X

=
: Z
o
& P
(o]
m N
£
3

™M

Aztec C68k/ROM v3.6b, for PCDOS/MSDOS Host Systems
Release Document
24 Jun 1988

This package contains version 3.6b of the Aztec C68k/ROM Cross
Development System. It’s used to develop, on a PCDOS or MSDOS
host system, programs that will run on a 68k ROM-based system.

This release document contains the following sections:

1. Product overview
2. New features
3. Known bugs

1. Product overview
1.1 Components
Aztec C68k/ROM consists of the following components:
* The Aztec C68k/ROM software; ‘
* Aztec C68k/ROM documentation;

* Aztec C documentation, which describes features that are
common to all Aztec C packages. This documentation
describes the following topics: (a) library functions that are
provided with all Aztec C packages; (b) an overview of these
functions; (c) a general discussion on the writing of C
programs; and (d) compiler error messages.

Aztec C68k/ROM is used in conjunction with either Aztec Host
PC, or the Developer or Commercial version of Aztec C86. Aztec
C68k/ROM contains programs (such as the compiler, assembler, and
linker) that are used to develop 68k/ROM programs, while Aztec Host
PC or Aztec C86 contains programs that facilitates development.

The documentation for Aztec C68k/ROM hasn’t changed, except as
described in this release document. Thus, if you are a current user of
Aztec C68k/ROM, this release document is the only documentation in
your update.

1.2 Getting started

The Tutorial chapter of the Aztec C68k/ROM manual describes
how to install and start using Aztec C68k/ROM.

2. New features

This section describes the that have been added to Aztec
C68k/ROM in going from version 3.4b to 3.6b.

Rel Doc 6/24/88 C68k/ROM, v3.6b, for PCDOS Hosts

2.1 New features of the C68 compiler

The following paragraphs describe features that are new in v3.6b of
the ¢68 compiler.

2.1.1 Code Generator Control

The Xn option allows special control of the code generator. Each
option takes the form of +Xn, where n is a decimal number indicating
the option choice. It is possible to abbreviate these options by
specifying +XI1, 2 ,3 instead of having a separate +X for each option.
The extended options currently supported are:

+X1 - Remove A6 from all lists. The compiler considers it not to
exist.

+X2 - Places data into code segment.

+X3 - Delays the popping of arguments until it is necessary. This
saves some small amount of code when several functions are called one
after another. Stack is corrected whenever it is necessary or if the
number of bytes delayed exceeds 50 bytes. This affects the Db stack
back trace command since DB checks the instruction at the return
address to see how many arguments were passed to the function.

+X4 - Forces literal strings to be aligned on an even boundary.

+X5 - If enabled, +X5 generates inline code for strcpy(), stremp(),
and strlen() or if the name used is preceded by _ BUILT-IN
__STRCPY(S1,S2)

2.2 Source level debugging

The -n option causes the compiler to generate source level
debugging information. This information is passed as special lines and
characters in the assembly language output file. The assembler
automatically passes source level debugging information through to an
object module.

2.3 Library changes
2.3.1 Math libraries
There are now two math libraries supported by Aztec C68k/ROM:

* m881.1lib, for programs that perform floating point operations
using the 68881 coprocessor.

* m68.lib, for programs that perform floating point operations
using software emulation.

Source for m881.lib is in m881.arc. 1t should be dearchived into a
new subdirectory of the lib directory, named m881.

) Source for m68.lib, which used to be in an archive named flt68.arc,
is now in math.arc;

C68k/ROM, v3.6b, for PCDOS Hosts Rel Doc 6/24/88

*

3. Known bugs

* as68 doesn’t support the .b and .w extensions for bsr, bra,, etc.
It also doesn’t support the .s and ./ extensions for the jmp and
Jsr instructions. However, these are generally not necessary,
since the assembler generates the correct length instruction.

* as68 reports errors when the following is assembled with -¢
and -d options:

dseg
regsave ds.1 16

cseg

public .begin

entry .begin

movem.l d0-d7/a0-a7,regsave
dbra d0,.2

If the code is assembled with -c, -d, and -», no errors are

reported.

* The following code, when compiled with +f8, sends ¢68 v3.6b
into an infinite loop.

long a; double b;
main()

{
}

a = b+

Aztec C68k/ROM v3.4b, for PCDOS/MSDOS Host Systems
Release Document
~ 8 Feb 1988

This package contains version 3.4b of the Aztec C68k/ROM Cross
Development System. It's used to develop, on a PCDOS or MSDOS
host system, programs that will run on a 68k ROM-based system.

This release document contains the following sections:

1. Product overview
2. New features

3. Known bugs

4. Packaging
1. Product overview
1.1 Components

Aztec C68k/ROM consists of the following components:
* The Aztec C68k/ROM software;
* Aztec C68k/ROM documentation;

+ Aztec C documentation, which describes features that are
common to all Aztec C packages. This documentation
describes the following topics: (a) library functions that are
provided with all Aztec C packages; (b) an overview of these
functions; (c) a general discussion on the writing of C
programs; and (d) compiler error messages.

Aztec C68k/ROM is used in conjunction with either Aztec Host
PC, or the Developer or Commercial version of Aztec C86. Aztec
C68k/ROM contains programs (such as the compiler, assembler, and
linker) that are used to develop 68k/ROM programs, while Aztec Host
PC or Aztec C86 contains programs that facilitates development.

The documentation for Aztec C68k/ROM hasn’t changed, except as
described in this release document. Thus, if you are a current user of
Aztec C68k/ROM, this release document is the only documentation in
your update.

- 1.2 Getting started

The Tutorial chapter of the Aztec C68k/ROM manual describes
how to install and start using Aztec C68k/ROM. The following
paragraphs discuss topics that aren’t covered in that chapter; namely,
installation on floppy disks.

If your system doesn’t have a hard disk, you’ll have to use several
floppy disks for program development, and swap them in and out of

'..1..

Rel Doe¢ 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts

drives as needed. One possible organization of files on the disks is
this:

* On one disk, put c68, as68, In68, srec68 or hex68, ’include’
files, object module libraries. On this disk you could also put
a text editor, such as the Z text editor that is in both the
Aztec Host PC and Aztec C86 packages.

* On another disk, put the less-frequently used programs such as
the Aztec C68k/ROM object module utilities, and the grep
and diff utilities that are in Aztec Host PC and Aztec C86.

* On another disk, put the files that are used to create libraries,
such as library source, 668, and the arcy and make utilities
that are in Aztec Host PC and Aztec C86. Copy libraries that
you create to the first disk.

* On other disks, put your own files.

2. New features

This section describes the that have been added to Aztec
C68k/ROM in going from version 3.30c to 3.4b.

2.1 New features of the C68 compiler

The following paragraphs describe features that are new in v3.4b of
the ¢68 compiler.

2.1.1 68020 support
The +2 option causes the compiler to generate 68020 code.
2.1.2 68881 support

A program’s floating point operations can now be performed either
by floating point emulation that conforms to the IEEE standard, or by
a 68881 coprocessor.. When emulation is selected, floating point
operations are performed by calling software routines that are in
m68.lib. When 68881 support is selected, floating point operations are
pcrformed in-line as much as possible, and, when necessary, by calling
the routines in the new ma881. lib math library.

Two options havc been added to the ¢68 compiler, whxch define
how floating point is to be performed.

+fi The +fi option, which is the default, selects software
emulation. When this option is used, a program must
be linked with mé68.lib (or its large code, large data
version, m68ILlib). Up to two register variables may
be declared with this format; they reside in register
pairs D4-D5 and D6-D7.

+/8 The +f8 option selects 68881 execution of floating
point operations. When this option is used, a program

-2-

C68k/ROM, v3.4b, for PCDOS Hosts Rel Doc 2/8/88

must be linked with m88L1Iib (or with its large code,
large data version, m881ILlib). Four register variables
may be declared; they reside in registers FP4-FP7.

2.1.3 Stack depth checking: the +M option

The compiler’s new +m option causes stack-depth checking to be
performed on function entry, by generating a call to the assembly-
language function ___stkchk. If __ stkchk() detects that the stack has
grown too large, it calls the C-language routine __stkover().

You will need to modify _ stkover, since the supplied version
simply returns. For example, stkover could print an error message
and then exit.

Since compiling with +m causes the code to be bigger and execute
slower, the final version of your program should be compiled without
this option. :
2.2 Source level debugging

: The -n option causes the compiler to generate source level

debugging information. This information is passed as special lines and
characters in the assembly language output file. The assembler
automatically passes source level debugging information through to an
object module.

When object modules are linked together into a program, the -g
option causes the linker to generate a special file that contains the
source level debugging information.

These options require the use of an emulator that supports the
source level debugging file created by the linker,

When source level debugging information is generated, object
modules may increase significantly in size. However, the end program
will remain the same size.

2.2.1 Other new features

The compxler now pre-defines the name AZTEC__C, which can be
used when writing compiler specific code that it is to distributed.

The compiler now pre-defines the names _ LARGE__CODE and
__LARGE__DATA when the +c and +d options are given.

The compiler now supports the enumerated data type.
Structure arguments and return values are now correctly handled.
2.3 New features of the AS68 assembler

The following paragraphs describe new features of the as68
assembler, v3.4b.

Rel Doe 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts

2.3.1 New Processor Support

The assembler is partly redesigned -and supports the MC68010,
MC68020, and the MC68881 instruction sets and addressing modes in
addition to those of the MC68000. By default, the assembler assumes
that only the MC68000 instructions are valid. The MACHINE and
MC68881 directives enable and/or disable the additional instructions
and addressing modes.

2.3.2 Optimization improvements

Space for the squeeze table that’s used for optimizing a program is
now dynamically allocated, so the -S option is no longer needed or
supported.

A new algorithm is used to optimize assembly language code. It is
orders of magnitude faster than the old algorithm on large files.

The new optimization algorithm is nonrecursive and therefore no
longer requires more than a 4K stack.

All instructions will be considered for squeezing.
2.3.3 Temporary Labels

Temporary labels of the form n$, where n consists of decimal digits,
are now supported. These labels are in effect till the next non-
temporary label is encountered. For example:

1$: move.l (a0)+,(al)+
dbra d0,1$

2.3.4 Changes To Macros

A number of changes have been made to the implementation of
macros. First, the syntax of the macro definition has been expanded to
allow the macro name to be an argument of the MACRO directive or
to be taken from a label if present. For example, previously a macro
could only be defined as: ;

macro addnum
Now, however it can still be defined this way or as:
addnum macro

Macro arguments can now be referenced by either %n or \n. . The %0
or \0 argument refers to the extension on the macro directive when
invoked. Macro arguments that contain a space or comma can be
enclosed in bracketing *<’ and *>’ characters.

When a backslash is followed by the symbol *@’, the assembler
generates text of the form ".nnn" where nnn has a unique value for
each invocation of the macro. This is normally used to generate
unique labels within a macro.

C68k/ROM, v3.4b, for PCDOS Hosts Rel Doc 2/8/88

The symbol NARG is a special assembler symbol which indicates
the number of arguments specified when the macro was invoked.
Outside of a macro, the value of NARG is 0.

2.3.5 New operators
The following new operators are supported:
! - inclusive or

A - exclusive or
~ - bitwise not
// - modulo

2.3.6 New directive;
The following new directives aré supported:

BLANKS

blanks on/off
blanks yes/no
blanks y/n

The blanks directive controls whether the assembler will allow
blanks or tabs in an instruction’s operand field.

'f{'he blanks off setting treats a blank as the end of the operand
ield.

The blanks on sctﬁng allows blanks to be placed between any two
complete items. With this setting all comments must be preceded
by a !.’

By dcfault, blanks are off, which causes the v3.4b assembler to
behave, in this respect, like the v3.30c assembler.
CNOP ,
label cnop nln2

The cnop directive forces alignment on any boundary at a
particular offset. The first value, nl, is an offset while the
second value, n2, specifies the alignment to be used as the base of
the offset. For example, to align to an even word boundary:

cnop 0,2

while to align to a long word boundary:

cnop 0,4
and finally to align to a word beyond a long word boundary:
cnop 24

Note that this will only take effect relative to the beginning of
the current module’s code or data. Normally, the linker will not

-5.

Rel Doc 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts

align individual modules to long word boundaries. So, for this
directive to work, it must either be the first module linked into
the program, or else the +4 option of the linker must be used to
force long word alignment of modules.

EQUR
label equr register

This directive allows a register to be referenced by an alternate

name. Reference to the new name is made without regard to
case.

EVEN
label even
This directive forces alignment to a word (16 bit) boundary.

FAIL
faill
This directive causes the assembler to generate an error for this

line. This can be used in macros which detect the mcorrcct
number of arguments and wish to prevent assembly.

FREG
label freg <register list>

This directive is like the REG directive, except that it is used to
specify the floating point registers of the MC68881. The list is
either composed of the floating point registers FP0 through FP7
or of the floating point control registers FPIAR /FPCR/FPSR,
but not both.

1FC and IFNC
ifc stringl’,’string2’
ifnc 'stringl','string2’
These conditionals check to see if the two strings are equal. If
they are, the ifc will assemble the following code, while ifnc will

skip it.
IFD and IFND
ifd symbol
ifnd symbol

These conditionals check to see if the specified symbol has been
defined or not. If the symbol has been defined, then ifd will
assemble the following code, while ifnd will not.

-6-

C68k/ROM, v3.4b, for PCDOS Hosts Rel Doc 2/8/88

OTHER IFS

ifeq absolute__expression
ifgt absolute__expression
ifge absolute__expression
ifle absolute__expression
iflt absolute__expression
ifne absolute__expression

These conditionals perform a comparison of the value of the
absolute expression to zero. If the specified condition is true,
then the following assembly language is processed, otherwise it is
skipped.

MACHINE

machine MC68000
machineMC68010
machineMC68020

This directive enables or disables the additional instructions and
addressing modes associated with different processors in the
MC68000 family.

MC68881
mc68881

This directive enables the MC68881 floating point instructions to
be recognized and assembled by the assembler.

SECTION

label section name,CODE
label section name,DATA
label section name,BSS

This directive performs the same functions as the cseg and dseg
directives. The name parameter, if present, is ignored at the
current time. The type parameter is used to switch from CODE
and back again. If only a name parameter is specified, the type
defaults to CODE.

SET

label set expression

This directive assigns the value of the absolute expression to the
symbol specified by label This definition is similar to the EQU
directive, with the exception that this symbol’s value can be
changed with another SET directive.

Rel Doc 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts

TIL
tl title__string

This directive sets the title of the current module being
assembled. This directive is implemented for compatibility with
other assemblers and has no effect at the current time.

XDEF and XREF
xdef symbol
xref symbol

These directives are used to specify the definition and reference
of global symbols. Currently these are both mapped onto the
PUBLIC directive.

2.4 Changes to the linker

The following paragraphs describe features that are new in v3.4b of the
In68 linker.

2.4.1 Renamed options

Several linker options are now preceded by a plus character (+) instead
of a minus (-). These are:

+R dd Use address register dd for small model operations. dd is a
decimal value, and default to 5 (ie, address register A5).

+C xxxx Set origin of code section to the hex value xxxx
(default: 0).

+D xxxx Set origin of initialized data section to the hex value
xxxx (default: immediately after the code section).

+U xxxx Set origin of the uninitialized data section to the hex
value xxxx (default immediately after the initialized data
section).

+S xxxx Set the size of the stack area to the hex value xxxx
(default: 2Kk).

+J xxxx Set the program’s initial stack pointer to the hex value
xxxx. (default: stack area immediately follows uninitialized
data section, with size specified by +S option; stack pointer
points to the top of this area).

2.4.2 New options

+4 Toggle ’long align’ mode. When this mode is enabled, each
module’s code begins on a longword boundary, i.e. on a
byte whose address is a multiple of 4. By default, this mode
is disabled.

+Q Be quiet; i.e. don’t list, on the console, each module that is
included in a program. By default, the linker issues this list.

C68k/ROM, v3.4b, for PCDOS Hosts Rel Doc 2/8/88

2.4.3 Source level debugging

Two new options -g, and -¢ have been added to the linker to turn
on/off the collection of the symbol table information that will be used
by emulators’ source level debuggers.

-g Collect source level debug information. This information is
put into a file whose name consists of filename.dbg, where
Jilename is the name specified by the -0 option or defaults
to the name of the first object file listed. The .dbg file is
automatically looked for when you invoke sdb.

-g Turn off the collection of source level debug information
for all files following it.

Both options apply only to those files listed after the option on the
command line. Both options may be used on the same command line,
-g will turn on the collection of information for all files after it until
the end or a -g is encountered. A -¢ will turn off collection of debug
information until a -g is encountered.

2.5 Library changes
2.5.1 Math libraries
There are now two math libraries supported by Aztec C68k/ROM:

* m881.lib, for programs that perform floating point operations
using the 68881 coprocessor.

* m68.lib, for progfams that perform floating point operations
using software emulation.

Source for m881.lib is in m881.arc. It should be dearchived into a new
subdirectory of the /ib directory, named m881.

Source for m68.lib, which used to be in one archive named flt68.arc, is
now in two source archives:

* mx__ieee.arc, which should be dearchived into the
subdirectory mx__ieee of the lib directory;

* math.arc which should be dearchived into the subdirectory
math of the lib directory.

Changes have also been made to the libmak68.arc archive.
25.2 The __ stkchk function

The new ___ stkchk function performs stack-depth checking. It is
called automatically on entry to functions that have been compiled
with ¢68’s new +m option. Source for stkchk is in stkchk.c, in
rom68.arc. Before using it, you must customize it.

Rel Doc 2/8/88 C68k/ROM], v3.4b, for PCDOS Hosts

2.5.3 Changes to rom68.a68

Slight changes have been made to the startup routine in rom68.a68 to
support stkchk.

2.5.4 The write() function

The previous version of the write function made calls to the CP/M-68k
bdos. This code has been removed from write, thus making it purely a
skeleton function. Like the other unbuffered i/o functions, you must
flesh out the write function in order to use it.

3. Known bugs
* as68 reports errors on the following:

movep.l d0,0(a0)

It also gets errors on related forms of this instruction, such as
movep.w, etc. However, when the displacement is non-zero,
no error OCcurs.

* as68 doesn’t support the .b and .w extensions for bsr, bra,, etc.
It also doesn’t support the .s and ./ extensions for the jmp and
Jsr mstructlons.

* as68 reports errors when the following is assembled with -¢
and -d options:

dseg
regsave ds.t 16
> cseg
public -begin
entry .begin
movem.l d0-d7 /a0-a7 regsavc
dbra dO 2

If the code is assembled with -C, -d and -n, no errors are
reported, but the object code doesn’t list .begin as an entry
point. .

* When invoked with the +/8 option, c68 generates incorrect

68881 code for calls to the floating point functions sgrt, sin,
etc.

* The following code, when compiled with +/8, sends ¢68 v3.4b
into an infinite loop, or makes it crash the OS:

long a; double b;
main()

{
)

a = bt+;

-10 -

C68k/ROM, v3.4b, for PCDOS Hosts Rel Doc 2/8/88

4. Packaging

Aztec C68k/ROM contains the following files:
c68.exe Compiler
asb8.cxe Assembler
In68.cxe Linker
1b68.cxe Object module librarian
ord68.cxe Object module orderer
cnmé68.exe Object module utility
obd68.exe Object module utility
hex68.cxe Binary-to-Intel-hex-record translator
srec68.exe Binary-to-Motorola-S-record translator
libmaké68.arc Libgen control files
stdio.arc Source for STDIO functions
misc.arc¢ Source for MISC functions
mché8.arc Source for MCHG68 functions
romé68.arc Source for ROM68 functions
mx__ieee.arc Source for IEEE float emulation functions
math.arc Source for Transcendental functions
m881.arc Source for 68881 functions
ctype.h
errno.h
fentlh
macros.h
setjmp.h
stath
stdio.h

Rel Doc 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts

-12-

Using MANX Technical Support

We have put together a set of guidelines to help you take the most
advantage of the technical support service offered by MANX. We ask
that you read and follow these guidelines to enable us to continue to
give you quality technical support.

Have everything with you.

Try to be organized. When using our phone support, have
everything you need with you at the time you call. Our goal is to get
you the help you need without keeping you on the phone too long
This can save you a lot of time, and if we can keep the calls as short
as possible we can take more calls in the day. This can be to your
advantage on days when we are busy and it's hard to get through.
Also, have the following information ready when you call technical
support. We will ask you for this information first.

* Your name. This is necessary in case we need to get back to you
with additional information.

* Phone number. In case we have additional information we will be
able to contact you. This will never be given to anyone, so you
need not worry.

* The product you are using, and the serial number. If you have a
cross compiler please tell us both host and target, even if the
problem is with just one side of the system.

* The revision of the product you are using This should include a
letter after the number: ie. 3.20d or 1.06d. THIS IS VERY
IMPORTANT. The full version number may be found on your
distribution disks or when you run the COMPILER.

* The operating system you are using, and also the version.
* The type of machine you are using.

* Anything interesting about your machine configuration. ie. ram
disk, hard disk, disk cache software etc.

Know what questions you wish to ask.

_If you call with a usage question please try to have your questions
narrowed down as much as possible. It is easier and quicker for all to
answer a specific question than general ones.

fsolate the code that caused the problem.

If you think you have found a bug in our software, try and create
a small program that reproduces the problem. If this program is small
enough we will take it over the phone, otherwise we would prefer
that you mail it to us, using the supplied problem report, or leave it
on one of our bbs systems. Once we receive a "bug report” we will
attempt to reproduce the problem and if successful we will try to have
it fixed in the next release. If we can not reproduce the problem we
will contact you for more information.

Use your C language book and technical manuals first.

We have no qualms about helping you with your general C
programming questions, but please check with a C language
programming book first. This may answer your question quicker and
more thoroughly. Also, if you have questions about machine specific
code, i.e. interrupts or dos calls, check with that machine’s technical
reference manual and/or operating system manual.

When to expect an answer.

A normal turn around fime for a question is anywhere from 2
minutes to 2 days, depending on the nature of the question. A few
questions like tracing compiler bugs may take a little longer. If you
can call us back the next day, or when the person you talk to in
technical support recommends, we will have an in-depth answer for
you. But normally we can answer your questions immediately.

Utilize our mail-in service.

It is always easier for us to answer your question if you mail us a
letter (We have included copies of our problem report form for your
use). This is especially true if you’ve found a bug with our compiler
or other software in our package. If you do mail your question in, try
to include all of the above information, and/or a disk with the
problem. Again, please write small test programs to reproduce
possible bugs. The address for mail-in reports is P.O. Box 55,
Shrewsbury, N.J. 07701. If you have questions/problems concerning
C Prime or Apprentice C, mail them to P.O. Box 8, Shrewsbury, N.J.
07701.

Updaltes, Availability, Prices.

If you have any questions about updates, availability of software,
or prices, please call our order desk. They can help you better and
faster. You can reach them at...

Outside N.J. --> 1-800-221-0440
Inside N.J. --> 1-201-542-2121 (also for outside the U.S.A.)

Bulletin board system.

For users of Aztec C we have a bulletin board system available.
The number is ...

1-(201)-542-2793 This is at 300/1200 bps. (all products)

Answer the questions that will be asked after you are connected.
When this is done you will be on the system with limited access. To
gain a higher access level send mail to SYSOP. Include in this
information your serial number and what product you have. Within
approximately 24 hours you should have a higher access level,
provided the serial number is valid. This will allow you to look at the
various information files and upload/download files.

To use the bulletin board best, please do not put large (> 8 lines)
source files onto the news system, which we use for an open forum
question/answer area. Instead, upload the files to the appropriate area,
and post a news item explaining the problem you are having. Also,
the smaller the test program, the quicker and easier it is for us to look
into the problem, not to mention the savings of phone time.

When you do post a news item, please date it and sign it. This will be
very helpful in keeping track of questions. Try to do the same with
uploaded source files.

Phone support, number and hours.

Technical support for Aztec C is available between 10-12 am and
2-6 pm eastern standard time at 1-(201)-542-1795. Phone support is
available to registered users of Aztec C with the exception of the
Apprentice C and C Prime products. For those products, please use
the mail-in support service and send questions/problems to P.O. Box
8, Shrewsbury, N.J. 07701.

These guidelines will aid us in helping you quickly through any
roadblocks you may find in your development. Thanks for your
cooperation.

Aztec C68k/ROM
Cross Development System

version 3.4
November 1987

Copyright (c) 1987 by Manx Software Systems, Inc.
All Rights Reserved
Worldwide

Distributed by:

Manx Software Systems, Inc.
P.O. Box 55
Shrewsbury, N.J. 07701
201-542-2121

USE RESTRICTIONS

The components of the Aztec C68k/ROM software development
system are licensed software products. Manx Software Systems reserves
all distribution rights to these products. Use of these products is
prohibited without a valid license agreement. The license agreement is
provided with each package. Before using any of these products the
license agreement must be signed and mailed to:

Manx Software Systems
P. O. Box 55
Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine.
Any uses of these products that might lead to the creation of or
distribution of unauthorized copies of these products will be a breach
of the licensing agreement and Manx Software Systems will excercise
its right to reclaim the original and any and all copies derived in whole
or in part from first or later generations and to pursue any appropriate
legal actions.

Software that is developed with Aztec C68k/ROM software
development system can be run on machines that are not licensed for
these products as long as no part of the Aztec C software, libraries,
supporting files, or documentation is distributed with or required by
the software. In the latter case a licensed copy of the appropriate Aztec
C software is required for each machine utilizing the software. There
is no licensing required for executable modules that include runtime:
library routines,

RESTRICTED RIGHTS LEGEND

-Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. DAC
#84-1, 1 March 1984. DOD Far Supplement.

COPYRIGHT

Copyright (C) 1987 by Manx Software Systems. All rights reserved. No
part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without
prior written permission of Manx Software Systems, Box 355,
Shrewsbury, N. J. 07701.

.
- iii -

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Manx Software Systems reserves the right to revise this publication
and to make changes from time to time in the content hereof without
obligation of Manx Software Systems to notify any person of such
revision or changes. ;

TRADEMARKS

Aztec C68k, Manx AS, Manx LN, and Z are trademarks of Manx
Software Systems. Amiga is a trademark of Commodore-Amiga, Inc.
CP/M-86 is a tradmark of Digital Research. MSDOS is a trademark of
Microsoft. PCDOS is a trademark of IBM. UNIX is a trademark of Bell
Laboratories. Macintosh is a trademark of Apple Computer.

-iv -

Manual Revision History

January 1987 retseensssstessarenesbestestssarens s sasesbabeaseses First Edition
November 1987 rveaesseeresresnrensane Second Edition

- Vi~

Summary of Contents

68k /ROM-specific Chapters

title code
OVEIVIEWc.ovveenrreenenennnsnressrssenssssssesssserssssssssssessssssessssssesssssassssssassssssarssnsssns ov
Tutorial INIrOQUCHIONccovecerecreeie cererrreeierereserisssssesisssssesssesssssssasesesssanse tut
TRE COMPIIET .ueereirrienins ereetesieisrsessteseresssserassesesassssssssessonsomsseseesssnssens cc
The ASSEMDIET ... et seresteceser s eesesasesssassessscnsnen as
TRE LUNKET ...ceeerenrereraenees cerereaeeseaesssssesssesssansssaseesssssesissesssntssensssssnsassasssones In
68k/ROM Ultility Programscoccereeeeues seveereresenssecsesssesersossssesen util68k
Library Generation ... ceeeesserersesnessensusssnsessssnsensssessesseossesseses libgen
Technical Information reeetestesrentere e st et erasesanstesans tech
INAEX oioeeevcrennscrirannss sernseossnasssnasasssnans etennesrerentese st st eresraaesanasarensasens index
Host-specific Chapters

(for a list of these chapters, see your release document)

System Independent Chapters

Overview of Library FUNCLIONScccceceveeerene cesveesrenncsanseesensssessasereses libov
System-Independent FUNCHIONSccoeeevrereres vrrnvenrereesnrenenssesesssnensesessenns lib
Style Ctreresaes Sheasrsh e sh A s SRS s b e Sh et s s SeR e SERSA S R RS sHR SRR sE SRR R SR SRS b R style
Compiler Error MESSABESc.ccvvevrivvieeens eveeereresssrnseesesesesssessarassessssssens err

Overview

bl ol h

5.

L

Contents

.................... ov
Tutorial INtrOAUCLIONccoeucveeereesenes ceveresesesesssassssessssssessasnsaesssseresssanes tutor
Installing Aztec C68k/ROM 3
Creating Object Module Libraries 4
Translating a program into hex codeee. ceeereverrecrennereresennanns 6
Special Features .9

4.1 Memory models .9

4.2 Register usage 10
Where to go from Here . 10

TRE COMPIIET ..oceiieeee e senesesssssesesesssssssssessssssesesaesssssassossasanennose cc
Operating INStrUCHONSccceuevereeerenerencneeeresseresssnssennes 3

1.1 The C SOUICE FilE ..uuurereeeriicrerinrennreriessersensisssssnassssssessensassessse 3

1.2 The Output FilESocuevcerrerererercrveeersaeseserssssstesessosssesssssssessnns 3

1.3 #InCIUdE [IIESeuveeceierererarererersarnencresssessssssssssnses 5

1.4 Memory MOEIS ... eiee ceveenereceecnrnesensnennesesesnessesasaesarasesssesses 7
COomPIlEr OPLONS ..u..eeeieeeevrrreerreieesrenseeesessressseosessssessasane 11

2.1 Summary Of OPLIONSevervrrrrnreereererasraneessssesnessessssssnsserasens 11

2.2 Description Of OPUIONSc.ccuer cerveeererenreensesnresersssssssssssssssesens 13
Programmer Information ceeeveerrereneessessensennene 19

3.1 Supported Language Featuresoe. ceveerirreresmiereserssesssens 19

3.2 Structure ASSIZNMENLEccocees vevererersreraesenseessarerssssserssssssessssens 19

3.3 Structure Passingcccoeeees cerveereruerverernens 19

3.4 Line Continuation 19

3.5 The v0id Data TYPE .cooveeeeee ceeterecereesesseressssesessosessssessssssesesseseses 19

3.6 Special SYMDOIS ..ccoiverirerceiieiiieressieeseseesecsess s sssessssssesososesssssases 20

3.7 Sring METGINEcccccevee cereerrrerseeeressnerareresssssressassssaesesnes 20

3.8 LoNg NAMESoveeeeee vereerererecsrensesessenssessassssssassssssssresess 21

3.9 Reserved Words 21

3.10 Global Variablesc.ce ceevvrreerrnranesssensssensnsassens 21

3.11 Data Formats 21

3.12 In-line Assembly Languagc Code .. evereeenrern 22

3.13 Writing Machmc-lndepcndent CO0dE .uenerenrrrreerarereeneseenenns 23

4, Error Processing 25
ThE ASSEIMIDIET ...uveeeeereerercreirnrereeereressessscssssensessnsesesssssassaressssssssesassssansanas as

- viii -

1. Operating INStIUCLIONSccoueeveeeenverennrersenernenniereseesesesesssnsssssesssessssns 3

1.1 The INPUL Fleueceeeeeerisnererenreiesrenessesssenssssesssssssosessssessssnsson 3

1.2 The Object Code Filecocveerererncnnnneenesrrressessrersnens rreveeeenenes 4

1.3 LiStINEG FRlE ...eeeeeeeecrececrenerereeseserssaeresatnesossassersaesessnssessssssasens 4

1.4 Optimizations 4

1.5 Searching for include Files v 4

2. ASSEMDIET OPLONS ...cuceerrceeircerereetsesssresesesesesesesessassessressrsrssnsesenes 6

3. Programmer infOrmationceceiveeinrerneeesesesesssessessessesesesesensens 8
TRE LINKETeeecvererrernns evrrennesseneansesenmsesnsssisessssasasssssssasssssssasssssassssesesssesases In
1. Introduction to HRKINGcccerericeenrenecrneennereensessseeneessnsessessnsesennens 3

2. USING the LINKEToueieeeereers cereerrreveneeeseserseresesesescssssssseescsssesenensees 9

3. LinKEr OPUODS .oueeeceeecetceeetcneceeeees e esas s seesess e ssssssasassessssasnsenens 11
ULIItY PrOBIAMScoueeeeeeereencreeeeennresenseiessasssssrsssssssessssssesensesssssssssese util68k
CIMOBoovereeens creeverenerenssseseeesssesssessessssassasstesesssesessnsesessssasensssasssaresaass 4
hex68 teseersetesestesestessetaseentraan e besae e sresaasesassesasasnnsnn 8
IBOBeeeeerreeererrencrerseesessossanss suesessessrssssrnsssssessontosasessestosssessassosessossnsessesaes 10
obd68 . eeeeraeeetemeeetaseserareae e reseateresessterens 21
ord68 . reetereninsssesnesers s e tatareresesenasresarans 22
STECOBeeeeerereeseresesesessssssssssssessssessssesasssansessssssasssasssnasssssnsasansessasasens 23
LIbrary GEnerationcocveereeerveeresssssesionsesssssssassesssssssessresases libgen
1. Modifying the functlons ... 3
1.1 The Startup fUNCHONc.cccovererreeeeeererieereretnieserereseseressenssesssesssnes 3

1.2 The unbuffered i/0 fuNCtioONSccoeeceeeeeeerrereeeeneeeerereneererene 7

1.3 The standard i/o functions agetc and aputccuuu.... 12

1.4 The sbrk and brk heap-management functions ereeenee 12

1.5 The exit and __exit functionsc..ccevevecrceerncnsenscnsesnecnne 13

2. Building the libraries ... reereesaetereterersessrenersnsans 13

3. Function deSCTIPIONScccvevcinrererenierneiseesssernissesesssssesesessssssssnsens 14
Technical Information v veeeseeessntt e s st abet et et arare s e eaeenestsnanen tech
Assembly language functnons 3
Interrupt routines eevereseeessassnssesseesettsantaestetennsresaatassaseaaseasanin 8
Overview of Library FUNCLIONSeceienenecseeneiencnnessssnssressessseses libov
1. 1I/0 Overview .., 4
1.1 Pre-opened devices, command 1INE ArgS ..ocoveveevreerrrerencrenenns 4

1.2 File I/0 . eeetetetsatstas s saastatenssesn s s tasartesesesabanansnens 6

1.2.1 Sequential I/eerccrnnnrninseeceressenssessssssssessssensesnenes 6

1.2.2 RaNAOM I/ ...erceeiteereeseneeenenensesesesssssessesesanssnsens 6

1.2.3 Opening Files 6

1.3 DEVICE I/O caneereerereerestesernranseesessessnesesessassnsstssesasessesensasssssens 7

1.3.1 CONSO0IE I/ O ereeeceecenreeseeeienniensentsaneiesesssasensasssssnsens 7

1.3.2 I/O t0 Other DEVICESc.cccoerevurmererencrensnsersesesscssessesnsssssaens 7

1.4 Mixing unbuffered and standard I/O (1 | 7

2. Standard I/O Overview reetesteeraranrss st atras e re s aesasnasrrneataseanesrarans 9
2.1 Opening files and deVICESocvivvvmrerermierrrrsenserensrensermeresesessees 9

-ix -

2.2 Closing Streams 9
2.3 Sequential I/0 10
2.4 Random I/O 10
2.5 Buffering 10
2.6 Errors . 11
2.7 The standard I/O functions .12

3. Unbuffered I/0 Overview . 14
3.1 File I/O 15
3.2 Device I/0 . I5
3.2.1 Unbuffered I/0 to the Console 15

3.2.2 Unbuffered I/0 to Non-Console Devicescccennnen. 16

4, CONSOLE I/O OVEIVIEW ..ueeceieeeereeisareesserneasescssesssssserassessessansassssesssses 17
4.1 Line-oriented input 17
4.2 Character-oriented input 18
4.3 Using ioctl 19
4.4 The SGILY fIEIAScooceueereeeeecrecrcererereressasasaseseanrssessassssssessrsasens 19
4.5 Examples 20

5. Dynamic Buffer Allocation .22
6. Error Processing Overview 23
System Independent Functions lib
Index 5
The functions .. 8
Style style
1. Introduction . . .3
2. Structured Programming 7
3. Top-down Programming 8
4. Defensive Programming and Debuggingcccovvrervcrunnnnnen 10
5. Things to watch out for 15
Compiler Error COAESiierrieiseeresiesesesssssscsssesessssssesessssesessenses err
L. SUININATY .oocriieccveeticesenrenesesecsesessssssssssessressnssesssssassassesresasassasrsesseseses 4
2, EXPIANALIONScucceevrereenrierseerisssrencsssassessasenssssssssssrossasessasssssssssassasessns 7
3. Fatal Error MESSABEScccvuicinennecinirnneesarssosesensnnssossomsasssssesssssnonses 35

- xii -~

OVERVIEW

-ov.l -

Overview Aztec C68k/ROM

- 0v.2 -

Aztec C68k/ROM Overview

Overview

Aztec C68k/ROM is a set of programs for developing programs in
the. C programming language; the resulting programs run on ROM-
and/or RAM-based systems that use a Motorola 68000-family
microprocessor. The development can be done on any of several host
systems.

Some of the features of Aztec C68k/ROM are:

* The full C language, as defined in the book 7he C
Programming Language, by Brian Kernighan and Dennis
Ritchie, is supported.

* An extensive set of user-callable functions is provided, in
source form. To use these functions, you must first compile
and assemble them, and create libraries of the resulting object
modules. To use the standard and/or unbuffered i/o
functions, you must write the unbuffered i/o functions.

* Modular programming is supported, allowing the components
of a program to be compiled separately, and then linked
together.

+ Assembly language code can cither be combined in-line with
C source code, or placed in separate modules which are then
linked with C modules.

* Utility programs are provided that generate Motorola S-
records and Intel hex records for a program. ROM chips
generated from these records will contain the program’s code
and a copy of its initialized data.

* A ROM program can contain both initialized and uninitialized
global and static variabless When the program starts, its
initialized variables in RAM will be automatically set from
the copy in ROM, and its uninitialized variables will be
cleared.

The functions provided with this package are UNIX compatible and
are compatible with Aztec C packages provided for other systems.
Thus, once you have customized the functions, you can create
programs that will run on UNIX-based systems or on other systems
supported by Aztec C with little or no change.

Host systems

The Aztec C68k/ROM software runs on several host systems,
including:

-ov.3-

Overview Aztec C68k/ROM

*

*

»

PCDOS/MSDOS systems, such as the IBM PC;
Apple Macintosh;

Digital Equipment VAX systems that use the Ultrix operating
system;

Components
Aztec C68k/ROM contains the following components:

.
*
*
*
*

»

Preview
This

c68, the compiler;

as68, the assembler;

in68, the linker;

1b68, the object module librarian;
Source for the library functions;
Several utility programs.

manual is divided into three separate sections, each of which

is in turn divided into chapters. The first section presents 68k/ROM-
specific information. The second describes host-specific features. The
third describes features that are common to all Aztec C packages.

The 68k/ROM-specific chapters and their identifying codes are:

tut describes how to get started with Aztec C68k/ROM: it
discusses the installation of Aztec C68k/ROM and gives an
overview of the process for turning a C source program into
Motorola S-records and Intel hex records;

cc, as, and In present detailed information on the compiler,
assembler, and linker;

util68k describes the 68k/ROM-specific utility programs that
are provided with Aztec C68k/ROM;

libgen describes the creation of object module libraries from
the provided source;

tech discusses miscellaneous topics, including C-callable
assembly language functions, and C language interrupt
handlers.

The contents of the manual’s host-specific section varies from host

to host.

It usually contains a chapter that describes the special utility

programs that are provided with your system; this chapter’s code has
the form wtilxx, where xx identifies the host; for a PCDOS/MSDOS
host, for example, the code is utilpc.

The System-independent chapters and their codes are:

-ovd -

Aztec C68k/ROM ' Overview
libov presents an overview of the functions provided with
Aztec C; ‘

lib describes the system-independent functions provided with
Aztec C68k/ROM;

style discusses several topics related to the development of C
programs;

err lists and describes the error messages that are generated by
the compiler.

-ov.S5 -

Overview Aztec C68k/ROM

- 0\'.6 -

TUTORIAL INTRODUCTION

- tutor.1 -

TUTORIAL

Chapter Contents

Aztec C68k/ROM

Tutorial Introduction rereesormnseseees tutor
1. Installing Aztec COBK/ROMccveeeeee cermervesesnnenrernessssessssssssssssnsne 3

2. Creating Object Module Librariescce.e. ceceenneererernsncsscssessensesnsns 4

3. Translating a program into hex code 6

4. Special Features w9
4.1 Memory modelS ... cevcrernensnisnensesssncnsecnnsanens 9

4.2 Register usage . 10

5. Where to 80 from HETEcccevveeervererensecrarnsnsesssasesssesnasssssascsesasssens 10

- tutor.2 -

Aztec C68k/ROM TUTORIAL

Tutorial Introduction

This chapter describes how to quickly start using your Aztec
C68k/ROM cross development software. It discusses the following
topics: (1) installing the Aztec C68k/ROM software on your disks; (2)
creating object module libraries from the provided source; (3)
translating a C program into Motorola S-records or Intel hex code; (4)
special features of Aztec C68k/ROM:; (5) introduction to the rest of
the manual.

Ideally, this chapter should consist of a cookbook set of steps that
you can follow to get started using Aztec C68k/ROM. However, since
one of those steps is a long and involved one, (ie, to modify the library
functions and then generate libraries), we recommend that you follow
the first step, which leads you through the installation of Aztec
C68k/ROM on your system, and then simply read the rest of chapter
to get a idea of how programs are developed using Aztec C68k/ROM.
Then you can read the Library Generation chapter, make any needed
revisions to the library function source, and generate your libraries,
Finally, you can translate a C program into a ROM-burnable format,
by following the steps in this chapter.

1. Installing Aztec C68k/ROM

To install Aztec C68k/ROM on your system, copy the files from
the distribution media (disk or tape) onto your disks.

If your system is one (such as the IBM PC running PCDOS, or a
UNIX system) that supports a hierarchical directory structure, we
recommend that you place the Aztec C68k/ROM software in a set of
related directories, as shown in the following diagram.

Directory Contents
C68 ,

BIN executable programs

INCLUDE header files

LIB object module libraries
STDIO stdio.arc files
MISC misc.arc files .
MCH68 mché68.arc files
ROM68 "romé68.arc files
MATH math.arc files
MX_ IEEE mx__ieee.arc files
M881 ma881.arc files

Copy the Aztec C68k/ROM files into the directories as follows:

- tutor.3 -

TUTORIAL Aztec C68k/ROM

* Into the BIN directory, copy all executable Aztec C68k/ROM
programs.

* Into the INCLUDE directory, copy all "include files" (that is,
files having extension .h).

* Into the LIB directory, copy the source archive libmake.arc.
The libraries that you create will reside in this directory.

Extract the files from this archive using the arcv
command, and then delete libmake.arc from the LIB directory.

To extract files from lLbmake.arc follow these steps: (1)
make sure that the BIN directory is in the path of directories
that will be searched by the operating system for programs
(on PCDOS and UNIX, this means adding the BIN directory
name to the PATH environment variable); (2) enter the
appropriate command to make LIB the default or current
directory (for example, on PCDOS this command is cd
\C68\ LIB), (3) enter the command arcy libmake.arc.

* Into the STDIO, MCHS68, ..., and ROM68 directories, copy the
corresponding source archive (for example, copy stdio.arc into
the STDIO directory, mché8.arc into MCH68, and so on).

Extract the files from each archive using arcv, and then
delete the archive.

Each of these directories contains the source and object
modules generated from the corresponding source archive
file. For example, the source files in STDIO were extracted
from the stdio.arc source archive file by the arcv program.

2. Creating Object Module Libraries

The functions that are provided with Aztec C68k/ROM are in
source form. Before you can create an executable program using
C68k/ROM, you must compile and assemble the functions and
generate object module libraries that contain them, after first making
any needed modifications. For more information, see the Library
Generation chapter.

- tutor.4 -

Aztec C68k/ROM TUTORIAL

[/ C \
| source file |
\ _I_____/

Aztec C Compiler :
|

/ assembler \

| source file |

N\
|

N

Assembler :

/ \
| object file /|>= Librarian '

e———————————————"

Link Editor /~ subroutine \
----- | library |

| \ /

~—

\
| executable file |
\ ,_T_____/

hex68 or srec68

/ \
| hex file |
\ 7

- Figure 1: Program Development with Aztec C68k/ROM

- tutor.S -

TUTORIAL ' Aztec C68k/ROM

3. Translating a program into hex code

In this section we will lead you through the steps necessary to
translate a sample C program named exmpi.c into hex code that can be
burned into ROM. For a diagram of this procedure, sece figure 1.

The code for this program will reside in ROM, beginning at
memory location 0. Its data will reside in RAM, beginning at location
0x8000.

3.1 Step 0: Create the Source Program

The first step to creating a C program is, of course, to create a disk
file containing its source. For this, you can use any text editor. We'll
assume the source exists, in the file exmpi.c.

3.2 Steps 1 and 2: Compile and Assemble
To compile and assemble exmpl.c enter the following command:
c68 exmpl.c

" This first starts the c68 compiler, which translates the C source that’s
in exmpl.c into assembly language source. When done, c68 starts the
as68 assembler. as68 assembles the assembly language source for the
sample program, translating it into object code and writing the object
code to the file exmplr in the current directory. When done, as68
deletes the file that contains the assembly language source, since it is
no longer needed.

There are several compiler options that define a module’s
characteristics. For this example, we have let these options assume

their default values. Later in this chapter we introduce some of these
characteristics.

3.3 Step X Link

The object code version of the exmpl program must next be linked
to needed functions that are in the ¢68.lib library of object modules
and converted into a loadable format.

Before entering this command, you must set the CLIB68
environment variable, to define the directory that contains the object
module libraries. For example, on PCDOS, if the libraries are in
e\ c68\ lib, the command to define CLIB68 is

set CLIB68=¢:\c68\lib\

Note the terminating slash: this is usually required, because of the way
the linker builds the complete name of a library that is partially
identified using the linker’s -/ option. This is described below.

The command to link the sample program is:
In68 +d 8000 -0 exmpl rom68.r exmplr -1c68

- tutor.6 -

Aztec C68k/ROM TUTORIAL

There’s several parameters to this command, so let's go through
them, one at a time.

3.3.1 Positioning code, data, and stack: the +D, +U, +C, +S, & +J options
The linker organizes a program into three sections:
Code Contains the program’s executable code;

Initialized data
Contains those of the program’s global and static
variables that are assigned an initial value (e.g. static
int var=1);

Uninitialized data.
Contains the program’s other global and static
variables.

The linker supports options that allow you to position these
segments in memory. The +D 8000 option used in the above
command sets the starting address of the program’s initialized data to
0x8000.

The linker’s +U option sets the starting address of the program’s
uninitialized data. This option wasn’t used in the above command, so
the uninitialized data begins at its default address; i.e. immediately
above the initialized data.

The linker’s +C option sets the starting address of the program’s
code segment. This option wasn’t used in the above command, so the
code area begins at its default starting address; i.e. location 0.

The linker’s +S and +J options set the starting address of the
program’s stack pointer and the size of the stack area. These options
weren’t used in the above command, so they assume their default
values: the stack area begins immediately after the uninitialized data
area, the area is 2k bytes long, and the stack pointer initially points at
the top of this area.

3.3.2 Naming the output file: the -O option

The -0 exmpl option tells the linker to place the linked program in
the file named exmpl If this option wasn’t used, the linker would
have derived the name of the output file from that of the first object
module, by deleting its extension.

3.3.3 The input object module files

rom68.r and exmplr are the names of two files whose object
modules are to be included in the program.

rom68.r contains the startup routine for both the program and for
the system, and contains statements that pre-initialize the system’s
startup and interrupt vectors. It’s listed first so that its code, and hence
these vectors, will be loaded at the beginning of the program’s code

- tutor.7 -

TUTORIAL Aztec C68k/ROM

segment; since the code segment begins at location 0, these vectors will
then be correctly positioned in memory.

When linking programs with rom68.r as the first listed module,
you'll usually have to explicitly specify the name of the output file,
using the -O option. If you don’t, the linker will place all such
programs in the same file; i.e. in the file named rom68.

3.3.4 Libraries and the -L option

The -Lc68 option tells the linker to search the ¢68.lib library that’s
in the directory defined by the CLIB68 environment variable for
needed functions.

As you can see, the -L option doesn’t completely define the name
of a library file; the linker generates the complete name by taking the
letters that follow the -L, prepending them with the value of the
CLIB68 environment variable, and appending the letters .4ib. Thus,
when CLIB68 has the value e\ c68\ lib\, the -Lc68 option specifies the
library whose complete file name is e\ c68\ lib\ c68.lib.

During the link step, the linker will search the libraries specified to
it for modules containing needed functions; when such a module is
found, the linker will include the module in the executable file it’s
building.

All C programs need to be linked with ¢68.lib (or an equivalent, as
described below). This library contains the non-floating point
functions that are defined in the System Independent Functions
chapter. It also contains "internal" functions that are called by
compiler-generated code.

If a program performs floating point operations, it must also be
linked with the m68.lib math library (or an equivalent, as described
below). :

When a program is linked with a math library, that library must be
specified before c68.lib. For example, if exmplc performed floating
point, the following would link it

In68 +d 8000 -0 exmpl rom68.r exmpl.r -Imé68 -1c68
3.4 Step 4: Convert to Motorola S-records or Intel hex records

The next step is to convert the memory image generated by the
linker into Motorola S-records or Intel hex records, using srec68 or
hex68, respectively. In the following discussion, we’ll generate S-
records using srec68. At the end of the section, we show how to
generate Intel hex records using hex68.

To generate Motorola S-records for the program, enter the
following command:

- tutor.8 -

Aztec C68k/ROM TUTORIAL

srec68 exmpl

When the records generated by this command are fed into a ROM
programmer, the resulting ROM code will contain the program’s code
-segment followed by a copy of its initialized data segment.

Note: when the system is started, its RAM contains random values; the
Aztec startup routine sets up the RAM-resident Initialized data
segment from the ROM-resident copy.

These commands generate one or more files, each of which
contains S-records for one 2k-byte, successively-higher addressed
section of the program’s code and initialized data. The files are
exmpl.m00 (containing first ROM chip’s S-records), exmplm0l
(containing the second ROM chip’s S-records), and so on.

srec68 has several additional features. For example, you can
explicitly define the size of each ROM chip, using the -P option; and
you can have it place a program’s even-addressed and odd-addressed
bytes in separate ROM chips, using the -E and -O options.

hex68 behaves just like srec68, except that it generates Intel hex
records instead of Motorola S-records, and the extensions of the
generated files are slightly different. For example, the command to
convert exmpl into Intel hex records is:

hex68 exmpl

This generates the files exmplh00, exmplh01, and so on; where
each file contains hex records for successively-higher-addressed 2k-
byte ROM chips.

For complete descriptions of srec68 and hex68, see the Utility
Programs chapter.

4. Spedial features of Aztec C68k/ROM

That concludes our step-by-step, cookbook introduction to Aztec
C68k/ROM. In the following paragraphs, we want to introduce several
special features of Aztec C68k/ROM.

4.1 Memory models

Aztec C68k/ROM allows you to define, when you compile and
assemble a module, the "memory model" that the module will use. A
module’s memory model affects the module’s speed, size, and the
amount of data it can access. By default, a module will use the small
code, small data memory model, which makes it small and fast, but you
can override this using compiler and assembler options.

Library modules have memory models, too. The makefiles that are
provided with Aztec C68k/ROM make two versions each of the "c68"
and "m68" libraries: in one version of a library, the modules all use the
small code, small data memory model; in the other, they use large code,

- tutor.9 -

TUTORIAL Aztec C68k/ROM

large data. 1If desired, you can modify these makefiles to make other
versions of these libraries, whose modules use different combinations
of memory models.

Here’s where to go for more information:

* For a complete description of memory models, see the
Compiler chapter.

* The compiler options for selecting a module’s memory model
are +C and +D; they are discussed in the Options section of
the Compiler chapter;

* The assembler options for selecting the default memory model
are -C and -D; they are discussed in the Options section of the
Assembler chapter;

* The assembler directives near and far also define memory
models; they are discussed in the Programmer section of the
Assembler chaper;

* The creation of libraries is discussed in the Library
Generation chapter.

4.2 Register usage
By default, a program’s register usage is as follows;

* Temporary results: data registers D0-D3; address registers
A0-A2.

* Register variables: data registers D4-D7; address registers A3
and A4.

* Small model support register: AS.
* Frame pointer: A6.
* Stack pointer: A7.

Using the compiler’s +R option, you can define the registers used
for temporary results, register variables, and the frame pointer.

Using the linker’s +R option, you can define the register used to
support modules that use a small memory model.

The makefiles that are provided with Aztec C68k/ROM generate
libraries whose modules use the default registers.

5. Where to go from here

In this chapter, we’ve just begun to describe the features of Aztec
C68k/ROM.

One chapter that you must read is the Library Generation chapter,
which discusses the generation of object: module libraries from the
source that comes with Aztec C68k/ROM.

- tutor.10 -

Aztec C68k/ROM TUTORIAL

We encourage you to use the make program-maintenance program
to generate libraries, if such a program is available for your host
system. To provide this encouragement, Aztec C68k/ROM provides
"makefiles" that can be used by UNIX-compatible make programs, If
your host system is one, such as PCDOS, that doesn’t have its own
make program, and if the Aztec make is available for your system, it
will be included in your Aztec C68k/ROM package.

For more information on the sections of a program, see the Linker
chapter.

The srec68 and hex68 programs support several options that haven’t
been discussed in this introduction. For a complete description of
these programs, see the Utility Programs chapter.

The Technical Information chapter contains miscellaneous
information on several topics, including the writing of assembly
language functions and interrupt handlers.

You should also read the Compiler, Assembler, and Linker
chapters, to become familiar with all the options that these programs
provide.

- tutor.11 -

TUTORIAL Aztec C68k/ROM

- tutor.12 -

THE COMPILER

-ccl -

COMPILER Aztec C6§k/ ROM

Chapter Contents

The compiler cc
1. Operating Instructions 3
1.1 The C Source File 3
1.2 The Output Files 3
1.3 #include files 5
1.4 Memory Models 7

2. Compiler Options 11
2.1 Summary of Options 11
2.2 Description of Options 13

3. Programmer Information 19
3.1 Supported Language Features yorasene 19
3.2 Structure Assignment 19
3.3 Structure Passing - 19
3.4 Line ContinUAtioNccee coeeerreererernensesserseessesesseneens 19
19

20

20

21

21

21

21

22

23

25

3.5 The void Data Type ...
3.6 Special Symbols
3.7 String Merging

3.8 Long Namescoeeu.. .
3.9 Reserved Wordscccue cneeeee
3.10 Global Variables
3.11 Data Formats . v evrenens
3.12 In-line Assembly Language Code
3.13 Writing Machine-Independent Codec.eeerecerrverereneeenrenne
4. EXror PrOCESSINGccoves vervvereerensnerereseisararesssssessasessssnssssnssasessssassssess

-cC2 -

Aztec C68k/ROM COMPILER

The Compiler

This chapter describes ¢68, the Aztec C compiler for generic
Motorola 68000-based systems. It is not intented to be a complete
guide to the C language; for that, you must consult other texts. One
such text is The C Programming Language, by Kernighan and Ritchie.
The compilers were implemented according to the language description
in the Kernighan and Ritchie book.

This description of the compilers is divided into four subsections,
which describe how to use the compiler, compiler options, information
related to the writing of programs, and error processing.

1. Compiler Operating Instructions
¢68 is invoked by a command of the form:
c68 [-options] filename.c

where [-options] specify optional parameters, and filename.c is the
name of the file containing the C source program. Options can appear
either before or after the name of the C source file.

The compiler reads C source statements from the input file,
translates them to assembly language source, and writes the result to
another file.

1.1 The C source file

The extension on the source file name is optional. If not specified,
it's assumed to be .c. For example, with the following command, the
compiler will assume the file name is text.c:

c68 text
1.2 The output files
1.21 Creating an object code file

Normally, when you compile a C program you are interested in the
relocatable object code for the program, and not in its assembly
language source. Because of this, the compiler by default writes the
assembly language source for a C program to an intermediate file and
then automatically starts the assembler. The assembler then translates
the assembly language source to relocatable object code, writes this
code to a file, and erases the intermediate file.

By default, the object code generated by a c68-started assembly is
sent to a file whose name is derived from that of the file containing
the C source by changing its extension to .r. This file is placed in the

-cc3-

COMPILER Aztec C68k/ROM

directory that contains the C source file. For example, if the compiler
is started with the command

c68 prog.c

the file prog.r will be created, containing the relocatable object code
for the program.

The name of the file containing the object code created by a
compiler-started assembler can also be explicitly specified when the
compiler is started, using the compiler’s -O option. For example, the
command

¢68 -O myobjrel prog.c

'compilcs and assembles the C source that’s in the file prog.c, writing
the object code to the file myobj.rel.

When the compiler is going to automatically start the assembler, it
by default writes the assembly language source to a temporary file
named ctmpxxx.xxx, where the x’s are replaced by digits in such a
way that the name becomes unique. This temporary file is placed in
the directory specified by the environment variable CCTEMP. If this
variable doesn’t exist, the file is placed in the current directory.

When CCTEMP exists, the complete name of the temporary file is
generated by simply prefixing its value to the ctmpxxx.xxx name. For
example, if CCTEMP has the value

/RAM/TEMP/
then temporary files are placed in the /RAM/TEMP/ directory.

For a description on the setting of environment variables, see your
operating system manual.

If you are interested in the assembly language source, but still want
the compiler to start the assembler, specify the option -T when you
start the compiler. This will cause the compiler to send the assembly
language source to a file whose name is derived from that of the file
containing the C source by changing its extension to .a. The C source
statements will be included as comments in the assembly language
source. For example, the command

c68 -T prog.c
compiles and assembles prog.c, creating the files prog.a and prog.r.
- 1.22 Creating just an assembly language file

There are some programs for which you don’t want the compiler to
automatically start the assembler. For example, you may want to
modify the assembly language generated by the compiler for a
particular program. In such cases, you can use the compiler’s -4
option to prevent the compiler from starting the assembler.

-cc4 -

Aztec C68k/ROM \ COMPILER

When you compile a program using the -4 option, you can tell the
compiler the name and location of the file to which it should write the
assembly language source, using the -O option.

If you don’t use the -O option but do use the -4 option, the
compiler will send the assembly language source to a file whose name
is derived from that of the C source file by changing the extension to
.a and place this file in the same directory as the one that contains the
C source file. For example, the command

c68 -A prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to prog.a.

As another example, the command
c68 -A -O temp.asm prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to the file temp.asm.

When the -A option is used, the option -T causes the compiler to
include the C source statements as comments in the assembly language
source.

1.3 #include Files
L.3.1 Searching for #include files

You can make the compiler search for #include files in a sequence
f directories, thus allowing source files and #include files to be
;ontained in different directories.

Directories can be specified with the -I compiler option, and with
he INCL68 environment variable. The compiler itself also selects a
‘ew areas to search. The maximum number of searched areas is eight.

If the file name in the #include statement specifies a directory, just
hat directory is searched.

.3.1.1 The -I option.
A -I option defines a single directory to be searched. The area
lescriptor follows the -1, with no intervening blanks. For example, the

ollowing -I option tells the compiler to search the /ram/include
lirectory:

-I/ram/include
.3.1.2 The INCL68 environment variable

The INCL68 environment variable also defines directories to be
earched for #include files. The string associated with this variable
onsists of the names of the directories to be searched, with each pair
eparated by a semicolon. For example, on PCDOS the following

- ¢cc.5 -

COMPILER Aztec C68k/ROM

command sets INCL68 so that the compiler will search for include files
in directories \C68\INCLUDE and \DVR\INCLUDE:

set INCL68=\C68\INCLUDE;\DVR\INCLUDE

For a description of the command that’s used on your system to set
environment variables, see your operating system manual.

1.3.1.3 The search order for indude files
Directories are searched in the following order:

1. If the #include statement delimited the file name with the
double quote character, ", the current directory on the default
drive is searched. If delimited by angle brackets, < and >, this
area isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directories defined in the INCL68 environment variable
are searched, in the order listed.

1.3.2 Precompiled #inciude Files

To shorten compilation time, the compiler supports precompiled
#include files.

To use this feature, you first compile frequently-used header files,
specifying the +h option; this causes the compiler to write its symbol
table, which contains information about the contents of the header
files, to a disk file. Then, when you compile a module that #includes
some of these header files, you specify the +i option; this causes the
compiler to load into its symbol table the pre-compiled symbol table
information about the header files. When the compiler encounters a
#include statement of a header file for which it has already loaded
pre-compiled symbol table information, it ignores the #include
statement. This ignoring occurs even if the #include file was nested
within another #include file in the C source from which the pre-
compiled symbol table was generated.

The compiler does much less work when it loads pre-compiled
information into its symbol table than when it generates the same
information from C source, and hence using pre-compiled #include
files can considerably shorten the time required to compile a module.

The +H option tells the compiler to write its symbol table to a file.
The name of the file immediately follows the +H, with no intervening
spaces. For example, you might create a file named x.c that consists
just of #include statements for all the header files that you want pre-
compiled You could then generate a file named include.pre that
contains the symbol table information for these header files by
entering the following command:

- ¢c.6 -

Aztec C68k/ROM COMPILER

¢68 +Hinclude.pre x.c

The +1 option tells the compiler to read pre-compiled symbol table
information from a file. The name of the file immediately follows the
+I, with no intervening spaces. For example, to compile the file prog.c
that accesses the header files that were defined in x.c, and to have the
compiler preload the symbol table information for these files from
include.pre, enter the following command:

¢68 +linclude.pre prog.c
1.4 Memory Models

The memory model used by a program determines how the
program’s executable code makes references to code and data. This in
turn indirectly determines the amount of code and data that the
program can have, the size of the executable code, and the program’s
execution speed.

Before getting into the details of memory models, we want to
describe the sections into which a C68k-generated program is
organized. The sections of a program are these:

* code, containing the program’s executable code;

* data, containing its global and static data; -

* stack, containing its automatic variables, control information,
and temporary variables;

* heap, an area from which buffers are dynamically allocated.

There are two attributes to a program’s memory model: one
attribute specifies whether the program uses the large data or the small
data memory model; the other attribute specifies whether the program
uses the large code or small code memory model

1.41 large data versus ssmill data

The fundamental difference between a large data and a small data
program concerns the way that instructions access data segment data: a
large data program accesses the data using position-dependent
instructions; a small data program accesses the data using position-
independent instructions. An instruction makes position-dependent
reference to data in the data segment by specifying the absolute
address of the data; it makes a position-independent reference to data
in the data segment by specifying the location as an offset from a
reserved address register. Other differences in large data and small
data programs result from this fundamental difference; these other
differences are:

* There is no limit to the amount of global and static data thata
large data program can have. A small data program, on the
other hand, can have at most 64k bytes of global and static
data.

- cc.7 -

COMPILER Aztec C68k/ROM

* For a small data program, an address register must be reserved
to point into the middle of the data segment. For a large data
program, an instruction that wants to access data in the data
segment contains the absolute address of the data, and hence
doesn’t need this address register.

* A code segment is larger when its program uses large data
than when it uses small data, because a reference to data in a
data segment occupies a 32-bit field in a large data
instruction, and occupies a 16-bit field in a small data
instruction, '

* A program is slower when it uses large data than when it uses
small data, because it takes more time for an instruction to
access data when it specifies the absolute address of the data
than when it specifies the data’s offset offset from an address
register.

1.4.2 large code versus small code

The fundamental difference between a large code and a small code
program concerns the way that instructions in the program refer to
locations that are located in the code segment: for a large code program
the reference is made using position-dependent instructions;. for a
small code program, the reference is made using position-independent
instructions. An instruction makes position-dependent reference to a
code segment location by specifying the absolute address of the
location; it makes a position-independent reference to a code segment
location by specifying the location as an offset from the current
program counter. Other differences in large data and small data
programs result from this fundamental difference; these other
differences are:

* The size of a code segment is unlimited for both large code
and small code programs. An instruction in a large code
program can directly call or jump to the location, regardless of
its location in the code segment.

An instruction in a small code program can only directly
call or jump to locations that are within 32k bytes of the
instruction. To allow instructions in small code programs to
transfer control to any location, regardless of its location in
the code segment, a "jump table", which is located in the
program’s data segment, is used. If a location to which an
instruction wants to transfer control is more than 32k bytes
from the instruction, the transfer is made indirectly, via the
jump table: the instruction calls or jumps to an entry in the
jump table, which in turn jumps to the desired location. A
jump instruction in a jump table entry refers to a code
segment location using an absolute, 32-bit address, and hence
can directly access any location in the program’s code

-cc.8 -

Aztec C68k/ROM COMPILER

segment.

When a small code program is linked, the linker
automatically builds the jump table: if the location to which
an instruction wants to transfer control is outside the
instruction’s range, the linker creates a jump table entry that
jumps to the location and transforms the pc-relative
instruction into a position-independent call or jump to the
jump table entry.

* A code segment can contain data as well as executable code.
An instruction in a large code program can access data located
anywhere in the code segment, because it accesses code
segment data using position-dependent instructions, in which
the location is referred to using a 32-bit, absolute address. An
instruction in a small code program can only access code
segment data that is located within 32k bytes of the
instruction.

* For a small code program to access the jump table, an address
register needs to be reserved and set up to point into the
middle of the program’s data segment, if the program also
uses small data, the same address register is used for both
jump table accesses and normal accesses of data segment data.
For a large code program, this address register is not needed
for the referencing of locations in the code segment.

* A code segment is larger when its program uses large code
than when it uses small code, because instructions that
reference code segment locations by specifying an absolute
address use a 32-bit field to define the location, whereas
instructions that reference data by specifying a pc-relative
address or an offset from an index register use a 16-bit field
to define the location.

* A program is usually slower when it uses large code than when
it uses small code, because it takes more time for an
instruction to reference a code segment location when it
specifies the absolute address of the data than when it
specifies the location in a pc-relative form.

A large small code program that has lots of indirect
transfers of control via the jump table may not differ much in
execution time from a large code version of the same
program, since the small code indirect transfer via the jump
table will take more time than the large code direct transfer.

1.4.3 Selecting a module’s memory model

You define the memory model to be used by a module when you
compile the module, by specifying or not specifying the following
options:

-cc9 -

COMPILER Aztec C68k/RON

+C Module uses large code. If this option isn’t specified
the module will use small code.
+D Module uses large data. If this option isn’t specified

" the module will use srmall data.

For example, the following commands compile prog.c to us
different memory models:

c68 prog small code, small data
c68 +C prog large code, small data
c68 +D prog small code, large data
c68 +C +D large code, large data

'1.4.4 Libraries

The Aztec C68k functions are provided in source form, witl
"makefiles” that simplify the task of generating object module libraries
The supplied versions of the makefiles can create small code, smal
data and large code, large data versions of the libraries c68.lib anc
m68.1ib.

1.45 Multi-module programs

The modules that you link together to form an executable progran
can use different memory models, with the following caveat.

When large data and small data modules are linked together, the
linker will create an arbitrarily large data segment, without attemptin;
to sort the data into those that are accessed by large data modules an¢
those that are accessed by small data modules. When the program i
running, an address register that you specify at link time will poin
into the middle of this data segment. This register is used by the smal
data modules to access data.

Here’s the caveat: data that the small data modules attempt to acces
must be within 32k bytes of the location pointed at by this addres
register. The linker will detect data accesses by small data modules fo
which this condition isn’t satisfied, and issue a message. If you get thi
message, try reordering the order in which the linker encounters them
if that doesn’t solve the problem, you’ll have to recompile the smal
data modules, making them use large data.

-¢c.10 -

Aztec C68k/ROM COMPILER

2. Compiler Options

There are two types of options in Aztec C compilers: machine
independent and machine dependent. The machine-independent
options are provided on all Aztec C compilers. They are identified by
a leading minus sign.

The Aztec C compiler for each target system has its own, machine-
dependent, options. Such options are identified by a leading plus sign.

The following paragraphs first summarize the compiler options and
then describe them in detail

2.1 Summary of options
2.1.1 Machine-independent Options
-A Don’t start the assembler when compilation is done.

-Dsymbolf=value]
Define a symbol to the preprocessor.

-Idirl:dir2;...
Search directories dirl, dir2, ... for #include files.

-0 file Send output to file.
-S Don’t print warning messages.

-T Include C source statements in the assembly code
' output as comments. Each source statement appears
before the assembly code it generates.

-B Don’t pause after every fifth error to ask if the
compiler should continue. See the Errors subsection
-for details.

-Enum Use an expression table having num entries.
~-Lnum Use a local symbol table having num entries.
-Ynum Use a case table having num entries.
-Znum Use a literal table having num bytes.

2.1.2 Special Options for the 68k processor
+B Don’t generate the statement "public .begin"

+C Generate code that uses the "large code" memory
model. For information on +C and the related +D
option, see the Operator Information section.

+D Generate code that uses the "large data" memory
model

+H file Write symbol table to file. For information on +H and
the related +I option, see the Operator Information

-ccll -

COMPILER

+Ifile
+L

+Q

+RFx

+RRxxx
+RSxxx
+RTxxx

+RUx

Aztec C68k/ROM

section.
Read pre-compiled symbol table from file.

int variables and constants are 32 bits long. If this
option isn’t used, they are 16 bits long.

Put character string constants in the data segment. If
+Q isn’t specified, string constants are placed in the
code segment.

Use address register x as the frame pointer (default
A6).

For register variables, use registers defined by the
decimal number xxx (default D4-D7/A3-A4).

On function entry, always save registers defined by
the decimal number xxx (default: none).

For temporary results, use registers defined by the
decimal number xxx (default DO-D3/A0-A2).

Set name underscore mode as defined by x: negative
for preceding underscore (default), zero for none,
positive for trailing

-cc.12 -

Aztec C68k/ROM COMPILER

2.2 Detailed description of the options
2.2.1 Machine-independent options
2.21.1 The -D Option (Define a macro)

The -D option defines a symbol in the same way as the
preprocessor directive, #define. Its usage is as follows:

c68 -Dmacro[=text] prog.c
For example,
¢68 -DMAXLEN=1000 prog.c
is equivalent to inserting the following line at the beginning of the
program:;
#define MAXLEN 1000
Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the preprocessor

directive, #ifdef, to sclectively include code in a compilation. A
common example is code such as the following:

#ifdef DEBUG
printf("value: %d\n", i);
#endif

This debugging code would be included in the compiled source by
the following command:

¢68 -dDEBUG program.c

When no substitution text is specified, the symbol is defined to have
the numerical value 1.

2.2.1.2 The -I Option (Include another source file)

The -1 option causes the compiler to search in a specified directory
for files included in the source code. The name of the directory
immediately follows the -I, with no intervening spaces. For more
details, see the Compiler Operating Instructions, above.

2.2.1.3 The -S Option (Be Silent)

The compiler considers some errors to be genuine errors and others
to be possible errors. For the first type of error, the compiler always
generates an error message. For the second, it generates a warning
message. The -S option causes the compiler to not print warning
messages.

2.2.1.4 The Local Symbol Table and the -L Option

When the compiler begins processing a compound statement, such
as the body.of a function or the body of a for loop, it makes entries
about the statement’s local symbols in the local symbol table, and

-cc13-

COMPILER Aztec C68k/ROM

removes the entries when it finishes processing the ‘statement. If the
table overflows, the compiler will display a message and stop.

By default, the local symbol table contains 40 entries. Each entry is
26 bytes long; thus by default the table contains 520 bytes.

You can explicitly define the number of entries in the local symbol
table using the -L option. The number of entries immediately follows
the -L, with no intervening spaces. For example, the following
compilation will use a table of 75 entries, or almost 2000 bytes:

c68 -L75 program.c
22.1.5 The Expression Table and the -E Option

The compiler uses the expression table to process an expression.
When the compiler completes its processing of an expression, it frees
all space in this table, thus making the entire table available for the
processing of the next expression. If the expression table overflows,
the compiler will generate error number 36, "no more expression
space"”, and halt.

By default, the expression table contains 80 entries. Each entry is
14 bytes long; thus by default the table contains 1120 bytes.

You can explicitly define the number of entries in the expression
table using the -E option. The number of entries immediately follows
the -E, with no intervening spaces. For example, the following
compilation will use a table of 20 entries:

¢68 -E20 program.c
22.1.6 The Case Table and the -Y Option

The compiler uses the case table to process a switch statement,
making entries in the table for the statement’s cases. When it
completes its processing of a switch statement, it frees up the entries
for that switch. If this table overflows, the compiler will display error
76 and halt,

For example, the following will use a maximum of four entries in
the case table:

-cc.14 -

Aztec C68k/ROM COMPILER

switch (a) {

case O: /* one */
a+=|;
break;
case I: /* two */
switch (x) {
case ’a”; /* three */
funcl (a);
break;
case ’b’”: /* four */
func2 (b);
break;
} /* release the last two */
a=35;
case 3: /* total ends at three */
func2 (a);
break;
)

By default, the table contains 100 entries. Each entry is four bytes
long; thus by default, the table occupies 400 bytes.

You can explicitly define the number of entries in the case table
using the compiler’s -Y option. The number of entries immediately
follows the -Y, with no intervening spaces. For example, the following
compilation uses a case table having 50 entries:

c68 -Y50 file
2.2.1.7 The String Table and the -Z Option

When the compiler encounters a "literal" (that is, a character
string), it places the string in the literal table. If this table overflows,
the compiler will display error 2, "string space exhausted", and hait.

By default, the literal table contains 2000 bytes.

You can explicitly define the number of bytes in this table using
the compiler’s -Z option. The number of bytes immediately follows
the -Z, with no intervening spaces. For example, the following
command will reserve 3000 bytes for the string table:

68 -Z3000 file
2.2.1.8 The Macro/Global Symbol Table

The compiler stores information about a program’s macros and
global symbols in the Macro/Global Symbol Table. This table is
located in memory above all the other tables used by the compiler. Its
size is set after all the other tables have been set, and hence can’t be
set by you. If this table overflows, the compiler will display the
message "Out of Memory!" and halt. You must recompile, using
smaller sizes for the other tables.

-cc.15 -

COMPILER Aztec C68k/ROM

2.2.2 Special Options l'qr the 68k processor
22.2.1 The +B Option

Normally when compiling modules, the compiler generates a
reference to the entry point named .begin. Then when modules are
linked into a program, the reference causes the linker to include in the
program the library module that contains .begin.

The +B option prevents the compiler from generating this
reference.

For example, if you want to provide your own entry point for a
program, and its name isn’t .begin, you should compile the program’s
modules with the +B option. If you don’t, then the program will be
bigger than necessary, since it will contain your entry point module
and the standard entry point module. In addition, the linker by default
sets at the program’s base address a jump instruction to the program’s
entry point; if it finds entry points in several modules, it will set the
jump to the last one encountered. ‘

2222 The +C and +D options
These options are discussed in the first section of this chapter.
2223 The +L option

The +L option causes a program’s int variables and constants to be
32 bits long, instead of the 16 bit default length. This option has no
effect on the length of a module’s other integer variables. variables of
type short and long are always 16 and 32 bits long, respectively.

We recommend that you use the +L option sparingly, if at all,
because it makes a program larger and slower.

2.2.2.4 The +RF option - Define the frame pointer register

During execution of a function, a "frame" of information about the
function is on the stack. An address register points to the "frame" of
the currently-active function, and is used by compiler-generated code
to access information in this function’s frame.

You can define, using the compiler’s +RF option, the address
register that will contain the frame pointer. The decimal number of
this address register immediately follows the "+RF', with no
intervening spaces. For example, the following option tells the
compiler to use address register AS as the frame pointer:

+rf5

If this option isn’t specified, address register A6 is used as the
frame pointer.

-¢c.16 -

Aztec C68k/ROM COMPILER

2225 The +RR option - Define register variables’ registers

The "+RR" option defines the registers that can be used for a C
function’s register variables. These registers are specified by the
decimal number that immediately follows the "+RR". Each register has
a number associated with it, and the number that follows the "+RR" is
the sum of all the selected registers’ numbers. The registers that can be
used to hold register variables, and their associated numbers, are:

Register Number
D2 1
D3 2
D4 4
D5 8
D6 16
D7 32
A2 64
A3 128
A4 256
A5 512
A6 1024

For example, to define registers D4-D7/A3-AS5 as register
variables, you would add the numbers for these registers:

448+16+32+128+256+512=956, ‘
and then specify, when compiling, the option
+11956

If you don’t specify the +RR option, the compiler uses a default
value of 444. This is the sum 4+8+16+32+128+256, which allows
registers D4-D7/A3-A4 to be used for register variables.

2.2.2.6 The +RS option - Spedfy registers to be saved

On entry to a function, the contents of the registers that hold the
function’s register variables are pushed on the stack. Normally, just
those registers that contain the function’s register variables are saved;
for example, if D4-D7/A3-A4 are available for use as register variables
but the function only declares one register variable, then just one
register is saved on entry to the function.

The +RS option tells the compiler to generate code that will
automatically save specified registers, whether or not they are used for
the function’s register variables. These registers are specified in a
decimal number that immediately follows the +RS. The number has
the same format as for the +RR option: it’s a sum of numbers, each of
which defines one register. The numbers for the registers are the same
as for the +RR option.

-cc.17 -

COMPILER Aztec C68k/ROM

For example, the following option tells the compiler to generate
code that will automatically save A5 on entry to a function:

+rs512

If this option isn’t specified, no extra registers will be saved on
entry to a function.

2227 The +RT option - Define registers that can hold temps

During the execution of compiler-generated code, registers are used
to hold temporary values. This option defines those registers, in a
decimal number that immediately follows the "+RT". Each possible
register that can be used is assigned a number, and the number that
follows the +RT is the sum of the numbers for those registers that can
be used for temporaries. The registers and their numbers are:

register number
DO |
D1 2
D2 4
D3 8
A0 16
Al 32
A2 64
A6 128

For example, if D0-D2/A0 are available for temporaries, the
following +RT option would be used:

+rt23

If this option isn’t specified, registers D0-D3/A0-A2 will be used for
temporaries.

2.2.2.8 The +RU option - Define underscore mode

When the compiler translates the name of a function or global
variable into assembler, it does so by pre-pending an underscore to the
C name, post-pending an underscore, or by using the C name as is.
The +RU option defines, in a number that immediately follows the
+RU, which of these choices the compiler should use: a negative value
prepends the underscore, zero causes no underscore to be added, and a
positive value postpends the underscore.

For example, the following option causes the compiler to place an
underscore before all names:

+ru-1

If this option isn’t used, the compiler will prepend an underscore.

-cc.18 -

Aztec C68k/ROM COMPILER

3. Writing programs

The previous sections of this description of the compiler discussed
operational features of the compiler; that is, presented information that
an operator would use to compile a C program. In this section, we
want to present information of interest to those who are actually
writing programs,

3.1 Supported Language Features

Aztec C supports the entire C language as defined in The C
Programming Language by Kernighan and Ritchie. This now includes
the bit field data type.

The following paragraphs describe features of the standard C
language that are supported by Aztec C but that aren’t described in the
K & R text.

3.2 Structure assignment

Aztec C supports structure assignment. With this feature, a
program can cause one structure to be copied into another using the
assignment operator.

For example, if s/ and s2 are structures of the same type, you can
say:
sl =s2;
thus causing the contents of structure sl to be copied into structure s2.

Unlike other operators, the assignment operator doesn’t have a
value when it’s used to copy a structure. Thus, you can’t say things
like "a = b = ¢", or "(a=b).fld" when a, b, and c are structures.

3.3 Structure Passing

Aztec C68k allows a structure to be passed from one function to
another function; but a function cannot return a structure as its value.

3.4 Line continuation

If the compiler finds a source line whose last character is a
backslash, \, it will consider the following line to be part of the current
line, without the backslash. For example, the following statements
define a character array containing the string "abcdef™:

char array[]="ab\
cd\
ef”;

3.5 The void data type

Functions that don’t return a value can be declared to return a void.
This provides a safety check on the use of such functions: if a void
function attempts to return a value, or if a function tries to use the

- cc.19 -

COMPILER - Aztec C68k/ROM

value returned by a void function, the compiler will generate an error
message. '

Variables can be declared to point to a void, and functions can be
declared as returning a pointer to a void.

Unlike other pointers, a pointer to a void can be assigned to a
pointer to any type of object, and vice versa. For other types of
pointers, the compiler will generate a warning message if an attempt is
made to assign one pointer to another, when the types of objects
pointed at by the two pointers differ.

That is, the compiler will generate a warning message for the
assignment statement in the following program:

main()
char *cp;
int *ip;
ip = cp;
}

The compiler won’t complain about the following program:
main()
char *cp;
void *getbuf();
cp = getbuf();

3.6 Special symbols
Aztec C supports the following symbols:

__FILE Name of the file being compiled. This is a
character string.

__LINE___ Number of the line currently being
compiled. This is an integer.

___FUNC___ Name of the function currently being

compiled. This is a character string.

In case you can’t tell, these symbols begin and end with two
underscore characters.

For example,

printf("file= %s\n", ___FILE___);
printf("line= %d\n", __LINE__);
printf("func=%s\n", ___FUNC__);

3.7 String merging
The compiler will merge adjacent character strings. For example,

- ¢c.20 -

Aztec C68k/ROM COMPILER

printf{"file=" FILE___ " line= %d func="__ FUNC___,
__LINE__); ‘

3.8 Long names

Symbol names are significant to 31 characters. This includes
external symbols, which are significant to 31 characters throughout
assembly and linkage.

3.9 Reserved words

const, signed, and volatile are reserved keywords, and must not be
used as symbol names in your programs.

3.10 Global variables

The standard C language specifies that to access a global variable,
exactly one module must declare it without the extern keyword and all
others declare it with the extern keyword. Aztec C supports the
following modified version of the rule:

* Multiple modules can declare the same variable, with the
extern keyword being optional;

* When several modules declare a variable without using the
extern keyword, the amount of space reserved for the variable
is set to the largest size specified by the various declarations;

* When one module declares a variable using the extern
keyword, at least one other module must declare the variable
without using the extern keyword;

* At most one module can specify an initial value for a global
variable;

* When a module specifies an initial value for a global variable,
the amount of storage reserved for the variable is set to the
amount specified in the declaration that specified an initial
value, regardless of the amounts specified in the other
declarations.

3.11 Data formats
-3.1L.1 char

Variables of type char are one byte long, and can be signed or
unsigned. By default, a char variable is signed.

When a signed char variable is used in an expression, it’s converted
to a 16-bit integer by propagating the most significant bit. Thus, a char
variable whose value is between 128 and 255 will appear to be a
negative number if used in an expression.

When an unsigned char variable is used in an expression, it’s
converted to a 16-bit integer in the range 0 to 255.

A character in a char is in ASCII format.

-cc.21 -

COMPILER Aztec C68k/ROM

3.11.2 pointer
Pointer variables are four bytes long.
3.11.3 short

Variables of type short are two bytes long. They can be signed or
unsigned, and by default are signed.

A negative value is stored in two’s complement format. A short is
stored in memory with its least significant byte at the highest
numbered address. A -2 stored at location 100 would thus look like:

location contents in hex
100 FF
101 FE
3.11.4 long

Variables of type long occupy four bytes, and can be signed or
unsigned.

Negative values are stored in two’s complement format. Longs are
stored sequentially with the most significant byte stored at the lowest
memory address and the least significant byte at the highest memory
address.

3.11.5 int

int variables are normally 16 bits long, but are 32 bits long if the +L
compiler option is used. For more information, see the discussion of
the +L option in the Options section of this chapter.

3.11.6 float & double

float and double numbers are both rcprescnted using IEEE format,
occupying respectively 4 and 8 bytes of storage.

3.12 In-Line Assembly Language Code

Assembly language source can be included in a C program, by
surrounding the assembly language code with the preprocessor
directives #asm and #endasm.

When the compiler encounters a #asm statement, it copies lines
from the C source file to the assembly language file that it’s
generating, until it finds a #endasm statement. The #asm and
#endasm statements are not copied. :

While the compiler is copying assembly language source, it doesn’t
try to process or interpret the lines that it reads. In particular, it won’t
perform macro substitution.

A program that uses #asm ..#endasm must avoid the following
placing in-line assembly code immediately following an if block; that
is, it should avoid the following code:

- .22 -

Aztec C68k/ROM COMPILER
if ()
)

#asm
#endasm

The code generated by the compiler will test the condition and if false
branch to the statement following the #endasm instead of to the
beginning of the assembly language code. To have the compiler
generate code that will branch to the beginning of the assembly
language code, you must include a null statement between the end of
the if block and the asm statement:

if (..
)
#asm
#.é.ndasm
3.13 Writing machine-independent code

The Aztec family of C compilers are almost entirely compatible.
The degree of compatibility of the Aztec C compilers with v7 C,
system 3 C, system 5 C, and XENIX C is also extremely high. There
are, however, some differences. The following paragraphs discuss
things you should be aware of when writing C programs that will run
in a variety of environments.

If you want to write C programs that will run on different
machines, don’t use bit fields or enumerated data types, and don’t pass
structures between functions. Some compilers support these features,
and some don’t.

3.13.1 Compatibility Between Aztec Products

Within releases, code can be easily moved from one
implementation of Aztec C to another. Where release numbers differ
(ie. 1.06 and 2.0) code is upward compatible, but some changes may
be needed to move code down to a lower numbered release. The
downward compatibility problems can be eliminated by not using new
features of the higher numbered releases.

3.13.2 Sign Extension For Character Variables

If the declaration of a char variable doesn’t specify whether the
variable is signed or unsigned, the code generated for some machines
assumes that the variable is signed and others that it’s unsigned. For

-cc.23 -

COMPILER Aztec C68k/ROM

example, none of the 8 bit implementations of Aztec C sign extend
characters used in arithmetic computations, whereas all 16- and 32-bit
implementations do. This incompatibility can be corrected by
declaring characters used in arithmetic computations as unsigned, or
by AND’ing characters used in arithmetic expressions with 255 (0xf¥).
For instance:

char a=129;

int b;

b = (a & Oxff) * 21,
3.13.3 The MPU... symbals

To simplify the task of writing programs that must have some
system dependent code, each of the Aztec C compilers defines a
symbol which identifies the processor on which the compiler-
generated code will run. These symbols, and their corresponding
Processors, are:

symbol processor
MPU8086 8086/8088
MPU80186 80186/80286
MPU6502 6502
MPUS8080 8080
MPUZ80 Z30

MCH AMIGA Amiga

MCH_MACINTOSH Macintosh
MCH__ATARI_ST Atari ST

MCH_ROM 68000 Rom system
Only one of these symbols will be defined for a particular compiler.

For example, the following program fragment contains several
machine-dependent blocks of code. When the program is compiled for
execution on a particular processor, -just one of these blocks will be
compiled: the one containing code for that processor.

#ifdef MACINTOSH
/* Macintosh code */
#else
#ifdef MPU8086
/* 8086 code */
#else
#ifdef MPUS080
/* 8080 code */
#endif
#endif
#endif

- cc.24 -

Aztec C68k/ROM) COMPILER

4. Error checking

Compiler errors come in two varieties-- fatal and not fatal Fatal
errors cause the compiler to make a final statement and stop. Running
out of memory and finding no input are examples of fatal errors. Both
kinds of errors are described in the Errors chapter. The non-fatal sort
are introduced below.

The compiler will report any errors it finds in the source file. It
will first print out a line of code, followed by a line containing the
up-arrow (caret) character. The up-arrow in this line indicates where
the compiler was in the source line when it detected the error. The
compiler will then display a line containing the following:

The name of the source file containing the line;

The number of the line within the file;

An error code;

The symbol which caused the error, when appropriate.

® # » &

The error codes are defined and described in the Errors chapter.

The compiler writes error messages to its standard output. Thus,
error messages normally go to the console, but they can be associated
with another device or file by redirecting standard output in the usual
manner. For example,

c68 prog errors sent to the console
c68 prog >outerr errors sent to the file outerr

The compiler normally pauses after every fifth error, and sends a
message to its standard output asking if you want to continue. The
compiler will continue only if you enter a line beginning with the
character ’y’. If you don’t want the compiler to pause in this manner,
(if, for example, the compiler’s standard output has been redirected to
a file) specify the -B option when you start the compiler.

The compiler is not always able to give a precise description of an
error. Usually, it must proceed to the next item in the file to ascertain
that an error was encountered. Once an error is found, it is not
obvious how to interpret the subsequent code, since the compiler
cannot second-guess the programmer’s intentions. This may cause it to
flag perfectly good syntax as an error.

If errors arise at compile time, it is a general rule of thumb that the
very first error should be corrected first. ’l'hns may clear up some of
the errors which follow.

The best way to attack an error is first to look up the meaning of
the error code in the back of this manual. Some hints are given there
as to what the problem might be. And you will find it easier to
understand the error and the message if you know why the compiler
produced that particular code. The error codes indicate what the
compiler was doing when the error was found.

- cc.28 -

COMPILER Aztec C68k/ROM

- cC.26 -

THE ASSEMBLER

- as.1 -

ASSEMBLER Aztec C68k/ROM

Chapter Contents

The Assembler
1. Operating INStFUCLIONSc.coveereeenersusersssesesrarsenssseeresenes
1.1 The Input File
1.2 The Object Code File veerrerasrearasenss
1.3 Listing File
1.4 Optimizations .
1.5 Searching for include Files
2. Assembler Options w
3. Programmer information

.....

wobbbbwwd

- as.2 -

Aztec C68k/ROM ASSEMBLER

The Assembler

The as68 assembler translates assembly language source statements
into relocatable object code. Assembler source statements are read
from an input text file and the object code is written to an output file.
A listing file is written if requested. The relocatable object code must
be linked by In68, the Manx Linker, before it can be executed. At
linkage time it may be combined with other object files and run time
library routines from system or private libraries. Object modules
produced from C source text and Assembler source text can be
combined at linkage time into a composite module.

Assembly language routines are generally not required when
programming in C. Assembly language routines should only be
necessary where critical execution time or critical size requirements
exist. Some system interfacing or low level routines may also require
assembler code.

Information on the MC68000 architecture and instructions can be
found in the Motorola MC68000 16-bit Microprocessor User's Manual
(Prentice-Hall, Inc., Englewood Cliffs, N. J. 07632)

1. Operating Instructions
The assembiler is started by entering the command line:
as68 [-options] filename

where [-options] specify optional parameters and filename is the name
of the file to be assembled.

The assembler reads assembly source statements from the input file,
writes the translated relocatable object code to an output file, and if
requested writes a listing to an output file. The assembler also will
merge assembly code from other files on encountering an include
directive. '

1.1 The Input File

Specification of the extension on the source file name is optional: if
not given, it’s assumed to be .asm. For example the following
command assembles the file io.asn

as68 io
1.2 The Object Code File

The object code produced by the assembler is written to a file. By
default, this file is placed in the directory that contains the source file,

-as.3 -

ASSEMBLER Aztec C68k/ROM

and its name is derived from that of the input file by changing the
extension to .r.

To write the object code to another file, use the -0 option. For
example, the following command assembles the source that’s in
prog.asm, sending the object code to the file new.obj. This latter file is
placed in the current directory, since the -0 option didn’t specify
otherwise.

as68 -0 new.obj progasm
1.3 Listing File

If the -L option is specified, the assembler will produce a listing file
with the same root as the input file and a filename extension of .Ist.
The listing file displays the source statements and their machine
language equivalent The listing also indicates the relative displacement
of each machine instruction.

1.4 Optimizations

The assembler by default performs some optimizations on an
assembly language source file, making just two passes through the
asscmbly source file. Optimization can be disabled using the -N
option; this causes the asssembler to run faster, since it makes just a
smgle pass through the source and since it needn’t optimize the code,
but it makes the resultant code larger and slower.

The instructions affected by these optimizations are:

branches Long branches are converted to short if possible, and
branches to the following location will be deleted.

movem If there are no registers, the instruction is deleted. If
there is only one register, the shorter move instruction
is substituted.

Jsr bsr is substituted if possible.

To make these optimizations, the assembler uses a dynamically-
allocated table. If this table is filled, the assembler will continue, will
generate correct, but not completely optimizcd, object code, and will
tell you the number of additional entries that it could have used. You
can then reassemble the module usmg the -S option to define a
different table size.

1.5 Searching for include Files

By default the assembler searches just the current directory for files
specified in include statements. Using the -/ option and the INCL68
environment variable, you can make the assembler also search other
directories for such files, thus allowing program source files and
header files to be contained in different directories.

-as.d ~

Aztec C68k/ROM - ASSEMBLER

If the file name on the include directive specifies a directory or a
drive name, the assembler will automatically search just the specified
directory for the file.

1.5.1 The -1 option
The -I option defines a single directory to be searched for a file

specified in an include statement. The path descriptor follows the -/,
with no intervening blanks. For example, the specification

as68 -i/db/include progl

directs the assembler to search the /db/include directory when looking
for an include file.

Multiple -7 options can be specified when the assembler is started,
if desired, thus defining multiple directories to be searched.

1.5.2 The INCL68 Environment Variable

The INCL68 environment variable also defines areas to be searched
for include files. The value of the variable consists of the names of
the directories to be searched, with each pair of names separated by
semicolons.

The command that is used to set environment variables varies from
system to system. For example, on PCDOS the following command
sets INCL68 so that the directory \ram\include is searched:

set INCL68=\ram) include
1.5.3 Incdude Search Order

When the assembler encounters an include statement, it searches
firectories for the file specified in the statement in the following
rder:

1. The current directory is searched.

2. The directories specified in the -/ options are searched, in the
order listed on the line that started the assembler;

3. The directories specified in the INCL68 environment variable
are searched, in the order listed.

-as.5-

ASSEMBLER

2. Assembler Options

Aztec C68k/ROM

2.1 Summary of options

-0 filename
-larea

-Ename[=val]

Send object code to filename.

Defines an area to be searched for files specified
in an include statement.

Generate listing.
Don’t optimize object code.
Create squeeze table having num entries.

Verbose option. Generate memory usage
statistics.

This option is used primarily when you assemble
a file that was generated by the compiler. It
directs the assembler to delete the input file after
processing.

Make large code the default code memory model.
If this option isn’t specified, small code is the
default code memory model. The near code and
Jar code directives can be used by a program to
override the default code memory model.

Make large data the default data memory model.
If this option isn’t specified, small data is the
default data memory model. The near data and
far data directives can be used by a program to
override the default data memory model. For
more information on memory models, sece the
Compiler chapter. For more information on the
near and far directives, see the Programmer
Information section of this chapter.

Create an entry in the symbol table for name and
assign it the constant value val If val isn’t
specified, name is assigned the value 1.

2.2 Description of options
22.1 The’-O filename’ option

This option causes as to send the object code to filename. If this
option isn’t specified, as sends the object code to a file whose name is
derived from that of the assembler source file by changing the
extension to .r; in this case, the file is placed in the directory
containing the source file.

‘”06'

Aztec C68k/ROM ASSEMBLER

2.2.2 The -I-Option

The -I option causes the assembler to search in a specified area for
files included in the source code.

The name of the area immediately follows the -I, with no
intervening spaces. For example, the following defines directory
/source/inc:

-I/source/inc
For more details, see the Assembler Operating Instructions, above.
2.2.3 The -L option

Causes as68 to generate a listing. The name of the file to which the
listing is sent is derived from that of the source file by changing the
extension to .Ist. The listing file ns placed in the directory containing
the source file.

2.2.4 The -S option

The -S option defines the number of entries in the squeeze table.
If this option isn’t specified, the table contains 1000 éntries.

The number of entries immediately follows the -S, with no
intervening spaces. For example, the following option tells the
assembler to use a squeeze table containing 1050 entries:

-s1050

- as.7 -

ASSEMBLER , Aztec C68k/ROM

3. Programmer Information

The following sections discuss the four types of assembly language
statements:

1. Comments
2. Instructions
3. Directives
4. Macro Calls

3.1 Comments

A comment can appear after a semicolon or after the operand field.
For example:

; this is a comment
link a6,#.2 this is also a comment
3.2 Executable Instructions
Executable instructions have the general format.
label operation operand
3.21 Labels

Assembler labels can be any length. External labels are only
significant for the first 32 characters. Any additional characters will be
ignored. Valid label characters include letters, numbers, or the special
characters . and __. A label cannot begin with a digit.

Labels that do not start in the first column require a colon suffixed.
3.2.2 Operations

The assembler recognizes all of the mnemonics found in Motorola’s
16-bit Microprocessor User's Manual.

To specify a length for instructions which support multiple lengths,
it is sufficient to suffix the instruction mnemonic with:

.B Specifies a length of one byte
R Specifies a length of 16-bits
.L Specifies a length of 32-bits

3.23 Operands
The operand field consists of one expression, or two expressions
separated by a comma with no imbedded spaces. An expression is

comprised of register mnemonics, symbols, constants, or arithmetic
combinations of symbols or constants.

3.2.3.1 Symboals

Symbols or labels represent relocatable or absolute values. An
absolute value is one whose value is known at assembly time. A
relocatable value is one whose value is not known until the program is

-as.8 -

Aztec C68k/ROM ASSEMBLER

actually loaded into memory for execution.

Relocatable expressions can only be expressed arithmetically as
sums or differences. The difference between two relocatable
expressions is absolute. The result of summing two relocatable
expressions is undefined.

3.23.2 Constants

There are five type of constants: octal, binary, decimal,
hexadecimal and string.

* An octal constant is expressed as an @ followed by a string of
digits from the set 0 through 7 such as @123 or @777.

* A binary constant is expressed as a % followed by a string of
ones and zeroes such as %10101 or %11001100.

A decimal constant is a string of numbers.

* A hexadecimal constant is a $§ followed by a string of
characters made up of numbers or alphabetics from a through
. fsuch as $7fff or la2e.

* A string constant is any string of characters enclosed in single
quotes such as ‘abdc’.

*

3.2.3.3 Registers
Register mnemonics are: y
Name Register

Do, ..., D7 Data registers
A0, ..., A7 Address registers

SPor A7 Stack pointer

PC Program counter (forces PC relative mode)
SR Status register

CCR Condition code register

Usp User stack pointer

3.2.3.4 Operand expressions

The assembler supports operand expressions that use the following
operators: ~ '

Operator Meaning

+ Addition

- . Subtraction & unary minus
* Multiplication

/ Division

>> : Shift right

<< Shift left

& And

| Or

- as.9 -

- ASSEMBLER Aztec C68k/ROM

The order of precedence is innermost parenthesis, unary minus,
shift, and/or, multiplication/division, and addition/subtraction.

3.3 Directives

The following paragraphs describe the directives that are supported
by the assembler.

EQU
label equ <expression>

This directive assigns the value of the expression on the right to
the label on the left

REG o
label reg <register list>

This directive assigns the value of the register list to the label
Forward references are not allowed. A register list consists of a
list of register names separated by the / character. The -
character may be used to identify an inclusive set of registers.
The following are valid register lists:

a0-a3/d0-d2/d4
al/a2/ad/a6/d0-d2

PUBLIC
[label] public <symbol>[,<symbol>...]

This directive identifies the specified symbols as having external
scope. These symbols are visable to the linker and are used to
resolve references between modules. The type of the symbol is
CODE if it was defined within the code segment, DATA if it was
defined within the data segment, and ABS if it was defined to
have an absolute value in an equ directive.

GLOBAL and BSS

[label] global <symbol><size>
[label] bss <symbol>.<size>

These directives reserve storage for uninitialized data items. The
area is reserved in the uninitialized data area. If global is used
then the data item is known to other modules that are external to
the routine. If bss is used then the data item is local to the
routine in which it is defined. ‘

If a global is defined in more than one module then the linkage
editor will reserve the maximum value of those assigned.

- as.10 -

Aztec C68k/ROM ASSEMBLER

A symbol that appears in both a global and a public directive is
located in the initialized data area and the global statements size
parameters are ignored.

ENTRY
[label] entry <symbol>

This directive defines the entry point of the program. Only one
entry can be declared per program. If no entry point is defined,
the first instruction of the first module becomes the default entry
point.

END

This directive defines the end of the source statements. All files
are closed and the assembler terminates.

CSEG

Assembled output following this directive is output into the code
segment of the program output file.

DSEG

Assembled output following this directive is placed in the
initialized data segment of the program file.

DC - Define Constant

[label] dc.b <value>[,<value>, <value> ...]

[label] dc <value>[.<value>, <value> ...]

[label] de.w <value>[,<value>, <value> ...]

[label] dcl <value>[<value>, <value> ...]

[label] de.b “string”
The dc directive causes one or more fields of memory to be
allocated and initialized.

Each <value> operand causes one ficld to be allocated and then to
be initialized with the specified value. A <value> can be an
expression. An expression may contain forward references.

For command programs, a value can contain a reference to a
memory location whose address won’t be known until the
program is loaded into memory. In this case, an item for this
value will be added to the program’s relocation table; when the
program is loaded, the field containing this value will be set to
the correct value.

- as.11 -

ASSEMBLER Aztec C68k/ROM

Each field for a particular dc directive is the-same length. A
period followed by b, w, or 1 can be appended to a directive,
defining the ficld length to be one, two, or four bytes,
respectively. If the field length isn’t specified in this way, it
defaults to 2 bytes.

Fields that are two or four bytes long are aligned on word
boundaries.

The last form listed above for dc allocates a field having exactly
the number of characters in the string, and places the string in it.

DCB - Define Constant Block
[label] dcb.b <size>(<value>]

[label] dch <size>f,<value>]
[label] dcb.w <size>[,<value>]
[label] dcb.l <size>[<value>]

The dcb directive allocates a block of storage containing <size>
fields, and initializes each field with <value>. If <value> isn’t
specified, it's assumed to be 0.

Each field for a particular dcb directive is the same length. A
period followed by b, w, or | can be appended to a directive,
defining the field length to be one, two, or four bytes,
respectively. If the field length isn’t specified in this way, it
defaults to 2 bytes.

Fields that are two or four bytes long are aligned on word

boundaries.
DS - Define Storage
[label] ds.b <size>
[label] ds <size>
[label] ds.w <size>
[label] ds.l <size>

This directive allocates a block of storage containing <size>
fields, and sets each field to 0.

Each field for a particular ds directive is the same length. A
period followed by b, w, or I can be appended to a directive,
defining the field length to be one, two, or four bytes,
respectively. If the field length isn’t spccxfied in this way, it
defaults to 2 bytes.

Fields that are two or four bytes long are ahgned on word
boundaries.

- as.12 -

Aztec C68k/ROM ASSEMBLER

NEAR and FAR
near code/data
far code /data

The near code and far code directives cause the assembler to
generate code that uses the small code or large code memory
model, respectively. If these options aren’t specified, the
assembler will generate code whose code memory model is
determined by the presence or absence of the +C assembler
option.

The near data and far data directives cause the assembler to
generate code that uses the small data or large data memory
model, respectively. If these options aren’t specified, the
assembler will generate code whose data memory model is
determined by the presence or absence of the +D assembler
option.

A program can contain multiple near and far directives, thus
allowing different sections of the same module to use different
memory models.

LIST and NOLIST

The directives list and nolist turn on and off, respectively, the
listing of assembly language statements to the listing file.

MLIST and NOMLIST

The directives mlist and nomilist specify whether or not the
assembly language statements generated by a macro expansion
should be written to the listing file.

CLIST and NOCLIST

The directives clist and noclist specify whether or not statements
should be included in the listing file, when the statements were
not assembled as a result of assembler conditional statements. By
default, such statements are not listed.

INCLUDE
include <file>

This directive causes the assembler to suspend assembly of the
current file and to assemble the specified file. When done, the
assembler continues assembling the original file.

- ”013 -

ASSEMBLER Aztec C68k/ROM

MACRO and ENDM
[label] macro <symbol>

text

endm
The specified symbol is entered in the assembler opcodes table.
The text between the macro and endm is saved in memory. When
the macro symbol is encountered as an opcode the text is placed
in line. Up to nine arguments can be specified. They are
referenced in the macro text as %1 through %9. In expanding a

macro symbolic argument references are replaced by their actual
value. ‘

MEXIT

Upon encountering this directive expansion of the current macro
stops and the assembler scans for the statement following the
ENDM directive.

IF, ELSE, and ENDC
if <test>
[eL;;]
endc

These directives are used to allow conditional assembly of parts
of the input file. The general form of the IF test is:

<exp>

<exp> == <exp>] <exp> = <exp>
<exp> I= <exp>] <exp> <> <exp>
strl’ == 'str2’ I strl’ = str2’
strl’ 1= Cstr2’ A strl’ <> str2’

If the test result is true, then the lines up to an ELSE or ENDC
are assembled. If there is an ELSE, then lines up to the ENDC
are skipped. The skipped lines are not displayed in the listing file
unless the CLIST directive has been used. If the test is false, then
lines are skipped until an ELSE or ENDC is encountered. If it is
an ELSE, then the following lines up to an ENDC are assembled.

An undefined symbol is treated as having the value 0.

- as.14 -

THE LINKER

-In.1-

Aztec C68k/ROM

LINKER
Chapter Contents
The Linker - In
1. Introduction to linking .3
2. Using the Linker 9
3. Linker Options 11

-In.2 -

Aztec C68k/ROM LINKER

The Linker

This chapter describes the 68 linker. It first gives a brief
introduction to linking; the second and third sections give detailed
operator-type information about the linker; and the fourth section
gives programmer-type information.

1. Introduction to linking

C encourages modular programming; that is, the partitioning of a
program into source modules that are separately compiled and
assembled. The compilation and assembly of a source module
' generates an "object module”. The linker links together all of a
program’s object modules, creating an executable program.

Programs typically consist of many object modules. Since it would
be inconvenient to explicitly specify each module whenever you link a
program, Aztec C68k/ROM supports object module libraries. When
you pass a library’s name to the linker, it examines the library’s
modules, and links into the program just those that are needed.

Aztec C68k/ROM provides source for several frequently-used
functions, and for support routines that are called by compiler-
generated code to perform operations such as arithmetic computation,
etc. These are in source form, and part of the process of installing
Aztec C68k/ROM is to compile and assemble them and then create
object module libraries of them. In the following discussion, we refer
to one of these libraries, c68.lib, which contains non-floating point
functions, and whose modules have been compiled to use the small
code, small data memory model

Some of the provided functions, called "standard i/o" functions,
perform high-level i/o by calling functions that you must write, as
described in the Library Generation chapter. In the following
discussion, we assume that you have implemented these functions, and
thus that your c68.lib library supports the standard i/o function print/f.

Creating the *hello, world program

Let’s consider the creation of the "hello, world" program, whose
main module, in the file hello.c, looks like this:

main()

printf("hello, world\n");

-In3-

LINKER : Aztec C68k/ROM

The object modules that must be linked together include hello.r, the
printf module from c68.lib, and other "support” modules from c68.lib.
You don’t explicitly generate calls to these support modules; they’re
automatically generated by the compiler. The command to link the
program is

In68 hello.r -1c68

The hello.r operand causes the linker to include hello.r in the program.
The -lc68 operand causes the linker to search for needed modules in
the ¢68.lib library that’s located in the directory specified by the
INCL68 environment variable and to include them in the program.

Another example

As another example, consider a program consisting of two of your
own modules, plus whatever modules are needed from c68.lib. The
source for the first of these modules, filel.c, looks like this:

main() ,
printf("second example");

funcl();
func2();

}
funcl()
{

return;

)

The source for the second module, file2.c, looks like this:
func2()
(

return;

)
The command to link this program is:
In68 filel.r file2.r -1c68

This causes the linker to include object modules filel.r and file2.r in
the program, and to search for other needed modules in ¢68./ib.

Symbol reference and definition

As the linker proceeds, it keeps track of the global symbols that
each module references and defines. For the linkage to succeed, each
symbol that’s referenced must also be defined; there can be multiple
references to the same symbol

Here are some examples of symbol reference and definition:
* A call of a function is a reference to that function’s name;

-Ind-

Aztec C68k/ROM : LINKER

* The actual definition of a function is a definition of the
function’s name;

* A variable declaration that includes the extern keyword is a
reference to the variable.

* A global declaration of a variable that doesn’t include the
extern keyword is a definition of the variable.

For example, in the above sample program, filel contains
references to printf, funcl, and func2, and to support routines; it
contains definitions of main and funcl. file2 contains a definition of
func2, and references to support routines. Within c68.lib are modules
that define printf and the support routines.

When the linker has examined all the modules that are going to be
linked into a program, it checks its lists of defined and referenced
symbols. If there are symbols that are referenced but not defined, the
linker issues messages saying that those symbols are undefined and
then halts without completing the linkage. For example, if the link
command for the above program specified just filel.r, the linker would
issue a message saying that printf, func2, and the support routines were
undefined, since the references to those symbols were not matched by
definitions. It doesn’t say that funcl is undefined, because the
reference to it is matched by its definition in the same file.

Searching libraries

When the linker is searching a library, it checks each module’s
defined code symbols (ie, symbols that are defined in the module’s
code segment), looking for symbols that have been been referenced but
not defined in the modules that have already been included in the
program. If it finds such a symbol, it includes the module that
contains it in the program. For example, in the above linkage the
symbol printf is referenced but not defined when the linker begins
searching ¢68.lib. When the linker looks at the library’s module that
contains the definition of the printf code symbol, the linker includes
that module in the program it’s building.

It's important to note that only the definition of a code segment
symbol in a library module can cause the linker to include the module
in a program. For example, in the above linkage the definition of a
printf data symbol (ie, a symbol located in the data segment) in a
library module would not cause the linker to include that module in
the program.

The ordering of module and library names on the command line

The order in which modules and libraries are specified on the
command line is important, since the linker processes files in this
order.

For example, an attempt to link the "hello, world" program with the
following command will faik

-In.S -

LINKER , ' Aztec C68k/ROM

1n68 -1c68 hello.r

For this command, the linker first scans c68.lib and then hello.r. When
it scans ¢68.lib there aren’t yet any referenced but undefined symbols,
so the linker won’t include any of the library’s modules in the
program. When it includes hello.r in the program, printf and the
referenced support routines become referenced but undefined But
since hello.r is the last module specified on the command line, the
linker won’t go back and rescan c68.lib; so the undefined symbols
remain undefined, and the linkage fails.

The moral of this is that it's good practice to leave all libraries at
the end of the command line, with ¢68./ib at the very end.

The Order of Library Modules

For the same reason, the order of the modules within a library is
significant, because the specification of a library on the command line
causes the linker to search that library just once, from beginning to
end. If a module is pulled in at any point, and that module introduces a
new undefined symbol, then that symbol is added to the running list of
undefined’s. The linker will not search the library twice to find
definitions for unmatched references.

For example, suppose you have a program that contains the
modules main.r, input.r, calc.r, output.r, and any needed library modules,
and that your modules have the following references:

module de finitions re ferences
main.r main in, calc
input.r in gets
calc.r calc out
output.r out printf

The command to link the program would look like this:
In68 main.r input.r calc.r output.r -Ic68

Suppose we build a library, sub.lib, to hold the last three modules of
this program. Then our link step will look like this:

In68 main.r -lsub -1c68

The order of the modules in sub.lib is important. For example,
suppose sub.lib’s modules are in the following order:
input.r
output.r
calc.r

With the library in this order, here’s how the above linkage would
proceed:

1. The linker includes main.r in the program. After this step, in
and caqlc are referenced but undefined (as are some other

-In.6 -

Aztec C68k/ROM R LINKER

symbols that are in ¢68.lib, but we’re not concerned about
them right now).

2. The linker begins searching sub.lib, and looks first at its input
module. Since that module defines in, which is one of the
linker’s referenced but undefined symbols, it includes the
input module in the program, takes in off its list of referenced
but undefined symbols, and adds gets to it.

3. The linker looks at output, the next module in sub.lib. At this
point, The symbols calc and gets are referenced but undefined.
Since neither of these symbols are defined in owutput, the
linker ignores it

4. The linker looks at calc, the next and last module in sub.lib.
Since this module contains a definition of calc, one of the
linker’s referenced but undefined symbols, the linker includes
calc in the program, removes calc from its list of referenced
but undefined symbols, and adds out to the list.

5. The linker next scans ¢68.lib, and includes the modules within
it that define gets and the support routines.

After scanning all of these modules and libraries, the out symbol is
still referenced but undefined, so the linker will abort after logging the
following message:

Undefined symbol __out

This means that the module defining out was not pulled into the
linkage. The reason, as we saw, was that out was not a referenced
symbol when the linker scanned the output module, so the linker
ignored it.

This problem would not occur if sub.lib’s modules were in the
following order:

input.r
cale.r
output.r

The ord68 library utility

The 0rd68 utility simplifies the task of creating a library, by sorting
a list of names of files that contain object modules. A library of these
object modules that is created using the sorted list will be in the
correct order.

There are some sets of object modules whose modules can’t be put
in a "correct” order; that is, for which it is impossible for the linker to
decide which of the library’s modules are needed by making just a
single scan through the library. For such libraries, you can explicitly
tell the linker to search the library multiple times.

-In.7 -

LINKER Aztec C68k/ROM

For example, if sub.lib required two passes to find all needed
modules, you could link the above program using the command

In68 main.r -lsub -lsub -1c68

-In.8 -~

Aztec C68k/ROM LINKER

2. Using the Linker
The command to link a program looks like this:
In68 [-options] filel.r [file2.r ...] [libL.lib ...]

where -options are special options, filel.r, file2.r are names of the
object modules that are to be included in the program, and libl.lib, ...
are names of the libraries that are to be searched for needed modules.
The object modules must have been created using as68 and the
libraries by /b68. '

The executable file

You can specify the name of the file to which the executable
program is written with the -O linker option. Otherwise, the linker will
derive the name of the output file from that of the first object module
file listed on the command line, by deleting its extension. In the
default case, the executable file will be located in the directory in
which the first object file is located. For example,

In68 prog.r -1c68

will produce the file prog, by linking the object module prog.r together
with needed modules from the library c68.lib. (The -1 option provides
a convenient means of specifying libraries, as discussed below).

A different output file can be specified with the -O option, as in
the following command: '

In68 -0 program modl.r mod2.r -1c68
Libraries

Source to many useful functions are provided with Aztec
C68k/ROM, with which you can generate the libraries c68.lib, which
contains the non-floating point functions, and m68.lib, which contains
the floating point functions.

All programs must be linked with ¢68./ib. In addition to containing
all the non-floating point functions described in the Functions chapter,
it contains internal functions which are called by compiler-generated
code.

Programs that perform floating point operations must be linked
with m68.lib in addition to a version of c68.lib. The floating point
library must be specified on the linker command line before ¢68.1ib.

Libraries of your own modules can also be searched by the linker.
These are created with the Manx /b68 program, and must be listed on
the linker command line before the Manx libraries.

For example, the following links the module prog.r, searching the
libraries mylib.lib, new.lib, m68.1ib, and c68.lib for needed modules:

«In.9 -

LINKER Aztec C68k/ROM

In68 program.r mylib.lib new.lib -lm68 -1c68

Each of the libraries will be searched once in the order in which
they appear on the command line.

- In.10 -

Aztec C68k/ROM LINKER

3. Linker Options
3.1 Summary of options

-0 file
-Lname
-F file
-T

Vv

+R dd

+C xxxx
+D xxxx

+U xxxx

+S xxxx

+J xxxx

+A

+Q

Write executable code to the file named file.
Search the library name.lib for needed modules.
Read command arguments from file.

Generate an ASCII symbol table file.

Be verbose; i.e. list detailed information about each
segment.

Use address register dd for small model operations. dd
is a decimal value, and default to 5 (ie, address
register AS).

Set origin of code section to the hex value xxxx
(default: 0).

Set origin of initialized data section to the hex value
xxxx (default immediately after the code section).

Set origin of the uninitialized data section to the hex
value xxxx (default: immediately after the initialized
data section).

Set the size of the stack area to the hex value xxxx
(default 2Kk).

Set the program’s initial stack pointer to the hex value
xxxx. (default stack area immediately follows
uninitialized data section, with size specified by +S
option; stack pointer points to the top of this area).

Toggle 'long align’ mode. When this mode is enabled,
each module’s code begins on a longword boundary;
ie. on a byte whose address is a multiple of 4. By
default, this mode is disabled.

Be quiet; i.e. don’t list, on the console, each module
that is included in a program. By default, the linker
issues this list.

-In.11 -

LINKER Aztec C68k/ROM

3.2 Detailed description of the options
The -O option.

The -O option can be used to specnfy the name of the file to wlnch
the linker is to write the executable program. The name of this file is
in the parameter that follows the -O. For example, the following
command writes the executable program to the file progout:

In68 -0 progout prog.r -1c68

If this option isn’t used, the linker derives the name of the
exccutable file from that of the first input file, by deleting its
extension.

The -L option

The -L option provides a convenient means of specifying to the
linker a library that it should search, when the library is in a directory
identified by the INCL68 environment variable, and when the
extension of the library is .lib.

The name of the library is derived by concatenating the value of
the environment variable CLIB68, the letters that immediately follow
the -L option, and the string ./ib. For example, with the libraries
subs.lib, io.lib, m68.lib, and c68.lib in a directory specified by CLIB68,
you can link the module prog.r, and have the linker search the libraries
for needed modules by entering

In68 prog.r -lsubs -lio -Im68 -1c68
The -F option

-F file causes the linker to merge the contents of the given file with
the command line arguments. For example, the following command
causes the linker to create an executable program in the file myprog.
The linker includes the modules myprog.r, modl.r, and mod2.r in the
program, and searches the libraries myliblib and c¢68.lib for needed
modules.

In68 myprog.r -f argfil ¢68.lib
where the file argfil, contains the following:

modl.r mod2.r
mylib.lib

The linker arguments in argfile can be separatcd by tabs, spaces, or
newlines.

There are several uses for the -F option. The most obvious is to
supply the names of modules that are frequently linked together. Since
all the modules named are automatically pulled into the linkage, the
linker does not spend any time in searching, as with a library.
Furthermore, any linker option except -F can be given in a -F file. -F

-In.12 -

Aztec C68k/ROM LINKER

can appear on the command line more than once, and in any order.
The arguments are processed in the order in which they are read, as
always.

The -T option

The -T option causes the linker to write the program’s symbol table
to a file. This file lists each of the program’s symbols and its address.
The file is organized into four sections:

1. Symbols in the code section (preceded by the line "Segment:
00 Hunk: 00);

2. Symbols in the initialized data section (preceded by the line
"Segment: 00 Hunk: 01);

3. Symbols in the uninitialized data section, (preceded by the
line "Segment: 00 Hunk: 02);

4. Values of the program s constant symbols (STKS/Z is the size
of the program’s stack area, and __ stkorg is the initial stack
pointer).

The symbol table file will have the same name as that of the file
containing the executable program, with extension changed to .sym.

There are several special symbols which will appear in the table.
They are defined later in this chapter, in the Programmer Information
section,

The +R option

The +R option defines the address register that will be used in
support of modules that use the small code and/or small data memory
model. It has the format +r dd, where dd is the number of the address
register.

For éxamplc, the following command tells the program to use
address register A4 as the small model support register:

In68 +r 4 main.r -1c68
If this option isn’t specified, address register A5 is used.

If any of a program’s modules use small code and/or small data, the
small model support register points into the program’s data sections.
When a small data module attempts to access a variable that’s in a data
section, the variable’s address is specified as a displacement from the
small model support register. When a small code module calls a
function that is more than 32k away from the call instruction, the
linker will generate a jump instruction to the target function, place the
instruction in the program’s data area, and change the PC-relative call
to a call of the generated jump instruction; the converted call will
specify the address of the jump instruction as a displacement from the
small model support register.

-In.13 -

LINKER Aztec C68k/ROM

For more information about memory models, see the Programmer
Information section of the Compiler chapter.

Options for positioning a program’s sections

The linker organizes a program into three sections: code, initialized
data, and uninitialized data. You can define the starting addresses of
these sections using the +C, +D, and +U options; an option is followed
by the hex value of the desired starting address.

By default, the code section begins at address 0, the initialized data
section immediately after the code section, and the uninitialized data
section immediately after the initialized.

For example, the following command creates the program prog
whose code section. begins at address 0, initialized data at 0x8000, and
uninitialized data at 0x10000:

In68 +d 8000 +u 10000 prog.o -Ic68
-Stack options

Two options affect a program’s stack +J and +S. The +J option
defines the location at which the program’s stack register initially
points. The address in hex of this location follows the +J. For
example, the following command creates a program whose stack
register initially points at 0x20000:

In68 +j 20000 prog.r -1c68

If the +J option isn’t specified, the stack register will initially point
to a location that follows the program’s uninitialized data section. You
can specify the distance between this location and the end of the
uninitialized data section with the +S option. The hex value of the
distance follows the +S. For example, the following command creates
a program whose stack register initially points to a location that is
0x1000 bytes above the end of its uninitialized data section:

In68 +s 1000 prog.r -1c68

The default value of the +S option is 2k; this means that when you
specify neither the +S nor +J options, the program’s stack register will
point to a location that is 2k bytes beyond the end of its uninitialized
data section.

The linker creates two stack-related symbols: _ Storg_, whose
value is the address initially pointed at by the linked program’s stack
register; and STKSI/Z, whose value is the explicitly- or implicitly-
defined value of the +S option. The standard startup routine uses
__Storg__ to set up the stack register; it doesn’t use STKS/Z.

-In.14 -

Aztec C68k/ROM LINKER

4. Programmer information

This section contains bits of information about the linker that you
may find useful.

4.1 Program format

The linker creates a program that’s in CP/M-68k format, with no
relocation records.

4.2 Spedal linker-created symbols

When the linker creates a program, it defines several global
symbols. These are:

_HO_organd _HO__end
Beginning and ending addresses of program’s code
section.

_Hl_organd _HIl_end
Beginning and ending addresses of program’s
initialized data section.

_H2 organd _H2 end
Beginning and ending addresses of program’s
uninitialized data section. :

Storg__ Initial contents of program’s stack pointer.

STKSIZ Size of program’s stack area (used when -J option isn’t

used).

4.3 Entry points

If a program has an "entry point", i.e. 2 symbol that’s specified with
the assembly language entry directive, and if the entry point isn’t at the
beginning of the program’s code section, the linker will automatically
create a jump to it at the beginning of the program’s code section. Use
of this feature can simplify the command line that passes instructions
to the linker. However, this feature can’t be used by programs whose
code begins at location 0, since the first two words in memory must
contain special information.

- If you don’t use this feature, you must explicitly define the startup
routine’s object module file to the linker, listing it first so that it is
placed at the beginning of the program’s code section. You must also
explicitly use the -O option to define the name of the file to which the
linker will write the created program, and not aliow the linker to select
the name (it would do so by taking the name of the first specified
object module file and deleting its extension, which would result in all
linked programs having the same name). Thus, if you don’t use this
feature, the simplest command line to the linker would be something
like this:

In68 -0 prog /c68/lib/startup.r prog.r -1c68

-In.15 -

LINKER Aztec C68k/ROM

If (1) you use this feature, (2) your entry point is-also defined in a
public directive, and (3) if your entry point is named .begin, you can
place the startup routine’s object module in a library, allowing the
command line to the linker to be as simple as:

In68 prog.r -1c68

Here’s why the entry point must be named .begin and must be
specified in a public directive: (1) when a module is compiled, the
compiler automatically generates a reference to .begin; (2) when the
linker is searching a library, these references are matched with the
startup routine’s definition of .begin in a public directive, and cause the
linker to include the startup routine in the program. The presence of
an entry directive in a library module doesn’t cause the linker to
automatically include that module in a program; it just identifies the
specified symbol as being the entry point.

- In.16 -

UTILITY PROGRAMS
for 68k/ROM TARGET SYSTEMS

- util68k.1 -

Utilities: 68k/ROM target Aztec C68k/ROM

Chapter Contents

Utility Programs util68k
cnmésocuenen o “ 4
hex68 8
1b68 “ 10
obd6s 21
ord6s 22
srec68 .. . w 23

- utilé8k.2 -

Aztec C68k/ROM Utilities: 68k/ROM target

Utility Programs
for 68k/ROM Target Systems

This chapter describes the 68k/ROM-specific utility programs that
are provided with this package. The host-specific utility programs are
described in a separate chapter.

- util68k.3 -

CNM68 Aztec Utility Program CNM68

NAME

c¢nm68 - display object file info
SYNOPSIS

cnm68 [-sol] file [file ...]
DESCRIPTION

cnmo68 displays the size and symbols of its object file arguments.
The files can be object modules created by the Manx assembler,
libraries of object modules created by the /b librarian, and, when
applicable, ’rsm’ files created by the Manx linker during the linking of
an overlay root.

For example, the following displays the size and symbols for the
object module subl.o and the library c.lb:

cnmé68 subl.o c.lib

By default, the information is sent to the console. It can be
redirected to a file or device in the normal way. For example, the
following commands send information about subl.o to the display and
to the file dispfile:

cnmé68 subl.o
cnmé68 subl.o > dispfile

The first line listed by cnm68 for an object module has the
following format:

file (module): code: cc data: dd udata: uu total: tt (Oxhh)
where

* file is the name of the file containing the module,

* module is the name of the module; if the module is unnamed,
this field and its surrounding parentheses aren’t printed;

* cc is the number of bytes in the module’s code segment, in
decimal;

* dd is the number of bytes in the module’s initialized data
segment, in decimal;

* uu is the number of bytes in the module’s uninitialized data
segment, in decimal;

* 1t is the total number of bytes in the module’s three segments,
in decimal;

* hh is the total number of bytes in the module’s three
segments, in hexadecimal

If ¢cnm68 displays information about more than one module, it
displays four totals just before it finishes, listing the sum of the sizes
of the modules’ code segments, initialized data segments, and
uninitialized data segments, and the sum of the sizes of all segments of
all modules. Each sum is in decimal; the total of all segments is also

- util68k.4 -

CNM68 * Aztec Utility Program CNM68 -

given in hexadecimal

The -s option tells cnm68 to display just the sizes of the object
modules. If this option isn’t specified, cnm68 also displays information
about each named symbol in the object modules.

When cnm68 displays information about the modules’ named
symbols, the -/ option tells cnm68 to display each symbol’s information
on a separate line and to display all of the characters in a symbol's
name; if this option isn’t used, cnm68 displays the information about
several symbols on a line and only displays the first eight characters of
a symbol’s name.

The -0 option tells cnm68 to prefix each line generated for an
object module with the name of the file containing the module and the
module name in parentheses (if the module is named). If this option
isn’t specified, this information is listed just once for each module:
prefixed to the first line generated for the module.

The -0 option is useful when using cnm68 in combination with
grep. For example, the following commands will display all
information about the module perror in the library c.lb:

cnmé68 -o c.lib >tmp
grep perror tmp

cnm68 displays information about an module’s *named’ symbols;
that is, about the symbols that begin with something other than a
period followed by a digit. For example, the symbol quad is named, so
information about it would be displayed; the symbol .0/23 is unnamed,
so information about it would not be displayed.

For each named symbol in a module, cnm68 displays its name, a
two-character code specifying its type, and an associated value. The
value displayed depends on the type of the symbol.

If the first character of a symbol’s type code is lower case, the
symbol can only be accessed by the module; that is, it’s local to the
module. If this character is upper case, the symbol is global to the
module: cither the module has defined the symbol and is allowing
other modules to access it or the module needs to access the symbol,
which must be defined as a global or public symbol in another module.
The type codes are:

ab The symbol was defined using the assembler’s EQU
directive. The value listed is the equated value of its
symbol

The compiler doesn’t generate symbols of this type.

pg - The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

- util68k.5 -

CNMo68

dt

oy

un

bs

Aztec Utility Program CNM68

The compiler generates this type symbol for function
names. Static functions are local to the function, and
so have type pg; all other functions are global, that is,
callable from other programs, and hence have type Pg.

The symbol is in the initialized data segment. The
value is the offset of the symbol from the start of the
data segment.

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type dt, all other variables are global, that is,
accessable from other programs, and hence have type
Dt.

When an overlay is being linked and that overlay itself
calls another overlay, this type of symbol can appear
in the rsm file for the overlay that is being linked. It
indicates that the symbol is defined in the program
that is going to call the overlay that is being linked.

The value is the offset of the symbol from the
beginning of the physical segment that contains it.

The symbol is used but not defined within the
program. The value has no meaning.

In assembly language terms, a type of Un (the U is
capitalized) indicates that the symbol is the operand of
a public directive and that it is perhaps referenced in
the operand field of some statements, but that the
program didn’t create the symbol in a statement’s label
field.

The compiler generates Un symbols for functions that
are called but not defined within the program, for
variables that are declared to be extern and that are
actually used within the program, and for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program aren’t mentioned in the assembly
language source file generated by the compiler and
hence don’t appear in the object file.

The symbol is in the uninitalized data segment. The
value is the space reserved for the symbol.

The compiler generates bs symbols for static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

- util68k.6 -

CNMs68

Gl

Aztec Utility Program CNMé8

The assembler generates bs symbols for symbols
defined using the bss assembler directive.

The symbol is in the uninitialized data segment. The
value is the space reserved for the symbol.

The compiler generates Gl symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates GI! symbols for variables
declared using the global directive which have a non-
Zero size.

- util68k.7 -

HEX68 " Intel Hex-Code Generator HEX68

NAME

hex68 - Intel hex code generator
SYNOPSIS

hex68 [-options] prog
DESCRIPTION

hex68 translates the program that’s in the file named prog, and that
was generated by the Aztec C68k/ROM linker, into Intel hex code.
The program can then be burned into ROM by feeding the hex code
into a ROM programmer. The hex code is written to one or more.
files, each of which contains the hex code for one ROM chip.

The ROM chips that are generated from the hex68 output files will
contain the program’s code, followed by a copy of its initialized data.

Note: when a ROM system is started, its RAM contains random values;
the Aztec C68k/ROM startup routine sets up its initialized data area,.
using the copy that’s in ROM.

hex68 assumes that the size of each ROM chip is 2 kb. You can
explicitly define the size of each ROM using hex68’s -P option.

The output files: even- and odd-addressed bytes in the same chips

hex68 can optionally generate hex code so that the program’s even-
addressed bytes are in one set of ROM chips, and its odd-addressed
bytes are in another. We’ll discuss this option below. In this section
we discuss the output files that are created when this option isn’t used;
i.e. when a program’s even- and odd-addressed bytes are in the same
set of ROM chips.

When neither -E nor -O is specified, hex68 derives the name of
each output file from that of the input file, by appending an extension
of the form .hnn, where nn is a number. For example, if the name of
the linker-generated file is prog, then the names of the output files
generated by hex68 are prog.h00, prog.h0l, and so on, where the .A00
file contains the hex code for the lowest-addressed ROM, .h0! the hex
code for the next ROM, etc.

For example, suppose that hex68 is creating Intel hex code for a
program whose code and copy of initialized data will reside in three
2-kb ROMs that begin at location 0. Then hex68 will create the
following files:

prog.h00 Contains the Intel hex code for the ROM chip that
occupies addresses 0-0x7ff;

prog.h01 Contains the hex code for the ROM that occupies
0x800-0x(fff;

- util68k.8 -

HEXé68 Intel Hex-Code Genérator HEX68

prog.h02 Contains the hex code for the ROM that occupies
0x1000-0x17f¥.

The output files: even- and odd-addressed bytes in separate chips

To place a program’s even-addressed bytes in one set of ROM chips
and its odd-addressed bytes in another, you must run hex68 twice:
once using the -E option to gencrate the hex code for the chips that
contain the even-addressed bytes, and once using the -O option to
generate hex code for the chips that contain the odd-addressed bytes.

When either -E or -O is specified, hex68 generates one or more
files, each of which contains the Intel hex code for one ROM chip. By
default, the size of each chip is 2k bytes, but you can use the -P option
to explicitly define the chip size.

When the -E option is specified, the extension of the files are of
the form .enn, where nn is a decimal number. The .e00 file contains
the hex code for the first of the ROM chips that contain even-
addressed bytes, the .0/ file contains the hex code for the second
ROM chip, and so on.

When the -O option is specified, the extension of the files are of
the form .onn, where nn is a decimal number. The .000 file contains
the Intel hex code for the first of the ROM chips that contain odd-
addressed bytes, the .001 file contains the hex code bytes for the
second ROM chip, and so on.

The options ,
hex68 supports the following options:

-Bx ‘The program begins x bytes into the first ROM chip,
where x is a hexadecimal number. If this option isn’t
specified, the program begins at the bcgmmng of the
first ROM chip.

-E Output hex code for the program’s even-addressed
bytes.

-0 Output hex code for the program’s odd-addressed
bytes. .

-Pn The size of each ROM is n k-bytes, where n is a

decimal number. If this option isn’t specified, the size
defaults to 2kb. For example, the following command
specifies that each ROM chip is 64kb long:

hex68 -p64 exmpl

- util68k.9 -

LB68 Object file librarian LB68

NAME

1b68 - object file librarian
SYNOPSIS

1b68 library [options] [modl mod2 ...]
DESCRIPTION

Ib68 is a program that creates and manipulates libraries of object
modules. The modules must be created by the Manx assembler.

This description of 568 is divided into three sections: the first
describes briefly /b68’s arguments and options, the second b68’s basic
features, and the third the rest of /b68's features.

1. The arguments to [b68
1.1 The library argament

When started, /668 acts upon a single library file. The first
argument to /b68 (library, in the synopsis) is the name of this file. The
filename extension for library is optional; if not specified, it’s assumed
to be .lb.

1.2 The options argument

There are two types of options argument: function code options, and
qualifier options. These options will be summarized in the following
paragraphs, and then described in detail below.

1.2.1 Function code options

When [b68 is started, it performs one function on the specified
library, as defined by the options argument The functions that /b68
can perform, and their corresponding option codes, are:

Sfunction code
create a library (no code)
add modules to a library -a, -i, -b
list library modules -t
move modules within a library -m
replace modules -r
delete modules -d
extract modules -X
ensure module uniqueness -u
define module extension -€
help -h

In the synopsis, the options argument is surrounded by square
brackets. This indicates that the argument is optional; if a code isn’t
specified, [b68 assumes that a library is to be created.

- util68k.10 -

LB68 Object file librarian _ LB68

1.2.2 Qualifier options

In addition to a function code, the options argument can optionally
specify a qualifier, that modifies /568’s behavior as it is performing the
requested function. The qualifiers and their codes are:

verbose -v
silent -s

The qualifier can be included in the same argument as the function
code, or as a separate argument. For example, to cause /h68 to append
modules to a library, and be silent when doing it, any of the following
option arguments could be specified:

-as
~sa
-a -§
-S -a

1.3 The mod arguments

The arguments modl, mod2, etc. are the names of the object
modules, or the files containing these modules, that /668 is to use. For
some functions, /b68 requires an object module name, and for others it
requires the name of a file containing an object module. In the latter
case, the file’s extension is optional; if not specified, the /68 that’s
supplied with native Aztec C systems assumes that it’s .o, and the 68
that’s supplied with cross development versions of Aztec C assumes
that the extension is .~. You can explicitly define the default module
extension using the -e option.

1.4 Reading arguments from another file

668 has a special argument, -f filename, that causes it to read
command line arguments from the specified file. When done, it
continues reading arguments from the command line. Arguments can
be read from more than one file, but the file specified in a -f filename
argument can’t itself contain a -f filename argument.

2. Basic features of /568

In this section we want to describe the basic features of /h68. With
this knowledge in hand, you can start using /b68, and then read about
the rest of the features of /668 at your leisure.

- The basic things you need to know about /68, and which thus are
described in this section, are:

* How to create a library -
* How to list the names of modules in a library
* How modules get their names

- util68k.11 -

LB68 Object file librarian LB68

* Order of modules in a library
* Getting /b68 arguments from a file

Thus, with the information presented in this section you can create
libraries and get a list of the modules in libraries. The third section of
this description shows you how to modify selected modules within a
library.

2.1 Creating a Library

A library is created by starting /668 with a command line that
specifies the name of the library file to be created and the names of
the files whose object modules are to be copied into the library. It
doesn’t contain a function code, and it’s this absence of a function
code that tells /668 that it is to create a library.

For example, the following command creates the library exmpl.lib,
copying into it the object modules that are in the files 0bjl.o and
obj2.0.

1b68 exmpllib objl.o obj2.0

Making use of /b68’s assumptions about file names for which no
extension is specified, the following command is equivalent to the
above command:

1b68 exmpl objl obj2

An object module file from which modules are read into a new
library can itself be a library created by /b68. In this case, all the
modules in the input library are copied into the new library.

2.1.1 The temporary library

When [b68 creates a library or modifies an existing library, it first
creates a new library with a temporary name. If the function was
successfully performed, /b68 erases the file having the same name as
the specified library, and then renames the new library, giving it the
name of the specified library. Thus, /668 makes sure it can create a
library before erasing an existing one.

Note that there must be room on the disk for both the old library
and the new. '

2.2 Getting the table of contents for a library

To list the names of the modules in a library, use /b68’s -¢ option.
For example, the following command lists the modules that are in
exmpl lib.

1b68 exmpl -t

The list will include some **DIR** entrics. These identify blocks
within the library that contain control information. They are created
and deleted automatically as needed, and cannot be changed by you.

- util68k.12 -

LB68 ‘ Object file librarian LB68

2.3 How modules get their names

When a module is copied into a library from a file containing a
single object module (that is, from an object module generated by the
Manx assembler), the name of the module within the library is derived
from the name of the input file by deleting the input file’s volume,
path, and extension components.

For example, in the example given above, the names of the object
modules in exmpllib are objl and obj2.

An input file can itself be a library. In this case, a module’s name
in the new library is the same as its name in the input library.

2.4 Order in a library

The order of modules in a library is important, since the linker
makes only a single pass through a library when it is searching for
modules. For a discussion of this, see the tutorial section of the
Linker chapter.

When /568 creates a library, it places modules in the library in the
order in which it reads them. Thus, in the example given above, the
modules will be in the library in the following order:

objl obj2

As another example, suppose that the library oldlib.lib contains the
following modaules, in the order specified:

subl sub2 sub3

If the library newlib.lib is created with the command
1b68 newlib modl1 oldlib.lib mod2 mod3

the contents of the newly-created newlib.lib will be:
modl subl sub2 subld mod2 mod3

The ord utility program can be used to create a library whose
modules are optimally sorted. For information, see its description later
in this chapter.

2.5 Getting [b68 arguments from a file

For libraries containing many modules, it is frequently
inconvenient, if not impossible, to enter all the arguments to /668 on a
single command line. In this case, [b68’s -f filename feature can be of
use: when [b68 finds this option, it opens the specified file and starts
reading command arguments from it. After finishing the file, it
continues to scan the command line.

For example, suppose the file build contains the line
exmpl objl obj2

- util68k.13 -

LB638 Object file librarian LB68

Then entering the command
1b68 -f build

causes /b68 to get its arguments from the file build, which causes /b6é
to create the library exmpl.lib containing 0bj! and 0b 2.

Arguments in a -f file can be separated by any sequence of
whitespace characters ("whitespace’ being blanks, tabs, and newlines).
Thus, arguments in a -f file can be on separate lines, if desired.

The [b68 command line can contain multiple -f arguments, allowing
1b68 arguments to be read from several files. For example, if some of
the object modules that are to be placed in exmpllib are defined in
-arith.inc, input.inc, and output.inc, then the following command could be
used to create exmpl.lib:

1b68 exmpl -f arith.inc -f input.inc -f output.inc
A -f file can contain any valid /568 argument, except for another -f.
That is, -f files can’t be nested.
3. Advanced /b68 features

In this section we describe the rest of the functions that /568 can
perform. These primarily involve manipulating selected modules
within a library.

3.1 Adding modules to a library

1b68 allows you to add modules to an existing library. The modules
can be added before or after a specified module in the library or can
be added to the beginning or end of the library.

The options that select /b68’s add function are:

option Sfunction
-b target add modules before the module target
-1 target same as -b target
-a target add modules after the module target
-b+ add modules to the beginning of the library
-i+ same as -b+
-at add modules to the end of the library

In an /b68 command that selects the add function, the names of the
files containing modules to be added follows the add option code (and
the target module name, when appropriate). A file can contain a single
module or a library of modules.

Modules are added in the order that they are specified. If a library
is t0 be added, its modules are added in the order they occur in the
input library.

- util68k.14 -

LB68 Object file librarian LB68

}.1.1 Adding modules before an existing module

As an example of the addition of modules before a selected module,
suppose that the library exmpl.lib contains the modules

objl obj2 obj3
The command
1b68 exmpl -i 0bj2 modl mod2

adds the modules in the files modl.0 and mod2.0 to exmpllib, placing
them before the module 0bj2. The resultant exmpl.lib looking like this:

obji modl mod2 obj2 obj3

Note that in the /568 command we didn’t need to specify the
extension of either the file containing the library to which modules
were to be added or the extension of the files containing the modules
to be added. [b68 assumed that the extension of the file containing the
target library was ./ib, and that the extension of the other files was .o.

As an example of the addition of one library to another, suppose
that the library mylib.lib contains the modules

modl mod2 mod3

and that the library exmpl.lib contains
objl obj2 obj3

Then the command
1668 -b obj2 mylib.lib

adds the modules in myliblib to exmpllib, resulting in exmpllib
containing

objl modl mod2 mod3 obj2 obj3

Note that in this example, we had to specify the extension of the
input file mylib.lib. If we hadn’t included it, /68 would have assumed
that the file was named mylib.o.

3.1.2 Adding mddules after an existing module

As an example of adding modules after a specified module, the
command

1b68 exmpl -a objl modl mod2

will insert mod! and mod2 after objl in the hbrary exmpllib. 1f
exmpl lib originally contained

objl obj2 obj3
then after the addition, it contains

- util68k.15 -

LB68 Object file librarian LB68

objl modl mod2 obj2 obj3
3.1.3 Adding modules at the beginning or end of a library

The options -b+ and -a+ tell /668 to add the modules whose names
follow the option to the beginning or end of a library, respectively.
Unlike the -i and -a options, these options aren’t followed by the name
of an existing module in the library.

For example, given the library exmpllib containing
objl obj2

the following command will add the modules mod! and mod2 to the
beginning of exmpl.lib:

1b68 exmpl -i+ mod]l mod2
resulting in exmpl.lib containing
modl mod2 objl obj2

The following command will add the same modules to the end of
. the library:

1b68 exmpl -a+ modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2
3.2 Moving modules within a library

Modules which already exist in a library can be easily moved about,
using the move option, -m.

As with the options for adding modules to an existing library, there
are several forms of move functions:

option meaning
-mb target move modules before the module target
-ma target move modules after the module rarget
-mb+ move modules to the beginning of the library
-ma+ move modules to the end of the library

In the /668 command, the names of the modules to be moved
follows the *move’ option code.

The modules are moved in the order in which they are found in
the original library, not in the order in which they are listed in the
1b68 command.

3.2.1 Moving modules before an existing module

As an example of the movement of modules to a position before an
existing module in a library, suppose that the library exmpl.lib contains

- util68k.16 -

LB68 Object file librarian " LB68

objl obj2 obj3 ob4 obj5 obj
The following command moves ob;3 before obj2:
; 1668 exmpl -mb ob;2 obj3
putting the modules in the order:
objl obj3 obj2 objd obj5 obj6

And, given the library in the original order again, the following
command moves 0bj6, obj2, and objl before obj3:

1b68 exmpl -mb 0bj3 0bj6 obj2 objl
putting the library in the order:
objl obj2 ob} obj3 objid obj5

As an example of the movement of modules to a position after an
existing module, suppose that the library exmpllib is back in its
original order. Then the command

1b68 exmpl -ma obj4 obj3 obj2
moves obj3 and obj2 after obj4, resulting in the library
objl obMd obj2 obj3 obj5 obj6
3.2.2 Moving modules to the beginning or end of a library

The options for moving modules to the beginning or end of a
library are -mb+ and -ma+, respectively.

For example, given the library exmpllib with contents
objl obj2 obj3 obid obj5 obj6

the following command will move 0bj3 and 0bj5 to the beginning of
the library:

1b68 exmpl -mb+ obj5 obj3
resulting in exmpllib having the order
obj3 obj5 objl obj2 obid obj6

And the following command will move 0bj2 to the end of the
library:

1b68 exmpl -ma+ obj2
3.3 Deleting Modules

Modules can be deleted from a library using /b68’s -d option. The
command for deletion has the form

1b68 libname -d mod! mod2 ...
where modl, mod2, ... are the names of the modules to be deleted.

- util68k.17 -

LBO3Y Object file librarian LB68

For example, suppose that exmpl.lib contains
objl obj2 obj3 obd obj5 obj¥
The following command deletes 0bj3 and obj5 from this library:
1b68 exmpl -d obj3 obj5
3.4 Replacing Modules

The Ib68 option ’replace’ is used to replace one module in a library
with one or more other modules.

The ’replace’ option has the form -r target, where target is the name
of the module being replaced In a command that uses the 'replace’
option, the names of the files whose modules are to replace the target
module follow the ’replace’ option and its associated target module.
Such a file can contain a single module or a library of modules.

Thus, an b68 command to replace a module has the form:
1b68 library -r target modl mod2 ...

For example, suppose that the library exmpl.lib looks like this:
objl obj2 obj3 obj4

Then to replace obj3 with the modules in the files modl.0 and mod2.0,
the following command could be used:

1b68 exmpl -r obj3 modl mod2
resulting in exmpl.lib containing

objl ob2 modl mod2 obyM
3.5 Uniqueness

Ib68 allows libraries to be created containing duplicate modules,
where one module is a duplicate of another if it has the same name.

The option -u causes /b68 to delete duplicate modules in a library,
resulting in a library in which each module name is unique. In
particular, the -u option causes /b68 to scan through a library, looking
at module names. Any modules found that are duplicates of previous
modules are deleted.

For example, suppose that the library exmpllib contains the
following:

objl obj2 obj3 objl obj3
The command
1b68 exmpl -u

will delete the second copies of the modules 0bjl and 0bj2, leaving the
library looking like this:

- util68k.18 -

LB68 Object file librarian LB68

objl obj2 obj3
3.6 Extracting modules from a Library

The Ib68 option -x extracts modules from a library and puts them
in separate files, without modifying the library.

The names of the modules to be extracted follows the -x option. If
no modules are specified, all modules in the library are extracted.

When a module is extracted, it’s written to a new file; the file has
same name as the module and extension .o.

For example, given the library exmpl.lib containing the modules
objl obj2 obj3
The command
1b68 exmpl -x

extracts all modules from the library, writing objl to objl.o, obj2 to
obj2.0, and 0bj3 to obj3.o.

And the command
1b68 exmpl -x obj2
extracts just obj2 from the library.
3.7 The ’verbose’ option

The ’verbose’ option, -v, causes /b68 to be verbose; that is, to tell
you what it’s doing,

This option can be specified as part of another option, or all by
itself, For example, the following command creates a library in a
chatty manner:

1668 exmpl -v mod! mod2 mod3

And the following equivalent commands cause /b68 to remove some
modules and to be verbose:

1668 exmpl -dv modl mod2
1668 exmpl -d -v mod1 mod2

3.8 The ’silence’ option
The ’silence’ option, -s, tells /668 not to display its signon message.

This option is especially useful when redirecting the output of a list
command to a disk file, as described below.

39 Rebuilding a library

The following commands provide a convenient way to rebuild a
library:

- util68k.19 -

LB68 Object file librarian LB6

1b68 exmpl -st > tfil
1668 exmpl -f tfil

The first command writes the names of the modules in exmpllib t
the file ¢fil. The second command then rebuilds the library, using a
arguments the listing generated by the first command.

The -s option to the first command prevents /568 from sendin
information to ¢fil that would foul up the second command. Th
names sent to ¢fil include entries for the directory blocks, **D/R**, bu
these are ignored by /b68.

3.10 Defining the default module extension.

Specification of the extension of an object module file is optional
the /b68 that comes with native development versions of Aztec (
assumes that the extension is .0, and the /568 that comes with cros
development versions of Aztec C assumes that it's .~ You cal
explicitly define the default extension using the -e option. This optio!
has the form

-¢ .cxt

For example, the following command creates a library; th
extension of the input object module files is .i.

1b68 my.lib -¢ .i mod]l mod2 mod3
3.11 Help '

The -h option is provided for brief lapses of memory, and wil
generate a summary of /68 functions and options.

- util68k,.20 -

OBD68 Aztec Utility Program OBD68

NAME
obd68 - list object code
SYNOPSIS ;
- 0bd68 <objfile>
DESCRIPTION

obd68 lists the loader items in an object file. It has a single
parameter, which is the name of the object file.

- util68k.21 -

ORD6S Aztec Utility Program ORDG68

NAME

ord68 - sort object module list
SYNOPSIS

ord68 [-v] [infile [outfile]]
DESCRIPTION

ord68 sorts a list of object file names. A library of the object
modules that is generated from the sorted list by the Manx object
module librarian will have a minimum number of ’backward
references’; that is, global symbols that are defined in one module and
referenced in a later module.

Since the specification of a library to the linker causes it to search
the library just once, a library having no backward references need be
specified just once when linking a program, and a library having
backward references may need to be specified multiple times.

infile is the name of a file containing an unordered list of file
names. These files contain the object modules that are to be put into a
library. If infile isn't specified, this list is read from ord68’s standard
input. The file names can be separated by space, tab, or newline
characters.

outfile is the name of the file to which the sorted list is written. If
it’s not specified, the list is written to ord68’s standard output. outfile
can only be specified if infile is also specified.

The -v option causes ord68 to be verbose, sending messages to its
standard error device as it proceeds.

- util68k.22 -

SREC6S Motorola S-record Generator SREC68

NAME

srec68 - Motorola S-record generator
SYNOPSIS

srec68 [-options] prog
DESCRIPTION

srec68 translates the program that’s in the file named prog, and that
was generated by the Aztec C68k/ROM linker, into Motorola S-
records The program can then be burned into ROM by feeding the S-
records into a ROM programmer. The S-records are written to one or
more files, each of which contains the hex code for one ROM chip.

The ROM chips that are generated from the srec68 output files will
contain the program’s code, followed by a copy of its initialized data.

Note: when a ROM system is started, its RAM contains random values;
the Aztec C68k/ROM startup routine sets up its initialized data area,
using the copy that’s in ROM.

srec68 assumes that the size of each ROM chip is 2 kb. You can
explicitly define the size of each ROM using srec68’s -P option.

The output files: even- and odd-addressed bytes in the same chips

srec68 can optionally generate S-records so that the program’s
even-addressed bytes are in one set of ROM chips, and its odd-
addressed bytes are in another. We’ll discuss this option below. In this
section we discuss the output files that are created when this option
isn’t used; i.c. when a program’s even- and odd-addressed bytes are in
the same set of ROM chips.

When neither -E nor -O is specified, srec68 derives the name of
each output file from that of the input file, by appending an extension
of the form .nmn, where nn is a number. For example, if the name of
the linker-generated file is prog, then the names of the output files
generated by srec68 are prog.m00, prog.m0l1, and so on, where the .m00
file contains the S-records for the lowest-addressed ROM, .m0! the S-
records for the next ROM, etc.

For example, suppose that srec68 is creating S-records for a
program whose code and copy of initialized data will reside in three
2-kb ROMs that begin at location 0. Then srec68 will create the
following files:

prog.m00 Contains the S-records for the ROM chip that
occupies addresses 0-0x7fT;

prog.m01 Contains the S-records for the ROM that occupies
0x800-0xfTT;

- util68k.23 -

SREC68 Motorola S-record Generator SREC6S

prog.m02 Contains the S-records for the ROM that occupies
0x1000-0x17fT.

The output files: even- and odd-addressed bytes in separate chips

To place a program’s even-addressed bytes in one set of ROM chips
and its odd-addressed bytes in another, you must run srec68 twice:
once using the -E option to gencrate the S-records for the chips that
contain the even-addressed bytes, and once using the -O option tg
generate S-records for the chips that contain the odd-addressed bytes.

When cither -E or -O is specified, srec68 generates one or more
files, each of which contains the S-records for one ROM chip. By
default, the size of each chip is 2k bytes, but you can use the -P option
to explicitly define the chip size.

When the -E option is specified, the extension of the files are of
the form .enn, where nn is a decimal number. The .00 file contains
the S-records for the first of the ROM chips that contain even-
~ addressed bytes, the .e0/ file contains the S-records for the second
ROM chip, and so on.

When the -O option is specified, the extension of the files are of
the form .onn, where nn is a decimal number. The .000 file contains
the S-records for the first of the ROM chips that contain odd-addressed

bytes, the .00! file contains the S-records for the second ROM chip,
and so on.

The options
srec68 supports the following options:

-An The size of an S-record’s address field is n bytes,
where (following Motorola specifications) n can be 2,
3, or 4. If this option isn’t specified, the field size
defaults to 2 bytes.

-Bx The program begins x bytes into the first ROM chip,
where x i1s a hexadecimal number. If this option isn’t
specified, the program begins at the beginning of the

first ROM chip.

-E Output S-records for the program’s even-addressed
bytes.

-0 Output S-records for the program’s odd-addressed
bytes.

-Pn The size of each ROM is n k-bytes, where n is a

decimal number. If this option isn’t specified, the size
defaults to 2kb. For example, the following command
specifies that each ROM chip is 64kb long:

- util68k.24 -

SREC68 Motorola S-record Generator SREC6S

srec68 -p64 exmpl

- util68k.25 -

SREC68 Motorola S-record Generator SREC6!

- util68k.26 -

LIBRARY GENERATION

- libgen.1 -

LIBGEN Aztec C68k/ROM

Chapter Contents

Library Generation .. “ libgen
1. Modifying the functions 3
1.1 The startup function 3

1.2 The unbuffered i/o functions 7

1.3 The standard i/o functions agetc and aputcccceeeereeeee 12

1.4 The sbrk and brk heap-management functionsc.c.cceeeeee 12

1.5 The exit and _ exit functions 13

2. BUildiNg the HIDIATIEScoeceeecreceressnsnreseemssessessesssrasssssesssssssassssassonses 13

3. Function descriptions .. 14

- libgen.2 -

\ztec C68k/ROM ' LIBGEN

Library Generation

The Aztec C68k/ROM functions are provided in source form.
Jefore you can create programs that use them, you must make any
1ecessary modifications to the library functions, and then create object
nodule libraries of them.

We assume that you have installed Aztec C68k/ROM in a set of
ubdirectories, as directed in the Tutorial chapter. We also assume that
rour system has a make program maintenance program that is UNIX
ompatible; this program, under direction of "makefiles” provided with
\ztec C68k/ROM, will control the compilation and assembly of library
nodules and the generation of the libraries. For systems whose
tandard software doesn’t include make, we will provide the Aztec
nake with your Aztec C68k/ROM package, if one is available;
itherwise, the release document will describe the procedure for
rreating the libraries.

The first section of this chapter discusses changes that you might
nake to the library functxons. The second section discusses generation
if the libraries.

The calling sequences (passed parameters, return values, error
'odes, etc) of most functions described in the first section are
resented in the System Independent Functions chapter. The calling
equences for the other functions are appended to this chapter.

. Modifying the functions

Many of the functions provided with this package will run, without
nodification, on any 68000-based system. Some, however, may need to
e modified for use on your system.

The functions that may need to be rewritten are:

a. The startup function;

b. The unbuffered i/o functions;

¢. The standard i/o functions agetc and aputc,

d. The low-level heap allocation functions brk and sbrk;
¢. The exit functions exit and __exit.

[.1 The startup function

A program’s startup routine is executed when the program is
tarted. It performs program initialization and then calls the program’s
nain function.

The source for the startup routine that is provided with Aztec
~68k/ROM is in the file rom68.a68, in the rom68.arc archive, The

- libgen.3 -

LIBGEN Aztec C68k/ROM

supplied version of this routine makes the following assumptions about
a program that contains it, and about a system that contains the
program:

* The system’s startup/reset vectors and interrupt vector table
are in ROM.

* The program is the "startup program" of the system containing
it That is, the program will gain control on system startup or
reset.

* The program’s code and a copy of its initialized data are in
ROM. It's the startup routine’s duty to set up the program’s
initialized data area in RAM from the ROM copy.

* The startup routine is at the beginning of the program’s code
segment.

* The system doesn’t support interrupts.

If these assumptions aren’t satisfied by your system, you will have
to modify the startup routine. The following paragraphs discuss
changes that can be made for several types of programs and systems.

1.1.1 Startup routines for ROM-based ’startup programs’ on interrupt-
driven systems

Since a system’s mcmory must begin with startup vectors and be
followed by the table of interrupt vectors, the above assumptions mean
that the startup module must contain assembly language statements that
pre-initialize these vectors. In fact, the supplied startup routine does
contain statements that pre-initialize the startup vectors: the stack
vector points to the top of the area that’s reserved for the stack, and
the code vector points to the .begin label in the startup module.

However, the supplied startup routine can’t pre-initialize the
interrupt vector table, since that's system dependent. The supplied
startup routine simply reserves space for the table.

Thus, if a program that satisfies all the above assumptions is to be
placed on a system that supports interrupts, you must modify the
startup routine, replacing the statement that reserves space for the
interrupt table with statements that pre-initialize the vectors for
supported interrupts.

1.1.2 Startup routines for ROM-based, non-startup programs

If the startup routine will be included in programs that will be
burned into ROM but that won’t be a system’s startup program, you
can remove the statements in the startup routine that pre-initialize the
system startup vectors and that reserve space for the interrupt table.

Most of the code in a program’s startup routine needs to be
executed just once. For example, its initialized data area in RAM
needs to be set up from the copy in ROM just once; and its
uninitialized data area needs to be cleared just once. So if a program

- libgen.4 -

Aztec C68k/ROM LIBGEN

will be called more than once, you could design your startup routine so
that this special startup code is executed just once. The advantages to
this are (1) it speeds up interprogram calls, (2) variables are preserved
between interprogram calls.

To do this, you could have a second entry point into a program, in
addition to the standard entry point. The first call is made to the
standard entry point, and all subsequent calls are made to the
secondary entry point. ‘

The secondary entry point performs just those operations that need
to be done on each entry to the program. For example, if the program
uses the small code or small data memory model, the secondary entry
point would save the contents of the small model support register and
set it up for the called program.

To implement the two entry points, you could add two jump
instructions to the beginning of the program’s startup routine: the first
jumps to the startup routine’s .begin label; the second jumps to the
secondary entry point code.

1.1.3 Startup routines for systems whose interrupt table is in RAM

The interrupt vector table of some 68k systems must reside in
RAM, to enable the program to dynamically set up and change the
vectors. Since this table is normally in ROM, this requires special
hardware and corresponding changes to the startup routine.

In this section first we describe why the interrupt table normally
resides in ROM. We then present two hardware techniques used to
place the table in RAM and the corresponding changes that must be
made to the startup routine.

1.1.3.1 Why the interrupt table is normally in ROM

On a 68k system, the startup vectors occupy the first eight bytes of
memory and the interrupt table follows. If the system uses a standard
configuration (i.e. a typical microcomputer system configuration that
doesn’t use special hardware), then the startup vectors must be in
ROM, so that they will be already initialized when the system is turned
on or reset. Since the smallest ROM chip is about 2K bytes, this in
turn means that the interrupt table of a standard 68k system must also
be in ROM.

1.1.3.2 Solution one: move the startup vectors

One way to allow the interrupt table to reside in RAM is to move
the startup vectors away from the interrupt table:

a. Put RAM in the lowest-addressed section of memory, so that
it extends at least from location 0 through the end of the
intcmxpt table;

- libgen.5 -

LIBGEN Aztec C68k/ROM

b. Include the startup vectors in the code section of the system’s
startup program, at a fixed offset from the beginning of the
program’s ROM;

c. Insert special hardware on the address bus between the
processor and memory. On powerup or system reset, this
hardware intercepts the processor’s first two accesses of
memory, which are requests by the processor for the startup
vectors, and translates the accompanying addresses (i.e.
locations 0 and 4) to those of the fields within ROM that
actually contain the startup vectors.

To support this hardware configuration, you should remove the
statement in the startup module that reserves space for the interrupt
table and add executable code that initializes the table. To put the
startup vectors at a fixed place in ROM memory, to which the special
hardware can redirect attempts by the processor to access them, you
could leave the statements that define the startup vectors in the startup
routine and then link the startup routine as the program’s first module.
The startup vectors will then be in ROM, in the first eight bytes of the
startup program’s code section.

1.1.3.3 Solution 2: move the interrupt table

Another way to put the interrupt table in RAM is to move the
interrupt table away from the startup vectors:

a. Put the RAM for the interrupt table in an unused section of
the system’s memory space, a section that is not near the low
end of memory.

b. Put the ROM that contains the code for the system’s startup
program in memory, beginning at location 0. The startup
routine should be at the beginning of the program’s code
section; the only changes that it needs are executable
statements that initialize the interrupt table.

c. Put a programmable logic array on the address bus, between
memory and the processor. This will intercept requests to
access an interrupt vector (i.e. accesses of memory between
locations 8 and 0x400) and translate the accompanying address
to the address in RAM at which the vector is actually located.

1.1.4 Defining the heap

The startup routine initializes variables that define the boundaries
of a program’s heap, so that the heap occupies the 2k-byte areca of
memory that’s just above the program’s stack area. If your system’s
heap space isn’t in this area, you will have to change these
initializations.

These variables, which are used by the sbrk and brk functions, are:

- libgen.6 -

Aztec C68k/ROM LIBGEN

_mbot Points at the bottom of the heap.
_mtop Points at the top of the heap.
mcur Points at the top of allocated heap space.

These are the names that a C-language module uses to access the
sariables; an assembly language module uses these names, with an
idditional prepended underscore (e.g. mbot).

L.1.S ROM-based initialized data

The startup routine contains statements that set up a program’s
nitialized data segment in RAM from its copy in ROM. Remove
‘hese statement if the program’s initialized data is to remain in ROM;
.. if you linked the program without using the linker’s -D option.

.1.6 Startup routines for RAM-based programs

If you are creating programs that won’t be put into ROM (for
:xample, programs that will run on a system that uses the CP/M-68k
»perating system), here are some changes you may want to make to
‘he startup routine:

* Remove the code that initializes the startup vectors and that
reserves space for the interrupt table.

* Change the code that sets up the stack register. The operating
system probably defines the area reserved for a program’s
stack (for example, on entry the stack register. may already be
initialized). If it doesn’t, you could, for example, define space
for the stack in the uninitialized data area, and point the stack
register at the top of this area.

* Remove the code that moves the copy of initialized data from
ROM to RAM.

* Change the code that initializes the pointers to heap space.

* The startup routine jumps directly to the main function. If
you want your system to support the passing of arguments to
the main function, you may want to have the startup routine
call a C-language function, which gets the arguments (for
example, getting them from the console) and then calls main.

1.2 The Unbuffered i/o0 functions

There are two classes of UNIX-compatible i/0 functions: standard
ind unbuffered. The unbuffered i/o functions are system dependent,
ind the standard i/o functions call the unbuffered. The unbuffered i/o
‘unctions that are in the Aztec C68k package are merely stubs; so you
nust write those that your functions call, and those that are called by
‘he standard i/o functions that your functions call.

The unbuffered i/o functions are:

- libgen.7 -

LIBGEN Aztec C68k/ROM

open creat close read write
Iseek rename unlink ioctl isatty

Descriptions of the unbuffered i/o functions are in the "System
Independent Functions” and "Library Functions Overview” chapters.
The following paragraphs present additional information that may be
of use when writing your own versions of these functions.

1.2.1 File descriptors

Associated with each file or device that is open for unbuffered i/o
is a positive integer called a “file descriptor”. A file descriptor is one
of the parameters that is passed to an unbuffered i/o function; it
defines the file or device on which the i/o is to be performed. There's
usually a limited number of file descriptors, which of course limits the
number of files and/or devices that can be simultaneously open for
i/o.
1.2.1.1 When there’s lots of files and devices...

If a system supports disk files and/or supports more devices than
file descriptors, the file descriptors must be dynamically allocated.
That is, before i/o with a file or device can begin, a function must be
called that assigns a file descriptor to it; and when the i/o is done
another function must be called to de-assign the file descriptor. In this
case, a table is usually provided that has entries defining the status of
each file descriptor and that is accessible to all the unbuffered i/o

functions. Here’s how the unbuffered i/o functions make use of the
table:

* open and creat prepare a file or device for unbuffered i/o.
They scan the table for an unused entry, and initialize the
entry with information about the file or device. For example,
the entry for an open device might contain the device’s
address; that for an open file might contain the file’s current
position and access mode. As the file descriptor for the
opened file or device, open and creat return the entry’s index
into the table.

read, write, Iseek, ioctl, and isatty perform operations on, and
determine the status of, an open file or device. The file
descriptor of the file or device is one of the parameters passed
to them. They examine the file descriptor’s table entry for
information about the file or device.

* close completes i/o to the open file or device having a
specified file descriptor. Most of the operations that close
performs depend on the particular file or device; but it always
marks the descriptor’s table entry as being unused.

* wunlink and rename don’t use the file descriptor table at all.

- libgen.8 -

Aztec C68k/ROM LIBGEN

1.2.1.2 When only devices are supported...

If programs access just devices (i.e. not files), if there are fewer
devices than file descriptors, and if your programs make limited use of
the standard i/o functions (as defined below), you can simplify the
unbuffered i/o functions by doing away with the file descriptor table,
hard-coding the assignment of devices and file descriptors into the
unbuffered i/o functions, and leaving open, creat, and close as mere
stubs that simply return when called.

For example, you could code into the write function the fact that
file descriptor 5 is associated with a printer at a certain address. Then
to write to the printer, a program could simply issue a call to write,
telling it to write to file descriptor 5. It wouldn’t have to first call open
or subsequently call close.

1.2.1.3 Pre-assigned file descriptors

By convention, file descriptors 0, 1, and 2 are pre-assigned to the
system console, even when all other file descriptors are dynamically
assigned. To perform an unbuffered i/o operation on the console, a
program simply calls the appropriate function, specifying one of these -
file descriptors; it need not first call open or subsequently call close.

Some systems allow the operator to redirect file descriptors 0 and 1
to other files and/or devices, by specifying special operands on the
command line that starts a program. This is done by inserting a special
function between the startup routine and the user’s main function. If
any redirection operands are found in the command line, this special
function closes the specified file descriptor by calling close and reopens
it to the new file or device by calling open. By convention, the
command line operand to redirect file descriptor 0 consists of "<"
followed by the file or device name. The command line operand to
redirect file descriptor 1 consists of ">" or ">>" followed by the file or
device name. ">" causes a new file to be created. ">>" causes a file to
be appended to, if it already exists, or to be created, if it doesn’t exist.

1.2.2 Interaction of the standard i/0 and unbuffered i/o functions

The standard i/o functions call the unbuffered i/o functions.
Because of this, the standard i/o operations that a program will
perform places implementation requirements on the unbuffered i/o
functions. This section discusses those requirements, after first
presenting general information on standard i/o file pointers and their
relationship to unbuffered i/o file descriptors.

Before standard i/o can be performed on a file or device, an
unbuffered i/o file descriptor must be assigned to it, and a standard
i/o "file pointer" must be assigned to the file descriptor. The
assignment of a file pointer and file descriptor can be done
dynamically, by calling the standard i/o fopen function. Three file
pointers, named stdin, stdout, and stderr, are pre-assigned to file

- libgen.9 -

LIBGEN Aztec C68k/ROM

descriptors 0, 1, and 2; these file dcscnptors in turn are pre-assigned to
the console.

When a program calls a standard i/o function, it often must pass a
file pointer, which identifies the file or device on which i/o is to be
performed. There are a special set of standard i/o functions for
accessing stdin, stdout, and stderr: for these, the file pointer isn’t
passed, since the functions know what file pointer is being accessed.

1.22.1 Supporting the standanl i/0 fopen and fclose functions

The dynamic assignment of a file pointer and file descriptor to a
file or device is done by the fopen function. This function selects a
file pointer for the file or device and then calls the unbuffered i/o
open function, which sclects a file descriptor.

If programs call fopen, you must implement the unbuffcrcd i/o
open function, and open must return the file descriptor that’s associated
with the file or device. This requirement (for a functional open when
fopen is called) must be met even if file descriptors are pre-assigned to
‘devices; open in this case could be very simple, just searching a table
for a device name and returning the associated file descriptor.

Conversely, the use of the standard i/o functions to access those
devices that don't first have to be fopened (i.e. stdin, stdout, and
stderr) places no requirements on open. In particular, if file
descriptors are pre-assigned to devices and open simply returns when
called, programs can still call the standard i/o functions to access the
devices associated with the stdin, stdout, and stderr file pointers.

The standard i/o function fclose calls the unbuffered i/o function
close. Thus, if programs call fclose, you must implement a close
function. If assignments of devices to file descriptors is hard-coded,
close can usually just return the value 0, since nothing special (such as -
calling the operating system to close an open file or deallocating a file
descriptor) needs to be done.

1.2.2.2 Supporting the standard i/o input and output functions

If programs call any of the standard i/0 input functions, you must
implement the unbuffered i/0 read function. And if they call any of
the standard i/o output functions, you must implement the write
function. y

1.22.3 Supporting the standard i/o fseek function

If programs will call the standard i/o fseek function, you must
implement the unbuffered i/o Iseek function, since fseek calls Iseek.

1.22.4 Standard i/o and the isatty function

If programs call any standard i/o functions, you must implement
the unbuffered i/o function isatty. The standard i/o functions call this
function to decide whether their i/o to a file or device should be

- libgen.10 -

Aztec C68k/ROM LIBGEN

buffered or unbuffered.

This use of the word "unbuffered" in describing standard i/o might
be a little confusing, since the use of the expression "unbuffered i/o
functions” to describe one set of i/o functions implies that the other
set, the "standard i/o functions”, are buffered. Nevertheless, a standard
i/o stream can be either buffered or unbuffered: if buffered, data
that's exchanged between user-written functions and the unbuffered
i/o functions passes through a buffer; if unbuffered, data doesn’t pass
through a buffer.

For a given file descriptor, isatty should return non-zero if standard
i/o to the device associated with the file descriptor is to be buffered,
and zero if it is to be unbuffered.

For example, isatty should probably return non-zero for a file
descriptor that’s associated with the system console and zero for file
descriptors associated with files; it could return either zero or non-zero
for other devices, such as printers, depending on your system’s
requirements.

1.2.3 Error codes

We’ve presented most of the factors you should consider when
writing your unbuffered i/o functions. In this section we want to list
error codes that the functions could return in the global int errmo.

open error codes:

ENOENT File does not exist and O__CREAT wasn’t specified.
EEXIST File exists, and O_ CREAT+O EXCL was specified
EMFILE Invalid file descriptor passed to open.

close error codes:

EBADF Bad file descriptor passed to close.
creat error codes:

EMFILE All file descriptors are in use.
Iseek error codes:

EBADF Invalid file descriptor
EINVAL Offset parameter is invalid, or the requested position
is before the beginning of the file.

read error codes:
EBADF Invalid file descriptor
write error codes:

EBADF Invalid file descriptor
EINVAL Invalid operation; i.e. writing not allowed.

- libgen.11 -

LIBGEN Aztec C68k/ROM

1.3 The standard i/o functions ageic and apuic

The characters used to terminate lines of text differ from system to
system. On UNIX, it’s the newline (lincfeed) character, *\n’. On the
Apple //, it’s carriage return, "\r’. On CPM, it’s carriage return-line
feed. In order to allow programs to access files of text in a system-
independent manner, the standard i/o functions ageic and aputc are
provided: agetc reads a character from the standard input channel,
translating the line termination sequence into °'\n'. gpuic writes a
character to the standard output channel, translating '\n’ to the line
termination sequence.

The following standard i/o functions call agetc and aputc:

scanf fscanf printf fprintf
getchar gets fgets
putchar puts fputs

The ROM versions of agetc and aputc assume that "\n’ separates lines
of text; if this isn’t the case for your system, you may need to modify
agetc and aputc.

The source for these functions are in the files agetc.c and aputc.c,
within the stdio.arc archive. If you followed our recommendations for
installing Aztec C68k/ROM, dearchived versions are also in the
STDIO subdirectory of the LIB directory.

L4 The sbrk and brk heap management functions

sbrk and brk provide an clementary means of allocating and
deallocating space from a program’s heap. sbrk is called by the more
sophisticated heap-allocation functions (malloc, etc), and malloc is
called by the standard i/o functions; thus, if your programs call malloc
or the other high-level heap management functions, or if they call the
standard i/0 functions, you will need to write an sbrk function.

Descriptions of the calling sequences for sbrk and brk are appended
to this chapter.

You probably won’t have to modify sbrk or brk, since the most
system-dependent code (which defines the boundaries of the heap) is
in the startup routine. But if you do, here are some things you should
consider:

* A buffer allocated by sbrk should be on a quad-byte boundary
(Le. the address of its first byte should be divisible by four),
since words on-a 68000 or 68010 must be on an even-byte
boundary and since long words on a 68020 can be most
efficiently accessed if they’re on a quad-word boundary.

* malloc assumes that the heap is a single, contiguous section of
memory: when told to allocate a large block of memory,
malloc makes repeated calls to sbrk for small blocks of
memory, and then attempts to coalesce the small blocks into

- iibgen.lZ -

Aztec C68k/ROM LIBGEN

one large block.
1.5 The exit and _ exit functions
exit and exit are called to terminate the execution of a program,

They aren’t usually called by ROM-based programs, since such
programs usually don’t terminate.

They are called, however, by RAM-based programs that are
running in an operating system environment, since these programs
usually do terminate.

When these functions are needed, you will have to modify _exi,
since it must return to the operating system. But you can probably use
exit as is, since it closes open files and devices in a system-independent

way and then calls __exit.

Descriptions of the calling sequences to exit and __exit are
appended to this chapter.

2. Building the libraries

Once you’ve made modifications to the supplied library functions,
you can build your libraries. We’ve provided makefiles (which give
directions to the make program) and /668 command files that will make
this task easier; they will make the following libraries:

c68.lib General purpose functions (small code, small data
memory model);

c68ILlib General purpose functions (large code, large data);

m68.lib Floating point functions (small code, small data);

mé68lLlib Floating point functions (large code, large data);

If you followed our recommendations for installing Aztec
C68k/ROM, each of the LIB directory’s subdirectories contains a
makefile -that causes make to compile and assemble the subdirectory’s
source files. There is a makefile in the LIB directory that will have

mizilgat}rst generate each subdirectory’s object modules and then make
a y. :

Before you can generate the libraries, you must do several things:

a In each makefile, modify the rules that define how to convert
a C source file to an object module, so that the command that
starts the compiler uses the options that correctly define
register usage on your system;

b. If you've written your own unbuffered i/o modules, you‘ll
probably need to modify the makefile that’s in the ROM68
directory;

c. In the LIB directory are the files c68.bld and m68.bld, each of
which tells /668 how to create a library. ¢68.bld is used for
generating c68.lib and c68/Llib. modify these files if necessary.

- libgen.13 -

LIBGEN Aztec C68k/ROM

d. The environment variable INCL68 must be set to the name of
the INCLUDE directory; that is, to the name of the directory
that contains the include files. The command to do this varies
from system to system; on PCDQS, it’s the set command.

e. If you have a RAM disk, you can speed up the library-
generation process by defining it using the CCTEMP
environment variable. For more information, see the
description of CCTEMP in the Compiler chapter.

You are now ready to create the libraries. Set the default or
current directory to the LIB directory and start make, passing to it the
name of the library you want created. For example, to create c68./ib,
you would enter: ‘

make ¢68.1ib

Once started, make will activate several other copies of make, each of
which will compile and assemble the files in one of LIB’s
subdirectories; it will then start 568, which will make the specified
library from the object modules that are in the subdirectories, as
directed by the appropriate .bid file.

At times during library generation, there will be two copies of
make in memory, and another program. If your system doesn’t have
enough memory to hold all of these programs (in this case, make will
abort with the message "EXEC failure"), it may still have enough to
hold one copy of make and another program. In this case, you can
- create and execute batch files that will make the libraries. For each
subdirectory, the batch file will first make that subdirectory the default
or current directory; it will then activate make, using either the
command make (to make small code, small data modules), or the
command make big (to make large code, large data modules). The
batch file will then activate [b68, passing to it the name of the
appropriate .bld file.

3. Function descriptions

The System Independent Functions chapter presents the calling
sequences of most of the functions that are discussed in this chapter.
The remainder of this chapter presents the calling sequences of the
other functions.

- libgen.14 -

JREAK (C) Heap management functions BREAK

NAME
sbrk, brk

’YNOPSIS
brk(ptr)
void *ptr;

vold *sbrk(size)

JESCRIPTION
sbrk and brk provide an elementary means of allocatmg and
deallocating space from the heap. More sophisticated buffer
management schemes can be built using these functions; for
example, the standard functions malloc, free, etc call sbrk to get
heap space, which they then manage for the calling functions.

sbrk increments a pointer, called the ’heap pointer’, by size
bytes, and, if successful, returns the value that the pointer had
on entry. Initially, the heap pointer points to the base of the
heap. size is a signed int; if it is negative, the heap pointer is
decremented by the specified amount and the value that it had
on entry is returned. Thus, you must be careful when calling
sbrk: if you try to pass it a value greater than 32K, sbrk will
interpret it as a negative number, and decrement the heap
pointer instead of incrementing it.

brk sets the heap pointer to ptr, and returns 0 if successful.

SEE ALSO
The functions mulloc, free, etc, implement a dynamic buffer-
allocation scheme using the sbrk function. See the Dynamic
Buffer Allocation section of the Library Functions Overview
chapter for more information.

The standard i/o functions usually call malloc and free to allocate
and release buffers for use by i/o streams. This is discussed in
the Standard 1/0 section of the Library Functions Overview.

Your program can safely mix calls to the malloc functions, the
standard i/o functions, and the sbrk and brk functions, as long as
the calls to sbrk and brk don’t decrement the heap pointer.
Mixing sbrk and drk calls that decrement the heap pointer with
calls to the malloc functions and/or the standard i/o functions is
dangerous and probably shouldn’t be done by normal programs.

ERRORS
If an sbrk or brk call is made that would result in the heap
pointer passing beyond the end of the heap, sbrk and brk return

-1, after setting the global integer errmo to the symbolic value
ENOMEM.

- libgen.15 -

LALL (L) rrogram lermination iuncuons EX11

NAME
exit, __ exit

SYNOPSIS
exit(code)

__exit(code)

DESCRIPTION

These functions cause a program to terminate and control to be
returned to the operating system.

code is returned to the operating system, as the program’s
termination code.

exit and _ exit differ in that exit closes all files opened for
standard and unbuffered i/o, while __exit doesn’t.

- libgen.16 -

TECHNICAL INFORMATION

- tech.1 -

TECH INFO Aztec C68k/ROM

Chapter Contents

Technical Information tech
Assembly language functions 3
Interrupt routines 8

- tech.2 -

Aztec C68k/ROM TECH INFO

Technical Information

This chapter discusses topics that couldn’t be conveniently discussed
:Isewhere.

It’s divided into the following sections:
1. Assembly-language functions;
2. C-language interrupt routines.

- tech.3 -

TECH INFO Assembler Functions Aztec C68k/ROM

1. Assembler Functions

This section discusses assembly-language functions that can be
called by, and themselves call, C-language functions. It first discusses
the conventions that such functions must follow, and then discusses the
in-line placement of assembler statements within C functions.

1.1 Conventions for C-callable, assembly-language functions

A C-callable, assembly-language function must obey the
conventions that are described in the following paragraphs.

1.1.1 Names of global variables and functions

By default, the names by which assembly-language modules and C-
language modules refer to global variables and functions differ slightly:
the assembler name is generated from the C name by prepending an
underscore character.

Consider, for example, the following C module:

int var;
main()

func(var);

}

The names by which an assembler module would by default refer to
these global variables and functions are _ var, __main, and __func.

You can define an alternate naming convention using the
compiler’s +RUx option. x defines how assembler names are derived
from C names:

* If x is negative, assembly names are derived by prepending an
underscore to C names;

* If x is zero, assembler names are the same as C names;

* If x is positive, assembler names are derived by appending an
underscore to C names.

~ In the following paragraphs, we assume that assembler names are
derived from C names by prepending an underscore.

1.1.2 Global variables

A C module’s global variables are in either the uninitialized data
segment or the initialized data segment.

An assembler module can create an uninitialized variable that can
be accessed by a C function, using the global directive. For example,
the following code creates the global variable _ var, which can be
accessed as an array by a C function, and reserves 8 bytes of storage
for it.

- techd -

Aztec C68k/ROM Assembler Functions TECH INFO

global __ var,8

A C function that wants to access _ var could have the following
declaration:

extern short var{};

To create an initialized variable that can be accessed by a C
function, an assembler module can use the public and dc directives.
For example, the following code creates the public variable _ ptr that
initially contains a pointer to the symbol str, and that can be accessed
as a char pointer by a C function:

dseg
public _ ptr
_ptr dcl str
To access __ptr, a C function could use the following declaration:
extern char *ptr;

An assembler module can access global initialized or uninitialized
variables that are created in C modules by defining the variables with a
public directive within the dseg segment. For example, suppose a C
module creates a global, uninitialized short named count and a global,
initialized short named ftotal using the statement:

short count, total=1;

An assembler module can access these variables by using the following
directives:

dseg
_public __count, __ total

1.1.3 Names of external functions and variables

The compiler translates the name of a function or variable to
assembly language by truncating the name to 31 characters and
optionally adding an underscore to the name (as defined by the +RUx
option). Thus, to be accessible from C modules or to access C
modules, assembler modules must obey this convention.

For example, the folowing C module calls the function dmp, which
simply adds 10 to the global short count. A C module refers to this
function as bmp, and an assembler module refers to it as _ bmp.

int count;
main()

bmp();
)

An assembler version of __bmp could be:

- tech.S -

TECH INFO Assembler Functions Aztec C68k/ROM

dseg
public __count
cseg
public __bmp
__bmp:
addw #10,__count
rts
end

» 1.1.4 Function calls and returns

The assembler code generated by the compiler for a C call to
_ another function pushes the arguments onto the stack, in the reverse
order in which they were specified in the call’s argument list, and then
calls the function.

An assembler function returns to a C function caller by issuing a rts
instruction, and leaving the caller’s arguments on the stack. The caller
then removes the arguments from the stack.

A function returns an integer or pointer in register DO. Floating
point values are returned in registers DO and D1.

For example, consider the following assembler function, __sub, that
takes two short arguments that are passed to it on the stack, subtracts
them, and returns the difference as the function value. A C function
will refer to this function using the name sub.

cseg
public _ sub
_ sub:
mov 4(sp),d0 ;get first argument
sub 6(sp),d0 ;subtract second from first
rts

The following C function calls sub to subtract b from a, and stores
the difference in ¢

main()
short a,b,c;
c= sub(a,b);
}

L1.5 Register usage

An assembler function that is called by a C function must preserve
all registers it uses, except for those that the calling function uses for
temporary values.

The registers that a module uses for temporary values are defined
when the module is compiled, with the +RT option; by default, these

- tech.6 -

Aztec C68k/ROM Assembler Functions TECH INFO

are data registers DO-D3 and address registers A0-A2.
1.2 Embedded Assembler Source

Assembler statements can be embedded in a C module by
surrounding them with #asm and #endasm statements. The pound sign
(#) must be the first character on the line, and the letters must be
lower case.

Embedded assembler code must preserve the contents of all
registers it uses, except for those used for temporary values.

"It should make no assumptions about the contents of the registers,
since the code that the compiler currently generates for C statements
may change in the future.

To be safe, a #asm statement should be preceded by a semicolon.
This avoids problems in which the compiler mistakenly puts a label
that is the target of a jump statement after, rather than before, in-line
assembly code.

In general, it is safest to contain assembly code in a separate
assembler module rather than embedding it in C source.

- tech.7 -

TECH INFO Interrupt Handlers Aztec C68k/ROM

2. Interrupt Handlers

An interrupt handler can be written in C, with the following
provisos: it must have a small assembly language routine that performs
the initial and final processing of an interrupt; and it must restrict its
use of the library functions. These provisos are discussed in the
following paragraphs.

2.1 The Assembly langnage routine

When the assembly language front-end to a C interrupt handler is
activated by an interrupt, it must do the following:

* Save on the stack the registers that the C routine uses. for
holding temporary values;

* If the C routine uses a small memory model, the assembly
language routine must save the small memory model support
register and set in it the value __ HI _org+32766.

___HI_org is a linker-created symbol whose value is the
starting address of the interrupt handler’s initialized data
segment. In case you can’t tell, H1_org begins with two
~ underscores, and has one in the mc,

* jsr to the C routine.

It's not necessary for the assembly language routine to save other
registers (ie. registers used for holding the C routine’s register
variables or the frame pointer register); this will automatically be done
by the C routine.

The C routine should return in the usual way; i.e. by executing a
return instruction or by executing its last instruction. The assembly
language routine should then restore all registers that it saved and issue
an rte instruction.)

Here is a sample assembly language routine named _ intbegin. It
saves the default temporary registers D0-D3 and A0-A2; saves and
initializes the default small model support register AS; and calls the C
language routine whose C name is intfunc:

public __intbegin, _intfunc,___H1_ org
__intbegin

movem.l d0-d3/a0-a2/a5,-(sp)

move.l # HIl_ org+32766,as

jsr _intfunc
movem.l (sp)+,d0-d3/a0-a2/a5
rte

2.2 Use of library functions by C-language interrupt routines

A C interrupt routine can call the reentrant library functions that
are provided with Aztec C68k/ROM; it usually shouldn’t call the non-
reentrant library functions. A function is reentrant if it doesn’t access

- tech.8 -

Aztec C68k/ROM Interrupt Handlers TECH INFO

global or static variables, and is non-reentrant if it does.
The non-reentrant library functions are these:
* The high-level buffer-allocation functions malloc, free, etc.
* sprintf,
* sscanf,
* The standard i/0 functions, usually;
* The unbuffered i/o functions, usually.

The standard i/o functions are not reentrant, because they have
global control blocks and because they call the non-reentrant malloc
and free functions. An interrupt routine can call the standard i/o
functions if those calls meet certain requirements: the calls can’t
modify control block fields that may be accessed by the standard i/o
calls of an interrupted process, and they can’t call malloc or free. For
example, an interrupt routine can issue standard i/o calls to pre-
opened streams whose standard i/o operations are unbuffered. It can
also issue standard i/o calls to pre-opened buffered streams, if the
buffer has been preallocated, and if it only accesses those streams.

The unbuffered i/o functions (which you must write) are usually
not reentrant, because they usually have a global table. But an
interrupt routine can call the unbuffered i/o functions if those calls
don’t modify fields that may be accessed by the calls of an interrupted
process.

- tech.9 -

TECH INFO Interrupt Handlers Aztec C68k/ROM

- tech.10 -

