QG-640.User Manual
Color Display Processor Card
for the Q-Bus
265-MU-00
Revision 12
March 4, 1991

o matrox

electronic systems

Features
The QG-640 display processor card features:

e Q-bus compatibility
e 640x480 resolution

e 256 colors from a palette of 262,144

On-board 32/16-bit display processor

e VLSI drawing processor

20,000 vectors/second

5,000 characters/second

¢ 1,000,000 pixels/second raster operations

On-board high-level instruction set

Low cost

Trademark Acknowledgements

Matrox is a registered trademark of Matrox Electronic Systems Ltd.

QG-640.User Manual
Color Display Processor Card
for the Q-Bus
265-MU-00
Revision 12
March 4, 1991

This Manual Is Valid For The Following Products
Name Hardware L.D. Firmware 1.D.
QG-640 | Rev. 4

MATROX Electronic Systems Limited
1055 St. Regis Boulevard
CANADA H9P 2T4

Telephone: (514)685-2630 Telex: 05-822798
FAX: (514)685-2853

Features
The QG-640 display processor card features:

e Q-bus compatibility

e 640x480 resolution

e 256 colors from a palette of 262,144

e On-board 32/16-bit display processor

e VLSI drawing processor

e 20,000 vectors/second

e 5,000 characters/second

e 1,000,000 pixels/second raster operations
e On-board high-level instruction set

e Low cost
Trademark Acknowledgements

Matrox is a registered trademark of Matrox Electronic Systems Ltd.

Contents

1 Introduction 1-1
1.1 Introduction. . « . v v v v v it vttt et e e e e e e e e e e e 1-2

2 Specifications ' 2-1
2.1 Technical Specifications0ttt ittt 2-2

3 Functional Description 3-1
3.1 Functional Description e e e e et e e e e e 3-2
32 Hardwareo oo vttt vt ot ittt ottt e et et 3-2
3.3 Coordinate Space and Transforms 3-3
3.4 Graphics Attributes and Primitives 3-4
2R T X - O 3-5
3.6 Direct Screen Operations oo ittt ettt neennennnnan 3-5

4 Programming the QG-640 4-1
41 Introduction. ¢ v v vt i i i ittt it e e e e 4-2
411 512%x512Modet e e e e e e e e e e 4-4

42 Command Format00ttt innennennonnennn 4-5
4.2.1 Documentation Conventions. « ¢ vt v v e v v et vt v v 4-5

422 ASCIICommand Formatcuicueeeeeeeenonn. 4-5

423 HexMode o it ittt ittt e tn it e tsneess 4-6

CONTENTS

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.12

4.13

4.2.4 Parameter Types v v v v v vt v o ittt e e e e 4-6
Communicationst v i vttt ittt ottt 4-8
43.1 BusInterface, 4-8
43.2 Imterrupts i i i i e e e e e e e e e e e e 4-19
4.3.3 Transfer Under Interrupt Control 4-20
Transforms ot i i it et e e e e e e e e 4-21
4.4.1 Two Dimensional Transforms 4-21
4.4.2 Three Dimensional Transforms 4-22
Graphic Attributes e e e 4-34
4.5.1 DrawingMode i ittt ittt e e e e 4-34
45.2 Color ittt e e e e e e e e e e 4-35
4.5.3 Line Texture And Blinking Pixels. 4 -39
454 MaskingBitPlanes 4-40
Primitives ¢ . i i i e e e e e e e e 4-41
4.6.1 Two Dimensional Primitives. 4-41
4.6.2 Three Dimensional Primitives 4-45
1 4-47
Text « oo v vttt i i i e e ettt 4-51
4.8.1 Character Attributes i ... 4-54
4.8.2 Defining Characters forthe User Font 4-55
Command Lists0 i ittt ittt it i e et 4-59
Direct Screen Operationst ittt ittt ounnnnens 4-63
4.10.1 Drawing . . + v v v v v v v et et e et e e e e e e e e 4-63
4102 Pixel Moves v v v it ittt it i i e e e e e 4-64
Read Back Commands vt v it i ittt ittt s a s e 4-67
ErrorHandlingttt ittt ineneeeenean 4 - 68
Graphics Input Support i it e e e e 4-69

-ii

CONTENTS

Command Descriptions 5-1
5.1 Command Descriptionst i ittt it 5-1
Installation A-1
Al Installation v i i i ittt ittt e e e e e e e e e . A-2
A2 Configuration« v v v i it i s e e e e e e e e e e e e e e e A-3

A21 SyncSelection it A-3

A22 VideoMode i it it ittt e e e e e e e A-4

A.2.3 Interrupt Leveland Vector¢.000uuuenn... A-4

A24 I/OBase Address0iiiiiieunnenenne.. A-5

A.25 Micro-VAX Slot Optiont i i ittt ittt e .. A-6

A.2.6 Factory-Set Straps« v v v v v v it ittt et e e e A-6
A3 Connectors . . . v v v v v ittt e e et e e e e e e e e e A-T7

A3.1 VideoConnectors. . . . v v v v v v v v o v v vt e h e et e e A-T7
Ad LEDs ... i ittt i it i e e e e e e e e A-17
Board Layout B-1
B.1 Board Layout Schematic Diagram0cv..... B-2
Lookup Table Data C-1
C.l Lookup Table Data v v v v i vttt ettt et et eneene C-1
Command List Sample D-1
D.1 Command List ¢ v v v v v ittt it e ettt it a e s s ane s D-2
Default Parameters E-1
E.l Default Parameters v v v v v vt it ittt it e et ae e E-2
VMS Macro Code Example F-1
F.1 VMS MacroCode Exampleot vttt ittt vt oo v oo nennan F-2

- i

CONTENTS

H Warranty

Hl Warranty 0 0 i i it it i e et e e e e e e e e e e e e

I As-Shipped Straps

-iv

H-1
H-2
I-1

List of Figures

3.1 QG-640BlockDiagramttt it ittt 3-3
3.2 2D Virtual Space to Pixel Mapping oo 3-4
3.3 Raster Transferof Pixels. i, 3-6
4.1 The 2D Drawing Environment e e e e 4-2
4.2 The 3D Drawing Environment00, 4-4
4.3 QG-640 Communications Scheme o i i oo oL, 4-9
44 Coordinate SPaces . . v o v o vttt tt s et et et 4-21
45 Default House vt v v it it ittt i et ittt it ee e 4-23
4.6 RotationDirection it i ittt ittt ittt 4-25
4.7 RotationExample ittt ittt e e 4-125
4.8 Translation Example« v o o v v it i i e e e e e e e e e 4-26
4.9 Viewing ReferencePoint i 4-27
4.10 Viewing Transform Example. o i i v i v it i it 4-29
4.11 Clipping Example« ¢ttt i ittt it i et e e ettt e 4-30
4.12 Viewing Angle and Viewing Distance« v v v v v v v v vt v i . 4-31
4.13 3D To 2D Projection Example 4-33
4.14 The Output Stage o v v v v v v ittt ittt o et e o n o s o oonn 4-34
4.15 Lookup Table Bit Map« v i i it i ittt it et e e 4-36
4.16 Example: Moves, Lines, And Points 4-42

LIST OF FIGURES

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35

4.36

Example: Polygons 0 i i i ittt e e e 4-43
Example: Circles, Ellipses, Arcs,and Sectors 4-44
3DExample e e e e e e e 4-46
Primitive FillExample 00 ittt it ittt i e e 4-47
AREAFill. e e e 4-48
AREABCHFill i i i it s i e e e e 4-49
AREA Pattern Example00ttt ittt inie e e 4-49
AREABCFillExample00ttt ennenen. 4-50
TheStandard Font it 4 - 52
JustificationOptions 4-53
Slanted Text it it ittt ittt ettt 4-55
Text Exampleo i i i i s e e e e e e e 4-55
ASCII Command Mode Vector Parameter Format 4-56
Hex Command Mode Vector Parameter Format e e e e e 4 - 57
Vector Parameter Direction Codes0 vvunn... 4 - 57
TDEFINExample ittt ittt ittt e teeeenn, 4 -59
Command List Example00 uiiiuunen.. 4-60
Raster Scan " e e e e et e e e et e e 4 - 66
RASTOPExample v v vttt ittt e it e et ettt et eee e 4 - 66
GraphicsInput Example ittt ittt 4-71

- ii

List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

4.6

Drawing Command Summary o« v v v v v v v oo et b e e e 3-5
List Of Lookup Table ValueSets 4-37
2-Bit/3-Bit Correspondence v« v ot vttt et 4-38
Character Attribute Use Restrictions 4-54
Logic Operations v v v v o vt v vt ottt e oo v o e s s 4-65
Scan Directions ¢ v v v i ittt i e e e e e e e e e 4-65
Summary of Error Codes and Messages« v vt v v o v v v v 4-68

Chapter 1

Introduction

SECTION 1.._1 Introduction

INTRODUCTION

1.1 Introduction

The QG-640 is a high-level, 640x 4808 resolution graphics card for the Q-bus. This manual
provides all of the information required to install and operate the QG-640.

This rest of this document is divided into the following areas of information:

Chapter Information

Chapter 2 The technical specifications of the QG—-640.

Chapter 3 A functional description of the capabilities of the QG—-640.
Chapter 4 Explains how to program the QG-640.

Chapter 5 Command descriptions for the software of the QG—640.
Appendix A A brief installation and verification procedure.

Appendix B The as-shipped strap location drawings.

Appendix C Circuit board layout diagrams.

Appendix D Lookup table data.

Appendix E A command list sample.

Appendix F Default parameter values of the QG-640.

Appendix G Sample programs to read the status register of the QG-640.
Appendix H Maintenance and warranty information.

Appendix I A summary of the software commands for the QG-640.

We believe this manual contains all the information needed to get your QG640 operational;
however, if you do have problems feel free to call or write our Customer Support department
at the telephone number or address shown on the cover of this manua . They will be happy to
answer any questions you may have.

Chapter 2

Specifications

SECTION 2.1 Technical Specifications

SPECIFICATIONS

2.1

Technical Specifications

Ordering Information :

~ QG-640 (640x480x8 Q-bus Graphics Controller).
— PG-OCABLE-4 (4-foot video cable).

Bus:
— Q-bus plug-in.
Resolution :

— 640x480 pixelsx8 bits at 60Hz non-interlaced.
— 256 colors from a palette of 262,144.

Performance :

— 35,000 vectors/second.

— 5,000 characters/second.

- 1,200,000 pixels/second raster operations.
Video Timing :

— Refresh Rate : 50 Hz or 60 Hz, interlaced or non-interlaced

— Video Frequency : 25 MHz.

— Horizontal Scan Frequency : 30.63 kHz 640x480 screen resolution.
— Vertical Frame Rate : 60.07 Hz.

Memory Map :

— Strappable to any 16-word block in the 8K I/O page (only odd bytes used).
— The interrupt level is strappable to any of the four Q-bus levels.

— The interrupt vector can be strapped anywhere from 0 to 777 octal.
Interrupts :

— Interrupt level can be strapped to any one of four Q-bus levels.

TECHNICAL SPECIFICATIONS

e Connectors :

— Two independent 10-pin AMP output conner tors:
+5V via 1K puii-up resistor
No connection.

Red video.

GND (Red).

Green video.

GND.

Blue video.

GND (Blue).

Composite sync.

GND (Sync).

— Q-bus connector.

© 0N TR N

oy
L

e Self Test :

~ ROM-based self test to on-board LEDs at power-on and available on command.

Power Requirements :
— +5 VDC 4 A (typical).
e Dimensions :

— Standard dual height Q-bus card.
— 160 mm width.
— 233.68 mm height.

Environment :

— 0° C to 55° C operating temperature.
— 0% to 95% humidity - noncondensing.

— 7,000 feet maximum altitude.

Storage :

- -40° C to 60° C.
— 5% to 100% humidity - noncondensing.

Chapter 3

Functional Description

SECTION 3.1
3.2
3.3
3.4
3.5
3.6

Functional Description

Hardware

Coordinate Space and Transforms
Graphics Attributes and Primitives
Text

Direct Screen Operations

FUNCTIONAL DESCRIPTION

3.1 Functional Description

The Matrox QG-640 is a low-cost, high-performance, single-board color graphics processor. It
is an excellent display controller for such applications as instrumentation, simulators, process
control setups, and medical systems.

The QG-640 has 640x480 display resolution, eight bits per pixel, a 256 of 262,144-color lookup
table, and a 60 Hz non-interlaced video refresh rate. The QG—640 has two pipelined processors
executing 128 KBytes of ROM based firmware. The high level command set by freeing the
Host CPU from managing the display bit map provides a simple interface to any Q-bus
graphic application. All drawing functions are handled by the on-board pipelined CPU and
Hitachi HD63484 ACRTC drawing processor, resulting in very high system drawing speeds.

3.2 Hardware

The QG-640 uses a microprocessor with a 32-bit internal architecture and a 16-bit bus. This
processor acts as the command processor and provides the intelligence to process high level
commands into instructions for the graphics processor. The on-board CPU also has the
processing power to provide virtual coordinate addressing and matrix transforms. This allows
you to choose the coordinate space to be in two dimensions (2D) or three dimensions (3D),
with the QG-640 performing the necessary 3D to 2D transforms. The command processor uses
a 512-byte FIFO queue for commands from the system CPU. The interface for the Q-bus is
discussed in greater detail in Section 4.3. There are 128 KBytes of ROM that provide software
to parse commands and to generate instructions for the graphics processor. In addition, there
are 128 KBytes of internal RAM for command lists, user fonts, and internal variables. The
graphics processor draws primitive graphics forms directly into the video display buffer.

The video display buffer provides output data which is passed through two independent lookup
tables (LUT), one for each of two output channels. You can load either LUT with any 256
colors from a palette of 262,144, permitting changes to any color on the display without
altering the video display buffer.

». COORDINATE SPACE AND TRANSFORMS

F — — — — e e

|

|

| cru | o VIDEO n;n;

! - CRTC — 040x480x

| 16/32 blt("_ —) , n
' (]

] T '
L-_-O ------ -

| CPU BUS ﬂ 11

| |

I RAM | ROM 3-p |

128K | 128K ACCELERATOR

' (options)) '

I - 1 |

l : DAF‘:FAOIN DA':'AF:UT lr o S'LAETUS COMMAND l

! . : aQ REG

. : I] !

L _ - - — = — - _- —

[Q-BUS]

Figure 3.1: QG-640 Block Diagram

3.3 Coordinate Space and Transforms

The QG—640 has firmware in ROM to enable it to draw in either the 2D or 3D virtual work
spaces, or directly to the 2D screen. In both work spaces, the axes have 32-bit values. You can
define both the window and the viewport. The window is the section of the virtual work space
that you wish to be mapped to the viewport. The viewport is the physical area of the screen
that can be modified. While you can always modify the entire virtual work space, only the
viewport pixels that correspond to points in the window are affected by graphics commands.
The results of drawing commands on areas inside the virtual work space, but outside of the
window, will not appear on the screen or be saved — images that pass through the window
will be clipped as they are mapped to the viewport.

When drawing in 2D, you are provided with a set of 2D graphics commands. These commands
draw the graphics primitives: points, lines, arcs, circles, rectangles, ellipses, and polygons. You
can set masks so that dashed lines and patterns are produced in filled figures. The virtual
points are mapped to the real display coordinates (pixel locations) by the QG-640 (see Figure
3.2). You also have the option of drawing in the frame buffer using direct screen operations.
For a more detailed discussion of 2D drawing, see Chapter 4.

FUNCTIONAL DESCRIPTION

VIRTUAL SPACE SCREEN SPACE

(32767.99999, 32767.99999)

(640 x 480)

TRANSFORMATION

=

(0,0)

(0,0)

(-32768.00000, -32768.00000)
Figure 3.2: 2D Virtual Space to Pixel Mapping

In 3D, you have access to the virtual coordinate system as well as full control over viewing
angles and distances. The QG-640 uses a modelling matrix to rotate, scale, and translate the
virtual coordinates of the 3D object. A viewer reference point matrix is used to translate a
point to the center of the currently defined viewport. This viewing matrix affects the angle of
rotation by moving the eye about the object, leaving the object stationary (see Chapter 4).
You can also set the angle and distance in the 3D to 2D transform.

3.4 Graphics Attributes and Primitives

The QG-640 presents you with a drawing model consisting of a pen and ink. The pen has two
positions, the 2D and 3D current points. The ink has 256 colors, those stored in the output
lookup table. Drawing operations use the current color. The current points can be moved to
any location in their respective coordinate spaces with a single command and the current color
can be selected from any of the LUT colors, also with a single command. Primitives are drawn
from the appropriate current point in the current color — some relocate the current point,
others do not (see Table 3.1). When drawing an image in the display buffer, the color indices
used depend on several graphics attributes. These attributes are described in Section 4.5.

The graphics commands provide the ability to draw simple geometric figures with single
commands. These figures can be drawn with patterned lines, and filled in the case of closed
figures. The Area Pattern and Line Pattern masks determine how the figure is drawn. The
QG-640 also has the ability to mask off any of the eight display buffer bit planes from read
and write operations. This allows you to load different images into the buffer and to perform
image overlays.

TEXT

2D Command

3D Command

Effect

Current Point Moved?

ADO
P 1A V)

CIRCLE
DRAW
DRAWR
ELIPSE
MOVE
MOVER
POINT
POLY
POLYR
RECT
RECTR
SECTOR

DRAW3
DRAWRS3

MOVE3
MOVER3
POINT3
POLY3
POLYR3

Draws arc

Draws circle

Draws line

Draws line

Draws ellipse
Moves current point
Moves current point
Colors current point
Draws polygon
Draws polygon
Draws rectangle
Draws rectangle
Draws pie slice

No
No
Yes
Yes
No
Yes
Yes
No

Table 3.1: Drawing Command Summary

The 2D command set provides instructions to draw arcs, circles, ellipses, lines, points,
polygons, and rectangles. In 3D, you can draw lines, points, and polygons.

3.5 Text

Text is specified in 2D space. There are two predefined fonts and two user-defined fonts. The
first predefined font is drawn as thin stroke, vector based characters; the second as fat, smooth
characters that are constructed with lines whose thickness is proportional to the character size.
You can set the size, angle of rotation, and aspect ratio of the characters. The size and
justification about the current point can also be set.

3.6 Direct Screen Operations

One of the major features of the QG—640 is the ability to perform block moves of pixel data.
You can copy a block from one part of the display buffer to another. Using a single command,
you define the block to be transferred, its destination, and the major and minor directions in
which it is to be read or written. Using different transfer directions when reading and writing
blocks, you have the ability to perform inversions and rotations. The inversion of a block of
pixels is illustrated in Figure 3.3.

FUNCTIONAL DESCRIPTION

READ WRITE
major dir => major dir <=
minor dir | minor dir |

Figure 3.3: Raster Transfer of Pixels

Images can also be transferred to and from the Q-bus. Pixel values can be sent through the
system, allowing quick reading and writing of images. This makes the QG—640 a useful tool for
displaying images.

There are 14 direct screen operations supported by the QG—640. These commands are
specified directly in screen coordinates and allow you to plot pixels directly onto the display,
bypassing the modelling mechanism. This results in faster drawing speeds.

Chapter 4

Programming the QG-640

SECTION 4.1 Introduction
4.2 Command Format
4.3 Communications
4.4 Transforms
4.5 Graphic Attributes
4.6 Primitives
4.7 Fills
48 Text
4.9 Command Lists
4.10 Direct Screen Operations
4.11 Read Back Commands
4.12 Error Handling
4.13 Graphics Input Support

PROGRAMMING THE QG-640

4.1 Introduction

This chapter explains how to program the QG-640. Related commands are assembled into
groups and explanations are given as to how the commands in a group are used together to
perform various tasks. Although the formats of many commands are given, this chapter is not
intended as a command reference — Chapter 5, which contains the command descriptions
arranged in alphabetical order, is better suited for that purpose. Rather, this chapter is
intended as an overview of the QG-640 geared toward the programmer.

A programmer operates the QG-640 by sending it commands. The format of the commands
depends on which of two command modes you are using: ASCII or Hex.

In ASCII mode, the commands are issued as ASCII strings that form keywords, ASCII decimal
value parameters, and ASCII character parameters. The string ‘CLEARS,23’, for example,
instructs the QG-640 to clear the screen to color index 23. Command names in this mode have
a short form which can be used for brevity. For example, ‘CLEARS_,23’ can also be sent as
‘CLS23’. ASCII mode provides ease of operation since the keywords are mnemonic in nature
and the parameters are decimal values. Commands in this mode do, however, take more space
than commands in Hex mode.

Hex mode allows commands to be sent and stored in a more compressed format. Binary
opcodes are used instead of keywords and binary values instead of ASCII values for
parameters. For example, the Hex mode equivalent to ‘CLEARS,23’ is ‘OF 17’. Hex mode
commands lack the mnemonic character of ASCII mode commands, but they can be stored in
less space and sent to the QG-640 in less time than ASCII mode commands. See Section 4.2
for a more detailed explanation of the two command modes.

In this chapter, commands are described and examples are given in ASCII mode format only.
Chapter 5 provides descriptions of each command in both formats.

+32767.99999
479
2D y SCREEN 500,400
COORDINATE SPace ‘
SPACE
10000.10000 VIEWPORT]
200,
-32768.00000 X o bt
0 639
WINDOW
-10000.-10000) +32767.99999
-32768.00000

Figure 4.1: The 2D Drawing Environment

INTRODUCTION

To draw in 2D, a window and a viewport are defined to map all or part of the 2D virtual
coordinate space to the screen. Graphics attributes such as color, line style, and drawing mode
are selected and graphics primitives, text commands, and fill commands are used to draw the
image. The following string example defines the window and viewport shown in Figure 4.1 and
draws a line in them. The operations specified by this code will become clear as you read this
chapter. The , characters represent any one of several delimiters.

The valid delimiters are listed in Section 4.2, which explains the conventions used to describe
commands in this manual.

CLEARS0
WINDOW_-10000,,10000,_-10000,,10000,
VWPORT,200,,500,,100,,400,,

MOVE, 0.0,

DRAW,;20000,,20000,,

The remainder of this chapter is organized as follows:

Section 4.3 is an overview of the QG-640 bus interface.

Section 4.4 discusses coordinate spaces, windows, and viewports.

Section 4.5 explains graphics attributes.

Section 4.6 discusses graphics primitives.

Section 4.7 covers the text commands.

Section 4.8 explains fills.

3D drawing is a little more involved than 2D drawing. You draw in a 3D coordinate space that
is mapped to the same window and viewport used by the 2D coordinate space. A number of
transforms can be specified to determine how the drawing is mapped to the viewport. These
transforms define the following aspects of the image:

e The scaling, rotation, and translation (position) of the image in the 3D coordinate space.
e The position and direction of view of the viewer with respect to the 3D coordinate space.
e The hither and yon (front and back) clipping planes.

e The distance of the viewer from the viewing plane and the angle of view.

PROGRAMMING THE QG-640

3D ly 2D ly SCREEN
COORDINATE ' COORDINATE : coogAmCNEATE
SPACE SPACE ' S
\\ :
\J))

AN |

N :

| \z |

2D TRANSFORMS

:
1
l 3D TRANSFORMS

Figure 4.2: The 3D Drawing Environment

The 3D transforms and coordinate space are described in Section 4.4.

Drawings can be stored in the QG-640 as command lists. A command list can be run (drawn)
as required. For example, if a diagram is in a command list and is to be drawn on another part
of the screen, you can set a new transform, clear the screen, and run the command list.
Command lists are explained in Section 4.9.

Certain operations can be performed directly on the screen, bypassing the coordinate spaces
and transforms. Raster operations copy from one part of the screen to another, and between
the screen and system memory. These operations are described in Section 4.10.

4.1.1 512x512 Mode

The QG-640 can be strapped to an alternate display mode: 512x 512 pixels. In this manual,
rather than express all screen coordinates as two possible ranges (640x480 and 512x512), only
the 640x 480 range will be used. When in 512x512 mode, the command parameters relating to
the screen size will have limits of [0...511, 0...511] instead of [0...639, 0...479]. Some of the
default flag settings are also affected (refer to the Appendices). The following commands are
affected:

IMAGER IMAGEW PDRAW RASTOP
RASTRD RASTWR SARC SCIRC
SDRAW SDRAWR SELIPS SMOVE
SMOVER SPOLY SPOLYR SRECT
SRECTR SSECT VWPORT XMOVE

COMMAND FORMAT

4.2 Command Format

Throughout this chapter and Chapter 5, the following conventions are used to describe the
QG-640 commands:

e Parameter names are printed in lowercase block characters.

e Hexadecimal values are printed in typewriter style characters.

e Command keywords are printed in uppercase roman characters.

e The (character is used to indicate the position of a delimiter.

4.2.2 ASCII Command Format

When the QG-640 is in ASCII Command Mode (the default mode), commands are sent to the
QG—640 as either uppercase or lowercase ASCII character strings. A command string consists
of a keyword identifying the command, parameters (where required), and delimiter characters.

The keywords for most commands have a long form and a short form. For example, the long
form of the draw command is DRAW and the short form is D. Parameters are either ASCII
decimal numbers or text strings enclosed by quotes. Delimiters can be:

e A space character

e The tab character

e A comma

e A semicolon

e A carriage return

e A line feed

o A hyphen acts as a delimiter when it identifies negative values.

o A plus sign acts as a delimiter when it identifies positive values.

PROGRAMMING THE QG-640

To draw a line from the current pen position to the xy coordinate {100,200}, the following
ASCII string can be used:

DRAW_100,,200,,

where | is any of the delimiters described previously.

The ASCII Command Mode, with its mnemonic commands, is particularly suited for use in a
user-interactive mode. The CA_, command is used to set the QG—640 to ASCII Command
Mode.

4.2.3 Hex Mode

When the QG—640 is in Hex Mode, commands are sent as binary byte values. A command
consists of a single byte opcode followed by binary parameter values. In this manual, these
values are given as hexadecimal numbers.

For example, to draw a line from the current pen position to the xy coordinate {100,200}, the
following command can be used:

28 64 00 00 00 C8 00 00 00

L—zoolo

10049
opcode

4.2.4 Parameter Types

The QG640 uses three numerical types: Chars, Ints, and Reals. The way these are sent is
dependent on the current command mode.

In ASCII Mode, the Char parameter type is an ASCII character code. In Hex Mode, it is a
single byte value in the range 0 to 255.

An Int in ASCII Mode is an ASCII decimal value from -32767 to +32767 inclusive. An
unsigned Int is an ASCII positive decimal value from 0 to 65535. A hyphen immediately
preceding an ASCII Int indicates a negative value. In Hex Mode, an Int is a two-byte binary
value with the low byte first. Hex Mode negative Ints use two’s complement form.

COMMAND FORMAT

A Real has two parts: a fractional part and a non-fractional part. In ASCII Command Mode,
a Real is an ASCII decimal real number from -32768.00000 to +32767.99999 (the decimal is
optional when the fractional part is 0). In Hex Command Mode, a real number is represented
by four bytes using the following format:

X X)T(
l high byte of fractional part

low byte of fractional part
high byte of non-fractional part
low byte of non-fractional part

where the value of the bytes is determined by multiplying the decimal real number by 65536
and converting the result to hexadecimal form. For example, 3.142 becomes:

3.142;¢ X 6553619 = 205914;¢ = 0003245A ¢

The non-fractional part is equal to 0003 and the fractional part 245A. The real is sent as 03 00
5A 24,

This method is also valid for calculating negative real numbers — the positive hex number is
calculated and then 2s complemented. In this way, -3.142 is calculated to be FC FF A6 DB.

PROGRAMMING THE QG-640

4.3 Communications

This section gives you an overview of the QG-640 bus interface. It also provides information
for writing software drivers for the board.

The QG-640 accepts commands and graphics data from the Host CPU via the Q-bus. The
QG-640 is also capable of returning output reports and frame buffer dumps via the Q-bus to
the Host CPU.

Communications between the system and the QG-640 can be summarized into six categories:

Categories Direction Locations Used

Control Host => QG—640 | Command Register

Graphics Commands | Host = QG-640 | Data In FIFO

Error Reports QG-640 => Host | Data Out Register and Status Register
Data Output QG-640 = Host | Data Out Register and Status Register
Board Status QG-640 = Host | Status Register

Interrupts QG-640 => Host | See Subsection 4.3.2

Refer to Figure 4.3 for a diagram depicting the QG—-640’s communications scheme.

4.3.1 Bus Interface

The QG—640 provides you with four programmable registers. They are:

o Status

e Data In FIFO
e Data Out

e Command

All registers can be accessed on a byte or word basis. (See Appendix A for details on the
addresses of these ports.)

COMMUNICATIONS

-

1 4 1
I | DATA IN DATA OUT| ! STATUS CONTROL l

| FIFO REG. rTTa REG. REG.

H |
I L—-—:’I--————+-——l :Maskable l | ‘

| ‘ : Interrupt |

L i x _J
[Q-BUS]

Figure 4.3: QG640 Communications Scheme

PROGRAMMING THE QG-640

4.3.1.1 The Status Register

The Status Register is an eight-bit, read-only register containing board error information, and
information on the current state of the Data In FIFO.

I— Data In FIFO Empty
'—————— Data In FIFO Full
Data In FIFO Half Empty (Active Low)

Data Out Register Full
Error Flag (Active Low)

Reserved
Reserved
Reserved
Bit 0: Data In FIFO Empty. A 1 in this bit specifies the FIFO is empty. A 0 in
this bit specifies otherwise.
Bit 1: Data In FIFO Full. A 1 in this bit denotes the FIFO is full (512 bytes). A
0 in this bit denotes otherwise.
Bit 2: Data In FIFO Half Empty. A 0 in this bit specifies the FIFO is half empty
(256 bytes). A 1 in this bit specifies otherwise.
Bit 3: Data Out Register Full. A 1 in this bit specifies the Data Out Register is
full. A 0 in this bit states otherwise.
Bit 4: Error Flag. The Error Flag describes the contents of the Data Out Register.

A 0 in this bit denotes an error code. A 1 in this bit denotes data.

Bits 5 - 7: Reserved for future use.

A sample program to read the QG-640’s Status Register is provided in the Appendices.

COMMUNICATIONS

4.3.1.2 The Data In FIFO

The Data In FIFO is an eight-bit, write-only port to the QG—640’s internal FIFO, and is used
to pass commands and data to the QG-640. The on-board microprocessor reads the
commands and parameters, and performs the necessary QG—-640 graphics operations.

The input section of the bus interface consists of a 512-byte FIFO, and 3 bits of status
information in the Status Register. The FIFO is implemented in hardware, and if its protocol
is obeyed, is capable of operating as fast as the system bus. Obeying the FIFO protocol
implies never writing to a full FIFO.

A CPU on the QG-640 is provided to empty the FIFO. This CPU can be busy when the Host
CPU accesses the FIFO. The time taken by the QG-640 to read any number of bytes from the
FIFO is determined by the commands contained in those bytes.

Bit 0 of the Status Register is the FIFO Empty Status bit, and is set to 1 whenever the FIFO
is totally empty. This bit is reset to 0 when the Host CPU writes a byte to the FIFO, and set
to 1 when the QG-640 reads the last byte from the FIFO.

Bit 1 of the Status Register is the FIFO Full Status bit, and is set to 1 whenever the FIFO is
totally full (512 bytes). This bit is set after the Host CPU writes the filling byte to the FIFO,
and reset to 0 when the QG—640 reads a byte from the FIFO, leaving room for at least one
byte. Note that when the FIFO is full and additional data is written to the QG-640, the FIFO
remains unchanged and the new data is discarded.

Bit 2 of the Status Register is the FIFO Half Empty Status bit, and is reset to 0 whenever
there are at least 256 empty spaces in the FIFO. This bit is set to 1 when there are more
than 256 bytes of the FIFO currently holding data not yet read by the QG—640. Thus, when
the FIFO is empty (bit O of the Status Register set to 1), the FIFO is also half empty (bit 2 of
the Status Register reset to 0) since there are at least 256 free bytes in the FIFO (in fact,
there are 512 free bytes at this point).

The following pages provide an example of how to send commands to the QG-640.

PROGRAMMING THE QG-640

1. Suppose the QG—640 has just been reset and the FIFO is now empty:

I Data In FIFO Empty
Data In FIFO Full

Data In FIFO Half Empty
Data Out Register Full
Error Flag

Reserved

Reserved

Reserved

2. The Host now sends 254 bytes of commands to the FIFO. The FIFO is neither empty nor
full, since only 254 bytes have been sent; however, the FIFO is half empty, since there is
room for at least 256 more bytes of data.

7 6 5 4 3 2 1 0
(xix|x[x[x]o]oTo]

‘ Data In FIFO Empty
Data In FIFO Full

Data In FIFO Half Empty
Data Out Register Full
Error Flag

Reserved

Reserved

Reserved

COMMUNICATIONS

3. The Host sends another three bytes of data to the FIFO. The FIFO is still neither empty
nor full, but there is now room for only 255 more bytes, since 257 have been sent; the
FIFO is no longer at least half empty.

Data In FIFO Empty
Data In FIFO Full

Data In FIFO Half Empty
Data Out Register Full
Error Flag

Reserved

Reserved

Reserved

4. At this point, the Host by reading the Status Register knows there are less than 256 free
bytes in the FIFO, since the FIFO is more than half (but not yet completely) full. Here is
where the danger of overrunning the FIFO becomes critical, especially in a context where
the transferring process may not know the previous number of bytes transferred, or where
more than one process is accessing the QG—640. The only safe way to continue is to check
the FIFO Full bit (bit 1 of the Status Register) before each byte is sent. If the Host does
this for another 255 bytes, it will stop when the FIFO is full.

Data In FIFO Empty
Data In FIFO Full

Data In FIFO Half Empty
Data Out Register Full
Error Flag

Reserved

Reserved

Reserved

PROGRAMMING THE QG-640

5. Now the Host must wait for the QG 640 to catch up. The Host continues to poll the
Status Register. After the QG-640 reads one byte from the FIFO, the FIFO is no longer
full and the status becomes:

’ Data In FIFO Empty
Data In FIFO Full

Data In FIFO Half Empty
Data Out Register Full
Error Flag

Reserved

Reserved

Reserved

6. As the QG640 continues to read, it reads enough data to leave at least 256 free bytes in
the FIFO, and it becomes half empty:

7 [5 4 3 2 1
(X I X[X[xTxTJTolo]o]

I I— Data In FIFO Empty
Data In FIFO Full

Data In FIFO Half Empty
Data Out Register Full
Error Flag

Reserved

Reserved

Reserved

Olo

COMMUNICATIONS

7. Finally, the QG~640 continues its reading of the FIFO until the FIFO is completely empty:

l Data In FIFO Empty
Data In FIFO Full

Data In FIFO Half Empty
Data Out Register Full
Error Flag

Reserved

Reserved

Reserved

Note that the previous example has been simplified to separate the roles of the Host and the
QG—-640. In reality, the QG—640 could remove bytes from the FIFO as fast as the Host could
send them, or the QG—640 could run a previously stored command list from its on-board RAM
and not read the FIFO until the command list is processed.

To avoid the above conditions from occurring, an alternate procedure is suggested to send data
to the QG—640. This procedure sends data by polling the FIFO Half Empty flag bit of the
Status Register. For example, to transfer a buffer of “buffer length” bytes to the QG-640, do
the following:

1. Initialize the Host Buffer Pointer (HBP) to “start of user buffer”, and initialize Bytes
Remaining (BR) to “buffer length — 1”.

2. Check the Status Register. If the FIFO is not half empty (bit 2 set to 1), repeat Step 2;
else, proceed to Step 3.

3. If BR — 256 > 0, transfer 256 bytes (1/2 FIFO) to the QG—640; else, transfer BR bytes.
4. Calculate the following:

e HBP = HBP + 256
e BR = BR — 256

5. If BR > 0, repeat Step 2; else, proceed to Step 1.

The above procedure eliminates polling the FIFO Full flag of the Status Register before each
byte is transferred; however, you must wait for the FIFO Half Empty flag to be set.

PROGRAMMING THE QG-640

4.3.1.3 The Data Out Register

The Data Out Register is an eight-bit, read-only register used to receive data from the
QG-640. Image data, flag read data, command list read data, and error messages can be read
from this register. The Host differentiates between error information and other data by
checking bit 4 of the Status Register.

The Data Out Register is only one byte deep. When it is full, the Data Out Register Full bit of
the Status Register is set to 1. If the Data Out Register holds requested output data, the Data
Out Register Full bit and the Error Flag bit (bits 3 and 4 of the Status Register) are set to 1.

If the Data Out Register contains error information, the Data Out Register Full bit is set to 1
and the Error Flag bit is set to 0.

If the Data Out Register is empty, the Error Flag bit value is undefined (bit 4 of the Status
Register may be 0 or 1). Thus, the Data Out Register Full bit must be checked before the
Error Flag bit, and qualifying output becomes the second step of the reading process, to be
performed only after determining that a byte of output data is ready in the Data Out Register.

Error messages are the result of parameter and range checking on the QG-640, and “run-time”
errors occurring during the processing of a stored command list.

By default, the QG640 runs with error message reporting disabled so that only solicited
output data, such as image data and command list data, appear in the Data Out Register.
Error messages are one byte long.

Output data reports (Error Flag bit set to 1) are the result of a command that reads back the
status (for example, FLAGRD, LUTXRD), or a command that reads back screen pixel data
(for example, RASTRD, IMAGER).

In Hex communications mode, the total number of bytes returned by any QG—640 command is
given in the command description, with the exception of the IMAGER (Image Read)
command which returns pixel data in a run-length encoded format.

In ASCII communications mode, the total number of bytes returned by a command is
unknown since a 1-byte hex value may be returned as 1, 2, or 3 ASCII bytes (that is, O to 255).
Note that when more than one value is returned, each value is separated by a comma (,) and
the last value is terminated with a carriage return (CR, 0D hex). For example, hex values FF
00 FF will be returned as ASCII values: 255, 0, 255 (CR).

Note that on cold reset, the Data Out Register contains one byte of data for system
initialization. Consequently, it is essential to read the Data Out Register following a cold reset
to clear the Data Out Register Full bit (reset bit 3 of the Status Register to 0).

COMMUNICATIONS

4.3.1.4 The Command Register

The Command Register directs the QG—640’s interrupt strategy, and can reset (warm or cold)
the board. An interrupt is enabled when the corresponding mask bit is set to 1. The
Command Register is shown below:

‘ FIFO Empty Interrupt Mask
FIFO Full Interrupt Mask

FIFO Half Empty Interrupt Mask
Data Out Register Full Interrupt Mask
Warm Reset

Reserved

Reserved

Cold Reset

Bit 0: FIFO Empty Interrupt Mask. Write a 1 to this bit to enable the FIFO
Empty Interrupt. Write a 0 to this bit to disable the FIFO Empty Interrupt.

Bit 1: FIFO Full Interrupt Mask. Write a 1 to this bit to enable the FIFO Full
Interrupt and a 0 to disable the interrupt.

Bit 2: FIFO Half Empty Interrupt Mask. Write a 1 to this bit to enable the FIFO
Half Empty Interrupt. Write a 0 to this bit to disable the FIFO Half Empty
Interrupt.

Bit 3: Data Out Register Full Interrupt Mask. Write a 1 to this bit to enable the
Data Out Register Full Interrupt and a 0 to disable it.

Bit 4: Warm Reset. Write a 1 to this bit to terminate the execution or definition of
a command list without affecting any of the board’s parameters or board’s
memory. Write a 0 to this bit to disable the warm reset operation. (Wait
a few microseconds before reverting the bit to 0.)

Note: The warm reset function empties the QG-640’s input FIFO. The
host must wait for the FIFO to empty before it sends any new commands
to the QG-640’s input FIFO. The host polls bit 0 of the Status Register to
learn if the FIFO is empty.

Bits 5 - 6: Reserved for future use.

>
I

-

-3

PROGRAMMING THE QG-640

Bit 7:

Cold Reset.

1. Write hexadecimal value 80 (0x80) to the command register.

2. Wait a minimum of 100 microseconds before attempting to access the
board again.

3. Write a zero to the command register.

4. Wait a minimum of 150 milliseconds before attempting to access the
board again.

5. Poll the status register, waiting until the data out register full bit is
high (set). This indicates that the start-up value is available at the
data out port register.

6. Read the data out port register and verify that the start-up value is
correct. It must be 0x20.

7. Read the status register and verify that the data out port bit is clear.
If it is not clear, return to Step 5.

8. The board is now ready to accept commands.

In addition, after a power up, you must follow Steps 3 through 7 before
sending any data to the QG-640. If this procedure is not followed, the board
may not perform correctly. This procedure resets the hardware and initial-
izes the QG—640 with the default parameter values listed in Appendix F.

COMMUNICATIONS

4.3.2 Interrupts

The QG-640 is capable of generating a maskable interrupt on the Host system bus, under any
or all of the following conditions:

¢ FIFO Empty
e FIFO Full

FIFO Half Empty
Data Out Register Full

Each interrupt is individually enabled by setting its corresponding mask bit in the Command
Register. The QG-640’s interrupt levels, vectors, and positional dependence are strappable as
indicated in Appendix A.

The Host writes a 1 to enable the given interrupt, and a 0 to disable it. After a cold reset or
power up, all mask bits are reset to 0.

Interrupts are generated according to the state of the corresponding bits in the Status
Register. This implies that an interrupt will continue to be generated provided the condition
remains unchanged. For example, if the FIFO Empty Interrupt is enabled, the interrupt is
generated continuously until at least one byte is written to the FIFO. Furthermore, the bits in
the Status Register are not latched. In the case of the FIFO Full Interrupt, this means that
the condition causing the interrupt (FIFO Full) may no longer be the current setting of the
Status Register bits because the QG-640’s on-board CPU may have cleared some bytes from
the FIFO during the Host CPU interrupt sequence.

To complete the interrupt service cycle, the Host must issue a read to the Command Register.
This restores the QG—640 interrupt generator.

A typical interrupt service routine for the QG-640 would follow the sequence below:

1. Read the Status Register to determine the source of the interrupt.
2. Service the request.
3. Set the new interrupt mask.

4. Issue a read to the Command Register to restore the interrupt generator.

The Host must not attempt to set the interrupt mask with an instruction that performs a
read-modify-write cycle on the Command Register, or the interrupt can recur immediately. As
soon as the Command Register is read, the interrupt generator on the QG—640 is restored, and
can generate an interrupt before the Host’s setting of the mask bits has taken effect.

PROGRAMMING THE QG-640

4.3.3 Transfer Under Interrupt Control

The polling method allows you to communicate with single-user/single-task systems, but is not
adequate for multitasking systems. For this reason, you should use the following interrupt
control sequence:

1. Initialize the Host Buffer Pointer (HBP) to the “start of the user buffer”, and Bytes
Remaining (BR) to “buffer length — 1”.

2. Set the FIFO Half Empty Interrupt mask in the Command Register (bit 2 set to 1).

3. Read the Command Register to restore the interrupt generator of the QG-640.

Note: The transfer is performed by the interrupt service routine described below.

4. Wait for the I/O to be marked as complete by the interrupt service routine when the
transfer is finished.

The QG-640 interrupt service routine for the FIFO Half Empty condition comprises the
following steps:

1. Validate the interrupt request; the FIFO Half Empty bit (bit 2) of the Status Register
is reset to 0. If the FIFO is not half empty, this is a spurious interrupt (assuming the
QG-640 has had all of its other interrupts disabled).

2. If BR — 256 > 0, transfer 256 bytes (1/2 FIFO) to the QG—640; else, transfer BR bytes.

3. Perform the following operations:

e HBP = HBP + 256
e BR = BR — 256

4. If BR > 0, enable the FIFO Half Empty interrupt (bit 2 of the Command Register set to
1); else, disable the interrupt mask bits (bits 0 through 3 of the Command Register reset
to 0), and mark the I/O as complete.

5. Read the Command Register to restore the interrupt generator of the QG-640.

TRANSFORMS

4.4 Transforms

The QG640 displays images on a video screen using a physical coordinate space of 640X 480
pixels or 512x 512 pixels (as set by the straps described in Appendix A). This is the maximum
resolution of the displayed image. The user, however, draws the images in one of two virtual
coordinate spaces which have a much higher resolution. Transforms are used to map images in
the virtual coordinate space to real screen coordinate space in such a way that the maximum
resolution is always maintained. For example, a user could use the QG—640 to draw a very
detailed picture of a tree. When the whole tree was displayed, the screen resolution would only
allow larger details such as branches, the trunk, and the form of the tree to be seen. However,
if the picture in the virtual coordinate space was detailed enough, you could redraw the
picture, zooming in on one leaf.

The two virtual coordinate spaces are: the 2D coordinate space with x and y axes and the 3D
coordinate space with x, y, and z axes. The coordinates on each axis run from -32768.00000 to
+32767.99999. Figure 4.4 shows the two virtual coordinate spaces, and illustrates the
relationship between one another and the screen space.

<o TRANSFOR,,
P+ 32767 99909 +3276799999
-32768.00000 30 20
COORDINATE COORDINATE 47
SPACE SPACE
— +32767 99999 +32767.99999 R P
3576800000 © -3276800000 |0 - | SCREEN sPACE
00 639
+32767 99999
-32768.00000 -32768 00000

Figure 4.4: Coordinate Spaces

4.4.1 Two Dimensional Transforms

The 2D work space uses Cartesian coordinates with the origin in the center and coordinates
going from -32768.00000 to +32767.99999 on each axis. The WINDOW and VWPORT
commands are used to map a rectangular section of this coordinate space to the display. The
WINDOW command has the following format:

WINDOWyx; Xauy10y2

where the parameters x; and y; form one coordinate pair, and x; and y; form another. These
coordinate pairs specify the two opposing corners of a rectangular section of the work space.
This section is referred to as a window. Any image drawn in the window will be mapped to

W
|
[
Pt

PROGRAMMING THE QG-640

the current viewport — a rectangular section of the screen space. If you do not specify a
window, the default 640x 480 window centered on the coordinate space origin will be used.

The VWPORT command defines the viewport, and has the following format:
VWPORT X1 xz20y10Y2

where coordinate pairs {x;, y1} and {x;. y;} specify the opposing corners of a rectangular
section. In this case, however, the coordinates must be given in screen coordinates rather than
work space coordinates. As indicated in Figure 4.4, the screen coordinate space has its origin
in the lower left corner, has 640 (0-639) points on the x axis, and 480 (0-479) points on the y
axis. If a viewport is not specified, the viewport will include the entire screen. Note that the
viewport’s maximum x and y coordinates depend on the strapped screen size.

The command string in Section 4.1 that defines the window and viewport in Figure 4.1
illustrates how you can define different windows and viewports.

4.4.2 Three Dimensional Transforms!

You draw 3D pictures in the 3D work space. Their position, size, and viewpoint are
determined by a number of transforms. Modelling transforms determine the scale (size),
rotation, and position (translation) of the picture within the coordinate space. Viewing
transforms determine the viewer’s position and direction of view with respect to the coordinate
space. The clipping function’s hither and yon clipping planes slice off the front and the back of
the picture when used. 3D to 2D transforms project the 3D image onto the 2D coordinate
space. Once the image is in the 2D coordinate space, it is mapped to the screen by the window
to viewport transforms that were described in the previous section.

The 3D transforms allow you to manipulate the graphic object and the viewer’s perspective.
For example, when using a routine to draw a house, if you want to get two houses in different
parts of the 3D coordinate space, you can set up the translation transform for one position and
then run the routine to draw the first house. You would then set up the translation transform
for another position and run the same command list to draw the second house.

Figure 4.5 shows how a house is displayed when the default parameters for the 3D transforms
are used. Refer to the Appendices for the command list that draws this house. In the following
pages, several examples are used to illustrate how different transform settings affect the house.

1For more detailed discussions on graphic transforms refer to Principles of Interactive Computer Graphics by
Newman and Sproull (McGraw-Hill, 1979) or Fundamentals of Interactive Computer Graphics by Foley and van
Dam (Addison-Wesley, 1982).

TRANSFORMS

~—

—

LT
D“DU-IL_J

;)

Figure 4.5: Default House

4.4.2.1 Modelling Transforms

The modelling transforms are the first transforms to affect objects being drawn. There are
three different modelling transforms:

e the translation transform, which moves objects in the coordinate space by offsetting their
coordinates as they are drawn.

o the rotation transform, which rotates the object around each of the three axes.

e the scaling transform, which determines the size of the object.

Each x, y, and z coordinate set in a graphic object’s description is multiplied by the modelling
matrix (M). This modelling matrix can be loaded directly by using the MDMATX command,
or can be modified by any of the five modelling commands: MDROTX, MDROTY, MDROTZ,
MDTRAN, and MDSCAL. When a modelling command is received, the modelling matrix is
multiplied by a temporary matrix set up by the command. The temporary matrices used by
the modelling commands are:

e the three rotation matrices (R;, Ry, R,)

e the translation matrix (T)

e the scaling matrix (S).

Since matrix multiplication is not commutative, the order in which modelling commands are
sent will affect the form of the modelling matrix.

The default modelling matrix is the identity matrix. It can be reset to identity at any time by
issuing the MDIDEN command. The modelling matrix can be read by issuing a MATXRD
command with a parameter of 1.

PROGRAMMING THE QG-640

Rotation and scaling transforms require an origin. This origin is the center of rotation,
expansion, and contraction for graphic objects. The modelling origin is set using the MDORG
command with the following format:

MDORG 0x, 0y, 02

The parameters form an x,y,z coordinate set that specifies the modelling origin with respect to
the graphic object’s original coordinates. For example, the default house is centered on
{0, 50, 0}. The following command will set modelling origin to this point:

MDORG 0,50,0

The MDROTX, MDROTY, and MDROTZ commands are used to rotate graphic objects.
They have the following formats:

MDROTX deg
MDROTY deg
MDROTZ deg

where deg is the angle of rotation to be performed. The sine and cosine of these angles are
calculated and entered into the rotation matrices as shown below:

1 0 0
0 cosf sinb
0 —sind cost
0 0 0

R, =

[l = = ==

cosl 0 —sinb

stnf cosf

OO M

cosf sinf 0O

—s8tnf cosf O
0 0

0 0

- o000

1
0

The right-hand rule for rotation is used. This rule defines the positive x, y, and z directions to
follow the first finger, second finger, and thumb of a right hand when they are held at right
angles to each other (see Figure 4.6). These axes rotate around the modelling origin, as
illustrated in Figure 4.6.

TRANSFORMS

Figure 4.6: Rotation Direction

The default modelling matrix is an identity matrix which will not affect the graphic object.
The MDIDEN command will reset the modelling matrix to identity. In the examples of
modelling transforms, this command is used to reset the matrix so that the effects of one
transform can be isolated from the others.

The following commands reset the modelling transforms, set the modelling origin and the
rotation transforms, and then run command list number 100. When command list 100 is the
house routine, the result will be as shown in Figure 4.7.

MDIDEN,
MDORG,0,50.0y,
MDROTX 45,
MDROTY 45,
MDROTZ 45,
CLRUN_100,,

Figure 4.7: Rotation Example
The MDSCAL command is used to scale graphic objects. It has the following format:

MDSCAL, sx_sysz

PROGRAMMING THE QG-640

where sx, sy, and sz are entries in the scaling matrix with the following form:

sz 0 0 O
10 s 0 O
§= 0 0 s, O
0 0 0 1

This matrix is used to multiply the size of the graphic object along each axis by the
corresponding parameter. For example, if sx is 2 the graphic object is doubled along its x axis.
If sy is .5, the graphic object’s size along the y axis is halved.

The MDTRAN command is used to move a graphic object from its drawing coordinates to a
different position. The command format is as follows:

MDTRAN, utXutYutZ

where the parameters are values to be added to the x,y,z coordinates. These values are entered
into the translation matrix in the following manner:

1 0 0 O
01 0 O
T= 0 010

The following command string makes two half-size copies of the house in different positions as
illustrated in Figure 4.8:

Figure 4.8: Translation Example

TRANSFORMS

CLEARS_ 04

MDIDEN,,
MDSCAL,.5u.5u.5u
MDTRANL50.,40,50u
CLRUN100y,
MDTRAN-150-150-150y,
CLRUNQ100y,

4.4.2.2 Viewing Transforms

The QG-640 uses a viewing transformation to position the center of the viewport with respect
to the viewer. The viewing transformation establishes a viewing reference point, which is
mapped into the center of the viewport. The viewer is positioned somewhere on the surface of
a sphere that has its center at the viewing reference point, as illustrated in Figure 4.9. The
radius of the sphere and the amount of the coordinate space that is mapped to the viewport
are determined by the 3D to 2D transformation, which is described further on. Our examples
up to this point have used the default viewing reference point and viewer position — the viewer
reference point is in the center of the coordinate space and the viewer is looking down the
positive z axis. VIEWING

REFERENCE

COORDINATE
SPACE
VIEWER

ORIGIN

Figure 4.9: Viewing Reference Point

As is the case with the modelling transform, the viewing transform uses a master matrix (the
viewing matrix). You can load the viewing matrix directly with the VWMATX command, or
can alter various aspects of it with the viewing commands (VWRPT, VWROTX, VWROTY,
VWROTZ). The viewing commands function like the modelling commands in that they set up
temporary matrices that are used to multiply the viewing matrix. And like the modelling
commands, the order in which they are used has an effect on the final view. You can read the
current viewing matrix at any time by issuing the MATXRD command with a parameter of 2.

The VWIDEN command is similar to the MDIDEN command, and it is used in the examples
to reset the viewing matrices to isolate the effects of the matrix that is being used.

PROGRAMMING THE QG-640

The VWRPT command specifies the viewing reference point. It has the following format:
VWRPT xuyuz

where x, y. and z specify the point that is to be in the center of the field of view (the center of
the viewport).

The VWROTX, VWROTY, and VWROTZ commands determine the position of the viewer
on the viewing sphere. The command formats are as follows: '

VWROTX deg
VWROTY, deg
VWROTZ, deg

where deg is the angle that the viewer is to be moved around the corresponding axis using the
directions indicated in Figure 4.6. Note that the axes used by these commands are parallel to
the coordinate system axes, but that their origin is at the viewing reference point. The
QG-640 takes the sine and cosine of the angle and enters them into the viewing rotation
matrices in the following format:

1 0 00

0 cosl —sinf O

VWE, = 0 sinf cosd O
0 0 01

cosf 0 sinf O

01 00

VWER, = —stnf 0 cosf@ O
00 01

cos —sinf 0 O

vwa, | s 0 0
0 0 01

The following list of commands clears the display, resets modelling and viewing transforms,
sets the viewing reference point to 0,0,0 (the default value), and moves the viewer’s position
90° around the Y axis so that the X axis is viewed from above. Command list number 100 is
then run in order to draw a house. Figure 4.10 shows the result.

TRANSFORMS

B

||

o UH

Figure 4.10: Viewing Transform Example

CLEARS_ 0,
MDIDEN,,
VWIDEN,
VWRPTL0,50.0y
VWROTY_ 90,
CLRUN_100y,

4.4.2.83 Hither and Yon Clipping

The WINDOW command, which was previously discussed, clips the sides of the drawing.
There are commands to clip in front of a given plane and behind a given plane as well. These
operations are referred to as hither and yon clipping respectively. To use hither or yon
clipping, the clipping planes must be specified and the clipping enable flags must be set. The
clipping planes are set with the following commands:

DISTH_ dist
DISTY, dist

where dist in the DISTH command is the distance from the viewing reference point to the
hither (foreground) clipping plane, and dist in the DISTY command is the distance from the
viewing reference point to the yon (background) clipping plane. Negative values are closer to
the viewer than positive values.

The commands that enable or disable clipping have the following format:

CLIPH, flag
CLIPY flag

where flag is 1 (enables clipping) or 0 (disables clipping). CLIPH controls hither clipping and
CLIPY controls yon clipping.

PROGRAMMING THE QG-640

The following commands clear the screen, set the clipping planes and flags, and then run
command list 100. The result is a house with the front and back clipped off (shown in Figure

4.11).

CLEARS_ 0y
VWRPT,0,0.0,
VWIDEN,
DISTH-90,
DISTY_ 90,
CLIPH,1,
CLIPY 1,
CLRUN_100y

AN /
I

Figure 4.11: Clipping Example

Clipping should be disabled when it is not required; the extra calculations required when
clipping is enabled decrease performance.

4.4.2.4 Three Dimensional to Two Dimensional Projection

In addition to the VWROT commands and the hither and yon clipping parameters, there are
three other factors that affect the appearance of a 3D object on the screen:

¢ the distance of the viewer from the object

o the projection angle

e the current window position
The QG-640 projects the area around the viewing reference point onto the 2D coordinate
space. The size of this area depends on two parameters: the viewing angle and the viewing
distance as illustrated in Figure 4.12. The viewing angle specifies the number of degrees on the

horizontal axis and the vertical axis of the viewer’s field of view (default is 60°), centered on
the viewing reference point, and the viewing distance is the distance that you are from the

TRANSFORMS

VIEWED
ARE A

VIEWING g
REFERENCE
o POINT

B viewer

Figure 4.12: Viewing Angle and Viewing Distance

viewing reference point (default is 500). Using a camera as an analogue, the viewing angle
would be determined by the type of lens (wide angle, narrow angle, etc.) and the viewing
distance would be determined by the distance of the camera from the subject. If the viewing
angle is larger, more of the 3D coordinate space is projected into the window. Likewise, if the
viewer moves farther away from the viewing reference point, more of the 3D coordinate space
is projected into the window.

The DISTAN command is used to specify the viewing distance. Its format is as follows:
DISTAN,dist

where dist is the distance (specified in 3D coordinate point units) of the viewer from the
viewing reference point.

The PROJCT command is used to set the viewing angle and the type of perspective that is to
be used for the projection. Its format is as follows:

PROJCT_angle

where angle is the number of degrees (horizontal and vertical) in a field of view with the
viewing reference point at its center. An angle of 0°is a special case. It specifies an
orthographic parallel (non-oblique) projection. When this type of projection is used, the
viewing distance has no effect on the size of the picture.

The QG-640 uses the following formulas to convert 3D coordinates to 2D coordinates:

PROGRAMMING THE QG-640

windowdiagonal
2 x tanﬁzﬂ-E

windowdiagonal
2 x tanﬂz’£

The QG-640 does not automatically map the view into the current window; however, the
transfomations used do guarantee that the viewing reference point is mapped to the origin of
the 2D virtual space. So if your window includes the 0,0 coordinate, you will see your viewing
reference point on the screen, and you can adjust the window position as required to see any
part of the object that is not in the window.

Window size, however, does not affect any of the projections except the 2D and 3D
orthographic cases. That is to say, the window size is ineffective in displays with PROJCT
angles greater than 0°.

This is because the 2D virtual coordinates from the equations above are next passed through
another transform to bring them to screen coordinates. This final transform has the following
form:

(viewportsize)

Xoern = (de -X- w‘ndowcht) X windowss ze

X viewportle ftedge

Substituting for X — 2d and separating out the constant terms leaves:

1 windowdiagonal viewportsize
dist — Z,y, 2 x tan(ﬂ‘zﬂi) windowss ze

Xoern =

If the current window is close to being square, the windowdiagonal is close enough to the
windowsize in both the x coordinate and y coordinate transforms so they will cancel out for
all practical purposes.

Also note that since dist is in the denominator, larger distances give smaller screen images.
Similarly, since the tangent of half the projection angle is in the denominator, when the angle
is bigger, the screen image is smaller (especially for large angles).

The following command string uses the 3D to 2D transform to zoom in on the house as shown
in Figure 4.13. The 3D to 2D transform converts the 3D coordinates to 2D coordinates, then
the window to viewport mapping converts the 2D coordinates to screen coordinates.

L_/

LY

< /W/
-

O

Figure 4.13: 3D To 2D Projection Example

CLEARS.0y,
MDIDEN,
VWIDEN,
CLIPH_ 0y
CLIPY 0y
DISTAN_,300,,
CLRUN,100,

TRANSFORMS

PROGRAMMING THE QG-640

4.5 Graphic Attributes

After all of the transforms described in the preceding section have been performed, the
resulting image is drawn by loading 8-bit color indices into pixel locations in the display buffer.
The display buffer is a 640x 480 array of pixel locations that is mapped onto the display
screen through a color lookup table. This lookup table determines the color that corresponds
to each index. Figure 4.14 illustrates the relation of the display buffer to the screen.

When drawing an image in the display buffer, the color indices used depend on several
graphics attributes. These attributes are:

the current index

the current line style

the current drawing mode

the current mask

4.5.1 Drawing Mode

The current drawing mode affects all the other modes. There are five drawing modes:

e Replace

o Complement

e OR
e AND
e XOR
| _PLANE 0 .
| PLANE | » | coLour R To
—
Ii e 2 laems)| Lot 0/af—=G oisPLaY
1 PLANE 4) 0 0
| PLANE S
JMAT PLANE 6

PLANE 7 ’

COLOUR | .”R TO
|
8 8ITS Lur 0/A[=2C DisPLAY

1

OISPLAY BUFFER

il

4] IMAX

Figure 4.14: The Output Stage

GRAPHIC ATTRIBUTES

You select the mode with the following command:
LINFUN,_mode

where mode is a Char from 0 through 4.

When Replace Drawing Mode is active, lines and fills are drawn by replacing the contents of
pixel locations with the current index.

When Complement Drawing Mode is active, the QG-640 draws lines and fills by
complementing the current contents of pixel locations. For example, the default contents of the
display buffers is index O in all pixel locations; in Complement Drawing Mode, the QG—640
would draw a line on this background by changing the index of every pixel in the line to 255,
since 255 (FF) is the complement of 0 (00). The advantage of this mode is that it allows
individual graphic objects to be erased easily without affecting underlying graphic objects or
the background. For example, to erase a line that was just drawn, we would merely redraw it,
and it would be complemented back to its previous form. The disadvantage of Complement
Drawing Mode is that the color displayed is affected by the underlying color.

The XOR Drawing Mode is a more general form of the Complement Drawing Mode and can
be used for similar applications. It, however, allows more flexibility, since it XORs the current
index with the current values of underlying pixels to obtain the new pixel values as a line is
drawn. Drawing the same line twice in this mode results in no line, since the second line
reverses the first.

The OR Drawing Mode ORs the current index with the current values in underlying pixels,
and the AND Drawing Mode ANDs the current index with the current values in underlying
pixels. The uses for these two drawing modes are less common; however, the experienced
programmer should be able to put them to use in certain applications.

4.5.2 Color

You select the current index by issuing the COLOR command, which has the following format:
COLOR_index

where index is a value from 0 to 255. A color index is not a color in itself; it is the address of a
location in the lookup table. As the display buffer is scanned, the value in each pixel location
is sent to the lookup table. The lookup table provides three values to the digital-to-analog
converter. These values are used to generate the three analog signals to drive the red, green,
and blue guns of the color display. Each lookup table location has 18 bits that are mapped
into the digital-to-analog converter (D/A) inputs as indicated in Figure 4.15.

Referring to Figure 4.15, you will see that there are 64 intensity values for each of the three
primary colors. The color that appears on the screen depends on the combination of these

PROGRAMMING THE QG-640

“— LT > - R
8 & S .
e — w5
LT -8B
b
3 LOCAL CPU BUS 4

Figure 4.15: Lookup Table Bit Map

values. For example, a lookup table value of FF FF 0O generates bright yellow, 00 FF FF
generates bright cyan, and 00 00 00 generates black.

The LUTX, LUT, and LUTINT commands allow you to load various color values into the
lookup table. The LUTX and LUT commands write values into single lookup table locations,
and the LUTINT command initializes the whole lookup table to one of several sets of
predetermined values. The format of the LUTX command follows:

LUTXjindex,r,g by

where index is the index of a lookup table location, and r, g. and b are values from 0 to 255
specifying the intensity of the red, green, and blue elements respectively for that location. Due
to the hardware configuration of the QG-640, only the high six bits of r, g, and b are used.
The LUT command is similar to the LUTX command except that only the four low bits are
loaded into the four high bits of the lookup table entry. The LUT is provided in order to
maintain software compatibility with other Matrox products. The following LUTX command
string sets lookup table location 4 to bright yellow:

LUTX_4,,255,,255,,0
The following LUT command string will put bright yellow into the lookup table location 4:
LUT_4,15,15,0
The LUTINT command has the following format:
LUTINTset

where set is a number specifying one of several sets of values to be loaded into the lookup
table. Table 4.1 lists these sets. (Refer to the appendices for lookup table contents.)

GRAPHIC ATTRIBUTES

Set | Description

0 | Color-cone
1 | 2 surface
2 | rrgggbbb
3 | rrrggbbb
4 | rrrgggbb
5 | 6-level rgb

253 | Alternate saved LUT
254 | Saved LUT 1
255 | Saved LUT 2

Table 4.1: List Of Lookup Table Value Sets

Set 0 has values that generate colors in the standard color cone used by graphic artists. The
relationship between the color index and the color that is generated by it is arbitrary. The
values of the predefined lookup table can be found in the appendices.

Sets 2 to 5 are arranged in such a way that there is a relationship between the format of the
color index and the color that it generates. When Set 2, 3, or 4 is in the lookup table, the color
index is divided into three binary numbers: a red number, a green number, and a blue number.
The number of bits in each binary number depends on the lookup table set as shown below:

76543210 bit

Set 2 index = rrgggbbb
Set 3 index = rrrggbbb
Set 4 index = rrrgggbb

The value of these numbers determines the intensity of the red, green, and blue components of

the color. The two-bit intensity values are related to the three-bit intensity values as shown in
Table 4.2.

For example, if Set 2 is in the lookup table, index 63 (00111111) selects bright cyan.

When Set 5 is in the lookup table, the relationship of the index to the color selected is as
follows:
indez = (r X 36) + (g x 6) + b

where r, g, and b are intensity values from 0 through 5 for the color components of the selected
color.

Set 1 has a special set of color values designed to provide two superimposed display surfaces.
When Set 1 is in the lookup table, the index is divided into two subindices: ones in the low
four bits select the underlying color, and ones in the high four bits select the overlying color.
Zeroes in all four high bits makes the foreground surface transparent, allowing the underlying

PROGRAMMING THE QG-640

Value
2-Bit | 3-Bit | Intensity
0 0 0
- 1 3
1 2 5
- 3 7
- 4 9
2 - 10
- 5 11
- 6 13
3 7 15

Table 4.2: 2-Bit/3-Bit Correspondence

surface to show through. In the subsection on ‘Masking Bit Planes’ which follows we explain
how to use the MASK command to write to one surface or the other.

Sets 253, 254, and 255 load the lookup table with sets of lookup table values that you have
previously saved using the LUTSAV and LUTSTO commands. The LUTSAV command, which
has no parameters, saves the current contents of the lookup table to a special on-board
memory buffer reserved for Set 255. The LUTSTO is similar to the LUTSAV command except
that it allows two sets of lookup table contents to be stored. It has a parameter which specifies
that the current lookup table be saved to Set 255 or to a second buffer reserved for Set 254.
Subsequent LUTSAV and LUTSTO commands overwrite any lookup table sets that may have
already been saved in the lookup table buffers.

You can read the contents of a lookup table location by issuing the LUTRD command or the
LUTXRD command. These commands have the following formats:

LUTRDyjindex and LUTXRDyindex

where index is a value from 0 to 255 specifying the lookup table location to be read. The
QG-640 will copy the contents of the specified lookup table into the Data Out Register.

There are two output lookup tables on the QG—640, one for each output channel. The VDISP
command enables you to select one of these lookup tables for the purpose of modifying it.
PMASK is applied to the selected lookup table. The VDISP command has the following
format:

VDISP flag

where flag is a Char equal to 0 or 1. The currently selected output lookup table can be
determined using a FLAGRD 36 command. The output on J2 is affected when Char = 0,
while the output on J1 is affected when Char = 1.

4-38

GRAPHIC ATTRIBUTES

The QG-640 has two masks on the video data output to the lookup tables, one for each
output. These masks are used to disable bit planes from the frame buffer to the lookup table.
Each mask is set using the PMASK command which has the following format:

PMASK mask

where mask is the new value from 0 to 255 given to PMASK. Zeroes will prevent access to
their corresponding bit planes and ones will permit access. The current values of PMASK can
be read using a FLAGRD 37 command. A plane that is masked will always send a zero to the
lookup table. Masked planes are those with a 0 in the corresponding PMASK bit.

Under certain conditions, primitives may generate both a background and a foreground. When
a patterned line is drawn, for example, the pattern is made up of a foreground and a
background, a character cell has a foreground and a background, and any command that
produces filled areas creates a foreground and a background if the fill is in the form of a
pattern. In such a case, using the COLMOD command specifies the color mode that
determines whether the background is transparent or is the color last specified by the
background color index. The background color is specified by the BCOLOR command.

The COLMOD command has the following format:
COLMOD_mode

where mode is a Char equal to 0 or 1. When parameter mode is 0, the QG640 is set to replace
color mode and the background is set to the color specified by the BCOLOR command. When
mode is 1, the QG—640 is set to foreground color mode and the background is drawn
transparent.

The BCOLOR command has the following format:
BCOLORy index

where index is a Char from 0 to 255 specifying the background color index. For example, the
following command sets the background index to 24 when COLMOD is set to 0:

BCOLOR; 24

4.5.3 Line Texture And Blinking Pixels

Lines can have texture as well as color. The texture is determined by the current line pattern,
which you set with the LINPAT command. LINPAT has the following format:

LINPAT, pattern

PROGRAMMING THE QG-640

where pattern is a word with the line bit pattern. For example, the decimal value 61680 is
equivalent to the binary value 1111000011110000. Issuing the following command:

LINPAT 61680,

causes lines to be drawn with four pixels in the current index alternating with four transparent
pixels that allow the underlying index to show through (1 = current index, 0 = transparent).

Color indices can also be given a blink attribute to make them blink with the BLINKX
command. It has the following format:

BLINKX, index _red, ;green blue ontime offtime

where index specifies the lookup table index to blink. The parameters red, green, and blue are
values from 0 through 255 that compose the color that the index is to blink to. The time that
the affected pixels will be the blink color is specified by ontime in 3‘5 seconds. The time that
the pixels are their normal color is set by offtime in sl—o seconds. Only the high six bits of each
color entry are used. A similar command, BLINK, is provided for software compatibility with
other Matrox products.

4.56.4 Masking Bit Planes

If you refer to Figure 4.14 again, you will note that the display buffer is composed of eight bit
planes — one for each of the eight bits in the color index. The MASK command can mask off
specified bit planes so that they cannot be overwritten when the QG640 draws in the display
buffer. The MASK command has the following format:

MASK, planemask

where planemask is an eight-bit value (0-255). Zeroes will prevent access to their corresponding
bit planes and ones will permit access. For example, the value 240 (11110000) masks access to
the four least significant bit planes.

The mask allows the display buffer to be divided into different display surfaces. This is
particularly useful when used in conjunction with the Set 1 lookup table values. For example,
to superimpose the layers of artwork for a multilayer printed circuit board, you could draw one
layer with the four lower bit planes masked off, and then mask off the high four bits and draw
the second layer. The image already on the lower bit planes would not be affected.

PRIMITIVES

4.6 Primitives

The QG-640 maintains two points, analogous to the position of a pen on a piece of paper,
called the current points. These points are moved through the 2D and 3D coordinates spaces,
respectively, to draw an image the same manner that a pen is moved over paper to draw an
image. The commands that move the current points are called graphic primitives, and are

explained in this section.

There are two main categories of graphics primitives: 2D and 3D. The command names in the
two groups are similar. The 3D keywords are distinguished from their 2D counterparts by a 3
as the last character. Note, however, that not all the 2D primitives have 3D counterparts. In
this section, all of the 2D primitives and then the 3D primitives are described.

4.6.1 Two Dimensional Primitives

When drawing on a piece of paper, the pen is not always on the paper. It must be raised and
moved occasionally to start new lines. The same is true for drawing with the QG-640. The
MOVE and MOVER commands are provided to move the pen in the 2D coordinate space
without drawing. The format of the MOVE command is as follows:

MOVEux,y

where x and y are Reals specifying a coordinate pair in 2D. This command moves the current
point to the indicated point without drawing.

The format of the MOVER command is as follows:
MOVER_AxAyY

where Ax and Ay are Reals specifying the distance that the current point is to be moved from
its current position. Note that the ‘R’ termination on this and other command names identify
the command as using relative coordinates.

The POINT command draws a dot at the current point in the current index or complemented
index, depending on the current drawing mode. The POINT command has no argument.

To draw a straight line (also called a vector), use either a DRAW or a DRAWR command.
These commands have the same parameters as the MOVE and MOVER commands. Their
effect is the same except that the DRAW and DRAWR commands draw lines from the old
current point to the new current point.

The following example will clear the screen, move the current point to the center of the
coordinate space, and then draw a point. The current point is moved again (using relative
coordinates this time) and two lines are drawn — one using relative coordinates and the other
using absolute coordinates. The result is illustrated in Figure 4.16.

PROGRAMMING THE QG-640
I
|
i
I
!
_______ /S
|
|
[
[
|

Figure 4.16: Example: Moves, Lines, And Points

COLOR24,,
CLEARS 0,
MOVE_0,0y
POINT,
MOVER0-10,
DRAWR-20-5,,
DRAW_ 0,60,

There are several graphic primitives that use a sequence of straight lines to draw polygons.
These include the RECT, RECTR, POLY, and POLYR commands. RECT and RECTR draw
rectangles. RECT uses absolute coordinates, and RECTR uses relative coordinates. The
format for the RECT command is as follows:

RECTux_y

with the rectangle being drawn with its diagonal from the current point to x and Yy, which are
Reals. The current point does not move.

The format of the RECTR command is as follows:
RECTR_Ax Ay

with the rectangle being drawn with its diagonal from the current point to Ax and Ay, which
are Reals. The current point does not move.

The POLY and POLYR commands draw general polygons. The format of the POLY
command is as follows:

POLYunpts x1,y1,,x2,,y2 ... xn_yn

where npts is a value from 0 to 255 giving the number of vertices in the polygon. The
remainder of the argument is a series of coordinate pairs specifying the positions of the vertices
in the order that they are to be drawn. This command leaves the current point unchanged.

4-42

PRIMITIVES

The POLYR command is similar. However, instead of absolute coordinates, it uses coordinates
relative to the current point.

The following command string draws a rectangle using absolute coordinates, a rectangle using
relative coordinates, a hexagon using relative coordinates, and then a hexagon using absolute
coordinates. The result is shown, combined with the result of the previous example, in Figure

4.17.

MOVE,20-50,

RECT-20-60,,

MOVE,_ 60,180,

RECTR-120,40,

MOYVE,,50,,180,
POLYR,,6,,0,,0,,60-160-30-280-70-280-160-160-100_0y,
POLY6,30-55,,20-65-20-65-30-55-20-45,20-45,

|

|

|
Figure 4.17: Example: Polygons

The QG—640 has three commands that can draw curved lines:

e CIRCLE, which draws a circle
o ARC, which draws an arc of a circle

e ELIPSE, which draws an ellipse
The format of the CIRCLE command is as follows:
CIRCLE, radius

where radius is a Real specifying the radius of the circle to be drawn. The circle’s center is on
the current point.

The format of the ARC command is as follows:

PROGRAMMING THE QG-640

ARC_radius,deg0_degl

where radius is a Real specifying the radius of the arc, deg0 is an Int giving the starting angle,
and degl is an Int giving the ending angle. The starting angle and ending angle are measured
in degrees counterclockwise from the positive x axis.

The ELIPSE command has the following format:
ELIPSE, xradius, yradius

where xradius is the distance from the center of the ellipse to its circumference on the x axis
and yradius is the distance from the center to the circumference on the y axis. The center of
the ellipse is on the current point.

There is a primitive that combines curved and straight lines; the SECTOR command. This
command draws sections of circles shaped like pieces of pie. Its parameters are the same as
those used by the ARC command. The SECTOR command, however, draws lines from the
ends of the arc to the center of the arc.

The following command string draws two circles, two ellipses, two arcs, and two circle
segments. Figure 4.18 shows these elements combined with the results of the two preceding
examples.

Figure 4.18: Example: Circles, Ellipses, Arcs, and Sectors

PRIMITIVES

MOVE,50,70,
CIRCLE10y
ELTPSE,30,20,
ARC_30,45,135,
MOVE-50,70y,
CIRCLE_10,,
ELIPSE,30,20,
ARC30,45,135,,
MOVE_ 110,10,
SECTOR,60,,265.,275,
MOVE-110,10,
SECTOR_60,,265,,275,,

4.6.2 Three Dimensional Primitives

The QG—640 has the following 3D primitives:

MOVE3
MOVERS3
POINT3
DRAW3
DRAWR3
POLY3
POLYR3

These commands function in the same way as their 2D counterparts. They, however, require
an extra coordinate parameter: a coordinate for the z direction.

The following command string uses all the 3D primitives to draw the house shown in Figure
4.19. The three dots on the end of the roof are there only to illustrate the use of the POINT
command.

PROGRAMMING THE QG-640

CLEARS_ 0,

MOVE3-100-30,,50y,
POLYR3.4,.0,,0.0.,200,,0,,0,,200,,60,,0,,0,,60,.0,
DRAWRS3,,0,,0-100,
POLYR3_4,,0,,0.0,,200,,0.,0,,200,,60.,0,,0,,60_0_,
MOVE3,-100,30,,50,

DRAWRS3,,0,0-100,

MOVE3,100-30,50,

DRAWR3,,0,,0-100,

MOVE3,,100.,30,50,,

DRAWRS3_0,,0-100,,
POLY3,,4,,100,,30-50,,100,,60,,0-100,60,,0-100,30-50,
MOVE3-100,,30,50,

DRAW3-100,60.,0,

MOVE3,,100.,30,,50,

DRAW3,100,,60,_0,,

MOVE3,100,,40-20,,

POINT3,

MOVERS3.,0.,0,,20,

POINT3,

MOVER3,0,,0,,20,

POINT3,,

Figure 4.19: 3D Example

FILLS

4.7 Fills

and area fills. The primitive fill (PRMFIL) command fills closed primitives (polygons, ellipses,
sectors, etc.) as they are drawn. This command has the following format:

There are two methods to fill areas of the screen with solid colors and patterns: primitive fills

PRMFIL, flag

where flag is 0, or 1, and sets the current primitive fill flag. If the flag parameter is 0, closed
primitives are drawn unfilled. If flag is 1, closed primitives are drawn filled. The primitive fill
function works with both 2D and 3D filled primitives.

The following commands draw a box, using the PRMFIL command, to fill one side as
illustrated in Figure 4.20:

CLEARS, 0,

MOVE3-100-50,,50,
POLYR3,4,,0,,0,,0,,200.,0.,0,,200,,100.,0,,0,,100,,0,,
DRAWRS3,,0,,0-100,

PRMFIL, 1,
POLYRS3,,4,,0,,0,,0,200,,0,,0,,200,,100,/0,,0,,100.,0,,
MOVE3, -100,,50-50,

DRAWR3.,0,0,100,

MOVE3,,100,,50-50,,

DRAWRS3,,0,,0,,100,,

MOVE3,100-50-50,

DRAWR3,,0,,0,,100,

30 y
COORDINATE
SPACE

N\

Figure 4.20: Primitive Fill Example

The primitive fill function is powerful and easy to use; however, it can only fill closed
primitives. To fill other areas, one of two more general area fill commands can be used: AREA
and AREABC. These commands, which function only in the 2D work space, fill outward from
the current point until they reach a specified boundary. Their boundary is defined differently

PROGRAMMING THE QG-640

in each command. The AREA command has no parameters and fills with the current index
outward from the current point until it encounters indices other than the current index or the
index of the current point (see Figure 4.21

INDEX 5

INDEX X/ INDEX

N et i
/’7"/, Y Y

INDEX S5

Figure 4.21: AREA Fill

The AREABC command specifies the boundary of the area to be filled. It has the following
format:

AREABC, bindex

where bindex is the index of the boundary to fill to.

The AREA and AREABC commands determine whether or not to continue filling by reading
pixel indices and comparing them to the seed index, and either the index at the current point
or the boundary index. The indices read are affected by both the mask set by the MASK
command and the fill mask. The fill mask is active only during area fill operations. It is set by
the FILMSK command, which has the following format:

FILMSK_mask

where mask is an eight bit value (0-255) that is logically ANDed with pixel indices read during
an area fill. The AND operation takes place before the indices are compared with the
boundary index and either the current index (AREABC), or the current index and the index
at the current point (AREA).

Both masks give flexibility in boundary specification. When the AREA command is used,
these masks allow certain boundary colors to be ignored by masking them to look like either
the current index or the index at the current point. When the AREABC command is used, the
masks allow more than one index in the boundary to be used by making some indices look like
the specified boundary index.

A fill does not have to be done with a solid color. The AREAPT command is provided so that
you can specify a pattern composed of the filling index (COLOR) and the underlying index
(BCOLORY). The command has the following format:

= BOUNDARY INDEX

)

NS

<

N

| 4
/LT
CURRERT POINT

",/,

Figure 4.22: AREABC Fill

AREAPT, pattern

FILLS

where pattern is a 16-word array that forms a 16x 16 pixel bit mapped pattern. Zeroes in the
bit map allow the underlying index (BCOLOR) to show through. The following command

string defines the pattern shown in Figure 4.23.

AREAPT @1 u2

ulb u32
u256 512
w4096 (8192

77

Figure 4.23: AREA Pattern Example

ud

u64
01024
ul6384

16 x 16
pixel section

The AREA and AREABC commands can be used to fill 3D drawings after they have been
projected onto the 2D coordinate space. The CONVRT command will map the 3D current
point to the 2D current point. Thus the 2D current point can be positioned in the area that

you wish to be filled.

The following command string draws a tetrahedron, illustrated in Figure 4.24, and fills one

side.

PROGRAMMING THE QG-640

CLEARS, 0
COLOR 24,
MOVE3_0.,100,0y
DRAW3,,100-60,0,,
DRAW3-100-60,,0,,
DRAW3,,0.,100,0,
DRAW3,0,0,170,
DRAW3-100-60_,0,
MOVE3,0,0,170,
DRAW3,,100-60,0,
MOVE3-10,.0,0,
CONVRT,
COLOR, 70,
AREABC, 24,

|
f N
|
|
Figure 4.24: AREABC Fill Example

TEXT

4.8 Text
The following commands are provided to draw text:

TEXT Draws text using standard font.
TEXTP Draws text using user font.

TEXTC Draws text using standard fonts (Hex mode only).
TEXTPC Draws text using user fonts (Hex mode only).

TSTYLE Selects fat and raster text or thin and vector text.
TDEFIN Defines raster text characters for user font.
GTDEF Defines vector text characters for user font.

TJUST Sets text justification relative to current point.
TSIZE Sets text size.

TASPCT Sets text aspect ratio.

TANGLE Sets drawing angle.

TCHROT Sets character rotation.

RDEFIN Defines raster text characters for user fonts 1 to 15.
RFONT Selects active user raster font.

There are two character fonts available: the standard font and the user font. Each of these
fonts has two different styles of text. The standard font has thin text or fat text, and the user
font has raster text or vector text.

The TEXT and TEXTP commands, followed by a text string, are used to write on the screen.
The TEXT command has the following format:
TEXT,string

where string is a string of characters enclosed by either single or double quotes. The QG-640
draws the string with the standard character font (Figure 4.25) justified about the 2D current
point as specified by the most recent TJUST command. The TEXTP command is similar, but
it uses the user font defined by the TDEFIN and GTDEF commands.

The TEXTC and TEXTPC commands, followed by the string count and the text string, are
used to display the specified text string. These commands are used in hex format only. The
TEXTC command has the following format:

TEXTC, _count_char_char,, ... char

where count specifies the number of characters in the string, and each char is a string character.

PROGRAMMING THE QG-640

BLANK
“FF’

222

£V

0]
il ¢V

1| ¥ Eml
K[’t «"=l

Figure 4.25: The Standard Font

s

'S

Q| QD oy .A
o N[|- -] O <
h.l..].mkwl mnnmo
N[—[/[—[<[|
=M Z[O
ol [-- [V Il [A[e-
%[+ ~[N
1f a_mw_'J s
Olel [0 [=| 1t
|G| RO |A| |

4 - 52

TEXT

The TEXTPC command is similar to the TEXTC command except that it draws a
programmable text string at the current point.

The TJUST command sets the position of the text to the left of, to the right of, or centered on
the current point. It also sets the position of the text above, below, or centered on the current
point (see Figure 4.26). The command format is as follows:

TJUST horiz vert

where horiz and vert specify the position of text as follows:

horiz
1 Start of text line is at the current point.
2 Center (horizontally) of text line is at the current point.
3 End of text line is at the current point.

1 Bottom of text is at the current point.
2 Center (vertically) of text is at the current point.
3 Top of text is at the current point.

*MATROX MAT*ROX MATROXx*
«MATROX MAT,ROX MATROX, * current point
*MATROX MAT*ROX MATROX*

Figure 4.26: Justification Options

With the standard font, either fat or thin text can be selected with the TSTYLE command.
Slim text characters are always one pixel wide irrespective of their size. The lines that make
up fat characters, on the other hand, become wider as the characters become larger. Fat style
characters are the same as slim characters when the default text size is used; the scaling effect
becomes noticeable only as text sizes become larger.

If you use the user font, you can use either vector text or raster text, provided that you have
created the characters that you want to use. Use the GTDEF command to create vector text
characters and use the RDEFIN or TDEFIN commands to create raster text characters. Note
that whereas fat and thin characters with the same code coexist, raster text characters and
vector text characters with the same code do not. That is to say that you cannot create both a
vector text character and a raster text character for the same font position. If you attempt to
display a character that you have not defined, the HLGE will use the corresponding standard
font thin character.

Subsection 4.8.2 explains how to define characters for the user font.

PROGRAMMING THE QG-640

4.8.1 Character Attributes

Text has the following attributes:

Attribute Command

Color COLOR
Angle TANGLE
Rotation TCHROT
Size TSIZE

Aspect ratio | TASPCT

STANDARD FONT USER FONT
[| THIN TEXT | FAT TEXT | VECTOR TEXT | RASTER TEXT
TANGLE variable variable variable 0°
TCHROT variable 0° variable o°
TSIZE variable variable variable as defined
TASPCT variable 1.5 variable as defined

Table 4.3: Character Attribute Use Restrictions

All text is drawn in the current color, set by the COLOR command. However, not all other
attributes are variable with all the other text types. Table 4.3 indicates what the restrictions
are. The TSIZE and TASPCT commands set the size and aspect ratio of the text characters.
The format of the TSIZE command is as follows:

TSIZE, size

where size specifies the number of horizontal coordinate space points between the start of one
character and the next. The height of the characters is determined by the aspect ratio
command, which has the following format:

TASPCT_ratio

where ratio is character cell height divided by character cell width. Setting the width to 10 and
aspect ratio to 1 produces character cells 10x 10 points in size. The aspect ratio of the
characters on the screen also depends on the window to viewport map and the size of the
characters.

The TANGLE and TCHROT commands change the angle of the text in various ways. The
TANGLE command sets the angle of the text string, and the TCHROT command rotates the
characters about their centers. Thus, both types of slanted text shown in Figure 4.27 can be
easily produced, as well as variations in between. For both commands, the command argument
is an angle from the x axis in counterclockwise direction.

TEXT

X
o I
R @)
NS
M N\

Figure 4.27: Slanted Text

The following command string draws large (50 pixels wide) thin angled characters rotated and
centered on the current point. The standard character set and an aspect ratio of 1 are used.
The result is illustrated in Figure 4.28.

CLEARS_ 0,
TIUSTL2.2u
TSIZE,50,,
TSTYLE,1,
TANGLE, 45,
TCHROT 45,
TASPCT_1,,
MOVE,_0,0,
TEXT.’QG-640",

a0
,Q)b‘
Qo

Figure 4.28: Text Example

4.8.2 Defining Characters for the User Font

At reset, the user font is empty, but characters can be defined in it by the RDEFIN command,
TDEFIN command, or the GTDEF command.

PROGRAMMING THE QG-640

Characters created with the GTDEF command, and the characters in the standard thin font,
are formed from vector command lists similar to the command lists used to save graphics
commands. These vector commands provide the basis for rotation, scaling, and translation.
The format for the GTDEF command is as follows:

GTDEF character,n width_array

where character is a number from 0 to 255 identifying the character, n is the number of values
in array, width is the width of the character in character vectors, and array is an array of vector
parameters. Each entry in array gives a direction, a distance, and a draw/move flag. In ASCII
Command Mode, character, n, and width are Ints and each vector parameter in array is
composed of three Ints. In Hex Command Mode, character, n, and width are byte values and
each vector parameter in array is composed of a single value. The format of the vector
parameters and their direction code are shown in Figures 4.29, 4.30, and 4.31.

For example, the following code defines an ‘A’ in ASCII Mode:

GTDEF_ 65,78,
14742y
1,21y,
1030y
1.2u7y
1,760
Ordu20
.70

and in Hex mode:

89 42 07 08 74 b1 58 67 7E 22 7C

The QG-640 allows you to define up to 16 raster fonts in memory, labeled from 0 to 15. The
raster characters are bit maps and cannot be transformed, so you must define them as you
want to see them.

Char Char Char

I L— direction code (see diagram)
length

1 = pen down, 0 = pen up

Figure 4.29: ASCII Command Mode Vector Parameter Format

76543210 BIT
LI T T T T T 1]

L _direction code (see diagram)
length minus 1
1 = pen down, 0 = pen up
don’t care

Figure 4.30: Hex Command Mode Vector Parameter Format

Figure 4.31: Vector Parameter Direction Codes

TEXT

PROGRAMMING THE QG-640

User Raster Font 0

User raster font 0 characters are defined using the TDEFIN command. For this font, each
character must be defined separately. The maximum cell size of these characters is 255x255
pixels. This font is the PGC compatible user definable raster font.

The TDEFIN characters are bit maps and cannot be transformed, so you must define them as
you want to see them. The command format is as follows:

TDEFINyn_x_y array

where n is a number from 0 to 255 identifying a character position in the font, x is the
character cell width in screen coordinates, y is the character cell height in screen coordinates,
and array is an array of bytes that forms the bit map of the character being defined.

User Raster Fonts 1 to 15

User raster fonts 1 to 15 are special fonts optimized for drawing speed. Each font must be
defined “a complete font at a time”, using the RDEFIN command. All characters in a given
font of this type must have the same cell dimension; the maximum size is 16x16 pixels.

User Raster Font Selection

Only one of the 16 user raster fonts can be active at any one time. The raster font used to
draw characters (0 to 15), with the TEXTP and TEXTPC commands, is selected using the
RFONT command. This command also specifies the aspect ratio of the characters drawn, with
a choice of any combination of single/double height and single/double width.

The following command string creates the character shown in Figure 4.32 and assigns it to
character “A” (code 65).

TDEFIN_65_8.4,
1,141010,00,0,0.,0,
1,,00,0,11,0:0,,0,04
1,,00,04,1,,0 0,00,
immmmmmaT

COMMAND LISTS

Figure 4.32: TDEFIN Example

4.9 Command Lists

A command list is a list of QG640 commands stored in memory. You define a command list
using a CLBEG command followed by the command list terminated with a CLEND command.
The format of the CLBEG command is as follows:

CLBEGclist
where clist is a number from 0 to 255 identifying the command list. The CLEND command

has no argument.

Once defined, a command list can be run by issuing either a CLRUN command or a CLOOP
command. The CLRUN runs a command list once; the CLOOP command runs a command
list a specified number of times. The format of the CLRUN command is as follows:

CLRUN,clist

where clist is a number from 0 to 255 identifying the command list that is to be run.

The format of the CLOOP command is as follows:
CLOOP, clist, ,count

where clist is a number from 0 to 255 identifying the command list to be run, and count is a
number from 0 to 65535 specifying the number of times the command list is to be repeated.

The following commands define a command list and run it twice. Because the last two
commands in the command list change the modelling transform, the loop gives two different
views of the same object (shown in Figure 4.33). Nothing will be drawn on the screen until a
CLRUN is issued.

PROGRAMMING THE QG-640

CLEARS, 0
CLBEG_!,,

MOVE3-100,,50,0,
POLYR3,4,.0,0,0,200,0,,0,200,,50,,0,.0,50,0y,
DRAWR3,,0,0,100,,
POLYR3,,4,.0,,0.,0_,200..0,,0,200,,50,,0,,0_50,0,,
MOVE3-100,100,0

DRAWRS3,,0,0,100,,

MOVE3,,100,,100,0,,

DRAWRS3,,0,0,,100,,

MOVE3,,100,50.0

DRAWRS3,,0,0,100,

MDROTY, 45,

MDTRAN_0-125,0,

CLEND,

MDIDEN,,

CLOOP_1,.2,,

Once a command list has been defined, it can be user-read and modified. The CLRD
command allows you to read the specified command list. The CLMOD command allows you to
modify a command list. The CLRD function has the following format:

CLRDclist

where clist is the name of the command list to be read. The command list is sent, in
hexadecimal, to the Data Out Register. The data consists of one word giving the number of
bytes in the list, followed by the command list. The CLRD command is used to locate the
offset of the bytes to be replaced. To remove a byte without replacing it, use a NOOP
command to fill its place.

The CLMOD command is used to edit command lists. It replaces a section of a command list
with an array of bytes provided in the command argument. The command has the following
format:

Figure 4.33: Command List Example

COMMAND LISTS

CLMOD_clist_offset nbytes, bytes,

where clist is the command list to be modified, offset is the offset in bytes from the start of the
command list to the start of the section to be replaced, nbytes is the number of bytes to be
replaced, and bytes is an array of replacement bytes. The number of bytes in the replacement
array (bytes) must be exactly the same as the number of bytes in nbytes.

When using the CLMOD command, keep in mind that real coordinates (32 bits) are not stored
in memory in the same order as they are received from the Host. When you specify a real
number, it is in the form of:

[low integer][high integer|[low fraction]high fraction]
The previous form is received by the Host and stored in memory in the following form:
[low fraction][high fraction][low integer][high integer]

When a coordinate is stored in a command list, the firmware exchanges the bytes so that the
fractional part is stored first. When a CLRD command is processed, a reverse exchange is
made so that coordinates appear just as they were sent.

Using the CLMOD command on a section of a real coordinate, stored in a command list,
performs no exchange. Therefore:

e Modifying the first byte of a coordinate modifies its [low fraction).
e Modifying the second byte of a coordinate modifies its [high fraction].
¢ Modifying the third byte of a coordinate modifies its [low integer].

¢ Modifying the fourth byte of a coordinate modifies its [high integer].
For example:

CLBEGu1y
MOVE,10,,20,
CLENDy
CLRDu1,

PROGRAMMING THE QG-640

The Data Out Register contains:

09 00 10 OA 00 00 00 14 00 00 00
I_y fraction
y integer
x fraction
x integer
opcode
length of command
list

CLMOD1,,3,1,,30,
CLRDul1,

The previous CLMOD command modified the third byte in clist, which is the low byte of the
integer part of x.

The Data Out Register contains:

09 00 10 1E 00 00 00 14 00 00 00
Ly fraction
y integer
x fraction
x integer
opcode
length of commmand
list

The modified byte seems to be the second byte in the command list, but in fact, it is the third
byte because the CLRD command exchanges real coordinates.

DIRECT SCREEN OPERATIONS

4.10 Direct Screen Operations
4.10.1 Drawing

The QG—640 has a number of commands which allow you to bypass the normal coordinate
space/transform sequence and work directly in the display buffer. The ‘S’ series commands are
graphics primitives that draw directly on the screen. They are the same as the 2D primitives
except that they use screen coordinates instead of 2D coordinates. They are faster than the 2D
primitives. Pictures created with the S’ series commands are clipped to the current viewport,
and the end points of lines are not drawn. For the ‘S’ series primitives to function properly,
the window and viewport must have exactly the same coordinates. This means that the
window and the viewport must be set to equal the x and y capacity of the Matrox board. Any
direct screen operations must be performed only on points visible in the currently displayed
window /viewport. The screen coordinates upon which you want to operate must be:

0<z<639
0<y<479

For example, if the viewport is full screen, the window must have corners at 0,0 and 639,479.
The “S” commands are listed below:

SARC
SCIRC
SDRAW
SDRAWR
SELIPS
SMOVE
SMOVER
SPOLY
SPOLYR
SRECT
SRECTR
SSECT

The PDRAW command provides the ability to perform a series of moves and line draws in
direct screen mode with a single command. The command format is as follows:

PDRAWUX1uY10X20Y2 ---XnuYnu

where x and y are Int screen coordinates. The most significant bit of the y coordinate is used
to specify either a move or a draw, and the most significant bit of the x coordinate is used to
specify either to continue or to stop.

PROGRAMMING THE QG-640

4.10.2 Pixel Moves

The IMAGER and IMAGEW commands transfer lines or parts of lines of pixel values between
the system memory and the display buffer. The RASTRD and RASTWR commands move
rectangular sections of the display buffer to and from the system memory. The RASTOP
command moves rectangular sections of the display memory from one section of the display
memory to another performing an optional logical function.

The IMAGER command has the following format:
IMAGERline x1, ,x2

where line is a y coordinate indicating a horizontal line of pixels in the screen coordinate space,
x1 is an x coordinate indicating the starting point on the line, and x2 is an x coordinate
indicating the end point (included) on the line. The specified pixel values are copied to the
Data Out Register. The data format depends on whether the QG—640 is in ASCII Mode or
Hex Mode.

In ASCII Mode, a line is returned in the following format:
IW line,x1,x2.x,x.x ... (CR)

where ‘IW’ is a header identifying the string as the result of a IMAGER command, line is the
line number, x1 and x2 specify a line segment, the x’s represent ASCII decimal color indices
separated by commas, and the carriage return (CR) ends the string.

In Hex Mode, the data is run-length encoded. Two or more contiguous pixels having the same
index are encoded in two bytes: the first with the number of pixels less one, and the second
with the index. When two or more contiguous pixels have different indices, the number of
pixels less one is sent in a byte with the most significant bit set, then the values of the indices
for each pixel are sent in a series of separate bytes. Since the most significant bit in the initial
byte is used to differentiate the two types of code, only seven bits remain to give the number of
pixels in the series, limiting the number to 128. For example, a series of pixels with the values
111123455556 7 would be encoded as 03 01 82 02 03 04 03 05 81 06 07.

The IMAGEW command has the following format:
IMAGEW_line_x1,_x2, data,

where line, x1, and x2 specify a set of pixels in the same way as the IMAGER command, and
data is the pixel data that is to be written into the specified pixels. The data format is the
same as that used for the IMAGER command.

Although the RASTRD and RASTWR commands also transfer data directly between the
display memory and the system memory, they differ from IMAGER and IMAGEW in that they

DIRECT SCREEN OPERATIONS

simulate a raster scan of a specified rectangular area, incorporating certain logical functions.
Run-length encoding is not used. The format of the RASTWR command is as follows:

RASTWR oper,dir_x0_y0x1,y1

where oper specifies a logical operation (see Table 4.4), dir specifies a subset of the major and
minor scan directions (see Table 4.5), x0,y0 specify, in screen coordinates, one corner of the
rectangle to be scanned, and x1,y1 specify the diagonally opposed corner.

Raster Functions

Function Code | Operation
0 Copy
1 CR
2 AND
3 XOR

Table 4.4: Logic Operations

Scanning Direction
Direction | Major Direction | Minor Direction
0 = 1
1 = l
2 < t
3 <= l

Table 4.5: Scan Directions

The QG-640 scans by reading a line of pixels along the major scan direction, moving one scan
line in the minor direction and then repeating the process. As each pixel is passed in the scan,
the specified logical operation is performed on the data from the FIFO and the data in the
pixel location. The result is then written into the location. Figure 4.34 shows a typical scan.

The RASTRD command is the same as the RASTWR command except that it copies data
from the scanned area to the output port with no logical operations performed on the data. In
both commands, each index is passed in a single byte and until the transfer is completed, no
other commands are interpreted by the QG-640. The number of bytes transferred is

(zl—a:o+1)x(y1—yo+1).

The following command string XORs data from the FIFO with data in the specified rectangle
and writes the results into the rectangle. Figure 4.34 shows the scan directions.

RASTWR3,,1,100,100,,400,,300,,

PROGRAMMING THE QG-640

SCREEN SPACE

400.300

100.100

Figure 4.34: Raster Scan

The QG-640 has a third raster command, RASTOP, which uses the same general format to
copy rectangular areas from one part of the screen to another. It has the following format:

RASTOPoperysredirdestdir_xouxiuyouy1uxhuyh

where oper specifies a logical operation, srcdir is the scan direction in the source rectangle,
destdir is the scan direction in the destination rectangle, xg. X1, yo. and y; specify the source
rectangle, and xj, yf specify the lower left corner of the destination rectangle.

The following command string copies the contents of the left rectangle in Figure 4.35 to the
right rectangle. Note that by using different source and destination scan directions, a mirror
image was drawn.

RASTOP,,0,1,,3,,10C,100,,300,,300,,400,,100,,

SCREEN SFACE

325 360

A A4

*co1ce 400 TC

Figure 4.35: RASTOP Example

READ BACK COMMANDS

4.11 Read Back Commands

The QG-640 supports a number of read back commands that allow you to determine the exact

values of the QG-640’s parameters. The read back commands are:

e Command List Read (CLRD)

Flag Read (FLAGRD)
Image Read (IMAGER)
LUT Read (LUTXRD and LUTRD)

Matrix Read (MATXRD)

These commands are detailed in the command summary chapter.

When a read back command is executed, the QG—640 puts the requested information in the
Data Out Register. When in ASCII mode, the data is returned as ASCII decimal numbers
terminated by a carriage return. Some commands return multiple values; the individual
command descriptions give the data formats in both ASCII and Hex communication modes.

Note that if a read back is requested and the Data Out Register is full, the QG—640 will halt
and wait for you to read the register.

PROGRAMMING THE QG-640

4.12 Error Handling

If you have set the Error Enable Flag in the communications area, the QG-640 will return
error codes in the current communication mode. The QG—640 will return the error code as an
ASCII character when in ASCII mode and as a hex value in a single byte when in Hex mode.
The return messages and codes are summarized in Table 4.6.

Code | Meaning

Parameter out of range.

Wrong data type — need integer.
Ran out of memory.

Arithmetic overflow.

Wrong data type — need digit.
Opcode not recognized.
Recursion in command list.
Command lists nested more than 16 deep.
String or command list too long.
Area fill error.

Missing parameter.

PO 00Ut N O

Table 4.6: Summary of Error Codes and Messages

GRAPHICS INPUT SUPPORT

4.13 Graphics Input Support

Many applications require the use of a graphics input device such as a mouse, joystick, or
trackball. This input device is used by the software to move a cursor, to frame areas of text, to
draw lines, or to implement some other function. In a computer-aided design program, a
mouse might be used to move a cursor and specify points to be interconnected.

The QG-640 provides the following three commands to help the programmer implement
graphics input functions:

XHAIR
XMOVE
RBAND

XHAIR displays a graphic cursor, XMOVE moves the cursor, and RBAND enables either the
rubber band vector or the rubber band rectangle. All three commands draw directly to
the screen and do not affect the screen space (frame buffer) in any way that would
affect the user.

XHAIR has the following format:
XHAIR, flag, xsize ysize

where flag determines the type of cursor displayed, which is located at the current cursor
position. The size of the graphic cursor is set by xsize and ysize. Parameter flag is a Char
having the following meaning:

Flag | Action

0 Disable graphic cursor
Enable cross hair cursor, clipped on screen
Not supported
Enable cross hair cursor, clipped on viewport
Not supported
Enable box outline cursor, clipped on screen
Enable box outline cursor, clipped on viewport
Enable filled box cursor, clipped on screen
Enable filled box cursor, clipped on viewport

00 =3 OO OV i W N =

The xsize and ysize parameters are given in screen coordinates and determine the horizontal
and vertical dimensions of the graphic cursor respectively. The QG—640 draws the graphic
cursor in complement drawing mode, so that its color is affected only by what is already on the
screen and not by the current index.

The XMOVE command has the following format:

PROGRAMMING THE QG-640

XMOVE_x_y

where x and y are the screen coordinates of a new graphic cursor position. XMOVE changes
the graphic cursor coordinates regardless of whether or not the graphic cursor is currently
enabled.

The RBAND command has the following format:
RBAND, flag

where flag is a Char from 0 to 2. Parameter flag determines the type of rubber band effects
according to the following values:

0 - Disables the rubber band vector and rectangle.

1 - Enables the rubber band vector. The current graphic cursor position, at
the time when the rubber band vector is enabled, becomes the anchor
point. A line is drawn between the anchor point and the graphic cursor
position. Each time a new graphic cursor position is set, the line from
the anchor point to the old graphic cursor position is erased and a new
line is drawn between the anchor point and the newly defined graphic
cursor position. When the rubber band vector is disabled, the most
recent rubber band vector is erased and the graphic cursor is left at the
graphic cursor position.

2 - Enables the rubber band rectangle. The rubber band rectangle is the
same as the rubber band vector except that instead of a line being drawn
between the anchor point and the graphic cursor position, a rectangle is
drawn with one corner at the anchor point and the diagonally opposite
corner on the current graphic cursor position.

Note: since the rectangle is drawn in complement mode, the part of the
rectangle that overlaps the graphic cursor will be lost when the graphic
cursor display is enabled. For this reason, it is best to disable graphic
cursor display when using the rubber band rectangle.

The following sequence of commands illustrates the use of the graphics input commands. The
first two commands enable a cross hair graphic cursor display and move the cross hair to
screen coordinates {100,200}. The next two commands enable the rubber band vector,
establish the anchor point, and move the cross hair to {500,400}. The rubber band function
draws a line from the anchor point to the cross hair position. The last command moves the
cross hair to {500,50}, and the rubber band function erases the first line and draws a line to
the new cross hair position. Figure 4.36 shows the process.

GRAPHICS INPUT SUPPORT

XHAIR,1,100,100,
XMOVE200.,250,,
RBANDu1y
XMOVEQ500,400,,
XMOVE,500,50y,

Figure 4.36: Graphics Input Example

Chapter 5

Command Descriptions

5.1 Command Descriptions

The following pages contain descriptions of the commands used by the QG—640. These
commands are arranged in alphabetical order by command name and use the conventions set
out in Chapter 4 to distinguish hexadecimal numbers, command names, and parameters from
regular text. The parameter types use the definitions that are also laid out in Chapter 4.

COMMAND DESCRIPTIONS

ARC Draw an Arc

Command

e Long Form: ARC radius anglel angle2
e Short Form: AR radius anglel angle2

o Hex Form: 3C radius anglel angle2

Parameter Type

e radius = Real

e anglel = Int

e angle2 = Int
Description

The ARC command draws a circular arc using the currently selected color. The center is at the
2D current point. The start and finish angles are specified in the command. The angle can be
any Int value (angles greater than 360° and less than -360° are handled as modulo 360).
Negative radii will result in 180° being added to both angles. This command does not affect
the 2D current point.

Example CODE:

ASCII: AR 100.00 0 180
HEX: 3C 64 00 00 00 00 00 B4 00

RESULT: An arc with radius 100 from 0° to 180° (a semi-circle) is drawn about
the 2D current point.

Error Overflow

See Also circle, color, linfun, linpat

COMMAND DESCRIPTIONS

Area Fill AREA

Command

e Long Form: AREA
e Short Form: A
e Hex Form: CO

Parameter Type None

Description

The AREA command sets all the pixels in a closed area to the current color. The closed area
starts from the 2D current point and continues outward in all directions until a boundary with
a color different from that of the starting pixel’s original color is reached. The data tested is
ANDed with the fill mask (FILMSK) and the bit plane mask (MASK) before comparing colors.
The start pixel’s original color should not be the current color.

Example CODE:

ASCII: A
HEX: co

RESULT: The bounded area that contains the 2D current point is changed to the
current color.

Error None
See Also AREAPT, FILMSK, MASK

COMMAND DESCRIPTIONS

AREABC Area Fill to Boundary Color

Command

e Long Form: AREABC index
e Short Form: AB index

¢ Hex Form: C1 index

Parameter Type
e index = Char

Description

The AREABC command fills a closed area bounded by color index with the current color. The
closed area starts from the 2D current point and continues outward in all directions until
reaching a boundary of pixels of color index. All pixel data read is ANDed with the fill mask
(FILMSK) and the bit plane mask (MASK) before testing for the boundary.

Example CODE:

ASCII: AB 100
HEX: C1 64

RESULT: The color of the area containing the 2D current point and bounded by
color index is changed to the current color.

Error Boundary = current color
See Also AREAPT, COLOR, FILMSK, MASK

COMMAND DESCRIPTIONS

Area Pattern AREAPT

Command

e Long Form: AREAPT pattern
e Short Form: AP pattern
e Hex Form: E7 pattern

Parameter Type

e pattern = 16 Unsigned Ints

Description

The AREAPT command sets the area pattern mask. The pattern mask defines a 16x 16 array
which is repeated horizontally and vertically when drawing filled figures. Each value in pattern
is 16 bits long and sets one row of the pattern mask. Since there are 16 bytes in pattern, the
user is able to define the value of each pixel in the pattern mask. Pixels that are where the
mask is set to 1 are changed to the current color; where the mask is set to 0, the pattern is
transparent or set to the background color depending on the state of COLMOD. Setting all the
bits in the mask (sending 16 bytes of 65535) causes areas to be filled solidly; this is the default
after reset. The area pattern is used by the following commands when drawing a filled
primitive:

CIRCLE ELIPSE POLY POLYR
POLY3 POLYR3 RECT RECTR
SECTOR SCIRC SELIPS SPOLY
SPOLYR SRECT SRECTR SSECT

COMMAND DESCRIPTIONS

AREAPT

Area Pattern

Example CODE:

ASCII: AP 1 2
16 32
256 512
4096 8192
HEX: E7 00 01 00 02
00 10 00 20
01 00 02 00
10 00 20 00

RESULT:

Error None

4

64
1024
16384

00 04
00 40
04 00
40 00

See Also AREA, AREABC, BCOLOR, COLMOD

8

128
2048
32768

00 08
00 80
08 00
80 00

16 X 16
pixel section

COMMAND DESCRIPTIONS

Set Background Color BCOLOR

Command

e Long Form: BCOLOR index
e Short Form: BC index

e Hex Form: CB index
Parameter Type
e index = Char [0..255]

Description
This command sets the index of the background index to be used when COLMOD is set to 0.

Example CODE:

ASCII : BCOLOR 24
HEX : CB 18

RESULT: The background index is changed to 24.

Error None
See Also COLMOD, AREAPT, LINPAT, TEXT

COMMAND DESCRIPTIONS

BLINK Blink - 8 Bit

Command

e Long Form: BLINK index red green blue ontime offtime
e Short Form: BL index red green blue ontime offtime

e Hex Form: C8 index red green blue ontime offtime
Parameter Type

e index = Char
e red, green, blue = Char [0..15]

e ontime, offtime = Char

Description

The BLINK command causes all the pixels having the color in the currently selected LUT entry
to blink on and off. The currently selected LUT entry is specified by the index parameter. The
periods, in 316 seconds, are specified by ontime and offtime. During the on time, the pixel will
have the original color; during the off time, the color will be the one defined by red, green, and
blue. Up to four indices can be set to blink at any one time. Blink for a particular index is
cancelled by issuing a second BLINK command specifying the index but with all the other
parameters equal to zero.

Warning: Do not perform LUT changes on indices that are currently blinking.

Example CODE:

ASCII: BL 15 255 0 0 30 30
HEX: C8 OF FF 00 00 iE iE

RESULT: White (index 15) blinks to red once a second.

Error Range is: Too many blinks specified, Color already blinking.
See Also BLINK, LUT, LUTINT, LUTX, SBLINK

COMMAND DESCRIPTIONS

Blink — 8 Bit BLINKX

Command

e Long Form: BLINK index red green blue ontime offtime
e Short Form: BLX index red green blue ontime offtime

e Hex Form: E5 index red green blue ontime offtime

Parameter Type

e index = Char
e red, green, blue = Char

e ontime, offtime = Char

Description

The BLINKX command causes all the pixels having the color in the currently selected LUT
entry to blink on and off. The currently selected LUT entry is specified by the index
parameter. The periods, in % seconds, are specified by ontime and offtime. During the on
time, the pixel will have the original color; during the off time, the color will be the one
defined by red, green, and blue. Up to four indices can be set to blink at any one time. Blink
for a particular index is cancelled by issuing a second BLINKX command specifying the index
but with all the other parameters equal to zero. All blinking color indices can be cancelled
with the SBLINK command.

Warning: Do not perform LUT changes on indices that are currently blinking.

Example CODE:

ASCII: BLX 15 255 0 0 30 30
HEX: E6 OF FF 00 00 LE 1E

RESULT: White (index 15) blinks to red once a second.

Error Range is: Too many blinks specified, Color already blinking.
See Also BLINK, LUT. LUTINT, LUTX, SBLINK

COMMAND DESCRIPTIONS

CA Communications ASCII

Command

e Long Form: CA,,
e Short Form: CA,,
e Hex Form: 43 41 20 or D2

Parameter Type None
Description

The CA command sets the communication mode to ASCII. This command may be given when
in either ASCII mode or Hex mode. Note that the Hex and ASCII forms of this command are
identical.

Example CODE:

ASCIIL: CA,
HEX: 43 41 20 or D2

RESULT: The communications mode is set to ASCIIL.

Error None
See Also cXx

COMMAND DESCRIPTIONS

Circle CIRCLE

Command

e Long Form: CIRCLE radius
e Short Form: CI radius

e Hex Form: 38 radius
Parameter Type
e radius = Real

Description

The Cl command draws a circle with radius radius centered on the 2D current point. The circle
is filled if the PRMFIL flag is set. This command does not affect the 2D current point.

Example CODE:

ASCII: CI 100
HEX: 38 84 00 00 00

RESULT: A circle with radius 100 is drawn from the 2D current point.

Error Overflow
See Also AREAPT. ARC, ELIPSE, LINFUN, LINPAT, PRMFIL, SECTOR

COMMAND DESCRIPTIONS

CLBEG Command List Begin

Command

e Long Form: CLBEG clist
e Short Form: CB clist

e Hex Form: 70 clist
Parameter Type
e clist = Char

Description

The CLBEG command begins the definition of the command list number clist. Commands are
saved, without being executed, in the command list definition area. Defining a list using an
already existing clist will overwrite the old command list. A command list may be up to 64
KBytes long.

Example CODE:

ASCII: CB 2
HEX: 70 02

RESULT: Command list 2 is started.

Error Not enough memory, command list running.

See Also CLEND, CLOOP, CLDEL, CLMOD, CLRD, CLRUN

COMMAND DESCRIPTIONS

Command List Delete

CLDEL

Command

e Long Form: CLDEL clist
e Short Form: CD clist

e Hex Form: 74 clist
Parameter Type
e clist = Char

Description

The CLDEL command deletes the definition of the command list specified by clist.

Example CODE:

ASCII: CD 2
HEX: 74 02

RESULT: Command list 2 is deleted.

Error Command list running.
See Also CLBEG, CLEND

COMMAND DESCRIPTIONS

CLEARS Clear Screen

Command

e Long Form: CLEARS index
e Short Form: CLS index

e Hex Form: OF index
Parameter Type
e index = Char

Description

The CLEARS command sets all the pixels in the display buffer to the color designated by index
regardless of the value of MASK. The current color is not changed.

Note: This command affects not only the visible VRAM, but also the hidden space. If you
want to clear only the visible buffer, use the FLOOD command.

Example CODE:

ASCII: CLS 17
HEX: OF 11

RESULT: Screen is filled with color 17.

Error None
See Also FLOOD

5-14

COMMAND DESCRIPTIONS

Command List End CLEND

Command

e Long Form: CLEND
e Short Form: CE

e Hex Form: 71

Parameter Type = None

Description

The CLEND command ends the command list currently being defined. After a CLEND, the
controller resumes executing commands as they are received.

Example CODE:

ASCII: CE
HEX: 71

RESULT: The command list being defined is ended.

Error None
See Also CLBEG, CLDEL

COMMAND DESCRIPTIONS

CLIPH Clip Hither

Command

e Long Form: CLIPH flag
e Short Form: CH flag
e Hex Form: AA flag

Parameter Type
o flag = Char [0..1]

Description

The CLIPH command enables or disables hither plane clipping. Setting flag to 0 disables hither
plane clipping; setting flag to 1 enables it.

Example CODE:

CODE:
ASCII: CH 1
HEX: AA 01

RESULT: Hither clipping is enabled.

Error None
See Also DISTH

COMMAND DESCRIPTIONS

Clip Yon CLIPY

Command

e Long Form: CLIPY flag
e Short Form: CY flag
e Hex Form: AB flag

Parameter Type
e flag = Char [0..1]

Description

The CLIPY command enables or disables yon plane clipping. Setting flag to 0 disables yon
plane clipping; setting flag to 1 enables it.

Example CODE:

ASCII: CY 1
HEX: AB 01

RESULT: Yon clipping is enabled.
Error None
See Also DISTY

COMMAND DESCRIPTIONS

CLMOD Command List Modify

Command

e Long Form: CLMOD clist offset nbytes bytes
e Short Form: CM clist offset nbytes bytes
e Hex Form: 78 clist offset nbytes bytes

Parameter Type

e clist = Char

o offset = Unsigned Int

o nbytes = Unsigned Int
e bytes = nbyte’s of Char

Description

The CLMOD command replaces nbytes bytes in command list clist, starting at byte number
offset from the start of the command list, with the bytes contained in bytes. Note that bytes
cannot be added or deleted, only replaced.

Example CODE:

ASCI: CM 3721758
HEX: 78 03 07 00 02 00 AF 08

RESULT: The two bits in command list 3 with offsets 7 and 8 are replaced with
CONVRT and POINT commands.

Error None
See Also CLMODX, CLRD, NOOP

COMMAND DESCRIPTIONS

Command List Loop CLOOP

Command

e Long Form: CLOOP clist count
e Short Form: CL clist count

e Hex Form: 73 clist count
Parameter Type

e clist = Char

e count = Unsigned Int

Description

The CLOOP command executes the command list clist, count times.

Example CODE:

ASCII: CL 4 300
HEX: 73 04 2C 01

RESULT: Command list 4 is executed 300 times.

Error Command list running, stack full.
See Also CLRUN

COMMAND DESCRIPTIONS

CLRD Command List Read

Command

e Long Form: CLRD clist
e Short Form: CRD clist
e Hex Form: 75 clist

Parameter Type
e clist = Char

Description

The CLR command ends the information stored in command list clist (hex form of the
command) to the output channel. The first word in the data stream represents the number of
bytes in the command list. It is followed by the bytes as they are stored.

Example CODE:

ASCII: CRD 7
HEX: 76 07

RESULT: Command list 7 is listed to the Data Out register in hex.

Error None
See Also CLBEG, CLEND, CLDEL, CLRDX

COMMAND DESCRIPTIONS

Execute Command List CLRUN

Command

e Long Form: CLRUN clist
e Short Form: CR clist

e Hex Form: 72 clist
Parameter Type
o clist = Char

Description

The CLRUN command executes the commands in command list clist.

Example CODE:

ASCII: CR 3
HEX: 72 03

RESULT: Command list 3 is executed.
Error Command list running, stack full.
See Also CLBEG, CLEND

COMMAND DESCRIPTIONS

COLMOD Color Mode

Command

e Long Form: COLMOD mode
e Short Form: CLM mode

e Hex Form: CA mode
Parameter Type
e mode = Char [0 or 1]

Description

Under certain conditions, primitives may generate both a background and a foreground. When
we draw a patterned line, for example, the pattern is made up of a foreground and a
background, a character cell has a foreground and a background, and any of the commands
that produce filled areas produce a foreground and a background if the fill is in the form of a
pattern. In such a case, the COLMOD command determines whether the background is
transparent or is the color last specified by the BCOLOR command.

When mode is 0, this command sets the board to Replace Color Mode, with the result that
backgrounds are given the background color set by the most recent BCOLOR command.

When mode is 1, this command sets the board to Foreground Color Mode, with the result that
backgrounds are drawn to be transparent.

Note that no background is drawn if the character type is graphic (vector text) and the cell
rotation (TCHROT) is not a multiple of 90 . Default is Foreground Color Mode.

Example CODE:

ASCII: COLMOD 0
HEX: CA 00

RESULT:: The board enters Replace Color Mode.

Error Range
See Also BCOLOR, AREAPT, LINPAT, TEXT

COMMAND DESCRIPTIONS

Color

COLOR

Command

e Long Form: COLOR index
o Short Form: C index

e Hex Form: 06 index
Parameter Type
e index = Char

Description

The COLOR command sets the current color to index.

Example CODE:

ASCII: C 12
HEX: 06 0C

RESULT: The current color is set to color 12.

Error Value out of range (ASCII only)

COMMAND DESCRIPTIONS

CONVRT Convert

Command

e Long Form: CONVRT

e Short Form: CV

o Hex Form: AF
Parameter Type None

Description

The CONVRT command maps the 3D current point to the 2D current point.

Example CODE:

ASCII: CV
HEX: AF

RESULT: The 3D current point is mapped to 2D and placed in the 2D current
point.

Error Overflow

COMMAND DESCRIPTIONS

Communications Hexadecimal CX

Command

e Long Form: CX,,

e Short Form: CX,,

e Hex Form: 43 58 20 or D1
Parameter Type None

Description

The CX command sets the communication mode to hexadecimal. This command may be given
when in either ASCII mode or Hex mode. Note that the Hex and ASCII forms of this
command are identical.

Example CODE:

ASCII: CXy,
HEX: 43 68 20 OR Di

RESULT: The communication mode is set to hexadecimal.

Error None
See Also cA

COMMAND DESCRIPTIONS

DISTAN Distance

Command

e Long Form: DISTAN dist
e Short Form: DS dist
o Hex Form: Bi dist

Parameter Type
o dist = Real
Description

The DISTAN command sets the distance from the eye to the viewing reference point. This only
affects 3D drawing. The default distance is 500.

Example CODE:

ASCII: DS 1200
HEX: B1 BO 04 00 00

RESULT: Distance to viewing reference point is set to 1200.

Error None
See Also PROJCT

COMMAND DESCRIPTIONS

Distance Hither DISTH

Command

e Long Form: DISTH dist
e Short Form: DH dist
e Hex Form: A8 dist

Parameter Type
e dist = Real

Description

The DISTH command sets the distance from the viewing reference point to the hither clip
plane. When hither clipping is enabled, no points closer to the viewer than the hither plane
are displayed. The hither plane is parallel to the viewplane. Hither clipping affects only 3D
drawing.

Example CODE:

ASCII: DH -12.00
HEX: A8 F4 FF 00 00

RESULT: The hither plane is defined to be 12.00 units in front of the viewplane.
Error None
See Also CLIPH

COMMAND DESCRIPTIONS

DISTY Distance Yon

Command

e Long Form: DISTY dist
e Short Form: DY dist
o Hex Form: A9 dist

Parameter Type
o dist = Real
Description
The DISTY command sets the distance from the viewing reference point to the yon clip plane.

When yon clipping is enabled, no points farther from the viewer than the yon plane are
displayed. The yon plane is parallel to the viewplane. Yon clipping affects only 3D drawing.

Example CODE:

ASCII: DY 12.00
HEX: A9 0C 00 00 00

RESULT: The yon plane is defined to be 12.00 units behind the viewplane.

Error None
See Also cLIPY

COMMAND DESCRIPTIONS

Draw DRAW

Command

e Long Form: DRAW x y
e Short Form: D x y
e Hex Form: 28 x y

Parameter Type

e x = Real
e y = Real
Description

The DRAW command draws a line from the 2D current point to (x, y) and positions the 2D
current point at (x, y). Both the first and the last pixels of the line are drawn.

Example CODE:

ASCII: D 10.0 12.0
HEX: 28 0A 00 00 00 OC 00 00 00

RESULT: A line is drawn from the 2D current point to (10.0, 12.0).

Error Arithmetic overflow
See Also DRAWR, LINFUN, LINPAT. MOVE, MOVER

COMMAND DESCRIPTIONS

DRAW3 Draw in 3D

Command

e Long Form: DRAW3 x y 2z
e Short Form: D3 xy 2

e Hex Form: 2Axy z

Parameter Type

e x = Real

e y = Real

e z = Real
Description

The DRAW3 command draws a line from the 3D current point to (x, y, z) and moves the
current point to (x, y. z).

Example CODE:

ASCII: D3 5.0 10.0 12.0
HEX: 2A 05 00 00 00 OA 00 00 00 OC 00 0O 00

RESULT: A line is drawn from the 3D current point to (5.0, 10.0, 12.0).

Error Arithmetic overflow
See Also DRAWRS3, LINFUN, LINPAT, MOVE3, MOVER3

COMMAND DESCRIPTIONS

Draw Relative DRAWR

Command

e Long Form: DRAWR Ax Ay
e Short Form: DR Ax Ay
e Hex Form: 29 Ax Ay

Parameter Type

e Ax = Real
e Ay = Real
Description

The DRAWR command draws a line from the 2D current point to {{Ax, Ay) + 2D current
point}. The 2D current point is moved to the end of the line. Both the first and the last pixels
of the line are drawn.

Example CODE:

ASCII: DR 100.00 200.00
HEX: 29 64 00 00 00 C8 00 00 00

RESULT: A line is drawn from the 2D current point to {2D current point + (100.00, 200.00)}.

Error Arithmetic overflow
See Also DRAW, LINFUN, LINPAT, MOVE, MOVER

COMMAND DESCRIPTIONS

DRAWR3 Draw Relative in 3D

Command

e Long Form: DRAWR3 Ax Ay Az
e Short Form: DR3 Ax Ay Az
¢ Hex Form: 2B Ax Ay Az

Parameter Type

e Ax = Real

e Ay = Real

e Az = Real
Description

The DRAWR3 command draws a line from the 3D current point to
{(Ax. Ay, Az) + 3D current point} and moves the current point to the end of the line.

Example CODE:

ASCII: DR3 5.0 10.0 12.0
HEX: 2B 06 00 00 00 OA 00 00 00 OC 00 00 00

RESULT: A line is drawn from the 3D current point to {(5.0, 10.0, 12.0) + 3D cur-
rent point}.

Error Arithmetic overflow
See Also DRAWS3, LINFUN, LINPAT, MOVE3, MOVER3

COMMAND DESCRIPTIONS

Ellipse ELIPSE

Command

o Long Form: ELIPSE xradius yradius
e Short Form: EL xradius yradius

e Hex Form: 39 xradius yradius
Parameter Type

e xradius = Real
e yradius = Real

Description

The ELIPSE command draws a 2D ellipse centered on the 2D current point. Its x and y radii,
which are parallel to the screen’s x and y axes, are given by xradius and yradius. The ellipse

will be filled if drawn while the PRMFIL flag is set. This command does not affect the 2D
current point.

Example CODE:

ASCII: EL 32.00 128.00
HEX: 39 20 00 00 00 80 00 00 00

RESULT: An ellipse is drawn with x radius 32 and y radius 128.

Error Overflow
See Also AREAPT, LINFUN, LINPAT., PRMFIL

COMMAND DESCRIPTIONS

ERROR

Error Reporting

Command

e Long Form: ERROR flag
e Short Form: ER flag
e Hex Form: 60 flag

Parameter Type
e flag = Unsigned Int

Description

The ERROR command enables (flag = 1) or disables (flag = 0) error reporting. The current

value of flag can be read using a FLAGRD 38 command.

Example CODE:

ASCIL: ER O
HEX: 60 00

RESULT: Error reporting is disabled.

Error Value out of range.
See Also FLAGRD

34

COMMAND DESCRIPTIONS

Fill Mask

FILMSK

Command

e Long Form: FILMSK mask
e Short Form: FM mask

e Hex Form: EF mask
Parameter Type
e mask = Char

Description

The FILMSK command defines the area fill mask to be the value mask. When an area fill
command tests for a boundary index, pixel data is ANDed with this mask as well as MASK.

Default value is no mask.

Example CODE:

ASCII: FM 126
HEX: EF 7E

RESULT: Area fill mask is set to 126.

Error None
See Also AREA, AREABC, MASK

COMMAND DESCRIPTIONS

FLAGRD Flag Read

Command

e Long Form: FLAGRD flag
e Short Form: FRD flag
e Hex Form: 561 flag

Parameter Type
o flag = Char [1..48]

Description

The FLAGRD command places the current value of the flag specified by flag into the Data Out
register. Values are read back using the current communication mode, in the same format as
the instructions that wrote them. The values of flag are specified in the table on the following

page.

Example CODE:

ASCII: FRD 25
HEX: 51 19

RESULT: The amount of free memory is placed in the read back buffer.
Error No such flag
See Also RESETF

COMMAND DESCRIPTIONS

Flag Read FLAGRD

Flag Name Type of Value
1 AREAPT 16 Inis
2 CLIPH 1 Char
3 CLIPY 1 Char
4 COLOR 1 Char
6 DISTAN 1 Real
7 DISTH 1 Real
8 DISTY 1 Real
9 FILMSK 1 Char
10 LINFUN 1 Char
11 LINPAT 1 Int
12 MASK 1 Char
13 MDORG 3 Reals
14 2D current point 2 Reals
15 3D current point 3 Reals
16 PRMFIL 1 Char
17 PROJCT 1 Char
18 TANGLE 1 Int
19 TJUST 2 Chars
20 TSIZE 1 Real
21 VWPORT 4 Ints
22 VWRPT 3 Reals
23 WINDOW 4 Reals
24 | Transformed 3D current point 3 Reals
25 | Free memory (less than 64K) 1 Int
26 Current point of XHAIR 2 Ints
27 2D position of XHAIR 2 Reals
28 Screen Current Point 2 Ints
29 True free memory 1 Real *
30 Reserved

31 Reserved

32 TSTYLE 1 Char
33 TASPCT 1 Real
34 TCHROT 1Int
35 Reserved 1 Char
36 VDISP 2 Chars
37 PMASK 1 Int
38 ERROR 1 Char
39 DISPLAY 2 Ints and 2 Chars **
41 COLMOD 1 Char
42 BCOLOR 1 Char
43 Board Type, Revision # 2 Chars ***

* This value is treated as a double precision integer.

** The values are returned in the following order: Max Screen X, Max Screen Y, Refresh Rate in Hz, and
Interlace Flag (0 = non-interlaced, 1 = interlaced).

***Board Type = 6 for the QG-640.

COMMAND DESCRIPTIONS

FLOOD Flood

Command
e Long Form: FLOOD index

e Short Form: F index

e Hex Form: 07 index
Parameter Type
e index = Char

Description

The FLOOD command sets all the pixels in the defined viewport to the color specified by
index. The current color is not changed and the command is subject to MASK.
Example CODE:

ASCII: F 12
HEX: 07 ocC

RESULT: The rectangular area defined by the viewport is filled with color 12.

Error None
See Also CLEARS, MASK

COMMAND DESCRIPTIONS

Graphics Text Font Define GTDEF

Command

e Long Form: GTDEF ch n width array
e Short Form: GTD ch n width array
e Hex Form: 89 ch n width array

Parameter Type
e ch = Char

e n = Char
width = Char [1..12]

e array = n values

Description

The GTDEF command defines the character given by ch in the user font as a series of vector
plots stored in the n values of array. The width of the character cell is given by width and the
height is fixed at 12. The starting point for the definition is at (0,3) of the character cell. Each
value in the array consists of three parts: the pen action, the length, and the direction. The
pen action may be move (pen action = 0) or write (pen action = 1). The length may take a
value from 1 to 8. The direction can be from 0 to 7 and is summarized in the diagram below:

3 2 1
Nt/

4 -0
< LN

5 6 7

Each of these values is specified by a separate number when in ASCII mode. In Hex mode, the
values are packed into a single byte with the three low bits containing the direction, the next
three bits containing the length less one, and the seventh bit containing the pen action. The
format of the vector parameter is shown in the following diagram:

COMMAND DESCRIPTIONS

GTDEF Graphics Text Font Define

76543210 BIT
L1 [1 111

L Direction code (see diagram)
Length minus 1
1 = pen down, 0 = pen up
Don’t care

Notes :

e Any previous definition is lost. To reset a character to its default value, specify n as 00.

e Specifying characters using this command (rather than TDEFIN) will allow the characters
to be enlarged and rotated.

e If you plan to define an entire font, it is faster to reset all previous characters starting by
the last character (255, 254, 253, ..., 0) and then define the character font starting at 0, 1,
2, ..., 255.

Example CODE:

ASCII: GTD 6578172
121
130
127
176
042

174
HEX: 89 41 07 08 72 49 5O 4F 76 1A 74

RESULT: The letter “A” is defined.
Error Not enough memory, Bad definition.

COMMAND DESCRIPTIONS

Image Read IMAGER

Command

e Long Form: IMAGER line x1 x2
e Short Form: IR line x1 x2

o Hex Form: D8 line x1 x2
Parameter Type

e line = Unsigned Int [0..479]
e x1 = Unsigned Int [0..639]
e x2 = Unsigned Int [0..639]

Description

The IMAGER command reads pixel values from the image currently being displayed and sends
these values to the Read Back Buffer. Parameters line, x1 and x2 are measured in pixels from
the lower left corner of the screen. When the communications mode is set to ASCII, the data
is returned in the format of an IMAGEW command, with pixels separated by commas, and a
prefix of IW line, x1, x2, x, x, ...(CR). Where IW is a header identifying the string as a result of
an IMAGER command, line is the line number, x1 and x2 specify a line segment, the x’s
represent ASCII decimal color indices separated by commas, and the carriage return (CR)
character ends the string.

Example CODE:

ASCII: IR 50 0 256
HEX: D8 32 00 00 00 00 01

RESULT: The values of pixels 0 through 256 from line 50 are sent to the Data
Out Register.

Error Value out of range.
See Also CA, CX, EXPAND, IMAGEW

COMMAND DESCRIPTIONS

IMAGEW Image Write

Command

e Long Form: IMAGEW line x1 x2 data
e Short Form: IW line x1 x2 data
e Hex Form: D9 line x1 x2 data

Parameter Type

e line = Unsigned Int [0..1023] or [0..479] depending on the state of the expand flag.
e x1 = Unsigned Int [0..2043] or [0..639] depending on the state of the expand flag.
e x2 = Unsigned Int [0..2043] or [0..639] depending on the state of the expand flag.

e data = ASCIL string of Chars
Hex: run length encoded string

Description

The IMAGEW command writes pixel values to the image currently being displayed.
Parameters line, x1, and x2 are measured in pixels from the lower left corner of the screen.
When the communication mode is set to ASCII, the values of the pixels are expected to be
ASCII numbers separated by blanks. When the communication mode is set to Hex, the input
is expected to be in run-length encoded format.

In run length encoded form, the user sends either byte pairs or a count and a string of bytes.
When the high bit of the first byte is not set, a byte pair is expected: the first byte represents
the count less one, the second byte is the pixel value to be repeated count times. If the high
bit is set, then the first byte is the length less one of the byte string which follows. In both
cases, the count and the length only use the low seven bits for the value. See Section 4.10 for
more information on run-length encoding.

Example CODE:

ASCIL: IW 5001000000000000
HEX: D9 32 00 00 00 OA 00 00 00

RESULT: The values of pixels 0 through 10 of line 50 are set to 0.

Error Value out of range.
See Also CA, CX, IMAGER

COMMAND DESCRIPTIONS

Line Function LINFUN

Command

e Long Form: LINFUN function
e Short Form: LF function

e Hex Form: EB function
Parameter Type
e function = Char [0..4]

Description

The LINFUN command sets the drawing function to the function specified by the following
table:

function | Mode Name
1 Complement
2 XOR
3 OR
4 AND

When Replace Mode is selected, drawing is done in the current color. Choosing Complement
Mode will complement each pixel as it is drawn — the current color will be ignored. The
remaining modes perform the specified logic operation between the pixel and the current color.
Drawing is subject to MASK.

Example CODE:

ASCIL: LF 0
HEX: EB 00

RESULT: Drawing is performed in the current color.

Error None
See Also MASK

COMMAND DESCRIPTIONS

LINPAT Line Pattern

Command

o Long Form: LINPAT pattern
e Short Form: LP pattern
e Hex Form: EA pattern

Parameter Type
e pattern = Unsigned Int
Description

The LINPAT command sets the line drawing pattern mask to pattern. Each of the 16 bits in
pattern represents a pixel (two pixels if EXPAND is 1) in subsequently drawn lines. Note that
the first bit drawn is the high order bit. Pixels that are where the mask is set to 1 are changed
to the current color; where the mask is set to 0, the pattern is set to the background color
depending on the state of COLMOD. The pattern is repeated along the entire length of the line
drawn when using one of the following commands (and PRMFIL is not set, in the case of closed
figures):

ARC CIRCLE DRAW DRAWR
DRAW3 DRAWR3 ELIPSE POLY
POLYR POLY3 POLYR3 RECT
RECTR SECTOR
Example CODE:
ASCIL: LP 255
HEX: EA FF 00

RESULT: Dashed lines are drawn when the above commands are used.

Error None
See Also EXPAND, LINFUN, PRMFIL

COMMAND DESCRIPTIONS

Lookup Table LUT

Command

e Long Form: LUT indexr g b
e Short Form: L indexr g b
e Hex Form: EE indexrgb

Parameter Type

e index = Char

e r = Char [0..15]
e g = Char [0..15]
e b = Char [0..15]

Description

The LUT command loads the three RGB intensity values into the LUT entry specified by
index. The values sent by this command (residing in bits O through 3) are loaded into the four
high bits (bits 4 through 7) of the lookup table. This process converts the LUT values to LUTX
values by loading bit 0 to bit 4, bit 1 to bit 5, bit 2 to bit 6, and bit 3 to bit 7. LUTX is the
preferred form of the command.

Example CODE:

ASCII: L 15248
HEX: EE OF 02 04 08

RESULT: LUT entry 15isset tor=2,g=4and b = 8.

Error Out of range
See Also LUTINT, LUTRD, LUTSAV, LUTSTO, LUTX, LUTXRD, VDISP

COMMAND DESCRIPTIONS

LUTINT Lookup Table Initialization

Command

e Long Form: LUTINT state
e Short Form: LI state

e Hex Form: EC state
Parameter Type
e state = Char

Description

The LUTINT command sets the LUT to the state specified by the following table:

State | Description
0 Color cone distribution
1 Foreground /background colors in the
low 4 bits of a value code will be visible
only if the high 4 bits are 0 (or invisible)
2 Value codes interpreted as RRG GG BBB
3 Value codes interpreted as RRR G G BB B
4 Value codes interpreted as RRRG G G BB
5 6-level RGB
253 | Load LUT from LUT storage areas 0 and 1
alternately
254 | Load LUT from LUT storage area 1
255 | Load LUT from LUT storage area 0

Example CODE:

ASCII: LI 255
HEX: EC FF

RESULT: LUT is loaded from LUT storage area 0.

Error Value out of range.
See Also LUT, LUTRD, LUTSAV, LUTSTO

COMMAND DESCRIPTIONS

Lookup Table Read LUTRD

Command

e Long Form: LUTRD index
o Short Form: LRD index

e Hex Form: 50 index
Parameter Type

e index = Char
Description

The LUTRD command reads the red, green, and blue values of the LUT entry specified by
index and sends them to the output buffer. In ASCII mode, the three values are ASCII
numbers separated by commas and terminated by a carriage return. In Hex mode, the LUT
values are sent in three bytes, one byte for each color. This command reads back the high four
bits (bits 4 through 7) of the LUT entry. An entry set with the LUTX command reads back
the high four bits of the eight-bit value, and loads them into the low four bits (bits 0 through
3) of the lookup table. The order in which the values are loaded are: bit 7 to bit 3, bit 6 to bit
2, bit 5 to bit 1, and bit 4 to bit 0.

Example CODE:

ASCII: LRD 25
HEX: 60 19

RESULT: Values of LUT entry 19 are returned.

Error None
See Also CA, CX, LUT, LUTINT, LUTSAV, LUTSTO, VDISP

COMMAND DESCRIPTIONS

LUTSAV Lookup Table Save

Command

e Long Form: LUTSAV
e Short Form: LS
e Hex Form: ED

Parameter Type None

Description

The LUTSAV command saves the current lookup table in storage area 0. These values may be
reloaded into the LUT using a LUTINT 255 command. Each LUTSAV command overwrites any
LUT data previously saved. Note that LUTSAV is identical to the LUTSTO 0 command.
Example CODE:

ASCII: LS
HEX: ED

RESULT: LUT data is stored in LUT storage area O.

Error None
See Also LUT, LUTINT, LUTRD, LUTSTO

COMMAND DESCRIPTIONS

LUT Store LUTSTO

Command

e Long Form: LUTSTO flag
e Short Form: LST flag
e Hex Form: C9 flag

Parameter Type
e flag = Char [0..1]
Description

The LUTSTO command saves the current lookup table in one of two user areas. Note that
LUTSAV and LUTSTO 0 are identical. Table 0 can be recalled by LUTINT 255 and Table 1 by

LUTINT 254. Each LUTSTO command overwrites any LUT data previously saved in the
specified user area.

Example CODE:

ASCII: LST 1
HEX: c9 01

RESULT: The current LUT values are stored in Table 1.

Error None
See Also LUTINT, LUTSAV

COMMAND DESCRIPTIONS

LUTX Lookup Table — 8 Bit

Command

e Long Form: LUTX rghb
e Short Form: LXrghb
e Hex Form: E6indexrgb

Parameter Type

e index = Char

e r = Char
e g = Char
e b = Char

Description

The LUTX command loads the three eight-bit RGB intensity values into the lookup table entry
specified by index. The values sent to the digital-to-analog converter are dependent on the
resolution of the converter.

Example coDE:

ASCII: LX 152438
HEX: E6 OF 02 04 08

RESULT: Lookup table entry 15 isset tor = 2, g = 4, b = 8.

Error None
See Also LUTINT, LUTRD, LUTSAV, LUTSTO, LUTXRD

COMMAND DESCRIPTIONS

Lookup Table Read — 8 Bit LUTXRD

Command

e Long Form: LUTXRD index
e Short Form: LXR index

e Hex Form: 53 index
Parameter Type

e index = Char
Description

The LUTXRD command reads the red, green, and blue values of the LUT entry specified by
index and sends them to the output buffer. In ASCII mode, the three values are ASCII
numbers separated by commas and terminated by a carriage return. In Hex mode, the LUT
values are sent in three bytes, one byte for each color. Each LUT value is in the range 0 to 255.

Example CODE:

ASCII: LXR 25
HEX: 53 19

RESULT: Values of LUT entry 19 are returned.

Error None
See Also CA, CX, LUTX, LUTINT, LUTSAV, LUTSTO

COMMAND DESCRIPTIONS

MASK Mask

Command

e Long Form: MASK planemask
e Short Form: MK planemask

e Hex Form: E8 planemask

Parameter Type

e planemask = Char

Description

The MASK command sets the 8-bit read/write pixel data bit plane mask to the value
contained in planemask. Each bit in planemask will enable the corresponding bit plane in the
video buffer to be read or written. Zeroes written to all eight bits will prevent data from being
written to any pixel data bit plane and will cause 0’s to be returned when pixel data is read.

Example CODE:

ASCII: MK 255
HEX: E8 FF

RESULT: All bit planes can be read or written.

Error None

COMMAND DESCRIPTIONS

Matrix Read MATXRD

Command

e Long Form: MATXRD matrix
e Short Form: MRD matrix

e Hex Form: 52 matrix
Parameter Type
e matrix = Char [1..2]

Description

The MATXRD command copies the contents of the matrix specified by matrix to the output
buffer. When matrix is 1, the contents of the 3D modelling transformation matrix are copied,
when matrix is 2 the contents of the 3D viewing transformation matrix are copied. In ASCII
mode, the matrix elements are written in four lines, each of which has four entries separated
by commas and terminated by a carriage return. In Hex mode, each matrix element is written
as four bytes with the following reading order.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

Example CODE:

ASCII: MRD 2
HEX: 62 02

RESULT: The contents of the viewing transformation matrix are copied to the
output buffer.

Error Value out of range.
See Also CA, CX

COMMAND DESCRIPTIONS

MDIDEN Modelling Identity

Command

e Long Form: MDIDEN
e Short Form: MDI
e Hex Form: 90

Parameter Type None
Description

The MDIDEN command sets the modelling transformation matrix to the identity matrix.

Example CODE:

ASCII: MDI
HEX: 90

RESULT: The modelling transformation matrix is set to the identity matrix.

Error None
See Also DRAWR3, MDMATX, MOVE3, MOVER3, POINT3, POLY3, POLYR3

COMMAND DESCRIPTIONS

Modelling Matrix MDMATX

Command

e Long Form: MDMATX array
e Short Form: MDM array

e Hex Form: 97 array
Parameter Type
e array = 16 Reals

Description
The MDMATX command loads the modelling matrix directly from the data in array.

Example CODE:

ASCII: MDM 36.25 12.00 128 2
0 36.75 100 O
72.5 0 25 0
10025 O 0 o0
HEX: 97 24 00 00 40 OC 00 00 00
80 00 00 00 02 00 00 OO
00 00 00 00 24 00 00 CO
64 00 00 00 00 00 00 00
62 00 00 80 00 00 OO 00
02 00 00 80 00 00 00 00
64 00 00 40 00 00 00 00
00 00 00 00 00 00 00 00

RESULT: The modelling matrix is set to the above data.

Error Arithmetic overflow

See Also MDORG, MDROTX, MDROTY, MDROTZ, MATXRD

COMMAND DESCRIPTIONS

MDORG Modelling Origin

Command

e Long Form: MDORG 0x Oy 0z
e Short Form: MDO 0x Oy 0z
e Hex Form: 91 Ox Oy 0z

Parameter Type

e Ox = Real
e Oy = Real
e 0z = Real

Description

The MDORG command defines the origin section of the modelling transformation matrix used
in modelling transformation scaling and rotating.

Example cCODE:

ASCII: MDO 0.0 12.5 1.0
HEX: 91 00 00 00 00 OC 00 00 80 01 00 00 00

RESULT: Origin is defined as x = 0,y = 12.5, and z = 1.

Error None
See Also MDROTX, MDROTY. MDROTZ, MATXRD

COMMAND DESCRIPTIONS

Modelling Rotate X Axis MDROTX

Command

e Long Form: MDROTX angle
e Short Form: MDX angle

o Hex Form: 93 angle
Parameter Type
e angle = Int

Description
The MDROTX command rotates the object about the x axis by angle.

Example CODE:

ASCII: MDX 45
HEX: 93 2D 00

RESULT: The object is rotated by 45° about the x axis.

Error Arithmetic overflow
See Also MDMATX, MDORG, MDROTY, MDROTZ

COMMAND DESCRIPTIONS

MDROTY Modelling Rotate Y Axis

Command

e Long Form: MDROTY angle
e Short Form: MDY angle

e Hex Form: 94 angle
Parameter Type
e angle = Int

Description
The MDROTY command rotates the object about the y axis by angle.

Example CODE:

ASCII: MDY 45
HEX: 94 2D 00

RESULT: The object is rotated by 45° about the y axis.

Error Arithmetic overflow
See Also MDMATX, MDORG, MDROTX, MDROTZ

COMMAND DESCRIPTIONS

Modelling Rotate Z Axis MDROTZ

Command

e Long Form: MDROTZ angle
e Short Form: MDZ angle

e Hex Form: 95 angle
Parameter Type
e angle = Int

Description
The MDROTZ command rotates the object about the z axis by angle.

Example CODE:

ASCII: MDZ 45
HEX: 95 2D 00

RESULT: The object is rotated by 45° about the z axis.

Error Arithmetic overflow
See Also MDMATX, MDORG, MDROTX, MDROTY

COMMAND DESCRIPTIONS

MDSCAL

Modelling Scale

Command

e Long Form: MDSCAL sx sy sz
o Short Form: MDS sx sy sz

e Hex Form: 92 sx sy sz

Parameter Type

e sx = Real

e sy = Real

e sz = Real
Description

The MDSCAL command changes the scaling component of the modelling matrix for 3D

drawing.

Example CODE:
ASCIL: MDS 2 4 8

HEX: 92 02 00 00 00 04 00 00 00 08 00 00 00

RESULT: Scaling component is set to (2, 4, 8).

Error Arithmetic overflow
See Also MDMATX

60

COMMAND DESCRIPTIONS

Modelling Translation

MDTRAN

Command

e Long Form: MDTRAN tx ty tz
e Short Form: MDT tx ty tz
o Hex Form: 96 tx ty tz

Parameter Type

e tx = Real

e ty = Real

e tz = Real
Description

The MDTRAN command moves the translation component of the modelling matrix for 3D

drawing by (tx, ty, tz).

Example CODE:
ASCIL: MDT 2 4 8

HEX: 96 02 00 00 00 04 00 00 00 08 00 00 00
RESULT: Translation component is set to (2, 4, 8).

Error Arithmetic overflow
See Also MDMATX

COMMAND DESCRIPTIONS

MOVE Move

Command

e Long Form: MOVE x y
o Short Form: M x y
e Hex Form: 10 x y

Parameter Type

e x = Real
o y= Real
Description

The MOVE command moves the 2D current point to (x, y).

Example CODE:

ASCII: M 10.0 12.0
HEX: 10 OA 00 00 00 OC 00 00 00

RESULT: The current point is moved to (10.0, 12.0).

Error Arithmetic overflow
See Also MOVER

COMMAND DESCRIPTIONS

Move in 3D MOVE3

Command

e Long Form: MOVE3 xy z
e Short Form: M3 xy z

e Hex Form: 12 xy 2z

Parameter Type

e x = Real

e y = Real

e z = Real
Description

The MOVE3 command moves the 3D current point to (x, y, 2).

Example CODE:

ASCII: M3 5.0 10.0 12.0
HEX: 12 05 00 00 00 0OA 00 00 00 OC 00 00 00

RESULT: The 3D current point is moved to (5.0, 10.0, 12.0).

Error Arithmetic overflow

See Also MOVER3

COMMAND DESCRIPTIONS

MOVER Move Relative

Command

e Long Form: MOVER Ax Ay
e Short Form: MR Ax Ay
e Hex Form: 11 Ax Ay

Parameter Type

e Ax = Real
o Ay = Real

Description
The MOVER command moves the 2D current point to {Ax, Ay) + 2D current point}.

Example CODE:

ASCII: MR 10.0 12.0
HEX: 11 OA 00 00 00 OC 00 00 00

RESULT: The 2D current point is moved to
{(10.0, 12.0)+ 2D current point}.

Error Arithmetic overflow
See Also MOVE

COMMAND DESCRIPTIONS

Move Relative in 3D MOVER3

Command

e Long Form: MOVER3 Ax Ay Az
e Short Form: MR3 Ax Ay Az
e Hex Form: 13 Ax Ay Az

Parameter Type

e Ax = Real

e Ay = Real

e Az = Real
Description

The MOVER3 command moves the 3D current point by the displacement:

(Ax, Ay, Az).

Example CODE:

ASCII: MR3 5.0 10.0 12.0
HEX: 13 05 00 00 00 OA 00 00 00 OC 00 00 00

RESULT: The 3D current point is moved to
{(5.0, 10.0, 12.0) + 3D current point}.

Error Arithmetic overflow

See Also MOVE3

COMMAND DESCRIPTIONS

NOOP No Operation

Command

e Long Form: NOOP
e Short Form: NOP
e Hex Form: 01

Parameter Type None

Description
The NOOP command does nothing. It can be used to hold a byte when editing command lists.

Example CODE:

ASCII: NOP
HEX: o1

RESULT: Nothing.

Error None
See Also cLMOD

COMMAND DESCRIPTIONS

Poly Draw PDRAW

Command

e Long Form: PDRAW x3, ¥1. X2, ¥2. *** Xn. ¥n
e Short Form: PD xi, y1. X2. ¥2. ***. Xn. ¥n

e Hex Form: FF X1, ¥1. X2. ¥2. *** Xn. ¥n

Parameter Type

e x; = Int
e y; = Int
Description

The PDRAW command executes a stream of high speed screen moves and vector draws. This
command operates in screen mode and consequently affects the 2D current point. The high bit
of the x and y coordinates are used as flags. If the high bit of x; is set to 1, then the command
stream is terminated with the it* coordinate pair. Otherwise the coordinate pair is accepted as
a move or draw command. The high bit of the y coordinate is used to distinguish between a
current point move (high bit set to 1) and a vector draw (high bit set to 0). The PDRAW
command allows the highest drawing speeds to be attained.

Note: An easy way to calculate the value of a decimal number with the high bit set is:
D,et = D, — 32768. For example, to move to (125, 340), use the x = 125 and
= 340 — 32768 = -32428.

Example CODE:

ASCII: PD 96 -3267200-10
HEX: FF 60 00 60 80 00 00 00 00 FF FF 00 00

RESULT: The current point will be moved to (96, 96) and a vector will be drawn
to (0, 0).

Error None

COMMAND DESCRIPTIONS

PMASK Pixel Mask

Command

e Long Form: PMASK bitmask
e Short Form: PM bitmask
e Hex Form: D6 bitmask

Parameter Type
e bitmask = Char

Description

This command sets the 8-bit output mask to the value contained in bitmask. Each 1 in bitmask
will enable the corresponding bit plane in the frame buffer to be sent to the output lookup
table. Zeroes written to all eight bits will cause data to be sent as zeroes to the output lookup
table. The current value of PMASK can be read using a FLAGRD 37 command.

Example CODE:

ASCIIL: PM 255
HEX: D6 FF

RESULT: All bits can be read or written.

Error None
See Also FLAGRD

COMMAND DESCRIPTIONS

Point POINT

Command

e Long Form: POINT

e Short Form: PT

e Hex Form: 08
Parameter Type None
Description

The POINT command sets the pixel located at the 2D current point to the current color. This
command does not move the 2D current point.

Example CODE:

ASCIL: PT
HEX: 08

RESULT: The pixel at the 2D current point is set to the current color.

Error None
See Also LINFUN, LINPAT

COMMAND DESCRIPTIONS

POINT3 Point in 3D

Command

e Long Form: POINT3

e Short Form: PT3

e Hex Form: 09
Parameter Type None
Description

The POINT3 command sets the pixel located at the 3D current point to the current color.
This command does not move the 3D current point.

Example CODE:

ASCIIL: PT3
HEX: 09

RESULT: The pixel at the 3D current point is set to the current color.

Error None
See Also LINFUN, LINPAT

COMMAND DESCRIPTIONS

Polygon POLY

Command

e Long Form: POLY n x; y1 X2 y2 *** Xn ¥n
e Short Form: P n x; y1 X2 Y2 *** Xn ¥n
e Hex Form: 30 n x; y1 X2 Y2 *** Xn ¥n

Parameter Type

e n = Char

e x; = Real

e y; = Real
Description

The POLY command draws a closed polygon in two dimensions. n is the number of vertices
and x;, y;) the coordinates of the vertices. The polygon will be filled if the PRMFIL flag is set
and subject to the LINPAT if PRMFIL is not set. The two dimensional current point will not be
changed.

Example CODE:

ASCII: P40016016 16 0 16
HEX: 30 04 00 00 00 00 00 00 00 00
10 00 00 00 00 00 000 10 00
00 00 10 00 00 00 00 00 00
00 10 00 00 00
RESULT: A 16x 16 square is drawn.

Error Not enough memory, arithmetic overflow.

See Also AREAPT. LINFUN, LINPAT, POLYR, PRMFIL

COMMAND DESCRIPTIONS

POLY3 Polygon in 3D

Command

e Long Form: POLY3 n x; ¥1 21 *** Xn Yn Zn
e Short Form: P3 n x; y1 21 *** Xp ¥Yn Zn

e Hex Form: 32 n x; y1 23 *** Xy ¥ 21

Parameter Type

e n = Char
e x; = Real
e y; = Real
e 2z; = Real
Description

The POLY3 command draws a closed polygon where n is the number of vertices and (x;, y;, z;)
are the coordinates of the vertices. The polygon is filled if the PRMFIL flag is set and subject
to the LINPAT if PRMFIL is not set. The 3D current point is not changed.

Example CODE:

ASCI: P3400016001601600 16

HEX: 32 04 00 00 00 00 00 00 00 00
00 00 00 00 10 00 00 00 00
00 00 00 00 00 00 00 10 00
00 00 00 00 00 00 10 00 00
00 00 00 00 00 00 00 00 00
10 00 00 00

RESULT: A 16x 16 square is drawn along the xz plane.

Error Not enough memory, arithmetic overflow.

See Also AREAPT, LINFUN, LINPAT. POLYR3, PRMFIL

COMMAND DESCRIPTIONS

Polygon Relative POLYR

Command

e Long Form: POLYR n Ax; Ay; Axy Ays -+ Ax, Ay,
e Short Form: PR n Ax; Ay; Axz Ay -+ Ax, Ay,
e Hex Form: 31 n Ax; Ay; Axg Ayz «-- Ax, Ay,

Parameter Type

e n = Char

e Ax; = Real

e Ay; = Real
Description

The POLYR command draws a closed polygon in 2D. Parameter n is the number of vertices
and Ax;, Ay;) are the displacements from the current point of the vertices. The polygon will
be filled if the PRMFIL flag is set and subject to the LINPAT if PRMFIL is not set. The 2D

current point will not be changed.

Example CODE:

ASCII: PR40016 016 16 0 16

HEX: 31 04 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 10
00 00 OO 10 00 00 00 00 00
00 00 10 00 00 00

RESULT: A 16x 16 square is drawn with the lower left corner on the current
point.

Error Not enough memory, arithmetic overflow.
See Also AREAPT, LINFUN, LINPAT, POLY. PRMFIL

ot
|

=3

w

COMMAND DESCRIPTIONS

POLYR3 Polygon Relative in 3D

Command

e Long Form: POLYR3 n Ax; Ay; Az -++ Ax,, Ay, Az,
e Short Form: PR3 n Ax; Ay; Az; --- Ax, Ay, Az,
e Hex Form: 33 n Ax; Ay; Az --- Ax, Ay, Az,

Parameter Type

e n = Char

o Ax; = Real

L] Ay,- = Real

o Az; = Real
Description

The POLYR3 command draws a closed polygon where n is the number of vertices and

(Ax;, Ay;, Az;) are the displacements from the current point of the vertices. The polygon is
filled if the PRMFIL flag is set and subject to LINPAT if PRMFIL is not set. The 3D current
point is not changed.

Example CODE:

ASCII: PR340001600160 16 00 16

HEX: 33 04 00 00 00 00 00 00 00 00
00 00 00 00 10 00 00 00 00
00 00 00 00 00 00 00 10 00
00 00 00 00 00 00 10 00 00
00 00 00 00 00 00 00 00 10
00 00 00

RESULT: A 16X 16 square is drawn along the xz plane with the starting point
being the current point.

Error Not enough memory, arithmetic overflow.

See Also AREAPT, LINFUN, LINPAT, POLY3, PRMFIL

COMMAND DESCRIPTIONS

Primitive Fill PRMFIL

Command

e Long Form: PRMFIL flag
e Short Form: PF flag
e Hex Form: E9 flag

Parameter Type
e flag = Char [0..1]

Description

The PRMFIL command sets the primitive fill flag to flag. When PRMFIL is set to 0, closed
figures are drawn in outline only; when PRMFIL is set to 1, closed figures are filled with the
current color in the current area pattern. PRMFIL affects the following commands:

CIRCLE ELIPSE POLY POLYR
POLY3 POLYR3 RECT RECTR
SECTOR SCIRC SELIPS SPOLY
SPOLYR SRECT SRECTR SSECT

Example CODE:

ASCIL: PF O
HEX: E9 00

RESULT: Closed figures are drawn in outline only.

Error None
See Also AREAPT, BCOLOR, COLOR, COLMOD

COMMAND DESCRIPTIONS

PROJCT Projection

Command

e Long Form: PROJCT angle
e Short Form: PRO angle

e Hex Form: BO angle
Parameter Type
e angle = Int [0..179]

Description

The PROJCT command sets the viewing angle used in 3D to 2D transformations. When angle
is 0%, an orthogonal projection is produced; otherwise, a perspective projection is produced.
The default is 60°.

Example CODE:

ASCII: PRO O
HEX: BO 00 00

RESULT: Orthogonal projections are produced.

Error Value out of range, arithmetic overflow.

See Also DISTAN

COMMAND DESCRIPTIONS

Raster Operations RASTOP

Command

e Long Form: RASTOP oper srcdir destdir xg x; Yo y1 X0 ¥'0
e Short Form: ROP oper srcdir destdir xg x; yo y1 X'0 ¥'o
e Hex Form: DA oper srcdir destdir xg X3 Yo ¥1 X'0 ¥'o

Parameter Type

e oper = Char [0..15]

e srcdir = Char {0..7]

destdir = Char [0..7]

e X9 = Unsigned Int [0..639] or [0..2047] depending on the state of the expand flag
e x; = Unsigned Int [0..639] or [0..2047] depending on the state of the expand flag
¢ yo = Unsigned Int [0..479] or [0..1023] depending on the state of the expand flag
¢ y1 = Unsigned Int [0..479] or [0..1023] depending on the state of the expand flag
e x'¢ = Unsigned Int [0..639] or [0..2047] depending on the state of the expand flag
¢ y'o = Unsigned Int [0..479] or [0..1023] depending on the state of the expand flag

Description

The RASTOP command copies a rectangular area of the screen space, with the lower left corner
(%05 yo) and upper right corner (xi, y1) (specified in pixels), to another area of the screen space
starting at the lower left corner (x'g, y'o). The corners are included in the region. All bit
planes are copied (subject to normal masking as specified by the MASK command). If the
rectangles overlap, the user must select appropriate major and minor directions to ensure that
the area is copied properly. The raster operation function is selected according to the following
table and performed on a pixel by pixel basis on the source and the destination regions.

Raster Operation Functions
Function | Operation | Mode Name
0 D=S Copy
1 D=S|D OR
2 D=S&D AND
3 D=S-"D XOR

The direction of scanning of the source (input) region is specified by srcdir; the direction of
scanning of the destination (output) is specified by destdir. Both are selected using the
following table:

-3
-3

COMMAND DESCRIPTIONS

RASTOP

Raster Operations

Scanning Direction

direction

Major Direction

Minor Direction

0

DO s | OO

<|=l<= (4

4Ll

If the source and the destination scanning directions are both equal to each other and are
equal to 0, 1, 2, or 3, the raster operation will be able to use a special mode that greatly

increases its speed.

Example CODE:

ASCII: ROP 0 0 0 320 639 24047900

HEX: DA 00 00 00 40 01 7F 02 FO 00 DF
01 00 00 00 00

RESULT: The upper right side of the screen is duplicated at the lower left.

Error Invalid operation, Invalid direction, Will not fit on screen.

COMMAND DESCRIPTIONS

Raster Read RASTRD

Command

e Long Form: RASTRD dir x¢ x; yo ¥1
e Short Form: RRD dir xg x3 Yo ¥1
e Hex Form: DB dir xg X1 Yo Y1

Parameter Type

dir = Char [0..7]

xo = Unsigned Int [0..639]
x; = Unsigned Int [0..639]
Yo = Unsigned Int [0..479]
y1 = Unsigned Int [0..479]

Description

The RASTRD command copies a rectangular area of the screen, with corners {x.yo} and
{x1.y1} to the output port.

The corners of the area, specified in pixels, are included in the region and all bit planes are
copied (subject to normal masking as specified by the mask command). The coordinates
specified cannot exceed the current screen size.

This command will transfer (x;—xo + 1) X (y1—yo + 1) bytes. Until all data has been
transferred, no commands will be interpreted by the QG-640. To abort an incomplete
RASTRD, issue a cold reset by writing a 1 to the Cold Reset Flag.

COMMAND DESCRIPTIONS

RASTRD Raster Read

The direction of scanning the region is specified according to the following table:

Scanning Direction
Direction | Major Direction | Minor Direction
0 = T
1 = !
2 <= 1
3 <<= 1

Notes:

e On revision level 1 boards and up, the data read back with the RASTRD command is in
hex bytes regardless of the communications mode used.

¢ During and following the processing of a RASTRD command, the value of the Error Flag
bit in the Status Register becomes undefined. The Error Flag bit only assumes a significant
value the next time the Data Out Register is written to. Therefore, it is also essential to
read the value of the Data Out Register Full bit of the Status Register when interpreting
the Error Flag bit.

Example CODE:

ASCII: RRD 00 511 0 511
HEX: DB 00 00 00 FF 01 00 00 FF 01

RESULT: Entire screen is read when 512 x 512 mode.

Error Value out of range.

See Also rastwr

COMMAND DESCRIPTIONS

Raster Write

RASTWR

Command

e Long Form: RASTWR oper dir xo X3 Yo ¥1
e Short Form: RWR oper dir xg x;1 Yo ¥1

e Hex Form: DC oper dir xo X3 Yo Y1

Parameter Type oper = Char [0..3]
dir = Char [0..7)

%o = Unsigned Int [0..639)
x; = Unsigned Int [0..639)
yo = Unsigned Int [0..479)
y1 = Unsigned Int [0..479]

Description

The RASTWR command copies a rectangular area of the screen, with corners {xq,yo} and

{x1,y1} from the command FIFO.

The corners of the area, specified in pixels, are included in the region. All bit planes are copied
(subject to normal masking as specified by the MASK command). The specified coordinates

cannot exceed the current screen size.

The pixel combination operation performed (between old and new pixels) is specified by oper
using the following table. Operation 0 will not use the old pixels, but will directly copy new

pixel data into the screen memory.

Raster Write Function
Oper. Operation

0 replace

1 or (V)

2 and (A)

3 xor (@)

Note that existing pixels are read using MASK.

This command will transfer (x1—xo + 1) X (y1—yo + 1) bytes. Until this data has been
transferred, no commands will be interpreted by the QG-640. To abort an incomplete

RASTWR, issue a cold reset.

COMMAND DESCRIPTIONS

RASTWR Raster Write

The direction of scanning the region is specified according to the following table:

Scanning Direction
dir | Major Direction | Minor Direction
0 = 1
1* = l
2* <= T
3* <<= 1

* Applicable only for oper = 0
Notes:

¢ On revision level 1 boards and up, the pixel data sent by the Host must be in hex only.
Therefore, in ASCII communications mode (see example below), “ RWR. 0 0 0 639 0 479
” must be sent in ASCII, followed by 640x480 hex bytes.

e During and following the processing of a RASTWR command, the value of the Error Flag
bit in the Status register becomes undefined. The Error Flag bit will only assume a
significant value the next time the Data Out register is written to. Therefore, it is also
essential to read the value of the Data Out Register Full bit of the Status register when
interpreting the Error Flag bit.

Example CODE:

CODE:

ASCII: RWR 0 0 0 639 0 479
HEX: DC 00 00 00 00 7F 02 00 00 DF 01

RESULT: The entire screen is written from bus memory when in 640x480 mode.

Error Value out of range.
See Also RASTRD

COMMAND DESCRIPTIONS

Rubber Band Cross Hair RBAND

Command

e Long Form: RBAND flag
e Short Form: RB flag
e Hex Form: Ei flag

Parameter Type
o flag = Char [0..2]

Description

The RBAND command enables the rubber band vector (flag = 1), the rubber band rectangle
(flag = 2), or disables both (flag = 0).

The cursor coordinates, at the time when either the rubber band vector or the rubber band
rectangle is enabled, becomes the anchor point. When a new set of cursor coordinates is
entered, a vector or a rectangle is drawn from the anchor to the new coordinates in
complement mode. As the coordinates are changed the vector or rectangle is erased and
redrawn from the anchor to the new cursor coordinates. When the rubber band is disabled,
the vector or rectangle last drawn is erased and the cursor coordinate is left at the last
coordinate pair entered.

When first enabled, the anchor and the cursor coordinate will be on the same point and the
rubber band vector or rectangle will be drawn as a point.

Example CODE:

ASCII: RB 2
HEX: E1 02

RESULT: The rubber band rectangle is enabled.

Error Value out of range
See Also XHAIR, XMOVE, XRECT

COMMAND DESCRIPTIONS

RDEFIN Raster Font Define

Command

e Long Form: RDEFIN font height width size start_char array
e Short Form: RDF font height width size start_char array
e Hex Form: 54 font height width size start_char array

Parameter Type

e font = Char [1..15]
height = Char [0..16]
width = Char [0..16]

o size = Char

start_char = Char

e array = array of Char

Description

The user-definable raster fonts 1 to 15 are defined using the RDEFIN command. Each
character in the font must have the same cell size, subject to the height and width parameters.
The number of characters in the font, minus one, is specified by size and the ASCII code of the
first character in the font is specified by start_char. In Hex mode, each row of a character cell
is represented by a left justified packed string of bits, each bit representing one pixel.

COMMAND DESCRIPTIONS

Raster Font Define RDEFIN

Example CODE:

ASCI: RDEFIN17516501110
10001

10001

11111

10001

10001

10001

11110

10001

10001

11110

10001

10001

11110

HEX: 54 01 07 05 01 41 70 88
88 F8 88 88 88 FO 88 88

FO 88 88 FO

RESULT: Font 1 is defined with two characters: A and B.

Error Parameter range
See Also RFONT, TEXTP, TEXTPC

COMMAND DESCRIPTIONS

RECT | Rectangle

Command

e Long Form: RECT x y
o Short Form: R x y
e Hex Form: 34 x y

Parameter Type

e x = Real
e y = Real
Description

The RECT command draws a rectangle with one corner on the 2D current point and the
diagonally opposite corner on (x, y). When the PRMFIL flag is set, the rectangle will be drawn
filled; if PRMFIL is not set, drawing will be subject to LINPAT. The 2D current point remains
unchanged.

Example CODE:

ASCII: R 128 64
HEX: 34 80 00 00 00 40 00 00 00

RESULT: A rectangle is drawn with one corner on the 2D current point and the
other on (128, 64).

Error None
See Also AREAPT, LINFUN, LINPAT, PRMFIL, RECTR

COMMAND DESCRIPTIONS

Rectangle Relative RECTR

Command

e Long Form: RECTR Ax Ay
e Short Form: RR Ax Ay
e Hex Form: 35 Ax Ay

Parameter Type

e Ax = Real
o Ay = Real
Description

The RECTR command draws a rectangle with one corner on the 2D current point and the
diagonally opposite corner displaced from the 2D current point by (Ax, Ay). When the
PRMFIL flag is set, the rectangle will be drawn filled; if PRMFIL is not set, drawing will be
subject to LINPAT. The 2D current point remains unchanged.

Example CODE:

ASCII: RR 128 64
HEX: 35 80 00 00 00 40 00 00 00

RESULT: A rectangle is drawn with one corner on the 2D current point and the
diagonally opposed corner displaced by (128, 64).

Error Arithmetic overflow
See Also AREAPT, LINFUN, LINPAT, PRMFIL, RECT

COMMAND DESCRIPTIONS

RESETF Reset Flags

Command

e Long Form: RESETF,

e Short Form: RF,

e Hex Form: 04
Parameter Type None

Description

The RESETF command resets all flags and parameters to their default values, as specified in
the following table. This is done automatically when the board is reset or the power turned on.

Example CODE:

ASCII: RFy,
HEX: 04

RESULT: All flags are reset.

Error None
See Also FLAGRD

COMMAND DESCRIPTIONS

Reset Flags

RESETF

Flag Nmae Default Value | Description
1 AREAPT 65535 16 times Solid area
2 CLIPH 0 Disabled
3 CLIPY 0 Disabled
4 COLOR 255
6 DISTAN 500
7 DISTH -30000
8 DISTY 30000
9 FILMSK 255 All planes used
10 LINFUN 0 Set mode
11 LINPAT 65535 Solid lines
12 MASK 255 All planes on
13 MDORG (0,0,0)
14 2D current point {0,0)
15 3D current point (0,0)
16 PRMFIL 1] Off
17 PROJCT 60
18 TANGLE 0 Horizontal
19 TJUST 1,1 Left, bottom
20 TSIZE 8 8x 12 cells
21 VWPORT 0,639°,0,479° Entire screen
22 VYWRPT (0,0,0)
23 WINDOW -320,319,-240,239"
24 Transformed 3D point (0,0,0)
25 none none Used in FLAGRD
26 | XHAIR - current pt on screen (320,240)°
27 XHAIR - current pt in 2D (0,0)
28 Screen Current Pt (320,240)°
29 none none Used in FLAGRD
30 none none Used in FLAGRD
31 none none Used in FLAGRD
32 TSTYLE 0 ‘Fat’ text
33 TASPCT 1.5
34 TCHROT 0
35 none none Used in FLAGRD
36 VDISP 0
37 PMASK 255°* All LUT bits enabled
38 ERROR none Used in FLAGRD
39 Display Format 640°,480°,60*°,0°
41 COLMOD 1 Transparent
42 BCOLOR 0 Transparent

* These values are determined by straps on the QG-640 circuit board.

** These values are set only on reset and power up.

COMMAND DESCRIPTIONS

RFONT Select User Raster Font

Command

e Long Form: RFONT font h_aspect w_aspect
e Short Form: RFT font h_aspect w_aspect

e Hex Form: 55 font h_aspect w_aspect

Parameter Type]

e font = Char [0..15]
e h_aspect = Char [0..1]
e w_aspect = Char [0..1]

Description|

The RFONT command selects the font that will be used to draw user definable raster
characters on the screen, using the TEXTP and TEXTPC commands. The font must have been
previously defined using either the RDEFIN or TDEFIN commands.

The w_aspect and h_aspect parameters specify the aspect ratio of the characters. A value of 0
indicates single height/width and a value of 1 indicates double height/width.
Example CODE:

ASCII: RFONT 110

HEX: 656 01 01 00
RESULT: Font 1 will be selected when using the TEXTP and TEXTPC commands,
in double height, and single width aspect ratio.

Error Parameter range
See Also RFONT, TEXTP, TEXTPC

COMMAND DESCRIPTIONS

Screen Arc SARC

Command

e Long Form: SARC radius anglel angle2
e Short Form: SAR radius anglel angle2

o Hex Form: F4 radius anglel angle2

Parameter Type

e radius = Int

e anglel = Int

e angle2 = Int
Description

The SARC command draws a circular arc using the currently selected color. The center is on
the 2D current point. The radius, and start and finish angles are specified in the command.
The angles can be any Int value (angles greater than 360° and less than -360° are handled as
modulo 360). Negative radii will result in 180° being added to both angles. This command
does not affect the 2D current point.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SAR 100 0 180
HEX: F4 64 00 00 00 B4 00

RESULT: An arc with radius 100 from 0° to 180° (a semi-circle) is drawn about
the 2D current point.

Error Overflow
See Also SCIRC, COLOR. LINFUN, LINPAT

COMMAND DESCRIPTIONS

SBLINK Stop Blink

Command

e Long Form: SBLINK,
e Short Form: SBLy,
e Hex Form: E4

Parameter Type None

Description

The SBLINK command sets all LUT entries cﬁrrently assigned as blinking, by either the BLINK
command or the BLINKX command, as static. If you only want to cancel blinking of one LUT

entry, you can still use the BLINK and BLINKX commands. The SBLINK command is useful
when you want to stop all blinking on the screen with one instruction.

All blinking colors are restored to their original color.

Example CODE:

ASCII: SBLy,
HEX: E4

RESULT: All blinking pixels, if any, will stop blinking.

Error None
See Also BLINK, BLINKX

COMMAND DESCRIPTIONS

Screen Circle SCIRC

Command

e Long Form: SCIRC radius
o Short Form: SCI radius

e Hex Form: F2 radius
Parameter Type

e radius = Int
Description

The SCIRC command draws a circle with radius radius centered on the 2D current point. The
circle is filled if the PRMFIL flag is set. This command does not affect the 2D current point.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; X = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SCI 100
HEX: F2 84 00

RESULT: A circle with radius 100 is drawn from the 2D current point.

Error Overflow
See Also SARC, SELIPS, LINFUN, LINPAT, PRMFIL, SSECT

COMMAND DESCRIPTIONS

SDRAW Screen Draw

Command

¢ Long Form: SDRAW x y
e Short Form: SD x y
e Hex Form: FAx y

Parameter Type

e x = Int
o y= Int
Description

The SDRAW command draws a line from the 2D current point to (x, y) and positions the 2D
current point to (x, y). This command does not draw the last pixel of a line.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example coDE:

ASCII: SD 10 12
HEX: FA 0A 00 0oC 00

RESULT: A line is drawn from the 2D current point to (10, 12).

Error Arithmetic overflow
See Also SDRAWR, LINFUN, LINPAT, SMOVE, SMOVER

COMMAND DESCRIPTIONS

Screen Draw Relative SDRAWR

Command

e Long Form: SDRAWR Ax Ay
e Short Form: SDR Ax Ay
e Hex Form: FB Ax Ay

Parameter Type

e Ax =Int
o Ay = Int
Description

The SDRAWR command draws a line from the 2D current point to {(Ax, Ay) + 2D current
point}. The 2D current point is moved to the end of the line. This command does not draw
the last pixel of a line.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SDR 100 200
HEX: FB 64 00 C8 00

RESULT: A line is drawn from the 2D current point to {2D current point + (100, 200)}.

Error Arithmetic overflow
See Also SDRAW, LINFUN, LINPAT, SMOVE, SMOVER

COMMAND DESCRIPTIONS

SECTOR Sector

Command

e Long Form: SECTOR radius anglel angle2
e Short Form: S radius anglel angle2
e Hex Form: 3D radius anglel angle2

Parameter Type

o radius = Real

e anglel = Int

e angle2 = Int
Description

The SECTOR command draws a pie shaped figure with the center on the current point, radius
radius, and angles anglel and angle2. If PRMFIL is set, the sector will be filled, otherwise
drawing will be subject to LINPAT. If radius is negative, 180° will be added to both angles.
The angles are integers and are treated as modulo 360. This command does not affect the
current point.

Example CODE:

ASCII: S 50.25 45 135
HEX: 3D 32 00 00 40 2D 00 87 00

RESULT: A pie shaped sector is drawn with radius 50.25, starting at 45° and
ending at 135°.

Error Arithmetic overflow
See Also AREAPT, LINFUN, LINPAT, PRMFIL

COMMAND DESCRIPTIONS

Screen Ellipse SELIPS

Command

e Long Form: SELIPS xradius yradius
e Short Form: SEL xradius yradius

e Hex Form: F3 xradius yradius
Parameter Type

e xradius = Int

e yradius = Int
Description

The SELIPS command draws a 2D ellipse centered on the 2D current point and whose x and y
radii are given by xradius and yradius. The ellipse will be filled if drawn while the PRMFIL flag
is set. This command does not affect the 2D current point.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SEL 32 128
HEX: F3 20 00 80 00

RESULT: An ellipse is drawn with x radius 32 and y radius 128.

Error Overflow
See Also AREAPT, LINFUN, LINPAT, PRMFIL

COMMAND DESCRIPTIONS

SMOVE Screen Move

Command

e Long Form: SMOVE x y
e Short Form: SM x y
e Hex Form: F8 x y

Parameter Type

e x = Int
e y=1Int
Description

The SMOVE command moves the 2D current point to (x, y).

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SM 10 12
HEX: F8 OA 00 0C 00

RESULT: The 2D current point is moved to (10, 12).

Error Arithmetic overflow
See Also SMOVER

COMMAND DESCRIPTIONS

Screen Move Relative SMOVER

Command

e Long Form: SMOVER Ax Ay
e Short Form: SMR Ax Ay
e Hex Form: F9 Ax Ay

Parameter Type

e Ax = Int
e Ay = Int
Description

The SMOVER command moves the 2D current point to {(Ax, Ay) + 2D current point}.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SMR 10 12
HEX: F9 0A 00 OC 00

RESULT: The current point is moved to {(10, 12) + 2D current point}.

Error Arithmetic overflow
See Also SMOVE

COMMAND DESCRIPTIONS

SPOLY Screen Polygon

Command

e Long Form: SPOLY nx; y1 X2¥2 . . . Xn ¥n
e Short Form: SP nXx; y1 X2¥2 . . . Xn ¥n
e Hex Form: FCn x; y1 X2 ¥2 . . . Xp ¥

Parameter Type

e n = Char

o x; = Int

e y; =Int
Description

The SPOLY command draws a closed polygon directly on the screen. n is the number of
vertices and (x;, y;) the coordinates of the vertices. The polygon will be filled if the PRMFIL
flag is set and subject to the LINPAT if PRMFIL is not set. The 2D current point will not be
changed.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; X = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SP 40016016 16 0 16
HEX: FC 04 00 00 00 00 00 10 00 00 00 10 00 10 00 00 00 10 0O

RESULT: A square 16x 16 is drawn.

Error Not enough memory, arithmetic overflow

See Also AREAPT, LINFUN, LINPAT, SPOLYR, PRMFIL

5 - 100

COMMAND DESCRIPTIONS

Polygon Relative SPOLYR

Command

e Long Form: SPOLYR n Ax; Ay; Axz Ays -+ Ax, Ay,
e Short Form: SPR n Ax; Ay; Axg Ays « -+ Ax, Ay,
e Hex Form: FD n Ax; Ay Axz Ayp --- Ax, Ay,

Parameter Type

e n = Char

e Ax; = Int

e Ay; = Int
Description

The SPOLYR command draws a closed polygon directly to the screen. Parameter n is the

number of vertices and (Ax;, Ay;) the displacements of the vertices from the 2D current point.
The polygon will be filled if the PRMFIL flag is set and subject to the LINPAT if PRMFIL is not
set. The 2D current point will not be changed.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SPR 400160 16 16 0 16

HEX: FD 04 00 00 00 00 10 00 00 00
10 00 10 00 00 00 10 00

RESULT: A 16x 16 square is drawn, with the upper left corner on the 2D current
point.

Error Not enough memory, arithmetic overflow

See Also AREAPT, LINFUN, LINPAT, SPOLY, PRMFIL

5-101

COMMAND DESCRIPTIONS

SRECT Screen Rectangle

Command

e Long Form: SRECT x y
e Short Form: SR x y
e Hex Form: FOXx y

Parameter Type

e x = Int
o y=Int
Description

The SRECT command draws a rectangle with one corner on the 2D current point and the
diagonally opposite corner on (x, y). When the PRMFIL flag is set, the rectangle will be drawn
filled. If PRMFIL is not set, drawing will be subject to LINPAT. The 2D current point remains
unchanged.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SR 128 64
HEX: FO 80 00 40 00

RESULT: A rectangle is drawn with one corner on the 2D current point and the
other on (128, 64).

Error None
See Also AREAPT, LINFUN, LINPAT, PRMFIL, SRECTR

5 -102

COMMAND DESCRIPTIONS

Screen Rectangle Relative SRECTR

Command

e Long Form: SRECTR Ax Ay
e Short Form: SRR Ax Ay
e Hex Form: F1 Ax Ay

Parameter Type

e Ax = Int
o Ay = Int
Description

The SRECTR command draws a rectangle with one corner on the 2D current point and the
diagonally opposite corner displaced from the 2D current point by (Ax, Ay). When the
PRMFIL flag is set, the rectangle will be drawn filled. If PRMFIL is not set, then the drawing
will be subject to LINPAT. The 2D current point remains unchanged.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SRR 128 64
HEX: F1 80 00 40 00

RESULT: A rectangle is drawn with one corner on the 2D current point and the
other on (128, 64).

Error Arithmetic overflow
See Also AREAPT, LINFUN, LINPAT, PRMFIL, SRECTR

5-103

COMMAND DESCRIPTIONS

SSECT Screen Sector

Command

e Long Form: SSECT radius anglel angle2
o Short Form: SS radius anglel angle2
e Hex Form: F5 radius anglel angle2

Parameter Type o radius = Int

e anglel = Int
e angle2 = Int
Description

The SSECT command draws a pie shaped figure with center on the 2D current point, radius
radius, and angles anglel and angle2. If PRMFIL is set, the sector will be filled; otherwise,
drawing will be subject to LINPAT. If radius is negative, 180° will be added to both angles.
The angles are integers and are treated as modulo 360. This command does not affect the 2D
current point.

Note: For this command to function correctly, the viewport and the window must have
exactly the same coordinates and must be equal to the maximum XY dimensions of the screen
space; x = 639 and y = 479 if the viewport is full screen. The coordinates of the points you are
operating on must be visible on the screen, and 0 < x < 639; 0 < y < 479. See Section 4.10.

Example CODE:

ASCII: SS 50 45 135
HEX: F6 32 00 2D 00 87 00

RESULT: A pie shaped sector is drawn having radius 50, starting at 45° and going
through to 135°,

Error Arithmetic overflow
See Also AREAPT, LINFUN, LINPAT. PRMFIL

5 - 104

COMMAND DESCRIPTIONS

Self Test STEST

Command

e Long Form: STEST flag
e Short Form: STEST flag
e Hex Form: 62 flag

Parameter Type

e flag = Char [0..255]
Description

The STEST command initiates a self test according to the values in the following table:

flag | TEST

Display Test Screen
ROM Test

RAM Test

VRAM Test
ACRTC Test

Echo Test*

Eat Input Test*

O N RO

* Continuous tests that run until a warm reset is issued.

Results are reported in the output port using the following format:

The test number is returned using bits t0 to t3. The S bit is set if the test passes, and is zero if
the test fails. In ASCII mode this means that a successfully completed test will return a value
equal to or greater than 16.

5 - 105

COMMAND DESCRIPTIONS

STEST Self Test

Example CODE:

ASCII: STEST 1
HEX: 62 01

RESULT: The ROM is tested and the result is sent to the output port.

Error Value out of range

COMMAND DESCRIPTIONS

Text Angle TANGLE

Command

e Long Form: TANGLE angle
e Short Form: TA angle

e Hex Form: 82 angle
Parameter Type
e angle = Int

Description

The TANGLE command sets the rotation angle for text; specifically the angle of the baseline
(the imaginary line that characters are drawn on). The angle is specified by angle. The default
is the normal left to right drawing angle 0°. Depending on the TROT flag, the resulting text
appears to the right of the current point (in the first quadrant, with the current point being
the origin) or it rotates around the current point. TANGLE does not affect the rotation of the
individual characters; character rotation is specified using TCHROT.

Example coODE:

ASCII: TA 270
HEX: 82 OE 01

RESULT: Characters are drawn vertically top to bottom.

Error None
See Also TCHROT, TEXT, TEXTP, TROT

5 - 107

COMMAND DESCRIPTIONS

TASPCT Text Aspect Ratio

Command

e Long Form: TASPCT ratio
e Short Form: TASP ratio
e Hex Form: 8B ratio

Parameter Type
e ratio = Real

Description

The TASPCT command sets the text aspect ratio for style 1 characters (see TSTYLE). The
aspect ratio is the ratio of character height to width, the default is 1.5 (when TSIZE = 8, this
represents a character 12 pixels high by 8 pixels wide). Parameter ratio must be greater than
zero.

Example CODE:

ASCII: TASP 2
HEX: 8B 02 00 00 00

RESULT: Characters are drawn twice as high as they are wide.

Error Value out of range.
See Also TEXT. TEXTP, TSIZE, TSTYLE

5-108

COMMAND DESCRIPTIONS

Text Character Rotation TCHROT

Command

e Long Form: TCHROT angle
e Short Form: TCR angle

e Hex Form: 8A angle
Parameter Type
e angle = Int

Description

The TCHROT command sets the angle of rotation for characters. Only text style 1 is rotated;
text style O is unaffected. The rotation is independent of the baseline rotation set by TANGLE.
Text styles are selected using TSTYLE.

Example CODE:

ASCIL: TCR 1
HEX: 8A 01 00

RESULT: Graph Text characters will be rotated to the current baseline rotation
angle.

Error None
See Also TANGLE, TEXT. TEXTP, TSTYLE

5 - 109

COMMAND DESCRIPTIONS

TDEFIN Text Define

Command

e Long Form: TDEFIN n x y array
e Short Form: TD n x y array

e Hex Form: 84 n x y array

Parameter Type

e n = Char
e x = Char
e y = Char

e array = x columns by y rows of Chars (ASCII
mode) or x bits packed left justified in y
byte sets (Hex mode)

Description

The TDEFIN command defines the character given by n to be an array with character cell size
x by y and contents array. In ASCII mode, each pixel in the character cell is represented by
either the character “0” or the character “1”. Where a pixel is set to “0”, the character will be
transparent, or the current background color (BCOLORY), depending on the current state of
COLMOD. Where the pixel is set to “17, the pixel will be the color index last specified by the
COLOR command. In Hex mode, each row of the character cell is represented by a packed
string of bits, each bit representing one pixel. These bits are left justified so that the first bit is
in the highest bit position.

NOTE: If you specify a value of 0 for either the x or the y parameter, you will delete the
character definition.

Example CcoODE:

ASCI: TD6557 01110
10001
10001
11111
10001
10001
10001
HEX: 84 41 05 07 70 88 88 F8 88 88 88

RESULT: The letter “A” is defined.
Error Not enough memory.
See Also TEXTP, COLMOD 5—110

COMMAND DESCRIPTIONS

Text TEXT

Command

e Long Form: TEXT 'string’ or " string”
e Short Form: T 'string’ or " string”

e Hex Form: 80 'string’ or " string”
Parameter Type
e string = any number of Chars (up to 640)

Description

The TEXT command writes a text string to the screen, justified about the current point as
specified in the last TJUST command. The string may be delimited by either double or single
quotes. If no quotes are used, the string will be terminated by the first delimiter encountered.
The text will be in the size and style specified by the last TSIZE and TSTYLE commands.
When TSTYLE has been set to 0, fat text will be produced; when TSTYLE has been set to 1,
thin rotatable text will be produced. If COLMOD = Replace, the character cell will be drawn
according to the current LINFUN and BCOLOR parameters.

Note: The fastest character drawing speed is attained when fat text of size 16 (size 8 if in
QG-640 mode) is selected, with the left side of the beginning of the string located on 16-pixel
multiples (0, 16, 32, ...) along the x-axis.

Example CODE:

ASCII: T ’Hello®
HEX: 80 22 48 65 6C 6C 6F 22

RESULT: Hello is printed on the screen.
Error String too long, arithmetic overflow.
See Also TANGLE, TASPCT, TCHROT, TEXTP, TJUST, TSIZE, TSTYLE

5-111

COMMAND DESCRIPTIONS

TEXTC

Fixed Length Text

Command

e Long Form: None

o Short Form: None

e Hex Form: 8C count char char .

Parameter Type

e count = Unsigned Int [0..640]
e char = Char

Description

.. char

The TEXTC command displays a text string of up to 640 characters. The count parameter
specifies the number of characters in the string that follows it. Note that this command is

restricted to Hex mode.

Example CODE:
ASCII: None

HEX: 8C 05 00 41 42 43 44 45

RESULT: The text string “ABCDE” is displayed at the current point.

Error Out of range.
See Also TEXT. TANGLE, TSIZE

5-112

COMMAND DESCRIPTIONS

Text with Programmable Font TEXTP

Command

e Long Form: TEXTP ’string’ or "string”
e Short Form: TP ’string’ or "string”

e Hex Form: 83 'string’ or "string”
Parameter Type

e string = any number of Chars (up to 640)
Description

The TEXTP command writes a text string to the screen using programmable fonts. The text
will be justified about the current point as specified in the last TJUST command, and be in
the style specified in the last TSTYLE command. When TSTYLE is set to zero, the text font
defined by TDEFIN is used; when TSTYLE is set to 1, the text defined by GTDEF is used.
The string may be delimited by either double or single quotes. If no quotes are used, the string
will be terminated by the first delimiter encountered.

Example CODE:

ASCII: TP ’Hello’
HEX: 83 22 48 656 6C 6C 6F 22

RESULT: Hello is printed on the screen.

Error String too long, arithmetic overflow.

See Also TASPCT, TANGLE, TCHROT, TDEFIN, TEXT. TJUST, TSIZE, TSTYLE

5-113

COMMAND DESCRIPTIONS

TEXTPC Fixed Length Programmable Text

Command

e Long Form: None
e Short Form: None
e Hex Form: 8D count char ... char

Parameter Type

e count = Unsigned Int [0..640]

e char = Char

Description

This command displays a programmable text string at the current point. The count parameter
specifies the number of characters in the string that follows. This command is identical to the
TEXTC command. Note that this command is restricted to Hex mode.

Example CODE:

ASCII: None
HEX: 8D 05 00 41 42 43 44 45

RESULT: The programmable text string “ABCDE” is displayed at the current
point.

Error Range
See Also TEXTP, TANGLE. TSTYLE, TDEFIN, GTDEF

5-114

COMMAND DESCRIPTIONS

Text Justify TJUST

Command

e Long Form: TJUST horiz vert
e Short Form: TJ horiz vert

e Hex Form: 85 horiz vert
Parameter Type

e horiz = Char [1..3]
e vert = Char [1..3]

Description

The TJUST command sets horizontal and vertical justification as specified in the table below.
The default values are: horiz = 1 and vert = 1.

TEXT JUSTIFICATION
VALUE | ACTION
1 Justify on left or bottom
2 Center
3 Justify on top or right

Example CcoODE:

ASCI: TJ 21
HEX: 85 02 01

RESULT: Output text is centered horizontally about the current point with its
bottom on the current point.

Error Range error
See Also TEXT. TEXTP

5-115

COMMAND DESCRIPTIONS

TSIZE Text Size

Command

e Long Form: TSIZE size
e Short Form: TS size

e Hex Form: 81 size
Parameter Type

e size = Real
Description

The TSIZE command sets the text size by specifying the virtual distance from one character to
the next. The default value is 8. TSIZE directly sets the width of each character and the
height is set using TASPCT (height = width x aspect ratio). The size of fat text will be
rounded off to a multiple of eight pixels.

Example CODE:

ASCII: TS 16
HEX: 81 10 00 00 00

RESULT: Text size is doubled from default.

Error Arithmetic overflow
See Also TASPCT, TEXT, TEXTP, TSTYLE

5 - 116

COMMAND DESCRIPTIONS

Text Style TSTYLE

Command

e Long Form: TSTYLE flag
e Short Form: TSTY flag
e Hex Form: 88 flag

Parameter Type
e flag = Char [0..1]

Description

The TSTYLE command sets the style of the text drawn with TEXT or TEXTP commands.
When flag is 0, characters will be fat — that is to say the lines forming the characters will
become wider as their size is increased by a TSIZE command. When flag is 1, the characters
will always be constructed with lines one pixel wide. The default is style 0. The effect of this
command is only noticeable when characters are drawn in sizes larger than normal.

Example CODE:

ASCII: TSTY 1
HEX: 88 01

RESULT: Thin rotatable text is selected.

Error None
See Also TEXT, TEXTP, TSIZE

5-117

COMMAND DESCRIPTIONS

VDISP Video Display

Command

e Long Form: VDISP display
e Short Form: VD display
e Hex Form: D5 display

Parameter Type

e display = Char [0..1]
Description

The VDISP command selects the lookup table that will be affected by the following commands:

BLINK BLINKX LUT LUTINT
LUTRD LUTSAV LUTX LUTXRD
PMASK

The current value of display can be read using a FLAGRD 36 command.

Example CODE:

ASCII: VD 00
HEX: D5 00

RESULT: LUT O is selected.

Error Value out of range.
See Also BLINK, BLINKX, LUT, LUTINT, LUTRD, LUTSAV, LUTX, LUTXRD. PMASK

5-118

COMMAND DESCRIPTIONS

Vertical Frequency

VFREQ

Command

e Long Form: VFREQ flag
e Short Form: VFREQ flag
e Hex Form: 61 flag

Parameter Type

o flag = Char [0..1]
Description

The VFREQ command selects a 50 Hz (flag = 1) or 60 Hz (flag
default upon start-up and cold reset is 60 Hz.

Example CODE:

ASIL: VFREQ 1
HEX: 61 01

RESULT: 50 Hz vertical refresh rate is selected.

Error Value out of range.
See Also FLAGRD

5-119

= 0) vertical refresh rate. The

COMMAND DESCRIPTIONS

VWIDEN Viewing Identity

Command

e Long Form: VWIDEN
o Short Form: VWI
e Hex Form: AO

Parameter Type None
Description

The VWIDEN command sets the viewing transformation matrix to the identity matrix.

Example CODE:

ASCII: VWI
HEX: A0

RESULT: Viewing matrix is set to the identity matrix.

Error None

5-120

COMMAND DESCRIPTIONS

Viewing Matrix

VWMATX

Command

e Long Form: VWMATX array
e Short Form: VWM array

e Hex Form: A7 array
Parameter Type
e array = 16 Reals

Description

The VWMATX command loads the viewing matrix with the data in array.

Example CODE:

ASCII: VWM 36.25
0
72.5

100.25

12.00 128
36.75 100

0
0

2
0
0
0

HEX: A7 24 00 00 40 OC 00 00 00 80 00 00 00

02 00 00 00 00 00 00 00 24 00 00 CO

64 00 00 00 OO0 00 00 OO 52 00 00 80

00 00 00 00 02 00 OO 80 00 00 00 00

64 00 00 40 00 00 00 0O 00 00 00 00

00 00 00 00

RESULT: The viewing matrix is set to the above data.

Error Arithmetic overflow

5-121

COMMAND DESCRIPTIONS

VWPORT View Port

Command

e Long Form: VWPORT x; x; y1 ¥y2
e Short Form: VWP x; X2 y1 ¥2

o Hex Form: B2 x; X2 y1 ¥2
Parameter Type

e x; = Unsigned Int [0..639]
e xz = Unsigned Int [0..639]
e y; = Unsigned Int [0..479]
e y; = Unsigned Int [0..479]

Description

VWPORT defines a viewport on the screen where drawing can take place. The viewport is
measured in pixels from the bottom left corner and clipping is always enabled. x; must be less
than x3, and y; less than y; or else a warning will be generated. The pair that generated the
warning will be swapped. A warning is also produced when any coordinate falls outside of the
screen boundary.

Example CODE:

ASCII: VWP 0 300 0 100
HEX: B2 00 00 2C 01 00 00 64 00

RESULT: Viewport is defined to be from the lower left corner of the screen to
(300, 100).

Error Arithmetic overflow
See Also WINDOW

5 - 122

COMMAND DESCRIPTIONS

Viewing Rotate X Axis VWROTX

Command

e Long Form: VWROTX angle
e Short Form: VWX angle

e Hex Form: A3 angle

Parameter Type angle = Int
Description

The VWROTX command rotates the x component of the viewing matrix by angle.

Example CODE:

ASCII: VWX 45
HEX: A3 1D 00

RESULT: The x component is rotated by 45°.

Error Arithmetic overflow
See Also VWMATX, VWROTY, VWROTZ

5-123

COMMAND DESCRIPTIONS

VWROTY

Viewing Rotate Y Axis

Command

e Long Form: VWROTY angle
e Short Form: VWY angle

e Hex Form: A4 angle
Parameter Type
e angle = Int

Description

The VWROTY command rotates the y component of the viewing matrix by angle.

Example CODE:

ASCII: VWY 45
HEX: A4 1D 00

RESULT: The y component is rotated by 45°.

Error Arithmetic overflow

See Also VWMATX, VWROTX, VWROTZ

5~ 124

COMMAND DESCRIPTIONS

Viewing Rotate Z Axis

VWROTZ

Command

e Long Form: VWROTZ angle
e Short Form: VWZ angle

e Hex Form: A5 angle
Parameter Type
e angle = Int

Description

The VWROTZ command rotates the z component of the viewing matrix by angle.

Example CODE:

ASCII: VWZ 45
HEX: A5 1D 00

RESULT: The z component is rotated by 45°.

Error Arithmetic overflow

See Also VWMATX, VWROTX, VWROTY

5-125

COMMAND DESCRIPTIONS

VWRPT

Viewing Reference Point

Command

e Long Form: VWRPT xy z
e Short Form: VWR xy z
e Hex Form: A1 xyz

Parameter Type

e x = Real

o y= Real

e z = Real
Description

The VWRPT command sets the viewing reference point to be (x, y, z). The viewing reference
point is the point that the user is looking at.

Example CODE:

ASCII: VWR 100 -25 50
HEX: A1 64 00 00 00 E7 FF 00 00 32 00 00 00

RESULT: Viewing reference point is defined to be (100, -25, 50).

Error Arithmetic overflow

5 - 126

COMMAND DESCRIPTIONS

Wait

WAIT

Command

o Long Form: WAIT frames
e Short Form: W frames

e Hex Form: 05 frames

Parameter Type

o frames = Unsigned Int

Description

The WAIT command produces a delay of frames frames. The value of frames is expressed in 61—0
seconds (the maximum value of frames 65535 produces a delay of 18 minutes).

Example CODE:

ASCIIL: W 60
HEX: 06 3C 00

RESULT: A 1 second delay is produced.

Error None

5 - 127

COMMAND DESCRIPTIONS

WINDOW Window

Command

e Long Form: WINDOW x; x2 y; ¥y2
e Short Form: WI x; x2 y1 y2

e Hex Form: B3 x; X2 y1 ¥2

Parameter Type

e X; = Real
® X2 = Real
®y = Real
¢ y2 = Real
Description

The WINDOW command defines the coordinates of the corners of the window. The window is
the section of the virtual workspace that is mapped to the screen viewport area, which is set
by the most recent VWPORT command.

Example CODE:

ASCII: WI -25 50 75 100

HEX: B3 E7 FF 00 00 32 00 00 00 96 00
00 00 400 00 00
RESULT: The x and y coordinates are both defined to be from 0 to 64.

Error Arithmetic overflow, range error.

See Also VWPORT

5 - 128

COMMAND DESCRIPTIONS

Enable Cross Hair XHAIR

Command

e Long Form: XHAIR flag or XHAIR flag x_size y_size
e Short Form: XH flag or XH flag x_size y_size
e Hex Form: E2 flag or E2 flag x_size y_size

Parameter Type

e flag = Char [0..8]
e x_size = Int [0..32767]
e y_size = Int [0..32767]

Description

The XHAIR command enables or disables the graphics cursor. When the graphics cursor is
enabled, the two parameters x_size and y_size must be used in order to define the size of the
graphics cursor. The graphics cursor will have a horizontal length of x_size coordinate units
and a vertical length of y_size coordinate units. The graphics cursor is displayed in complement
form with its center on the position specified by the last XMOVE command. When the
graphics cursor is disabled, the x_size and y_size parameters are not specified — the graphics
cursor will no longer be displayed. The flag parameter options are shown in the following table:

Flag | Action

0 Disable graphics cursor.
Enable cross hair cursor, clipped on screen.
Not supported.
Enable cross hair cursor, clipped on viewport.
Not supported.
Enable box outline cursor, clipped on screen.
Enable box outline cursor, clipped on viewport.
Enable filled box cursor, clipped on screen.
Enable filled box cursor, clipped on viewport.

Q =3 O O i W N =

COMMAND DESCRIPTIONS

XHAIR Enable Cross Hair

Example CODE:

ASCII: XH 1 100 100
HEX: E2 01 64 00 64 00

RESULT: The cross hair is enabled and defined to be 100 x 100 with full screen
clipping mode.

Error Value out of range.
See Also RBAND, VWPORT, XMOVE

5-130

COMMAND DESCRIPTIONS

Cross Hair Move XMOVE

Command

e Long Form: XMOVE x y
e Short Form: XM x y
e Hex Form: E3 xy

Parameter Type

e x = Int [0..639]
e y = Int {0..479]

Description

The XMOVE command changes the cross hair or the filled rectangle cursor coordinates to
(x, y). The coordinates are specified in screen coordinates.

Example CODE:

ASCII: XM 5 5
HEX: E3 05 00 056 00

RESULT: The cross hair coordinate is set to (5, 5).

Error Value out of range.
See Also RBAND, XHAIR, XRECT

5-131

Appendix A

Installation

SECTION A.1 Installation
A.2 Configuration

A.3 Connectors
A4 LEDs

INSTALLATION

A.1 Installation

This appendix provides the information necessary to install your QG-640. Section A.1 gives a
suggested procedure to install the QG-640 on the Q-bus. Section A.2 provides brief
descriptions of the circuit board straps. Information on the video connectors used is given in
Section A.3, and Section A.4 describes the QG—640’s status LED’s.

For applications requiring modification to the board’s straps, set the straps as specified in
Section A.2, then return to this section for the installation procedure for the QG-640.

This section gives a suggested procedure to install your QG-640 board in a Q-bus system. It is
assumed that you are familiar with the Q-bus, know where the straps are on the QG-640, and
are installing a QG-640 with the “as shipped” strapping. For “as shipped” strap locations,
refer to Appendix B.

10.

11.

. Turn off the power on the Q-bus system.

. Determine the correct slot for the QG-640, according to your DEC Q-bus configuration

guide. The QG—640 generates interrupts, so its position in the backplane is important.

. Determine the required base address in I/O space for the QG—640 in your system. The

QG-640 is strapped at 160400 (octal) in the I/O page when shipped. If your system
already has a device at this address, restrap the QG—640 to appear at a location suitable
for your system.

. The QG-640 is shipped with an interrupt vector of 240 (octal). If this is unsuitable for

your system, find a free interrupt vector for the QG, and strap it accordingly.

. The QG640 is shipped to operate at interrupt level 4. If this is unsuitable for your system,

choose the interrupt level at which the QG will operate, and strap it accordingly.

The QG640 is shipped to provide video sync on the green video output. If this is unsuit-
able for your video monitor, remove the straps.

. The QG-640 as shipped generates a non-interlaced 640x480 display. To obtain a 512x512

display, install strap 30-33. To obtain an interlaced display, remove straps 7-8 and 54-55,
and install straps 8-9, 29-32, and 55-56.

. Install the QG—640 in your backplane, ensuring that its slot has been granted all required

signals — i.e. there are no empty slots between the QG and the CPU.

. Do not connect your video monitor at this time, but power on the Q-bus system. The

QG-640 should display one blinking LED, one LED on, and two off.

Use ODT to examine the address at which your QG is located. When read, this address
should contain the value for the interrupt vector as it is strapped on the QG.

Boot your system. If it will not boot, check for empty slots in the backplane, address or
interrupt vector conflicts between the QG-640 and any other card in your system.

CONFIGURATION

12. If you have a utility to talk to the QG, use it to issue the FLAGRD 39 command, to make
sure that the video format currently active is the one required for your video monitor. If
you do not have such a utility, you may wish to use an oscilloscope to verify that the video
output is correct for the video monitor.

13. Connect your video monitor.

14. Issue the STEST 0 command to test the video connections.

A.2 Configuration

A number of board parameters are set using straps. The straps must be installed in order for
the board to operate. The straps are identified by the numbers of the two berg pins which are
connected if the strap is designated IN and unconnected if the strap is OUT. The following
pages describe the QG—640 strap configurations and their respective functions.

A.2.1 Sync Selection

These straps enable or disable, on each output channel, a composite sync signal on the green
output signal.

Connection | Effect

113-115 IN Composite sync on green channel (J1 output).
113-115 OUT | No sync on green (J1 output).

112-114 IN Composite sync on green channel (J2 output).
112-114 OUT | No sync on green (J2 output).

INSTALLATION

A.2.2 Video Mode

This strap is used to select the pixel size of the output display; it also tells the firmware the
size of the frame buffer being used.

Connection | Effect
30-33 IN 512x512 Mode
30-33 OUT 640x480 Mode

These straps select the video mode of the output signal.

Connection Effect
8-9 IN, 55-56 IN, 29-32 IN Interlace Mode
7-8 IN, 54-55 IN, 29-32 OUT | Non-interlace Mode

A.2.3 Interrupt Level and Vector

These straps set the interrupt level of the board according to the following table:

Interrupt Level | Pin 61 - Pin 58 | Pin 59 - Pin 62
4 IN IN
5 IN ouT
6 ouT IN
7 ouT OouT
15 12 9 [3 0

DIOID|IB|X|X|X|X|X|X|X|X|X|X|0|0

The Interrupt Vector.

These straps define the interrupt vector.

CONFIGURATION

Bit | Connection

15 | Always O

14 | Always 0

13 | Always 0

12 | Always O

11 | 34-44 OUT = 1, IN = 0 (always in)
10 | 35-45 OUT = 1, IN = 0 (always in)
9 | 36-46 OUT = 1, IN = 0 (always in)
8 |37-470UT=1,IN=0

7 |38480UT=1,IN=0

6 [39-4990UT=1,IN=0

5 | 40-500UT =1,IN=0

4 |41-510UT=1,IN=0

3 |42-520UT =1,IN=0

2 143-530UT=1,IN=0

1 | Always 0

0 | Always0

A.2.4 I/0 Base Address

These straps set the base address of the board.

15 12 9 L] 3 0

T X|X|X|X|X|X|X|X|O|V|V OO

The I/O Base Address.

INSTALLATION

Bit | Connection

12 1 11-200UT =1,IN=0
11 112-210UT=1,IN=0
10 | 13-220UT=1,IN=0
9 [14-220UT=1,IN=0
8 [15-240UT=1,IN=0
7 116-250UT=1,IN=0
6

5

17-26 OUT = 1, IN = 0
18-270UT = 1,IN = 0

The offsets from the base address for the QG640 registers are listed below.

Write Register
Command Register
“Don’t care”

FIFO

“Don’t care”

Read Register

Interrupt Vector Strapping Read
Status Register

“Don’t care”

Port Register

HHOOS
HOHOS

A.2.5 Micro-VAX Slot Option

If the QG640 is to be used in slot 1, 2, or 3 of a Micro-VAX, connections 1-2 and 3-4 must be

left OUT. These straps connect the grant in and grant out of the DMA and interrupt of slots
C and D.

A.2.6 Factory-Set Straps

The straps which are connected to pins 123 through 140 are factory-configured as follows, and
should not be changed:

QG-640 | QG-640/EMC | QG-640/F
123-124 IN | 123-124 IN 123-124 IN
126-127 IN | 126-127 IN 126-127 IN
130-131 IN | 130-131 IN 129-130 IN
132-133 IN | 132-133 IN 133-134 IN

A.3 Connectors

A.s.l

Video Connectors

CONNECTORS

The video connector is an AMP 1-87382-0. The mating connector is an AMP 87922-1. The pin
orientation is shown below.

A.4 LEDs

Pin | Function Pin | Function
1 [+5V (Pull-Up) | 6 | Gnd
2 | No connection 7 | Blue
3 | Red 8 | Gnd (Blue)
4 | Gnd (Red) 9 | Composite Sync/
5 | Green 10 | Gnd (Sync)
9 7 5§ 3 1
10 8 6 4 2

CIRCUIT

/BOARD |

i/ [4

Looking into the Video Connector

There are four LEDs on the QG—640 which provide information about the board’s status. The
LEDs are located on the board’s component side and are described below from left to right:

1.
2.

Heartbeat: the light blinks on and off to indicate that the board is functioning properly.

Data Out Port Full: this light indicates that there is more than one byte of data in the
Data Out Register. The QG—640 will cease processing until this data is read.

. Input Data FIFO Empty: this light indicates that the Input Data FIFO is empty and the
board is waiting for input.

. Error Register Full: this light indicates that there is more than one byte of error data in
the Data Out Register. The QG—640 will cease processing until this data is read.

Appendix B

Board Layout

SECTION B.1 Board Layout Schematic Diagram

BOARD LAYOUT

B.1 Board Layout Schematic Diagram

-

e s

Tﬁl

|

D

B

.

_
a0 ©

]

50

B OKE

-
AB Y A7 4]

]

I

Xi

:

a

‘oo:: béﬁég'o'o [T y—

—

~

il

37,

f%af

o L g? Az 41
: N

——— =
B ; jfm e e
e —_ g&g@m:—ﬁ:j S
R e N — e

— e | N - B i B a—

= T Msg[aw emiﬁ'r G er

N S A R

T JE> I S

A — o

,
g

A

(R

3

al7

H .]
5 A2 Jlalf A73;} m‘x_i HF

!r AlY

s

I | B

Appendix C

Lookup Table Data

SECTION C.1 Lookup Table Data

C.1 Lookup Table Data

This chapter contains the lookup table data that is provided in ROM on the QG-640. These
tables contain three decimal numbers per entry. The entries are, from left to right: red, green,
and blue. These values are given in the format used by the LUTX command (that is, as 8-bit
values).

LOOKUP TABLE DATA

State O :

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

0 :
1:
2
3:
4 :
b :
6 :
7:
8 :
1

9
10

1
1

11 :
12 :
13 :

14
16
16
17
18

19 :

20
21

22 :
23 :
24 :
26 :
26 :

27
28
29
30

31 :
32 :
a3 :
34 :
36 :

36
37
38
39
40
41
42
43
44
45
416
47
48

49 :

50
b1

green, blue intensity

red,

0, o, (V]
16, 16, 16
32, 32, 32
48, 48, 48
64, 64, 64
80, 80, 80
96, 96, 96
12, 112, 112
28, 128, 128
44, 144, 144

: 1680, 160, 160
178, 176, 176
192, 192, 192
208, 208, 208
224, 224, 224
240, 240, 240

0, 0, (]

32, 0, (]

64, 0, 0

96, 0, (]
128, 0, [+]
160, 0, 0
192, 0, 0
224, 0, (]
240, o, [¢]
240, 32, 32
240, 64, 64
240, 96, 96
240, 128, 128
240, 160, 160
240, 192, 192
240, 224, 224

0, 0, (1]

32, 0, 16

64, 0, 32

98, 0, 48
128, 0, 64
160, 0, 80
192, 0, 96
224, 0, 112
240, 0, 128
240, 32, 144
240, 64, 160
240, 96, 176
240, 128, 192
240, 160, 208
240, 192, 224
240, 224, 240

0, 0,]

32, o, 32

64, 0, 64

96, 0o, 96
128, 0, 128

b2 :

Entry 63 :
Entry 54 :
Entry 56 :
Entry 66 :
Entry 67 :
Entry 68 :
Entry 69 :

Entry 60

Entry 61 :
Entry 62 :

Entry 63 :

Entry 64
Entry 65

Entry 66 :
Entry 67 :
Entry 68 :
Entry 69 :
Entry 70 :
Entry 71 :
Entry 72 :
Entry 73 :

Entry 74
Entry 76

Entry 76 :

Entry 77

Entry 78 :

Entry 79
Entry 80

Entry 81 :
Entry 82 :
Entry 83 :
Entry 84 :
Entry 86 :
Entry 86 :
Entry 87 :

Entry 88
Entry 89
Entry 90
Entry 91
Entry 92

Entry 93 :
Entry 94 :

Entry 96
Entry 96
Entry 97
Entry 98
Entry 99
Entry 100

Entry 101 :

Entry 102 :

Entry 103
Entry 104
Entry 106

Entry 106 :
Entry 107 :

Entry 108 :

160,
192,
224,
240,
240,
240,
240,
240,
240,
240,
240,
0,
16,
32,
48,
64,
80,
96,
112,
128,
144,
160,
176,
192,
208,
224,
240,

000000000

-

» W
[

128,
160,
192,
224,

O 000

32,
64,

128,
160,
192,

»
]
'

000000000

- ®= w

00000000

> W
Y

128,
160,
192,
224,
0,
16,
32,
48,
64,
80,

112,
128,
144,
160,
176,
192,

160
192
224
240
240
240
240
240
240
240
240

32
64

128
160
192
224
240
240
240
240
240
240
240
240

32
64

128
160
192
224
240
240
240
240
240
240
240
240

32
64
96
128

192
224
240
240
240
240
240

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

109 :
110 :
111 :
112 :
113 :
114 :

116

..

116 :

117
118

119 :
120 :
121 :
122 :

123
124
126
126
127
128

129 :
130 :

131
132
133
134
135
136
137

138 :
139 :

140
141
142

143 :

144
145
148
147
148

se se es ae

149 :
150 :
161 :

152
183
164
156
1566

157 :

1568
1569

ieo :
161 :

162

163 :
164 :

160,
192,
224,

.

(2]

RN OOO0OO0OO0ODOODOD

[

8

128,

g

192,
224,

(2]
VOO O0OODOOODOO

-

8

128,
160,
192,
224,

(2]
hNOO0.000000

O
(<]

128,
160,
192,
224,
ol
16,
32,
48,
64,

208,
224,
240,

32,

64,

96,
128,
160,
192,
224,
240,
240,
240,
240,
240,
240,
240,
240,

32,

64,

96,
128,
160,
192,
224,
240,
240,
240,
240,
240,
240,
240,
240,

32,

128,

240
240
240

32
64
96
128

192
224
240
240
240
240
240
240
240
240

16
32
48

80

112
128
144
160
176
192
208
224
240

(2]

[°d
O NOOOOOOOCDOO

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

1656 :
166 :
167 :
168 :
169 :
170 :
171 :
172 :
173 :
174 :

175

182
183

80,

96,
112,
128,
144,
160,
176,
192,
208,
224,

: 240,
176 :
177 :
178 :
179 :
180 :
181 :

184 :
185 :
186 :
187 :
188 :

189
190
191

192 :

193 :

194
196
196

se e

187 :
198 :
199 :
200 :
201 :
202 :
203 :

204
208

206 :
207 :

208
209
210
211
212

Entry 213

Entry
Entry
Entry

214
216
216

se es se s

Entry 217 :
Entry 218

Entry

219

Entry 220

112,
144,
160,
192,
192,
208,
208,
224,

160,
192,
224,
240

240,
240,
240,
240,
240,
240,
240,

32,

64,

96,
128,
160,
192,
224,
240,
240,
240,
240,
240,
240,
240,
240,

16,
32,
48,
64,
80,

112,
128,
144,
160,
176,
192,
208,
224,
240,
oc
oc
186,
16,
32,
32,
48,
48,
Mn
80,
112,
128,
160,

LOOKUP TABLE DATA

o0 o0o

32
64

128
160
192
224

OC0OO0OO0O0O0O0OO0O0OO0

o oW
["~]

128
160
192
224

hsOOOOOOOOO

(-]
-]

128
160
192
224

16
16
32
32
48
48
64
80
112
128
160

LOOKUP TABLE DATA

red, green, blue intensity

Entry 221 : 224, 176, 176
Entry 222 : 240, 208, 208
Entry 223 : 240, 224, 224
Entry 224 : 0, o, ©
Entry 2256 : 0, 16, ©
Entry 226 : 16, 48, 16
Entry 227 : 16, 64, 16
Entry 228 : 32, 96, 32
Entry 229 : 32, 112, 32
Entry 230 : 48, 144, 48
Entry 231 : 48, 160, 48
Entry 232 : 64, 192, 64
Entry 233 : 80, 192, 80
Entry 234 : 112, 208, 112
Entry 235 : 128, 208, 128
Entry 236 : 160, 224, 160
Entry 237 : 176, 224, 176
Entry 238 : 208, 240, 208
Entry 239 : 224, 240, 224
Entry 240: o0, O, O
Entry 241 : o0, o0, 16
Entry 242 : 16, 16, 48
Entry 243 : 16, 16, 64
Entry 244 : 32, 32, 96
Entry 2456 : 32, 832, 112
Entry 246 : 48, 48, 144
Entry 247 : 48, 48, 160
Entry 248 : 64, 64, 192
Entry 249 : 80, 80, 192
Entry 260 : 112, 112, 208
Entry 251 : 128, 128, 208
Entry 262 : 160, 160, 224
Entry 253 : 176, 176, 224
Entry 254 : 208, 208, 240
Entry 266 : 224, 224, 240
State 1 :

Entry O : 96, 128, 208
Entry1: ©O0, O, O
Entry 2 : 112, 64, 32
Entry 3 : 160, 112, 64
Entry 4 : 112, o0, O
Entry 6 : 240, 0, O
Entry 6 : 240, 112, O
Entry 7 : 240, 240, O
Entry 8 : 160, 240, ©
Entry 9 : O, 240, O
Entry 10 : 0, 112, O
Entry 11 : 0, 112, 112
Entry 12: O, o0, 112
Entry 13 : 224, 144, 96
Entry 14 : 112, 112, 112
Entry 156 : 240, 240, 240
Entry 16 : 0, ©0, O

Entry 17 :
Entry 18 :
Entry 19 :
Entry 20 :
Entry 21 :
Entry 22 :

Entry 23
Entry 24
Entry 26

Entry 26 :
Entry 27 :
Entry 28 :
Entry 29 :
Entry 30 :
Entry 31 :
Entry 32 :
Entry 33 :
Entry 34 :
Entry 356 :

Entry 36
Entry 37

Entry 38 :
Entry 39 :
Entry 40 :

Entry 41
Entry 42

Entry 43 :
Entry 44 :

Entry 46

Entry 46 :
Entry 47 :
Entry 48 :
Entry 49 :
Entry 50 :
Entry b1 :

Entry 62
Entry 63
Entry b4

Entry 66 :

Entry 56
Entry 57

Entry b8 :

Entry 69
Entry 60

Entry 61 :
Entry 62 :

Entry 63
Entry 64
Entry 66
Entry 66
Entry 67

e se ee

Entry 68 :

Entry 69

Entry 70 :

Entry 71

Entry 72 :

O O0OO0O0DO0O0O00DO0ODO0OO0CDCOOOO

=3
-
N

112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
160,
160,
160,
160,
180,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
112,
112,
112,
112,
112,
112,
112,
112,
112,

[+

2222000060000 00 oo0ooo

BRBBUBB88EEBY 800000000000 0000

©ccoocococo0o0o0l222R22RRR2222222248

Entry 73 :
Entry 74 :
Entry 75 :
Entry 76 :
Entry 77 :
Entry 78 :
Entry 79 :
Entry 80 :
Entry 81 :
Entry 82 :

Entry 83

Entry 84 :
Entry 85 :
Entry 86 :
Entry 87 :
Entry 88 :
Entry 89 :
: 240,

Entry 80

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

91 :
92 :
93 :
94 :
95 :
86 :

97

98 :

100 :

101 :

102

103 :

104 :
1056 :

106
107
108
109
110
111
112
113
114
116
116
117
118

121

126

127
128

112,
112,
112,
112,
112,
112,
112,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,

240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,

: 240,

e se 44 es a8 es ee as ss ee

240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,

: 240,
119 :
120 :

240,
240,

: 240,
122 :
123 :
124 :
125 :

240,
240,
240,
240,
240,
240,
160,

OOOOOOOOOO0.000000000000

112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,

oooooooooooo°°°°°°°°°°°°°°°°°O°OOOOOOOOOOOOOOOOOOOOOOOOO

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

129 :
130 :
131 :
132 :
133 :
134 :

136

137

160,
160,
160,
160,
160,
160,

: 160,
136 :

138 :
139 :
140 :

141
142
143

144
146 :
146 :

147
148
149

..

150 :

151

152 :

163
164
166
166
167
158
169
160
161
162
163
164
166
166
167
168
169
170
171
172
173
174
176
176
177
178
179
180
181

e se a0 es se se ev ee

s oo e

s 06 68 se e se es es se se e

182 :
183 :
184 :

160,
160,
160,
160,
160,
160,
160,
160,

OO0 0000000000000 O0OO0OO0DO0OO0ODO0OODOO0O0DO0ODO0DODODOOOOOOODOLOOOO

-

240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,

LOOKUP TABLE DATA

OO 0000000000000 O0O0OO0DO0DO0OO0DO0DOO0DO0DO0DO0O0OO0O0DO0OO00O0OD0DO0ODO0ODOODOOOOOO

(VY
-
[%)

112
112
112
112
112
112
112

LOOKUP TABLE DATA

Entry 186 : 0, 112, 112 Entry 241 : 240, 240, 240
Entry 186 : 0, 112, 112 Entry 242 : 240, 240, 240
Entry 187 : 0, 112, 112 Entry 243 : 240, 240, 240
Entry 188 : 0, 112, 112 Entry 244 : 240, 240, 240
Entry 189 : 0, 112, 112 Entry 2456 : 240, 240, 240
Entry 190 : 0, 112, 112 Entry 246 : 240, 240, 240
Entry 191 : 0, 112, 112 Entry 247 : 240, 240, 240
Entry 192 : 0, 0, 112 Entry 248 : 240, 240, 240
Entry 193 : 0, O, 112 Entry 249 : 240, 240, 240
Entry 194 : O, O, 112 Entry 250 : 240, 240, 240
Entry 196 : 0, 0, 112 Entry 251 : 240, 240, 240
Entry 196 : 0, 0, 112 Entry 252 : 240, 240, 240
Entry 197 : 0, O, 112 Entry 2563 : 240, 240, 240
Entry 198 : 0, 0, 112 Entry 264 : 240, 240, 240
Entry 199 : o0, 0, 112 Entry 266 : 240, 240, 240
Entry 200 : 0, O, 112
Entry 201 : 0, O, 112
Entry 202 : 0, O, 112
Entry 203 : o, o0, 112 State 2 : red, green, blue intensity
Entry 204 : 0, O, 112
Entry 206 : O, O, 112 Entry O : O, O, ©
Entry 206 : 0, O, 112 Entry 1 : O, O, 48
Entry 207 : O, O, 112 Entry2: O, O, 80
Entry 208 : 224, 144, 96 Entry 3 : O, O, 112
Entry 209 : 224, 144, 96 Entry4: O, O, 144
Entry 210 : 224, 144, 96 Entry 6 : O, 0, 176
Entry 211 : 224, 144, 96 Entry 6 : 0, 0, 208
Entry 212 : 224, 144, 96 Entry 7 : O, O, 240
Entry 213 : 224, 144, 96 Entry 8 : O, 48, O
Entry 214 : 224, 144, 96 Entry 9 : O, 48, 48
Entry 215 : 224, 144, 98 Entry 10 : 0, 48, 80
Entry 216 : 224, 144, 96 Entry 11 : 0, 48, 112
Entry 217 : 224, 144, 96 Entry 12 : 0, 48, 144
Entry 218 : 224, 144, 96 Entry 13 : O, 48, 176
Entry 219 : 224, 144, 96 Entry 14 : 0, 48, 208
Entry 220 : 224, 144, 96 Entry 16 : O, 48, 240
Entry 221 : 224, 144, 96 Entry 16 : O, 80, O
Entry 222 : 224, 144, 96 Entry 17 : 0, 80, 48
Entry 223 : 224, 144, 66 Entry 18 : 0, 80, 80
Entry 224 : 112, 112, 112 Entry 19 : 0, 80, 112
Entry 226 : 112, 112, 112 Entry 20 : O, 80, 144
Entry 226 : 112, 112, 112 Entry 21 : O, 80, 176
Entry 227 : 112, 112, 112 Entry 22 : O, 80, 208
Entry 228 : 112, 112, 112 Entry 23 : 0, 80, 240
Entry 229 : 112, 112, 112 Entry 24 : o0, 112, ©
Entry 230 : 112, 112, 112 Entry 26 : O, 112, 48
Entry 231 : 112, 112, 112 Entry 26 : 0, 112, 80
Entry 232 : 112, 112, 112 Entry 27 : O, 112, 112
Entry 233 : 112, 112, 112 Entry 28 : O, 112, 144
Entry 234 : 112, 112, 112 Entry 20 : O, 112, 176
Entry 236 : 112, 112, 112 Entry 30 : O, 112, 208
Entry 236 : 112, 112, 112 Entry 31 : 0, 112, 240
Entry 237 : 112, 112, 112 . Entry 32 : 0, 144, O
Entry 238 : 112, 112, 112 Entry 33 : O, 144, 48
Entry 239 : 112, 112, 112 Entry 34 : O, 144, 80
Entry 240 : 240, 240, 240 Entry 36 : O, 144, 112
Entry 36 : 0, 144, 144

Entry 37 :
Entry 38 :
Entry 39 :

Entrv 40

=0SIy

Entry 41 :
Entry 42 :
Entry 43 :
Entry 44 :

Entry 46
Entry 46

Entry 47 :
Entry 48 :
Entry 49 :
Entry 50 :
Entry b1 :
Entry 62 :

Entry 63
Entry 54
Entry 66
Entry 56
Entry b7
Entry 58
Entry 59

s se ee

e ee as

Entry 60 :

Entry 61
Entry 62
Entry 63
Entry 64
Entry 65

e 4

Entry 66 :

Entry 67

Entry 68 :
Entry 69 :

Entry 70
Entry 71
Entry 72
Entry 73
Entry 74
Entry 76
Entry 76
Entry 77
Entry 78
Entry 79
Entry 80
Entry 81
Entry 82
Entry 83

e 68 ee se es ss 00 es s se se se e ee

Entry 84 :

Entry 85
Entry 86
Entry 87
Entry 88
Entry 89
Entry 90
Entry 91
Entry 92

e e es s es s

- e ® ® ® e ®» e ®w ow w w w =

[~
OOOOOOOOOOOOOO?OOOOOOOOOOOOOOO

0 0 0 m M
000

-]
Q

80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,

144,
144,
144,
178,
176,
176,
176,
176,
176,
176,
178,
208,
208,
208,
208,
208,
208,
208,
208,
240,
240,
240,
240,
240,
240,
240,
240,

0WOO0OO0OO0O0O0O0OO0

o

>
-]

48,
48,
48,
48,
48,
48,
80,
80,
80,
80,
80,
80,
80,
80,
112,
112,
112,
112,
112,

176
208
240
0
48
80
112
144
176
208
240

418

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48
80
112
144
176
208

48
80
112
144
176
208

48
80
112
144

Entry 93 :
Entry 94 :
Entry 95 :
Entry 068 :
97 :
Entry 98 :
Entry 99 :

Entry

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

100 :

101

102 :
103 :

104
106

106 :
107 :
108 :

109
110
111
112
113
114
116
116
117
118
119
120
121
122
123
124
126
126
127
128
129
130
131
132
133
134
136
136
137
138

s e se se

5 se se se se es ee

e 06 08 o8 a8 e e s4 se se sc se o»

139 :

140
141

142 :

143

144 :

145
146
147

148 :

80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,
160,

112,
112,
112,
144,
144,
144,
144,
144,
144,
144,
144,
176,
176,
176,
176,
176,
176,
176,
176,
208,
208,
208,
208,
208,
208,
208,
208,
240,
240,
240,
240,
240,
240,
240,
240,

OOO?OOOO

0 0 0 0 0 i i o b
BR3SBRAELBESS

LOOKUP TABLE DATA

176
208
240

o
48
80

112

144
176
208
240
o
48
80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

418

80
112
144
176
208
240

48

80
112
144
176
208
240

48
80
112
144

LOOKUP TABLE DATA

Entry 149 : 160, 80, 176 Entry 206 : 240, 48, 176
Entry 150 : 160, 80, 208 Entry 206 : 240, 48, 208
Entry 161 : 160, 80, 240 Entry 207 : 240, 48, 240
Entry 162 : 160, 112, O Entry 208 : 240, 80, O
Entry 163 : 160, 112, 48 Entry 209 : 240, 80, 48
Entry 164 : 160, 112, 80 Entry 210 : 240, 80, 80
Entry 166 : 160, 112, 112 Entry 211 : 240, 80, 112
Entry 166 : 160, 112, 144 Entry 212 : 240, 80, 144
Entry 167 : 160, 112, 176 Entry 213 : 240, 80, 176
Entry 168 : 160, 112, 208 Entry 214 : 240, 80, 208
Entry 169 : 160, 112, 240 Entry 216 : 240, 80, 240
Entry 160 : 160, 144, 0 Entry 216 : 240, 112, O
Entry 161 : 160, 144, 48 Entry 217 : 240, 112, 48
Entry 162 : 160, 144, 80 Entry 218 : 240, 112, 80
Entry 163 : 160, 144, 112 Entry 219 : 240, 112, 112
Entry 164 : 160, 144, 144 Entry 220 : 240, 112, 144
Entry 166 : 160, 144, 176 Entry 221 : 240, 112, 176
Entry 166 : 160, 144, 208 Entry 222 : 240, 112, 208
Entry 167 : 160, 144, 240 Entry 223 : 240, 112, 240
Entry 168 : 160, 176, © Entry 224 : 240, 144, O
Entry 169 : 160, 178, 48 Entry 226 : 240, 144, 48
Entry 170 : 160, 176, 80 Entry 226 : 240, 144, 80
Entry 171 : 160, 176, 112 Entry 227 : 240, 144, 112
Entry 172 : 160, 176, 144 Entry 228 : 240, 144, 144
Entry 173 : 160, 176, 176 Entry 229 : 240, 144, 176
Entry 174 : 160, 176, 208 Entry 230 : 240, 144, 208
Entry 176 : 160, 176, 240 Entry 231 : 240, 144, 240
Entry 176 : 160, 208, O© Entry 232 : 240, 176, ©
Entry 177 : 160, 208, 48 Entry 233 : 240, 176, 48
Entry 178 : 160, 208, 80 Entry 234 : 240, 176, 80
Entry 179 : 160, 208, 112 Entry 236 : 240, 176, 112
Entry 180 : 160, 208, 144 Entry 236 : 240, 176, 144
Entry 181 : 160, 208, 176 Entry 237 : 240, 176, 176
Entry 182 : 160, 208, 208 Entry 238 : 240, 176, 208
Entry 183 : 160, 208, 240 Entry 239 : 240, 176, 240
Entry 184 : 160, 240, O Entry 240 : 240, 208, O
Entry 185 : 160, 240, 48 Entry 241 : 240, 208, 48
Entry 186 : 160, 240, 80 Entry 242 : 240, 208, 80
Entry 187 : 160, 240, 112 Entry 243 : 240, 208, 112
Entry 188 : 160, 240, 144 Entry 244 : 240, 208, 144
Entry 189 : 160, 240, 176 Entry 245 : 240, 208, 176
Entry 190 : 160, 240, 208 Entry 246 : 240, 208, 208
Entry 191 : 160, 240, 224 Entry 247 : 240, 208, 240
Entry 192 : 240, O, O Entry 248 : 240, 240, O
Entry 193 : 240, O, 48 Entry 249 : 240, 240, 48
Entry 194 : 240, O, 80 Entry 250 : 240, 240, 80
Entry 195 : 240, 0, 112 Entry 251 : 240, 240, 112
Entry 196 : 240, 0, 144 Entry 262 : 240, 240, 144
Entry 197 : 240, O, 176 Entry 263 : 240, 240, 176
Entry 198 : 240, O, 208 Entry 254 : 240, 240, 208
Entry 199 : 240, 0, 240 Entry 266 : 240, 240, 240

Entry 200 : 240, 48, O
Entry 201 : 240, 48, 48
Entry 202 : 240, 48, 80
Entry 203 : 240, 48, 112 Btate 3 : red, green, blue intensity
Entry 204 : 240, 48, 144
Entry0: O, O, O

Entry 1 :
Entry 2 :
Entry 3 :
Entry 4 :
~Entry 6 :
Entry 6 :
Entry 7 :

Entry 8
Entry 9

e ve

Entry 10 :
Entry 11 :
Entry 12 :

Entry 13
Entry 14

Entry 156 :
Entry 16 :

Entry 17
Entry 18

Entry 19 :

Entry 20
Entry 21

Entry 23
Entry 24
Entry 26
Entry 26
Entry 27
Entry 28
Entry 29

s s 4o ee ee ee oo

Entry 30 :
Entry 31 :
Entry 32 :
Entry 33 :

Entry 34

Entry 35 :

Entry 36
Entry 37
Entry 38
Entry 39
Entry 40
Entry 41
Entry 42
Entry 43

Entry 44 :

Entry 46
Entry 46

Entry 47 :

Entry 48
Entry 49
Entry 50

Entry b1 :

Entry 52
Entry 63
_Entry 54
Entry 66
Entry 56

as se en es e

©CO0OO0OO0OO0O0ODO0OO0OO0

OOOOOOOOOO_OOOOOOOOOOOO

A BB XA IE T IET 22T IEZ X 2T XX EEE
€ 00 C 00 CO OO 0 00 © € 00 © €0 0 00 0 0 & ™

48,
48,
48,
48,
48,

00O OO0 OO

0
S

80,

80,

80,

80,

80,

80,
160,
160,
160,
160,
160,
160,
160,
160,
240,
240,
240,
240,
240,
240,
240,
240,

00000000

0 00 0 0 0 0 O o
853888838

160,
160,
160,
160,
160,
160,
160,
160,
240,

418

80
112
i44
176
208
240

48
80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

418

112
144
176
208
240

Entry 67 :
Entry 68 :
Entry 59 :
Entry 60 :
Entry 61 :
Entry 62 :
Entry 63 :
Entry 64 :

Entry 65
Entry 66

Entry 67 :

Entry 68

Entry 69 :

Entry 70
Entry 71
Entry 72

Entry 73 :
Entry 74 :
Entry 75 :

Entry 76
Entry 77
Entry 78
Entry 79
Entry 80

Entry 81 :
Entry 82 :

Entry 83
Entry 84
Entry 86
Entry 86
Entry 87
Entry 88
Entry 89
Entry 90
Entry 91
Entry 92

e es ee es es

s 00 es o

Entry 93 :

Entry 94
Entry 95
Entry 96
Entry 97
Entry 98
Entry 99

Entry 100 :

se ee oo ee

1
1
1
1

Entry 101 :

Entry 102
Entry 103
Entry 104
Entry 106
Entry 106
Entry 107
Entry 108
Entry 109
Entry 110
Entry 111
Entry 112

e as 48 se ss e se

48,
48,
48,
é ’
48,
48,
48,
80,
80,
80,
80,
80,
80,
80,
80,
80,
8o,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
12,
12,
12,
12,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
iia,

240,
240,
240,
240,
240,
240,
240,

OCO0oO0OO0O0OOO0COo

0 00 0 O 0 0 0
OCO0OO0O0O00O0O0

160,
160,
160,
160,
iso,
180,
160,
160,
240,
240,
240,
240,
240,
240,
240,
240,

o:

on

on

oc

o,
0,
0,
80,
80,
80,
80,
80,
80,
80,
80,
is0,

LOOKUP TABLE DATA

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
i44
176
208
240

48

80
112
144
176
208
240

48
80
112
144
176
208
240

48

80
112
144
176
208
240

LOOKUP TABLE DATA

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

113 :
114 :
116 :
116 :
117 :
118 :
119 :
120 :
121 :
122 :
123 :
124 :
126 :
126 :
127 :
128 :
129 :
130 :
131 :
132 :
133 :
134 :
136 :
136 :
137 :
138 :
139 :
140 :
141 :
142 :
143 :
144 :
145 :
146 :
147 :
148 :
149 :
160 :
161 :
162 :
163 :
164 :
165 :
166 :
167 :

168

169 :
160 :
161 :
162 :

163

164 :
1656 :
166 :
167 :
168 :

112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
176,
176,
176,
176,
176,
i7e,
176,
176,
176,

160,
160,
160,
160,
160,
160,
160,
240,
240,
240,
240,
240,
240,
240,
240,

0000000 O0

80,
80,
80,
80,
80,
80,
80,
80,
160,
160,
160,
160,
160,
160,
160,
160,
240,
240,
240,
240,
240,
240,
240,
240,

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

418

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

Entry

Entry
Entry

Cc-10

169 :
170 :
171
172 :
173 :
174 :
176 :
176 :
177 :
178 :
179 :
180 :
181 :
182 :
183 :
184 :
185 :
186 :
187 :
188 :
189 :
190 :
181 :
192 :
193 :
194 :
196 :
196 :
197 :
198 :
199 :
200 :
Entry 201 :
202 :
203 :
204 :
206 :
206 :
207 :
208 :
209 :
210 :
211 :
212 :
213 :
214 :
2156 :
216 :
217 :
218 :
Entry 219 :
220 :
221 :
222 :
Entry 2238 :
Entry 224 :

176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
176,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
240,

80,
80,
80,
80,
80,
80,
80,
160,
160,
160,
160,
160,
160,
160,
160,
240,
240,
240,
240,
240,
240,

»
>
o

240,

00000000

oM o
000

80,

80,

80,

80,

80,
160,
160,
160,
160,
160,
160,
160,
160,
240,
240,
240,
240,
240,
240,
240,
240,

48

80
112
144
176
208
240

48

80
112
144
176
208
240

418

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

48

80
112
144
176
208
240

LOOKUP TABLE DATA

Entry 226 : 240, O, 48 Entry 21 : 0, 176, 80
Entry 226 : 240, O, 80 Entry 22 : 0, 176, 160
Entry 227 : 240, O, 112 Entry 23 : 0, 176, 240
Entry 228 : 240, O, 144 Entry 24 : ©, 208, ¢
Entry 229 : 240, O, 176 Entry 26 : 0, 208, 80
Entry 230 : 240, O, 208 Entry 26 : 0, 208, 160
Entry 231 : 240, O, 240 Entry 27 : O, 208, 240
Entry 232 : 240, 80, O Entry 28 : 0, 240, O
Entry 233 : 240, 80, 48 Entry 29 : 0, 240, 80
Entry 234 : 240, 80, 80 Entry 30 : 0, 240, 160
Entry 236 : 240, 80, 112 Entry 31 : 0, 240, 240
Entry 236 : 240, 80, 144 Entry 32 : 48, o0, ©
Entry 237 : 240, 80, 176 Entry 33 : 48, 0, 80
Entry 238 : 240, 80, 208 Entry 34 : 48, 0, 160
Entry 239 : 240, 80, 240 Entry 36 : 48, 0, 240
Entry 240 : 240, 160, © Entry 36 : 48, 48, O
Entry 241 : 240, 160, 48 Entry 37 : 48, 48, 80
Entry 242 : 240, 160, 80 Entry 38 : 48, 48, 160
Entry 243 : 240, 160, 112 Entry 39 : 48, 48, 240
Entry 244 : 240, 160, 144 Entry 40 : 48, 80, O
Entry 2456 : 240, 160, 176 Entry 41 : 48, 80, 80
Entry 246 : 240, 160, 208 Entry 42 : 48, 80, 160
Entry 247 : 240, 160, 240 Entry 43 : 48, 80, 240
Entry 248 : 240, 240, O Entry 44 : 48, 112, 0
Entry 249 : 240, 240, 48 Entry 46 : 48, 112, 80
Entry 250 : 240, 240, 80 Entry 46 : 48, 112, 160
Entry 251 : 240, 240, 112 Entry 47 : 48, 112, 240
Entry 2562 : 240, 240, 144 Entry 48 : 48, 144, O©
Entry 263 : 240, 240, 176 Entry 49 : 48, 144, 80
Entry 264 : 240, 240, 208 Entry 50 : 48, 144, 160
Entry 266 : 240, 240, 240 Entry 61 : 48, 144, 240
Entry 62 : 48, 176, ©
Entry 63 : 48, 176, 80
Entry 64 : 48, 176, 160
State 4 : red, green, blue intensity Entry 56 : 48, 176, 240
Entry 68 : 48, 208, ©
Entry0: O, 0, O Entry 67 : 48, 208, 80
Entry1: O, O, 80 Entry 68 : 48, 208, 160
Entry2: 0, O, 160 Entry 59 : 48, 208, 240
Entry 3 : O, O, 240 Entry 60 : 48, 240, O
Entry 4 : O, 48, 0 Entry 61 : 48, 240, 80
Entry 6 : 0O, 48, 80 Entry 62 : 48, 240, 160
Entry 6 : O, 48, 160 Entry 63 : 48, 240, 240
Entry 7 : O, 48, 240 Entry 64 : 8, O, O
Entry 8 : 0, 80, © Entry 66 : 80, O, 80
Entry 9: O, 80, 80 Entry 66 : 80, 0, 160
Entry 10 : O, 80, 160 Entry 67 : 80, O, 240
Entry 11 : O, 80, 240 Entry 68 : 80, 48, O
Entry 12 : 0, 112, o© Entry 69 : 80, 48, 80
Entry 13 : 0, 112, 80 Entry 70 : 80, 48, 160
Entry 14 : 0, 112, 160 Entry 71 : 80, 48, 240
Entry 16 : 0, 112, 240 Entry 72 : 80, 80, O
Entry 16 : 0, 144, O Entry 73 : 80, 80, 80
Entry 17 : 0, 144, 80 Entry 74 : 80, 80, 160
Entry 18 : 0, 144, 160 Entry 76 : 80, 80, 240
Entry 19 : 0, 144, 240 Entry 76 : 80, 112, O
Entry 20 : 0, 176, O

LOOKUP TABLE DATA

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

77 :
78 :
79 :
80 :
81 :
82 :
83 :
84 :
86 :
86 :
87 :
88 :
89 :
80 :
91 :
92 :
93 :
94 :
96 :
96 :

97

100 :
101 :
102 :
103 :
104 :
106 :
106 :
107 :
108 :
109 :
110 :

111

114 :

116

80,
80,
80,
80,
80,
80,
80,
80,
8o,
80,
80,
80,
80,
80,
80,
80,
80,
80,
80,
112,

: 112,
98 :
299

112,

112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,

: 112,
112 ¢
113 :

.

116 :
117 :
118 :
119 :
120 :
121 :

122

123 :
124 :

126

126 :
127 :
128 :

129

132

112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
112,
144,

: 144,
130 :
131 :

144,
144,

: 144,

112,
112,
112,
144,
144,
144,
144,
176,
176,
176,
176,
208,
208,
208,
208,
240,
240,
240,
240,

48,

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

0
80
160

240

80
160
240

80
160
240

80
160
240

80
180
240

80
160
240

80
160
240

80
160
240

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

C-12

133 :
134 :
136 :
136 :
137 :
138 :
139 :
140 :
141 :
142 :
143 :
144 :
145 :
146 :
147 :
148 :
149 :
160 :
161 :
162 :
163 :
1564 :
166 :
1566 :

157

168 :
169 :
160 :
161 :
162 :
163 :
164 :
165 :
166 :
167 :
168 :
169 :
170 :
171 :
172 :
173 :
174 :
176 :
176 :
177 ¢
: 178,
179 :
180 :
181 :
182 :

178

183

184 :
1856 :
ige :
187 :
188 :

144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
176,
17e,
176,
176,
176,
176,
i7e,
176,
178,
176,
176,
176,
176,
17e,
176,
176,
i7e,
176,

176,
176,
176,
176,
176,
176,
176,
176,
178,
176,

48,

48,

48,

80,

80,

80,

80,
112,
112,
112,
112,
144,
144,
144,
144,
176,
176,
176,
176,
208,
208,
208,
208,
240,
240,
240,
240,

(=]

48,
48,
48,
48,
80,
80,
80,
80,
112,
112,
112,
112,
144,
144,
144,
144,
176,
i7e,
176,
17e,
208,
208,
208,
208,
240,

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
180
240

80
160
240

Entry
Entry
Entry

Entrv
SOy

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

189 :
190 :
: 176,

191

102
193 :
194 :
196 :
196 :

197

198 :
199 :

200

201 :
202 :
203 :
204 :
206 :
208 :

207
208
209

210 :
211 :
212 :
213 :
214 ;

215

216 :
217 :
218 :
219 :
220 :
221 :
222 :

223
224

226 :
226 :
227 :

228
229

230 :

231
232
233
234
235
236
237
238

" ee es e

239 :

240
241
242

ve o o

243 :
244

176,
176,

a0se,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,

240,
240,
240,

112,
112,
112,
112,
144,
144,

8o,

112,
112,
112,
112,
144,
144,
144,
144,
176,

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

80
160
240

Entry 245 :
Entry 246 :
Entry 247 :
Entry 248 :
Entry 249 :

Entry 260 :
Entry 251 :

.

Entry 262 :

Entry 263

Entry 254 :

.

Entry 265 :

240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,

176
176

LOOKUP TABLE DATA

, 80
, 160

176, 240

208
208
208
208
240

» ©
, 80
, 160
, 240
, O

240, 80
240, 160
240, 240

State b : red, green, blue intensity

Entry 0 :
Entry 1 :
Entry 2 :
Entry 3 :
Entry 4 :
Entry b
Entry 6
Entry 7
Entry 8
Entry 9 :
Entry 10
Entry ii
Entry 12
Entry 13
Entry 14
Entry 16
Entry 16
Entry 17
Entry 18
Entry 19
Entry 20
Entry 21
Entry 22
Entry 23
Entry 24
Entry 26
Entry 26
Entry 27
Entry 28
Entry 29
Entry 30
Entry 31
Entry 32
Entry 33
Entry 34
Entry 36
Entry 36
Entry 37
Entry 38
Entry 39
Entry 40

es s es se

S8 66 S0 66 86 08 46 8¢ 68 es ee B8 06 s e a6 es *e s se se ee s e

es o3 es ee ss e

999000000

* ® ®w ® ® ® ®w ®w ®w = 6w

OOOOOC)OO()OOOOOOOOOOOOOOOOO‘-c>

XN
0 00 o

mO0.0000

144,
144,
144,
144,
144,
192,
192,
192,
192,
192,
192,
240,
240,
240,
240,
240,
240,

OOPOO

0
48
96

144
192
240

144
192
240

48
96
144
192
240

48
144
192
240

48

144
192

LOOKUP TABLE DATA

- Entry 41 :
Entry 42 :
Entry 43 :
Entry 44 :
Entry 45 :
Entry 46 :
Entry 47 :
Entry 48 :
Entry 49 :
Entry 50 :
Entry 61 :
Entry 52 :
Entry 63 :
Entry b4 :
Entry 66 :
Entry 66 :
Entry 67 :
Entry 68 :
Entry 69 :
Entry 60 :
Entry 61 :
Entry 62 :
Entry 63 :
Entry 64 :
Entry 66 :
Entry 66 :
Entry 67 :
Entry 68 :
Entry 69 :
Entry 70 :
Entry 71 :
Entry 72 :
Entry 73 :
Entry 74 :
Entry 76 :
Entry 76 :
Entry 77 :
Entry 78 :
Entry 79 :
Entry 80 :
Entry 81 :
Entry 82 :
Entry 83 :
Entry 84 :
Entry 86 :
Entry 86 :
Entry 87 :
Entry 88 :
Entry 89 :
Entry 90 :
Entry 91 :
Entry 92 :
Entry 93 :
Entry 94 :
Entry 96 :
Entry 96 :

2838333333888 88:38%

83838333

48,
48,
96-
“u
96,
96'
96,
96,
144,
144,
144,
144,
144,
144,
192,

240

418
96
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144

192
240

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

C-14

97 :
298 :
99 :
100 :
101 :
102 :
103 :
104 :
1056 :
106 :
107 :
108 :
109 :
110 :
111 ¢
112
113 :
114 :
116 :
116 :
117 :
118 :
119 :

120

135

136 :
137 :
138 :
139 :
140 :
141 :
142 :
143 :
144 :

145

148

96, 192,
96, 192,
96, 192, 144
96, 192, 192

96,
96,
96,
96,
96,
96,
96,
144,
144,
144,
144,
144,
144,
144,
i44,
144,
144,
144,
144,

: 144,
121 :
122 :
123 :
124 :
125 :
126 :
127 :
128 :
129 :
130 :
131 :
132 :
133 :
134 :

144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
144,
192,

: 192,
146 :
147 :

192,
192,

: 192,
149 :
160 :
151 :
162 :

192,
192,
192,
192,

192,
240,
240,
240,
240,
240,
240,

©CO0O 0000

48,
48,
48,
48,
48,
48,
96,
26,
96,

48
96

240
0
48
96
144
192
240

48

144
192
240

48
96
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
96

Entry
Entry
Entry

try
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

163

169

170

171
172

: 192,
154 :
156 :
188 :
1567 :
168 :

i92,
192,
1g2,
192,
192,

: 192,
160 :
161 :
162 :
163 :
164 :
166 :
166 :
167 :
168 :
169 :

173 :
174 :
i75 :

176
177
178
179

186 :

181
182
183
184
186
186
187
188
189
190
191
192

193 :

194

195 :
196 :
197 :
198 :

199
200

Entry 201
Entry 202
Entry 203
Entry 204
Entry 206
Entry 206
Entry 207
Entry 208

99 60 se es ee se s ee se ss

192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
192,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,
240,

48,
48,
48,

red
Vs

96,

968,

96,

96,

96,
144,
144,
144,
144,
144,
144,
192,
192,
192,
192,
192,
192,

28888853

1
14
144,
144,
144,
144,
192,
192,
192,
192,
192,

'
Ll

144
192
240

48
96
144
192

144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48
144
192
240

48

144
192

Entry 209 :
Entry 210 :
Entry 211 :
Entry 212 :
Entry 213 :
Entry 214 :
Entry 215 :
Entry 216 :
Entry 217 :
Entry 218 :
Entry 219 :

Entry 220
Entry 221
Entry 222
Entry 223
Entry 224

Entry 226 :

Entry 226
Entry 227
Entry 228

Entry 229 :

Entry 230

..

Entry 231 :

Entry 232
Entry 233

ve

Entry 234 :

Entry 236

Entry 236 :

Entry 237
Entry 238
Entry 239
Entry 240
Entry 241
Entry 242
Entry 243
Entry 244
Entry 245
Entry 246
Entry 247
Entry 248
Entry 249
Entry 250
Entry 251
Entry 262

s ee se ee

e e e se ss se s er

s sv e»

Entry 263 :

Entry 254
Entry 256

LY

240,
240,
240,

AN
=TV

240,
240,
240,

" ® ® ® ®w ® ®w w w ®w w e w w w e w 6w

QOO O0OO0O0O0O0OO0DO0O0OO0O0O0OO0O0OO0DO0DOO0OOO0ODO0OOO0OO0DO0ODO0ODO0DODOODODOOLOOOOOO

LOOKUP TABLE DATA

192, 240
240, O
240, 48
240, ©o8
240, 144
240, 192
240, 240

© B 8 e B e ®W ®w e ® oW ®w w e ®w w w w w

OOOOOOOOOOOOOOOOOO0.000000000000000000000
OO0 O0OO0DO0O0DO0OO00DO0DO0O0DO0O0OO0DO0O0OODO0OO0OO0DO0DO0DO0OO0ODO0OO0OODOODODOODOOOCOOO

LOOKUP TABLE DATA

C-16

Appendix D

Command List Sample

SECTION D.1 Command List

COMMAND LIST SAMPLE

D.1 Command List

The following are the ASCII commands for the command list that draws the house illustrated
in Figure 4.5 in Section 4.4.

CA
RF
CB 100
P3 4 -100, o, 100
100, o, 100
100, o, -100
=100, o, -100
P3 4 -100, 100, 100
100, 100, 100
100, 100, -100
-100, 100, -100
M3 -100, 100, 100
D3 =100, o, 100
M3 100, 100, 100
D3 100, o, 100
M3 100, 100, -100
D3 100, o, -100
M3 -100, 100, -100
D3 =100, o, =100
M3 -100, 100, 100
D3 0, 135, 100
D3 100, 100, 100
M3 100, 100, -100
D3 0, 135, -100
D3 =100, 100, =100
M3 0, 136, -100
D3 0, 135, 100
M3 -15, o, 100
D3 -15, €6, 100
D3 15, 668, 100
D3 15, o, 100
P3 4 -5, 33, 100
5, 33, 100
5, 55, 100
-b, 66, 100
P3 4 -75, 33, 100
-40, 33, 100
-40, 66, 100
-756, 66, 100
P3 4 40, 33, 100

P3 4

P3 4

P3 4

P3 4

P3 4

P3 4

M3
D3
M3
D3
M3
D3
M3
D3
D3
D3
M3
D3
M3
D3
P3 4

1765,
178,
100,
100,
175,
175,
100,
100,
100,
175,
178,
178,
175,
105,
1086,
170,
170,
105,
170,
105,
170,
120,

66,

100
100
100
=100
-100

-100

1
1
1
100
100
100
100
100
100
100
100

8880000008

COMMAND LIST

COMMAND LIST SAMPLE

P3 4

CE

CLs 0
Cc 25
CR 100

130,
130,
120,
145,
155,
165,
145,

50,
60,
60,
50,
50,
60,
60,

100
100
100
100
100
100
100

Appendix E

Default Parameters

SECTION E.1 Default Parameters

DEFAULT PARAMETERS

E.1 Default Parameters

The following table represents the default values after a cold reset of the various matrices, flags
and patterns used in the QG-640.

Flag Name Defaunlt Value | Description
1 AREAPT 65535 16 times Solid area
2 CLIPH 0 Disabled
3 CLIPY 0 Disabled
4 COLOR 255
6 DISTAN 500
7 DISTH -30000
8 DISTY 30000
9 FILMSK 255 All planes used
10 LINFUN 0 Set mode
11 LINPAT 65535 Solid lines
12 MASK 255 All planes on
13 MDORG (0,0,0)
14 2D current point (0,0)
15 3D current point (0,0)
16 PRMFIL 0 Off
17 PROJCT 60
18 TANGLE (1] Horizontal
19 TJUST 1,1 Left, bottom
20 TSIZE 8 8x12 cells
21 VWPORT 0,639°,0,479° Entire screen
22 VWRPT (0,0,0)
23 WINDOW -320,319,-240,239°
24 Transformed 3D point (0,0,0)
25 none none Used in FLAGRD
26 | XHAIR - current pt on screen (320,240)°
27 XHAIR - current pt in 2D (0,0)
28 Screen Current Pt (320,240)°
29 none none Used in FLAGRD
30 none none Used in FLAGRD
31 none none Used in FLAGRD
32 TSTYLE 0 ‘fat’ text
33 TASPCT 15
34 TCHROT 0
35 none none Used in FLAGRD
36 VDISP 0
37 PMASK 255°* All LUT bits enabled
38 none none Used in FLAGRD
39 Display Format 640°,480°,60°°,0°
41 COLMOD 1 Transparent
42 BCOLOR 0 Transparent

* These values are determined by straps on the QG—640 circuit board.
* These values are set only on reset and power up.

Appendix F

VMS Macro Code Example

SECTION F.1 VMS Macro Code Example

VMS MACRO CODE EXAMPLE

F.1 VMS Macro Code Example

The following program reads the Status Register of the QG—640.

.title readstatus

; Sample program to read the status register of the QG640/QG1280

$iodef

.psect data,noexe,wrt

; This is the name of the QG-640 on your system
qgname: .ascid /QGAO/

OUTPUT_LENGTH = 80

; bit definititions for the QG Status Register
EMPTY = O

FULL = 1

HALF_EMPTY = 2

PORT_FULL = 3

ERROR = 4

hello: .ascid "!/Reading status register of !AS"
qg_empty: .ascid / -- FIFO empty/

qg_full: .ascid / -- FIFO full/

qg_half_empty: .ascid / -- FIFO half empty/
qg_port_full: .ascid / -- Port register full/

VMS MACRO CODE EXAMPLE

qg_error: .ascid / -- Error flag set/
error_message: .ascid /An error occurred./
status_value: .ascid /Status register value: !XB/
port_contenta: .ascid /Port contents: !XB °*!AF'/
channel: .blkw 1

output_string: .long OUTPUT_LENGTH

.address output_buffer

output_buffer: .blkb OUTPUT_LENGTH

input_buffer: .blkb 1

; this is the format of the I/0 status block as returned by the
i QG driver.

status_block: .blkw 1 ; status
.blkw 1 ; byte count

qgstat: .blkb 1 ; qgstatus register
.blkb 3 ; reserved

; Actual code starts here

.psect code,exe,nowrt

.entry readstatus,“m<>

; make the announcement

movl #OUTPUT_LENGTH,output_string

$fao_s hello, output_string, output_string, #qgname
pushab output_string

calls #1,g"1ib$put_output

; assign a channel to the QG

$assign_s qgname,channel

blbs r0,1$
brv exit_error
1$:

VMS MACRO CODE EXAMPLE

: null read from the QG (this will load the status register into

: the IOSB (status_block) for us) Note: status_block for pl here

: is used as a buffer but is not modified since the read length
; is O bytes.

$qiov_s ,channel,#I0$_READVBLK,status_block,,,status_block,#0
blbs r0,2$
brw exit_error

2%:
; show results

movl #OUTPUT_LENGTH,output_string

$fao_s status_value,output_string,output_string,qgstat
pushadb output_string

calls #1,g"1ib$put_output

; check the empty flag

bbc #EMPTY,qgstat,10$
pushab qg_empty
calls #1,g"1ib$put_output

; check the FIFO full flag

10$:

bbc #FULL,qgstat,20$

pushab qg_full

calls #1,g"1ib$put_output

; check the FIFO half empty flag
208$:

bbc #HALF_EMPTY,qgstat,30$
pushab qg_half_empty

calls #1,g"1lib$put_output

; check the port full flag
30$:

bbc #PORT_FULL,qgstat,40$
pushab qg_port_full

calls #1,g"1lib$put_output

; check the error flag
40%:

bbs #ERROR,qgstat,50$
pushab qg_error

calls #1,g"1ib$put_output

VMS MACRO CODE EXAMPLE

; 1f the port is full, dump its contents one byte at a time until
; the status register says there are no more bytes (port empty)

508$:
bbc #PORT_FULL,qgstat,60$

$qiow_s ,channel,#I0$_READVBLK,status_block,,,input_buffer,#1

movl #OUTPUT_LENGTH,output_string

$fao_s port_contents,output_string,output_string,input_buffer,-

#1 ,#input_buiffer
pushadb output_string
calls #1,g"1ib$put_output
brb 508%
60$:
$dassgn_s channel
blbc r0,exit_error
ret

exit_error:

pushab error_message
calls #1,g"1ib$put_output
ret

.end readstatus

VMS MACRO CODE EXAMPLE

$! testread.com

$!

$! use the readstatus program to test the driver IOSB status register
$! return

$!

$ run := RUN

$ wvait := WAIT

$ copy := COPY

$!

$! show the starting state of the QG640
$!

$ run readstatus

$!

$! copy something to the QG640 that will keep the FIFO non-empty for 10 seconds
$!

$ copy sys$input qgaO:

wait 600

move O O

flagrd 14

$ run readstatus

$!

$! wait 10 seconds and then show the status register again
$! '

$ wait 00:00:10.00

$ run readstatus

; Reading status register of QGAO
Status register value: F9

== FIFO empty

-- Port register full
Port contents: 20 * °*
Reading status register of QGAO
Status register value: FO
Reading status register of QGAO
Status register value: F9

-- FIFO empty

-- Port register full
Port contents: 30 0’
Port contents: 2C °,°’
Port contents: 30 °0’
Port contents: OD °.°

VMS MACRO CODE EXAMPLE

Appendix G

Fast Execution “Local Pipes”

This chapter describes the fast execution families of graphic commands, optimized to work
together as a group, in the firmware for the QG—640. These families of graphic commands
use local command decoders to offer greatly increased command decoding speed. Section G.1
explains the concept of “local pipes” and Section G.2 describes the “local pipe” Command Sets.

FAST EXECUTION “LOCAL PIPES”

G.1 Description of Local Pipes

The QG-640 contains fast execution “local pipes” in its firmware. The term “pipe” is used
here to describe a subset of the board’s full set of graphic commands which has been optimized
to work as a group. Special areas of the firmware contain local command decoders which
bypass the normal, lengthy highlevel decoding overhead. These local command decoders are,
therefore, capable of decoding a small, fixed number of commands very quickly. If only graphic
commands which are part of the local pipe’s command set are issued to the board, decoding
stays within the pipe and executes much faster than would normally be possible.

Entry to a local pipe is automatically achieved by sending the QG—640 one of a local pipe’s
Entry Point Commands. As soon as a command outside of the local pipe’s command set is
issued to the board, the local pipe is exited and decoding of commands through the highlevel
command decoder resumes.

NOTE:

— Local pipes are accessed through Entry Point Commands only.
— Commands in a local pipe’s command set are not all Entry Point Commands.
— Certain local pipes are not accessible from command lists.

— No local pipes are accessible from ASCII input mode.

G.2 Local Pipe Command Set Descriptions

Screen Coordinate Drawing Command Plpe

Command Set:
SMOVE En-

SMOVER £m
SDRAW En
SDRAWR £n-
COLOR

En. denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode

Command Lists

LOCAL PIPE COMMAND SET DESCRIPTIONS

User Definabie Raster Text Command Pipe

Command Set:
TEXTP En-

TEXTPC En-
SMOVE t
SMOVER +#
COLOR
BCOLOR
RFONT

En. denotes an Entry Point Command in the Pipe Command Set.
t denotes an Entry Point Command for the Screen Coordinate Drawing Command Pipe.

Access from:
Hex Input Mode only

NOTE:

The User Definable Raster Text Command Pipe is a two-level local pipe in which two
of the commands in the command set, SMOVE and SMOVER, are also part of the
Screen Coordinate Drawing Command Pipe. The following shows the process flow when

either one of these commands is invoked. Note the two-level pipelining in Example
1.

COMMAND COURSE OF ACTION

Example 1
TEXTP Enters User Definable Raster Text Command Pipe.
SMOVE Enters Screen Coordinate Drawing Command Pipe.
SDRAW Remains in Screen Coordinate Drawing Command Pipe.
TEXTP Exits back to User Definable Raster Text Command Pipe.
Example 2
TEXTP Enters User Definable Raster Text Command Pipe.
SMOVE Enters Screen Coordinate Drawing Command Pipe.
TEXTP Exits back to User Definable Raster Text Command Pipe.

Any number of the commands from the Screen Coordinate Drawing Command Pipe com-
mand set may be used directly following the SMOVE or SMOVER commands. Once
the flow has exited the Screen Coordinate Drawing Command Pipe, invoking any of the
Screen commands will cause the program to exit the User Definable Raster Text Com-
mand Pipe and return to highlevel command decoding.

FAST EXECUTION “LOCAL PIPES”
World Coordinate 2D -Drawing Command Pipe

Command Set:
MOVE En

MOVER £m
DRAW En.
DRAWR Zn
COLOR

En. denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode

Command Lists

World Coordinate 3D Drawing Cémmand Pipe

Command Set:
MOVES3 En

MOVERS3 £n-
DRAW3 En-
DRAWRS3 En

En. denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode

Command Lists

LOCAL PIPE COMMAND SET DESCRIPTIONS

Command Set:
IMAGEW En.

En. denotes an Entry Point Commend in the Pipe Command Set.

Access from:
Hex Input Mode only

PDRAW Command Plpe

Command Set:
PDRAW En

COLOR
NOP

En. denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode

Command Lists

Appendix H

Warranty

WARRANTY

H.1 Warranty

Matrox products are warranted against defects in materials and workmanship for a period of
180 days from date of delivery. We will repair or replace products which prove to be defective
during the warranty period provided they are returned, at the user’s expense, to Matrox
Electronic Systems Limited. No other warranty is expressed or implied. We are not liable for
consequential damages.

If you experience any difficulties with your Matrox product, please contact the Matrox
representative where you purchased the product for service. Do not return any product to
Matrox without authorization.

If, for some reason, you must return your product directly to Matrox, please follow these steps:

1. Contact the Matrox Customer Support Group.

e U.S. customers call 1-800-4dMATROX.
e Canadian and international customers call (514) 685-2630.

The Customer Support Group will issue a Return Merchandise Authorization (RMA)
number.

2. Complete the Product Maintenance Report at the back of this manual. Write the RMA
number in the space provided.

3. Do not change the hardware configuration. Leave all straps as you were using them.

4. Pack the product in its original box and return it with the completed Product Maintenance
Report.

WARRANTY

U. 8. customers must return their products to our U. S. warehouse:

>

iy S RS 1 M
Matrox International LOrp.

Trimex Building
Mooers, N.Y.
12958

-

Canadian and other international customers may return their products directly to our
Canadian facility:

Matrox Electronic Systems Ltd.
1055 St. Régis Blvd.
Dorval, Québec, Canada
H9P 2T4

Appendix I

As-Shipped Straps

The following pages provide the QG-640 as-shipped strap locations. These circuit board layout
drawings will assist you when modifying the configuration setting of your QG-640 board. Refer
to Section A.2 for the configuration procedures.

3
L)

o0

C18E2R Ci8E2R

1295 E 331

132 34
Be888088%.
1

"BeBo83888d.
4 3 4
seolS
27512-300
122
o (517-% AS1

27512-300
b (516X A58

[3 88

503333888 'teg, “Beq, €,

8&9 1
1

‘&0069

g,

C18E2R

C
by "Fieq,

Ci8E2R

"STRAP FUNCTIONS® :

1—2 : INTERRUPT GRANT CONTINUITY
8—4 : DMA GRANT CONTINUITY

§-6 : MUST BX IN

7—-8 : NON—INTERLACE MODE

10-18 : MUST BE OUT

11 © 18 : BASE ADRESS (’604008)
20 © 27

28-81 : MUST BE IN
84 @ 63 : INTERRUPT VECTOR (6048)
§4—66 : NON—-INTERLACE MODE

SdVY 1S d3ddIHS-SV

5§7-60 : INTERRUPT MODE (DISTRIBUTED ARBITRATION)

g&-gi : INTERRUPT LEVEL (LEVEL 4)
9-62

63 @ 88 : MUST BE OUT
89-90 : MUST BE IN
92 e 111 : MUST BE OUT

112—114 : COMPOSITE SYNC. ON CREEN CHANNEL
118—118 : COMPOSITE SYNC. ON GREEN CHANNEL

116 © 121 : MUST BE OUT
29-82 : NON-INTERLACE MODE (0UT)
80-88 : 640480 FORMAT (0UT)

QG-640

C18E2R CI18EZ2R C18E2R

C
[

lE?mal "be{)’ %% m
132 34

28 30

83 8,

issoecessd, ‘

i S

[1
27512-300
E@Sgom o (588-X) AS1
0

27512-300
587-X> AS8

(o]
[3 98

58330868} Hoq, eq, .. g
ag 9 1 28 3 114 S
1

1600d9

CI8BEZ2R

"STRAP FUNCTIONS" :

1-2 : INTERRUPT GRANT CONTINUITY
3—4 : DMA GRANT CONTINUITY

5-6 : MUST BE IN

7-8 : NON-INTERLACE MODE

10—-19 : MUST BE 0OUT

11 @ 18 : BASE ADRESS (1604008)
20 © 27

28-31 : MUST BE IN

34 @ 63 : INTERRUPT VECTOR (5048)

§4-55 : NON-INTERLACE MODE

57-60 : INTERRUPT MODE (DISTRIBUTED ARBITRATION)

58-61 : INTERRUPT LEVEL (LEVEL 4)
6§9-62

63 @ 88 : MUST BE 0OUT

89-90 : MUST BE IN

92 @ 111 : MUST BE 0oUT

112—114 : COMPOSITE SYNC. ON GREEN CHANNEL
113—116 : COMPOSITE SYNC. ON GREEN CHANNEL
116 © 121 : MUST BE OUT

29-32 : NON—-INTERLACE MODE (0UT)
30-33 : 6402480 FORMAT (OUT)

4C-640/F REV.A

CI8ER2R

|
| S

-

~ @

1«|ooo§%0qG

1298 E 331
132 4

Ci8E2R

PIBEEERY,

seolSs

B

27512-300
o (S05-X)

AS1

27512-300 |
o (504-X) |‘°‘58

87

C18E2R ‘]

c
by "2

C18E2R

|r
‘j

"STRAP FUNCTIONS™ :

1-2 : INTERRUPT GRANT CONTINUITY
8—4 : DMA GRANT CONTINUITY

6-6 : MUST BE IN

7-8 : NON-INTERLACE MODE

10-19 : MUST BE OUT

11 © 18 : BASE ADDRESS (167 8008)
20 © 27

28--81 : MUST BE N
84 © 53 : INTERRUPT VECTOR (700g)
64—-88 : NON—INTERLACY MODXE

SdVY.LS A3ddIHS-SY

§7-80 : INTERRUPT MODX (DISTRIBUTED ARBITRATION)

88-61 : INTERRUPT LEVEL (LEVEL 4)
§9--62

63 © 88 : MUST BX OUT

89-90 : MUST BE IN

92 © 111 : MUST BE OUT

112114 : COMPOSITE SYNC. ON GREEN CHANNEL
118115 : COMPOSITE SYNC. ON GREEN CHANNEL
116 © 127 : MUST BX OUT

29-32 : FMC MODE
80-98 : 5122512 FORMAT

QG—-640/5UC

COMMANDS BY NAME

J.1 Commands by Name

Name Opcode || Name Opcode || Name Opcode
ARC 3C LUT EE SARC F4
AREA co LUTINT EC SBLINK E4
AREABC c1 LUTRD 50 SCIRC F2
AREAPT E7 LUTSAV ED SDRAW FA
BCOLOR CB LUTSTO co SDRAWR FB
BLINK c8 LUTX E8 SECTOR 3D
BLINKX E5 LUTXRD 53 SELIPSE F3
CA 43 41 20 || MASK E8 SMOVE F8
CIRCLE 38 MATXRD 52 SMOVER | F9
CLBEG 70 MDIDEN 90 SPOLY FC
CLDEL 74 MDMATX 97 SPOLYR FD
CLEARS OF MDORG 91 SRECT FO
CLEND 71 MDROTX 93 SRECTR F1
CLIPH AA MDROTY 94 SSECT F5
CLIPY AB MDROTZ 95 STEST 62
CLOOP 73 MDSCAL 92 TANGLE 82
CLMOD 78 MDTRAN 96 TASPCT 8B
CLRD 76 .|| MOVE 10 TCHROT 8A
CLRUN 72 MOVER 11 TDEFIN 84
COLMOD CA MOVE3 12 TEXT 80
COLOR 08 MOVER3 13 TEXTC* 8C
CONVERT AF NOOP o1 TEXTP 83
CcX 43 658 20 || PDRAW FF TEXTPC* 8D
DISTAN B1 POINT 08 TJUST 86
DISTH A8 POINT3 09 TSIZE 81
DISTY A9 POLY 30 TSTYLE 88
DRAW 28 POLYR 31 VDISP DS
DRAWR 29 POLY3 32 VFREQ 61
DRAW3 24 POLYR3 33 VWIDEN AO
DRAWR3 2B PMASK Dé VWMATX A7
ELIPSE 39 PRMFIL E9 VWPORT B2
ERROR €0 PROJCT BO VWROTX A3
EXPAND B4 RASTOP DA VWROTY A4
FILMSK EF RASTRD DB VWROTZ AB
FLAGRD 51 RASTWR DC VWRPT At
FLOOD 07 RBAND E1 WAIT 05
GTDEF 89 RDEFIN 54 WINDOW B3
IMAGER D8 RECT 34 XHAIR E2
IMAGEW D9 RECTR 36 XMOVE E3
LINFUN EB RESETF 04

LINPAT EA RFONT 56

* Note: These commands are available only in Hex communications mode.
J-3

COMMAND REFERENCE CARD

J.2 Commands by Hex Opcode

Opcode Name Opcode Name Opcode Name
01 NOOP 74 CLDEL c8 BLINK
04 RESETF || 75 CLRD co LUTSTO
05 WAIT 78 CLMOD CA COLMOD
086 COLOR || 80 TEXT CB BCOLOR
07 FLOOD || 81 TSIZE D5 VDISP
08 POINT 82 TANGLE || D8 PMASK
09 POINT3 || 83 TEXTP D8 IMAGER
OF CLEARS || 84 TDEFIN || D9 IMAGEW
10 MOVE 85 TJUST DA RASTOP
11 MOVER || 88 TSTYLE || DB RASTRD
12 MOVE3 || 89 GTDEF DC RASTWR
13 MOVERS3 || 8A TCHROT || E1 RBAND
28 DRAW 8B TASPCT || E2 XHAIR
29 DRAWR || 8C TEXTC®* E3 XMOVE
2A DRAW3 || 8D TEXTPC* || E4 SBLINK
2B DRAWR3 || 90 MDIDEN || E5 BLINKX
30 POLY 91 MDORG E8 LUTX
31 POLYR || 92 MDSCAL || E7 AREAPT
32 POLY3 93 MDROTX || E8 MASK
33 POLYR3 || 94 MDROTY || E9 PRMFIL
34 RECT 96 MDROTZ || EA LINPAT
36 RECTR || 96 MDTRAN || EB LINFUN
38 CIRCLE || o7 MDMATX || EC LUTINT
39 ELIPSE || A0 VWIDEN || ED LUTSAV
3C ARC Al VWRPT EE LUT
3D SECTOR || A3 VWROTX || EF FILMSK
43 41 20 CA A4 VWROTY || FO SRECT
43 68 20 cX AB VWROTZ || F1 SRECTR
50 LUTRD || A7 VWMATX || F2 SCIRC
51 FLAGRD || A8 DISTH F3 SELIPSE
52 MATXRD || A9 DISTY F4 SARC
53 LUTXRD || AA CLIPH FB SSECT
54 RDEFIN || AB CLIPY F8 SMOVE
55 RFONT || AF CONVERT || Fo SMOVER
60 ERROR || BO PROJCT || FA SDRAW
61 VFREQ || B1 DISTAN FB SDRAWR
62 STEST B2 VWPORT || FC SPOLY
70 CLBEG B3 WINDOW || FD SPOLYR
71 CLEND || B4 EXPAND || FF PDRAW
72 CLRUN || co AREA

73 CLOOP || c1 AREABC

* Note: These commands are available only in Hex communications mode.

PRODUCT FAILURE REPORT

If you are returning one of our products for repair, you must fill out this form and return
it with the defective unit. The information so provided is necessary for us to provide a
high standard of service.

COMPANY NAME AND ADDRESS:

NAME OF UNIT:
MODEL NO. (on silkscreen):
SERIAL NO.(on label):
DATE UNIT RECEIVED: DATE UNIT FAILED:
OR DEAD ON ARRIVAL(]

MEMORY BASE ADDRESS USED:
1/0 BASE ADDRESS USED:
PLEASE DESCRIBE THE SYSTEM THAT THE UNIT IS USED IN (CPU, BUS, MEMORY, ETC.):

UNIT CONFIGURATION (50 or 60 Hz, attributes used, display resolution selected, etc.):

PLEASE DESCRIBE THE FAULT:

FAULT IS CONSTANT [FAULT IS INTERMITTENT [OJ

NOTE: No merchandise will be accepted by MATROX for replacement or re-
pair unless accompanied by an RMA number obtained from our Application
Engineering Department.

RMA Number:

THE FOLLOWING SPACE IS FOR FACTORY USE ONLY

CORRECTIVE STEPS TAKEN:

MATROX Electronic Systems Limited,
1055 St. Regis Boulevard,

Dorval, Quebec,
_] CANADA HOP 2T4

Telephone: (514)685-2630 Telex: 05-822798 FAX: (514)685-2853

matfox
@ electronic systems Itd.

1055 ST. REGIS BLVD., DORVAL, QUEBEC H9P 2T4, CANADA
TEL.: (614) 685-2630 TELEX: 05-822798
FAX.: 514-685-2853

Matrox Electronic Systems Ltd reserves the right to make changes in specifications at any time and without notice. The in-
formation furnished by Matrox Electronic Systems Lid i this publication is believed tc be accurale and reliable. Howegver, no
responsibility is assumed by Matrox Electronic Systems Ltd for its use, nor for any infringements of patents or othar rights of ~
third parties resulting from its use. No license is granted under any patents or patent rights of Matrox Electronic Systems Ltd.

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	5-107
	5-108
	5-109
	5-110
	5-111
	5-112
	5-113
	5-114
	5-115
	5-116
	5-117
	5-118
	5-119
	5-120
	5-121
	5-122
	5-123
	5-124
	5-125
	5-126
	5-127
	5-128
	5-129
	5-130
	5-131
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	G-01
	G-02
	G-03
	G-04
	G-05
	H-01
	H-02
	H-03
	I-01
	I-02
	I-03
	I-04
	J-03
	J-04
	replyB
	xBack

