


Aztec: C68k/ROM v3.6b, for PCDOS/MSDOS Host Systems 
Release Document 

24 Jun 1988 

This package contains version 3.6b of the Aztec C68k/ROM Cross 
Development System. It's used to develop, on a PCDOS or MSDOS 
host system, programs that will run on a 68k ROM-based system. 

This release document contains the following sections: 

I. Product overview 
2. New features 
3. Known bugs 

1. Product overview 

1.1 Components 

Aztec C68k/ROM consists of the following components: 

* The Aztec C68k/ROM software; 

* Aztec C68k/ROM documentation; 

* Aztec C documentation, which describes features that are 
common to all Aztec C packages. This documentation 
describes the following topics: (a) library functions that are 
provided with all Aztec C packages; (b) an overview of these 
functions; (c) a general discussion on the writing of C 
programs; and (d) compiler error messages. 

Aztec C68k/ROM is used in conjunction with either Aztec Host 
PC, or the Developer or Commercial version of Aztec C86. Aztec 
C68k/ROM contains programs (such as the compiler, assembler, and 
linker) that are used to develop 68k/ROM programs, while Aztec Host 
PC or Aztec C86 contains programs that facilitates development 

The documentation for Aztec C68k/ROM hasn't changed, except as 
described in this release document Th~ if you are a current user of 
Aztec C68k/ROM, this release document is the only documentation in 
your update. 

1.2 Getting started 

The Tutorial chapter of the Aztec C68k/ROM manual describes 
how to install and start using Aztec C68k/ROM 

2. New features 

This section describes the that have been added to Aztec 
C68k/ROM in going from version 3.4b to 3.6b. 

- 1 -



ReI Doc 6/24/88 C68k/ROM, v3.6b, for pcnos Hosts 

2.1 New features of the C68 rompiler 

The following paragraphs describe features that are new in v3.6b of 
the c68 compiler. 

2.1.1 Code Generator Control 

The Xn option allows special control of the code generator. Each 
option takes the form of +Xn, where n is a decimal number indicating 
the option choice. It is possible to abbreviate these options by 
specifying + Xl, 2 ,3 instead of having a separate + X for each option. 
The extended options currently supported are: 

+XI - Remove A6 from all lists. The compiler considers it not to 
exist 

+X2 - Places data into code segment 

+ X3 - Delays the popping of arguments until it is necessary. This 
saves some small amount of code when several functions are called one 
after another. Stack is corrected whenever it is necessary or if the 
number of bytes delayed exceeds 50 bytes. This affects the Db stack 
back trace command since DB checks the instruction at the return 
address to see how many arguments were passed to the function. 

+X4 - Forces literal strings to be aligned on an even boundary. 

+ X5 - If enabled, + X5 generates inline code for strcpyO, strcmp(), 
and strlenO or if the name used is preceded by BUILT·IN 
_STRCPY(SI ,S2) -

2.2 Source level debugging 

The -n option causes the compiler to generate source level 
debugging information. This information is passed as special lines and 
characters in the assembly language output file. The assembler 
automatically passes source level debugging information through to an 
object module. 

2.3 Ubrary changes 

2.3.1 Math libraries 

There are now two math libraries supported by Aztec C68k/ROM: 

.. m881.1ib, for programs that perform floating point operations 
using the 68881 coprocessor. 

.. m68.lib, for programs that perform floating point operations 
using software emulation. 

Source for m881.lib is in m881.arc. It should be dearchived into a 
new subdirectory of the lib directory, named m88l. 

Source for m68.1ib, which used to be in an archive named flt68.arc, 
is now in math.arc: 

- 2-



C68k/ROM, v3.6b, for PCDOS Hosts Rei Doc 6/24/88 

... 

3. Kno~n bu~ 

... as68 doesn't support the .b and . w extensions for bsr, bra" etc. 
It also doesn't support the .s and .f extensions for the jmp and 
jsr instructions. However, these are generally not necessary, 
since the assembler generates the correct length instruction . 

... as68 reports errors when the following is assembled with -c 
and -d options: 

dseg 
regsave ds.l 16 

cseg 
public .begin 
entry .begin 
movem.l dO-d7/aO-a7,regsave 
dbra dO,.2 

If the code is assembled with -c, -d, and -n, no errors are 
reported 

... The following code, when compiled with + f8, sends c68 v3.6b 
into an infinite loop. 

long a; double b; 
mainO 
{ 

a = h++; 
} 

-3-



Aztec: C68k/ROM v3.4b, for PCDOS/MSDOS Host Systems 
Release Documeat 

8 Feb 1988 

This package contains version 3.4b of the Aztec C68k/ROM Cross 
Development System. It's used to develop, on a PC DOS or MSDOS 
host system, programs that will run on a 68k ROM-based system. 

This release document contains the following sections: 

1. Product overview 
2. New features 
3. Known bugs 
4. Packaging 

1. Product overview 

1.1 Compooents 

Aztec C68k/ROM consists of the following components: 

• The Aztec C68k/ROM software; 

• Aztec C68k/ROM documentation; 

• Aztec C documentation, which describes features that are 
common to all Aztec C packages. This documentation 
describes the following topics: (a) library functions that are 
provided with all Aztec C packages; (b) an overview of these 
functions; (c) a general discussion on the writing of C 
programs; and (d) compiler error messages. 

Aztec C68k/ROM is used in conjunction with either Aztec Host 
PC, or the Developer or Commercial version of Aztec C86. Aztec 
C68k/ROM contains programs (such as the compiler, assembler, and 
linker) that are used to develop 68k/ROM programs, while Aztec Host 
PC o·r Aztec C86 contains programs that facilitates development 

The documentation for Aztec C68k/ROM hasn't changed, except as 
described in this release document Thus, if you are a current user of 
Aztec C68k/ROM, this release document is the only documentation in 
your update. 

1.2 Getting started 

The Tutorial chapter of the Aztec C68k/ROM manual describes 
how to install and start using Aztec C68k/ROM. The following 
paragraphs discuss topics that aren't covered in that chapter; namely, 
installation on floppy disks. 

If your system doesn't have a hard disk, you'll have to use several 
floppy disks for program development, and swap them in and out of 

-1 .. 



Rei DOC 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts 

drives as needed One possible organization of files on the disks is 
this: 

'" On one disk, put c68, as68, In68, srec68 or hex68, 'include' 
files, object module libraries. On this disk you could also put 
a text editor, such as the Z text editor that is in both the 
Aztec Host PC and Aztec C86 packages. 

'" On another disk, put the less-frequently used programs such as 
the Aztec C68k/ROM object module utilities, and the grep 
and dil f utilities that are in Aztec Host PC and Aztec C86. 

'" On another disk, put the files that are used to create libraries, 
such as library source, lb68, and the arcv and make utilities 
that are in Aztec Host PC and Aztec C86. Copy libraries that 
you create to the first disk 

'" On other disks, put your own files. 

2. New features 

This section describes the that have' been added to Aztec 
C68k/ROM in going from version 3.30c to 3.4b. 

2.1 New features of the as mmpller 

The following paragraphs describe features that are new in v3.4b of 
the c68 compiler. 

2.1.1 68020 support 

The +2 option causes the compiler to generate 68020 code. 

2.1.2 68881 support 

A program's floating point operations can now be performed either 
by floating point emulation that conforms to the IEEE standard, or by 
a 68881 coprocessor~ , When emulation is selected, floating point 
operations are performed by calling softWare routines that are in 
m68.lib. When 68881 support is selected, floating point operations are 
performed in-line as much as possible, and, when necessary, by calling 
the routines in the new m881.lib math library. 

Two options have been added to. the c68 compiler, which define 
how floating point is to be performed 

+ fi The + fi option, which is the default, selects software 
emulation. When this option is used, a program must 
be linked with m68.1ib (or its large code, large data 
version, m681Llib). Up to two register variables may 
be declared with this format; they reside in register 
pairsD4-D5 and D6-D7. 

+ f8 The + 18 option selects 68881 execution of floating 
point operations. When this option is used, a program 

-2-



C68k/ROM, v3.4b, for PCDOS Hosts ReI Doc 2/8/88 

must be linked with m881.lib (or with its large code, 
large data version, m8811I.lib). Four register variables 
may be declared; they reside in registers FP4-FP7. 

2.1.3 Stack depth dledd~ the +M optiCll 

The compiler's new +m option causes stack-depth checking to be 
performed on function entry, by generating a call to the assembly
language function stkchk. If stkchk() detects that the stack has 
grown too large, it calls the C-Ianguagc routine _stkover{). 

You' will need to modify stkover, since the supplied version 
simply returns. For example, stkover could print an error message 
and then exit 

Since compiling with +m causes the code to be bigger and execute 
slower, the final version of your program should be compiled without 
this option. 

2.2 Source level debuainl 
The -n option causes the compiler to generate source level 

debugging information. This information is passed as special lines and 
characters in the assembly language output file. The assembler 
automatically passes source level debugging information through to an 
object module. 

When object modules are linked together into a program, the -g 
option causes the linker to generate a special file that contains the 
source level debugging information. 

These options require the use of an emulator that supports the 
source level debugging file created by the linker. 

When source level debugging information is generated, object 
modules may increase significantly in size. However, the end program 
will remain the same size. 

2.2.1 Other new features 

The compiler now pre-defines the name AZTEC C, which can be 
used when writing compiler specific code that it is to'distributed 

The compiler now pre-defines the names LARGE CODE and 
_LARGE_DATA when the +c and +d optionsare given'-

The compiler now supports the. enumerated data type. 

Structure arguments and return values are now correctly handled 

2.3 New features of the AS68 assembler 

The following paragraphs describe new features of the as68 
assembler, v3.4b. 

..3-



Rei Dot 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts 

23.1 New Processor Suppcri 

The assembler is partly redesigned· and supports the MC680 10, 
MC68020, and the MC68881 instruction sets and addressing modes in 
addition to those of the MC68000. By default, the assembler assumes 
that only the MC68000 instructiQns are valid The MACHINE and 
MC68881 directives enable and/or disable the additional instructions 
and addressing modes. 

2.3.2 Optimization improvements 

Space for the squeeze table that's used for optimizing a program is 
now dynamically allocated, so the -S option .is no longer needed or 
supported 

A new algorithm is used to optimize assembly language code. It is 
orders of magnitude faster than the old algorithm on large files. 

The new optimization algorithm is nonrecursive and therefore no 
longer requires more than a 4K stack 

All instructions will be considered for squeezing. 

23.3 Temporary Labels 

Temporary labels of the form n$, where n. consists of decimal digits, 
are· now supported These labels are in effect till the next ·non
temporary label is encountered For example: 

1$: move.l (aO)+,(al)+ 
dbra dO,I$ 

23.4 Chanaes To Maaos 

A number of changes have been made to the implementation of 
macros. First, the syntax of the macro definition has been expanded to 
allow the macro name to be an argument of the MACRO directive or 
to be taken from a label if present . For· example, previously a macro 
could only be defined as: . 

macro addnum 

Now, however it can still be defined this way or as: 

addnum macro 

Macro arguments can now be referenced by either %n or \n. The %0 
or \0 argument refers to the extension on the macro directive when 
invoked Macro arguments that contain a space or comma can be 
enclosed in bracketing '<' and '>' characters. 

When a oockslash is followed by the symbol '@', the assembler 
generates text of the form ".nnn" where nnn has a unique value for 
each invocation of the macro. This is normally used to generate 
unique labels within a macro. 

-4-



C68k/ROM, v3.4b, for PCDOS Hosts Rei Doc 2/8/88 

The symbol NARG is a special assembler symbol which indicates 
the number of arguments specified when the macro was invoked 
Outside of a macro, the value of NARG is O. 

2.3.S New operators 

The following new operators are supported: 

- inclusive or 
" - exclusive or 

- bitwise not 
/ / - modulo 

2.3.6 New direc:tives 

The following new directives are supported: 

BLANKS 

blanks on/off 
blanks yes/ no 
blanks Yin 

The blanks directive controls whether the assembler will allow 
blanks or tabs in an instruction's operand field 

The blanks off setting treats a blank as the end of the operand 
field 

The blanks on setting allows blanks to be placed between any two 
complete items. With this setting all comments must be' preceded 
by a';'. 

By default, blanks are off, which causes the v3.4b assembler to 
behave, in this respect, like the v3.3Oe assembler. 

CNOP 

label cnop nI,n2 

The cnop directive forces alignment on any boundary at a 
particular offset The first value, nI, is an offset while the 
second value, n2, specifies the alignment to be used as the base of 
the offset For example, to align to an even word boundary: 

cnop 0,2 

while to align to a long word boundary: 

cnop 0,4 

and finally to align to a word beyond a long word boundary: 

cnop 2,4 

Note that this will only take effect relative to the beginning of 
the current module's code or data. Normally, the linker will not 

-s .. 



Rei Doc 2/8/88 C68k/ROM, l'3.4b, for PCDOS Hosts 

align individual modules to long word boundaries. So, for this 
directive to work, it must either ~ the first module linked into 
the program, or else the + A option of the linker must be used to 
force long word alignment of modules. 

EQUR 

/abel equr register 

This directive allows a register to be referenced by an alternate 
name. Reference to the new name is made without regard to 
case. 

EVEN 

/abel even 

This directive forces alignment to a word (16 bit) boundary. 

FAIL 

Jail 
This directive causes the assembler to generate an error for this 
line. This can be used in macros which detect the incorrect 
number of arguments and wish to prevent assembly. 

FREG 

/abel freg ~gister list> 

This directive is like the REG directive, except that it is used to 
specify the floating point registers of the MC68881. The list is 
either composed of the floating point registers FPO through FP7 
or of the floating point control registers FPIAR/FPCR/FPSR, 
but not both. 

IFCandIFNC 

iJc 'string l' ,'string 2' 
iJnc 'slringl','slring2' 

These conditionals check to see if the two strings are equal. If 
they are, the ifc will assemble the following code, while ;Inc will 
skip it 

IFDandIFND 

ifd 
ilnd 

symbol 
symbol 

These conditionals check to see if the specified symbol has been 
defined or not If the symbol has been defined, then ild will 
assemble the following code, while ilnd will not 

.. 6-



C68k/ROM, v3.4b, for PCDOS Hosts Rei Doc 2/8/88 

O1HERIFS 

ifeq aMo~re_expre~wn 
if~ aMo~re_expre~wn 
iJge abso~te_expre~ion 
iJ/e abso~re_expre~wn 
ifh a~wre_expre~wn 
iJne absowte _expre~wn 

These conditionals perform a comparison of the value of the 
absolute expression to zero. If the specified condition is true, 
then the following assembly language is processed, otherwise it is 
skipped 

MAOIINE 

machine MC68000 
machine MC680 10 
machine MC68020 

This directive enables or disables the additional instructions and 
addressing modes associated with different processors in the 
MC68000 family. 

MC68881 

~68881 

This directive enables the MC68881 floating point instructions to 
be recognized and assembled by the assembler. 

SECllON 

label 
label 
label 

section name,CODE 
section name,DAT A 
section name,BSS 

This directive performs the same functions as the cseg and dseg 
directives. The name parameter, if present, is ignored at the 
current time. The type parameter is used to switch from CODE 
and back again. If only a name parameter is specified, the type 
defaults to CODE. 

SET 

label set expression 

This directive assigns the value of the absolute expression to the 
symbol specified by label. This definition is similar to the EQU 
directive, with the exception that this symbol's value can be 
'changed with another SET directive. 

-7-



Rei Doc 1/8/88 C68k/ROM, v3.4b, for penos Hosts 

TIL 

ttl title_string 

This directive sets the title of the current module being 
assembled This directive is implemented for compatibility with 
other assemblers and has no effect at the current time. 

XDEF and XREF 

xde/ symbol 
xre/ symbol 

These directives are used to specify the definition and reference 
of global symbols. Currently these are both mapped onto the 
PUBLIC directive. 

2.4 Changes to the linker 

The following paragraphs describe features that are new in v3.4b of the 
In68 linker. 

2.4.1 Renamed options 

Several linker options are now preceded by a plus character (+) instead 
of a minus (-). These are: 

+ R dd Use address register dd for small model operations. dd is a 
decimal value, and default to S (ie, address register AS). 

+C . xxxx Set origin of code section to the hex value xxxx 
(default 0). 

+ D xxxx Set origin of initialized data section to the hex value 
xxxx (default immediately after the code section). 

+U xxxx Set origin of the uninitialized data section to the hex 
value xxxx (default immediately after the initialized data 
section). 

+S xxxx Set the size of the stack area to the hex value xxxx 
(default 2k). 

+J xxxx Set the program's initial stack pointer to the hex value 
xxxx. (default stack area immediately follows uninitialized 
data section, with size specified by +S option; "stack pointer 
points to the top of this area). 

2.4.2 New opticm 

+ A Toggle 'long align' mode. When this mode is enabled, each 
module's code begins on a longword boundary; i.e. on a 
byte whose address is a multiple of 4. By default, this mode 
is disabled. 

+Q Be quiet; i.e. don't list, on the console, each module that is 
included in a program. By default, the linker issues this list 

-8 .. 



C68k/ROM, v3.4b, for peDOS Hosts 

2.4.3 Source level debugging 

Rei Doc 2/8/88 

Two new options -g, and -q have been added to the linker to turn 
on/ off the collection of the symbol table information that will be used 
by emulators' source level debuggers. 

-g Collect source level debug information. This information is 
put into a file whose name consists of filename.dbg, where 
filename is the name specified by the -0 option or defaults 
to the name of the first object file listed The .dbg file is 
automatically looked for when you invoke sdb. 

-q Tum off the collection of source level debug information 
for all files following it 

Both options apply only to those Illes listed after the option on the 
command line. Both options may be used on the same command line, 
-g will turn on the collection of information for all files after it until 
the end or a -q is encountered A -q will tum off collection of debug 
information until a -g is encountered 

25 Ubrary changes 

25.1 Math lilnries 

There are now two math libraries supported by Aztec C68k/ROM: 

• mB8/.lib, for programs that perform floating point operations 
using the 68881 coprocessor. 

• m68.lib, for progtams that perform floating point operations 
using software emulation. 

Source for mB8/.lib is in mB8/.arc. It should be dearchived into a new 
subdirectory of the lib directory, named m88l. 

Source for m68.lib, which used to be in one archive named flt68.arc, is 
now in two source archives: 

• mx ieee. arc, which should be dearchived into the 
subdirectory mx_ieee of the lib directory; 

• math.arc which should be dearchived into the subdirectory 
math of the lib directory. 

Changes have also been made to the /ibmak68.arc archive. 

2.5.2 1be __ stkchk function 

The new stkchk function performs stack-depth checking. It is 
called automatically on entry to functions that have been compiled 
with c68's new +m option. Source for stkchk is in stkchk.c, in 
rom68.arc. Before using it, you must custoiiilze it 

-9-



Rei Dot l/8/88 C68k/ROl\I, v3.4b, for PCDOS Hosts 

2.5.3 Changes to ro~.a68 

Slight changes have· been made to the startup routine in rom68.a68 to 
support __ stkchk. . 

2.5.4 The wrlte() fundioo 

The previous version of the write function made calls to the CP /M-68k 
bdos. This code has been removed from write, thus making it purely a 
skeleton function.· Like the other unbuffered i/o functions, you must 
flesh out the write function in order to use it 

3. Known wp 
• as68 reports errors on the following: 

movep.l dO,O(aO) 

It also gets errors on related forms of this instruction, such as 
movep. w, etc. However, when the displacement is non-zero, 
no error occurs. 

• as68 doesn't support the .b and .w extensions for bsr. bra., etc. 
It also doesn't support the .s and .1 extensions for the jmp and 
jsr instructions. 

• as68 reports errors when the folloWing is assembled with -c 
and -d options: 

regsave 
dseg 
ds.l 
cseg 
public 
entry 
movem.1 
dbra 

16 

.begin 

.begin 
dO-d7 / aO-a7 ,regsave 
dO,.2 

If the code is assembled with -c. -d, and -n, no errors are 
reported, but the object code doesn't list .begin as an entry 
point 

• When invoked with the +/8 option, c68 generates incorrect 
68881 code for calls to the floating point functions sqrt, sin, 
etc. 

• The following code, when compiled with + f8, sends c68 v3.4b 
into an infinite loop, or makes it crash the OS: 

long a; double b; 
MainO 
{ 

a = h++; 
} 

.. 10-



C68k/ROM, v3.4b, for PCDOS Hosts 

4. Packaging 

Rei Doc 2/8/88 

Aztec C68k/ROM contains the following files: 

c68.exe 
as68.exe 
In68.exe 
1b68.exe 
ord68.exe 
cnm68.exe 
obd68.exe 
hex68.exe 
srec68.exe 
Iibmak68.arc 
stdio.arc 
misc.arc 
mch68.arc 
rom68.arc 
mx ieee.arc 
math. arc 
m881.arc 
ctype.h 
errno.h 
fcntLh 
macros.h 
setjmp.h 
stath 
stdio.h 

Compiler 
Assembler 
Linker 
Object module librarian 
Object module orderer 
Object module utility 
Object module utility 
Binary-to-Intel-hex-record translator 
Binary-to-Motorola-S-record translator 
Libgen control files 
Source for SlDIO functions 
Source for MISe functions 
Source for MCH68 functions 
Source for ROM68 functions 
Source for IEEE float emulation functions 
Source for Transcendental functions 
Source for 68881 functions 

.. 11 .. 



Rei Doc 2/8/88 C68k/ROM, v3.4b, for PCDOS Hosts 

- 12-



Using MANX Technical Support 

We have put together a set of guidelines to help you take the most 
advantage of the technical support service offered by MANX. We ask 
that you read and follow these guidelines to enable us to continue to 
give you quality technical support. 

Have everything with you. 

Try to be organized When using our phone support, have 
everything you need with you at the time you call Our goal is to get 
you the help you need without keeping you on the phone too long. 
This can save you a lot of time, and if we can keep the calls as short 
as possible we can take more calls in the day. This can be to your 
advantage on days when we are busy and it's hard to get through. 
Also, have the following information ready when you call technical 
support We will ask you for this information first. 

• Your name. This is necessary in case we need to get back to you 
with additional information. 

• Phone number. In case we have additional information we will be 
able to contact you. This will never be given to anyone, so you 
need not worry. 

• The product you are using, and the serial number. If you have a 
cross compiler please tell us both host and target, even if the 
problem is with just one side of the system. 

• The revision 0/ the product you are using. This should include a 
letter after the number: i.e. 3.20d or 1.06d. TInS IS VERY 
IMPORTANT. The full version number may be found on your 
distribution disks or when you run the COMPILER 

• The operating system you are using, and also the version. 

• The type 0/ machine you are using. 

• Anything interesting about your machine configuration. ie. ram 
disk, hard disk, disk cache software etc. 

Know what questions you wish to ask. 

If you call with a usage question please try to have your questions 
narrowed down as much as possible. It is easier and quicker for all to 
answer a specific question than general ones. 

I $Olale the code that caused the problem. 

.. 1 .. 



If you think you have found a bug in our software, try and create 
a small program that reproduces the problem. If this program is small 
enough we will take it over the phone, otherwise we would prefer 
that you mail it to us, using the supplied problem report, or leave it 
on one of our bbs systems. Once we receive a "bug report" we will 
attempt to reproduce the problem and if successful we will try to have 
it fixed in the next release. If we can not reproduce the problem we 
will contact you for more information. 

Use your C kmguage book and technical manuals first. 

We have no qualms about helping you with your general C 
programming questions, but please check with a C language 
programming book first This may answer your question quicker and 
more thoroughly. Also, if you have questions about machine specific 
code, i.e. interrupts or dos calls, check with that machine's technical 
reference manual and/or operating system manual. 

When to expect an answer. 

A normal turn around time for a question is anywhere from 2 
minutes to 2 days, depending on the nature of the question. A few 
questions like tracing compiler bugs may take a little longer. If you 
can call us back the next day, or when the person you 1alk to in 
technical support recommends, we will have an in-depth answer for 
you. But normally we can answer your questions immediately. 

Utilize our 11Ulil-in service. 
It is always easier for us to answer your question if you mail us a 

letter (We have included copies of our problem report form for your 
use). This is especially true if you've fo.und a bug with our compiler 
or other software in our package. If you do mail your question in, try 
to include all of the above information, and/ or a disk with the 
problem. Again, please write small test programs to reproduce 
possible bugs. The address for mail-in reportS is P.O. Box 55, 
Shrewsbury, N.J. 07701. If you have questions/problems concerning 
C Prime or Apprentice C, mail them to P.O. Box 8, Shrewsbury, N.J. 
07701. 

Updates. Availability, Prices. 

If you have any questions about updates, availability of software, 
or prices, please call our order desk. They can help you better and 
faster. You can reach them at .. 

-2-



Outside N.J. --> 1-800-221-0440 
Inside N.J. --> 1-201-542-2121 (also for outside the U.S.A) 

Bulletin board system. 
For users of Aztec C we have a bulletin board system available. 

The number is ... 

1-(201)-542-2793 This is at 300/1200 bps. (all products) 

Answer the questions that will be asked after you are connected 
When this is done you will be on the system with limited access. To 
gain a higher access level send mail to SYSOP. Include in this 
information your serial number and what product you have. Within 
approximately 24 hours you should have a higher access level, 
provided the serial number is valid This will allow you to look at the 
various information files and upload/download files. 

To use the bulletin board best, please do not put large ( > 8 lines) 
source files onto the news Systellls which we use for an open forum 
question/answer area. Instead, upload the files to the appropriate area, 
and post a news item explaining the problem you are having. Also, 
the smaller the test program, the quicker and easier it is for us to look 
into the problem, not to mention the savings of phone time. 

When you do post a news item, please date it and sign it This will be 
very helpful in keeping track of questions. Try to do the same with 
uploaded source files. 

Phone support, number and hours. 

Technical support for Aztec C is available between 10-12 am and 
2-6 pm eastern standard time at 1-(201)-542-1795. Phone support is 
available to registered users of Aztec C with the exception of the 
Apprentice C and C Prime products. For those products, please use 
the mail-in support service and send questions/problems to P.O. Box 
8, Shrewsbury, N.J. 07701. 

These guidelines will aid us in helping you quickly through any 
roadblocks you may find in your development Thanks for your 
cooperation. 

-3 .. 



Aztec C68k/ROM 

Cross Development System 

version 3.4 

November 1987 

Copyright (c) 1987 by Manx Software Systems, Inc. 

All Rights Reserved 

Worldwide 

Distributed by: 
Manx Software Systems, Inc. 

P.O. Box 55 
Shrewsbury, N.J. 07701 

201-542-2121 



- ii -



USE RESTRICTIONS 

The components of the Aztec C68k/ROM software development 
system are licensed software products. Manx Software Systems reserves 
all distribution rights to these products. Use of these products is 
prohibited without a valid license agreement The license agreement is 
provided with each package. Before using any of these products the 
license agreement must be signed and mailed to: 

Manx Software Systems 
P. O. Box 55 

Shrewsbury, N. J 07701 

The license agreement limits use of these products to one machine. 
Any uses of these products that might lead to the creation of or 
distribution of unauthorized copies of these products will be a breach 
of the licensing agreement and Manx Software Systems will excercise 
its right to reclaim the original and any and all copies derived in whole 
or in part from first or later generations and to pursue any appropriate 
legal actions. 

Software that is developed with Aztec C68k/ROM software 
development system can be run on machines that are not licensed for 
these products as long as no part of the Aztec C software, Ii braries, 
supporting flIes, or documentation is distributed with or required by 
the software. In the latter case a licensed copy of the appropriate Aztec 
C software is required for each machine utilizing the software. There 
is no licensing required for executable modules that include runtime 
library routines. 

RESTRICTED RIGHTS LEGEND 

. Use, duplication, or disclosure by the Government is subject to 
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in 
Technical Data and Computer Software clause at 52.227-7013. DAC 
#84-1, 1 March 1984. DOD Far Supplement 

COPYRIGHT 

Copyright (C) 1987 by Manx Software Systems. All rights reserved No 
part of this publication may be reproduced, transmitted, transcribed, 
stored in a retrieval system, or translated into any language or 
computer language, in any form or by any means, electronic, 
mechanical, magnetic, optical, chemica~ manual or otherwise, without 
prior written permission of Manx Software Systems, Box 55, 
Shrewsbury, N. J. 0770 I. 

- iii -



DISCLAIMER 

Manx Software Systems makes 00 represeotatioos or warraoties with 
respect to the cODteots hereof and specifically disc:laims aoy implied 
warraoties of merchaotability or fitoess for aoy partiallar purpose. 
Maox Software Systems reserves the riabt to revise this publicatiOB 
aod to make chaoles from time to time io the cooteat hereof without 
oblilatioD of Manx Software Systems to ootify aay perSOD of such 
revision or chanaes. 

TRADEMARKS 

Aztec C68k, Manx AS, Manx LN, and Z are trademarks of Manx 
Software Systems. Amiga is a trademark of Commodore-Amiga, Inc. 
CP /M-86 is a tradmark of Digital Research. MSDOS is a trademark of 
Microsoft PCDOS is a trademark of IBM. UNIX is a trademark of Bell 
Laboratories. Macintosh is a trademark of Apple Computer. 

-iv-



Manual Revision History 

January 1987 ............................................................................... First Edition 
November 1987 ...................................................................... Second Edition 

- v -



.. vi -



Summary of Contents 

68k/ROM-specific Chapters 

title code 

Overview ......................................................................................................... ov 

Tutorial Introduction ................................................................................... tut 

The Compiler ................................................................................................. cc 

The Assembler ................................................................................................ as 

The Linker ...................................................................... ~ ............................... In 

68k/ROM Utility Programs ................................................................ util68k 

Library Generation ................................................................................ libgen 

Technical Information .............................................................................. tech 

Index .......................................................................................................... index 

Host-specific Chapters 

(for a list of these chapters, see your release document) 

System Independent Chapters 

Overview of Library Functions ....... ~ ..................................................... libov 

System-Independent Functions .................................................................. lib 

Style .............. ~ .............................................................................................. style 

Compiler Error Messages ........................................................................... err 

.. vii ... 



Contents 

Overview ......................................................................................................... ov 

Tutorial Introduction ............................................................................... tutor 
1. Installing Aztec C68k/ ROM .................. ............................................ 3 
2. Creating Object Module Libraries .................................................... 4 
3. Translating a program into hex code ............................................... 6 
4. SJ)ecial Features .................................................................................... 9 

4.1 Memory moclels ............................................................................ 9 
4.2 Register usage .............................................................................. 10 

5. Where to go from Here ..................................................................... 10 

The compiler .............. ................................................................................... cc 
I. OJ:>erating Instructions ............. ................... ................... ...................... 3 

1.1 The C Source File ......................................................................... 3 
1.2 The Output Files ............. ......................... ..................................... 3 
1.3 #include files .................................................................................. 5 
1.4 Memory Models ............................................................................ 7 

2. Compiler Options ............. .................................................................. 11 
2.1 Summary of Options .................................................................. 11 
2.2 Description of Options ............... ........ .................................. ..... 13 

3. Programmer Information ....................... ~.......................................... 19 
3.1 Supported Language Features .................................................. 19 
3.2 Structure Assignment ............... ................................ ......... ........ 19 
3.3 Structure Passing ........................................................................ 19 
3.4 Line Continuation .............. ........................................................ 19 
3.5 The void Data TyJ)e ............. ....................................................... 19 
3.6 Special Symbols ........................................................................... 20 
3.7 String Merging ............................................................................ 20 
3.8 !...ong Names ................................................................................. 21 
3.9 Reserved Words .......................................................................... 21 
3.10 Global Variables ......................................................................... 21 
3.11, Data Formats .............. ................................................................ 21 
3.12 In-line Assembly Language Code ........................................... 22 
3.13 Writing Machine-IndeJ)endent Code ...................................... 23 

4. Error Processing ............. .................................................................... 25 

The Assem bier ................................................................................................ as 

- viii -



1. Operating Instructions ......................................................................... 3 
1.1 The Input File .................................... ....... ............... ..................... 3 
1.2 The Object Code File ................................................................... 4 
1.3 Listing File ..................................................................................... 4 
1.4 C>a:>timizations ................................................................................. 4 
·1.5 Searching for include Files .......................................................... 4 

2. Assem bier Options ............................................................................... 6 
3. Programmer information .................................................................... 8 

The Linker ....................... ................................ ............ ....... ....... ..................... In 
1. Introduction to linking ........................................................................ 3 
2. Using the Linker .................................................................................. 9 
3. Linker Options .................................................................................... II 

Utility Programs .................................................................................... util68k 
cnm68 ........................................................................................................... 4 
hex68 ............................................................................................................ 8 
1b68 ............................................................................................................. 10 
olxf68 .......................................................................................................... 21 
ord68 ........................................................................................................... 22 
srec68 .......................................................................................................... 23 

Library Generation ............................................................................... libgen 
1. Modifying the functions ..................................................................... 3 

1.1 The startup function ..................................................................... 3 
1.2 The unbuffered i/o functions .................................................... 7 
1.3 The standard i/o functions agetc and aputc ........................... 12 
1.4 The sbrk and brk heap-management functions ..................... 12 
1.5 The exit and exit functions ................................................... 13 

2. Building the libraries ......................................................................... 13 
3. Function descriptions ..................... ................. .............. ....... ............. 14 

Technical Information ................. ............................... ....... ................. ...... tech 
Assembly language functions ................................................................... 3 
Interrupt routines ....................................................................................... 8 

Overview of Library Functions ............................................................. libov 
I. I/O Overview ........................................................................................ 4 

1.1 Pre-opened devices, command line args .................................. 4 
1.2 ·File I/O ........................................................................................... 6 

1.2.1 Sequential I/O ....................................................................... 6 
1.2.2 Random I/O .......................................................................... 6 
1.2.3 Opening Files ........................................................................ 6 

1.3 Device I/O ..................................................................................... 7 
1.3.1 Console I/O ........................................................................... 7 
1.3.2 I/O to Other Devices ........................................................... 7 

1.4 Mixing unbuffered and standard I/O calls .............................. 7 
2. Standard I/O Overview ....................................................................... 9 

2.1 Opening files and devices ........................................................... 9 

- ix -



2.2 Closing Streams ............................................................................. 9 
2.3 Sequential I/O ............................................................................. 10 
2.4 Random I/O ................................................................................. 10 
2.5 Buffering ...................................................................................... 10 
2.6 Errors ............................................................................................ 11 
2.7 The staIldard I/O functions ...................................................... 12 

3. Unbuffered I/O Overview ............................................................... 14 
3.1 File I/O ....................................... ~ ................................................. 15 
3.2 Device I/O ................................................................................... 15 

3.2.1 Unbuffered I/O to the Console ....................................... IS 
3.2.2 Unbuffered I/O to Non-Console Devices ..................... 16 

4. Console I/O Overview ...................................................................... 17 
4.1 Line-oriented input .................................................................... 17 
4.2 Character-oriented input ........................................................... 18 
4.3 Using ioctl .................................................................................... 19 
4.4 The sgtty fields ............................................................................ 19 
4.5 Examples ...................................................................................... 20 

5. Dynamic Buffer Allocation .............................................................. 22 
6. Error Processing Overview .............................................................. 23 

System IndeJ)en<lent Functions .................................................................. lib 
Index ............................................................................................................. 5 
The functions .............................................................................................. 8 

Style .......................•..................................................................................... style 
I. Introduction ........................................................................................... 3 
2. Structured Programming .................................................................... 7 
3. Top-down Programming ..................................................................... 8 
4. Defensive Programming and Debugging ...................................... 10 
5. Things to watch out for .................................................................... 15 

Compiler Error Codes ..............................•.................................................. err 
I. Summary ................................................................................................ 4 
2. Explanations ...................................................................... .................... 7 
3. Fatal Error Messages ......................................................................... 35 

-x-



- xi -



- xii -



OVERVIEW 

- Of. t ~ 



Overview Aztec C68k/ROM 

- ov.2 -



Aztec C68k/ROM Overview 

Overview 

Aztec C68k/ROM is a set of programs for developing programs in 
the C programming language; the resulting programs run on ROM
and/or RAM-based systems that use a Motorola 68000-family 
microprocessor. The development can be done on any of several host 
systems. 

Some of the features of Aztec C68k/ROM are: 

• The full C language, as defined in the book The C 
Programming Language, by Brian Kernighan and Dennis 
Ritchie, is supported 

• An extensive set of user-callable functions is provided, in 
source form. To use these functions, you must first compile 
and assemble them, and create libraries of the resulting object 
modules. To use the standard and/or unbuffered i/o 
functions, you must write the unbuffered i/o functions. 

• Modular programming is supported, allowing the components 
of a program to be compiled separately, and then linked 
together. 

• Assembly language code can either be combined in-line with 
C source code, or placed in separate modules which are then 
linked with C modules. 

• Utility programs are provided that generate Motorola S
records and Intel hex records for a program. ROM chips 
generated from these records will contain the program's code 
and a copy of its initialized data. 

• A ROM program can contain both initialized and uninitializcd 
global and static variables. When the program starts, its 
initialized variables in RAM will be automatically set from 
the copy in ROM, and its uninitialized variables will be 
cleared 

The functions provided with this package are UNIX compatible and 
are compatible with Aztec C packages provided for other systems. 
Thus, once you have customized the functions, you can create 
programs that will run on UNIX-based systems ot on other systems 
supported by Aztec C with little or no change. 

Host s}'Stems 

The Aztec C68k/ROM software runs on several host systems, 
including: 

\ 

- ol'.3 -



Overview Aztec C68k/ROM 

• PCDOS/MSDOS systems, such as the IBM PC; 

• Apple Macintosh; 

• Digital Equipment VAX systems that use the Ultrix operatini 
system; 

Compooents 

Aztec C68k/ROM contains the following components: 

• c68, the compiler; 

• as68, the assembler; 

• in68, the linker; 

• 1b68, the object module librarian; 

• Source for the library functions; 

• Several utility programs. 

Preview 

This manual is divided into three separate sections, each of which 
is in turn divided into chapters. The first section presents 68k/ROM
specific information. The second describes host-specific features. The 
third describes features that are common to all Aztec C packages. 

The 68k/ROM-specific chapters and their identifying codes are: 

tUI describes how to get started with Aztec C68k/ROM: it 
discusses the installation of Aztec C68k/ ROM and gives an 
overview of the process for turning a C source program into 
Motorola S-records and Intel hex records; 

cc, as, and In present detailed information on the compiler, 
assembler, and linker; 

util68k describes the 68k/ROM-specific utility programs that 
are provided with Aztec C68k/ROM; 

libgen describes the creation of object module libraries from 
the provided source; 

tech discusses miscellaneous topics, including C-callable 
assembly language functions, and C language interrupt 
handlers. 

The contents of the manual's host-specific section varies from host 
to host It usually contains a chapter that describes the special utility 
programs that are provided with your system; this chapter's code has 
the form utilxx, where xx identifies the host; for a PCDOS/MSDOS 
host, for example, the code is utilpc. 

The System-independent chapters and their codes are: 

.. ov.4 .. 



Aztec C68k/ROM Overview 

libo, presents an overview of the functions provided with 
Aztec C; 

lib describes the system-independent functions provided with 
Aztec C68k/ROM; 

style discusses several topics related to the development of C 
programs; 

err lists and describes the error messages that are generated by 
the compiler. 

- ov.5 -



Overview Aztec C68k/ROM 

- ov.6 ... 



TUTORIAL INTRODUCTION 

- tutor. t -



TUTORIAL Aztec C68k/ROM 

Chapter Contents 

Tutorial Introduction ............................................................................... tutor 
I. Installing Aztec C68k/ ROM .............................................................. 3 
2. Creating Object Module Libraries .................................................... 4 
3. Translating a program into hex code ............................................... 6 
4. SJ)ecial Features .................................................................................... 9 

4.1 Memory mo<lels ............................................................................ 9 
4.2 Register usage .............................................................................. 10 

5. Where to go from Here ....................... .............................................. 10 

.. tutor.2 .. 



Aztec C68k/ROM TUTORIAL 

Tutorial Introduction 

This chapter describes how to quickly start using your Aztec 
C68k/ROM cross development software. It discusses the following 
topics: (1) installing the Aztec C68k/ROM software on your disks; (2) 
creating· object module libraries from the provided source; (3) 
translating a C program into Motorola S-records or Intel hex code; (4) 
special features of Aztec C68k/ROM; (5) introduction to the rest of 
the manual. 

Ideally, this chapter should consist of a cookbook set of steps that 
you can follow to get started using Aztec C68k/ROM However, since 
one of those steps is a long and involved one, (ie, to modify the library 
functions and then generate libraries), we recommend that you follow 
the first step, which leads you through the installation of Aztec 
C68k/ROM on your system, and then simply read the rest of chapter 
to get a idea of how programs are developed using Aztec C68k/ROM. 
Then you can read the Library Generation chapter, make any needed 
revisions to the library function source, and generate your libraries. 
Finally, you can translate a C program into a ROM-burnable format, 
by following the steps in this chapter. 

1. Installing Aztec C68k/ROM 

To install Aztec C68k/ROM on your system, copy the files from 
the distribution media (disk or tape) onto your disks. 

If your system is one (such as the IBM PC running PCDOS, or a 
UNIX system) that supports a hierarchical directory structure, we 
recommend that you place the Aztec C68k/ROM software in a set of 
related directories, as shown in the following diagram. 

Directory 
C68 

BIN 
INCLUDE 
LIB 

STOIO 
MISC 
MCH68 
ROM68 
MATII 
MX IEEE 
M88T 

Contents 

executable programs 
header files 
object module libraries 
stdio.arc files 
misc.arc files 
mch68.arc files 

. rom68.arc files 
math.arc files 
mx ieee.arc files 
m881.arc files 

Copy the Aztec C68k/ROM files into the directories as follows: 

- tutor.3 -



TUTORIAL Azte<: C68k/ROM 

• Into the BIN directory, copy all executable Aztec C68k/ROM 
programs. 

• Into the INCLUDE directory, copy all "include files" (that is, 
ftles having extension .h). 

• Into the LIB directory, copy the source archive /ibmake.arc. 
The libraries that you create will reside in this directory. 

Extract the files from this archive using the am 
command, and then delete libmake.arc from the LIB directory. 

To extract files from libmllke.arc follow these steps: (1) 
make sure that the BIN directory is in the path of directories 
that will be searched by the operating system for programs 
(on PCDOS and UNIX, this means adding the BIN directory 
name to the PAlH environment variable); (2) enter the 
appropriate command to make LIB the default or current 
directory (for example, on PCDQ§ this command is cd 
\C68\ LIB); (3) enter the command arcv libmake.arc. 

• Into the STOIO, MCH68, ... , and ROM68 directories, copy the 
corresponding source archive (for example, copy stdio.arc into 
the STOIO directory, mch68.arc into MCH68, and so on). 

Extract the files from each archive using arcv, and then 
delete the archive. 

Each of these directories contains the source and object 
modules generated from the corresponding source archive 
file. For example, the source files in SIDIO were extracted 
from the stdio.arc source archive file by the arcv program. 

2 Creating Object Module Libraries 

The functions that are provided with Aztec C68k/ROM are in 
source form. Before you can create an executable program using 
C68k/ROM, you must compile and assemble the functions and 
generate ohject module libraries that contain them, after first making 
any needed modifications. For more information, see the Library 
Generation chapter. 

.. tutor.4 .. 



Aztec C68k/ROM 

I. 

2. 

3. 

4. 

/ C \ 
I source file I 
\ / 

Aztec C Compiler I 
1 

/ assembler \ 
1 source file 1 
\ / 

Assembler 

/ \ 
lob ject file 1---> 
\ -~-_/ 

. __ L_iD_k-:-Edi_· to_r __ k----- ( 
\ 

/ \ 
1 executable file 1 
\ / 

hex68 or srec68 

/ \ 
I hex file 1 
\ / 

TUTORIAL 

Librarian 

subroutine \ 
library I 
____ I 

Figure 1: Program Development with Aztec C68k/ROM 

- tutor.5 -



TUTORIAL Aztec C68k/ROM 

3. Tnmslatioa. propam Into hex code 

In this section we will lead you through the steps necessary to 
translate a sample C program named exmpi.c into hex code that can be 
burned into ROM. For a diagram of this procedure, see figure I. 

The code for this program will reside in ROM, beginning at 
memory location O. Its data will reside in RAM, beginning at location 
Ox8000. 

3.1 Step 0: Oeate the Source PfOII'MI 

The first step to creating a C program is, of course, to create a disk 
file containing its source. For this, you can use any text editor. We'll 
assume the source exists, in the file exmpi.c. 

3.2 Steps 1 and 2: Compile and Assemble 

To compile and assemble exmpLc enter the following command: 

008 exmpLc 

. This first starts the c68 compiler, which translates the C source that's 
in exmp/.c into assembly language source. When done, c68 starts the 
as68 assembler. as68 assembles the assembly languase source for the 
sample program, translating it into object code and writing the object 
code to the file exmpl.r in the current directory. When done, as68 
deletes the file that contains the assembly language source, since it is 
no longer needed 

There are several compiler options that define a module's 
characteristics. For this example, we have let these options assume 
their default values. Later in this chapter we introduce some of these 
characteristics. 

3.3 Step 3: Link 

The object code version of the exmpl program must next be linked 
to needed functions that are in the c68.lib library of object modules 
and converted into a loadable format 

Before entering this command, you must set the CLIB68 
environment variable, to define the directory that contains the object 
module libraries. For example, on PC DOS, if the libraries are in 
e:\ c68\ lib, the command to define CLIB68 is 

set CLIB68=e:\c68\lib\ 

Note the terminating slash: this is usually required, because of the way 
the linker builds the complete name of a Hbrary that is partially 
identified using the linker's -/ option. This is described below. 

The command to link the sample program is: 

In68 +d 8000 -0 exmpl rom68.r exmpLr -1008 

.. tutor.6 .. 



Aztec C68k/ROM TUTORIAL 

There's several parameters to this command, so let's go through 
them, one at a time. 

3.3.1 Positioning mete, data, and stade the +D, +U, +C, +S, & +J options 

The linker organizes a program into three sections: 

Code Contains the program's executable code; 

Initialized data 
Contains those of the program's global and static 
variables that are assigned an initial value (e.g. static 
int var=/); 

Unini tialized data. 
Contains the program's other global and static 
variables. 

The linker supports options that allow you to position these 
segments in memory. The +D 8000 option used in the above 
command sets the starting address of the program's initialized data to 
Ox8000. 

The linker's +U option sets the starting address of the program's 
uninitialized data. This option wasn't used in the above command, so 
the uninitiaJized data begins at its default address; i.e. immediately 
above the initialized data. 

The linker's +C option sets the starting address of the program's 
code segment This option wasn't used in the above command, so the 
code area begins at its default starting address; i.e. location O. 

The linker's +S and +J options set the starting address of the 
program's stack pointer and the size of the stack area These options 
weren't used in the above command, so they assume their default 
vaJues: the stack area begins immediately after the uninitialized data 
area, the area is 2k bytes long, and the stack pointer initially points at 
the top of this area 

3.3.2 Namin. the output Ole: the -0 option 

The -0 exmpl option tells the linker to place the linked program in 
the file named exmpL If this option wasn't used, the linker would 
have derived the name of the output file from that of the first object 
module, by deleting its extension. 

3.3.3 The input object module Dies 

rom68.r and exmp/.r are the names of two files whose object 
modules are to be included in the program. 

rom68.r contains the startup routine for both the program and for 
the system, and contains statements that pre-initialize the system's 
startup and interrupt vectors. It's listed first so that its code, and hence 
these vectors, will be loaded at the beginning of the program's code 

- tutor.7 -



TUTORIAL Aztec C68k/ROM 

segment; since the code segment begins at location 0,' these vectors will 
then be correctly positioned in memory. 

When linking programs with rom68.r as the first listed module, 
you'll usually have to explicitly specify the name of the output file, 
using the -0 option. If you don't, the linker will place all such 
programs in the same file; ie. in the file named rom68. 

3.3.4 Libnries aod the -L optioa 

The -Lc68 option tells the linker to search the c68.lib library that's 
in the directory defined by the CLIB68 environment variable for 
needed functions. 

As you can see, the -L option doesn't completely define the name 
of a library file; the linker generates the complete name by taking the 
letters that follow the -L, prepending them with the value of the 
CLIB68 environment variable, and appending the letters .Iib. Thus, 
when CLIB68 has the value e:\ c68\ Iib\, the -Lc68 option specifies the 
library whose complete file name is e:\ c68\ lib\ c68.lib. 

During the link step, the linker will search the I~braries specified to 
it for modules containing needed functions; when such a module is 
found, the linker will include the module in the executable file it's 
building. 

All C programs need to be linked with c68.1ib (or an equivalent, as 
described below). This library contains the non-floating point 
functions that are defined in the System Independent Functions 
chapter. It also contains "internal" functions that are called by 
compiler-generated code. 

If a program performs floating point operations, it must also be 
linked with the m68.1ib math library (or an equivalent, as described 
belOW). . 

When a program is linked with a math library, that library must be 
specified before c68.1ib. For example, if exmpl.c performed floating 
point, the following would link it 

In68 +d 8000 -0 exmpl rom68.r exmpl.r -lm68 -lc68 

3.4 Step 4: Coovert to Motorola S-records or Intel hex records 

The next step is to convert the memory image generated by the 
linker into Motorola S-records or Intel hex records, using srec68 or 
hex68, respectively. In the following discussion, we'll generate S
records . using srec68. At the end of the section, we show how to 
generate Intel hex records using hex68. 

To generate Motorola S-records for the program, enter the 
following command: 

- tutor.8 -



Aztec C68k/1l0M TUTORIAL 

srec68 exmpl 

When the records generated by this command are fed into a ROM 
programmer, the resulting ROM code will contain the program's code 
segment followed by a copy of its initialized data segment 

Note: when the system is started, its RAM contains random values; the 
Aztec startup routine sets up the RAM-resident initialized data 
segment from the ROM-resident copy. 

These commands generate one or more files, each of which 
contains S-records for one 2k-byte, successively-higher addressed 
section of the program's code and initialized data. The files are 
exmpl.mOO (containing first ROM chip's S-records), exmpl.mOJ 
(containing the second ROM chip's S-records), and so on. 

srec68 has several additional features. For example, you can 
explicitly define the size of each ROM chip, using the -P option; and 
you can have it place a program's even-addressed and odd-addressed 
bytes in separate ROM chips, using the -E and -0 options. 

hex68 behaves just like srec68, except that it generates Intel hex 
records instead of Motorola S-records, and the extensions of the 
generated files are slightly different For example, the command to 
convert exmpl into Intel hex records is: 

hex68 exmpl 

This generates the files exmpl.hOO, exmp/.hOJ, and so on; where 
each file contains hex records for successively-higher-addressed 2k
byte ROM chips. 

For complete descriptions of srec68 and hex68, see the Utility 
Programs chapter. 

4. SpecIal features of Aztec C68k/ROM 

That- concludes our step-by-step, cookbook introduction to Aztec 
C68kjROM. In the following paragraphs, we want to introduce several 
special features of Aztec C68kjROM 

4.1 Memory models 

Aztec C68kjROM allows you to define, when you compile and 
assemble a module, the "memory model" that the module will use. A 
module's memory model affects the module's speed, size, and the 
amount of data it can access. By default, a module will use the smtlll 
code, small data memory model, which makes it small and fast, but you 
can override this using compiler and assembler options. 

Library modules have memory models, too. The makefiles that are 
provided with Aztec C68kjROM make two versions each of the "c68" 
and "m68" libraries: in one version of a library, the modules all use the 
small code, small data memory model; in the other, they use large code, 

- tutor.9 -



TUTORIAL Aztec C68k/ROM 

large dala. If desired.. you can modify these makefiles to make other 
versions of these libraries, whose modules use different combinations 
of memory models. 

Here's where to go for more information: 

• For a complete description of memory models, see the 
Compiler chapter. 

• The compiler options for selecting a module's memory model 
are +C and +D; they are discussed in the Options section of 
the Compiler chapter; 

• The assembler options for selecting the default memory model 
are -C and -D; they are discussed in the Options section of the 
Assembler chapter; 

• The assembler directives near and jar also define memory 
models; they are discussed in the Programmer section of the 
Assembler chaper; 

• The creation of libraries is discussed in the Library 
Generation chapter. 

4.2 Register us. 
By default, a program's register usage is as follows: 

• Temporary results: data registers DO-D3; address registers 
AO-A2. 

• Register variables: data registers D4-D7; address registers A3 
and A4. 

• Small model support register: AS. 

• Frame pointer: A6. 

• Stack pointer. A7. 

Using the compiler's + R option, you can define the registers used 
for temporary results, register variables, and the frame pointer. 

Using the linker's + R option, you can define the register used to 
support modules that use a small memory model. 

The makefiles that are provided with Aztec C68k/ROM generate 
libraries whose modules use the default registers. 

S. Where to go from here 

In this chapter, we've just begun to describe the features of Aztec 
C68k/ROM 

One chapter that you must read is the Library Generation chapter, 
which discusses the generation of object· module libraries from the 
source that comes with Aztec C68k/ROM. 

.. tutor.tO .. 



Aztec C68k/ROM TUTORIAL 

We encourage you to use the make program-maintenance program 
to generate libraries, if such a program is available for your host 
system. To provide this encouragement, Aztec C68k/ROM provides 
"makefiles" that can be used by UNIX-compatible make programs. If 
your host system is one, such as PCDOS, that doesn't have its own 
make program, and if the Aztec make is available for your system, it 
will be included in your Aztec C68k/ROM package. 

For more information on the sections of a program, see the Linker 
chapter. 

The srec68 and hex68 programs support several options that haven't 
been discussed in this introduction. For a complete description of 
these programs, see the Utility Programs chapter. 

The Technical Information chapter contains miscellaneous 
information on several topics, including the writing of assembly 
language functions and interrupt handlers. 

You should also read the Compiler, Assembler, and Linker 
chapters, to become familiar with all the options that these programs 
provide. 

- tutor. I I -



TUTORIAL Aztec C68k/ROM 

- tutor.12 -



THE COMPILER 

... ce.1 .. 



COMPILER Aztec C68k/ROM 

Chapter Contents 

The compiler .............. ................................................................................... cc 
1. OJ>etating Instructions ............. ............................................................ 3 

1.1 The C Source File ......................................................................... 3 
1.2 The Output Files ............. .............................................................. 3 
1.3 #i1JClude files .................................................................................. S 
1.4 Memory Models ............................................................................ 7 

2. Compiler Options ............. .................................................................. 11 
2.1 Summary of ()ptions ......... ......................................................... 11 
2.2 Description of <>i:>tions ............... ............................................... 13 

3. Programmer Information .............. ................................................... 19 
3.1 Supported Language Features ......................................... , ........ 19 
3.2 Structure Assignment ............... ................................................. 19 
3.3 Structure Passing ................... ..................................................... 19 
3.4 Line Continuation .............. ........................................................ 19 
3.5 The void Data Ty.,c .................................................................... 19 
3.6 S.,ccial Symools ............................................................................ 20 
3.7 String Merging ............................................................................ 20 
3.8 I..ong Names .................................................................................. 21 
3.9 Reserved Words .......................................................................... 21 
3.10 Global Variables ......................................................................... 21 
3.11 Data Formats .............................................................................. 21 
3.12 In-line Assembly Language Code ........................................... 22 
3.13 Writing Machine-Independent Code ...................................... 23 

4. Error Processing ................................................................................. 25 

- ee2 -



Aztec C68k/ROM COMPILER 

The Compiler 

This chapter describes c68, the Aztec C compiler for generic 
Motorola 68000-based systems. It is not intented to be a complete 
guide to the C language; for that, you must consult other texts. One 
such text is The C Programming Language, by Kernighan and Ritchie. 
The compilers were implemented according to the language description 
in the Kernighan and Ritchie book. 

This description of the compilers is divided into four subsections~ 
which describe how to use the compiler, compiler options, information 
related to the writing of programs, and error processing. 

1. Compiler Operating Instnactioos 

c68 is invoked by a command of the form: 

c68 [-options] filename.c 

where [-options] specify optional parameters, and filename.c is the 
name of the file containing the C source program. Options can appear 
either before or after the name of the C source file. 

The compiler reads C source statements from the input file~ 
translates them to assembly language source, and writes the result to 
another file. 

1.1 The C source file 

The extension on the source file name is optional If not specifie~ 
it's assumed to be .c. For example, with the following command, the 
compiler will assume the file name is te xl.c: 

c68 text 

1.2 The OIItpat files 

1.2.1 Creadnl an object code file 

Normally, when you compile a C program you are interested in the 
relocatable object code for the program, and not in its assembly 
language source. Because of this, the compiler by default writes the 
assembly language source for a C program to an intermediate file and 
then automatically starts the assembler. The assembler then translates 
the assembly language source to relocatable object code, writes this 
code to a file, and erases the intermediate file. 

By default, the object code generated by a c68-started assembly is 
sent to a file whose name is derived from that of the file containing 
the C source by changing its extension to .r. This file is placed in the 

- cc.3 -



COMPILER Aztec: C68k/ROM 

directory that contains the C source file. For example, if the compiler 
is started with the command 

008 prose 

the file prog.r will be created, containing the relocatable object code 
for the program. 

The name of the file containing the object code created by a 
compiler-started assembler can also be explicitly specified when the 
compiler is started, using the compiler's -0 option. For example, the 
command 

008 -0 myobj.rel prose 

compiles and assembles the C source that's in the file prog.c, writing 
the object code to the file myobj.reL 

When the compiler is going to automatically start the assembler, it 
by default writes the assembly language source to a temporary file 
named clmpxxx.xxx, where the x's are replaced by digits in such a 
way that the name becomes unique. This temporary file is placed in 
the directory specified by the environment variable CCTEMP. If this 
variable doesn't exist, the file is placed in the current directory. 

When CCTEM P exists, the complete name of the temporary file is 
generated by simply prefixing its value to the ctmpXXx.xxx name. For 
example, if CCTEM P has the value 

/RAM/TEMP/ 

then temporary files are placed in the /RAM/TEMP / directory. 

For a description on the setting of environment variables, see your 
operating system manual. 

If you are interested in the assembly language source, but still want 
the compiler to start the assembler, specify the option -T when you 
start the compiler. This will cause the compiler to send the assembly 
language source to a file whose name is derived from that of the file 
containing the C source by changing its extension to .Q. The C source 
statements will be included as comments in the assembly language 
source. For example, the command 

c68 -T prog.c 

compiles and assembles prog.c, creating the files prog.Q and prog.r. 

1.2.2 Creating just an assembly lanauaae file 

There are some programs for which you don't want the compiler to 
automatically start the assembler. For example, you may want to 
modify the assembly language generated by the compiler for a 
particular program. In such cases, you can use the compiler's -A 
option to prevent the compiler from starting the assembler . 

.. c:c.4 .. 



Aztec C68k/ROM COMPILER 

When you compile a program using the -A option, you can tell the 
compiler the name and location of the file to which it should write the 
assembly language source, using the -0 option. 

If you don't usc the -0 option but do use the -A option, the 
compiler will send the assembly language source to a file whose name 
is derived from that of the C source file by changing the extension to 
.a and place this file in the same directory as the one that contains the 
C source file. For example, the command 

c68 -A prog.c 

compiles, without assembling, the C source that's in prog.c, sending the 
assem bly language source to prog.a. 

As another example, the command 

c68 -A -0 temp.asm prog.c 

=ompiles, without assembling, the C source that's in prog.c, sending the 
membly language source to the file temp.asm. 

When the -A option is used, the option -T causes the compiler to 
include the C source statements as comments in the assembly language 
;ourcc. 

1.3 _include Files 

1.3.1 Searchlnl for #include files 

You can make the compiler search for #inc/ude files in a sequence 
)f directories, thus allowing source files and # include files to be 
:ontained in different directories. 

Directories can be specified with the -I compiler option, and with 
he INCL68 environment variable. The compiler itself also selects a 
"ew areas. to search. The maximum number of searched areas is eight 

If the file name in the #include statement specifies a directory, just 
hat directory is searched 

l.3.1.1 The -I option. 

A -I option defines a single directory to be searched The area 
lescriptor follows the -I, with no intervening blanks. For example, the 
'ollowing -/ option tells the compiler to search the /ram/include 
lirectory: 

-II rami include 

.3.1.2 The INCL68 environment variable 

The INCL68 environment variable also defi nes directories to be 
earched for #include files. The string associated with this variable 
onsists of the names of the directories to be searched, with each pair 
eparated by a semicolon. For example, on peoos the following 

- cc.s -



COMPILER Aztec: C68k/ROM 

command sets INCL68 so that the compiler will search for include files 
in directories \C68\INCLUDE and \DVR\INCLUDE: 

set INCL68=\ C68\INCLUDE;\DVR\INCLUDE 

For a description of the command that's used on your system to set 
environment variables, see your operating system manual. 

1.3.1.3 The sardl order for Indude files 

Directories are searched in the following order: 

1. If the #include statement delimited the file name with the 
double quote character, ", the current directory on the default 
drive is searched If delimited by angle brackets, < and >, this 
area isn't automatically searched 

2. The directories defined in -I options are searched, in the 
order listed on the command line. 

3. The directories defined in the INCL68 environment variable 
are searched, in the order listed 

1.3.2 Preaopiled -Or/ude FlIes 

To shorten compilation time, the compiler supports precompiled 
# include files. 

To use this feature, you first compile frequently-used header files, 
specifying the +h option; this causes the compiler to write its symbol 
table, which contains information about the contents of the header 
files, to a disk file. Then, when you compile a module that # includes 
some of these header files, you specify the +i option; this causes the 
compiler to load into its symbol table the pre-compiled symbol table 
information about the header files. When the compiler encounters a 
# include statement of a header file for which it has already loaded 
pre-compiled symbol table information, it ignores the #include 
statement This ignoring occurs even if the #inc/ude file was nested 
within another #include file in the C source from which the pre
compiled symbol table was generated 

The compiler does much less work when it loads pre-compiled 
information into its symbol table than when it generates the same 
information from C source, and hence using pre-compiled #include 
files can considerably shorten the time required to compile a module. 

The +H option tells the compiler to write its symbol table to a file. 
The name of the file immediately follows the +H, with no intervening 
spaces. For example, you might create a file named x.c that consists 
just of # include statements for all the header files that you want pre
compiled You could then generate a file named include. pre that 
contains the symbol table information for these header files by 
entering the following command: 

- cc.6 -



Aztec C68k/ROM COMPILER 

c68 + Hinclude.pre x.c 

The +1 option tells the compiler to read pre-compiled symbol table 
information from a file. The name of the file immediately follows the 
+1, with no intervening spaces. For example, to compile the file prog.c 
that accesses the header files that were defined in x.c, and to have the 
compiler preload the symbol table information for these files from 
include. pre, enter the following command: 

c68 +Iinclude.pre prog.c 

1.4 Memory Models 

The memory model used by a program determines how the 
program's executable code makes references to code and data This in 
turn indirectly determines the amount of code and data that the 
program can have, the size of the executable code, and the program's 
execution speed 

BefOre getting into the details of memory models, we want to 
describe the sections into which a C68k-generated program is 
organized The sections of a program are these: 

• code, containing the program's executable code; 
• data, containing its global and static data; 
• stack, containing its automatic variables, control information, 

and temporary variables; 
• heap, an area from which buffers are dynamically allocated 

There are two attributes to a program's memory model: one 
attribute specifies whether the program uses the large data or the s111ll11 
data memory model; the other attribute specifies whether the program 
uses the large code or small code memory model 

1.4.1 Ituge dakl versus sm:Ul daIIl 

The fundamental difference between a large data and a small data 
program concerns the way that instructions access data segment data: a 
large data program accesses the data using position-dependent 
instructions; a small data program accesses the data using position
independent instructions. An instruction makes position-dependent 
reference to data in the data segment by specifying the absolute 
address of the data; it makes a position-independent reference to data 
in the data segment by specifying the location as an offset from a 
reserved address register. Other differences in large data and small 
data programs result from this fundamental difference; these other 
differences are: 

• There is no limit to the amount of global and static data that a 
large data program can have. A small data program, on the 
other hand, can have at most 64k bytes of global and static 
data 

- ce.7 -



COMPILER Aztec C68k/ROM 

• For a smaU data program, an address register- must be reserved 
to point into the middle of the data segment For a large data 
program, an instruction that wan1S to access data in the data 
segment contains the absolute address of the data, and hence 
doesn't need this address· register. 

• A code segment is larger when its program uses large data 
than when it uses small data, because a reference to data in a 
data segment occupies a 32-bit field in a large data 
instruction, and occupies a 16-bit field in a small data 
instruction. 

• A program is slower when it uses large data than when it uses 
small data, because it takes more time for an instruction to 
access data when it specifies the absolute address of the data 
than when it specifies the data's offset offset from an address 
register. 

1.4.2 large code versus srmll code 

The fundamental difference between a large code and a small code 
program concerns the way that instructions in the program refer to 
locations that are located in the code segment for a large code program 
the reference is made using position-dependent instructions;. for a 
small code program, the reference is made using position-independent 
instructions. An instruction makes position-dependent reference to a 
code segment location by specifying the absolute address of the 
location; it makes a position-independent reference to a code segment 
location by specifying the location as an offset from the current 
program counter. Other differences in large . data and small data 
programs result from this fundamental difference; these other 
differences are: 

• The size of a code segment is unlimited for both large code 
and small code programs. An instruction in a large code 
program can directly call or jump to the location, regardless of 
its location in the code segment 

An instruction in a small code program can only directly 
call or jump to locations that are within 32k bytes of the 
instruction. To allow instructions in small code programs to 
transfer control to any location, regardless of its location in 
the code segment, a "jump table", which is located in the 
program's data segment, is used If a location to which an 
instruction wants to transfer control is more than 32k bytes 
from the instruction, the transfer is made indirectly, via the 
jump table: the instruction calls or jumps to an entry in the 
jump· table, which in tum jumps to the desired location. A 
jump instruction in a jump table entry' refers to a code 
segment location using an absolute, 32-bit address, and hence 
can directly access any location in the program's code 

- cc.8 -



Aztec C68k/ROM COMPILER 

segment 

When a small code program is Iinke~ the linker 
automatically builds the jump table: if the location to which 
an instruction wan1S to transfer control is outside the 
instruction's range, the linker creates a jump table entry that 
jumps to the location and transforms the pc-relative 
instruction into a position-independent call or jump to the 
jump table en try. 

• A code segment can contain data as well as executable code. 
An instruction in a large code program can access data located 
anywhere in the code segment, because it accesses code 
segment data using position-dependent instructions, in which 
the location is referred to using a 32-bit, absolute address. An 
instruction in a small code program can only access code 
segment data that is located within 32k bytes of the 
instruction. 

• For a sma/I code program to access the jump table, an address 
register needs to be reserved and set up to point into the 
middle of the program's data segment; if the program also 
uses small data, the same address register is used for both 
jump table accesses and normal accesses of data segment data. 
For a large code program, this address register is not needed 
for the referencing of locations in the code segment 

• A code segment is larger when its program uses large code 
than when it uses small code, because instructions that 
reference code segment locations by specifying an absolute 
address use a 32-bit field to define the location, whereas 
instructions that reference data by specifying a pc-relative 
address or an offset from an index register use a 16-bit field 
to define the location. 

• A program ·is usually slower when it uses large code than when 
it uses small code, because it takes more time for an 
instruction to reference a code segment location when it 
specifies the absolute address of the data than when it 
specifies the location in a pc-relative form. 

A large small code program that has lots. of indirect 
transfers of control via the jump table may not differ much in 
execution time from a large code version of the same 
program, since the small code indirect transfer via the jump 
table will take more time than the large code direct transfer. 

1.4.3 Selecting a module's memcry model 

You define the memory model to be used by a module when you 
compile the module, by specifying or not specifying the following 
options: 

- cc.9 -



COMPILER Aztec C68k/ROl\l 

+C Module uses large code. If this option isn't specified 
the module will use small code. 

+D Module uses large data. If this option isn't specified 
the module will use small data. 

For example, the following commands compile prog.c to \1S4 
different memory models: 

c68 prog small code, small data 
c68 +C prog large code, small data 
c68 + D prog small code, large data 
c68 +C + D large code, large data 

1.4.4 LUnries 

The Aztec C68k functions are provided in source form, witl 
"makefiles" that simplify the task of generating object module libraries 
The supplied versions of the make files can create small code, smal 
data and large code, large data versions of the libraries c68.lib anc 
m68.lib. 

1.4.5 Multi-module pI'OII'aDIS 

The modules that you link together to form an executable progran 
can use different memory models, with the following caveat 

When large data and small data modules are linked together, the 
linker will create an arbitrarily large data segment, without attemptinl 
to sort the data into those that are accessed by large data modules ane 
those that are accessed by small data modules. When the program i: 
running, an address register that you specify at link time will poin 
into the middle of this data segment This register is used by the sma) 
data modules to access data. 

Here's the caveat data that the small data modules attempt to acces 
must be within 32k bytes of the location pointed at by this addres 
register. The linker will detect data accesses by small data modules fo 
which this condition isn't satisfied, and issue a message. If you get thi 
message, try reordering the order in which the linker encounters them 
if that doesn't solve the problem, you'll have to recompile the sma] 
data modules, making them use large data. 

- «.10 -



Aztec C68k/ROM COMPILER 

2. Compiler Opdoas 

There are two types of options in Aztec C compilers: machine 
independent and machine dependent The machine-independent 
options are provided on all Aztec C compilers. They are identified by 
a leading minus sign. 

The Aztec C compiler for each target system has its o~ machine
dependent, options. Such options are identified by a leading plus sign. 

The following paragraphs first summarize the compiler options and 
then describe them in detail 

2.1 Summary fA .. dons 

2.1.1 MachIne-independent Optioos 

-A Don't start the assembler when compilation is done. 

-Dsymbol[ ::value J 
Define a symbol to the preprocessor. 

-ldir 1 ;dir2; ... 

-0 file 

-s 
-T 

Search directories dirl, dir2, ... for #include files. 

Send output to file. 

Don't print warning messages. 

Include C source statements in the assembly code 
output as comments. Each source statement appears 
before the assembly code it generates. 

-8 Don't pause after every fifth error to ask if the 
compiler should continue. See the Errors subsection 

-for details. 

-Enum Use an expression table having num entries. 

-Lnum Use a local symbol table having num entries. 

-Ynum Use a case table having num entries. 

-Znum Use a literal table having num bytes. 

2.1.2 Spedal Opdoas few the' 68k processor 

+B 

+C 

+D 

+Hfile 

Don't generate the statement "public. begin" 

Generate code that uses the "large code" memory 
model For information on +C and the related + D 
option, see the Operator Information section. 

Generate code that uses the "large data" memory 
model 

Write symbol table to file. For information on +H and 
the related +1 option, see the Operator Information 

- cc.l t -



COMPILER 

+lfi[e 

+L 

+Q 

+RFx 

Aztec: C68k/ROM 

section. 

Read pre-compiled symbol table from file. 

int variables and constants are 32 bits long. If this 
option isn't used, they are 16 bits long. 

Put character string constants in the data segment If 
+Q isn't specified, string constants are placed in the 
code segment 

Use address register x as the frame pointer (default 
A6). 

+ RRxxx For register variables, use registers defined by the 
decimal number xxx (default 04-07/ A3-A4). 

+RSxxx On function entry, always save registers defined by 
the decimal number xxx (default none). 

+RTxxx For temporary results, use registers defined by the 
decimal number xxx (default 00-03/ Ao-A2). 

+RUx Set name underscore mode as defined by x: negative 
for preceding underscore (default), zero for none, 
positive for trailing. 

- cc.12 -



Aztec C68k/ROM COMPILER 

2.2 DetaIled desaiptiOll of the options 

2.2.1 Maddne-Independent options 

2.2.1.1 The -D Option (Denne a macro) 

The -D option defines a symbol in the same way as the 
preprocessor directive, #deJ;ne. Its usage is as follows: 

c68 -Dmacro[ =text] prog.c 

For example, 

c68 -DMAXLEN-lOOO prog.c 

is equivalent to inserting the following line at the beginning of the 
program: 

#define MAXLEN 1000 

Since the -D option causes a symbol to be defined for the 
preprocessor, this can be used in conjunction with the preprocessor 
directive, #i/deJ, to selectively include code in a compilation. A 
common example is code such as the following: 

#ifdef DEBUG 
printf("value: %d\n", i); 

#endif 

This debugging code would be included in the compiled source by 
the following command: 

c68 -dDEBUG program.c 

When no substitution text is specified, the symbol is defined to have 
the numerical value 1. 

2.21.2 The -I Optl. (Indude another soorce file) 

The -/ option causes the compiler to search in a specified directory 
for files included in the source code. The name of the directory 
immediately follows the -I, with no intervening spaces. For more 
details, see the Compiler Operating Instructions, above. 

2.21.3 The -S Option (Be Silent) 

The compiler considers some errors to be genuine errors and others 
to be possible errors. For the first type of error, the compiler always 
generates an error message. For the second, it generates a warning 
message. The -S option causes the compiler to not print warning 
messages. 

2.21.4 The Local Symbol Table and the -L Option 

When the compiler begins processing a compound statement, such 
as the body. of a function or the body of a for loop, it makes entries 
about the statement's local symbols in the local symbol table, and 

- cc.13 -



COMPILER Aztec: C68k/ROM 

removes the entries when it finishes processing the . statement If the 
table overflo~ the compiler will display a message and stop. 

By default, the local symbol table contains 40 entries. Each entry is 
26 bytes long; thus by default the table contains 520 bytes. 

You can explicitly define the number of entries in the local symbol 
table using the -L option. The number of entries immediately follows 
the -L, with no intervening spaces. For example, the following 
compilation will use a table of 75 entries, or almost 2000 bytes: 

008 -L 75 program.c 

221.5 The Expressioo T"'e and the -E Opdma 

The compiler uses the expression table to process an expression. 
When the compiler completes its processing of an expression, it frees 
all space in this table, thus making the entire table available for the 
processing of the next expression. If the expression table overflows, 
the compiler will generate error number 36, "no more expression 
space", and halt 

By default, the expression table contains 80 entries. Each entry is 
14 bytes long; thus by default the table contains 1120 bytes. 

You can explicitly define the number of entries in the expression 
table using the -E option. The number of entries immediately follows 
the -E, with no intervening spaces. For example, the following 
compilation will use a table of 20 entries: 

c68 -E20 program.c 

221.6 The Case Table and the -Y Optioo 

The compiler uses the case table to process a switch statement, 
making entries in the table for the statement's cases. When it 
completes its processing of a switch statement, it frees up the entries 
for that switch. If this table overflows, the compiler will display error 
76 and halt. 

For example, the following will use a maximum of four entries in 
the case table: 

- tt.14 -



Aztec C6.k,ROM COMPILER 

switch (a) { 

case 0: '* one *' a +- 1; 
break; 

case I: '* two *' switch (x) { 
case 'a': '* three * / 

funcl (a); 
break; 

case 'b': /* four * / 
func2 (b); 
break; 

} /* release the last two * / 
a - 5; 

case 3: /* total ends at three * / 
func2 (a); 
break; 

} 

By default, the table contains 100 entries. Each entry is four bytes 
long; thus by default, the table occupies 400 bytes. 

You can explicitly define the number of entries in the case table 
using the compiler's -Y option. The number of entries immediately 
follows the -Y, with no intervening spaces. For example, the following 
compilation uses a case table having 50 entries: 

c68 -Y50 file 

2.21.7 The StrllII Table and the -Z Option 

When the compiler encounters a "literal" (that is, a character 
string), it places the string in the literal table. If this table overflows, 
the compiler will display error 2, "string space exhausted", and halt 

By default, the literal table contains 2000 bytes. 

You can explicitly define the number of bytes in this table using 
the compiler's -Z option. The number of bytes immediately follows 
the -z, with no intervening spaces. For example, the following 
command will reserve 3000 bytes for the string table: 

c68 -2'3000 file 

2.21.. The Maao,Glot.I Symbol Table 

The compiler stores information about a program's macros and 
global symbols in the Macro/Global Symbol Table. This table is 
located in memory above all the other tables used by the compiler. Its 
size is set after all the other tables have been set, and hence can't be 
set by you. If this table overflows, the compiler will display the 
message "Out of Memory!" and halt You must recompile, using 
smaller sizes for the other tables. 

- cc.lS -



COMPILER Aztec C68k/ROM 

2.2.2 Spedal Optioos for tbe 68k processor 

2.2.2.1 The +B Opdcm 

Normally when compiling modules, the compiler generates a 
reference to the entry point named . begin. Then when modules are 
linked into a program, the reference causes the linker to include in the 
program the library module that contains .begin. 

The +B option prevents the compiler from generating this 
reference. 

For example, if you want to provide your own entry point for a 
program, and its name isn't .begin, you should compile the program's 
modules with the +B option. If you don't, then the program will be 
bigger than necessary, since it win contain your entry point module 
and the standard entry point module. In addition, the linker by default 
sets at· the program's base address a jump instruction to the program's 
entry point; if it finds entry points in several modules, it win set the 
jump to the last one encountered 

2.2.2.2 The +C and +D opdcm 

These options are discussed in the first section of this chapter. 

2.2.2.3. The +L optiOIl 

The +L option causes a program's int variables and constants to be 
32 bits long, instead of the 16 bit default length. This option has no 
effect on the length of a module's other integer variables: variables of 
type short and long are always 16 and 32 bits long, respectively. 

We recommend that you use the +L option sparingly, if at all, 
because it makes a program larger and slower. 

2.2.2.4 The +RF optiOIl - Define the frame pointer register 

During execution of a function, a "frame" of information about the 
function is on the stack. An address register points to the "frame" of 
the currently-active function, and is used by compiler-generated code 
to access information in this function's frame. 

You can define, using the compiler's + RF option, the address 
register that will contain the frame pointer. The decimal number of 
this address register immediately follows the "+RF', with no 
intervening spaces. For example, the following option tells the 
compiler to use address register A5 as the frame pointer: 

+rf5 

If this option isn't specified, address register A6 is used as the 
frame pointer. 

.. cc.16 .. 



Aztec C68k/ROM COMPILER 

2.2.2.5 The +RR optiOll - DeflDe realster variables' reglsten 

The "+RR" option defines the registers that can be used for a C 
function's register variables. These registers are specified by the 
decimal number that immediately follows the "+RR". Each register has 
a number associated with it, and the number that follows the "+RR" is 
the sum of all the selected registers' numbers. The registers that can be 
used to hold register variables, and their associated numbers, are: 

Register Num ber 
02 1 
03 2 
04 4 
05 8 
06 16 
07 32 
A2 64 
A3 128 
A4 256 
A5 512 
A6 1024 

For example, to define registers 04-07/ A3-A5 as register 
variables, you would add the numbers for these registers: 

4+8+16+32+128+256+512=956, 

and then specify, when compiling, the option 

+rr956 

If you don't specify the + RR option, the compiler uses a default 
value of 444. This is the sum 4+8+16+32+128+256, which allows 
registers 04-07/ A3-A4 to be used for register variables. 

2.2.2.6 The +RS optiOll - Spedfy registers to be saved 

On entry to a function, the contents of the registers that hold the 
function's register variables are pushed on the stack. Normally, just 
those registers that contain the function's register variables are saved; 
for example, if 04-07/ A3-A4 are available for use as register variables 
but the function only declares one register variable, then just one 
register is saved on entry to the function. 

The + RS option tells the compiler to generate code that will 
automatically save specified registers, whether or not they are used for 
the function's register variables. These registers are specified in a 
decimal number that immediately follows the +RS. The number has 
the same format as for the +RR option: it's a sum of numbers, each of 
which defines one register. The numbers for the registers are the same 
as for the + RR option. 

- ce.l7 -



COMPILER Aztec: C68k/ROM 

For example, the following option tells the compiler to generate 
code that will automatically save AS on entry to a function: 

+rs512 

If this option isn't specified, no extra· registers will be saved on 
entry to a function. 

22.2. 7 The +RT optiOll - Define reaisten tbat can bold temps 

During the execution of compiler-generated code, registers are used 
to hold temporary values. This option defines those registers, in a 
decimal number that immediately follows the "+RT'. Each possible 
register that can be used is assigned a number, and the number that 
follows the + RT is the sum of the numbers for those registers that can 
be used for temporaries. The registers and their numbers are: 

register 
DO 
Dl 
D2 
03 
AO 
Al 
A2 
A6 

number 
1 
2 
4 
8 
16 
32 
64 
128 

For example, if 00-02/ AO are available for temporaries, the 
following +RT option would be used: 

+rt23 

If this option isn't specified, registers 00-03/ AO-A2 will be used for 
temporaries. 

2228 'The +RU optioo - Define undersoore mode 

When the compiler translates the name of a function or global 
variable into assembler, it does so by pre-pending an underscore to the 
C name, post-pending an underscore, or by using the C name as is. 
The +RU option defines, in a number that immediately follows the 
+ RU, which of these choices the compiler should use: a negative value 
prepends the underscore, zero causes no underscore to be added, and a 
positive value postpends the underscore. 

For example, the following option causes the compiler to place an 
underscore before all names: 

+ru-l 

If this option isn't used, the compiler will prepend an underscore. 

- «.18 -



Aztec C68k/ROM COMPILER 

3. Writlal ......... 

The previous sections of this description of the compiler discussed 
operational features of the compiler, that is, presented information that 
an operator would use to compile a C program. In this section, we 
want to present information of interest to those who are actually 
writing programs. 

3.1 Suppcned Lan .... Features 

Aztec C supports the entire C language as defined in The C 
Programming Language by Kernighan and Ritchie. This now includes 
the bit field data type. 

The following paragraphs describe features of the standard C 
language that are supported by Aztec C but that aren't described in the 
K& R text 

3.2 Structure aulgament 

Aztec C supports structure assignment With this feature, a 
program can cause one structure to be copied into another using the 
assignment operator. 

For example, if s1 and s2 are structures of the same type, you can 
say: 

sl == s2; 

thus causing the contents of structure sl to be copied into structure s2. 

Unlike other operators, the assignment operator doesn't have a 
value when it's used to copy a structure. Thus, you can't say things 
like "a - b - c", or "(a=b).fld" when a, b, and c are structures. 

3.3 Stnadure Passlnl 

Aztec C68k allows a structure to be passed from one function to 
another function; but a function cannot return a structure as its value. 

3.4 IJne CDltlnuatlon 

If the compiler finds a source line whose last character is a 
backslash, \, it will consider the following line to be part of the current 
line, without the backslash. For example, the following statements 
define a character array containing the string "abcdef': 

char array[]-"ab\ 
cd\ 
er'; 

3.5 The void data type 

Functions that don't return a value can be declared to return a l'oid. 
This provides a safety check on the use of such functions: if a void 
function attempts to return a value, or if a function tries to use the 

- cc.19 -



COMPILER Aztec C68k/ROM 

value returned by a void functio~ the compiler will generate an error 
message. 

Variables can be declared to point to a void, and functions can be 
declared as returning a pointer to a void. . 

Unlike other pointers, a pointer to a void can be assigned to a 
pointer to any type of object, and vice versa. For other types of 
pointers, the compiler will generate a warning message if an attempt is 
made to assign one pointer to another, when the types of objects 
pointed at by the two pointers differ. 

That is, the compiler will generate a warning message for the 
assignment statement in the following program: 

mainO 
{ 

} 

char *cp; 
int *ip; 
ip - cp; 

The compiler won't complain about the following program: 

mainO 
{ 

} 

char *cp; 
void *getbufO; 
cp = getbufO; 

3.6 Spedal symbols 

Aztec C supports the following symbols: 

FILE Name of the file being compiled This is a 

LINE -- --
FUNC -- --

character string. 
Number of the line currently being 
compiled This is an integer. 
Name of the function currently being 
compiled This is a character string. 

In case you can't tell, these symbols begin and end with two 
underscore characters. 

For example, 

printf("file:::: %s\n", _FILE_); 
printf("line:::: %d\n", LINE ); 
printf("fune=%s\n", _FVNC ); 

3.7 String merging 

The compiler will merge adjacent character strings. For example, 

.. cc.20 -



Aztec C68k/ROM COMPILER 

printf(ltfile-It ALE It line= %d fune: It RJNC , 
_LINE_); - --

3.8 Long names 

Symbol names are significant to 31 characters. This includes 
external symbols, which are significant to 31 characters throughout 
assembly and linkage. 

3.9 Reserved words 

ronst, signed, and volatile are reserved keywords, and must not be 
used as symbol names in your programs. 

3.10 Global vart ... es 

The standard C language specifies that to access a global variable, 
exactly one module must declare it without the extern keyword and all 
others declare it with the extern keyword Aztec C supports the 
following modified version of the rule: 

• Multiple modules can declare the same variable, with the 
extern keyword being-optional; 

• When several modules declare a variable without using the 
extern keyword, the amount of space reserved for the variable 
is set to the largest size specified by the various declarations; 

• When one module declares a variable using the extern 
keyword, at least one other module must declare the variable 
without using the extern keyword; 

• At most one module can specify an initial value for a global 
variable; 

• When a module specifies an initial value for a global variable, 
the amount of storage reserved for the variable is set to the 
amount specified in the declaration that specified an initial 
value, regardless of the amounts specified in the other 
declarations. 

3.11 Data formats 

·3.11.1 .: .... 

Variables of type char are one byte long, and can be signed or 
unsigned By default, a char variable is signed 

When a signed char variable is used in an expression, it's converted 
to a 16-bit integer by propagating the most significant bit. Thus, a char 
variable whose value is between 128 and 255 will appear to be a 
negative number if used in an expression. 

When an unsigned char variable is used in an expression, it's 
converted to a 16-bit integer in the range 0 to 255. 

A character in a char is in ASCII format 

- cc.21 -



COMPILER 

3.11.2 pointer 

Pointer variables are four bytes long. 

3.11.3 short 

Aztec C68kjROM 

Variables of type. short are two bytes long. They can be signed or 
unsigned, and by default are signed 

A negative value is stored in two's complement format A short is 
stored in memory with its least significant byte at the highest 
numbered address. A -2 stored at location 100 would thus look like: 

location 
100 
101 

3.11.4 lonl 

contents in hex 
FF 
FE 

Variables of type long occupy four bytes, and can be signed or 
unsigned 

Negative values are stored in two's complement format Longs are 
stored sequentially with the most significant byte stored at the lowest 
memory address and the least significant byte at the highest memory 
address. 

3.11.5 lnt 

in! variables are normally 16 bits long, but are 32 bits long if the +L 
compiler option is used For more information, see the discussion of 
the + L option in the Options section of this chapter. 

3.11.6 float" dou"e 
float and double numbers are both represented using IEEE format, 

occupying respectively 4 and 8 bytes of storage. 

3.12 In-Line Assem .. y Lanpqe Code 

Assembly language source can be included in a C program, by 
surrounding the assembly language code with the preprocessor 
directives #asm and #endasm. 

When the compiler encounters a #asm statement, it copies lines 
from the . C source file to the assembly language file that it's 
generatin& until it finds a #endasm statement. The #asm and 
#endasm statements are not copied 

While the compiler is copying assembly language source, it doesn't 
try to process or interpret the lines that it reads. In particular, it won't 
perform macro substitution. 

A program that uses #asm ... #endasm must avoid the following 
placing in-line assembly code immediately following an if block; that 
is, it should avoid the following code: 

- c:c:.22 -



Aztec C68k/ROM 

if ( ... )( 

} 
#asm 

#endasm 

COMPILER 

The code generated by the compiler will test the condition and if false 
branch to the statement following the #endasm instead of to the 
beginning of the assembly language code. To have the compiler 
generate code that will branch to the beginning of the assembly 
language code, you must include a null statement between the end of 
the if block and the usm statement 

if ( ... )( 

} 

#asm 

#endasm 

3.13 Writing machine-Independent code 

The Aztec family of C compilers are almost entirely compatible. 
The degree of compatibility of the Aztec C compilers with v7 C, 
system 3 C, system 5 C, and XENIX C is also extremely high. There 
are, however, some differences. The following paragraphs discuss 
things you should be aware of when writing C programs that will run 
in a variety of environments. 

If you want to write C programs that will run on different 
machines. don't use bit fields or enumerated data types, and don't pass 
structures between functions. Some compilers support these features, 
and some don't 

3.13.1 CompatlHUty Between Aztec Products 

Within releases, code can be easily moved from one 
implementation of Aztec Cto another. Where release numbers differ 
(ie. 1.06 and 2.0) code is upward compatible, but some changes may 
be needed to move code down to a lower numbered release. The 
downward compatibility problems can be eliminated by not using new 
features of the higher numbered releases. 

3.13.2 Sign ExtenslOll F. O1aracter Variables 

If the declaration of a char variable doesn't. specify whether the 
variable is signed or unsigned, the code generated for some machines 
assumes that the variable is signed and others that it's unsigned For 

- (c.23 -



COMPILER Aztec: C68k/ROM 

example, none of the 8 bit implementations of Aztec C sign extend 
characters used in arithmetic computatioDS, whereas all 16- and 32-bit 
implementatioDS do. This incompatibility can be corrected by 
declaring characters used in arithmetic computations as unsigned, or 
by AND'ing characters used in arithmetic expressions with 255 (Oxft). 
For instance: 

char a=129; 
int b; 
b - (a & OxfO * 21; 

3.13.3 The MPU ... symbols 

To simplify the task of writing programs that must have some 
system dependent code, each of the Aztec C compilers defines a 
symbol which identifies the processor on which the compiler
generated code will run. These symbols, and their corresponding 
processors, are: 

symbol 
MPU8086 
MPU80186 
MPU6502 
MPU8080 
MPUZSO 
MCH AMIGA 
MCH-MACINTOSH 
MCH-ATARI ST 
MCH ROM -

processor 
8086/8088 
80186/80286 
6502 
8080 
Z80 
Amiga 
Macintosh 
Atari ST 
68000 Rom system 

Only one of these symbols will be defined for a particular compiler. 

For example, the following program fragment contains several 
machine-dependent blocks of code. When the program is compiled for 
execution on a particular processor, just one of these blocks will be 
compiled: the one containing code for that processor. 

#ifdef MACINTOSH 
/* Macintosh code * / 

#else 
#ifdef MPU8086 

/* 8086 code * / 
#else 
#ifdef MPU8080 

/* 8080 code */ 
#endif 
#endif 
#endif 

- «.24 -



Aztec C68k/ROM 

rae Enw cbedd ... 

COMPILER 

Compiler errors come in two varieties-- fatal and not fataL Fatal 
errors cause the compiler to make a final statement and stop. Running 
t)ut of memory and finding no input are examples of fatal errors. Both 
kinds of errors are described in the Errors chapter. The non-fatal sort 
ire introduced below. 

The compiler wiD report any errors it finds in the source file. It 
will first print out a line of code, followed by a line containing the 
up-arrow (caret) character. The up-arrow in this line indicates where 
the compiler was in the source line when it detected the error. The 
compiler will then display a line containing the following: 

• The name of the source file containing the line; 
• The number of the line within the file; 
• An error code; 
• The symbol which caused the error, when appropriate. 

The error codes are defined and described in the Errors chapter. 

The compiler writes error messages to its standard output Thus, 
error messages normally go to the console, but they can be associated 
with another device or file by redirecting standard output in the usual 
manner. For example, 

c68 prog 
c68 prog >outerr 

errors sent to the console 
errors sent to the file outerr 

The compiler normally pauses after every fifth error, and sends a 
message to its standard output asking if you want to continue. The 
compiler will continue only if you enter a line beginning with the 
character 'y'. If you don't want the compiler to pause in this manner, 
(if, for example, the compiler's standard output has been redirected to 
a file) specify the -8 option when you start the compiler. 

The compiler is not always able to give a precise description of an 
error. Usually, it must proceed to the next item in the file to ascertain 
that an error was encountered Once an error is found, it is not 
obvious how to interpret the subsequent code, since the compiler 
cannot second-guess the programmer's intentions. This may cause it to 
flag perfectly good syntax as an error. 

IC errors arise at compile time, it is a general rule of thumb that the 
very first error should be corrected first This may clear up some of 
the errors which follow. 

The best way to attack an error is first to look up the meaning of 
the error code in the back of this manual Some hints are given there 
as to what the problem might be. And you will find it easier to 
unde.rstand the error and the message if you know why the compiler 
produced that particular code. The error codes indicate what the 
compiler was doing when the error was found 

- cc.25 -



COMPILER Aztec C68k/ROM 

- ct.26 .. 



THE ASSEMBLER 

.. as.l -



ASSEMBLER Aztec C68k/ROM 

Chapter Contents 

The Assembler .............. ~ ................................................................................. as 
1. OJ)erating Instructions ......................................................................... 3 

1.1 The Input File ............................................................................... 3 
1.2 The Object Code File ................................................................... 4 
1.3 Listing File ..................................................................................... 4 
1.4 Optimizations ................................................................................. 4 
1.5 Searching for include Files .......................................................... 4 

2. Assembler Options ............................................................................... 6 
3. Programmer information .................................................................... 8 

- 85.2-



Aztec C68k/ROM ASSEMBLER 

The Assembler 

The as68 assembler translates assembly language source statements 
into relocatable object code. Assembler source statements are read 
from an input text file and the object code is written to an output file. 
A listing file is written if requested The relocatable object code must 
be linked by In68, the Manx Linker, before it can be executed At 
linkage time it may be combined with other object files and run time 
library routines from system or private libraries. Object modules 
produced from C source text and Assembler source text can be 
combined at linkage time into a composite module. 

Assembly language routines are generally not required when 
programming in C. Assembly language routines should only be 
necessary where critical execution time or critical, size requirements 
exist Some system interfacing or low level routines may also require 
assembler code. 

Information on the MC68000 architecture and instructions can be 
found in the Motorola MC68000 16-bit Microprocessor User's Manual 
(Prentice-Hall, Inc., Englewood Cliffs, N. 1. 07632) 

1. Operadnl IDStructious 

The assembler is started by entering the command line: 

as68 [-options] filename 

where [-options] specify optional parameters and filename is the name 
of the file to be assembled 

The assembler reads assembly source statements from the input file, 
writes the translated relocatable object code' to an output file, and if 
requested writes a listing to an output file. The assembler also will 
merge assembly code from other files on encountering an include 
directive. 

1.1 The Input Hie 

Specification of the extension on the source file name is optional: if 
not given, it's assumed to be .asm. For example the following 
command assembles the file io.asm 

as68 io 

1.2 The ObJed Code Flle 

The object code produced by the assembler is written to a file. By 
default, this file is placed in the directory that contains the source file, 

- as.3-



ASSEMBLER Aztec: C68k/ROM 

and its name is derived from that of the input file by changing the 
extension to .r. 

To write the object code to another file, use the -0 option. For 
example, the following command assembles the source that's in 
prog.asm, sending the object code to the file new.obj. This latter file is 
placed in, the current directory, since the -0 option didn't specify 
otherwise. 

as68 -0 new.obj prog.asm 

1.3 Listllll FUe 

If the -L option is specified, the assembler will produce a listing file 
with the same root as the input file and a filename extension of .ist. 
The listing file displays the source statements and their machine 
language equivalent The listing also indicates the relative displacement 
of each machine instruction. 

1.4 Optimlzatloos 

The assembler by default performs some optimizations on an 
assembly language source file, making just two passes through the 
assembly source file. Optimization can be disabled using the -N 
option; this causes the asssembler to run faster, since it makes just a 
single pass through the source and since it needn't optimize the code, 
but it makes the resultant code larger and slower. 

The instructions affected by these optimizations are: 

branches Long branches are converted to short if possible, and 
branches to the following location will be deleted 

movem If there are no registers, the instruction is deleted If 
there is only one register, the shorter move instruction 
is substituted 

jsr bsr is substituted if possible. 

To make these optimizations, the assembler uses a dynamically
allocated table. If this table is filled, the assembler will continue, will 
generate correct, but not completely optimized, object code, and will 
tell you the number of additional entries that it could have used You 
can then. reassemble the module using the -S option to define a 
different table size. 

1.S Searching for include Files 

By default the assembler searches just the current directory for files 
specified in include statements. Using the -I option and the INCL68 
environment variable, you can make the assembler also search other 
directories for such files, thus allowing program source files and 
header files to be contained in different directories. 

- as.4 .. 



Aztec C68k/ROM ASSEMBLER 

If the file name on the include directive specifies a directory or a 
drive name, the assembler will automatically search just the specified 
directory for the file. 

1.5.1 The -I opdOll 

The -/ option defines a single directory to be searched for a file 
specified in an include statement The path descriptor follows the -I, 
with no intervening blanks. For example9 the specification 

as68 -i/db/include progl 

directs the assembler to search the / db/include directory when looking 
r or an include file. 

Multiple -/ options can be specified when the assembler is started, 
if desired, thus defining multiple directories to be searched 

1.5.2 The 1NCL68 Envirmment Variable 

The INCL68 environment variable also defines areas to be searched 
for include files. The value of the variable consists of the names of 
the directories to be searched, with each pair of names separated by 
;emicolons. 

The command that is used to set environment variables varies from 
;ystem to system. For example, on PCDOS the following command 
;ets INCL68 so that the directory \ram\include is searched: 

set INCL68-\ ram \ include 

1.5.3 Iadude Search Order 

When the assembler encounters an include statemen~ it searches 
:firectories for the file specified in the statement in the following 
)rder: 

I. The current directory is searched 

2. The directories specified in the -/ options are searched, in the 
order listed on the line that started the assembler; 

3. The directories specified in the INCL68 environment variable 
are searched, in the order listed 

- as.S -



ASSEMBLER Aztec C68k/ROM 

2. Assembler Options 

2.1 Summary rI. options 

-0 filename 

-Iarea 

-L 

-N 

-Snum 

-V 

-ZAP 

-C 

-0 

Send object code to filename. 

Defines an area to be searched for files specified 
in an include statement 

Generate listing. 

Don't optimize object code. 

Create squeeze table having num entries. 

Verbose option. Generate memory usage 
statistics. 

This option is used primarily when you assemble 
a file that was generated by the compiler. It 
directs the assembler to delete the input file after 
processing. 

Make large code the default code memory model 
If this option isn't specified, small code is the 
default code memory model. The near code and 
far code directives can be used by a program to 
override the default code memory model 

Make large data the default data memory model. 
If this option isn't specified, small data is the 
default data memory model The near data and 
far data directives can be used by a program to 
override the default data memory model For 
more information on memory models, see the 
Compiler chapter. For more information on the 
near and far directives, see the Programmer 
Information section of this chapter. 

-Ename[=val] Create an entry in the symbol table for name and 
assign it the constant value val. If val isn't 
specified, name is assigned the value 1. 

2.2 Desaiption of options 

2.2.1 The '-0 filertaJrl!' optieD 

This option causes as to send the object code to filename. If this 
option isn't specified, as sends the object code to a file whose name is 
derived from that of the assembler source file by changing the 
extension to .r; in this case, the file is placed in the directory 
containing the source file. 

- as.6 -



Aztec C68k/ROM 

2.2.2 The -1-Opdm 

ASSEMBLER 

The -/ option causes the assembler to search -in a specified area for 
files included in the source code. 

The name of the area immediately follows the -I, with no 
intervening spaces. For example, the following defines directory 
/ source / inc: 

-I/source/inc 

For more details, see the Assembler Operating Instructions, above. 

2.2.3 The -L opdm 

Causes as68 to generate a listing. The name of the file to which the 
listing is sent is derived from that of the source file by changing the 
extension to . 1st. The listing file is placed in the directory containing 
the source file. 

22.4 The -S optlm 

The -s option defines the number of entries in the squeeze table. 
If this option isn't specified, the table contains 1000 entries. 

The number of entries immediately follows the -S, with no 
intervening spaces. For example, the following option tells the 
assembler to use a squeeze table containing 1050 entries: 

-s1050 

- as.7 -



ASSEMBLER Aztec C68k/ROM 

3. Proerammer Informaticm 

The following sections discuss the four types of assembly language 
statements: 

1. Comments 
2. Instructions 
3. Directives 
4. Macro Calls 

3.1 Omments 

A comment can appear after a semicolon or after the operand field 
For example: 

; this is a comment 

link a6,#.2 this is also a comment 

3.2 Executable Iostrudioas 

Executable instructions have the general format 

label operation operand 

3.21 Labels 

Assembler labels can be any length. External labels are only 
significant for the first 32 characters. Any additional characters will be 
ignored Valid label characters include letters, numbers, or the special 
characters. and _. A label cannot begin with a digit 

Labels that do not start in the first column require a colon suffixed 

3.22 Operatioos 

The assembler recognizes all of the mnemonics found in Motorola's 
J6-bit Microprocessor User's Manual. 

To specify a length for instructions which support multiple lengths, 
it is sufficient to suffix the instruction mnemonic with: 

.B 

.w 

.L 
3.23 Operands 

Specifies a length of one byte 
Specifies a length of 16-bits 
Specifies a length of 32-bits 

The operand field consists of one expression, or two expressions 
separated by a comma with no imbedded spaces. An expression is 
comprised of register mnemonics, symbols, constants, or arithmetic 
combinations of symbols or constants. 

3.23.1 Symbols 

Symbols or labels represent relocatable or absolute values. An 
absolute value is one whose value is known at assembly time. A 
relocatable value is one whose value is not known until the program is 

- as.8 -



AzteC C68k/ROM ASSEMBLER 

actually loaded into memory for execution. 

Relocatable expressions can only be expressed arithmetically as 
sums or differences. The difference between two relocatable 
expressions is absolute. The result of summing two relocatable 
expressions is undefined 

3.2.3.2 CcmstaDts 

There are five type of constants: octal, binary, decimal, 
hexadecimal and string. 

• An octal constant is expressed as an @ followed by a string of 
digits from the set 0 through 7 such as @123 or @777. 

• A binary constant is expressed as a % followed by a string of 
ones and zeroes such as %10101 or %11001100. 

• A decimal constant is a string of numbers. 

• A hexadecimal constant is a $ followed by a string of 
characters made up of numbers or alphabetics from a through 
f such as $ffff or la2e. 

• A string constant is any string of characters enclosed in single 
quotes such as ' abdc'. 

3.2.3.3 Reglsten 

Register mnemonics are: 

Name Register 
DO, •.. , D7 Data registers 
AO, ••• , A7 Address registers 
SP or A7 Stack pointer 
PC Program counter (forces PC relative mode) 
SR Status register 
CCR Condition code register 
USP User stack pointer 

3.2.3.4 Operand expressions 

The assembler supports operand expressions that use the following 
operators: 

Operator 
+ 

• 
/ 
» 
« 
& 
I 

Meaning 
Addition 
Subtraction & unary minus 
Multiplication 
Division 
Shift right 
Shift left 
And 
Or 

- a5.9 -



ASSEMBLER Aztec C68k/ROM 

The order of precedence is innermost parenthesis, unary minus, 
shif~ and/or, multiplication/division, and addition/subtraction. 

3.3 Directives 

The following paragraphs describe the directives that are supported 
by the assembler. 

EQU 

REG 

label equ <expression> 

This directive assigns the value of the expression on the right to 
the label on the left. 

/abel reg <register list> 

This directive assigns the value of the register list to the label 
Forward references are not allowed A register list consists of a 
list of register names separated by the / character. The -
character may be used to identify an inclusive set of registers. 
The following are valid register lists: 

aO-aJ / dO-d2/ d4 
al/a2/a4/a6/dO-d2 

PUBLIC 

[/abel] public <symbol>[.<symbol> ... ] 

This directive identifies the specified symbols as having external 
scope. These symbols are visable to the linker and are used to 
resolve references between modules. The type of the symbol is 
CODE if it was defined within the code segment, DATA if it was 
defined within the data segment, and ABS if it was defined to 
have an absolute value in an equ directive. 

GLOBAL and BSS 

[/abel] global <symbol>.<size> 
[label] bss <symbol>.<size> 

These directives reserve storage for uninitialized data items. The 
area is reserved in the uninitialized data area If global is used 
then the data item is known to other modules that are external to 
the routine. If bss is used then the data item is local to the 
routine in which it is defined 

If a global is defined in more than one module then the linkage 
editor will reserve the maximum value of those assigned 

- as.l0 -



Aztec C68k/ROM ASSEMBLER 

A symbol that appears in both a global and a public directive is 
located in the initialized data area and the global statements size 
parameters are ignored 

ENfRY 

END 

{label] entry <symbol> 

This directive defines the entry point of the program. Only one 
entry can be declared per program. If no entry point is define~ 
the first instruction of the first module becomes the default entry 
point 

This directive defines the end of the source statements. All files 
are closed and the assembler terminates. 

<SEG 

Assembled output following this directive is output into the code 
segment of the program output file. 

DSEG 

Assembled output following this directive is placed in the 
initialized data segment of the program file. 

DC - Define OJostant 
{1abeI] dc.b <value>{.<vaiue>. <value> ... ] 
{label] dc <value>{.<value>. <value> ... ] 
{label] dc.w <value>{, <value>, <value> ... ] 
{label] dc.l <value>{.<vaiue>. <value> ... ] 
{label] dc.b HstringH 

The de directive causes one or more fields of memory to be 
allocated and initialized 

Each <value> operand causes one field to be allocated and then to 
be initialized with the specified value. A <value> can be an 
expression. An expression may contain forward references. 

For command programs, a value can contain a reference to a 
memory location whose address won't be known until the 
program is loaded into memory. In this case, an item for this 
value will be added to the program's relocation table; when the 
program is loaded, the field containing this value will be set to 
the correct value. 

.. as.l1 .. 



ASSEMBLER Azt~ C68k/ROM 

Each field. for a particular de directive is the· same length. A 
period followed by b, w, or 1 can be appended to a directive, 
defining the field length to be one, two, or four bytes, 
respectively. If the field length isn't specified in this way, it 
defaults to 2 bytes. 

Fields that are two or four bytes long are aligned on word 
boundaries. 

The last form listed above for de allocates a field having exactly 
the number of characters in the string, and places the string in it 

DCB - Define eoas .... t Block 

[klbel] deb.b 
[label} deb 
[klbel] deb.w 
[klbel} deb.1 

<size>[,<value> } 
<size>[,<value>} 
<size>[,<value> ] 
<size>[, <value> } 

The deb directive allocates a block of storage containing <size> 
fields, and initializes each field with <value>. If <value> isn't 
specified, it's assumed to be O. 

Each field for a particular deb directive is the same length. A 
period followed by b, w, or 1 can be appended to a directive, 
defining the field length to be one, two, or four bytes, 
respectively. If the field length isn't specified in this way, it 
defaults to 2 bytes. 

Fields that are two or four bytes long are aligned on word 
boundaries. 

DS - Define Storaae 

[label] ds.b 
[label] ds 
[/abel] ds.w 
[/abel] ds.1 

<size> 
<size> 
<size> 
<size> 

This directive allocates a block of storage containing <size> 
fields, and sets each field to O. 

Each field for a particular ds directive is the same length. A 
period followed by b, w, or I can be appended to a directive, 
defining the field length to be one, two, or four bytes, 
respectively. If the field length isn't specified in this way, it 
defaults to 2 bytes. 

Fields that are two or four bytes long are aligned on word 
boundaries. 

- as.12 -



Aztec C68k/ROM ASSEMBLER 

NEAR and FAR 

near code/data 
far code/data 

The near code and far code directives cause the assembler to 
generate code that uses the small code or large code memory 
model, respectively. If these options aren't specified, the 
assembler will generate code whose code memory model is 
determined by the presence or absence of the +C assembler 
option. 

The near data and far data directives cause the assembler to 
generate code that uses the small data or large data memory 
model, respectively. If these options aren't specified, the 
assembler will generate code whose data memory model is 
determined by the presence or absence of the +D assembler 
option. 

A program can contain multiple near and far directives, thus 
allowing different sections of the same module to use different 
memory models. 

LISr and NO LIST 

The directives list and nolist turn on and ofT, respectively, the 
listing of assembly language statements to the listing file. 

MLIST and NOMLISf 

The directives mJist and nomlist specify whether or not the 
assembly language statements generated by a macro expansion 
should be written to the listing file. 

Q,ISf and NOCLISf 

The directives clist and noclist specify whether or not statements 
should be included in the listing file, when the state men ts were 
not assembled as a result of assembler conditional statements. By 
default, such statements are not listed 

INnUOE 

include <file> 

This directive causes the assembler to suspend assembly of the 
current file and to assemble the specified file. When done, the 
assembler continues assembling the original file. 

• u.13· 



ASSEMBLER Aztec C68k/ROM 

MACRO and ENDM 

[label] macro <symbol> 

text 

endm 

The specified symbol is entered in the assembler opcodes table. 
The text between the macro and endm is saved in memory. When 
the macro symbol is encountered as an opcode the text is placed 
in line. Up to nine arguments can be specified They are 
referenced in the macro text as %1 through %9. In expanding a 
macro symbolic argument references are replaced by their actual 
value. 

MEXIT 

Upon encountering this directive expansion of the current macro 
stops and the assembler scans for the statement following the 
ENDM directive. 

IF, ELSE, and ENDC 

if <test> 

[else] 

endc 

These directives are used to allow conditional assembly of parts 
of the input file. The general form of the IF test is: 

<exp> 
<exp> == <exp> 
<exp> /= <exp> 
'str1' == 'slr2' 
'str}' /= 'str2' 

II 

" II 
II 

<exp> = <exp> 
<exp> <> <exp> 
'Slr}'= 'slr2' 
'str}' <> 'slr2' 

If the test result is true, then the lines up to an· ELSE or ENDC 
are assembled If there is an ELSE, then lines up to the ENDC 
are skipped The skipped lines are not displayed in the listing file 
unless the CLIST directive has been used If the test is false, then 
lines are skipped until an ELSE or ENDC is encountered If it is 
an ELSE, then the following lines up to an ENDC are assembled 

An undefined symbol is treated as having the value O. 

- a5.14 -



THE LINKER 

.. In.l ... 



LINKER Aztec C68k/ROM 

Chapter Contents 

The Linker .. ........ .... ......... ... ..... .................................. ......... ................. ....... .... In 
1. Introduction to linking ........................................................................ 3 
2. Using the Linker .................................................................................. 9 
3. Linker Options .................................................................... ~ ............... 11 

- 10.2 ... 



Aztec C68k/ROM LINKER 

The Linker 

This chapter describes the In68 linker. It first gives a brief 
introduction to linking; the second and third sections give detailed 
operator-type information about the linker, and the fourth section 
gives programmer-type information. 

1. Introdudlon to linking 

C encourages modular programming; that is, the partitioning of a 
program into source modules that are separately compiled and 
assembled The compilation and assembly of a source module 

. generates an "object module". The linker links together all of a 
program's object modules, creating an executable program. 

Programs typically consist of many object modules. Since it would 
be inconvenient to explicitly specify each module whenever you link a 
program, Aztec C68k/ROM supports object module libraries. When 
you pass a library's ttame to the linker, it examines the library's 
modules, and links into the program just those that are needed 

Aztec C68k/ROM provides source for several frequently-used 
functions, and for support routines that are called by compiler
generated code to perform operations such as arithmetic computation, 
etc. These are in source form, and part of the process of installing 
Aztec C68k/ROM is to compile and assemble them and then create 
object module libraries of them. In the following discussion, we refer 
to one of these libraries, c68.lib, which contains non-floating point 
functions, and whose modules have been compiled to use the small 
code, small data memory model 

Some oC the provided Cunctions, called "standard i/o" functions, 
perform high-level i/o by calling Cunctions that you must write, as 
described in the Library Generation chapter. In the Collowing 
discussion, we assume that you have implemented these functions, and 
thus that your ro8.lib library supports the standard i/o function printJ. 

Oeadnl the 'hello, world' ,........ 

Let's consider the creation of the "hello, world" program, whose 
main module, in the file heRo.c, looks like this: 

mainO 
( 

printf("hello, world\n"); 
} 

- 10.3 -



LINKER Aztec C68k/ROM 

The object modules that must be linked together include hello.r, the 
printj module from c68.lib, and other "support" modules from c68.lib. 
You don't explicitly generate calls to these support modules; they're 
automatically generated by the compiler. The command to link the 
program is: 

1068 hello.r -lc68 

The hello.r operand causes the linker to include hello.r in the program. 
The -1c68 operand causes the linker to search for needed modules in 
the c68.lib library that's located in the directory specified by the 

.INCL68 environment variable and to include them in the program. 

Another example 

As another example, consider a program consisting of two of your 
own modules, plus whatever modules are needed from c68.lib. The 
source for the first of these modules, jilel.c, looks like this: 

mainO 
( 

printf("secorid example"); 
funclO; 
func20; 

} 

funciO 
{ 

return; 
} 

The source for the second module, jile2.c, looks like this: 

func20 
{ 

return; 
} 

The command to link this program is: 

In68 file I.r file2.r -lc68 

This causes the linker to include object modules jile}.r and jile2.r in 
the program, and to search for other needed modules in c68.lib. 

Symbol reference and definition 

As the linker proceeds, it keeps track of the global symbols that 
each module references and defines. For the linkage to succeed, each 
symbol that's referenced must also be defined; there can be multiple 
references to the same symbol 

Here are some examples of symbol reference and definition: 

• A call of a function is a reference to that function's name; 

- In.4 -



Aztec C68k/ROM LINKER 

• The actual definition of a function is a definition of the 
function's name; 

• A variable declaration that includes the extern keyword is a 
reference to the variable. 

• A global declaration of a variable that doesn't include the 
extern keyword is a definition of the variable. 

For example, in the above sample program, file 1 contains 
references to printf, funcl, and func2, and to support routines; it 
contains definitions of main and funcl. fi/e2 contains a definition of 
func2, and references to support routines. Within c68.lib are modules 
that define printf and the support routines. 

When the linker has examined all the modules that are going to be 
linked into a program, it checks its lists of defined and referenced 
symbols. If there are symbols that are referenced but not defined, the 
linker issues messages saying that those symbols are undefined and 
then halts without completing the linkage. For example, if the link 
command for the above program specified just filel.r, the linker would 
issue a message saying that printf, func2, and the support routines were 
undefined, since the references to those symbols were not matched by 
definitions. It doesn't say that func 1 is undefined, because the 
reference to it is matched by its definition in the same file. 

Searddnallbrarles 

When the linker is searching a library, it checks each module's 
defined code symbols (ie, symbols that are defined in the module's 
code segment), looking for symbols that have been been referenced but 
not defined in the modules that have already been included in the 
program.. If it finds such a symbol, it includes the module that 
contains it in the program. For example, in the above linkage the 
symbol print/ is referenced but not defined when the linker begins 
searching c68.lib. When the linker looks at the library's module that 
contains the definition of the print/ code symbol, the linker includes 
that module in the program it's building. 

It's important to note that only the definition of a code segment 
symbol in a library module can cause the linker to include the module 
in a program. For example, in the above linkage the definition of a 
print! data symbol (ie, a symbol located in the data segment) in a 
library module would not cause the linker to include that module in 
the program. 

1be onIerina fI. module and library names on the command line 

The order in which modules and libraries are specified on the 
command line is important, since the linker processes files in this 
order. 

For example, an attempt to link the "hello, world" program with the 
following command will fait 

- In.S -



LINKER Aztec C68k/ROM 

In68 -lc68 hello.r 

For this command.. the linker first scans c68.lib and then hello.r. When 
it scans c68.lib the,re aren't yet any referenced but undefined symbols, 
so the linker won't, include any of the library's modules in the 
program. When it includes hello.r in the program, printl and the 
referenced support routines become referenced but undefined But 
since heUo.r is the last module specified on the command line, the 
linker won't go back and rescan c68.1ib; so the undefined symbols 
remain undefined.. and the linkage fails. 

The moral of this is that it's good practice to leave all libraries at 
the end of the command line, with c68.lib at the very end 

The Order of Library Modules 

For the same reason, the order of the modules within a library is 
significant, because the specification of a library on the command line 
causes the linker to, search that library just once, from beginning to 
end If a module is pulled in at any point, and that module introduces a 
new undefined symbo~ then that symbol is added to the running list of 
undefined's. The linker will not search the library twice to find 
definitions for unmatched references. 

For example, suppose you have a program that contains the 
modules main.r, input.r, calc.r, output.r, and any needed library modules, 
and that your modules have the following references: 

module definitions references 
main.r main in, calc 
inputr in gets 
calc.r calc out 
outputr out printf 

The command to link the program would look like this: 

In68 main.r inpulr calc.r outputr -lc68 

Suppose we build a library, sub. lib, to hold the last three modules of 
this program. Then our link step will look like this: 

In68 main.r -lsub-Ic68 

The order of the modules in sub.lib is important For example, 
suppose sub.lib's modules are in the following order: 

inputr 
outputr 
calc.r 

With the library in this order, here's how the above linkage would 
proceed: 

I. The linker includes main.r in the program. After this step, in 
and C4lc are referenced but undefined (as are some other 

- 10.6 -



Aztec C68k/ROM LINKER 

symbols that are in c68.1ib, but we're not concerned about 
them right now). 

2. The linker begins searching sub. lib, and looks first at its input 
module. Since that module defines in, which is one of the 
linker's referenced but undefined symbols, it includes the 
input module in the program, takes in off its list of referenced 
but undefined symbols, and adds gets to it 

3. The linker looks at output, the next module in sub.lib. At this 
point, The symbols calc and gets are referenced but undefined 
Since neither of these symbols are defined in output, the 
linker ignores it 

4. The linker looks at calc, the next and last module in sub. lib. 
Since this module contains a definition of calc, one of the 
linker's referenced but undefined symbols, the linker includes 
calc in the program, removes calc from its list of referenced 
but undefined symbols, and adds out to the list 

S. The linker next scans c68.lib, and includes the modules within 
it that define gets and the support routines. 

After scanning all of these modules and libraries, the out symbol is 
still referenced but undefined, so the linker will abort after logging the 
rollowing message: 

Undermed symbol: _out 

This means that the module defining out was not pulled into the 
linkage. The reason, as we saw, was that out was not a referenced 
symbol when the linker scanned the output module, so the linker 
ignored it 

This problem would not occur if sub.lib's modules were in the 
following order: 

inputr 
calc.r 
outputr 

The ord68 library udllty 

The ord68 utility simplifies the task of creating a library, by sorting 
a list of names of files that contain object modules. A library of these 
object modules that is created using the sorted list will be in the 
correct order. 

There are some sets of object modules whose modules can't be put 
in a "correct" order; that is, for which it is impossible for the linker to 
decide which of the library's modules are needed by making just a 
single scan through the library. For such libraries, you can explicitly 
tell the linker to search the library mUltiple times. 

- In.7 -



LINKER Aztec: C68k/ROM 

For example, if sub.lib required two passes to fmd all needed 
modules, you could link the above program using the command 

In68 main.r -Isub -Isub -1008 

-10.8 .. 



Aztec C68k/ROM LINKER 

2. UsIDl the Linker 

The command to link a program looks like this: 

In68 [-options] file1.r [file2.r ... ] [lib 1. lib ... ] 

where -options are special options, /ilel.r, /ile2.r are names of the 
object modules that are to be included in the program, and libl.lib, ... 
are names of the libraries that are to be searched for needed modules. 
The object modules must have been created using as68 and the 
libraries by 1b68. 

1be executable file 

You can specify the name of the file to which the executable 
program is written with the -0 linker option. Otherwise, the linker will 
derive the name of the output file from that of the first object module 
file listed on the command line, by deleting its· extension. In the 
default case, the executable file will be located in the directory in 
which the first object file is located For example, 

In68 prog.r -1008 

will produce the file prog, by linking the object module prog.r together 
with needed modules from the library c68.lib. (The -I option provides 
a convenient means of specifying libraries, as discussed below). 

A . different output file can be specified with the -0 option, as in 
the following command: 

In68 -0 program mod1.r mod2.r -lc68 

Lllnrles 

Source to many useful functions are provided with Aztec 
C68k/ROM, with which you can generate the libraries c68.1ib, which 
contains the non-floating point functions, and m68.1ib, which contains 
the floating point functions. 

All programs must be linked with c68.lib. In addition to containing 
all the non-floating point functions described in the Functions chapter, 
it contains internal functions which are called by compiler-generated 
code. 

Programs that perform floating point operations must be linked 
with m68.1ib in addition to a version of c68.lib. The floating point 
library must be specified on the linker command line before c68.1ib. 

Libraries of your own modules can also be searched by the linker. 
These are created with the Manx 1b68 program, and must be listed on 
the linker command line before the Manx libraries. 

For example, the foIIowing links the module prog.r. searching the 
libraries mylib.lib, new. lib. m68.1ib. and c68.lib for needed modules: 

- 10.9 -



LINKER Aztec: C68k/ROM 

In68 program.r mylib.lib new.lib -lm68 -lc68" 

Each of the libraries will be searched once in the order in which 
they appear on the command line. 

- In.l0 • 



Aztec C68k/ROM 

3. Linker Options 

LINKER 

3.1 Summary .opdoos 

-0 file Write executable code to the file named file. 

-Lname Search the library name.lib for needed modules. 

-F file 

-T 

-v 

+Rdd 

Read command arguments from file. 

Generate an ASCII symbol table file. 

Be verbose; i.e. list detailed information about each 
segment. 

Use address register dd for small model operations. dd 
is a decimal value, and default to 5 (ie, address 
register AS). 

+C xxxx Set origin of code section to the hex value xxxx 
(default 0). 

+D xxxx Set origin of initialized data section to the hex value 
xxxx (default immediately after the code section). 

+V xxxx Set origin of the uninitialized data section to the hex 
value xxxx (default immediately after the ini tialized 
data section). 

+S xxxx Set the size of the stack area to the hex value xxxx 
(default 2k). 

+1 xxxx Set the program's initial stack pointer to the hex value 
xxxx. (default stack area immediately follows 
uninitialized data section, with size specified by +S 
option; stack, pointer points to the top of this area). 

+A Toggle 'long align' mode. When this mode isenable~ 
each module's code begins on a longword boundary; 
i.e. on a byte whose address is a multiple of 4. By 
default, this mode is disabled 

+Q Be quiet; ie. don't list, on the console, each module 
that is included in a program. By default, the linker 
issues this list 

- In.ll -



LINKER Aztec C68k/ROM 

3.2 Detailed desaipticm of the optioas 

The -0 optiOll 

The -0 option can be used to specify the name of the file to which 
the linker is to write the executable program. The name of this rue is 
in the parameter that follows the -0. For example, the following 
command writes the executable program to the file progout: 

In68 -0 progout prog.r -1008 

If this option isn't used, the linker derives the name of the 
executable file from that of the first input file, by deleting its 
extension. 

The -L optlOll 

The -L option provides a convenient means of specifying to the 
linker a library that it should search, when the library is in a directory 
identified by the INCL68 environment variable, and when the 
extension of the library is .Iib. 

The name of the library is derived by concatenating the value of 
the environment variable CLIB68, the letters that immediately follow 
the -L option, and the string .lib. For example, with the libraries 
subs. lib, io.lib, m68.lib, and c68.lib in a directory specified by CLIB68, 
you can link the module prog.r, and have the linker search the libraries 
for needed modules by entering 

In68 prog.r -lsubs -lio -lm68 -lc68 

The -F option 

-F file causes the linker to merge the contents of the given file with 
the command line arguments. For example, the following command 
causes the linker to create an executable program in the file my prog. 
The linker includes the modules myprog.r, modI.r, and rmd2.r in the 
program, and searches the libraries. mylib.lib and c68.lib for needed 
modules. 

In68 myprog.r -f argfil c68.lib 

where the file arg/il, contains the following: 

modl.r mod2.r 
mylib.lib 

The linker arguments in argfile can be separated by tabs, spaces, or 
newlines. 

There are several uses for the -F option. The most obvious is to 
supply the names of modules that are frequently linked together. Since 
all the modules named are automatically pulled into the linkage, the 
linker does not spend any time in searching, as with a library. 
Furthermore, any linker option except -F can be given in a -F file. -F 

- In.12 -



Aztec C68k/ROM LINKER 

can appear on the command line more than once, and in any order. 
The arguments are processed in the order in which they are read, as 
always. 

The -T option 

The -T option causes the linker to write the program's symbol table 
to a file. This file lists each of the program's symbols and its address. 
The file is organized into four sections: 

I. Symbols in the code section (preceded by the line "Segment 
00 Hunk: 00); 

2. Symbols in the initialized data section (preceded by the line 
"Segment 00 Hunk: 01); 

3. Symbols in the uninitialized data section, (preceded by the 
line "Segment 00 Hunk: 02); 

4. Values of the program's constant symbols (STKSIZ is the size 
of the program's stack area, and _stkorg is the initial stack 
pointer). 

The symbol table file will have the same name as that of the file 
containing the executable program, with extension changed to .sym. 

There are several special symbols which will appear in the table. 
They are defined later in this chapter, in the Programmer Information 
section. 

The+Ropdm 

The + R option defines the address register that will be used in 
support of modules that use the small code and/or small data memory 
model It has the format +r dd, where dd is the number of the address 
register. 

For example, the following command tells the program to use 
address register A4 as the small model support register: 

1n68 +r 4 main.r -1008 

If this option isn't specified, address register AS is used 

If any of a program's modules use small code and/or small data, the 
small model support register points into the program's data sections. 
When a small data module attempts to access a variable that's in a data 
section, the variable's address is specified as a displacement from the 
small model support register. When a small code module calls a 
function that is more than 32k away from the call instruction, the 
linker will generate a jump instruction to the target function, place the 
instruction in the program's data area, and change the PC-relative call 
to a call of the generated jump instruction; the converted call will 
specify the address of the jump instruction as a displacement from the 
small model support register. 

- 10.13 -



LINKER Aztec C68k/ROM 

For more information about memory models, see the Programmer 
Information section of the Compiler chapter. 

Opticms for positiooinl a prOlf8lD's sedioos 

The linker organizes' a program into three sections: code, initialized 
data, and uninitialized data. You can define the starting addresses of 
these sections using the +C, +D, and +U options; an option is followed 
by the hex value of the desired starting address. 

By default, the code section begins at address 0, the initialized data 
section immediately after the code section, and the uninitialized data 
section immediately after the initialized 

For example, the following command creates the program prog 
whose code section. begins at address 0, initialized data at Ox8000, and 
uninitialized data at OxlOOOO: 

In68 +d 8000 +u 10000 prog.o -1c68 

. Stadt opdoos 

Two options affect a program's stack +J and +S. The +J option 
defines the location at which the program's stack register initially 
points. The address in hex of this location follows the +J. For 
example, the following command creates a program whose stack 
register initially points at 0x20000: 

In68 +j 20000 prog.r -lc68 

If the +J option isn't specified, the stack register will initially point 
to a location that follows the program's uninitialized data section. You 
can specify the distance between this location and the end of the 
uninitialized data section with the +S option. The hex value of the 
distance follows the +S. For example, the following command creates 
a program whose stack register initially points to a location that is 
Oxl000 bytes above the end of its uninitialized data section: 

In68 +s 1000 prog.r -lc68 

The default value of the +S option is 2k; this means that when you 
specify neither the +S nor +J options, the program's stack register will 
point to a location that is 2k bytes beyond the end of its uninitialized 
data section. 

The linker creates two stack-related symbols: Storg, whose 
value is the address initially pointed at by the linked program's stack 
register; and SFKSIZ, whose value is the explicitly- or implicitly
defined value of the +S option. The standard startup routine uses 
_ Storg_ to set up the stack register; it doesn't use SI'KSIZ. 

- In.14 -



Aztec C68k/ROM LINKER 

~ ~«lm~doo 

This section contains bits of information about the linker that you 
may find useful 

4.1 Program format 

The linker creates a program that's in CP /M,.68k format, with no 
relocation records. 

4.2 Spedallinker-aeated sym"'s 

When the linker creates a program, it defines several global 
symbols. These are: 

HO org and HO end 
- - Beginning and ending addresses of program's code 

section. 
HI org and HI end 

- - Beginning and ending addresses of program's 
initialized data section. 

H2 org and H2 end 
- - Beginning and ending addresses of program's 

uninitialized data section. 
Storg Initial contents of program's stack pointer. 

S"rKS1Z Size of program's stack area (used when -J option isn't 
used). 

4.3 Entry polnts 

If a program has an "entry point", i.e. a symbol that's specified with 
the assembly language entry directive, and if the entry point isn't at the 
beginning of the program's code section, the linker will automatically 
create a jump to it at the beginning of the program's code section. Use 
of this feature can simplify the command line that passes instructions 
to the linker. However, this feature can't be used by programs whose 
code begins at location 0, since the first two words in memory must 
contain special information. 

If you don't use this feature, you must explicitly define the startup 
routine's object module file to the linker, listing it first so that it is 
placed at the beginning of the program's code section. You must also 
explicitly use the -0 option to define the name of the file to which the 
linker win write the created program, and not allow the linker to select 
the name (it would do so by taking the name of the first specified 
object module file and deleting its extension, which would result in all 
linked programs having the same name). Thus, if you don't use this 
feature, the simplest command line to the linker would be something 
like this: 

In68 -0 prog /c68/lib/startup.r prog.r -1c68 

- In.1S -



LINKER Aztec C68k/ROM 

If (1) you use this feature, (2) your entry point is-also defined in a 
public directive, and (3) if your entry point is named .begin, you can 
place the startup routine's object module in a library, allowing the 
command line to the linker to be as simple as: 

In68 prog.r -lc68 

Here's why the entry point must be named .begin and must be 
specified in a public directive: (I) when a module is compiled, the 
compiler automatically generates a reference to .begin; (2) when the 
linker is searching a library, these references are matched with the 
startup routine's definition of .begin in a public directive, and cause the 
linker to include the startup routine in the program. The presence of 
an entry directive in a library module doesn't cause the linker to 
automatically include that module in a program; it just identifies the 
specified symbol as being the entry point 

- 10.16 -



UTILITY PROGRAMS 
for 68k/ROM TARGET SYSTEMS 

- util68k.l -



Utilities: 68k/ROM taraet Aztec: C68k/ROM 

Chapter Contents 

Utility Programs .................................................................................... uti168k 
cnm68 ........................................................................................................... 4 
hex68 ............................................................................................................ 8 
1b68 ............................................................................................................. 10 
otx168 .......................................................................................................... 21 
ord68 ........................................................................................................... 22 
srec68 .......................................................................................................... 23 

.. util68k.2 .. 



Aztec C68k/ROM Utilities: 68k/ROM target 

Utility Programs 
for 68k/ROM Target Systems 

This chapter describes the 68k/ROM-specific utility programs that 
are provided with this package. The host-specific utility programs are 
described in a separate chapter. 

- util68k.3 -



CNM68 Aztec Utility Program CNM68 

NAME 

cnm68 - display object file info 

SYNOPSIS 

cnm68 (-sol) rile (file ••• 1 
DESCRIP110N 

cnm68 displays the size and symbols of its object file arguments. 
The files can be object modules created by the Manx assembler, 
libraries of object modules created by the lb librarian, and, when 
applicable, 'rsm' files created by the Manx linker during the linking of 
an overlay root 

For example, the following displays the size and symbols for the 
object module subl.o and the library c.lib: 

cnm68 subl.o c.lib 

By default, the information is sent to the console. It can be 
redirected to a file or device in the normal way. For example, the 
following commands send information about subl.o to the display and 
to the file dispfile: 

cnm68 subl.o 
cnm68 subl.o > dispfile 

The first line listed by cnm68 for an object module has the 
following format 

where 

file (module): code: cc data: dd udata: uu total: tt (Oxhh) 

• file is the name of the file containing the module, 
• rmdule is the name of the module; if the module is unnamed, 

this field and its surrounding parentheses aren't printed; 
• cc is the number of bytes in the module's code segment, in 

decimal; 
• dd is the number of bytes in the module's initialized data 

segment, in decimal; 
• uu is the number of bytes in the module's uninitialized data 

segment, in decimal; 
• It is the total number of bytes in the module's three segments, 

in decimal; 
• hh is the total number of bytes in the module's three 

segments, in hexadecimal 

If cnm68 displays information about more than one module, it 
displays four totals just before it finishes, listing the sum of the sizes 
of the modules' code segments, initialized data segments, and 
uninitialized data segments, and the sum of the sizes of all segments of 
all modules. Each sum is in decimal; the total of all segments is also 

- u til68k.4 .. 



CNM68 Aztec Udllty Program CNM68 

given in hexadecimal 

The -s option tells arm68 to display just the sizes of the object 
modules. If this option isn't specified, cnm68 also displays information 
about each named symbol in the object modules. 

When arm68 displays information about the modules' named 
symbols, the -I option tells cnm68 to display each symbol's information 
on a separate line and to display all of the characters in a symbol's 
name; if this option isn't used, cnm68 displays the information about 
several symbols on a line and only displays the first eight characters of 
a symbol's name. 

The -0 option tells cnm68 to prefix each line generated for an 
object module with the name of the file containing the module and the 
module name in parentheses (if the module is named). If this option 
isn't specified, this information is listed just once for each module: 
prefixed to the first line generated for the module. 

The -0 option is useful when using cnm68 in combination with 
grep. For example, the following commands will display all 
information about the module perror in the library c.lib: 

cnm68 -0 c.lib > tmp 
grep perror tmp 

cnm68 displays information about an module's 'named' symbols; 
that is, about the symbols that begin with something other than a 
period followed by a digit For example, the symbol quad is named, so 
information about it would be displayed; the symbol .0123 is unname~ 
so information about it would not be displayed 

For each named symbol in a module, cnm68 displays its name, a 
two-character code specifying its type, and an associated value. The 
value displayed depends on the type of the symbol 

If the first character of a symbol's type code is lower case, the 
symbol can only be accessed by the module; that is, it's local to the 
module. If this character is upper case, the symbol is global to the 
module: either the module has defined the symbol and is allowing 
other modules to access it or the module needs to access the symbol, 
which must be defined as a global or public symbol in another module. 
The type codes are: 

ab The symbol was defined using the assembler's EQU 
directive. The value listed is the equated value of its 
symbol 

The compiler doesn't generate symbols of this type. 

pg The symbol is in the code segment The value is the 
offset of the symbol within the code segment 

- util68k.5 -



CNM68 Aztec: Utility Proaram CNM68 

The compiler generates this type symbol for function 
names. Static functions are local to the function, and 
so have type pg; all other functions are global, that is, 
callable from other programs, and hence have type Pg. 

dt The symbol is in the initialized data segment The 
value is the offset of the symbol from the start of the 
data segment 

The compiler generates symbols of this type for 
initialized variables which are declared outside any 
function. Static variables are local to the program· and 
so have type dr, all other variables are global, that is, 
accessablc from other programs, and hence have type 
Dt. 

ov When an overlay is being linked and that overlay itself 
ca1ls another overlay. this type of symbol can appear 
in the rsm file for the overlay that is being linked It 
indicates that the symbol is- defined in the program 
that is going to call the overlay that is being linked 

The value is the offset of the symbol from the 
beginning of the physical segment that contains it 

un The symbol is used but not defined within t~e 
program. The value has no meaning. 

In assembly language terms, a type of Un (the U is 
capitalized) indicates that the symbol is the operand of 
a public directive and that it is perhaps referenced in 
the operand field of some statements, but that the 
program didn't create the symbol in a statement's label 
field 

The compiler generates Un symbols for functions that 
are called but not defined within the program, for 
variables that are declared to be extern and that are 
actually used within the program, and for 
uninitialized, global dimensionless arrays. Variables 
which are declared to be extern but which are not used 
within the program aren't mentioned in the assembly 
language source file generated by the compiler and 
hence don't appear in the object file. 

bs The symbol is in the uninitalized data segment The 
value is the space reserved for the symbol 

The compiler generates bs symbols for static, 
uninitialized variables which are declared outside all 
functions and which aren't dimensionless arrays. 

- util68k.6 -



CNM68 Aztec Utility Prog ...... CNM68 

The assembler generates bs symbols for symbols 
defined using the bss assembler directive. 

GI The symbol is in the uninitialized data segment The 
value is the space reserved for the symbol. 

The compiler generates GI symbols for non-static, 
uninitialized variables which are declared outside all 
functions and which aren't dimensionless arrays. 

The assembler generates Gl symbols for variables 
declared using the global directive which have a non
zero size. 

- util68k.7 -



HEX68 Intel Hex-Code Generator 

NAME 

hex68 - Intel hex code generator 

SYNOPSIS 

hex68 (-options) proa 

DF.SCRIP11ON 

HEX68 

hex68 translates the program that's in the file named prog, and that 
was generated by the Aztec C68k/ROM linker, into Intel hex code. 
The program can then be burned into ROM by feeding the hex code 
into a ROM programmer. The hex code is written to one or more 
. files, each of which contains the hex code for one ROM chip. 

The ROM chips that are generated from the hex68 output files will 
contain the program's code, followed by a copy of its initialized data. 

Note: when a ROM system is started, its RAM contains random values; 
the Aztec C68k/ROM startup routine sets up its initialized data area,. 
using the copy that's in ROM. 

hex68 assumes that the size of each ROM chip is 2 kb. You can 
explicitly define the size of each ROM using hex68's -P option. 

The output files: even- and odd-addressed bytes in the same chips 

hex68 can optionally generate hex code so that the program's even
addressed bytes are in one set of ROM chips, and its odd-addressed 
bytes are in another. We'll discuss this option below. In this section 
we discuss the output files that are created when this option isn't used; 
i.e. when a program's even- and odd-addressed bytes are in the same 
set of ROM chips. 

When neither -E nor -0 is specified, hex68 derives the name of 
each output file from that of the input file, by appending an extension 
of the form .hnn, where nn is a number. For example, if the name of 
the linker-generated file is prog, then the names of the output files 
generated by hex68 are prog.hOO, prog.hOl, and so OD, where the .hOO 
file contains the hex code for the lowest-addressed ROM, .hOI the hex 
code for the next ROM, etc. 

For example, suppose that hex68 is creating Intel hex code for a 
program whose code and copy of initialized data will reside in three 
2-kb ROMs that begin at location o. Then hex68 will create the 
following files: 

prog.hOO Contains the Intel hex code for the ROM chip that 
occupies addresses O-Ox7ff; 

prog.hOl Contains the hex code for the ROM that occupies 
Ox800-0xfff; 

.. u til68k.8 -



HEX'S Intel Hex-Code Generator HEX68 

prog.h02 Contains the hex code for the ROM that occupies 
OxlOOO-Ox17ff. 

1be output flies: eVeD- and odd-addressed bytes In separate chips 

To place a program's even-addressed bytes in one set of ROM chips 
and its odd-addressed bytes in another, you must run hex68 twice: 
once using the -E option to generate the hex code for the chips that 
contain the even-addressed bytes, and once using the -0 option to 
generate hex code for the chips that contain the odd-addressed bytes. 

When either -Eor -0 is specified, hex68 generates one or more 
files, each of which contains the Intel hex code for one ROM chip. By 
default, the size of each chip is 2k bytes, but you can use the -P option 
to explicitly define the chip size. 

When the -E option is specified, the extension of the files are of 
the form .enn, where nn is a decimal number. The .eOO file contains 
the hex code for the first of the ROM chips that contain even
addressed bytes, the .eO 1 file contains the hex code for the second 
ROM chip, and so on. 

When the -0 option is specified, the extension of the files are of 
the form .onn, where nn is a decimal number. The .000 file contains 
the Intel hex code for the first of the ROM chips that contain odd
addressed bytes, the .001 file contains the hex code bytes for the 
second ROM chip, and so on. 

1be options 

hex68 supports the following options: 

-Bx The program begins x bytes into the first ROM chip, 
where x is a hexadecimal number. If this option isn't 
specified, the program begins at the beginning of the 
first ROM chip. 

-E Output hex code for the program's even-addressed 
bytes. 

-0 Output hex code for the program's odd-addressed 
bytes. 

-Pn The size of each ROM is n k-bytes, where n is a 
decimal number. If this option isn't specified, the size 
defaults to 2kb. For example, the following command 
specifies that each ROM chip is 64kb long: 

hex68 -1'64 exmpl 

- util68k.9 -



LB68 Object file librarian 

NAME 

1b68 - object file librarian 

SYNOPSIS 

Ib68 library (optionsllmodl m0d2 ••• 1 

DESCRIP110N 

LB68 

Ib6B is a program that creates and manipulates libraries of object 
modules. The modules must be created by the Manx assembler. 

This description of Ib6B is divided into three sections: the first 
describes briefly Ib6B's arguments and options, the second Ib6B's basic 
features, and the third the rest of Ib6B's features. 

1. The arauments to Ib68 

1.1 The library araument 

When started, Ib6B acts upon a single library file. The first 
argument to 1MB (library, in the synopsis) is the name of this file. The 
filename extension for library is optional; if not specified, it's assumed 
to be .Iib. 

1.2 The o¢ons arpment 

There are two types of options argument function code options, and 
qualifier options. These options will be summarized in the following 
paragraphs, and then described in detail below. 

1.2.1 Fundioo axle options 

When Ib68 is started, it performs one function on the specified 
library, as defined by the options argument The functions that 1b68 
can perform, and their corresponding option codes, are: 

junction code 
create a library (no code) 
add modules to a library -a, -i, -b 
list library modules -t 
move modules within a library -m 
replace modules -r 
delete modules -d 
extract modules -x 
ensure module uniqueness -u 
define module extension -e 
~~ ~ 

In the synopsis, the options argument is surrounded by square 
brackets. This indicates that the argument is optional; if a code isn't 
specified, Ib68 assumes that a library is to be created 

- util68k.l0 -



LB68 Object file librarian LB68 

1.2.2 Oaallfier q»doas 

In addition to a function code, the options argument can optionally 
specify a qualifier, that modifies 1MB's behavior as it is performing the 
requested function. The qualifiers and their codes are: 

verbose -v 
silent -s 

The qualifier can be included in the same argument as the function 
code, or as a separate argument For example, to cause IM8 to append 
modules to a library, and be silent when doing it, any of the following 
option arguments could be specified: 

-as 
-sa 
-a -s 
-s -a 

1.3 The rmd arauments 

The arguments rmdl, modZ, etc. are the names of the object 
modules, or the files containing these modules, that 1b68 is to use. For 
some functions, IM8 requires an object module name, and for others it 
requires the name of a file containing an object module. In the latter 
case, the file's extension is optional; if not specified, the Ib68 that's 
supplied with native Aztec C systems assumes that it's .0, and the Ib68 
that's supplied with cross development versions of Aztec C assumes 
that the extension is .r. You can explicitly define the default module 
extension using the -e option. 

1.4 ReadlDI ...... meats frem another file 

IM8 has a special argument, -I lilename, that causes it to read 
command line arguments from the specified file. When done, it 
continues reading arguments from the command line. Arguments can 
be read from more than one file, but the file specified in a-I filename 
argument can't itself contain a-I lilename argument 

2. .. Ie features of 1b68 

In this section we want to describe the basic features of 1b68. With 
this knowledge in hand, you can start using Ib68, and then read about 
the rest of the features of IM8 at your leisure. 

The basic things you need to know about Ib68, and which thus are 
described in this section, are: 

• How to create a library 

• How to list the names of modules in a Ii brary 

• How modules get their names 

- util68k.ll -



LB68 Object file librarian LB68 

• Order of modules in a library 

• Getting IM8 arguments from a file 

Thus, with the information presented in this section you can create 
libraries and get a list of the modules in libraries. The third section of 
this description shows you how to modify selected modules within a 
library. 

21 Oeadna a IJbrary 

A library is created by starting 1b68 with a command line that 
specifies the name of the library file to be created and the names of 
the files whose object modules are to be copied into the library. It 
doesn't contain a function code, and it's this absence of a function 
code that tells 1h68 that it is to create a library. 

For example, the following command creates the libraryexmpl.lib, 
copying into it the object modules that are in the files objl.o and 
obj2.o: 

Ib68 exmpLlib obj1.o obj2.o 

Making use of 1b68,s assumptions about file names for which no 
extension is specified, the following command is equivalent to the 
above command: 

Ib68 exmpl objl obj2 

An object module file from which modules are read into a new 
library can itself be a library created by 1b68. In this case, all the 
modules in the input library are copied into the new library. 

21.1 The temporary library 

When 1b68 creates a library or modifies an existing library, it first 
creates a new library with a temporary name. If the function was 
successfully performed, Ib68 erases the file having the same name as 
the specified library, and then renames the new library, giving it the 
name of the specified library. Thus, Ib68 makes sure it can create a 
library before erasing an existing one. 

Note that there must be room on the disk for both the old library 
and the new. \ 

22 Gettina the table of amtents fora library 

To list the names of the modules in a library, use Ib68's -I option. 
For example, the following command lists the modules that are in 
exmp[.lib: 

1b68 exmpl -t 

The list will include some ··DIR·· entries. These identify blocks 
within the library that contain control information. They are created 
and deleted automatically as needed, and cannot be changed by you. 

- utU68k.12 -



LB68 Object file librarian LB68 

2.3 How modules .. their _ 

When a module is copied into a library from a file containing a 
single object module (that is, from an object module generated by the 
Manx assembler), the name of the module within the library is derived 
from the name of the input file by deleting the input file's volume, 
path, and extension components. 

For example, in the example given above, the names of the object 
modules in exmpl.lib are obj} and obj2. 

An input file can itself be a library. In this case, a module's name 
in the new library is the same as its name in the input library. 

2.4 Order In • IIInry 

The order of modules in a library is important, since the linker 
makes only a single pass through a library when it is searching for 
modules. For a discussion of this, see the tutorial section of the 
Linker chapter. 

When 1b68 creates a library, it places modules in the library in the 
order in which it reads them. Thus, in the example given above, the 
modules will be in the library in the following order: 

objlobj2 

As another example, suppose that the library oldlib.lib contains the 
following modules, in the order specified: 

sub I sub2 sub3 

If the library newlib.lib is created with the command 

1b68 newlib modI oldlib.lib mod2 mod3 

the contents of the newly-created newlib.lib will be: 

modI sub I sub2 sub3 mod2 mod3 

The ord utility program can be used to create a library whose 
modules are optimally sorted For information, see its description later 
in this chapter. 

2.5 Gettlnlib68 ...... meats from • Ole 

For libraries containing many modules, it is frequently 
inconvenient, if not impossible, to enter all the arguments to lb68 on a 
single command line. In this case, 1MB's -f filename feature can be of 
use: when IM8 finds this option, it opens the specified file and starts 
reading command arguments from it After finishing the file, it 
continues to scan the command line. 

For example, suppose the file build contains the line 

exmpl objl obj2 

- util68k.t3 -



LB68 Object file librarian 

Then entering the command 

1b68 -f build 

LB6i 

causes Ib68 to get its arguments from the file build, which causes 1b6~ 
to create the library exmpl.lib containing obj] and obj2. 

Arguments in a -f file can be separated by any sequence oj 
whitespace characters ('whitespacc' being blanks. tabs, and newlines), 
Thus, arguments in a -f file can be on separate lines, if desired 

The IM8 command line can contain multiple -f arguments, allowini 
IM8 arguments to be read from several files. For example, if some oj 
the object modules that are to be placed in exmpLlib are defined ill 
-arith.inc, inpul.inc, and output.inc, then the fonowing command could be 
used to create exmpl.lib: 

1b68 exmpl -f arith.inc -f inputinc -f output inc 

A -f file can contain any valid lb68 argument, except for another -f. 
That is, -f files can't be nested 

3. Advanced lb68 features 

In this section we describe the rest of the functions that IM8 can 
perform. These primarily involve manipulating selected modules 
within a library. 

3.1 Addina modules to a library 

lb68 allows you to add modules to an existing library. The modules 
can be added before or after a specified module in the library. or can 
be added to the beginning or end of the library. 

The options that select /b68's add function are: 

option 
-b target 
-i target 
-a target 
-b+ 
-i+ 
-a+ 

function 
add modules before the module target 
same as -b target 
add modules after the module target 
add modules to the beginning of the library 
same as-b+ 
add modules to the end of the library 

In an lb68 command that selects the add function, the names of the 
files containing modules to be added follows the add option code (and 
the target module name, when appropriate). A file can contain a single 
module or a library of modules. 

Modules are added in the order that they are specified If a library 
is to be added, its modules are added in the order they occur in the 
input library. 

.. util68k.14 -



LB68 Object file librarian LB68 

'.1.1 Addinl modules before an exlstlDllllOOOle 

As an example of the addition of modules before a selected module, 
IUpPOse that the library exmpl.lib contains the modules 

objl obj2 obj3 

Ibe command 

1b68 exmpl -i obj2 modi mod2 

ldds the modules in the files modJ.o and rmd2.0 to exmpl.lib, placing 
them before the module obj2. The resultant exmpl./ib looking like this: 

objl modi mod2 obj2 obj3 

Note that in the IM8 command we didn't need to specify the 
:xtension of either the file containing the library to which modules 
were to be added or the extension of the files containing the modules 
to be added IM8 assumed that the extension of the file containing the 
target library was .lib, and that the extension of the other files was .0. 

As an example of the addition of one library to another, supPose 
that the library mylib.lib contains the modules 

modi mod2 modl 

and that the library exmpl.lib contains 

objl obj2 obj3 

Then the command 

1b68 -b obj2 mylib.lib 

adds the modules in mylib.lib to exmpl.lib, resulting in exmpl.lib 
containing 

objl modi mod2 mod3 obj2 obj3 

Note that in this example, we had to specify the extension of the 
input file mylib.lib. If we hadn't included it, IM8 would have assumed 
that the file was named mylib.o. 

3.1.2 Adding modules after an existing module 

As an example of adding modules after a specified module, the 
command 

1b68 exmpl-a objl modi mod2 

will insert modJ and mod2 after objJ in the library exmpl.lib. If 
exmpl.lib originally contained 

objl obj2 obj3 

then after the addition, it contains 

- util68k.15 -



LB68 Object file librarian LB68 

obji modI m0d2 obj2 obj) 

3.1.3 Addinl modules at the be&lnainl or end of a library 

The options -b+ and -a+ tell IM8 to add the modules whose names 
follow the option to the beginning or end of a library, respectively. 
Unlike the -i and -a options, these options aren't followed by the name 
of an existing module in the library. 

For example, given the library exmpLlib containing 

objl obj2 

the following command will add the modules rmdl and rmd2 to the 
beginning of exmpl.lib; 

1b68 exmpl -i+ modi m0d2 

resulting in exmpl.lib containing 

modI mod2 obji obj2 

The following command will add the same modules to the end of 
the library: 

1b68 exmpl -a+ modI mod2 

resulting in exmpl.lib containing 

objl obj2 modI m0d2 

3.2 Movinl modules within a library 

Modules which already exist in a library can be easily moved about, 
using the move option, -m. 

As with the options for adding modules to an existing library, there 
are several forms of move functions: 

opnon ~anmg 
-mb target move modules before the module target 
-ma target move modules after the module target 
-mb+ move modules to the beginning of the library 
-ma+ move modules to the end of the library 

In the Ib68 command, the names of the modules to be moved 
follows the 'move' option code. 

The modules are moved in the order in which they are found in 
the original library, not in the order in which they are listed in the 
Ib6B command 

3.2.1· Moving modules belen an existing module 

As an example of the movement of modules to a position before an 
existing module in a library, suppose that the library exmpl.lib contains 

- util68k.16 -



LB68 Object file librarian 

objl obj2 obj3 obj4 objS obj6 

The following command moves obj3 before obj2: 

Ib68 exmpl -mb obj2 obj3 

putting the modules in the order: 

objl obj3 obj2 obj4 objS obj6 

LB68 

And, given the library in the original order again, the following 
command moves obj6, obj2, and objJ before obj3: 

1b68 exmpl -mb obj3 obj6 obj2 objl 

putting the library in the order: 

objl obj2 obj6 obj3 obj4 objS 

As an example of the movement of modules to a position after an 
existing module, suppose that the library exmpl./ib is back in its 
original order. Then the command 

Ib68 exmpl -ma obj4 obj3 obj2 

moves obj3 and obj2 after obj4, resulting in the library 

objl obj4 obj2 obj3 objS obj6 

3.2.2 Movlna modules to the healnnlna or end G a library 

The options for moving modules to the beginning or end of a 
library are -mb+ and -ma+, respectively. 

For example, given the library exmpl.lib with contents 

objl obj2 obj3 obj4 objS obj6 

the .following command will move obj3 and objS to the beginning of 
the library: 

Ib68 exmpl -mb+ objS obj3 

resulting in exmpLlib having the order 

obj3 objS objl obj2 obj4 obj6 

And the following command will move obj2 to the end of the 
library: 

1b68 exmpl -ma+ obj2 

3.3 Deletin. Modules 

Modules can be deleted from a library using lb68's -d option. The 
command for deletion has the form 

Ib68 libname -d modI mod2 ... 

where tmdJ, tmd2, ... are the names of the modules to be deleted 

- util68k.17 -



LB6lS Object file librarian 

For example, suppose that exmpl.lib contains 

objI obj2 obj) obj4 objS obj6 

The following command deletes objJ and obj5 from this library: 

1b68 exmpI -d obj3 objS 

3.4 RepiadDl ModuI. 

LB68 

The 1b68 option 'replace' is used to replace one module in a library 
with one or more other modules. 

The 'replace' option has the form -r target, where target is the name 
of the module being replaced In a command that uses the 'replace' 
option, the names of the files whose modules are to replace the target 
module follow th~ 'replace' option and its associated target module. 
Such a file can contain a single module or a library of modules. 

Thus, an 1b68 command to replace a module has the form: 

Ib68 library -r target modI mod2 ... 

For example, suppose that the library exmpl.lib looks like this: 

objl obj2 obj3 obj4 

Then to replace obj) with the modules in the files fOOd 1.0 and rood2.0, 
the foUowing command could be used: 

1b68 exmpl -r obj3 modI mod2 

resulting in exmpl.lib containing 

objl obj2 modI m0d2 obj4 

3.S Uniqueness 

Ib68 allows libraries to be created containing duplicate modules, 
where one module is a duplicate of another if it has the same name. 

The option -u causes Ib68 to delete duplicate modules in a library, 
resulting in a library in which each module name is unique. In 
particular, the -u option causes 1b68 to scan through a library, looking 
at module names. Any modules found that are duplicates of previous 
modules are deleted 

For example, suppose that the library exmpl.lib contains the 
following: 

objl obj2 obj3 objI obj) 

The command 

1b68 exmpI -u 

will delete the second copies of the modules obj1 and obj2, leaving the 
library looking like this: 

- util68k.18 -



LB68 Object file librarian LB68 

objl obj2 obj3 

3.6 Extndinl modules from • Ubrary 

The 1MB option -x extracts modules from a library and puts them 
in separate files, without modifying the library. 

The names of the modules to be extracted follows the -x option. If 
no modules are specified, all modules in the library are extracted 

When a module is extracted, it's written to a new file; the file has 
same name as the module and extension .0. 

For example, given the library exmpl.lib containing the modules 

objl obj2 obj3 

The command 

1b68 exmpl -x 

extracts all modules from the library, writing objJ to objJ.o, obj2 to 
obj2.0, and obj3 to obj3.o. 

And the command 

Ib68 exmpl -x obj2 

extracts just obj2 from the library. 

3.7 1be 'verbose' opdCD 

The 'verbose' option, -v, causes IM8 to be verbose; that is, to tell 
you what it's doing. 

This option can be specified as part of another option, or all by 
itself. For example, the following command creates a library in a 
chatty manner: 

1b68 exmpl -v modI mod2 mod3 

And the following equivalent commands cause Ib68 to remove some 
modules and to be verbose: 

1b68 exmpl -dv modI mod2 
1b68 exmpl -d -v mod I mod2 

3.8 1be 'silence' qttlCD 

The 'silence' option, -s, tells IM8 not to display its signon message. 

This option is especially useful when redirecting the output of a list 
command to a disk file, as described below. 

3.9 Rebuild .... lilnry 

The following commands provide a convenient way to rebuild a 
library: 

- util68k.19 -



LB68 Object file librarian 

1b68 exmpl -st > tfil 
1b68 exmpl-f tfil 

LB6 

The first command writes the names of the modules in exmpLlib tl 
the file IliL The second command then rebuilds the library, using a 
arguments the listing generated by the first command 

The -s option to the first command prevents 1b68 from sendin: 
information to Ilil that would foul up the second command Thi 
names sent to Ilil include entries for the directory blocks, "DIR··, bu 
these are ignored by 1b68. 

3.10 Defin1na the default module exteoska. 

Specification of the extension of an object module file is optional 
the 1b68 that comes with native development versions of Aztec ( 
assumes that the extension is .0, and the '1b68 that come's with eros 
development versions of Aztec C assumes that it's .T. You cal 
explicitly define the default extension using the -e option. This optiol 
has the form 

-e .ext 

For example, the following command creates a library; th4 
extension of the input object module files is .i. 

1b68 my.lib -e .i modI mod2 modl 

3.11 Help 

The -h option is provided for brief lapses of memory, and wil 
generate a summary of 1b68 functions and options. 

- u til68k.20 -



OBD68 Aztec Utility Program 

NAME 

obd68 - list object code 

SYNOPSIS 

obd68 <objnle> 

DFSCRIPTION 

OBD68 

obd68 lists the loader items in an object file. It has a single 
parameter, which is the name of the object file. 

- util68k.21 -



ORD68 Aztec Utility Proaram 

NAME 

ord68 - sort object module list 

SYNOPSIS 

ord68 I·v) (iofile loutfile)) 

DESCRIP110N 

ORD68 

ord68 sorts a list of object file names. A library of the object 
modules ~t is generated from the sorted list by the Manx object 
module librarian will have a minimum number of 'backward 
references'; that is, global symbols that are defined in one module and 
referenced in a later module. 

Since the specification of a library to the linker causes it to search 
the library just once, a library having no backward references need be 
specified just once when linking a program, and a library having 
backward references may need to be specified multiple times. 

in/ile is the name of a file containing an unordered list of file 
names. These files contain the object modules that are to be put into a 
library. If in/ile isn't specified, this list is read from ord68's standard 
input The file names can be separated by space, tab, or newline 
characters. 

outfile is the name of the file to which the sorted list is written. If 
it's not specified, the list is written to ord68's standard output outfile 
can only be specified if infile is also specified 

The -v option causes ord68 to be verbose, sending messages to its 
standard error device as it proceeds. 

• ut1l68k.22 -



SREC68 Motorola S-record Generator 

NAME 

srec68 - Motorola S-record generator 

SYNOPSIS 

srec68(-optlons) PI'Ol 

DESCRIPI10N 

SREC68 

srec68· translates the program that's in the file named prog, and that 
was generated by the Aztec C68k/ROM linker, into Motorola S
records The program can then be burned into ROM by feeding the S
records into a ROM programmer. The S-records are written to one or 
more files, each of which contains the hex code for one ROM chip. 

The ROM chips that are generated from the srec68 output files will 
contain the program's code, followed by a copy of its initialized data 

Note: when a ROM system is started, its RAM contains random values; 
the Aztec C68k/ROM startup routine sets up its initialized data area, 
using the copy that's in ROM 

srec68 assumes that the size of each ROM chip is 2 kb. You can 
explicitly define the size of each ROM using srec68's .p option. 

The output files: even- and odd-addressed bytes in the same chips 

srec68 can optionally generate S-records so that the program's 
even-addressed bytes are in one set of ROM chips, and its odd
addressed bytes are in another. We'll discuss this option below. In this 
section we discuss the output files that are created when this option 
isn't used; i.e. when a program's even- and odd-addressed bytes are in 
the same set of ROM chips. 

When neither -E nor -0 is specified, srec68 derives the name of 
each output file from that of the input file, by appending an extension 
of the form .mltn, where nn is a number. For example, if the name of 
the linker-generated file is prog, then the names of the output files 
generated by srec68 are prog.w{J(), prog.mOl, and so on, where the .. ntJO 
file contains the S-records for the lowest-addressed ROM, .rriJI the S
records for the next ROM, .etc. 

For example, suppose that srec68 is creating S-records for a 
program whose code and copy of initialized data will reside in three 
2-kb ROMs that begin at location O. Then srec68 will create the 
fonowing files: 

prog.mOO Contains the S-records for the ROM chip that 
occupies addresses O-Ox 7 ff; 

prog.mOl Contains the S-records for the ROM that occupies 
Ox800-0xfff; 

... util68k.23 ... 



SREC68 Motorola S-record Generator SREC61l 

prog.ntJ2 Contains the S-records for the ROM that occupies 
OxlOOO-Oxl7ff. 

The out ... t nles: even- and odd-addressed bytes In separate dliPl 

To place a program's even-addressed bytes in one set of ROM chip 
and its odd-addressed bytes in another, you must run srec68 twice: 
once using the -E option to generate the S-records for the chips tha1 
contain the even-addressed bytes, and once using the -0 option t<l 
generate S-records for the chips that contain the odd-addressed bytes. 

When either -E or -0 is specified, srec68 generates one or more 
files, each of which contains the S-records for one ROM chip. By 
default, the size of each chip is 2k bytes, but you can use the -P option 
to explicitly define the chip size. 

When the -E option is specified, the extension of the files are of 
the form .enn, where nn is a decimal number. The .eOo file contains 
the S-records for the first of the ROM chips that contain even
addressed bytes, the .eOl file contains the S-records for the second 
ROM chip, and so on. 

When the -0 option is specified, the extension of the files are of 
the form .onn, where nn is a decimal number. The .000 file contains 
the S-records for the first of the ROM chips that contain odd-addressed 
bytes, the .001 file contains the S-records for the second ROM chip, 
and so on. 

The options 

srec68 supports the following options: 

-An The size of an S-record's address field is n bytes, 
where (following Motorola specifications) n can be 2, 
3, or 4. If this option isn't specified, the field size 
defaults to 2 bytes. 

-Bx The program begins x bytes into the first ROM chip, 
where x is a hexadecimal number. If this option isn'. 
specified, the program begins at the beginning of the 
first ROM chip. 

-E Output S-records for the program's even-addressed 
bytes. 

-0 Output S-records for the program's odd-addressed 
bytes. 

-Pn The size of each ROM is n k-bytes, where n is a 
decimal number. If this option isn't specified, the size 
defaults to 2kb. For example, the following command 
specifies that each ROM chip is 64kb long: 

- u til68k.24 -



SREC68 Motorola S-record Generator SREC68 

srec68 -pM exmpl 

- util68k.25 -



SREC68 Motorola S-re~ord Generator SREC61 

- util68k.26 -



LIBRARY GENERATION 

- libgen.l -



LIBGEN Aztec: C68k/ROM 

Chapter Contents 

Library Generation ............................................................................... libgen 
1. Modifying the functions ..................................................................... 3 

1.1 The startup function ........................................•............................ 3 
1.2 The unbuffered i/o functions .................................................... 7 
1.3 The standard i/o functions ageIC and aputc ........................... 12 
1.4 The sbrk and brk heap-management functions ..................... 12 
1.5 The exit and exit functions ................................................... 13 

2. Building the librailes ......................................................................... 13 
3. Function descriptions ........................................................................ 14 

- Iibgen.l-



,"ztec C68k/RQM LIBGEN 

Library Generation 

The Aztec C68k/ROM functions are provided in source form. 
kfore you can create programs that use them, you must make any 
lecessary modifications to the library functions, and then create object 
nodule libraries of them. 

We assume that you have installed Aztec C68k/ROM in a set of 
ubdirectories, as directed in the Tutorial chapter. We also assume that 
rour system has a make program maintenance program that is UNIX 
:ompatible; this program, under direction of "makefiles" provided with 
~ztec C68k/ROM, will control the compilation and assembly of library 
nodules and the generation of the libraries. For systems whose 
tandard software doesn't include make, we will provide the Aztec 
mice with your Aztec C68k/ROM package, if one is available; 
Itherwise, the release document will describe the procedure for 
:reatingthe libraries. 

The first section of this chapter discusses changes that you might 
nake to the library functions. The second section discusses generation 
If the libraries. 

The calling sequences (passed parameters, return values, error 
:odes, etc) of most functions described in the first section are 
.resented in the System Independent Functions chapter. The calling 
equences for the other functions are appended to this chapter. 

.• ModIfyina the fundiOlll 

Many of the functions provided with this package will run, without 
nodification, on any 68000-based system. Some, however, may need to 
.e modified for use on your system. 

The functions that may need to be rewritten are: 

a The startup function; 
b. The unbuffered i/o functions; 
c. The standard i/o functions agetc and apute; 
d The low-level heap allocation functions brk and sbrk; 
e. The exit functions exit and exit. 

1.1 1be startup fundlOD 

A program's startup routine is executed when the program is 
:tarted It performs program initialization and then calls the program's 
min function. 

The source for the startup routine that is provided with Aztec 
:68k/ROM is in the file rom68.a68, in the rom68.arc· archive. The 

- (ibgen.3 -



LIBGEN Aztec C68k/ROM 

supplied version of this routine makes the following assumptions about 
a program that contains it, and about a system that contains the 
program: 

• The system's startup/reset vectors and interrupt vector table 
are in ROM 

• The program is the "startup program" of the system containing 
it That is, the program will gain control on system s1artup or 
reset 

• The program's code and a copy of its initialized data are in 
ROM It's the startup routine's duty to set up the program's 
initialized data area in RAM from the ROM copy. 

• The startup routine is at the beginning of the program's code 
segment 

• The system· doesn't support interrupts. 

If these assumptions aren't satisfied by your system, you will have 
to modify the startup routine. The following paragraphs discuss 
.changes that can be made for several types of programs and systems. 

1.1.1 Startup roudn. for ROM-based 'startup JII'OII'IIIDS' on lnternapt-
drlvea systems 

Since a system's memory must begin with startup vectors and be 
followed by the table of interrupt vectors, the above assumptions mean 
that the startup module must contain assembly language statements that 
pre-initialize these vectors. In fact, the supplied startup routine does 
contain statements that pre-initialize the startup vectors: the stack 
vector points to the top of the area that's reserved for the stack, and 
the code vector points to the ~begin label in the startup module. 

However, the supplied startup routine can't pre-initialize the 
interrupt vector table, since that's system dependent The supplied 
startup routine simply reserves space for the table. 

Thus, if a program that satisfies all the above assumptions is to be 
placed on a system that supports interrupts, you must modify the 
startup routine, replacing the statement that reserves space for the 
interrupt table with statements that pre-initialize the vectors for 
supported interrupts. 

1.1.2 Startup routines for ROM-based, Boo-startup prOlf8lDS 

If the startup routine will be included in programs that will be 
burned into ROM but that won't be a system's startup program, you 
can remove the statements in the startup routine that pre-initialize the 
system startup vectors and that reserve, space for the interrupt table. 

Most of the code in a program's startup routine needs to be 
executed just once. For example, its initialized data area in RAM 
needs to be set up from the copy in ROM just once; and its 
uninitialized data area needs to be cleared just once. So if a program 

- Iibgen.4 ... 



Aztec: C68k/ROM LIBGEN 

wiD be called more than once, you could design your startup routine so 
that this special startup code is executed just once. The advantages t() 
this are (I) it speeds up interprogram calls, (2) variables are preserved 
between interprogram calls. 

To do this, you could have a second entry point into a program, in 
addition to the standard entry point The first call is made to the 
standard entry point, and all subsequent calls are made to the 
secondary entry point 

The secondary entry point performs just those operations that need 
to be done on each entry to the program. For example, if the program 
uses the small code or small data memory model, the secondary entry 
point would save the contents of the small model support register and 
set it up for the called program. 

To implement the two entry poin~ you could add two jump 
instructions to the beginning of the program's startup routine: the first 
jumps to the startup routine's .begin labe~ the second jumps to the 
secondary entry point code. 

1.1.3 Startup roadaes for systems whose loternapt table Is 10 RAM 

The interrupt vector table of some 68k systems must reside in 
RAM, to enable the program to dynamically set up and change the 
vectors. Since this table is normally in ROM, this requires special 
hardware and corresponding changes to the startup routine. 

In this section first we describe why the interrupt table normally 
resides in ROM. We then present two hardware techniques used to 
place the table in RAM and the corresponding changes that must be 
made to the startup routine. 

1.1.11 Why the Interrupt table Is aormally la ROM 

On a 68k system, the startup vectors occupy the first eight bytes of 
memory and the interrupt table follows. If the system uses a standard 
configuration (Le. a typical microcomputer system configuration that 
doesn9 t use special hardware), then the startup vectors must be in 
ROM, so that they wiD be already initialized when the system is turned 
on or reset Since the smallest ROM chip is about 2K bytes, this in 
tum means that the interrupt table of a standard 68k system must also 
be in ROM. 

1.1.12 Salud. ODe lIIOYe the startup vectors 

One way to allow the interrupt table to reside in RAM is to move 
the startup vectors away from the interrupt table: 

a. Put RAM in the lowest-addressed section of memory, so that 
it extends at least from location 0 through the end of the 
interrupt table; 

- Iibgen.S -



LIBGEN Aztec C68k/ROM 

b. Include the startup vectors in the code section of the system's 
startup program, at a fixed offset from the beginning of the 
program's ROM; 

c. Insert special hardware on the address bus between the 
processor and memory. On powcrup or system reset, this 
hardware intercepts the processor's first two accesses of 
memory, which arc requests by the processor for the startup 
vectors, and translates the accompanying addresses (i.e. 
locations 0 and 4) to those of the fields within ROM that 
actually contain the startup vectors. 

To support this hardware configuration, you should remove the 
statement in the s1artup module that reserves space for the interrupt 
table and add executable code that initializes the table. To put the 
startup vectors at a fixed place in ROM memory, to which the special 
hardware can redirect attempts by the prOCC$sor to access them, you 
could leave the statements that dcime the startup vectors in the startup 
routine and then link the startup routine as the program's first module. 
The startup vectors will then be in ROM, in the first eight bytes of the 
startup program's code section. 

1.1.3.3 SoIudOlll: move the interrupt table 

Another way to put the interrupt table in RAM is to move the 
interrupt table away from the startup vectors: 

a Put the RAM for the interrupt table in an unused section of 
the system's memory space, a section that is not near the low 
end of memory. 

b. Put the ROM that contains the code for the system's startup 
program in memory, beginning at location O. The startup 
routine should be at the beginning of the program's code 
section; the only changes that' it needs are executable 
statements that initialize the interrupt table. 

c. Put a programmable logic array on the address bus, between 
memory and the processor. This will intercept requests to 
access an interrupt vector (i.e. accesses of memory between 
locations 8 and Ox400) and translate the accompanying address 
to the address in RAM at which the vector is actually located 

1.1.4 Definin&.the heap 

The startup routine initializes variables that define the boundaries 
of a program's heap, so that the heap occupies the 2k-byte area of 
memory that's just above the program's stack area If your system's 
heap space isn't in this area, you will have to change these 
initializations. 

These variables, which are used by the sbrk and brk functions, are: 

- Iibaen.6 -



~ztec C68k/ROM 

Points at the bottom of the heap. 
Points at the top of the heap. 
Points at the top of allocated heap space. 

LIBGEN 

These are the names that a C-language module uses to access the 
,ariables; an assembly language module uses these names, with an 
ldditional prepended underscore (e.g. _mhot). 

l.1.5 ROM-t.sed Inltlalb.ecl data 

The startup routine contains statements that set up a program's 
,nitialized data segment in RAM from its copy in ROM Remove 
:hese statement if the program's initialized data is to remain in ROM; 
,.e. if you linked the program without using the linker's -0 option. 

l.I.6 Startup roudnes fOl'RAM-based PfOII'BIIL' 

If you are creating programs that won't be put into ROM (for 
~xample, programs that will run on a system that uses the CP/M-68k 
)perating system), here are some changes you may want to make to 
:he s1artup routine: 

• Remove the code that initializes the startup vectors and that 
reserves space for the interrupt table. 

• Change the code that sets up the stack register. The operating 
system probably defines the area reserved for a program's 
stack (for example, on entry the stack register. may already be 
initialized). If it doesn't, you could, for example, define space 
for the stack in the uninitialized data area, and point the stack 
register at the top of this area 

• Remove the code that moves the copy of initialized data from 
ROM to RAM. 

• Change the code that initializes the pointers to heap space. 

• The startup routine jumps directly to the main function. If 
you want your system to support the passing of arguments to 
the main function, you may want to have the startup routine 
call a C-Ianguage function, which gets the arguments (for 
example, getting them from the console) and then calls main. 

1.2 The Unbuffered I/o fUDdlOIII 

There are two cllsses of UNIX-compatible i/o functions: standard 
md unbuffered The unbuffered i/o functions are system dependent, 
lnd the standard i/o functions call the unbuffered The unbuffered i/o 
:unctions that are in the Aztec C68k package are merely stubs; so you 
nust write those that your functions call, and those that are called by 
:he standard if 0 functions that your functions call. 

The unbuffered if 0 functions are: 

- Iibgen.7 -



LIBGEN Aztec C68k/ROM 

open creat close read write 
lseek rename unlink iocd isatty 

Descriptions of the unbuffered i/o functions are in the "System 
Independent Functions" and "Library Functions Overview" chapters. 
The following paragraphs present additional information that may be 
of use when writing your own versions of these functions. 

1.2.1 We desaipton 

Associated with each file or device that is open for unbuffered i/o 
is a positive integer called a "file descriptor". A file descriptor is one 
of the parameters that is passed to an unbuffered i/o function; it 
defines the file or device on which the i/o is to be performed There's 
usually a limited number of file descriptors, which of course ·limits the 
number of files and/or devices that can be simultaneously open for 
i/o. 

1.2.1.1 Whea there's lots ~ nles aad de'I .... 

If a system supports disk files and/or supports more devices than 
file descriptors, the file descriptors must be dynamically allocated 
That is, before i/o with a file or device can begin, a function must be 
called that assigns a file descriptor to it; and when the i/o is done 
another function must be called to de-assign the file descriptor. In this 
case, a table is usually provided that has entries defining the status of 
each file descriptor and that is accessible to all the unbuffered i/o 
functions. Here's how the unbuffered i/o functions make use of the 
table: 

• open and creal prepare a file or device for unbuffered i/o. 
They scan the table for an unused entry, and initialize the 
entry with information about the file or device. For example, 
the entry for an open device might contain the device's 
address; that for an open file might contain the file's current 
position and access mode. As the file descriptor for the 
opened file or device, open and creal return the entry's index 
into the table. 

• read, write, /seek, iocll, and isatty perform operations on, and 
determine the status of, an open file or device. The file 
descriptor of the file or device is one of the parameters passed 
to them. They examine the file descriptor's table entry for 
information about the file or device. 

• close completes i/o to the open file or device having a 
specified file descriptor. Most of the operations that close 
performs depend on the particular file or device; but it always 
marks the descriptor's table entry as being unused 

• unlink and rename don't use the file descriptor table at all. 

-libaen.8 -



Aztec C68k/ROM LIBGEN 

1.2.1.2 Wbea OIIIy deYlces are suppcried._ 

If programs access just devices (i.e. not files), if there are fewer 
devices than file descriptors, and if your programs make limited use of 
the standard i/o functions (as defined below), you can simplify the 
unbuffered i/o functions by doing away with the file descriptor table, 
hard-coding the assignment of devices and file descriptors into the 
unbuffered i/o functions, and leaving open, creal, and close as mere 
stubs that simply return when called 

For example, you could code into the write function the fact that 
file descriptor S is associated with a printer at a certain address. Then 
to write to the printer, a program could simply issue a call to wrile, 
telling it to write to file descriptor S. It wouldn't have to first call open 
or subsequently call close. 

1.2.1.3 Pre-asslped file desaiptors 

By convention, file descriptors 0, 1, and 2 are pre-assigned to the 
system console, even when all other file descriptors are dynamically 
assigned To perform aD. unbuffered i/o operation on the console, a 
program simply calls the appropriate function, specifying one of these 
file descriptors; it need not first call open or subsequently call close. 

Some systems allow the operator to redirect file descriptors 0 and I 
to other files and/or devices, by specifying special operands on the 
command line that starts a program. This is done by inserting a special 
function between the startup routine and the user's main function. If 
any redirection operands are found in the command line, this special 
function closes the specified file descriptor by calling close and reopens 
it to the new file or device by calling open. By convention, the 
command line operand to redirect file descriptor 0 consists of "<" 
followed by the file or device name. The command line operand to 
redirect file descriptor 1 consists of'">" or "»~" followed by the file or 
device name. ">" causes a new file to be created "> >" causes a file to 
be appended to, if it already exists, or to be create~ if it doesn't exist 

1.2.2 IntS'dCll ~ tbe stamdard I/o and unbuffered I/o functions 

The standard i/o functions call the unbuffered i/o functions. 
Because of this, the staJidard if 0 operations that a program will 
perform places implementation requirements on the unbuffered i/o 
functions. This section discusses those requirements, after first 
presenting general information on standard i/o file pointers and their 
relationship to unbuffered i/o file descriptors. 

Before standard i/o can be performed on a file or device, an 
unbuffered i/o file descriptor must be assigned to it, and a standard 
i/o "file pointer" must be assigned to the file descriptor. The 
assignment of a file pointer and file descriptor can be done 
dynamically, by calling the standard i/%pen function. Three file 
pointers, named stdiD, stdout, and stderr, are pre-assigned to file 

- Iibgen.9 -



LIBGEN Aztec C68k/ROM 

descriptors 0, 1, and 2; these file descriptors in tum are pre-assigned to 
the conso1c. 

When a program calls a standard if 0 function, it often must pass a 
file pointer, which identifies the file or device on which i/o is to be 
performed There are a special set of standard i/o functions for 
accessing stdin, stdout, and sUlcrr: for these, the file pointer isn't 
passed, since the functions know what file pointer is being accessed 

1.2.2.1 SupportiDI the staDdanll/o lopen and Iclose fuac:tlms 

The dynamic assignment of a file pointer and file descriptor to a 
file or device is done by the lopen function. This function selects a 
file pointer for the file or device and then calls the unbuffered i/o 
open function, which selects a file descriptor. 

If programs call lopen, you must implement the unbuffered i/o 
open function, and open must return the file descriptor that's associated 
with the file or devicc. This requirement (for a functional open when 
lopen is called) must be met even if file descriptors are pre-assigned to 
-deviceS; open in this case could be very simple, just searching a table 
for a device name and returning the associated file descriptor. 

Conversely, the use of the standard i/o functions to access those 
devices that don't first have to be lopened (i.e. stdin, stdout, and 
stderr) places no requirements on open. In particular, if file 
descriptors are pre-assigned to devices and open simply returns when 
called, programs can still call the standard i/o functions to access the 
devices associated with the stdin, stdout, and stderr file pointers. 

The standard i/o function Iclose calls the unbuffered i/o function 
close. Thus, if programs call Iclose, you must implement a close 
function. If assignments of devices to file descriptors is hard-coded, 
close can usually just return the value 0, since nothing special (such as 
calling the operating system to close an open file or deallocating a file 
descriptor) needs to be done. 

1.222 Supportioa the standard i/o input and output fuodioos 

If programs call any of the standard i/o input function~ you must 
implement the unbuffered i/o read function. And if they call any of 
the standard i/o output functions, you must implement the write 
function. 

1.2.23 Supportina tbe standard i/o lseek fundioo 

If programs will call the standard i/o Iseek function, you must 
implement the unbuffered i/o !seek function, since lseek calls !seek. 

1.2.24 Standard i/o and the isatty fUDdioo 

If programs call any standard i/o functions, you must implement 
the unbuffered i/o function isatty. The standard i/o. functions. call this 
function to decide whether their i/o to a file or device should be 

- Iibaeo.l0 ... 



Aztec C6Sk/ROM LIBGEN 

buffered or unbuffered 

This use of the word "unbuffered" in describing standard i/o might 
be a little confusing, since the use of the expression "unbuffered if 0 

functions" to describe one set of i/o functions implies that the other 
se~ the "standard if 0 functions", are buffered Nevertheless, a standard 
i/o stream can be either buffered or unbuffered: if buffered, data 
that's exchanged between user-written functions and the unbuffered 
i/o functions passes through a buffer; if unbuffered, data doesn't pass 
through a buffer. 

For a given file descriptor, isatty should return non-zero if standard 
i/o to the device associated with the file descriptor is to be bufferecL 
and zero if it is to be unbuffered 

For example, isatly should probably return non-zero for a file 
descriptor that's associated with the system console and zero for file 
descriptors associated with files; it could retumeither zero or non-zero 
for other devices, such as printers, depending on your system's 
requirements. 

1.2.3 Error codes 

We've presented most of the factors you should consider when 
writing your unbuffered i/o functions. In this section we want to list 
error codes that the functions could return in the global inl ermo. 

open error codes: 

ENOENT File does not exist and 0 CREA T wasn't specified 
EEXIST File exists, and 0 CREA T +0 EXCL was specified 
EMFILE Invalid file descriptor passed toopen. 

close error codes: 

EBADF Bad file descriptor passed to close. 

creal error codes: 

EMFILE AU file descriptors are in use. 

{seek error codes: 

EBADF Invalid file descriptor 
EINV AL Offset parameter is invalid,: or the requested position 

is before the beginning of the file. 

read error codes: 

EBADF Invalid file descriptor 

write error codes: 

EBADF Invalid file descriptor 
EINV AL Invalid operation; i.e. writing not allowed 

- libgen.ll -



LIBGEN Aztec C68k/ROM 

1.3 The standard i/o fundioas agelC aDd apqc 

The characters used to terminate lines of text differ from system to 
system. On UNIX, it's the newline (linefced) character, '\n'. On the 
Apple / /, it's carriage return, '\r'. On CPM, it's carri. return-line 
feed In order to allow programs to access files of text in a system
independent manner, the standard i/o functions agetc and aputc arc 
provided: agetc reads a character from the standard input channel, 
translating the line termination sequence into '\n'. apuIC writes a 
character to the standard output channel, translating '\n' to the line 
termination sequencc. 

The following standard if 0 functions call agetc and aputt:. 
scanf fscanr printf fprintf 
getchar gets fgets 
putchar puts fputs 

The ROM versions of agetc and aputc assume that '\n' separates lines 
of tex~ if this isn't the case for your system, you may need to modify 
agetc and aputc. 

The source for these functions are in the files agetc.c and aputc.c, 
within the stdio.arcarchive. If you followed our recommendations for 
installing Aztec C68k/ROM, dearchived versions are also in the 
STOIO subdirectory of the Lm directory. 

1.4 The sbrk and brk heap manaaemeat fundioas 

sbrk and brk provide an elementary means of allocating and 
deallocating space from a program's heap. sbrk is called by the more 
sophisticated heap-allocation functions (ma/Ioc, etc), and malloc is 
called by the standard i/o functions; thus, if your programs call ma//oe 
or the other high-level heap management fU,nctions, or if they call the 
standard i/o functions, you will need to write an sbrk function. 

Descriptions of the calling sequences for sbrk and brkare appended 
to this chapter. 

You probably won't have to modify sbrk or brk, since the most 
system-dependent code (which defines the boundaries of the heap) is 
in the startup routine. But if you do, here are some things you should 
consider: 

• A buffer allocated by sbrk should be on a quad-byte boundary 
(i.e. the address of its first byte should be divisible by four), 
since words on a 68000 or 68010 must be on an even-byte 
boundary and since long words on a 68020 can be most 
efficiently accessed if they're on a quad-word boundary. 

• ma/Ioc assumes that the heap is a single, contiguous section of 
memory: when told to allocate a large block of memory, 
malloc makes repeated calls to sbrk for. small blocks of 
memory, and then attempts to coalesce the small blocks into 

- Iibgen.l1. 



Aztec C68k/ROM LIBGEN 

one large block. 

1.5 11Ie exit and _exit fundlOlll 

exit and exit are called to terminate the execution of a program. 
They aren'r usually called by ROM-based programs, since such 
programs usually don't terminate. 

They are called, however, by RAM-based programs that are 
running in an operating system environment, since these programs 
usuaHy do terminate. 

When these functions are needed, you will have to modify exit, 
since it must return to the operating system. But you can probably use 
exit as is, since it closes open files and devices in a system-independent 
way and then calJs _exit. 

Descriptions of the calling sequences to exit and _exit are 
appended to this chapter. 

2. RaUclDI the IIlnrles 

Once you've made modifications to the supplied library functions, 
you can build your libraries. We've provided make/iles (which give 
directions to the make program) and 1b68 command files that will make 
this task easier; they will make the following libraries: 

c68.lib General purpose functions (small code, small data 
memory model); 

c681Llib General purpose functions (large code, large data); 
m68.lib Floating point functions (small code, small data); 
m6811.lib Floating point functions (large code, large data); 

If you followed our recommendations for installing Aztec 
C68k/ROM, each of the Lm directory's subdirectories contains a 
makerde ·that causes make to compile and assemble the subdirectory's 
source files. There is a makefile in the LIB directory that will have 
make first generate each subdirectory's object modules and then make 
a library. 

Before you can generate the libraries, you must do several things: 

a. In each makefile, modify the rules that define how to convert 
a C source file to an object module, so that the command that 
starts the compiler uses the options that correctly define 
register usage on your system; 

b. If you've written your own unbuffered i/o modules, you'll 
probably need to modify the make file that's in the ROM68 
directory; 

c. In the Lm directory are the files c68.bld and m68.bld, each of 
which tells 1b68 how to create a library. c68.bld is used for 
generating c68.lib and c6811.lilr. modify these files if necessary. 

- Iibgen.13 -



LIBGEN Aztec C68k/ROM 

d The environment variable INCL68 must be set to the name of 
the INCLUDE directory; that is, to the name of the directory 
that contains the include files. The command to do this varies 
from system to system; on PCDOS, it's the set command 

e. If you have a RAM disk, you can speed up the library
generation process by defining it using the CCTEMP 
environment variable. For more information, see the 
description of CCTEMP in the Compiler chapter. 

You are now ready to create the libraries. Set the default or 
current directory to the LIB directory and start make, passing to it the 
name of the library you want created For example, to create ·c6B.lib, 
you would enter: 

make c68.lib 

Once started, make will activate several other copies of make, each of 
which will compile and assemble the nIcs in one of LIB's 
subdirectories; it will then start Ib6B, which will make the specified 
library from the object modules that are in the. subdirectories, as 
directed by the appropriate .bld file. 

At times during library generation, there will be two copies of 
make in memory, and another program. If your system doesn't have 
enough memory to hold all of these programs (in this case, make will 
abort with the message "EXEC failure"), it may still have enough to 
hold one copy of make and another program. In this case, you can 
create and execute batch files that will make the libraries.. For each 
subdirectory, the batch file will first make that subdirectory the default 
or current directory; it will then activate make, using either the 
command make (to make small code, small data modules), or the 
command make big (to make large code, large data modules). The 
batch file will then activate 1MB, passing to it the name of the 
appropriate .bld file. 

3. Fundioo desuipdoos 

The System Independent Functions chapter presents the calling 
sequences of most of the functions that are discussed in this chapter. 
The remainder of this chapter presents the calling sequences of the 
other functions. 

- libaen.14 -



JREAK (C) Heap maaalement Cunctlons BREAK 

-JAM! 
sbrk, brk 

;YNOPSIS 
brk(ptr) 
yold ·ptr; 

Yold ·sbrk(slze) 

)ESCRIP110N 
sbrk and brk provide an elementary means of allocating and 
deallocating space from the heap. More sophisticated buffer 
management schemes can be built using these functions; for 
example, the standard functions malloc, free, etc call sbrk to get 
heap space, which they then manage for the calling functions. 

sbrk increments a pointer, called the 'heap pointer', by size 
bytes, and, if successful, returns the value that the pointer had 
on entry. Initially, the heap pointer points to the base of the 
heap. size is a signed int; if it is negative, the heap pointer is 
decremented by the specified amount and the value that it had 
on entry is returned Thus, you must be careful when calling 
sbrk: if you try to pass it a value greater than 32K, sbrk will 
interpret it as a negative number, and decrement the heap 
pointer instead of incrementing it 

brk sets the heap pointer to ptr, and returns 0 if successful 

iEEALSO 
The functions malloc, free, etc, implement a dynamic buffer
allocation scheme using the sbrk function. See the Dynamic 
Buffer Allocation section of the Library Functions Overview 
chapter for more information. 

The standard i/o functions usually call malloe and free to allocate 
and release butTers for use by i/o streams. This is discussed in 
the Standard I/O section of the Library Functions Overview. 

Your program can safely mix calls to the malloc functions, the 
standard i/o functions, and the sbrk and brk functions, as long as 
the calls to sbrk an~ brk don't decrement the heap pointer. 
Mixing sbrk and brk calls that decrement the heap pointer with 
calls to the malloc functions and/or the standard i/o functions is 
dangerous and probably shouldn't be done by normal programs. 

ERRORS 
If an sbrk or brk call is made that would result in the heap 
pointer passing beyond the end of the heap, sbrk and brk return 
-1, after setting the global integer ermo to the symbolic value 
ENOMEM 

- Ubgen.tS .. 



LA.a.a \ '-'J c rUKnulI lermloallOO I UOCIIODS ~)UT 

NAME 
exit, _exit 

SYNOPSIS 
exlt(code) 

_ exit( code) 

DESCRIP110N 
These functions cause a program to terminate and control to be 
returned to the operating system. 

code is returned to the operating system, as the program's 
termination code. . 

exit and exit differ in that exit closes all files opened for 
standard and .unbuffered i/o, while _exit doesn't 

- Iibaeo.16 -



TECHNICAL INFORMATION 

- tech.l -



TECH INFO Aztec C68k/ROM 

Chapter Contents 

Technical Information .............................................................................. tecb 
Assembly language functions ................................................................... 3 
Interrupt routines ....................................................................................... 8 

- tech.2 -



~ztec C68k/ROM TECH INFO 

Technical Information 

This chapter discusses topics that couldn't be conveniently discussed 
~Isewhere. 

It's divided into the following sections: 

1. Assembly-language functions; 

2. C-language interrupt routines. 

- tech.3 -



TECH INFO Assembler Functions Aztec C68k/ROM 

1. Assembler FUDdiOlll 

This section discusses assembly-language functions that can be 
called by, and themselves call, C-language functions. It first discusses 
the conventions that such functions must follow, and then discusses the 
in-line placement of assembler statements within C functions. 

1.1 CoovendOlll for CcalIable, auemhly-........ func:tlcms 

A C-caUable, assembly-language function must obey the 
conventions that are described in the following paragraphs. 

1.1.1 Names of alobaivariables aad fuDdlGu 

By default, the names by which assembly-language modules and C
language modules refer to global variables and functions differ slightly: 
the assembler name is generated from the C name by pre pending" an 
underscore character. 

Consider, for example, the following C module: 

int var; 
mainO 
( 

func(var); 
} 

The names by which an assembler module would by default refer to 
these global variables and functions are _var, _main, and Junc. 

You can define an alternate naming convention using the 
compiler's +RUx option. x defines how assembler names are derived 
from C names: 

• If x is negative, assembly names are derived by prependingan 
underscore to C names; 

• If x is zero, assembler names are the same as C names; 
• If x is positive, assembler names are derived by appending an 

underscore to C names. 

In the following paragraphs, we assume; that assembler names are 
derived from C names by prepending an underscore. 

1.1.2 Global variables 

A C module's global variables are in either the uninitialized data 
segment or the initialized data segment 

An assembler module can create an uninitialized variable that can 
be accessed by a C function, using the global directive. For example, 
the following code creates the global variable var, which can be 
accessed as an array by a C function, and reserves 8 bytes of storage 
for it 

- tecb.4-



Aztec C68k/ROM 

global_var,8 

Assembler Functions TECH INFO 

A C function that wants to access var could have the following 
declaration: 

extern short var[]; 

To create an initialized variable that can be accessed by a C 
function, an assembler module can use the public and dc directives. 
For example, the following code creates the public variable --"Ir that 
initially contains a pointer to the symbol sir, and that can be accessed 
as a char pointer by a C function: 

dseg 
public ptr 

_ptr dc.l str 

To access -ptr, a C function could use the following declaration: 

extern char .ptr; 

An assembler module can access global initialized or uninitialized 
variables that are created in C modules by defining the variables wi th a 
public directive within the dseg segment For example, suppose a C 
module creates a global, uninitialized short named count and a global, 
initialized short named total using the statement 

short count, total-I; 

An assembler module can access these variables by using the following 
directives: 

dseg 
. public _count, _total 

1.1.3 Names fI. exterul functions and variables 

The compiler translates the name ofa function or variable to 
assembly language by truncating the name to 31 characters and 
optionally adding an underscore to the name (as defined by the +RUx 
option). Thus, to be accessible from C modules or to access C 
modules, assembler modules must obey this convention. 

For example, the following C module calls the function bmp, which 
simply adds 10 to the global short count. A C module refers to this 
function as bmp, and an assembler module refers to it as _bmp. 

int count; 
mainO 
( 

bmp(); 
) 

An assembler version of _bmp could be: 

- tech.5 -



TECH INFO Assembler Functions Aztec C68k/ROM 

dseg 
public _count 
cscg 
public _bmp 

bmp: 
- addw #IO,_count 

rts 
end 

1.1.4 FuDdiOll calls and returns 

The assembler code generated by the compiler for a C call to 
another function pushes the arguments onto the stack, in the reverse 
order in which they were specified in the call's argument list, and then 
calls the function. 

An assembler function returns to a C function caller by issuing a rts 
instruction, and leaving the caller's arguments on the stack The caller 
then removes the arguments from the stack. 

A function returns an integer or pointer in register DO. Floating 
point values are returned in registers DO and D I. 

For example, consider the following assembler function, sub, that 
takes two short arguments that are passed to it on the stack,-subtracts 
them, and returns the difference as the function value. A C function 
will refer to this function using the name sub. 

cseg 
public sub 

mov 4( sp ),dO 
sub 6(sp) ,dO 
rts 

;get first argument 
;subtract second from first 

The following C function calls sub to subtract b from a, and stores 
the difference in c: 

mainO 
( 

short a,b,c; 

c - sub(a,b); 
} 

1.1.5 Rerjster usqe 

An assembler function that is called by a C function must preserve 
all registers it uses, except for those that the calling function uses for 
temporary values. 

The registers that a module uses for temporary values are defined 
when the module is compiled, with the + RT option; by default, these 

- tech.6 -



Aztec C68k/ROM Assembler Fundlons 

are data registers DO-D3 and address registers AO-A2. 

1.2 ElnIJedded Aaem"er Souree 

TECH INFO 

Assembler statements can be embedded in a C module by 
surrounding them with -asm and _endasm statements. The pound sign 
(#) must be the first character on the line, and the letters must be 
lower case. 

Embedded assembler code must preserve the contents of all 
registers it uses, except for those used for temporary values. 

It should make no assumptions about the contents of the registers, 
since the code that the compiler currently generates for C statements 
may change in the future. 

To be safe, a #asm statement should be preceded by a semicolon. 
This avoids problems in which the compiler mistakenly puts a label 
that is the target of a jump statement after, rather than before, in-line 
assembly code. 

In general, it is safest to contain assembly code in a separate 
assembler module rather than embedding it in C source. 

- tech.7 -



TECH INFO In teRupt Handlen Aztec C68k/ROM 

2 Iaternapt Haadlen 

An interrupt handler can be written in C, with the following 
provisos: it must have a small assembly language routine that performs 
the initial and final processing of an interrupt; and it must restrict its 
use of the library functions. These provisos arc discussed in the 
following paragraphs. 

21 1be Au_bly ....... roudae 

When the assembly language front-end to a C interrupt handler is 
activated by an interrupt, it must do the following: 

• Save on the stack the registers that the C routine uses for 
holding temporary values; 

• If the C routine uses a small memory model, the assembly 
language routine must save the small memory model support 
register and set in it the value __ Hl_org+32766. 

Hl_org is a linker-created symbol whose value is the 
starting address of the interrupt handler's initialized data 
segment In case you can't tell, Hl_org begins with two 
underscores, and has one in the oliddle; 

• jsr to the C routine. 

It's not necessary for the assembly language routine to save other 
registers (i.e. registers used for holding the C routine's register 
variables or the frame pointer register); this will automatically be done 
by the C routine. 

The C routine should return in the usual way; i.e. by executing a 
return instruction or by executing its last instruction. The assembly 
language routine should then restore all registers that it saved and issue 
an rte instruction. 

Here is a sample assembly language routine named intbegin. It 
saves the default temporary registers 00-03 and AO-A2; saves and 
initializes the default small model support register AS; and calls the C 
language routine whose C name is inlJune: 

public intbegin, intfunc, HI org 
intbegin - - ---

- movem.l dO-d3/aO-a2/aS,-(sp) 
move.l # HI org+32766,aS 
jsr Tntl'unc 
movem.l (sp)+,dO-d3/aO-a2/aS 
rte 

22 Use of library fundloas by CIao ... lntemapt routines 

A C interrupt routine can call the reentrant library functions that 
are provided with Aztec C68k/ROM; it usually shouldn't call the non
reentrant library functions. A function is reentrant if it doesn't access 

- tech.8 -



Aztec C68kfROM Interrupt Handlers TECH INFO 

global or static variables, and is non-reentrant if it does. 

The non-reentrant library functions are these: 

• The high-level buffer-allocation functions ma/loc, free, etc. 

• sprint!; 
• sscan!; , 
• The standard if 0 functions, usually; 

• The unbuffered if 0 functions, usually. 

The standard if 0 functions are not reentrant, because they have 
global control blocks and because they call the non-reentrant malloe 
and free functions. An interrupt routine can call the standard i/o 
functions if those calJs meet certain requirements: the calls can't 
modify control block fields that may be accessed by the standard i/o 
calls of an interrupted process, and they can't call malloc or free. For 
example, an interrupt routine can issue standard i/o calls to pre
opened streams whose standard i/o operations are unbuffered It can 
also issue standard i/o calls to pre-opened buffered streams, if the 
buffer has been preallocated, and if it only accesses those streams. 

The unbuffered'i/o functions (which you must write) are usually 
not reentrant, because they usually have a global table. But an 
interrupt routine can call the unbuffered i/o functions if those calls 
don't modify fields that may be accessed by the calls of an interrupted 
process. 

- tech.9 -



TECH INFO Interrupt Handlers Aztec C68k/ROM 

... tech.tO -


