.

55: missing quote

Copyright (c) 1984 by Manx software Systems, Inc. err.17

Aztec C CC ERRORS

The compiler found a mismatched double quote (") in a
'define preprocessor command. unlike brackets, quotes are not
paired innermost to outermost, but sequentially. So the first
quote is associated with the second, the third with the fourth,
and so on. Single quotes (I) and double quotes (") are entirely
different characters and should not be confused. The latter are
used to delimit string constants. A double quote can be included
in a string by use of a backslash, as in this example:

"this is a string"
"this is a string with an embedded quote: \". II

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe
(I) in a 'define preprocessor command. Single quotes are paired
sequentially (see error 55). Although quotes can not be nested,
a quote can be represented in a character constant wi th a
backslash:

char c = 1\11;

57: 1ine too 10ng

/* c is initialized to
single quote */

Lines are restricted in length by the size of the buffer
used to hold them. This restriction varies from system to
system. However, logical lines can be infinitely long by
continuing a line with a backslash-newline sequence. These
characters will be ignored.

58: i11egal t encountered

The pound sign (#) begins each command for the preprocessor:
'include, ,define, 'if, 'ifdef, 'ifndef, .else, .endif, .asm,
'endasm. 'line and iundef. These symbols are strictly defined.
The pound sign (#) must be in column one and lower case letters
are required.

Copyright (c) 1984 by Manx Software Systems, Inc. err.I8

Aztec C CC ERRORS

59: macro too long

Macros can be defined with a preprocessor command of the
following form:

'define [identifier] [substitution text]

The compiler then proceeds to replace all instances of
"identifier" with the substitution text that was specified by the
,define.

This error code refers to the substitution text of a macro.
Whereas ideally a macro definition may be extended for an
arbitrary number of lines by ending each line with a backslash
(\), for practical purposes the size of a macro has been limited
to 255 characters.

60 : obsolete [see error 19J

61: reference of member of undefined structure

Occurs only under compilation without the -s option.
Consider the following example:

int bone:
struct cat {

int toy;
} manx;
struct dog *samptr;
manx. toy = 1:
bone = samptr->toy: /* error 61 *1

This error code appears most often in conjunction with this
kind of mistake. It is possible to define a pointer to a
structure without having already defined the structure itself.
In the example, samptr is a structure pointer, but what form that
structure ("dog ll) may take is still unknown. So when reference
is made to a member of the structure to which samptr points, the
compiler replies that it does not even known what the structure
looks like.

The -8 compiler option is provided to duplicate the manner
in which earlier versions of UNIX treated structures. Given the
example above, it would make the compiler search all previously
defined structures for the member in question. In particular,
the value of the member IItoyll found in the structure "manx" would
be assigned to the variable IIbone li

• The -s option is not
recommended as a short cut for defining structures.

62: function body must be compound statement

The body of a function must be enclosed by braces, even

Copyright (c) 1984 by Manx Software Systems, Inc. err.19

Aztec C

though it may consist of only one statement:

function{)
{

return 1;
}

63: undefined label

A goto statement is meaningless if the corresponding label
does not appear somewhere in the code. The compiler disallows
~his since it must be able to specify a destination to the
computer.

It is not possible to goto a label outside the present
function (labels are local to the function in which they appear).
Thus, if a label does not exist in the same procedure as its
corresponding goto, this message will be generated.

64: inappropriate arguments

When, a function is declared (as opposed to defined), it is poor
syntax to specify an argument list:

function{string)
char *string;
(

}

char *funcl();
double func2(x,y);

/* correct */
/* wrong */

In this example, function() is being defined, but funcl() and
func2() are being declared.

65: illegal or missing argument name

The compiler has found an illegal name in a function
argument list. An argument name must conform to the same rules
as variable names, beginning with an alphabetic (letter or
underscore) and continuing with any sequence of alphanumerics and
underscores. Names must not coincide with reserved words.

66: expected comma

In an argument list, arguments must be separated by commas.

67: invalid else

An else was found which is not associated with an if

, Copyright (c) 1984,by Manx Software Systems, Inc. err.20

Aztec C CC ERRORS

statement. else is bound to the nearest if at its own level o·f
nesting. So if-else pairings are determined by their relative
placement in the code and their grouping by braces.

if(•••) {

if (•••) {

.} else if (•••)

} else { ...
}

The indentation of the source text should indicate the
intended structure of the code. Note that the indentation of the
if and else-if means only that the programmer wanted both condi
tionals to be nested at the same level, in particular one step
down from the presiding if statement. But it is the placement of
braces that determines this for the compiler. The example above
is correct, but probably does not conform to the expectations
revealed by the indentation of the else statement. As shown
here, the else is paired with the first if, not the second.

68: syntax error

The keywords used in declaring a variable, which specify
storage class and data type, must not appear in an executable
statement. In particular, all local declarations must appear at
the beginning of a block, that is, directly following the left
brace which delimits the body of a loop, conditional or function.
Once the compiler has reached a non-declaration, a keyword such
as char or int must not lead a statement; compare the use of the
casting operator:

func{)
{

}

int ii
char array[12]i
float k = 2.03:

i = 0:
int m:
j = i + 5:
1 = (int)k:
if (i) {

int i = 3:
j = i:
printf(a%d ll

, i);
}
printf(a%d%d\n",i,j):

/* error 68 */

/* correct */

This trivial function prints the values 3, 2 and 3. The

Copyright (c) 1984 by Manx Software systems, Inc. err.21

Aztec C CC ERRORS

variable i which is declared in the body of the conditional (if)
lives only until the next right brace; then it dies, and the
original i regains its identity.

69: missing semicolon

A semicolon is missing from the end of an executable
statement. This error code is subject to the same vagaries as
its cousin, error 7. It will remain undetected until the
following line and is often spuriously caused by a previous
error.

70: bad goto syntax

Compare your use of goto with an example. This message says
that you did not specify where you wanted to goto with a label:

goto label;

label:

It is not possible to goto just any identifier in the source
code; labels are special because they are followed by a colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or
several statements enclosed in braces. A while conditional is
required after the body of the loop. This is true even if the
loop is infinite, as it is required by the rules of syntax.
Af~er typing in a long body, don't forget the while conditional.

72: statement syntax error in for

This error focuses on another control flow statement, the
for. The keyword, for, must be followed by parentheses. In the
parentheses belong three expressions, any or all of which may be
null. For the sake of clarity, C requires that the two semi
colons which separate the expressions be retained, even if all
three expressions are empty.

for (;;) . ,
/* an infinite loop which does */

/* absolutely nothing */

73: statement syntax error in for

See error 72.

Copyright (c) 1984 by Manx Software systems, Inc. err.22

Aztec C CC ERRORS

74: case value must be integer constant

Strictly speaking, each value in a case statement must be a
constant of one of three types: char, int or unsigned. This is
similar to the rule for a switched variable. In the following
example, a float must be cast to an int in order to be switched:
however, notice that the programmer did not check his case state
ments. The second case value is invalid, and the code will not
compile.

float k = 5.0:
switch«int)k) {
case 4:

printf(ngood case value\nn):
break:

case 5.0:

}

printf("bad case value\n U
):

break:

The programmer must replace "case 5.0:" with "case 5".

75: missing colon on case

This should be straightforward.
case value, a colon should follow it.
accidently entered in its place.

If the compiler accepts a
A semi-colon must not be

76: too many cases in switch

The compiler reserves a limited number of spaces in an
internal table for case statements. If a program requires more
cases than the table initially allows, it becomes necessary to
tell the compiler what the table value should be changed to. It
is not necessary to know exactly how many are needed: an
approximation is sufficient, depending on the requirements of the
situation.

The following command line will change the size of the case
table to 200 entries for the compilation of the file, switchit.c:

cc -Y200 switchit.c

77: case outside of switch

The keyword, case, belongs to just one syntactic structure,
the switch. If "case" appears outside the braces which contain a
switch statement, this error is generated. Remember that all
keywords are reserved, so that they cannot be used as variable
names.

Copyright (c) 1984 by Manx Software Systems, Inc. err.23

Aztec C CC ERRORS

78: missing colon

This message indicates that a colon is missing after the
keyword, default. Compare error 75.

79: duplicate default

The compiler has found more than one default in a switch.
Switch will compare a variable to a given list of values. But it
is not always possible to anticipate the full range of values
which the variable may take. Nor is it feasible to specify a
large number of cases in which the program is not particularly
interested.

So C provides for a default case. The default will handle
all those values not specified by a case statement. It is
analogous to the else companion to the conditional, if. Just as
there is one else for every if, only one default case is allowed
in a switch statement. However, unlike the else statement, the
position of a default is not crucial; a default can appear
anywhere in a list of cases.

80: default outside of switch

The keyword, "default", is used just like "case ll
• It must

appear within the brackets which delimit the switch statement.

81: break/continue error

Break and continue are used to skip the remainder of a loop
in order to exit or repeat the loop. Break will also end a
switch statement. But when the keywords, break or continue, are
used outside of these contexts, this message results.

82: illegal character

Some characters simply do not make sense in a C program,
such as 1$1 and '@'. Others, for instance the pound sign (#),
may be valid only in particular contexts.

83: too many nested includes

#includes can be nested, but this capacity is limited. The
compiler will balk if required to descend more than three levels
into a nest. In the example given, file D is not allowed to have
a #include in the compilation of file A.

file A
#include "B"

file B
#include "C"

file C
#include liD II

Copyright (c) 1984 by Manx Software Systems, Inc.

file D

err.24

Aztec C CC ERRORS

84: too many array dimensions

An array is declared with too many dimensions. This error
should appear in conjunction with error 11.

85: not an argument

The compiler has found a name in the declaration list that
was not in the argument 1 ist. Only the converse case is valid,
i.e., an argument can be passed and not subsequently declared.

86: null dimension in array

In certain cases, the compiler knows how to treat
multidimensional arrays whose left-most dimensions are not given
in its declaration. Specifically, this is true for an extern
declaration and an array ini tialization. The value of any
dimension which is not the left-most must be given.

extern char array[][l2]:
extern char badarray[5][]i

87: invalid character constant

/* correct */
/* wrong '*/

Character constants may consist of one or two characters
enclosed in single quotes, as la l or 'ab ' . There is no analog to
a null string, so .. (two single quotes with no intervening white
space) is not allowed. Recall that the special backslash
characters (\b, \n, \ t etc.) are singular, so that the following
are valid: I\n ' , I\na ' , la\n ' ; laaa l is invalid.

88: not a structure

Occurs only under compilation without the -S option. A name
used as a structure does not refer to a structure, but to some
other data type.

int i;
i.member = 3;

89: invalid storage class

/* error 88 */

A globally defined variable cannot be specified as register.
Register variables are required to be local.

90: symbol redeclared

A function argument has been declared more than once.

Copyright (c) 1984 by Manx Software Systems, Inc. err.25

Aztec C CC ERRORS

91: illegal use of floating point type

Floating point numbers can be negated (unary minus), added,
subtracted, multiplied, divided and compared; any other operator
will produce this error message.

92: illegal type conversion

This error code indicates that a data type conversion,
implicit in the code, is not allowed, as in the following piece
of code:

int i;
float j:
char *ptr;

i = j + ptr;

The diagram shows how variables are converted to different
types in the evaluation of expressions. Initially, variables of
type char and short become int, and float becomes double. Then
all variables are promoted to the highest type present in the
expression. The result of the expression will have this type
also. Thus, an expression containing a float will evaluate to a
double.

hierarchy of types:

double <-- float
long
unsigned
int <-- short, char

93: illegal expression type for switch

Only a char, int or unsigned variable can be switched. See
the example for error 74.

94: bad argument to define

An illegal name was used for an argument in the definition
of a macro. For a description of legal names, see error 65.

95: no argument list

When a macro is defined with arguments, any invocation of
that macro is expected to have arguments of corresponding form.
This error code is generated when no parenthesized argument list
was found in a macro reference.

Copyright (c) 1984 by Manx Software Systems, Inc. err.26

Aztec C CC ERRORS

'define getchar() getc(stdin)

c = getchari /* error 95 */

96: missing argument to macro

Not enough arguments were found in an invocation of a macro.
Specifically, a IIdouble comma" will produce this error:

'define reverse(x.y.z) (z,y,x)

func(reverse(i •• k»i

97: obsolete [see error 19J

98: not enough args in macro reference

The incorrect number of arguments was found in an invocation
of a previously defined macro. As the examples -show, this error
is not identical to error 96.

'define exchange (x.y) (y,x)

func(exchange(i»; /* error 98 */

99: internal [see error 4J

100: internal [see error 4J

101: missing close parenthesis on macro reference

A right (close) parenthesis is expected in a macro
reference with arguments. In a sense, this is the complement of
error 95; a macro argument list is checked for both a beginning
and an ending.

102: macro arguments too long

The combined length of a macro's arguments is limited. This
error can be resolved by simply shortening the arguments with
which the macro is invoked.

103: .else with no lif

Correspondence between lif and lelse is analogous to that
which exists between the control flow statements, if and else.

Copyright (c)J 1984 by Manx Software Systems, Inc. err.27

Aztec C CC ERRORS

Obviously, much depends upon the relative placement of the
statements in the code. However, #if blocks must always be
terminated by #endif, and the #else statement must be included in
the block of the #if with which it is associated. For example:

lif ERROR > 0
printf("there was an error\n-):

telse
printf(-no error this time\n-):

tendif

#if statements can be nested, as below. The range of each #if is
determined by a #endif. This also excludes #else from #if blocks
to which it does not belong:

lifdef

lif

'else

'endif
'else

'endif

JAN!
printf(-happy new yearl\n-):
sick
printf(Hi think ilil go home now\n-):

printf(-i think ilil have another\n-):

printf("i wonder what day it is\n-):

If the first #endif was missing, error 103 would result. And
without the second #endif, the compiler would generate error 107.

104: tendif with no tif

#endif is paired with the nearest #if, #ifdef or #ifndef
which precedes it. (See error 1 03.)

105: 'endasm with no 'asm

#endasm must appear after an associated #asm. These
compiler-control lines are used to begin and end embedded
assembly code. This error code indicates that the compiler has
reached a #endasm without having found a previous #asm. If the
#asm was simply missing, the error list should begin with the
assembly co~e (which are undefined symbols to the compiler).

106: 'asm within lasm block

There is no meaningful sense in which in-line assembly code
can be nested, so the #asm keyword must not appear between a
paired #asm/ #endasm. When a piece of in-line ass~mbly is
augmented for temporary purposes, the old #asm and #endasm can be
enclosed in comments as place-holders.

'asm

Copyright (c) 1984 by Manx Software Systems, Inc. err.28

Aztec C CC ERRORS

/*
/* temporary asm code * /

'asm old beginning */
/* more asm code */

lendasm

107: missing lendif

A #endif is required for every #if, #ifdef and #ifndef, even
if the entire source file is subject to a single conditional
dompilation. Try to assign pairs beginning with the first
#endif. Backtrack to the previous #if and form the pair. Assign
the next #endif with the nearest unpaired #if. When this process
becomes greatly complicated, you might consider rethinking the
logic of your program.

108: missing lendasm

In-line assembly code must be terminated by a #endasm in all
cases. #asm must always be paired with a #endasm.

109: lif value must be integer constant

iif requires an integral constant expression. This allows
both integer and character constants, the arithmetic operators,
bitwise operators, the unary minus (-) and bit complement, and
comparison tests.

Assuming all the macro constants (in capitals) are integers,

lif DIFF >= IAI-Ia l

lif (WORD &= -MASK) » 8
lif MAR I APR I MAY

are all legal expressions for use with #if.

110: invalid use of colon operator

The colon operator occurs in two places: 1. following a
question mark as part of a conditional, as in (flag? 1 : 0);
2. following a label inserted by the programmer or following one
of the reserved labels, case and default.

Ill: illegal use of a void expression

This error can be caused by assigning a void expression to a
variable, as in this example:

void func();
int h;

h = func(arg);

Copyright (c~ 1984 by Manx Software Systems, Inc. err.29

Aztec C CC ERRORS

112: illegal use of function pointer

For example,

int (*funcptr) (): ...
funcptr++:

funcptr is a pointer to a function which returns an integer.
Although it is like other pointers in that it contains the
address of its object, it is not suject to the rules of pointer
arithmetic. otherwise, the offending statement in the example
would be interpreted as adding to the pointer the size of the
function, which is not a defined value.

113: duplicate case in switch

This simply means that, in a switch statement, there are two
case values which are the same. Either the two cases must be
combined into one, or one of them must be" discarded. For
instance:

switch (c) {
case HOOP:

return
case MULT:

return
case DIV:

return
case ADD:

(0) :

(x * y):

(x / y) :

return (x + y):
case HOOP:
default:

return:
}

The case of NOOP is duplicated, and will generate an error.

114: macro redefined

For example,

'define islow(n) (n>=0&&n<5) ...
'define islow(n) (n>=0&&n<=5)

The macro, islow, is being used to classify a numerical
value. When a second definition of it is found, the compiler
will compare the new substitution string with the previous one.
If they are found to be different, the second definition will
become current, and this error code will be produced.

Copyright (d) 1984 by Manx Software Systems, Inc. err.30

Aztec C CC ERRORS

In the example, the second definition differs from the
first in a single character, 1=1. The second definition is also
different from this one:

'define islow(n) n>=O&&n<=5

since the parentheses are missing.

The following lines will not generate this error:

,define NULL 0 ...
'define NULL 0

But these are different from:

,define

In practice, this error message does not affect the
compilation of the 'source code. The most recent "revision" of
the substitution string is used for the macro. But relying upon
this fact may not be a wise habit.

115: keyword redefined

Keywords cannot be defined as macros, as in:

'define int foo

If you have a variable which may be either, for instance, a
short or a long integer, there ar'e alternative methods for
switching between the two. If you want to compile the variable
as either type of integer, consider the following:

tifdef LOBGIHT
long i:

'else
short i:

lendif

Another possibility is through a typedef:

'ifdef LONGIRT
typedef long

'else
typede£ short

,endif

VARTYPE i:

VARTYPE:

VARTYPE:

Copyright (0) 1984 by Manx Software Systems, Inc. err.3l

Aztec C CC ERRORS

Fata1 Error Messages

I f the compiler encouters a II fatal ll error, one which makes
further operation impossible, it will send a message to the
screen and end the compilation immediately.

1. Out of disk space1

There is no room on the disk for the output file of the
compiler. previous disk files will not be overwritten by the
compiler's assembly language output. To make room on the disk,
it is usually sufficient to remove unneeded files from the disk.

2. unknown option:

The compiler has been invoked with an option letter which it
does not recognize. The manual explicitly states which options
the compiler will accept. The compiler will specify the invalid
option letter.

3. duplicate output file

If an output file name has been specified with the -0 option
and that file already exists on the disk, the compiler will not
overwrite it. -0 must specify a new file.

4. too few arguments for -0 option

Usage of the -0 option is as follows:

cii -0 newfile.asm oldfile.c

The new file name must follow the option letter and the name of
the file to be compiled must occur last in the command line.

5. Open failure on input

The input file specified in the command line does not exist
on the disk or cannot be opened. A path or drive specification
can be included with a filename according to the operating
system in use.

6. No input 1

While the compiler was able to open the input file given in
the command line, that file was found to be empty.

7. Open failure on output

8. Local table full1 (use -L)

The compiler maintains an internal table of the local

Copyright (c 1
) 1984 by Manx Software Systems, Inc. err.32

Aztec C CC ERRORS

variables in the source code. If the number of local symbols in
use exceeds the available entries in the table at any time during
compilation, the compiler will print this message and quit. The
default size of the local symbol table (40 entries) can be
changed with the -L option for the compiler:

cii -LlOO filename.c

Local variables are those defined within braces, i.e., in a
function body or in a compound statement. The scope of a local
variable is the body in which it is defined, that is, it is
defined until the next right brace at its own nesting level.

9. out of memory 1

Since the compiler must maintain various tables in memory as
well as manipulate source code, it may run out of memory during
operation. The more immediate solution is to vary the sizes of
the internal tables using the appropriate compiler options.
Often, a compilation will require fewer than the default number
of entries in a particular table. By reducing the size of that
table, memory space is freed up during compile time. The amount
of memory used while compiling does not affect the size or
content of the assembly or object file output. I

If this stategy fails to squeeze the compilation into the
available memory, the only solution is to divide the source file
into modules which can be compiled separately. These modules can
then be linked together to produce a single executable file.

copyright (e) 1984 by Manx Software Systems, Inc. err.33

Aztec C AS ERRORS

ASSEMBLER ERROR 'CODES

Most errors during assembly are caused by assembly language
code written by the programmer. The assembler supplied by Manx
is tailored to accept code generated by the Aztec compiler.
However, the programmer is free to write his own assembler code
either in-.line or as separate modules, and to modify the output
of the compiler.

1. No space for expression work areall

or

No symbol table space leftlll

Both of these messages essentially mean lIout of memory. II

2. <symbol name> is undefined

The message will specify an undefined symbol name.

3. invalid character in number

A digit is not within the range of valid numerals for the
particular base. For example, IFI is invalid in an octal or
decimal number.

4. Invalid expression for block allocation

The operand given a define storage opcode must be an
absolute expression, i.e., all symbols in it must have been
previously defined.

5. Multiply defined symbol

A symbol has been defined more than once.

6. Cannot redefine symbol

The left hand side of an lIequ ll is a symbol which cannot be
redefined, such as a code label.

7. Cannot open file

An included file cannot be opened.

8. Too many nested includes

Included files have been nested too deeply.

Copyright (c) 1984 by Manx Software Systems, Inc. err.34

Aztec C AS ERRORS

9. Operand out of range

The operand does not fall within the possible range of
values for the given opcode, e.g., RST 8.

10. Operand must be even register

For example, L was referenced instead of H in the HL
register pair.

11. Global size must be absolute

or

BSS size must be absolute

The second operand given the global or BSS opcode must be an
absolute expression.

12. Location counter must always increase

I.e., the location counter cannot be reset backward.

13. can't change type of location counter

For example,

equ dseg_symbol

14. Cannot equ a common block name

The left-hand symbol of an equ cannot be the name of a
common block.

15. Null string not allowed here

A null string (II) is not allowed in an expression.

16. Too many chars in CHAR constant

A character constant may consist of up to two characters.
Any more will be ignored by the assembler.

17. invalid operator in evaluate

This is an internal assembler error. Try reassembling with
new copies of the assembler and your file to ensure that neither
is bad. If this error is produced consistently, please contact
Manx with the problem.

Copyright (0) 1984 by Manx Software Systems, Inc. err.35

Aztec C AS ERRORS

Linker Errors

Command line errors:

1. unknown option '<bad option letter>'
2. too few arguments in command line.
3. No input given1
4. Cannot have nested -f options.
5. too few arguments in -f file: <filename>
6. multiple <origin> declarations, last one used.

I/O errors:

7. can't open <filename>, err=<error number>
8. Cannot open -f file: <filename>
9. I/O error (<error number» reading/writing output file
10. Cannot write output file
11. Cannot create output file: <filename>
12. Cannot create symbol table output
13. Cannot create overlay symbol table output

Corrupted object files:

14. object file is bad1
15. invalid operator in evaluate <hex value>
16. library format is invalid1
17. Cannot read module from <input> on pass2

can't find symbol, <symbol name>, on pass two
18. <filename> is not a reI filel

Errors in use of Memory:

19. Insufficient memory 1
20. TOO many symbols 1
21. -C or -D value less than base address
22. Code and data regions overlap

Errors arising from source code:

23. Undefined symbol: <symbol name>
24. <symbol name> mUltiply defined
25. passl{<hex value» and pass2«hex value» values differ:

symbol type differs on pass two: <symbol name>
26. org out of range in Object file
27. undefined COMMON <symbol name>

Copyright (d) 1984 by Manx Software Systems, Inc. err.36

'Aztec C LR ERRORS

LINKER ERROR CODES

When invoked by a command line beginning with LN, the linker
will process the arguments given i~, perform the linkage
request~d and generate an executable output file on the disk.
The first line to ~ppear on the screen is a banner which
indicates' that the linker has been loaded and is run~ing. If
everything goes well, the base address message will follow and
the linker will' finish. The linker may encounter an error while
it is run'hing, in which case it will send a verbal message to the
screen.

;. .

Error~ may be reported at a variety of points during the
linking process. LN consists of two stages, known as pass land
pass 2. The base address message is printed at the end of pass
I, so any errors occurring after that have been detected during
pass 2 of the linker.

Following is a·list of the messages which the linker will
generate in response to an error. The messages are grouped
aC90rding to the source of the errors which cause them. Elements
which: 'are variable are enclosed by angled brackets: .< > •

Command line errors:

1. unknown option '<bad option letter>'

An option letter has been specified which the linker does
not recognize. Only the letter will be ignored: everything else
on the command line has been preserved, and the linker will try
to exectite what it has interpreted. S~e page [J for a list of
options which are supported. J

2. too few arguments in command line.
It

Several of the linker options have an associated value or
name, such as -B 2000. If a needed value is missing, the linker
will give this message and die.

3. No input given1

The linker will quit immediately if not given any input to
process.

4. Cannot have nested -f options.

A file which is given as a -f argument can contain any
option lett~r except -f itself. However, more than one -f is
allowed on a command line.

5. too few arguments in -f file: <filename>

An option letter specified in the file, "filename," requires

Copyright (c) 1984 by Manx Software Systems, Inc. err.37

Aztec C La ERRORS

a value or name to follow it. If an option appears at the end of
the file, its associated value may not appear back on the command
line.

6. multiple <origin> declarations, last one used.

The message will specify that one of the following option
letters was specified more than once in the command line:

-:,C
-D
-u
-B

code org
data org

udata org

base

origin of code in memory
origin of data
origin of uninitialized
global/static data
base address of memory

The linker will consider only the last use of an option
letter when it runs.

I/O errors:

7. can't open <filename>, err=<errno>

If any file in the command line cannot·be opened, this
message will be sent to the screen, specifying the 'filename and
the current value of errno.

8. Cannot open -f file: <filename>

A file given with the -f option cannot be opened.

9. I/O error «errno» reading/writing output file

An error reading or writing the output file probably means
there is no more disk space available. In particular, a block of
the output file was written to disk and then could not be read
back. The current value of errno is given in these messages.

10. Cannot write output file

See error 9.

11. Cannot create output file: <filename>

This message usually indicates that all available directory
space on the disk has been exhausted.

12. Cannot create symbol table output

The -T option was given in the command line, but the file
containing the linkage symbol table cannot be written to disk.
It is possible that there is no more space on the disk.

13. Cannot create overlay symbol table output

Occurs when using the -R option. The file containing the

Copyright (c) 1984 by Manx Software Systems, Inc. err. 38

Aztec C LR ERRORS

overlay symbol table cannot be written to disk.

Corrupted object files:

14. object file is badl

This is the most explicit indication that an object file in
the linkage has been corrupted. The solution is simply to
recompile and assemble the source file. A bad object file will
not be discovered until the second pass of the linker.

15. invalid operator in evaluate <hex value>

This is really the same as error 14. Unless you have
changed the object code by hand, the file has been corrupted.

16. library format is invalidl

A library in the linkage has been corrupted.

17. Cannot read module from <input> on pass2

or

can't find symbol, <symbol name>, on pass two

Either message indicates that a module has been corrupted
between pass 1 and pass 2. On a multiuser system, it is possible
that another user changed the file while the linker was running.
Otherwise, the error was probably due to a hardware failure.

18. <filename> is not a rel file!

A file given to the linker does not contain relocatable
object code which LN can process. For instance, a source file
may have been included in the link.

Errors in use of memory:

19. Insufficient memory!

The linkage process needs memory space for LN, global and
local symbol tables, and approximately 5K for buffers. Just as
with compilation, most memory use is devoted to the program
software and symbol tables. Since LN is not especially large,
only an extremely complicated linkage might run out of memory.

20. Too many symbols!

This is another way of saying that not enough memory was
available for the symbol tables needed for the linkage.

21. -C or -D value less than base address

It is not possible for the starting address of the code or

Copyright (c) 1984 by Manx Software Systems, Inc. err.39

Aztec C LB ERRORS

data to be less than the base address of the progr~m, which is
specified by the option, -B.

22.

By default, data resides above the code area in memory. The
starting addresses of both areas must be spaced far enough apart
to accommodate all the code. If the -D option is used to begin
the data area in the middle of the code, this error message will
be put out.

Errors arising from source code:

23. Undefined symbol: <symbol name>

A global symbol name has remained undefined. This is
commonly a function which has been referenced in the source code
but not included anywhere in the link.

24. <symbol name> m~ltiply defined

A global symbol has been defined more than once. For
instance, if two functions are accidentally given the same name,
this message will be generated.

25. passl«hex value» and pass2«hex value» values differ:

or

symbol type differs on pass two: <symbol name>

Either of these errors may be generated during pass 2 when
error 24 appeared in pass 1. They may be considered a
confirmation of what was discovered in pass 1 of the linker.

26. Org out of range in object file

On the source code level, this means that a globai symbol
was defined in the root of an overlay and then initialized in an
overlay module. For example,

root: overlay:

int i; extern int i = 3;

The problem arises because the initialization is performed by the
linker, but the variable to be initialized is in an entirely
different file.

Copyright (c) 1984 by Manx Software Systems, Inc. err.40

Aztec C IB JlRRORS

The situation which follows is valid because the asstgnment
statement is evaluated at run time:

root:

int i;

27. undefined COMMON <symbol name>

overlay:

extern int i:
function()
{

}

extern it.t i;
i = 3;

This error now occurs only in reference to the use~'s own
assembly language routines. It is generated by a COMMON b~ock of
size zero.

Copyright (c) 1984 by Manx Software Systems, Inc. err.41

	000
	001
	002
	003
	004
	005
	01-00
	01-01
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-00
	04-01
	04-02
	04-03
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-00
	07-01
	08-00
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29a
	08-29b
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	08-61
	08-62
	08-63
	08-64
	08-65
	08-66
	08-67
	08-68
	08-69
	08-70
	08-71
	08-72
	08-73
	08-74
	08-75
	08-76
	08-77
	08-78
	08-79
	08-80
	08-81
	08-82
	08-83
	08-84
	08-85
	08-86
	08-87
	08-88
	08-89
	08-90
	08-91
	08-92
	08-93
	08-94
	08-95
	08-96
	08-97
	08-98
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41

