AZTEC C
OWNER'S
MANUAL

MANX

SOFTWARE
SYSTEMS

C Complle
C Compiler

AZTEC C Il User Manual

Release 1.06

March 1984

Copyright (C) 1984 by Manx Software Systems, Inc.
All Rights Reserved

wWorldwide

Distributed by:
Manx Software Systems
P. O. Box 55
Shrewsbury, N. J. 07701
201-780-4004

SOFTWARE LICENSE

Aztec C II, Manx AS, and Manx LN are licensed software products.
Manx Software Systems reserves all distribution rights to these
products. Use of these products is prohibited without a valid
license agreement. The license agreement is provided with each
package. Before using any of these products the license agreement
must be signed and mailed to:

Manx Software Systems
P. O. Box 55
Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine
and explicitly limits duplication of the products to no more than
two copies whose sole purpose will be for backup. Any uses of
these products that might lead to the creation of or distribution
of unauthorized copies of these products will be a breach of the
licensing agreement and Manx Software Systems will excercise its
right to reclaim the original and any and all copies derived in
whole or in part from first or later generations and to pursue
any appropriate legal actions.

Software that is developed with Aztec C II, Manx AS, or Manx LN
can be run on machines that are not licensed for these products
as long as no part of the Aztec C II software, libraries,
supporting files, or documentation is distributed with or
required by the software. In the latter case a licensed copy of
the appropriate Aztec C software is required for each machine
utilizing the software. There is no licensing required for
executable modules that include 1library routines. The only
restriction is that neither the source, the libraries themselves,
or the relocatable object of the library routines can be
distributed.

COPYRIGHT

Copyright (C) 1981, 1982, 1984 by Manx Software Systems. All
rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without prior written permission
of Manx Software Systems, Box 55, Shrewsbury, N. J. 07701.

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Manx Software Systems reserves the right to
revise this publication and to make changes from time to time in
the content hereof without obligation of Manx Software Systems
to notify any person of such revision or changes.

TRADEMARKS

Aztec C II, Manx AS, and Manx LN are trademarks of Manx Software
Systems. Credit is given to Digital Research of California for
its trademarks: CP/M, MP/M, and RMAC. Credit is given to
Microsoft of Washington for its trademarks: MACRO-80, and LINK-
80. Any references to M80 and L80 also refer to the appropriate
trademarked software packages. UNIX is 'a trademark of Bell
Laboratories.

Contents

section title abbreviation

I. OVEIVieW.:eoreeesssonossssososssssosssssssoscssscssssssssesOV
ITI. Tutorial INtroduCtiON...ceeeseeeecsscsscscccsssssssssstut
ITITI. Aztec C II COmpPiler.ceeeeeescsceosssscocnsasoscsssasssscsasCC
IV. AzteC AS AsSsembler..ccctcesossesoescscsssscscsssssssessdS
V. AzteC LN LinKer..ceeseceecceesscsssoscccssssssssssssseln
VI. Libutil -- the Library Utility.eeeeececesssasssssslbutl
VII. Library FUNCtiOoNS..ceeeeeseessoscsosessssssssnnsssssslib
VIII.Technical InformatioOn....ceciveeccecessssssssseessss.tech

0 data formats...ceeeeeeeecesssccssss.tech.l

o floating point support..............tech.3

o assembly language interface.........tech.?
IX. Software EXteNnSiONS....ceeeeesessssecscseasssssssssssCXt

O the tiny library...c.ceceescesesesssssssextel

O a fast linker.ieeeeeseeesssoessasassceXte3

o interface with other assemblers......ext.4

O Manx overlay SUPPOrt...ceecsvsceccessXt.5
0 generating ROMable cod€...eseesvece.Xt 12
o utility programs
CNM (object file profiler).......ext.l7
SQZ (library SquEeze)..eeesssees.eXt.20
SIDSYM (debugging support).......ext.21

XO Styleoooo00.oooaoOooao.ocoooo.outcooooocoooooooooostyle

XI.

Error MessageS.eceesssoss
o compiler error codes...
o fatal error messages...
o errors during assembly.

O linker errorsS..ceccceecss

Y Y 4 4
..err.l
.err .32
.err.34

.err.36

SECTION 1

Overview

Aztec C OVERVIEW

This manual was written to provide the shortest path between
any two points. The table of contents provides a straightforward
outline of the text. This section explains in more detail what
is discussed in each section of the manual.

If you are new to compilers and the C language, you will
want to read section II, since it gives a more detailed
introduction to the package as a whole.

Each of the subsequent sections explores a new topic.
Sections III - VI describe the principal programs available with
Aztec C and give complete, specific information on their use.

Section VII shows which functions are available in the
standard libraries, and how they can be called from a C program.
The section has a short preface which explains how to use the
summaries effectively. For all users, the library section is a
handy reference and source of examples.

Miscellaneous topics are treated in section VIII. The
summary of data formats explains how C data types are handled by
the compiler. It is worth reading this section even if you are
just learning C, since it offers insight into the differences
between the data types available to you. The guide to
the assembly language interface demonstrates how you can use your
own assembly code with the Aztec compiler. However, it also
provides a closer look at function calls in C, at the assembly
language level.

Section IX describes the extensions which are available for
the Aztec C development system. The introduction specifies which
programs and features are included in the standard package, and
which can be purchased separately.

Section X provides a closer look at the C language and this
package. It will be most useful if you are just learning the
language, as it clarifies the problems that are frequently
encountered by beginners-- and non-beginners as well.

The final section lists and explains the error messages
which are generated by the Aztec software. Although there is
always a new way to produce a given message, this section should
start you looking in the right direction for a cause. It is
conveniently located in the rear of the manual for easy access.

Copyright (c) 1984 by Manx Software Systems, Inc. ov.l

SECTION 11

A Tutorial Introduction

Aztec C TUTORIAL

Introduction

The software provided by Manx 1is comprised of four
indispensible tools. They are called the compiler, assembler,
linker and librarian. These are generic names. The Manx
compiler is known as Aztec C II (see two). The assembler,
designed with CII in mind, is called AS. The Aztec linker is
called simply LN. Another word for "linker" is "link editor".
As its name might imply, LN is what ties together the process of
developing a program. The development of larger applications is
made easier with the help of a librarian such as LIBUTIL. It
will help to manage your files when a program grows very large.

Just what these programs are and how they are used is the
subject of the next several sections. However, before you move
on to the complete descriptions, you may want to read the more
general section which follows. Through it, you will become
acquainted with the structure of the package and how to use the
tools it makes available.

Getting Started

Manx has sent you one or more diskettes, or floppy disks.
Each diskette 1is labeled with the name of the product, the
version number and a fraction indicating which member of the set
it is. If the diskette is reversible (a flippy), be sure to note
that both sides may be used, in which case each side will have a
different label.

The diskettes in your package are not bootable. 1In order to
use them, you will first have to boot CP/M.

Checking the Files

You should take a directory listing of your disks and check
the results against the 1list given in the release document
enclosed with your package. If at any time you believe that a
Manx file is corrupted or bad, you can test it using the program
called CRC.COM. For a given file or for an entire disk, the CRC
(cyclic redundancy check) program will compute a unigque
hexadecimal number. When a file is altered in any way, its CRC
number must change also. In order to test the entire disk,
simply run the program by typing in "crc" to the CP/M prompt.
The general form of the command is:

crc filename

Copyright (c) 1984 by Manx Software Systems, Inc. tut.l

Aztec C TUTORIAL

This will run the CRC check on the given file. A drive can
also be specified:

crc aszexmpl.c

The CRC numbers of the files supplied with the package are
listed in the release document. If a different value is
generated by the CRC program for a file, the file is "bad". A
CRC number remains the same only until the file is changed.

Back up the Disks!

Before going too far with your disks, it is important that
you back them up. Backup disks are nothing more than copies of
the original disks which insure against accidental erasure of
valuable files. The CP/M copy utility is generally adequate for
backing up your distribution disks.

Any further considerations are explained in the release
document accompanying this manual. The release document should
be read over at this point. It is the real introduction to your
version of the package. It explains the changes that have been
made since the last release as well as any problems reported by
our users.

When you have made your backup disks, store the originals
away in a safe place-- but not somewhere so safe that you can't
find them later on. You should also copy the version number of
the package from the label of your distribution disks. This
version number may differ from that which appears when a
particular program is run.

The Working Disk

It is a good idea to create a working disk, that is, a disk
which contains all the files you will need right away. A working
disk will eliminate all the extraneous files which appear on the
originals. For now, you will need the following files: cc.com,
as.com, 1ln.com, c¢.lib and exmpl.c. These files can be
transferred to a formatted CP/M disk with the utility, PIP.

If these files do not fit onto a single disk, you may want
to put ln.com and c.lib on a second disk.

That little extra trouble may prove to be worthwhile in the
future, if only for your own peace of mind. Now we can leave the
disk swapping behind and see how this package is put together.

The Z80 Compiler

The Aztec C II development system contains two compilers, cc
and cz. While either compiler will run on the 2Z80

Copyright (c) 1984 by Manx Software Systems, Inc. tut.2

Aztec C TUTORIAL

microprocessor, cz makes special use of the z280. On the 8080
chip, only cc can be used.

For the purposes of this introduction, either compiler will
work just as well on the Z80. The differences between them are
described in section III.

If youwish to use the cz compiler in the following example,
simply copy the file, cz.com, onto your working disk instead of
cc.com. Anywhere reference is made to cc, read cz.

An Example

As depicted in the diagram, there are five steps to
developing an executable program. Most of your work is done in
steps one and five. The intervening steps are accomplished with
the aid of the software in this package.

For now, we will assume you are interested in seeing the
example program, exmpl.c, run on your computer. Although the
program itself is not very engaging, we hope that compiling it
will familiarize you with the Aztec development system.

Compiling the Example

"exmpl.c" is an ordinary text file. Normally, you will have
created it with a text editor. It is special only in that its
contents are a C language program.

Aztec C II translates this program into an assembly language
program. This translation process is called compilation. It is
begun by running the compiler with this command:

cc exmpl.c

If exmpl.c is not on the disk in the default disk drive, you
can specify a drive as follows:

a:cc b:exmpl.c
The same convention is used for running any CP/M program.

CP/M should go to the appropriate disk drive to find the
file, CC.COM. That is the compiler. Then the compiler will go
searching for the file, exmpl.c. When the compiler is finished,
it will leave behind a new file on the disk, EXAMPL.ASM. This
too is just a text file, which can be printed out with the CP/M
command, type, and edited with a text editor. Assembly language
programmers can edit this file to "hand optimize" certain parts
of the code to make it run faster. Otherwise, though, you should
not have to concern yourself with this file directly.

Copyright (c) 1984 by Manx Software Systems, Inc. tut.3

Aztec C TUTORIAL

S +
1. | EDITOR I
S +
l
/ [Cn \
| source file |
\ /
I
o +
2. | Aztec C II compiler |
e +
|
/ "ASM“ ‘ \
| source file I
/
=
e +
3. | MANX AS Assembler |
o +
|
/ "o" \ e e +
| object file | -~-==> | LIBUTIL librarian |
/ e +
] |
|
R T + / subroutine \
4. | MANX LN Link Editor [<-- | library |
e + \
|
/ n COM" \
| executable file |
1
O + S +
5. | program execution [RE—— debugging I
| I the program
S A S o + e +

Figure 1. Developing "C" Programs with Aztec C II

The Assembly Step

The next step is to convert this assembly code into what is
called object code. This is the job of the assembler. AS was
specifically designed to handle the output of the Aztec compiler,
so this step should run very smoothly unless: 1. there is not
enough space on the disk, or 2. you are including assembly code
you have written yourself. If neither of these things are true,
everything will run very smoothly.

Copyright (c) 1984 by Manx Software Systems, Inc. tut.4

Aztec C TUTORIAL

The assembly is begun with the following command:
as exmpl.asm

As always, a drive identifier can be given to specify on
which disk either of the files are located.

The assembler will leave its output in a file called
exmpl.o. The assembler output is known as relocatable object
code because it can be relocated anywhere in memory; this is done
by the 1linker. The linker will convert this code from
relocatable object format to absolute data, that is, a program
which will be loaded and run at a specific address in memory.

Linking the Example

When the assembler is finished, we are left with exmpl.o.
The command to the linker is:

In exmpl.o c.lib

The file, c.lib, is a library full of object modules similar
to exmpl.o. They are relocatable object code produced by
compiling and assembling the routines which are available in the
library. In the example program, printf is a function which
comes from this library. During the link step, the linker will
search the library for this function and "pull in" the object
module in which it is defined. More about libraries later.

Most programs will need to be linked with c¢.lib, since there
are many functions in it which remain invisible to you. Try the
following link command:

In exmpl.o

The linker will report that several names were undefined.
These are needed support functions which your program called
without knowing it.

The output of the linker is an executable program file.
Here, "exmpl.com" was produced. This program can be run by
entering the name of the file minus the extent:

exmpl

This is the way any CP/M program is run.

Copyright (c) 1984 by Manx Software Systems, Inc. tut.5

Aztec C TUTORIAL

So the process of going from source code to an executable
program consists of these three steps:

cc exmpl.c compile
as exmpl.asm assemble
1n exmpl.o c.lib link

If your system allows it, you can use a submit file to
perform any or all of these steps.

If You Run Out of Disk Space

The only difficulty you may have is running out of disk
space. The danger of this occurring varies from system to
system. If you are having trouble in this respect, here are a
few suggestions:

1. Use two disks. The first disk might contain the
compiler and assembler, while the second disk contains the linker
and library.

2. If the three programs from Manx and the library all fit
on a single disk, then leave all of your software on a second
disk, perhaps in drive B. Make B the default drive by entering
"B:". Then, for example, your link command would look like this:

a:1n exmpl.o a:c.lib

3. The assembler has an option called -ZAP which will cause
it to delete its input file. This keeps assembly files, which

are not always useful to you, from cluttering up the disk. So
the following command:

as —-ZAP exmpl.asm

will leave "exmpl.o" on the disk but delete "exmpl.asm".

Copyright (c) 1984 by Manx Software Systems, Inc. tut.6

SECTION III

The Compiler

Aztec C COMPILER

The Compiler

The Aztec C II compiler is implemented according to the
language description supplied by Brian W. Kernighan and Dennis M.
Ritchie, in The C Programming Language. Where discrepancy or
ambiguity is found 1in that text, reference is made to the
implementation of the language under UNIX version 7. The Aztec C
manual should bring to light any areas where there may be
confusion as regards Aztec C.

Since this manual is not intended as a complete guide to the
C language, you may need another text handy to answer questions
about proper syntax and usage. Several strong tutorials are
available; some are suggested in the appendix. The Kernighan and
Ritchie book is generally considered the place to turn to for the
final word. You may want to have a copy, whatever other books
you might own.

This section will explain how to use the compiler. There
are a variety of options which can be specified at compile time.
These enhance the flexibility of the system, so that you will
eventually want to become familiar with what is available. If
you are just trying out some small programs similar to the
example program of the last section, not all of the material in
this section will be of immediate importance to you.

Running the Compiler
The compiler is invoked by a command of the format:
cc [-options] filename.c

If the filename does not have an extension, the compiler
will assume it ends in ".c". It is recommended that C source
files have this extension although the compiler will allow a
different one, as in "filename.src'".

The C source statements found in the given file are
translated into assembly language and written to a file. This
output file is named "filename.asm" by default. (The assembler
will expect the ".asm" extent the same way that the compiler
expected the ".c".) An alternate output file can be specified
with the "-0" option. For example,

cc -o file.a80 file

will compile the program in "file.c" and write the assembly
language equivalent to "file.a80".

The compiler will append the ".c" only if it doesn't see a
period (.) in the filename. So that if you want to name a source

Copyright (c¢) 1984 by Manx Software Systems, Inc. cc.l

Aztec C COMPILER

file without any extension at all, as in "srcfil", you will have
to compile it in this way:

cc srcfil.

The period at the end of the filename stops the compiler
from tacking on the ".c".

The remaining compiler options have more specialized uses.
They are described below.

The 8080 and 7Z80 Compilers

The Aztec C II development system includes two compilers, cc
and cz. Both support the full C language, as explained above.
Both compilers generate 8080 assembler mnemonics.

cc can be used in conjunction with either the 8080 or Z80.
In either situation, one register is available for use by a
variable through the C language storage class, register.

cz can be run on only the Z80, and produces code intended
for the Z80. It uses the Z80 index registers, IX and 1Y, to hold
additional register variables, for a total of three. This
results in a higher throughput.

To simplify the descriptions in this manual, reference is
made only to cc throughout. On Z80 systems, the two compilers
can be used interchangeably. The assembly output of either
compiler can be assembled by the Manx AS assembler and linked
with the standard libraries, c.lib and m.lib. A call to either
csave or zsave 1s made at the entry point of each C function.
Both functions are pulled into every linked program.

Copyright (c) 1984 by Manx Software Systems, Inc. cc.2

Aztec C

Utility Options
-D

-F

-0

Table Manipulation

COMPILER

Compiler Options

Defines a symbol for the preprocessor.

Forces frame allocation to take place in-line
rather than through a call to a library
function.

Causes search for included files in specified
areas.

This option causes the compiler to produce
code for the Microsoft assembler
(see section XI for details).

Used to specify an alternate output file.
Sends error messages to the printer.

Converts default automatic variables to
statics for efficiency.

This option is a special extension to the
compiler which causes it to produce code for
the Digital Research assembler (see section
XI for details).

Causes search for undefined structure members
as described below.

This option will insert the C source
statements as comments in the assembly code
output. Each source statement appears
before the assembly code it generates.

Converts default global variables into
externs (except initialized data).

Specifies the size of the expression table.
Specifies the size of the local symbol table.

Specifies the maximum number of outstanding
cases allowed in a switch.

Specifies the size of the table for literal
strings.

~ Copyright (c) 1984 by Manx Software Systems, Inc. cc.3

Aztec C COMPILER

Utility Options

-D Option

The -D option defines a symbol in the same way as the
preprocessor directive, #define. 1Its usage is as follows:

cc -Dmacro[=text] prog.c
For example,
cc -DMAXLEN=1000 prog.c

is equivalent to inserting the following line at the beginning of
the program:

$define MAXLEN 1000

Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the
preprocessor directive, $ifdef, to selectively include code in a
compilation. A common example is code such as the following:

$ifdef DEBUG
printf(“value: %d\n", i);
$endif

This debugging code would be included in the compiled source
by the following command:

cc —-dDEBUG program.c

When no substitution text is specified, the symbol is
defined as the numerical value, one.

This capability is useful when small pieces of code must be
altered for different operating environments. Rather than
maintaining two copies of such a program, this compile time
switch can be used to generate the code needed for a specific
environment. For example,

$ifdef APPLE
appleinit():
felse
ibminit();
#endif

-F Option
The -F option causes function entry code to be generated in-

line. Normally, every compiled C function begins with a call to

. Copyright (c) 1984 by Manx Software Systems, Inc. cc.4

Aztec C COMPILER

a routine in c.lib. This option replaces this call with the
equivalent code.

This results in a small savings in execution speed every
time the compiled function is called. If the function is called
repeatedly, the savings can add up to a large difference in the
execution time of the program. As a side effect, this option
will slightly increase the size of the compiled code.

-I Option

The —-I option causes the compiler to search in a specified
area for files included in the source code.

By default, the compiler will search for included files in
the current user and user 0 on the default drive and in user 0O on
drive A, if that drive has been logged in (i.e., if drive A has
already been accessed).

The -I option is used to specify a more extended search.
For example, #include'd header files might be kept in particular
user, such as user 5 on drive A. Then a compile command might
be this:

cc -i 5/a: program.c
The parameter for the option has the form:
[user number]/[drive identifier]

Each user area to be searched requires its own option
letter. The -I can be specified up to eight times in a single
command .

-P Option
The -P option redirects the screen output of the compiler to

the printer. This produces a hard copy of the error messages
generated during compilation.

-Q Option

-Q is an option which causes the compiler to treat automatic
variables as statics. This will essentially convert an automatic
"int i" within a function to a "static int i".

This can cause a significant increase in execution speed,
since it is much less expensive to address statics than variables
on the stack.

As an empirical example, a version of the infamous
Eratosthenes' sieve program which ran in 33 seconds was reduced

Copyright (c) 1984 by Manx Software Systems, Inc. cc.5

Aztec C COMPILER

to a run of only 24 seconds, just by specifying the -Q option.

A declaration using the "auto" keyword, such as "auto int
i", will not be affected by the -Q option. "auto" forces the
variable to remain an automatic.

If a variable is declared as a "register int i", but there
are no available registers, the variable defaults to the
automatic storage class. So a "register int i" will become a
static under the -Q option, if there is not a free register.

Like any other static data, an auto-turned-static is
initialized to zero before the program begins.

Note that calling a function recursively may cause problems
when the -Q option is used. Consider a function with a "static
int i" which increments i and then calls itself:

qtest()
static int 1i;

if (++i < 100)
qtest(i);
return (1i):

}
The following program will print out "100":
main()

printf(“gd", qtest());
}

If the integer variable in gtest() was not static, the
recursive call would have to be "i = qgtest(i)". Although gtest()
does not seem to save the value returned by the call to itself,

the static variable retains its value throughout the nesting.

-U Option

The -U option performs a different storage class conversion.
It converts global variables into externs. That is, under -U,
"int i" outside any function becomes "extern int i". This is
useful in that it allows all global variables to be defined in a
single file without having to specify an "extern" with each other
declaration.

The universal way of defining a global integer, i, is to
have the statement, "int i", in one file and the statement,
"extern int i" in all other program files in which the variable
is used. The "int i" is a "definition" of the variable since it
causes space to be reserved in memory for the variable. The
"extern" causes no memory to be reserved; it says, "This variable

Copyright (c) 1984 by Manx Software Systems, Inc. cc.6

Aztec C COMPILER
is defined somewhere else but it is going to be used in this file
of the program."

When using the Aztec assembler and linker, the only
requirement is that a global variable must be defined at least

once. So in this example, it is also possible to have "int i" in
every file; the "extern" keyword is not extremely significant in
this case. Although there may turn out to be more than one

global "int i" in the program, memory will be allocated for just
one. This is also the behavior under UNIX.

The situation is slightly different when employing the
assembler and linker provided by Microsoft or Digital Research.
(These programs can be used only with a compiler which has the
extended options, -M and -R.)

When using the Microsoft or DRI assembler and linker, a
global variable must be defined exactly once. That is, "extern
int i" must appear in every declaration except one, which must be
an "int i". This is where the -U option is useful. By
specifying it for all but a single source file, you will not have
to worry about having too many or not enough externs; the
"externs" can be left off entirely since they will be tacked on
under the -U option.

A global initialization is immune to the -U option. Hence,
"int 1 = 3;" is unchanged by it. 1Initializing a global variable
to zero will cause it to be ignored by -U. This is one means for
forcing a data definition when using this option.

-S Option
The -S option is best illustrated by an example:
struct atype {
char al, a2;
} a;

struct btype {
char bl, b2:

} b;
a.bl = 4;
b.c2 = 6;
Normally, both of the assignments will cause a compiler
error, since "bl" is not a member of "a", and "c2" is not a
member of "a". However, under the -S option, the first

assignment will be legal and the second will be illegal.

Under -S, the compiler will not generate an error when it
notices that "bl" is not a member of "a". Instead, it will
proceed to search through all the previously defined structures
until it finds the member "bl". The member of structure "b",

Copyright (c) 1984 by Manx Software Systems, Inc. cc.?7

Aztec C COMPILER

namely "bl", is taken to be referenced by "a.bl".

The second assignment will generate an error with or without
the -S option, since "c2" is not a member of a previously defined
structure.

The -S option refers only to previously defined structures.

Table Manipulation

An explanation of the remaining options requires a little
background. As the compiler is compiling a C program, it has to
keep track of all the symbols in the source code-- mainly
variable and function names. It has to remember some information
about each variable, such as its data type. All this is stored
in symbol tables in memory.

The symbol tables start out with a certain default size.
This size is usually sufficient for compiling a moderately sized
source file. However, depending on the complexity of the
program, the compiler might use up all the entries in a table
during compilation. 1In this case, the compiler will terminate
with an appropriate error message.

If this happens, you will need to adjust the sizes of the
tables. Usually, this will call for just increasing the size of
a single table. The default sizes are given below, along with
examples for each option.

The amount of memory available to the compiler is obviously
limited. It will read into memory only as much of the source
file as it needs in order to generate output. Aside from the
work space needed for this task, it maintains the following
tables: expression work table, macro/global work table, case
table, string table, label table, and local symbol table.

The label table holds information on all the labels in the
program (a label is the destination of a goto). It is fixed at a
generous size. If it overflows, the compiler will generate error
code 54, and you will have to decrease the number of labels in
your program,

The macro table is where macros defined with "#define" are
remembered. It also contains information about all global
symbols. Unlike the other symbol tables, it is self-adjusting,
and is never larger than it needs to be. Note that this is
different from versions previous to 1.06 of the compiler. This
change has made the "-X" option obsolete.

If the Compiler Runs Out of Memory
If the compiler aborts with a message indicating that it ran

out of memory, you will have to decrease the size of one or more

Copyright (c) 1984 by Manx Software Systems, Inc. cc.8

Aztec C COMPILER

of the tables. There is no harm in doing so, since the compiler
will always complain when a table overflows. Decreasing the size
of a table will free up space in memory for the compiler.

As indicated in section XI, the compiler may run out of
memory without overflowing any particular table. 1In this case, a
generic "out of memory" message will appear. If the module you
are compiling is extremely large, the simplest solution may be to
break it into two or more separate modules. However, if the
module is of reasonable size, it is possible to decrease the size
of a table which is not fully used, thereby freeing up memory for
the compilation.

Choosing which table to decrease and by how much is a matter
of estimation.

If a particular table overflows, the appropriate error will
be generated. It is then necessary to increase the size of that
table. Table sizes specified by option letters are used for only
a single compilation.

The Expression Table:

This is the area where the "current" expression is handled.
It is the compiler's work space as it interprets a line of C
code. The various parts of the line are stored here while the
statement is being compiled. When the compiler moves on to the
next expression, this space is again freed for use.

The default value for -E is 60 entries. Each "entry" in the
table consumes 14 bytes in memory. So the expression table
starts at 840 bytes. Each operand and operator in an expression
is one entry in the symbol table-- another fourteen bytes. The
term, "operator", includes each function and each comma in an
argument list, as well as the symbols you would normally expect
(+, &, ©, etc.). There are some other rules for determining the
number of entries an expression will require. Since they are not
straightforward and are subject to change, they will not Dbe
discussed here.

The following expression uses 15 entries in the table:
a =b + function{(a + 7, b, 4d) * x

Everything is an entry except for the ")", including the
commas which separate the function arguments.

If the expression table overflows, the compiler will
generate error number 36, "no more expression space."

This command will reserve space for 100 entries (1800 bytes)
in the expression table:

cc -E100 filename

Copyright (c¢) 1984 by Manx Software Systems, Inc. cc.9

Aztec C COMPILER

The option must be given before the filename. There can be
no space between the option letter and the value.

The Local Symbol Table:

New symbols can be declared after any open brace. Most
commonly, a declaration list appears at the beginning of a
function body. The symbols declared here are added to the local
symbol table. If a variable is declared in the body of, say, a
for loop, it is added to the table. When the compiler has
finished compiling the loop, that entry in the table is freed up.
And when it has finished the function, the table will be empty.

The default size of the table is 30 entries. Since each
entry consumes 26 bytes, the table begins at 520 bytes. If the
table overflows, the compiler will send a message to the screen
and stop.

The number of entries in the table can be adjusted with the
-L option. The following compilation will use a table of 75
entries, or almost 2000 bytes:

cc -L75 program.cC

The Case Table:

When the compiler looks at a switch statement, it builds a
table of the cases in it. When it "leaves" the switch statement,
it frees up the entries for that switch. For example, the
following will use a maximum of four entries in the case table:

switch (a) {

case 0O: /* one */
a += 1;
break;
case 1: /* two */
switch (x) {
case 'a': /* three */
funcl (a):
break:;
case 'b': /* four */
func2 (b);
break;
} /* release the last two */
a = 5;
case 3: ' /* total ends at three */
func2 (a):
break;

Copyright (c¢) 1984 by Manx Software Systems, Inc. cc.10

Aztec C COMPILER

The table defaults to 40 entries, each using up four bytes.
If the compiler returns with an error 76 ("case table
exhausted”), you will have to recompile with a new size, as in:

cc -Y100 file

The String Table:

This is where the compiler saves "literals", or strings.
The size of this area defaults to 1000 bytes. Each string
occupies a number ©f bytes equal to the size of the string. The
size of a string is Jjust the number of characters in it plus one
(for the null terminator).

If the string table overflows, the compiler will generate
error 2, "string space exhausted".

The following command will reserve 2000 bytes for the string
table:

cc -~Z2000 file

The size of the string table needs to be increased if an
error 2 (string space exhausted) is encountered.

Copyright (c) 1984 by Manx Software Systems, Inc. cc.1ll

Aztec C COMPILER

Error checking

Compiler errors come in two varieties-- fatal and not fatal.
Fatal errors cause the compiler to make a final statement and
stop. Running out of memory and finding no input are examples of
fatal errors. Both kinds of errors are described in section XII.
The non-fatal sort are introduced below.

The compiler will report any errors it finds in the source
file. It will first print out a line of code. The up-arrow
(carot) in this line indicates how far the compiler went before
it was able to detect the error. The name of the source file
will appear, followed by a line number, an error number and the
symbol which may have caused the error.

The compiler is not always able to give a precise
description of an error. Usually, it must proceed to the next
item in the file to ascertain that an error was encountered.
Once an error is found, it is not obvious how to interpret the
subsequent code, since the compiler cannot second-guess the
programmer's intentions. This may cause it to flag perfectly
good syntax as an error.

If errors arise at compile time, it is a general rule of
thumb that the very first error should be corrected first. This
may clear up some of the errors which follow.

The best way to attack an error is first to look up the
meaning of the error code in the back of this manual. Some hints
are given there as to what the problem might be. And you will
find it easier to understand the error and the message if you
know why the compiler produced that particular code. The error
codes indicate what the compiler was doing when the error was
found.

Copyright (c) 1984 by Manx Software Systems, Inc. cc.l2

SECTION 1V

The Assembler

Aztec C ASSEMBLER

The Assembler

The Manx AS assembler accepts a subset of the Microsoft
MACRO-80 assembler language. The Manx AS assembler does not
support macros or Z80 mnemonics.

The Manx AS assembler is a relocating assembler. It is
invoked by the command line:

AS filename.asm

The relocatable object file produced by the assembly will be
named "filename.o". An alternate object filename can be supplied
by specifiying -0 filename (0O is a letter). The object file will
be written to the filename following "-0", as in the following
example:

as -o newfil.obj filename.asm

The output filename does not have to end with ".o", but that
is the recommended format. The assembly language source file can
also have any extension. If none is given, the extension defaults
to ".asm".

When assembling compiler output, a useful option is -ZAP.
After creating the object code output file, the assembler will
delete the (intermediate) assembly language file. This conserves
disk space and is especially useful when compiling a large number
of C source files,.

It is common practice to create a C language source file
ending in ".c¢", such "prog.c", and leave off the extension
entirely when compiling and assembling:

cc prog
as -ZAP prog

To produce an assembly listing, specify the -L option, as
in the following example. The assembler is a one pass assembler
so forward address references will not appear on the listing.

as -1 prog

Copyright (c) 1984 by Manx Software Systems, Inc. as.l

Aztec C ASSEMBLER

The following summaries define the syntax for the AS
assembler:

STATEMENTS

Source files for the Manx AS assembler consist of statements
of the form:

[label[:]] [opcode] [argument] [;comment]

The brackets "[...]" indicate an optional element.

LABELS
A label consists of 1 to 8 alphanumerics followed by an
optional colon. A label must start in column one. If a statement
is not labeled, then column one must be left blank. A label must
start with an alphabetic. An alphabetic is defined to be any
letter or one of the special characters: @ § _ .
An alphanumeric is an alphabetic, or a digit from 0 to 9.

A label followed by "##" is declared external.

EXPRESSIONS

Expressions are evaluated from left to right according to
parenthesization, wit.:h precedence given unary operators.
Operators are:

+ - * / AND OR XOR NOT SHL SHR MOD

CONSTANTS

The default base for numeric constants is decimal. A number
suffixed by a "B" is binary, e.g. 10010110B. A number suffixed by
a "D" is decimal, e.g. 765D. A number suffixed by an O or Q is
octal, e.g. 1260 or 126(). A number or alphabetic A-F suffixed by
an "H" is hexadecimal, e.g. OFEEH.

A character constant is of the form: 'A', that 1is, a
character enclosed by ssingle quotes.

Copyright (c) 1984 by, Manx Software Systems, Inc. as.2

Aztec C ASSEMBLER

ASSEMBLER DIRECTIVES

The Manx AS assembler supports the following pseudo
operations:

BSS sym name, size creates symbol (sym name) of 'size’
bytes in the BSS segment (which
contains static data from C source
code) .

COMMON /<block name>/ sets the location counter to the
selected common block.

CSEG select code segment.

DB <exp> define byte constant.

DSEG select data segment.

DW define word constant (2 bytes).

END end of assembler source statements.

GLOBAL sym name, size creates an external symbol with
size, ‘'size' bytes. An

uninitialized global char in C
compiles to a global of one byte.
If a symbol is defined with global
more than once, storage is
allocated by the 1linker for the
largest size given.

NLIST turn off listing

LIST turn on listing

MACLIB/XTEXT filename include statements from another
file

PUBLIC/EXT/EXTRN label declares label to be external
or entry

CopYright (c) 1984 by Manx Software Systems, Inc. as.3

SECTION V

The Linker

Aztec C LINKER

The Linker

The Aztec linker is the software which ties together the
pieces of a program which were compiled and assembled separately.
The assembler produces a file containing what is called
relocatable object code. The Manx AS assembler generates object
files with a specific object file format. The Aztec linker
expects that the files it links will be in this format. That is
why AS and LN must be used together.

The following pages are a brief introduction to linking and
what the linker does. If you have had previous experience with
linkage editors, you may wish to continue reading with the
paragraph heading, "Using the Linker." There you will find a
concise description of the command format for the linker.

Relocatable Object Files

The object code produced by the assembler is "relocatable"
because it can be loaded anywhere in memory. One task of the
linker is to assign specific addresses to the parts of the
program. This tells the operating system where to load the
program when it is run.

Linking hello.o

It is very unusual for a C program to consist of a single,
self-contained module. Let's consider a simple program which
prints "hello, world" using the function, printée. The
terminology here is precise; printf is a function and not an
intrinsic feature of the language. It is a function which you
might have written, but it already happens to be provided in the
file, "c.lib". This file is a library of all the standard i/o
functions. It also contains many support routines which are
called in the code generated by the compiler. These routines aid
in integer arithmetic, operating system support, etc.

When the linker sees that a call to printf was made, it
pulls the function from the library and combines it with the
"hello, world" program. The link command would look like this:

1n hello.o c.lib

When "hello.c" was compiled, calls were made to some
invisible support functions in the library. So linking without
the standard library will cause some unfamiliar symbols to be
undefined. All programs will need to be linked with "c.lib".

Copyright (c) 1984 by Manx Software Systems, Inc. In.1

Aztec C LINKER

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are
certain to call user-defined functions. It is up to the linker
to connect a function call with the definition of the function
somewhere in the code.

In the example given below, the linker will find two
function calls in file 1. The reference to funcl is "resolved"
when the definition of funcl is found in the same file. The
following command

In filel.o c.lib
will cause an error indicating that "func2" is an undefined
symbol. The reason is that the definition of func2 is in another
file, namely file2.0. The linkage has to include this file in
order to be successful:

In filel.o file2.0 c.lib

file 1 file 2
main() func2()
funcl(); return;
func2();
}
funcl ()
{
return;

Libraries

A library is a collection of object files put together by a
librarian. Libraries intended for use with LN must be built with
the Aztec librarian, LIBUTIL. This utility is described in the
next section.

All the object files specified to the linker will be "pulled
into" the linkage; they are automatically included in the final
executable file. However, when a library is encountered, it is
searched. Only those modules in the library which satisfy a
previous function call are pulled in.

For Example
Consider the "hello, world" example. Having looked at the

module, "hello.o", the linker has built a list of undefined

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.2

Aztec C LINKER

symbols. This 1list includes all the global symbols that have
been referenced but not defined. Global variables and all
function names are considered to be global symbols.

The list of undefined's for "hello.o" includes the symbol,
"printf". When the linker reaches the standard library, this is
one of the symbols it will be looking for. It will discover that
"printf" is defined in a library module whose name also happens
to be "printf". (There is not any necessary relation between the
name of a library module and the functions defined within it.)

The linker pulls in the "printf" module in order to resolve
the reference to the "printf" function.

Files are examined in the order in which they are specified
on the command line. So the following linkages are equivalent:

1n hello.o
In c.1lib hello.o

Since no symbols are undefined when the linker searches
c.lib in the second line, no modules are pulled in. It is good
practice to leave all libraries at the end of the command line,
with the standard library last of all.

The Order of Library Modules

For the same reason, the order of the modules within a
library is significant. The linker searches a library once, from
beginning to end. If a module is pulled in at any point, and
that module introduces a new undefined symbol, then that symbol
is added to the running list of undefined's. The linker will not
search the library twice to resolve any references which remain
unresolved. A common error lies in the following situation:

module of program references (function calls)
main.o getinput, do_calc

input.o gets

calc.o put_value

output.o printf

Suppose we build a library to hold the last three modules of
this program. Then our link step will look like this:

1n main.o proglib.lib c.lib
But it is important that "proglib.lib" is built in the right

order. Let's assume that main() calls two functions, getinput()
and do_calc(). getinput() is defined in the module, input.o. It

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.3

Aztec C ; LINKER

in turn calls the standard library function, gets(). do calc()
is in calc.o and calls put_value(). put_value() is in output.o
and calls printf().

What happens at link time if proglib.lib is built as
follows?

proglib.lib: input.o
output.o
calc.o

After main.o, the 1linker has "getinput" and "do_calc"
undefined (as well as some other obscure functions in c.lib).
Then it begins the search of proglib.lib. It looks at the
library module, "input", first. Since that module defines
"getinput", that symbol is taken off the list of undefined's.
But "gets" is added to it.

The symbols "do calc" and "gets" are undefined when the

linker examines the module, "output". Since neither of these
symbols are defined there, that module is ignored. 1In the next
module, "calc", the reference to "do_calc" is resolved but

“put value" is a new undefined symbol.

The linker still has "gets" and "put_value" undefined. It
then moves on to c.lib, where "gets" is resolved. But the call
to "put value" is never satisfied. The error from the linker
will look like this:

Undefined symbol: put value_

This means that the module defining "put value" was not
pulled into the linkage. The reason, as we saw, was that
"put value" was not an undefined symbol when the "output" module
was passed over. This problem would not occur with the library
built this way:

proglib.lib: input.o
calc.o
output.o

The standard libraries were put together with much care so
that this kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a
library so that all references are resolved. In the example, the
problem could be solved with the following command:

1n main.o proglib.lib proglib.lib c.lib
The second time through proglib.lib, the linker will pull in
the module "output". The reason this is not the most

satisfactory solution is that the linker has to search the
library twice; this will lengthen the time needed to link.

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.4

Aztec C LINKER

Using the Linker

.The general form of a linkage is as follows:
1n [-options] filel.o [file2.0 etc] [libl.lib etc]

The linker will essentially combine any number of object
files produced by the Aztec assembler into an executable program.
It will also search a library of object modules for functions
needed to complete the linkage. Only those modules needed will
be pulled out of the library. The linker makes just a single
pass through a library, so that only forward references within a
library will be resolved.

By default, the executable output file will be named after
the first object file given on the command line. It will have
the extension ".com". The following linkage:

1n prog.o c.lib

will produce the disk file, prog.com, which can be run under
CP/M. The standard library, c.lib, will have to be included in
most linkages.

A different output file can be specified with the -0 option,
as in the following command:

1n -o program.com modl.o mod2.0 c.lib
The name given with -0 must have the extension, ".com".

This command also shows how several individual modules can
be linked together. A "module", in this sense, is a section of a
program containing a limited number of functions, usually
related. These modules are compiled and assembled separately and
linked together to produce a ".com" file. Modules are useful
because a change can be made to a single module without having to
recompile the source for the entire program.

More About Libraries

When certain modules are used over and over by different
programs, it is often expedient to build a library containing
these commonly used modules. This library can then be included
in the linkage of any of these programs. Any number of libraries
can be included in a given linkage:

1n -0 program.o mylib.lib new.lib m.1lib c.lib
Each of the libraries will be searched once in the order in

which they appear on the command line. In this example, the

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.5

Aztec C LINKER

m.lib library is the math library provided by Manx.

Libraries can be named more conveniently with the -IL option
to the linker. The previous linkage is identical to the
following:

In -o program.o -lmylib -lnew -1lm -lc

The -L option will take the string following it and append a
".1ib". The resulting filename will be treated as the name of a
library.

The options recognized by the linker are summarized in the
table below. Further explanations follow.

Copyright (c) 1984 by Manx Software Systems, Inc. In.6

Aztec C

LINKER
Linker Options

General Purpose Options

-F This option allows command arguments to be
taken from the file specified.

-L Specifies a library of routines.

-0 Specifies alternate output filename.

-R Generates a symbol table for overlays.

-T Creates a symbol table file.

-V Verbose mode.

Segment Address Specification

-B Sets the base address of the program.

-C Sets the beginning address for the code
portion of the program.

-D Sets the beginning address for the data area.

-U Sets the beginning address for the
uninitialized data area.

Memory Usage

+C Reserves specified number of bytes at end of
code segment of linked program (for use with
overlays).

+D Reserves specified number of bytes at end of

data segment of linked program (for use with
overlays).

General Purpose Options:

-F causes the linker to mérge the contents of the given file
with the command line arguments. For example,

In myprog.o -f argfil -1c
where the file, argfil, contains the following:

modl .o mod2.0

mylib.1lib
All records (that is, all lines) of the file are read.
There is no need to squeeze everything into one record.
Copyright (c) 1984 by Manx Software Systems, Inc. in.7

Aztec C LINKER

There are several advantageous uses for this command. The
most obvious is to supply the names of modules that are commonly
linked together. Since all the modules named are automatically
pulled into the linkage, the linker does not spend any time in
searching, as with a library. Furthermore, any linker option
except -F can be given in a -F file. -F can appear on the
command more than once, and in any order. The arguments are
processed in the order in which they are read, as always.

The ~-R option is used only when portions of a program are
being linked as overlays. This option is fully described in
section IX.

The —-T option creates a disk file which contains a symbol
table for the linkage. This file is just a text file which lists
each symbol with a hexadecimal address. This address is either
the entry point for a function or the location in memory of a
data item. A perusal of this file will indicate which functions
were actually pulled into the linkage.

The symbol table file will have the same name as the ".com"
file, except that its extension will be ".sym". This ".sym" file
can be used in conjunction with the SID or ZSID debugging aid
available from Digital Research.

There are six special symbols which will appear in the
table. They are as follows:

_Corg origin of code area (cf. -C option)
Cend end of code area

Dorg origin of data area (~D)

_Dend end of data area

_Uorg __ origin of uninitialized data (-U)

_Uend end of uninitialized data area

The -V option causes the linker to send a progress report of
the linkage to the screen as each input file is processed. This
is useful in tracking down undefined symbols and other errors
which may error while linking.

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.8

Aztec C LINKER

segment address specification:

There are four crucial addresses which may be specified at
link time. They are the base address and the starting addresses
of the three major parts of the program. A linked program
normally looks like this:

Uend

Uorg
Dend

|

I

|

I

|

I Dorg
I Cend
|

I

|

I

|

Corg (hex address 103)
base (hex address 100)

The symbols depicted in the figure can be seen in the
symbol table produced with the -T linker option.

At the base address is an instruction which initiates
execution; it is a jump to the beginning of the program. By
default, this instruction is located at hex address 100.

Again by default, the code portion of the program starts
right after this instruction-- three bytes higher at hex address
103 L

The area containing initialized data is placed directly
above the code. At the top comes the uninitialized data area.

This order can be rearranged. The only restriction is that
the base address must be lowest and the code and data regions
must not overlap. If either condition is not satisfied, the
linker will print an error message and abort.

For example, the base address of a program is set by the
following command:

ln -b 500 prog.o -lc

The base address for prog.com will be hex address 500. The
address specified for any of these options is assumed to be
hexadecimal.

When just the base address is fixed, as in the example, the
code and data remain as a continguous span of memory above the
base address. However, the remaining three addresses can also be
specified:

In -b 200 -c 500 -d 1000 -u 3000 prog.o -1lc

Copyright (c) 1984 by Manx Software Systems, Inc. 1r.9

Aztec C LINKER

This capability is needed for ROM based applications and for
situations requiring that certain areas of memory not be
overwritten by the program.

Memory Usage:

The +C and +D options effectively increase the size of the
code and data segments of the linked program. For example,

In +d 1000 prog.o -1c
will increase the data area of the linked program by hex 1000
bytes. These options are specifically provided for the use of

overlays. See the section describing software extensions for
more details.,

Copyright (c) 1984 by Manx Software Systems, Inc. 1n.10

SECTION VI

The Librarian

Aztec C LIBUTIL

Library Maintenance

LIBUTIL
Summmary
The LIBUTIL LIBrary UTILity is used in order to:

1. create a library

2. append a library (-a)
3. produce an index list (-t)
4. extract members (-x)
5. replace a module (-r)
6. create a library using an

extended command line (.)
7. report progress of

library build (-v)

l. LIBUTIL -o example.lib x.0 x.0

USE - to create a library

FUNCTION the following creates a private library,
example.lib, containing modules subl.o
and sub2.0

>LIBUTIL -0 example.lib subl.o sub22.0
2. LIBUTIL option -a

USE - to append to a library

FUNCTION- the following appends exmpl.o to the
example.lib

>LIBUTIL -0 example.lib -a exmpl.o
this function can be used to append any
number of .0 files to the library. For
example, the following appends
exmpl.o and smpl.o to the example.lib

>LIBUTIL -o example.lib -a exmpl.o smpl.o
NB If a large number of files need to
be appended to a library, it is

advantageous to use the dot option (see
item 6).

Copyright (c) 1984 by Manx Software Systems, Inc. lbutl.l

Aztec C

3. LIBUTIL option -t
USE -

FUNCTION-

>LIBUTIL

4. LIBUTIL option -x

USE -

FUNCTION-

>LIBUTIL

>LIBUTIL

5. LIBUTIL option -r
USE -

FUNCTION-

>LIBUTIL

LIBUTIL

to produce an index listing of modules
in a given library

the following displays a listing of all
modules in a particular 1library,
example.lib:

-0 example.lib -t

NB this function will allow only one
library to be listed at a time; also,
this lists only module names, and not
the functions which each module may
contain.

a. copies a particular library module
into a relocatable object file

b. copies a complete 1library into
relocatable object files

a. the following copies library module,
exmpl into a relocatable object file:

-0 example.lib -x exmpl

b. the following copies a complete
library, example.lib, (including all
modules contained within it) into
relocatable object files:

-0 example.lib -x

NB. It should be noted that when
copying a single module the LIBUTIL
executes the command and returns.
When copying a complete library,
the LIBUTIL lists the modules being
copied.

to replace a library module with the
contents of a relocatable object file
the following replaces the library
module subl with the relocatable object
file subl.o

-0 example.lib -r subl.o

Copyright (c) 1984 by Manx Software Systems, Inc. lbutl.2

Aztec C LIBUTIL

6. LIBUTIL -o library name .

USE to create a library using an extended
command line

FUNCTION the following creates a 1library,
charles.lib and appends to it subl.o,
sub2.0, sub3.o0, sub4.o, etc.

> xsub
LIBUTIL -o charles 1lib .
subl.o sub2.0 sub3.o0 sub4.o0

7. LIBUTIL option -v

USE to report the current status of a
library during an operation by LIBUTIL.

In More Detail...

Creating a Library
The command for creating a new library has this format:
LIBUTIL [-o <library name>] <input file list>

The -0 option specifies the name of the library being
created. If the option is not given, then the library name is
assumed to be "libc.lib". It is not recommended that LIBUTIL be
used without naming a library with this option.

How it Works

First, LIBUTIL creates the library in a new file with a
temporary name. If this file was successfully written, LIBUTIL
erases the file with the same name as the library, if one exists.
In effect, it makes sure that the new library can be created
before destroying the old. Then the temporary file is renamed to
the library name.

Note that there must be room on the disk for both the old
library and the new.

The <input file list> is a list of the object files which

are to be included in the library. These are usually files
generated by the Manx assembler.

Naming Conventions
An input filename can include a drive specification, as in

the name, b:modulel.o. Otherwise, the file is assumed to be on
the default drive. Also, the ".0" ending can be left off

Copyright (c) 1984 by Manx Software Systems, Inc. lbutl.3

Aztec C LIBUTIL

altogether. When an input filename lacks an extent, ".o" is

added on.

When an input file contains a single relocatable object
module, the name of the module in the library will be the
filename, less the drive specification and the extension. For
example, if the input file is b:subl.o, then the module name
inside the new library will be subl.

An input file can be a library itself. 1In this case, the
module names in the new library are the same as those in the
input 1library. For example, if the input file is a library
containing modules subl, sub2 and sub3, then the names of these
modules in the created library will also be subl, sub2 and sub3.

Since the list of input files for a library often will not
fit on a single line, there is a convenient way to extend the
command line. A period on the command line directs the linker to
start reading filenames from standard input. When another period
is read, the linker returns to the command line to read in the
remaining filenames.

Order in a Library

The order in which a library is built is often crucial for
easy linking. Modules go into a new library in the order in
which they are read by LIBUTIL. Consider the following example:

Let's assume there is currently a library, oldlib.lib, which
contains three modules: '

subl sub2 sub3
The following command might be given:

LIBUTIL -0 newlib.lib o0ldlib.lib sub4 . sub5
sub6.0 sub7.0
sub8

This will create a library called newlib.lib. The first
three modules copied into it come from oldlib.lib. Then the
contents of sub4.0 become the module, sub4, in the library.

When LIBUTIL finds a period, it continues reading the
filenames from standard input. So the next three files copied
into newlib.lib are sub6.0, sub7.0 and sub8.o. Notice that ".o"
after a filename in the command is assumed.

The last module read in the example is in sub5.0. So the
final makeup of newlib.lib is:

subl sub? sub3 sub4 sub6 sub?7
sub8 sub5

Copyright (c) 1984 by Manx Software Systems, Inc. lbutl.4

Aztec C LIBUTIL

Listing the Modules in a Library

A listing such as this can be obtained with the -T option.
This option simply produces a listing of the modules in the order
in which they appear in a library. The -0 option is used in this
case to specify which library is to be listed. For example, the
listing above would be produced by entering:

libutil -0 newlib.lib -t

If the -0 option is missing, the library, libc.lib, 1is
assumed.

LIBUTIL will not perform multiple functions during a single
invocation. For example, you cannot make it create a library and
then list its contents with a single command; you would need to
run LIBUTIL for each task.

There are just a few ways to use the -T option, such as:

libutil -t
libutil -ot example.lib
libutil -t -o example.lib

Note that the listing the modules of a library does not give
a true representation of what functions are defined within the
library. For instance, a module named "prog inp" might contain
the functions, "get record", "get name" and "get_ num".

Adding and Replacing Modules

The —A and -R options are used to add or replace modules in
a library. These options actually refer to the same process.
The method used by LIBUTIL is fairly simple.

The -0 option is used to specify the library that going to
be modified; as always, this defaults to c.lib.

LIBUTIL creates a temporary file, just as it did when making
a new library. Each module of the o0ld library is then copied, in
order, to the new file. Whenever a module name matches a name
given on the command line, the o0ld library module is ignored, and
the contents of the file given in the command are copied to that
module in the new file.

When the last module in the o0ld library has either been
copied or skipped over, LIBUTIL returns to the command line. The
files which have already been copied to the new library are
checked off. LIBUTIL then copies to the new library all the
remaining files on the command line, which have not been copied
to the new library.

Copyright (c) 1984 by Manx Software Systems, Inc. lbutl.5

Aztec C LIBUTIL

For example, given an obsolete library, obslib.lib:
modl mod?2 mod3
and the following command:

libutil -oa obslib.lib mod2 . sub2
subl

LIBUTIL first copies modl from obslib to the temporary file.
Since mod2 is specified on the command line, it copies the
contents of mod2.0 to the temporary file and ignores the mod2 in
obslib. It continues to copy mod3 from obslib, subl and sub2 to
the temporary file, in that order. Then the temporary file
is renamed to obslib.lib and the old library is erased.

Just as in library creation, the old and the new libraries
exist on disk at the same time, before the o0ld is erased. There
has to be enough room for both.

Consider the following command:
libutil -oa obslib.lib obslib.lib

LIBUTIL will copy obslib to the temporary file, since none
of the module names appear on the command line. Then the
remaining files from the input list are copied to the temporary
file. So that a listing of the resulting obslib.lib would be:

modl mod2 mod3 modl mod?2 mod3

This curious naming of modules does not affect the way their
contents are treated by the linker. For example, the first modl
might contain a single function, "get value", while the second
contains a function, "get num". If "get value" is an undefined
symbol when the linker searches the library, Jjust the first modl
will be pulled into the link, and similarly the second will be
pulled in for an undefined "“get num".

Copyright (c¢) 1984 by Manx Software Systems, Inc. lbutl.é6

SECTION VII

Library Functions

Library Functions

This chapter describes the functions which come with the
Aztec C package. It's divided into four subchapters:
introduction, overview, functions, and system dependent
functions.

The 'overview' subchapter presents an overview of several
topics, including i/o processing, memory usage, and error
handling.

The ‘functions' subchapter describes in detail the functions
in the Aztec C package which are common to all systems supported
by Aztec C. Most of these functions are also supported by Unix;
those which aren't are clearly identified.

The 'system dependent functions' subchapter describes
functions which are unique to a system.

A table of contents is provided at the beginning of the two
functions subchapters.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.1

Library Overview

Overview of Library Functions

This subchapter contains several sections, each of which
presents an overview of a different topic. The following sections
are provided:

I/0
Introduces the i/o system provided in the Aztec C package.

STANDARD I/0
The i/o functions can be grouped into two sets; this section
describes one of them, the standard i/o functions.

UNBUFFERED I/O

This section describes the other set of i/o functions, the
unbuffered.

CONSOLE I/0
Describes special topics relating to console i/o.

DYNAMIC BUFFER ALLOCATION
Discusses related to dynamic memory allocation.

ERRORS
Presents an overview of error processing.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.2

Overview of I/0

There are two sets of functions for accessing files and
devices: the unbuffered i/o functions and the standard i/o
functions. These functions are identical to their UNIX
equivalents, and are described in chapters 7 and 8 of The C
Programming Language. - T

The unbuffered i/o functions are so called because, with few
exceptions, they transfer information directly between a program
and a file or device. By contrast, the standard i/o functions
maintain buffers through which data must pass on its journey
between a program and a disk file.

The unbuffered i/o functions are used by programs which
perform their own blocking and deblocking of disk files. The
standard i/o functions are used by programs which need to access
files but don't want to be bothered with the details of blocking
and deblocking the file records.

The unbuffered and standard i/o functions each have their
own overview section (UNBUFFERED I/O and STANDARD I/0). The
remainder of this section discusses features which the two sets
of functions have in common.

The basic procedure for accessing files and devices is the
same for both standard and unbuffered i/o: the device or file
must first be "opened", that is, prepared for processing; Then
i/o operations occur; then the device or file is "closed".

A maximum of eleven files and devices can be open at once
for both standard and unbuffered i/o. When this limit is reached,
an open file or device must be closed before another can be
opened.

Each set of functions has its own functions for performing
these operations. For example, each set has its own functions for
opening a file or device. Once a file or device has been opened,
it can be accessed only by functions in the same set as the
function which performed the open, and must be closed by the
appropriate function in the same set. There are exceptions to
this non-intermingling which are described below.

There are two ways a file or device can be opened: first,
the program can explicitly open it by issuing a function call.
Second, it can be associated with one of the logical devices
standard input, standard output, or standard error, and then
opened when the program starts.

Standard input, standard output, and standard error devices
There are three logical devices which are automatically
opened when a program is started: standard input, standard

output, and standard error. By default, these are associated with
the console. The operator, as part of the command line which

Copyright (c) 1984 by Manx Software Systems, Inc. lib.3

I/0 Overview 1/0

starts the program, can specify that these logical devices are to
be "redirected" to another device or file. Standard input is
redirected by entering on the command line, after the program
name, the name of the file or device, preceeded by the character
'<', Standard output is redirected by entering the name of the
file or device, preceeded by '>'. For example, suppose the
executable program copy reads standard input and writes it to
standard output. Then the following command will read lines from
the keyboard and write them to the display:

copy

The following will read from the keyboard and write it to
the file testfile:

copy >testfile

This will copy the file exmplfil to the console:
copy <exmplfil

And this will copy exmplfil to testfile:

copy <exmplfil >testfile

Aztec C will pass command line arguments to the user's
program via the user's function main(argc, argv). argc is an
integer containing the number of arguments plus one; argv is a
pointer to a an array of character pointers, each of which,
except the first, points to a command line argument. The first
array element on some systems points to the command; on other
systems, for example, CP/M and CP/M-86, the first pointer is
null.

For example, if the following command is entered:
cat argl arg2 arg3

the program cat will be activated and execution begins at the
user's function main. The first parameter to main is the integer
4. The second parameter is a pointer to an array of four
character pointers; on some systems the first array element will
point to the string "cat" and on others it will be a null
pointer. The second, third, and fourth array elements will be
pointers to the strings "argl", "arg2", and "arg3" respectively.

The command line can contain both arguments to be passed to
the user's program and i/o redirection specifications. The i/o
redirection strings won't be passed to the user's program, and
can appear anywhere on the command line after the command name.
For example, the standard output of the cat program can be
redirected to the file outfile by any of the following commands;
in each case the argc and argv parameters to the main function of
cat are the same as if the redirection specifier wasn't present:

Copyright (c¢) 1984 by Manx Software Systems, Inc. lib.4

1/0 overview 1I/0

cat argl arg2 arg3 >outfile
cat >outfile argl arg2 arg3
cat argl >outfile arg2 arg3

Sequential I/0

A program can access files both sequentially and randomly.
For sequential access, a program simply issues any of the various
read or write calls. The transfer will begin at the file's
"current position", and will leave the current position set to
the byte following the last byte transferred. A file can be
opened for read or write access; in this case, 1its current
position is initially the first byte in the file. A file can also
be opened for append access; in this case its current position is
initially the end of the file.

On systems which don't keep track of the last character
written to a file, such as CP/M and Apple DOS, it isn't always
possible to correctly position a file to which data is to be
appended. See below for details.

Random I/0

Two functions are provided which allow a program to set the
current position of an open file: fseek, for a file opened for
standard i/o; and lseek, for a file opened for unbuffered i/o.

A program accesses a file randomly by first modifying the
file's current position using one of the seek functions. Then the
program issues any of the various read and write calls, which
sequentially access the file.

A file can be positioned relative to its beginning, current
position, or end. Positioning relative to the beginning and
current position is always correctly done. For systems which
don't keep track of the last character written to a file, such as
CP/M and Apple DOS, positioning relative to the end of a file
can't always be correctly done. See below for details.

Finding the end of a file

"UNIX keeps track of the last character written to a file.
Since the Aztec I/0 functions attempt to make a file look like a
UNIX file to a program, when a program requests that a file be
positioned relative to its end (that is, relative to the last
character which was written to it), the Aztec C routines must try
to locate the last character which was written to it. This can
always be done if the operating system on which Aztec C is
running also keeps track of the last character written to a file.

However, CP/M, CP/M-86, and Apple DOS only keep track of the
last record written to a file. For these systems, it is not

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.5

I/0 overview I/0

always possible for the Aztec C i/o functions to determine the
last character written to the file, and hence for these systems
it is not always possible to position a file relative to its end.

When a program running on one of the systems mentioned in
the last paragraph requests positioning of a file relative to its
end, the Aztec i/o functions try to find the last character
written to the file. They always succeed if the file contains
only text; for files containing arbitrary data, they may not
succeed.

To locate the last valid character in a file on one of these
systems, the Aztec routines use the following fact: when a file
is created on these systems using Aztec C, the last record in the
file is padded at the end with the special character which
denotes the end of a text file. For CP/M and CP/M-86, the special
character is control-z; for Apple DOS, it's a null character. If
the program exactly filled the last record, it won't have any
padding.

When a program requests that a file be positioned relative
to its end, the Aztec C i/o routines search the file's last
record; end of file is declared to be located at the position
following the last non-end-of-file character.

For files of text, this algorithm always correctly
determines the last character in the file, so appending to text
files is always correctly done.

For other files, this algorithm will still correctly
determine the last valid character in the file...most of the
time. However, if the last valid characters in the file are end-
of-file characters, the file will be incorrectly positioned.

Opening files

Opening files is somewhat system dependent: the parameters
to the open functions are the same on the Aztec C packages for
all systems, but some system dependencies exist, to conform with
the system conventions. For example, the syntax of file names and
and the areas searched for files differ from system to system.

The following paragraphs describe, for the systems supported
by Aztec C, system dependent information related to the opening
of files.

Opening files on CP/M, CP/M-86, and related systems

The character string which specifies the file to be opened
has the following fields, which must be in the order listed: (1)
a user number followed by a forward slash, (2) a drive identifier
followed by a colon, (3) the filename, (4) a period followed by
an extension. Only the third field is mandatory. If a user

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.6

1/0 overview 1/0

number isn't specified, the file is assumed to be on the current
user. If the drive isn't specified, the file is assumed to be on
the default drive.

For example, the following are valid file names:

file.ext file.ext is on default drive, current user
b:file.ext file.ext is on b: drive, current user
15/file.ext file.ext is on default drive, user 15

12/c:file.ext file.ext is on c: drive, user 12

A program can have files located in several different user
areas open at once.

There are several functions which may be useful to programs
which need to access files in various user areas: getusr, which
returns the current user number; setusr, which sets the current
user number; and rstusr, which resets the current user number.
See the section USER in the system dependent subchapter for more
details.

Opening files on TRSDOS and related systems

When opening a file on TRSDOS or related systems, the
filename has the standard TRSDOS format; that is, (1) filename,
(2) followed by a slash and an extention, (3) followed by a
period and a password, (4) followed by a colon and a drive
number. Only the first field is mandatory.

If a drive specifier is given, the file will be searched
for, and created if necessary, on that drive. Otherwise,
following the TRSDOS convention, a search for the file will be
made on all drives, beginning with drive :0. If the file 1is
found, and must be recreated, it will be recreated on the same
drive.

Accessing Devices

Aztec C allows programs to access devices as well as files.
Each system has its own names for devices, so the following table
lists the devices and, for each system, its name. In this table,
"CcpM" refers to CP/M, CP/M-86, and related systems; PCDOS also
includes MSDOS; TRSDOS includes LDOS and DOSPLUS.

device CPM PCDOS Apple DOS TRSDOS
keyboard con: con: ki *ki
display con: con: do: *do
printer prn: prn - pr: *pr

" Ist: - - -
RS232 in rdr: - - *ri
RS232 out pun: - - *ro

Copyright (c) 1984 by Manx Software Systems, Inc. lib.7

I/0 overview 1/0

On model 4 TRSDOS, dynamically created devices can also be
accessed.

Mixing unbuffered and standard i/o calls

As mentioned above, a program generally accesses a file or
device using functions from one set of functions or the other,
but not both.

However, there are functions which facilitate this dual
access: if a file or device is opened for standard i/o, the
function fileno returns a file descriptor which can be used for
unbuffered access to the file or device. If a file or device oOs
open for unbuffered i/o, the function fdopen will prepare it for
standard i/o as well.

Care is warranted when accessing devices and files with both
standard and unbuffered i/o functions.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.8

Overview: Standard 1I/0

The standard i/o functions are used by programs to access
files and devices. They are compatible with their UNIX
counterparts, with few exceptions, and are also described in
chapter 8 of The C Programming Language. The exceptions concern
appending data to files and positioning files relative to their
end, and are discussed below.

These functions provide programs with convenient and
efficient access to files and devices. When accessing files, the
functions buffer the file data; that is, handle the blocking and
deblocking of file data. Thus the user's program can concentrate
on its own concerns.

Buffering of data to devices when using the standard i/o
functions is discussed below.

For programs which perform their own file buffering, another
set of functions are provided. These are described in the section
UNBUFFERED I/O.

Opening files and devices

Before a program can access a file or device, it must be
"opened", and when processing on it is done it must be "closed".

An open device or file is called a "stream" and has
associated with it a pointer, called a "file pointer", to a
structure of type FILE. This identifies the file or device when
standard i/o functions are called to access it.

There are two ways for a file or device to be opened for
standard i/o: first, the program can explicitly open it, by
calling one of the functions fopen, freopen, or fdopen. In this
case, the open function returns the file pointer associated with
the file or device. fopen just opens the file or device. freopen
reopens an open stream to another file or device; it's mainly
used to change the file or device associated with one of the
logical devices standard output, standard input, or standard
error. fdopen opens for standard i/o a file or device already
opened for unbuffered i/o.

Alternatively, the file or device can be automatically
opened as one of the logical devices standard input, standard
output, or standard error. In this case, the file pointer is
stdin, stdout, or stderr, respectively. These symbols are defined
in the header file stdio.h. See the section entitled I/O for more
information on logical devices.

Closing streams
A file or device opened for standard i/o can be closed in

two ways: first, the program can explicitly close it by calling

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.9

STANDARD I/0 overview STANDARD I/O

the function fclose.

Alternatively, when the program terminates, either by
falling off the end of the function main, or by calling the
function exit, the system will automatically close all open
streams.

Letting the system automatically close open streams is
error-prone: data written to files using the standard i/o
functions is buffered in memory, and a buffer isn't written to
the file until it's full or the file is closed. Most likely, when
a program finishes writing to a file, the file's buffer will be
partially full, with this information not having been written to
the file. If a program calls fclose, this function will write the
partially filled buffer to the file and return an error code if
this couldn't be done. If the program lets the system
automatically close the file, the program won't know if an error
occurred on this last write operation.

Sequential I/0

Files can be accessed sequentially and randomly. For
sequential access, simply issue repeated read or write calls;
each call transfers data beginning at the "current position" of
the file, and updates the current position to the byte following
the last byte transferred. When a file is opened, its current
position is set to zero, if opened for read or write access, and
to its end if opened for append.

On systems which don't keep track of the last character
written to a file, such as CP/M and Apple DOS, not all files can
be correctly positioned for appending data. See the section
entitled I/0 for details.

Random I/O

The function fseek allows a file to be accessed randomly, by
changing its current position. Positioning can be relative to the
beginning, current position, or end of the file.

For systems which don't keep track of the last character
written to a file, such as CP/M and Apple DOS, positioning
relative to the end of a file cannot always be correctly done.
See the I/0 overview section for details.

Buffering

When the standard i/o functions are used to access a file,

the i/o is buffered. Either a user-specified or dynamically-

allocated buffer can be used.

The user's program specifies a 1024-byte buffer to be used

Copyright (c¢) 1984 by Manx Software Systems, Inc. 1ib.10

STANDARD I/O overview STANDARD I/0

for a file by calling the function setbuf after the file has been
opened but before the first i/o request to it has been made.

If, when the first i/o regquest is made to a file, the user
hasn't specified the buffer to be used for the file, the system
will automatically allocate, by calling malloc, a 1024-byte
buffer for it. When the file is closed it's buffer will be freed,
by calling free.

Dynamically allocated buffers are obtained from the one
region of memory (the heap), whether requested by the standard
i/o functions or by the user's program. For more information, see
the overview section DYNAMIC BUFFER ALLOCATION.

A program which both accesses files using standard i/o
functions and has overlays has to take special steps to insure
that an overlay won't be loaded over a buffer dynamically
allocated for file i/o. For more information, see section IX on
overlay support.

By default, output to the console using standard i/o
functions is unbuffered; all other device i/o using the standard
i/o functions is buffered. Console input buffering can be
disabled using the ioctl function; see the CONSOLE I/0 overview
for details. Buffering of standard i/o to other devices can be
disabled using the setbuf function. See the description of setbuf
for details.

Errors

There are three fields which may be set when an exceptional
condition occurs during stream i/o. Two of the fields are unique
to each stream (that is, each stream has its own pair). The other
is a global integer.

One of the fields associated with a stream is set if end of
file is detected on input from the stream; the other is set if an
error occurs during i/o to the stream. Once set for a stream,
these flags remain set until the stream is closed or the program
calls the clearerr function for the stream. The only exception to
the last statement is that when called, fseek will reset the end
of file flag for a stream. A program can check the status of the
eof and error flags for a stream by calling the functions feof
and ferror, respectively.

The other field which may be set is the global integer
errno. By convention, a system function which returns an error
status as its value can also set a code in errno which more fully
defines the error. The section ERRORS defines the values which
may be set in errno.

If an error occurs when a stream is being accessed, a

standard i/o function returns EOF (-1) as its value, after
setting a code in errno and setting the stream's error flag.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.11

STANDARD 1/0 overview STANDARD I/0O

If end of file is reached on an input stream, a standard i/o
function returns EOF after setting the stream's eof flag.

There are two techniques a program can use for detecting
errors during stream i/o. First, the program can check the result
of each i/o call. Second, the program can issue i/o calls and
only periodically check for errors (for example, check only after
all i/o is completed).

On input, a program will generally check the result of each
operation.

On output to a file, a program can use either error checking
technique; however, periodic checking by calling ferror is more
efficient. When characters are written to a file using the
standard i/o functions they are placed in a buffer, which is not
written to disk until it is full. If the buffer isn't full, the
function will return good status. It will only return bad status
if the buffer was full and an error occurred while writing it to
disk. Since the buffer size is 1024 bytes, most write calls will
return good status, and hence periodic checking for errors is
sufficient and most efficient.

Once a file opened for standard i/o is closed, ferror can't
be used to determine if an error has occurred while writing to
it. Hence ferror should be called after all writing to the file
is completed but before the file is closed. The file should be
explicitly closed by fclose, and its return value checked, rather
than letting the system automatically close it, to know
positively whether an error has occurred while writing to the
file. The reason for this is that when the writing to the file is
completed, it's standard i/o buffer will probably be partly full.
This buffer will be written to the file when the file is closed,
and fclose will return an error status if this final write
operation fails.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.12

STANDARD I/0 Overview STANDARD I/0

The standard i/o functions

The standard i/o functions can be grouped into two sets:
those that can access only the logical devices standard input,
standard output, and standard error; and all the rest.

Here are the standard i/o functions that can only access
stdin, stdout, and stderr. These are all ASCII functions; that
is, they expect to deal with text characters only.

getchar - get an ASCII character from stdin

gets - get a line of ASCII characters from stdin
printf - format data and send it to stdout

puterr - send a character to stderr

putchar - send a character to stdout

puts - send a character string to stdout

scanf - get a line from stdin and convert it

Here are the rest of the standard i/o functions:

agetc - get an ASCII character

aputc - send an ASCII character

fopen - open a file or device

fdopen - open as a stream a file or device already open
for unbuffered i/o

freopen - open an open stream to another file or device

fclose - <close an open stream

feof -~ check for end of file on a stream

ferror - ~check for error on a stream

fileno - get file descriptor associated with stream

fflush - write stream's buffer

fgets - get a line of ASCII characters

fprintf - format data and write it to a stream

fputs - send a string of ASCII characters to a stream

fread - read binary data

fscanf - get data and convert it

fseek -~ set current position within a file

ftell - get current position

fwrite - write binary data

getc - get a binary character

getw - get two binary characters

putc - send a binary character

putw - send two binary characters

setbuf - specify buffer for stream

ungetc - push character back into stream

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.13

overview of Unbuffered I/0

The unbuffered I/0 functions are used to access files and
devices. They are compatible with their UNIX counterparts and are
also described in chapter 8 of The C Programming Language.

As their name implies, a program using these functions, with
two exceptions, communicates directly with files and devices;
data doesn't pass through system buffers. Some unbuffered I/0,
however, is buffered: when data is transferred to or from a file
in blocks smaller than a certain value, it is buffered
temporarily. This value differs from system to system, but is
always less than or equal to 512 bytes. Also, console input can
be buffered, and is, unless specific actions are taken by the
user's program.

Programs which use the unbuffered i/o functions to access
files generally handle the blocking and deblocking of file data
themselves. Programs requiring file access but unwilling to
perform the blocking and deblocking can use the standard i/o
functions; see the section STANDARD I/0 for more information.

Here are the unbuffered i/o functions:

open - prepares a file or device for unbuffered i/o
creat - creates a file and opens it

close - concludes the i/o on an open file or device

read - read data from an open file or device

write - write data to an open file or device

lseek - change the current position of an open file

rename ~ renames a file

unlink ~ deletes a file

ioctl - change console i/o mode

isatty - 1is an open file or device the console?

Before a program can access a file or device, it must be
"opened", and when processing on it is done, it must be "closed".

An open file or device has an integer known as a "file
descriptor" associated with it; this identifies the file or
device when it's accessed.

There are two ways for a file or device to be opened for
unbuffered i/o. First, it can explicitly open it, by calling the
function open. In this case, open returns the file descriptor to
be used when accessing the file or device.

Alternatively, the file or device can be automatically
opened as one of the logical devices standard input, standard
output, or standard error. In this case, the file descriptor is
the integer value 0, 1, or 2, respectively. See the section
entitled I/0 for more information on this.

An open file or device is closed by calling the function

close. When a program ends, any devices or files still opened for
unbuffered i/o will be closed.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.14

UNBUFFERED I/0 overview UNBUFFERED I1I/0

If an error occurs during an unbuffered i/o operation, the
function returns -1 as its value and sets a code in the global
integer errno. For more information on error handling, see the
section ERRORS.

The remainder of this section discusses unbuffered i/o to
the various devices and to files.

Console I/0

Console I/0 can be performed in a variety of ways. There's a
default mode, and other modes can be selected by calling the
function ioctl.

When the console is in default mode, console input is
buffered and is read from the keyboard a line at a time. Typed
characters are echoed to the screen and the operator can use the
standard operating system line editing facilities. A program
doesn't have to read an entire line at a time (although the
system software does this when reading keyboard input into it's
internal buffer), but at most one line will be returned to the
program for a single read request.

The other modes of console i/o allow a program to get
characters from the keyboard as they are typed, with or without
their being echoed to the display; to disable normal system line
editing facilities; and to terminate a read request if a key
isn't depressed within a certain interval.

Output to the console is always unbuffered: characters go
directly from a program to the display. The only choice concerns
translation of the newline character; by default, this 1is
translated into a carriage return, line feed seqgquence.
Optionally, this translation can be disabled.

For more information see the section CONSOLE I/O.

I/0 to Non-console Devices

I/0 to devices other than the system console is always
unbuffered, with no translations.

File 1/0

Programs call the functions read and write to access a file;
the transfer begins at the "current position" of the file and
proceeds until the number of characters specified by the program
have been transferred.

The current position of a file can be manipulated in various
ways by a program, allowing both sequential and random acccess to

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.15

UNBUFFERED I/0 overview UNBUFFERED I/0

the file. For sequential access, a program simply issues
consecutive i/o requests. After each operation, the current
position of the file is set to the character following the last
one accessed.

The function lseek provides random access to a file by
setting the current position to a specified character location.

lseek allows the current position of a file to be set
relative to the end of a file. For systems which don't keep track
of the last character written to a file, such positioning cannot
always be correctly done. For more information, see the section
entitled 1I/0.

open provides a mode, O_APPEND, which causes the file being
opened to be positioned at its end. This mode is supported on
UNIX Systems 3 and 5, but not UNIX version 7. As with lseek, the
positioning may not be correct for systems which don't keep track
of the last character written to a file.

Copyright (c¢) 1984 by Manx Software Systems, Inc. lib.16

Overview of Console I/0

Console I/0 can be performed in a variety of ways:
o console input can be buffered;

o console input can be unbuffered, with the program
receiving characters as they're typed;

o echoing of typed characters to the display can be enabled
or disabled;

O an input operation can be automatically terminated if a
character isn't received in a certain interval;

0 mapping of CR to LF on input and LF to CR-LF on output
can be enabled or disabled.

There is a default mode for console i/o, which is in effect
unless changed by a call to the function ioctl. Thus, programs
can access the console in the default mode without doing anything
special. Or, console i/o can easily be customized to behave as
desired by the programmer.

In the default mode for console input, the system maintains
an internal buffer of characters which it has read from the
keyboard. Characters are returned to the program from this
buffer. When the buffer is empty, the system reads a line of
characters from the keyboard into the buffer; the program is
suspended while this occurs. The operator can use the 1line
editing facilities provided by the operating system, and typed
characters are echoed to the display. Finally, carriage return
characters are converted to newline characters.

In the default mode, console output is unbuffered (as it is
for all other modes). Newline characters are converted to
carriage return - line feed sequence.

A program selects console I/0 modes using the function
ioctl. This has the form:

#include "sgtty.h"

ioctl(fd, code, arg)
struct sgttyb *arg;

The header file sgtty.h defines symbolic values for the code
parameter (which tells ioctl what to do) and the structure
sgttyb.

The parameter fd is a file descriptor associated with the
console. On UNIX, this parameter defines the file descriptor
associated with the device to which the ioctl call applies. Here,
ioctl always applies to the console.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.17

Ooverview of Console I1I/0

. The parameter code defines the action to be performed by
ioctl. It can have these values:

TIOCGETP - fetch the console parameters and store
them in the structure pointed at by arg
TIOCSETP and TIOCSETN
- set the console parameters according to
the structure pointed at by arg

The argument arg points to a structure having the following
format:

struct sgttyb {
char sg_erase;
char sg kill;
int sg_ flags;

}

Only sg_flags is used by Aztec C; the rest are provided for
UNIX compatibility.

sg_flags determines the console I/0O mode. These are the
symbolic values it can assume:

RAW - set RAW mode (turns off CBREAK, ECHO, & CRMOD)
CBREAK - return each character as soon as typed
ECHO - echo input characters to the display

CRMOD

map CR to LF on input; convert LF to CR~LF on
output

More than one of these codes can be specified in a single
call to ioctl; the values are simply 'or'ed together. If the RAW
option is selected, none of the other options have any effect.

When the console is in RAW mode, console input has the
following features:

o0 no character translations are performed

o the operator can't use the operating system's line
editing facilities

o typed characters aren't echoed to the screen

o0 the system will attempt to read the number of characters
requested by the read request; however, after one
character has been received, the operation will be
terminated if a character isn't received within a certain
period of time. This period is hard coded into ioctl.c.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.18

overview of Console I/0

If CBREAK is selected, and RAW is not, console input has the
following features:

O the system will attempt to read the number of characters
requested. if ECHO isn't specified, the operation will
time out after one character has been received if a
character isn't received within a certain period of time.
If ECHO is specified, the operation won't terminate until
all characters requested have been received.

o If ECHO is selected, input characters are echoed to the
display; otherwise, they're not.

o If CRMOD is selected carriage returns are translated into
line feeds.

If neither RAW nor CBREAK is selected, a mode is selected
which 1s either similar or identical to the default mode
described above. If CRMOD is set, the mode is identical.
Otherwise, the only difference is that the translation of
carriage return into newline on input and the translation of
newline to carriage return - linefeed sequence on output doesn't
occur.

As mentioned above, when the console is in RAW mode or
CBREAK without ECHO mode, a read request to the console will
always return at least one character, but will terminate without
having read the specified number of characters if a character
isn't received within a certain interval. Actually, only the
unbuffered read request may time out; the standard i/o functions
are implemented in such a way that they will return the requested
number of characters.

For example, when the console is in RAW or CBREAK without
ECHO mode,

read(fd, buf, 80)
will always return at least one character, but may not return
return all 80 if the operator delays too long between subsequent
key strokes.
With the console still in a time-out-able mode
getc(£fp)
directed to the console will always return one character, and
gets(buf, 80, £p)

will always return an entire line of characters.

Copyright (c¢) 1984 by Manx Software Systems, Inc. 1ib.19

Overview of Comnsole I/0O

EXAMPLES

1. Console input using default mode

The following program copies characters from stdin to
stdout. The console is in default mode, and assuming these
streams haven't been redirected by the operator, the program will
read from the keyboard and write to the display. In this mode,
the operator can use the operating system's line editing
facilities, such as backspace, and characters entered on the
keyboard will be echoed to the display. The characters entered
won't be returned to the program until the operator depresses
carriage return.

#include "stdio.h"
#include "sgtty.h"
main()
{
int c:
while ((c = getchar()) != EOF)
putchar(c);

2. Console input - RAW mode

In this example, a program opens the console for standard
i/o, sets the console in RAW mode, and goes into a loop, waiting
for characters to be read from the console and then processing
them. The characters typed by the operator aren't displayed
unless the program itself displays them. The input request won't
terminate until a character is received. This example assumes
that the console is named 'con:'; on systems for which this is
not the case, Jjust substitute the appropriate name.

$include "“stdio.h"
$include "sgtty.h"

main()

{ -
int c;
FILE *fp;

struct sgttyb stty:;

if ((fp = fopen("con:", "r") == NULL){
printf("can't open the console\n");
exit():;

stty.sqg_flags = RAW;
ioctl(fileno(£fp), TIOCSETP, &stty);
for (;;){

c = getc(fp);

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.20

Overview of Console I/0

3. Console input - console in CBREAK + ECHO mode

This example modifies the previous program so that
characters read from the console are automatically echoed to the
display. The program accesses the console via the standard input
device. It uses the function isatty to verify that stdin is
associated with the console; if it isn't, the program reopens
stdin to the console using the function freopen. Again, the
console is assumed to be named ‘con:’.

#include "stdio.h"
#include "sgtty.h"
main()

int c;
struct sgttyb stty;

if (lisatty(stdin))
freopen("con:", "r", stdin):;
stty.sg flags = CBREAK | ECHO;
ioctl(0, TIOCSETP, &stty);
for (;;){
c = getchar();

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.21

Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation
and deallocation of buffers from a section of memory called the
'heap'. They are:

malloc -~ allocates a buffer

calloc - allocates a buffer and initializes it to zeroes

realloc - allocates more space to a previously allocated
buffer

free - releases an allocated buffer for reuse

In addition, the function sbrk allows users to implement
their own dynamic buffer allocation scheme: when passed an
integer, sbrk increments an internal pointer by that amount and
returns the original value of the pointer. The pointer initially
points to the base of the heap.

Dynamic allocation of standard i/o buffers

Buffers used for standard i/o are dynamically allocated from
the heap unless specific actions are taken by the user's program.
Standard i/o calls to dynamically allocate and deallocate buffers
can be interspersed with those of the user's program,

Programs which perform standard i/o and which must have
absolute control of the heap can explicitly define the buffers to
be used by a standard i/o stream. See the standard i/o overview
for details.

Heap - stack positioning

The starting address of a program's heap is assigned when
the program is linked. The linker chapter describes how this
assignment is made.

When a program is activated, a 2048-byte block of memory is
reserved for the stack. The location of this block is system
dependent, but it's always above the beginning of the heap. The
heap's ending address is then set to the beginning of the stack
segment.,

On CP/M, the top of the stack is the base of the CP/M bdos;
on TRSDOS, it's SHIGH; on Apple DOS, it's the base of the DOS
file buffers.

Buffers can't be allocated above the heap-stack boundary,
but nothing prevents the stack from growing below the boundary.
This, of course, presents the possibility of the stack
overwriting a dynamically allocated buffer. The function rsvstk
can be used to change the heap-stack boundary.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.22

Overview of Error Processing

This section discusses error processing which relates to the
global integer errno. This variable is modified by the standard
i/o, unbuffered i/o, and scientific (eg, sin, sqrt) functions as
part of their error processing.

The handling of floating point exceptions (overflow,
underflow, and division by zero) is discussed in chapter VIII.

When a standard i/o, unbuffered i/o, or scientific function
detects an error, it sets a code in errno which describes the
error. If no error occurs, the scientific functions don't modify
errno. If not error occurs, the i/o functions may or may not
modify errno.

Also, when an error occurs,

o a standard i/o function returns -1 and sets an error flag
for the stream on which the error occurred;

o an unbuffered i/o function returns -1;
o a scientific function returns an arbitrary value.

When performing scientific calculations, a program can check
errno for errors as each function is called. Alternatively, since
errno is modified only when an error occurs, errno can be checked
only after a sequence of operations; if it's non-zero, then an
error has occurred at some point in the sequence. This latter
technique can only be used when no i/o operations occur during
the sequence of scientific function calls.

Since errno may be modified by an i/o function even if an
error didn't occur, a program can't perform a sequence of i/fo
operations and then check errno afterwards to detect an error.
Programs performing unbuffered i/o must check the result of each
i/o call for an error.

Programs performing standard i/o operations cannot,
following a sequence of standard i/o calls, check errno to see if
an error occurred. However, associated with each open stream is
an error flag. This flag is set when an error occurs on the
stream and remains set until the stream is closed or the flag is
explicitly reset. Thus a program can perform a sequence of
standard i/o operations on a stream and then check the stream's
error flag. For more details, see the standard i/o overview
section.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.23

ERRORS

Ooverview ERRORS

The following table lists the values which may be placed in
errno. In addition, positive values may be set in errno following

an i/o operation;

bdos.

these are error codes returned by the CP/M

The symbolic values listed below are defined in the header
file errno.h.

$define

#define
#$define

#$define

#define
#define
#define
#define

#define
#define
#$define
#define

Copyright (c) 1984 by Manx Software Systems,

ENOENT -1
E2BIG -2
EBADF -3
ENOMEM -4
EEXIST -5
EINVAL -6
ENFILE -7
EMFILE -8
ENOTTY -9
EACCES -10
ERANGE -20
EDOM =21

file does not exist

not used

bad file descriptor - file is not open
or improper operation requested
insufficient memory for requested
operation

file already exists on creat request
invalid argument

exceeded maximum number of open files
exceeded maximum number of file
descriptors

ioctl attempted on non-console

invalid access request

math function value can't be computed
invalid argument to math function

Inc. lib.24

System Independent Functions

This subchapter describes in detail the functions which are

common to all Aztec C packages.

The chapter is divided into sections, each of which

describes a group of related functions. Each section has a name,
and the sections are ordered alphabetically by name. Following
this introduction is a cross reference which lists each function
and the name of the section in which it is described.

A section is organized into the following subsections:

TITLE

Lists the name of the section, a phrase which is intended to
catagorize the functions described in the section, and one
or more letters in parentheses which specify the libraries
containing the section's functions.

The letters which may appear in parentheses and their
corresponding libraries are:

C c.lib
M m.lib

On some systems, the actual library name may be a variant on
the name given above. For example, on TRSDOS, the libraries
are named c¢/lib and m/lib.

SYNOPSIS

Indicates the types of arguments that the functions
described in the section require, and the values they
return. For example, the function atof converts character
strings into double precision numbers. It is listed in the
synopsis as

double atof(s)
char *s;

This means that atof() returns a value of type double and
requires as an argument a pointer to a character string.
Since atof returns a non-integer value, prior to use of the
function it must be declared:

double atof();
The notation

#$include "header.h"
at the beginning of a synopsis indicates that such a
statement should appear at the beginning of any program

calling one of the functions described in the section.

Oon Radio Shack systems, a header file can use either a
period or a slash to separate the filename from the extent.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.25

SYSTEM INDEPENDENT FUNCTIONS

That is, the include statement can be as listed above, or
#include "header/h"

DESCRIPTION
Describes the section's functions.

SEE ALSO
Lists relevant sections. A letter in parentheses may follow
a section name. This specifies where the section is located:
no letter means that the section is in the current
subchapter; 'O' means that it's in the overview subchapter;
'S' means that it's in the system dependent subchapter.

DIAGNOSTICS
Describes the error codes that the section's functions may

return. The section ERRORS presents an overview of error
processing.

EXAMPLES
Gives examples on use of the section's functions.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.26

Index to System Independent Functions

SYSTEM INDEPENDENT FUNCTIONS

function page

ACOS s esseevoses
agetC coeeeoscee
AputcC i ececaonn
ASIN ceveseoaens
Atan .ccececoeccooe
atan?2 ...cceceeen
atof .. eiecanan
Atoil teveeeecnnn
atol ...t ennn
calloc teeeeeees
Cell .teiesecccnse
clearerr ce.eeeee
ClOS€e sieencccses
COS covesacnnnas
COSh st eesnsss
cotan ..cecceeeee
creat ceeeecescee
€XP csersecsaane
fclose eeeeennn
fdopen ...cceeen
feof i eeeenne
ferror ..ieeecece
fflush cceeeeeen
fgets ... 0o
fileno eececeaee
floor ..ieeeeeces
fopen ...ccceees
format ..eeeee.s
fprintf
fputs ciieeceenn
fread cocevecons
free ceiieieenes
freopen ...ccececee
frexp cieeececce
fscanf ...cc0c..
fseek tieeecacns
ftell ..cvieeenne
ftoa i
fwrite cieceeeess
getC ceeecceonsns
getchar ..cceoee
getsS ceiveeccacan
getWw cececeeconn
indeX ceeeeeeese
ioctl ciceieennns
isalpha cceeesses
isatty eceececeess
1deXpP eeeeooesee
10 cevecsenccns

Copyright (c) 1984 by

SIN
GETC
PUTC
SIN
SIN
SIN
ATOF
ATOF
ATOF
MALLOC
FLOOR
FERROR
CLOSE
SIN
SINH
SIN
CREAT
EXP
FCLOSE
FOPEN
FERROR
FERROR
FCLOSE
GETS
FERROR
FLOOR
FOPEN
PRINTF
PRINTF
PUTS
FREAD
MALLOC
FOPEN
FREXP
SCANF
FSEEK
FSEEK
ATOF
FREAD
GETC
GETC
GETS
GETW
STRING
IOCTL
CTYPE
IOCTL
FREXP
EXP

Manx Software Systems, Inc.

1ib.27

loglo ..
longjmp
lseek ..
malloc .
movmem .
modf ...
open ...
POW ¢,
printf .
putc ...
putchar
puterr .
puts ...
putw ...
ran .e..
read ...
rename .
rindex .
scanf ..
setbuf .
setjmp .
setmem .
SIN +ee
sinh ...
sprintf
sgrt ...
sscanf .
strcat .
strcmp .
strcpy .
strlen .
strncat
strncmp
strncpy
swapmem
tan
tanh ...
tolower
toupper
ungetc .
unlink .

Write seeeeveees

SYSTEM INDEPENDENT FUNCTIONS

EXP
SETJMP
LSEEK
MALLOC
MOVMEM
FREXP
OPEN
EXP
PRINTF
PUTC
PUTC
PUTC
PUTS
PUTC
RAN
READ
RENAME
STRING
SCANF
SETBUF
SETJIMP
MOVMEM
SIN
SINH
PRINTF
EXP
SCANF
STRING
STRING
STRING
STRING
STRING
STRING
STRING
MOVMEM
SIN
SINH
TOUPPER
TOUPPER
UNGETC
UNLINK
WRITE

Copyright (c¢) 1984 by Manx Software Systems,

Inc.

lib.28

Function Definitions

ATOF (C, M) Utility Functions ATOF

NAME
atof, atoi, atol - convert ASCII to numbers
ftoa - convert floating point to ASCII

SYNOPSIS
double atof(cp)
char *cp;

atoi(cp)
char *cp;

long atol(cp)
char *cp;

ftoa(val, buf, precision, type)
double val;

char *buf;

int precision, type;

DESCRIPTION
atof, atoi, and atol convert a string of text characters
pointed at by the argument cp to double, integer, and long
representations, respectively.

atof recognizes a string containing leading blanks and tabs,

which it skips, then an optional sign, then a string of

digits optionally containing a decimal point, then an
1]]

optional 'e' or 'E' followed by an optionally signed
integer.

atoi and atol recognize a string containing leading blanks
and tabs, which are ignored, then an optional sign, then a
string of digits.

ftoa converts a double precision floating point number to
ASCII. val is the number to be converted and buf points to
the buffer where the ASCII string will be placed. precision
specifies the number of digits to the right of the decimal
point. type specifies the format: 0 for "E" format, 1 for
"F" format, 2 for "G" format.

atof and ftoa are in the library m.lib; the other functions
are in c.lib.

Copyright (c¢) 1984 by Manx Software Systems, Inc. 1lib.29

CLOSE (cC) Unbuffered I/0 Function CLOSE

NAME
close - close a device or file

SYNOPSIS
close(£d)
int fd;

DESCRIPTION
close closes a device or disk file which is opened for
unbuffered i/o.

The parameter fd is the file descriptor associated with the
file or device. If the device or file was explicitly opened
by the program by calling open or creat, fd is the file
descriptor returned by open or creat.

close returns Q0 as its value if successful.

SEE ALSO
UNBUFFERED I/0 (0), ERRORS (0)

DIAGNOSTICS

If close fails, it returns -1 and sets an error code in the
global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.30

CREAT (C) Unbuffered I/0 Function CREAT

NAME
creat - create a new file

SYNOPSIS
creat(name, pmode)
char *name;
int pmode;

DESCRIPTION

creat creates a file and opens it for unbuffered, write-only
access. If the file already exists, it is truncated so that
nothing is in it (this is done by erasing and then creating
the file).

creat returns as its value an integer called a "file
descriptor". Whenever a call is made to one of the
unbuffered i/o functions to access the file, its file
descriptor must be included in the function's parameters.

The parameter name is a pointer to a character string which
is the name of the device or file to be opened. See the I/0
overview section for details.

The parameter pmode is optional. If specified, it 1is
ignored. The pmode parameter should be included, however,
for programs for which UNIX-compatibility is required, since
the UNIX creat function requires it. In this case, pmode
should have an octal value of 0666.

SEE ALSO
UNBUFFERED I/0 (0), ERRORS (0)

DIAGNOSTICS
If creat fails, it returns -1 as its value and sets a code

in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.31

CTYPE (C)

NAME

isalpha,

ispunct,

Utility Functions CTYPE

isupper, islower, 1isdigit, isalnum, isspace,
isprint, iscntrl, isascii

- character clasification functions

SYNOPSIS

#$include “ctype.h"

isalpha(c)

DESCRIPTION

These macros classify ASCII-coded integer values by table

lookup,

returning nonzero if the integer is in the catagory,

zero otherwise. isascii is defined for all integer values.
The others are defined only when isascii is true and on the
single non-ASCII value EOF (-1).

isalpha
isupper
islower
isdigit
isalnum
isspace

ispunct
isprint

iscntrl

isascii

is a letter

is an upper case letter

is a lower case letter

is a digit

is an alphanumeric character

c is a space, tab, carriage return, newline,
or formfeed

c is a punctuation character

c is a printing character, valued 0x20
(space) through 0x7e (tilde)

c is a delete character (0xff) or ordinary
control character (value less than 0x20)

c 1s an ASCII character, code less than 0x100

Naoaaaon

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.32

EXp (M) Math Functions EXP

NAME
exponential, logarithm, power, square root functions:

exp, log, loglO, pow, sqgrt

SYNOPSIS
double exp(x)
double x:;

double log(x)
double x;

double loglO(x)
double x;

double pow(x, y)
double x,y:

double sqrt(x)
double x;

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of Xx; l1logl0O returns the
base 10 logarithm.

pow returns x ** y (x to the y-th power).
sqrt returns the square root of Xx.

SEE ALSO
ERRORS

DIAGNOSTICS

If a function can't perform the computation, it sets an
error code in the global integer errno and returns an
arbitrary value; otherwise it returns the computed value
without modifying errno. The symbolic values which a
function can place in errno are EDOM, signifying that the
argument was invalid, and ERANGE, meaning that the value of
the function couldn't be computed. These codes are defined
in the file errno.h.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.33

EXP (M) Math Functions EXP

The following table lists, for each function, the error
codes that can be returned, the function value for that
error, and the meaning of the error. The symbolic values are
defined in the file math.h.

function	error	£(x)	Meaning
exp	ERANGE	HUGE	x > LOGHUGE
	ERANGE	0.0	x < LOGTINY
log	EDOM	-HUGE	x <=
loglo	EDOM	-HUGE	x <=0 I
pow	EDOM	-HUGE	x < 0, x=y=0
[ERANGE	HUGE	y*log(x)>LOGHUGE
.	ERANGE	0.0	y*log(x)<LOGTINY
sqrt	EDOM	0.0	x < 0.0

Copyright (c) 1984 by Manx Software Systems, Inc. lib.34

FCLOSE (C) Standard 1/0 Functions FCLOSE

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include "“stdio.h"

fclose(stream)
FILE *stream:

fflush(stream)
FILE *stream;

DESCRIPTION
fclose informs the system that the user's program has
completed its buffered i/o operations on a device or file
which it had previously opened (by calling fopen). fclose
releases the control blocks and buffers which it had
allocated to the device or file. Also, when a file is being
closed, fclose writes any internally buffered information

to the file.

fclose is called automatically by exit.

fflush causes any buffered information for the named output
stream to be written to that file. The stream remains open.

If fclose or fflush is successful, 1t returns 0 as its
value.

SEE ALSO
STANDARD I/0 (0O)

DIAGNOSTICS

If the operation fails, -1 is returned, and an error code is
set in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.35

FERROR (C) Standard I/0 Functions FERROR

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include "stdio.h"

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream:;

DESCRIPTION
feof returns non-zero when end-of-file is reached on the
specified input stream, and zero otherwise.

ferror returns non-zero when an error has occurred on the
specified stream, and zero otherwise. Unless cleared by
clearerr, the error indication remains set until the stream
is closed.

clearerr resets an error indication on the specified stream.

fileno returns the integer file descriptor associated with
the stream.

These functions are defined as macros in the file stdio.h.

SEE ALSO
STANDARD I/0 (0)

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.36

FLOOR (M)

NAME
fabs,

SYNOPSIS
double
double

double
double

double
double

DESCRIPTION

floor,

floor(x)
X;

ceil(x)
X;

fabs(x)
X:

ceil

Math Utility Functions

- absolute value, floor,

fabs returns the absolute value of x.

FLOOR

ceiling routines

floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than Xx.

Copyright (c) 1984 by Manx Software Systems, Inc.

1ib.37

FOPEN (C) Standard I/0 Functions FOPEN

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include "stdio.h"

FILE *fopen(filename, mode)
char *filename, *mode:;

FILE *freopen(filename, mode, stream)
char *filename, *mode:
FILE *stream;

FILE *fdopen(fd, mode)
char *mode;

DESCRIPTION
These functions prepare a device or disk file for access by
the standard i/o functions; this is called "opening" the
device or file, A file or device which has been opened by
one of these functions is called a "stream".

If the device or file is successfully opened, these
functions return a pointer, called a "file pointer" to a
structure of type FILE. This pointer is included in the list
of parameters to buffered i/o functions, such as getc or
putc, which the user's program calls to access the stream.

fopen is the most basic of these functions: it simply opens
the device or file specified by the filename parameter for
access specified by the mode parameter. These parameters are
described below.

freopen substitutes the named device or file for the device
or file which was previously associated with the specified
stream. It closes the device or file which was originally
associated with the stream and returns stream as its value.
It is typically used to associate devices and files with the
preopened streams stdin, stdout, and stderr.

fdopen opens a device or file for buffered i/o which has
been previously opened by one of the unbuffered open
functions open and creat. It returns as it's value a FILE
pointer.

fdopen is passed the file descriptor which was returned when
the device or file was opened by open or creat. It's also
passed the mode parameter specifying the type of access
desired. mode must agree with the mode of the open file.

The parameter filename is a pointer to a character string

which is the name of the device or file to be opened. For
details, see the I/0 overview section.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.38

FOPEN (C) Standard I/0 Functions FOPEN

mode points to a character string which specifies how the
user's program intends to access the stream. The choices
are as follows:

mode meaning

"r" Open for reading only. If a file 1is
opened, it 1is positioned at the
first character in it. 1If the file or

device does not exist, NULL is returned.

Open for writing only. If a file is
opened which already exists, it is trun-
cated to zero length. If the file
does not exist, it 1is created.

a Open for appending. The calling program
is granted write-only access to the
stream. The current file position is
the character after the last character
in the file. If the file does not
exist, it is created.

X Open for writing. The file must not
previously exist. This option is not
supported by Unix,

"r+" Open for reading and writing. Same as
1] Hn

r", but the stream may also be written
to.

"wi" Open for writing and reading. Same as
"w", but the stream may also be read;
different from "r+" in the creation of a

new file and loss of any previous one.

"a+" Open for appending and reading. Same as
"a", but the stream may also be read;
different from "r+" in file positioning

and file creation.

"x+" Open for writing and reading. Same as
"x" but the file can also be read.

On systems which don't keep track of the last character in a
file (for example CPM and Apple DOS), not all files can be
correctly positioned when opened in append mode. See the
I1/0 overview section for details.

SEE ALSO
I1/0 (0), STANDARD I/0O (O)

DIAGNOSTICS

If the file or device cannot be opened, NULL is returned and
an error code is set in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.39

FOPEN (C) Standard I/0 Functions FOPEN

EXAMPLES
The following example demonstrates how fopen can be used in
a program.

$#include "stdio.h"

main(argc,argv)
char **argv;
{
FILE *fopen(), *fp;

if ((fp = fopen(*argv[1l], *argv[2])) == NULL) {
printf("You asked me to open %s",*argv[1l]);
printf("in the $%s mode", *argv[2]);
printf("but I can't!\n");

} else
printf("g%s is open\n", *argv[1]);

}

Here is a program which uses freopen:

#include "stdio.h"

main()
FILE *fp;
fp = freopen("dskfile", "w+", stdout);

printf("This message is going to dskfile\n");

}

Here is a program which uses fdopen:
#include "stdio.h"

dopen_it(£d)
int £4; /* value returned by previous call to open */

{
FILE *fp;

if ((fp = fdopen(fd, "r+")) == NULL)
printf("can't open file for r+\n");
else
return(£fp);

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.40

FREAD (C) Standard 1/0 Function FREAD

NAME

fread, fwrite - buffered binary input/output

SYNOPSIS

#$include "“stdio.h"

int fread(buffer, size, count, stream)
char *buffer;

int size, count;

FILE *stream;

int fwrite(buffer, size, count, stream)
char *buffer;

int size, count;

FILE *stream;

DESCRIPTION

fread performs a buffered input operation and fwrite a
buffered write operation to the open stream specified by the
parameter stream.

buffer is the address of the user's buffer which will be
used for the operation.

The function reads or writes count items, each containing
size bytes, from or to the stream.

fread and fwrite perform i/o using the functions getc and
putc; thus, no translations occur on the data being
transferred.

The function returns as its value the number of items
actually read or written.

SEE ALSO

STANDARD I/0 (0), FOPEN, ERRORS (0), FERROR

DIAGNOSTICS

fread and fwrite return 0 upon end of file or error. The
functions feof and ferror can be used to distinguish between
the two. In case of an error, the global integer errno
contains a code defining the error.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.41

FREAD (C)

EXAMPLE

Standard I/0 Function

This is the code for reading ten integers from file 1 and
writing them again to file 2. It includes a simple check
that there are enough two-byte items in the first file:

$include "stdio.h"

main()

FILE *fpl, *fp2, *fopen();

char *buf;

int size = 2, count = 10;

fpl
fp2

fopen(" filelll R Ilrll
fopen("file2","w"

-
’

if (fread(buf, size, count,
printf("Not enough integers in filel\n");

fwrite(buf, size, count,

Copyright (c) 1984 by Manx Software Systems,

fp2);

Inc.

count)

1lib.42

FREXP (M) Math Functions FREXP

NAME
frexp, ldexp, modf - build and unbuild real numbers

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
frexp computes for its argument, arg, a double quantity x
and an integer quantity n such that value = x*2**n. x 1s

returned as the value of frexp, and n is returned in the
integer field pointed at by eptr.

ldexp returns the double quantity value*2**exp.

modf returns as its value the positive fractional part of
value and stores the integer part in the double field
pointed at by iptr.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.43

FSEEK (cC) Standard 1I/0 Functions FSEEK

NAME
fseek, ftell - reposition a stream

SYNOPSIS
#include “stdio.h"

int fseek(stream, offset, origin)
FILE *stream;

long offset;

int origin;

long ftell(stream)
FILE *stream;

DESCRIPTION
fseek sets the "current position" of a file which has been
opened for buffered i/o. The current position is the byte
location at which the next input or output operation will
begin.

stream is the stream identifier associated with the file,
and was returned by fopen when the file was opened.

offset and origin together specify the current position:
the new position is at the signed distance offset bytes from
the beginning, current position, or end of the file,
depending on whether origin is 0, 1, or 2, respectively.

offset can be positive or negative, to position after or
before the specified origin, respectively, with the
limitation that you can't seek before the beginning of the
file.

For some operating systems (for example, CPM and Apple DOS)
a file may not be able to be correctly positioned relative
to its end. See the overview sections I/0 and STANDARD I/0
for details.

I1f fseek is successful, it will return zero.

ftell returns the number of bytes from the beginning to the
current position of the file associated with stream.

SEE ALSO
STANDARD I/0 (0), 1/0 (0), LSEEK

DIAGNOSTICS

fseek will return -1 for improper seeks. In this case, an
error code is set in the global integer errno.

Copyright (c) 1984 by Manx Software Systems, Inc. lib.44

FSEEK (C) Standard I/0 Functions FSEEK

EXAMPLE
The following routine is equivalent to opening a file in
"a+" mode:
a plus(filename)
char *filename;

FILE *fp, *fopen();

if ((fp = fopen(filename, r+)) == NULL)
fp = fopen(filename, w+);
fseek(fp, OL, 2); /* position 1 byte past

last character */

}

To set the current position back 5 characters before the
present current position, the following call can be used:

fseek(fp, -5L, 1)

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.45

GETC (C) Standard I/0 Function GETC

NAME
getc, agetc, getchar, getw

SYNOPSIS
#include "stdio.h"

int getc(stream)
FILE *stream;

int agetc(stream) /* non-Unix function */
FILE *stream;

int getchar()

int getw(stream)
FILE *stream:

DESCRIPTION

getc returns the next character from the specified input
stream.

agetc is used to access files of text. It generally behaves
like getc and returns the next character from the named
input stream. It differs from getc in the following ways:
0 it translates end-of-line sequences (eg, carriage
return on Apple DOS; carriage return-line feed on
CPM) to a single newline ('\n') character.
o it translates an end-of-file sequence (eg, a null
character on Apple DOS; a control-z character on
CPM) to EOF;
o it ignores null characters ('\0') on all systems
except Apple DOS;
o the most significant bit of each character returned
is set to zero.
agetc is not a Unix function. It is, however, provided with
all Aztec C packages, and provides a convenient, system-
independent way for programs to read text.

getchar returns text characters from the standard input
stream (stdin). It is implemented as the call agetc(stdin).

getw returns the next word from the specified input stream.
It returns EOF (-1) upon end-of-file or error, but since
that is a good integer value, feof and ferror should be used
to check the success of getw. It assumes no special
alignment in the file.

SEE ALSO
I/0 (0), STANDARD I/0 (0), FOPEN, FCLOSE

DIAGNOSTICS
These functions return EOF (-1) at end of file or if an
error occurs. The functions feof and ferror can be used to
distinguish the two. In the latter case, an error code 1is

Copyright (c) 1984 by Manx Software Systems, Inc. lib.46

GETC (C) Standard I/0 Function GETC

set in the global integer errno.

Copyright (c¢) 1984 by Manx Software Systems, Inc. 1lib.47

GETS

NAME

(c) Standard I/0 Functions GETS

gets, fgets - get a string from a stream

SYNOPSIS

#include "stdio.h"

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION

gets reads a string of characters from the standard input
stream, stdin, into the buffer pointed by s. The input
operation terminates when either a newline character (\n) or
end of file is encountered.

fgets reads characters from the specified input stream into
the buffer pointer at by s until either (1) n-1 characters
have been read, (2) a newline character (\n) is read, or (3)
end of file or an error is detected on the stream.

Both functions return s, except as noted below.

gets and fgets differ in their handling of the newline
character: gets doesn't put it in the caller's buffer, while
fgets does. This is the behavior of these functions under
UNIX.

These functions get characters using agetc; thus they can
only be used to get characters from devices and files which
contain text characters.

SEE ALSO

1/0 (0), STANDARD I/O (0), FERROR

DIAGNOSTICS

gets and fgets return the pointer NULL (0) upon reaching end
of file or detecting an error. The functions feof and ferror
can be used to distinguish the two. In the latter case, an
error code is placed in the global integer errno.:

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.48

IOCTL (C) I/0 function IOCTL

NAME
ioctl, isatty - device i/o utilities

SYNOPSIS
#include "sgtty.h"

ioctl(fd, cmd, stty)
struct sgttyb *stty;

isatty(£d)

DESCRIPTION
joctl sets and determines the mode of the -console,

For more details on ioctl, see the overview section CONSOLE
1/0.

isatty returns non-zero if the file descriptor fd is
associated with the console, and zero otherwise.

SEE ALSO
CONSOLE I/0 (0)

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.49

LSEEK

NAME

SYNOP

(c) Unbuffered I/0 Function LSEEK

lseek - change current position within file

SIS

long int 1lseek(fd, offset, origin)
int f£d4, origin;

long offset;

DESCRIPTION

lseek sets the current position of a file which has been
opened for unbuffered i/o. This position determines where
the next character will be read or written.

fd is the file descriptor associated with the file.

The current position is set to the location specified by the
offset and origin parameters, as follows:

If origin is 0, the current position is set to offset
bytes from the beginning of the file.

If origin is 1, the current position is set to the
current position plus offset.

If origin is 2, the current position is set to the end
of the file plus offset.

The offset can be positive or negative, to position after or
before the specified origin, respectively.

Positioning of a file relative to its end (that is, calling
lseek with origin set to 2) cannot always be correctly done
on all systems (for example, CPM and Apple DOS). See the
section entitled I/0 for details.

If 1seek is successful, it will return the new position in
the file (in bytes from the beginning of the file).

SEE ALSO

UNBUFFERED I/0 (0), I/0 (0)

DIAGNOSTICS

If 1seek fails, it will return -1 as its value and set an
error code in the global integer errno. errno is set to
EBADF if the file descriptor is invalid. It will be set to
EINVAL if the offset parameter is invalid or if the
requested position is before the beginning of the file.

EXAMPLES

1. To seek to the beginning of a file:

lseek(fd, OL, 0);

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.50

LSEEK (C) Unbuffered I/0 Function LSEEK

lseek will return the value zero (0) since the current
position in the file is character (or byte) number
zZero.

2. To seek to the character following the last character
in the file:

pos = lseek(fd, OL, 2);

The variable, pos, will contain the current position of
the end of file, plus one.

3. To seek backward five bytes:
lseek(fd, -5L, 1);
The parameter, 1, sets the origin at the current
position in the file. The offset is =5. The new
position will be the origin plus the offset. So the

effect of this call is to move backward a total of five
characters.

4. To skip five characters when reading in a file:
read(fd, buf, count});

lseek(fd, 5L, 1);
read(fd, buf, count);

Copyright (c¢) 1984 by Manx Software Systems, Inc. lib.51

MALLOC (C) Memory Management Functions MALLOC

NAME
malloc, free, calloc, - memory allocation

SYNOPSIS
char *malloc(size)
unsigned size;

char *calloc(nelem, elemsize)
unsigned nelem, elemsize;

char *realloc(ptr, size)
char *ptr;
unsigned size;

free(ptr)
char *ptr;

DESCRIPTION
These functions are used to allocate memory from the "heap",
that is, the section of memory available for dynamic storage
allocation.

malloc allocates a block of size bytes, and returns a
pointer to it.

calloc allocates a single block of memory which can contain
nelem elements, each elemsize bytes big, and returns a
pointer to the beginning of the block. Thus, the allocated
block will contain (nelem * elemsize) bytes. The block is
initialized to zeroes.

realloc changes the size of the block pointed at by ptr to
size bytes, returning a pointer to the block. If necessary,
a new block will be allocated of the requested size, and the
data from the original block moved into it. The block passed
to realloc can have been freed, provided that no intervening
calls to calloc, malloc, or realloc have been made.

free deallocates a block of memory which was previously
allocated by malloc, calloc, or realloc; this space is then
available for reallocation. The argument ptr to free is a
pointer to the block.

malloc and free maintain a circular list of free blocks.
When called, malloc searches this list beginning with the
last block freed or allocated coalescing adjacent free
blocks as it searches. It allocates a buffer from the first
large enough free block that it encounters. If this search
fails, it calls sbrk to get more memory for use by these
functions.

SEE ALSO
MEMORY USAGE (0), BREAK (S)

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.52

MALLOC (C) Memory Management Functions MALLOC

DIAGNOSTICS
malloc, calloc and realloc return a null pointer (0) if
there is no available block of memory.

free returns -1 if it's passed an invalid pointer.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.53

MOVMEM (C) Utility Functions MOVMEM

NAME
movmem, setmem, swapmem

SYNOPSIS

movmem(src, dest, length) /* non-Unix function */
char *src, *dest;
int length;

setmem(area, length, value) /* non-Unix function */
char *area;

swapmem(sl, s2, len) /* non-Unix function */
char *sl, *s2;

DESCRIPTION
movmem copies length characters from the block of memory
pointed at by src to that pointed at by dest.

movmem copies in such a way that the resulting block of
characters at dest equals the original block at src.

setmem sets the character value in each byte of the block of
memory which begins at area and continues for length bytes.

swapmem swaps the blocks of memory pointed at by sl and s2.
The blocks are len bytes long.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.54

OPEN (C) Unbuffered 1I/0 Functions OPEN

NAME
open

SYNOPSIS
#include "fcntl.h"

open(name, mode)
char *name;

DESCRIPTION
This function will open a device or file for unbuffered i/o.
It returns an integer value called a file descriptor which
is used to identify the file or device in subsequent calls
to unbuffered i/o functions.

The parameter name is a pointer to a character string which
is the name of the device or file to be opened. For details,
see the overview section I/O.

The parameter mode specifies how the user's program intends
to access the file. The choices are as follows:

mode meaning

O_RDONLY read only

O_WRONLY write only

O RDWR read and write

O_CREAT Create file, then open it

O_TRUNC Truncate file, then open it

O_EXCL Cause open to fail if file already
exists; used with O_CREAT

O_APPEND Position file for appending data

These open modes are integer constants defined in the files
fcntl.h. Although the true values of these constants can be
used in a given call to open, use of the symbolic names
ensures compatibility with UNIX and other systems.

The calling program must specify the type of access desired
by including exactly one of O_RDONLY, O_WRONLY, and O_RDWR
in the mode parameter. The three remaining values are
optional. They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does
not exist. To cause the file to be created when it does not
already exist, specify the O_CREAT option. If O EXCL is
given in addition to O _CREAT, the open will fail if the file
already exists; otherwise, the file is created.

If the O TRUNC option is specified, the file will be
truncated so that nothing is in it. The truncation is
performed by simply erasing the file, if it exists, and then
creating it. So it is not an error to use this option when
the file does not exist.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.55

OPEN (C) Unbuffered I/0 Functions OPEN

Note that when O_TRUNC is used, O_CREAT is not needed.

If O APPEND is specified, the current position for the file
(that is, the position at which the next data transfer will
begin) is set to the end of the file. For systems which
don't keep track of the last character written to a file
(for example, CPM and Apple DOS), this positioning cannot
always be correctly done. See the I/0 overview section for
details. Also, this option is not supported by UNIX.

If open does not detect an error, it returns an integer
called a "file descriptor." This value is used to identify
the open file during unbuffered i/o operations. The file
descriptor is very different from the file pointer which is
returned by fopen for use with buffered i/o functions.

SEE ALSO
I1/0 (0), UNBUFFERED I/0 (0), ERRORS (O)

DIAGNOSTICS
If open encounters an error, it returns -1 and sets the

global integer errno to a symbolic value which identifies
the error.

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.56

OPEN (C) Unbuffered 1I/0 Functions OPEN

EXAMPLES

1.

To open the file, testfile, for read-only access:
fd = open("testfile", O RDONLY):

If testfile does not exist open will just return -1 and set
errno to ENOENT.

To open the file, subl, for read-write access:
fd = open("subl", O RDWR+O_CREAT);

If the file does not exist, it will be created and then
opened.

The following program opens a file whose name is given on
the command line. The file must not already exist.

main(argc, argv)
char **argv;
{

int £fd;

fd = open(*++argv, O_WRONLY+O_ CREAT+O_EXCL) ;
if (fd = -1) {
if (errno == EEXIST)
printf("file already exists\n");
else if (errno == ENOENT)
printf("unable to open file\n");
else
printf("open error\n");

Copyright (c) 1984 by Manx Software Systems, Inc. 1lib.57

PRINTF (C, M) Standard I/0 Functions PRINTF

NAME
printf, fprintf, sprintf
- formatted output conversion functions

SYNOPSIS
$include "stdio.h"

printf(fmt [,arg] ...)
char *fmt;

fprintf(stream, fmt [,arg] ...)
FILE *stream;
char *fmt;

sprintf(buffer, fmt [,arg] ...)
char *buffer, *fmt;

format(func, fmt, argptr)
int (*func)();

char *fmt:

unsigned *argptr;

DESCRIPTION
These functions convert and format their arguments (arg or
argptr) according to the format specification fmt. They
differ in what they do with the formatted result:

printf outputs the result to the standard output
stream, stdout;

fprintf outputs the result to the stream specified in
its first argument, stream;

sprintf places the result in the buffer pointed at by
its first argument, buffer, and terminates the result
with the null character, '\O'.

format calls the function func with each character of
the result.

These functions are in both c.lib and m.lib, the difference
being that the c.lib versions don't support floating point
conversions. Hence, if floating point conversion is
required, the m.lib versions must be used. If floating point
conversion isn't required, either version can be used. To
use m.lib's version, m.lib must be specified before c.lib at
the time the program is linked.

The character string pointed at by the fmt parameter, which
directs the print functions, contains two types of items:
ordinary characters, which are simply output, and conversion
specifications, each of which causes the conversion and
output of the next successive arg.

Copyright (c) 1984 by Manx Software Systems, Inc. 1ib.58

PRINTF (C, M) Standard I/0 Functions PRINTF

A conversion specification begins with the character % and
continues with:

o an optional minus sign (-) which specifies 1left
adjustment of the converted value in the output field;

O an optional digit string specifying the 'field width' for
the conversion. If the converted value has fewer
characters than this, enough blank characters will be
output to make the total number of characters output
equals the field width. If the converted value has more
characters than the field width, it will be truncated.
The blanks are output before or after the value,
depending on the presence or absence of the left-
adjustment indicator. If the field width digits have a
leading 0, 0 is used as a pad character rather than
blank.

O an optional period, '.', which separates the field width
from the following field;

O an optional digit string specifying a precision; for
floating point conversions, this specifies the number of
digits to appear after the decimal point; for character
string conversions, this specifies the maximum number of
characters to be printed from a string;

o optionally, the character 1, which specifies that a
conversion which normally is performed on an int is to be
performed on a long. This applies to the d, o, and x
conversions.

0 a character which specifies the type of conversion to be
performed.

A field width or precision may be * instead of a number,
specifying that the next available arg, which must be an
int, supplies the field width or precision.

The conversion characters are:

d, o, or x
The int in the corresponding arg is converted to
de