MC5600/5700 SYSTEM
REFERENCE MANUAL

Order Number: M-SRM-567
Part Number: 075-04020-00-0

Revision A

C’oncurreng

Computer Corporation

MC5600/5700 SYSTEM
REFERENCE MANUAL

Order Number: M-SRM-567
Part Number: 075-04020-00-0

Revision A

Written By Stephen Gilbane

Revision A, September 1983
Revision B, March 1984

The software described in this document is furnished under license and may be used or copied
only in accordance with the terms of such license and with the inclusion of the copyright notice
shown on this page. Neither the software, this document, nor any copies thereof may be
provided to or otherwise made available to anyone other than the licensee. Title to and owner-
ship of this software remains with Massachusetts Computer Corporation (MASSCOMP) or with
its licensor.

The information in this document is subject to change without notice and should not be
construed as commitment by MASSCOMP.

MASSCOMP assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by MASSCOMP.

Copyright © 1986 by Massachusetts Computer Corporation
All Rights Reserved

Printed in US.A.

This manual may not be copied in whole or in part, nor transferred to any other media or lan-
guage without the express permission of MASSCOMP.

The postpaid READER'S COMMENTS form on the last page of this document requests your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Massachusetts Computer Corporation:
MASSCOMP
MC-500
Quick Choice
RTU
UNIX is a registered trademark of AT&T.
Ethernet is a trademark of Xerox Corporation.
MULTIBUS is a trademark of Intel Corporation.
M68000 is a trademark of Motorola, Inc.
llustrated by Stephen Gilbane

Edited by Wesley Frost

MC5600/5700 System Reference Manual

CONTENTS
Page
Preface
What This Manual Covers 1
Related Information 2
Conventions Used in this Manual 3
Chapter 1 System Overview
1.1 Introduction 1-1
1.2 System Buses 1-4
1.3 CMPU Module 1-5
1.3.1 68020 Microprocessor 1-6
1.3.2 Memory Management 1-7
1.3.3 The Cache 1-7
1.3.4 Interrupt Processing 1-8
1.3.5 Local Devices 1-8
1.3.6 The Buffered DAL Bus 1-8
1.3.7 MULTIBUS Adaptor 1-9
1.3.8 Floating Point Interface 1-9
1.3.9 Flush Logic 1-10
1.4 Memory Module 1-10
1.5 Auxiliary Function Module 1-10
1.5.1 Bus Arbitration 1-12
1.5.2 CMPU Serial Interface 1-12
1.5.3 Initialization Circuit 1-12
1.5.4 Termination Networks ' 1-12
1.5.5 Bus Clocks 1-13
1.6 Multiprocessor Systems 1-13
1.7 MULTIBUS Controllers 1-15
1.8 STD+ Data Acquisition Devices 1-16
Chapter 2 Memory Management Hardware
2.1 Introduction 2-1
2.2 The Translation Buffer 2-2
2.3 Page Table Engine (TB Miss) 2-4
2.3.1 Page Table Algorithm 2-5
2.3.2 First Level Direct 2-9
2.3.3 First Level Indirect 2-9
2.3.4 Second Level Direct 2-9
2.3.5 Second Level Indirect 2-10
2.3.6 Page Table Formats 2-11
2.4 Virtual Address Space 2-13
2.5 Secondary Address Spaces 2-14

2.5.1 Translation Buffer Space 2-15

MC5600/5700 System Reference Manual

2.5.2 Diagnostic Space
2.5.3 Processor Register Space

Chapter 3 The Cache

3.1 General Operation

3.2 Cache Structure

3.3 Cache Operating Modes
3.4 Invalidation

3.5 The C Bit

3.6 Cache Flushing

Chapter 4 CMPU Local Devices

4.1 Processor Control Registers
4.2 Serial Ports
4.3 Buffered Writes

Chapter 5 Interrupts and Exceptions

5.1 External Interrupts

5.2 Inter-Processor Interrupts

5.3 Bus Errors

5.4 Initialization and Reset Circuitry

Chapter 6 Memory Module

6.1 General Operation
6.2 Error Handling
6.3 Module CSRs
6.4 Initialization

6.4.1 Interleaving

2-15
2-16

31
3-2
3-4
3-6
3-7
3-7

42
44
44

51
5-3
5-4

6-1
6-2
6-2
6-4

Chapter 7 Synchronous Memory Interconnect (SMI) Bus

7.1 Split Transaction Protocol
7.2 SMI Signals
7.3 SMI Commands
7.4 SMI Address Field

7.4.1 The CYCLE bit

7.4.2 The Size Code

7.4.3 The Don’t Invalidate Bit
7.5 Bus Arbitration

il

7-1
7-2
7-5
7-6
7-7
7-7
7-8
7-8

MC5600/5700 System Reference Manual

Chapter 8 Physical Address Structure

8.1 System Memory Space

8.2 MULTIBUS Memory Space

8.3 SMI Device Space
8.3.1 CMPU Local Devices
8.3.2 IPIRs and MULTIBUS /O

Chapter 9 The MULTIBUS

9.1 Conformance to the MULTIBUS Standard
9.1.1 Non-supported Features
9.1.2 MULTIBUS Enhancements
9.2 MULTIBUS 32-bit Block Mode
9.2.1 Requirements
9.2.2 General Protocol
9.2.3 Block Mode Read Protocol
9.2.4 Block Mode Write Protocol
9.2.5 Block Mode Timing Specification
9.3 Bus Arbitration

Chapter 10 The MULTIBUS Adaptor

10.1 General Operation
10.2 The I/O Map
10.2.1 The Map Table Entry Format
10.2.2 Accessing the I/O Map from the MULTIBUS
10.2.3 Using the Four Self-Mapping Entries
10.3 SMI / MBUS Data Transfers
10.3.1 Dynamic Bus Sizing
10.4 MULTIBUS Lock
10.5 SMI / MULTIBUS Error Handling
10.6 Deadlock Avoidance

Chapter 11 System Configuration

11.1 Packages
11.1.1 The Front Panel
11.2 Configuring the CMPU Module
11.2.1 Adding a CMPU module
11.3 Configuring the Memory Module
11.3.1 Interleaving
11.3.2 Setting Module Base Address
11.4 Configuring the AFM and Backplane
11.4.1 The AFM Module
11.4.2 The Backplane
11.4.3 Adding MULTIBUSs to a System

83
83
83
8-4
85

9-2
9-3
9-3
9-4
9-5
9-5
9-6
9-8
9-10
9-10

10-1
10-3
10-4
10-4
10-6
10-8
10-9
10-10
10-10
10-11

11-1
11-2
11-3
11-6
11-6
11-7
11-8
11-10
11-11
11-12
11-14

ii

MC5600/5700 System Reference Manual

Chapter 12 The EPROM Bootstrap

12.1 Powerup Sequence
12.2 Selftest Diagnostics
12.2.1 Diagnostic Error Codes
12.3 Boot Sequence
12.4 Customer Boot Space
12.5 General Purpose Callable Subroutine
12.5.1 check_for_received_char
12.5.2 console_no_init
12.5.3 put_char
12.5.4 put_number
12.5.5 put_string
12.5.6 reboot
12.5.7 non_boot_console
12.5.8 setmap
12.5.9 enable_gcm_terminal
12.5.10 probe_address
12.5.11 reset_smi
12.6 CMPU-AFM Serial Interface
12.6.1 AFM Serial Communication Format

Chapter 13 The Console

13.1 Entering Console Mode
13.1.1 Console Mode Password Protection
13.1.2 Changing the Current Console Device
13.1.3 Using Console Mode for Debugging
13.1.4 Main Memory Pages Reserved for Console
13.2 Console Command Syntax
13.2.1 Arguments
13.2.2 Control Characters
13.3 The Machine Environment
13.4 Command Descriptions
13.4.1 Boot
13.4.2 Breakpoint
13.4.3 Continue
13.4.4 Copy
13.4.5 Deposit
13.4.6 Dump
13.4.7 Examine
13.4.8 Initialize
13.4.9 Memory Enable
13.4.10 Next (Single Step)
13.4.11 Repeat
13.4.12 Remote Port Enable
13.4.13 Start
13.4.14 Selftest
13.4.15 Zero
13.5 Qualifiers

iv

12-1
12-4
12-4
12-5
12-6
12-7
12-7
12-7
12-8
12-8
12-8
12-8
12-9
12-9
12-9
12-10
12-10
12-10
12-11

13-1
13-1
13-2
13-2
13-3
13-3
13-5
13-6
13-6
13-9
13-9
13-10
13-11
13-11
13-11
13-11
13-12
13-12
13-13
13-13
13-13
13-13
13-14
13-14
13-14
13-14

MC5600/5700 System Reference Manual

13.5.1 Address Qualifiers 13-14
13.5.2 Data Type Qualifiers 13-15
13.5.3 Special Use Qualifiers 13-16
13.6 Running Console on Non-boot Processors 13-16

Appendix A Pinouts

Appendix B MC5600/5700 Specifications

Appendix C DUART Specification

ILLUSTRATIONS

Fig. Page
No.

1-1 An MC5600 Pedestal Package 1-2
1-2 The MC5600/5700 System 1-3
1-3 The CMPU Module 1-6
1-4 Auxiliary Function Module 1-11
1-5 A Multiprocessor MC5700 System 1-14
2-1 Translation Buffer 2-3
2-2 Page Table Levels 2-6
2-3 Page Table Algorithm (Direct) 2-7
2-4 Page Table Algorithm (Indirect) 2-8
2-5 PTE Bit Field Formats 2-11
2-6 Division of Virtual Address Space 2-13
2-7 TB Space Entry Format 2-15
2-8 TBCCR and TBCFR Entry Formats 2-16
3-1 The Cache 3-3
4-1 CMPU Local Devices 41
4-2 PCRA & PCRB Bit Fields 4-2
5-1 IPIR Format 5-3
6-1 SCBR & MCR Bit Field Formats 6-3
7-1 SMI Address Field 7-6
81 The SMI Physical Address Space §-2
8-2 SMI Device Space 8-4
83 CMPU Local Devices 85
8-4 1/0 Maps, IPIRs, & MULTIBUS 1/O Space 86
9-1 Block Mode Read Protocol Example 9-6
9-2 Block Mode Read Timing Parameters 9-7
9-3 Block Mode Write Protocol Example 9-8
9-4 Block Mode Write Timing Parameters 9-9
10-1 1/O Map Translation Algorithm 10-3

10-2 1/O Map Table Entry Format 104

MC5600/5700 System Reference Manual

10-3 SMI and MULTIBUS Byte and Word Numbering
11-1 MC5600/5700 Front Panel

11-2 The CMPU Module

11-3 The CMM Module

11-4 The Auxiliary Function Module

11-5 The 15 Slot Backplane

11-6 30 Slot Backplane

12-1 Bootstrap Flowchart

TABLES

Table
No.

2-1 Access Codes

2-2 Secondary Address Spaces

3-1 Cache Operation

3-2 Cache Operating Modes

4-1 Alternate Function Codes

4-2 Serial Port Pinouts

5-1 MASSCOMP Interrupt Vector Assignments
5-2 Bus Error Causes

7-1 SMI Signal Descriptions

7-2 SMI Commands

9-1 MASSCOMP-specific MULTIBUS Signals

9-2 Extended Protocol Timing Specification

10-1 Setting Up Self-Mapping 1/O Map Entries
10-2 Example of Self-Mapping I/O Map Entries
10-3 MTE Addressing

10-4 Using Self-Mapping I/O Map Entries

10-5 MULTIBUS-Unwritable Self-Mapping Entries
10-6 Transfers Between MULTIBUS Byte Devices and SMI DAL
10-7 Transfers Between MULTIBUS Word Devices and SMI DAL
10-8 Transfers Between MULTIBUS Block Mode Devices and SMI DAL
11-1 MC5600/5700 Packages

11-2 Setting Processor I.D. on Switchpack SW1
11-3 CMM Switch Configuration

11-4 Setting Module Base Address

11-5 Example of Setting CMM Base Address

11-6 Configuring the AFM & Backplane

12-1 Powerup Diagnostics

12-2 AFM Serial Communications Format

13-1 Console Baud Rates

13-2 Console Summary

13-3 NVRAM Error Codes

13-4 Environment Fields

13-5 Boot Switch String Values

13-6 Boot Command Examples

13-7 Dump Devices

vi

10-8
11-2
11-4
11-7
11-11
11-12
11-13
12-3

Page

2-12
2-14
3-2
3-5
43
4-5
5-2
5-4
7-3
7-5
9-2
9-11
10-5
10-6
10-6
10-7
10-7
10-9
10-9
10-9
11-1
11-5
11-8
11-9
11-10
11-14
12-5
12-12
13-2
13-4
13-4
13-7
13-9
13-9
13-12

MC5600/5700 System Reference Manual

A-1 CMPU To Front Panel Connector (J36) Pinout

A-2 MULTIBUS Backplane & Module Pinouts (86 Pins)
A-3 MULTIBUS Pinout Exceptions

A-4 SMI Backplane & Module Pinouts (60 Pins)

A-5 SMI Pinout Exceptions

A-6 CMPU Module, Connector P03 Pinout (Ports POA, POB, P1A)
A-7 CMPU Module, Connector P04 Pinout (Port P1B)
A-8 AFM/ARB Module, Connector P01 Pinout (70 Pins)
A-9 AFM/ARB Module, Connector P02 Pinout (40 Pins)
A-10 AFM/ARB Module, Connector P03 Pinout (60 Pins)
A-11 AFM/ARB Module, Connector P04 Pinout (14 Pins)

A-2
A-2
A-5
A-5
A-8
A-10
A-11
A-11
A-13
A-14
A-16

vil

MC5600/5700 System Reference Manual

Preface

This manual describes the MASSCOMP MC5600 and MC5700 high performance 32-bit computer
systems. These two systems are, in general, similar enough to be described as a single machine,
and throughout this book, the term MC5600/5700 is used to denote either system.

The MC5600/5700 is capable of high speed data acquisition, data analysis, graphics presenta-
tion, and general timesharing functions. The system integrates the processing power of up to 2
(in the MC5600) or 4 (in the MC5700) processor modules, each based on the MC68020 32-bit
processor. The Triple Bus architecture allows for efficient delegation of processing tasks, as
well as flexible configuration capabilities.

What This Manual Covers

This manual contains the necessary information to allow you to understand the internal
hardware of the MC5600/5700. The manual assumes previous knowledge of general system
hardware terms and concepts (such as bus, CPU, protocol, and the like) but otherwise assumes
no specific knowledge of MASSCOMP products. The manual attempts to give a programmer’s
model of the hardware. It is designed to help anyone interfacing new hardware devices, writing
operating systems or device drivers, maintaining system hardware, or performing any other
activity that requires a detailed understanding of the machine’s internal structure.

The manual consists of the following chapters and topics:

Chapter 1. System Overview. This chapter discusses the overall 5600/5700 System and
MASSCOMP-specific system concepts. General system architecture illustrations are given.

The processor, memory, and Auxiliary Function modules are discussed in the context of the
system structure.

Chapter 2. Memory Management. This chapter discusses the memory management
architecture, the high-speed address translation buffer, the virtual and secondary address
spaces, paging algorithms, and page table bit field definitions.

Chapter 3. The Cache. This chapter discusses the operating modes and the flush and con-
trol registers of the cache. The invalidation logic is also discussed.

Chapter 4. Local CPU Devices. This chapter discusses devices local to each processor
module: the 2 DUARTSs and their serial communication ports, the PCRA & PCRB, and the
CMPU write buffer.

Chapter 5. Interrupts and Exceptions. This chapter discusses how the CMPU hardware
handles interrupts. It lists the assigned interrupt vectors for each MASSCOMP device, and
the causes and responses to interrupts and bus errors. The system initialization circuitry on
the AFM also is described in this chapter.

Chapter 6. The Memory Module. This chapter discusses the memory part of the
CPU/Memory Subsystem. This includes memory exceptions and interrupts, error checking
and handling, initialization information, and CSR bit assignments.

Preface MC5600/5700 System Reference Manual

Chapter 7. The MASSCOMP Synchronous Memory Interconnect (SMI). This chapter
discusses the high speed MASSCOMP SMI, the central bus linking all processors, memories
and MULTIBUS Adaptors. The chapter discusses its role in the system, its capabilities, its
arbitration, and, briefly, its protocol. A bus specification is not given in this document.

Chapter 8. Physical Address Space. This chapter gives the address range assignments
within the SMI physical space for all devices in the system.

Chapter 9. The MULTIBUS. This chapter discusses the MC5600/5700 MULTIBUS and the
differences between it and the standard MULTIBUS. The MASSCOMP block mode protocol
is described in detail.

Chapter 10. The MULTIBUS Adaptor. This chapter discusses the MBA and its role in
allowing communication between the SMI and the MULTIBUS. It describes the I/O Map,
interbus byte swapping, and error handling.

Chapter 11. System Configuration. This chapter shows how to configure the CMPU,
CMM, AFM, and backplane modules to change a basic system configuration. The chapter
describes how to add multiple CPUs, additional memory modules, and multiple MULTIBUSs.

Chapter 12. The EPROM Bootstrap. This chapter discusses the MASSCOMP bootstrap
code, powerup hardware initialization, diagnostic testing, and reading the boot block during
powerup. It also includes the descriptions and physical addresses of the entry points of call-
able subroutines. The communication protocol between the CMPU and AFM is described to
allow customers to access the NVRAM.

Chapter 13. The Console. This chapter discusses the console command set, syntax, and
machine environment, with examples of the console commands included.

Appendix A. Pinouts. This appendix lists the pinouts for cables and primary module con-
nectors in the system.

Appendix B. Specifications. This appendix provides the mechanical, electrical, environ-
ment, and expected performance specifications for all packages.

Appendix C. DUART Specification This appendix reproduces the specification sheet for
the DUART chip, which has various programmable features.

Index.

Related Information

o The System Management Guide supplied with your system explains the range of
system managerial responsibilities.

e The Diagnostic Monitor User’s Manual describes how to use the Diagnostic Moni-
tor program with your system.

e The MC68020 82 Bit Microprocessor User’s Manual published by Motorola
explains how to program the microprocessor used on the MC5600/5700 processor
module.

¢ The Bipolar Microprocessor Logic and Interface Data Book describes the operation
of the EDC chip on the CMM module. It is available upon request from
Advanced Micro Devices, 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA

MC5600/5700 System Reference Manual Preface

94088 TEL:(408)732-2400.

o The Motorola MC146818A Specification Sheet describes the operation of the Time
of Day chip used on the AFM. It is available upon request from Motorola Sem-
iconductor Products, 3501 Ed Bluestein Blvd., Austin, TX 78721.

A complete listing of manuals available from MASSCOMP is contained in the Guide to
MASSCOMP Documentation. For a copy of this document, see your MASSCOMP sales
representative.

Conventions Used in this Manual

Fonts and Characters

Italics are for file and directory names, command names, and variable parameters in
command lines. The parameters are described in the text following the com-
mand lines.

Constant Width
is for computer generated output, constant fields in command lines, and pro-
gramming examples.

Constant Width Bold
is for literal user input.

Bold is used within the text for referring to command options or arguments, or for
introducing new terms.
Terms
System refers to a computer system and is equivalent to computer or host. It

does not refer to a specific MASSCOMP computer.

Programmer is a person writing low-level programs, such as operating system or device
driver code.

System Manager

is the person with overall responsibility for the installation and mainte-
nance of the MC5600/5700 at a particular installation.

User is a person who uses the MASSCOMP-supplied software applications only
and does not perform system management.

Data sizes

Nibble 4 bits.
Byte 8 bits.
Word 16 bits.

Longword 32 bits.
Quadword 64 bits.

All hexadecimal numbers are written using the standard C prefix Ox. The hexadecimal number
F70000 is referred to as OxE70000.

MC5600/5700 System Reference Manual

Chapter 1

System Overview

1.1 Introduction
1.2 System Buses

1.3 CMPU Module
1.3.1 68020 Microprocessor
1.3.2 Memory Management
1.3.3 The Cache
1.3.4 Interrupt Processing
1.3.5 Local Devices
1.3.6 The Buffered DAL Bus
1.3.7 MULTIBUS Adaptor
1.3.8 Floating Point Interface
1.3.9 Flush Logic

1.4 Memory Module

1.5 Auxiliary Function Module
1.5.1 Bus Arbitration
1.5.2 CMPU Serial Interface
1.5.3 Initialization Circuit

1.5.4 Termination Networks
1.5.5 Bus Clocks

1.6 Multiprocessor Systems
1.7 MULTIBUS Controllers

1.8 STD+ Data Acquisition Devices

ILLUSTRATIONS

No.

1-1 An MC5600 Pedestal Package

1-2 The MC5600/5700 System

1-3 The CMPU Module

1-4 Auxiliary Function Module

1-5 A Multiprocessor MC5700 System

Page
1-1
1-4

1-5
1-6
1-7

1-8
1-8
1-8
1-9
1-9
1-10

1-10

1-10
1-12
1-12
1-12
1-12
1-13

1-13
1-15

1-16

Page

1-2
1-3
1-6
1-11
1-14

MC5600/5700 System Reference Manual

Chapter 1
System Overview

This chapter gives an overview of the MC5600/5700 architecture. Most elements of the system
are only briefly outlined and are developed in detail in later chapters that are referenced where
appropriate. This chapter serves as both an introduction to the machine and as an index to
topics covered in later chapters.

1.1 Introduction

The MC5600/5700 system is a high performance computer designed around the 32-bit 68020
microprocessor architecture. It is designed with multiprocessing capabilities that distribute
tasks using symmetric processing techniques.

The system achieves high I/O throughput by using multiple I/O buses. The proprietary high-
bandwidth system memory bus also facilitates this high throughput, as well as supporting
tightly-coupled multiprocessing.

The CPU module architecture extracts the maximum performance from the 68020 by imple-
menting various performance enhancements, such as a data cache, memory management
hardware, and a write buffer between the processor and memory bus. The system also has
integrated floating point arithmetic capability through the use of a floating point coprocessor
(MCe68881) or floating point accelerator module.

Finally, the system packages are flexible enough to allow peripheral expansion that is commen-
surate with the processing power. Systems may be configured to fit a wide variety of applica-
tions and processing requirements.

Figure 1-1 shows a typical MC5600 package (pedestal shown).

1-1

System Overview MC5600/5700 System Reference Manual

\——— MODULES

- CARD CAGE

BACKPLANE

Figure 1-1. An MC5600 Pedestal Package

The heart of the system is the group of printed circuit boards, or modules, that slide into the
system’s card cage. The back of the card cage is called the backplane, which is itself a

printed circuit board holding several of the system buses. All the modules communicate infor-
mation over these buses on the backplane.

MC5600 systems can be housed in one of three types of packages (pedestal, tabletop, and rack
mount). Each MC5600 package uses one card cage containing two or three system buses.

MC5700 systems are housed in one type of package (wide cabinet) and typically use two card
cages, forming a backplane with between three and five system buses. Although understanding
a large MC5700 configuration can appear prohibitively complex, its architectural building
blocks are the same as those in the smaller MC5600 systems. The only difference between the
MC5600 and MC5700 is the expandability of the package.

This chapter describes the major elements of a single processor MC5600/5700 system first.
Section 1.6 describes the elements that are used to expand a system to a multiple bus and/or
multiple processor system.

[
1
N

MC5600/5700 System Reference Manual System Overview

Figure 1-2 shows the logical block diagram for a typical (single processor) configuration for an
MC5600/5700 system.

A

ETHERNET

P e 3

ETHERNE
CONTR.

MULTIBUS >

OATA ACOUISITION DEVICES

1)
-

Figure 1-2. The MC5600/5700 System

The MC5600/5700 system architecture is made up of the following elements:

Three buses (SMI, MULTIBUS, and STD+)

One central processor module (CMPU), including a MULTIBUS Adaptor (MBA)
One or more memory modules (CMM)

An Auxiliary Function module (AFM)

MULTIBUS controller modules (ETHERNET, disk, graphics)

Data Acquisition / Control Processor (DACP)

STD+ Data Acquisition Devices (DA04H, AD12F, and so on)

System Overview MC5600/5700 System Reference Manual

The following sections describe each of these system elements. The overall MC5600/5700
architecture is designed around the three buses, so they are described first.

1.2 System Buses

One of the central design elements of a computer system is its bus structure. A bus is defined
as a collection of interface signals that allow the system’s hardware elements to interact with
each other. This interaction includes memory and Input/Output (I/O) data transfers, direct
memory access (DMA) transfers, generation of interrupts, and so forth.

Most bus structures are built on the master-slave concept, where a master device in the sys-
tem initiates bus activity by taking control of the bus and broadcasting the address of another
device on the bus. The device that detects its own address on the bus becomes the slave and
acts upon the command supplied by the master. This master-slave relationship (or
handshake) allows modules of different speeds to interface over the same bus. Different buses
implement this master-slave concept in various ways, each using a protocol that strictly defines
the activity between master and slave.

The physical address space of a bus refers to the range of logical address values a given bus
can support. The space actually supported by physical memory devices on the bus may be
smaller than the physical address space of the system. Many buses support two independent,
unique address spaces: memory space and I/O space. A bus often has separate control sig-
nals to select each type of space. Memory space is generally used for devices with large arrays
of contiguous memory locations. 1/O space is usually reserved for ports, control and status
registers, and other miscellaneous devices.

The MC5600/5700 system uses three different, independent buses, with various conduits that
facilitate inter-bus communication. These buses are:

e Synchronous Memory Interconnect (SMI) - This MASSCOMP proprietary bus
is used to link all central processors with main system memory devices over a
dedicated high-speed path. The bus is designed to support a multiprocessing
environment, with physical memory uniformly accessible to all processors. The
bus uses a proprietary split transaction protocol that frees up the use of the bus
during memory access time. The SMI is described in Chapter 7.

e MASSCOMP MULTIBUS - This is an industry standard bus with several
MASSCOMP enhancements. This bus is used as the entry channel into the sys-
tem for intelligent I/O controllers handling graphics, mass storage, communica-
tion protocol and also Data Acquisition with the MASSCOMP Data Acquisition
Controller Processor (DACP). One major enhancement is a 32-bit data transfer
mode, added as a superset of the standard MULTIBUS protocol. The MASSCOMP
MULTIBUS is described in Chapter 9.

e STD + - This is another industry standard bus enhanced by MASSCOMP. This
bus is used on the MC5600/5700 exclusively for MASSCOMP data acquisition dev-
ices such as digital-to-analog, analog-to-digital, and parallel I/O modules. The
DACP acts as both the STD+ bus master and the interface device between the
STD+ bus and the MULTIBUS. Note that the STD+ bus uses a separate back-
plane not shown in Figure 1-1. The MASSCOMP STD+ bus is fully described in
the DACP System Programming Manual.

MC5600/5700 System Reference Manual System Overview

These three buses are integrated into the Triple Bus Architecture of the system by means of
two dedicated MASSCOMP devices that serve as inter-bus conduits: the MULTIBUS Adaptor
handles communication between the SMI and the MULTIBUS, and the Data Acquisition Con-
troller Processor handles communication between the STD+ and the MULTIBUS.

1.3 CMPU Module

The MC5600/5700 Multi-Processing Unit (CMPU) Module holds the central processing
resources for the system. As shown in Figure 1-2, this module communicates directly both with
memory devices on the SMI and with peripheral controllers on the MULTIBUS. The module
contains both the central processor circuitry, with its associated performance enhancements,
and the MULTIBUS Adaptor circuitry. The MULTIBUS Adaptor (MBA) acts as a separate SMI
device through which all MULTIBUS communication passes. The system architecture allows
multiple CMPU modules to operate simultaneously, sharing the SMI bus and its memory dev-
ices as well as the use of any MULTIBUS Adaptor on the system.

System Overview MC5600/5700 System Reference Manual

Figure 1-3 shows the functional block diagram of a CMPU module.

<26103> <26103> ™
[InvALIDATE]
L__STAck |
<27112> [PCRA] {PCRB R
LOCAL BUS
[18 | <710> b3
| BYPASS [P REG) <
Rl P
TRANSLATION BUFFER | [TocaL v
rL—] T
CONP DECODEL] [epPROM tpo P ' oylofﬂ
SERIAL
: PORTS
KCPU AD <31:00> TAQ {DATA
: J SM]
| sur DAL
reo 19} <31100>

668020 ‘ i
P <11:00>
u T8 DAL <31:00> BUF

Fep CACHE
FPA T e
<11102> 1A DATA INT W
A : STORE VECT .‘_.
° .
°]
S - :
3 <31100>
<07100>
REG
4 cPU DATA <31100> 47
acr >
TBCFR 170 MBUS
NBUS > OATA
ADDR HAP 1 maa <15100>
<23100> 510

Figure 1-3. The CMPU Module

Each part of the CMPU is described in the following section. Figure 1-3 is referenced
throughout this section.

1.3.1 68020 Microprocessor

The 68020 microprocessor uses a non-multiplexed bus with 32 bits of address (CPU AD
<31:00>) and 32 bits of data (CPU DATA <31:00>). It uses 7 levels of interrupts, and, in the
MC5600/5700, can vector to a maximum of 55 unique interrupt or trap handlers. The proces-
sor operates in one of two levels of privilege: user mode or supervisor mode. User mode uses a
subset of the supervisor’s instruction set, and the two modes use two different stack pointers
during operand references. The privilege level is used to control access of user programs to
supervisor-only (usually operating system) areas in memory.

The 68020 is fully described in the Motorola MC68020 $2-bit Microprocessor User’s Manual,
referenced in the preface of this manual. This manual references the Motorola text throughout
when dealing with the details of 68020 operation.

MC5600/5700 System Reference Manual System Overview

1.3.2 Memory Management

Memory management hardware is provided to support the virtual memory operating system
and manage the 4 GByte virtual address space. All 32-bit virtual addresses generated by the
68020 are first translated into 28-bit physical addresses used by the devices on the SMI. The
memory management hardware constructs these translations using a fixed algorithm and 2 lev-
els of page tables that are set up in main memory by the operating system. Once created,
these address translations are loaded into the Translation Buffer (TB) on a demand basis. A
part of the virtual address indexes into the TB, and this indexed location stores the translation
along with an accompanying tag (a slice of the virtual address). Subsequent addresses simi-
larly index into the TB, and the tag bits are compared with the contents of the TB Tag Store
at the indexed location. If the two tags match, the corresponding translation in the TB Data
Store is used as the physical address. If the tags are not the same, a new translation is con-
structed, put into the TB, and used as the new address.

Physical addresses from the TB are put onto a local TB Data-Address Line (TB DAL) bus.
Normally, this bus is used as an intermediate address bus, but it also serves as a data bus
when the TB is being loaded with translations.

The TB may be turned off by writing to the Translation Buffer / Cache Control Register
(TBCCR), a local register used for program control over both the TB and the cache. When
the TB is disabled, the upper 4 bits of the CPU address bus are ignored, causing all 68020 vir-
tual addresses to be treated as physical addresses. The 68020 addresses are then routed
through the TB Bypass buffers, instead of through the memory management circuitry.
Another local register, the Translation Buffer / Cache Flush Register (TBCFR) allows
programmer to flush the TB and/or the cache of data.

Chapter 2 describes in detail the operation of the memory management hardware.

1.3.3 The Cache

The CMPU module uses a high-speed, two-way associative Cache that minimizes the number
of wait states incurred by the 68020 whenever it accesses memory. The CPU may incur a
number of wait states whenever information is read from main memory by way of the SMI.
When an instruction or data is found to be in the cache, the CPU does not need to access the
SMI, and the instruction incurs no wait states. The cache also improves multiprocessor system
performance since it filters out a large fraction of processor memory cycles before they reach

the SMI.

The cache uses a read-allocate, write-through algorithm. Data read from main memory fills
the cache. Data written to memory is checked for its presence in the cache and updated only
if already present. The cache contents are organized as two sets of 512 8-byte entries, for a
total cache size of 8 KBytes. As the CPU processes the retrieved longword (4 bytes), the cache
automatically receives the next longword from main memory. Thus, if the CPU requests the
next sequential word, it is available without delay in the cache.

Since multiple processors may use the SMI and share the same SMI memory resources, memory
locations modified by one processor must be invalidated in the caches of other processors that
may be caching the same data. The Invalidation Stack holds SMI addresses generated by

other processors or I/O devices that are to be checked against the addresses currently held in
the cache. Each of the 1024 cache entries has a status bit used to track whether or not the

1-7

System Overview MC5600/5700 System Reference Manual

associated entry has been invalidated. This tracking feature substantially simplifies the
software that deals with processes that are running concurrently on different CPUs.

The cache is described in Chapter 3.

1.3.4 Interrupt Processing

The MC5600/5700 uses vectored interrupts. The Interrupt Vector Decode circuitry (INT
VECT) is enabled whenever the 68020 begins exception processing. This decode logic produces
a unique 8-bit vector indicating which device or group of devices has generated the interrupt.
Eighteen out of the 256 possible vectors are assigned to MASSCOMP-specific devices or groups
of devices. The interrupt handling hardware is described in Chapter 5.

1.3.5 Local Devices

Each CMPU module has a group of local devices that are accessed privately without using the
SMI bus. Local Decode circuitry checks the TB DAL bus for a physical address referencing
one of the local devices. If the CPU addresses one of these devices, the requested data is sent
to or received from a private 8-bit Local Data Bus.

The local devices include two Processor Control Registers (PCRA & PCRB), which control
various elements of the OCMPU, and two Dual Universal Asynchronous
Receiver /Transmitters (DUARTs PO & P1) configured as 4 serial ports (described in
Chapter 4). Three of these ports communicate with external devices such as terminals,
printers, and modems. The fourth port is used to communicate internally with the Auxiliary
Function Module (AFM). Also, a 64 KByte EPROM (Erasable Programmable Read Only
Memory) contains the system bootstrap code (described in Chapter 12) and the Console code,
used for manual bootstrap and diagnostics (described in Chapter 13).

1.3.6 The Buffered DAL Bus

All addresses not selecting a local device are routed to a 32-bit Buffered Data Address Line
(DAL) bus. This bus is isolated from the neighboring buses with Registered Buffers (REG
BUF).

One of these buffers is a write buffer that enables the 68020 processor to write to devices in
SMI memory space without incurring a wait state. This buffered write feature insures the
68020 is kept running at full speed even during write operations.

Programming control over the write buffer is explained in Chapter 4.

[y
]
Q0

MC5600/5700 System Reference Manual System Overview

1.3.7 MULTIBUS Adaptor

Each MULTIBUS on a system requires an associated MULTIBUS Adaptor (MBA). This circui-
try on the CMPU module acts as the interface between the SMI and that particular MUL-
TIBUS, accommodating differences in control lines, data sizes, and address translations between
the two buses.

One crucial performance consideration in a virtual memory system is the way direct memory
access (DMA) devices transfer data to memory. In a virtual memory system, the largest
number of bytes in physical memory .contiguously addressable in a DMA operation is one 4
KBtye page. If each DMA operation were to be limited to transferring only one page, the mass
storage performance would be greatly impaired. Unless special hardware is provided for mov-
ing noncontiguous physical pages in a single transfer, I/O-intensive applications operate poorly.

The MBA includes an I/O Map that deals with this DMA transfer problem (among other
issues). The I/O Map allows the transfer, in a single DMA operation, of multiple pages that
are not contiguous in physical memory. It thereby provides for efficient I/O between main
memory and peripherals by managing multiple-page transfers.

The 1/O Map has 4096 entries, each mapping one page (4 KBytes). The Map is loaded and
updated by the operating system. The I/O Map may also be changed by intelligent MULTIBUS
devices to allow them to do their own mapping.

The MULTIBUS Adaptor is described in Chapter 10.

1.3.8 Floating Point Interface

Without the use of extra hardware, the performance of the 68020 degrades considerably when
performing floating point operations as compared with integer operations. The MC5600/5700
system has two floating point devices available to speed up floating point operations. The
Motorola MC68881 Floating Point Co-processor chip is standard on the MC5600/5700 and
improves performance by about a factor of 10 over software fioating point routines. The
Floating Point Accelerator (FPA) module supplements the 68881 and improves on 68881
floating point performance by a factor of about three. Both floating point devices physically
mount on the same connector and programs compiled for use with an MC68881 can still be run
with an FPA installed (since the FPA also has an MC68881 onboard). Programs compiled for
an FPA require the presence of an FPA to run on the system.

You can access the MC68881 with coprocessor instructions, as explained in the MC68020 User’s
Manual. You can access the FPA by setting a bit in the page tables used by the memory
management hardware. Chapter 2 explains how to use this floating point interface.

1-9

System Overview MC5600/5700 System Reference Manual

1.3.9 Flush Logic

The cache and TB may be flushed of their contents by setting bits in a control register. The
Flush Logic interprets the data from this register and invalidates the entries in the cache and
TB as appropriate. This flush facility and the control registers are described in Chapter 2.

1.4 Memory Module

The MC5600/5700 memory module (CMM) is the memory array device used for system main
memory. The modules use 256K Dynamic RAM chips and provide a total of two or four
MBytes, with error detection and correction (EDC). The modules may be configured using a
technique called interleaving to achieve maximum throughput. The CMM module is described
in Chapter 6.

1.5 Auxiliary Function Module

The Auxiliary Function Module (AFM) that provides a number of system features, many of
which would be redundant if on every CMPU module in a multiprocessing system. As a result,
the functions performed on the AFM are described in various places in this manual. This sec-
tion gives a brief description of the board and references the chapters where each of the
module functions are more thoroughly described in their appropriate context.

The AFM is not an SMI or MULTIBUS device, but provides general services for the bus and
CPU. The devices on the AFM are not assigned any physical address space or interrupt level.
The AFM communicates directly with the boot CMPU module only (see Section 1.6), using that
module’s serial port P1B.

1-10

MC5600/5700 System Reference Manual System Overview

Figure 1-4 shows a block diagram of the AFM.

[ey e o e seser
s 3 gy o
' AC_LOW NBUS .__J ' AFM :
: DETECT INIT ATTACH _.:
H SERIAL COMM = : DETECT
: t RESET : \
: -3 : o
! INITIALIZATION EPROM : :
: CLOCKS P gERIAL
: WA CPU [o=———>! FoRT P18 |
H osciLL NVRAM i :
: BUS ARBITRATION ‘ : T0
: i ! MASTER
: MBUS svs : CMPU
: ARBITRATION| cLocKkS BATT) i
: s| (= §fz| BUS TERMINATION :
H SM1 - o o zZ owelo H
AARBITRATION = w < - H
: z| |w - —— cix M1 :
: al |8 == TerM| | TERM :

'g E' 4 MULTIBUS .)
C SH1)

Figure 1-4. Auxiliary Function Module

The module is separated into five functional sections: Bus arbitration, CMPU serial communi-
cation interface, bus clocks, termination networks, and reset circuitry. Each of these parts is
briefly described in the following sections.

Note that this section, unless otherwise stated, describes the operation of a fully populated
AFM. A partially populated version of the AFM called the Arbitration Module (ARB) is
also used on MC5700 systems with two 15-slot backplanes. The ARB contains only the MUL-
TIBUS arbitration and termination circuitry. One fully populated AFM is required in every
system, while one ARB is required for the additional 15-slot cardcage. Chapter 11 describes
the AFM/ARB configuration issues in a system.

1-11

System Overview MC5600/5700 System Reference Manual

1.5.1 Bus Arbitration

The AFM arbitrates both the SMI and the MULTIBUS, granting the use of each bus to the dev-
ice issuing the highest priority request. The MC5600/5700 system uses a parallel priority
scheme for the arbitration of both the MULTIBUS and the SMI buses.

In parallel arbitration, each module on each bus has one request line and one grant line associ-
ated with it. All request and grant lines enter the arbitration circuitry of the AFM. The AFM
issues a grant to the device with the highest priority level request. When this request is
removed, the next highest priority request is granted, until all pending requests have been
granted.

Specific bus arbitration issues are further described in Chapters 7 and 9.

1.5.2 CMPU Serial Interface

The AFM contains the Time of Day Clock (TOD) for the system. This clock is continuously
powered, using its own battery backup when system power is unavailable. The device uses
internal 8-bit registers for data storage. The accuracy of the real time clock is a approxi-
mately + 18-20 seconds per month.

The AFM has a dedicated microprocessor for transmitting its data to the boot CMPU and,
through this, to the system. This microprocessor monitors the registers on the TOD to deter-
mine the time of day and day of week, and it also reads and writes to sections of the NVRAM
on command. The NVRAM is used to store default bootstrap variables used in powerup, the
system’s serial number 1.D., and space for optional customer-designed boot code. An on-board
EPROM contains code to run the AFM microprocessor.

Chapter 12 contains programming instructions for accessing the NVRAM during a bootstrap
program.

1.5.3 Initialization Circuit

The AFM contains initialization circuitry that detects system powerup, the RESET switch on
the front panel, power outage, or a RESET instruction from the boot CMPU. The circuit
responds differently in each of these conditions. This circuitry is explained in Chapter 5.

1.56.4 Termination Networks

Termination is provided on the AFM for bus signals that require it (such as the SMI DAL lines
and the system clock signals). At the high data rate of the buses, a delayed signal reflection
may be interpreted as response to the original bus operation signals. To attenuate this
reflection, the signals are terminated with a network of resistors. Termination issues are a
consideration only in system configuration, as explained in Chapter 11.

1-12

MC5600/5700 System Reference Manual System Overview

1.5.5 Bus Clocks

The SMI bus clocks SCLK and ECLK and MULTIBUS clocks BCLK and CCLK are generated
on the AFM. The SMI bus clocks are covered in Chapter 7 and the MULTIBUS bus clocks are
covered in Chapter 9.

1.6 Multiprocessor Systems

The CMPU and SMI bus have been designed to allow two or more CMPU modules to share the
SMI bus and its memory devices. The SMI protocol minimizes the bandwidth used by each
access, allowing for an efficient, tightly coupled multiprocessing environment. A multiprocessor
system may have one MULTIBUS per central processor, with up to 2 MULTIBUSs per MC5600
and 4 MULTIBUSs per MC5700 system.

1-13

System Overview

MC5600/5700 System Reference Manual

Figure 1-5 shows a typical multiprocessor MC5700 configuration, with two processors and two

associated MULTIBUSs.
|=-~| |=-=| |-.-| l=-| P om |
])
< SMI >
EEE £ BT = ST WALTIDUS CONTROLLERS & DEVICES - L e] MATIDUS CONTROLLERS & BEVICES
;"" ’ A, - A,

B ettt |

TYTTTTTY

L;-

= -
T

-

:

4 MULTIBUS 1 > MULTIBUS 2
SATA ACRUISITION SEVICES $ATa acovieiTion Bevices
C STD+ | D ¢ STD+ 2 D

Figure 1-5. A Multiprocessor MC5700 System

Each CMPU in the system is assigned a Processor L.D. value of O through 7, as set on the
CMPU module’s switchpack. These switches set the node I.D. used in SMI transfers for both
the MBA and CPU, and also set the I.LD. number for that MBA’s MULTIBUS. This manual
refers to the MULTIBUS with the same 1.D. as a given CMPU as that CMPU’s associated
MULTIBUS. Note that this term does not imply any limitation to access by other processors.

Each Processor I.D. value (except 0) has been assigned a unique SMI address space for that
processor’s associated MULTIBUS memory and I/O devices, its MULTIBUS 1/O Map, and its
Inter-Processor Interrupt Register (IPIR), used for delegating tasks between processors. A
CMPU module may or may not have an associated MULTIBUS and may or may not use any or
all of the address space it has been assigned. Chapter 11 describes how to disable the MBA
(and its associated MULTIBUS) on a CMPU module.

1-14

MC5600/5700 System Reference Manual System Overview

[3

In a multiprocessor system, one processor must be assigned the task of performing the system
bootstrap, executing the on-board console code if necessary, and loading the operating system
into memory. Since this processor must be able to initialize the entire system during the
bootstrap, it also must have sole authority over the system’s RESET signal. In the
MC5600/5700, this is called the Boot Processor and all other processors in the system are
termed Non_boot processors.

The boot processor has the following properties:

o Its processor I.D. is 1. The code resident in the EPROM on Processor 1 is always

used to boot the system (see Chapter 12). All systems require one CMPU module
to have Processor I.D. 1.

» The boot processor’s fourth serial port (P1B) is attached to the AFM with a
private cable. This communication link gives the boot processor exclusive access
to the following AFM functions:

1. System reset priority. Only the boot processor is able to reset the sys-
tem by asserting its RESET line. This capability is necessary during sys-
tem bootstrap. Non-boot CMPUs cannot reset the system.

2. The Time of Day Clock. This clock is used for time of day operations
and has a battery backup on-board the AFM.

3. The system boot environment. Certain flags used during the bootstrap

are stored on the AFM in Non-Volatile RAM (NVRAM). These flags are
explained in Chapter 13.

4. The Customer Bootstrap Code. The NVRAM on the AF M can also store
customized device drivers for non-MASSCOMP boot devices (see Chapter
12).

With the exceptions noted above of system reset priority and AFM accessibility, all CMPU
modules are equal processors in a MC5600/5700 multiprocessing environment, in that they
have equal access to all devices on the SMI, including all MULTIBUS Adaptors. Each CMPU

module operates independently and, unless noted, uses the same hardware and algorithms
described in the following chapters.

1.7 MULTIBUS Controllers

Because MASSCOMP uses the industry standard MULTIBUS, there are many devices available
on the market that can be easily interfaced to an MC5600/5700 system. The MASSCOMP
MC5600/5700 System Configuration Guide describes how to interface MULTIBUS devices both supported
and unsupported by MASSCOMP.

1-15

System Overview MC5600/5700 System Reference Manual

1.8 STD+ Data Acquisition Devices

The Data Acquisition Application Programming Manual describes both the hardware and
software considerations in using the DACP and STD+ data acquisition devices. The STD+ bus
is not covered in this manual.

Chapter 2

Memory Management Hardware

2.1 Introduction
2.2 The Translation Buffer

2.3 Page Table Engine (TB Miss)
2.3.1 Page Table Algorithm
2.3.2 First Level Direct
2.3.3 First Level Indirect
2.3.4 Second Level Direct
2.3.5 Second Level Indirect
2.3.6 Page Table Formats

2.4 Virtual Address Space

2.5 Secondary Address Spaces
2.5.1 Translation Buffer Space
2.5.2 Diagnostic Space
2.5.3 Processor Register Space

ILLUSTRATIONS
Fig.
No.

2-1 Translation Buffer

2-2 Page Table Levels

2-3 Page Table Algorithm (Direct)

2-4 Page Table Algorithm (Indirect)

2-5 PTE Bit Field Formats

2-6 Division of Virtual Address Space
2-7 TB Space Entry Format

2-8 TBCCR and TBCFR Entry Formats

TABLES

Table
No.

2-1 Access Codes
2-2 Secondary Address Spaces

Page
2-1
2-2

2-4
2-5
2-9
2-9
2-9
2-10
2-11

2-13

2-14
2-14
2-15
2-16

Page

2-3
2-6
2-7
2-8
2-11
2-13
2-15
2-16

Page

2-12
2-14

MC5600/5700 System Reference Manual

Chapter 2

Memory Management Hardware

This chapter describes the memory management hardware on the CMPU module and its impli-
cations for the system programmer. It describes how addresses are translated before being
sent out on the SMI bus, and how these address translations are cached. The division of vir-
tual address space and the secondary address spaces used by the system are also covered.
These spaces include two control/status registers that control both the memory management
hardware and the cache.

2.1 Introduction

The MC5600/5700 is a virtual memory machine. Addresses sent out by the 68020 refer to the
virtual address space perceived by the programmer, which for that microprocessor is 4 GBytes.
However, the MC5600/5700 system’s physical memory space (described in Chapter 8) is only
256 MBytes or less, and can hold only a fraction of the virtual address space at any instant.
Programs, of course, are usually much smaller than the virtual address space, but they may be
larger than the physical memory in the system due to large data arrays, or spread throughout
the virtual space due to conventions of the operating system (OS). Thus, as a program runs
there must be a way to dynamically manage the physical memory space so it appears to be the
same size as the virtual space.

A second consideration in managing memory space is that the system must support a multi-
program environment. The OS must be able to timeslice among many ongoing processes, all
coexisting with the OS code in main memory (given small enough programs). So, memory
management must be able to protect the operating system from being overwritten or tampered
with by any resident user programs. Each user program also must be able to perceive its own
unique 4 GByte virtual space without seeing any other program’s space. For example, the phy-
sical location that Program A sees when it sends out virtual address 0x0 must be different from
the location Programs B or C see when accessing the same virtual address. This is, of course,
unless Programs A and B are sharing the data in a given location. The capability for allowing
multiple access to data must also be accommodated by the memory management.

All of these considerations have been integrated in the MC5600/5700 memory management
hardware design:

* Managing Memory Size. All memory is managed using a technique called
demand paging, where one 4 KByte page of contiguous address space is han-
dled at a time. Pages of program data and text are copied into main memory
only when explicitly referenced by a running process.

When a program is read into physical memory one page at a time, each page’s
virtual address is first mapped to the physical address that is actually used.
Mapping is done by the OS, by dynamically setting up page tables in main
memory. These page tables keep track of the physical location of each virtual
page, with a unique set of page tables kept for each process. Then, each virtual

Memory Management Hardware MC5600/5700 System Reference Manual

address referenced by the running program is translated into a physical
address, using the page tables, and then sent out over the SMI bus. The
hardware that performs this virtual-to-physical translation is called the page
table engine.

e Performance. The memory management hardware uses a performance
enhancement called the Translation Buffer (TB), a high-speed RAM that
stores virtual-to-physical translations. The TB keeps close at hand the address
translations that have most recently been constructed by the page table engine.
Thus, the most frequently used translations do not have to be fetched from
memory and reconstructed on every consecutive access by a running program.

o Multi-program Support. The page tables contain read and write access infor-
mation about each page that is being mapped. The access code is compared
with the permissions given to the running process on every virtual address refer-
ence. Thus, supervisor-owned pages may be protected from access by user pro-
grams.

Also, the TB has been divided into System and Program sections. By writing
to a control register, all TB entries in either section can be invalidated (or
flushed) independently. This allows the OS to divide the virtual address space
into corresponding sections. The translations for the OS can remain in the TB
while different user programs alternately execute on a given CMPU.

e Shared Access to Memory. A separate type of page table (called Indirect)
can be set up to allow different programs to share pages in main memory using
the same page table entries.

2.2 The Translation Buffer

The central element of the memory management hardware is the Translation Buffer (TB), a
1024 x 32 bit high-speed RAM. Each 32-bit Translation Buffer Entry (TBE) contains a
virtual-to-physical translation for a 4 KByte page that has previously been translated and
copied into main memory. Whenever the 68020 puts an address onto its internal bus, the
memory management hardware first checks to see if a corresponding TBE is already at hand in
the TB to translate that virtual address.

« If an entry corresponding to the address is present, a TB Hit occurs. The trans-
lation in the TB is used immediately to convert the virtual address to the proper
physical address. This process is described in this section.

o If an entry corresponding to the address is NOT present, a TB Miss occurs.
The translation is not stored in the TB and must be first constructed from data
fetched from page tables in main memory that have typically been set up by the
operating system. This process is done by the page table engine and is described
in Section 2.3.

2-2

MC5600/5700 System Reference Manual

Memory Management Hardware

The operation of the TB and its associated hardware is shown in Figure 2-1.

VIRTUAL ADDRESS (68020)

r—

=\
31 38 29 20 19 12 1 .
[U | J 'IAB LOWER INDEX DISPLACEMENT J
Lﬂ l L []
)] /
A
TRANSLATION BUFFER (31024 ENTRIES)
T8 TAC TB DATA STORE

122 BITS)

 ZED S Bun S S S un S S S S B Sam San S SIS S S)
.....................

FU W W T T T S S N S U S W Y

PHYSICAL ADDRESS (SM1)

Figure 2-1. Translation Buffer

Each of the 1024 Translation Buffer Entries consists of two parts, the TB Tag Store and the
TB Data Store. The TB Data Store is the address translation, along with various control
bits, that has previously been constructed from software page tables during a previous TB
miss. The TB Tag Store holds the corresponding tag for each translation. The tag is the 10-
bit slice of the virtual address which, along with the index, guarantees an exact identification
of the address. If the tag portion of the virtual address and the Tag Store entry at the
indexed location are the same, the addresses are the same (a TB match).

A virtual address coming from the 68020 is split into four parts by the TB hardware, as shown

at the top of Figure 2-1:

o UI (Upper Index) <31:30> - These bits are used as the upper two address bits

of the TB RAM to index into the 1024-item list. Notice that the upper index
effectively splits the TB into four quadrants. This may be used by software for
separating the virtual space into system and program areas, which may be
independently flushed (see the description of the TBCCR in Section 2.5.3 and the
description of system and program sections in Section 2.4).

Mece ZONDQS. Tha ¢t

LA&E SNaviso - 10€ Vag is compared with the tag rii

@l v\l iva vuv \laub Pc lon Gf t‘.‘le ‘V’:

to determine a TB match. The 16 bit Page Frame Number field in the TB Data

L]
e+
£

Memory Management Hardware MC5600/5700 System Reference Manual

Store at the indexed location replaces the virtual address’ upper 20 bits to form
the complete physical address.

e Lower Index <19:12> - These bits are used as the lower eight bits of the TB
RAM to index into the 1024-item list.

e Displacement <11:00> - This part of the address specifies the location within
the 4 KByte page. These bits are passed through the memory management
hardware untouched and used as the lower part of the final SMI physical
address.

Each TB Data Store entry is composed of the actual translation (or Page Frame Number
(PFN)) and six status bits. On a TB match, the hardware checks the AC, DIF, and M status
bits (described in Section 2.3.6), and if these are in order, a TB hit occurs. The physical
address is put onto the SMI bus and the 68020 instruction cycle continues from the point where
it left off. The C bit is used by the cache as explained in Chapter 3.

Each TB Data Store entry can be accessed directly by the 68020, as described in Section 2.5.1.

2.3 Page Table Engine (TB Miss)

If the TB fails to come up with the physical translation for an address for any reason, the
Page Table Engine is started. The page table engine is the hardware used to construct the
translation for the virtual address requested by the 68020, using Page Table Entries (PTEs)
in main memory. This hardware is not directly accessible to the programmer (except for the
fact that memory management can be disabled as a whole) and so is not shown here in any of
the hardware block diagrams. The page table engine remains in an idle loop as long as each
68020 address cycle generates a TB hit. It will break out of this loop for any of the following
reasons:

o TB Miss - The translation is not present in the TB

o M bit update - The page table engine updates the Modify (M) bit in the PTE
in main memory and in the TBE whenever a previously unmodified page is writ-
ten (see Section 2.3.6).

o Access violation - The access privilege of the 68020 bus cycle does not match
the access code for the page

e A move to or from Diagnostic Space (described in Section 2.5.2)

In any of these cases, the page table engine first inhibits the acknowledge signal to the 68020
read or write cycle. The engine then atiempts to execute the page table algorithm (described
in the next section) and retrieve the new translation. If the algorithm is successful, the page
table engine loads the translation into the TB and allows the 68020 to continue with its
instruction cycle from the point where it left off. If the algorithm is unsuccessful, the engine
restarts the 68020 by generating one of the following signals:

1. BERR - The engine forces a bus error to indicate that a problem has occurred
that the 68020 must handle directly. Any of the following situations generates
a bus error and clears bit <5> in the PCRB:

o Access protection violation - The PTE AC bits deny access to a page
(see Section 2.3.6)

MC5600/5700 System Reference Manual Memory Management Hardware

o Invalid PTE - The I bit in the PTE (described in Section 2.3.6) indicates
that the PTE copied from main memory is invalid

» Nested Indirect - The D bit of an indirect PTE is O, implying that the
PTE points to another indirect PTE (an address) rather than an actual
table (see Section 2.3.3).

o SMI NACK response to a PTE fetch - A memory device is not
responding correctly (Chapter 7 describes the SMI NACK response)

« SMI RERR response to a PTE fetch - Data in a memory device is
corrupted (Chapter 7 describes the SMI RERR command)

o PTE consistency error - The AC bits are 0 (no access or invalid) and
the I bit is 0 (valid).

2. DSACK (Forced) - This is generated in response to a 68020 MOVES instruc-
tion to or from Diagnostic Space (described in Section 2.5.2). If the page table
engine successfully executes the translation algorithm and retrieves the PTEs,
this signal prevents the address from being sent out over the SMI bus.

2.3.1 Page Table Algorithm

The page table engine uses an algorithm that involves two levels of page tables initially set up
by the operating system to map each page in system memory:

* Second Level Page Tables (SLPTs) contain the base addresses to the physical
pages being mapped '

o First Level Page Tables (FLPTs) contain the base addresses to the SLPTs

This two level algorithm minimizes the amount of physical memory needed to keep page tables
for the entire virtual memory space.

Figure 2-2 shows how the page tables are used.

2-5

Memory Management Hardware MC5600/5700 System Reference Manual

SLPT
1

/_

SLPT
2

\ SLPT

TBCCR FLPT

{dbdabiby

Figure 2-2. Page Table Levels

Typically, each time a user process begins execution on a CPU (that is, the context is switched
by the OS), the virtual address associated with the process is first loaded into the Base Page
Frame Number field in the TB / Cache Control Register (TBCCR) (described in Section
2.5.3). This process address points to the FLPT for the running process. A portion of each vir-
tual address of the running program is used to index into this FLPT. Each entry in the FLPT,
in turn, contains a base address that points to an SLPT. A second portion of the virtual
address is used to index into this SLPT. The indexed SLPT entry contains the base physical
address for the actual page in memory. This address, concatenated with the page displace-
ment from the virtual address, is the final physical address that replaces the original 68020 vir-
tual address. This two-stage method allows the most efficient access to the 4 GBytes of virtual
memory space required by each program.

Also, to allow different processes to share portions of the same page tables, each level of the
page table algorithm may be executed as a direct or indirect algorithm:

e A direct Page Table entry contains the physical address of the next table.

e An indirect Page Table entry contains the physical address of the address of the
next table.

MC5600/5700 System Reference Manual Memory Management Hardware

Figure 2-3 shows the direct page table algorithm in detail, and Figure 2-4 shows the full two-
level indirect page table algorithm. Sections 2.3.2 through 2.3.5 describe the algorithms, and
Section 2-5 describes each bit field in each entry. Note that first direct/second indirect and
first indirect/second direct combinations are also allowed.

VIRTUAL ADDRESS

31 2 e 12 11 ®
FL INDEX SL INDEX DISPLACEMENT
A 1 A Y E '] i 'l) 2 Il A ' I:I '] '] '] L Il 1] E Il 4 '] Il 1
} 1 !
TBCCR tesscccsrcccccccce- 3 Semmememmessesse- et
n E L 1) 12 11 : : :
BASE PAGE FRAME NUMBER ; o SYSTEM
L2 4 & A 2 2 2 3 2 .3 2 3 A4 A 2 Aol : :: MEMORY
H [P N
H '
FLPA ' b
L1 20 27 121 ' 210 H ! FIRST
¥ v L) v ¢« ¥ ¥ ¥ ¥ v L v L LJ LJ L v Ld L v L] L v L v L v [' LEVEL
BASE PAGE FRAME NUMBER INDEX olof——— ‘Pace
o SEN T 1 i3 3 PN S WO SN N NG S S S 1 PR W W) A i 2 3 2 E : TABLE
'y
FIRST LEVEL PTE b ! .
»n 28 27 2 543210 [' '
™r— L SN M Jme AEms Jeamn BEun BEE EEN SN e S SR S S Ty L} [} []
FIRST LEVEL PFN RFS M|xjv]|D]|1 = : v y :
4 L L ' A A 'R A 2 [l L 4 A '] A A il 'l il A A i - A : : :
' [] [}
........ P : i
SLPA jmommmmeomemeees '
n 2027 12 11 2 1 0 E SECOND
FIRST LEVEL PFN INDEX ojof———= ‘Face
Il Iy I} L A s s 2 s e 4 2 s 4 ' 'S i A 2 Il s Il 'l A A A 2 : TABLE
[}
(]
SECOND LEVEL PTE : ' ' :
n 2 27 12 11 $ 43210 ! E i
ac |} SECOND LEVEL PFN RFS u|c|ulo|t je—ot— ;
L 1 A 1 A] L A 1 1 4 '] 4 Y A ' y] A ']] Il 1 E :
' '
St i .]]
' ['
n 12 11 Y ° : i
SECOND LEVEL PFN DISPLACEMENT » DATA

FINAL PHYSICAL ADDRESS

Figure 2-3. Page Table Algorithm (Direct)

2-7

Memory Management Hardware MC5600/5700 System Reference Manual

VIRTUAL ADDRESS

3 nn 12 11 (]
FL INDEX SL INDEX DISPLACEMENT
TBCCR R R s T
3 % 2 1 : : :
¥ LA) L v L v ¥ L] L v L L2 v L v L L v L] .
BASE PAGE FRAME NUMBER : b
A] n i A L A i ' 8 A 1 el '} Il s A A A A :] ' SYSTEM
' a0 MEMORY
FLPA b E E —A——
3 w0 1”1 ¥ 210 1o
T LJN A S S S me mum sun aen s aun s Ty HE FIRST
BASE PAGE FRAME NUMBER INDEX 0|0 f—t—t— LPEAVGEEL
b TABLE
FL INDIRECT PTE -
3 . 10 1 ' '
PHYSICAL ADDRESS D1 fu—i—i : ;
A 'S Iy L A A A i 'S A 2 A A e A L 'y 4 i A A Il A - il A 2 : : : :
] " 1])
])
FL FINAL INDIRECT PTE E E '
n 0 12 11 s 43210 I : H
—r—Y T T T T T Y L Em a2 ame s H ' N
FIRST LEVEL PFN RFS M{x|ulo| 1 je—t—i ; E
Adood I U VU VNS WY NN WY W W VN W TN U S S Y U NN W W N [}
S i
b ' '
SLPA S— b
» » 121 2 !
——or vt '
FIRST LEVEL PFN INDEX olof——i—= SESWD
r S W P S W T U D S TN Y VI VN Y U T U W WA S W W N S 1 : “cE
H TABLE
SL INDIRECT PTE H
L) 20 27. 10 | '
L v L L v L] L v v LN 2 v L v Ll v L] L L v L L L] v v LA v - 1
ac |} PHYSICAL ADDRESS D|1}=- . :
A L L i 2 A A A |] i]) 'y A L L A A A A L 'l L A A : :
]
SL FINAL INDIRECT PTE ' '
3 2 27 12 1) 5 43210 H !
4 LJ L] L] L] ¥ L] LA L L L L] ¥ v LJ L] v L v L2 L L] .
SECOND LEVEL PFN RFS M|C|U|D|1 = { E H
I 'l L A A A 'l A A LA Il A 2 L A L AL A A A i L E E 5
............... ") (]
1 ' i
n 1z v ° : :
SECOND LEVEL PFN DISPLACEMENT EEE—— DATA

FINAL PHYSICAL ADDRESS

Figure 2-4. Page Table Algorithm (Indirect)

The page table engine divides the virtual address from the 68020 into three fields: First Level
Index, Second Level Index, and the displacement. These fields are used throughout the
translation algorithm. The stages of the page table algorithm (direct and indirect) are

2.8

MC5600/5700 System Reference Manual Memory Management Hardware

described in the next four sections, followed by a field-by-field description of each PTE.

2.3.2 First Level Direct

In the first step of the translation, the First Level Index (10 bits) and the contents of the BFPN
field (16 bits) in the TBCCR are used to form the First Level Physical Address (FLPA).
The FLPA gives the physical address of the First Level PTE. The lower two bits of the
address are forced to be 0, since each entry in the FLPT is an aligned longword.

The First Level PTE is fetched from system memory and stored in a temporary register. Each
entry is made up of a PFN, a group of status bits, and bits reserved for software, as shown in
Figure 2-5 and described later. These bits are checked in the following order:

o If the I bit indicates that an entry is invalid (that is, the associated page is not
presently in memory), the logic stops and a BERR is generated.

o If the D bit indicates the entry is an indirect entry, the logic jumps to the first
level indirect algorithm (described in the next section).

o The M and U bits are both set to 1 and the modified PTE is written back into
memory. This read/modify/write is an atomic cycle.

Bits <27:12> of the entry (the PFN) are retained for the second level stage.

2.3.3 First Level Indirect

If the D bit in the first level PTE is 0, the entry is used as the physical address in system
memory space to another PTE. The format of a First Level Indirect PTE is shown in Figure
2-5. Bits <27:00> are used as the physical address and bits <01:00> are zero to provide a
longword-aligned address.

The data pointed to by the indirect PTE is fetched and has the same format as the First Level
Direct PTE. The engine now continues the First Level algorithm normally, with one caveat. If
the D bit in this First Level PTE is found to be O (indirect), the process is aborted and a
BERR is generated. This error is called a nested indirect.

2.3.4 Second Level Direct

The PFN from the First Level PTE is concatenated with the Second Level Index from the ori-
ginal 68020 virtual address to form the Second Level Physical Address (SLPA). The SLPA
gives the physical location of the Second Level PTE. Again, the lower two bits of the address
are 0, since each entry in the SLPT is an aligned longword.

The Second Level PTE is fetched from system memory space and stored in a temporary regis-
ter. The format for a Second Level Direct PTE is shown in Figure 2-5. Each entry is made up
of a PFN, a group of status bits, and a section reserved for software, as well as access (AC)
bits that determines if the page is accessible by for this particular process. These biis are
checked in the following order:

2-9

Memory Management Hardware MC5600/5700 System Reference Manual

o If the I bit indicates an invalid entry, the page table engine stops and a BERR is
generated.

o If the D bit indicates the entry is an indirect entry, the engine jumps to the
second level indirect algorithm . (described in the next section)

e The AC bits are checked against the current bus cycle type of the 68020, and
against the I bit for comsistency. If the page’s access code or a PTE incon-
sistency prohibits the operation, the engine stops and a BERR is generated.

e The U bit is set to 1 and the M bit is also set if the 68020 is executing a write
cycle. The modified PTE is written back into memory. This read /modify /write
is an atomic cycle.

The PFN from the SLPT entry is combined with the displacement field from the original vir-
tual address to form the physical address. The SLPT entry is stored in the TB Data Store in
the format shown in Figure 2-7. The tag is stored in the corresponding index in the TB Tag
store. The 68020 instruction cycle is allowed to continue, now generating a TB hit, and the
page table engine returns to its idle state.

2.3.5 Second Level Indirect

If the D bit in the second level PTE is 0, the entry is used as the address to another PTE. The
format of a Second Level Indirect PTE is shown in Figure 2-5. Bits <01:00> in the indirect
entry are O since the address is longword aligned.

The data pointed to by the indirect PTE is fetched from system memory. This table entry is
called Second Level PTE (Final Indirect) and is slightly different from the Second Level
Direct PTE format. Bits <31:28> (AC and DIF) are derived from bits <31:28> in the
indirect entry, rather than the entry from the page table. Again, if the D bit in this Second
Level PTE is found to be O (nested indirect), the process is aborted and a BERR is generated.

The engine now follows the second level direct algorithm normally.

MC5600/5700 System Reference Manual Memory Management Hardware

2.3.6 Page Table Formats

Figure 2-5 shows the bit fields for First and Second Level Table entries for both direct and
indirect addressing.

First Level Page Table Entry (Indirect)

31 28 27 2 1 0
| RFS | Physical Address [p [1 |
First Level Page Table Entry (Direct/Final Indirect)
31 28 27 12 11 5 4 3 2 1
| RFS | PFN_ | RFS IMm| [x]lulbp]| 1]
Second Level Page Table Entry (Direct)
31 29 28 27 12 11 5 4 3 2 1 0
| ac [bprr| PFN I RFS M| clulp | 1]
Second Level Page Table Entry (Indirect)
31 29 28 27 | 2 1 o
[ac | pr | Physical Address [p | 1 |
Second Level Page Table Entry (Final Indirect)
31 28 27 12 11 5 4 3 2 1 0
| RFS i PFN i RFS I M| clulDp]| 1]

Figure 2-5. PTE Bit Field Formats

The fields descriptions of all PTEs are as follows:

AC

Access Code (3 bits). The Access bits indicate the read/write access privilege for
supervisor and user programs to the associated page. Memory management hardware
compares the AC field with the FC and R/W signals of the 68020 to determine the type
of access being attempted. If the running bus cycle does not have access permission to
the page, it causes is called an access violation. Table 2-1 shows the access code assign-
ments.

Memory Management Hardware MC5600/5700 System Reference Manual

Table 2-1
Access Codes
MSB AC 1SB Supervisor User
0 0 0 No Access No Access
0 0 1 Execute No Access
0 1 0 Read/Execute No Access
0 1 1 Read/Write/Execute | No Access
1 0 0 Execute Execute
1 0 1 Read/Execute Read/Execute
1 1 0 Read/Execute Read/Execute
1 1 1 Read/Write/Execute | Read/Write/Execute

Note that the access codes are not implemented in the First Level PTE.
C Cache (1 bit). If this bit is a 0, the data in the associated page is not cached.

Direct/Indirect (1 bit). This bit indicates whether the addressing algorithm used is
direct (D=1) or indirect (D=0).

DIF Don’t Invalidate / Floating Point (1 bit). This bit has a dual function:

1. If the physical address is in SMI memory space (above 0x8000000), setting
this bit to a 1 causes the DI signal on the SMI bus to be a 1 on the
transfer. On write transfers with the DI bit set to a 1, entries in other
processors’ caches are not invalidated against the associated address. The
write transaction will still be used to update the contents of the local
cache on a tag store match. In this case, the invalidation logic on other
processors ignores the transfer and the address is not pushed onto their
respective invalidation stacks. Chapter 3 describes the cache and the
invalidation process.

2. If the physical address is in SMI I/O space (below 0x8000000), setting this
bit to a 1 causes the transfer to be made to/from the Floating Point
Accelerator Module. In this case, no access is made to the SMI.

i~/

1 Invalid (1 bit). This bit indicates that the PTE is valid (I=0) or invalid (I=1). If this bit
is found to be set in a PTE fetched from memory, the engine restarts the 68020 with a
BERR signal.

M Modify (1 bit). This bit is set whenever any data in the associated page is modified.
The page table engine automatically keeps this bit properly updated in both the TB and
the main memory copies of every PTE.

PFN Page Frame Number (16 bits). This field is used to create the upper 16 bits of the
associated physical address.

RFS Reserved for Software. The translation hardware maintains the integrity of these
(and all PTE) bits while manipulating the PTEs.

MC5600/5700 System Reference Manual Memory Management Hardware

Used (1 bit). This bit is set to a 1 whenever the PTE has been used. The hardware logic
keeps the PTE in main memory properly updated.

X Don’t care. These bits are ignored.

2.4 Virtual Address Space

Since the 68020 has 32 address lines, the virtual address space that the processor sees is 4
GBytes. The virtual address space on the MC5600/5700 has been divided into two sections
shown in Figure 2-6, called System space and Program space. The 1024 entries of the TB have
also been partitioned into two sections, with 256 translation entries allocated to the 1 GBtye
System space and 768 entries allocated to the 3 GBtye Program space. This is done by using
the upper two bits of the virtual address as the upper bits of the 10-bit TB index, as described
in Section 2.2.

The advantage of this division from the programmer’s standpoint involves the TBCFR (see
Section 2.5.3). Two bits in the TBCFR allow the Program section {0x0 to OXBFFFFFFF) or the
System section (0xC0000000 to OXFFFFFFFF) of the TB to be flushed independently if needed.
while keeping the translations for the system OS code intact. When all PTEs in the Program
section of the TB are invalidated in this way, the page table engine is forced to construct new
translations, but only for those addresses in Program space. This feature is typically used to
flush the address translations for user programs on an context switch, saving the OS software
considerable overhead.

Upper Index
<31> | <30>
0x00000000
0 0
Ox3FEFFFEFF
0x40000000
0 1 Program Space
(3 GByte)
Ox7FFFFEFEF
0x80000000
1 (1]
OxBEFEFFFF
0xC0000000
1 1 System Space
(1 GByte)
OXFFFFFFFF

Figure 2-6. Division of Virtual Address Space

2-13

Memory Management Hardware MC5600/5700 System Reference Manual

2.5 Secondary Address Spaces

There are three secondary address spaces reserved by MASSCOMP in the MC5600/5700:
Diagnostic, Processor Register, and Translation Buffer space. Each is the same size as
the standard virtual address space. These have been created to allow the programmer to
access special registers without having to use the normal transfer path. The spaces allow the
memory management, cache and SMI decode logic to be bypassed in these transactions.

The secondary address spaces are accessed using the 68020 MOVES instruction, with the 68020
DFC or SFC register (depending on the transfer direction) loaded with the binary code 011.
The Space Modify bits <1:0> in the PCRA register (see Chapter 4) determine which of the
three address spaces is being accessed, as shown in Table 2-2.

Table 2-2
Secondary Address Spaces
PCRA

Bits Space
1 0

p—— e |
0 O | Translation Buffer
0 1 | Processor Register
1 0 | Diagnostic
1 1 | Illegal

Each of these address spaces is described in the following sections.

2.5.1 Translation Buffer Space

The Translation Buffer Address Space is used to directly access entries in the Data Store por-
tion of the TB, essentially treating the TB as a standard RAM device. It is a unique 4 GByte
virtual space that contains only TB entries.

Reads and writes to TB space simulate the normal operation of the TB. The upper and lower
index of the operation’s virtual address are used to index into the 1024 entry TB RAM. A
translation is then directly read from or written to the indexed TB location using the 68020
data bus, in a data format unique to TB space operations.

"The TB space entry format is shown in Figure 2-7.

2-14

MC5600/5700 System Reference Manual Memory Management Hardware

31 29 28 27 12 11 5 4 3 2 1 0
[aAc | pr | PFN | XXX I M | clm]o] x|

Figure 2-7. TB Space Entry Format

The fields in the TB Data Store entry have the same definition as the Page Table Entries
shown in Figure 2-5, except for:

TL TB Hit (bit <2>). This bit is a read-only bit used only when the 68020 is accessing
TB address space. This bit is a 0 when the contents of the TB Tag store matches bits
<29:20> of the referenced virtual address. This bit allows the TB tag stores and
comparators to be tested by diagnostics.

CL Cache Hit (bit <1>). This bit is a read-only bit also used only when the 68020 is
accessing TB address space. The bit is a 0 when any access through TB space gen-
erates a hit in one of the cache tag stores (described in Chapter 3). The address
presented to the cache tag comparators is the PFN field concatenated with displace-
ment bits <11:03> of the virtual address. The CL bit allows the cache tag stores
and comparators to be tested by diagnostics.

On a write, bits <29:20> of the virtual address (the tag) are written into the indexed location
of the TB tag store. The data on the 68020 data bus is written into the indexed location of
the TB data store, in the format shown in Figure 2-7. The MOVES instruction must specify a
longword operand. Note that only the AC, DIF, PFN, M, and C fields in the TBE are imple-
mented on a write. The data in all other fields (including TL and CL bits) are ignored.

On a read, the tag in the indexed TB location is compared with the tag portion of the virtual
address. If they are the same, the TL bit in the TB space entry is a 0. If they are not the
same, the TL bit is a 1. In either case, the entry is put on the 68020 data bus in the format
shown in Figure 2-7, and read using the MOVES instruction.

2.5.2 Diagnostic Space

Diagnostic space is used to verify that the page table engine is working properly. Memory
management hardware should be disabled when accessing this space by writing a 1 to bit <0>
in the TBCCR (see Section 2.5.3). Accessing a virtual address in diagnostic space causes a
translation to bé constructed without actually completing the 68020 bus cycle. The page table
engine loads the new translation into the indexed location in the TB data store. The TB
hardware then generates a forced DSACK and no physical address is presented to the SMI. If
an error occurs, the BERR is asserted as usual.

2-15

Memory Management Hardware MC5600/5700 System Reference Manual

2.5.3 Processor Register Space

A separate space has been assigned exclusively for two registers used in conjunction with the
cache and TB. These registers are the Translation Buffer / Cache Control Register
(TBCCR) and the Translation Buffer / Cache Flush Register (TBCFR). These 32-bit
registers are located within this space as follows:

« TBCFR - The lower half of processor register space (bit <31> = 0)
« TBCCR - The upper part of processor register space (bit <31> = 1)

The fields in each of these registers are shown in Figure 2-8.

Translation Buffer / Cache Flush Register
31 4 3 2 1 0

L XOOKX [For | rco | ¥s | FP |

Translation Buffer / Cache Control Register
31 28 27 12 11 4 3 2 1 0

I xox | BPFN | XXX | Me | AcL | swr | TBD |

Figure 2-8. TBCCR and TBCFR Entry Formats

The TBCFR is a write-only register. The following is a list of the TBCFR fields:

FC1 Flush Cache 1 (bit <03>). Setting this bit to 1 flushes the cache Set 1 (see
Chapter 3)

FCO Flush Cache 0 (bit <02>). Setting this bit to 1 flushes the cache Set O (see
Chapter 3)

FS Flush System section (bit <01>). Setting this bit to 1 flushes the System
section (upper 256 entries) of the TB

FP Flush Program section (bit <00>). Setting this bit to 1 flushes the Pro-
gram section (lower 768 entries) of the TB

XXXX Not used
The TBCCR is a read/write register. The following is a list of the TBCCR fields:

BPFN Base Frame Page Number (bits <27:12>). This field is used in the page
table algorithm to locate the First Level Page Table (see Figure 2-3). This
number is typically loaded into the TBCCR by the OS on context switch.

MBE SYSTEM ERROR (bit <03>). This read-only bit is 0 when the system
error line (labeled MBUS ERROR and described in Chapter 9) has been
asserted. MBUS ERROR is asserted whenever any processor on the SMI is

2-16

MC5600/5700 System Reference Manual Memory Management Hardware

ACL

SWR

TBD

halted.

AC Low (bit <02>). This read-only bit is 0 when the AC LO signal on the
MULTIBUS is asserted.

SW Reset (bit <01>). This read-only bit is a 0 when the INTERRUPT
switch is pressed. The bit is reset to 1 when the switch is released.

Translation Buffer Disable (bit <00>). When this bit is cleared, the
Translation Buffer, page table engine, and memory management logic
become enabled. Clearing this bit also enables the cache if the cache set bits
in the PCRA (see Chapter 3) are enabled. When this bit is set to a 1,
memory management and cache become disabled. In this case, no transla-
tion takes place, effectively causing the machine to treat the lower 28 bits of
all virtual addresses as physical addresses.

2-17

MC5600/5700 System Reference Manual

Chapter 3
The Cache
Page
3.1 General Operation 31
3.2 Cache Structure 3-2
3.3 Cache Operating Modes 34
3.4 Invalidation 3-6
3.5 The C Bit 37
3.6 Cache Flushing 37
ILLUSTRATIONS
Fig.

No. Page
31 The Cache 3-3
TABLES

Table

No. Page
31 Cache Operation 3-2
3-2 Cache Operating Modes 3-5

3-i

MC5600/5700 System Reference Manual

Chapter 3
The Cache

The cache is a high-speed memory buffer that enhances system performance. Studies have
shown that typical programs spend most of their time in a few small routines or tight loops.
Once this code is captured in the high-speed cache, these active code segments can execute
significantly faster than if each instruction had to incur wait states while being fetched from
memory.

This chapter explains in detail the cache, its operating modes, its control/status registers, and
the process of invalidating cached data that has become stale.

3.1 General Operation

The cache is structured similarly to the TB, and operates on physical addresses taken from the
TB. When the 68020 does a read operation, a part of the physical address is used to index into
a list of cache address tags. If the indexed tag matches the remaining portion of the address,
it is called a cache hit. The data cached in the indexed location is put on the internal 68020
data bus, and no fetch operation is initiated on the SMI bus. An acknowledge is returned to
the 68020 to end its cycle.

The MC5600/5700 uses an 8 KByte two-way associative cache structure. A one-way associa-
tive cache structure guarantees that a given memory location is always cached in one unique
slot. Each time a cache slot is filled, the new data always overwrites the previous value cached
in that slot. This cache memory is a single space that wraps around n times, where n is the
cache size divided into the size of the physical address space. The TB is an example of a one-
way associative structure.

Two-way associative mapping uses two sets of memory locations that share the same
address lines. In two-way mapping, a given memory location can be cached in either set,
allowing some flexibility in deciding which set’s old cache value is overwritten. It allows two
memory locations with the same index bits to be simultaneously resident in the cache.

When the requested data value is not found to be in the cache (called a cache miss), the pro-
cessor accesses main memory for the data. Following a cache miss, 8 bytes are brought in from
memory in two successive 32-bit words (the cache uses a 8-byte block size). The portion of the
data requested by the 68020 is presented to its data bus, and all 8 bytes of data are copied
into the cache. Cache logic determines which set of cache locations to use. This process of
adding a new cache entry is called a cache fill.

Data in system 1/O address space (the lower 128 MBytes at physical addresses 0x0000000 to
O0x7FFFFFF) are never cached. Data in the system memory address space (the upper 128

MBytes at physical addresses 0x8000000 to OxFFFFFFF) may be cached, depending on the set-
ting of the Cache bit (or C bit) in the TB of the data’s associated page, as described later.

On 68020 write operations, if the physical address generates a cache hit, the indexed cache
location is updated, as weil as the copy in main memory. This process is called write through

3-1

The Cache MC5600/5700 System Reference Manual

and ensures that the cache is kept current with memory. Writes that do not generate a cache
hit only update memory. Table 3-1 summarizes the cache operation.

Table 3-1
Cache Operation
Operation Hit Miss
Read | D2f2in Fill
cache
. Write- Update
Write Through | Memory Only

The local CPU is not the only device in the system able to write into main memory. Other
SMI devices, such as a MULTIBUS device, a second CPU, or an array processor, may access the
same space. Thus, when a given data value residing both in main memory and the local cache
is changed, the system must modify both copies. The memory location is always updated, but
whether the cache is updated or not depends on what device is writing to the SMI:

e When the local CPU writes to the SMI, both the cache value and the value in
main memory are updated.

« When any non-local SMI device (a MULTIBUS device or remote CPU, for exam-
ple) writes data over the SMI, the corresponding physical address value is loaded
into an invalidation stack. When the 68020 internal address bus is free, the
local invalidation stack logic checks the cache tag stores for any entries match-
ing the addresses in the stack and marks these entries as being invalid. The
invalidation logic then relinquishes control of the internal bus to the 68020. This
is called the cache invalidation process.

The details of the cache implementation are described in the next section.

3.2 Cache Structure

The structure of the cache on the MC5600/5700 system is shown in Figure 3-1.

3-2

MC5600/5700 System Reference Manual The Cache

—<< SM1 ADD LINES

T8 DAL <26.12>

INVALIDATE \4 \
STACK

CPU ADD <02:00>

! '

IND o | STORE
1AG TAG NDEX .
STORE |-»| STORE o] BET 0 |yl SET i
68020 SET 6 SET 1 512 512
@ BYTES @ BYTES
SET 0 HIT _/—x *
o
T8 DAL <28:12>
COMPARATORS

CPU DATA <31:00>

Figure 3-1. The Cache

The cache is implemented with two 512-entry one-way cache sets, called cache set 0 and

cache set 1. Each entry in each cache set is comprised of a 64-bit data store, a correspond-
ing 15-bit tag store and 1-bit V-bit store.

Address bits <11:03> from the 68020 are used as the index to select a location in set O and in
set 1. Address bits <26:12> of the physical address (generated by the translation buffer) are
used as the tag bits. If the indexed location in the tag store of either set contains the same
data as bits <26:12> of the physical address and that entry’s V bit indicates a valid entry, it
is a tag match. The hardware then checks that:

» The operation is not a Read-Modify-Write cycle
o The address is in the upper (system memory) half of the physical address space

o The C-bit is set in the Translation Buffer entry for that page’s translation (see
Chapter 2)

If these conditions are all met, it is a cache hit, and the data in the appropriate set’s data
store is immediately sent to the 68020 data bus. Address bits <02:00> are used to select
which part of the cached 8-byte data is needed by the 68020.

Since the two cache sets use the same index lines, either set is eligible to contain an entry for a
given index. In the case of a cache hit or a write through (where it has been determined that
the data has already been cached), the set select logic enables the appropriate set’s data store.

In the case of a cache fill, set selection is determined by the current values of the two indexed
entries and an internal flip-flop:

The Cache MC5600/5700 System Reference Manual

o If one and only one set’s indexed entry has its V bit set to 0 (an invalid entry),
this location is used to cache the data.

o If the indexed location in both sets have their V bit set to 1 (valid) or to O
(invalid), the internal flip flop is used to select the set. This flip flop toggles on
every 68020 access to SMI physical memory space (above 0x8000000).

This cache fill logic guarantees that a given physical address cannot be cached in both sets at
any one time.

Once the set is selected on a cache fill, bits <26:12> of the physical address are stored in that
set’s tag store. The cache checks address bit <2> to select the 32-bit portion of the quadword
that is requested by the 68020 and puts this data on the internal 68020 bus. The entire quad-
word is stored in the cache data store at the indexed location. Thus, if the next address refer-
ence from the 68020 falls within this quadword (which statistically is often the case), the data
is already available in the cache.

Note that the read part of 68020 read-modify-write operations always bypasses the cache logic.
In these operations, data is fetched directly from main memory and written back through the
cache (that is, the cache is updated if the write generates a cache hit). Also, writes to non-
cacheable pages are written through the cache.

3.3 Cache Operating Modes

Two registers control the cache operating modes: Processor Control Register A (PCRA)
and the Translation Buffer / Cache Control Register (TBCCR). The PCRA contains
three bits that control the cache operating mode. The PCRA is located at physical addresses
0x0080000 - 0xO09FFFF (in the local CMPU device section of SMI device space) and is fully
described in Chapter 4. The TBCCR also contains a control bit that affects cache operation.
The TBCCR is located in Processor Register space and is described in Chapter 2. This section
describes the PCRA and TBCCR bits that specifically pertain to the operation of the cache.

Table 3-2 shows the operating modes of the cache as set by these four control bits.

3-4

MC5600/5700 System Reference Manual The Cache

Table 3-2
Cache Operating Modes
TBCCR PCRA
TBD CDM | EC1 | ECo Mode Description
(L) (H) (L) (L)
<0> <6> <> | <>
%—_
No Read Hits or Fills
X o 1 1 Cache off No Write Throughs
No Invalidation
No Read Hits or Fills
1 0 1 0 SO Tracking Write Through S0
Invalidate SO
No Read Hits or Fills
1 0 0 1 S1 Tracking Write Through S1
Invalidate S1
No Read Hits or Fills
1 0 0 0 S0 & S1 Tracking Write Through SO & S1
Invalidate SO & S1
Read SO Data
. Write SO Data
1 1 1 z S0 Diag Mode Update S0 Tag
& V Bit on Writes
Read S1 Data
. Write S1 Data
1 1 0 1 S1 Diag Mode Update SI Tag
& V Bit on Writes
Read & Write SO & S1
. as specified by Set Seiect iogic
i 1 0 0 S0 & S1 Diag Mode No Tag or V Bit
% — %% updates s ertesa=
Read S0 Hits & Fills
0 1] 1 0 S0 On Write through SO
Invalidate SO
Read S1 Hits & Fills
0 0 0 1 S1 On Write through S1
Invalidate S1
Read SO & S1 Hits & Fills
Write through SO & S1
0 0 0 0]|S1&520n Invalidate SO & S1. Set
: specified by Set Select logic
0 1 X X Prohibited

X =Either1or0

3-5

The Cache MC5600/5700 System Reference Manual

The following is a description of the cache operating modes:

. Cache Off. When the cache is turned off, all requests for data are brought in
from main memory. Hit detection and invalidation functions are not opera-
tional.

« Tracking Mode. Tracking mode keeps cache tag and data entries valid by
writing through, but does not read the cache on hits or fill new entries on cache
misses. All accesses are made to and from memory. Either or both sets may be
selected for tracking mode.

« Diagnostic Mode. Diagnostic mode allows the programmer to read and write
the cache data stores directly, effectively treating the cache as a RAM. When SO
or Sl is selected in diagnostic mode, the data store of the selected set is read or
written over the 68020 data bus.

On a write operation, the tag store portion of the physical address is stored in
the indexed location and the V bit is set or cleared, depending on the value of
the CV bit (bit <7>) in the PCRA (see Chapter 4).

If both sets are selected, the tag and the V bit are not updated on write opera-
tions (as they are when one set is selected). The flip flop toggles the set select on
every access into SMI memory space. Thus, writing sequentially through all
cache locations with both sets in diagnostic mode results in alternating locations
in each set being filled. This feature may be used to test the operation of the flip
flop.

« One-Way Associative Mode. Either SO or S1 may be selected (if, for example,
a set is determined to be malfunctioning). In this mode, one set is always
selected and the other is turned off.

e« Two-Way Associative Mode (normal). In normal operation, either set may
generate a cache hit. Cache fills are put into the first invalid set location or, if
neither set’s entry is invalid, a flip flop selects the set. All 68020 write operations
into SMI physical memory generate write throughs in the processor’s own local
cache.

3.4 Invalidation

SMI DAL <28> is the Don’t Invalidate (DI) line, as described in Chapter 7. All SMI write
transaction addresses that are sent with the DI line asserted are entered into the queue for the
invalidation process.

In the invalidation process, the SMI physical address is pushed onto the 4-entry cache invali-
date stack shown in Figure 3-1. The stack then requests control of the 68020 internal bus.
When the 68020 gives up control of its bus, the next address in this stack is put out on 68020
address bits <27:03>. Since the address is physical and needs no translation, the address is
sent by the invalidation logic through TB bypass buffers to the TB DAL lines. If this address
generates a tag match in either cache set, that set’s indexed V bit is cleared. In this case, the
68020 will have to fetch the data from memory on its next access to this address.

3-6

MC5600/5700 System Reference Manual The Cache

If at some point the invalidate stack becomes full, the hardware asserts the invalidate inhibit
line on the SMI (IINH), preventing further writes to memory (except from the page table
engine) until the stack is cleared of addresses.

SMI write transactions with the DIF bit set do not activate the invalidation process. This can
be used by the system programmer to save the processing overhead of the invalidation process,
which causes the 68020 to stall.

Note that the hardware invalidation implementation does not guarantee that the cache tracks
memory updates in real time. The programmer has to carefully coordinate processes using
atomic read-modify instructions to assure correct sharing of data. It must be guaranteed that
data modified by another processor during a critical section of code will be invalidated in cache
before the current CPU gains control of that critical section.

3.5 The C Bit

When the C bit in the Translation buffer entry (see Chapter 2) is O for a given page, any data
accessed from that page is not cached on a write or checked for a cache hit on a read. This is
useful if it is not appropriate to cache data on a specific page.

WARNING

Page Table Entries used to access page tables must have their C bit
cleared. Since the page table engine (described in Chapter 2) does not
honor invalidate inhibits on its write operations, cached PTEs can
become stale in a multiprocessing system.

3.6 Cache Flushing

Either or both cache sets may be flushed by writing to the Translation Buffer / Cache Flush
Register (TBCFR). This register is fully described in Chapter 2 in the processor register space
section. Bit <2> of the TBCFR controls cache set 0 and bit <3> controls cache set 1. When
the 68020 writes a 1 to a a flush bit in the TBCFR, the corresponding cache set is flushed by
clearing the V bits of all of its entries.

3-7

MC5600/5700 System Reference Manual

Chapter 4
CMPU Local Devices
4;1 Processor Control Registers
4.2 Serial Ports
4.3 Buffered Writes
ILLUSTRATIONS
Fig.
No.
4-1 CMPU Local Devices
4-2 PCRA & PCRB Bit Fields
TABLES
Table
No.
4-1 Alternate Function Codes
4-2 Serial Port Pinouts

Page
4-2
4-4

44

Page

4-1
42

Page

43
4-5

MC5600/5700 System Reference Manual

Chapter 4
CMPU Local Devices

Five devices on the CMPU module are local to that processor and are not accessible by other
processors in the system. These are called CMPU Local Devices, and have been collectively
assigned their own physical address range, as described in Chapter 8.

When the processor accesses an address in CMPU Local Device space, internal logic decodes
this address and selects the appropriate on-board device. These local devices use their own
internal byte-wide data path, which is tied to byte O of the buffered DAL data path.

The CMPU Local Devices are:

» EPROM - This 64 KByte Ultraviolet Erasable Programmable Read Only
Memory holds the bootstrap (see Chapter 12) and console code (see Chapter 13).

» PCRA & PCRB - Processor Control Registers A & B are two 8-bit registers
used for various control and status functions on the CMPU module. These regis-
ters are explained in Section 4.1.

* PO & P1 - Two Dual Universal Asynchronous Receiver /Transmitters (DUARTS)
are used for serial ports for communication with terminals, modems, and the
AFM module. These ports are explained in Section 4.2.

The CMPU module also uses a write buffer as a performance enhancement to its SMI interface.
This buffer can be enabled or disabled by writing a control bit in the PCRB, but otherwise its
operation is transparent to the programmer. The programming considerations of the write
buffer are explained in Section 4.3. Figure 4-1 shows the local device section of the CMPU.

Pt
[PcrA] Fcre
LocaL sus|a
<8:0> =3
C =
™
= - hd TO AFM
Lo ?L—E >
DECODE|__| ERE f’?o Pl E SERIAL
l Il — I, PORTS
C T8 DAL <31:00> D

SM]
¥
<31 :0

0>

< BUF DAL

Figure 4-1. CMPU Local Devices

CMPU Local Devices MC5600/5700 System Reference Manual

The following sections describe each local device.

4.1 Processor Control Registers

The processor control registers are two 8-bit read-write registers located at physical addresses
0x80000 (PCRA) and 0xA0000 (PCRB).’
Figure 4-2 shows the bit fields in each processor control register.

PCRA
7 6 5 4 3 2 1 0
cv CDM EC1 ECo AFC SM
PCRB
7 6 5 4 3 2 1 (]

BW | CONS TB sMi | CONS
EN RUN | ERR | ERR | ERR

PID

Figure 4-2. PCRA & PCRB Bit Fields

Processor Control Register A contains the following bits:

SM Space Modify (R/W). Bits <01:00> are used to select the secondary
address spaces (Diagnostic, Processor Register or Translation Buffer
space). The use of these spaces and the SM bit decoding are explained
in Chapter 2.

AFC Alternate Function Code (R/W). Bits <02> and <03> are substi-
tuted for the 68020 function code bits FC1 and F'C2, respectively, when
referencing diagnostic space (see Chapter 2). Table 4-1 shows how these
bits are decoded.

4-2

MC5600/5700 System Reference Manual CMPU Local Devices

ECo

EC1

CDM

Table 4-1
Alternate Function Codes
Bit <3> Bit <2> Description
0 1] User Data
0 1 User Program
1 0 Supervisor Data
1 1 Supervisor Program

Enable Cache Set 0 (R/W). Clearing bit <4> enables cache set 0 (see
Chapter 3).

Enable Cache Set 1 (R/W). Clearing bit <5> enables cache set 1 (see
Chapter 3).

Enable Cache Diagnostic Mode (R/W). Setting bit <6> to a 1
enables the cache to be in diagnostic mode (see Chapter 3).

Cache Valid (R/W). Bit <7> is used only when the cache is in
diagnostic mode (see Chapter 3). When this bit is set, the V bit in the
cache data store is set on writes into the cache.

Processor Control Register B contains the following bits:

PID

CONS ERR

SMI ERR

TB ERR

CONS RUN

BW EN

Processor L.D. (Read Only). Bits <02:00> are set with switch SW1 on
the CMPU module (see Chapter 11). Setting the processor I.D. sets up
the physical address assignments for that processor’s MULTIBUS memory
space, I/O space, IPIR, and I/O maps, as described in Chapter 8. Set-
ting the processor ID. to 1 defines that CMPU as the boot processor in
a multiprocessing system. Bit 0 is the LSB of the I.D.

Console Error (R/W). Bit <3> controls the (yellow) ERROR LED on
the CMPU module. When this bit is cleared, the LED is turned on and
MBUS ERROR signal is asserted. Since the MBUS ERROR signal is a
wire OR’d (open collector) signal, this signal is asserted when bit <3> in
the PCRB on any processor in the system is a 0. This condition causes
the FAULT LED on the front panel to turn on.

SMI Error (Read Only). Bit <4> is a 0 when an SMI access by the
68020 receives a NACK or a RETURN ERROR response (see Chapter
7).

TB Error (Read Only). Bit <5> is a 0 when the page table engine
encounters any error (see Chapter 2).

Console Run (R/W). Writing to bit <6> controls the (green) run LED
on the CMPU module. When a 1 is written to this bit, the LED turns
on.

Buffered Write Enable (R/W). When bit <7> is set to & 1 {(and
memory management is enabled by writing the TBCCR, as explained in
Chapter 2), all writes to SMI memory space are buffered by the internal

43

CMPU Local Devices MC5600/5700 System Reference Manual

SMI bus interface logic (see Section 4.3). If a buffered write interrupt is
detected, this bit must be cleared to O and then set to 1 to clear the
interrupt (see Chapter 5).

4.2 Serial Ports

The two DUARTSs on the CMPU module provide serial interfaces to:

1. The three RS-232-C ports on the system back panel (POA, POB, and P1A) used
to communicate with external devices, such as terminals, printers, and modems.

2. The TTL level port used to communicate with devices on the Auxiliary Func-
tion Module, including the NVRAM containing bootstrap defaults, customer
boot code, system serial number, and time of day clock.

The DUARTSs are two Signetics 2681 chips, each of which features two asynchronous serial
ports, a programmable baud rate generator and a 16-bit programmable counter/timer.
Address bits <03:00> may be used by the programmer when accessing a DUART to use vari-

ous functions and internal registers on the chip. For more information on the operation of the
2681 chip, see Appendix C.

Port A & B on DUART 0 and Port A on DUART 1 are buffered for standard RS-232-C signal
levels. A cable (at CMPU connector P3) connects the three ports to the connector distribution
board on the system back panel. The fourth port (Port B on DUART 1) is used to communi-
cate with the Auxiliary Function Module and uses unbuffered TTL level signals. A separate

cable (at CMPU connector P4) ties this port to the AFM. See Chapter 12 for a description of
the communication protocol used over this link.

Table 4-2 below gives the pinouts for each of these ports, including the 2681 signal names and
the pinouts on both CMPU module connectors and system back panel connectors.

4.3 Buffered Writes

The CMPU module uses a write buffer that enables the 68020 processor to write to SMI
memory without incurring a wait state. The SMI interface logic buffers the data and address
on 68020 write cycles into SMI memory space. The interface logic asserts DSACK to the
68020 and then handles the SMI protocol involved in completing the transaction. Buffered
writes do not occur in write transactions into SMI 1/O space.

The buffered write feature is enabled by setting the BW EN bit in the PCRB (see Section 4.1).

Memory management must be enabled to use the write buffer. This is done by setting the
TBD bit of the TBCCR (see Chapter 2).

An error generated on the SMI during a buffered write (to a non-existent device, for example)
causes a level 7 interrupt (but does not affect the SMI ERR bit of the PCRB). Errors incurred
when performing non-buffered writes and writes into SMI 1/O space by the 68020 cause the
68020 BERR line to be asserted and the SMI ERR bit in the PCRB to be cleared.

4-4

MC5600/5700 System Reference Manual

Table 4-2
Serial Port Pinouts
CMPU Module External Device
DUART 2681 P3 Serial | RS-232-C | Connector | UNIX
Signal | Pin # || Port Signal Pin # Dev
| TXDA 1| TxD 2
RXDA 2 RxD 3
OPO 3 RTS 4
IPO 4 CTS 5
1P4 s || POA | psr 6 tty0
GND 6 GND/RTN 7
IP2 7 DCD 8
OP2 8 DTR 20
0
TXDB 9 TxD 2
RXDB 10 RxD 3
OP1 11 RTS 4
IP1 12 CTS 5
IP5 13 || POB | psr 6 ty!
GND 14 GND/RTN 7
IP3 15 DCD 8
OP3 16 DTR 20
TXDA 17 TxD 2
RXDA 18 RxD 3
OPO 19 RTS 4
IPO 20 CTS 5
1 IP4 a1 || P1A | psr 6 ty?
GND 22 GND/RTN 7
IP2 23 DCD 8
OP2 24 DTR 20
DUART | 2681 P4 Serial TTL AFM UNIX
Signal | Pin # || Port Signal Pin # Dev
RXDB 3 RxD 3
OP1 4 RTS 4
1 IP1 5 P1B CTS 5 Ik
IP5 6 ||(AFM) | DSR 6 ¢
GND 7 GND/RTN 7
IP3 8 DCD 8
OP3 9 DTR 9

4-5

MC5600/5700 System Reference Manual

Chapter 5
Interrupts and Exceptions

5.1 External Interrupts
5.2 Inter-Processor Interrupts
5.3 Bus Errors

5.4 Initialization and Reset Circuitry

ILLUSTRATIONS
Fig.
No.
5-1 IPIR Format
TABLES
Table
No.

5-1 MASSCOMP Interrupt Vector Assignments
5-2 Bus Error Causes

Page
51
5-3
5-4

5-4

Page

53

Page

52
5-4

5-i

MC5600/5700 System Reference Manual

Chapter 5
Interrupts and Exceptions

As described in the MC68020 82 Bit Microprocessor User’s Manual, there are two general types
of exceptions that may divert normal program execution:

« External - interrupts, bus errors, resets, and coprocessor-detected errors gen-
erated by external devices in the system

o Internal - traps and other error-returning instructions, address errors, privilege
violations, breakpoints, and tracing instructions.

This chapter is concerned primarily with how the system handles external exceptions generated
by its various peripheral devices. It also describes how interrupts are handled in a multiproces-
sor environment, and how bus errors and resets are treated by the system. Internal exceptions
and 68020-defined exception vector assignments are described in the 68020 manual.

5.1 External Interrupts

The MC5600/5700 system uses a vectored interrupt scheme. An interrupt (or exception) vector
is a pointer to a location in memory that contains the physical address of a routine used to
handle an exception produced by a specific situation. There are 7 levels of interrupts, with

level 7 having the highest priority, and up to 256 device-assignable interrupt vectors that can
be referenced.

The 68020 has an internal register called the Vector Base Register (VBR) whose contents point
to the base of the 1 KByte exception vector table in system memory. This table contains the
256 exception vectors used by the system. All exception vectors are one longword in length,
except for the RESET vector, which is two longwords in length.

The vector offset is the number added to the VBR value to index the exact location in the
vector table for an interrupting device handling routine address. A specific vector offset has
been assigned to each interrupting device for each interrupt level. The exception to this rule is
that all MULTIBUS devices at a given interrupt level are collectively assigned onme vector.
When a given device generates an interrupt at a given level and the processor enters exception
processing, the interrupt vector decode circuitry puts a code corresponding to this unique vec-
tor offset (the vector offset divided by 4) onto 68020 data lines <07:00>. The 68020 then adds
the offset (the vector code times 4) to the VBR value and fetches the address of the interrupt
handler pointed to by the vector. The processor then executes the handler at this address.

The MC68020 32-Bit Microprocessor User’s Manual has assigned vector offsets internal to the
microprocessor. It has also assigned offsets 0x100 - Ox3FC to be used for user-defined inter-
rupts. Within this range, MASSCOMP has defined its own specific vectors. Table 5-1 lists these
MASSCOMP-defined interrupts and the corresponding vector offset added to the VBR.

5-1

Interrupts MC5600/5700 System Reference Manual

Table 5-1
MASSCOMP Interrupt Vector Assignments

ILevel | Device l Offset I Device I Offset ”Device Offset _ Device Offset
7 |[sWI7or 3E0 || IPI7 | 3E4 ; 3E8 - 3EC
PFI or BWI
s MBI6 3co || 116 | 3c4 [[Dpuie | 3cs |/Duis and P16 | 3CC
5 MBI5 3A0 || 1P15 | 3A4 [Duis | 3As || DUIs and IPI5 | 3AC
4 MBI4 380 || P14 | 384 - 388] 38C
3 MBI3 360 || IPI3 | 364 . 368 - 36C
2 MBI2 340 || IPI2 | 344 - 348 - 34C
1 MBI1 320 || 1P | 324 : 328) 32C

The device type abbreviations in Table 5-1 are:

o BWI - Buffered Write Interrupt. When the Write buffer write is enabled (see
Chapter 4), an error incurred by the SMI bus interface logic generates this inter-

rupt. To clear this interrupt, you must disable and then enable the Write Buffer
feature (see the PCRB in Chapter 4).

o DUI - DUART Interrupt. DUI5 is DUART 1 and DUI6 is DUART 0.

o IPI - Inter-Processor Interrupt. Inter-processor interrupts are described in Sec-
tion 5.2.

o MBI - MULTIBUS Interrupt. Any device on the associated MULTIBUS generates
this interrupt. MULTIBUS lines MBUS INT 1-6 generate MBI1 - MBI6 respec-
tively.

o PFI - Power Failure Interrupt. This interrupt occurs when MBUS AC LO is
asserted by the system’s power supply circuitry, indicating that primary power is
about to be lost (see Section 5.4 for a description of the AC LO detect circuitry
on the AFM). The ACL bit of the TBCCR is also cleared when this type of
error occurs (see Chapter 2).

SWI - Software Interrupt Switch. This is gemerated when the INTERRUPT
switch on the front panel has been pressed. The SWRbit of TBCCR is also
cleared when this type of interrupt occurs (see Chapter 2).

Vector addresses with no assigned device (indicated in Table 5-1 by the dash (-) symbol) should
never be returned if the CMPU logic is functioning properly. However, if you are writing inter-

rupt handling code, it is good practice to send these vectors to the unexpected interrupt
handler.

52

MC5600/5700 System Reference Manual Interrupts

5.2 Inter-Processor Interrupts

The Inter-Processor Interrupt Register (IPIR) is an internal register on each CMPU module. In
a multiprocessor environment, this device allows any processor to interrupt another processor
on the SMI. Also, a processor can write to its own IPIR as a means of scheduling software
processes.

When a given processor’s IPIR has been written, an interrupt to that processor is generated.
The level of the interrupt is determined by the new contents of the register. Each processor
uses the IPIR vector offsets shown in Table 5-1 (added to the VBR), to fetch the appropriate
address of the inter-processor interrupt handler. The interrupt will not be cleared until the
appropriate bits in the IPIR are cleared.

The IPIR address space assigned to each processor is described in Chapter 8 and is determined
by the processor I.D. set on switch SW1 on each CMPU module. Each processor’s IPIR has
8192 redundant locations (the lower 15 address bits of the IPIR are not decoded). The IPIR
must be written as a longword operand using the format shown in Figure 5-1.

31 8 7 6 5 4 3 2 1 0
| | XX [17 |18 |15 [se [13 [1a [0 [P |

Figure 5-1. IPIR Format

The following are the IPIR field descriptions:

XX = Not Used

I7 = Affect Level 7 IP interrupt
I8 = Affect Level 8 IP interrupt
I5 = Affect Level 5 IP interrupt
I4 = Affect Level 4 IP interrupt
I3 = Affect Level 3 IP interrupt
I2 = Affect Level 2 IP interrupt
I1 = Affect Level 1 IP interrupt
FN = Function (1 = Sets interrupt; 0 = Clears pending interrupt)

The FN bit determines how I1 through I7 are interpreted. For example, when FN is set to 1,
a 1 in the I1 position sets a Level 1 inter-processor interrupt. A 0 in the FN position and a 1
in the I1 position clears a pending Level 1 interrupt.

§-3

Interrupts MC5600/5700 System Reference Manual

5.3 Bus Errors

Table 5-2 lists the possible causes of bus errors in the MC5600/5700 system, signaled to the
68020 when it is running a bus cycle.

Table 5-2
Bus Error Causes

TB BERR | Page Table engine fault.
This error clears the TB ERR bit of PCRB (see Chapters 2 & 4).
FPA BERR | Bus Error signal from Floating Point Module

PRE BERR | Parity error or non-existent SMI memory device.
This error clears the SMI ERR bit of PCRB (see Chapter 4).

As explained in the 68020 Manual, a BERR generates an exception with a vector offset of 0x8.

5.4 Initialization and Reset Circuitry

The Auxiliary Function Module (AFM) contains initialization circuitry (shown in the AFM cir-
cuit diagram in Chapter 1) that is used in any of the following circumstances:

e System powerup

o Pressing the RESET switch on the front panel

o Power outage

o Assertion of RESET signal from the boot CMPU’s 68020

Since the system bootstrap is invoked in all of these situations, the boot CMPU is given
exclusive access to this circuitry. The cable between the boot CMPU module and the AFM has
three signals associated with the initialization circuitry:

o« AFM Attach Detect - This signal is grounded on the AFM. It indicates to the
CMPU that an AFM is attached, thus designating it the boot CMPU of a sys-
tem.

« BUFF RESET - This buffered signal drives the 68020 RESET pin on the CMPU
and is asserted during a powerup or when the RESET switch on the front panel
is pressed.

e AFM INIT ALL - This line is driven by the 68020 RESET pin. When the boot
CMPU performs a RESET instruction, it causes the AFM initialization circuitry
to assert MBUS INIT. This signal is chained to all MULTIBUSs on the system
and causes all MULTIBUS devices to be initialized. This signal may also be used
to initialize SMI devices. The duration of MBUS INIT L in this case will be 10
milliseconds The AFM INIT ALL line also resets the microcomputer serial inter-
face logic on the AFM card.

MC5600/5700 System Reference Manual Interrupts

The initialization circuit is used during any of the following conditions:

POWER-UP. When the system powers up, the AFM uses an internal RC circuit to delay the
assertion of the boot processor’s RESET line. This delay is sufficient to assure that the voltage
level has reached the minimum for proper circuit operation before the system is reset. After
this delay, MBUS INIT and the RESET line to all processors is driven low for 500 ms.

RESET /Power failure. The bidirectional AC LO signal on the MULTIBUS is used both to
detect a drop in the power supply voltage and as control signal for the RESET switch on the
front panel of the system. The AC input to the power supply must drop below 90 VAC for at
least 5 milliseconds to trigger AC LO. The assertion of MBUS AC LO, due to either power loss
or the RESET switch being pressed, results in the assertion of the MBUS INIT signal and the
RESET signal on all processors for 500 milliseconds after MBUS AC LO has been deasserted.
The initial assertion of MBUS INIT is delayed by 5 milliseconds.

68020 RESET instruction. When the 68020 on Processor 1 executes a RESET instruction,
the AFM detects the instruction and asserts MBUS INIT for 5 milliseconds. Since the MBUS
INIT lines of all non-boot processors are tied together, this causes all non-boot CMPUs and
their associated MULTIBUS devices to be reset. There is no effect on the RESET line of the
boot CPU. When a non-boot processor executes a RESET instruction, the signal has no effect
on the system.

5-5

MC5600/5700 System Reference Manual

Chapter 6
Memory Module

6.1 General Operation
6.2 Error Handling
6.3 Module CSRs

6.4 Initialization
6.4.1 Interleaving

ILLUSTRATIONS

Fig.
No.

6-1 SCBR & MCR Bit Field Formats

Page
6-1
6-2
6-2

6-4
6-4

Page

6-3

MC5600/5700 System Reference Manual

Chapter 6
Memory Module

The MC5600/5700 Memory Module (CMM) is an SMI device with an array of Dynamic Ran-
dom Access Memory chips (DRAMs) used for system memory. Each CMM module can be
configured to be fully populated (4 MBytes) or partially populated (2 MBytes) using the same

physical board. Since there may be more than one processor using the SMI bus, the CMM
module may be used as shared memory.

This chapter describes the following CMM features:
o General operation
o Error detection and correction

o Two control/status registers (CSRs), used in conjunction with error
detection/correction circuitry and diagnostics

e Initialization requirements

o Interleaving

Configuration information about the CMM module, such as setting interleaving, base address,
slot assignments, and size considerations, is given in Chapter 11.

6.1 General Operation

The CMM module is organized with a 32-bit wide data path and 7 additional check bits
assigned to each longword of data. These check bits provide the module with single bit error
correction and double bit error detection (see Section 6.2). There are 2 or 4 rows (depending on
whether the board is fully or partially populated) of 256 KByte x 1 DRAMs, with 32 + 7 chips
in each row. Thus, each row constitutes 1 MByte of memory plus the associated check bits.

The CMM handles all SMI cycle types, specifically 8, 16, 24, 32, and 64 bit write accesses and

32 and 64 bit read accesses (see Chapter 7). Memory access time on read operations is two
wait states.

Refresh operations on the dynamic RAM chips are performed by the hardware and are tran-
sparent to the software.

The first CMM module must have a starting address of 0x8000000. Chapter 11 describes how
to set the module address and how to add modules.

6-1

Memory Module MC5600/5700 System Reference Manual

6.2 Error Handling

The CMM module is designed to correct all single bit errors and detect all double bit errors.
The error correction logic is built around two AMD Error Detection and Correction Unit
(EDC) chips used on each module. Error correction is based on a 32-bit storage unit, requiring
7 check bits to support the single-error correction and double-error detection.

" On read operations, a single bit error is reported by logging the appropriate information in the
Memory Control Register (see Section 6.3) and by asserting an interrupt line on the SMI, if the
interrupt is enabled. When a double bit error is detected during a 32-bit read, a RETURN
ERROR command is transmitted (rather than RETURN DATA) on the SMI. The corrupted
data is still put onto SMI bus. When a double bit error is detected in the first word of a 64-bit
read, a RETURN ERROR command is transmitted for both words. When a double bit error is
detected in the second word of a 64-bit read, valid data and a RETURN LONGWORD com-
mand is transmitted with the first word and RETURN ERROR is transmitted with the (cor-
rupted) second word.

Writes that are either 8, 16, or 24 bits require that the memory module do an internal read,
followed by a merge of the new data, and finally a 32-bit write back to the memory location
(also called read-and-merge). For longword and quadword write commands, this internal
read-and-merge cycle is not required. Errors that occur during the read of a 68020 read-
modify-write operation are not logged. When a single bit error occurs during the read portion,
a correction is performed before the write. An uncorrectable error causes the write to be
aborted and the contents of memory to be left unchanged. No interrupt is generated by the
aborted write cycle. Any subsequent read of this location will detect the uncorrectable error.

For further information on the EDC chip, see the data book referenced in the preface of this
manual.

6.3 Module CSRs

Two control/status registers (CSRs) are used on the CMM module that are internal to the
Error Correction and Detection chip: the Substitute Check Bits Register (SCBR) and the
Memory Control Register (MCR). The SCBR is a write-only register and the MCR is a
read /write register. Both CSRs only respond properly to longword accesses, and read or write
operations of byte, word, or quadword data sizes produces unpredictable results. The physical
address of each register depends directly on the module’s base address (setting the CMM base
address is explained in Chapter 11). The bit fields in each CSR are shown in Figure 6-1.

6-2

MC5600/5700 System Reference Manual Memory Module

SCBR
31 76 0
XX | pL
MCR
31 24 23 16 15 14 13 12 11 10 9 8 7 6 0
XX PIE M |E| xx |ME RIE | SYN

Figure 6-1. SCBR & MCR Bit Field Formats

The following are the field descriptions for the two CSRs:

XX
DL

DM

PIE

Not Used

Diagnostic Latch. Bits <6:0> correspond to bits <06:00> of the diagnostic latch
in the AMD 2960 chip (see the chip specification). These bits are write-only.

Diagnostic Mode. When address bit <19> is 1, MCR bits <14> and <15> are
loaded as is into bits DMO and DM1 on the AMD 2960 chip, respectively. When
SMI address bit <19> is 0, the code 00 (normal operation) is substituted into the
AMD 2960 chip for a 00, 01, or 10 MCR code. Refer to the AMD catalog refer-
enced in the preface of this manual for more information on how the AMD 2960
chip interprets these codes.

Error. Bit <9> is cleared on any error, correctable or uncorrectable. Once this
bit is cleared, further clocking of bits <23:16> and <10:00> is inhibited. This
ensures that the status of the first error is always held until the software can read
it, even in the event of multiple errors. The bit is set to a 1 on any write to the

MCR.

Interrupt Enable. When bit <13> is set to a 1, the memory generates a level 6
MULTIBUS interrupt for all errors that occur during 32 and 64 bit reads. Errors
during read-and-merge cycles are not posted. Interrupts are inhibited when this bit
isset toa 0.

Multiple (Uncorrectable) Error. Bit <10> is cleared when an uncorrectable
error occurs. The bit is set to a 1 on any write to the MCR. This bit is loaded
using the same rules as the Error bit.

Page In Error. Bits <23:16> contain the value of SMI address bits <19:12> at
the time of the first EDC error. These bits define the physical page containing the
error and are typically used for error logging by the operating system. These bits
are loaded using the same rules as the Error bit.

Row In Error. Bits <8:7> contain the value of SMI address bits <21:20> (non-
interleaved) or <22:21> (interleaved) a¢ the time of an error. These bits give the
binary value of the row number that experienced the error. These bits are loaded

6-3

Memory Module MC5600/5700 System Reference Manual

using the same rules as the Error bit.

SYN Syndrome. Bits <6:0> correspond to the AMD 2960 syndrome bits 18, 8,4,2,1,0,
and X, respectively (refer to the AMD 2960 specification referenced in preface of
this manual). These bits are loaded using the same rules as the Error bit.

6.4 Initialization

This section is for those writing their own bootstrap code. At the time of powerup, the check
words and CSRs contain random Os and 1s. Before normal use of the memory can begin, the
powerup bootstrap must load good check bits and initialize both CSRs. This is done by writing
longwords or quadwords of any pattern (the MASSCOMP EPROM bootstrap code writes all
zeros) to all CMM memory locations with MCR bits <15:14> = 0.

6.4.1 Interleaving

Interleaving is a memory configuration technique for improving memory system throughput
that allows the module to match the SMI bandwidth. A single memory module is capable of
reaching only half the bandwidth of the SMI bus, due to data fetch delays and cycle time. By
interleaving modules, one module is presenting data on the bus while the other is fetching data,
thus achieving maximum use of the bus bandwidth.

In an interleaved configuration, two memory modules of equal size are given the same base
addresses on the SMI bus. The SMI signal ADR <03> is used as the module select line and is
swapped with SMI address line <27>, the highest physical address bit. This causes each con-
secutive quadword address to be physically assigned an alternate module, effectively interleav-
ing the entire available memory space.

Chapter 11 describes how to configure memory modules for interleaving.

6-4

MC5600/5700 System Reference Manual

Chapter 7

Synchronous Memory Interconnect (SMI) Bus

7.1 Split Transaction Protocol

7.2 SMI Signals
7.3 SMI Commands
7.4 SMI Address Field
7.4.1 The CYCLE code
7.4.2 The Size Code
7.4.3 The Don’t Invalidate Bit

7.5 Bus Arbitration

7-1 SMI Address Field

Table
No.

7-1 SMI Signal Descriptions
7-2 SMI Commands

Page
7-1

7-5

7-6
7-7
7-7
7-8

ILLUSTRATIONS

Page

7-6

TABLES

7-3
7-5

7-i

MC5600/5700 System Reference Manual

Chapter 7
Synchronous Memory Interconnect (SMI) Bus

The MC5600/5700 Synchronous Memory Interconnect (SMI) bus is a high-speed bus designed
for maximum data transfer bandwidth. As described in Chapter 1, the SMI is the central bus
connecting all system memory, processors, MULTIBUS Adaptors (described in Chapter 10), and
future high-speed devices, such as array processors. Each processor on an SMI bus can directly
access any other processor’s MULTIBUS Adaptor. A device on a MULTIBUS, by contrast, can

directly interface with only one MULTIBUS Adaptor, and cannot access devices on other MUL-
TIBUSs within the system.

The SMI bus uses a total of 50 signals. The data and address lines are multiplexed on 32 tri-
state lines. A bus cycle is defined as one clock period of 100 nanoseconds. The bus uses two
bus cycles for each 32-bit transfer (one address and one data cycle) and three bus cycles for
each 64-bit transfer (one address and two data cycles).

This chapter describes the following SMI features:
e Bus Protocol

o Signal descriptions

e SMI Commands

. SM] Address control bits
e SMI Arbitration

Note that this chapter gives only an overview of the SMI bus and is not intended as a design

specification. It is provided only as an aid to understanding its role within the entire
MC5600/5700 system architecture.

7.1 Split Transaction Protocol

The SMI uses a communication algorithm called split transaction protocol to arbitrate
between devices on the bus. Any device on the SMI that requires a transfer of data (a CPU,
for example) broadcasts a specific command over the bus and then releases the bus. At some
later time, the device responding to the command (a memory module, for example) may then
itself gain control of the bus in order to complete its part of the transaction. Thus, all devices
on the SMI are eligible to control the bus at any point in time.

This protocol differs from an interlocked protocol, where only certain devices, such as the
CPU module, can control the bus and must control the bus at all times during a given transac-
tion. Split transaction protocol allows a higher bus bandwidth than interlocked protocol, since
no bus cycles are wasted holding the bus while the slave device fetches its data. This means
that this idle bus time is freed up and may be used by other devices that are waiting for the
use of the bus, making bus traffic more efficient. This type of protocol is ideal for a tightly-
coupled multiprocessor system such as the MC5600/5700, where numerous CPUs must share
use of memory resources.

SMI Bus MC5600/5700 System Reference Manual

The following definitions are used throughout this chapter:

« A bus transmitter is any bus device that is controlling the bus (as granted by
the arbitration logic on the AFM described in Section 7.5). In split transaction
protocol, any device on the SMI can become bus transmitter during normal
operation .

« A bus receiver is any bus device not in control of the bus that is able to
respond to the bus transmitter’s command.

e A bus master is any bus transmitter issuing a command requesting a transfer of
data.

e A bus slave is defined as any device that responds to a bus master’s command.
A slave may or may not need to become bus transmitter to complete a transfer,
depending on the type of transfer.

A transaction or data transfer is typically made up of two steps: a master initiates a com-
mand, and the slave responds to the command.

When a bus master device gains control of the bus to initiate a data transfer, it transmits a
command, a self-identifier (called the Node LD.) and an address over the bus. The master
then expects an acknowledgement to be returned on the next cycle indicating that the com-
mand was accepted by a bus slave. In the case of a write cycle, this acknowledgement ends the
transaction.

As soon as the responding slave device is ready with the data (in the case of a read cycle), the
slave requests permission for control of the bus. When the slave has become bus transmitter
per the SMI arbitration requirements, it transmits a command, the node LD. of the master to
which it is responding, and the accompanying data in one bus cycle (or, in the case of quad-
word data, in two cycles).

7.2 SMI Signals

Table 7-1 gives a summary of the SMI signals. All signals are active low. The SMI pinouts are
given in Appendix A.

MC5600/5700 System Reference Manual SMI Bus

Table 7-1
SMI Signal Descriptions

Group Mnemonic Description # bits
Data/Addr | DAL 2z Data / Address Lines 32
CMD =z SMI Command 3
Command NID z Node Identification 5
ACK z Acknowledge 2
REQ Bus Request 1
Arbitration | GNT Bus Grant 1
BUSY Bus Busy 1
MINH Memory Inhibit 1
Inhibits LINH Lock Inhibit 1
IINH Invalidate Inhibit 1
Clocks SCLK System Clock 1
ECLK Enable Clock 1

z = a decimal digit

The following describes the SMI signals:

DAL 2z

CMD 2z

NID =

ACK z

Data / Address Lines (32). These lines multiplex the 32 address bits and 32 data
bits during a bus transfer. Thus, at least two cycles are required per transfer.

SMI Command (3). The command lines are used to indicate the type of operation
and, in some cases, the size of the operand transferred. The commands are
explained in Section 7.3.

Node LID. (5). The node I.D. is broadcast by master devices initiating read
requests or writes. The slave transmits the master’s node I.D. along with a Return
Longword, Error, or I/O Write complete command (see Section 7.3) to complete the
request. Only bus masters are assigned node 1.D.s. The node L.D. for both the CPU
and the MBA are set on the CMPU module (see Chapter 11) by setting its processor
I.D. The logical range of node values is 0 to 31.

Acknowledge (2). The ACK signals are driven by slave devices to indicate to a
bus master device that its command has been accepted. There are four possible
acknowledge responses to a given command:

e NACK (No Acknowledge) - No device responded within the allotted
time

« UACK (Write Unconditionally Accepted) - This code indicates that a
device is responding to a write and no I/O Write Complete cycle
(described later) is to follow. All devices in system memory space
respond to write commands with this code.

o CACK (Write Conditionally Accepted / Read Request Accepted) -
This has one of two interpretations. If sent in response to a Read
Request, this code indicates that the slave device has accepted the

SMI Bus

MC5600/5700 System Reference Manual

REQ

GNT

BUSY

LINH

IINH

request and a Return Longword or Quadword or Return Error com-
mand is to follow. If sent in response to a Write Request to a slave
device in system I/O space, this code indicates that the slave has con-
ditionally accepted the command, and an I/O Write Complete or
Return Error command (described later) is to follow.

e« RETRY (Retry Read/Write (I/O Space only)) - The responding dev-
ice (usually on the MULTIBUS) is busy and the initiator should retry
the transaction. Note that no retries are permitted for devices in
SMI memory space.

Bus Request (1). The bus master drives this line to request control of the bus.
Arbitration logic on the Auxiliary Function Module (AFM) (see Section 7.5) can field
up to 30 discrete request lines for bus control.

Bus Grant (1). The AFM drives this line to grant control of the bus to a device
that has asserted the REQ line. Arbitration on the AFM can grant control of the
bus to one of a maximum of 30 devices (see Section 7.5). Note MBUS BUSY must
be deasserted as a second condition for becoming bus transmitter.

Bus Busy (1). The BUSY signal is asserted by any master during a multiple cycle
transaction and indicates whether the SMI will be busy on the next cycle. In multi-
ple cycle transactions, the BUSY signal is asserted on all but the last cycle. In sin-
gle cycle transactions, BUSY is not asserted.

Memory Inhibit (1). This signal is asserted by a memory device to prevent its
command buffer from being overwritten. This signal is unconditional and is honored
by all bus masters.

Lock Inhibit (1). This signal is asserted by masters who wish to prevent other
masters from performing operations with LINH asserted (called locked operations).
The master must first win control of the bus through the usual arbitration and
honoring any other LINH that is asserted. After winning the bus and asserting
LINH, the bus master is guaranteed that other devices that honor this line will not
use the bus for locked operations as long as it keeps LINH asserted.

The CMPU module asserts LINH while performing read-modify-write cycles, ensur-

ing these operations are atomic by preventing other CMPUs from doing so con-
currently.

MULTIBUS devices that generate MBUS LOCK with a transfer to the SMI cause the
MBA to assert LINH, as long as LINH is not asserted on the bus by another master.
As long as MBUS BUSY is asserted, MBUS LOCK controls SMI LINH. The MBA
logic guarantees that SMI LINH remains asserted to the end of a transaction, even
if the locked transaction on the MULTIBUS completes early. Local MULTIBUS tran-

sactions (between devices on the same MULTIBUS) do not pass MBUS LOCK on to
the SMI LINH line.

Invalidate Inhibit (1). IINH is asserted by the invalidate sequencer when the
cache invalidate stack is about to become full (see Chapter 3). This signal is
honored by all bus masters writing to SMI memory space, and ignored by transfers
to system I/O space. Note that the CMPU page table engine (described in Chapter
2) also ignores this signal, since Page Table Entries are, by convention, not cached.

MC5600/5700 System Reference Manual SMI Bus

SCLK

ECLK

System Clock (1). This signal is generated on the Auxiliary Function Module.
SMI devices clock and enable their components with the falling edge of this clock.
Note the 68020 does not use the SCLK signal, but has its own dedicated clock. The
MULTIBUS clock signal BCLK is derived from and in phase with the same 20 MHz
oscillator used by SMI SCLK.

Enable Clock (1). The enable clock is used exclusively to enable the SMI data
path. The ECLK signal deasserts for approximately 20 nanoseconds as SMI SCLK
is being asserted.

7.3 SMI Commands

This section describes the SMI commands. These commands are sent over SMi lines CMD
<2:0> by the bus transmitter during a transmission cycle. This section is meant only to
briefly describe these SMI terms as referenced in other chapters.

Table 7-2 summarizes the SMI commands.

Table 7-2

SMI Commands
Command Operation
NOP No operation / Stall
RERR Return Error
RTNL - Return Longword

or 1/O Write Longword Complete
RTNW Return Word Data

or 1/O Write Word Complete
(SMI to MULTIBUS only)

RR Read Request (8,16,32, or 64 bits)
WR Write (8,16,24,32, or 64 bits)

The following are brief descriptions of the SMI commands:

NOP

RERR

RTNL

No Operation / Stall. The SMI is idle or a bus transmitter is stalled (a memory
has detected an EDC error, for example, and needs time to correct the error)

Return Error. The transmitting slave device has detected an error in the course
of carrying out the bus master’s command. The type of error involved depends on
the device.

Return Longword / I/O Write Complete. This command is transmitted by a
slave responding to a read request or a write to I/O space.

If the transmitting device is responding to a read request, the command indicates to
the master-receiver (in this case, the device at the Node I.D.) that the accompany-
ing data is the requested size. The CYC bit (described later) in the SMI address

SMI Bus MC5600/5700 System Reference Manual

determines whether the data is 32 or 64 bits.

If the slave is responding to an I/O space write, the command indicates to the mas-
ter that the transmitter (the MULTIBUS Adaptor, for example) has completed the
data transfer that it previously conditionally acknowledged.

RTNW Return Word / I/O Write Complete. This command is transmitted by a bus
slave responding to a read request for more data than the slave can return in one
cycle. The command indicates to the master-receiver (in this case, the device at
the node 1.D.) that the accompanying data is one word.

If the slave is responding to an I/O space write, the command indicates to the mas-
ter that the transmitter (the MULTIBUS Adaptor) could not accept all of the data
but did successfully write the lower 16 bits. The Return Longword and Return
Word commands support dynamic bus sizing of MULTIBUS memory and I/O space
for words versus longwords.

RR Read Request. This command initiates a read cycle. The command requests data
from the slave device at the accompanying address.

WR Write Request. This command initiates a write transaction to the slave device at
the accompanying address.

7.4 SMI Address Field

The SMI bus uses the lower 28 bits of the 32 DAL lines during its address cycle to specify the
physical address. The remaining 4 bits are control bits, as shown in Figure 7-1.

31 30 29 28 27 0
[sz1 | szo | cyc | o | Physical Address |

Figure 7-1. SMI Address Field

All 28 bits of each physical address are transmitted on DAL <27:00> during read requests and
the address cycle portion of writes. During 64-bit read transactions, DAL <02> specifies
which longword of the longword pair to send first. This allows the 68020 request to be satisfied
with the first longword while the cache is filled with the next longword.

The address field control bits are explained in the following sections.

7-6

MC5600/5700 System Reference Manual SMI Bus

7.4.1 The CYCLE code

SMI DAL line <29> is defined as the CYC code. This code defines the number of data cycles
(in addition to the address cycle) that are associated with the accompanying transaction.
When CYC = 0, one data cycle (32 bits or less) is used. When CYC = 1, two data cycles (64
bits) are used.

In write transactions, the data cycle(s) follow immediately after the address cycle. In read
transactions, the data cycles are associated with the Return Longword tranmsaction. In both
Read and Write Requests, the CYC bit specifies whether one or two cycles of data is being
transferred.

7.4.2 The Size Code

SMI DAL lines <31:30> are defined as the size code field, or SZ <1:0> During write transac-
tions with one data cycle, this field specifies which of the four associated data bytes is to be
written. The size code and the address allow for 8, 16, 24, and 32 bit transfers. Data must be
aligned on word boundaries for 16 and 32 bit writes to MULTIBUS devices. The Size Code is
valid only if the CYC bit is 0. In transactions where the CYC bit is 1, SZ1 and SZO are
ignored.

The following data size rules apply to the SMI bus:
o For read transactions in system memory space, transfers may be 32 or 64 bits.

o For read transactions in system I/O space when the master is an SMI device,
‘transfers are either 8, 16, or 32 bits, as specified by the Size Code. The MBA can
also use the RTN DATA or RTN WORD command to define size. An I/O port
that is only 16 bits wide (the MULTIBUS, for example) accepts for writes and
returns for reads only the lower word. It notifies the master of this with the
Return Word command.

o For read transactions in I/O Space when the master is a MULTIBUS device,
transfers may be 8, 16, or 32 bits.

o For writes to memory space, the data size may be 8, 16, 24, 32, or 64 bits. For
the first four of these data sizes, the CYC bit is 0 and the Size Code and the
address determine which of the four is selected.

o For writes to I/O space with the master on the SMI, the size may be 8, 16, or 32
bits. Data sizes of 16 and 32 bits must be on word-aligned address boundaries.

All devices in I/O space can transmit an accompanying Return Longword or Return Word I/O
Write Complete command. This frees devices on the SMI from having to buffer commands. If
a slave in 1/O space is able to handle only 8 and 16 bit writes, the size code must be correct
(with the exception of the MBA). If the master is on the MULTIBUS, the size may be 8, 16, or

32 bits, with the latter two requiring word and longword aligned address boundaries, respec-
tively.

For non-MULTIBUS I/O writes, the restrictions are again device dependent with software and
hardware control.

SMI Bus MC5600/5700 System Reference Manual

7.4.3 The Don’t Invalidate Bit

SMI DAL <28> is the DI (Don’t Invalidate) signal. All SMI write transactions into memory
space with this accompanying bit cleared are passed through the cache invalidation process on
all CMPUs (see Chapter 3). The operating system controls invalidation via the DIF bit in the
second level page table and in the associated TB entries (see Chapter 2). SMI write transac-
tions with the DIF bit set do not activate the invalidation process. This feature allows 68020
cycles normally stolen by the cache invalidation process to be minimized by allowing invalida-
tion to be bypassed.

7.5 Bus Arbitration

The AFM arbitrates the SMI bus traffic, granting the use of the bus to the highest priority
request. The MC5600/5700 system uses a parallel priority scheme for SMI arbitration. A
module’s arbitration level depends on the physical slot in which the module resides. Arbitra-
tion levels are given in Chapter 11.

In parallel arbitration, each module on each bus has one request line and one grant line associ-
ated with it. All request and grant lines enter the arbitration circuitry of the AFM. The AFM
grants control of the bus to the device with the highest priority level request. When this
request is removed, the next highest priority request is granted. ‘

The AFM waits for SMI BUSY to deassert before it asserts SMI GNT to give the next level
priority module mastership of the bus.

MC5600/5700 System Reference Manual

Chapter 8
Physical Address Structure

8.1 System Memory Space
8.2 MULTIBUS Memory Space

8.3 SMI Device Space
8.3.1 CMPU Local Devices
8.3.2 IPIRs and MULTIBUS | /0

ILLUSTRATIONS

No.

81 The SMI Physical Address Space

8-2 SMI Device Space

83 CMPU Local Devices

8-4 1/O Maps, IPIRs, & MULTIBUS I/O Space

Page
83
8-3

83
84
85

Page

82
8-4
85
8-6

MC5600/5700 System Reference Manual

Chapter 8
Physical Address Structure

The physical address space of a system refers to the assignment of devices, registers, and
memory to unique addresses on the system’s primary bus. As described in Chapter 1, the
MC5600/5700 system uses the Synchronous Memory Interconnect (SMI) bus as its primary
high-speed bus to tie together its CPUs, memory, and MULTIBUS Adaptors. The address por-

tion of the SMI bus is 28 bits wide, allowing a total of 256 MBytes that are physically address-
able on the bus.

The 256 MByte SMI address space is divided into sections that are allocated to specific groups
of devices (all the devices on a MULTIBUS, for example). Since there are no control signals on

the SMI that specify separate memory and 1/O address spaces as there are on the MULTIBUS,
the SMI physical address space contains both types of devices.

Note that each address range may or may not have actual physical devices assigned to every

address. For example, there may be only eight 1-byte registers used on a MULTIBUS that has
been assigned 16 MBytes of address space.

The SMI physical address space provides distinct addressing ranges for:
o System memory devices (CMM Modules)
e All future SMI modules (array processors, floating point processors)
e Memory space for each MULTIBUS
o 1/O space and the I/O map for each MULTIBUS
o The Inter-Processor Interrupt Register (IPIR) associated with each CMPU
 Local devices on the CMPU board (control/status registers and the EPROM)
o Control/Status Registers on the CMM memory module

Figure 8-1 shows how the entire MC5600/5700 SMI physicél address space is divided.

8-1

Physical Address Structure MC5600/5700 System Reference Manual

0000000 SMI Devices
OFEEEEF (see Figure 8-2)
1000000
MULTIBUS 1
Memory space
1FFFEFF
2000000
MULTIBUS 2
Memory space
2FFFEEF
3000000
MULTIBUS 3
Memory space
3FFFEEF
System
4000000
MULTIBUS 4 I/o
Memory space
AFFFEFF :
5000000
MULTIBUS 5 t
Memory space
SEEFFEF
6000000 '
MULTIBUS 6
Memory space
6FFFEEF
7000000
MULTIBUS 7
Memory space
7FFEFEF
8000000
System
emory
FEFFEFF

* + A maximum of 4 MULTIBUSs are allowed on an MC5600/5700 system

Figure 8-1. The SMI Physical Address Space

The higher half (128 MBytes) of the physical address space is assigned to the System
Memory Space. Main memory storage devices, such as the CMM module, are located in this
part of the address space, starting at location 0x8000000.

The lower half of the physical address space is assigned to System I/O space. The System
1/O space is further subdivided into seven 16 MByte MULTIBUS memory address spaces and
one 16 MByte SMI device address space that includes address ranges for seven MULTIBUS
1I/O spaces, Inter-Processor Interrupt Registers (IPIRs), I/O maps, CMPU Local Dev-
ices, and also for MASSCOMP internal use. ‘

8-2

MC5600/5700 System Reference Manual Physical Address Structure

The following sections discuss each of these address space subdivisions.

8.1 System Memory Space

The highest 128 MBytes of physical address space are assigned to System Memory, as shown
in Figure 8-1. These addresses are occupied by the CMM module(s) on the system (setting the
CMM base address is described in Chapter 11). System memory device addresses must start at
0x8000000 and be populated contiguously through the highest address that is used (OXFFFFFFF
if all of the space is used). There can be no gaps within the system memory address range.

8.2 MULTIBUS Memory Space

Seven 16 MByte address spaces are reserved for MULTIBUS memory, as shown in Figure 8-1.
Each address range accesses the memory space on the MULTIBUS of the associated processor.
A MULTIBUS memory strobe is generated with each access to this space.

While MASSCOMP supports a maximum of 4 MULTIBUSs on a system, any of the 16 MByte
regions not used as MULTIBUS space may be used for raster memory, array processor memory,
or other similar uses. If you use this space as MULTIBUS memory space, you can access the
entire 16 MByte space without mapping it.

8.3 SMI Device Space

The lowest 16 MBytes of the physical address space (the top section in Figure 8-1) is assigned
to SMI Device addresses. This is a general category for miscellaneous devices. This group of
addresses is subdivided into sixteen 1 MByte address ranges, as shown in Figure 8-2. The SMI
device space contains addresses for the following devices:

CMPU local devices - This space is used for devices that reside locally on the CMPU
module, such as serial ports and CPU control/status registers. See Section 8.3.1

Memory Module CSRs - This space is used for two control / status registers on the CMM
module. These are described in Chapter 6.

Reserved - This 7 x 1 MBtye address range is reserved for future MASSCOMP SMI pro-
ducts.

Customer Devices (6 x 1 MByte) - These six 1 MBtye address ranges may be used for
customer-designed SMI products.

MULTIBUS I/O space, I/O Maps and IPIRs - This space is subdivided into the I/O
space, I/O map and IPIR for each processor. See Section 8.3.2.

8-3

Physical Address Structure

MC5600/5700 System Reference Manual

0000000

OOEFFFF
0100000

Ol1FFEFF
0200000

O8SFFEFF
0900000

OEFFEFF
OF 00000

OFEEEFF

CMPU Local Devices

(see Figure 8-3)

Memory CSRs

Reserved
(7 x 1 MByte)

Customer SMI Devices
(6 x 1 MByte)

MULTIBUS I/0O,
I/O Maps & IPIRs

(see Figure 8-4)

84

Figure 8-2. SMI Device Space

8.3.1 CMPU Local Devices

A number of addressable devices reside locally on the CMPU module. These as a group
have been assigned to the highest 1 MByte address range within the SMI device space that
is shown in Figure 8-2. Each CMPU device has been allocated 128K of this 1 MByte
address space, as shown in Figure 8-3.

MC5600/5700 System Reference Manual Physical Address Structure

0000000 |

EPROM
OO1FFFF ,
0020000

Reserved
OO3EFEF
0040000

DUARTO
OOSEFFEF
0060000

DUART 1
OO7EFEF
0080000

PCRA
OO9FFFF
OOAO000
PCRB

OOBFFEF
00CO000

Reserved
OODFEFF
OOEO000

Reserved
OOFFEFFF

Figure 8-3. CMPU Local Devices

The following are the CMPU Local devices:

EPROM - The Erasable Programmable Read Only Memory stores the Console program
(described in Chapter 13) and the system bootstrap program (described in Chapter 12).

DUART O & 1 - These are the serial ports on the CMPU used for communicating with
the terminals, printers, modems, and the AFM. They are described in Chapter 4.

PCRA & PCRB - Processor Control Registers A & B are 8-bit control/status registers
for the Cache, the Translation Buffer and other CPU-related activities. These registers
are described in Chapters 2, 3, and 4.

Reserved - This space is reserved for future use by MASSCOMP.

8.3.2 IPIRs and MULTIBUS I/O

One MByte of the SMI Device address range shown in Figure 8-2 is subdivided into spaces
for the I/O Map, IPIR and MULTIBUS I/O space for each processor I.D. Figure 8-4 shows
how this section of the SMI Device space (0xOF00000 to OxOFFFFFF) is divided.

85

Physical Address Structure MC5600/5700 System Reference Manual

oporsee | Reserved

or17eEE IPIR 0 Processor 0
or10000 | upeve

0F20000 | MULTIBUS 1/0 1

gg.ggg:g IPIR 1 Processor 1
oo | 1/oMap1

OF40000 | MULTIBUS 1/ 2

g::::g:g IPIR 2 Processor 2
Srenooe | 1/0Map?2

OF60000 | MULTIBUS 1/0 3

gg;g:gg IPIR 3 Processor 3
Sireoco | 1/0Map3

OE80000 | MULTIBUS 1/0 4 1
g::;gzgg IPIR 4 Processor 4
oeoee50 | 1/0 viap

OFA0O0O | MULTIBUS 1/0 5

gg:gg:g IPIR 5 Processor 5
Soeooe | 1/OMaps

OEC0000 | MULTIBUS 1/0 6

gig:ggg IPIR 6 Processor 6
oeooy | 1/0Maps

OFEC00C | MULTIBUS 1/0 7

O Eoone IPIR 7 Processor 7
OFFFEEE I/O Map 7

Figure 8-4. 1/O Maps, IPIRs, & MULTIBUS I/O Space

86

MC5600/5700 System Reference Manual Physical Address Structure

Note that only those processors with their corresponding MULTIBUS Adaptor enabled actually
use their assigned space. Processor I.D. 0 and those processors with a disabled MULTIBUS
Adaptor use only the IPIR section of the space, while the corresponding I/O Map and 1/O
space becomes unusable. The subdivisions for each processor are:

I/O Map - The I/O map is a translation table on MULTIBUS Adaptor portion of the CMPU
module containing 4096 entries. The I/O map is used to translate MULTIBUS-generated
addresses to SMI physical addresses, as described in Chapter 10. This address space is used
for reading and writing the I/O map entries directly.

MULTIBUS I/O - Seven spaces are reserved for MULTIBUS I/O (MASSCOMP supports a
maximum of only four MULTIBUSs). Each MULTIBUS has access to 64 KBytes of 1/O
address space. A MULTIBUS I/O strobe is generated with each access to this space. This
space is generally assigned to control and status registers on MULTIBUS devices. There is
no I/O space allocated for Processor 1.D. 0, since that processor is not, by definition,
allowed an associated MULTIBUS.

IPIR - The Inter-Processor Interrupt Register is a register on the CMPU module used to
coordinate processing tasks in a multiprocessing environment. The IPIR for each processor
responds to 4096 redundant locations (the lower 15 address lines are not decoded). The
IPIR is described in Chapter 5.

87

MC5600/5700 System Reference Manual

Chapter 9
The MULTIBUS
Page
9.1 Conformance to the MULTIBUS Standard 9-2
9.1.1 Non-supported Features 9-3
9.1.2 MULTIBUS Enhancements 9-3
9.2 MULTIBUS 32-bit Block Mode 9-4
9.2.1 Requirements 8-5
9.2.2 General Protocol 9-5
9.2.3 Block Mode Read Protocol 9-6
9.2.4 Block Mode Write Protocol 9-8
9.2.5 Block Mode Timing Specification 9-10
9.3 Bus Arbitration 9-10
ILLUSTRATIONS
Fig.
No. Page
9-1 Block Mode Read Protocol Example 9-6
9-2 Block Mode Read Timing Parameters 9-7
9-3 Block Mode Write Protocol Example 9-8
9-4 Block Mode Write Timing Parameters 9-9
TABLES
Table
No. Page
g-1 MASSCOMP-specific MULTIBUS Signals : 9-2
9-2 Extended Protocol Timing Specification 9-11

MC5600/5700 System Reference Manual

Chapter 9
The MULTIBUS

The MASSCOMP MULTIBUS provides a general purpose I1/O bus for the MC5600/MC5700 Sys-
tem. The bus conforms to the industry standard IEEE-796 MULTIBUS, with MASSCOMP
enhancements that allow up to a 6 MByte/second transfer rate (compared to the standard 2.5
to 3.5 MByte/second). The MASSCOMP implementation of MULTIBUS is a fully compatible
superset of the IEEE-796 standard.

A variety of MULTIBUS processors and controllers are available to support specific I/O devices,
such as disk drives, graphics display terminals, and standard communications protocols such as
RS-232, Ethernet, and X.25.

MASSCOMP has added a dedicated signal to its MULTIBUS that enables 32-bit transfers using a
protocol called Block Mode. This feature is designed to support high-performance DMA dev-
ices, such as MASSCOMP’s Data Acquisition / Control Processor (DACP). When using Block
Mode, a DACP, for example, transfers two consecutive words to memory for each address and
command strobe asserted on the MULTIBUS . At the rate of 2 MBytes/second for DACP
transfers, this mode uses only 35% of the available bus bandwidth. A disk controller with
Block Mode capability and a 2 MByte/second transfer rate could store this data in real-time
and still leave 30% of the MULTIBUS bandwidth available to the rest of the system.

The interface between the MULTIBUS and the SMI bus is called the MULTIBUS Adaptor
(MBA) and is explained in Chapter 10. Each MULTIBUS in the system has available two
independent address spaces, as described in Chapter 8: a 64 KByte /O space and a 16 MByte
memory space. The MBA handles all address translations between the SMI and the MUL-
TIBUS. The MBA, as part of the CMPU module, also passes all MULTIBUS interrupt lines
directly to the CPU. One MULTIBUS is allowed per CPU/MBA, with a maximum per system of
2 MULTIBUSs in an MC5600 and 4 MULTIBUSs in an MC5700.

This chapter covers the following: MULTIBUS topics:
e Conformance to the MULTIBUS standard
e Non-supported MULTIBUS options
¢ MASSCOMP MULTIBUS enhancements

o Protocol and Timing specifications for Block Mode, the MASSCOMP MULTIBUS
32-bit transfer protocol

e Bus Arbitration

The MULTIBUS standard specification referenced throughout this chapter is the Intel publica-
tion MULTIBUS I Architecture Reference Book, copyright 1983.

9-1

The MULTIBUS MC5600/5700 System Reference Manual

9.1 Conformance to the MULTIBUS Standard

The MC5600/5700 CMPU Module is a bus master of the following type:

| Master D16 M24 116 VO L |

as defined in the chapter on Levels of Compliance in the MULTIBUS specification. This compli-
ance designation means that the MC5600/5700 MBA and backplane support 8- and 16-bit data
paths, 24-bit addressing, and non-bus-vectored, level-triggered interrupts. Note that the CPU
converts MULTIBUS nonvectored interrupts to vectored interrupts (see Chapter 5).

Table 9-1 summarizes the MASSCOMP MULTIBUS signals that deviate from those of the stan-
dard MULTIBUS.

Table 9-1
MASSCOMP-specific MULTIBUS Signals

. Standard MASSCOMP
Type Pin Signal Signal Actual Usage
Power Supplies | 9-10 | Reserved 5V Bussed supply
16 BPRO - Not supported
Bus Control 24 INH1 SW RESET INTERRUPT switch detect
26 INH2 MC ERROR System Error Light
29 CBRQ MC CBRQ Slot 1: Private
Slot 2-15: Bussed,Grounded
33 INTA - Not supported
Interrupts 36 INT7 MC LOCK?2 Identical to MBUS LOCK
P 41 INTO | BLOCK MODE | Block Mode control
Power Supblies 77 Reserved MC Reserved Reserved
PP 78 Reserved ACLO AC Low / RESET detect

The MBUS signal mnemonics mentioned here and elsewhere are MASSCOMP names for the
corresponding MULTIBUS signal mnemonics. All MULTIBUS signals are active low unless other-
wise indicated with an H suffix.

The MULTIBUS signals are coupled to the CMPU Module at Connectors P1 and P2. The P1
Connector and 4 signals on the P2 connector of the standard MULTIBUS specification are used
for the MASSCOMP MULTIBUS signals. The remaining P2 connector signals are used by
MASSCOMP for the SMI bus signals (see Chapter 7). The complete list of MULTIBUS signal pin
assignments at Connectors P1 and P2 is given in Appendix A.

The MULTIBUS clock line signals, MBUS CCLK and MBUS BCLK, are both generated by a
crystal-controlled oscillator circuit on the AFM Module. The clock frequency for both of these
signals is:

f=10 MHz

Note that the BCLK and CCLK are 180 degrees out of phase.

9-2

MC5600/5700 System Reference Manual The MULTIBUS

9.1.1 Non-supported Features

The following standard MULTIBUS features are not supported:

¢ Vectored Interrupts - The MC5600/5700 supports only non-vectored interrupts
on the MASSCOMP MULTIBUS. The MULTIBUS interrupt signals INT'1-6 are sent
to the CMPU directly (levels 0 and 7 are not used). Using these, the CMPU
module generates a single vector for each MULTIBUS interrupt level. The proces-
sor must then determine which of the MULTIBUS devices sharing that level has
generated the interrupt. The INTA (Interrupt Acknowledge) signal is not used.
See Chapter 5 for the interrupt vectors assigned to each MULTIBUS level.

The MULTIBUS standard defines INTO as the highest priority and INT7 as the
lowest. The 68020 encodes eight levels of interrupts on its IPLO, IPL1, and IPL2
lines, with level 0 as lowest and level 7 as the highest priority (the opposite of
the MULTIBUS convention). The MC5600/5700 uses the 68020 convention to
prioritize its MULTIBUS lines.

¢ Bus Inhibit - The standard MULTIBUS signals INH1 and INH2 are not sup-
ported.

o Arbitration - Because the MULTIBUS can accommodate more than one master,
the MULTIBUS requires arbitration circuitry, described in Section 9.3. Since the
MASSCOMP arbitration circuitry supports only parallel type (as opposed to

serial) arbitration, the MULTIBUS serial arbitration line BPRO (Bus Priority
Out) is not used.

e Common Bus Request - The standard MULTIBUS signal CBRQ is grounded by
the CMPU module. Slot 1 receives a non-bussed signal (MBUS MC CBRQ H)
from the AFM/ARB Module. This private signal is the logical OR of MBUS
BREQ from slots 2 through 15 and is used by the secondary MULTIBUS repeater
module for arbitration. Note that, because the implementation of CBREQ is

optional, this feature does not constitute a compromise in functionality or perfor-
mance.

9.1.2 MULTIBUS Enhancements

The following MULTIBUS signal lines are enhancements of the standard MULTIBUS:

» BLOCK MODE - This enhancement allows 32-bit transfers over the MUL-
TIBUS. Pin 41 (standard signal INTO) is used by MASSCOMP as this block mode
control signal. Section 9.2 explains the use of this signal.

e MC LOCK2 - Pin 36 (standard INT7) is used by the MBA in the same way that
MBUS LOCK is used (see Chapter 10). This signal allows the GPM & GPH
MASSCOMP graphics modules to perform operations requiring a locked bus. This
signal on the MC5500 is used for bypassing the I/O Map.

e AC LO - Pin 78 (standard RESERVED, bussed) is used by MASSCOMP to
detect the failure of the AC power or the RESET switch on the front panel being

pressed. The section on AFM initialization circuitrv in Chanter 5§ axnlaing how
e vaTovia. MWW VAN EE WiAA 4 RA LVA A&Fiw VAN A IV“J‘IIJ VM“PVVI A4 vAlehluv By

this signal is used.

The MULTIBUS MC5600/5700 System Reference Manual

e SW RESET - Pin 24 (standard INH1) is used by MASSCOMP to sense the
INTERRUPT switch on the front panel.

« MBUS ERROR - Pin 26 (standard INH2) is used by MASSCOMP to activate
the red front panel FAULT LED. The signal asserted when the CONS ERR bit
in the PCRB of any CMPU module has been written with a 1.

9.2 MULTIBUS 32-bit Block Mode

This section describes the MASSCOMP enhancement to the IEEE-796 MULTIBUS called Block
Mode within the context of the MC5600/5700 system. This enhancement allows the transfer-
ring of 32 bits of data per address over the existing MULTIBUS data path.

The motivation underlying this extension is to provide twice the throughput for devices that
implement this protocol, while maintaining compatibility with devices that implement only the
standard 796 specification. The term Block Mode transaction or protocol is used when
referring to 32-bit operations, while standard transaction or protocol is used when referring
to the existing 796 byte and word transactions.

The system uses pin 41 (INTO in the MULTIBUS standard) from the P1 connector as the Block
Mode control signal. A standard MULTIBUS device normally ignores this signal, while
MASSCOMP devices that have Block Mode capability, such as the DACP, use the signal as the
Block Mode control line.

The BLOCK MODE signal is asserted in unison with the address. When the BLOCK MODE
control signal is asserted, the current MULTIBUS transaction is extended to 32 bits of data by
providing two 16-bit data words per address. Block mode is only supported for memory
strobes.

The ADRI1 signal has two functions under Block Mode protocol. First, the value of ADR1 at
the beginning of a transaction determines which half of the associated longword to send first.
Second, ADRI1 is toggled by the master in the middle part of the transaction. During read
transactions, this transition indicates that the second data word should be sent by the slave.
During write transactions, this transition indicates that the second data word should be
strobed by the slave.

In the middle of a cycle, the master flips address line ADR1 to command the other half of the
longword. In a read, the slave senses the ADR1 flip and switches its data to the other word
within the longword. In a write, the master changes ADR1 and the write data simultaneously.
The slave, sensing the ADR1 change, obtains the data and performs the write.

Block Mode protocol differs from standard protocol in several ways. During block mode tran-
sactions:

o The signals that are involved are synchronous with respect to BCLK (as opposed
the normal asynchronous protocol), which introduces some timing relationships
not in accordance with the MULTIBUS specification.

e The timing relationships between memory strobes, XACK and data differ
significantly from those of standard transactions, as described later in this
chapter.

o 32 bits of data are time-multiplexed onto 16 data lines in two 100 nanosecond

MC5600/5700 System Reference Manual The MULTIBUS

(minimum) time slots.

9.2.1 Requirements

At least one Block Mode master device and one Block Mode slave device are required for a sys-
tem to support Block Mode protocol. Slave devices that implement Block Mode protocol must
also support standard word and byte transactions. There is no corresponding requirement for
master devices.

In systems in which both standard and Block Mode slave devices are intermixed, the system
designer must insure that Block Mode transactions are not inadvertently directed to slave dev-
ices that support only standard transactions, since the resultant data transfers will be
unpredictable. The possibility for this type of mismatch exists because a standard slave can be
selected by a Block Mode master, since device selection is based on address. The resultant
handshake appears to complete normally, while actually the proper data transfer does not
occur. A similar situation exists between standard byte and word devices if slaves that sup-
port only byte transactions are allowed in systems that support only word transactions.

9.2.2 General Protocol

A master device performing a Block Mode transaction uses the following protocol:
» It becomes the bus master using the standard 796 Bus arbitration sequence, then

« It Asserts BUSY, BLOCK MODE, BHEN, and ADRn off the next negative edge
of BCLK.

It is possible to do Block Mode transactions in burst mode by keeping BUSY asserted while
many transactions are issued. It is also possible to mix byte, word, and Block Mode transac-
tions under one continuous assertion of BUSY. However, in all the timing diagrams in this
specification, BUSY is shown being asserted and deasserted in unison with BLOCK MODE,
BHEN, and ADRup, since this is the typical case.

9-5

The MULTIBUS MC5600/5700 System Reference Manual

9.2.3 Block Mode Read Protocol

The timing diagrams for a typical Block Mode Read transaction are shown in Figure 9-1 and
Figure 9-2. These figures are referenced throughout this section.

1 2 3 4 5 6 7 8 9 10
BCLK L VO VO e S Ny I | T N
L] 1] 1] 1] 1] 1]]
] 1] [}) L] 1]] L]
BUSY L — ——
1} 1] 1] L] L]]]
BLOCK MODE L —™ N\ : :
SHEN L R Lo
. [} L] L] L])] [}]
ADR (n) -————J([’ ') : : —
(] [] [} [} []) []
] 1] L] [} [} []]]
ADRI K L v L] L] * L]

\

MRDC L

/.

N

cedecedana

XACK L

DAT (n)

PRy X
[PR X
cede oot osde o=

P PR

Figure 9-1. Block Mode Read Protocol Example

MC5600/5700 System Reference Manual The MULTIBUS

pork — LS LI rLririrerieoriorer

BUSY — —
-1 |j=-1BUSY
BLOCK MODE —T —
=3 - tD-BLKMD
BHEN 1 —_
> |- tH-ADRN
ADR(n) ———
ADR1
MROC v —,—
- |-— +D-MRDC
XACK X —t—
> fa— tXAH
DAT (n) N N
L- <> }e-tH-RDAT
> tD-RDAT
+D-ADRN - || je- <>}~ tH~RDAT
14-BUSY | =~ 4D=-XACK -»{ j%- - | @~ ¢+ D-ADR]
£D-BLKMD - bt~ - |- £D-MRDC 4D-RDAT o js-

Figure 9-2. Block Mode Read Timing Parameters

Typically, the master asserts the read strobe signal MRDC one clock cycle after the assertion
of the BUSY, BLOCK MODE, BHEN, and ADR(n) lines to indicate that the transaction is to

be a Block Mode read. The master may delay asserting MRDC, but the performance will be
degraded.

The selected slave senses this assertion on edge #3 and begins its internal data fetch operation.
The slave can return XACK off of edge #3 or any subsequent negative edge, depending on its
internal read performance. For the purpose of this discussion, XACK is shown being asserted
off of edge #6 in the examples shown in Figure 9-1 and 9-2. The only additional requirement
on when XACK can be asserted is that the slave must commit to being able to finish the
operation (that is, supply both data words within the timing limitations).

The slave asserts the XACK signal one BCLK cycle ahead of placing valid data on the data
bus, to give the master device advance notice of impending data arrival. The master device
may strobe the first data word on negative edge #8, which is the second negative edge follow-
ing the assertion of XACK.

The master device toggles ADR1 on edge #7 to indicate that the second data word should now
be transmitted by the slave. The second data word is strobed by the master on edge #9. The
master can wait any number of cycles after sensing the assertion of XACK before toggling

ADRI1. However, by toggling ADRI1 in the very next cycle, maximum transfer rates can be
achieved.

9-7

The MULTIBUS MC5600/5700 System Reference Manual

The master deasserting MRDC controls the deassertion of all other signals at the end of the
Block Mode read transaction. In Figure 9-1, MRDC is deasserted off of edge #8, which causes
BUSY, BLOCK MODE, BHEN, ADR(n), and DAT(n) to deassert off of edge #9. If the master
needs more time, the termination of the cycle can be stalled by continuing to assert MRDC, as
shown in Figure 9-2. The master must hold BUSY, BLOCK MODE, BHEN, and ADR(n), and
the slave must hold DAT(n), for one clock cycle after MRDC is deasserted.

9.2.4 Block Mode Write Protocol

The timing diagrams for a typical Block Mode Write transaction are shown in Figure 9-3 and
Figure 9-4. These figures are referenced throughout this section.

1 2 3 4 5 6 7

TR ROy Iy U N g Ny Ny Ny S

BUSY L

ra

BLOCK MODE L—1

BHEN L

ADR(n)

ADR1

=X
MWTC L N,
XACK L ,Z 2,—_____.
-

DAT (n)

A

Figure 9-3. Block Mode Write Protocol Example

9-8

MC5600/5700 System Reference Manual The MULTIBUS

pok — LI L L oL riririor

BUSY T -

—
-+ }e-tBUSY
BLOCK MODE ——— —

- |a-+D-BLKMD

BHEN h] }a-tH-ADRN
ADR(n) ———
ADR1I —]
MNTC . . T
> I-— tD-MNTC
XACK 1 —
-."1— tXAH
DAT(n)) K >—
L || l= +0-woAT
- tD~NDAT
tD-ADRN = || |-

+-BUSY - | ja- tD-XACK ~bof s~ -0 |}~ ¢ D-ADR!

tD-BLKMD -3 - - @~ tD-MHTC ->{p@® tH-NDAT

Figure 9-4. Block Mode Write Timing Parameters

Typically, the master asserts the write strobe signal MWTC and valid DAT(n) one clock cycle
after the assertion of BUSY, BLOCK MODE, BHEN, and ADR(n), to indicate that the transac-
tion is to be a Block Mode write. The master may delay asserting MWTC, but performance
will be degraded. The selected slave senses this assertion on edge #3 and begins its internal
write operation. The slave can return XACK off of edge #3 or any subsequent negative edge,
depending on its ability to dispense with the incoming data. For the purpose of this discussion,
XACK is shown being asserted off of edge #4, as shown in in Figures 9-3 and 9-4. In this
example, the first data word can be strobed by the slave on edge #3, edge #4, or edge #5.

The master device toggles ADR1 off of edge #5 in the examples to indicate to the slave that
the second data word is now being transmitted. The master can wait 0,1,0r 2 cycles after sens-
ing the assertion of XACK before toggling ADR1. However, by toggling ADR1 in the next
cycle, the transaction bandwidth is maximized.

The slave must strobe the second data word on the negative edge after ADRI has been tog-
gled. The master can deassert MWTC and ADRI1 off of the same edge (as shown in Figure 9-
3), or it can delay deasserting MWTC after ADRI1 has been toggled (as shown in Figure 9-4).
The master device must hold BUSY, BLOCK MODE, BHEN, ADR(n), and DAT(n) for one
clock cycle after MWTC is deasserted.

9-9

The MULTIBUS MC5600/5700 System Reference Manual

9.2.5 Block Mode Timing Specification

This section defines and specifies all timing parameters that pertain to devices that implement
Block Mode protocol. Block Mode devices must be capable of operating correctly in systems
where BCLK is running at its maximum rate of 10 MHz.

Both maximum delay times and maximum setup times for signals are specified such that the
following relationship is observed:

MIN BCLK CYCLE = MAX DELAY + MAX SETUP + MAX CLOCK SKEW

The BCLK clock cycle is 100 nanoseconds, and the clock skew is fixed at 5 nanoseconds. Then,
for any signal:

tD_signal + tS_signal = 95ns

Timing parameters are defined and specified by Table 9-2 in conjunction with Figures 9-2 and
9-4. In Figures 9-2 and 9-4, delay times and hold times are defined relative to the negative
edge of BCLK. Setup times are not explicitly defined in Figures 9-2 and 9-4, but are implicitly
defined by their associated delay times according to the formula above. For example, tS-
BLKMD is the time taken by the master to assert BLOCK MODE after BCLK edge 1. The
slave must have BLOCK MODE available tS-BLKLMD before BCLK edge 2. The setup time is

always defined relative to the negative edge of BCLK that is subsequent to the edge which
defines the delay.

9.3 Bus Arbitration

The AFM arbitrates use of the MULTIBUS, using a parallel arbitration scheme that grants the
use of the bus to the device with the highest priority request.

In parallel arbitration, each module on the bus has one request line and one grant line associ-
ated with it. All MULTIBUS request and grant lines enter the arbitration circuitry of the AFM.
The AFM issues a grant to the device with the highest priority level request.

The arbitration section of the AFM also generates the MULTIBUS signal MBUS MC CBRQ.
This signal is the logical OR of all but the highest MULTIBUS REQ request line. The MBUS
MC CBRAQ signal is used by the MASSCOMP MULTIBUS repeater module for passing bus mas-
tership between backplanes. Note that this signal differs from the standard MBUS CBRQ sig-
nal in that it is not bussed (it only goes to slot 1) and is a high true signal. The MULTIBUS sig-

nal MBUS BUSY must be deasserted along with MBUS BPRO for a given module to be granted
mastery of the bus.

The AFM accommodates either the 7/8 or 15 slot MULTIBUS configuration (see Chapter 11).
On a 30 slot system, the AFM performs the MULTIBUS arbitration for slots J1 through J15.
The ARB module performs the MULTIBUS arbitration for slots J18 through J30.

w0
[]

[y

(=]

MC5600/5700 System Reference Manual

The MULTIBUS

NOTE:

Table 9-2

Extended Protocol Timing Specification

Parameter Description Min | Max | Units |
tD-ADRN ADR(n) delay time — 45 ns
tS-ADRN ADR(n) setup time 50 — ns
tH-ADRN ADR(n) hold time 5 — ns
tD-ADR1 ADR1 delay time — 40 ns
tS-ADR1 ADRI1 setup time 55 — ns
tD-BLKMD | Block Mode delay time | — 40 ns
tS-BLKMD | Block Mode setup time | 55 — ns
tD-MRDC MRDC delay time — 40 ns
tS-MRDC MRDC setup time 55 — ns
tD-MWTC | MWTC delay time — 40 ns
tS-MWTC MWTC setup time 55 — ns
tD-XACK XACK delay time — 30 ns
tS-XACK XACK setup time 65 — ns
tD-RDAT Read Data delay time | — 50 ns
tS-RDAT Read Data setup time | 45 — ns
tH-RDAT Read Data hold time 13 — ns
tD-WDAT Write Data delay time | — 50 ns
tS-WDAT Write Data setup time | 45 — ns
tH-WDAT Write Data hold time 20 — ns

(1) The parameters tsusy and txan are defined in the previously referenced MULTIBUS manual.

(2) XACK is asserted synchronously and deasserted asynchronously.

9-11

MC5600/5700 System Reference Manual

Chapter 10
The MULTIBUS Adaptor

Page
10.1 General Operation 10-1
10.2 The I/O Map 10-3
10.2.1 The Map Table Entry Format 10-4
10.2.2 Accessing the I/O Map from the MULTIBUS 10-4
10.2.3 Using the Four Self-Mapping Entries 10-6
10.3 SMI / MULTIBUS Data Transfers 10-8
10.3.1 Dynamic Bus Sizing 10-9
10.4 MULTIBUS Lock 10-10
10.5 SMI / MULTIBUS Error Handling 10-10
10.8 Deadlock Avoidance 10-11
ILLUSTRATIONS
Fig.
No. Page
10-1 I/O Map Translation Algorithm 10-3
10-2 I/O Map Table Entry Format 10-4
10-3 SMI and MULTIBUS Byte and Word Numbering 10-8
TABLES
Table
No. : Page
10-1 Setting Up Self-Mapping 1/O Map Entries 10-5
10-2 Example of Self-Mapping 1/O Map Entries 10-6
10-3 MTE Addressing _ 10-6
10-4 Self-Mapping I/O Map Entries 10-7
10-5 MULTIBUS-Unwritable Self-Mapping Entries 10-7
10-6 Transfers Between MULTIBUS Byte Devices and SMI DAL 10-9
10-7 Transfers Between MULTIBUS Word Devices and SMI DAL 10-9
10-8 Transfers Between MULTIBUS Block Mode Devices and SMI DAL 100

10-i

MC5600/5700 System Reference Manual

Chapter 10
The MULTIBUS Adaptor

The MASSCOMP MULTIBUS, described in Chapter 9, provides a general purpose 1/O interface
bus for the MC5600/5700 System. The Synchronous Memory Interconnect (SMI) bus, described
in Chapter 13, is a higher speed bus designed for memory devices interacting with the CPU.
The interface circuitry between the MULTIBUS and the SMI bus is called the MULTIBUS
Adaptor (MBA). The MBA allows MULTIBUS devices (disk controllers, graphics controllers,
and so forth) and SMI devices (the CPU, Memory modules, and array processor) to communi-
cate with each other across the two buses.

This chapter explains the operations and functions of the MBA, the differences between the
SMI and MULTIBUS that are handled by the MBA, and the address mapping considerations
between the two buses.

10.1 General Operation

The MBA performs two functions, corresponding to the two possible directions of data transfer
between the SMI and MULTIBUS:

e It enables an SMI device to access a given MULTIBUS device by making the
necessary data format translation.

e During a direct memory access (DMA) by MULTIBUS devices into SMI memory
space, the MBA translates the MULTIBUS address to an SMI physical address.
The MBA also handles the SMI protocol during the DMA transfer on behalf of
the MULTIBUS device and makes the necessary data translation.

The MBA circuitry is physically situated on the CMPU board, but it is logically independent
from the CPU. The MBA has a unique SMI node I.D. apart from the CPU, and devices that
transfer data to and from the MBA treat it as an independent SMI device. The exception to
this independence is that interrupt signals from all MULTIBUSs are coupled directly to one
CPU, rather than being routed through the MBA. The current MASSCOMP RTU operating

system requires that all MULTIBUS interrupts be fielded by the boot processor (processor I.D.
1).

The MBA always acts as a MULTIBUS master while it is an SMI slave, and MULTIBUS slave
while it is an SMI master (see Chapter 7 for SMI master and slave definitions).

The MBA handles the four possible access types between the SMI and MULTIBUS as follows:

e SMI to MULTIBUS memory. An SMI master accesses the 16 MByte (24-bit)
MULTIBUS memory space through the 28-bit SMI address space. The upper 4
bits of the physical address select the appropriate MULTIBUS (bit<27> must be
0 and bits <26:24> must be 1-7. The lower 24 bits are passed through the
selected MBA unmodified. No address translation is performed in this direction.
The MBA, serving as MULTIBUS mastier, cannot perform MASSCOMP Block Mode
transfers (described in Chapter 9).

10-1

The MULTIBUS Adaptor MC5600/5700 System Reference Manual

o SMI to MULTIBUS I/O. An SMI master accesses the 64 KByte MULTIBUS 1/O
space through the 28-bit SMI. The upper 12 bits of the SMI address select the
appropriate MULTIBUS 1/O space, and the lower 16 bits are passed through the
MBA unmodified. Again, no address translation is performed in this direction.
The MBA, serving as MULTIBUS master, cannot perform MASSCOMPs Block
Mode transfers (described in Chapter 9).

e MULTIBUS memory to SMI. The (24-bit) MULTIBUS accesses the 256 MByte
(28-bit) SMI address space with a memory strobe (in a DMA reference, for exam-
ple). Since the MBA has only 24 address bits available to reference into a 28-bit
space, all MULTIBUS references-into SMI memory space must be mapped using
the 1/O Map (described in the next section). Without the I/O map, each MUL-
TIBUS would be able to access only the lower 16 MBytes of SMI memory, and
transfers would be limited to one page per disk transfer. The map allows
dynamic use of the entire SMI memory space by the MULTIBUS. The MBA,
when serving as MULTIBUS slave, can perform Block Mode transfers (see Chapter
9).

e« MULTIBUS I/O to SMI. The MBA does not respond to MULTIBUS I/O strobes.
There are several crucial restrictions to the cases above:

e I/O Maps - A MULTIBUS device can read and write only its own I/O map by
referencing the appropriate SMI physical space. This process is described in Sec-
tion 10.2.2 and 10.2.3.

e MULTIBUS z to MULTIBUS y - A MULTIBUS device cannot access devices on
another MULTIBUS by going through two MBAs.

e MULTIBUS z to MULTIBUS z - A MULTIBUS device can access other devices on
its own MULTIBUS directly without going out on the SMI by appropriately set-
ting the I/O map. The device cannot access other devices on its own MULTIBUS
by going out to the SMI and back through its own MBA.

10-2

MC5600/5700 System Reference Manual The MULTIBUS Adaptor

10.2 The I/O Map

Each MBA uses a 4096 x 17 bit RAM called the I/O Map to store MULTIBUS-to-SMI address
translations. The I/O map translates MULTIBUS addresses into SMI physical addresses in the
same way the Translation Buffer translates virtual addresses. The I/O Map RAM for each
MULTIBUS is physically located on its associated CMPU board. Each I/O Map is assigned to
the SMI address space shown in Chapter §. As in the Translation Buffer, each I/O Map entry
maps one 4 KByte page of SMI address space.

Figure 10-1 shows the translation process used by the /O Map.

otr weEN
MBUS ADD
<23112>
>l [170 war

NBUS ADD
<23100>

<27:12>

MBUS ADD <11100>

1 ADD
1300>

™
> <t

Figure 10-1. I/O Map Traaslation Algorithm

The MULTIBUS Page Frame Number (MPFN) is analogous to the PFN field of the Trans-
lation Buffer entry. The MPFN determines which of the 65,536 4-KByte pages of SMI physical

address space to access. The most significant bit of the MPFN selects between SMI memory
and SMI 1/O space.

When the MULTIBUS has MWTC or MRDC asserted to read or write an address, the MBA
first uses the upper 12 bits of the address as an index into the mapping RAM. The indexed
Map Table Entry (MTE) contains the corresponding MPFN and the IV bit. If cleared, the
IV bit indicates that the entry is valid. If the entry is valid, the MBA performs the appropri-
ate SMI transaction. If the entry is invalid, the MBA assumes the address targets a local MUL-
TIBUS device and does nothing.

10-3

The MULTIBUS Adaptor MC5600/5700 System Reference Manual

10.2.1 The Map Table Entry Format

Each of the 4096 I/O Map Table Entries (MTESs) are accessible to SMI devices as longword
data in the format shown in Figure 10-2.

31 29 28 27 12 11 0
XX v MPFN XX

Figure 10-2. 1/O Map Table Entry Format

The following are the MTE fields:

MPFN MULTIBUS Page Frame Number (16 bits). This field becomes SMI DAL <27:12>
when the MULTIBUS address is translated onto the SMI.

IV Invalid (1 bit). If this bit is a 1, the associated entry is invalid and no SMI transfer
occurs. If this bit is a 0, the associated entry is valid and the MBA performs the
appropriate SMI transfer if either MWTC or MRDC is asserted on its MULTIBUS.

XX Not used

10.2.2 Accessing the I/O Map from the MULTIBUS

It is possible for a MULTIBUS intelligent peripheral to access the Mapping RAM and update
MAP Table Entries on its associated MULTIBUS. Devices cannot access the maps of other
MBAs. For such devices that require the ability to set up their own translations, MAP loca-
tions must be set up by the operating system that point at the mapping RAM itself. This sec-
tion describes how to do this.

To allow a controller access to the I/O map, the operating system must set up one, two, three,
or four locations in the map, called self-mapping entries, that point back into the map itself.
Each one of these special locations allows the MULTIBUS controller to access 1024 contiguous
locations in its MBA’s I/O Map. If it is desirable for all 4096 entries to be available to the
controller, all four special locations must be set up, since each I/O Map entry translates a 4
KByte page of data and the I/O Map is 4096 entries x 4 bytes.

Table 10-1 shows the entries for the four Map locations and the SMI physical addresses for
each.

MC5600/5700 System Reference Manual The MULTIBUS Adaptor

Table 10-1
Setting Up Self-Mapping 1/O Map Entries
SMI Address of Self-Mapping Accesses
Self-Mapping Entry Entry Value Map Locations:
0xF'18000 + & + 0x20000 + d + 0x10 + 0 0xOF 1822z + ¢ ¢ 0x20000 0 - 1023
O0xF 18000 + a + 0x20000 + ¢ + 0x10 + 4 0x0F 19222 + & + 0x20000 1024 - 2047
0xF18000 + ¢ + 0x20000 + f+ Ox10 + 8 0x0F1Azzz + ¢ + 0x20000 2048 - 3071
0xF 18000 + ¢ * 0x20000 + ¢+ 0x10 + C 0xOF 1Bzzz + a s 0x20000 3072 - 4095

Table 10-1 uses the following variables:

1. The variable ¢ has a range of 1 to 7 and selects the desired processor’s I/O Map
set, as described in Chapter 8.

2. The variables d, ¢, f, and g have a range of 0 to 21° __ 1 and select which of the
1024 longword Map locations contains the entry that maps back. It is prefer-
able (though not necessary) that d, ¢, f, and g are the same value for ease of
understanding

3. The value of bits <14:00> are O in a self-mapping entry, since:
e Only bits <28:12> of any I/O Map Entry are valid

e Bit <14> is not decoded. The 16 KByte 1/O Map is positioned at the
bottom of the 32 KByte space

o Bits <13:12> are taken from the MULTIBUS Address (not from SMI
address bits <13:12>) when the read or write operation occurs due to
hardware limitations.

CAUTION

You must be extremely careful that a write from the MULTIBUS does not
overwrite the location through which it was translated. This will jeop-
ardize future attempts to write into SMI space by MULTIBUS devices.

Table 10-2 gives an example of 4 self-mapping entries.

10-5

The MULTIBUS Adaptor MC5600/5700 System Reference Manual

Table 10-2
Example of Self-Mapping I/O Map Entries

l Address I Entry Value
0xF18000 | OxOF1800
0xF'18004 | OxOF1900
0xF18008 | 0xOF1B00
0xF'1800C | 0xOF1A00

10.2.3 Using the Four Self-Mapping Entries

This section explains how to use the self-mapping I/O Map entries correctly once you have set
them up as described in the previous section.

Access of an MTE from the MULTIBUS requires two MULTIBUS word references, and uses the
format shown in Table 10-3.

Table 10-3
MTE Addressing

MTEBits | Word # | MBUS ADD <01>

<31:16> | word O (even) 0
<15:00> | word 1 (odd) 1

If the MULTIBUS peripheral is a 68000-based device (such as an Independent Graphics subsys-
tem), then this process is automatic as long as longword operands are specified. In other
words, the 68000/10/20 processor takes care of the two word references per longword and sets
ADRS <1>> as appropriate.

CAUTION
You must treat the MAP Table Entry as a longword operand when

accessing it with the 68020 over the SMI. Other MAP operand sizes will
produce unpredictable results and should be avoided.

Table 10-4 shows the MULTIBUS address you use to select each of the four special entries.

poad
3
[~

MC5600/5700 System Reference Manual The MULTIBUS Adaptor
Table 10-4
Self-Mapping I/O Map Entries
For Map Entries | MULTIBUS Address | SMI Address

generated

0-1023 d*2" 4 0+ mmm 0xF38mmm
1024 - 2047 e * 2'* 4 0x1000 + nnn | 0xF39nnn
2048 - 3071 J* 2" 4 0x2000 + ppp | OxF3Appp
3072 - 4095 g+ 2" 4 0x3000 + gq¢ | OxF3Bqqq

The following rules apply to Table 10-4:

1. The values mmm, nnn, ppp, and g¢gq should be located on word boundaries
(address bit <0> should always be a 0). Since bit <1> is used to read/write
the upper or lower word, each value allows access to all 1024 entries in the
associated group.

2. To prevent a MULTIBUS controller from inadvertently overwriting the entry
through which it has gained access to the I/O Map, mmm, nnn, ppp, and qqq
should not equal any of the values shown in Table 10-5. This is the safest
method of preventing the corruption of the I/O Map, while taking up only 32 of
the 4096 entries.

Table 10-5
MULTIBUS-Unwritable Self-Mapping Entries
Address Values

d * 0x10 e * Ox10 f * 0x10 g * 0x10

d * 0x10 + 2 e*x0x10+2 | f*O0x10 4+ 2 g * 0x10 + 2
d*0x10 4 4 e*xO0x10+4 | f+0x10 + 4 g * 0x10 + 4
d*x0x10+6 | exO0x104+6 | f*0x10+6 | g *Ox10 + 6
d*x0x10+8 | exO0x104+8 | f*0x10+8 | ¢g*0x10+8
d+*0x10 +A | e*xOx1I0+A | fx0x10+A | ¢+*Ox10+ A
d*0x10+C | ex0x104+C | f*x0x104+C | ¢*0x10+C
dx0x10+E | exOx104+E | fxOx10+E | ¢g*0x10+E

10-7

The MULTIBUS Adaptor MC5600/5700 System Reference Manual

10.3 SMI / MULTIBUS Data Transfers

Another function of the MBA, besides performing address translations, is to translate the data
format between the SMI and the MULTIBUS. This translation is necessary because the bytes
within a word or longword are numbered differently on the SMI (which follows the 68020
numbering scheme) than on the MULTIBUS. Figure 10-3 shows the byte and word numbering
within an SMI longword, compared with the byte numbering within a MULTIBUS word.

31 24 23 16 15 8 7 0

Byte 0 Byte 1 Byte 2 Byte 3

Bytes within SMI Longword

31 24 23 16 15 8 7 0
Byte 0 Byte 1 Byte O Byte 1
Word 0 Word 1
Words within SMI Longword
15 8 7 0
Byte 1 Byte 0

Bytes within MULTIBUS Word

Figure 10-3. SMI and MULTIBUS Byte and Word Numbering

The MBA handles the data position differences whenever transfers between these two buses
occur. Each byte has a unique address within each structure. When a byte is transferred
between one bus and another, its position within a word or longword may change, but its
address remains constant. Therefore, in transfers between the SMI and the MULTIBUS, bytes
are placed in accordance with their addresses. This is done using the numbering schemes
shown in Figure 10-3.

Tables 10-6, 10-7 and 10-8 give the rules for byte, word, and ’longw‘ord block mode transfers.

MC5600/5700 System Reference Manual

The MULTIBUS Adaptor

Table 10-6
Transfers Between MULTIBUS Byte Devices and SMI DAL
SMIDATA MBUS ADDR MBUS DATA
Byte 0 | DAL <31:24> DAT<07:00> |
Byte 1 | DAL <23:16> DAT<07:00>
Byte 2 | DAL <15:08> DAT<07:00>
Byte 3 | DAL <07:00> DAT<07:00>

Table 10-7
Transfers Between MULTIBUS Word Devices and SMI DAL
SMI DATA MBUS ADDR | \ipyyg pATA
<01>
Word 0 DAL <31:24> ' 0 DAT <07:00>
DAL <23:16> DAT <15:08>
Word 1 DAL <15:08> 1 DAT <07:00>
DAL <07:00> DAT <15.08>
Table 10-8
Transfers Between MULTIBUS Block Mode Devices and SMI DAL
SMI DATA Mmisog) DR | \rBUS DATA
| ——————————————_ ~ ————
Word 0 DAL <31:24> 0 DAT <07:00>
DAL <23:16> DAT <15:08>
Word 1 DAL <15:08> 1 DAT <07:00>
DAL <07:00> DAT <15:08>

10.3.1 Dynamic Bus Sizing

The 68020 allows operand transfers to and from 8-bit, 16-bit, and 32-bit ports by dynamically
determining the port’s size during each bus cycle. This size determination feature is called
dynamic bus sizing. If a port is found to be smaller than the requested data size, the 68020
automatically runs as many cycles as necessary to transfer the data. For example, if the 68020
executes a 32-bit read instruction from a 16-bit device (such as the MULTIBUS), the processor:

e Latches the first 16 bits onto bits <31i:i6> of iis data bus

o Runs another read cycle at the previous address + 2

10-9

The MULTIBUS Adaptor MC5600/5700 System Reference Manual

o Latches the second 16 bits onto bits <15:00> of its data bus, and then continues.

The MBA is seen as a 16-bit port by SMI processors. The MBA supports dynamic bus sizing
between the two buses, but only when the MBA is an SMI slave. In other words, when the
68020 writes or reads longword data to or from a MULTIBUS through the MBA, the MBA - SMI
- CPU interface logic handles the extra cycle needed to access the upper 16 bits. On MC5500
systems, this is automatically handled by the 16-bit 68010. Thus, MC5500 (68010-based)
software is compatible in this respect with MC5600/5700 systems.

The MBA does not support dynamic bus sizing when it is an SMI bus master. Transfer sizes
must match the port size of the slave device.

Note also that 64-bit transfers to the MBA are not supported and produce unpredictable
results.

10.4 MULTIBUS Lock

Each bus has a mechanism used to lock the bus during a read-modify-write operation. On the
MULTIBUS it is called MBUS LOCK and on the SMI it is called SMI LINH (Lock Inhibit). The
MBA implements this locking mechanism only in the case when a MULTIBUS device is accessing
the SMI. That is, asserting the MBUS LOCK causes the LINH to be asserted as long as
MBUS BUSY remains asserted. If MBUS BUSY is deasserted while the MBA is still in the
middle of the last SMI write cycle, the MBA circuitry guarantees that LINH remains asserted
for the remainder of the SMI cycle. However, the LINH cannot be routed through the MBA to
assert the MBUS LOCK signal.

10.5 SMI / MULTIBUS Error Handling

There are two general types of data transfer errors that may occur at the interface between
the MULTIBUS and SMI:

1. The SMI master accesses a non-ezistent address or malfunctioning MULTIBUS
device. In this case, the MULTIBUS slave device does not respond to the MBA
with an XACK signal (see Chapter 9). The MBA logic then times out after
approximately 100 microseconds and transmits a RETURN ERROR code on the
SMI.

2. The MULTIBUS accesses a non-ezistent address or malfunctioning SMI device.
The read and write cases are different:

*» Read. When a MULTIBUS device performs a read instruction, the fol-
lowing SMI codes may be returned (see Chapter 7 for further explanation
of the codes):

A. NACK - Due to a bad address (due to a bad I/O map entry, for
example) or broken module

B. RERR - Due to an uncorrectable error on a memory device, for

MC5600/5700 System Reference Manual The MULTIBUS Adaptor

example (see Chapter 6)
C. RTNW - Due to a broken SMI device

In any of these cases, the MBA never asserts MBUS XACK, and the
MULTIBUS master device must timeout and flag the error.

o Write. When a MULTIBUS device performs a write instruction, no error
condition is generated and no error flag is set. The operating system
must take the necessary precautions to assure that the SMI address pro-
vided by the map is valid and that the SMI device is functioning prop-
erly.

10.6 Deadlock Avoidance

The fact that the MC5600/5700 system uses two separate buses, and that these buses operate
in parallel, raises the possibility of a deadlock. Deadlocks occur when a process is unable to
obtain the use of a resource it needs to continue. Specifically, a deadlock would arise if the
SMI interface section of the MBA committed to perform a data transfer to the MULTIBUS,
while, at the same time, a MULTIBUS device won arbitration to perform a transfer to SMI
space. In this case, the MBA cannot complete the SMI transfer, since the MULTIBUS is busy.
Neither can the MBA complete the MULTIBUS data transfer, since it already has one pending
from the SMI.

In this situation, the MBA gives MULTIBUS devices priority over SMI devices. Before accepting
an SMI read or write request, the MBA checks for the following:

o MBUS GRNT is asserted
o MBUS BUSY is deasserted
e The MBA MULTIBUS slave circuitry is idle

Thus, while the MBA is acting as MULTIBUS slave, the MBA SMI interface returns a RETRY
to any SMI read or write requests, and the SMI device must retry the transfer.

10-11

MC5600/5700 System Reference Manual

Chapter 11
System Configuration

11.1 Packages
11.1.1 The Front Panel

11.2 Configuring the CMPU Module
11.2.1 Adding a CMPU module

11.3 Configuring the Memory Module
11.3.1 Interleaving
11.3.2 Setting Module Base Address

11.4 Configuring the AFM and Backplane
11.4.1 The AFM Module
11.4.2 The Backplane
11.4.3 Adding MULTIBUSs to a System

ILLUSTRATIONS

Fig.

11-1 MC5600/5700 Front Panel

11-2 The CMPU Module

11-3 The CMM Module

11-4 The Auxiliary Function Module
11-5 The 15 Slot Backplane

11-6 30 Slot Backplane

TABLES

Table
No.

11-1 MC5600/5700 Packages

11-2 Setting Processor 1.D. on Switchpack SW1
11-3 CMM Switch Configuration

11-4 Setting Module Base Address

11-5 Example of Setting CMM Base Address
11-6 Configuring the AFM & Backplane

Page

11-1
11-2

11-3
11-6

11-6
11-7
11-8

11-10
11-11
11-12
11-14

11-2
11-4
11-7
11-11
11-12
11-13

Page

11-1
11-5
11-8
11-9
11-10
11-14

11-i

MC5600/5700 System Reference Manual

Chapter 11
System Configuration

Each module has various switches and jumpers that set that module’s physical address and
other module-specific features. These must be set before the modules are placed in the system.
This chapter discusses how to configure the following modules in an MC5600/5700 system:

1. The CMPU module (Section 11.2) - Adding a processor to the system
2. The CMM module (Section 11.3) - Adding more memory to the system

3. The AFM/ARB module and the Backplane (Section 11.4) - Adding a MULTIBUS
to the system

For system configuration information, see the MC5600/5700 System Configuration Guide.

11.1 Packages

The MC5600/5700 is available in four packages, shown in Table 11-1 and referenced
throughout this chapter.

Table 11-1
MC5600/5700 Packages
Slots in Additional Slots
System Package Standard Package with MBUS Expander
- SMI/MBUS STD+ MBUS STD+
Pedestal 15 n/a n/a n/a
MC5600 | Table Top 15 9 n/a n/a
Rack Mount (40"/70") 15 9 15 9
. . 1 BP 15 9 15 9
MC5700 | Wide Cabinet 2 BP 30 18 15 P

The number of slots refers to the maximum number of printed circuit boards on the
SMI/MULTIBUS(s) that can physically fit in the system package. The only differences between
the packages, in terms of configuration, is the number of slots and the power supply capacities.

The wide cabinet package is available with one backplane (15-slot) or two backplanes (30-slot).
A backplane may be added to the 15-slot wide cabinet package (described in Section 11.4).
Also, a MULTIBUS expander box with repeater module is available for the rack mount and wide
cabinet packages to add slots to an existing MULTIBUS. Note that the expander box does not
add slots for SMI devices, and requires one slot itself on the SMI.

11-1

System Configuration MC5600/5700 System Reference Manual

Each slot in a backplane consists of two physical edge card connectors, labeled:
« P1 (86 pins) - the module’s link into the MULTIBUS
« P2 (60 pins) - the module’s link into the SMI bus

The MULTIBUS refers to the signals common to connector P1 and 4 signals on P2 (MBUS
ADRS <20:23>) of all slots. The SMI refers to the remaining signals common to connector P2
of all slots.

11.1.1 The Front Panel

The system’s front panel is the same on all packages and is shown in Figure 11-1.

[] ON nREADY
[LocK INTERRUPT RESET
|
ENABLE [] POWER
| 0 |oFF UFAULT

Figure 11-1. MC5600/5700 Front Panel

The following front panel features are used by the system hardware:

« OFF, LOCK, & ENABLE - The 3-position key control switch turns the system
power supplies on and off. The LOCK position disables the RESET and INTER-
RUPT switches so that pressing them has no effect. The ENABLE position reen-
ables both switches.

« POWER LED - The POWER LED is activated when the system power supply
provides power to the +5 Volt signal on the front panel connector (see Appendix
A).

« FAULT LED - The FAULT LED on the front panel is the logical OR of the

ERROR LEDs on all CMPUs in the system. Each CMPU ERROR LED is
activated by setting bit <3> to a 1 on that CMPU’s PCRB (see Chapter 4).

« INTERRUPT Switch - Pressing the INTERRUPT switch generates a Level 7
interrupt (see Chapter 5) and clears bit <1> of the TBCCR on all CMPU
modules to a 0 (see Chapter 2).

« RESET Switch - Pressing the RESET switch generates a Level 7 interrupt (see

11-2

MC5600/5700 System Reference Manual System Configuration

Chapter 5), clears bit <2> in the TBCCR on all CMPU modules (see Chapter 2),
and activates the initialization circuitry in the AFM (described in Chapter 5).

For information on how the front panel LEDs and switches are used by MASSCOMP RTU, see
the MC5600/5700 System Management Guide.

11.2 Configuring the CMPU Module

There are four configuration considerations for installing the CMPU module:
e Setting the Processor I.D.
o Enabling the MBA
e Disabling the MULTIBUS interrupt jumper
e Configuring the MULTIBUS termination
The CMPU module also has five LED indicators that are explained in this section.

11-3

System Configuration

MC5600/5700 System Reference Manual

Figure 11-2 shows the CMPU module switches, jumpers, and LEDs.

HALT

MBUS BUSY
RETRY

SELFTEST ERROR
RUN

) /o
68020
(-]
0 L)
(-]
a WS
g' L-— MBAR ENRBLE
— PROCESSOR 1.D.
S$02-S09
W7 W6 TERM RES
A
kﬂr ™~
\ —_
Yy g [2 RN e RN 5 S i
o 12.000 >

Figure 11-2. The CMPU Module

The switches on switchpack SW1 have the following functions:

Switch 1 - When switch 1 is in the ON position, the MULTIBUS Adaptor circuitry is turned
ON. This switch must be ON for each CMPU module that is using an associated

MULTIBUS.

Switches 2-4 - Switches 2-4 set the Processor I.D. The Processor 1.D. determines the areas

in the physical address space used by the associated MULTIBUS (see Chapter 8). The
Processor I.D. also sets the upper bits of the SMI node I.D. (described in Chapter 7) of
both the CPU and the MBA on that module (the lower bit of each circuit is deter-
mined by hardware). One CMPU in every system (the boot processor) must be set
with its Processor ID. to be 1. Table 11-2 shows the switch settings for the eight Pro-

cessor 1.D.’s.

MC5600/5700 System Reference Manual System Configuration

Table 11-2
Setting Processor I.D. on Switchpack SW1

Processor L.D. 2 3 4

ON | ON | ON
ON | ON | OFF
ON | OFF | ON
ON | OFF | OFF
OFF { ON ON
OFF | ON | OFF
OFF | OFF | ON
OFF | OFF | OFF

~N JO jon | [O = O

The jumpers and resistor packs are used for the following configuration purposes:

S02-S09 - These 8 resistor packs are the pullup resistors for the MULTIBUS and are factory
installed. If you are installing a CMPU module without an associated MULTIBUS, these
must be removed.

W1 - When this jumper is in, MBUS LOCK2 (P1-36) performs the same function as MBUS
LOCK (P1-25). When the jumper is out, P1-36 is not used.

W4 - This jumper is the MULTIBUS interrupt enable jumper and is factory installed. In a
multi-processor system, only the CMPU with 1.D. 1 should have this installed. All other
processors in the system must have this jumper removed.

W5 - This jumper is the Loop-On-Error jumper. When this jumper is installed, any selftest
that fails loops indefinitely (instead of flashing an error code on the error LED LD4).
This jumper is not installed at the factory.

W86 & W7 - These jumpers are the MULTIBUS enable jumpers. These must be installed
when the CMPU is using an associated MULTIBUS. They must be removed when the
MBA is disabled.

The five LEDs on the CMPU indicate the following conditions when lit:
LD1- The CMPU module is running

LD2 - The Selftest error code (see Chapter 13)

LD3 - The CMPU module is attempting a retry on the SMI

LD4 - The CMPU module is BUSY

LD5 - The CMPU module is halted

11-5

System Configuration MC5600/5700 System Reference Manual

11.2.1 Adding a CMPU module

If you are adding a CMPU to your system and you also are adding an associated MULTIBUS:

1. Follow the steps in Section 11.4 for configuring the AFM and backplane to add
a MULTIBUS to the system

9. Set the Processor I.D. on SW1-2 through SW1-4, as shown in Table 11-2.
Remove MULTIBUS interrupt enable jumper W4.

4. Install the CMPU module in the appropriate slot, as described in the
MC5600/5700 System Configuration Guide.

If you are adding a CMPU to your system without an associated MULTIBUS (that is, with the
MBA disabled):

1. Set the Processor I.D. on SW1 as shown in Table 11-2.

Remove MULTIBUS interrupt enable jumper W4.

Disable the MULTIBUS Adaptor by setting switch SW1-1 to OFF.
Remove MULTIBUS termination resistor packs S02 - SO09.
Remove jumpers W6 and W7.

Install the CMPU module in the system, as described in the MC5600/5700 Sys-
tem Configuration Guide.

o oom oW N

11.3 Configuring the Memory Module

This section describes how to configure a CMM module. This includes setting the base address
and configuring the module as interleaved memory.

The CMM module is available in 2 MByte and 4 MByte units. The 2 MByte size is a depopu-
lated version of the 4 MByte board.

The first CMM module in a system must be given a base address of 0x8000000. All memory
must be contiguous. Larger modules must be given lower addresses in a system than smaller
modules.

Figure 11-3 shows the CMM module switches and dimensions.

[
N
o

MC5600/5700 System Reference Manual System Configuration

ACTIVITY
LE_:_ PoMER
o

)

ALl
=] ML
- =
(o [m— =
C Do CI» B24
i m P CDe
— 3
° CTw CD» ////A [—
a COo s ([
K s B Ce o [
- CDoe m— L D
C Do CDe COw
s | Do
1
CDe
g Pi Iy P2 i
12.000 -

Figure 11-3. The CMM Module

11.3.1 Interleaving

Table 11-3 summarizes all switch settings for each CMM module. Switches Al1-1 through
A11-10, B24-1 through B24-8, and A13-1 must be set according to the size of the module (2 MB
or 4 MB) and whether or not the module is interleaved. Modules that are interleaved should
be of equal size.

11-7

System Configuration MC5600/5700 System Reference Manual

Table 11-3
CMM Switch Configuration
Non-Interleaved Interleaved
Switch
4MB 2MB 4MB | 2MB
ON | ON (lower)

Al3-1 ON ON OFF OFF (upper)
All-l OFF OFF ON OFF
Al1-2 OFF OFF ON ON
All-3 OFF OFF ON ON
All-4 ON ON OFF | OFF
All-§ ON OFF OFF OFF
All-6 OFF ON OFF ON
All-7 ON ON OFF | OFF
Al1-8 OFF OFF OFF | OFF
All-9 OFF OFF ON ON
All-10 ON ON OFF OFF
B24-1 ON ON OFF | ON
B24-2 OFF OFF ON OFF
B24-3 OFF OFF OFF OFF
B24-4 OFF ON OFF OFF
B24-5 ON OFF ON ON
B24-6 OFF OFF OFF | OFF
B24-7 OFF OFF OFF | OFF
B24-8 ON ON ON ON

11.3.2 Setting Module Base Address

You set the base address for each module in the system at switches A13-2 through A13-8. The
memory space is assigned to the upper half of the system physical address space, while the
module’s CSRs are assigned to a separate range within the SMI Device space (see Chapter 8).
Setting the base address for a given module also determines the physical address of its CSRs.

Table 11-4 shows how switch A13 sets the base address for the module and its two CSRs.

11-8

MC5600/5700 System Reference Manual

System Configuration

Table 11-4
Setting Module Base Address
SMI CMM Base MCR SCBR
Address Address Address | Address
Bit Bit Bit Bit

<27> 1 0 0
<26> Al3-2 0 0
<25> A13-3 0 0
<24> Al3-4 0 0
<23> Al3-5 0 0
<22> Al13-6 0 0
<21> A13-7 0 0
<20> Al3-8 1 1
<19> 0 Al13-2
<18> 0 Al13-3
<17> 0 Al3-4
<16> 0 Al3-5
<15> 0 Al13-6
<14> 0 Al13-7
<13> 0 Al3-8
<12> 0 (A13-1)
<11> 0 1 0
<10:00> 0 z z

Switch A13 determines the address of each device using the following algorithms:

CMM Base Address. Address bit <27> for all CMM modules is fixed at 1 (the upper
half of the address space). Switches A13-2 through A13-8 set SMI address bits <26:20>
respectively, where ON sets the address bit to a 0 and OFF sets the bit to a 1.

MCR & SCBR addresses. SMI Address bits <27:20> are fixed to select the Memory
module CSR address range, described in Chapter 8. Switches A13-2 through A13-8 set
SMI address bits <19:13> respectively, to select which module’s CSR is addressed. Tog-
gling the switch ON sets the address bit to a 0 and OFF sets the bit to a 1. Address bit
<12> is set to a 1 if the module is interleaved and upper half; otherwise, it is O (the
inverse of A13-1). Address bit <11> is used to select between the MCR (<11>=1) or the
SCBR (<11>=0). Bits <10:00> are ignored when accessing a memory module CSR.

Table 11-5 shows an example of a system with four 4MB interleaved CMM modules.

11-9

System Configuration

MC5600/5700 System Reference Manual

Table 11-5
Example of Setting CMM Base Address
Base To MCR SCBR
Module | 403 'C o | Address | Address | Addrese
0 0x8000000 | Ox87FFFF7 | 0x0100800 | 0x0100000
1 0x8000000 | Ox87FFFFF | 0x0101800 | 0x0101000
2 0x8800000 | OxS8FFFFF7 | 0x0110800 | 0x0110000
3 0x8800000 | OxS8FFFFFF | 0x0111800 | 0x0111000

11.4 Configuring the AFFM and Backplane

This section describes how to change the number of MULTIBUSs in a system. The Auxiliary
Function / Arbitration Module (AFM/ARB) and the system backplane each hold removable
termination resistors that must be configured for proper bus operation. The backplane also
has jumpers and cable connectors that allow an existing MULTIBUS configuration to be
changed without extensive hardware modifications.

11-10

MC5600/5700 System Reference Manual System Configuration

11.4.1 The AFM Module

Figure 11-4 shows the AFM/ARB jumpers and LEDs.

NOTE

Figure 11-4 shows the AFM2/ARB2. Earlier versions of the AFM/ARB
use slightly different jumper locations and do not have testpoints.

oND
TEST —_—
POINTS 'l:: ::"::'
(AFM2 LED'S
ONLY) sl2v SELF TEST
-6.2v MBUS INIT
]
/o SpupEEEpn; 2
") MBUS JMP 3
C—"—/——"""""7 CHAINED INT
[oyttt '} MBUS JMP 2
TIIZIZIZIZ weus JwP i
200 Ate A20 A21,
ey —] ——— ————]
[1] [a1e a0 a2z]

Figure 11-4. The Auxiliary Function Module

The AFM has several locations on the board used for system configuration:

A9, A16, and A18-22 - These are the removable resistor packs used for rear end termina-
tion on the SMI bus. The front end SMI termination is located on the backplane
(described later in this chapter).

AMBITQ TAMD 1.2 _ Thacs mina hald oL
AL

12
4¥. /W WIVAL ATV T i UuTOT piu§ nuiu vt 1o

€ei5s
been removed from the backplane and are not in use.

11-11

System Configuration MC5600/5700 System Reference Manual

CHAINED INT - This location holds the backplane chained interrupt jumper when not in
use. This jumper is only used when the backplane is configured as a 7/8 slot backplane.

The four LEDs on the AFM indicate the following conditions when lit:
LD1 - Power is being supplied to the AFM module (and the MULTIBUS)
LD2 - MULTIBUS signal AC LO is asserted

LD3 - This LED is ON until the AFM internal selftest (which is started on every powerup)
has finished without errors. If the selftest fails, the LED remains on indefinitely.

LD4 - MULTIBUS signal MBUS INIT is asserted

The five testpoints shown in Figure 11-4 (AFM2/ARB2 only) can be used to verify that D.C.
voltage levels are present on the MULTIBUS.

11.4.2 The Backplane

Figure 11-5 shows the backplane jumpers and connectors used in system configuration.

FRONT END TERMINATION RESISTORS NM /7 ARB 80T
r—wr rﬂ ™ -
MATIBUS
JUMPER
30 SLOT)
U L 1 i
JMPERS
MM n W _

J L

Figure 11-5. The 15 Slot Backplane

11-12

MC5600/5700 System Reference Manual System Configuration

The backplane has the following elements that are used for configuration:

Front End Termination Resistors - The backplane has 5 resistor packs used for front end
SMI termination and 2 packs used for front end MULTIBUS and SMI clock termination.
In the case of a 30-slot system, all front end termination on the second backplane (near
slot 16) must be removed.

MULTIBUS Jumpers (15 Slot) - Three jumpers are used to link the MULTIBUS signals
across the entire backplane in a 15 slot configuration. In a 7/8 slot configuration, these
jumpers are removed to divide the backplane into two separate buses.

MULTIBUS Jumper Cables (30 Slot) - Two cables are used to link the SMI signals across
the two 15 slot backplanes in a 30-slot configuration.

Chained Interrupt Jumper (7/8 Slot) - All MULTIBUSs in the system use the same inter-
rupt lines, as explained in Chapter 5. A special jumper links the interrupt lines in a f/s
slot backplane. This jumper is stored on the AFM when not in use.

Chained Interrupt Cable (30 Slot) - A special cable is used in a 30-slot configuration to
link the interrupt lines between the two 15-slot backplanes. This cable must be in
whether the configuration uses 2, 3, or 4 MULTIBUSSs.

Common Ground Jumper (30 Slot) - A metal jumper is installed to ensure the two back-
planes in a 30-slot configuration are at the same ground potential.

Figure 11-6 shows the cable connections used in a 30-slot backplane.

2 nl_In -
X

i SN \ T 1

ol 1o} MLTIBUS
_ - JUNPER -
J hed hd L
] - 0 0

\cwm:n INTERRUPT

REAR VIEW (30 SLOT)

Figure 11-8. 30 Slot Backplane

11-13

System Configuration

MC5600/5700 System Reference Manual

11.4.3 Adding MULTIBUSSs to a System

Table 11-6 summarizes the elements used to properly configure multiple MULTIBUSs in a

system.
Table 11-6
Configuring the AFM & Backplane
Rear End Front End MBUS MBUS .
Conl.ig- Termination Termination Jumpers Cables Chained
uration Interrupt
(AFM) (Backplane) (15 Slot) (30 Slot)
15-slot In In In Not Used Not Used
15i0 7/8slot | In In Remoye & Not Used Install
Store Jumper
(2) 15-slots to | Remove Remove Install (2) Install
(1) 30-slot Termination from 2nd In Between Cable
Backplane Backplanes
Remove
(1) 30-slot to | Remove Remove from both Install (2) Install
.. from 2nd Between Cable &
(2) 7/8 slots Termination Backplanes
Backplane £ Store Backplanes | (2) Jumpers

Termination resistors are required to prevent signal reflection on the entire SMI bus and
the MULTIBUS clock lines. Two sets of 7 resistor packs reside on the system:

« one set near the first slot (1) on the bus (front end termination)
« one set on the last slot (rear end termination)

The general rule for configuring termination is that there must be both front and rear
end termination on the SMI and on the MULTIBUS BCLK and CCLK signals. The front
end termination set in the MC5600/5700 is located on the backplane itself. The rear end
termination set is located on the AFM or ARB module, depending on the configuration
(as explained below). Note that, since the MULTIBUS BCLK and CCLK clock signals
span the entire backplane and are used by all MULTIBUSs, they follow the same
configuration rules as the SMI signals.

The Arbitration Module is a depopulated AFM containing only the rear end termination
circuits and the arbitration logic for a third and fourth MULTIBUS. The AFM and ARB
Modules are used together as follows:

e One card cage. In 15 or 7/8 slot systems, only the AFM is used, with all
termination in place.

« Two card cages. In 30 slot systems, the AFM is used with all termination
resistors removed. The AFM is placed at the end of card cage 1 (between
slot 15 and 16) and an ARB Module with all termination resistors installed
is placed at the end of card cage 2 (after slot 30).

MC5600/5700 System Reference Manual

Chapter 12
The EPROM Bootstrap

12.1 Powerup Sequence

12.2 Selftest Diagnostics
12.2.1 Diagnostic Error Codes

12.3 Boot Sequence

12.4 Customer Boot Space
12.5.1 check_for_received_char
12.5.2 console_no_init
12.5.3 put_char
12.5.4 put_number
12.5.5 put_string
12.5.6 reboot
12.5.7 non_boot_console
12.5.8 setmap
12.5.9 enable_gem_terminal
12.5.10 probe_address
12.5.11 reset_smi

12.6 CMPU-AFM Serial Interface
12.6.1 AFM Serial Communication Format

ILLUSTRATIONS
Fig.
No.
12-1 Bootstrap Flowchart
TABLES
Table
No.

12-1 Powerup Diagnostics
12-2 AFM Serial Communications Format

Page
12-1

12-4
12-4

12-5

12-6
12-7
12-7
12-8
12-8
12-8
12-8
12-9
12-9
12-9
12-10
12-10

12-10
12-11

12-3

Page

12-5
12-12

12-i

MC5600/5700 System Reference Manual

Chapter 12
The EPROM Bootstrap

When your system is powered up, the operating system must first be loaded into main memory
from an external device (a disk or tape) before the system can begin normal operation. Thus, a
small amount of code must be kept on board in a non-volatile memory space that instructs the
CPU how to retrieve the operating system and start it running.

The CMPU module has a 64 KByte Erasable Programmable Read Only Memory (EPROM)
which contains four distinct groups of code that are used to execute:

o Selftest diagnostics. The selftest code tests essential hardware devices for
proper operation after powerup.

o Hardware initialization. The hardware initialization code resets appropriate
registers to known initial states.

o Bootstrap code. The bootstrap code retrieves the operating system code from
an external device and then relinquishes control of the CPU to the OS. This
code includes subroutines that may be called by programs running in memory.

e Console mode. The console code is an optional operating mode that used for

debugging, manual control over bootstrap procedures and low-level diagnostics,
and is described in Chapter 13.

This chapter describes the selftests and the standard powerup bootstrap sequemce. It also
describes the programming considerations for writing your own bootstrap device code and the
callable subroutines resident in the EPROM. These programming considerations include the
method of accessing the NVRAM and Time of Day clock on the AFM.

12.1 Powerup Sequence

This section summarizes the flow of operations during a 5600/5700 powerup routine. The
bootstrap flow is shown in Figure 12-1. In a multiprocessor system, the bootstrap code is exe-
cuted by all processors simultaneously until the boot/non-boot processor determinations are

made and synchronization occurs (step 13). The diagnostic selftests are described in detail in
the next section.

1. Power is turned on, or
The front panel RESET switch has been pressed

2. Initialize DUARTSs and Processor Control Registers A & B. The console
screen is blank at this point

3. Check if RESET switch on front panel has been pressed
A. If RESET has been pressed and CPU is boot processor, go to step 7
B. If RESET has been pressed and CPU is not boot processor, go to step 13

> 1104 11,00 DL, Ll

If RESET has not been pressed, continue.

12-1

The EPROM Bootstrap MC5600/5700 System Reference Manual

4. Perform selftest diagnostics Oxl through 0x9. Each selftest number
appears before the test begins on the console device, if it is on one of the 3
DUART ports (but not if it is a graphics terminal). Numbers Ox1 - Ox4 appear
on TTYO only. In the event of a failure of test Ox5 or higher, the bootstrap
halts and flashes an error code on the error LED of the CMPU that failed (see
Section 12.2).

5. Check if current CMPU is boot processor (Processor L.D. #1)
If boot processor, continue selftests
If not boot processor, go to step 12

6. Complete hardware selftest. Perform selftest diagnostics OxA through 0x17
(if GPM or GCM is not present, do not print 0x10 through 0x16). In the event
of a failure, the bootstrap will halt and flash an error code on the error LED of
the CMPU that failed (see Section 12.2). Also, instruct any other non-boot
CMPU modules to perform selftests 0xB-OxE. Wait for these processors to finish
step 13. If no other CMPUs are present, continue.

7. Read and check for valid NVRAM data.
If invalid, use the default environment parameters from the EPROM code to
deposit into main memory and NVRAM, and go to step 11.
If valid, continue.

8. Check that INTERRUPT switch on front panel has been not pressed.
If INTERRUPT has been pressed, use all NVRAM parameters except the Con-

sole TTY value and baud rate, and go to step 11.
If INTERRUPT has not been pressed, continue.

9. Use all NVRAM parameters.

10. Check if AUTOBOOT is set.
If AUTOBOOT is set, go to BOOT code in boot processor’s EPROM
If AUTOBOOT is not set, go to CONSOLE code in boot processor’s EPROM

11. If INTERRUPT was pressed or invalid NVRAM: Select console port from
operator and the baud rate using autobaud. Go to CONSOLE code in EPROM.

12. Perform non-boot processor selftests:
Wait for boot processor to finish step 6.
When instructed by boot processor, perform selftests 0xB through OxE (non-boot
processors do not do selftests 0x10 through Ox17). Print the test numbers on
non-boot processor DUARTS.
Go to step 13.

13. Perform non-boot processor functions:
Wait for boot processor to synchronize.
Turn on access to memory.
Initialize globals.
Copy exception vectors from EPROM to main memory.
Set up Vector Base Register to point to main memory vectors.
Tell boot processor that selftests are complete.
Set the Interrupt Process Level to 7 and set IPIR vector 7 to point to the Con-
sole code entry point.
Execute a STOP instruction.

12-2

MC5600/5700 System Reference Manual The EPROM Bootstrap

2 [mrem
e 12

e
25
zgg :
:
N

-
I
|
!
51 {=(n) (=)
|
! ves
' DEATE
O -+ sress
MOcI7 & WAIT
INTERRLPT
(FROM CONSOLE) (| rero wemt

Figure 12-1. Bootstrap Flowchart

12-3

The EPROM Bootstrap MC5600/5700 System Reference Manual

12.2 Selftest Diagnostics

This section explains each of the selftest diagnostics and how to interpret diagnostic error
LEDs on the CMPU and front panel.

When the CMPU selftest diagnostics are running, a test identification number is printed out on
the console before each test is run. There are 23 diagnostic tests, numbered 1 through 17 hexa-
decimal. If the selftest finishes successfully, the TTYO screen should show the following:

1,2.3.4.05,06,07,08,09,0A,0B,...0C,0D,0E,OF, 10, 11,12,13,14.15,16,17
V z.z mm/dd/yy PROCESSOR ID = n’

Each dot displayed after test OB represents 128 KByte of memory tested. The TTY1 and TTY?2
screens should display all but the first four test numbers (0x5-0x16). The TTY4 screen (graph-
ics terminal port) displays only the number 17. If your system does not have a graphics
memory board, tests 0x10 through Ox16 are NOT printed. Table 12-1 gives a summary of the
tests performed during powerup diagnostics. The version number, release date, and the proces-
sor I.D. running the bootstrap follow the selftest printout.

12.2.1 Diagnostic Error Codes

Before beginning selftest 1, the bootstrap verifies the EPROM checksums and checks the read
and write operations on DUART 0.

1. If the EPROM checksum is incorrect, the 68020 halts and all error LEDs are
turned on indefinitely.

2. If the DUART test fails, the 68020 goes into an infinite loop writing and reading
back the DUART register. So, if no numbers at all appear on the TTYO screen
and the error LED is off, this indicates that the DUART test has failed.

3. If one of the selftest diagnostics fails during powerup, the console printout stops
at the test that fails. If the failed test is 0x5 or higher, the error LEDs on both
the CMPU module and on the system front panel also flash an error code. Each
LED flashes n times for test number n. Each LED then goes out for 5 seconds
and repeats the sequence indefinitely.

So, for example, if the console shows 1,2,3,4,5,6 and the CMPU error LED flashes 6 times
and pauses, this indicates that Test 6 (MULTIBUS Map Integrity) has failed.

The error code should always be read on each CMPU module in a multiprocessor system (see
Chapter 11). The system fault LED on the front panel is derived from the error signals from
all CMPU modules OR’d together. This LED is only designed to indicate an error on at least
one CMPU and does not necessarily flash a readable code.

The Loop On Error jumper, when installed on the CMPU board, forces any failing tests to loop
indefinitely instead of flashing the error LED. This jumper is not factory installed. See
Chapter 11 for instructions on installing this jumper.

MC5600/5700 System Reference Manual The EPROM Bootstrap

Table 12-1
Powerup Diagnostics

TEST DESCRIPTION

Cache Data Integrity

Cache Address Test 1

Cache Address Test 2

Cache Byte Write

MULTIBUS Map Access

MULTIBUS Map Integrity
MULTIBUS Map Address Integrity 1
MULTIBUS Map Address Integrity 2
Memory 0 CSR Response

SMI Data Integrity & Memory Init
Memory Data Integrity 1

Memory Address Integrity 1
Memory Address Integrity 2
Memory Byte Write

Check For GPM/GCM On System

GPM (OR GPM & GCM) PRESENT

10 GPM/GPX Register Data Integrity

11 GPM/GPX Extended Tests

12 Graphics Read From Main Memory

13 Graphics Write To Main Memory

14 Graphics To MULTIBUS Data Integrity
15 Graphics To MULTIBUS Address Integrity
17 Non-boot Processor

Memory (Tests B-E by non-boot CPUs)

GCM ONLY PRESENT

- 10 MULTIBUS read to word O
11 MULTIBUS read to word 1
12 MULTIBUS Block mode read
13 MULTIBUS write to word O
14 MULTIBUS write to word 1
15 MULTIBUS Block mode write
16 MULTIBUS Address test
17 Non-boot Processor
Memory (Tests B-E by non-boot CPUs)

HEDQE P © 0 T3 0k W

12.3 Boot Sequence

Once the selftest diagnostics have run successfully, and if the powerup sequence has not been
diverted to console mode, the boot device driver in the EPROM is invoked. The driver has
the sole task of reading the boot block (or primary bootstrap) from the boot device (usu-

LII LOUL IR L LRSSAT- 2

ally a disk or tape) into main memory, and executing this code. The boot block then reads the

12-5

The EPROM Bootstrap MC5600/5700 System Reference Manual

target boot file (usually the c:erating system) into memory and starts executing it. The full
boot sequence may be summarized as follows:

1. Read and verify the geometry block from the boot device
2. Read and start the primary bootstrap pointed to by the geometry block

3. Read and start the secondary bootstrap (the target file) as specified by com-
mand line arguments or default flags

The MASSCOMP driver in the EPROM performs steps 1 and 2. The MASSCOMP primary
bootstrap then performs step 3 using routines in the EPROM or in the customer boot space.

If any of these steps detects an error, a message is printed on the console terminal and the sys-
tem enters console mode (described in Chapter 13).

12.4 Customer Boot Space

The MC5600/5700 has 8175 bytes of memory space reserved in the NVRAM (on the Auxiliary
Function Module) for bootstrap driver code to support non-MASSCOMP boot devices. This sec-
tion describes the programming considerations when writing your own boot code.

During system bootstrap, the EPROM first determines whether the bootstrap device driver is
contained in the customer NVRAM. If so, the EPROM uses that driver to perform the boot
sequence, even if the EPROM also contains a driver for the device. The NVRAM driver can be
disabled by using the boot command in console mode with the /nr qualifier (see Chapter 13).
If a driver is not present in NVRAM, the system boots using the device driver in the EPROM
for the device specified in the NVRAM environment or on the boot command line.

If the driver is present in NVRAM, it is first copied into main memory at physical address
0x08008000, where it is called by the bootstrap. There are 512 bytes of main memory address
space, starting at offset 0xA0OO in the boot CMPU'’s console page (physical address 0x08001A00),
which are reserved for the BSS segment of the customer boot driver. This means that the pro-
gram contained in the customer boot device must be linked at the appropriate base addresses
with the /d command (from UNIX):

X 1d -T 08008000 -B OBOO1A00 file(s)

The primary bootstrap is read from the boot device into memory at address 0x0800A000. This
bootstrap should not destroy the 8 KBytes of memory that contain the device driver at
0x08008000 if it plans on using the driver.

The geometry block is read into memory reserved for the MASSCOMP ROM at address
0x08001800, keeping it available for the entire boot process.

12-6

MC5600/5700 System Reference Manual The EPROM Bootstrap

12.5 General Purpose Callable Subroutines

This section describes the EPROMs callable entry points. These are general purpose subrou-
tines that facilitate interfacing to the hardware. Most of them are used by some part of the
EPROM bootstrap code. The information given here allows you as a programmer to have
independent access to them. For each subroutine, a brief functional specification and the
address of a pointer to it are given.

These subroutines follow the C-language conventions of:
1. Returning values in 68020 register DO
2. Assuming all parameters are four bytes in length
3. Saving the contents of all 68020 registers except DO, D1, A0Q, and Al

These routines use the stack and various locations in the console’s reserved page in main
memory (see Chapter 13).

The EPROM code is written to be able to run in a mapped system (that is, a system with
memory management hardware enabled and the virtual address space OxF0000000 —
OXFFFFFFFF mapped to physical address space 0 — OxOFFFFFFF).

Each subroutine name is first cast to the virtual address of the pointer to the subroutine
(E0000zzz) . The subroutine is then shown in the form used to call it in the program.

12.5.1 check_for_received_char

The check_for_received_char subroutine tests the keyboard receiver on the currently active
console port for the presence of a character at the keyboard. It is called:
#define check_for_received_char(r) (*(char (**) ())OxF0000420) (r)

int raw;
check_for_recelved_char (rav):

If no character is present, the function returns a zero (0). If there is a character present and
the raw argument is non-zero, the character is returned. If the raw argument is zero, the
function checks if the character is a CTRL-C (3), CTRL-O (15), CTRL-Q (17) or CTRL-S (19),
which affect the flow control flags. The function handles these characters as described in
Chapter 13. Otherwise, the function returns the character.

12.5.2 console_no_init

The console_no_init subroutine is used to return to EPROM console mode without initializing
the console variables. This entry point can be used only if the console’s reserved memory space
has not been modified (see Chapter 13). This entry point remembers any breakpoints that may
have been placed into memory. It is called:

#define console_no_init() (*(int(**) ())OxF0000414) ()
console_no_init():

12-7

The EPROM Bootstrap - MC5600/5700 System Reference Manual

12.5.3 put_char

The put_char subroutine prints a character on the active terminal. It is called:

#define put_char(d.r) (*(int(**) ())OxF0O000424) (d,r)
char data;
int raw;
put_char (data,rav) .

If the raw argument is non-zero, the function ignores the flow control flags set with
check_for_received_char. Otherwise, the control flags determine how the data argu-
ment is handled.

12.5.4 put_number

The put_number subroutine converts a number from binary to an ASCII hexadecimal string
and prints it on the active terminal using the put_char function with the raw flag set to 0.
The size of the number is specified in nibbles (1 through 8). It is called:

#define put_number(n,s) (*(int(**) ())OxFO000410) (n.s)

int number, size;
put_number (number,size)

12.5.5 put_string

The put_string subroutine prints a zero-terminated character string on the active terminal
using the put_char function with the raw flag set to 0. It is called:

#define put_string(s) (*(int(**) ())OxEFOO0040C) (s)
Oxchar *string;

put_string(string):

12.5.6 reboot

The reboot subroutine is used to boot from a device or file specified in string. The command
can be run only on the Boot processor (Processor I.D. 1). It is called:

#define reboot(s) (*(int(**) ())OxFO0000418) (s)
char *string;
reboot (string):;

The string parameter is a virtual pointer to a command line string of 131 characters or
less, beginning with the device-specification argument (the command line syntax is specified in
Chapter 13 under the boot command). The EPROM copies this string into its memory space,
disables memory management, initializes the system, and performs the boot sequence as if the
user had typed the boot command from console mode.

If an error occurs during the execution of reboot, an error message is printed on the console
terminal and the system enters console mode.

12-8

MC5600/5700 System Reference Manual The EPROM Bootstrap

12.5.7 non_boot_console

The non_boot_console subroutine is used to return to EPROM console mode on a non-boot
processor without initializing the console variables. It is called:

#define non_boot_console() ('(1ﬁt(*')())0xEOOOO41C)()
non_boot_console():

This entry point can only be used if the console’s reserved memory space has not been modified

(see Chapter 13). This entry point remembers any breakpoints that may have been placed in
memory.

12.5.8 setmap

The setmap subroutine loads the MULTIBUS 1/O maps with a specified mapping. It is called:

#define setmap(m.s.i) (*(char*(**) ())OxF0000440) (m,s.1)
int size, 1id:
char *memory: ‘
setmap (memory,size,b id);

The memory argument is a pointer to the start of the memory buffer to be mapped. The
size argument is the number of bytes in the buffer. The id argument is the MULTIBUS
number whose maps are being written.

The routine returns a pointer to the start of the buffer in the MULTIBUS address space. If the

CMPU with the specified I.D. does not exist or if the buffer is too large, the routine returns a
-1.

12.5.9 enable_gcm_terminal

The enable_gem_terminal subroutine is used to test for the presence of a GCM graphics pro-
cessor on MULTIBUS 1, or to enable ASCII terminal mode on that processor. It is called:

#define enable_gcm_terminal (f) (* (int(**) ())OxF0000444) (f)
int flag:

enable_gcm_terminal (flag):

The valid values for flag are as follows:
0 - Test for presence of a GCM module. If present, test to see if ASCII terminal
mode is enabled.
1 - Enable ASCII terminal mode.
2 - Enable ASCII terminal mode only if the active terminal is on the GCM proces-
Sor.
The routine returns the following values:
1 - A GCM processor is present and ASCII terminal mode is enabled.
0 - A GCM processor is present but ASCII terminal mode is not enabled.
-1 - No GCM processor is present

12-9

The EPROM Bootstrap MC5600/5700 System Reference Manual

12.5.10 probe_address

The probe_address subroutine is used to determine if an address responds to a read or write
operation. It is called:

#define probe_address(a.d,f) (*(int(**) ())OxF000043C) (a,d,)
data_type *address;
int data_type., function:
probe_address (address, data_type. function):

The data_type is encoded as follows:

0 - char

1 - short

2 - long
If function is a 0, a read operation is performed. Otherwise, a write is performed with a
data value of 0. This routine returns the value O if the address responds and the value -1 if
there is no response. The routine must be called with the 68020 in supervisor mode.

12.5.11 reset_smi

The reset_smi subroutine is used to reset the MC5600/5700 system. The command can only
be run on the Boot processor (Processor 1.D. 1). It is called:

#define reset_smi() (*(int(**) ())OxF0000428) ()
reset_smi ()
The subroutine causes the following sequence of events to occur:
1. Execute a 68020 RESET instruction
2. Enable the graphics terminal’s ASCII terminal mode

3. Wait for the non-boot processors to initialize

12.6 CMPU-AFM Serial Interface

This section describes the interface and communication protocol between the CMPU and the
Auxiliary Function Module (AFM). The AFM has a dedicated microprocessor for transmitting
its data to the boot CMPU and, through this, to the system. This microprocessor can read and
write the Time of Day Clock and the NVRAM on command. A small on-board EPROM con-
tains code to run the AFM microprocessor. The device used to communicate with the AFM is
CMPU serial port P1B (described in Chapter 4).

The CMPU can initiate a data transmission between it and the AFM by sending a function
code character as the first word of a serial transmission. Each AFM function (time of day, sys-
tem 1.D., user boot code, and flags) is assigned a unique function code. Once this control char-
acter is identified, the AFM microprocessor executes the appropriate task and transmits the
requested data or writes the transmitted data.

Data being received by the AFM is limited to 64 bytes due to the limited amount of RAM in
the AFM’s microprocessor. Data transmitted to the CMPU has a 256 byte limit.

12-10

MC5600/5700 System Reference Manual The EPROM Bootstrap

12.6.1 AFM Serial Communication Format

The serial line connecting the AFM to the CMPU uses the following communication format:

Baud-Rate | 38.4K
Start Bits 1
Stop Bits 1
Data Bits 8

Parity | None

To communicate with the AFM, the CMPU’s 68020 sends a packet of 2 or more characters out
of its serial port P1B. A packet consists of:

» A Function code (1 byte), followed by
e A Count (1 byte), followed by
» Optional Address and Data characters

When the Function and Count characters are received by the AFM, the packet is checked for
validity. If the packet is valid, an acknowledge (ACK) code is returned. An ACK response is
the single character Ox41 (the ASCII “A”). This response indicates that the AFM has success-
fully processed either the Function code, the Count /Address, or the Data.

If the Function character is unrecognizable or the Count/Address field is too large, the AFM
returns an ERROR code. The ERROR code is the single character 0x45 (the ASCII “E"). if
an ERROR code is retuned, the CPU must inhibit sending the rest of the packet.

The flow of operations for reading and writing AFM functions are essentially the same, regard-
less of which function is the target.

To write an AFM function, the CPU: .
Sends a 1-byte Function code, followed by

[

A 1-byte count (cc) within the range shown in Table 12-2
Waits for an ACK or ERROR code to be returned

Sends a 1- or 2-byte starting address (if appropriate)
Waits for ACK or ERROR to be returned

» If an ERROR code is received, then either the starting address or
the byte count is too large. Sending the rest of the data must be
inhibited at this point.

+ If ACK, sends the AFM cc bytes of data

A I

6. Waits for ACK to be returned, indicating that all data has been pro-

cessed by the AFM processor (this takes approximately 30 milliseconds
per character for the NVRAM)

To read an AFM function, the CPU:
1. Sends a 1-byte Function code, followed by

12-11

The EPROM Bootstrap MC5600/5700 System Reference Manual

A 1-byte count character (cc) in the range shown in Table 12-2
Waits for ACK or ERROR to be returned

Sends a 1- or 2-byte starting address (if appropriate)

Waits for ACK or ERROR

If not an ERROR, the AFM then returns cc bytes of data.

Table 12-2 summarizes the format of each packet used to communicate with the AFM.

o oo W N

Table 12-2
AFM Serial Communications Format
Function Packet Format
Function Count cc Address
Target R/W Code (1 Byte) | Range (1 Byte) Range .
2 Bytes
A\ 0x46 1-64 High Byte, Low Byte | cc bytes
(0-8174)
Bootstrap 2 Bytes
R 0x06 1-255 High Byte, Low Byte -
(0-8174)
A\ 0x42 1-8 1 Byte (0 - 7) cc bytes
Boot Flags R 0x02 1.8 0.7 -
W* - - - -
System LD. 75 0x04 1-8 0-7 -
DLW 0x40 1-64 1 Byte (0 - 63) cc bytes
Clock Chip 75 0x00 1-64 1 Byte (0 - 63)]
Diagnostic W 0x48 Don’t Care - 1 Byte
Byte R 0x08 Don’t Care - .

* The system LD. is read-only

The following describes the AFM functions that may be accessed using the serial format:

Bootstrap. Customer bootstrap software may be stored in the NVRAM. The size of the
bootstrap NVRAM is 8175 bytes and the 2-byte address range is 0x0 - Ox1FEF. Section 12.4
describes how this NVRAM code is used by the MASSCOMP bootstrap.

Boot Flags. The software boot flags are stored in 8 bytes of the NVRAM. The flags are used
to control the console on powerup initialization and can be modified by various console com-
mands (see Chapter 13).

System LD.. The system LD. is an 8 byte read-only number assigned to the system by
MASSCOMP at the factory. The console mode password, if present, is also encrypted into
this field. The system L.D. may be read in console mode as part of the environment (see
Chapter 13). If a write is attempted, the AFM returns ERROR.

Time of Day Clock. The AFM uses a Motorola MC146818A chip to provide the system’s
time of day clock. The AFM interface to the clock chip models the chip as a 64 byte RAM.

12-12

MC5600/5700 System Reference Manual The EPROM Bootstrap

The operation and programming of this chip is described in the specification sheet referenced in
the preface of this manual.

Diagnostic Byte. This is a spare byte on the NVRAM used to verify its reading and writing
capabilities.

12-13

Chapter 13
The Console

13.1 Entering Console Mode
13.1.1 Console Mode Password Protection
13.1.2 Changing the Current Console Device
13.1.3 Using Console Mode for Debugging
13.1.4 Main Memory Pages Reserved for Console

13.2 Console Command Syntax
13.2.1 Arguments
13.2.2 Control Characters

13.3 The Machine Environment

13.4 Command Descriptions
13.4.1 Boot
13.4.2 Breakpoint
13.4.3 Continue
13.4.4 Copy
13.4.5 Deposit
13.4.6 Dump
13.4.7 Examine
13.4.8 Initialize
13.4.9 Memory Enable
13.4.10 Next (Single Step)
13.4.11 Repeat
13.4.12 Remote Port Enable
13.4.13 Start
13.4.14 Selftest
13.4.15 Zero

13.5 Qualifiers
13.5.1 Address Qualifiers
13.5.2 Data Type Qualifiers
13.5.3 Special Use Qualifiers

13.6 Running Console Mode on Non-boot Processors

Page

13-1
13-1
13-2
13-2
13-3

13-3
13-5
13-6

13-6

13-9

13-9
13-10
13-11
13-11
13-11
13-11
13-12
13-12
13-13
13-13
13-13
13-13
13-14
13-14
13-14

13-14
13-14
13-15
13-16

13-16

13-i

Table
No.

13-1 Console Baud Rates

13-2 Console Summary

13-3 NVRAM Error Codes

13-4 Environment Fields

13-5 Boot Switch String Values
13-6 Boot Command Examples
13-7 Dump Devices

13-ii

TABLES

Page

13-2
13-4
13-7
13-8
13-10

13-10

13-12

MC5600/5700 System Reference Manual

Chapter 13
The Console

The console mode is a specialized operating mode in which the processor executes code in the
EPROM, rather than code in main memory. The console mode is designed to facilitate
hardware debugging and other operations. It may be used for:

o Manual control over the bootstrap process
o Hardware level diagnosis

e Program debugging

o Performing system memory dump

o Performing selftest and initialization as discrete operations

13.1 Entering Console Mode

To enter console mode from the current console device:

e From UNIX: Type reboot -h. This leaves memory mangement enabled.
The terminal port specified in the NVRAM on the Auxiliary Function Module is
used as the console device (this default may be changed, as described later in this
chapter).

e From powerup:

o If the system autoboots to UNIX, wait for it to finish and then type
reboot -h.

o If the autoboot environment flag is set to be off, the system enters console
mode automatically after performing its powerup selftests.

You are in console mode when you see the >>> prompt.

13.1.1 Console Mode Password Protection

Some systems are configured with password protection for console mode. In this case, the sys-
tem issues the prompt before entering console mode:

Passwvord:

You must type the password matching the one stored in the NVRAM by the system adminis-
trator before you can enter console mode. Typed characters are not echoed. If the password is
entered incorrectly, the prompt is reissued until the correct one is entered.

13-1

The Console MC5600/5700 System Reference Manual

For information on changing the console password, contact your MASSCOMP service represen-
tative.

13.1.2 Changing the Current Console Device

If you wish to use console mode at a terminal that is not currently the console device, press the
INTERRUPT switch on the front panel of your system. The autobaud feature in the con-
sole software then attempts to determine the baud rate of any terminal on which it detects a
transmitted character. The system shows the prompt HIT RETURN TO PROMPT on all ter-
minals transmitting at the baud rate indicated by the asterisk (*) in Table 13-1.

Table 13-1
Console Baud Rates
T al Baud Rate
erminal "1 <CR> | 2 <CR> | 3 <CR>
19200*
TTYO 9600 2400
TTY 2 7200 1200
4800 300
38400* 4800
TTY 1 9600 2400
7200 1200

If your terminal is transmitting at one of the baud rates shown in column 1 in Table 13-1,
pressing one <CR> at one of the terminals selects that terminal to be the console device. If
your terminal is transmitting at one of the baud rates shown in column 2 in Table 13-1, press-
ing <CR>> twice at one of the terminals selects that terminal to be the console device. Setting
the console device baud rate to 300 requires pressing <CR>> three times.

13.1.3 Using Console Mode for Debugging

While console mode is most often used in system maintenance, it is also very useful for debug-
ging programs or pinpointing hardware problems. Typically, a console debugging session
includes the following steps:

1. Load your diagnostic program into main memory, using either the boot com-
mand (to load an entire program) or the deposit command (to manually load
the program one instruction at a time).

Run the program until it reaches an error or ends successfully.

At any point in console mode, you can set breakpoints in the program, examine
and change the contents of 68020 registers, and continue program execution

from the halt point. A single step and a data copying facility are also avail-
able.

)
q-o
[

MC5600/5700 System Reference Manual The Console

13.1.4 Main Memory Pages Reserved for Console

The first ten 4 KByte pages of system memory address space are reserved by convention for
use by the code in the CMPU EPROM. The first 32 Kbytes (0x8000000 — O0x8007FFF) are
reserved for use by the console code. The second 4 KByte page is reserved for the EPROM on
processor I.D. 1 (Boot CPU). The first and third through seventh pages are reserved for non-
boot CMPU EPROMs and future expansion. The next two pages (0x8008000 — Ox8009FFF)
are reserved for a customer boot driver to be read in from the NVRAM (see Chapter 12).

None of these pages are overwritten, even after the MASSCOMP RTU operating system is
booted.

13.2 Console Command Syntax

Console mode uses a limited command interpreter that recognizes commands in the following
format:

keyvord[/qualifier[:count]] [arguments...]
The fields are:

keyword the command.

/qualifier[:count]
optional data, address, or special use qualifiers, each delimited by a slash
(/). A data qualifier specifies the length of the data argument. An address
qualifier indicates which register or address space is referred to by the
command’s address argument. Special use qualifiers are only used in specific
situations. Some qualifiers can have a numerical count, delimited by a colon
(2)-

arguments optional data values or address expressions, separated by spaces.

Table 13-2 lists all console mode commands and qualifiers.

13-3

The Console

MC5600/5700 System Reference Manual

13-4

Table 13-2
Console Summary
COMMANDS
Command Description
b Boot
br Breakpoint
co Continue
cp Copy
d Deposit
du Dump Memory
e Examine
i Initialize SMI & MULTIBUS
m Enable Main Memory
n Next (Single Step)
r Repeat Indefinitely
re Remote Port Enable
s Start
t Test
] Zero Memory
QUALIFIERS
Qualifter Description Type
/b Byte (8 bit data length)
N Longword (32 bit data length) Data
[w Word (16 bit data length)
/ a Address Registers
[ea Cache Address Register
[ec Cache Control Register
/d Data Registers
/df Destination Function Code Reg. Address
i Instruction (PC) Register (68020)
/m Status Register
/s User Stack Pointer
/st Source Function Code
/v Vector Base Register
/dg Diagnostic Space
/e Environment Field
/t Boot Flags Address
/p Physical Address Space (non-68030)
/ pr Processor Register Space
/tb Translation Buffer Space
/n: Next Count
/nr Ignore Customer Boot ROM Special
/r Relocation Base Address Use
/x Inhibit Config Defaults

MC5600/5700 System Reference Manual The Console

13.2.1 Arguments

Most console commands require an argument. Command arguments may be data expressions
or address expressions.

Data expressions may be byte, word or longword in length, specified by the data qualifiers
/b, /w, and /1. Leading zeros do not need to be typed and are ignored. Data expressions use
the following form:

nn one byte expressed in hexadecimal (example: FF)
nnnn one word expressed in hexadecimal (example: 12FF)
nnunnnnnn one longword expressed in hexadecimal (example: AB3412FF)
Data arguments that are larger than their qualifier are truncated. So, for example, the com-
mand d/b 6 12345 deposits the value 45 at address 6.

There is no such thing as a default data value. You must include a data argument each time
you type a command that requires data.

Address expressions specify registers or various system address spaces. Address expressions
use the following syntax:

nnnnnnnn Hexadecimal number representing an address within the address space specified
by the address qualifier. Leading zeros are ignored.

Reuse the last address value from the most recent command that used an
address argument. For example, the command e # examines the the most
recently specified address argument.

+ Increment the most recently specified address value and use it for the current
command. The current data type (not the type declared in the command)
determines whether the address is incremented by one byte, one word, or one

longword. For example, the command e/p/b following the command
Be/p/1 examines the address 4 bytes ahead of the previous one in physical
memory.

- Decrement the most recently specified address value and use it for the current
command. The current data type (not the type declared in the command)
determines whether the address is decremented by one byte, one word, or one
longword. For example, the command e/p/b - following the command
Be/p/1 examines the address 4 bytes before the previous one in physical
memory.

$ Indirect addressing. Use the last data value returned from an examine com-
mand as the address value for the current command. For example, the com-
mand d/p/1 $ 12345678 deposits the value 12345678 into the address
returned as data from the previous command.

Commands given without address arguments default to the previous address increment size
and direction. For example, the command e/1 - causes subsequent commands to default to
decrement the previous address in longword units. The contents of the Console Relocation
Register (Section 13.5.3) is added to all address arguments, default or explicit.

13-5

The Console MC5600/5700 System Reference Manual

13.2.2 Control Characters

Console mode uses its own set of control characters for flow control and command editing.
These control characters are:

CTRL-C interrupt the current command and invoke a new prompt
CTRL-U (also CTRL-X or @) discard the current input line, and issue a new prompt
CTRL-R repeat the command line in its current form

CTRL-O alternately suppress and resume the display of output to the console device; do
not suspend the current activity

CTRL-S (XOFF) suspend output to the comsole device; suspend activity until paired
CTRL-Q (XON) is received from the device

CTRL-Q (XON) resume output to the console device; resume any further activity that
outputs to that device

RUBOUT (also DELETE, BACKSPACE, or #) delete the last character typed

13.3 The Machine Environment

The NVRAM on the Auxiliary Function Module contains a data field called the machine
environment. When a system is booted, the console program in EPROM first looks at the
environment for all default information required to perform a bootstrap. You may examine
and change the environment values stored in the NVRAM from console mode.

To examine the current machine environment in console mode, type:
>>> e/e

The console terminal displays the current environment in the following form:

System serial number is: W-XXX-YYy-ZZZZ

Function Address Value
Boot Device 0 ca0
Tty n Baud Rate 1
Auto Boot Enable 2
Boot Flags 3 0
Processor Select 4
Buffer Wrt Enable L)

Processor Revisions
ID ROM mc68020 mc68881

1 x.y A B
2 X.y A B

If the NVRAM is invalid or unreadable, the message NV Ram Invalid - error_code
appears on the top line. The system then uses environment defaults set in the console code.
Table 13-3 shows the possible error codes and their descriptions.

13-6

MC5600/5700 System Reference Manual The Console

Table 13-3
NVRAM Error Codes
Error Code Description Field in Error
e

FE Error on AFM command
FD Error on AFM address Serial I.D.
FC Timeout while getting AFM data
FB Error on AFM command
FA Error on AFM address Flags
F9 Timeout while getting AFM data

The system serial number and the console password (if used) are not changeable. The first
column in the environment table describes each environment parameter. The second column
gives the address in NVRAM that controls that parameter. The third column gives the
current value in that address. The parameters are described below.

Boot Device

TTY n Baud Rate

Auto Boot Enable

Boot Flags

Processor Select

Buffered Write

Processor Revisions

The physical device from which to read in the bootstrap program
into memory. The string is limited to 5 characters.

The data rate of the console device. The current console TTY dev-
ice n is displayed and may have values O, 1, 2, or 4. The TTY
value can be changed only by pressing the INTERRUPT switch on
tlke front panel and then <CR> on the new TTY device

Determines whether system powers up / resets with the BOOT
DEVICE and FLAGS in the environment or goes to console mode
for manual boot

Default bootstrap program (UNIX, Standalone Shell, or Diagnostic
Monitor)

An 8-bit hexadecimal value with each bit corresponding to a proces-
sor I.D. that the O.S. is permitted to use. The LSB represents pro-
cessor I.D. 0. When a bit is set to a 1, the corresponding processor
is ON. The default is all processors to be ON (NVRAM Address 4
= FF).

Enables or disables the buffered write hardware function on
bootstrap (described in Chapter 4).

Lists the software revision of the EPROM and the hardware revi-
sion of the MC68020 microprocessor and MC68881 Floating Point
chip on each CMPU module in the system. If there is any variance
of these revision numbers between CMPU modules, the system
bootstrap fails. If this occurs, contact your MASSCOMP service
representative.

13-7

The Console MC5600/5700 System Reference Manual

Table 13-4 lists the possible values for each field.

Table 13-4
Environment Fields

‘ Environment Parameter Value Description I
—_——
da0 1st disk on 1st XMD
dal 2nd disk on 18t XMD
dbo 1st disk on 2nd XMD
dbl 2nd disk on 2nd XMD
BOOT DEVICE ca0 1st disk on 1st XMC
cal 2nd disk on 1st XMC
cb0 1st disk on 2nd XMC
cbl 2nd disk on 2nd XMC
fip floppy on 1st XMC
50* Console Device Baud Rate
75%* for TTY 0,1, & 2, except:
110 * TTY 1 only
150** ** TTY O & 2 only
134.5
mt
300
600
1050*
BAUD RATE 1200
lswtt
mtt
2400
4800
7200*
9600
lmtt
38400*
0 Go to console mode on powerup
AUTO BOOT 1 Boot using above devices and
BOOT FLAGS (below) on powerup
0 UNIX / Multi-user
1 Stand Alone Shell (SASH)
BOOT FLAGS 2 UNIX / Single User
4 Reserved for MASSCOMP
8 Diagnostic Monitor
An 8-bit hexadecimal value with
PROCESSOR SELECT gg';.' one bit set to a 1 for each processor
LD. that the O.S. is permitted to use
0 Disabled
BUFFERED WRITE 1 Enabled

13-8

MC5600/5700 System Reference Manual The Console

To change an environment field value, use the deposit command (below).

13.4 Command Descriptions

This section gives a detailed description of each console command.

The command formats below are given with verbatim text in bold and variable input in italics.
The examples highlight user input in typewriter bold font. The console prompt >>> is never
typed.

13.4.1 Boot

The boot command (b) has many optional parameters and arguments. In general, the com-
mand has the form:

b{/f:n|(/x] [device_spec](/path_name] [switch_string]

If you execute the boot command without giving any qualifiers, the parameters stored in the
NVRAM are used to perform the bootstrap.

If you use the /f:n qualifier, the value n overrides the boot flag in the machine environment.
See Table 13-4 for a list of valid boot flags in the machine environment.

If you use the /x qualifier, the main memory, PCRA and PCRB are left in their current state.
The /x qualifier also inhibits an 1/O reset that may leave non-boot processors in a state that
inhibits their use by the operating system. The x qualifier allows the system to be booted even
if the cache is malfunctioning.

The device_spec is an optional argument used to override the boot device default in the
environment. See Table 13-4 for valid MASSCOMP boot devices in the environment feld.

The path_name is an optional UNIX pathname on the boot device that identifies the file to be
used to boot the system. This pathname may be used to specify a diagnostic program, a non-
standard version of UNIX, or some other program to be debugged. If path_name is not given,
the default file used is /uniz (or diagm..1.5600, depending on the boot flags or whether a
switch_string is specified).

The switch_string is an optional string used to override the default boot flag set in the environ-
ment on the NVRAM. Possible switch string values are given in Table 13-5.

13-9

The Console MC5600/5700 System Reference Manual

Table 13-5
Boot Switch String Values
Switch Description
-stand Standalone Shell
-single Single user
-multi Multiuser

-btepu Boot CMPU
-nbtepu | Non-boot CMPUs

-all All CMPUs

-debug Kernel Debugger

-swap Change swap file

-printer | Enable printer
for console

Some examples of the boot command are shown in Table 13-6.

Table 13-6
Boot Command Examples

) Boot using default parame T
in the NVRAM
b da0/unix -single | Boot to single user UNIX from da0
b dad/unix Boot to multiuser UNIX from da0
b/g:8 £1p Boot the diagnostic monitor
from floppy
b da0/stand/sash Boot sash (standalone shell)
from da0
b/f£:1 £lp Boot sash from floppy

13.4.2 Breakpoint

The breakpoint command (br) sets a breakpoint at a specified address in the program. When
the program in memory is rum, execution is suspended as soon as the specified breakpoint
address is reached. The command has the form:

br[/gsalifiers] address
Typing br with no arguments displays all currently set breakpoints. A dash before the address
clears a breakpoint at that address. Some examples are:

»>> br/1 08001234 $ sets breakpoint at 08001234
>>> br -08001234 # clears breakpoint at 08001234

MC5600/5700 System Reference Manual The Console

>>> br # displays breakpoints
>>> br - # clears all breakpoints

13.4.3 Continue

The continue command (co) resumes program execution from the current program counter.
The command takes no arguments.

13.4.4 Copy

The copy command (cp) copies the contents of one address or group of addresses to another.
The command has the form:

cp[/qvalifiers] source_osddr destination_addr

For example, to copy 100 longwords at address 1000 to address 2000, the command is:
>>> op/n:100/1 08001000 08002000

13.4.5 Deposit

The deposit command (d) is used both for general purpose diagnostics and for changing
default values in the NVRAM. The d command writes its data argument to a specified
address. The command has the form:

d[/qualifiers] address data
For example, to deposit the data byte OXFF to the first XMD controller on the MULTIBUS 1,
the command is:

>>> d4/p/b T2EE40 ¥T¥F

The deposit command is also used to change NVRAM values in the environment field. For
example, to change the boot flag in the environment to a 2 to change the system default
powerup to be single-user mode, the command is:

>>> d4d/e¢ 3 2

13.4.6 Dump

The dump command (du) writes the entire contents of memory onto the specified device. If
the device is a file system, it uses the default file /stand/crashdump, which must already exist.
The command requires a device spec as an address argument, as shown in Table 13-7.

13-11

The Console MC5600/5700 System Reference Manual

Table 13-7
Dump Devices

Dump Device Controller |
ca0, cal, ¢b0, cbl XMC '
¢c0, ccl, ¢d0, cdl
da0, dal, da2, da3
dbo, dbl, db2, db3 XMD
dc0, dcl, dc2, dec3

xmtOboot XMT
Some examples are:
>>> du otp # Dump onto cartridge tape
>>> du mtpboot # Dump onto 1/2" tape
>>> du oai # Dump onto 2nd disk on first XMC

The du command automatically enables main memory.

13.4.7 Examine

The examine command (e) is used to display the contents of a specified register or address.
The command has the form:

e[/gualifiers] address

Some examples are:

>>> e/p/w 8000000 # examine first vord in SMI memory
>>> ¢/1/n:100 8000000 # examine 100 longvords starting at 08000000

13.4.8 Initialize

The initialize command (i) executes a 68020 RESET instruction. If the CMPU jumpers are
configured with the 68020 RESET line tied to the MULTIBUS INIT line (as is normally the
case for processor I.D. 1), executing the i command on the boot processor causes the MULTIBUS
INIT line to be asserted on all MULTIBUSs. Non-boot processors enter the stopped state if
memory has been enabled. Otherwise, the non-boot processors wait for a handshake from the
boot processor.

13-12

MC5600/5700 System Reference Manual The Console

13.4.9 Memory Enable

Memory is normally disabled whenever the hardware reset switch is pressed. The memory-
enable command (m) enables main memory and leaves its contents intact for program debug-
ging. It takes no arguments.

13.4.10 Next (Single Step)

The next command (n) is used to single step through a program. The command executes the
next instruction pointed to by the 68020 program counter. The command may be given a
numerical count. For example, to execute the next 5 instructions, the command is:

>>> n/n:5s

After each instruction, the Console Relocation Register (described in Section 13.5.3) is sub-
tracted from the current contents of the program counter, and this value is printed.

13.4.11 Repeat

The repeat command (r) repeats the accompanying command until interrupted by pressing
CTRL-C. It has the form:

r console_command
The r command can only be used with the d, e, and cp commands. For example, to repeatedly
examine address FF, the command is:

>>> r e/b Y

The console device repeatedly displays the contents of address OxFF.

13.4.12 Remote Port Enable

The remote port enable command (re) allows a terminal connected to the system by a
modem to be the console device. The re command ensures that a remote terminal can become
console only by being first enabled at the local terminal.

Typing the re command at the current console terminal first disconnects that terminal device.
If re is issued through a modem line, the line is disconnected until the modem hangs up and
reconnects.

After disconnecting the current console device, the system scans all of its ports for a deasserted
DCD (Data Carrier Detect) line to become asserted. Any port at which this occurs is included
in the autobaud algorithm described in Section 13.1.2.

Pressing the INTERRUPT switch on the front pane] causes the remote enable state to be
cleared but does not disconnect a modem that is already connected. Pressing the RESET

i isconnects anv modems that are coannec g
switch disconnects any modems that are connected.

13-13

The Console MC5600/5700 System Reference Manual

13.4.13 Start

The start command (s) initializes the program counter, executes the equivalent of the initial-
ize console command, and begins program execution. The s command has the form:

s address

where address is the address in physical memory of the first instruction to be executed.

13.4.14 Selftest

The selftest command (t) executes the CPU hardware selftest program in the EPROM that is
normally run during powerup. The test displays a character on all three UART ports for each
test begun. See Chapter 12 for more information on the CPU selftest.

13.4.15 Zero

The sero command s enables and clears main memory, thus initializing the memory error
checking mechanism. The command takes no arguments. To enable memory without clear-
ing, use the m command.

13.6 Qualifiers

This section describes all of the console mode qualifiers. There are three types of qualifiers, as
explained below: address, data, and special use qualifiers.

13.5.1 Address Qualifiers

Address qualifiers specify the the register or memory space referred to by the accompanying
command’s address argument. There are two groups of address qualifiers: 68020 registers and
non-68020 registers. The following qualifiers refer to internal registers on the 68020:

/a Address registers

/d Data registers

/df Destination Function register
/sf Source Function register

[ea Cache Address register

Jee Cache Control register

/i Instruction (program counter) register

13-14

MC5600/5700 System Reference Manual The Console

/m Status register
/s User Stack Pointer register
/v Vector Base register

All 68020 registers (except the status register) are 32-bit (longword) registers. The data in
these registers are actually stored in main memory locations by the console code, so some regis-
ters may not show as expected until the co command is given. For more information on these
registers, consult the MC68020 32-Bit Microprocessor User’s Manual.

The following are the non-68020 console address qualifiers:
/p Physical address space (the powerup default if no qualifier is specified)
/tb Translation buffer space (see Chapter 2)
/dg Diagnostic space (see Chapter 2)

/pr Processor Register space. These are the control registers TBCCR and
TBCFR (see Chapter 2) on the CMPU board running the Console code

/e Environment Fields. This data is located in the NVRAM on the AFM and
determines the type of bootstrap operation.

/f Boot Flags. See Table 13-4 for boot flag values.

Once specified, an address type qualifier overwrites the console-maintained defaults for all sub-
sequent commands. The console applies the current default when an address argument is not

given an address type qualifier. So, for example, you do not have to type /d for each consecu-
tive command that refers to a 68020 data register.

Section 13.6 describes how to run the console in a multiprocessor system to examine registers
on other CMPU modules.

13.5.2 Data Type Qualifiers

Data qualifiers are used with the examine, deposit, and copy commands to change the
default size of a command’s data argument. Data may be a byte, a word or a longword in
length:

/b byte (8 bits)

/w word (16 bits)

/1 longword (32 bits). This is the powerup default
Once specified, a data type qualifier overwrites the console-maintained defaults for all subse-
quent commands. The console applies the current default when a data argument is not given a

data type qualifier. So, for example, you do not have to type /1 for each consecutive command
that uses a longword data-type.

13-15

The Console MC5600/5700 System Reference Manual

13.5.3 Special Use Qualifiers

There are four qualifiers that are associated only with specific commands or situations: the /n:,
/ar, /r, and /x qualifiers.

The next qualifier (/n:z) performs the accompanying command beginning at the specified
address for z iterations. The count z is interpreted as a hex value. This qualifier is used only
with the cp, d, e, and n commands.

Some examples are:

>>> n/n:9 # execute next 9 instructions
>>> a/an:C # execute next 12 instructions

The ignore eustomer boot ROM qualifier (/nr) is used with the boot command. If you have
loaded your boot code into the NVRAM as described in Chapter 12, the bootstrap defaults to
the code in this memory space. The /nr qualifier instructs the console to boot using the stan-
dard MASSCOMP bootstrap. This qualifier is useful if a device driver in the NVRAM has the
same name as a MASSCOMP driver and you wish to execute the MASSCOMP driver.

The relocation qualifier (/r) stores its data argument in the Console Relocation Register. The
value in this register is added as an offset to all address qualifiers given to the br, ep, d, e,
and s commands. A data argument is required with this qualifier. Initialization sets the value
of the Relocation Register to zero.

For example, the following command sets the Relocation Register to be 5 and all subsequent
addresses to be automatically incremented by 5:

>»> d/x §

The exclude qualifier (/x) excludes PCRA, PCRB, main memory initialization, and I/O reset
when executing a b or 8 command. Normally, these commands initialize cache and main
memory. The x qualifier causes the PCRA and PCRB registers and memory to be left in their
current state.

13.6 Running Console Mode on Non-boot Processors

If you want to examine or deposit a non-boot CMPU local device, register, or secondary
address space in console mode, you must execute the code on that processor. To run console
mode on a processor other than Processor I.D. 1 in a multiprocessor system:

1. Enter console mode, as described in the beginning of this chapter.

2. Deposit a value of 0x81 to the IPIR of the CMPU module you wish to run using
the console d command to set a level 7 interrupt. The EPROM sets the level 7
IPIR interrupt on all non-boot processors to vector to the local EPROM’s con-
sole code. Chapter 5 explains how to set the IPIR and Chapter 8 describes the
physical addresses of the IPIRs in a multiprocessor system.

3. The TTYO terminal on the selected processor displays console mode.

13-16

Appendix A
Pinouts

Appendix B
MC5600/5700 Specifications

Appendix C
DUART Specification

TABLES

Table Page
No.

A-1 CMPU To Front Panel Connector (J36) Pinout A-2
A-2 MULTIBUS Backplane & Module Pinouts (86 Pins) A-2
A-3 MULTIBUS Pinout Exceptions A-5
A-4 SMI Backplane & Module Pinouts (60 Pins) A-5
A-5 SMI Pinout Exceptions A-8
A-6 CMPU Module, Connector P03 Pinout (Ports POA, POB, P1A) A-10
A-7 CMPU Module, Connector P04 Pinout (Port P1B) , A-11
A-8 AFM/ARB Module, Connector P01 Pinout (70 Pins) A-11
A-9 AFM/ARB Module, Connector P02 Pinout (40 Pins) A-13
A-10 AFM/ARB Module, Connector P03 Pinout (60 Pins) A-14
A-11 AFM/ARB Module, Connector P04 Pinout (14 Pins) A-16

B-1 MC5600/5700 Specifications B-1

MC5600/5700 System Reference Manual

Appendix A
Pinouts

This appendix contains the following pinout tables:

Table A-1: The pinout for CMPU backplane connector J36 that connects to the
front panel.

Table A-2: The pins on the MULTIBUS common to all 15 backplane connectors.
The MULTIBUS pins used by the CMPU and CMM modules are also indicated.

Table A-3: The pins on the MULTIBUS that vary depending on the connector
and module.

Table A-4: The pins on the SMI common to all 15 backplane connectors. The
SMI pins used by the CMPU and CMM modules are also indicated.

Table A-5: The pins on the SMI that vary depending on the connector and
module.

Tables A-68 and A-7: The CMPU Serial Ports pinouts (2 connectors).

Tables A-8 through A-11: The pinouts for the 4 connectors on the Auxiliary
Function / Arbitration Module (AFM/ARB).

The pinout tables in this appendix use the following symbols:

Symbol Description I

° Used by module
- Not used by module

" Signal varies per connector;
See table of signal exceptions

— Voltage supply

Pinouts MC5600/5700 System Reference Manual

Table A-1
CMPU To Front Panel Connector (J36) Pinout
Backplane Connector J36
PIN SIGNAL NAME DESCRIPTION SIGNAL TYPE
P1 GND Signal Ground —
P2 GND Signal Ground —
P3 +5v DC +5v Power Supply —
P4 MBUS SW Reset L Software Reset TTL
P Power on L Power Controller Output
Pé MBUS ACLOL MBUS AC Low oC
P7 MBUS Error L CMPU Error Condition(s) [o]¢]
P8 NC Not Connected —
P9 Power on L Return Power Controller Return Input
P10 NC Not Connected —_
Table A-2
MULTIBUS Backplane & Module Pinouts (86 Pins)
Backplane Connectors JO1 thru J16 CMPU oMM
PIN SIGNAL NAME DESCRIPTION SIG TYPE
P1 GND Ground — ® ®
P2 GND Ground —_ ® e
P3 VvCC Power +5v - J L J
P4 VCC Power +5v — o (]
PS VCC Power +5v —_— ® o
P6 VCC Power +5v — ® ®
P7 VDD Power +12v —_ ® -
P8 VDD Power +12v _— o -
P9 VEE Power -5.2v — - -
P10 VEE Power -5.2v — - -
P11 GND Ground — [®
P12 GND Ground — @ [
P13 MBUS BCLK L MBus B Clock TTL - -
P14 MBUS INIT L INIT Signal (o] o] o o
P15 MBUS BPRN L MBUS Grant TTL [J -
P16 MBUS SPARE 1 L — — - -
P17 MBUS BUSY L Bus Busy oC ® -
P18 MBA Disable Disable (MBUS BREQ L) TTL Ld -
P19 MBUS MRDC L Memory Read Command TS ® -
P20 MBUS MWTC L Memory Write Command TS L4 -
P21 MBUS IORC L 1/O Read Command TS ® -

MC5600/5700 System Reference Manual

Pinouts

Backplane Connectors JO1 thru J15 CMPU CMM

PIN SIGNAL NAME I DESCRIPTION I SIG TYPE

P22 MBUS IOWC L 1/O Write Command TS [-
P23 MBUS XACK L Transfer Acknowledge TS J -
P24 MBUS SW Reset L Software Reset TTL @ -
P25 MBUS Lock L Lock TS [) -
P26 MBUS Error L Error oC o -
P27 MBUS BHEN L Byte High Enable TS [] -
P28 MBUS ADRS <16> L MBUS Address Line TS ® -
P29 SIG GND L Ground — o -
P30 MBUS ADRS <17> L MBUS Address Line TS L -
P31 MBUS CCLK L MBUS C Clock TTL - -
P32 MBUS ADRS <18> L MBUS Address Line TS [-
P33 MBUS SPARE 2 L — — - -
P34 MBUS ADRS <19> L MBUS Address Line TS L J -
P35 MBUS INT <6> L MBUS Interrupt 0oC [] []
P36 MBUS MC Lock2 L MBUS MASSCOMP Lock TS L J -
P37 MBUS INT <4> L MBUS Interrupt oC ® -
P38 MBUS INT <5> L MBUS Interrupt 0oC o -
P39 MBUS INT <2> L MBUS Interrupt 0oC ® -
P40 MBUS INT <3> L MBUS Interrupt oC L4 -
P41 MBUS Block Mode L MBUS Block Mode TS Ll -
P42 MBUS INT <1> L MBUS Interrupt oC ® -
P43 MBUS ADRS <14> L MBUS Address Line TS L -
P44 MBUS ADRS <15> L MBUS Address Line TS ® -
P45 MBUS ADRS <12> L MBUS Address Line TS o -
P46 MBUS ADRS <13> L MBUS Address Line TS ® -
P47 MBUS ADRS <10> L MBUS Address Line TS ® -
P48 MBUS ADRS <11> L MBUS Address Line TS L =
P49 MBUS ADRS <08> L MBUS Address Line TS ® =
P50 MBUS ADRS <09> I, MBUS Address Line TS Ll -
P51 MBUS ADRS <06> L MBUS Address Line TS ol -
P52 MBUS ADRS <07> L MBUS Address Line TS d -
P53 MBUS ADRS <04> L MBUS Address Line TS [-
P54 MBUS ADRS <05> L MBUS Address Line TS L -
P55 MBUS ADRS <02> L MBUS Address Line TS ® -
P56 MBUS ADRS <03> L MBUS Address Line TS L -
P57 MBUS ADRS <00> L MBUS Address Line TS o =
P58 MBUS ADRS <01> L. MBUS Address Line TS o -
P59 MBUS DATA <14> L MBUS Data Line TS d -
P60 MBUS DATA <15> L MBUS Data Line TS ® -
P61 MBUS DATA <12> L MBUS Data Line TS ol -
P62 MBUS DATA <13> L, MBUS Data Line TS hd =

A-3

Pinouts

MC5600/5700 System Reference Manual

Backplane Connectors JO1 thru J16

CMPU | CMM

PIN SIGNAL NAME DESCRIPTION SIG TYPE

P63 MBUS DATA <10>L | MBUS Data Line TS ® -
P64 MBUS DATA <11>L | MBUS Data Line TS (] -
P65 MBUS DATA <08>L | MBUS Data Line TS [-
P66 MBUS DATA <09>L | MBUS Data Line TS ® -
P67 MBUS DATA <08>L | MBUS Data Line TS [-
P68 MBUS DATA <07>L | MBUS Data Line TS o -
P69 MBUS DATA <04>L | MBUS Data Line TS o -
P70 MBUS DATA <06> L | MBUS Data Line TS [l -
P71 MBUS DATA <02>L | MBUS Dats Line TS L -
P72 MBUS DATA <03>L | MBUS Data Line TS o -
P73 MBUS DATA <00>L | MBUS Dats Line TS ® -
P74 MBUS DATA <01> L | MBUS Data Line TS d -
P75 GND Ground — [@
P76 GND Ground — [L
P77 MBUS SPARE 3L — — - -
P78 MBUS ACLOL MBUS AC Low 0oC ® -
P79 VNN Power -12v — @ -
P80 VNN Power -12v — ® -
P81 VCC Power +5v —_ ® o
P82 VCC Power +5v — ® o
P83 VCC Power +6v — ® [
P84 VCC Power 4-6v — L [
P85 GND Ground —_ o ®
P88 GND Ground — (] [

MC5600/5700 System Reference Manual Pinouts

Table A-3
MULTIBUS Pinout Exceptions
CONNECTOR PIN SIGNAL NAME DESCRIPTION SIG TYPE

P15 MBUS BPRN <01> L Bus Grant TTL
Jo1 P18 | MBUS BREQ <01>L Bus Request TTL
P29 MBUS MC CBRQ H MASSCOMP Com Bus Req TTL
P15 MBUS BPRN <2> thru <15>L Bus Grant TTL
J02 thru J15 P18 | MBUS BREQ <2> thru <15> L Bus Request TTL
P29 MBUS CBRQ H Com Bus Req 0oC
P15 MBUS BPRN L Bus Grant TTL
CMPU P18 | MBA Disable H Disable MBA (MBUS BREQ L) TTL
P29 SIG GND Ground —_

Jumper headers J38, J39, and J48 on the backplane allow the MULTIBUS to be split into two
separate buses, MULTIBUS 1 and MULTIBUS 2. Some signals, however, are not jumpered and
span the entire backplane whether or not there are two separate MULTIBUSs. These signals
are:

« BCLK (pin 13)

e SW RESET (pin 24)
o ERROR (pin 26)

e CCLK (pin 31)

o SPARE 2 (pin 33)

» SPARE 3 (pin 77)

o ACLO (pin 78)

Table A-4
SMI Backplane & Module Pinouts (60 Pins)
Backplane Connectors J16 thru J31, J34
PIN I SIGNAL NAME l DESCRIPTION I SIG TYPE OMPU oMM
P1 GND Ground — g ®
P2 GND Ground — L o
P3 * * See Table A-5 * * *
P4 * * See Table A-5 * * *
P5 SMISCLK L SMI S Clock TTL ® [)
P6 * * See Table A-5 * * *
P7 SMIECLK L SMI E Clock TTL ® L
P8 SMICMD <2>L SMI Command TS L ®

Pinouts

MC5600/5700 System Reference Manual

Backplane Connectors J16 thru J31, J34

PIN ‘ SIGNAL NAME] DESCRIPTION I SIG TYPE oMPU oMM
P9 SMI CMD <1>L SMI Command TS °)
P10 SMI CMD <0>L SMI Command TS] o
P11 SMI NID <4>L Node ID TS ® [
P12 SMI NID <3>L Node ID TS ® L
P13 SMI NID <2> L Node ID TS ® o
P14 SMINID <1>L Node ID TS e ®
P15 SMI NID <0> L Node ID TS ®]
P16 SMI MEM INH L Memory Inhibit ocC o ®
P17 SMIACK <1>L Acknowledge oC] ®
P18 SMI ACK <0> L Acknowledge oC ® °
P19 SMILCK INH L Lock Inhibit ocC ® -
P20 SMIINV INH L Invalidate Inhibit oC e -
P21 GND Ground — o ®
P22 GND Ground - o]
P23 SMI BUSY L Bus Busy oC L] L
P24 * * See Table A-5 b b b
P25 SMI DAL <31>L | SMI Data & Address TS L] e
P26 SMI DAL <30> L SMI Dats & Address TS ® []
P27 SMI DAL <29>L | SMI Data & Address TS])
P28 SMI DAL <28> L | SMI Data & Address TS ® L]
P29 SMI DAL <27>L SMI Data & Address TS L) °
P30 SMI DAL <26>L SMI Data & Address TS o [
P31 SMI DAL <25> L SMI Data & Address TS ® ®
P32 SMI DAL <24> L SMI Data & Address TS ® ®
P33 SMI DAL <23>L SMI Data & Address TS ®]
P34 SMI DAL <22> L SMI Data & Address TS ® ®
P35 SMI DAL <21> L SMI Data & Address TS ® ®
P36 SMI DAL <20> L SMI Data & Address TS [] ®
P37 SMI DAL <19> L SMI Data & Address TS ® []
P38 SMI DAL <18> L | SMI Data & Address TS ® L]
P39 SMI DAL <17> L | SMI Data & Address TS ® o
P40 SMI DAL <16>L | SMI Data & Address TS ® °
P41 SMI DAL <15> L SMI Data & Address TS L] o
P42 SMI DAL <14> L SMI Data & Address TS L4 e
P43 SMI DAL <13>L SMI Data & Address TS L] ®

MC5600/5700 System Reference Manual

Pinouts

Backplane Connectors J16 thru J31, J34 CMPU CMM

PIN I SIGNAL NAME I DESCRIPTION I SIG TYPE

P44 SMI DAL <12> L SMI Data & Address TS ® ®
P45 | SMIDAL <11>L | SMI Dats & Address TS ° °
P46 SMI DAL <10> L SMI Data & Address TS) ®
P47 SMIDAL <09>L | SMI Data & Address TS [] [)
P48 SMI DAL <08>L | SMI Data & Address TS [°
P49 SMI DAL <07>L SMI Data & Address TS ® ®
P50 SMI DAL <06> L SMI Data & Address TS ® ®
P51 SMI DAL <05>L | SMI Data & Address TS e L
P52 SMI DAL <04>L SMI Data & Address TS ® ®
P53 SMI DAL <03> L SMI Data & Address TS L L2
P54 SMI DAL <02>L SMI Data & Address TS [] ®
P55 . * See Table A-5 ¢ * -
P56 * ¢ See Table A-5 * * -
Ps? . * See Table A-5 i ¢ -
P58 * * See Table A-5 * ¢ -
P59 SMI DAL <01>L | SMI Data & Address TS ® e
P60 SMI DAL <00> L | SMI Data & Address TS L L

Pinouts

MC5600/5700 System Reference Manual

Table A-5

SMI Pinout Exceptions

CONNECTOR | PIN SIGNAL NAME DESCRIPTION | SIGNAL TYPE
P3 VBB +5v Battery —
P4 VBB +5v Battery
P6 SMI REQ <1> thru <7> L SMI Bus Request TTL
J16 thru J22 P24 SMI GNT <1> thru <7>L SMI Bus Grant TTL
P55 MBUS 1 ADRS <22>L MBUS Address TS
P56 MBUS 1 ADRS <23> L MBUS Address TS
P57 MBUS 1 ADRS <20> L MBUS Address TS
P58 MBUS 1 ADRS <21>L MBUS Address TS
P3 VBB +5v Battery —
P4 VBB +5v Battery —
P6 SMI REQ <8> thru <15> L SMI Bus Request TTL
123 thru J30 P24 SMI GNT <8> thru <15>L SMI Bus Grant TTL
P55 MBUS 2 ADRS <22> L MBUS Address TS
P56 MBUS 2 ADRS <23> L MBUS Address TS
P57 MBUS 2 ADRS <20> L MBUS Address TS
P58 MBUS 2 ADRS <21> L MBUS Address TS
P3 VBB +5v Battery —
P4 VBB +5v Battery —
P8 SMI REQ <19> L SMI Bus Request TTL
131 P24 SMI GNT <19> L SMI Bus Grant TTL
P55 SMI REQ <22> L SMI Bus Request TTL
P56 SMI GNT <22> L SMI Bus Grant TTL
P57 SMI REQ <26> L SMI Bus Request TTL
P58 SMI GNT <26> L SMI Bus Grant TTL
P3 NC Not Connected —
P4 NC Not Connected —
P6 SMI REQ <04> L SMI Bus Request TTL
Ja4 P24 SMI GNT <04> L SMI Bus Grant TTL
P55 SMI REQ <07> L SMI Bus Request TTL
P56 SMI GNT <07> L SMI Bus Grant TTL
P57 SMI REQ <11> L SMI Bus Request TTL
P58 SMI GNT <11>L SMI Bus Grant TTL

MC5600/5700 System Reférence Manual

Pinouts

MODULE | PIN SIGNAL NAME DESCRIPTION SIGNAL TYPE

P6 SMI REQ L. Bus Request TTL
P24 SMI GNT L Bus Grant TTL

CMPU P55 MBUS ADRS <22> L | MBUS Address Line TS
P56 MBUS ADRS <23> L | MBUS Address Line TS
P57 MBUS ADRS <20>L | MBUS Address Line TS
P58 MBUS ADRS <21>L | MBUS Address Line TS
P3 VBB +5v Battery —

CMM P4 VBB +5v Battery —
P6 SMI REQ L Bus Request TTL
P24 SMI GNT L Bus Grant TTL

Pinouts MC5600/5700 System Reference Manual

Table A-8
CMPU Module, Connector P03 Pinout (Ports POA, POB, P1A)
CMPU P03 Connector
PIN | SIGNAL NAME DESCRIPTION SIG TYPE
P1 POA TXD L Transmit Data RS-232
P2 POA RXD L Receive Data RS-232
P3 POA RTS H Request to Send RS-232
P4 POA CTS H Clear to Send RS-232
P5 POA DSR H Data Set Ready RS-232
P6 GND Ground —
P7 POA DCD H Data Carrier Detected RS-232
P8 POA DTR H Data Terminal Ready RS-232
P9 POB TXD L Transmit Data RS-232
P10 POB RXD L Receive Data RS-232
P11 POB RTS H Request To Send RS-232
P12 POB CTS H Clear to Send RS-232
P13 POB DSR H Data Set Ready RS-232
P14 GND Ground —
P15 POB DCD H Data Carrier Detected RS-232 v
P16 POB DTR H Data Terminal Ready RS-232
P17 PI1A TXD L Transmit Data RS-232
P18 P1ARXD L Receive Data RS-232
P19 P1ARTS H Request To Send RS-232
P20 P1A CTS H Clear to Send RS-232
P21 P1A DSR H Data Set Ready RS-232
P22 GND Ground —
P23 P1A DCD H Data Carrier Detected RS-232
P24 P1A DTRH Data Terminal Ready RS-232
P25 vCC Power +5v —
P26 BUF CON ERR L Error Condition TTL

A-10

MC5600/5700 System Reference Manual

Pinouts

Table A-7
CMPU Module, Connector P04 Pinout (Port P1B)
CMPU P04 Connector
PIN | SIGNAL NAME DESCRIPTION SIG TYPE
P1 SIG GND L Signal Ground —
P2 P1B TXD H Transmit Data TTL
P3 P1B RXD H Receive Data
P4 P1B RTS L Request to Send TTL
P5 P1B CTS L Clear to Send TTL
P6 P1B DSR L Data Set Ready TTL
P7 SIG GND L Signal Ground —
P8 P1B DCD L Data Carrier Detected TTL
P9 PIBDTR L Data Terminal Ready TTL
P10 GND Ground —
P11 AFM Attached L AFM Attached TTL
P12 AFM INIT ALL L INIT TTL
P13 BUF Reset L Buffer Reset TTL
P14 VCC Power +5v —
Table A-8

AFM/ARB Module, Connector P01 Pinout (70 Pins)

AFM/ARB P01 Connector
PIN SIGNAL NAME DESCRIPTION SIG TYPE
P1 MBUS BREQ 01 L MBUS Bus Request TTL
P2 MBUS BPRN 01 L MBUS Bus Grant TTL
P3 MBUS BREQ 02 L MBUS Bus Request TTL
P4 MBUS BPRN 02 L. MBUS Bus Grant TTL
P5 MBUS BREQ 03 L MBUS Bus Request TTL
P6 MBUS BPRN 03 L MBUS Bus Grant TTL
P7 MBUS BREQ 04 L MBUS Bus Request TTL
P8 MBUS BPRN 04 L MBUS Bus Grant TTL
P9 MBUS BREQ 05 L MBUS Bus Request TTL
P10 MBUS BPRN 05 L MBUS Bus Grant TTL
P11 MBUS BREQ 06 L MBUS Bus Request TTL
P12 MBUS BPRN 06 L MBUS Bus Grant TTL
P13 MBUS BREQ 07 L MBUS Bus Request TTL
P14 MBUS BPRN 07 L MBUS Bus Grant TTL
P1s MBUS BREQ 08 L MBUS Bus Request TTL
P16 MBUS BPRN 08 L MBUS Bus Graﬁt TTL

A-11

Pinouts MC5600/5700 System Reference Manual

AFM/ARB P01 Connector

PIN SIGNAL NAME l DESCRIPTION l SIG TYPE
P17 MBUS BREQ 09 L. MBUS Bus Request TTL
P18 MBUS BPRN 09 L MBUS Bus Grant TTL
P19 MBUS BREQ 10 L MBUS Bus Request TTL
P20 MBUS BPRN 10 L MBUS Bus Grant TTL
P21 MBUS BREQ 11 L MBUS Bus Request TTL
P22 MBUS BPRN 11 L MBUS Bus Grant TTL
P23 MBUS BREQ 12 L MBUS Bus Request TTL
P24 MBUS BPRN 12 L MBUS Bus Grant TTL
P25 MBUS BREQ 13 L MBUS Bus Request TTL
P26 MBUS BPRN 13 L MBUS Bus Grant TTL
P27 MBUS BREQ 14 L MBUS Bus Request TTL
P28 MBUS BPRN 14 L MBUS Bus Grant TTL
P29 MBUS BREQ 15 L MBUS Bus Request TTL
P30 MBUS BPRN 15 L MBUS Bus Grant TTL
P31 VEE (AFM2/ARB2 only) —_
P32 VDD (AFM2/ARB2 only) —
P33 MBUS MC CBRQ H MASSCOMP Com MBUS Bus Req TTL
P34 VCC Power +5v —
P35 VCC Power +5v —
P36 GND Ground —
P37 GND Ground —
P38 GND Ground —
P39 SMI GNT 15 L SMI Bus Grant TTL
P40 SMIREQ 15 L SMI Bus Request TTL
P41 SMI GNT 14 L SMI Bus Grant TTL
P42 SMIREQ 14 L SMI Bus Request TTL
P43 SMIGNT 13 L SMI Bus Grant TTL
P44 SMIREQ 13 L SMI Bus Request TTL
P45 SMI GNT 12 L SMI Bus Grant TTL
P46 SMI REQ 12 L SMI Bus Request TTL
P47 SMIGNT 11L SMI Bus Grant TTL
P48 SMIREQ 11 L SMI Bus Request TTL
P49 SMI GNT 10L SMI Bus Grant TTL
P50 SMIREQ10L SMI Bus Request TTL
P51 SMI GNT 09 L SMI Bus Grant TTL
P52 SMIREQ 09 L SMI Bus Request TTL
P53 SMI GNT 08 L SMI Bus Grant TTL
P54 SMI REQ 08 L SMI Bus Request TTL
P55 SMI GNT 07 L SMI Bus Grant TTL
P56 SMIREQO7L SMI Bus Request TTL
P57 SMI GNT 08 L SMI Bus Grant TTL

MC5600/5700 System Reference Manual

Pinouts

AFM/ARB P01 Connector

PIN SIGNAL NAME [DESCRIPTION SIG TYPE
P58 SMI REQ 06 L SMI Bus Request TTL
P59 SMI GNT 05 L SMI Bus Grant TTL
P60 SMI REQ 05 L SMI Bus Request TTL
P61 SMIGNT 04 L SMI Bus Grant TTL
P62 SMIREQ 04 L SMI Bus Request TTL
P63 SMIGNT 03 L SMI Bus Grant TTL
P64 SMI REQ 03 L SMI Bus Request TTL
P65 SMI GNT 02 L SMI Bus Grant TTL
P66 SMI REQ 02 L SMI Bus Request TTL
P67 SMI GNT 01 L SMI Bus Grant TTL
P68 SMIREQO1L SMI Bus Request TTL
P69 NC Not Connected —
P70 NC Not Connected —

Table A-9
AFM/ARB Module, Connector P02 Pinout (40 Pins)
AFM/ARB P02 Connector

PIN | SIGNAL NAME I DESCRIPTION SIG TYPE
P1 MBUS BCLK L MBUS B Clock TTL
P2 MBUS CCLK L MBUS C Clock TTL
P3 SMI GNT 30 L SMI Bus Grant TTL
P4 SMIREQ 30 L SMI Bus Request TTL
P5 SMI GNT'29 L SMI Bus Grant TTL
P6 SMI REQ 29 L SMI Bus Request TTL
P7 SMI GNT 28 L SMI Bus Grant TTL
P8 SMI REQ 28 L, SMI Bus Request TTL
P9 SMIGNT 27 L SMI Bus Grant TTL
P10 SMIREQ 27 L SMI Bus Request TTL
P11 NC Not Connected —
P12 NC Not Connected —
P13 SMIGNT 25 L SMI Bus Grant TTL
P14 SMIREQ 25 L SMI Bus Request TTL
P15 SMI GNT 24 L SMI Bus Grant TTL
P16 SMIREQ 24 L SMI Bus Request TTL

P17 SMI GNT 23 L SMI Bus Grant TTL
P18 SMI REQ 23 L SMI Bus Request TTL
P19 NC Not Connected —
P20 NC Not Connected —

A-13

Pinouts

MC5600/5700 System Reference Manual

AFM/ARB P02 Connector
PIN SIGNAL NAME DESCRIPTION SIG TYPE
P21 SMIGNT 21 L SMI Bus Grant TTL
P22 SMIREQ 21 L SMI Bus Request TTL
P23 SMI GNT 20 L SMI Bus Grant TTL
P24 SMI REQ 20 L SMI Bus Request TTL
P25 NC Not Connected —_
P26 VNN {AFM2/ARB2 only) —
P27 SMI GNT 18 L SMI Bus Grant TTL
P28 SMIREQ 18 L SMI Bus Request TTL
P29 SMI GNT 17 L SMI Bus Grant TTL
P30 SMIREQ 17L SMI Bus Request TTL
P31 SMIGNT 16 L SMI Bus Grant TTL
P32 SMI REQ 16 L SMI Bus Request TTL
P33 MBUS ERROR L Error oc
P34 MBUS SW RESET L Software Reset TTL
P35 MBUS ACLOL MBUS AC Low 0C
P36 NC Not Connected —
P37 15 Slot MBUS L 1=7/8slot;0=15 slot TTL
P38 MBUS INIT L INIT oC
P39 VCC Power +5v —
P40 VCC Power +5v —
Table A-10
AFM/ARB Module, Connector P03 Pinout (60 Pins)
AFM/ARB P03 Connector
PIN SIGNAL NAME DESCRIPTION SIG TYPE
P1 GND Ground —
‘P2 GND Ground —
P3 VBB +5v —
P4 VBB +5v —
PS5 SMI SCLK L SMI S Clock TTL
P8 SMI REQ <19> L SMI Bus Request TTL
P7 SMIECLK L SM1 E Clock TTL
P8 NC Not Connected —
P9 NC Not Connected —_
P10 NC Not Connected —
P11 SMI NID <4> L Node ID TS
P12 SMI NID <3> L Node ID TS
P13 SMINID <2> L Node ID TS

MC5600/5700 System Reference Manual

Pinouts

AFM/ARB P03 Connector
PIN] SIGNAL NAME DESCRIPTION SIG TYPE
| P14 SMINID <1>L Node ID TS
P15 SMI NID <0> L Node ID TS
P16 NC Not Connected —
P17 NC Not Connected —
P18 NC Not Connected —
P19 NC Not Connected —
P20 NC Not Connected —
P21 NC Not Connected —
P22 NC Not Connected —
P23 NC Not Connected —
P24 SMI GNT <19> L SMI Bus Grant TTL
P25 SMI DAL <31> L SMI Data & Address TS
P26 SMI DAL <30> L SMI Data & Address TS
P27 SMI DAL <29> L SMI Data & Address TS
P28 SMI DAL <28> L SMI Data & Address TS
P29 SMI DAL <27> L SMI Data & Address TS
P30 SMI DAL <26> L SMI Data & Address TS
P31 SMI DAL <25> L SMI Data & Address TS
P32 SMI DAL <24> L SMI Data & Address TS
P33 SMI DAL <23> L SMI Data & Address TS
P34 SMI DAL <22> L SMI Data & Address TS
P35 SMI DAL <21> L SMI Data & Address TS
P36 SMI DAL <20> L. SMI Data & Address TS
P37 SMI DAL <19> L SMI Data & Address TS
P38 SMI DAL <18> L SMI Data & Address TS
P39 SMI DAL <17>L SMI Data & Address TS
P40 SMI DAL <16> L SMI Data & Address TS
P41 SMI DAL <15> L SMI Data & Address TS
P42 SMI DAL <14> L SMI Data & Address TS
P43 SMI DAL <13> L SMI Data & Address TS
P44 SMI DAL <12> L SMI Data & Address TS
P45 SMI DAL <11>L SMI Data & Address TS
P46 SMI DAL <10> L SMI Data & Address TS
P47 SMI DAL <09> L SMI Data & Address TS
P48 SMI DAL <08> L SMI Data & Address TS
P49 SMI DAL <07>1L SMI Data & Address TS
P50 SMI DAL <06> L SMI Data & Address TS
P51 SMI DAL <05> L SMI Data & Address TS
P52 SMI DAL <04> L SMI Data & Address TS
P53 SMI DAL <03> L SMI Data & Address TS
P54 SMI DAL <02> L SMI Data & Address TS

A-15

Pinouts

MC5600/5700 System Reference Manual

A-16

AFM/ARB P03 Connector

PIN SIGNAL NAME I DESCRIPTION SIG TYPE
P55 SMI REQ <22> L SMI Bus Request TTL
P56 SMI GNT <22> L SMI Bus Grant TTL
P57 SMI REQ <26> L SMI Bus Request TTL
P58 SMI GNT <26> L SMI Bus Grant TTL
P59 SMI DAL <01>L SMI Data & Address TS

P60 SMI DAL <00> L SMI Data & Address TS

Table A-11
AFM/ARB Module, Connector P04 Pinout (14 Pins)
AFM/ARB P04 Connector
PIN SIGNAL NAME DESCRIPTION SIG TYPE
P1 — — —
P2 Serial Data In H Data In TTL
P3 Serial Data Out H Data Out TTL
P4 — — —
P5 GND Ground —
P6 — — _
P7 — —_ —
P8 GND Ground —
P9 — — —
P10 — - —_
P11 GND Ground —
P12 INIT Al L INIT All TTL
P13 BUF Reset L Buffered Reset TTL
Pl4 — —_ —_

MC5600/5700 System Reference Manual

Appendix B

MC5600/5700 Specifications

|=Element Characteristic Specification
- —
Type of Microprocessor 68020 (16.667 MHz)
Number of CPU Data Lines 32
Number of CPU Address Lines 32
. 3 GBytes program
CMPU Virtual Memory Size 1 GByte system
Processor Number of Address Modes 14
Module Number of Interrupt Levels 7
Execute only
) Read/Execute
Protection Modes Read/Execute/Write
No Access
. 8 KBytes
Cache Size (2 x 512 8-byte entries)
Memory Cache Data Entry Size 8 Bytes
Management - N .
Translation Buffer Size 1024 entries
Page Size 4 KBytes
Number of RS-232-C Serial Ports 3
110 to 19200
CMPU Local Baud Rate Range Per Port (110 to 38400 on Port P1A)
Devices Supported Bootstrap Devices Floppy Disk
Winchester Disk
Programmable Bootstrap ROM 8 KBytes
Number of Address Lines 28
Number of Data lines 32
SM1 System Memory Physical Address space | 128 MBytes
Memory System I/O Physical Address space 128 MBytes
Bus (including all MULTIBUSs)
26.6 MBytes/sec (64-bit words)
Transfer rate 20 MBytes/sec (32-bit words)
Size 2 MBytes or 4 MBytes
- . 2 MBytes (MC5600)
C
Minimum Configuration 4 MBytes (MC5700)
. . 16 MBytes (MC5600)
U
CMM Memory | Maximum User Physical Memory 32 MBytes (MC5700)
Module ()
. 200 nsec (4 Bytes
R
ead Access time 300 nsec (8 Bytes)
Write cycle 600 nsec (1,2, or 3 Bytes)
400 nsec (4 Bytes)

B-1

System Specifications MC5600/5700 System Reference Manual

Element Characteristic Specification
P ——— ey
Number of MULTIBUS Address Lines | 24
MULTIBUS MULTIBUS Memory Addressed 16 MBytes
Interface MULTIBUS 1/0O Addressed 64 KBytes
Block Mode transfer rate 4-6 MBytes/sec
15 (MC5600 Base System)
Total Slots 30 (MC5700 Base System)
Backplane . 13 (MC5600 Base System)
Maximum MULTIBUS Slots 13/MULTIBUS (MC5700)
STD+ Slots 9 (not available on Pedestal)
14 amps @ 120 Volts
Pedestal 80-130 VAC, 47-63 Hx
edesta 8 amps @ 230 Volt
180-264 VAC, 47-63 Hz
9 amps @ 120 Volts
105-127 VAC, 47-63 Hz
Electrical Tabletop 6 amps @ 230 Volt
Rack Mount 210-254 VAC, 47-63 Hz
Japan: 10 amps @ 100 Volts
90-110 VAC, 47-68 H:
10 amps @ 230 Volts (15-slot)
Wide Cabinet 20 amps @ 230 Volts (30-slot)
180-264 VAC, 47-63 Hz
Operating temperature 10° to 40° C
Storage Temperature -40° to 85° C
Relative Humidity (operating) 10-80% non-condensing
Environment | pejagive Humidity (storage) 10-80% non-condensing
Below NC-45 (Pedestal/Wide Cabinet)
Noise level Below NC-50 (Tabletop)
Below NC-50 (Rack Mount)
Pedestal 29" high x 13" wide x 24" deep
. . Tabletop 12.25" high x 19" wide x 28" deep
Dimensions - -
Rack Mount 49.5" high x 23.5" wide x 33" deep
Wide Cabinet 49.5" high x 28.5" wide x 33" deep
Pedestal 200 1b
Tabletop 120 1b
Weight 120 1b (without cabinet)
Rack Mount 270 Ib (with cabinet)
Wide Cabinet 800 Ib (fully configured)
Safety UL, VDE, CSA
Regulatory
EMI/RFI FCC Class A, VDE Class A

B-2

Appendix C

DUART Specification

Signetics

Microprocessor Products

DESCRIPTION

The Signetics SCN2681 Dual Universal
Asynchronous Receiver/Transmitter
(DUART) is a single chip MOS-LSI com-
munications device that provides two
independent full-duplex asynchronous
receiver/transmitter channels in a single
package. It interfaces directly with
microprocessors and may be used in a
polled or interrupt driven system.

The operating mode and data format of
each channel can be programmed inde-
pendently. Additionally, each receiver
and transmitter can select its operating
speed as one of eighteen fixed baud
rates, a 16x clock derived from a pro-
grammable counter/timer, or an external
1x or 16x clock. The baud rate generator
and counter/timer can operate directly
from a crystal or from external clock
inputs. The ability to independently pro-
gram the operating speed of the receiver
and transmitter make the DUART partic-
ularly attractive for dual-speed channe!
applications such as clustered terminal
systems.

Each receiver is quadruply buffered to
minimize the potential of receiver over-
run or to reduce interrupt overhead in
interrupt driven systems. In addition, a
flow control capability is provided to
disable a remote DUART transmitter
when the buffer of the receiving device
is full.

FEATURES
e Dual fuli-duplex asynchronous
recelver/transmitter
e Quadrupie buffered receiver data
registers
o Programmable data format
- 5 to 8 data bits plus parity
- Odd, even, no parity or force
parity
-1, 1.5 or 2 stop bits program-
mable in Y16 bit Increments

A A a

e Programmabie baud raie for each
receiver and transmitter
selectable from:

SCN2681

Dual Asynchronous Receiver/
Transmitter (DUART)

Product Specification

- 18 fixed rates: 50 to 38.4K
baud
- One user defined rate derived
from programmable timer/
counter
- External 1x or 16x clock
¢ Parity, framing, and overrun error
detection
o Faise start bit detection
o Line break detection and
generation
e Programmabie channel mode
- Normal (full duplex)
- Automatic echo
~ Local ioopback
- Remote loopback
e Multi-function programmable 16-
bit counter/timer
o Multi-function 7-bit input port
- Can serve as clock or control
inputs
- Change of state detection on
four inputs
e Multi-function 8-bit output port
- Individual bit set/reset

be status/interrupt signails
o Versatile interrupt system
- Single interrupt output with
eight maskable interrupting
conditions
- Output port can be configured
to provide a total of up to six
separate wire-OR'able interrupt
outputs
e Maximum data transfer: 1X-1MB/
sec, 16X-125KB/sec
e Automatic wake-up mode for
multidrop applications
e Start-end break interrupt/status
o Detects break which originates in
the middie of a character

e On-chip crystal oscitiator

® Tii. compaiibie
e Single +5V power supply

PIN CONFIGURATION

DUART MC5600/5700 System Reference Manual

PIN CONFIGURATION (Continued) Also provided on the SCN2681 are a mult-
’:" '"'c"‘"" ";; :\gm purpose 7-bit input port and & multipurpose 8-
2 a0 24 NTRAN bit output port. These can be used as genersl
3 ra : 3 purpose 1/0 ports or can be assigned specific
4 1 N N
Conmen s e 3 o2 functions (such as clock inputs or status/
N “ 6 A » gge interrupt outputs) under program control.
1 A »
’ ° p o wo 2 ope The SCN2681 is available in four package
% Aon » o versions: 40-pin and 28-pin, both 0.6° wide
pLCcC 11 Ax08 2 TXDA DiPs; a compact 24-pin 0.4" wide DIP; and a
13 Txoe % AROA 44-pin PLCC.
w b 29 14 OP 38 X1/CLK
15 0P))
N -
ToP View 4 o1 © P2
1% 03 @ we
20 05)
2 07 4 wa
B 2 GND e Vo
ORDERING CODE
Vec =8V ¢+ 5%, Ty =0°C to 70°C
PACKAGES
24-Pin’ 28-Pn? 40-Pin? 4-Pin
Ceramuc DIP | Not avalable | SCN2681AC1128 | SCN2681AC1140| Not available
Plastic DIP | SCN2681AC1N24| SCN2681AC1N28| SCN2681ACIN4GO| Not availsble
Plastic LCC Not avaiable Not available Not available |SCN2681ACIA44
400 mi wide DIP
2600 md wide DWP
PIN DESCRIPTION
APPLICABLE
MNEMONIC o | 2| 2 TYPE NAME AND FUNCTION

Do-D7 X X X 170 mmwmmmmmwtmmummm
the DUART and the CPU. DO is the least significant bit.

CEN X X X I mmmmmmmmmmmnwu»
wmrmmu.uonmmammmmwnu.nouwwmmm
places the DO-D7 lines in the 3-state condition.

WRN X! x X I Write Strobe: When low and CEN is aiso low, the contents of the data bus is loaded into the
mmm.mummmummahm.

RDN X X X | Mmmmmczuimm.mmmanmmb
ummmmmmwmmmumwum

AO-A3 x| X X 1 wmwnmmmwmummm

RESET X | x| x ! MAMMMMMMW.MB&WMmm

in the high state, s10ps the counter/mer, and puts channels A and B in inactive siate,
the TxDA and TxDB oulputs in the mark (high) state. the e

INTRN X X } (o] Interrupt Request: Active low, open drain, oulput which the
the eight maskable interrupting condiions are true. Sinals the CPU that one or mare of

X1/CLK X X X [Crystal 1: Crystal or external clock input. A crystal or clock of the
supplied at all times. When a crystal is used, a capacitor Mummtwtmz

X2 X X | Crystal 2 Connection for other side of the Crysial. When & crystal is used
connecied fom this pin 1 ground (800 figure) @ copackor must be

RxDA X | X | x | Channel A Receiver Serial Deta input: The least significant bit is e
¢ e low, feceived first. ‘Mark’ is high,

MC5600/5700 System Reference Manual

DUART

NAME AND FUNCTION

RAxDB

TxDA

D8

Vec
GND

X X X X X x

o O

- =-=-=-00 O O O o

Channel B Recsiver Serial Data Input: The least significant bit is received first. ‘Mark' is high,
‘space’ is low.

Channel A Transmitter Serial Data Output: The least significant bit is transmitted first. This
output is held in the “mark’ condition when the transmitter is disabled, idle, or when operating in
local loopback mode. ‘Mark’ is high, 'space’ is low.

Channel B Transmitter Serial Data Output: The least significant bit is transmitted first. This
output is heid in the 'mark’ condition when the transmitter is disabled, idle, or when operating in
local foopback mode. 'Mark’ is high, ‘space’ is low.

Output 0: General purpose output, or channel A request to send (RTSAN, active low). Can be
eacts y ically on receive of .

Output 1: General purpose output, or channel B request 1o send (RTSBN, active low). Can be
deactivated automatically on receive or transmit.)

Output 2: General purpose output, or channel A transmitter 1X or 16X clock output, or channel
A receiver 1X clock output.

Output 3: General purpose output, or open drain, active low counter/timer output, or channel B
transmitter 1X clock output, or channel B receiver 1X clock output.
WQMWWNMAOMM'.W' low, RRDYA/FFULLA
output.

Output 5: General purpose output, or channel B open drain, active low, RXRDYB/FFULLS
output.

Output 6: General purpose output, or channel A open drain, active low, TXRDYA output.
mv:muwmwmamwswmmm.Tmovam.
MGGMWMWMAMMMWWM(CTSAN).
Input 1: General purpose input, or channel B clear to send active low input (CTSBN).
mzmuwmmum«/mmmm

M&MWMQMAVWMMMUM.WMN
mmsmwmm,mmwausmmmmmmof
the clock.

MGWWM.QMAWMMM(M.WMN
exwwdockismedbynwrecQNa,ﬂnmdmdluiszmmingmofﬂn

m&wmmamawm«mmmﬁm.mnm
wmamwmm«.mma&smmmmmd
m&wmmamammmwmm&mm
mmswmmm.mw&msmmmmmmm

Power Supply: +5V supply input

Ground

DUART

MC5600/5700 System Reference Manual

BLOCK DIAGRAM

-
.
00-07 Ci) BUS BUFFER (:> CHANNEL A
—
TRANSANT
WOLOING REG Txo
TRANSMIT
SHIFT REGISTER
OPERATION
AON | CONTROL
whn RECEIVE
E— H R
ADORESS oLoRC G
cew————e| | _oecooe —— — mo
Y RECEIVE
Aodd 4 — SHIFT REG
RESET — . AW CONTAOL
MRA1.2
CRA
SAA
INTERRYUPT
CONTROL - -
WNTAN - R ‘e > CHANNEL 8 > TeD®
. v (AS ABOVE} -
ISR Rx08
§ INPUT PORY
gl of* 1% CHANGE OF
TIMING 5 z -3 STATE 7
3l 2 F C: DETECTORS (4) Po-4rs
BAUOD RATE -
GENERATOR ; PCR
- ACR
cLocK
SELECTORS
OUTPUT PORT
—
COUNTER/ FUNCTION
TIMER e SELECT
K) Lo S oroop?
AVCLK e |
XTAL OSC OPCR
A} ——nd e
oPR
CSAA
csas — v
ACR
CYUR ——— GND
CTLR

MC5600/5700 System Reference Manual

DUART

BLOCK DIAGRAM

The 2681 DUART consists of the following
eight major sections: data bus buffer, opera-
tion control, interrupt control, timing, commu-
nications channels A and B, input port and
output port. Refer to the biock diagram.

Data Bus Buffer

The data bus buffer provides the interface
between the external and internal data bus-
ses. It is controlled by the operation control
block to allow read and write operations to
take place between the controfling CPU and
the DUART.

Operation Control

The operation control logic receives opera-
tion commands from the CPU and generates
appropriate signals to internal sections to
control device operation. it contains address
decoding and read and write Circuits to permit
communications with the microprocessor via
the data bus buffer.

Interrupt Control

A single active low interrupt output (INTRN) is
provided which is activated upon the occur-
rence of any of eight intemal events. Associ-
ated with the interrupt system are the inter-
rupt mask register (IMR) and the interrupt
status register (ISR). The IMR may be pro-
grammed to select only certain conditions to
cause INTRN to be asserted. The ISR can be
read by the CPU to determine all currently
active interrupting conditions.

Outputs OP3-OP7 can be programmed to
provide discrete interrupt outputs for the
transmitters, receivers, and counter/timer.

Timing Circuits

The timing block consists of a crystal oscilla-
for, a baud rate generator, a programmable
16-bit counter/timer, and four clock selectors.
The crystal oscillator operates directly from a
3.6864MHz crystal connected across the X1/
CLK and X2 inputs. If an external clock of the
appropriate frequency is available, it may be
connected to X1/CLK. The clock serves as
the basic timing reference for the baud rate
generalor (BRG), the counter/timer, and oth-
er internal circuits. A clock signal within the
limits specified in the specifications section of
this data sheet must always be supplied to
the DUART.

If an external is used instead of a crystal, both
X1 and X2 (of the 28/40 pin versions) should

be driven using a configuration similar to the.

one in figure 5. For the 24 pin version in which
only X1/CLK is available, the input clock must
be capable of attaining a Vi of 4.4 volts.

The baud rate generator operates from the
osdllatororoxtemaldockinmandiscapa-
ble of generating 18 commonly used data
communications baud rates ranging from 50
to 38.4K baud. The clock outputs from the

BRG are at 16X the actual baud rate. The
counter/timer can be used as a timer to
produce a 16X clock for any other baud rate
by counting down the crystal clock or an
external clock. The four clock selectors ailow
the indapendent selection, for each receiver
and transmitter, of any of these baud rates or
an external timing signal.

The counter/timer (C/T) can be programmed
to use one of several timing sources as its
input. The output of the C/T is available to the
clock selectors and can also be programmed
to be output at OP3. in the counter mode, the
contents of the C/T can be read by the CPU
and it can be stopped and started under
program control. In the timer mode, the C/T
acts as a programmable divider.

Communications Channels A
And B

Each communications channel of the 2681
comprises a full duplex asynchronous receiv-
er/transmitter (UART). The operating fre-
quency for each receiver and transmitter can
be selected independently from the baud rate
generator, the counter timer, or from an
external input.

The transmitter accepts parallel data from the
CPU, converts it to a serial bit stream, inserts
the appropriate start, stop, and optional parity
bits and outputs a composite serial stream of
data on the TxD output pin. The receiver
accepts serial data on the RxD pin, converts
this serial input to parallel format, checks for
start bit, stop bit, parity bit (if any), or break
condition and sends an assembled character
to the CPU.

Theinpmoonpulsadetectionoivqiuywesa
38.4KHz sampling clock derived from one of
the baud rate generator taps. This results in a
sampling period of slightly more than 25usec
(this assumes that the clock input is
3.6864MHz). The detection circuitry, in order
to guarantee that a true change in level has
occurred, requires two successive samples at
the new logic level be observed. As a conse-
quence, the minimum duration of the signal
change is 25usec if the transition occurs
S50usec time refers to the situation in which
the change of state is "'just missed” and the
first change of state is not detected until
25usec later.

Input Port

The inputs to this unlatched 7-bit port can be
read by the CPU by performing a read opera-
tion at address Dig. A high input resuits in a
logic 1 while a low input results in a logic 0. Dy
will always be read as a logic 1. The pins of
this port can also serve as auxiliary inputs to
certain portions of the DUART logic.

Four change-of-state detectors are provided
which are associated with inputs IP3, IP2, IP1,

and IPO. A high-to-low or low-to-high transi-
tion of these inputs, lasting longer than 25-
50us, will set the comesponding bit in the
input port change register. The bits are
cleared when the register is read by the CPU.
Any change of state can aiso be programmed
to generate an interrupt to the CPU.

Output Port

The 8-bit multi-purpose output port can be
used as a general purpose output port, in
which case the outputs are the complements
of the output port register (OPR). OPR[n] = 1
results in OP{n] = low and vice versa. Bits of
the OPR can be individually set and.reset. A
bit is set by performing a write operation at
address Eg with the accompanying data
specifying the bits to be set (1 = set, 0 = no
change). Likewise, a bit is reset by a write at
address Fig with the accompanying data
specifying the bits to be reset (1 = reset,
0 =no change).

Outputs can be also individually assigned
specific functions by appropriate program-
ming of the channel A mode registers (MR1A,
MR2A), the channel B mode registers (MR18,
MR2B), and the output port configuration
register (OPCR).

OPERATION

Transmitter

The 2681 is conditioned to lransmit data
when the transmitter is enabled the
command register. The 2681 indicates to the
CPUthatitisreadytoacooptachamcterby
setting the TxRDY bit in the status register.
Thisconditioncanbeproommnedtogen«-
ate an interrupt request at OP6 or OP7 and
INTRN. When a character is loaded into the
transmit holding register (THR), the above
conditions are negated. Data is transferred
from the holding register to transmit shift
register when it is idle or has completed
ransmission of the previous character. The
TxRDY conditions are then asserted again
which means one full character time of buffer-
ing is provided. Characters cannot be loaded
into the THR while the transmitter is disabled

The transmitter converts the paraliel data
from the CPU to a serial bit stream on the
TxD output pin. it automatically sends a start
bit followed by the programmed number of
data bits, an optional parity bit, and the
programmed number of stop bits. The least
significant bit is sent first. Following the trans-
mission of the stop bits, if a new character is
not available in the THR, the TxD output
remains high and the TxEMT bit in the status
registor (SR) will be set to 1. Transmission
resumes and the TXEMT bit is cleared when
the CPU loads a new character into the THR.
It the transmitter is disabled, it continues
operating until the character currently being

C-5

DUAR'T

MC5600/5700 System Reference Manual

(ransmitied 1s compietely sent out, The trans-
mutter can be forced 10 send a continuous low
condition by 1ssuing a send break command.

The transmitter can be reset through a soft-
ware command. If it 1s reset, operation ceas-
os wnmmediately and the transmitter must be
enabied through the command register be-
tore resuming operation. it CTS operation is
snabled. the CTSN input must be low n order
tor tha character 10 be transmitted. W it goes
rgh in the muddie of a transmussion. the
character in the shift register 1s transmitted
and TxDA then remains in the marking state
antt CTSN goes low. The transmutter can aiso
control the deactivation of the RTSN cutput.
Il rogrammed, the RTSN output will be reset
one bit ime atter the character in the transmit
shitt register and transmit holding register (if
any) are completely transmtied, i the trans-
mitter has been disabled.

Recelver

The 2681 is conditioned to recenve data when
enabled through the command register. The
recewver looks tor a fwgh to low (mark to
space) transiton of the start bit on the RxD
nput g, i a transition is detected, the state
of the RxD pin is sampled each 16X ciock for
7-Y2 siocks (16X clock mode) or at the next
rising vdge of the it ime clock (1X clock
mode) I RxD is sampied high, the start bit is
nvahd and the search for a valid start bt
pagins again. It RxD 1s sl low, a valid start bt
1s assumed and the receiver continues to
sampie the nput a1 one bit tme intervals at
the theoretical center of the bt, unti the
proper number of data bits and the panty tit
(if any) have been assembled. and one stop
bit has been detected. The least sigmificant
bit is received fust. The data is then trans-
ferred 10 the receve holding register (RHR)
and the RxROY bit n the SRis settoa 1. This
condition can ba programmed to generate an
interrupt at OP4 or OPS5 and INTRN. if the
character longth 15 less than eight bits, the
most significant unused bits in the RHR are
set to zero.

After the stop bit is detected, the receiver will
immecdkately look for the next start bit. Howev-
er, it a non-zero character was received
without a stop bit (framing error) and RxD
remains low lor one half of the bit period after
tho stop bit was sampled, then the receiver
operates as if 3 now start bet transition had
been detected at that point (one-half bit time
alter the stop bit was sampled).

The parity error, framing eror, overrun ermor
and received break state (if any) are strobed
o the SR at the received character bound-
ary, before the RxRDY status bit is set. If a
break condition is detected (RxD is low for
the entire character including the stop bit). a
character consisting of all zeros will be load-
ed into the RHR and the received break bit in

-0

the SR s set to 1 The RxD input must return
to a high condiion for at least one-hall bit
twme before a search for the next start bit
begins

The RHR consists of a first-in-first-out (FIFO)
stack with a capactty of three characters
Data is loaded from the recewe shift register
into the topmost empty position of the FIFQ.
The RxRDY bit in the status register is set
whenever one or more characters are avail-
able to be read, and a FFULL status bit s set
i all three stack positions are hlied with data
Either of these bits can be selected to cause
an interrupt. A read of the RHR outputs the
data at the top of the FIFO. After the read
cycle, the data FIFO and its associated status
bits (see below) are ‘popped’ thus emptying a
FIFO posiion for new data.

In addition to the data word, three status bits
(panty error, fraring error, and received
break) are also appended to each data char-
acter in the FIFO (overrun is not). Status can
be provided in two ways, as programmed by
the error mode control bit in the mode regs-
ter. In the "character’ mode, status is provid-
ed on a character-by-character basis: the
status apphes only 10 the character at the top
of the FIFO. in the ‘block’ mode, the status
provided in the SR for these three bits is the
logical OR of the status for all characters
coming 10 the top of the FIFO since the last
‘reset error’ command was issued. In either
mode reading the SR does not affect the
FIFO. The FIFO 1s ‘popped’ only when the
RHR 15 read. Therefore the status register
should be read prior to reading the FIFO.

If the FIFO is tull when a new character is
received, that character is held in the receive
shuft register untd a FIFO position is available.
It an additional character is received while
this state exits, the contents of the FIFO are
not atfected: the character previously in the
shift regester is lost and the overrun eror
status bit (SR[4]) will be set-upon receipt of
the start bt of the new (overruning) character.

The receiver can control the deactivation of
RTS. If programmed to operate i this mode,
the RTSN output will be negated when a valid
start bit was received and the FIFO is full.
When a FIFO position becomes available, the
RTSN output will be re-asserted automatical-
ly. This feature can be used to prevent an
overrun, in the receiver, by connecting the
RTSN output to the CTSN input of the trans-
If the receiver is disabled, the FIFO charac-
ters can be read. However, no additional
characters can be received until the receiver
is enabled again. It the receiver is reset, the
FIFO and all of the receiver status, and the
corresponding output ports and interrupt are
reset. No additional characters can be re-
ceived until the receiver is enabled again.

Multidrop Mode

The DUART s equipped with a wake up
mode used for multidrop applications. This
mode 1s selected by programming bits
MR1A[4:3] or MR1B[4:3] to "11' for channels
A and B respeclively. In this mode of opera-
ion, a ‘master station transmits an address
character toliowed by data characters for the
addressed 'slave’ station. The slave stations,
with receivers that are normally disabled,
examine the recerved data stream and 'wake-
up’ the CPU (by setting RxRDY) only upon
receipt of an address character. The CPU
compares the received address 10 its station
address and enables the receiver if it wishes
to receive the subsequent data characters.
Upon receipt of another address character,
the CPU may disable the receiver to initiate
the process again.

A transmitted character consists of a start bit,
the programmed number of data bits, an
address/data (A/D) bit, and the programmed
number of stop bits. The polarity of the
transmitted A/D bit is selected by the CPU by
programming bit MR1A[2])/MR1B{2).
MR1A[2)/MR1B[2] = 0 transmits a zero in
the A/D bit position, which identifies the
corresponding data bits as data, while
MR1A[2)/MR1B{2] = 1 ransmits a one in the
A/D bit position, which identifies the corre-
sponding data bits as an address. The CPU
should program the mode regisier prior 10
THR.

In this mode, the receiver continuously i0oks
at the received data stream, whether it is
enabled or disabled. If disabled, it sots the
RxRDY status bit and loads the character into
the RHR FIFO if the received A/D bit is a one
(address tag), but discards the received char-
acter il the received A/D bit is a 2er0 (data
tag). enabled, all received characters are
transferred 1o the CPU via the RHR. in elther
case, the data bits are loaded into the data
FIFO while the A/D bit is loaded iMo the
status FIFO position normally used for parity
error (SRA[S] or SRB{S)). Framing error, over
run error, and break detect operate normally
whether or not the roceiver is enabled.

PROGRAMMING

The operation of the DUART is programmed
by writing control words into the appropristie
registors. Operational feedback is provided
via status registers which can be read by the
CPU. The addressing of the registers is de-
scribed in table 1.

The contents of certain control registers are
initiglized t0 zero on RESET. Care should be
exercised it the coments of a register are
changed during operation, since certain
changes may cause operational problems.

MC5600/5700 System Reterence Manual

DUART

¢

1. 2681 REGISTER ADDRESSING

A1 READ (RDN =0)

WRITE (WRN=0)

Mode Regisier A (MR1A, MR2A)
Status Register A (SRA)
*Reserved’

RX Holding Register A (RHRA)
input Port Change Reg. (IPCR)
interrupt Status Reg. (ISR)
Counter/Timer Upper (CTU)
Counter/Timer Lower (CTL)
Mode Register B (MR18, MR28B)

Mode Register A (MR1A, MR2A)
Clock Select Reg. A (CSRA)
Command Register A (CRA)

TX Holding Register A (THRA)
Aux. Controi Register (ACR)
Interrupt Mask Reg. (IMR)

C/T Upper Register (CTUR)
C/T Lower Register (CTLR)
Mode Register B (MR18, MR28)

Status Regyister B (SRB)
*Reserved®

Reserved
Input Port
Start Counter Command
Stop Counter Command

“wsawwsswoco00c0c0c0c0o!|l
N - - " - Y- Y- NN~ g

AC
0
1
0
1
[
1
0
1
0
1
0
1
0
1
0
1

-t QDO - OO s OO - =200

RX Holding Register B (RHRB)

Clock Select Reg. B (CSRB)
Command Register B (CRB)

TX Holding Register B (THRB)
*Reserved®

Output Port Coni. Reg. (OPCR)
Set Output Port Bits Command
Reset Output Port Bits Command

For example, changing the number of bits per
character while the transmitter is active may
cause the transmission of an incorrect char-
acter. in general, the contents of the MR, the
CSR, and the OPCR should only be changed
while the receiver(s) and transmitter(s) are
not enabled, and certain changes to the ACR
should only be made while the C/T is
stopped.

Mode registers 1 and 2 of each channel are
accessed via independent auxiliary pointers.
The pointer is set to MR1x by RESET or by
issuing a ‘reset pointer’ command via the
cofresponding command register. Any read
or write of the mode register while the pointer
is at MR1x, switches the pointer to MR2x.
The pointer then remains at MR2x, so that
subsequent accesses are always to MR2x
unless the pointer is reset to MR1x as de-
scribed above.

Mode, command, clock select, and status
registers are duplicated for each channel to
provide total independent operation and con-
trol. Refer to table 2 for register bit descrip-

Table 2. REGISTER BIT FORMATS

tions. The reserved registers at addresses
H'02' and H'0A’ should never be read during
normal operation since they are reserved for
internal diagnostics.

MR1A -channel A Mode
Register 1

MR1A is accessed when the channel A MR
pointer points 1o MR1. The pointer is set to
MR1 by RESET or by a "set pointer' com-
mand applied via CRA. After reading or writ-
ing MR1A, the pointer will point to MR2A.
MR1A[7] -~ Channel A Receiver
Request-to-Send Control

This bit controls the deactivation of the
RTSAN output (OP0) by the receiver. This
output is normally asserted by setting OPR[0]
and negated by resetting OPR[0]. MR
1A[7] = 1 causes RTSAN to be negated upon
receipt of a valid start bit if the channel A
FIFO is full. However, OPR|[0] is not reset and
RTSAN will be asserted again when an empty
FIFO position is available. This feature can be
used for flow control to prevent overrun in the

receiver by using the RTSAN output signal to
control the CTSN input of the transmitting
device.

MR1A[6] - Channel A Receiver
Interrupt Select

This bit selects either the channel A receiver
ready status (RXRDY) or the channel A FIFO
full status (FFULL) to be used for CPU
interrupts. It aiso causes the selected bit to
be output on OP4 it it is programmed as an
interrupt output via the OPCR.

MRIA[S] - Channel A Error Mode
Select

This bit selects the operating mode of the
three FIFOed status bits (FE, PE, received
break) for channel A. In the "character’ mode,
status is provided on a character-by-charac-
ter basis: the status applies only to the
character at the top of the FIFO. In the ‘block’
mode, the status provided in the SR for these
bits is the accumulation (logical OR) of the
status for all characters coming to the top of
the FIFO since the last 'reset error' command
for channel A was issued.

BIT? BITS BITS BIT4 BIT3 BIT2 8ITY BITO
RX RTS AX INT ERROR PARITY
CONTROL | SELECT MODE PARITY MODE TYPE BITS PER CHAR.
MR1A 0=no 0=RXRDY| 0=char 00 = with parity 0 = even 00=5
NMR1B 1 =yes 1=FFULL | 1 =block 01 = force parity 1 =o0dd 01=6
10 = no parity 10=7
11 = muiti-drop mode 11=8

C-7

DUART MC5600/5700 System Reference Manual

Table 2. REGISTER BIT FORMATS (Continued)

8T 8ITe B8ITsS BIT4 B8IT3 BiIT2 8m 8ITo
—
Tx RTS CcTs
CHANNEL MODE CONTROL | ENABLE Tx STOP BIT LENGTH®
MR2A 00 = Normal 0=no O=no 0 =0.563 4=0813 8=1563 C= 1813
MR20 01 = Auto echo 1 =yes 1 =yos 1 =0.625 5= 0.875 9= 1.625 D= 1878
10 = Local loop 2=0.688 6 =0.938 A=1688 E = 1938
11 = Remote loop 3=0.750 7 =1.000 B=1750 F = 2.000
“Add 0.5 to values shown for 0-7 it channel is programmed for 5 bits/char.
BIT? BiTe BITS BIT4 83 BIT2 BT 8o
RECEIVER CLOCK SELECY TRANSMITTER CLOCK SELECT
CSRA
cshe See Text See Text
eI B8iTs 8ITs BiT4 BIT3 B8iT2 BITY BITO
MISCELLANEOUS COMMANDS DISABLE Tx | ENABLE Tx | DISABLE Rx | ENABLE Rx
CRA not used - 0=no 0=no 0=no O=no
CRB must be 0 See Text 1=yes 1 =yes 1=yes 1=yes
BIT? 8iTe BITS BITe |iT3 BIv2 BITY 8ITo
RECEIVED FRAMING PARITY OVERRUN
BREAK ERROR ERROR ERROR TxEMT TxROY L RxROY
SRA 0=no 0=no O=no 0=no O=no 0=no 0=no O=no
SRB 1=yes 1=yes 1 =yes 1 =yes 1 =yes 1=yes 1=yes 1=yes
*Thees status bris are appended 1o the correspondng data " the FIFO. A read of the status register provides these bits (7:5) from
the 1op of the FIFO together with bits (4.0) Tmmwmamwa'rmmm‘whmmmnﬁaﬂvdmn
ponding data ch is read trom the FIFO
BiT? oiTe B8ITS BIT4 BIT3 8Im2 B8ITY 11
OoP? ors oPs OP4 or3 or2
0 = OPR[7] 0 = OPR{6)} 0=0PR[5] | 0=0PR[4] 00 = OPR[3) 00 = OPR{2]
OPCR 1=TROY8 | 1=TxROYA | 1=RADY/ | 1ROV 01 = C/T OUTPUT 01 = TXCA(16X)
FFULLB FFULLA 10 = TCB(1X) 10 = TxCA(1X)
11 = RxCB(1X) 11 = RXCA(1X)
BIT? 8iTe BITs BIT4 BITS [17] BITY oImo
BRG SET COUNTER/TIMER DELTA DELTA DELTA DELTA
SELECTY MODE AND SOURCE 3 INT P2 T w1 INT 0 INT
ACR 0 = sot! See table 4 O=olf 0 = off O=off 0 =off
1 =302 1=0n 1=o0n 1=0n 1=o0n
sy BITS BITS BIT4 BIr3 BIv2 13} 8170
DELTA DELTA DELTA DELTA
IPCR [] P2 P1 PO w3 P2 [4] wpo
O0O=no O=no O=no O=no 0 = low
- - 0= low 0=low 0 = low
1= {= = B
i Yo | txves 1= yes 1 = high 1 = high 1 = high 1= high

MC5600/5700 System Reference Manual DUART
Table 2. REGISTER BIT FORMATS (Continued)
BIT7 BITe BITS BIT4 BIT3 BIT2 BITY BITO
INPUT
DELTA RxRDY/ COUNTER DLETA RxRDY/
PORT TXROYB TXRDYA
SR Chance | BREAXB | FFULLB READY BREAK A | FFULLA
O=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1 =yes 1=yes 1 =yes 1=yes 1 =yes 1=yes 1=yes 1=yes
By eIve BITS BIT4 L E) BIT2 BIT1 BITO
IN. PORT DELTA RXROY/ COUNTER DELTA RXRDY/
CHANGE | BREAKB | FFULLB | '"pO'° READY | BREAKA | FrULLA | TR
MR INT INT INT INT NT INT
0=off 0= off = off 0=off 0 =off 0=off 0 =off 0 = off
1=o0on 1=on 1=o0n 1=on 1=o0n 1=o0n 1=o0n 1=o0on
BIT? BITE BITS 8IT4 83 8IT2 BITY 8ITo
C/T[15) c/T114) C/T[13) c/T112) C/TI1) C/T110) crTi9) c/T18}
CTUR
BIT? 8iTe eIrs BIT4 BIT3 BIT2 BIT1 BITo
c/T7) (Ta10)] C/T(5) C/T(4) C/T3) /2] c/) C/T10}
CTLR

MR1A[4:3] - Channel A Parity Mode
Select

if ‘with parity' or ‘force parity' is selected, a
parity bit is added to the transmitted charac-
ter and the receiver performs a parity check
on incoming data. MRIA[4:3]= 11 selscts
channel A to operate in the special multidrop
mode described in the Operation section.
MR1A[2] - Channel A Parity Type
Select

This bit selects the parity type (odd or even) i
the 'with parity' mode is programmed by
MR1A[4:3], and the polarity of the forced
parity bit if the ‘force parity' mode is pro-
grammed. It has no effect if the ‘no parity’
mode is programmed. In the special multidrop
mode it selects the polarity of the A/D bit.
MR1A[1:0] - Channel A Bits Per
Character Select

This field selects the number of data bits per
character to be transmitted and received. The
character length does not inciude the start,
parity, and stop bits.

MR2A - Channel A Mode
Register 2

MR2A is accessed when the channel A MR
pointer points to MR2, which occurs after any
access {0 MR1A. Accesses to MR2A do not
change the pointer.

MR2A[7:6) - Channel A Mode Select
Each channel of the DUART can operate in
one of four modes. MR2A[7:6] = 00 is the
normal mode, with the transmitter and receiv-
or operating independently. MR2A[7:6] = 01
places the channe! in the automatic echo
mode, which automatically retransmits the
received data. The following conditions are
true while in automatic echo mode:

1.

2

3

Received data is reclocked and retran-
smitted on the TxDA output.

The receive clock is used for the trans-
mitter.

The receiver must be enabied, but the
transmitter need not be enabled.

The channel A TxRDY and TxEMT status
The received parity is checked, but is not
regenerated for transmission, i.e., trans-
mitted parity bit is as received.
Character framing is checked, but the
stop bits are retransmitted as received.
A received break is echoed as received
until the next valid start bit is detected.
CPU to receiver communication contin-
ues normally, but the CPU to transmitter
link is disabled.

Two diagnostic modes can also be config-
ured. MR2A[7:6] = 10 selacts local loopback
mode. In this mode:

1.

The transmitter output is internally con-
nected to the receiver input.

2. The transmit clock is used for the receiv-
or.

The TxDA output is heid high.

The RxDA input is ignored.

The transmitter must be enabled, but the

receiver need not be enabled.

6. CPU to transmitter and receiver commu-
nications continue normally.

The second diagnostic mode is the remote

loopback mode, selected by MR2A[7:6] = 11.

In this mode:

1. Received data is relocked and retran-
smitted on the TxDA output.

2. The receive clock is used for the trans-

oA w

tier.

3. Received data is not sent to the local
CPU, and the error status conditions are
4. The received parity is not checked and is
not regenerated for transmission, i.e.,
transmitted parity bit is as received.

5. The receiver must be enabled.

6. Character framing is not checked, and
the stop bits are retransmitted as re-
”‘vﬁ-

7. A received break is echoed as received
until the next valid start bit is detected.

The user must exercise care when switching
into and out of the various modes. The
seloctod mode will be activated immediately
upon mode selection, even if this occurs in
the middie of a received or transmitted char-

DUART

MC5600/5700 System Reference Manual

acter Likewse, if @ mode is deselected, the
device will switch out of the mode immediate-
v An exception to this is switching out of
autoecho or remote loopback modes: if the
de-selection occurs just after the recever has
sampled the stop bit (ndicated in autoecho
by assertion of RxRDY), and the transmitter is
enabied, the transmitter will reman in autoe-
cho mode untit the entire stop bit has been
retransmitted.

MRZA[S5] - Channel A Transmitter
Request-to-Send Control

This bit controls the deactivation of the
“TSAN output (OPO) by the transmitter. This
output 1s normaily asserted by setting OPR[0]
and negated by resetting OPR[0]. MR
2A[5] = 1 causes OPR[0] to be reset auto-
matcally one bit time after the characters in
the channel A transmit shift register and in
the THR, il any, are completely transmitted,
including the programmed number of stop
bits, if the transmitter is not enabled. This
feature can be used to automatically termi-
nate the transmission of a message as fol-

3

Program auto-reset mode: MR2A[S] = 1.
Enable transmutter.

Assert RTSAN: OPR[0] = 1.

Send message.

Verity the message 1s sent by waiting until
tho transmit ready status (TxRDY) is
asserted. Disable transmitter after the
{ast character is loaded into the channel
A THR.

6. The last character will be transmitted and
OPR[0] will be reset one bit ime after the
last stop bit, causing RTSAN to be negat-
ed.

IR S

MR2A[4] - Channel A Clesr-to-send
Control

it this bit is 0, CTSAN has no effect on the
transmitter. if this bit is a 1, the transmitter
checks the state of CTSAN (IP0) each time it
is ready to send a character. If IPO is asserted
(low), the character is transmitted. If it is
negated (high), the TxDA output remains in
the marking state and the transmission is
delayed until CTSAN goes low. Changes in
CTSAN while a character is being transmitted
do not affect the transmission of that charac-
ter,

WMR2A[3:0] - Channel A Stop Bit Length
Select

This fieid programs the length of the stop bit
appended to the transmitted character. Stop
bit lengths of %16 to 1 and 116 10 2 bits, in
increments of Y16 bit, can be programmed for
character lengths of 6, 7, and 8 bits. For a
character length of 5 bits, 1116 to 2 stop bits
can be programmed in increments of V16 bit.
The receiver only checks for a ‘mark’ condi-
tion at the center of the first stop bit position
(one bit time after the last data bit, or after the
parity bit if parity is enabled) in all cases.

C-10

It an external 1X clock is used for the
transmitter, MR2A{3] = 0 selects one stop bit
and MR2A(3] = 1 selects two stop bits to be
transmitted.

MR1B - Channel B Mode
Register 1

MR1B is accessed when the channel B MR
pownter points to MR1. The pointer is set to
MR1 by RESET or by a 'set pointer' com-
mand applied via CRB. After reading or writ-
ing MR1B, the pointer will point to MR2B.
The bit definitions for this register are identi-
cal to the bit definitions for MR 1A, except that
all control actions apply to the channel B
receiver and transmitter and the correspond-
ing nputs and outputs.

MR2B - Channel B Mode
Register 2

MR2B 1s accessed when the channel B MR
pointer points to MR2, which occurs after any
access t0 MR1B. Accesses to MR28 do not
change the pointer.

The bit definitions for this register are identi-
cal to the bit definitions for MR2A, except that
all controt actions apply to the channel B
receiver and transmitter and the comespond-
ing inputs and outputs.

CSRA - Channel A Clock Select
Register

CSRA[7:4] - Channei A Receiver Clock
Select

This field selects the baud rate clock for the
channel A recerver as foliows:

Baud Rate

CSRA[7:4] ACR[7]=0 ACR[7)=1
0000 50 75
0001 110 110
0010 1345 1345
0011 200 150
0100 300 300
0101 600 600
01190 1,200 1,200
0111 1,050 2,000
1000 2,400 2,400
1001 4,800 4,800
1010 7,200 1,800
1011 9,600 9,600
1100 38.4K 19.2K
1101 Timer Timer
1110 IP4-168X 1P4-18X
1111 1P4-1X P4-1X

The receiver clock is always a 16X clock
except for CSRA[7:4] = 1111,

CSRA[2:0] - Channel A Transmitter
Clock Select

This field selects the baud rate clock for the
channel A transmitter. The field definition is
as per CSRA([7:4] except as follows:

Baud Rate
ACR[7] =0 ACR{7]= 1

1110 P3-16X IP3-16X
0111 1P3-1X P3-1X

The transmitter clock is always a 16X clock
except for CSRA[3:0] = 1111,

CSRB - Channel B Clock Select
Register

CSRB(7:4]) - Channel B Receiver Clock
Select

CSRA[3:0]

This field selects the baud rate clock for the
channel B receiver. The field definition is as
per CSRA[7:4] except as follows:

Baud Rate
CSRB(7:4] ACR[7]=0 ACR[?]= 1
1110 1P6-16X IP6-16X
0111 P6-1X P6-1X

The receiver clock is aiways a 16X clock
except for CSRB(7:4] = 1111.

CSRB[3:0] - Channel 8 Tranamitter
Clock Select

This field selects the baud rate clock for the
channel B transmitter. The field definition is
as per CSRA[7:4] except as follows:

Baud Rate
CSRB[3:4] ACR{7)=0 ACR(7])=
1110 P5-18X IP5-18X
1111 P5-1X IPS-1X

The transmitter clock is always a 16X clock
axcept for CSRB[3:0) = 1111,

CRA - Channel A Command
Register

CRA is a register used to supply commands
to channel A. Multiple commands can be
spacified in a single write to CRA as long as
the commands are non-confiicting, e.g.. the
commands cannct be specified in a single
command word.

CRA[€:4] - Channel A Miscellansous
Commands

The encoded value of this field may be used
fo specily a single command as follows:
CRA[S:4) COMMAND

0 0 0 No command.

0 O 1 Reset MR pointer. Causes the
m::mlAMRpoiMbmu

0 1 0 Reset receiver. Ressts the chen-
nel A receiver as if a hardware
reset had been applied. The re-
coiver is disabled and the FIFO is
flushed.

0 1 1 Reset transmitter. Resets the
channel A transmitier as i a hard-
ware reset had been apphed.

MC5600/5700 System Reference Munual

DUART

CRA[6:4] COMMAND

1 0 0 Reset error status. Clears the
channel A Received Break, Panty
Error, Framing Error, and Overrun
Error tits in the status register
(SRA[7:4]). Used in character
mode to clear OF status (although
RB, PE, and FE bits will also be
cleared) and in block mode tc
clear all efror status after a block
of data has been received.

1 0 1 Reset channel A break change
interrupt. Causes the channel A
break detect change bit in the
interrupt status register (ISR[2)) to
be cleared to zero.

1 1 0 Start break. Forces the TXDA out-
put low (spacing). If the transmitter
is empty the start of the break
condition will be delayed up to two
bit times. if the transmitter is active
the break begins when transmis-
sion of the character is completed.
It a character is in the THR, the
start of the break will be delayed
until that character, or any others
loaded subsequently are transmit-
ted. The transmitier must be en-
abled for this command to be ac-
cepted.

Stop Break. The TXDA line will go

high (marking) within two bit times.

TXDA will remain high for one bit

time before the next character, if

any, is transmitted.

CRA[3] - Disable Channe! A Transmitter
This command terminates transmitter opera-
tion and resets the TxRDY and TxEMT status
bits. However, if a character is being transmit-
ted or if a character is in the THR when the
transmitter is disabled, the transmission of
the character(s) is completed before assum-
ing the inactive state.

CRA[2] - Ensble Channel A Transmitter
Enablas oparation of the channel A transmit-
tor. The TxRDY status bit will be asserted.

CRA[1] - Disable Channel A Receiver
This command terminates operation of the
receiver immediately — a character being
received will be lost. The command has no
effect on the receiver status bits or any other
control registers. If the special multidrop
mode is programmed, the receiver operates
even if it is disabled. See Operation section.
CRA[0] - Enable Channel A Receiver
Enables operation of the channel A receiver.
It not in the special wakeup mode, this also
forces the receiver into the search for start-bit
state.

-
Iy
-

CRB - Channe! B Command
Register

CRB is a register used to supply commands
to channel B. Multiple commands can be
specified in a single write to CRB as long as
the commands are non-conflicting, e.g., the
‘enable transmitter’ and ‘reset transmitter’
commands cannot be specified in a single
command word.

The it definitions for this register are identi-
cal to the bit definitions for CRA, except that
all control actions apply to the channel B
receiver and transmitter and the correspond-
ing inputs and outputs.

SRA - Channel A Status
Register

SRA[7] - Channel A Received Break

This bit incicates that an all zero character of

the -programmed length has been received
without a stop bit. Only 2 single FIFO position
is occupied when a break is received: further
entries to the FIFO are inhibited until the
RxDA fine returns to the marking state for at
least one-haif a bit time (two successive
edges of the internal or external 1x clock).

When this bit is set, the channel A 'change in
break’ bit in the ISR (ISR[2)) is set. ISR{2] is
also set when the end of the break condition,
as defined above, is detected.

The break detect circuitry can detect breaks
that originate in the middie of a received
character. However, if a break begins in the
middle of a character, it must persist until at
least the end of the next character time in
order for it to be detected.

SRA[6] - Channe! A Framing Error

This bit, when set, indicates that a stop bit
was not detected when the corresponding
data character in the FIFO was received. The
stop bit check is made in the middle of the
first stop bit position.

SRA[5] - Channel A Parity Error

This bit is set when the "with parity’ or ‘force
parity’ mode is programmed and the corre-
sponding character in the FIFO was received
with incorrect parity.

In the special multidrop mode the parity error
bit stores the received A/D bit.

SRA[4] - Channel A Overrun Error

This bit, when set, indicates that one or more
characters in the received data stream have
been lost. it is set-upon receipt of a new
character when the FIFO is full and a charac-
ter is already in the receive shift register
wailing for an empty FIFO position. When this
occurs, the character in the receive shift
register (and its break detect, parity error and
framing error status, if any) is lost.

This bit is cleared by a 'reset error status’
command.

SRA[3] ~ Channel A Transmitter Empty
(TXEMTA)

This bit will be set when the channel A
transmitter underruns, i.e., both the transmit
holding register (THR) and the transmit shift
register are empty. It is set after transmission
of the last stop bit of a character if no
character is in the THR awaiting transmission.
Itis reset when the THR is loaded by the CPU
or when the transmitter is disabled.
SRA[2] ~ Channel A Transmitter Ready
(TxRDYA)

This bit, when set, indicates that the THR is
empty and ready to be loaded with a charac-
ter. This bit is cleared when the THR is
loaded by the CPU and is set when the
character is transferred to the transmit shift
register. TxRDY is reset when the transmitter
is disabled and is set when the transmitter is
first enabled, viz., characters loaded into the
THR while the transmitter is disabled will not
be transmitted.

SRA[1] - Channel A FIFO Full (FFULLA)
This bit is set when a character is transterred
from the receive shift register to the receive
FIFO and the transfer causes the FIFO to
become full, i.e., all thwee FIFO positions are
occupied. It is reset when the CPU reads the
RHR. If a character is waiting in the receive
shift register because the FIFO is full, FFULL
will not be reset when the CPU reads the
RHR.

SRA[0] ~ Channel A Receiver Ready
(RxRDYA)

This bit indicates that a character has been
received and is waiting in the FIFO to be read
by the CPU. it is set when the character is
transferred from the receive shift register to
the FIFO and reset when the CPU reads the
RHR, if after this read there are no more
characters still in the FIFO.

SRB ~ Channel B Status
Register

The bit definitions for this register are identi-
cal to the bit definitions for SRA, except that
all status applies to the channel B receiver
and transmitter and the corresponding inputs
and outputs.

OPCR - Output Port Configu-
ration Register

OPCR([7] - OP7 Output Select

This bit programs the OP7 output to provide
one of the following:

~The complement of OPR[7]

-The channel B transmitter interrupt output,

which is the complement of TxRDYB. When
in this mode OP7 acts as an open coliector

C-11

DUART

MC5600/5700 System Reference Manual

@)
e

output Note that this output 18 not masked
by the contents of the IMR.

OPCR[6] - OPS Output Select
This bnt programs the OP6 output to provide
one of the following:

-The complement of OPR(6]

-The channel A transmitter interrupt output,
which 1s the complement of TxRDYA. When
n this mode OP6 acts as an open collector
oulput. Note that this output 18 not masked
by the contents of the IMR.

OPCR{S5] - OPS Output Select

This tit programs the OP5 output lo provide
one of the following:

~-The complement of OPR(5)

~-The channel B receiver interrupt outpul,
which is the complement of ISR[5). When in
this mode OPS acts ¢s an open collector
output. Note that this output is not masked
by the contents of the IMR.

OPCR[4] - OP4 Output Select
This bit programs the OP4 output to provide
one of the following:

~The complement of OPR(4]

-The channel A receiver interrupt output,
which is the complement of ISR[1]. When in
this mode OP4 acts as an open coMector
output. Note that this output is not masked
by the contents of the IMR.

OPCR[3:2] - OP3 Output Select

Thus field programs the OP3 output to provide
one of the following:

-The complement of OPR[3}

-The counter/timer output, in which case
OP3 acts as an open collector output. in the
timer mode, this output is 8 square wave at
the programmed frequency. in the counter
count is reached, at which time & goes low.
The output returns to the high state when
the counter is stopped by a stop counter
command. Note that this output is not
masked by the contents of the IMR.

-The 1X clock for the channel B transmitter,
which 15 the clock that shifts the transmitted
data. if data is not being transmitted, & free
running 1X clock is output.

~-The 1X clock for the channel B receiver,
which is the clock that samples the received
data. it data is not being received, a free
running 1X clock is output.

OPCR([1:0] - OP2 Output Select

This field programs the OP2 output to provide
one of the following:

~The complement of OPR[2]

-The 16X clock for the channel A transmitter.
Ths 1s the clock selected by CSRA[3:0], and
will be a 1X clock if CSRA[3:0] = 1111,

-The 1X clock for the channel A transmitter,
which is the clock that shifts the transmitted
data. If data is not being transmitted, a iree
running 1X clock is output.

-The 1X clock for the channel A receiver,
which is the clock that samples the received
data. If data is not being received, a free
running 1X clock is output.

ACR - Auxiliary Control
Register

ACR([7] - Baud Rate Generator Set
Select

This bit selects one of two sets of baud rates
1o be generated by the BRG:

Set 1:50, 110, 134.5, 200, 300, 600, 1.05K,
1.2K, 2.4K, 4.8K, 7.2K, 9.6K, and 38.4K
baud.

Set2:75, 110, 134.5, 150, 300, 600, 1.2K,
1.8K, 2.0K, 2.4K, 4.8K, 9.6K, and 19.2K
baud.

The selocted set of rates is available for use
by the channel A and B receivers and trans-
mitters as described in CSRA and CSRB.
Baud rate generator characteristics are given
in table 3.

ACR[6:4] - Counter/Timer Mode And
Clock Source Select

This field selects the operating mode of the
counter/timer and its clock source as shown
in table 4.

ACR[3:0] - IP3, IP2, iP1, PO Change Of
State interrupt Enable

This field selects which bits of the input port
change register (IPCR) cause the input
change bit in the imerrupt status register
(ISR{7)) to be set. If a bit is in the 'on’ state,
the setting of the comresponding bit in the
IPCR will aiso result in the setting of ISR(7],
which results in the generation of an interrupt
output if IMR{7] = 1. If a bit 15 in the 'off’
state, the setling of that bit in the IPCR has
no effect on ISR{7).

IPCR - Input Port Change
Register

IPCR(7:4] -~ IP3, IP2, IP1, IPO Change Of
State

Thuebiuarosotwhenadnmoo'm,as
defined in the input port section of this da
M&msﬂﬁwrmmm_
They are clesred when the IPCR is read
moCPU.AreldofﬂwlPCRmm
ISR(7), the input change bit in the interupt
status register.

mmo«mmmuwm
lo generate an interrupt to the CPU.

IPCR(3:0] - IP3, IP2, IP1, IPO Current
State

These bits provide the current state of the
respective inputs. The information is un-
latched and reflects the state of the input pins
at the time the IPCR is read.

ISR - Interrupt Status Register

This register provides the status of all poten-
tial interrupt sources. The contents of this
register are masked by the interrupt mask
register (IMR). If a bit in the ISR is a '1* and
the corresponding bit in the IMR is aiso a *1’,
the INTRN output will be asserted. i the
corresponding bit in the IMR is a zero, the
state of the bit in the ISR has no effect on the
INTRN output. Note that the IMR does not
mask the reading of the ISR - the trus status
will be provided regardiess of the contents of
the IMR. The contents of this register are
initialized to 0044 when the DUART is reset.

ISR(7] - input Port Change Status

This bit is a '1' when a change of state has
occurred at the IPO, IP1, IP2, or IP3 inpuls
and that event has been selected to cause an
nterrupt by the programming of ACR[3:0).
The bit is cleared when the CPU reads the
IPCR.

ISR[€] - Channel B Change in Break
This bit, when set, indicates that the channel
B receiver has detected the beginning or the
end of a received break. It is reset when the
CPU issues a channel B 'reset break change
interrupt’ command.

ISR(S] - Channel B Recsiver Ready Or
FIFO Full

The function of this bit is programmed by
MR18{6]. if programmed as receiver ready, it
indicates that a character has been received
in channe! B and is waiting in the FIFO to be
read by the CPU. It is set when the character
bmﬁmmmﬂ&ﬂm’)
the FIFO and reset when the CPU reads the
RHRA. if after this read there are more charac-
tors stil in the FIFO the bit will be set again
after the FIFO is 'popped". f programmed as
FIFO full, it is set when a character is
transterred from the receive holding regisier
to the receive FIFO and the transier causes
the channei B FIFO to become full, i.e., al
three FIFO positions are occupied. It is reset
when the CPU reads the RHR. If a character
8 waiting in the receive shift register because
mmoum.mwwbea«mm
Nwﬁiﬁngd\amcterisloadedimoﬂnFlFO.
ISR[4] - Channel B Transmitter Ready
This bit is a duplicate of TXRDYB (SRB|[2).
ISR[3] - Counter Ready

In the counter mode, this bit is set when the
counter reaches terminal count and is reset
when the counter is stopped by a stop
counter command.

MC5600/5700 System Reference Manual

DUART

Table 3. BAUD RATE GENERATOR CHARACTERISTICS

CRYSTAL OR CLOCK = 3.6864MH2z

NOMINAL RATE (BAUD) | ACTUAL 18X CLOCK (KHz) ERROR (PERCENT)
50 08 0
75 1.2 [
110 1.759 -0.069
1345 2.153 '0.059
150 24 0
200 3.2 0
300 48 0
600 8.6 0
1050 16.756 -0.260
1200 19.2 0
1800 288 0
2000 32.056 0.175
2400 38.4 0
4800 76.8 0
7200 115.2 0
9600 153.6 0
19.2K 307.2 0
38.4K 614.4 0

NOTE:
Duty cycle of 16X clock is 50% 1%

Table 4. ACR 6:4 FIELD DEFINITION

In the timer mode, this bit is set once each
cycle of the generated square wave (every
other time that the counter/timer reaches
zero count). The bit is reset by a stop counter
stop the counter/timer.

ISR[2] - Channel A Change In Break
This bit, when set, indicates that the channel
A receiver has detected the beginning or the
ond of a received break. it is reset when the
CPU issues a channel A ‘reset break change
interrupt’ command.

ISR{1] - Channel A Receiver Ready Or
FIFO Ful

The function of this bit is programmed by
MR1A[6]). i programmed as receiver ready, it
indicates that a character has been received
in channel A and is waiting in the FIFO to be
read by the CPU. It is set when the character
is transferred from the receive shift register to
the FIFO and reset when the CPU reads the
RHR. If after this read there are more charac-
ters still in the FIFO the bit will be set again
after the FIFO is 'popped’. If programmed as
FIFO tull, it is set when a character is
transferred from the receive holding register
to the receive FIFO and the transfer causes

the channel A FIFO to become full, i.e., al
three FIFO positions are occupied. it is reset
when the CPU reads the RHR. If a character
is waiting in the receive shift register because
the FIFO is full, the bit will be set again when
the waiting character is loaded into the FIFO.

ISR[0] - Channel A Transmitter Ready
This bit is a duplicate of TXRDYA (SRA[2]).

IMR - Interrupt Mask Register
The programming of this register selects
which bits in the ISR cause an interrupt
output. If a bit in the ISR is a '1’' and the
corresponding bit in the IMR is also a ‘1°, the
INTRN output will be asserted. if the corme-
sponding bit in the IMR is a zero, the state of
the bit in the ISR has no effect on the INTRN
output. Note that the IMR does not mask the
programmable interrupt outputs OP3-OP7 or
the reading of the ISR.

CTUR And CTLR - Counter/
Timer Registers

The CTUR and CTLR hold the eight MSBs
and eight LSBs respectively of the value to be
used by the counter/timer in either the count-
or or timer modes of operation. The minimum
value which may be loaded into the CTUR/

CTLR registers is 0002¢. Note that these
registers are write-only and cannot be read by
the CPU.

In the timer (programmabie divider) mode, the
C/T generates a square wave with a period of
twice the value (in clock pericds) of the CTUR
and CTLR. If the value in CTUR or CTLR is
changed, the current half-period will not be
affected, but subsequent half periods will be.
In this mode the C/T runs continuously.
Receipt of a start counter command (read
with A3-A0 = 1110) causes the counter to
terminate the cumrent timing cycle and to
begin a new cycle using the values in CTUR
and CTLR.

The counter ready status bit (ISR[3]) is set
once each cycle of the square wave. The bit
is reset by a stop counter command (read
with A3-A0 = 1111). The command, however,
does not stop the C/T. The generated square
wave is output on OP3 if it is programmed to
be the C/T output.

On power up and after reset, the timer/
counter runs in timer mode and can only be
restarted. Because it cannot be shut off or

ACR 6:4 MODE CLOCK SOURCE stopped, and runs continuously in timer
000 " Ext oP2) mode, it is recommended that at initiakization,
Counter ernal the output OP3) should be masked off
001 Counter TXCA - 1X clock of channel A transmitter voogh e OPORISE] o 00 untl the TG 8
010 Counter TXCB - 1X clock of channel B transmitter . "
programmed to the desired tional state.
011 Counter Crystal or external clock (X1/CLK) divided by 16 opera
100 Timer External (IP2) in the counter mode, the C/T counts down
101 Timer External (IP2) divided by 16 mmmmwhwmnw
110 Timer Crystal or exteral clock (X1/CLK) CTLR by the CPU. Counting begins upon
111 Timer Crystal or external clock (X1/CLK) divided by 16 receipt of a start counter command. Upon

reaching terminal count (0000}, the counter
ready interrupt bit (ISR[3]) is set. The counter
until stopped by the CPU. If OP3 is pro-
grammed to be the output of the C/T, the
output remains high until terminal count is
reached, at which time it goes low. The output
returns to the high state and ISR(3) is cleared
when the counter is stopped by a stop
counter command. The CPU may change the
values of CTUR and CTLR at any time, but
the new count becomes effective only on the
next start counter command. I new values
have not been loaded, the previous count
values are preserved and used for the next
count cycle.

In the counter mode, the current value of the
upper and lower 8 bits of the counter (CTU,
CTL) may be read by the CPU. it is recom-
mended that the counter be stopped when
reading to prevent potential problems which
may occur if 8 casry from the lower 8-bits to
the upper 8-bits occurs between the times
that both halves of the counter are read.
However, note that a subsequent start count-
eor command will cause the counter to begin a
new count cycle using the values in CTUR
and CTLR.

C-13

DUART

MC5600/5700 System Reference Manual

ABSOLUTE MAXIMUM RATINGS'

PARAMETER RATING UNIT
Operating ambient temperature? Oto +70 *c
Storage temperature -65 to +150 °c
All voltages with respect to ground® -05to +6.0 v
DC ELECTRICAL CHARACTERISTICS T, =0°C to +70°C, Vg = 5.0V £5%* ¢
LIMITS
PARAMETER TEST CONDITIONS NIy
Min Typ Max
ViL input low voltage 08 v
- Vi Input high voltage (except X1/CLK) 20 v
Vi Input high voltage (X1/CLK) 4.0 \"
Vo Output low voltage loL = 2.4mA 0.4 v
Vou Output high voitage (except o.c.outputs) low = -400pA 24 v
[Input leakage current Vin=0 to Vcc -10 10 BA
W Data bus 3-state leakage current Vo=04 to Vo -10 10 HA
I X1/CLK fow input current Vin=0, X2 grounded -40 -20 0.0 mA
Vin= 0, X2 floated” -30 -1.5 00 mA
g X1/CLK high input current Vi = Vec. X2 grounded -10 0.2 10 mA
Vin = Ve, X2 fioated’ 0.0 3s 100 mA
oy X2 low input cument Vin = 0, X1/CLK floated -100 -3 00 HA
Ix2n X2 high input current Vin = Veo. X1/CLK floated 0.0 +30 100 HA
loc Open collector output leakage current Vo =04 to Vcc -10 10 BA
e Power supply current 150 mA

NOTES:

1 Stesses above those ksted under Absolute Maximum Ratings may cause permanent damage 10 the device. This is 8 siress rating only end functionsl aperalion of
the device al these or any other condition above those indicated in the operation section of this specificaion is not implied.
ﬁovopevemgalolevaledlmnw.mmmummm#lMWww

3. This prock h crncutry specrically gned for the p of s devices from damaging efiects of excessive stalic charge. Nonetheless, i is
nwmwwonwndwmuhkwbmmwmwmmhwm.

. Parameters are vahd over specilivd temperature range.

~

IS

5. AN voltage meas e 10 ground ‘GND). For testing, all inputs except X1/CLK swing between 0.4V and 2.4V with a ransition time of 20ne
maxmum. For X1/CLK thes swing is betwesn 0.4V and 4.4V ANl time nts are ol input voltages of 0.8V and 2.0V as appropriete.
Typcal vanes are at +25°C, typical supply voltages. and typical p NG Paramelers.

~ o

X2 i3 loft marnally floating in the 24 pin version.

AC ELECTRICAL CHARACTERISTICS T, =0°C to +70°C, Vcc = 50Vi5%4 587

LTS
PARAMETER NIt
Min Typ Max

Resst Timing (figure 1)
tnes RESET puise width 1.0 s
Bus Timing (Ngure 2)°
tas AO-A3 set-up time to RDN, WRN low 10 ne
tay AOD-A3 hoid time from RDN, WRN high 0 ne
tcs CEN set-up time to RDN, WRN low 0 ns
tck CEN hold time from RDN, WRN high 0 o
tlaw WRN, RDN pulse width 225 .
top Deta valid after RDN low 175 n
tor Data bus floating after RDN high 100 ns
tps Data setsup tme before WRN high 100 e
oy Deta hold time after WAN high 20 e
tawp High time between READs and/or WRITEs® 'O 200 po

(‘I
ey
-3

MC5600/5700 System Reference Manual

DUART

AC ELECTRICAL CHARACTERISTICS T, =0°C to +70°CVec = 50 V5% 567

PARAMETER

Typ

E

Port Timing (figure 3)°®

tps Port input set-up time before RDN low
tpy Port input hold time after RON high
tepp Port output valid after WRN high

&

a3z

interrupt Timing (figure 4)
tin INTBN (or OP3-OP7 when used as interrupts) negated
from:
Read RHRA (RXRDY/FFULL interrupt)
Write THR (TXRDY interrupt)
Reset command (delta break interrupt)
Stop C/T command (counter interrupt)
Read IPCR (input port change interrupt)
Write IMR (clear of interrupt mask bit)

3338333

Clock Timing (figure 5)

toik X1/CLK high or low time

fouk X1/CLK frequency

tctc CTCLK (IP2) high or low time

fcfc CTCLK (|P2) frequency

tRx RxC high or low time

tax RxC frequency (16X)
ax)

trx TxC high or low time

frx TxC frequency (16X)
(1X)

3.6864

Fafaia

MHz
ns
MHz
MHz

Transmitter Timing (figure 6)
trxo TxD output delay from TxC low
ttcs Output delay from TxC low to TxD data output

350
150

ns
ns

Receiver Timing (figure 7)
taxs RxD data set-up time to RXC high
taxn RxD data hoid time from RXC high

ns
ns

NOTES:

4.
S.

6.

7.
8.

9.

Parameters are valid over specified temperature range.

Al voltage are ref d to ground (GND). For testing, all inputs except X1/CLK swing between 0.4V and 2.4V with a transition time of 20ns
maximum. For X1/CLK this swing is between 0.4V and 4.4V. All time measurements are referenced at input voltages of 0.8V and 2.0V as appropriate.
Typical values are at +25°C, typical supply voitages, and typical processing parameters.

Test condition for outputs: Ci = 150pF, except interrupt outputs. Test condition for interrupt outputs: C, = S0pF, Ry = 2.7K ohm to Vcc.

Timing is iltustrated and referenced to the WRN and RDN inputs. The device may also be operated with CEN as the "strobing’ input. in this case, all timing

specifications apply referenced to the falling and rising edges of CEN. CEN and RDN (also CEN and WRN) are AND"ed i ly. As & Q the signal
asserted last initiates the cycle and the signal negated first terminates the cycle.
It CEN is used as the ‘strobing’ input, the p defines the mink high times b one CEN and the next. The RDN signal must be negated for tawp

to guarantee that any status register changes are vald.

10. G write operations t0 the same command regisier require at least three edges of the X1 clock between writes.

-\

-—— — e —

Figure 1. Reset Timing

C-15

DUART MC5600/5700 System Reference Manual

Figure 2. Bus Timing

MC5600/5700 System Reference Manual DUART

OPo-OPT OLD DATA y NEW DATA
WFO0e50S
Figure 3. Port Timing
RON
OR
WRN
INTERRUPT'
OUTRUT
NOTES:
1. INTRN or OP3 - OP7 when used as miermupt outputs.
2 The test for open dran outputs 13 o9 g of the output of thee. L) from the of the g $onal. Vi,

10 2 pont 0.5 volts above Vo mm:mmmwmmmmmm amt?nbni 8 eifects of INITNG! CroWtly $03 1est STWWOTTRNt 18
pronounced and can grestly affect the resultant measurement.
Figure 4. interrupt Timning

+ SV
C1: 10-15pF « (STRAY < SpF)

C2: 0-5pF +(STRAY < Spf) "~

cLocK
DRIVING T0 OTHER
FROM EXTERNAL 740504 cHIPS
SOURCE
.SV
XuCLK
CTCLN ar00Q X4
';'g x2
£l
X% “TF 24
‘[__4. (| 2601
b =
4700 oy &
x4
x2
360640
TC001506

CRYSTAL SERIES RESISTANCE SHOULD
BE LESS THAN 130 ONMS.

TCo008

Figure 5. Clock Timing

C-17

DUART MC5600/5700 System Reference Manual

' T ek
(1 OR 1§ CLOCKS)
=C
UNPUT)

;
L
i
7
:

o] 03 gham o stoe sw |
ohgAK SAEAK NOT 88
crsw’ TRANSANTTED
[
11 ' e—
L]
1. Timing shown for MR2(4) = 1
!:nm.mum-t:
M&Tmm

C-18

MC5600/5700 System Reference Manual

DUART

0 —[[l"l'lfm]ﬂl'”]L[“l'll“le“]L[m]Llj
DS. 07, 08 WILL BE LOST
| l I |
T
I | "
RsAOY I T
Sh0y |
1
FFUL |
(SR |
RzADV/ S
slmu l l 1 ! (ﬂ
"
L\
AON |
STATUS DATA | 05 wiLt \STATUS DATA STATUS DATA STATUS DATA
~or | secost 02 0 o
OVERRUN | {nzssv 8Y COMMAND
(SR t
ars?
0P
‘ OPAOY = 1
WF00L21S
woTER:
1. Timung shown for MR1(7) = 1.
2. Shown for OPCR(4) = 1 and MR(6) = 0.
Figure 9. Receiver Timing
MASTER STATION oy oty o sty
mi==og oy am B o g e
] 1
TA TTER T]
ENABLED | H
| 1
TaROY
SR
-] 1?
MANE -3 =11 ADDe®Y MR 210 0O MRUN =1 ADOe2
MR = 1
PERIPHERAL STATION
erte ety 1N 8iTo oty
RaD AR LIADON?\]}I [oo .o]EY_: T] [ooea:] ‘ll [7o] L
) -
o N L
e N —_ B N
RONWAN ! | UT i W
- Be 11 i STATUS DATA STATUS DATA
[ADD#2
WFO0S208
Figure 10. Wake Up Mode

C-19

A

AC LO signal (MULTIBUS)
and AFM reset circuit 5-5
interrupt vector assignment 5-2
LED indicator 11-12
used by MASSCOMP 9-3
AC low (ACL) bit (in TBCCR) 2-17, 5-2
Access code (AC) bits (in page tables)
field description 2-11
in indirect PTE 2-10
tested in page table algorithm 2-10
Access violation
and page table engine 2-4
definition 2-11
ACK (Acknowledge) signal (SMI) 7-3
Address cache (see Translation Buffer)
Address field on SMI 7-6
Address mapping
MULTIBUS to SMI (see /O map)
virtual to physical 2-1
Address space
diagnostic (see Diagnostic address space)
physical (see Physical address space)

processor register (see Processor register address

space)
secondary (see Secondary address space)
virtual (see Virtual address space)
Address translation
MULTIBUS to SMI by I/O map 10-2
virtual to 2-2
AFM Attach Detect (AFM to CMPU signal) 5-4
AFM (Auxiliary Function Module)
and adding a MULTIBUS 11-14
and ARB in system configuration 11-14
and CBRQ signal 9-3
and CMPU module 1-8, 5-4 - 5-5
and SMI arbitration 7-8
block diagram 1-11
board configuration 11-11
CMPU cable reset signals 5-4
CMPU serial interface 12-10
communication with CMPU via DUART 4-4

functions accessible through CMPU serial port 12-

12
initialization and reset circuit 5-4
LEDs 11-12
MULTIBUS arbitration 9-12
overview 1-10

selftest failure LED 11-12

testpoints 11-12

Index

Alternate Function Code (AFC) bits (in PCRA)
description 4-2
ARB (Arbitration module)
and AFM 1-11
in system configuration 11-14
Arbitration
and bus transmitter 7-2
during Block Mode 9-5
of system buses by AFM 1-12
on MULTIBUS 9-3, 9-11
on SMI 7-8
SMI BUSY line 7-4
SMI GNT line 7-4
SMI REQ line 7-4
Arbitration module (see ARB)
Auxiliary Function Module (see AFM)

B

Backplane
30 slot configuration 11-13
and adding MULTIBUS 11-14
definition 1-2
illustration 11-12
Bandwidth
matching CMM and SMI 6-4
maximized with SMI protocol 7-1
Base page frame number
field in TBCCR 2-16
in page tabie aigorithm 2-6
Baud rate
list for TTYs 13-8
on console devices 13-2
verifying console device 13-7
BCLK (clock) signal (MULTIBUS)
and Block Mode 9-4 - 9-5, 9-10
and SMI SCLK 7-5
and termination resistors 11-14
frequency 9-2
generation of signal 1-13
BERR signal
access to diagnostic space 2-15
and write buffer 4-4
generated by invalid PTE 2-12
generated by page table engine 2-4
list of possible causes 5-4
vector offset assignment 5-4

‘Block Mode

and MBA 10-1 - 10-2
description 9-1, 9-4

Index - 1

design requirements 9-5
differences from standard protocol 9-4 - 8-5
general timing protocol 9-5
read protocol 9-5 - 9-8
read timing diagram 9-5
timing specifications 9-10
write protocol 9-8 - 9-9
write timing diagram 9-8
BLOCK MODE signal (MULTIBUS) $9-3
timing 9-4
timing on reads 9-6 - 9-8
timing on writes 9-8 - 9-9
Boot block 12-5
Boot CMPU (see Boot (processor))
Boot code
customer (see Customer boot code)
Boot device 12-5
determination of driver 12-6
verifying from console mode 13-7
list of possible values 13-8
Boot flags (see Flags)
Boot (processor)
address space reserved for EPROM code 13-3
and AFM 1-15
and AFM Attach Detect signal 5-4
and AFM serial interface 12-10
and EPROM reboot subroutine 12-8
definition 1-15
executing RESET instruction §-5
functions 1-15
Bootstrap (see System bootstrap)
BPRO (Bus Priority Out) signal (MULTIBUS) 9-3
Buffered DAL Bus
on CMPU module 1-8
Buffered Write Enable (BWE) bit (on PCRB) 4-3 -
44
Buffered writes (see Write buffer)
Bus clocks 1-13
Buses
and protocol 7-1
definition 1-4
in system 1-3
used in MC5600/5700 1-4
BUSY (Bus Busy) signal (MULTIBUS)
and Block Mode 9-5
and deadlock avoidance 10-11
and SMI Lock Inhibit signal 7-4
BUSY (Bus Busy) signal (SMI)
and bus arbitration 7-8
description 7-4
Bypass buffers (TB)
use 1-7
used in invalidation 3-8
Byte numbering in MULTIBUS and SMI 10-8

azslat

C

Cabie
chained interrupt 11-13
jumpers on backplane 11-13
Cache
and 68020 read operations 3-1
and 68020 write operations 3-2
and CMPU 1-7
block size 3-1
cacheable address range 3-1
disabling 2-17, 3-6
enabling each set in PCRA 3-4 - 3-6, 43
operating modes 3-4 - 3-6
preventing reset on boot from console 13-16
summary of operation (table) 3-2
tests for hit 3-3
update algorithm 3-2
Cache (C) bit (in page tables) 2-12, 3-1
used by cache 3-3, 3-7
Cache hit (CL) bit (in TB data entry) 2-15
Cache hit (see Hit (cache))
Cache sets (see Set (cache))
Cache Valid (CV) bit (in PCRA) 3-6, 4-3
CACK (Write Conditionally Accepted) response (SMI)
description 7-3
Card cage 1-2
and AFM/ARB configuration 11-14
CBRQ (Common Bus Request) signal (MULTIBUS)
9-3
and arbitration 9-11
CCLK (clock) signal (MULTIBUS)
and termination resistors 11-14
frequency 9-2
generation of signal 1-13
Chained interrupt jumper
cable between backplanes 11-13
holder on AFM 11-12
on backplane 11-13
Checksum failure (on EPROM) 12-4
Clocks
Bus (see Bus clocks)
MULTIBUS (see BCLK and CCLK)
SMI (see ECLK and SCLK)
Time of day (see TOD)
CMD (Command) signals (SMI) 7-8, 7-5
CMM (Memory module)
board configuration 11-6
clearing from console mode 13-14
control/status registers 6-2 - 8-4
. enabling memory from console mode 13-13
error handling 6-2
general operation 6-1
illustration 11-7
initialization 6-4
initializing error checking from console mode 13-14

interleaving 6-4

interleaving switch settings 11-7

LEDs 11-7

overview 1-10

physical address space 8-3

physical address space for CSRs 8-3

preventing reset on boot from console 13-16

setting base address 11-8 - 11-9

specifications B-1

starting address of first module 6-1
CMPU (Processor module)

adding modules to system 11-6

block diagram 1-6

board configuration 11-3 - 11-5

EPROM code contents 12-1

illustration 11-4

in multiprocessor system 1-14

interrupt logic operation 5-1 - 5-2

LEDs 11-5

local devices 4-1

overview 1-5-1-9, 1-10

pinout for front panel connector A-2

processor 1.D. table 11-5

reading processor I.D. in PCRB 4-3

serial interface 1-12

specifications B-1

using AFM serial interface 12-10
Commands (console)

boot 13-9, 13-10

breakpoint 13-10

continue 13-11

copy 13-11

deposit 13-11

dump 13-11

examine 13-12

initialize 13-12

list of commands 13-4

memory enable 13-13

next 13-13

qualifiers 13-14 - 13-16

remote port enable 13-13

repeat 13-13

selftest 13-14

start 13-14

zero 13-14
Commands (SMI)

list 7-5
Common ground jumper

jumper between backplanes 11-13
Communication format

of CMPU-AFM serial port 12-11
Configuration (system)

adding CMM modules 11-6

adding CMPU modules 11-6

adding MULTIBUSs 11-10 - 11-15

and backplane 11-12

Consistency error
definition 2-5
Console device
verifying baud rate 13-7
Console Error (CONS ERR) bit in PCRB 4-3
Console mode
address space reserved for code 13-3
command syntax 13-3
commands (see Commands (console))
control characters 13-6
data and address arguments 13-5
description 13-1
entering 13-1
password 13-1 - 13-2
relocation register 13-5, 13-16
returning with subroutine call 12-7
running on non-boot processor 13-16
selecting console device 13-2
setting machine environment 13-6
using for debugging 13-2
Console Relocation Register (see Relocation register)
Console Run (CONS RUN) bit in PCRB 4-3
Context switch
and TB flushing 2-13
and TBCCR 2-16
starting page table algorithm 2-6
Control characters (in console mode) 13-6
Customer bootstrap code 1-15
accessing through AFM serial port 12-12
programming considerations 12-6
reserved physical address 13-3
setting bootstrap to ignore 13-16
Customer device address space (SMI) 8-3
CYC (Cycle) signal (SMI) 7-7
Cycle (bus)
of BCLK with Block Mode 9-10
Cycles (bus)
and SMI CYC line 7-7
used by SMI 7-1

D

DACP (Data Acquisition / Control Processor) 1-4 -
1-5
and Block mode 9-1
in system 1-4
DACP System Programmer’s Manwal 1-4
DAL (Data - Address Line) internal bus on CMPU 1-
7
DAL (Data - Address Line) on SMI 7-3, 7-6
Data Acquisition / Control Processor (see DACP)
Data Acqussition Application Programming Manual 1-
16

Index - 3

Data cache (see Cache)
Data size
and dynamic bus sizing 10-9
and SMI 7-5 - 7-7
requirements in Block Mode 9-5
Data store (of cache)
accessing entry directly 3-8
description 3-3
Data store (of TB) 1-7
accessing directly 2-14
definition 2-3
use on TB hit 2-4
Data translation (between MULTIBUS and SMI) 10-8
Deadlock avoidance 10-11
Demand paging
definition 2-1
DFC (68020 register)
accessing from console mode 13-14
used to access secondary address space 2-14
DI (Don’t Invalidate) signal (SMI)
and invalidation 3-8
description 7-8
Diagnostic address space
accessing from console mode 13-15
activating page table engine 2-4
and 68020 MOVES instruction 2-14
description 2-14 - 2-15
generating DSACK 2-5
selecting in PCRA 4-2
Diagnostic hardware selftests (in EPROM) 12-4 - 12-
5
Diagnostic Latch (DL) bits (on SCBR) 6-3
Diagnostic mode (cache)
description 3-6
enabling in PCRA 4-3
Diagnostic Mode (DM) bit (on MCR) 6-3
Dimensions (of packages)
specifications B-3
Direct Memory Access (see DMA)
Direct page table algorithm
diagram 2-7
first level 2-9
second level 2-9
Direct page tables
definition 2-6
entry format 2-11
Direct/Indirect (D) bit (in page tables) 2-12
and nested indirect in second level 2-9
Displacement field (page table algorithm) 2-6, 2-8, 2-
10
and TB 2-4
used in cache hit 2-15
DMA (Direct Memory Access)
and buses 1-4
and MBA 1-9
and MBA address translation 10-1

Index - 4

Don’t Invalidate (DIF) bit (in page tables)
and invalidation process 3-7
derivation 2-10
description 2-12
DSACK (Forced)
accessing diagnostic space 2-15
and page table engine 2-5
DUARTS (Dual Universal Asynchronous Receiver /
Transmitters)
description 4-4 - 4-5
interrupt vector assignment 5-2
on CMPU module 1-8
physical address assignments 8-5
selftest failure 12-4
Dynamic bus sizing
support on MBA 10-9
support on SMI 7-5 - 7-6

E

ECLK (Enable Clock) signal (SMI)
description 7-5
generation of signal 1-13
Enable Cache Set 0 (ECO) bit in PCRA 4-3
Enable Cache Set 1 (EC1) bit in PCRA 4-3
Environment
specifications B-3
Eavironment (machine)
description 13-6
examining from console mode 13-8
summary of possible values 13-8
EPROM (Erasable Programmable Read Only
Memory) 4-1
and NVRAM customer boot code 12-6
callable subroutines 12-7 - 12-10
checksum failure 12-4
on CMPU module 1-8
physical address assignments 8-5
summary of on-board code 12-1
system addresses reserved for code 13-3
Erasable Programmable Read Only Memory (see
EPROM)
Error codes
due to invalid or unreadable NVRAM 13-6
Error codes (selftest diagnostics) 12-4
Error detection and correction
on CMM module 6-1 - 6-2
Error (E) bit (on MCR) 6-3
Error handling
on SMI / MULTIBUS transfers 10-10
ERROR LED (on CMPU)
and CONS ERR bit on PCRB 4-3
and FAULT LED 11-2
illustration 11-4
reading selftest diagnostic codes 12-4

ERROR signal (MULTIBUS)
use 9-4
Exception vectors (see Interrupt vectors)
Expander box 11-1
External interrupts
definition 5-1

F

FAULT LED (on front panel)

and MULTIBUS ERROR signal 9-4

controlling at PCRB 4-3

description 11-2

reading selftest diagnostic codes 12-4
Fill (cache)

and set selection 3-3

and tracking mode 3-6

definition 3-1
First level index (page table algorithm) 2-8
First level page table algorithm

direct 2-9

indirect 2-9
First level page tables

and TBCCR 2-16

definition 2-5

entry format 2-11

in algorithm 2-6 - 2-9

First level physical address (FLPA) (direct algorithm)

2-9
Flags (bootstrap)
accessing from console mode 13-15
accessing through AFM serial port 12-12
list 13-7 - 13-8
verifying current values 13-6
Flip flop (cache)
testing in diagnostic mode 3-6
used in set selection 3-3 ;
Floating point coprocessor (68881)
on CMPU module 1-9
Floating Point (DIF) bit (in page tables)
description 2-12
Flush (cache and TB)
and virtual address division 2-13
cache 3-7
cache (bits in TBCFR) 2-16
definition 2-2
in CMPU module structure 1-10
program section of TB (bits in TBCFR) 2-16
system section of TB (bits in TBCFR) 2-16
FPA (Floating Point Accelerator) module
access with DI bit 2-12
and CMPU module 1-9
generating BERR 5-4

Frequency
of BCLK and CCLK 9-2
Front end termination (see Termination resistors)
Front panel
illustration and description 11-2
Function Code bits FCI & FC2 (in 68020)
and PCRA 4-2

G

GCM Graphics processor
EPROM routine to enable 12-9
GNT (Bus Grant) signal (SMI)
description 7-4
use in arbitration 7-8
GRNT (Bus Grant) signal (MULTIBUS)
and deadlock avoidance 10-11

H

Handshake
Block Mode considerations 9-5
definition 1-4

Hit (cache)
definition 3-1
sets bit in TB address space 2-15
tests for 3-3

Hit (TB)
definition 2-2 - 2-4

I

IEEE-796
MULTIBUS conformance to 9-1 - 9-2
IINH (Invalidate Inhibit) signal (SMI)
description 7-4
used in invalidation 3-7
Index (into cache) 3-3
Index (into page table)
first level 2-8, 2-9
second level 2-8, 2-9
Index (into TB)
lower 2-4
upper 2-13, 2-3
Indirect page table algorithm
diagram 2-8
first level 2-9
second leve] 2-10
Indirect page tables
and shared memory access 2-2
definition 2-6
entry format 2-11

Index - 5

INH (Bus Inhibit) signal (MULTIBUS) 9-3
INIT signal (MULTIBUS)
and AFM reset circuit 5-4
asserted on powerup 5-5
asserted on RESET 5-5
asserted with 68020 RESET instruction 5-5
LED indicator 11-12
used with SMI devices 5-4
Initialization circuitry
on AFM 1-12, 5-4
INT (Interrupt) signals (MULTIBUS)
as used by system 9-3
INTA (Interrupt Acknowledge) signal (MULTIBUS)
9-3
Interleaving
CMM switch settings 11-7
general description 6-4
Interlocked protocol 7-1
Internal interrupts
definition 5-1
Inter-Processor Interrupt Register (see IPIR)
Interrupt Enable (IE) bit (on MCR) 6-3
Interrupt priority
of external interrupts to 68020 5-1
used by MULTIBUS 9-3
INTERRUPT switch (on front panel)
and console mode 13-2
and SW RESET signal 9-4
and TBCCR 2-17
description 11-2
in powerup sequence 12-2 - 12-3
interrupt vector assignment 5-2
Interrupt vectors
decode circuitry 1-8
description 5-1
MASSCOMP defined set (table) 5-2
table of 5-1
Interrupts
external 5-1
from MULTIBUS devices 9-3
internal 5-1
on MULTIBUS 9-2
summary 1-8
Invalid entry (I) bit (in page tables)
causing BERR 2-5
definition 2-12
tested in page table algorithm 2-9, 2-10
Invalid (IV) bit (I/O map) 10-3 - 10-4
Invalidation (cache)
and DIF bit in page tables 2-12
and IINH SMI signal 7-4
and real time considerations 3-7
description 3-6
minimizing 68020 cycles used 7-8
summary 1-7

Index - 6

Invalidation stack 1-7
and DI signal on SMI 7-8
use 3-2, 3-6
I/0
definition 1-4
I/O map
accessing from MULTIBUS 10-4
entry format 10-4
EPROM subroutine to load mapping 12-9
general description 10-2
in system 1-9
physical address assignments 8-5 - 8-8
translation algorithm 10-2
use in tranfers across buses 10-2
1/0 space (MULTIBUS)
access by SMI device 10-2
address assignments 8-6
1/0 space (SMI)
access by MULTIBUS device 10-2
and SMI data size rules 7-7
definition 1-4
physical address assignment 8-2
1/0 Write Complete command (SMI) (see RTNL)
IPIR (Inter-Processor Interrupt Register)
changing processor running console mode 13-16
entry format 5-3
general operation 5-3
in multiprocessor system 1-14
interrupt vector assignment 5-2
physical address assignments 8-5 - 8-7

J

Jumpers
holders on AFM 11-11
on backplane 11-11, 11-13
on CMPU module 11-5

L

LEDs
on AFM 11-11 - 11-12
on CMM 11-7

on CMPU 11-4 - 11-5, 12-4
on front panel 9-4, 11-2
LINH (Lock Inhibit) signal (SMI) 10-10
description 7-4
Local data bus
on CMPU module 1-6, 1-8, 4-1
Local devices (CMPU) 1-8
block diagram 4-1
description 4-1
physical address assignments 8-4

LOCK (Bus lock) signal (MULTIBUS) -3

and SMI Lock Inhibit signal 7-4

description 10-10
Longword numbering on SMI and MULTIBUS 10-8
Loop on Error jumper (CMPU)

and selftest diagnostics 12-4

description 11-5

M

Machine environment (see Environment)
Mapping virtual addresses 2-1
Master (bus)
and MBA 10-1, 10-10
definition 1-4
in data transaction 7-2 - 7-3
(MULTIBUS) and Block Mode 9-4 - 9-5, 9-7 - 9-9
SMI definition 7-2
Match (TB)
definition 2-3
MBA (MULTIBUS Adaptor)
and deadlock avoidance 10-11
and dynamic bus sizing 10-9
and I/O map 10-2, 10-4 - 10-7
and MULTIBUS I/O and memory strobes 10-2
and using assigned MULTIBUS space 8-7
enable switch on CMPU module 11-4, 11-8
error handling in transfers 10-10
general operation 9-1, 10-1
handling data transfers 10-8
in system 1-5
overview 1-9
setting Node I.D. 11-4
MC LOCK 2 (MULTIBUS) 9-2 - 9-3
MC5600
difference between MC5700 1-2
maximum supported MULTIBUSs 9-1
MC5700
difference between MC5600 1-2
maximum supported MULTIBUSs ¢-1
MC68020 82 Bit Microprocessor User’'s Manual 1-6,
5-1, 13-15
and MC68881 1-9
MCR (Memory Control Register on CMM)
address set on switches 11-9
bit fields 6-2
Memory management hardware
design considerations 2-1
enabling/disabling using TBCCR 2-17
specifications B-1
summary 1-7

Memory module (see CMM)
Memorv snace {m"TmUS)

........ J SpPetl VAl s

access by SMI device 10-1

Memory space (SMI)
access by MULTIBUS device 10-2
and SMI retries 7-4
definition 1-4
physical address assignment 8-2 - 8-3
Microprocessor

accessing 68020 registers from console mode 13-14

and invalidation process 3-6
and memory management 2-1 - 2-2
on AFM 1-12, 12-10
on CMPU module 1-6
MINH (Memory Inhibit) signal (SMI)
description 7-4
Miss (cache)
definition 3-1
Miss (TB)
algorithm 2-4
definition 2-2
Modify (M) bit (in page tables) 2-12
and direct page table algorithm 2-9, 2-10
updating 2-4
Module configuration (see Configuration)
Modules
Auxiliary Function (see AFM)
definition 1-2
Memory (see CMM)
Processor (see CMPU)
MOVES (68020 instruction)
accessing secondary address space 2-14
accessing TB space 2-15

MPFN (MULTIBUS Page Frame Number) 10-3 - 10-4

MTE (Map Table Entry) (I/O map) 10-3
MULTIBUS Adaptor (see MBA)
in system
MULTIBUS
accessing I/O map entries 10-4, 10-6
accessing other MULTIBUS devices 10-2
accessing other MULTIBUSs 10-2
adding to system configuration 11-14
and deadlock avoidance with SMI 10-11
and IEEE-796 standard 9-1 - 9-3
and INIT signal in multiprocessor system 5-4
and MULTIBUS LOCK signal 10-10
and SMI data sizes 7-7
and SMI data transfers 10-1, 10-8
arbitration 1-12, 9-11
connector 11-2
controllers 1-15
data numbering format 10-8
errors on writes to SMI 10-11
in system 1-4
interrupt vector assignment 5-1 - 5-2
I/O address space assignments 8-5 - 8-6
1/0 space access 10-2
I/0O space address assignments 8-7
jumper cables 11-13

Index - 7

limits in multiprocessor systems 1-13
memory space access 10-1
physical memory space assignments 8-2 - 8-3
signal descriptions 9-2 - 9-4
transfer rates 9-1
Multiple Error (ME) bit (on MCR) 6-3
Multiprocessor systems
and console mode 13-16
and split transaction protocol 7-1
block diagram 1-14
boot processor 5-4
reading FAULT LED 12-4
MULTIBUS limits 1-13
selecting processor from console mode 13-7
summary 1-13 - 1-15
Multiprogram environment
and memory management 2-1
support in MC5600/5700 2-2

N

NACK (No Acknowledge) response (SMI)
and MBA reads 10-10
and page table engine fetch 2-5
description 7-3
PCRB status bit 4-3
Nested indirect
causing BERR 2-5
in first level algorithm 2-9
in second level algorithm 2-10
NID (Node LD.) signals (SMI)
description 7-3

Node 1.D.
definition 7-2
of MBA 10-1

switches on CMPU module 11-4
Non-boot (processor)
address space reserved for EPROM code 13-3
definition 1-15
executing 68020 RESET instruction 5-5
returning to EPROM with subroutine call 12-9
running console mode 13-16
Non-volatile RAM (on AFM) (see NVRAM)
NOP (No Operation) command (SMI) 7-5
NVRAM (Non-volatile RAM)
and customer boot code 12-6
disabling using boot command 12-6
in AFM structure 1-15

o)

Offset (interrupt vectors) (see Vector offset)

index - 8

One-way associative (cache)
definition 3-1
mode of operation 3-6
Operating system (OS)
and memory management 2-1
and MULTIBUS interrupts 10-1
and MULTIBUS write errors to SMI 10-11
setting up self-mapping I/O map entries 10-4

P

Packages
for system 11-1
illustration (pedestal) 1-2
types 1-2
Page
constructing address from MULTIBUS address 10-3
constructing physical address 2-6
definition 2-1
Page Frame Number (PFN) field (in page tables) 2-
12
stored in TB 2-3 - 2-4
Page In Error (PIE) bit (on MCR) 6-3
Page table algorithm
description 2-5 - 2-10
Page table engine
and [INH SMI signal 7-4
conditions of activation 2-4
definition 2-2
disabling using TBCCR 2-17
ignores invalidate inhibit 3-7
operation 2-4 - 2-5
PCRB status bit 4-3
testing with diagnostic space accesses 2-15
Page table entries 2-4
C bit considerations 3-7
format 2-11
Page Tables
definition 2-1
first level (see First level page tables)
second level (see Second level page tables)
Parallel arbitration
definition 1-12
on MULTIBUS ¢-11
on SMI 7-8
Password (Console mode) 12-12
PCRA (Processor Control Register A) 1-8
and cache operating modes 3-4
bit fields 4-2
enabling cache diagnostic mode 4-3
enabling cache sets 4-3
physical address assignment 8-5
physical address location 4-2
preventing reset on boot from console 13-8, 13-18
selecting secondary address space 4-2

PCRB (Processor Control Register B) 1-8
and BERR 2-4, 5-4
bit fields 4-2
controlling ERROR LED 4-3
controlling RUN LED 4-3
enabling buffered writes 4-4
physical address assignment 8-5
physical address location 4-2
preventing reset on boot from console 13-9, 13-16
reading page table engine errors 4-3
reading processor I.D. 4-3
reading SMI errors 4-3
Pedestal (package)
description 11-1
illustration 1-2
Physical address
translation to/from MULTIBUS address 10-1 - 10-2
Physical address space
accessing from console mode 13-15
address range used by cache 3-1
and memory management 2-1
assignments for entire system 8-2, 8-4 - 8-8
definition 1-4, 8-1
reserved for console mode code 13-3
Pinouts A-1- A-10
Ports (see DUARTS)
Power failure
and AFM reset circuit 5-5
interrupt vector assignment 5-2
POWER LED (on AFM) 11-11
description 11-12
POWER LED (on CMM)
illustration 11-7
POWER LED (on front panel)
description 11-2
Power supply
detecting power outage 5-5
Power up
and initialization circuitry 5-5
entering console mode from 13-1
(see also System bootstrap)
Privilege
and access code 2-11
modes on 68020 1-6
Processor Control Registers (see PCRA and PCRB)
Processor LD.
and I/O space 8-7
and physical address assignments 8-5 - 8-6
of boot processor 1-15
reading in PCRB 4-3
(see also Node 1.D.)
setting on CMPU module 11-5
use in multiprocessor systems 1-14
Processor Module (see CMPU)

Processor register address space 2-16
accessing from console mode 13-15
description 2-14
selecting in PCRA 4-2

Program section (of virtual address space)
and TB 2-3
description 2-2
diagram 2-13

Protocol (bus)
interlocked 7-1
split transaction 7-1

Q

Qualifiers (console command arguments)
address 13-14
data 13-15
list 13-4
special use 13-16

R

Rack mount (package) 1-2
description 11-1
Read request accepted (SMI response) (see CACK)
Read request (RR) command (SMI)
and CACK 7-3
and RTNL 7-5
description 7-6
Read-and-merge
internal CMM operation 6-2
Reading the AFM 12-11
Read-modify-write
and cache 3-3 - 3-4
and CMM errors 6-2
Rear end termination (see Termination resistors)
reboot (command)
entering console mode 13-1
Reboot (EPROM subroutine) 12-8
Receiver (bus)
SMI definition 7-2
Registered Buffers
on CMPU module 1-8
Relocation register (console mode) 13-5, 13-13, 13-16
Repeater module 9-11,11-1
and CBRQ signal 9-3
REQ (Bus Request) signal (SMI)
description 7-4
RERR (Return Error) command (SMI)
and MBA reads 10-10
description 7-5
generated by CMM 6-2
malfunctioning MULTIBUS device 10-10
response to page table engine fetch 2-5

Index - 9

Reserved For Software (RFS) bit (in page tables) 2-
12
Reset (EPROM subroutine) 12-10
RESET instruction (68020)
and AFM reset circuit 5-5
and EPROM subroutine 12-10
RESET signal (68020)
and AFM reset circuit 5-4
(see also Initialization circuitry)
RESET switch (on front panel)
and AC LO signal 9-3
and AFM reset circuit 5-4 - 5-5
description 11-2
Resistors (see Termination resistors)
Retry response (SMI)
and deadlock avoidance 10-11
description 7-4
LED indicator on CMPU 11-5
RETURN ERROR command (SMI)
and SMI ERR bit on PCRB 4-3
Row In Error (RIE) bit (on MCR) 6-8
RR (Read request) command (SMI) (see Read request)
RS-232-C
used on serial ports 4-4
RTNL (Return Longword / I/O Write Longword
Complete) command (SMI) 7-5 - 7-6
data error by CMM 6-2
RTNW (Return Word / I/O Write Complete) com-
mand (SMI) 7-8
and MBA reads 10-11
RUN LED (on CMPU) 11-5
illustration 11-4
controlling with PCRB 4-3

8

SCBR (Substitute Check Bit Register on CMM)
address set on switches 11-9
bit fields 6-2
SCLK (System Clock) signal (SMI)
description 7-5
generation of signal 1-13
Second level index (page table algorithm) 2-8
Second level page table algorithm
direct 2-9
indirect 2-10
Second level page tables 2-6
definition 2-5
entry format 2-11
Second level physical address (SLPA) (direct) 2-9
Secondary address space 2-14
access codes 2-14
Self-mapping entries (I/0O map)
definition 10-4
format 10-5

location addresses 10-7
unwritable entries 10-7
use 10-6
Selftests (see Diagnostic hardware selftests)
Serial Number (see System I.D.)
Serial ports
AFM reset signals 5-4
communication with AFM 12-10
pinouts 4-4
(see also DUARTS)
Set (cache)
description 3-3
enabled in PCRA 4-3
select algorithm 3-3
selecting only one 3-8
SFC (68020 register)
accessing from console mode 13-14
used to access secondary address space 2-14
Shared access
and memory management 2-1 - 2-2
Single processor
block diagram 1-3
Slave (bus)
and MBA 10-1, 10-10
and RERR command 7-5
definition 1-4
in data transaction 7-2 - 7-3, 7-6
(on MULTIBUS) and Block Mode 9-4
SMI definition 7-2
Slots
and package configuration 11-1
SMI Device space 8-3
division of 8-3 - 8-4
SMI Error (SMI ERR) bit (on PCRB) 4-3 - 4-4, 5-4
SMI (Synchronous Memory Interconnect)
address fields 7-6
and cache invalidation 7-4
and deadlock avoidance with MULTIBUS 10-11
and interleaving 6-4
and MULTIBUS data transfers 10-1, 10-8
and MULTIBUS LOCK signal 10-10
arbitration 1-12, 7-4
commands 7-5 - 7-6
connector 11-2
data numbering format 10-8
data size handling 7.5 - 7-6
data size rules 7-7
definition of terms 7-2
general description 7-1
in system 1-4
signal descriptions 7-2 - 7-5
specifications B-1
Software reset (SWR) bit (in TBCCR) 2-17, 5-2
Space modify (SM) bits (in PCRA)
description 4-2
used to access secondary address space 2-14

Specifications B-1 - B-2
Split transaction protocol 7-1
STD+ bus
devices 1-16
in system 1-4
Subroutines {(in EPROM) 12-7 - 12-10
check for received character 12-7
enable gcm terminal 12-9
probe address 12-10
put character to terminal 12-8
put number to terminal 12-8
put string to terminal 12-8
reboot 12-8
reset system 12-10
return to console with no init 12-7
return to non-boot console 12-9
setmap 12-9
Supervisor privilege mode (of 68020) 1-6
and PCRA 4-2
SW RESET signal (MULTIBUS) 9-4
Switches
on CMM module 11-7 - 11-10
on CMPU module 11-4 - 11-5
Synchronous Memory Interconnect (bus) (see SMI)
Syndrome (S) bit (on MCR) 6-4
System A
block diagram (multiprocessor configuration) 1-14
block diagram (single processor configuration) 1-3
specifications B-1 - B-2
System bootstrap
and AFM reset circuit 5-4
and boot processor 1-15
booting the operating system 12-5
callable subroutines (see Subroutines)
memory initialization 6-4
power up sequence 12-1 - 12-3
primary 12-5 - 12-6
reading diagnostic error codes 12-4
secondary 12-6
selftest diagnostics 12-4 - 12-5
verifying and setting autoboot mode 13-7
System buses (see Buses)
System error (MBE) bit (in TBCCR) 2-16
System LD.
accessing through AFM serial port 12-12
examining from console mode 13-6 - 13-7
System I/O space (see I/O space)
System Memory space (see Memory space)
System section (of virtual address space)
and TB 2-3
description 2-2
diagram 2-13
System tests (see Diagnostic hardware selftests)
SZ (Size code) signals (SMI) 7-7

T

Table top (package) 1-2
description 11-1
Tag (in cache) 3-1
definition 3-3
Tag (in TB) 1-7
definition 2-3
in page table algorithm 2-10
section of virtual address 2-3
Tag store (in cache)
description 3-3
Tag store (of TB)
and TB space 2-15
definition 2-3
TB Error (TB ERR) bit (on PCRB) 4-3, 5-4
TBCCR (Translation Buffer / Cache Control Regis-
ter)
and cache operating modes 3-4
and power failure interrupt 5-2
and software interrupt 5-2
and using write buffer 4-4
entry format 2-16
in page table algorithm 2-6
location in address space 2-16
TBCFR (Translation Buffer / Cache Flush Register)
and virtual address division 2-13
entry format 2-16
location in address space 2-16
Termination resistors
and adding MULTIBUS to configuration 11-14
and AFM structure 1-12
on AFM 11-11
on backplane 11-12
on CMPU module 11-5
Testpoints
on AFM 11-11 - 11-12
Time of Day clock (see TOD)
TOD (Time of Day clock)
accessing through AFM serial port 12-12
accuracy 1-12
and boot processor 1-15
on AFM 1-12
Tracking mode (cache)
description 3-6
Transaction (on SMI)
description 7-2
Transfer rates
on MULTIBUS 9-1
Translation Buffer / Cache Control Register (see
TBCCR)
Translation Buffer / Cache Flush Register (see
TBCFR)
Translation buffer address space
accessing from console mode 13-15
description 2-14

Index - 11

entry format 2-14 definition 2-1

reading 2-15 division of 2-13
selecting in PCRA 4-2 management of 1-7
writing 2-15 Virtual addresses
Translation buffer definition 1-7
accessing entries directly 2-14 used by memory management 2-3

block diagram 2-3
description 2-2

detailed description 2-2 w
disabling 2-17
entry description 2-2 Wide cabinet (package) 1-2
entry format 2-14 description 11-1
in system 1-7 Word numbering on SMI and MULTIBUS 10-8
reading entries 2-15 Write buffer
writing entries 2-15 and CMPU module structure 1-8
Translation Buffer Disable (TBD) bit (in TBCCR) enabling from console mode 13-7
2-17, 4-4 enabling on PCRB 4-3 - 4-4
Translation buffer hit (TL) bit (in TB space entry) interrupt vector assignment 5-2
2-15 use 4-4
Translation (see Address translation) Write request (WR) command (SMI)
Transmitter (bus) description 7-6
SMI definition 7-2 Write through (cache)
Two-way associative (cache) definition 3-1
definition 3-1 Writing to the AFM 12-11
mode of operation (normal) 3-8
X
U
XACK signal (MULTIBUS)
UACK (Write Unconditionally Accepted) response and Block Mode 9-4
(SMI) and Block Mode reads 9-7
description 7-3 and Block Mode writes 9-9
Used (U) bit (in page tables) 2-13 and MBA errors 10-10 - 10-11
User privilege mode (of 68020) 1-6
and PCRA 4-2
Vv

V bit (in cache)

and CV bit in PCRA 4-3

cleared by invalidation 3-6

in data store entry 3-3 - 3-4

setting in diagnostic mode 3-6

used in set selection 3-4
Vector Base Register (68020 register)

accessing from console mode 13-15

use by CMPU interrupt decode logic 5-1
Vector offset

definition 5-1

MASSCOMP defined set (table) 5-2
Vectored interrupts (see Interrupts)
Vectors (interrupts) (see Interrupt vectors)
Virtual address space

and TB 2-2, 2-13

and TB flushing 2-13

Index - 12

Available MASSCOMP Manuals

Available MASSCOMP Manuals

Title | Revision | Order Number:
ADI12F Hardware Manual A M-ADI12F-HM
AD12FA Hardware Manual A M-AD12FA-HM
ALIS, Volume [A M-ALIS-01
ALIS, Volume II A M-ALIS-02
Array Processor Programmer’s Manual B M-AP501-LM
The C Programming Lanquage A M-SP28-000
DAO04H Hardware Manual A M-DA04H-HM
DAOSF Hardware Manual A M-DAOSF-HM
DA/CP Assembly Language Reference Manual A M-SP55-MS
DA/CP Debugger Reference Manual A M-SP55-MS
DA/CP System Programming Manual A M-SP55-MS
Data Acquisttion Application Programming Manual E M-SP50-AP
Data Presentation Application Programming Manual B M-SP45-SP
DI-3000 User’s Guide and Quick Reference Guide 5 M-SP80-00
Diagnostic Monitor User’s Guide A M-DIAG-UG
EF12M Hardware Manual B M-EF12M-HM
MASSCOMP Ethernet Manager’s Guide C M-SP70-MS
MASSCOMP Ethernet User’s Guide B M-SP70-MS
Floating Point Programming Manual B M-FP501-SP
FORTRAN Compiler User’s Manual A M-SP24-002
FORTRAN Lanquage Reference Manual A M-SP24-001
The Franz LISP Reference Manual A M-SP26-RM
GK-2000 User’s Guide B M-SP88-00
Graphics Application Programming Manual H M-SP40-AP
Graphics System Programming Manual A M-SP40-PM
Guide to Writing a UNIX Device Driver A M-DRIVER-G
Guide to MASSCOMP Documentation B M-GTD-00
Introducing the UNIX System — M-RTU-001
LISPcraft — M-SP26-00
MC500 CPU Reference Manual A M-MC500-RM
MC5800/5400 Installation Guide A M-1G-534
MC5800/5400 System Management Guide A M-SMG-534
MC5500 System Management Guide F M-SMG-013
MC5600/5700 Installation Guide A M-IG-567
MC5600/5700 System Management Guide A M-SMG-567
MC5600/5700 System Reference Manual A M-SRM-567
MC-Windows Programming Manual A M-SP43-PM
Oregon Software Pascal-2.1 User’s Manual 2 M-SP22-001
PI16F Hardware Manual B M-PI116F-HM
Programs for Digital Processing — M-SP60-001

Available MASSCOMP Manuals

Title Revision Order Number:

Quick Choice Menu Reference Manual A M-SP30-MS
Quick Choice Primer A M-SP30-MS
Quick Choice User’s Manual B M-SP30-MS
RTU Programming Manual A M-RTU-PM
UNIX Programmer’s Manual, Vol. 1A H M-RTU-011
UNIX Programmer’s Manual, Vol. 1B H M-RTU-011
UNIX Programmer’s Manual, Vol. 2A B M-RTU-012
UNIX Programmer’s Manual, Vol. 2B — M-RTU-012
The UNIX Programming Environment — M-RTU-002
UNIX Quick Reference Guide A M-RTU-OR
Using the EF12M A M-EF12M-SM
Using the SC-16F B M-SC16F-PRE
Using the SH16F A M-SH16F-PRE
Using The TC16F A M-SC16F-PRE
UUCP Management Guide A M-UUCP-MG
Ved Text Editor Reference Manual B M-VED-015
X.25 Manager’s Guide A M-SCP-MG
X.25 User’s Guide A M-SCP-UG

MC5600/5700 System Reference Manual Part Number: 075-04020-00-0
Revision A July 30, 1986 Order Number: M-SRM-567

Reader's Documentation Comments
Please help us improve our manuals by filling out and mailing this form.

If you need a written reply and are under a maintenance contract, please submit your comments
on an SQR form. All software comments must be on an SQR form.

What is your application for your MASSCOMP System?

Did you find this manual understandable, usable, and well organized? Please make suggestions
for improvement.

Did you find errors in this manual? If you did, please specify the error and the page number.

Please circle the appropriate category in each column.

LANGUAGE EXPERIENCE
C Student/novice
F77 2+ years UNIX experience
Other (Which?) 5+ years UNIX experience
Name Phone Date J J
Organization
Street
City State Zip code or Country

Fold Here

Do Not Tear - Foid Here and Staple

Concurrent Computer Corporation
BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 12 WESTFORD, MASS
POSTAGE WILL BE PAID BY ADDRESSEE

CONCURRENT COMPUTER CORPORATION
1 TECHNOLOGY WAY - BOX 563
WESTFORD, MA 01886

ATTENTION: TECHNICAL PUBLICATIONS

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

	Cover
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	01
	02
	03
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	06-001
	06-01
	06-02
	06-03
	06-04
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	_1
	_2
	replyA
	replyB

