

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

MITRE Technical Report

MTR-4725

Trend Monitoring Sgstern (TMS)
Graphics Software

J. S. Bwvi

APRIL 1979

	

CONTRACT SPONSOR
	

NASA/JSC

	

CONTRACT NO.	 F19628.79•C-0001 T5295F

	

PROJECT NO.	 8470

	

DEPT.	 D72

THE

MITRE
This document .—is prepared for authorized

HOUSTON, TEXAS
	

disWt,ition. It has not been approved for public
release.

_-I

')epo, montAppruva/:

MITRE Project

^

ABSTRACT

At NASA's Johnson Space Center MITRE has installed a prototype

bus communications system, which is being used to support the Trend

Monitori^ g System (TMS) as well as for evaluation of the bus concept. As

a part of the work on the TMS project, MITRE implemented a set of FORTRAN—

callable graphics subroutines for the host MODCOMP computer, and designed

an approach to splitting graphics work between the host and the system's

intelligent graphics terminals. This document describes the graphics software

in the MODCOMP and the operating software package written for the graphics

terminals.

iii

This page intentionally

left blank

iv

Page

vii

vii

ix

1

1

2

4
5
5
5
6
8
8

9
11
11
15

15
15
20

23
23

23
25
28
28
31
32
33
34
36
36
38

TABLE OF CONTENTS

List of Illustrations

List of Tables

Glossary

SECTION I INTRODUCTION

1.0 BACKGROUND

1.1 Functional Requirements for Graphics Software

1.2 Document Purpose and Overview

SECTION II TMS WORKLOAD DISTRIBUTION

2.0 DESIGN CONSIDERATIONS

2.1 Completion Time Estimates

2.1.1 CPU Calculations ; equired
2.1.2 Transmission Time
2.1.3 Time Calculations

2.2 NOVA Memory Space Constraints

2.3 Workload Division Decision

2.4 Protocol

SECTION III MODCOMP GRAPHICS SOFTWARE

3.0 INTRODUCTION

3.1 Graphics Software Implementation

3.2 Scaling and Clipping of Displays

SECTION IV MEGATEK TERMINAL PROGRAM

4.0 INTRODUCTION

4.1 MEGATEK Terminal Hardware

4.2 Overall Structrue of the Terminal Program

4.3 Graphics Pictures

4.3.1 Picture Allocation
4.3.2 Picture Linkage
4.3.3 Picture Contents
4.3.4 Picture Management

4.4 Master Display List and Command Buffer

4.5 Intertask Communication

4.5.1 Semaphores
4.5.2 Flags

V

TABLE OF CONTENTS (continued)

Page

4.6 Functional Descriptions of Terminal Program 38
Tasks

4.6.1 CSMN Task 38
4.6.2 KB Task 41
4.6.3 Cl Task 42
4.6.4 CS Task 42
4.6.5 JS Task 42
APPENDIX I TMS MODCOMP APPLICATION PROGRAM

GRAPHICS INTERFACE 45
APPENDIX II DETAILS OF TERMINAL PROGRAM

GRAPHICS PICTURE 81

REFERENCES 87

DISTRIBUTION LIST 89

LIST OF ILLUSTRATIONS

Figure Number	 Page

1.1-1 Overview of TMS Graphics Software
Functional Requirements 3

2.1-1 Summary of Completion Time Estimates for a
Maximal Plot (No Overlap Assumed) 9

2.4-1 Graphics Packet Structure 13
4.2-1 Tasks and Handlers of the TMS Terminal Program 26
4.2-2 Memory Map for TMS Terminal Program 27

4.3.1-1 MEGATEK Graphics Pictures 30
4.3.2-1 Picture Header and Trailer 31
4.4-1 Master Buffer Structure 35
4.5.1-1 Semaphores Used in the TMS Terminal Program 39

4.5.2-1 Flags Used in Intertask Communication 40

LIST OF TABLES

Table Number	 Page

2.1 -I 	 MODCOMP and NOVA CPU Power Comparisons 	 7
3.1-I	 Graphics Software Utility Subroutines 	 16

3.1-II	 Implementation of MODCOMP Graphics Routines 	 19

vii

This page intentionally

left blank

viii

i

1

GLOSSARY

Completion Time Time between request for a function to be performed
and the completion of that function.

Curve In `	 s, the locus of one measurement in a plot. 	 Up
to 6 curves may be displayed in a plot.

Display A complete picture on the graphics terminal screen.
In this document, used synonomously with "plot".

Display List A series of display processor instructions which
specify what the display processor causes to appear
on the screen.	 Generally broken into pictures.

Display Processor The MG-552 component of the MEGATEK terminals,
which runs asynchronously to the terminal's NOVA
and which draws and refreshes the display.

Graphics Software FORTRAN—callable routines in the MODCOMP which
are used to build a display on the graphics terminal.

Graphics Terminal A TMS MEGATEK 5000 intelligent graphics unit.

Picture A contiguous subpart of a display list composed of
display processor instructions which define a logical
subportion of the entire display.

Plot	 See "display".

Response Time	 Time between request for a function to be performed
and the beginning of the response to the function.

Terminal Program The complete set of software which executes in a TMS
graphics terminal, and which both builds displays and
responds to keyins by the terminal user.

ix

This page intentionally

left blank

I REND MONITORING SYSTEM (TMS)
GRAPHICS SOFTWARE

SECTION I
INTRODUCTION

1.0	 BACKGROUND

At NASA's Johnson Space Center (J SO in Houston, Texas, the

Orbiter Data Reduction Complex (ODRC) has the responsibility of handling

non-real-time data reduction for measurements gathered during tests of

manned spaceflight missions, such as the Space Shuttle. The data reduction

involves extraction of requested data fi ,)m magnetic tapes, calibration of the

raw measurements and conversion to engineering units, and display of the

data in any of a variety of output formats and medie . For the most part, the

ODRC's workload is generated from written processing requests and has a

desired turnaround time ranging from several hours to several days.

In the course of planning ODRC support for the Operational Flight

Tests (OFT) of the Space Shuttle. it was recognized in 1977 that a need

existed to monitor certain thermal parawo-tern of the vehicle in near real

time. NASA/JSC's Engineering and Special Development Branch (FD7) of the

Institutional Data Systems Division (IDSD) consequently designed and imple-

mented an interactive graphics system built around a MODCOMP IV/35 host

minicomputer and several MEGATEK 5000 intelligent graphics terminals. The

system, termed the Trend Monitoring System (TMS), gathers data samples

from tapes as they become available and then presents plots of measurements

against time, as the plots are requested by users at the terminals.

One of the constraints of the TMS was that the terminals and the host

computer would have to be separated by a distance of about 1600 feet, and

that furthermore, the speed of data transmission would have to be high. Plots

may be composed of as many as 25,000 bytes of data and must be displayed in

a few seconds. Conventional communications systems to meet these require-

ments of a high data rate over an extended distance are not readily available.

1

MITRE has developed a coaxial cable bus communications system [ll, however,

which can provide a digital communications bandwidth of up to 307.2 Kbps over

a distance of several miles. Consequently, NASA chose to implement a bus

system to support the TMS for two reasons: (1) to meet the communications

need for the TMS, and (2) to provide a test bed for evaluating the bus concept

for IDSD communications.

MITRE has provided both engineering and implementation support for

the hardware and software required to support the prototype bus. This work

is documented in a series of reports ([21, 131, 141, [5], [6], 171, [81).

As a collateral effort to implementation of bus hardware and software

for the TMS, MITRE was assigned the responsibility of determining what

portion of the graphics functions should be perfor raed in the host computer

and what-portion in the intelligent terminals (whicn are based around Data

General IbVAi3 minicomputers and which can be programmed). MITRE was

also tasked with the design and implementation of the graphics software in

both the MUDCOMP and the MEGATEK computers.

1.1	 Functional Requirements for Graphics Software

The functional requirements for the TMS graphics software fall into

two separate classes: (1) requirements f the MODCOMP application program

graphics interface, and (2) requirements for the graphics terminal human
interface.

When the TMS was initially planned, studies and tests (such as [91)

were conducted using a then-available IMLAC graphics terminal. Several

demonstration programs were written to use the GRAPHELP graphics support

package designed by the Harry Diamond Laboratories for the IMLAC [10]. As

system development for the TMS continued, it became clear that the ultimately

selected terminals for the system might not be IMLAC terminals, but in order

for applications software development to proceed during terminal procurement,
in October 1977 a graphics interface based on the GRAPHELP package was

defined. The interface was composed of a subset of the GRAPHELP calls,

augmented by several special entry points (such as BIAS, CURVET , and

2

i

CURVE2) defined specifically for the TINS envi:oianent. This interface for

all applications programs is included as Appendix I to this document.

The user interface to the graphics terminal was likewise defined at

an early stage of system development. Requirements analysis indicated that

the functions of displaying of plots and command entry were needed, together

with annotation of the plot by user typing and full eLting capability (cursor

movement, tabulations, character insertion and deletion, etc.) for all keyed

input. A need for a capability to slide (skew) certain plots with respect to

other plots was also identified, as was a requirement for a joystick which

could be used to determine coordinate values of particular points on the screen.

These and otter user interface requirements were documented in specifications

such as [11] and [12] and are summarized in Figure 1.1-1.

EditiH

• Provide cursor movement, character insertion and deletion, and
Iine deletion

Plot Display

• Construct plots of thermal data from lists of data points
• Upon command, slide (skew) designated curves in the X-direction

and update a corresponding bias time
• Provide a shorthand method of requesting the next plot group in a

sequence

Plot Annotation

• Provide for user typing of comments on the plot
• Provide for tabulation among the comments

ASCII Mersa s

• Retain the last 20 lines of ASCII command input and ASCII output
in a scrolled display

o stick

• Provide a graphics cursor controlled by the terminal's joystick
• Provide a facility to determine the user coordinates of a point on

the display from the joystick cursor position

Copying and Display Control

• Provide a means for transferring the screen contents to a VERSATEC
hard copier

• Provide a means to make the ASCII messages and/or the plots
temporarily invisible upon command

Figure 1.1-1 Overview of TMS Graphics Software Functional Requirements

3

A further functional requirement was placed on the TMS by the

specification that output from any plot request (which may result in up to

5,000 data points) must begin to appear on the screen within 15 seconds ([121,

paragraph 3.3.71). No statement of completion time (time to fully satisfy the

plot request) was made in TMS requirements. This response time requirement

together with the interfaces mentioned above, provided the framework within

which the developed graphics and terminal software were constrained to operate.

1.2	 Document Purpose and Overview

This report documents the general structure of the MODCOMP graphics

software (termed "graphics software" in the remainder of the paper) and of

the MEGATEK terminal program (termed "terminal program"). Listings,

detailed flow diagrams, and module interface definitions are given in [13].

The purpose of the document is to provide an introduction to the graphics

software and terminal program and to discuss in detail certain background

information necessary to maintain or modify the programs. Since the graphics

functions supported both in the MODCOMP and the MEGATEKs are general

purpose, the software can be used in the future to support applications other

than TMS, if desired.

Section 2 deals with considerations involved in the decision of how to

split the graphics workload between the MODCOMP and the MEGATEKs and also

describes the general protocol designed for communication of requests and

graphics commands between the two machines. (The TMS includes, of course,

lower levels of protocol [invisible to the graphics software and terminal

program] for accomplishing actual transfers of data; these other protocols

are described in detail in [4), 151, and [61.)

Section 3 documents the structure and operation of the MODCOMP

graphics software, while Section 4 deals with the terminal program. Appendix I

contains, as mentioned, a description of the MODCOMP application program

interface to the graphics software, and Appendix II gives details of the graphics

pictures used by the terminal program.

N

4

SECTION II
TMS WORKLOAD DISTRIBUTION

	

2.0	 DESIGN CONSIDERATIONS

Although the TMS has several functions, such as loading of data tapes,

production of data availability reports, archiving and updating data bases, and

producing plots of thermal data, requirements studies indicated that by far

the most frequently used function would be display of plots. Investigations

during the conceptual design phase of the system [9] indicated that most of the

requirement for CPU processing power would come from producing plots. The

fetching of data for the plots from the TMS data bases was anticipated to require

ten or fewer disk I/Os per plot. It was judged that the principal scarce re-

source on the MODCOMP was likely to be CPU time.

A further consideration in the decision of how to split the graphics

processing workload between the MODCOMP and the MEGATEKs was a pre-

ference to build the system with some capability to add additional graphics

terminals, if desired. This expansion can be absorbed only if the MODCOMP

CPU is less than fully utilized with the initial complement of terminals.

These desires, together with an intention to arrange the workload

split so as to meet a response time goal of 15 seconds for the most complex

plots, indicate that as much of the plot processing as feasible should be off-

loaded onto the intelligent terminals.

The analysis in paragraph 2.1 shows how time estimation was done

during the study of how to split the workload. Paragraph 2.2 contains a

discussion of how memory constraints affect the workload split decision. How

the workload is split in the TMS is briefly stated in paragraph 2.3, and the

protocol used to support the split is presented in paragraph 2.4.

	

2.1	 Completion Time Estimates	 0

A part of determining how to split. the workload between the MODCOMP

and the graphics terminals is the estimation of the time required to produce a

display. Paragraph 2.1.1 outlines an estimate of the CPU time for producing

5

a display, and paragraph 2.1.2 gives an approximation of transmission time

for the display commands. A summary of the estimated time to complete a

display is then developed in paragraph 2.1.3.

2.1.1 _CPU Calculations Required

The principal computation to be done on each of the 5,000 points in the

maximally complex display is the conversion of data from user units (such as

degrees Fahrenheit and time) to raster positions on a display screen, and the

generation of a display list command for each point. The data conversion in

its most simplified form takes the form of the following equation:

NRASTERS = (USER UNITS - ORIGIN VALUE) * SCALING FACTOR

where NRASTERS	 = number of rasters (integer)

USER UNITS	 = value of one coordinate of one of the
5,000 data points

ORIGIN VALUE	 = user units value associated with the
plot origin

SCALING FACTOR = number of rasters per user unit

This conversion must be done for both the X and Y coordinates of each of the

5,000 points, or for a total of 10,000 values.

Since the values on the right side of this equation are all MODCOMP

floating point numbers, the equation requires a floating point difference and

a floating point multiply, plus a floating-point-to-integer conversion if the

calculation is done on the MODCOMP. If the calculation is done on the NOVA

in the MEGATEK, on the other hand, an additional conversion (of USER UNITS)

from MODCOMP floating point format to NOVA floating point format is required

before the equation can be evaluated (the other floating point values are assumed

to be converted only once per plot).

The speeds and capabilities of the two processors for this type of

calculation differ, as summarized in Table 2.1-1.

6

Table 2.1-I
MODCOMP and NOVA CPL' Power Comparisons

Factor	 MODCOMP NOVA

Memory cycle time	 500 ns 700 ns

Floating point multiply	 5.22	 its 250 Psi

Floating point difference	 6.24	 us 150 #sl

Conversion from own floating
point to integer	 6.96	 ps 100 psl

Conversion to NOVA floating point
from MODCOMP floating point 	 --- 34	 us 2

NOTES:	 1 Estimated from FORTRAN benchmark, which uses library
subroutines for floating point operations

2 Estimated from instruction timings in conversion routine

F

E
s

7

r-
F
L.	 :

A rough estimate of the minimum processing time f , 5,000 data points

based on these figures is then 0.2 seconds for MODCOMP processing and 5.3

seconds for NOVA processing. To these numbers should be added (for estima-

tion) about 0.7 seconds for other MODCOMP processing (loop control, i/O

wait time, calculation time other than in the main loop, etc.). Other NOVA

processing, such as for display list housekeeping, requires about 2 seconds

for a maximal plot.

2.1.2 Transmission Time

A second component of the response time is the time tc transmit data

between the MODCOMP and the MEGATEK. The maximum aggregate throughput

of the communications bus is 307.2 Kbps, but because of handler delays, network

contention, application program time between I /Os, etc., the maximum effective

rate is no greater than about 200 Kbps for a single MODCOMP user program

writing data to a graphics terminal over the bus. if data conversion is done

in the NOVA, two floating point values (of 32 bits each) must be transmitted

for each data point; if conversion is done in the MODCOMP, on the other hand,

two integer values (of 16 bits each) must be sent. In either case, about 5

16-bit words of overhead are required for every 60 16-bit words of data.

Transmission of the data then requires about 0.9 seconds if conversion is

done in the MODCOMP (about 10,800 words) and 1.7 seconds if conversion

is done in the NOVA (about 21,700 words). To each of these figures should

be added about 0.2 seconds for transmission time of plot background informa-

tion (grids, axes, etc.). These figures for data transmission speeds all assume

that the recipient of a message can absorb the message as quickly as the sender

can generate the message, so that the sender is not kept waiting.

2.1.3 Time Calculations

The foregoing rough analysis is summarized in Figure 2.1-1 and

indicates tnat if 1/0 and CPU work are not overlapped, a 5,000-point plot

would require about w seconds if data conversion were done on the MODCOMP

and 10 seconds if conversion were done on the NOVA. The TMS is designed

to process each plot transaction serially (see [111) so that one plot is completed

8

t

t

before another is begun; as a result, it is estimated that overlap effects would

reduce these times by less than 2."%^. The figures indicate that either method

is likely to meet the stated response time (in both cases the completion time,

which is what is shown in Figure 2 . 1-1, is significantly less than the required

response time). Performing data conversion on the MODCOMP, however,

would result in a noticeably faster plot completion.

Conversion Done Conversion Done
Component on MODCOMP on NOVA

Raster calculation
(CPU time) 0.2 sec (MODCOMP) 5.3 sec (NOVA)

MODCOMP overhead 0.7 0.7

Transmission time
(data) 0.9 1.7

Transmission time
(background) 0.2 0.2

NOVA overhead 2 2

Total 4. sec 9.9 sec

Figure 2.1-1
Summary of Completion Time Estimates for a Maximal Plot (No Overlap Assumed)

Reference [12) indicates that the TMS is designed to support up to

8 terminals (paragraph 2.2), each of which may be used t^ produce up to about

400 displays per 8-hour shift (paragraph 3.3.6). This workload corrvbponds

to about 400 plot requests per hour, or about one request every 9 seconds.

The MODCOMP time for the maximally complex plot (the sum of the times shown

in the first 4 lines of Figure 2.1-1), even if no overlap is obtained, should

be less than 3 seconds, regardless of where the data conversion is done.

Less than one third of the system's time is thus anticipated to be required for

producing plots; the remaining time is available for other TMS functions and

for a workload cushion.

2.2	 NOVA Memory Space Constraints

The NOVA computer in a TMS MEGATEK terminal contains 32,768

words of MOS memory, which must be used for the NOVA operating system,

9

the terminal program, buffers, and the MEGATEK graphics processor display

list. More detail about the usage of memory and about the graphics processor

is found in paragraph 4.2 and in [14], but it should be noted here that each

absolute vector command requires 2 words of display list, and each character

requires one word of display list. The functional requirements mentioned in

Section 1 call for up to 1440 characters of scrolled ASC 1 I data (20 lines of

up to 72 characters each) and imply about 320 characters of plot annotation.

About 2000 words of display list are needed to draw some plot backgrounds

and to contain the miscellaneous cursors, etc. which must be displayed. The

5,000 points in the most complex plot each require 2 words of display list

(one absolute vector command per point). Together, these requirements add

up to about 14,000 words of display list.

Buffer space must also be provided for some portion of the information

sent from the MODCOMP to the NOVA, so that the NOVA can have room to keep

unprocessed commands before they are inserted into the display list. The

buffer space could be as small as one word, of course, but this would require

a large number of I/Os between the BIU and the NOVA, and also would tend

to slow down the MODCOMP (the sender of information) to the speed of the

NOVA. This slowing down occurs because the TMS design [ill processes

plot transactions sequentially, so that one request must be completed before

another is begun.

The buffer space situation requires, therefore, that the NOVA and

its BIU be able to accept data from the network at least as fast as the MODCOMP

produces it (if the NOVA is not to be the choke point). The speed with which

words can be accepted is a Function of the number of words which must be

processed. If data conversion is done at the NOVA, approximately twice

as many words (over 21,000, as opposed to less than 11,000) must be trans-

mitted and buffered. Because the NOVA is slower than the MODCOMP, it is

most desirable to provide NOVA buffer area for the entire response from the

MODCOMP, so as not to cause the MODCOMP to be waiting for the NOVA to

process the response.

10
9

Analysis of the size of the operating system modules required suggests

that the maximum practical buffer area for network data is about 12,000 words

in the NOVA plus 1,200 words in the BIU. If conversion is done in the MODCOMP,

about 12,000 words must be transmitted to the NOVA (10,800 words of data

points plus about 1,200 words of background information). If conversion is

done in the NOVA, however, as discussed earlier, about 23,000 words must

be transmitted. The entire response can be absorbed at one time only in the

first case.

	

2.3	 Workload Division Decision

On the basis of the rough analysis outlined in paragraphs 2.1 and 2.2

it was decided to perform the raster conversion function in the MODCOMP.

An approach of going slightly further than just conversion, and also producing

display processor instructions was actually taken in the design of the software

The generation of the display processor commands described in [14] requires

little more than OR—ing a set of control bits into the upper part of each raster

count word, so the additional work to build the actual instructions is small.

The preliminary analysis results were sustained in tests of the com-

pleted software. When the MODCOMP is otherwise idle, the display of the

maximally complex plot is completed in less than 4 seconds after the request

is made.

	

2.4	 Protocol

It was recognized that communication between the MODCOMP and a

graphics Terminal to accomplish plotting needed to take into account two main

factors. First, the communication protocol should be flexible, so that possible

future modifications to the workload split could be easily accomodated. Second,

the protocol should be able to operate successfully without exclusive use of the

communications link between the MODCOMP and the terminal. The second

requirement (which is equivalent to stating that graphics commands must be

separable from other traffic) is necessary because any MODCOMP program

(such as the TMS Monitor described in [101) can write an ASCII message to

the terminal without going through the graphics software. Traffic from the

11

graphics terminal to the MODCOMP, however, is controlled by a single program

and consists only of ASCII messages.

Further analysis of the MODCOMP/MEGATEK logical interface revealed

a need for two categories of graphics commands: (1) commands to add certain

MEGATEK display processor instructions to the terminal's display list (see

paragraphs 3.1 and 4-3), and (2) commands specifying supplementary informa-

tion or state changes. In the second category are included commands such as

those to define axis scaling factors and clipping windows (see paragraph 3.2),

to indicate the beginning and end of construction of a display, to request rein-

itialization of the graphics terminal program, and to call for erasure of the

screen. Graphics commands of both categories and ASCII messages may be

sent to the graphics terminal in any order, but all portions of a single command

or message are sent together without interruption.

To meet the requirements for flexibility and for separability, graphics

commands from the MODCOMP to a terminal are placed in graphics packets,

which are structured as shown in Figure 2.4-1. The packet can contain one

or more graphics commands (the current TMS implementation places only one

command in a packet). Each command is composed of a zommand length count,

a command code, and zero or more words of supplementary information.

12

v
ti

u
..	 0

U	
C

tn

Q	 ^
.+
C1

.^	
w y4

uu	 N
a ^u a

to

u

C"^ u

RJ	 Gu) 0

E	 a •^ cv
u	 N

v
v	 v

a,

a
'b	

cn
on an

x C1	 `^ w+xza^^v
n	 n	 u	 u

On= M OJ
cd a+ C 0
^+ C .^U
N b b
u C C

ow
0 u E E
c. 0 0 0c^auu
v
v
3

r
to
C

o 7E

o ^
^L W

vN
R! b,d C
C
u
ai o
N u

O
u

N
F+

bti
0
3

13

This structure satisfies the flexibility requirement by allowing easy

movement of computational work between the MODCOMP and the NOVA, if

desired. For example, the present implementation performs raster conversion

in the MODCOMP and sends MEGATEK display list absolute vector commands

to the graphics terminal; a special type of graphics packet (in the first of the

two categories ;::ent"oned above) is used for these absolute vector instructions.

If it were desired, however, to move the raster conversion to the NOVA, only

the following two steps would be required:

1. Definition of a new command code which mears that the values included

with the command are MODCOMP floating point user values which are

to be plotted, and modification of the MODCOMP graphics software

to use the new code

2. Addition of software in the NOVA to handle the new command code.

After these steps were taken, the work would be performed at the graphics

terminal rather than at the MODCOMP.

This packet structure also satisfies the separability requirement by

including a special graphics flag as the first word of each graphics packet;

this flag allows the terminal program to distinguish graphics messages from

other traffic. The graphics flag is chosen to be a pair of ASCI I characters

which is unlikely to occur within an arbitrary ASCII message which might be

sent by any MODCOMP program to the graphics terminal. The terminal can

then identify with high certainty whether the next word in its input stream is

the beginnint; of a graphics packet (the length of which is specified by the second

word of the packet) or the beginning of an ASCI I message (the length of which

is unknown). An ASCI I message is scanned character by character until a

graphics flag is found, at which point the length of the ASCII message is known.

The message is then displayed in the scrolled display mentioned ?n paragraph

1.1.

Distinguishing between the categories of graphics messages is accom-

plished using the commada code.

14

SECTION III
MODCOMP GRAPHICS SOFTWARE

3.0 INTRODUCTION

The MODCOMP graphics software is intended to provide a general

graphics capability which could be used by any application program which

wishes to create displays for the MEGATEK terminals. Presently, however,

the only production usage of the software is in the TM3. The plot (PLO)

function of the TMS calls the graphics software through several entry points

to create first a plot background -- a grid, axes with annotation, a bias time,

ar a , -neral plot labelling. The graphics package is then called separate times

to produce up to 6 curves, each of which is the trace of a single measurement

from Space Shuttle instrumentation. The PLO function is expected to be by far

the heaviest user of the graphics software in TMS production.

The graphics software is also used by the TMS data availability report

(DAR) function to produce a bar graph of mission periods for which TMS data

has been received. The DAR function can also use the Rraphics software

to display a tabular listing of the periods for which data is available.

The following two paragraphs describe the general characteristics of

the graphics software implementation (paragraph 3.1) and the concepts of

scaling and clipping supported by the software (paragraph 3.2).
i

3.1	 Graphics Software Implementation

The MODCOMP graphics software is implemented for the TMS as a

series of FORTRAN subroutines. There is a separate subroutine for each

of the routines described in Appendix I , and there are 6 additional utility

subroutines defined for used by the plot packa L . Table 3.1-1 lists the

utility routines and their functions; more detailed 	 cumentation of the calling

sequences and parameters is found in 1131.

a

i

15

Table 3.' -I
Graphics Software Utility Subroutines

Subroutine	 Purpose

DRAWR	 To draw a line (either clipped or unclipped) from the
present beam location to a point specified in user
units. Utility routine for DRAW and DRAWC.

MEGBUF	 To buffer disDlay list commands to be sent to a graphics
terminal, and to write the commands out either when
the buffer becomes full or when called with a special
empty-the-buffer code.

RDRAWR	 To draw a line in user units relative to the current
beam position. Utility routine for RDRAW and RDRAWC.

TIMCVT	 To convert a time in seconds into an ASCII string
specifying +hhh:mm:ss.

WRPKT	 To write a buffer of information from the MODCOMP
to a graphics terminal.

WRSCA	 To build and send a graphics packet to the NOVA to
update the axis scale factors and clipping windows.

c

16

E

k
S
E

4

t

4

w

In the development of the MODCOMP graphics software, the original

GRAPHELP entry points and parameter names (described in [101) were retained

as for as possible. As a result, some of the parameters in the calling sequences

described in Appendix I are unused. Throughout the subroutines conditionally

compiled code for measuring CPU time usage and for printing debug output has

been included. This code is normally not a pert of the 	 eduction TMS, but

can be included by a procedure described in [8].

The approach of implementing more complex routines (such as plotting

a series of points in the routine DATAQ) in terms of less complex routines

(such as plotting a single point in the routine DRAW) was generally followed,

as is shown in Table 3.1-II . The only major circumstance in which this type

of hierarchical programming was not used is in the heavily used routines CURVEI

and CURVE2. In the TMS, these routines are called once for each curve in

a plot, and at each call may be instructed to plot 800 or more points. Initially,

the routines were implemented to use ABSVEC to draw the line to each point,

but measurements showed that a noticeable reduction in plotting time could be

achieved if the CURVE routines were changed to generate the MEGATEK display

list instructions themselves. The CURVE routines still do call ABSVEC and

SYMBOQ routines for generation of the (infrequent) curve annotation labels.

Because of this hierarchical implementation, only 12 graphics command

codes (see Table 3.1-II) are used in graphics packets sent to a terminal. A

graphics command number is actually defined for each of the graphics functions

listed in Appendix I; the number is the same as the last part of the paragraph

number in which the function is de -ribed. The TMS terminal program contains

stub (null) code for each of the command numbers riot shown in Table 3.1-11.

Three special command codes (97, 98, and 99) are also shown in Table

3.1-II . These codes are used in handling arbitrary display processor commands

(category 1 commands, as described in paragrarh 2.3) and in generating the

individual curves of each plot. A type 97 graphics packet is sent by the MODCOMP

just before the beginning of each curve and a type 98 packet is sent after the

end of each curve. These packets allow the graphics terminal to determine

which display list commands make up a curve, so that the curve can be skewed

17

upon command (see paragraph 1.1). Type 99 graphics packets are the only

category 1 packets and contain only display list instructions which are already

in a form acceptable to the MEGATEK graphics processor. Whether the

instructions are considered a part of a curve or part of the plot background

depends on whether the type 99 packet is sent between a type 97/type 98

bracket or not.

18

Table 3.1-I I
implementation of MODCOMP Graphics Routines

Entry
Point	 I

TGraphics Routines
Called

FORTRAN
Library
Routines

Command
Code Comments

ABSVEC MEGBUF
AUTOFR ENCODE No NOVA support needed
AXPREC No NOVA support needec
BIAS WRPKT 4
BLINKQ WRPKT 5 Command ignored in NOVA
CURVET ABSVEC,SYMBOQ,

WRPKT WRITE4 97,98,99
CURVE2 ABSVEC,SYMBOQ,

WRPKT WRITE4 97,98,99
DATAQ DRAW
DRAW DRAWR
DRAWC DRAWR
DRAWR ABSVEC
ENTGRA WRPKT 11
ERASEQ ERSALL
ERSALL WRPKT 13
EXITGR WRPKT 14
GETSCA No NOVA support needed
GRID ABSVEC
INIT WRPKT 17
INTENS WRPKT 18 Command ignored by NOV
MEGBUF WRITE4 99
NUMBRQ AUTOFR,SYMBOQ
PLOT ABSVEC
QCALE WRSCA
RDRAW RDRAWR
RDRAWC RDRAWR
RDRAWR RELVEC
RELVEC MEGBUF
SCALE QCALE
SCREEN ENTGRA, ERSALL,

EXITGR
SETPDQ INTENS 27
SETWIN WRSCA
SYMBOQ MEGBUF
T I MC V T No NOVA support needed
WILDCR No NOVA support needed
WRPKT MEGBUF WRITE4
WRSCA WRPKT 21
XAXIS ABSVEC, AUTOFR,

SYMBOQ, TIMCVT
IS ABSVEC,AUTOFR,LYAX

SYMBOQ, TIMCVT
URSC WRSCA

19

1

4

3.2	 Scaling and Clipping of Displays

An important function performed by the graphics software is the insulation
of the application program from the need to be concerned with exact screen
locations for the plotting of data points. Provided that scaling factors have
been defined by calls to certain graphics routines (QCALE, SCALE, YOURSC);
calls to display routines (CURVET, CURVE2, DATAQ, DRAW, DRAWC, RDRAW,
and RDRAWC) can be made using only data values in user units. In a call
to one of the scaling routines the application program defines for one of the
plot axes the length of the axis, the number of user units represented by the
axis, and the user unit value to be associated with the end of the axis nearest
the origin. A call to INIT specifies where the end of the axis is to be placed

on the screen.

On the MEGATEK, vectors which extend past the edge of the physical
screen are not clipped in hardware, but rather wrap around to the opposite
edge of the screen. The wraparound also produces extraneous retrace lines
across the entire screen face, so it is desirable to clip vectors so that they
do nct cause this problem. The MODCOMP graphics software defines a
clipping window which is always less than or equal to the entire screen face.
Call-, to the scaling routines (QCALE, SCALE, and YOURSC) each implicitly
set okie dimension of the clipping window, according to the axis being referenced.
(The axis itself is clipped to force it to fit on the screen.) The routine SETWIN
can also be used to specify any clipping window that lies wholly within the screen

area.

The clipping comparisons are performed only in calls to CURVET,
CURVE2, DATAQ, and DRAWC. These routines all specify point locations
in user units relative to a fixed point (the plot origin established in a call to
I NI T), so the clipping can be done knowing only the origin location and the
value of the desired point. Clipping for relative vectors (as called for in
RDRAWC), on the other hand, requires that the graphics software continually
keep track of the beam location in order to do clipping. Because this accounting
is costly in CPU time (the cost to keep a record of beam position must be paid

- -	 ,h do not make relative moves) and because relative moves

20

—I

N

F

rt

i	

}Y

are not used in the TMS, the clipping of relative vectors is not included in the
current graphics software implementation.

21
l	 '

t-

c

This page intentionally

left blank

22

4

yF'

F

^	

rs.^ar.....

SECTION IV
MEGATEK TERMINAL PROGRAM

4.0 INTRODUCTION

The MEGATEK terminal program controls the entire operation of the

graphics terminal, including the handling of graphics packets from the MODCOMP,

the sending of commands to the MODCOMP, and the responding to keyboard

inputs from the MEGATEK. This section includes first a description of the

MEGATEK hardware (paragraph 4.1), and then a view of the overall terminal

program structure (paragraph 4.2). A discussion of graphics pictures is

found in paragraph 4.3, and the master display list and command buffer is

described in paragraph 4.4. Paragraph 4.5 outlines the intertask communica-

tions structure, while paragraph 4.6 gives a broad discussion of the function

of each task.

4.1 MEGATEK Terminal Hardware

The Trend Monitoring System terminals are MEGATEK 5000 intelligent

graphics terminals. The MEGATEKs are each built around a Data General

NOVA/3 computer which has 32,768 16-bit words of semiconductor (volatile)

memory. With the exception of a single MEGATEK configured as a development

terminal with two floppy disk drives, the terminals do not have any nonvolatile

storage (storage which retains its contents when power is removed). The

NOVA in each terminal is fully programmable and, in the TMS, is operated

under the Real Time Operating System (RTOS - see 1151.

Connected to the NOVA in each MEGATEK is a standard alphanumeric

keyboard with 17 function keys and a joystick control. The character codes

generated by each of the keys are determined by the contents of an encoding

matrix stored in a PROM in the keyboard. The PROMS and wiring in the TMS

keyboards have been set up as described in [16].

Each MEGATEK also contains a high-resolution CRT (monitor), which

is capable of resolving 4,096 rasters in both the X- and Y-directions.

VERSATEC copiers provide the capability to make hard copies of the displays;

23

up to four MEGATEKs r-n be connected through a multiplexer to a VERSATEC

copier. In the TMS, normally two terminals are connected to a multiplexer,

which can be cabled to a single copier. A NOVA is attached to a MEGATEK

MG -562 copier multiplexer through a MG -556 RASTERIZER interface board

which plugs into the NOVA chassis.

The heart of the display generation system in a MEGAi'EK terminal is

the MG -552 display processor. The display processor is supplied as two

circuit boards -- the MG -552 Microprocessor Board and the MG -552 Vector

Generator Board -- which plug into the terminal's NOVA chassis. The micro-

processor in the display processor runs asynchronously to the NOVA and is

treated as an I/O device by the NOVA CPU. The display processor uses

Direct Memory Access (DMA) capability to fetch display processor instructions

from a buffer in NOVA memory. The contents of the buffer are termed a display

list; the last word in the display list is always a display processor HALT

instruction. A complete discussior of the types and formats of display processor

instructions is found in [141.

The display processor refreshes the display independently of the NOVA

CPU by periodically retracing the display list. The refresh process may be

set to operate at nominal 30 Hz, 45 Hz, or 90 Hz rates, or may be set to

operate in single cycle mode (one pass is made through the display list and .to

refreshing is done) or in free-run mode (a new pass through the display list is

begun as soon as the preceding pass is completed). The higher refresh rates

generally reduce display flicker, but cause more contention for memory access

cycles. In the TMS, the display processor is operated in the free-run mode.

In the TMS an additional circuit board is installed in each NOVA to

provide a DMA interface between the computer and a Bus Interface Unit (BIU)

connected to the communications system. The hardware portions of this inter-

face are described in 131 and [41, and the software is outlined in 151 and [6].

A bus handler is also included in the graphics terminal program, but since the

handler is documented in 151, it will not be further discussed in the following

paragraphs.

24

L
k

t

4.2 Overall Structure of the Termi nal Program

The TMS terminal program operates as a multitasking program under

the RTOS operating system [151. The program is composed of five major

tasks -- CSMN (main task), KB (keyboard task), Cl (command interpreter

task), CS (curve sliding task), and JS (joystick task) -- which communicate

with each other using flags and buffers stored in FORTRAN COMMON areas.

Three user interrupt handlers (developed as a part of the TMS) are also

employed; they are the KB70 handler to handle character-by-character inter-

rupts from the keyboard, the communications bus handler (described in [51),

and the CLK user clock interrupt handler. Synchronization among the tasks

and handlers is accomplished through the XMT and RFC semaphore manipula-

tion instructions offered as a part of RTOS Services. Some of the mechanisms

of intertask communications are discussed in paragraph 4.5; more details on

the manner in which tasks communicate are found in 1131.

Supporting the main task programs and handlers are 29 subroutines

written during TMS development and 3 subroutines taken (with minor modifica-

tions) from the MEGATEK graphics library 1171 supplied by the vendor with

the terminals. (The MEGATEK subroutines contain user interrupt handlers

for the display processor and for the joystick.) The 3 MEGATEK subroutines

are all in assembly language, while 17 of the TMS subroutines are in FORTRAN

and 12 in assembly language. During execution, of course, a call of a sub-

routine is considered by RTOS to be a part of the activity of the task which

calls the routine.

Figure 4.2-1 shows the relationships among the tasks and interrupt

handlers in the terminal program. The broad flow of information among the

parts of the program is shown as a set of labeled arrows connecting the

symbols. The figure also indicates the RTOS task priorities assigned to

each task (a smaller number implies a 'nigher priority). Each of the tasks is

discussed further in paragraph 4.6.

When the tasks and handlers are mapped together, the resulting TMS

terminal program (including buffers) occupies most of the available NOVA

l

25

r

CLK CLOCK
INTERRUPT
HANDLER

KB	
PRIORITY A

TASK

COMMUNICATIONS
BUS

r

INTERRUPT
HANDLER

KEYBOARD
	

8070
INTERRUPT
HANDLER

TASEK \ PRIORITY 1

t

PRIORITY 6

JS
TASK

JOTON
INTERRUPT
HANDLER

PRIORITY 4

CI
TASK

CRTINTERRU►T
HANDLER

MG-552
DISPLAY
PROCESSOR

SUBROUTINES TO
IMPLEMENT
GRAPHICS
COMMANDS

PRIORITY 6

CS
TASK

t

JOYSTICK

Figure 4.2—

Tasks and Handlers of the T14S Terminal i rogram

F

gg

f

26

t

memory. Figure 4.2-2 shows an approximate overall memory map for the

initial production version of the terminal program. Slightly under 900

(decimal) words remain for future expansions of the code.

Length (wordsl)

288

481

Low-memory portions of ope ra.ing system

Terminal program named COMMON areas
(forced to appear together because they
are all referenced in the BLOCK DATA
subprogram)

Code for terminal program

Code for FORTRAN and system library
routines used by the terminal program

Blank (unlabelled) COMMON used by terminal
program for master display list and command
buffer

High-memory portions of operating system

9,6002

4,624

13,900

3,0002

31,9002 TOTAL

NOTES: 1 All numbers are in decimal base.

2 Approximate figure

Figure 4.2-2 Memory Map for TMS Terminal Program

27

A BLOCK DATA subprogram is used to initialize values in named common

areas. Unlabelled common is used for the large buffer area because of the way

the RTOS loader works. The loader requires a certain memory area not

occupied by code or named COMMON in which the loader can be placed. The

only portion of program memory in which the loader can lie is blank COMMON,

since that area cannot be initialized by a BLOCK DATA routine.

4.3	 Graphics Pictures

A convenient logical way to subdivide the graphics terminal display list

is into units termed "pictures". A picture is a group of display list locations,

always in sequential memory locations in the TMS, which is preceded by a

special 5-word header and followed by a special 4-word trailer (see paragraph

4.3.2). The concept of the picture in the TMS program is based on the ideas

described in [171, with minor modifications. Pictures are linked together

with display list jump instructions (successive pictures need not occupy

successive blocks of memory locations) in picture trailers, except for the

last picture, which has a display processor HALT instruction in its trailer.

The display processor is thus started (with an I/O operation) at the header

of the first picture in the chain, and the processor runs through all the pic-

tures in the display until it encounters the HALT. The processor then retraces

the display list at the prescribed refresh rate, as discussed in paragraph 4.1.

4.3.1 Picture Allocation

The portion of the TMS terminal program dealing with picture management

requires that all pictures be allocated from a single contiguous region of memory,

which is introduced to the allocation routines by a call to the routine BIN5.

The first two words of the region are initialized to a pair of display processor

HALT instructions, so that the display processor c,.. be started without problems.

The terminal program then calls the B I NI T routine to create a new picture

and in the call specifies both the maximum length of the picture and its type.

The maximum length can be either a positive integer or zero; if the length is

zero, the Dicture is assumed to be open-ended and is allowed to grow toward

>g

the end of the display list region until another picture is defined, at which

time the first picture is closed.

The type of the picture can be either "miscellaneous" or "curves". A

curves picture includes the display list instructions to generate (with annota-

tion) exactly one of the curves in a display. A miscellaneous picture includes

display list com-.lands for generating such things as the axes, grids, and

background textual information in a display.

The TMS picture allocation routines always link pictures together

(see paragraph 4.3.2) so that all miscellaneous pictures come- before all curves

pictures in the picture chain, and so that within picture types 'he ordering is

chronological. The terminal program also distinguishes between permanent

pictures (picture numbers 1 through 8) and nonpermanent pictures. Permanent

pictures are those which are always needed by the terminal program (such as

those for cursor display or for display of the last 20 lines of ASCII text), but

which may at times be invisible (they are always allocated, however). All

permanent pictures are miscellaneous type pictures. Nonpermanent pictures

are associated only with particular displays on the screen and are all deallocated

when the screen is erased or a new display is generated. Figure 4.3.1-1

shows a summary of the terminal program pictures and their sizes.

29

Picture Controlling Size in
Number Function Task Words Comments

1 --- CSMN 30 Not used

2 Bias time window CS 30

3 joystick window JS 30

4 joystick cursor JS 30

5 Current command line KB 100

6 Display annotation KB 400

7 --- -- --- Not used

8 Last 20 lines of ASCII
output or command Controlled through
input (scrolled) KB 1,500 SCROL subroutine

9-32 Miscellaneous or Curves pictures
curves pictures Cl >9 may also be

modified by the
CS-called curve
sliding routine
CSLIDE

NOTE: Pictures 1-8 are termed "permanent" pictures (always allocated, but-	
sometimes erased or turned off). Pictures 9-32 are termed "non-
permanent" pictures and are deallocated when the screen is erased.

Figure 4.3.1-1 MEGATEK Graphics Pictures

30

Further information about the picture management routines (including

BINS, BIN1T, and others), and about the arrays and approaches used in

allocating and deallocating pictures is found in 1131•

4.3.2 Picture Link

The header and trailer mentioned above are shown in Figure 4.3.2-1.

During terminal program operation it is frequently necessary to make portions

of the display temporarily invisible (as when the user depresses the CLEAR

TEXT or CLEAR CURVES function keys). A single picture can be made

invisible by changing the jump address in the second word of the header to

be e7ther the address of the first word in the trailer, or the contents of the

fourth word of the trailer. All pictures beyond a certain picture (picture A,

say) in the display list can be made invisible by placing a HALT instruction in

the first or second word of picture A's trailer. Both of these methods are

used in the TM S .

Header
Word 1 JUMP (1300006

2 *+1 (address of
word 3 of header)

3 SPECIAL FUNCTION
(170002K)

4 SET TRANSLATION
(160000K)

5 0

Trailer

	

Word 1	 SPECIAL FUNCTION
(170002K)

	

2	 SPECIAL FUNCTION
(170000K)

Display list jump command

Reset display origin

Set display origin (used in
sliding curves)

Reset display origin

Null operation

3	 JUMP (130000K)2
4	 address of next	 Junip to next picture in chain

picture2

NOTES:	 1The suffix K (as in Data General documentation) denotes an
octal number.

2 This word is replaced with a display list HALT (170010K) in
the last picture in the picture chain.

Figure 4.3.2-1 Picture Header and Trailer

31

When a picture is to be erased, rather than made temporarily invisible,

two approaches can be taken. First, the picture trailer can simply be moved

in memory so that it immediately follows the picture header. This approach

is taken when permanent pictures are erased.

Second, the entire picture can be removed from the display processor

chain (by changing the display list jump instructions) and the picture number

and memory space can be marked as unallocated. This approach is followed

with nonpermanent pictures when an ERASEQ, ERSALL, or SCREEN

MODCOMP graphics software call is processed.

4.3.3 Picture Contents

In the current version of the TMS graphics software and terminal

program, outside of the picture headers and trailers described in paragraph

4.3.2, pictures contain only the following display processor instructions:

1. Absolute vector commands (2 words)

2. Hardware character commands (1 word)

3. Long relative vector commands (2 words)

4. Jump commands (2 words)

5. Special function commands 0 word)

6. Short relative vector commands (2 words)

7. Jump-to-subroutine commands (2 words)

MODCOMP application programs can generate only the first, second,

and third types of instructions, but in the TMS, the third instruction type

is not used. The fourth through the seventh instruction types are employed

only in permanent pictures to generate various cursors. In miscellaneous

pictures, the absolute vector and character commands can occur intermixed

in any order. In curves pictures, however, in order to simplify the logic of

curve sliding (see 1131) character commands occur only in even-length sequences;

if an odd-length character string is needed, the MODCOMP graphics software 	 •

pads the string with a character command for a null character. Characters

are displayed as MEGATEK size 2 (36 by 54 rasters) for such functions as

32

axis annotation, ASCII messages, entered com.aands, and the joystick and

bias time windows.

A detailed description of the contents of each picture is found in

Appendix II .

4.3.4 Picture Management

The MEGAT	 Corporation supplies a very flexible FORTRAN-

callable graphics library [171 with the terminal, and initial work on the TMS

terminal program used that library. As time passed, however, and it

became clear that space in the NOVA memory was at a premium, the MEGATEK

library was largely discarded (except for the modules CRT, JGTON, and

JTXX, for managing the display processor and joystick interrupts). The

picture structure and gener,-A. approach of the MEGATEK library was retained

in the TMS routines.

When a picture is being updated with the addition of new commands, it

is generally desirable to exclude the display processor for the area being

updated. If the display processor fetches words from an area which is

undergoing arbitrary updating, the contents of words in the area may be

unknown or may be partial display Hsi commands, so that the display proces-

sor may execute, for example, a random jump. After such a jump, the display

will probably coni_^in random lines, and the display process)r may halt with

an error condition (such as encountering a return-from-display-list-subroutine

without a corresponding jump-to-subroutine). Consequently, certain types

of picture changes, such as the update of user-typed display annotation, are

performed only after excluding the display processor from the picture by

making the picture invisible.

The display processor can also be excluded from an area to be changed

by stopping the display processor by an I/O instruction. During testing of

the terminal program, however, it was discovered that when a halt 1/0

instruction is issued by the NOVA to the display processor, the display

processor appears to continue to the end of the display list before halting.

33

The time before this is accomplished may be several hundred microseconds,

so the terminal program in some cases must delay before making display list

modifications to insure that the display processor will not be confused by the

updates. During initial allocation of pictures in the routine B1NIT, ine

display processor is h<<lted to avoid undesired side effects.

An exception to the practice of stopping or excluding the display

processor from a picture being updated is made when the commands in a pic-

ture are being updated in place and when it is known that no malformed

display processor instructions car. occur. For example, when pictures are

being made invisible as described above, the changing of the header is per-

formed without blocking out the display processor. Similarly, when, for

example, a displayed digit is being replaced by another digit, the instruction

to generate the new digit can be stored over the old instruction without

excluding the display processor.

A consequence of the method of managing pictures is that in a multi-

tasking environment, calls to the picture management routines must be done

with care. In general, if two tasks each attempt to modify the same picture

without external synchronization to prevent simultaneous updates, the pic-

ture may not be properly changed. In the TMS, therefore, as indicated in

Figure 4.3.1-1, each picture is controlled by exactly one task, with one

exception. When curve sliding is being performed, the CS task may modify

one or more of the curves pictures, which are normally under the control of

the Cl task. In this case, the CS uses a special semaphore (MKEY - see

paragraph 4.5) to lock Cl from making changes to the buffer until CS has

finished.

4.4 Master Display List and Command Buffer

Because of space constraints in NOVA memory, the display list and

the buffer area for receiving graphics packets and ASCII messages from the

MODCOMP both occupy the same array IBUF in blank COMMON. This array

is referred to as the "master display list and command buffer", or simply as

the "master buffer". The graphics packets have been designed so that the
34

length of any addition to the display list resulting from a graphics packet is

always equal to or less than the length of the graphics packet itself. (The

same condition holds for arbitrary ASCII messages from the MODCOMP.)

Consequently, the master buffer is managed by placing permanent pictures at

its low-order en.1 and reading from the bus into an area which is a specified

padding distance behind the last display list word. As a graphics packet is

processed, the display list is extended by moving words from the packet to

positions below the packet. As this is done, previously processed words

from this or earlier graphics packets may be overwritten. Figure 4.4-1

illustrates the state of the buffer at some arbitrary time and indicates

several of the pointers used by the program.

IBUF(1) "- "*

LDISPL

INXTBF_^

IBFPTR

I BU F(13900)

Permanent pictures

Nonpermanent pictures

Pad area (at least IPAD locations)

Graphics packets and incoming ASCII
messages (intermixed)

Unused area into which subsequent
traffic from the MODCOMP can be
stored

Last word in buffer

Figure 4.4-1 Master Buffer Structure

The pointers (in blank COMMON) LDISPL, INXTBF, and IBFPTR are

used to indicate the index in IBUF of, respectively, the last display list word,

the next buffer position to be processed by IC, and the last filled buffer

position.

35

As commands are processed, the pad area eventually grows since

most of the graphics packets are longer than the change in display list length

that they cause. Eventually, of course, the unused area at the bottom of the

buffer may be exhausted, and since traffic from the MODCOMP is only placed

into that area, buffer compactions are sometimes needed. When the Cl task

detects that a buffer compaction is advisable or when the CSMN task finds

that there is no room for additional MODCOMP input, the PACK subroutine

of Cl is called to move all unprocessed words in the buffer down so that the

first word lies IPAD (currently 100) words behind LDISPL, and the other

pointers are adjus'ed accordingly. If compaction cannot provide enough

space for all the MODCOMP input , a display list overflow has occurred

(generally caused by requesting a display in which too many points(mor e than

50001 are plotted). An advisory message is placed on the screen and the

input for which there is no room is discarded.

4.5	 Intertask Communication

Communication among the tasks and handlers in the terminal program

is handled through shared buffers, flags, and semaphores. The use of each

of these communications media is documented in detail in [131. Buffers are

used only for passing data among the tasks and handlers, rather than for

influencing control, so they will not be further discussed here. The uses

and identification of semaphores in the terminal program are given in para-

graph 4.5.1, while a list of flags (together with the usage of the flags) is

included in paragraph 4.5.2.

4.5.1 Semaphores

The RTOS operating system provides a semaphore mechanism which

is useful for synchronizing the different tasks and interrupt handlers in the

terminal program. A semaphore S is a designat-d word in a COMMON area

(accessible to each of two tasks to be synchronized). Ordinarily, S controls

access to a critical resource or process which must not be used by more than

one task at a time. An example of such a process in the TMS is compaction

36

S

or other length changes to the display list buffer, since both the CSMN task

and the Cl task use the same set of buffer pointers (see Figure 4.4-1).

In order for S to be used as a semaphore, it is first initialized to a

nonzero value. A task seizes the semaphore (or performs a P operation, as

it is termed by some authors) by calling the RTOS routine REC with S as a

parameter. If S has a nonzero value, RTOS performs an indivisible opera--

'	 tion which returns the value of S to the task, sets S to zero, and allows the

task to continue. If S has a zero value, the task's execution is blocked until

another task releases the semaphore as described below.

A task T1 releases a semaphore at the end of using the critical resource

or process by calling the RTOS routine XMT with S and a nonzero value X as

parameters (this corresponds to a V operation, as described by some authors).

The semaphore S is then ► set by RTOS to contain the value X. If other tasks

are awaiting the release of the semaphore, RTOS performs an indivisible

operation to select one of those tasks, T2, to return the value of S to T2,

to set S to zero, and to mark T2 as able to continue. If no tasks are waiting

for S, T1 simply continues. Whenever a task is blocked or unblocked in this

fashion, the RTOS scheduler is invoked so that the highest priority task is

selected to run.

Semaphores are used in the TMS terminal program not only for pro-

tecting critical resources and processes, but also for scheduling. RTOS

does not provide a capability for clock-driven time slicing, and a lower

priority task, once activated, will run until it calls an operating system

routine to do an I/O or until certain system events occur. These events

include the occurrence of certain types of interrupts and the blocking of the

task on a semaphore.

Similarly, a higher priority task T1 must block itself to allow a lower

priority task to execute. T1 accomplishes this by storing a zero directly

into a semaphore S, and then calling REC with S as a parameter. T1 thereby

guarantees that it will block itself and allow a lower priority task T2 to

execute. When T2 has completed its work, it calls XMT to release S. The

37

RTOS scheduler is invoked at that point and returns control to the highest

priority ready task, which is now T1. Semaphores are used in this manner

by, for example, the Cl task (through its ERASR subroutine) to block Cl

until CS and JS (lower priority tasks) have accomplished certain blanking

functions.

Figure 4.5.1-1 gives a list of the semaphores used in the TMS terminal

program, together with a brief description of the use of ea , --h semaphore.

4.5.2 Flags

A number of memory locations in COMMON areas are used by the

terminal program as flags to communicate among the tasks and handlers.

Figure 4.5.2-1 summarizes the flags, their users, and their explanations.

In general, the flags are set by one task (Task A, say) to request another

task (Task B) to perform some operation. When Task A needs to delay until

Task B has completed the operation, the usual procedure is to set the request

flag, and then for Task A to block itself using a semaphore S. When Task B

has completed the request, it resets the flag and releases the semaphore to

reenable Task A.

4.6 Functional Descriptions of Terminal Program Tasks

The following paragraphs give a brief verbal description of how the

five tasks of the terminal program operate and cooperate with each other.

Further detail on these tasks, their subroutines, and the terminal. program

bus, keyboard, and clock handlers is found in 1131. While reading the fol-

lowing paragraphs, the reader may find it helpful to refer back to Figure

4.2-1 of this paper.

4.6.1 CSMN Task

The CSMN task is the main task of the terminal program. When the

terminal program is initiated, the CSMN task receives control and creates

the permanent pictures. It then initializes pictures 5, 6, and 8 before

installing the keyboard interrupt handler and starting the other four tasks.

38

fti

O
a
ro
K

_ a

L V L

c c

oF. o r^ J Eu v J W w
G n W R+ .7 d
.V+ ut x W, N L_
u!	 of C ^ n

°' a a c ro n

W q O G n „_,

ro r-.a
v

y r

ut ^ ^ of ,^ E Yc ';n .. c E v
o ^ ro ro ?.. cf L y	 _-

V
V V

^

y N V '	 m ...
L y y 7J V r,p N L 7 7 ^ _

^vvuv v
ro N L L L ."- L
,n O O 0 o yr -

L L L L V
m G a G	 L

Y E E E E x^
m E E E E
ro V V V V r .x
H u,^^^ 'CT
O n if u u	 y
TW > 3 x L
O	 c .^
X	 <

^.1

r-•I
I ^

wv
N
v
Lr
O
^.a

cC

Q^

m̂ A vv v	 ^

_
'J O c Cco r' m E- C

vY^v
c
^^ W^

m
Yae3 E

yr w U Y y x
m	 a

m
^	 f ro >, J

t L t T
ma

J T inma m	 .J
a y 6,.., O A

o
u b" ..r

.:¢ J c
V ^, k A C N9 C O ro dT

a
Y CL.	

V
.-. 3L

..r .. _. 7E
U mm tJ	 m'

'^	 ^, u.u. mE .oN	 w
.u.
yr

14 v u. ^ c. Z v J
O 7 0

N a

d d •N
0 O

N a y w d .0.... U N m .Q
.J

v	 y

^
9/ 7,

U V V N v^ C d...^ m a	
C

W 1Ii v«

.+ d Ar	 NT^	 O v ro m
t
x Y Y a x {+

C O
N E> w^ y op in ^ y^ aG

c
^ W

o
a

u
.c

r O c	 a
v v v v v p, a c E c "Ma

0
0,	 v

a^ lt
mvEEo

v'
v

^.oo 0 ^^ 0." Uv _ ^

x V v U > > w v 7tc y ro °=a o °Ero
a .._' ^ a m .. m o r- v v 	 ^^ o v v

rtf > m -"' ro ro Y J Y ,•• a Y T O
a

.. E "" .^,
a	 O% Y x •f, yr	 yrEc

V
 a v u 3 o

U
u u

m

v
u m

CY tY) R' C
C

V L d V 0	 Q N
0 L	 14 4

yr4 -7 < O
V v

0 0 p y ro O v '̂ Z y 41	 v O y O	 y _
x a c 3 v N v y 7 C7 fn Y u b u o >,i

.. N w) W V O U _ 'J H	 'p U t, b ^e , " `" .c t > ro ..
T Y >. V T vrCo T ^' Zawu T"¢ = vru^ T N L. T u

rmvo^
>,
r m

>. O	 1-1	 urov ^3b ... 'C b Vr •O N b	 Cv 'O	 C O^^
t v

•O ^" C	 C 'C7 C	 F ^" 7 b ro
^ `d of T

a.Q, '^ L:J v
^ y
5 E ^ >,.01

^a	 t, 'n L t N Wa o 3 f. c.
ur v	 ^' >. s ro	

N O

a ro >a 3a :^	 S
c ro•' m N

^x o^ 3 ? 3 3 3 3 3 3 3 ..^
mp m a
N
5

7 f ^ >

x '-' o
CQ >
a:

>
>

--
a a^

-
>

ro
%J n a a a u. > > >

r
X > > > > x W

z
N

>
3

a. >

a
C
e Y N N U)

V

E O < f E E e: S_
m

w
w w w N uwi U "^

L] W
u U) 'n

v0
0

ro cn m rn w w cn Q w r
U

N

- :e ae u>
oeIV m V

a

^ v u u v v

•

39

C ^
>C

uGi	 M x
N
G?,

L A N'O C d N ro v

_

^
O L	 ^ ^ E ^ G

IY
t

C L'l V d; C	 L̂ L O L'O G G L G	 LO Yq Y Nq >.q L V
.. ., o c Ĝ

,..N	 'J p ^ .^.	 ro E q
F.

L
G

N q ^
G

,7 T .^
^ L 7 ,7 L G ro	 ul ^' '^ b 4 ^ j,	 A ^ 7 ^ b '^ v tL. L '^ `'^ V

N ^
V ^. d -

O'
(!1 #

V V CL L	 ^ v -^'-, Y 'n) C C C ^ .0 ^i
G
j

G
y vi

N
O

V	 L
J7 a	 O

«
h

L
>` «

C E
O

rN YI VI
-. O
p C

N q ;.
'- L 3

r^J .O GC
r

C
- N

.q. 'J7a-+ G] •`r 40 `y q
4

Oq•C z 4A ... C.1	
V^ 'J	 >,	 ... G (nL N ,rL GL rJ YC L Cy V bG ^' L

L i. x g ox ^ ^ U J
^cd
U X

... q
W ^ C L d C .' ^ ^G dJ

E >,
•p tq.v	 > N

a
N

c 4 c ,o

L	 ...
c

4^ y ,^^ 4 A•

++

ti
I E

v^
E ry E

LE
'u v
Gd roA

G X
y
^ '^V ue v°c

ti croi >„C
ro '°

ti q w

.^.. J
?

C Ql ^' iJ
a O	 o

J	 '^

y
^

L
A

'C
^	 U;

m ro
vvN ^4

'^
L^ C

^

W.o .c:f,	 '•
C

G

p. ^ X^;, I.G. 7
G

^ ^ 7 L N
I

G
..

_•,YI
C^
p

>. w
O ro s ^ V

ro V
^ ro

ro
^' 7

q G
v L ^ .^ G	 'ea 4 T

1'C	 ^
J
^

±
.j.

` > p y, N Y >. M L
O

'7 ^	 • V y y 6.J	 ... >. ^ ^ a ^ ^ G f C ^ q `Q ,Q ..^. ,^ C
t.	 .G

p
H

.^	 ; A O O ^U O „-, .p Q N O ` fn (n ro r j v
jG•, m q

u 6 M •0A X -. L '^ q	 W Lx N^
4L N
fE

C V
C

u	 '^

M p
1

y

z
d V 1. _ a A < ^.

cY A
<'Cp'	 'c (n

fL .:
)	 p

y ..
^

C ai _
A

` p+
,,.	 O ^ ^ T 2 O '_'

LJ (^ v GC N	 L 7>, V >. G ? C V	 N q
Z LV

W y W y W L :J G N L
X G G

d'	 N:L N q GX 7 V 1"	 >. til A Vl A .^. C Y .^ 0-0 O d C D C O C L C >' L ^L
CL,

T.G d t ••"•

> ,^ ^ ? o O ^ o s o q p^ O A : ^ m^^ .^	 uqu O ^^ o o ^ •^ ,.., E^ r a
^'G

-
' d VI

o

r>
O

3(n L	 T .^ d (n L L,n ..C.^	 !n	 4 (T LM G	 0O V G y
n L

G y	 r
Iv(1) y C y ,G v C i. C N C

C .^. L V = 3 in O (^ L J) Y ' O J L J d i
G	 c E

U
3 3	 3	 3 3 3 3

"• N
;.^	 :r 3	 3 3 3 3 v Ln y3 V

G G	 X —._ S	 • LI	 Y^
Oi

J
anq a N

n$uX
b

s
3 x	 a 3

\ c.
u '%

u G ".^

v,	
aJ "3 3 x

r
;

qc.. to

Y O M

a d
a toy,

ro ^ V ^
F" 3 3

«
3	 « r

K G
L q
o

n^
w:, ^ d^ 3	 3 3

r
3

«
3

"
3

X 3 a 3
a

3	 3
^t
e0.' L

z X 3 G

`^ 3 3 3
a j o

Y

E	 U_x U U U (.A Nfj	 u
< W	 W W W (J^

w

<a
u FL <

w w w w
v
w aw	 W r<i

w V
F

O
U

a <
W

<
W

a z N M 2
U	 W

m
<'E

ro	
U

a
<

U
>^
U

F
(R

u
V)

w
X	 U D

3
0 w

3
X m U' m m

<
w w w w w w	 w w t v v< w ul m IL_I

z z z ,

40

After the initialization phase, CSMN enters an infinite loop in which

it issues a wait—mode read to the bus (the first call to the bus interface

routines inserts the bus interrupt handler into the system's table). When a

response is returned to the read, CSMN is reactivated and checks whether

there: is room for the input in the master display list and command buffer.

If there is room, the input is inserted, the Cl task is signalled by releasing

the CI SEM semaphore, and the loop is repeated. If there is not room, CSMN

requests that CI compact the buffer and waits until that work is done. If

there is then room, CSMN inserts the input and repeats its loop, but if there

is still not room CSMN generates an error message and discards the input.

Any additional input received before the next command is sent to the MODCOMP

is discarded. When the next command is sent, the screen is erased and the

normal loop is repeated.

4.6.2 KB Task

The KB task is the second highest priority task. After initialization,

KB enters a loop to check for work to be done; if no work is found, the task

blocks itself on the semaphore KBSEM until another task reawakens KB by

releasing KB. KB can be awakened by the keyboard interrupt handler when

a key is struck by the terminal user, or by the C I task when an ASC I I mes-

sage is to be placed in the scrolled display of ASCII lines.

KB handles most of the key res ponses internally, since they relate

most frequently to editing commands for the command line or editing commands

for display annotation. KB does communicate with the JS task, however, when

the terminal user annotates the screen, since the user employs the joystick to

position the cursor to the desired point for the annotation.

Certain keyins are passed by KB to other tasks or handlers. In the

case of requests to skew curves, KB uses the CSSEM semaphore to signal

the CS task of the request and blocks itself until the curve sliding can be

performed. When the terminal user enters a command, followed by a carri-

age return, KB passes the ASCII characters of the command to the bus inter-

face to be sent to the MODCOMP. The KB task then adds the command line

41

to the scrolled display of the last 20 lines of ASCII text and clears the

command line portion of the display.

4.6.3 Cl Task

The Cl task is the third-highest-priority task in the terminal program

and has the responsibility of processing all graphics packets and ASCII

messages received from the MODCOMP. After initialization, Cl enters an 	 -

infinite loop in which it first searches for work to be done. If unprocessed

input is found, Cl determines whether the input is a graphics command or an

ASCII message. If the input is an ASCII message, it is passed to KB for

insertion into the scrolled ASCII text picture, but if the input is a graphics

packet, one or more subroutines are called by Cl to process the graphics

function. Cl continues checking for unprocessed input until no more work is

found, at which time it blocks itself on the semaphore C I S EM until new input

is received and placed in the master display list and command buffer by the

CSMN task.

4.6.4 CS Task

The CS task is the fourth-highest-priority task in the terminal program

and has as its responsibility the management of the bias time window and the

sliding of curves upon request by the terminal user. CS begins by initializ-

ing the bias time window (picture 2) and then enters an infinite loop. In the

loop CS first checks whether the bias time window should be visible and sets

the window accordingly, and then checks whether there is an outstanding

request to slide the curves. If a sliding request is found, CS calls its sub-

routine CSLIDE to perform the actual display list manipulation. When CS

finds no work to do, it blocks itself on the CSSEM semaphore until it is

awakened by another task.

4.6.5 JS Task

The JS Task is the lowest—priority task and executes continually when

there is no higher priority work in progress. When the JS task is started,

42

it initializes the pictures for the joystick window and the joystick cursor

(pictures 3 and 4), and then enters an infinite loop. In the loop, JS first

checks whether the joystick window should be visible, and sets the window

accordingly. If the window is to be visib.'e, JS obtains the joystick coordi-

nates from the MEGATEK JGTON module and updates the window. if the

coordinates are to be returned to KB (as indicated by the setting of a flag),

JS provides the coordinates and awakens KB by releasing a semaphore. As

the last test in the loop, JS checks to see whether a text cursor should be

displayed along with the graphics cursor, and if so, modifies the cursor

picture accordingly.

The actual tracking of the joystick location and updating of the cursor

position is handled by the joystick interrupt handler included in the MEGATEK

JGTON module.

43

APPENDIX I

TMS MODCOMP APPLICATION PROGRAM

GRAPHICS INTERFACE

SECTION I.1

INTRODUCTION

At the beginning of the Trend Monitoring System (TMS) project, an

IMIAC graphics terminal was available for study. This terminal was supported

by the GRAPHELP FORTRAN subroutines, which were written at the Harry

Diamond Laboratories and supplied through I MI_AC . As the TMS work continued,

a subset of the GRAPHELP routines was identified for use in TMS. This

document describes the calling sequence and error checks in detail for each

of those routines, plus three added routines (BIAS, CURVET, and CURVE2).

In general, GRAPHELP compatibility has been retained, with three exceptions:

1) the definition of AUTOFR has been changed slightly; 2) the formal para-

meter 1PEN has been replaced with the formal parameter LINETP in every

case; and 3) two additional parameters have been added to XAXI S and YAXI S

calls, and the effect of the calls has been slightly changed.

The routines are discussed in alphabetical order in Section 1.2.

Table I-I , however, groups the routines into sets according to their use.

45

TABLE I—I. GROUPING OF GRAPHICS CALLS BY USE

Scaling

GETSCA
QCALE
SCALE
YOURSC

Gra phics Control

BLINKQ
ENTGRA
ERASEQ
ER SkLL
EXITGR
INIT
INTENS
SCREEN
SETPDQ

Drawing

ABS v'EC
CURVET
CURVF2
DA':'AQ
DRAW
DRAWC
NUMBRQ
PLOT
RDRAW
RDRAWC
RELVEC

Axes and Grids

AXPREC
GRID
XAXIS
YAXI S

Annotation

S`.'MBOQ

Miscellaneous

AUTOFR
BIAS
WILDCR

46

t

0

Y

SECTION 1.2

DESCRIPTION OF ROUTINES

I .2.0 INTRODUCTION

Each of the paragraphs from I.2.1 through 1.2.33 describes one of

the graphics entry points which can be called by a MODCOMP application pro-

gram. The descriptions outline the purpose, cal l:	sequence, parameter

definitions, and side effects (where appropriate) fc each routine. Paragraph

I .2.0 gives information about the method of identifying the location of points

on the graphics display screen, about error checks and defaults in the graphics

software, and about conventions used in the routine descriptions.

1.2.0.1 Reference to Locations on the Screen

There are seven different ways which can be used to speciiy the

location of a point on the display terminal screen:

	

1)	 In "inches"

a. Absolute "inches" (measured from the lower left corner

of the screen)

b. "Inches" from the plot origin

c. Relative "inches" (with respect to the current beam

position)

	

2)	 In user units

a. User units from the plot origin

b. Relative user units (with respect to the current beam

position)

	

3)	 In rasters

a. Screen position (offset from the center of the display

screen)

b. Raster position (offset from the lower left corner of the

display screen)
47

The fundamental logical unit of measure on the screen face is "inches".

The "inch" is an arbitrary measurement unit derived from assumino that the

screen is INMAX "inches" wide. The actual MEGATEK display s een is

about 13 inches wide and is approximately square; there are 4,096 raster

lines in both the X- and Y-directions. For convenience in relating "inches"

to rasters, in the TMS graphics software, INMAX has been chosen to be 16

(a convenient power of two near the actual size). One "inch" is thus equiva-

lent to 256 raster positions. The first and third types of measurements in

"inches" are then easily interpreted. The second "inch" measurement relies

on the plot origin definition, which is established either by default or by a

call to the graphics routine INIT (paragraph I.2.17).

User units are the terms in which an application program normally

works. Scaling factors to convert between user units and "inches" are

established by calls to SCALE, QCALE, or YOURSC, and the graphics soft-

ware then can convert the user units to "inches" before plotting. Calls to

SCALE, QCALE, and YOUR SC also relate user units to actual points on the

screen by specifying user unit values (VLOX, VLOY) which are to be asso-

ciated with the coordinates of the plot origin ((XORG,YORG) in "inches")

established in an I N I T call.

Positions in rasters rely on the relationship mentioned above, that

one "inch" is equivalent to 256 rasters. Certain of the MEGATEK display list

instructions (see 1131) deal with raster counts which are relative to the center

of the screen (screen position). In other contexts, however, it is easier and

less confusing to consider raster counts as relative to the ;r,wer left corner

of the screen (raster position).

These methods of specifying the location of a point on the screen are

used in the following routine descriptions, in the body of this report, and in

the detailed documentation in [121. Figure I.2.0.1-1 illustrates the methods

of specifying a location on the display screen. In certain portions of the

following descriptions, distances and sizes are given in millimeters (mm).

48

These distances are to be interpreted as actual millimeters; the mm measure is

used to avoid possible confusion between actual inches and the arbitrarily

defined "inches".

16 "inches" = 4,096 rasters

+ Center of Screen

X (Arbitrary
• Point)

C (Plot Origin)
•

16 "inches" _
4,096 rasters

Given: Plot Origin C has user units coordinates (VLOX, VLOY) and "inches"
coordinates (XORG,YORG)

Scale factors (in user units per "inch") are SFX and SFY for the
X— and Y—axis, respectively.

There are 256 rasters per "inch"

Then:	 The following coordinates of an arbitrary point X are equivalent:

_ MY) in user units
_ (X—VLOX)/SFX, (Y—VLOY)/SFY)), or (xi,yi), in "inches"
_ (xi+XORG, yi+YORG), or (xa,ya), in absolute "inches"
_ (xa*256, ya*256), or (xr,yr), in raster position
_ (xr-2048, yr-2048) in screen position

Figure 1.2.0.1 -1 Methods of Specifying Screen Location

49

a11

I.2.0.2	 Error Checks

The GRAPHELP routine structure provides no mechanism for the

subroutines to return error indicators to the calling routine. As a result,

when errors are detected in these routines, default values for erroneous para-

meters are assumed where possible, and a message is written to an error log

file on the MODCOMP. This file can be dumped periodically by a separate

program. If an error is irrecoverable, a request is made that the system

abort the calling program.

In order to enhance execution speed, not all possible error checks

have been implemented in the plotting routines. In the routine descriptions,

conditions which are not checked but which could lead to bad plots are marked.

None of the unchecked error conditions will abort the plot package.

I.2.0.3	 Conventions

Several conventions have been followed in the following descrip-

tions of the routines. Among these are the standard FORTRAN variable

naming conventions (variable names beginning :vith the letters A-H and O-Z

represent gloating point numbers and variable names beginning with I-N repre-

sent fixed point 16-bit integers), and the convention that all floating point

numbers are single precision (2-word MODCOMP format) unless otherwise

Fated.

The graphics routines may affect the current beam position on the

graphics terminal. If the beam position is updated by a routine, the change is

specified under a "Side Effects" paragraph in the routine description.

I.2.0.4	 Defaults

Several of the graphics package routines, such as BIAS, XAXIS,

YAX IS, etc., result in the display of characters on the screen. In the calls

as they are defined below, there is no mechanism to select the size of the

characters. The characters used by the plot package are size 1 (about 0.1

50

inch wide and about 6 lines per inch). A character of size 0, as generated by

the MEGATEK, resides within an imaginary box which is 8 rasters by 12

rasters. The space occupied by a character (including the white space between

characters and between lines) is, of course larger and is 12 by 18 rasters for

size 0 characters. These sizes are linearly scaled upward for other charac-

ter sizes, so that the raster dimensions of characters of size N can be computed

by multiplying these raster counts by N+1.

I.2.1	 ABSVEC (XAB,YAB,LINETP)

Purpose:

	

	 To draw a line from the present beam position to absolute

location (XAB,YAB).

Parameters:

XAB and YAB are floating point "inches" measured from the

lower left—hand corner of the screen.

r	 LINETP must be an integer.

LINETP = 0 results in an invisible line

= 1 causes a solid line

= any other value results in a dashed line

Error Conditions:
F.
s	 XAB must be 5 INMAX

YAB must be < INMAX
4

x

	

	 XAB and YAB are forced to be less than INMAX by calculating the

coordinates XAB1 = MOD(XAB, I NMAX) and YAB1 = MOD(YAB, I NMAX).
F

The resulting absolute vector is drawn from the present beam posi-

tion to the point (XABI,YAB1), which may provide unexpected results
E ;	 if XAB and/or YAB are >— INMAX.

Side Effects: The beam position is updated to (XABI,YAB1). The setting of

LINETP to 1 or another nonzero value sets the line type to be solid

or dashed, respectively, for calls to any relative vector routine

51

(RELVEC, RDRAW, and RDRAWC) before the next call to any

other routine which uses the parameter LINETP.

I.2.2	 AUTOFR (VAL,IFORM,NFORM,IPREC)

Purpose: To convert a given floating point number into FORTRAN F -type

display format.

NOTE: This function is different from the GRAPHELP
im— pre—mentation, which returns a format to be used in
conversion, rather than the converted number.

Parameters:
VAL is the floating point number to be converted.

IFORM is the array which will receive the display code repre-

sentation; the first nonblank ASCII character is placed in the

left half of the first word of IFORM (left justification). This

array should be long enough to hold the returned value (maximum

of 6 words) .

NFORM is an integer variable in which the width of the display

representation is returned.

IPREC is the number of figures to be displayed to the right of the

decimal point (051 PREC56).

Algorithm: The FORTRAN ENCODE capability is used to convert the number

into ASCII display code. The resulting field is up to 12 charac-

ters wide and is packed into the output array at 2 characters per

word. If the number cannot be fitted into twelve characters with

the given precision, or if the precision is invalid, the output array

is filled with asterisks and NFORM is set to 12.

52

1.2.3	 AXPREC (IPREC)

Purpose:	 To specify the precision of axis labels that are output when the
routines XAXI S and YAXI S are called.

Parameter:
IPREC = number of digits to the right of the decimal point in
axis labels.

Error Conditions:
IPREC must be >_ 0. If it is not, it is set to the default value.

Default Value:
If this routine is not called to set axis label precision, the
precision is zero.

1.2.4	 BIAS (XIN,YIN,SEC)

Purpose:	 To specify the location and magnitude of the bias time which is
associated with curves which are skewable (see the descriptions
of CURVET and CURVE2 in paragraphs 1.2.6 and 1.2.7). Calling
this routine causes the bias time to be displayed on the graphics
screen at the specified location.

Parameters:
XIN and YIN specify the lower left corner of the first character
of the bias as it is displayed on the graphics screen (+hhh:mm:ss).
XIN and YIN are given in floating point "inches".

SEC specifies the seconds of bias time (SEC may be positive,
negative, or zero). The bias time will be initially displayed as
built from this figure and will be updated as the terminal operator
skews displayed curves using function keys.

53

Error Conditions:

XIN and YIN should be chosen so that the characters of the dis-

played bias time will not extend past the edge of the screen (a

space about 5 mm by 25 mm is required), or wraparound will

result. No checks are made in this routine for wraparound.

Default Value:

If this routine is not called to set the bias value, no bias value

will be displayed on the screen and no updating of a time bias will

be performed if the user skews the displayed curves.

Side Effect: The current beam position is updated to the end of the bias time

character string. One should note that if XIN+XORG > INMAX

or if YIN+YORG > INMAX, wraparound occurs (before the display

of the character string) and the new beam position is (MOD

(XIN+XORG,INMAX), MOD(YIN+YORG,INMAX)).

1.2.5	 BLINKQ

Purpose:	 To toggle the blink function on and off. All graphics vectors and

characters written after an odd-numbered call to BLINKQ but

before the next call to BLINKQ will blink. Blink is initially off.

Programming Note:

Blinking does not take effect until the next absolute vector is

created. Presently, BLINKQ does not take effect for calls to

NUMBRQ, RELVEC, RDRAW, RDRAWC, and SYMBOQ unless a

call to ABSVEC, DATAQ, DRAW, DRAWC, GRID, PLOT, XAXIS,

or YAXIS intervenes.

1.2.6	 CURVE I(YARRAY,NPOI NT, XINCR,XINIT,LINETP,LABEL,ICRVTP)

Purpose:	 To scale, plot, and connect a list of floating point user values,

with each point's vertical position being determined by the value	 •

of an element in the list, and that point's horizontal position being
54

determined by a constant offset from its predecessor. The plot is

clipped according to a window set explicitly in a call to SETWIN

or implicitly in a call to QCALE or SCALE.

Parameters:

YARRAY is an array of 32-bit floating point user values, with at

least NPOINT entries. If the array contains any value in the

first NPOINT positions which is not a valid floating point number,

results are unpredictable. (See CURVE2 for a routine which

examines data for missing point flags.)

NPOINT is the number of points to be plotted. If NPOINT <_ 0,

the stibroutine takes nu action. If NPOINT exceeds the dimen-

sion of YARRAY, results are unpredictable. NPOINT must be

5 2000; if this condition is violated, only the first 2000 points

are plotted.

XINCR is the floating point displacement (in user units) in the

horizontal (X) direction between successive points. Ordinarily,

XINCR is positive, though negative values are allowed; care

should be taken, however, to be sure that XINIT is adjusted so

that all points lie in the plot window, or they will be clipped.

•	 XINIT is the floating point value (in user units) of the X-coordinate

of the first data point.

LINETP is an integer denoting the type of line with which the data

points are to be connected. Permissible values for LINETP are

shown in paragraph I.2.1.

55

LABEL is a 2-byte integer variable containing in its right-hand

byte the ASCII character code for the character to be used in

annotating this curv.;. This character is displayed periodically

along the curve (approximately every two "inches"). The plot

package attempts to position the annotation for different curves

so that the annotations do not overlap.

ICRVTP is an integer describing whether or not this curve can

be skewed by use of the SKEW function keys. Generally, only

curves representing past or predicted data will have this attribute

in TMS.

ICRVTP = 0 means that the curve is not skewable

= any other value means that the curve is skewable

Prerequisites: The current scaling and origin information is required by

CU R VE1, so I N I T should have been called previously to specify

the origin, and each dimension (X and Y) should have had its

scaling information set by a call to YOURSC, SCALE, or QCALE.

If the default clipping window set in QCALE or SCALE is not

desired, SETWIN should also have been called to Specify a window

for clipping. If these routines have not peen called prior to a call

to CURVET, the defaults stated in the routine descriptions will

apply.

Proarammine Note:

If any part of the clipping window (set in SETWIN or by default

in QCALE or SCALE) does not lie on the screen, clipping is

adjusted so that any points which lie off the visible screen are

clipped. Subsection I.2.28 contains nore details about the adjust-

ment of the clipping window in such a case.

Side Effect: The beam position after this routine is called is updated to be the

plotted location (possibly clipped) of the NPOINTth point plotted.

e
	 56

s

b

5

I.2.7	 CURVE2 (YARRAY,NPOINT,XI NCR, XINIT,LINETP,LABEL,

ICRVTP)

Purpose:	 To scale, plot and connect a list of floating point values with a

constant horizontal displacement between successors. The curve

is clipped according to a window set explicitly in SETWIN or im-

plici tly in QCALE or SCALE. Also, whenever a value encountered

in the input array YARRAY is the absent-point flag (hexadecimal

7FC0 0000 on the MODCOMP) the point is not plotted or connected

to the valid points. Instead, the horizontal position is incremented

one step for each data value examined, and the plot is continued

with the next valid value found (if any).

Additional Information:

Parameters, prerequisites, and side effects are identical to

those stated for CURVET.

1.2.8	 DATAQ(XARRAY,YAR RAY, NPOI NT, INC,LINETP)

Purpose:	 To scale, plot, and connect a series of points, each of which is

specified by its floating point user value. Clipping is not per-

formed in this subroutine.

Parameters:

XARRAY is an array of floating point X-values, with at least

NPOINT entries. All entries in the first NPOINT positions

should be valid floating point numbers, or results are unpredictable.

YARRAY is an array of floating point Y-values, with at least

NPOINT entries. All entries in the first NPOINT positions

should be valid floating point numbers, or results are unpredict-

able. The ith point to be plotted is specified bi r (XARRAY(i),

YARRAY(i)).

57

........	

NPOI NT is an integer value giving the number of points to be

plotted. If NPOINT 5 0, no plotting occurs. If NPOINT

exceeds the dimensions of either XARRAY or YARRAY, results

are unpredictable.

INC is an integer variable specifying how points are to be chosen

from XARRAY and YARRAY. If INC is i„ every ith value is

plotted; normally, INC is set to 1 so that each array element is

plotted.

LINETP determines the type of line which is used to connect the

points. Permissible values for LINETP are given in paragraph

1.2.1.

Side Effect: The current beam position is updated to the position of the last

point plotted.

I.2.9	 DRAW (XS,YS,LINETP,ITYPE)

Purpose:	 To draw a line from the present beam position to the location

(XS,YS), where XS and YS are user values which are scaled

before plotting.

Parameters:

XS and YS are floating point user values which are scaled accord-

ing to scaling information set by SCALE, QCALE, or YOURSC.

LINETP describes the type of line to be drawn. Values for this

integer parameter are given in paragraph I .2.6 (description of

CURVED.

ITYPE is a parameter included for compatibility with the GRAPHELP

R

	

	 definition of this routine; in GRAPHELP, ITYPE specifies the type

of plot (linear, log—linear, log—log, etc.). Since this plot package

t	 supports only linear plots (ITYPE=4) at present, this parameter is

ignored by the subroutine.
58

4

6'

Programming Note:

This routine does not clip vectors (see DRAWC for a version of

the routine which performs clipping), so it is possible to draw a

vector which "wraps around" the screen. No checks are made

for wraparound.

Side Effect: The beam position is updated to the location of the plotted point

(XS,YS). If wraparound occurs, the new beam location reflects

the wraparound.

1.2.10	 DRAWC(XS,YS,(,INETP,ITYPE)

Purpose:	 To draw a line from the present beam position to the location

(XS,YS), where XS and YS are user values which are scaled

before plotting. The resulting line is clipped according to the

window resulting from a previous call to SETWIN (or implicitly

in a call to QCALE or SCALE).

Additional Information:

This routine differs from DRAW (paragraph I .2.9) only in that

DRAWC performs clipping.

1.2.11	 ENTGRA

Purpose:	 To enter the graphics mode of adding elements to the display being

built. All graphics subroutine calls are valid only after a call to

ENTGRA and before the next call to EXITGR.

Proerammine Note:

When ENTGRA is called, the terminal operator's capabilities to

interrogate the screen (to obtain values corresponding to a gi g; -n

point on the plot) and to skew curves are suspended. These capa-

bilities are restored when EXITGR is called.

59

1.2.12	 ERASEQ

Purpose:	 To erase the screen when in graphics mode. This call blanks the

screen and erases previous graphical elements; text elements dis-

played on the screen by ordinary FORTRAN writes are retained

in the terminal, though they are not displayed on the screen unless

called back by the user's depressing the SHOW TEXT terminal

function key. As described in the TMS Level C Requirements

Document, only the last 20 lines of text (total of both visible and

invisible lines) ai a retained at any time.

Blanking when the callin(, program is not in graphics mode is

accomplished through a call to SCREEN (paragraph 1.2.26).

1.2.13	 ERSALL

Purpose: To erase the screen when the calling program is in graphics mode.

The effect of this routine in the TMS graphics package is the same

as the effect of ERASEQ (paragraph 1.2.12).

1.2.14	 EXITGR

Purpose:	 To exit the graphics mode of adding elements to the picture being

built. This routine should be called before termination of the

program building the display.

Programming Note:

When EXITGR is called, the terminal operator's capabilities to

interrogate the screen and to skew curves are restored. These

capabilities are suspended when ENTGRA (paragraph 1.2.11) is

called.

60

1.2.15	 GETSCA(SF,VLO,I WHO, ITIME)

Purpose: To return the current values of the scale factor and least plottable

value for either the X-axis or the Y-axis. SF and VLO are set by

calls to QCALE, SCALE, or YOURSC.

Parameters:

SF is the scaling factor Or. user units/"inch") by which values in

us:.: units are divided to convert them to "inches" for plotting.

SF is set by this routine, and applies to the axis specified by

IWHO.

VLO is the least plottable value in user units for the axis speci-

fied by IWHO. This value is the starting point of the axis in the

displayed plot.

IWHO specifies for which axis the values SF and VLO are returned.

IWHO = 0 r,eans the X-axis

= any other value means the Y-axis

ITIME specifies whether the axis specified by IWHO represents

time or not. Possible values for ITIME are given in paragraph

1.2.21.

1.2.16	 rRID(XGRD,YGRD,XD,YD,LINETP,IREL)

Purpose:	 To draw a regular grid (the size of the X intervals may differ from

the size of the Y intervals) on the graphics screen. The lower left-

hand corner of the grid is taken to be the plot origin established

by a call to INIT.

Parameters:

XGRD and YGRD are the coordinates in "inches" of the u[)per

right-hand corner of the grid on the screen.

61

XD and YD are the distances between the Y-direction and X-

direction grid lines, respectively. XD and YD are expressed

in "inches".

LINETP determines the type of lines used in the grid (solid,

invisible, or dashed). The values for LINETP are the same as

those given forABSVEC (paragraph I.2.1).

IREL is a parameter included for GRAPHELP compatibility; in

GRAPHELP IREL can be used to specify that the grid must be

drawn using only relative vectors, but the value of IREL is

ignored in the TMS graphics package.

Error Conditions:

The following conditions must be satisfied. If any of the condi-

tions do not hold, no grid is produced.

0 < XGRD 5 INMAX

0 S YGRD S INMAX

0 < XD	 < INMAX

0 < YD	 < INMAX

Proarammina Note:

Ordinarily, XGRD-XORG should be a multiple of XD and

YGRD-YORG should be a multiple of YD, where (XORG,YORG)

is plotting origin which should have been previously established

by a call to INIT. If these differences are not whole multiples

of the X-increment and Y-increment, the last X-direction line

will be at YORG + k x YD, where YORG + k x YD :5 YGRD and

YORG + (k+l) x YD >YGRD. An analogous relationship holds

for Y-direction lines.

Side Effect: The beam position after a call to GRID is set to the plot origin

(XORG,YORG), as defined either by default or by a call to INIT. 	 •

62

1.2.17	 INIT (XORG,YORG)

Purpose:	 To set the coordinates of the absolute plot origin in "inches".
These coordinates determine the lower left—hand corner of plots;
this point on the screen can be associated with arbitrary user
units by the routines QCALE, SCALE, and YOURSC.

.	 Parameters:
XORG and YORG are the coordinates of the absolute plot origin
in "inches". XORG and YORG are always specified as offsets
from the lower left—hand corner of the screen, which has the
position (0,0) for purposes of this definition.

Error Conditions:
The following conditions must hold:

0 5 XORG 5 INMAX

0 5 YORG 5 INMAX

The default value, as defined below, is applied if these conditions
do not hold.

Programming Note:
This routine should be called before any routine which references
the plot origin, since the plot origin in effect at the time of a call
to a routine rising the origin is the one which will be used.

Default Values:
If INIT is not called the absolute plot origin is taken to be
(1.0,1.0) [in "inches"]. If either XORG or YORG is out of range,
as mentioned above, that coordinate is assigned a value of 1.0.

I.2.18	 INTENS (IBRITE)

Purpose:	 To choose the beam intensity for plotting.

63

I.

Parameter:

IBRITE is an integer in the range [1,16], where higher values

result in higher intensity. If IBRITE = 1, a zero intensity

(blank trace) is used. If the value of IBRITE is not in the allow-

able range, the default value is used.

Default Value:

If INTENS is not called or if an invalid value is specified for

IBRITE, an intensity of 8 is used.

Programmine Note:

Setting beam intensity may not take effect immediately. See the

programming note for BLI NKQ (paragraph 1.2.5).

1.2.19	 NUMBRQ(VAL,IPREC,NSIZE)

Purpose: To convert a floating point number to display characters and then

to draw the display characters on the screen at the current beam

position.

Parameters:

VAL is the floating point number to be displayed.

IPREC is an integer giving the number of digits to be displayed

to the right of the decimal point; if IPREC is5 0, no decimal

point will be displayed and no fractional digits will be displayed.

The displayed value of VAL is truncated to IPREC precision.

NS I ZE is an integer defining the height of the displayed charac-

ters. Permissible values for NS I Z E are given in paragraph I.2.29
s	

(description of SYMBOQ).

Programming Note:

`£	 The program:ier must be careful to position the beam to a point

where the displayed number will not extend beyond the edge of the
t 64
r

r

F

S
iS

3

f	 _

t.Z.Lv

screen, or wraparound will occur. No checks are made in this

routine for wraparound.

ct: The current beam position after this routine is updated as des-

cribed for SYMBOQ (paragraph 1.2.29).

PLOT(XIN,YIN,LINETP)

Purpose:	 To draw a line from the present beam position to a location rela-

tive to the absolute plot origin set in a call to INIT.

Parameters:

XIN and YIN are floating point "inches" relative to the absolute

plot origin set by INIT.

LINETP is an integer which describes the type of line (solid,

invisible, or dashed) that is to be drawn. Permissible values

for LINETP are given in the description of CURVET (paragraph

1.2.6).

Error Conditions:

ABS(XIN) + XORG must be <_ INMAX

ABS(YIN) + YORG must be 5 INMAX

where XORG and YORG are set by INIT.

These conditions are not checked, and if they are violated, the

resulting line will wrap around the screen.

Side Effect: The beam position is updated to (XIN,YIN) [these coordinates

are in "inches" from the absolute plot origin]. Note that if

wraparound occurs, the new beam position is (MOD(XIN,1NMAX),

MAX(YIN,INMAX)).

65

4

1.2.21	 QCALE(AMIN,AMAX,AXLEN,SF,VLO,I WHO, ITIME)

Purpose:	 To set the scale factor for user units and the least plottable value

from given minimum and maximum user unit values.

Parameters:

AMIN and AMAX are floating point user unit values for the minimum

and maximum values to be scaled, respectively.

AXLEN is the length of the axis (identity of the axis is specified

by IWHO) in "inches".

SF is the scaling factor by which user unit values are divided to

convert them to "inches". This value is calculated by the sub-

routine.

VLO is the least plottable value. This value is set by the routine

and in the TMS graphics package is always equal to AMIN.

IWHO specifies the axis for which scaling information is being

given.

IWHO = 0 means the X-axis

= any other value means the Y-axis

ITIME specifies whether the user units for the specified axis deal

with time or with some other unit of measure.

ITIME = 0 means the units are not time

= 1 means the units are seconds

= 2 means the units are minutes

3 means the units are hours

= any other value means the units are not time.

Algorithm: The scaling factor SF has dimensions of user units per "inch" and

is calculated in the following straightforward way:

SF = (AMAX - AMIN) / AXLEN
66

Error Conditions:
The relationship 0<AXLEN S INMAX must hold. If this condition
is violated, default values are set for SF, VLO, and for the clipp-
ing window for the specified coordinate.

Default Value:
If this routine is not called (and SF, VLO, and the clippinn, window
are not set by calls to other routines such as SCALE, YOURSC,
and SETWIN), or if an error is detected in the AXLEN specifica-
tion when this routine is called, SF, VLO, and ITIME are set to
zero; the default value for the clipping window is specified in
paragraph I.2.28 (SETWIN).

Side Effects: As indicated, the clipping window for the axis identified by the
IWHO parameter in the call to QCALE is set in this routine.
The minimum value (user units) of the window is set to AMIN and
the maximum value to AMAX. Other changes to the clipping win-
dow can be accomplished by calling SETWIN.

The values for SF and VLO are used, together with the coordinates
of the plot origin ((XIN,YIN) -- set by default or by a call to
INIT), to calculate the value in user units for a particular point
on the screen when the terminal operator interrogates the screen
using the joystick. If SF and VLO are set more than once for a
particular axis, the last values set are the ones used; if SF and
VLO are never set, they are taken to have the default values
stated above.

I,2.22	 RDRAW (XS,YS,LT,ITYPE)

Purpose:	 To draw in user units relative to the current beam position, but
without clipping.

67

0

0 1

F

Parameters:

XS and YS are relative displacements (in user units) from the

current beam position. A line is drawn from the present position

to the point defined by XS and YS.

LT determines whether the line that is drawn is invisible (LT=O)

or is drawn with the current intensity and line type (solid or dashed).

Intensity is set through the routine INTENS and the line type is

determined by the line type used in the last call generating abso-

lute vectors (any call except RELVEC, RDRAW, and RDRAWC).

ITYPE is parameter which is included for cor;,patibility with

GRAPHELP, but which is ignored by this routine. A brief des-

cription of the GRAPHELP usage of ITYPE is given in paragraph

1.2.9.

Programming Note:

This routine does not clip vectors (see RDRAWC for a version of

the routine which performs clipping), so it is possible 	 iw a

vector which wraps around the screen. No checks are made for

wrap around.

Side Effect: The beam position is updated to the location of the plotted point:

(MOD((curr X loc)+XS,INMAX),MOD((curr Y loc)+YS,INMAX))

1.2.23	 RDRAWC (XS,YS,LT,ITYPE)

Purpose: To draw in user units relative to the current beam position, while

clipping at window boundaries. Window boundaries must have been

set by previous calls to QCALE, SCALE, or SETWIN.

Additional Information:

Since clipping of relative vectors was not implemented for TMS, 	

•this routine is identical to RDRAW (paragraph 1.2.22).

68

u

I.2.24	 RELVEC(X,Y,LT)

Purpose:	 To draw a line from the present beam position to a point specified

in "inches" away from the present beam position.

Parameters:

X and Y are displacements in "inches" from the present beam

•	 position.

LT specifies the visibility of the line which is drawn (as discussed

in the description of RDRAW [paragraph 1.2.221).

Programming Note:

X and Y must satisfy the relations

X + old X position <_ I NMAX

Y + old Y position 5 INMAX

or wraparound will occur. No check is made for wraparound in

this routine.

Side Effect: The beam position is updated to the position of the end of the

relative vector. One should note that if wraparound occurs, the

new beam position will be

(MOD(X+old X pos, INMAX),MOD(Y+old Y pos, INMAX))

1.2.25	 SCALE (ARRAY,NPOINT,AXLEN, INC. IWHO,ITIME)

Purpose:	 To set the scaling factor for converting user units to "inches".

The scale factor is set based on data values in ARRAY.

Parameters:

ARRAY is a group of floating point values upon which the scaling

factor should be based. The maximum and minimum values are

selected from the array and are used in the same way that AMA a

and AMI N are used in calls to QCALE .

69

NPOINT defines how many data values are to be considered
from ARRAY.

AXLEN gives the length of the axis specified by IWHO; the axis
length is expressed in "inches".

INC specifies which values of ARRAY will be considered; NPOINT
values will be examined, one from every INCth cell of ARRAY.
Ordinarily, INC is 1, so that successive cells of ARRAY are
examined.

IWHO specifies for which axis the scale factor is being defined.
As for QCALE,

I WHO = 0 means X—axis
= any other value means Y—axis

ITIME specifies whether the user units for the specified axis
are to be interpreted as time. Possible values for ITIME are
given in the discussion of QCALE (paragraph 1.2.21).

Error Conditions:
NPOINT must be an integer greater than zero; if it is not, it is
assumed to be zero and no action is taken by the subroutine.

INC must be an integer greater than zero; if it is not, the routine
returns without taking any action.

AXLEN should be such that the axis length, when combined with
the plot origin set in a call to INIT, does not extend past the edge
of the screen (wraparound). No check is made for this condition,
however.

The length of ARRAY must be at least NPOINT * INC elements, or	 •

results are unpredictable. No check is made for this condition,
however.

70

Programming Note:

Except for the means of specifying the minimum and maximum data

values for computing the scale factor, this routine behaves in the

same way as QC.ALE; additional information about alRcrithms and

default values can be found in paragraph 1.2.21.

Side Effects: As with QCALE, the clipping window limits for the axis specified

by IWHO are implicitly set by a successful call to this routine;

paragraph 1.2.28 (SETWIN) discusses error conditions which

may arise in connection with the clipping window. Similarly, this

routine affects the values used for screen interrogation, as dis-

cussed in the "Side Effects" portion of paragraph 1 ,.2.21 .

1.2.26	 SCREEN

Purpose:	 To erase the display screen when the calling program is not in

graphics mode (graphics mode is entered through a call to ENTGRA).

Programming Note:

Except for the mode of the calling program, this routine is identi-

cal to ERASEQ (paragraph 1.2.12).

1.2.27	 SETPDQ

Purpose:	 To initialize the plotting package by resetting the plot origin, the

clipping window, etc. This routine should be called whenever a

reinitialization of the display package is desired; it must be

called before the first plot is made after a calling program is

initiated. When SETPDQ is called the screen is erased.

1.2.28	 SETWIN (XMN,YMN,XMX,YMX)

Purpose:	 To set the clipping window used in routines CURVEI, CURVF,2,

DRAWL, and RDRAWC.

71

V

Parameters:

XMN and YMN are the coordinates of the lower left-hand corner

of the clipping window, while XMX and YMX are the coordinates

of the upper right-hand corner of the window. All four values

are expressed in user units„

Error Conditions:

At the time a clipped plot is produced, each of the four values

specifying the window must lie on the screen; that is

0	 5 XMN/SF + XORG 5 INMAX
0	 5 XMX/SF + XORG S INMAX

0	 5 YMN/SF + YORG 5 INMAX

0	 5 YMX/SF + YORG 5 INMAX

where XORG and YORG are the coordinates of the plot origin as

established by default or in a call to INIT. (Note that SF and

(XORG,YORG) can be set in other plot package calls after the call

to SETWIN.) If any of these conditions is false at the time of a

clipped plot, clipping for the axis involved (both maximum and mini-

mum values) is at the edges of the screen.

Programming Note:

The clipping window for an axis is implicitly set in calls to QCALE

and SCALE (but not in a call to YOUR SC).

Default Values:

If the clipping window for an axis is not set in one of the ways

mentioned above, when clipped plotting is performed lines are

clipped only when they extend past the edge of the screen.

I.2.29	 SYMBOQ(NCHAR,I TEXT, NSIZE)

Purpose:	 To display a string of ASCII characters on the graphics screen.
s
a

72

Parameters:

NCHAR is an integer specifying the number of characters to bL

displayed.

ITEXT is an integer array of ASCII characters (packed two to a

word) which are to be displayed. If ITEXT does not contain at

least NCHAR characters the display results are unpredictable.

NSIZE is an integer defining the size of the characters. NSIZE

can range from 0 to 7, where higher numbers correspond to

larger character sizes. The smallest character (size 0) is

approximately 1 mm tall, while the la-. • gest character (size 7)

is about 8 mm tall.

Error Conditions:

NCHAR must be 2:0; if it is not, it is assumed to zero, and no

characters are displayed.

If NSIZE does not fall in the range 0-7, a velue of 1 (correspond-

ing to a character height of about 2 mm) is used.

Programming Notes:

The displayed character string begins a^ the current beam posi-

tion (which is taken to be the lower left-:and corner of the first

character) and continues to the right. No checks are made for

wraparound (continuing past the edge of the screen) and no

scrolling occurs. No ASCII control characters should appear in

the character string except carriage return (CR) and line feed

(LF); if other control characters do appear, the results are

unpredictable.

The CR LF sequence is considered to mean "advance one line"; the

left-hand margin of the succeeding line is taken to be the X-posi-	 •

tion of the beginning of the character string. Wraparound is

73

possible in the vertical direction if space is not allowed by the

calling program for lines to appear beneath a current line when

the CR LF sequence is output.

Side Effect: The beam position is updated after a call to SYMBOQ to be at the

end of the character string which is displayed.

1.2.30	 WILDCR (NW1LD)

Purpose:	 To support a variety of special functions offered by the GRAPHELP

package. This routine is a null routine at present in the TMS

graphics package; calls to WILDCR are allowed, but perform no

work.

1.2.31	 XAXIS(LABEL,NCHAR,AXLEN,BIGTIC,SMTIC,LABTIC)

Purpose:	 To d^ ; •,r a labeled X-axis, with periodic tic marks, beginning at

the plot origin defined in a call to I N IT (or by default, if I N I'T

has not been called),

Parameters:

LABEL is an integer array containing the ASC characters for

the axis label, packed two to a word. This , el is displayed

centered below the axis. Only alphabetic and nL -neric characters

may appear in the label, together with the spacial characters

+—., # $&*O%=/?

NCHAR is an integer value giving the number of characters con-

tained in the label. If NCHAR = 0, no label is displayed.

AXLEN specifies the length of the axis in "inches".

BIGTIC is a floating point value in "inc;ies" giving the separation

between long tic marks (extending b out 4 mm from the axis) along

the axis. The sign of BIGTIC has the following interpretation:

74

f

BIGTIC > 0 means the tic marks are drawn downward from the axis

= 0 means no tic marks are drawn

< 0 means the tic marks are drawn upward from the axis.

SMTIC is a floating point value in user "inches" giving the separa-

tion between short tic marks (extending about 3 mm from the axis)

along the axis. The sign of SMTIC has the same interpretation as

the sign of BIGTIC.

LABTIC is an integer value specifying whether each long tic mark

is to be labeled with the value (in user units) which the mark repre-

sents. If LABTIC = 0, no labeling will occur; if LABTIC is any

other value, long tic marks will be annotated. If LABTIC is > 0

annotations will be displayed below the axis, and if LABTIC is< 0

annotations will be shown above the axis. The annotation value is

calculated as

VLO + Sr x ((X-coord of tic mark) - XORG),

where XORG is the X-coordinate of the plot origin (set in a call

to INIT or by default), VLO is the value in user !snits of the X-

coordinate of the plot origin (VLO is set in a call to QCALE, SCALE

or YOURSC), and SF is the scale factor in user units per "inch"

(also set in a call to QCALE, SCALE, •^r YOURSC).

If the user values for an axis are time in minutes (as specified

with the ITIME parameter in a call to QCALE, SCALE, or YOURSC),

annotations of tic marks are in the form +hh:mm. If the user

values are time in seconds, annotation of tic marks are of the

form +hh:mm:ss .

Error Conditions:

If the array LABEL contains control characters in any of its first

NCHAR characters, the results are unpredictable.

L
75

F

s,.
k

NCHAR must be? 0. If it is not, it is assumed to be zero and no

label is displayed for the axis.

AXLFN must be such that XIN + AXLENSINMAX, or wraparound

will occur. No check is made for wraparound in this routine,

however,

Programming Notes:

Small tic marks are placed on the axis every SMTIC "inches".

Larger tic marks are drawn every BIGTIC "inches".

The precision of the value displayed beneath tic marks is control-

led by a call to AXPREC (paragraph 1.2.3). If this routin has

not been called, the default precision stated in paragraph 1.2.3

applies.

The calling program must insure that the plot orogin is set far

enough from the edge of the screen that the axis annotation will fit

between the axis and the edge of the screen; about 0.6 "inch"

should be allowed.

Side Effect: The beam position is moved to t' a plot origin (XORG, YORE),

which has been defined either by default or by a previous call to

INIT.

1.2.32	 YAXIS(LABEL,NCHAR,AXLEN,BIGT IC, SMTIC,LABTIC)

Purpose:	 To draw a labeled Y-axis, with periodic tic marks, beginning at

the plot origin defined in a call to INIT (or by default, if INIT

has not been called).

Parameters:

LABEL is an integer array containing the ASCII characters for 	 •

the axis label, packed two to a word. This label is displayed

centered to the left of the axis; the characters in the label are in

76

i
f

normal orientation but appear in a veritical column. Only alphabetic

and numeric characters may appear in the label, together with the

special characters +-.,#$&O%=/? .

NCHAR is an integer value giving the number of characters con-

tained in the label. If NCHAR = 0, no label is displayed.

AXLEN specifies the length of the axis in "inches".

BIGTIC is a floating paint value in "inches" giving the separation

between long tic marks axis. The sign of BIGTIC has the follow-

ing interpretation:

BIGTIC > 0 means the tic marks are drawn to the left from the ax , i

= 0 means no tic marks are drawn

< 0 means the tic marks are drawn to the right from the axis

SMTIC is a floating point value in user "inches" giving the separa-

tion between short tic marks (extending about 3 mm from the axis)

along the axis. The sign of SMTIC has the same interpretatin as

the sign of BIGTIC.

LAL T I C is an integer value specifying whether each long tic mark

is to be labeled with the value (in user units) which the mark repre-

sents. If LABTIC = 0, no labeling will occur; if LA.BTIC is any

other value, long tic marks will be annotated. If LABTIC is<0,

annotations u i' ` he made on the right side of the axis and if

LABTIC is >0 annotations will be made on the left sic.- of the axis.

The annotation value ' calculated as

VLO + SF x (('. -.:oord of tic mark) - YORG),

where YORG is the Y-coordinate of the plot origin (set in a call to

INIT or by default), VLO is she value in user units of the Y-

coordinate of the plot origin (VLO is se, in a call to QCALE, SCAI.

or YOURSC), and SF is the scale factor in user units per "inch"

(also set in a call to QCALE, SCALE, or YOURSC).
77

7-I

If the user values for an axis are time in minutes (as specified

with the ITIME parameter in a call to QCALE, SCALE, or YOURSC),

annotations of tic marks are in the form +hh:mm. If the user values

are time in seconds, annotations of the tic marks are of the form

+hhh:mm:ss.

Error Conditions:

If the array LABEL contains control characters in any of its first

NCHAR characters, the results are unpredictable.

NCHAR must be 2: 0. If it is not, it is assumed to be zero and no

label is displayed for the axis.

AXLEN must be such that YIN + AXLEN 51NMAX, or wraparound

will occur. No checK is made for wraparound in this routine,

however.

Programming Notes:

Small tic marks are placed on the axis every SMTIC "inches".

Larger tic marks are drawn every BIGTIC "inches".

The precision of the values displayed beneath tic marks is control-

led by a call to AXPREC (paragraph I.2.3). If this routine has

not been called, the default precision stated in paragraph I .2.3

applies.

The calling program must insure that the plot origin is set far

enough from the edge of the screen that the axis annotation will

fit between the axis and the edge of the screen; about 0.6 "inch"

should be allowed.

Side Effect: The beam position is moved to the plot origin (XORC,"ORG),

which has been defined either by default or by a previous call to

INIT.

78

1.2.33	 YOURSC(SF,VLO, IWHO, ITIME)

Purpose:	 To allow the calling program to set an arbitrary scale factor and

least plottable value for a specified axis.

•	 Parameters:

SF is a floating point scale factor, which must be >_ 0. Further

information about the use of SF is given in paragraph I.2.21.

VLO is a floating point value which defines the least value (in user

units) plottable; VLO is the value in user units associated with the

plot origin (X I N ,YIN) set either in a call to I N I T or by default.

IWHO specifies the axis for which scale factors are being set.

The following values apply, as in'other routines:

IWHO = 0 means X-axis

= any other value means Y-axis

ITIME specifies whether the user units for this axis are to be

interpreted as time. Possible values for ITIME are discussed in

paragraph 1.2.21.

Error Conditions:

SF must be>_ 0. If SF is negative, the old values for SF and VLO

are left unchanged.

Programming Note:

It should be noted that a call to YOURSC does not set the plot

clipping window. The clipping window is set implicitly in calls

to QCALE and SCALE and can be set explicitly in calls to SETWIN.

Side Effect: The setting of SF and VLO also affects the values used for screen

interrogation, as discussed in the description of QCALE.	 •

79

t

r

APPENDIX II

DETAILS OF TERMINAL PROGRAM GRAPHICS PICTURES

11.0 	 INTRODUCTION

This appendix contains details about the structure of each of the

terminal program permanent graphics pictures discussed in paragraph 4.3 of

the main body of the paper. A paragraph is devoted to each of pictures 1

through 8 (with the exception of picture 7, which is not allocated or used); the

paragraph describes the layout of the picture and the actual display list com-

mands used. In this appendix, where the context does not make the interpre-

tation clear, octal numbers are distinguished by the suffix K .

I1.1	 Picture 1

This is a 30-word picture which was reserved for display of error

messages, but which is not used in the current version of the terminal program.

Error messages are included in the scrolled list of ASCII messages (picture 8)

instead. This picture consists only of a standard header and trailer (as

desc: ibed in paragraph 4.3.2).

II.2	 Picture 2

This 30-word picture displays the bias time window on the screen.

The bias time is initially generated by a TMS application program in the

MODCOMP and sent to the NOVA in a graphics packet (see paragraph 3.1 and

paragraph 1.2.4). The bias time is updated by the CS task each time curve

sliding is performed by the amount of sliding (each time one of the function keys

to skew curves is depfessed the bias time is undated by a fixed amount).

The picture begins with a standard header, which is followed by a

two-wort-A' absolute vector display list command which positions the beam to the

location specified by the application programmer for the	 time window.

Ten words of display processor character commands then follow to display a

81

time in the format +hhh:mm:ss in size 2 characters. The picture is concluded

with a standard trailer.

II.3	 Picture 3

This 30-word picture is similar in function to picture 2, in that pic-

ture 3 displays a window to show the coordinates of the joystick cursor. The

joystick coordinates are given as degrees Fahrenheit (Y-position) and time

(X-position) .

The picture is composed of a standard header, followed by a two-

word absolute vector command to position the beam to a fixed point for display

of the window. The location of the window is currently set to be (13.2,15.4)

in "inches" (see 1.2.0.1), which is equivalent to (3379,3942) in rasters.

Sixteen words defining the position in the format +dddF +hhh:mm:ss then follow.

The picture is concluded with a standard trailer.

As with the window in picture 2, the window in picture 3 is updated

in place without stopping or excluding the display processor (see paragraph

4.3.4).

II.4	 Picture 4

Picture 4 is also a 30-word picture, but its function is more complex.

The picture contains display list commands to generate a graphics cursor

(a plus sign) and, when needed, a text cursor (underline) which is attached to

the graphics cursor. Figure I1.4-1 shows the format of the picture.

Picture 4 then (words 8-14) draws a plus sign with arms 12 rasters

long and centered at the joystick location. Depending on the setting of word

16 (controlled by the JS task), the display processor will either skip around

the instructions to generate the underline attached to the plus sign (;f no text

cursor is to be displayed), or will draw a 12-ras,,:r-wide underline just below

the plus sign.

82

x

WORD OCTAL CONTENTS COMMAND

1-5 Standard header

6 134000 J SR (jump to subroutine) to location which
7 address in module contains an absolute vector command to

JGTON position beam to joystick location

8 172000 SPECIAL FUNCTION (shift into extended
format)

9 003000 Short relative vector +	 move right 12
rasters invisibly

10 072000 Short relative vector to move left 24
rasters visibly

11 003014 Short relative vector to move right 12
rasters and up 12 rasters invisibly

12 040150 Short relative vector to move down 24
rasters visibly

13 000014 Short relative vector to move up 12 rasters
invisibly

14 170000 SPECIAL FUNCTION (exit extended format
mode)

15 130000 JUMP

16 *+1 or *+5 Address to which jump should go (*+l if
text cursor is to be displayed and *+5
otherwise)

17 176000 SPECIAL FUNCTION (shift into extended
format and expanded resolution mode)

18 036567 Short relative vector to move down 9 ras-
ters and lert 6 rasters invisibly

19 043000 Short relative vector to move right 12
rasters visibly

20 170000 SPECIAL FUNCTION (exit extended format
and expanded resolution modes)

21-24 Standard trailer

The initial JSR in the picture transfers briefly to several locations in the
ME GATE K-supplied joystick handler in module JGTON.	 In JGTON is an
absolute vector command to move the beam invisibly to the current location of
the joystick, and then a return-from-subroutine instruction.

Figure I7.4-1. Format of Picture 4

83

J S performs an additional manipulation of picture 4 when the user

depresses the button on the end of the joystick. When IS senses that the

button is depressed (this inform a tion is made available by JGTON), word 8

of the picture is changed to 176000K, which sets expanded resolution mode

for the cursor drawing (see L14.{) and causes the plus sign size to be quadrupled.

All of the updates Lo this picture (words 8 and 16) are made without

stopping or excluding the display processor.

II.5	 Picture 5

Picture 5 is a 100--word picture controlled by the KB task for display

of characters in the current command line (the line on which the user composes

commands to be sent to the MODCOMP). The picture begins with a standard

header and a two-word absolute vector command to position the beam to the

current cursor location. Initially, the cursor is at (0.2,0.6) in "inches"

((48,143) in rasters); the Y-position never changes, of course, but the X-

position is updated as the cursor moves. A two-word long relative vector

(120044K and 100000K) then follows to draw a 36-raster-wide underline (for

a cursor). A two-word absolute vector (014060K and 174224K) then positions

the beam to the first of the line again, and 72 words of size 2 character com-

mands follow for the characters in the command lire. The picture is concluded

with a standard trailer.

The character commands are set to display 'blanks when no characters

have been typed and are overstored by KB as characters are received from the

keyboard. KB also modifies word 9 of the picture (the second word of the long

relative vector) when the text cursor is to be displayed as attached to the

graphics cursor (see I1 X. When this situation obtains, KB changes word 9

to b3 0, which causes the relative vector's underline to be invisible (see [1/1]

for a detailed discussion of the significance of the bit positions of eacn dis-

play list command).

The modifications to picture 5 are accomplished without stopping or

excluding the display processor.	
84

II.6	 Picture 6

Picture 6 is a 400-word picture controlled by KB for displaying the
plot annotation typed by a terminal user. The picture begins with a standard
header and a two-word absolute vector to position the text cursor. A two-word
long relative vector (120044K and 0, normally) then follows to draw a 36-
raster-wide underline invisibly as the text cursor. This cursor is made
visible (by replacing the 0 with a 100000K) only when annotation of the screen
is being performed.

The contents of the rest of the picture depend on what annotation has
been entered. For each tab position, a two-word absolute vector is required
to position the beam. This command is then followed by words containing
character commands (size 2 characters) for the characters typed. The entire
picture is terminated with a standard trailer.

A tab position is defined each time the terminal user "grabs the
cursor" (by depressing the GRAB CRSR function key) and then types display-
able characters. "Grabbing the cursor" causes the command line cursor
(picture 5) to become invisible and the text cursor attached to the joystick
cursor (picture 4) to become visible. The user can then position the text
cursor to a desired point and type a comment on the screen. When he begins
typing, the text cursor in picture 4 is made invisible, and a tab position is
defined by insertion of an absolute vector in picture 6. The picture 6 text
cursor is set to be placed at the location of the joystick cursor and is made
visible. The character commands for the keys typed are then added until the
annotation at the present position is ended by a carriage return or a TAB,
BACK TAB, or END NOTE keyin.

Because of the complexity of updating this picture, the display
processor is excluded from picture 6 by the first method described in para-

graph 4.3.2.	 •

85

11.7	 Picture 8

Picture 8, at 1,500 words, is the largest of the permanent pictures.
Picture 8 is controlled by KB through the subroutine SCROL and is used to
display the last 20 lines of ASCII commands or messages from the MODCOMP.
The picture begins with a standard header, which is then followed by 20 "line
units", and a standard trailer. Each "line unit" is composed of a two-word
absolute vector to position the beam to the beginning of the line, and 72 words
of character commands for the characters in each line. The character words
in each line units are always filled (with commands to generate either blanks
or displayable characters).

SCROL makes lines visible or invisible by turning the intensity bits
for each absolute vector (the first 4 bits of the second word) on or off, as
necessary. When a new line is to be added to the display and the last line
scrolled off, SCROL first passes through the line units and adds 72 rasters to
the Y-position (second word of the absolute vector) for each line. The abso-
lute vector for the scrolled-off line is then initialized to the position of the
lowest line NO. 2,1.1) in "inches", or (48,280) in rasters] and the new char-
acters are inserted in that line unit.

The updates to picture 8 are accomplished without stopping or
excluding the display processor.

86

4

REFERENCES

[11 Hopkins, G. T. A Bus Communications System, The MITRE Corporation,
MTR-3515, November 1977.

[21 Roman, G. S.	 The Johnson Space Center Broadband Communications
System, The MITRE Corporation, MTR-3	 J	 u y	 78.

131 Brown, J . S. and Weinrich, S. S.	 Trend Monitoring S stem (TMS)
' Communications Hardware - Volume I — Computer Interfaces, TheMI -1 RE

Corporation, MTR-4721 (JSC ff 14682), February 1979.

141 Brown, J. S. and Hopkins, G. T.	 Trend Monitoring System (TMS)
Communications Hardware - Volume II - Bus Interface Units, The
MITRE Corporation, MTR-4721 	 JSC	 14723 , March 1979.

[5) Brown, J. S. and Lenker, M. D.	 Trend Monitoring System (TMS)
Communications Software - Volume I - Computer Interfaces, The MITRE
Corporation, MTR-4723 l' JSC	 14792), April 1979.

[61 Gregor, Paul J.	 Trend Monitoring System (TMS) Communications
Software - Volume II - Bus Interface Unit	 BIU	 Software, The MITRE
Corporation, MTR-4723 7C	 14793), April 1979.

(7) Brown, J. S. and Lenker, M. D. 	 Diagnostic Procedures for Trend
Monitoring System (TMS) Communications, The MITRE Corporation,
MTR-4724 (JSC #14794), April 1979.

[81 Brown, J. S. Procedures for Building Trend Monitoring System (TMS)
MODCOMP Graphics Library and MEGATEK Terminal Program, The
M I THE Corporation, WP-6214 (J SC # 14826), March 1979.

[91 Lenker, Mike. Trend Monitoring System Preliminary Design Study,
The MITRE Corporation, MTR-4705, September 1977.

[101 GRAPHELP User's Guide (Version 2), ID 422431-1506, IMLAC Corpora-
tion, February 1977.

[111 Functional Design Specification - Trend Monitoring System, NASA
Johnson Space Center, JSC 13900, February 1976.

[121 Trend Monitoring System Level "C" Requirements Document, 78-FD-005,
NASA Johnson Space Center QSC #13992), November 1976.

1131 Herndon, E. 5 Letter to C. G. Krpec, NASA/JSC (FD7), Subject:
"Program I - umentation for MITRE Portions of the Trend Monitoring
System (D.,_i) Software", The MITRE Corporation, D72-L-426/HO,
July 2, 1979.

87

[141 MEGATEK MG-552 Graphics Display Frocessor -• MEGRAPHIC 5000 Series
Product Description, MEGATEK Corporation, 1977.

115.1 Real Time ORerating S stem Refer ence Manual, Data General Corporation,
Publication 093-000056-06, February 1975.

[161 Herndon, E. S. Letter to C. G. Krpec, NASA/JSC (FD7) regarding
changes to MEGATEK keyboards, The MITRE Corporation, D72-L-356/HO,
October 25, 1978.

1171 MEGATEK 5000 Series Software Manual - FORTRAN, Revision 1.3,
MEGATEK Corporation, December 6, 1577.

r^` ^tnt^

88

0

a

	1980009066.pdf
	0009A03.tif
	0009A04.tif
	0009A05.tif
	0009A06.tif
	0009A07.tif
	0009A08.tif
	0009A09.tif
	0009A10.tif
	0009A11.tif
	0009A12.tif
	0009A13.tif
	0009A14.tif
	0009B01.tif
	0009B02.tif
	0009B03.tif
	0009B04.tif
	0009B05.tif
	0009B06.tif
	0009B07.tif
	0009B08.tif
	0009B09.tif
	0009B10.tif
	0009B11.tif
	0009B12.tif
	0009B13.tif
	0009B14.tif
	0009C01.tif
	0009C02.tif
	0009C03.tif
	0009C04.tif
	0009C05.tif
	0009C06.tif
	0009C07.tif
	0009C08.tif
	0009C09.tif
	0009C10.tif
	0009C11.tif
	0009C12.tif
	0009C13.tif
	0009C14.tif
	0009D01.tif
	0009D02.tif
	0009D03.tif
	0009D04.tif
	0009D05.tif
	0009D06.tif
	0009D07.tif
	0009D08.tif
	0009D09.tif
	0009D10.tif
	0009D11.tif
	0009D12.tif
	0009D13.tif
	0009D14.tif
	0009E01.tif
	0009E02.tif
	0009E03.tif
	0009E04.tif
	0009E05.tif
	0009E06.tif
	0009E07.tif
	0009E08.tif
	0009E09.tif
	0009E10.tif
	0009E11.tif
	0009E12.tif
	0009E13.tif
	0009E14.tif
	0009F01.tif
	0009F02.tif
	0009F03.tif
	0009F04.tif
	0009F05.tif
	0009F06.tif
	0009F07.tif
	0009F08.tif
	0009F09.tif
	0009F10.tif
	0009F11.tif
	0009F12.tif
	0009F13.tif
	0009F14.tif
	0009G01.tif
	0009G02.tif
	0009G03.tif
	0009G04.tif
	0009G05.tif
	0009G06.tif
	0009G07.tif
	0009G08.tif
	0009G09.tif
	0009G10.tif
	0009G11.tif
	0009G12.tif
	0009G13.tif
	0009G14.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

