An Informal PL/I Roundtable, Collection One
by

R.W. Mitchell, Editor
Carlos Christensen
Mathew Myszewski
Caral Sampson

Massachusetts

COMPUTER ASSOCIATES, Inc.

Massachusetts Area Code 817
COMPUTER ASSOCIATES, Inc. /Lakeside Office Park « Wakefield, Massachusetts 01880 + 245-9540

An Informal PL/I Roundtable, Collection One
by

R.W. Mitchell, Editor
Carlos Christensen
Mathew Myszewski
Caral Sampson

Technical Report
CA-6704-0511
April 5, 1967

BRANCH OFFICES: 450 SEVENTH AVENUE. NEW YORK, N.Y. 10001 /1117 NORTH 19th STREET, ARLINGTON. VIRGINIA 22209

Abstract

Collection One of the PL/I Roundtable contains informal remarks
on several PL/I issues. The conceptual basis of PL/T and its development
history are noted for background information. The significance of PL/I
for both quasi-programmers and professional programmers is discussed
and several technical problems relating to implementation, the host
operating system and efficiency are raised. Also included is a concise
comparison of PL/I and COBOL,

-j-

Preface

The PL/I Roundtable is a collection of informal remarks on PL/I.
At this time there has been no attempt to correlate the contributions or to
mold them into a single, continuous presentation. Rather, the intent of
this document is to provide a mechanism for collecting reactions, sus-
picions and discoveries relative to PL/I as a result of work by COMPASS
staff members with PL/I since its inception. This document is labelled
"Collection One" because several of us wish to comment further
and these comments will probably be collected together as "Collection
Two". PL/I being what it is, there is a likelihood that this flow of reactions
and discoveries will continue, so we have left open the possibilities of
further collections of the PL/I Roundtable.

R.W.M.

Acknowledgements

The comments documented in this Roundtable were motivated by
COMPASS staff members participating in a PL/I Briefing given at MITRE
Corporation, seminars on PL/I given at the National Security Agency,
and the development of the NICOL Programming Language (a variant of
PL/I) for Bell Telephone Laboratories.

-jji-

Contents

Abstract == == ===
Preface --=—--=———m—
Acknowledgements ==—————mm o m

The Conceptual Basis of PL/I-=~==——m oo

Carlos Christensen

The History of PL/I-——= == e oo oo e e e e e
R.W, Mitchell

A Comparison Between PL/I and COBOL —=———m—e—eemmemoo
Caral Sampson

The Operating System as a Host for PL/T ====—=—c—eemmoeec
Mathew Myszewski

Some Major Efficiency Questions in PL/] -——=———— oo
Mathew Myszewski

Implications of PL/I for the Professional Programmer --———----

Caral Sampson

The Quasi-Programmer and PL/T —====c oo
Caral Sampson

Freedom of Expression is not License for Anarchy-----------

Mathew Myszewski

PL/T Problems for the Implementor ==—=———==—— oo ommm
R.W. Mitchell

ii

ii

10

15

18

21

26

31

34

The Conceptual Basis of PL/I

Carlos Christensen

PL/I brings together, in a single unified programming language, facilities

for programming in three areas of application:

- scientific computing,
- business data processing, and

- systems programming.

These areas of computing application have previously been served by
separate programming languages, and the task of designing PL/I consisted
of studying existing languages, rationalizing i:he conflicts which arose,
and joining their various facilities in a single language. Although PL/I
does contain some unique and novel features, it principally represents an
outstanding effort toward the synthesis of existing and well-known program-

ming features.

We will first consider the sources on which PL/I drew in each of
the three applications areas mentioned above. In the area of scientific
computing, PL/I had well-developed and well-known precedents in FORTRAN,
ALGOL, and others. At the time PL/I development began, FORTRAN IV and
ALGOL 60 were complete and well-specified languages, and many of their

unsuspected advantages and shortcomings had come to light. Although
the designers of PL/T did extend and generalize some features of FORTRAN
and ALGOL, a "purely scientific" program in PL/I program is quite intel-
ligible to a programfner who is familiar with either FORTRAN or ALGOL,

In the area of business data processing, PL/I also had a well
established precedent in COBOL, COBOL was the first high-level pro-
gramming language to receive a careful definition intended for use by the

entire computing community, and this definition was available to the
designers of PL/I. COBOL's contribution was principally in the areas of
data description and input-output. Since FORTRAN and ALGOL had
relatively primitive facilities in this area, it was possible to accept
COBOL's contribution without serious conflict. On the other hand, COBOL's
"English-like" language for arithmetic expressions (‘ADD A TO B GIVING

C') was in direct conflict with scientific programming language (C = A+B'),

and it was discarded.

In the area of systems programming, PL/I did not have a generally

accepted precedent. Although systems programming has a long history and
although many appropriate languages have been produced, no useful widely
accepted standard has appeared. Instead, this area is crowded with com-
peting languages,none of which can claim to be representative of the whole
area. Accordingly, the designers of PL/T included a minimum, primitive

facility for the list-processing, bit-picking and interrupt-handling required
by systems programmers. The list processing capability is in many ways

similar to the arbitrary linking of arbitrary nodes in L6 and CORAL.

Thus PL/I is not related in the same way to each of the three appli-
cations mentioned above. For scientific computing and business data
processing, it represents a synthesis of some very advanced and powerful
programming features and purports to represent a final disposition and
consensus in these areas. For systems-programming, it represents a
basic facility from which the PL/I programmer can build, but does not

offer him truly 'high-level' user-oriented facilities.

We have considered the way in which the PL/I facilities were drawn
from sources in each of the applications areas. The remaining problem was
the joining of these facilities into a single integrated programming language.
Here the really basic issues of programming language design arose: the
character set for the language, the structuring of the program, the incor-
poration of operating system features into the language, the flow of control
in the program, and so on. Initially, the design committee attempted to
adopt FORTRAN as its basic language model; but as work progressed, the
basic model moved more and more toward ALGOL until only a residue of

FORTRAN concepts remained.

PL/I resembles FORTRAN in certain immediately apparent but

relatively unimportant aspects, as follows?

- PL/I uses ,in addition to special characters and digits, only upper
case letters, while ALGOL made use of lower case, upper case, and
bold face letters;

- PL/T uses the keywords of FORTRAN rather than those of ALGOL.
For example, a loop in PL/T and FORTRAN begins with 'DO', while
it begins with 'FOR' in ALGOL; and

- PL/T similarly carries over some of the uses of special characters
from FORTRAN, TFor example, exponentiation is '**', while it is
"' in ALGOL.

The programmer should not be deceived by these superficial similarities.
PL/I started out to be FORTRAN VI, but it has become something very

different indeed.

On the other hand, PL/I resembles ALGOL 60 in some very basic

and important ways, as follows:

- PL/I is a format-free language, as is ALGOL; that is, it does not

depend on card columns for its interpretation as does FORTRAN;

- PL/I is heavily dependent on the concept of declaration of identifiers,

which was first introduced and proved in ALGOL;

- PL/T uses "block structure" to gather a sequence of statements

together into a single unit and to control the scope of declaration; and

-= PL/I uses a method of subroutine definition which is an improved

and extended version of the ALGOL procedure definition.

In many ways, then, PL/I is an improved and extended version of ALGOL,
ALGOL has been described in a widely available paper*, and that paper is

recommended as collateral reading for the study of PL/I.

* Naur, Peter (Ed.) Revised report on the algorithmic language ALGOL 60.
Comm. ACM 6 (January 1963), 1-17.

The designers of PL/I did not, however, accept ALGOL uncritically
as a linguistic framework for PL/I. They recognized and, for the most part,
corrected the known defects of ALGOL,

For example,
- Integer labels were eliminated because they are easily confused
with problem data;

- The loop parameters were defined statically instead of dynamically

to avoid confusing anomalies;

- "Call-by-name" was restricted to eliminate cases which cannot be

implemented efficiently;

-- The assumption that all procedures and functions could be used

recursively was dropped as an unnecessary bookkeeping expense;

- Side effects within the evaluation of an expression were defined in
a simpler way; and

-— Declaration of formal parameters was made mandatory.

Thus the designers of PL/I drew on the experience which had been gained

from the "ALGOL experiment" to produce a linguistic base for PL/I which

is superior to ALGOL,

The History of PL/I

R.W. Mitchell

The development of PL/I is an outgrowth of a longstanding desire
in the SHARE FORTRAN project for a more complete, less restrictive language.
The original language specifications in spring of 1964 were easily rec-
ognizable as an extension of FORTRAN, The language has undergone many
revisions since then and now more closely resembles a conglomerate of
FORTRAN, ALGOL, and COBOL.

The three major areas of the PL/I history are language specification,
industry activity, and compiler development. The following notes the

major events in each area.

- Industry Activity

October 1963 - SHARE/IBM 3 x 3 Committee on advanced language
development formed, all members of systems and

scientific programming background.

May 1964 - 3 x 3 Committee expanded by including a GUIDE
representative and some of the more vocal res-

ponders to Report 1.

August 1964 - SHARE NPL Project formed with many SHARE partic-
ipants, one CO-OP observer and one X3.4.3.1/

Honeywell observer.
March 1965 - SHARE closes door to all outside observers.

March 1965 - X3.4 votes 'NO' on any NPL activity other than
observing progress, this was after an offer of
complete information (but no control) from IBM
and prolonged debate on language development vs.

de facto standardization vs. official standardization.

August 1965 - BEMA/X3.4 sponsored tutorial on PL/I.

January 1966 -

February 1966 -

March 1966 -

April 1966 -

June 1966 -

X3.4 votes to encourage some industry wide

activity on PL/I.

BEMA sponsored open meeting of formation of a
industry activity on PL/I, alternatives were dis-

cussed and activity under X3.4 recommended.
X3,X3.4 approve PL/I committee.

X3.4.2C formed to discuss and evaluate PL/I
and its specification relative to standardization.

X3.4.2C forms subcommittees
X3.4.2C1 Language Development
X3.4.2C2 Formal Defihition
X3.4.2C3 Subset Specifications

Language Specifications

March 1964 -

June 1964 -

December 1964 -

March 1965 -

SHARE Report 1; Expanded FORTRAN, System/360

limits on data.

SHARE Report 2; data structures, report generator,

removal of System/360 restrictions.

NPL Technical Report; complete revision, more
complete, delete logical data type, BEGIN-END
blocks added.

PL/I - SRL-0; complete revision, first machine

producible specification.

May 1965 -

January 1966 -

June 1966 -

July 1966 -

October 1966 -

November 1966 -

December 1966 -

January 1967 -

January 1967 -

PL/I -SRL-1; Cleanup of SRL-0, delete sort and

report generation.

PL/I - SRL-2; pointer data, completely new I/O,
asynchronous operations, removal of dynamic

fetching and deleting of programs.

PL/I Concrete Syntax (TN 3001) and PL/I
Abstract Syntax (TN 3002); first reports of new

semi-formal definition (circa SRL-2).
PL/I SRL-3; first implications of F compiler.

PL/I Translator (TN 3003); more of semi-formal
definition (circa SRL-3).

PL/I Interpreter (TN 3004); more of semi-formal

definition (circa SRL-3).

PL/I - SRL-4; moving character strings below
arithmetic data in the data hierarchy, deletion

of binary pictures.
Formal Definition of PL/I (TR 25.071 - Ver I).

Revised TN 3001,

Compiler Development

Spring 1965 -

PL/T Subset by Knuth using TMG (IBM 7090)

? 1965 -

Fall 1965 -
Fall 1965 -

Summer 1966 -
Summer 1966 -

Summer 1967 -

SLANG produced compiler, not satisfactory for
production use (S/360)

NICOL 1 (IBM 7090)

Stanford Subset PL/I (FORTRAN and ALGOL features)
(IBM 7090)

PL/I (F) (S/360)
EPL (BTL) for MULTICS development (GE 635)
PL/I (D) (S/360)

Digitek PL/T (GE 635/645, SIGMA 7).
RCA Subset (Spectra 70)
Univac Subset (?)

A Comparison Between PL/T and COBOL

Caral Sampson

The following is a comparison between PL/T and COBOL. The
material is taken from "A Guide to PL/I for Commercial Programmers" ,
C20-1651-0, published by International Business Machines Corporation.
The comparison is divided into the following categories: language notation,

program structure, data description, data manipulation, and input/output.

Language Notation

In general, both languages employ similar notations: programmer-
defined words use alphabetic characters and decimal digits; expressions
consist of sequences of names, constants, and operators; keywords
identify language elements; punctuation characters separate elements;
statements have an English-like appearance. However, the notation
rules of both languages do differ; the following list contains some of the
more significant differences.

1. In both PL/I and COBOL, keywords have preassigned
meanings. ‘In COBOL, keywords are reserved for their intended
purpose and cannot be used for other purposes. In PL/I, however,
keywords are not reserved for special purposes and may appear
wherever a programmer-defined word is permitted; for example, the
keyword READ may be used in a PL/I program as the name of a file.
In PL/1, different meanings for the same word are determined from
context.

2. COBOL requires a programming form, PL/I does not. In
PL/I, punctuation: characters determine the significance and
grouping of language elements. This permits PL/I programs to be
treated as long strings of characters and to be transmitted to a
computer by means of almost any input medium.

3. In COBOL, blank characters must surround arithmetic
operators; this is not required in PL/I. In PL/I, blank characters
are only required between successive words that are not separated
by special characters such as parentheses, operators, and punctua-

tion characters.

-10-

4, COBOL restricts comments to the Procedure Division
and requires that they be written in a NOTE statement. PL/I
allows comments to appear throughout the entire program and
permits them to be used wherever blank characters may appear
(except in a character string constant or in a picture specification).
5. The COBOL character set consists of 51 characters; PL/I
uses 60 characters.
The following points show some of the less significant differences:
1. PL/I terminates all statements with a semicolon; COBOL
terminates statements with either a period, a comma, or a semicolon.
2. Programmer-defined words in COBOL must not be longer
that 30 characters; in PL/I the limit is 31 characters.
3. PL/I uses the break character (an underscore) within
programmer-defined words to improve readability; COBOL uses the

hyphen.

Program Structure
Although both programs are constructed in problem-oriented terms and

employ the statement as the basic program element for processing data and
for altering the sequence of program execution, it is in the area of program
construction that PL/I and COBOL differ the most. The following list
points out some of the more significant differences in the program structure
of the two languages.

1. In general, a COBOL program is equivalent to one external
procedure in PL/I. The Data Division and the Environment Division
of COBOL correspond for the most part to the DECLARE statement
in PL/I. The COBOL Procedure Division is equivalent to the
executable statements in a PL/I procedure. The function served
by the COBOL Identification Division is provided in PL/I by comments.

2. The ENTER statement in COBOL is equivalent to the CALL
statement in PL/I when the CALL statement is used to activate
separately compiled external procedures. However, the concept of
nested procedure blocks (internal procedure blocks) in PL/T has
no counterpart in COBOL. Consequently, it is not possible
within the same COBOL source program to define internal subprograms

to which arguments may be assigned.

-11-

3. COBOL does not provide the equivalent PL/I facilities for
automatic and controlled allocation of storage.

4. The AT END, INVALID KEY, and SIZE ERROR options in
COBOL are provided in PL/I by the ON statement. However, PL/I
provides a fuller range of interruption conditions than does COBOL.

5. The effect of the ALTER statement in COBOL is achieved
in PL/I by assigning a label constant to the label name in a GO
TO statement.

6. The PERFORM statement in COBOL and the DO statement
in PL/TI may be used for similar purposes. The PERFORM statement,
however, is used for out-of-line loop control whereas the DO

statement is used for in-=line loop control.

Data Description

In general, both languages use similar methods for describing the
characteristics of data items stored within a computer: programmer-defined
words are used to name data items; keywords specify the characteristics
of named data items; data items may be collected into aggregates;
constants may be specified for each data type; data names may be assigned
initial values; and a picture specification may serve as an alternative
method for describing data. There are differences, however, between the
data description features of both languages; the following points contain
some of the more significant differences.

1. COBOL describes data in the Data Division; PL/I uses the
DECLARE statement. The COBOL Data Division contains separate
sections for different kinds of data; PL/I does not require a separation
of the various data types in a DECLARE statement.

2. COBOL requires all programmer-supplied words to be defined
in the Data Division. PL/I allows programmer-supplied words to be
used in a program without being defined in a DECLARE statement: the
meaning of such words is determined from context and a complete
set of default rules is used to determine unspecified data characteristics.

3. In COBOL, the description of data on external storage media
is specified in the Data Division. In PL/I, the input/output
statements specify the description of externally stored data.

-12-

4, Bit strings and label data are PL/I data types not contained
in COBOL,

5. COBOL uses figurative constants; PL/I does not.

6. PL/I imposes no limit on the number of dimensions in an
array or on the number of levels in a structure. COBOL limits a
table (the COBOL equivalent of a PL/I array) to a maximum of three
dimensions and a group (the COBOL equivalent to a PL/I structure)
to a maximum of 49 levels.

7. The order of name qualifiers in COBOL is the reverse of
the order used in PL/I. COBOL uses the keywords IN and OF as
qualification operators; PL/I uses the period.

Data Manipulation

Both languages use expressions to specify data calculations and the
picture specification to edit data. However, PL/I uses a single statement
for all types of data manipulation, whereas COBOL uses several different
statements. The following list contains some of the more significant
differences in the data manipulation features of both languages.

1. The effects of the COBOL statements MOVE, COMPUTE,

ADD, SUBTRACT, MULTIPLY, and DIVIDE are achieved in PL/I

with the assignment statement. However, when the MOVE statement

in COBOL is used with groups (the equivalent of PL/I structures),

data is moved without regard to the level structure of the groups, and
data conversion, if specified, is ignored. When the assignment
statement in PL/I is applied to structures, the assignment is
performed elementary item by elementary item and all data conversion
is done as specified.

2. The BY NAME option in PL/T is similar to the CORRESPONDING
option in COBOL.

3. PL/I permits expressions to use data items that contain edit
characters. COBOL does not provide this feature.

4. The bit string operators in PL/T are similar to the logical
operétors in COBOL, However, COBOL has no data type that
corresponds to the bit string data type of PL/I.

-13-~

5. The concatenation operator of PL/I is not available in
COBOL.

Input/Output
Both languages employ similar methods for transmitting data between

internal and external storage areas to the extent that input/output statements
process files and identification records (label records) in files may be
processed both on input and on output. The languages differ, however, in
input/output capabilities; the following points cover some of the more
significant differences.

1. In COBOL, data transmission implies files that are composed
of logical records. One or more data items form a logical record;
data is transmitted one logical record at a time.

PL/I provides two types of data transmission. Record-oriented
transmission, like COBOL, deals with logical records. Stream-
oriented transmission handles individual data items; a file is
thought of as one continuous stream of data items rather than as a
collection of logical records.

2. PL/I provides control format specifications that regulate
printing and spacing operations.

3. In PL/I, identification records (label records) are read or
written as a result of the IDENT option in an OPEN or CLOSE
statement. In COBOL, label records are specified by a file
description entry in the Data Division, and special label procedures
are specified in a USE statement.

4., COBOL permits a file name to be used as a name qualifier;
PL/1 does not.

5. In PL/I, the characteristics of a file are specified in a
DECLARE statement or an OPEN statement. In COBOL, file character-

istics are specified in a file description entry in the Data Division.

-14-

The Operating System as a Host for PL/I

Mathew Myszewski

The PL/I language consists of an impressive array of facilities.
While it is conceivable that a single PL/I processor could be built to
run on a given barefoot machine, a more likely possibility is that a given
PL/I processor will delegate some of its functions to the operating system
which forms its environment. In general, the division of labor will vary
according to the power of the operating system and other resourceé
availdBle. However, there is no doubt that powerful facilities for I/0O,
resource allocation, linkage, and control must be provided, if not in
the PL/I processor environment proper, then in the processor itself. The
next few sections will outline these facilities and how they shape both

the environment and processor.

The PL/I facilities for input and output require an assortment of
features, some which tax all but the most comprehensive of operating
systems., TFiles, of course, are symbolically referenced, but surprisingly,
are defined statically. Thus, one could not read the name of a file at
execution time and then access it. However, one is allowed to change

other file attributes dynamically.

Random-access is required by the PL/I UPDATE file function
attribute, the KEYED file attribute, and the DIRECT file access attribute,
as well as by the DELETE and REWRITE statements. The BACKWARDS attri-
bute requires access in the reverse order. A primitive form of non-selective
file protection is provided by the UNLOCK statement and the EXCLUSIVE
attribute; however, this in itself requires some degree of sophistication

either in the environment or in the interface to the environment.

-15-

Resource allocation is implied directly by the CONTROLLED and
AUTOMATIC attributes. Many other features indiréctly require either
dynamic or static allocation for data and more especially for bookkeeping
information. A list of such features, which is by no means complete,
would include the RECURSIVE attribute, the VARYING string attribute,
the BUFFERED file a‘ttribute, DATA-directed input/output, multiple ENTRY
points, the TASK options, and dope vectors which keep track of array
bounds. Some of these topics will be treated in more depth under the
topic "Some Major Efficiency Questions in PL/I".

Linkage of the usual sort, i.e. procedure-to-procedure and pro-
cedure-to-data is required in PL/I. This linkage, for the most part, may
be performed prior to execution, as the nuniber, names, and size of
external procedures and external data are all known at that time, and hence

tHese objects mady be located statically.

Control of flow in PL/I has some rather sophisticated aspects.
Parallel paths may be accomplished through use of the TASK option, TASK
attribute, the EVENT option, and the PRIORITY option. However, only
strict hierarchical control is allowed, i.e. orphan tasks are not permitted.
Interrupt actions may be controlled through the use of the ON and REVERT
statements, condition prefixes, and the SIGNAL statement. Again, control
is tightly linked to the static program structure and the automatic stacking
of a given condition may be done at most once per block.

The requirement: for environmental support is but one aspect of the
question of hosts of PL/I. Another equally important question is whether
PL/I precludds the use of available operating system capabilities. We have
already mentioned above operating system facilities such as orphan tasks

which may exist in operating systems but not in PL/I. However, we are less

-16-

concerned that PL/I does not contain all possible variations of all con-
ceivable features. Rather, we are concerned with the "features" which

in effect prevent efficient matching of resources to programs.

In particular, either the LABEL variable or the POINTER variable,
especially when combined with the CELL concept, virtually prevent dynamic
reallocation of data or procedures unless some paging mechanism is used.
This is due to the fact that any movement of a piece of data implies the up-
date of all pointers referencing it. However, the CELL attribute allows
arbitrary overlay of pointers with other data. So even were it known which
pointers referenced a data element or structure, one could not update these
without knowing whether or not it were a CELL currently containing a particular
pointer value. This, at least to my knowledge, would entail a prohibitive
amount of bookkeeping. A similar argument applies to reallocation of pro-
cedures and the LABEL variable.

Other questions of efficiency will-be covered under the topic
"Some Major Efficiency Questions in PL/I". Questions of user protection
will be covered under the topic "Freedom of Expression is not License for

Anarchy".

The set of transactions between a PL/I processor and an operating
system is a large set indeed. How can one hope for an efficient interface
if PL/I and the operating system have been developed independently? Surely
obtaining a well-matched system would be:fortuitous under such conditions.
The same argument must be applied to the design of language without regard
to its efficient compilation. In short, one should not paste together compon-
ents designed independently of one another and expect a good programming
system to result, no matter how good the individual designs might be.

-17-

Some Major Efficiency Questions in PL/I

Mathew Myszewski

' PL/I "... is a language designed for efficiency, a language that
enables the programmer to use virtually all the power of his computer,"¥*
The two main questions we are concerned with are the following: To what
extent do greater geherality and more features make code optimization
necessary? Impossible? To what extent do greater generality and more

features require more storage space?

Before answering the first question, it would be well to explain
what is meant by it. If a language has mrostly special cases, a compiler
may fairly easily produce good code for the one or two possible forms
(e.g. the FORTRAN DO statement). As one adds generality, it is not a
straightforward matter to determine the special (but frequently used) cases
and produce efficient code for them. For example, the PL/I DO statement
allows multiple index specifications. Were one to compile all cases
identically, the simple case would result’in at least two extra transfer
instructions per loop. In the case of pointers, side effects may be pro-
duced which make it impossible to reorder computations for greatest
efficiency of execution. The result of such generality then, is not necessarily
more efficient compilers, but quite possibly compilers which either do not
optimize, cannot optimize, or do so at some considerable increase in com-
piler size, complexity, and running time. Bear in mind that we are only con-
sidering optimization whiich we have come to expect in other more simple

languages.

Before leaving the subject of loops completely, it should be noted
that PL/T allows the programmer to modify the loop index within the loop.
In order to avoid excessive register loading for the common case, ane must
keep track of any possible changes to the index from functions with side-

effects, etc.

* IBM Systems Reference Library, IBM System/360 Operating System, PL/I
Language Specifications, File No. S360-29, Form C28-6571-4, p.9.

-18-

Although the cost of calling a function or subroutine should be small
in relation to the size of the subroutine,. several factors combine to make
prologue and epilogue coding large. A brief list would include: reentrant
_save-restore code, initial value loading, passing of parameters whose
extents are to be computed, AUTOMATIC data, ON-conditions {all the
standard ON-conditions are probably pushed whether or not they are used

in the procedure), multiple entry points, and multiple returns. To give an
example of how any one of these considerations can increase rur'ming time,
we will look at multiple entry poinhts. Since each entry point may have
different parameters in different order, or have different function attributes,
it is necessary to sort the parameters into some canonical order and record
the data type to be returned. At the return statement it is determined dynam-
ically which data type is to be returned and conversion is performed to this
type. These determinations cannot be made at compile time and thus result

in code.

The second question, that of storage, is as the first question,
largely dependent on the particular implementation; in most cases, however,
added storage will be needed to implement the features described here.

For example, code produced without optimization will take more space,

as discussed above. Again, we will list those features most apt to use

extra space. Any use of the asterisk notation or expressions for bounds or
length will necessitate storage for a dope vector for each instance of storage
for the data. Prologues and epilogues can be as space-consuming as they

are slow. Multiple entry points require at least n x m conversion routines
where n is the number of different function data attributes and m is the num-
ber of different data types returned in a given procedure. Any DATA-directed
GET statement without a data list will create a table of a&ll identifiers known

at that point, plus all their attributes and extents. Lastly, a calling procedure

-19-

must contain a dope vector for at least each argument passed to a routine
which uses the asterisk notation or expressions as bounds or length,

and possible for all arguments.

In short, PL/I will not come cheaply. Either compilers will have a
great deal of special case machinery to distinguish the general case from
the more common case or they will compile inefficient, space-consuming

code.

-20-

Implications of PL/I for the Professional Programmer

Caral Sampson

Usually programmers are categorized by the application area
in which they work. Thus one can speak of scienfiﬁc, commercial,
and systems programmers. Another method of classifying programmers
is by their attitude towards the computer. Thus one can speak of non-
professional and professional programmers. An arbitrary definition of
this latter method of classification follows.

The non-professional programmer considers the computer only
as a means to an end. He is not interested in how the computer works
or what its limitations are, except as these characteristics affect the
perceived utility of the computer. His interest is solving his problem, and
he views the computer much the same as a slide rule, desk calculator,
tabulating equipment, or any other tool at his disposal. Moreover, the
tremendous speed of the computer, coupled with its size, tends to impress
the non-professional programmer to such a degree that he considers the
computer infallible, forgetting it is a machine which can do only what it
can be told, and is told, to do.

On the other hand, the professional programmer is interested in
the computer itself. He knows how it works and how to use it efficiently
and effectively. He knows its limitations and sees to it that his problem
does not exceed the limitations of the computer. The professional
programmer knows that the computer is not infallible; it cannot be programmed
to do many things which to the non-professional programmer seem possible,
even if difficult.

The non-professional programmers are usually subject-matter
(scientific or commercial) oriented. The professional programmers are
usually either students in a computer science curriculum, software
developers, or software maintainers. The major distinction between
non-professional and professional programmers is their attitude towards
the computer rather than their application area. This paper considers
the implications of PL/I for the professional programmer.

One implication of PL/I for the professional programmer is that
he has fewer languages, perhaps only one, to learn in detail. A design

-21-

objective of PL/I is to produce a language that encompasses scientific,
commercial, real-time, and systems applications, thereby providing the
programmer with a language capable of handling a broad range of applications.
Features and concepts in PL/I were taken from many existing languages.
The data structure is from COBOL and JOVIAL, The procedure concept is
from ALGOL. The pointer facilities are from the list processing languages.
Although with PL/I, as it is being implemented, the programmer may have
only one major language to master, this language is so complex that the
programmer still will have to be knowledgeable in many programming
techniques and concepts.

Few programmers are intimately familiar with more than one
type of high order language, and fewer with more than two. Types of
high order languages include algebraic languages (such as FORTRAN and
ALGOL), business languages (such as COBOL), list-processing languages
(such as LISP and IPLV), formula manipulation languages (such as
FORMAC), and simulation languages (such as SIMSCRIPT). A professional
programmer who maintains the systems at a user installation is usually
not proficient in more than two languages. He is generally well acquainted
with the installation's operating system, assembly language, and prime
algebraic language, usually FORTRAN, If the installation uses other
languages, such as COBOL, the programmer knows enough about that
language to build the proper system tape. It is unlikely that the programmer
also knows a list processing language, a formula manipulation language,
or even another algebraic language if the major algebraic language is
FORTRAN. This type of professional programmer will find PL/I a rich
language. He will discover a wealth of applications for features such as
string data and data structures. The interrupt facilities, error correction
functions, debugging features, and multi-tasking facilities will help him
in writing the installation's accounting and other standard routines. Because
PL/1 is capable of handling a large range of applications, the professional
programmer will find his knowledge of types of high order languages
extended and it is likely he will find that PL/I suffices for most of his
applications.

-22-

Another design goal of PL/I is to provide a language that enables
the programmer to use virtually all the power of his computer. To help
accomplish this PL/I provides facilities for techniques such as shared
data processing, asychronous program execution, and real-time processing.
However, these techniques are orily useful when the operating environment
has the proper facilities for data management, task management, and job
management. Therefore the programmer will have to know in detail not
only PL/I, but the operating environment as well,

To use the multi-tasking facility effectively the programmer must
be aware of the relationship between tasks in his PL/I program and load
modules in the operating system. The purpose of tasking is to allow more
than one set of instructions to be operating asynchronously. If the
hardware cannot do this, why use the feature in a PL/I program and pay for
the overhead (in time and code) required for multi-tasking? PL/I thus
puts a greater demand on the programmer's awareness of the operating
environment.

With PL/I, the professional programmer will have to be fully
aware of the characteristics of his particular computer. PL/I data attributes
are an important reflection of the host computer. In PL/I for the IBM 360, the
FIXED DECIMAL data type reflects the packed data type and related
character by character arithmetic operations of the computer. FIXED BINARY
reflects the half word/full word data representation and related binary
arithmetic operations. FLOAT data type (both DECIMAL and BINARY)
reflects the machine floating point data and related arithmetic operations.
To use efficiently the many data types (over 14 combinations of attributes)
that can be specified in PL/I, the programmer must be aware of the machine
representation and the type of arithmetic operations used with each.

Because PL/I reflects the operating environment and allows the
programmer to interact with the environment, he will be able to write many
programs in PL/I that previously were written in machine code. PL/I
provides interrupts for conversion errors on data and provides a series of
functions and pseudo-variables to enable the programmer to determine the
offending character, change the character, and then continue processing

-23-

using the new character. Previously on data errors the programmer
resorted to assembly code. The interrupt conditions and the debugging
facilities of PL/I will enable the programmer to do most of his debugging
at the symbolic level, '

PL/I covers the largest areas of application of any language yet
defined. The implementation problems are many. Most of these problems
have been solved in some manner in other compilers prior to being addressed
in PL/I. But these problems in combination have never been encountered
or solved in one compiler. The IBM 360 PL/I F level compiler is only the
first of a long series of implementations. Before work can begin on better
implementations the full language must be implemented. Thus the present
compiler (and those in the near future) will generate poor quality code for
many PL/I statements. The professional programmer must learn which
statements are costly to use in terms of storage space and execution time,
and develop guidelines for using the compiler efficiently. An example of
inefficient versus efficient use of PL/I is a card to tape program described
in the paper "The Quasi-Programmer and PL/I".

For the professional programmer PL/T also implies trips to conferences,
published papers, job security, and job opportunities. PL/I is a new area
of specialization. It is at the stage FORTRAN was in 1957, with everyone
asking "How do I use it?", "Is it good?", "How do I use it efficiently?",
"What does it cost me to use it?" The professional programmer has an
opportunity to become an expert in PL/I and provide answers to some of the
many questions being asked about PL/I. There is a lack of general PL/I
literature as well as a lack of teaching aids and self study documents.

The computer conferences and trade publications will be needing more and
more papers on PL/I. The PL/I expert will find himself in great demand,
probably more so than the FORTRAN expert of 1957 if only because PL/I

is more complex than FORTRAN, the investment in it is greater, and the
cost of using it is greater.

In summary, the implications of PL/I for the professional programmer
are:

1. He will need to know fewer languages than previously, perhaps

only one.

-24-

He will gain a broader knowledge of language and programming
concepts.

He will need a detailed understanding of his particular operating
environment, both operating systems and hardware.

He can program more things in a higher level language than
previously.

He has a golden opportunity to improve his professional

reputation.

-25-

The Quasi-Programmer and PL/I

Caral Sampson

The paper "Implications of PL/I for the Professional Programmer"
classifies programmers as non-professional or professional. The non-
professional programmer is neither a beginner, a novice, nor a quasi-
programmer. He is well trained in a discipline, recognizes that he is
not a computer expert, and freely seeks the services of the professional

programmer. There is also a class of programmer one may call a quasi-

programmer. This-bpathinks he is g professional programmer or computer
—expert, and is therefore dangerous in anv computing facility. Some

examples of quasi-programmers are: a programmer working in commercial

data processing who has never heard of floating point arithmetic; the
programmer who isn't interested in efficient compiler or computer usage;
the programmer who refuses to switch from FORTRAN II and the FORTRAN
monitor system to FORTRAN IV and IBSYS because IBSYS is too complicated
to use; the FORTRAN programmer writing large programs who doesn't use
subprograms. All of these are quasi-programmers. Time alone does not
make a quasi-programmer into a professional programmer. His attitude
towards his job and the computer are the determining factors. The quasi-
programmer's limited knowledge of computers, computer languages, compilers,
and operating systems coupled with the multitude of PL/I statements, the
multitude of data attributes, and PL/I's interaction with its operating
environment, makes learning PL/I (even a subset) a difficult task. The
quasi-programmer will have an even more difficult time using PL/T for
meaningful work. During a recent series of lectures on PL/I a member of
the audience commented that each page of PL/I documentation should be
stamped "PROGRAMMER BEWARE". And such is the case, because PL/I
is a permissive language allowing many statements and mixtures of data.
The size and complexity of PL/I make learning the language a
formidable task. The learning problem is compounded by the lack of PL/I
literature. The present literature consists of one book and several documents
published by IBM. IBM provides a few introductory student texts, program
logic manuals, and an often revised reference manual. The introductory

-26-

texts provide a broad brush treatment of PL/I for specific application areas
and lack the detail necessary for writing a program. The logic manuals,
containing flow charts and descriptions of the PL/I compiler, are written
for implementors. The reference manual, sometimes called the SRL
manual, is the only available detailed description of PL/I. This manual
describes PL/T using a syntax notation unfamiliar to most programmers, and
this notation stops many from using the manual. Furthermore, the terminology
used to describe PL/T is new or inconsistent with current .usage: of the
same terms. However, most terminology is precisely defined, if one knows
how to find the definition. As one student said about the manual, "It
was written by a Philadelphia lawyer and must be read as such." If
the quasi-programmer gets past the problem of reading the reference
manual, he still has problems because the manual does not specify when
to use a given feature and there is no literature available on this subject.

The major problems one encounters when learning and using PL/I
are a result of the size and complexity of PL/I. For example, PL/I provides:

a. over eight data types not including over fourteen combinations

of arithmetic data attributes;

b. seventeen operators;

c. thirty-three statements, most with at least one option; and,

d. sixteen major classifications of attributes.
The professional programmer has the background necessary to understand
the relationships between the different facilities of PL/I. The quasi-
programmer must be taught the relationships between the different data
types, operators, statements, and attributes. He cannot be taught this
in forty hours of class lectures. Yet one week is the duration of most
PL/1I training classes. Many pseudo-programmers will attend this type of
class and, upon finishing the class, will have the false security that they
have been told enough about PL/I to use it effectively. They haven't!
The course, as outlined in the IBM PL/I coding Education Guide (R20-1018)
only skims the surface of PL/T and presents none of the anomalies of the

language.

-27-

The following is an example of a typical type of error that arises
because of the many combinations of arithmetic data types available with
PL/I. The programmer may describe data as having a scale of FIXED
or FLOAT and a base of DECIMAL or BINARY. There are thus four possible
combinations of scale and base: FIXED DECIMAL, FIXED BINARY, FLOAT
DECIMAL, and FLOAT BINARY. In the 360 implementation, a data item
described as FLOAT DECIMAL and FLOAT BINARY have the same machine
representation; they are represented in hexadecimal floating point format.
FIXED DECIMAL and FIXED BINARY data items have different machine
representations; they are represented as packed decimal and binary data,
respectively. Furthermore, the FIXED scale represents decimal or binary
numbers that may have a fractional portion, i.e., a scale factor or precision.
This poses the problem of associating precision with a FIXED constant.
For purposes of expression evaluation, an apparent precision is defined
for real fixed-point constants to be (w,d) where w is the total number of
digits in the constant and d is the number of digits specified to the right
of the decimal point.

Most programmers in the commercial application area are familiar
with fixed decimal data. However, most programmers do not understand
rational arithimetic. Because of PL/I rules governing evaluation of
expressions, the expression (10 + (3/2)) yields a result of 1.50000000000000.*
The same result occurs if the constants are replaced by three data items
having precisions (2,0), (1,0), and (1,0). Quasi-programmers cannot
understand why the result is not 11.5, but the main problem is that they

probably may never realize that truncatation can occur from the left.

The quasi-programmer who has been using FORTRAN also has
problems. In FORTRAN he uses integer and floating point data and tends
to equate the FIXED DECIMAL or FIXED BINARY of PL/I with FORTRAN's
integer data. He will have the same problem as the commercial programmer
with the expression (10 + (3/2)). Another problem may be that algorithms
no longer work when programmed in PL/I. For instance, the algorithm
"compute (I-((I/2)*2)) and then check for zero" used for distinguishing
between odd and even integers will not work in PL/I because there is no
integer arithmetic. \ 4,

* See footnote page 32 (RWM) _28- /)

The many operators of PL/I coupled with the many data types and the
ability of the compiler to interpret most expressions creates another set
of problems for the quasi-programmer. In PL/I there are seventeen different
operators divided into four types: arithmetic operators, comparison operators,
bit-string operators, and string operators. There are accordingly two types
of data which can be used with the operators: arithmetic data and string
data. The operands of any operator need not be the same type as the
operator nor the same type as each other. Thus it is correct to concatenate
(a string operation) a float data item with a character string data item. It
is also correct to use the arithmetic addition operator with two character
string data items. Expressions with mixed data items, especially with
arithmetic and string data, are usually written by mistake; however the
compiler provides an interpretation for them. If the programmer is lucky,
there may be some indication at execute time that conversion between
arithmetic and string data is taking place. The quasi-programmer in his
use of PL/T will probably write many statements that are incorrect, are time
and space consuming, yet never know about it.

Another area where the quasi-programmer may have trouble using
PL/I is the interrupt operations. Although the interrupt operations provide
the programmer with a flexible debugging aid, their concept is usually
outside the knowledge of the quasi-programmer. The interrupt operation
causes the suspension of normal program activities in order to perform a
special action; after the special action, program activities may or may not
resume at the point where they were suspended. Some of the interrupts
are generated by hardware detected errors, some are the result of error
detection by system routines, and some interrupts are generated, under
programmer control, by the execution of the PL/I SIGNAL statement. Those
conditions which are not named and controlled by the programmer have
standard actions associated with them which the programmer may override.
There are two program checkout conditions which are enabled by the
programmer. The first condition, SUBSCRIPTRANGE, occurs when a subscript
is evaluated and found to lie outside its specified bounds. The second
condition, CHECK (identifier-list) provides a snap/trace of the specified

-29-

identifiers. If the quasi-programmer masters the interrupt concept, he
will have a powerful debugging aid. However, the debugging facilities

of PL/I are a two-edged sword. Although they make debugging much easier
than machine level debugging, they will consume vast amounts of time

and computer storage if used in a production program. Thus the quasi-
programmer will have to learn to use them discriminately and effectively.

Because of thé size and complexity of PL/I, there are many ways
to program a given problem. One way may be better than another way.

The quasi-programmer probably will never realize that he is using a given
feature in a manner it was never intended. Also, because he never cares
about generated code, he will never realize that the way he defines his
problem data drastically affects the running time of his program. An
example of data definition seriously affecting execution time follows.

A simple card to tape routine was programmed two ways. In one
program the data was declared as 80 one-character items (DCL CARD(80) CHAR(1)),
and in the other as one 80 character item (DCL CARD CHAR(80)). Other than
the declare statement, both programs were identical. The first program

(80 one-character items) togk approximately 150 minutes; the second program

(one 80 character item) took approximately 7 minutes. A factor of 25!

Unfortunately, there are many quasi-programmers. Hopefully
PL/I will force them to understand more about computers, computer languages,
compilers, and operating systems. If not, there will be many installations

ordering more computers or bigger computers.

-30-

Freedom of Expression is not License for Anarchy*

Mathew Myszewski

Although PL/I has many forms for expressing the same problem sol-
ution, and it would be hoped that the most natural means of expression were
also the most efficient, error free, and free from anomalies; usually this
is not the case. It is unfortunate that a language which has aspired to so
much is so filled with traps for the unsuspecting. This in spite of the claim
that "PL/T is organized so that any programmer, no matter how extensive

his experience, can use it easily at his own level,"**

There are three kinds of traps that come to mind. First, and least
detrimental, is to use a natural form of expression and find that it is
inefficient. This has largely been discussed in the topic "Some Major
Efficiency Questions in PL/I." Next, the user of PL/I may use a natural
form of expression and find that he gets incorrect results quite possibly
without any warning. Lastly, simple errors in expression may cause com-

pletely anomalous behavior similar to the store in a wild location that one

frequently encounters in assembly language programming. Each of these

traps is present in PL/I.

Since efficiency questions have been treated elsewhere, we will
only pause to note one example of this type of pitfall. Suppose a PL/I
programmer has used the debugging forms of the ON statement and condition
prefixes. When he is done debugging he removes all the ON statements to

eliminate the debugging output. However, inadvertently or through innocence

* Juster Norton, "The Dot and the Line", Random House, New York, 1963.

** IBM Systems Reference Library, IBM System/360 Operations System,
PL/I Language Specifications, File No. S5360-29, Form C28-6571-4, p,9.

-31-

he leaves in one or more CHECK type condition prgaﬁxes . These will not
cause incorrect results or spurious printout but'w_i_Ll__use tnordinate amounts
of machine time. This is the perfidy of inefficiencies; correct results are
produced but unnecessary machine time is used, often without the knowledge
of the unsuspecting user. And if he does suspect, it is often extremely
difficult to track down the cause of such inefficiencies.

A few examples of incorrect results obtained without warning will
suffice to give an idea of what is in store for the wary or unwary PL/I user.
Other cases will be left as an exercise for the production PL/I programmer.
Consider the statement:

A=10+ 3/2;

Who would suspect that the PL/I manual defines the result of this computation
to be undefined? The reason is that the definition of fixed point arithmetic
is such that the subtraction will cause an overflow which gives an undefined P

-

result*, (Note that the literals could have easily been varia bles of the
same data ‘type,) Other cases of this form of trap may be found in operator

precedence and other rules for expression evaluation.

Lastly, we will consider some examples of anomalous behavior. With
the exception of assembly language programming, pointers were never so
accessible to run-of-the-mill programmer before. Since the pointer may be
over-laid with, for example, floating point data using the CELL, the possibility
exists for execution of random fetches and stores in data, program, and other
areas of storage. Fortunately, the programmer in PL/I has the opportunity t
do SUBSCRIPTRANGE testing and catch a principal cause of these anomalies
in FORTRAN,

* The difference in the statement here and the one on page 28 are a result of
the PL/I definition having been changed between the times when the
respective authors studied the issue. (RWM)

-32-

These few items can and will be extended considerably as more
experience is gained with PL/I. I suspect that new categories of traps
will arise, such as conflict of user identifiers with PL/I keywords and
built-in function names, but those given above will continue to ensnare

even the well informed.

-33-

PL/I Problems for the Implementor

R.W. Mitchell

There are two general problems facing the implementor of PL/I.
The first is "What is .PL/I?" and the second is a collection of technical
"How should such issues be done?"

Determining "What PL/I is" is a difficult issue because of the
size of PL/I and because of the form of the definition of PL/I (which will
be considered in another section). One of the most evident characteristics
of any of the definitions of PL/I is its size. The total number of pages is
always in the hundreds. The intricate interdependies of the language are

very difficult to identify and understand under these conditions.

This has resulted in most of the implementations of PL/I having
been designed with less than complete understanding of the language and

later being revised as a number of issues became apparent.

The unusual technical problems facing the implementor center

around the following

- attribute structure,

- procedure linkage,

-- ON-conditions,

- asynchronous processing, and

- optimization.

The attribute structure is large and the rules for completing the
set of attributes for a partially declared identifier are fairly complex in some
cases. Because of this large attribute structure the processing of all data
references is also quite involved.

-34-

The basic problem in procedure linkage is the potential variability

of entry points (and, hence, argument list), attributes of arguments, and
return points. This results in very inefficient. code for the simple cases
or very complex logic for the implementation.

The ON-conditions and asynchronous processing present the
problems of flow of control paths which do not follow a convenient
hierarchical pattern.

The question of optimization is dependent on recognizing the special
cases which permit deletion of unnecessary actions. Once again the size
of the language (hence, number of cases) and the variability of the specifics
of the attributes create the problems.

The design goals of PL/I include modularity partially to ease the
implementor's task of providing compilers of reasonable size and efficiency.
This has led some to suggest very modularized compilers as a possibility.

It is my opinion that we will be a couple years just learning how to implement
PL/I with all of its features and it won't be until after that time that the
potential for modularized PL/I compilers can be properly investigated.

-35-

	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

